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Foreword 

Density functional theory (DFT) is an entrancing subject. It is entrancing to chem- 
ists and physicists alike, and it is entrancing for those who like to work on math- 
ematical physical aspects of problems, for those who relish computing observable 
properties from theory and for those who most enjoy developing correct qualitative 
descriptions of phenomena in the service of the broader scientific community. 

DFT brings all these people together, and DFT needs all of these people, because 
it is an immature subject, with much research yet to be done. And yet, it has already 
proved itself to be highly useful both for the calculation of molecular electronic 
ground states and for the qualitative description of molecular behavior. It is already 
competitive with the best conventional methods, and it is particularly promising in 
the applications of quantum chemistry to problems in molecular biology which are 
just now beginning. This is in spite of the lack of complete development of DFT 
itself. In the basic researches in DFT that must go on, there are a multitude of prob- 
lems to be solved, and several different points of view to find full expression. 

Thousands of papers on DFT have been published, but most of them will be- 
come out of date in the future. Even collections of works such as those in the present 
volumes, presentations by masters, will soon be of mainly historic interest. Such 
collections are all the more important, however, when a subject is changing so fast 
as DFT is. Ative workers need the discipline imposed on them by being exposed to 
the works of  each other. New workers can lean heavily on these sources to learn the 
different viewpoints and the new discoveries. They help allay the difficulties associ- 
ated with the fact that the literature is in both physics journals and chemistry jour- 
nals. [For the first two-thirds of my own scientific career, for example, t felt confi- 
dent that I would miss nothing important if I very closely followed the Journal of 
Chemical Physics. Most physicists, I would guess, never felt the need to consult 
JCP. What inorganic or organic chemist in the old days took the time to browse in 
the physics journals?] The literature of DFT is half-divided, and DFT applications 
are ramping into chemical and physical journals, pure and applied. Watch JCP, Physi- 
cal Review A and Physical Review B, and watch even Physical Review Letters, if 
you are a chemist interested in applying DFT. Or ponder the edited volumes, includ- 
ing the present two. Then you will not be surprised by the next round of improve- 
ments in DFT methods. Improvements are coming. 



VIII Foreword 

The applications of quantum mechanics to molecular electronic structure may 
be regarded as beginning with Pauling's Nature of the Chemical Bond, simple mo- 
lecular orbital ideas, and the Huckel and Extended Huckel Methods. The molecular 
orbital method then was systematically quantified in the Hartree-Fock SCF Method; 
at about the same time, its appropriateness for chemical description reached its most 
elegant manifestation in the analysis by Charles Coulson of the Huckel method. 
Chemists interested in structure learned and taught the nature of  the Hartree-Fock 
orbital description and the importance of electron correlation in it. The Hartree- 
Fock single determinant is only an approximation. Configurations must be mixed to 
achieve high accuracy. Finally, sophisticated computational programs were devel- 
oped by the professional theoreticians that enabled one to compute anything. Some 
good methods involve empirical elements, some do not, but the road ahead to higher 
and higher accuracy seemed clear: Hartree-Fock plus correction for electron corre- 
lation. Simple concepts in the everyday language of non theoretical chemists can be 
analyzed (and of  course have been much analyzed) in this context. 

Then, however, something new came along, density functional theory. This is, 
of  course, what the present volumes are about. DFT involves a profound change in 
the theory. We do not have merely a new computational gimmick that improves 
accuracy of calculation. We have rather a big shift of emphasis. The basic variable is 
the electron density, not the many-body wavefunction. The single determinant of 
interest is the single determinant that is the exact wavefuntion for a noninteracting 
(electron-electron repulsion-less) system corresponding to our particular system of 
interest, and has the same electron density as our system of interest. This single 
determinant, called the Kohn-Sham single determinant, replaces the Hartree-Fock 
determinant as the wavefunction of paramount interest, with electron correlation 
now playing a lesser role than before. It affects the potential which occurs in the 
equation which determines the Kohn-Sahm orbitals, bus once that potential is deter- 
mined, there is no configurational mixing or the like required to determine the accu- 
rate electron density and the accurate total electronic energy. Hartree-Fock orbitals 
and Kohn-Sham orbitals are quantitatively very similar, it has turned out. Of the two 
determinants, the one of Kohn-Sham orbitals is mathematically more simple than 
the one of Hartree-Fock orbitals. Thus, each KS orbital has its own characteristic 
asymptotic decay; HF orbitals all share in the same asymptotic decay. The highest 
KS eigenvalue is the exact first ionization potential; the highest HF eigenvalue is an 
approximation to the first ionization potential. The KS effective potential is a local 
multiplicative potential; the HF potential is nonlocal and nonmultiplicative. And so 
on. When at the Krakow meeting I mentioned to a physicist that I thought that chem- 
ists and physicists all should be urged to adopt the KS determinant as the basic 
descriptor for electronic structure, he quickly replied that the physicists had already 
done so. So, I now offer that suggestion to the chemistry community. 

On the conceptual side, the powers of DFT have been shown to be considerable. 
Without going into detail, I mention only that the Coulson work referred to above 
anticipated in large part the formal manner in which DFT describes molecular changes, 
and that the ideas of electronegativity and hardness fall into place, as do Ralph 
Pearson's HSAB and Maximum Hardness Principles. 



Foreword IX 

It was Mel Levy, I think who first called density functional theory a charming 
subject. Charming it certainly is to me. Charming it should be revealed to you as you 
read the diverse papers in these volumes. 

Chapel Hill, 1996 Robert G. Parr 



Foreword 

Thirty years after Hohenberg and myself realized the simple but important fact that 
the theory of electronic structure of matter can be rigorously based on the electronic 
density distribution n(r) a most lively conference was convened by Professor R. 
Nalewajski and his colleagues at the Jagiellonian University in Poland's historic 
capital city, Krakow. The present series of volumes is an outgrowth of this confer- 
ence. 

Significantly, attendees were about equally divided between theoretical physi- 
cists and chemists. Ten years earlier such a meeting would not have had much re- 
sponse from the chemical community, most of whom, I believe, deep down still felt 
that density functional theory (DFT) was a kind of mirage. Firmly rooted in a tradi- 
tion based on Hartree Fock wavefunctions and their refinements, many regarded the 
notion that the many electron function,Y(§ ... rN) could, so to speak, be traded in for 
the density n(r), as some kind of not very serious slight-of-hand. However, by the 
time of this meeting, an attitudinal transformation had taken place and both chemists 
and physicists, while clearly reflecting their different upbringings, had picked up 
DFT as both a fruitful viewpoint and a practical method of calculation, and had done 
all kinds of  wonderful things with it. 

When ! was a young man, Eugene Wigner once said to me that understanding in 
science requires understanding from several different points of view. DFT brings 
such a new point of view to the table, to wit that, in the ground state of a chemical or 
physical system, the electrons may be regarded as afluid which is fully character- 
ized by its density distribution, n(r). I would like to think that this viewpoint has 
enriched the theory of electronic structure, including (via potential energy surfaces) 
molecular structure; the chemical bond; nuclear vibrations; and chemical reactions. 

The original emphasis on electronic ground states of non-magnetic systems has 
evolved in many different directions, such as thermal ensembles, magnetic systems, 
time-dependent phenomena, excited states, and superconductivity. While the ab- 
stract underpinning is exact, implementation is necessarily approximate. As this 
conference clearly demonstrated, the field is vigorously evolving in many direc- 
tions: rigorous sum rules and scaling laws; better understanding and description of 
correlation effects; better understanding of chemical principles and phenomena in 
terms of n(r); application to systems consisting of thousands of atoms; long range 
polarization energies; excited states. 



XII Foreword 

Here is my personal wish list for the next decade: (1) An improvement of  the 
accurary of the exchange-correlation energy E [n(r)] by a factor of 3-5. (2) A practical, 
systematic scheme which, starting from the popular local density approach, can - 
with sufficient effort - yield electronic energies with any specified accuracy. (3) A 
sound DFT of excited states with an accuracy and practicality comparable to present 
DFT for ground states. (4) A practical scheme for calculating electronic properties 
of  systems of 103 - 105 atoms with "chemical accuracy". The great progress of  the 
last several years made by many individuals, as mirrored in these volumes, makes 
me an optimist. 

Santa Barbara, 1996 Walter Kohn 



Preface 

Density functional methods emerged in the early days of quantum mechanics; how- 
ever, the foundations of the modern density functional theory (DFT) were estab- 
lished in the mid 1960 with the classical papers by Hohenberg and Kohn (1964) and 
Kohn and Sham (1965). Since then impressive progress in extending both the theory 
formalism and basic principles, as well as in developing the DFT computer software 
has been reported. At the same time, a substantial insight into the theory structure 
and a deeper understanding of reasons for its successes and limitations has been 
reached. The recent advances, including new approaches to the classical Kohn-Sham 
problem and constructions of more reliable functionals, have made the ground-state 
DFT investigations feasible also for very large molecular and solid-state systems (of 
the order of 103 atoms), for which conventional CI calculations of comparable accu- 
racy are still prohibitively expensive. The DFT is not free from difficulties and con- 
troversies but these are typical in a case of a healthy, robust discipline, still in a stage 
of fast development. The growing number of monographs devoted to this novel 
treatment of the quantum mechanical many body problem is an additional measure 
of its vigor, good health and the growing interest it has attracted. 

In addition to a traditional, solid-state domain of appplications, the density func- 
tional approach also has great appeal to chemists due to both computational and 
conceptual reasons. The theory has already become an important tool within quan- 
tum chemistry, with the modern density functionals allowing one to tackle problems 
involving large molecular systems of  great interest to experimental chemists. This 
great computational potential of DFT is matched by its already demonstrated capac- 
ity to both rationalize and quantify basic classical ideas and rules of chemistry, e.g., 
the electronegativity and hardness/softness characteristics of the molecular electron 
distribution, bringing about a deeper understanding of the nature of the chemical 
bond and various reactivity preferences. The DFT description also effects progress 
in the theory of chemical reactivity and catalysis, by offering a "thermodynamic- 
like" perspective on the electron cloud reorganization due to the reactant/catalyst 
presence at various intermediate stages of a reaction, e.g. allowing one to examine 
the relative importance of the polarization and charge transfer components in the 
resultant reaction mechanism, to study the influence of the infinite surface reminder 
of cluster models of heterogeneous catalytic systems, etc. 



XIV Preface 

The 30th anniversary of the modem DFT was celebrated in June 1994 in Cra- 
cow, where about two hundred scientists gathered at the ancient Jagiellonian Uni- 
versity Robert G. Parr were the honorary chairmen of the conference. Most of the 
reviewers of these four volumes include the plenary lecturers of this symposium; 
other leading contributors to the field, physicists and chemists, were also invited to 
take part in this DFT survey. The fifteen chapters of this DFT series cover both the 
basic theory (Parts I, II, and the first article of Part III), applications to atoms, mol- 
ecules and clusters (Part Ill), as well as the chemical reactions and the DFT rooted 
theory of chemical reactivity (Part IV). This arrangement has emerged as a compro- 
mise between the volume size limitations and the requirements of the maximum 
thematic unity of each part. 

In these four DFT volumes of the Topics in Current Chemistry series, a real 
effort has been made to combine the authoritative reviews by both chemists and 
physicists, to keep in touch with a wider spectrum of current developments. The 
Editor deeply appreciates a fruitful collaboration with Dr. R. Stumpe, Dr. M. Hertel 
and Ms B. Kollmar-Thoni of the Springer-Verlag Heidelberg Office, and the very 
considerable labour of the Authors in preparing these interesting and informative 
monographic chapters. 

Cracow, 1996 Roman F. Nalewajski 
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This article describes the rigorous quantum-mechanical interpretation of Hohenberg-Kohn Sham 
density-functional theory based on the original ideas of Harbola and Sahni, and of their extension by 
Holas and March. The local electron-interaction potential v~S(r) of density-functional theory is 
defined mathematically as the functional derivative v~S(r) = 6E~S[p]/6p(r), where E~S[p] is the 
electron-interaction energy functional of the density p(rt. This functional and its derivative incorpor- 
ate the effects of Pauli and Coulomb correlations as well as those of the correlation contribution to 
the kinetic energy. The potential v~S(r) also has the following physical interpretation. It is the work 
done to move an electron in a field ~'(r), which is the sum of two fields. The first, 8~e(r), is 
representative of Pauli and Coulomb correlations, and is determined by Coulomb's law from its 
source charge which is the pair-correlation density. The second field, Z,¢(r}, represents the correla- 
tion contribution to the kinetic energy, and is proportional to the difference of fields derived from the 
kinetic-energy-density tensor for the interacting and non-interacting systems. The field .~-(r) is 
conservative, and thus the work done in this field is path-independent. The quantum-mechanical 
electron-interaction energy component E~ [p] of E~ s[p] is the energy of interaction between the 
electronic and pair-correlation densities. The correlation-kinetic-energy component Tc[p] can also 
be written in terms of its source through the field Z~o(r). Some results for finite atomic (both ground 
and excited states) and extended metal surface systems derived via the interpretation are presented. 
Certain consequences of the physical interpretation such as the understanding of Slater theory, and 
the implications with regard to electron correlations within approximate Kohn-Sham theory are 
also discussed. 



1 Introduction 

Quantum-Mechanical Interpretation of Density Functional Theory 

In Schr6dinger theory [1] the correlations between electrons are incorporated 
in the structure of the stationary state wavefunction ~ of the system. These 
correlations arise due to the Pauli exclusion principle and Coulomb repulsion, 
the former being accounted for by the requirement that the wavefunction be 
antisymmetric in an interchange of the co-ordinates (including spin) of any two 
electrons. Due, however, to the two-particle electron-interaction operator in the 
Hamiltonian, the analytical dependence of the wavefunction on the electronic 
coordinates representative of Coulomb correlations is unknown. Properties of 
the system are determined as expectation values, taken with respect to the 
wavefunction, of operators representing the observables of interest. Thus the 
energy is the expectation value of the Hamiltonian. Now according to the first 
theorem of modern density-functional theory [2] due to Hohenberg and Kohn 
[3], the ground-state wavefunction ~ is a functional of the exact ground-state 
electronic density p(r). Thus the ground-state expectation value of any observ- 
able, and therefore the energy, is  a unique functional of the density. The 
ground-state density, however, does not discriminate between interacting and 
noninteracting electronic systems. Thus, in the Kohn-Sham [4] version of 
density-functional theory, the Schr6dinger (Kohn-Sham) equation for a model 
system of noninteractin9 quasi-particles which leads to the same density is 
solved instead. Since these quasi-particles are noninteracting, the operator 
(potential) representing all the electron correlations, including those of the 
correlation contribution to the kinetic energy, is local. Furthermore, as a conse- 
quence of the second theorem of Hohenberg and Kohn [3] which establishes the 
variational character of the ground-state energy functional, Kohn-Sham theory 
provides a rioorous mathematical definition for this local potential. It is the 
functional derivative, with respect to arbitrary norm conserving variations of 
the density, of a yet unknown 'electron-interaction' energy functional in which 
all the electron correlations are incorporated. For an external potential that is 
local, the electrons then move in the same local effective potential. The 'elec- 
tron-interaction' potential of Kohn-Sham theory is, of course, unknown. How- 
ever, the a priori knowledge and understanding of the structure of this potential 
is further obscured by its definition as a functional derivative. Thus, what is 
required is a fundamental physical interpretation of this local potential in which 
all the many-body effects are incorporated. (It is noted, however, that the 
asymptotic structure of the 'electron-interaction' potential and of its exchange 
and correlations components in the classically forbidden region of finite [5-9] 
nonuniform electron density systems such as atoms, molecules, and metallic 
clusters, and extended [10] systems such as metallic surfaces, is at present 
known analytically). 

In this article we describe the rioorous quantum-mechanical interpretation 
of the 'electron-interaction' potential of Kohn-Sham theory based on the 
original ideas of Harbola and Sahni [9], and of their subsequent extension by 
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Holas and March [11]. This physical description further distinguishes between 
the Pauli and Coulomb correlation components and the correlation-kinetic- 
energy component of the potential, and thereby provides insights into its 
structure and of its components. In addition the interpretation helps distinguish 
between the Pauli, Coulomb and correlation-kinetic-energy contributions to the 
electron-interaction energy functional. A consistent physical description for 
both the energy functional and its functional derivative is thereby achieved. 

For the quantum-mechanical interpretation of density-functional theory, we 
begin with the definitions of requisite properties within Schr6dinger and 
Kohn-Sham theories. We then provide a description and proof of the physical 
interpretation of the local 'electron-interaction' potential of Kohn-Sham the- 
ory. Following this we show how the interpretation leads to definitions of the 
Pauli, Coulomb, and correlation-kinetic-energy components of the electron- 
interaction energy and local potential in terms of respective quantum-mechan- 
ical source charge distributions and their fields. This in turn leads to a discussion 
of the structure of these components of the potential in the classically forbidden 
region, and thereby to the asymptotic structure of the electron-interaction 
potential for finite and extended systems. Recent results of application to the 
ground and excited states of atoms are presented. Lastly, a few important 
consequences of the physical interpretation are discussed. We comment on the 
Hohenberg-Kohn theorem in terms of the inverse map whereby wavefunctions 
lead to external potentials for both non-degenerate and degenerate ground 
states. We then explain the electronic theory of Slater [12], the precursor to 
modern density-functional theory, in terms of the new understandings achieved. 
Finally, we explain by example, how the physical interpretation bears [13] on 
approximate Kohn-Sham theory. When the "electron-interaction' energy func- 
tional is approximated, and the potential obtained as its functional derivative, it 
is assumed that the electrons are correlated as in the definition of the approxim- 
ate functional. However, when the requisite quantum-mechanical source charge 
for the approximation is determined, and the expressions for the energy and 
potential rederived via the physical interpretation, correlations beyond those 
assumed in the construction of the approximate energy functional emerge. The 
knowledge of these additional correlations then leads to a more meaningful 
evaluation of the results of the approximation. We conclude with a discussion of 
how the physical interpretation leads to the a priori understanding of the 
general structure of the 'electron-interaction' potential as well as what yet 
remains to be understood. We subsequently end with remarks for future work. 

2 Sehriidinger and Kohn-Sham Theories 

For the quantum-mechanical description of Kohn-Sham density-functional 
theory, we define in this section properties within the context of Schr6dinger 
theory relevant to the interpretation. We also give a brief description of 
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Kohn-Sham theory in order to define the local potential representing electron 
correlations as well as other properties derived within its context. 

2.1 Definitions within SehrOdinger Theory 

The Hamiltonian 121 of a system of N electrons in an external potential represent- 
ed by an operator V of the local single-particle form is 

I Z I = t + ~ + O  (1) 

where the kinetic energy operator 

1 2 
q" = Z - ~Vi (2) 

i 

the external potential operator 

~r = ~ v(r,) (3) 
i 

and the electron-interaction operator 

1 ~ ,  1 
0 = ~ i,j I ri - r j I" (4) 

The Schr6dinger equation is then 

IZlq'(xl .... XN) = EV(xl  .... XN) (5) 

where W and E are the normalized system wavefunction and energy, respective- 
ly. The energy is the expectation E = (q'  Ifi/q' ). (Here x = rtr, where r is the 
spatial and tr the spin coordinate of the electron. The integral ~dx = Y.,~dr). 

The first property of interest is the spinless sinyle-particle density matrix ?(r, r ') 
defined as 

y(r, r ') = N ~ q '  *(ra, x2 .... XN)~IJ(r'o ", X 2 . . . .  XN)dX 2 . . . .  dx N. (6) 
t t , )  / 

This density matrix can also be written [14] as the expectation value of the 
Hermitian operator X: 

~/(r, r ') = ('4'1XI V > (7) 

where 

X = A + i I ~  

1 ~ [6(rj - r)Tj(a) + 6(rj - r ' ) T j ( -  a)] 

i 
§ = ~ ~ [6(rj - r)Tj(a) - 6(rj - r ' )T j ( - a ) ]  . 

J 

(8) 

(9) 

(10) 
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Tj(a) is a translation operator such that Tj(a)q'(...rj.. .) = q~(.., rj + a...), and 
a = r '  - r. The single-particle density matrix constructed from the wavefunction 
q~ is not idempotent and satisfies the condition 

dx"7(x, x")?(x",  x ') < ?(x, x')  (11) 

The diagonal matrix element of the density matrix is the density p(r). Equiva- 
lently, it is the expectation value of the density operator 

¢3(r)  = ~5(r~- r) (12)  
i 

so that 

p(r) = 7(r, r) = (WI/3IT) . (13) 

The property associated [9] with the purely electron-interaction component 
of the Kohn-Sham theory many-body potential as well as the electron-interac- 
tion energy is the pair-correlation density g(r, r'). It is defined in terms of the 
pair-correlation operator 

f'(r, r ' )  = ~ '6(r l  - r)6(rj - r ') (14) 
i , j  

a s  

g(r, r ') = (WIP(r, r ' ) l~) /p(r)  . (15) 

Note that in the definition of the pair-correlation density there is no self- 
interaction. In physical terms, the pair-correlation density is the density at r' for 
an electron at r. Its total charge for arbitrary electron position is thus 

t* 

j g(r, r ' )d r '  = N - 1 . (16) 

The pair-correlation density is a property that arises due to the Pauli and 
Coulomb correlations between electrons. Thus it can also be interpreted as the 
density p(r ') at r '  plus the reduction in this density at r' due to the electron 
correlations. The reduction in density about an electron which occurs as a result 
of the Pauli exclusion principle and Coulomb repulsion is the quantum-mechan- 
ical Fermi-Coulomb hole charge distribution pxc(r, r'). Thus we may write the 
pair-correlation density as 

g(r, r ') = p(r') + px~(r, r ' )  (17) 

and consequently the total charge of the Fermi-Coulomb hole for arbitrary 
electron position is 

fpx ~(r, r ')dr'  = - 1 . (18) 
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Note that the self-interaction contribution to the Fermi-Coulomb hole charge 
is cancelled by the density, so that the pair-correlation density as defined by Eq. 
(17) is self-interaction free. 

The electron-interaction energy Eee, which is the expectation value of the 
operator O, can be afforded a physical interpretation in terms of the pair- 
correlation density as the energy of interaction between it and the electronic 
density: 

t [ f p ( r ) g ( r , r ' ) d r d r ,  (19) Eoe = <~IC; I  q'> = ] j j  ~_-~-;j-  . 

Using the form of g(r, r') as given by Eq. (17), the electron-interaction energy can 
be split further as 

Ee~ = EH + Exc (20) 

where EH is the Coulomb self-energy 

1 /"/ 'p(r)p(r ' ) ,  
E .  = jj ordr '  (21) 

and Exc is the quantum-mechanical exchange-correlation energy 

1 (' ~" p(r)pxc(r, r ' ) ,  I , 
Exc = -: / / - - - ;  ar or (22) 

2 3 3  J r - r [  

which is the energy of interaction between the density and the Fermi-Coulomb 
hole charge distribution. 

The property associated ~ 1 with the correlation-kinetic-energy component of 
the Kohn-Sham potential is the kinetic-energy-density tensor t,a(r). This is 
a real, symmetric tensor defined in terms of the single-particle density matrix 
7(r, r') as 

1 . r  p rH~,, , 
t .#( r ; [y ] )  = 4Lc3r.ar~ + ar.Or.17[# -3  , )I, =,' = , -  (23) 

The trace of the kinetic-energy-density tensor is the scalar kinetic energy density 
t(r): 

t(r) = ~ t,,(r) _> 0 .  (24) 

The kinetic energy T, which is the expectation value of the operator ]', is then 

T = <qflTl~'  ) = fdr t(r) 

= ~dr  [V,. V,,~(r, r')],,=,. (25) 
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Finally, the total energy E can thus be written as 

E = Y + fv(r)p(r)dr + Eee 

= T + fv(r)p(r)dr + En + Ex~ 

with T, En, and Ex¢ as defined above. 

(26) 

2.2 Definitions Within Kohn-Sham Theory 

The basic idea underlying Kohn-Sham theory [4] is the construction of a model 
system of noninteracting quasi-particles for which the density is the same as that 
of the interacting system. As such the ground-state energy functional E[p] is 
partitioned as 

= T~[p] + fv(r)p(r)dr + E~S[p] (27) E[p] 

where Ts[p] is the corresponding kinetic energy of the noninteracting system. 
This equation defines the Kohn-Sham theory electron-interaction energy func- 
tional E~S[p] which can then be further partitioned as 

~s (28) E Ks [p] = E.  [p] + Ex~ [p] 

where En [p] is the Coulomb self-energy defined previously. Comparison with 
Eq. (26) for the energy expression in Schrrdinger theory then defines the 
Kohn-Sham theory exchange-correlation energy functional E~ s[p] as the sum 
of the quantum-mechanical exchange-correlation energy E,~ and the correla- 
tion-kinetic-energy T~[p]: 

E~S[p] = Ex~[p] + T~[p] (29) 

where in turn 

Tel-p] = Tip] - Ts[p].  (30) 

The application of the variational principle to the ground-state energy func- 
tional of Eq. (27) for arbitrary norm conserving variations of the density leads to 
the Kohn-Sham equation 

-- ~V + v(r) + v~S(r) qSi(x) = ~iq~i(x); i = 1 .... N (31) 

w h e r e  KS v,~ (r) is the local potential in which all the electron correlations are 
incorporated. As a result of the variational principle, this potential is derived to 
be the functional derivative of E~S[p]: 

v~(r) = rE'Sip] (32) 
6p(r) 
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With the partition of E~S[p] according to Eq. (28), the potential can be written 
as the sum 

vff(r) = v.(r) + v~S(r) (33) 

which defines the density-functional theory Hartree potential vH(r) as the func- 
tional derivative 

~Ert [p____]] = ~' p(r')r' 
• dr' (34) 

vH(r) = tip(r) 3 l r -  r'r 

and the Kohn-Sham theory 'exchange-correlation' potential vx~S(r) as the func- 
tional derivative 

vff(r) = '~E~s [p]  
tip(r) (35) 

The ground-state 'wavefunction' corresponding to this noninteracting system is 
then a single Slater determinant ~ {q~i(x)} of the lowest occupied orbitals ~i(x) 
of the Kohn-Sham differential equation. The Dirac [15] single-particle density 
matrix ~s(r, r') that results from this Slater determinant is 

?s(r, r') = ~ ~ qS*(ra)~bi(r'cr) (36) 
i ~r 

and it is idempotent: 

fT, x ''~ "x" dx" s(x, J?s~ , x') = 7~(x,x ). (37) 

The exact ground-state density p(r) and the noninteracting kinetic energy Ts[p] 
are also obtained from this Slater determinant as 

and 

p(r) = ~ ~lq5 i(ra) t 2 (38) 
i 

(39) 

respectively. The ground-state energy is then determined by the energy func- 
tional of Eq. (27). Finally, in addition to generating the orbitals from which the 
exact ground-state density and energy of the interacting system are determined, 
the highest occupied eigenvalue of the Kohn-Sham differential equation of 
Eq. (31) has the physical interpretation [16] of being the removal energy. Thus, 
in principle, its solution can lead to the determination of properties such as the 
ionization potential, electron affinity and work function. 
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3 Physical Interpretation of Electron-Interaction Potential 
of Kohn-ShamTheory 

Since the electron-interaction energy functional E~S[p] of Kohn-Sham theory 
is representative of Pauli and Coulomb correlations as well as the correlation 
contribution to the kinetic energy, so is the corresponding local potential v~S(r) 
obtained from it through functional differentiation. In the physical interpreta- 
tion of the potential ~s Vee (r), however, it is possible to distinguish between the 
purely quantum-mechanical (Pauti and Coulomb) electron-correlation compon- 
ent Weo(r), and the correlation-kinetic-energy component Wry(r). We begin this 
section with a description of the physical interpretation of KS Vee (r), and then 
discuss its components Wee(r) and Wto(r) more fully. 

The electron-interaction potential v~S(r) of Kohn-Sham theory is the work 
done to bring an electron from infinity to its position at r against a field ~'(r): 

v~S(r) = 6E~S[p]rp(r) = - f 2  ,.~(r'). dl ' .  (4O) 

The field ~'(r)  is the sum of two fields: 

~'(r) = ~e(r)  + Zt~(r). (41) 

The field gee(r) is strictly representative of Pauli and Coulomb correlations since 
its quantum-mechanical source charge distribution is the pair-correlation den- 
sity g(r,r'). On the other hand, the field Zt~(r) arises from the kinetic-en- 
ergy-density tensor t,a(r). It is the difference of the fields derived from the tensor 
for the interacting and Kohn-Sham noninteracting systems, and is thereby 
representative of the correlation-kinetic-energy. 

Thus the potential v~S(r) may be written as 

where 

and 

vKS(r) = Wee(r} + Wt¢(r) (42) 

Wee(r) = - f~  6~ee(r')'dl ' (43) 

W,o(r) = -  f~  Zdr ' ) .d l '  (44) 

The interpretation of the functional derivative %Kff(r) as the work done is due to 
the fact that it can be written as 

Vv~(r)  = - ~(r) (45) 
so that the sum of the work Wee(r) and Wto(r) is path-independent. The 
path-independence of the work is, of course, rigorously valid provided the field 

10 
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~ '(r)  is smooth, i.e. it is continuous, differentiable, and has continuous first 
derivatives. Equation (45) also implies that the curl of the field ~'(r)  vanishes: 

V × ~-(r) = 0 .  (46) 

For systems of a certain symmetry such as closed shell atoms, jellium metal 
clusters, jellium metal surfaces, open-shell atoms in the central-field approxima- 
tion, etc., the work Wee(r) and Wto(r) are separately path-independent since 
V x geo(r) = V x Zto(r) = 0. 

3.1 The Quantum-Mechanical Electron-Interaction Component Wee(r) 

The physical interpretation of the electron-interaction component Wee(r) was 
originally proposed by Harbola and Sahni [9], and derived by them via 
Coulomb's law. It is based on the observation that the pair-correlation density 
g(r, r') is not a static but rather a dynamic charge distribution whose structure 
changes as a function of electron position. The dynamic nature of this charge 
then must be accounted for in the description of the potential. Thus, in order to 
obtain the local potential in which the electron moves, the force field gee(r) due 
to this charge distribution must first be determined. According to Coulomb's 
taw this field is 

gee(r) = fg(r, r')(r ~ r') dr ' .  
J Ir -- r'l 3 (47) 

The component Wee(r) is then the work done to bring an electron from infinity 
to its position at r in this force field as defined by Eq. (43). 

The component Wee(r) can be further simplified by employing the expression 
for g(r, r') (see Eq. (17)) in terms of the density p(r') and the Fermi-Coulomb hole 
charge density px¢(r, r'). The field gee(r) is then the sum of the Hartree gn(r) and 
exchange-correlation gx¢(r) fields: 

where 

gee(r) = gH(r) + g~(r)  

~p (r')(r --_r')dr' 
gn(r) = ) Ir - r'l 3 

(48) 

and gxc(r) = ~ pX~(r-L'r--')(r- r ')dr'  (49) 
J ] r -  r'l 3 

The component Wee(r) is in turn the sum of the work done Wry(r) and Wxc(r) to 
move an electron in the Hartree and exchange-correlation fields respectively: 

Wee(r) = WH(r ) -k- Wxc(r) (50) 

where 

W H ( r ) = - f ~ S n ( r ' ) . d l '  and W x ~ ( r ) = - f ~ S x c ( r ' ) - d l ' .  (51) 

11 
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Now the electronic density p(r) is a static charge distribution whose structure 
does not change as a function of electron position. Thus the Hartree field can be 
written as g~dr) = - VWn(r), where 

p(r') dr' Wn(r) = . j ~  . (52) 

The work Wn(r) is path-independent and V × gn(r) = 0. Furthermore, the scalar 
potential WH(r) is recognized to be the density-functional theory Hartree poten- 
tial vn(r) of Eq, (34). Thus the functional derivative of the Coulomb self eneroy 
functional En[p] has the physical interpretation of bein9 the work done in the field 
of the electronic density. The component W¢~(r) is then the sum of the Hartree 
potential and the work done to move an electron in the field of the quantum- 
mechanical Fermi-Coulomb hole charoe distribution: 

W~(r) = Wn(r) + Wxc(r). (53) 

This work W~¢(r) is path-independent for the symmetrical density systems noted 
previously since the V x 8~¢(r)= 0 for these cases. It is important to note, 
however, that the corresponding Fermi-Coulomb hole charge distribution 
p~(r, r') which gives rise to the field ~r~¢(r) need not possess the same symmetry 
for arbitrary electron position. For example, in either closed shell atoms or 
open-shell atoms in the central-field approximation for which the density is 
spherically symmetric, the Fermi-Coulomb hole is not, the only exception being 
when the electron is at the nucleus. 

3.2 The Correlation-Kinetic-Energy Component mt¢(r) 

The correlation-kinetic-energy component Wtc(r ) is the work done to move an 
electron in the field Zto(r) as expressed by Eq. (44). The field Zt,(r) is given in 
terms of a field z(r;[7]) whose component z,(r) is derived from the kinetic- 
energy-density tensor t,a(r; [7]) as 

z~(r; [73) = 2 t~a(r; [73). 
//= 1 ~r# 

(54) 

The field z(r;[7]) thus defined is for the interacting system since the tensor 
involves the density matrix 7(r, r') of Eq. (6). With the field z(r; [7s]) derived 
similarly from the tensor t,a(r; ['A])) written in terms of the idempotent Dirac 
density matrix "Aft, r') of Kohn-Sham theory, the field Zto(r) is then defined as 

1 
pTr) [z(r; [Ts]) -- z(r; [73 )3- (55) Zt,(r) 

Note that the determination of this field thus requires knowledge of the 
Kohn-Sham orbitals. 

12 



Quantum-Mechanical Interpretation of Density Functional Theory 

3.3 Proof via the Viriai Theorem 

The electron-interaction component W~e(r) was originally derived, as noted 
previously, by Harbola and Sahni [9] via Coulomb's law. Since this component 
does not contain any correlation-kinetic-energy contributions, it does not 
[9, 17, 18] satisfy the Kohn-Sham theory sum rule relating the corresponding 
electron-correlation energy E~ s [p] to its functional derivative (potential) vKS(r). 
The sum rule, which is derived [19, 20] from the virial theorem, and in which the 
correlation-kinetic-energy Tc [p] contribution is made explicit is 

E~S[p] + fdrp(r)r-Vv~S(r) = - Tc _< 0 .  (56) 

Consequently, Harbola and Sahni [9, 18] proposed that a term which accounts 
for the correlation-kinetic-energy contribution be added to We,(r) in order to 
obtain the Kohn-Sham potential v~S(r). This term is the work Wt,(r ). Both the 
components W~(r) and Wto(r) can, however, be derived from the viriai theorem 
and we give here the proof according to Holas and March [11]. 

The integral form of the quantum-mechanical virial theorem which is 

2T + Eee = fdrp(r)r-Vv(r) (57) 

can be written in differential form [11] as 

where 

Vv(r) = - F(r) (58) 

I [ _ ¼ V V 2p(r) + z(r; [7])] .  (59) F(r) = - 8e~(r) + p(r) 

Note that the field F(r) depends upon the density p(r), as well as the single- 
particle density matrix 7(r,r') and the pair-correlation density g(r, r') through 
the fields z(r) and go,(r), respectively. The corresponding differential form of the 
virial theorem for the noninteracting Kohn-Sham system is 

Vvs(r) = - Fs(r) (60) 

where (see Eq. (31)) 

v~(r) = v(r) + v~S(r) (61) 

and 

I 
Fs(r) = - - [  - ¼VV 2p(r) + z(r; [h]) ]  

p(r) (62) 

The field Fs(r) depends only on the density p(r) and the idempotent density 
matrix h(r,  r') through the field z(r;[h]). The field 8e~(r) does not appear in the 
expression for Fs(r) because there is no electron-interaction operator in the 

13 
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Kohn-Sham differential equation. On subtracting Eq. (58) from Eq. (60) one 
obtains 

Vv~S(r) = - 8~e(r) + p ~  [z(r; [7.,3) - z(r; [y])] 

= -- ~ ( r )  (63) 

which in turn leads to the interpretation of v~S(r) as the work done to move an 
electron in the field ~'(r). 

4 Further Definitions Within Kohn-Sham Theory 

According to the physical interpretation, the Kohn-Sham theory electron- 
interaction potential v~S[p] is the sum 

v~S[p] = Wn(r) + Wx~(r) + Wto(r) (64) 

where Wn(r) is the work done in the Hartree field gn(r) arising from the density 
p(r), Wx~(r) is the work done in the exchange-correlation field g~c(r) due to the 
quantum-mechanical Fermi-Coulomb hole charge px~(r, r'), and Wto(r) is the 
work done in the field Zto(r) derived from the kinetic-energy-density tensor t,,(r). 
The corresponding Kohn-Sham theory electron-interaction energy E~S[p] is 
the sum 

E~S[p] = En[p] + E,c[p] + T~[p] (65) 

where En[p] is the Coulomb self-energy, E,c[p] is the quantum-mechanical 
exchange-correlation energy, and To[p] is the correlation-kinetic-energy. 

We next further split the quantum-mechanical quantities p,~(r), E,~[p] and 
W,~(r) into their Kohn-Sham theory exchange and resulting correlation com- 
ponents. In this manner it is then possible to write each component of E~S[p] in 
terms of the corresponding field which gives rise to it. It also allows for an 
understanding of the structure of each component of the electron-interaction 
potential v~S(r). (We note that there are various other [21] definitions of the 
exchange and correlation components of the Kohn-Sham theory exchange- 
correlation energy and potential employed in the literature.) 

4.1 Kohn-Sham Theory Fermi and Coulomb Holes, and Exchange 
and Correlation Energies 

The pair-correlation density gs(r, r') derived from the Kohn-Sham theory Slater 
determinant ~s{q~i} is 

g``(r, r') = (@~{~bi}lP(r, r')[~{c~i})/p(r) (66) 

14 
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and defines the Kohn-Sham theory Fermi hole proS(r, r') since gs(r, r') can also 
be written as 

gs(r, r') = p(r') + p~S(r, r') . (67) 

The Fermi hole p~S(r, r') in turn is defined in terms of the idempotent Dirac 
density matrix 7,(r, r') as 

p~S(r, r') = - 17~(r, r')12/2p(r) (68) 

and satisfies the constraints of charge neutrality, negativity, and value at elec- 
tron position: 

f pxKS(r, r')dr' = - 1 (69) 

p~S(r, r') ~< 0 (70) 

p~S(r, r) = p(r)/2. (71) 

The corresponding Kohn-Sham exchange energy Ex~S[p] is the energy of 
interaction between the density p(r) and the Fermi hole pxKS(r, r'): 

1 ~' ('p(r)p~S(r, r ' ) . .  , 
E~S[p] = ~ j j  ~ - ~  arar  . (72) 

We define the Kohn-Sham theory Coulomb hole p~S(r, r') as the difference 

p~S(r, r') = pxc(r, r') - px~S(r, r') (73) 

so that it satisfies the constraint 

fp~S(r, r ')dr'  = 0 (74) 

This definition ensures that together with the Kohn-Sham theory Fermi 
p~S(r, r'), and the quantum-mechanical Fermi-Coulomb pxc(r, r') holes, the 
Coulomb hole p~S(r, r') too corresponds to the system density p(r). The correla- 
tion energy E~S[p] is then 

E~S[p] = U c [ ; ]  + T~[p] (75) 

where 

U¢l-p] = 1 ~p(r )p  ~S(r, r') drdr '  (76) 
2J. l  lr - r't 

is the energy of interaction between the densities p(r) and p~S(r, r'). Thus the 
Kohn-Sham exchange-correlation energy E~Sl-p] is the sum 

E~S[P] = E~S[P] + E~S[P] (77) 

with E~S[p] and E~S[p] as defined above. 

15 
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4.2 Kohn-Sham Theory Exchange and Correlation Fields and Potentials 

In standard Kohn-Sham theory, the exchange-correlation potential v~S(r) is the 
sum of its exchange v~S(r) and correlation v~S(r) components which are in turn 
defined as the functional derivatives 

v~S(r) = ~E~S[p]/bp(r) (78) 

and 

v~S(r) = 6E~S[p]/rp(r) (79) 

respectively. However, with the Fermi p~S(r, r') and Coulomb p~S(r, r') holes as 
defined in the previous section, the potential v~S(r) can be written as 

v~S(r) - 6E~S[p3 = WxKS(r) + Wff(r) + W,o(r) (80) 
6p(r) 

where Wto(r) is the work done in the field Zt°(r), and where the exchange WxKS(r) 
and correlation w~S(r) potentials are respectively the work done in the fields 
t~x~S(r) and 8~S(r), which in turn arise from the Kohn-Sham Fermi pxKS(r, r') and 
Coulomb p~S(r, r') holes. Thus 

WxKS(r) = _ j gxKS(r').di ' where 

and 

W~S(r) = - f~8~S(r ') .dl '  where 

Furthermore 

V × [Z,o(r) + 8~S(r) + d'~S(r)] = 0 

~p~S(r, r')(r, 
8~S(r) = .~ Ir - r'l 3 r') dr' (81) 

g~S(r) = fp~S(r, r')(r - r')dr , .(82) 
j t r - r ' l  3 

(83) 

so that v~S(r) is path-independent. Again, for those systems with a certain 
symmetry such as spherically symmetric atoms, etc., V × 8~( r )  = V x 8~S(r) = 0, 
so that the work w~S(r) and W~S(r) are separately path-independent. 

The exchange potential w~S(r) can be shown analytically [9] to satisfy the 
sum rule [20, 22] relating the exchange energy E~ s [p] to its functional deriva- 
tive v~S(r) which is 

E~ s [p] + fdrp(r)r- Vv~S(r) = 0 (84) 

as well as the scaling condition [20, 22] 

vKS(r; [p]) = 2vKS(2r; [p]) (85) 

where p~(r) = 23p(2r). (We note that the satisfaction of both these conditions by 
W~S(r) is independent of the spin-orbitals employed.) Since the dependence of 
the idempotent density matrix 7s(r, r') on the density is unknown, it cannot be 
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shown analytically whether or not WxKS(r) satisfies the second derivative condi- 
tion [22] 

6vxKS(r) 6vxKS(r ') 
- (86) 

6p(r') 6p(r) 

which is one of symmetry in an interchange of r and r'. 
In spite of the satisfaction of the sum rule and scaling condition, the work 

W~S(r) is not the functional derivative v~S(r). In recent work [233, it has been 
shown that additional work AW~S(r) must be done to obtain v~S(r). The work 
AWeS(r) is 

AWxKS(r) = -- f ~  y(r').di'  (87) 

where the field y(r) = - z(r; [7] ])/P(r), and 7] (r, r') in the first-order correction 
to the idempotent density-matrix 7s(r, r') in an expansion (in terms of the 
electron-interaction coupling constant 2) of the density-matrix ~,(r, r'). Due to 
the fact that W~S(r) satisfies the sum rule of Eq. (84) the field y(r) is such that 

f drp(r)r-y(r) = 0 .  (88) 

From a quantum-mechanical perspective, the existence of the field y(r) implies 
that the corresponding approximate wavefunction incorporates Coulomb cor- 
relations. However, if the system wavefunction is a Slater determinant of 
spin-orbitals, and if the orbitals of the local potential which lead to the same 
system density are equivalent, then 7(r, r ' ) =  ~s(r, r') and the field Zto(r)= 0. 
Under these conditions, the functional derivative vxKS(r) = v~S(r) = WxKS(r). On 
the other hand, consider the case [24] where a local potential generates a density 
equivalent to the Hartree-Fock theory [25] density. Since the orbitals generated 
by this local potential are not the same as the Hartee-Fock theory orbitals, the 
corresponding idempotent density matrices will not be the same, and therefore 
the field Zto(r) in this instance will be finite. We note further that for slowly 
varying densities, for which the local density approximation (LDA) expression 
for the exchange energy ELDA[p] is valid, the functional derivative 
vLDA(r) = 6ELDA[p]/6p(r) and the work W~S(r) can also be shown [26, 27] 
analytically to be equivalent. The work interpretation of this functional deriva- 
tive and energy in turn leads to a more fundamental understanding [13, 27] of 
electron correlations within this approximation for exchange and correlation as 
explained in Sect. 6.3. 

4.3 Kohn-Sham Theory Energy Components in Terms of Fields 

In addition to the interpretation of the energy components EH[p], E~S[p] and 
E~S[p] as being the energy of interaction between the density p(r) and the 
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corresponding source charge distributions p(r'), p~S(r, r') and p~S(r, r') respec- 
tively, it is also possible to write these energy functionals including T¢[p] in 
terms of their source fields gn(r), d'~S(r), £~S(r) and Zlo(r). Employing the sym- 
metry in the interchange of r and r' of the pair-correlation function 
h(r, r') = g(r, r')/p(r'), and the relation VvxKSlr) = - [ ~ ( r )  + Z,o(r)] in the sum 
rule of Eq. 56 leads to the following expressions: 

(. 
En [p] = jdrp(r)r. 8.(r) (89) 

E~S[p] = fdrp(r)r.8~S(r) (90) 

E~S[p] = U~[p] + mr[p] (91) 

Uc [p] = fdrp(r) r.8~S(r) (92) 

T~[p] = ~ drp(r) r-Z,~(r) . (93) 

Note that the Hartree EH[p], exchange E~S[p] and the purely Coulomb correla- 
tion Uc[p] energies arise from fields derived by Coulomb's law, whereas To[p] is 
due to a field that is derived from the kinetic-energy-density tensor. 

5 Asymptotic  Structure of  the K o h n - S h a m  Exchange-Correlation 
Potential  vKStr ~ xc~, I 

In this section we discuss the asymptotic structure of the Kohn-Sham ex- 
change-correlation potential vxKS(r) and its components from the work perspect- 
ive {see Eq. (80)) for finite and extended systems, and then present results of 
application to atoms based on this understanding. 

5.1 Asymptotic Structure for Finite and Extended Systems 

For finite systems such as atoms, it is established [5-8]  that the structure v~S(r) 
in the classifically forbidden region is 

v~Sff ) = 1 2 (94) 
r 2r 4 

where ~ is the polarizability of the positive ion. The leading term is the exchange 
v~S(r), and the second term the correlation v~S(r) potential inclusive of the 
correlation-kinetic-energy contribution. The fact that the asymptotic structure 
is entirely due to Pauli correlation effects is readily explained [9] by the work 
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interpretation, and can be shown to be the structure of the exchange potential 
W~S(r). The work interpretation, however, further allows for the determination 
of the purely Coulomb correlation W~S(r) and correlation-kinetic-energy Wto(r) 
components of the correlation potential. 

Since the total charge of the Coulomb hole p~S(r, r') is zero, the force field 
d'~S(r) due to this charge and consequently the work done w~S(r) to move an 
electron in this field for asymptotic positions of the electron far from this charge, 
vanishes. Furthermore, the field 8~S(r), and thereby the potential W~S(r), vanish 
more rapidly than their exchange counterparts since [28] the part of the 
Coulomb hole that is large in magnitude and localized about the nucleus 
changes sign from negative to positive as the electron position is varied from the 
deep interior of the atom to asymptotic positions in the classically forbidden 
region. Thus for finite systems in which the Coulomb hole is localized about the 
atom or molecule, 

g~S(r) , 0  (95) 
r ~ c ~  

and therefore 

W~S(r)- ,0  . (96) 

For the asymptotic structure of the field Zt¢(r), we note that it is proportional 
to the difference of fields z(r) which depend upon the noninteracting and 
interacting system density matrices 7s(r, r') and 7(r, r'), respectively, through the 
kinetic-energy-density tensor (see Eqs. (54) and (55)). However, asymptotically 
as the two co-ordinates coalesce, the density matrices are equivalent [2, 29, 30]: 

lim 7~(r', r")lr,= r " = r  : lim y(r', r")lr'=,"=r. (97) 
r ' , r " ~  ~ r ' , r " ~  zc 

Therefore, for asymptotic positions of the electron, the field Zt¢(r ) and the work 
Wt¢(r) to move an electron in the field vanish: 

Zto(r) ,0  (98) 

and 

W,c(r) ......... O. (99) 
r ~ c ~  

The precise analytical asymptotic structure of the potentials w~S(r) and Wt,(r) 
are at present unknown and under investigation. Numerical studies [28-], 
however, show them to decay more rapidly than the exchange potential. 

For finite systems, the Fermi hole pxKS(r, r') which has a total charge of 
(negative) unity, is also localized about the system. Thus, for asymptotic electron 
positions, the field 8~S(r) due to the Fermi hole behaves as 

1 
g~S(r) ' ~  ~ r  ~ r 2 (100) 
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and the work w~S(r), to which the Kohn-Sham potential v~S(r) has now 
reduced, has the structure 

1 
VxKS(r) = w~S(r),-- (101) 

Therefore, for all finite systems, the asymptotic behavior of v~S(r) arises from the 
Fermi hole charge distribution pxKS(r, r') and is given exactly by the structure of 
w~S(r). The above analysis and conclusions are borne out as shown in the 
example of the Helium ground-state discussed in Sect. 5.2.1. 

There are yet other important consequences of the above conclusion. For 
asymptotic positions of the electron, the Kohn-Sham differential equation of 
Eq. (31) reduces to 

I 12 ] -- ~V + v(r) + Wn(r) + W~S(r) ~bi(r) = gi¢i(x); i = 1 . . . .  N .  (102) 

(The work WH(r) is retained in the equation to ensure there is no self-interac- 
tion). In contrast to the Kohn-Sham equation, this differential equation can in 
practice be solved because the dependence of the Fermi hole pxKS(r, r'), and thus 
of the work w~S(r), on the orbitals is known. Furthermore, since the solution of 
this equation leads to the exact asymptotic structure of v~S(r), and the fact that 
Coulomb correlation effects are generally small for finite systems, the highest 
occupied eigenvalue should approximate well the exact (nonrelativistic) removal 
energy. This conclusion too is borne out by results given in Sect. 5.2.2. 

As shown above, the differential equation of Eq. (102) is the Kohn-Sham 
equation for asymptotic positions of the electron. However, this is also the 
differential equation when all Coulomb correlations are neglected, i.e. when the 
fields 8c(r) and Zto(r) vanish. (Recall that the difference between the work w~S(r) 
and the functional derivative v~S(r) arises from Coulomb correlations.) We 
therefore refer to this equation as being that of the Work-interpretation Pauli- 
correlated approximation. It is also the differential equation originally proposed 
by Harbola and Sahni [9] for the case when only Pauli-correlations are 
considered to be present. 

For the nonuniform electron density system at a jellium-metal surface, it is 
generally accepted [5-7,9,31-33] that the asymptotic structure of the 
Kohn-Sham exchange-correlation potential is the image potential: 

KS v~c (x) ~ - 1/4x. In recent work [10] the analytical asymptotic structure of the 
exchange potential VxKS(r) has been determined to be 

/3: - 1 [  ln(/32 - t)-] (103) 
vxKS(r)= c~s(/3)/2.x ' ~s(/3)- 3~- 1 ~ _ l  

where/~ = x/W)ev, W is the metal surface barrier height, and eV is the Fermi 
energy. The asymptotic structure of the correlation potential is then v~S(r) = 
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- [1 ~ 2~(fl)]/4x. For metallic densities ct~(fl)/2 ranges from 0.20 to 0.27. For 
fl = x/2, the coefficient is exactly 1/4 and corresponds to a Wigner-Seitz radius 
of rs ~ 4.1 which is that of stable jellium. Thus the - x  -1 dependence of the 
correlation potential is weak. The fact that the image potential structure of 
v~S(r) is independent of the metal parameters is because [10] the Fermi hole 
delocalized [34, 35] within the metal is screened by that part of the Coulomb 
hole which is delocalized, the image structure then arising from the part of the 
Coulomb hole localized to the surface region. The analytical asymptotic struc- 
ture of the work Wx~S(r) as derived from the delocalized Fermi hole is presently 
being determined [36]. This should then shed light on the asymptotic structure 
of the potentials W~S(r) and Wt~(r) at a metal surface. However, the asymptotic 
structure of W~S(r) has been determined [31] numerically for high density 
metals employing model potential orbitals, and the result shown to be 
_ ~ - 1/4x 

5.2 Results of Application to Atoms 

5.2.1 Structure of  the Exchange, Correlation and Correlation-Kinetic-Energy 
Fields and Potentials for the Helium Ground State 

The work interpretation of Kohn-Sham theory is in terms of the wavefunction 
q'(xl .... xN) and the Kohn-Sham spin-orbitals ~bi(x). The structure of the 
exchange, correlation and correlation-kinetic-energy components of the fields 
and potentials are as such most readily determined for the He atom ground- 
state, since by the choice of an accurate wavefunction ~P, the Kohn-Sham 
orbitals are simultaneously also known as ~bi(x) = [p(r)/2] 1/2. The results [28] 
given in this section are those obtained for the accurate analytical 39-parameter 
correlated wavefunction of Kinoshita [37]. 

In Fig. 1 the exchange 8~S(r), correlation 8~S(r) and exchange-correlation 
8xc(r) fields are plotted together with the function ( -  l/r2). Observe that all the 
force fields vanish at the origin, approaching it linearly. This is due to the fact 
that, for an electron at the nucleus, the Fermi p~S(r, r'), Coulomb p~S(r, r') and 
the Fermi-Coulomb p~c(r, r') hole charge distributions are all spherically sym- 
metric about it. As such there is no force field at this position of the electron. The 
structure of both g~S(r) and 8~S(r) are similar, both being negative, with the 
latter being an order of magnitude smaller. The fact that both the fields are 
negative is interesting in light of the striking differences in the structure of the 
corresponding source charge distributions. The Fermi hole is negative for all 
electron positions, whereas the Coulomb hole is both positive and negative and 
of substantial magnitude depending upon the electron position. (For details of 
the structure of these holes and further explanations, we refer the reader to the 
original literature [28]). Also observe, as noted previously, that the correlation 
field 8~S(r) decays far more rapidly than the exchange field 8~S(r), essentially 
vanishing by r--~ 4 a.u. The correlation-kinetic energy field Zt~(r ) plotted in 
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Fig. 2. The correlation-kinetic-energy 
field Zt,(r) for the He atom 

Fig. 2 is also observed to vanish by r-,, 4 a.u. It is the exchange field 8~S(r) 
(Fig. 1) that decays asymptotically as ( - l/r2). This then leads to the exchange 
potent ia l  W~S(r) h a v i n g  the a s y m p t o t i c  structure ( - l /r) .  In Fig.  3 the e x c h a n g e  
w~S(r), correlation W~S(r) and exchange-correlation W~¢(r) potentials are plot- 
ted, and in Fig. 4 the correlation-kinetic-energy Wto(r) and the Kohn-Sham 
correlation potential (functional derivative) v~S(r). Observe that Wx~S(r), W~S(r) 
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and Wxc(r) all approach  the nucleus quadratical ly and have zero slope at the 
origin as they must. In the interior of  the atom, the structure of  w~S(r) and 
W~S(r) are similar, with the latter being an order  of  magni tude  smaller. Both 
potentials are negative th roughou t  space and monotonic .  The potentials We(r) 
and Wit(r) (see Fig. 4) both  vanish by about  r ~ 4 a.u. so that the asymptot ic  
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structure of  the K o h n - S h a m  exchange-correlat ion potential vKS(r) is that  of  
Wx~S(r) ,-~ -- 1/r. The potential W,o(r) is, of  course, not  mono ton i c  since the field 
Zto(r) changes sign. Furthermore,  Wt0(r) also has zero slope at the nucleus since 
the field Zt~(r ) vanishes there. As is evident (see Fig. 4), the functional derivative 
vKS(r) is also not  monotonic .  Recent calculations [8] employing a 491-term 
correlated wavefunction, however, show that  vKS(r) once again becomes negative 
for r > 4 a.u. and vanishes asymptotical ly as a negative function. This is 
consistent with the fact that  the polarizability ~ is positive. The structure of  the 
exchange wKS(r) and correlation wKS(r) potentials for heavier a toms will be 
similar and monoton ic  except that  shell structure will be exhibited by a change 
in slope in the intershell regions. Since the functional derivative vKS(r) is known 
[38] to possess a shell structure (with maxima and minima), the potential W,o(r) 
will atso exhibit similar nonmonotonic i ty .  However,  the asymptot ic  structure of  
the functional derivative v~S(r) will be that  of WxKS(r) which is - 1/r. 

Table 1. Comparison of the highest occupied eigenvalue of the 
Work-interpretation Pauli-correlated approximation for atoms 
with those of exact (fully-correlated) Kohn-Sham theory. The 
negative values in Rydbergs are quoted 

Atom Work-interpretation Exact ~ I differencel 
Pauli-correlated 
approximation" 

Atoms with last closed shell on s subshell 
ZHe 1.836 1.808 0.028 
4Be 0.626 0.676 0,050 
12Mg 0.521 0.518 0.003 

Noble-gas atoms 
l°Ne L713 1.594 0.119 
J SAr t. 178 1.094 0.084 

Alkali metals 
3Li 0.405 0.400 0.005 
1 l Na 0.390 0.364 0.026 

Halogens 
9F 1.464 1.368 0.096 
17C1 1.006 0.982 0.024 

Atoms with less than half filled p shells 
SB 0.581 0.598 0.017 
6C 0.818 0.820 0.002 
laA1 0.406 0.428 0.022 
14Si 0.571 0.714 0.143 

Atoms with half and two-thirds filled p shells 
7N 1.078 1.056 0.022 
80 1.249 1.172 0.077 
15p 0.754 0.748 0.006 
16S 0.861 0.832 0.029 

See [41] 
b See [40] 
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5.2.2 Comparison of Highest-Occupied Eigenvalues of the Work-Interpretation 
Pauli-Correlated Approximation with Exact Removal Energies 

As noted above, the Kohn-Sham equation reduces to the differential equation 
of Eq. (102) for asymptotic positions of the electron, the structure of the elec- 
tron-interaction potential there being that of the exchange potential W~S(r). 
Furthermore, Coulomb correlation effects in atoms are small. It is therefore 
meaningful to compare the highest occupied eigenvalue of this work-interpreta- 
tion Pauli-correlated approximation differential equation to the exact removal 
energies. Over the past few years, methods [39] have been developed whereby 
the Kohn-Sham orbitals and eigenvalues can be determined provided the exact 
density is assumed known. Thus, with densities determined from configura- 
tion-interaction wavefunctions, the highest occupied eigenvalue (and thereby 
the exact removal energy) for the atoms 2He-18Ar have recently been obtained 
[40]. For possible sources of error in the wavefunctions for the heavier atoms 
and consequently in the Kohn-Sham eigenvalues, we refer the reader to this 
reference. In Table 1 we compare the highest occupied eigenvalues [41] of 
Eq. (102)of the work-interpretation Pauli-correlated approximation with those 
of the Kohn-Sham differential equation. Observe (see last column of Table) 
that, with the exception of I°Ne and 14Si for which the differences are less than 
two-tenths of a Rydberg, the eigenvalues for the remaining atoms differ by 
hundredths or less of a Rydberg. Thus, accurate removal energies of finite 
systems can be determined by solution of the differential equation in the 
work-interpretation Pauli-correlated approximation. For a detailed compari- 
son of the corresponding highest occupied eigenvalues of atoms and negative 
ions, with experimental ionization potentials and electron affinities respectively, 
we refer the reader to the literature [4t,42]. 

5.2.3 Excited State Total Energies of the Helium 23S lsoelectronic Sequence 

As is known, there is no equivalent of the Hohenberg-Kohn theorems for 
excited states. However, it was noted in the original work of Harbola and Sahni 
[9] that an electron in an excited state also has a Fermi-Coulomb hole charge 
distribution, one that is different from when the electron is in its ground state. 
Consequently, a local many-body potential can be determined for the excited 
state as the work done in the field of this charge distribution. Now the physical 
interpretation of the electron-interaction potential v~S(r) in terms of the work 
done as derived previously via the virial theorem is, of course, rigorous only for 
the ground-state. On the other hand, the virial theorem (and thus the differential 
virial theorem) is valid for bound excited states. Further, as noted, the ex- 
change-correlation field 8xc(r) corresponding to an electron in an excited state 
exists. The structure of a field equivalent to Zto(r) for excited states is unknown, 
since there is no proof of the existence of a Kohn-Sham differential equation for 
such states. However, excited states of atoms depend primarily on the asymp- 
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totic structure of the effective potential which, once again, must be the exchange 
potential w~S(r) since correlation effects are further diminished for an electron 
in such a state. As such the excited-state eigenvalues as well as total energies of 
the work-interpretation Pauli-correlated approximation differential equation of 
Eq. 002) should again prove to be accurate. This has already been shown 
[42, 43] to be the case for various excited states of Be and Na. Here we present 
results of recent calculations on the Helium atom 2aS isoelectronic sequence. 

In Table 2 we present numerically refined results [44] of calculations [45] of 
total energies of the 23S Helium atom isoelectronic sequence. These energies are 
determined within the work-interpretation Pauli-correlated approximation 
from a single determinant via solution of Eq. (102). For purposes of comparison 
we also quote the total energies determined [46] via a 55-term correlated 
wavefunction calculation. The work-interpretation energies are essentially 
exact, differing by 0.08 % for He to 0.005 % for Ne 8 +. The increase in accuracy 
down the isoelectronic sequence is, of course, a consequence of the diminution of 
Coulomb correlation effects which result because the core orbital shrinks with 
increasing nuclear charge. Furthermore, since the work-interpretation energies 
are obtained within the Pauli-correlated approximation, these results show how 
insignificant Coulomb correlation effects are for this triplet state of the two- 
electron atom. We expect the same to be true for the excited states of other 
light-atoms, the results for which may again be obtained by solution of Eq. (102) 
via a single determinant in the central field approximation [41]. 

Table 2. Total energies of 23S state of the Helium 
atom isoelectronic sequence as determined within the 
Work-interpretation Pauli-correlated approxima- 
tion, and exact results obtained from correlated 
wavefunction calculations. The quantities in parenth- 
esis are the percent errors of the Work-interpretation 
results. The negative values of the energies in Ryd- 
bergs are quoted 

Atom/ion Work-interpretation Exact b 
Pauli-correlated 
approximation ~ 

He 4.3470 (0.080) 4.3505 
Li + 10.2170 (0.044) 10,2215 
Be" + 18.5894 (0.026) 18.5943 
B 3 + 29.4626 (0.018) 29.4678 
C ~+ 42.8361 10.013) 42.8415 
N ~ + 58.7099 (0.009) 58.7154 
O 6+ 77.0837 (0.007t 77.0893 
F ~ + 97.9576 10.006t 97.9632 
Ne 8+ t21.3316 (0.005) 121.3373 

See [44, 45] 
b See [46] 
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6 Some Consequences of the Work Interpretation 
o f  D e n s i t y - F u n c t i o n a l  Theory 

6.1 Comment on the Hohenberg-Kohn Theorem 

For the proof of the first part of the Hohenberg-Kohn theorem, according to 
which the non-degenerate ground-state expectation value of any observable is 
a unique functional of the density, one needs to establish that two maps C and 
D are injective (one to one) and thus bijective (fully invertible). Thus, that the 
inverse maps C-  1 and D-  1 exist. These maps are as follows. One defines a set 
V of local single-particle potentials which lead via solution of the Schr6dinger 
equation (Eq. 5) to a non-degenerate ground-state wavefunction for the N- 
electron system. The collection of these wavefunctions in the set W defines the 
map C: V ~  W. By construction, each element of q~ is associated with some 
element of V: the map is surjective. Next, for all ground-state wavefunctions 
contained in the set qJ one determines the ground-state density p(r) via Eq. (13) 
establishing the set ~ and thereby defining the map D: q~ ~ ~ .  This map too is 
surjective. The proof of injectivity of these maps establishes that the inverse 
maps C-1: q ~  V and D- l :  p(r) ~ q~[p] exist, which then leads to the 
statement of the first part of the theorem. 

The path whereby the maps C and D are each established is well defined. 
One solves the Schr6dinger equation for each local potential v(r) to determine 
qJ, and then obtains the density p(r) from q~ via its definition. On the other hand, 
although the inverse maps C-  1 and D-  ~ are known to exist, the specific paths 
establishing these maps are thus far unknown. However, the differential form of 
the virial theorem of Eq. (58) defines the path whereby the external potential v(r) 
is determined from the ground-state wavefunction W. The potential v(r) is the 
work done to bring an electron from infinity to its position at r against the field 
F(r): 

v(r) = - [ "  F(r ') .di ' .  (104) 
J~ 

The field F(r) (see Eq. 59) depends on the wavefunction q~ through the density 
p(r), spinless single-particle density matrix 7(r, r'), and the pair-correlation 
density g(r, r'). Furthermore, this work is path-independent since the field F(r) is 
conservative. The path of the inverse map C-  1, whereby for every ground-state 
wavefunction W there corresponds a potential v(r), is now well defined. 

For degenerate ground-states, each potential V ~ V leads to a subspace of 
wavefunctions Wv. Now, since one potential leads to more than one ground- 
state wavefunction, C as defined previously is no longer a map. However, if 
V and V' lead to subspaces q~v and Wv', and differ by more than a constant, then 
the inverse map C-1: q~ ~ V, where q~ is a union of the subspaces Wv, is 
a proper map. Certainly ground-state wavefunctions from the subspaces Wv and 
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~t'v, will lead to different external potentials via the work done of Eq. (104). As 
noted previously, if one potential leads to more than one ground-state 
wavefunction, the relation between potentials and wavefunctions is not a proper 
map. However, the derivation of the differential form of the virial theorem 
makes no assumption with regard to the degeneracy of the ground-state 
wavefunction. It would thus be interesting to learn through Eq. (104) the 
relationship between the different degenerate states in the subspace Wv and the 
external potential which gives rise to them. 

6.2 Understanding of Slater Theory 

The precursor to Kohn-Sham density-functional theory is Slater theory [ 12]. In 
the latter theory, the nonlocal exchange operator of Hartree-Fock theory [25] 
is replaced by the Slater local exchange potential VS(r) defined in terms of the 
Fermi hole px(r, r') as 

V (r) = [';x(r, r') j dr'. (105) 

The Fermi hole in turn is defined in terms of the idempotent Dirac density 
matrix ~(r, r') of Eq. (36) where the orbitals ~bi(x) are solutions of the Har- 
tree-Fock-Slater equation 

- + v(r) + WH(r) + V (r) 4 i(x) =  iq i(x). (106) 

The exchange energy expression, however, remains the same as in Hartree-Fock 
theory, being the energy of interaction between the density and Fermi hole. 
From the perspective of the work interpretation, it is evident that the physics 
underlying the Slater potential VS(r) does not account for the dynamic nature of 
the Fermi hole charge distribution. The expression for the Slater potential is 
valid only for static charge distributions. In other words, the effect of the 
electron on the charge distribution to which it gives rise is not accounted for in 
Slater theory. As such it does not satisfy the sum rule of Eq. (84) relating the 
exchange energy to its functional derivative. It does satisfy the scaling condition 
of Eq. (85). The functional derivative of the Slater potential can also be written 
[47] as a sum of a local and nonlocal part: 

~VS(r---~) = ~(r - r')IS(r)VS(r) + f(r, r') (107) 

where the operator I)(r) = [3p(r) + r.Vp(r)]-~(l + r-V). If this functional 
derivative is approximated by its local part, then the Slater potential satisfies the 
[47, 48] second derivative condition of Eq. (86). 

As expected in light of the above remarks, the results of Slater theory are not 
that accurate. Here we compare for atoms the solution [49] of the Har- 
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tree-Fock-Slater equation with those of the work-interpretation Pauli-corre- 
lated approximation differential equation of Eq. (102). In Fig. 5 we plot the 
exchange potentials VS(r) and W~S(r) for the Argon atom. Observe that, with the 
exception of the asymptotic region where both VS(r) and W~S(r) decay as 
( - l/r), VS(r) is an underestimate. It is interesting to note that even at r = I0 a.u. 
in the classically forbidden region, the Fermi hole charge distribution is not 
entirely static. Consequently, even at this electron position, the expression for 
the Slater potential is not quite exact. In Table 3 we quote the ground state 
energies of Slater theory [49] and the work-interpretation [41] together with 
those of Hartree-Fock theory [50]. In Fig. 6 we plot the differences of these 
energies with respect to Hartree-Fock theory. The Slater theory energies always 
lie above those of Hartree-Fock, the relative difference between the two dimin- 
ishing with increasing atomic number. This difference (see Fig. 6) varies from 
800 ppm for Be to 64 ppm for Xe. The work interpretation results are superior to 
those of Slater theory as expected, and also lie above those of Hartree-Fock 
theory, the corresponding differences, with the exception of Be (137 ppm), being 
an order of magnitude smaller. From Ne and the heavier atoms, the work 
interpretation results differ from Hartree-Fock theory by less than 50 ppm, the 
difference for Xe being 5 ppm. Thus, within the Pauli-correlated approximation, 
ground-state energies essentially equivalent to those of Hartree-Fock theory are 
obtained via the local exchange potential of the work interpretation. 
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Table 3. Total ground-state energies of noble gas and closed 
s-subshell atoms as determined within Slater theory, the 
Work-interpretation Pauli-correlated approximation, and 
Hartree Fock theory. The negative values of the energies in 
atomic units are quoted 

Atom Slater theory" Work-interpretation ~ Har t ree-Fock 
Theory ~ 

Be -14.561 -14.571 -14 .573 
Ne - 128.501 - 128.542 - 128.547 
Mg -199.533 -199.606 - 199.615 
Ar -526.703 -526.804 -526.818 
Ca -676 .606  -676.743 -676.758 
Zn -1777.576 -1777.820 -1777.848 
Kr -2751.756 -2752.030 - 2752.055 
Sr -3131.209 -3131.519 -3131.546 
Cd -5464.700 -5465.093 -5465.133 
Xe -7231.672 -7232.101 -7232,138 

a See [49] 
b See [41] 

See [50] 
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For the nonuniform electron gas at a metal surface, the Slater potential has an 
erroneous asymptotic behavior both in the classically forbidden region as well 
as in the metal bulk. In the vacuum region, the Slater potential has the analytical 
[10] asymptotic structure [35, 51] VS(r) = - ~ts(fl)/x, with the coefficient ~s(fl) 
defined by Eq. (103). In the metal bulk this potential approaches [35] a value of 
( - 1) in units of (3kF/2rc) instead of the correct Kohn-Sham value of ( - 2/3). 
Further, in contrast to finite systems, the Slater potential VS(r) and the work 
Wx(r) are not equivalent [31, 35, 51] asymptotically in the classically forbidden 
region. This is because, for asymptotic positions of the electron in the vacuum, 
the Fermi hole continues to spread within the crystal and thus remains a dy- 
namic charge distribution [34]. 

6.3 Electron Correlations in Approximate Kohn-Sham Theory 

Since the exchange-correlation energy functional E~S[p] is unknown, it must be 
approximated. In approximating this functional, assumptions are made as to 
how the electrons are correlated, and thus how Pauli and Coulomb correlations 
are represented in the approximation. The approximate exchange-correlation 
potential within Kohn-Sham theory is then obtained as the functional deriva- 
tive of this functional. In following this procedure there is no reason to doubt 
that the electrons are correlated in a manner other than that originally assumed. 
However, when the expressions for the approximate potential and energy are 
rederived via the work interpretation, the existence [27] of electron correlations 
beyond those assumed in the Kohn-Sham procedure emerge. The work-inter- 
pretation derivation shows, furthermore, that both the approximate potential 
and energy are derivable from the same quantum-mechanical representation of 
electron correlations, as must be the case. All this allows for a more fundamental 
understanding of the approximation and of the results obtained therefrom. An 
analysis of how electrons are correlated within the Kohn-Sham theory, Hartree, 
Local Density, and Gradient Expansion approximations is given elsewhere 
[13, 52], and we refer the reader to these papers for details. Here we consider the 
local density approximation (LDA) for exchange as an example in order to 
demonstrate the presence of correlations beyond those assumed to exist via the 
standard Kohn-Sham theory approach to the approximation. 

Within the context of Kohn-Sham theory, the assumption underlying the 
LDA is that each point of the nonuniform electron density is uniform but with 
a density corresponding to the local value. In the LDA for exchange, the 
wavefunction is therefore assumed to be a Slater determinant of plane waves at 
each electron position. The corresponding pair-correlation density 
g~O) {r, r'; p(r)} is thus the expectation of Eq. (66) taken with respect to this Slater 
determinant, with the resulting expression then assumed valid locally. (The 
superscript (0) indicates the result is derived from uniform electron gas theory.) 
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The pair-correlation density thus obtained is 

g~°){r, r'; p(r)} = p(r') + p~x°~{r, r'; p(r)} 

where 

, , . I - 9 j I ( x ) - I  

plr)  = _ F -  J 

( 1 0 8 )  

(109) 

is the uniform electron gas Fermi hole, jl(x) is the first-order spherical Bessel 
function, x = kvR, kv is the Fermi momentum, kF(r)= [3rcZp(r)] 1/3, and 
R = r'  - r. The Fermi hole p~x°~{r, r';p(r)} is by construction spherically symmet- 
ric about the electron irrespective of its position. The LDA electron-interaction 
energy Le¢~°~, which is the energy of interaction between the density and pair- 
correlation density g~0) {r, r'; p(r) }, is then 

E(O) t [[p(r)g(x °' {r,r';p(r)} drdr '  

= En[p] + ELDA[p] (110) 

where the LDA exchange energy 

Et°AEp ] = 

is the energy of interaction between the density and Fermi hole charge 
p(x°){r,r'; p(r)}. The expression for ExLDA[p] can equivalently be written as 

E~DA[p] = fe~ °) {p(r)}p(r) dr (112) 

where ¢~x °) {p(r) } = - 3kF(r)/4x is the average exchange energy per electron for 
the uniform electron gas. The electron-interaction potential via Kohn-Sham 
theory is then 

LDA 6E~ °) [P] V~e (r) = - -  = vn(r) + vLDA(r) (113) 
cSp(r) 

where the LDA exchange potential is 

c~E~ I~g [p] kF(r) 
V LDA (r) . . . .  (114) 

6p x 

In the work-interpretation derivation, the force field due to the pair-correla- 
tion density is first determined, and the potential then obtained as the work 
done to move an electron in this field. The force field and potential due to 
g~x°){r,r';p(r)} are the Hartree field ~'n(r) and potential W.(r) = v.(r), respec- 
tively, since the spherically symmetric Fermi hole p~o~ {r,r';p(r)} does not 
contribute to the field at the electron position. The field arises only due to the 
density p(r') which is a charge distribution that is not spherically symmetric 
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about the electron at r. Thus g~°){r,r';p(r)} leads via Coulomb's law to an 
electron-interaction potential that is the Hartree potential vn(r) rather than 

LDA Vee (r) of Eq. (113). Therefore it is evident that g~°){r,r';p(r)} is not the pair- 
correlation density in the LDA for exchange, and thus not fully representative of 
how electrons are correlated in this approximation. 

The correct LDA pair-correlation density gLDA{r,r';p(r)} is obtained by 
expanding the general expression for gs(r,r') of Eq. (66) in gradients of the 
density to 0(V) about the uniform electron gas result, and then assuming the 
resulting expression to be valid locally. The expression thus obtained is 

g(x°){r, r'; p(r)} = p(r ') + p~0){r, r'; p(r)} + p(,'){r, r'; p(r)} (115) 

where 

9 , ,[-jo(X)jl (x) ] 
P(~l){r'r';p(r)} = ~IP~r)L -~v k - V k ~ j  (116) 

where jo(x) is the zeroth-order spherical Bessel function, R = R/R. (The super- 
script (1) indicates the expression to be of 0(V).) It is important to note that the 
lowest order correction term in the expansion for the density p(r) is of 0(V2). The 
term of 0(V) is thus a correction to the uniform electron gas Fermi hole. As with 
the density p(r'), the term p~l){r, r';p(r)} is not spherically symmetric about the 
electron and contributes [26] to the force field so that 

; 1. (11 ) 
Since V x t~LDA(r) = 0, the work wLDA(r) required to move an electron in this 
field is path independent, and given by 

wLDA(r ) = Wn(r ) _ kF( j  (1 18) 

which is the same as Eq.(113) for LDA Vee (r). The electron-interaction energy 
E% °A in turn is the energy of interaction between the density p(r) and the 
pair-correlation density gLDA {r, r'; p(r)}. However, the non-spherically symmet- 
ric component p(1){r, r'; p(r)} does not contribute to this integral so that 

1 frp(r)g LDA {r, r'; p(r)} dr dr' ELDA= 2 J J  ~ r q  

= EHI-p] + ELDA[p] (119) 

which is the same as Eq. (110) for the electron-interaction energy assumed 
within Kohn-Sham theory. Thus the work interpretation derivation leads to the 
same expressions for the potential and energy as derived by the Kohn-Sham 
scheme. However the derivation shows the existence of additional correlations 
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as represented by the term p~xl){r, r'; p(r)]. These additional correlations explicit- 
ly take into consideration the nonuniformity of the electron density through 
a term proportional to the gradient of the density. The true Fermi hole in the 
LDA for exchange is then 

L D A  ~. / Px {r,r,p(r)~ = p~°){r,r';p(r)} + p~l~{r,r';p(r)) (120) 

and is a charge distribution that is not spherically symmetric about the electron. 
Furthermore, it is p~DA{r,r';p(r)} which constitutes the quantum-mechanical 
source charge distribution giving rise to both the LDA exchange energy and 
potential. It is obvious from the work-interpretation that in the LDA for 
correlation, the corresponding Coulomb hole must also contain terms propor- 
tional to the gradient of the density, and it is of the form 

p~°A{r,r';p(r)} = p~°~{r,r';p(r)} + 0(Vp), (121) 

where p~°~{r, r';p(r)} is the uniform electron gas Coulomb hole assumed valid 
locally. 

7 Conclusions and Future Work 

As we have seen, the local electron-interaction potential (functional-derivative) 
v~S(r) of Kohn-Sham density-functional theory in which all the many-body 
effects are incorporated has a rigorous physical interpretation. It is the work 
done to move an electron in a field 3r(r). The field ~-(r), and thus the potential, 
are comprised of two components. The first is representative of the quan- 
tum-mechanical (Pauli and Coulomb) correlations between electrons, the cor- 
responding field ge~(r) being determined by Coulomb's law. The quantum 
mechanical source charge distribution for the field d~e~(r) is the pair-correlation 
density g(r,r'). The local potential representing these correlations is then the 
work done W~e(r) to move an electron in the field ¢~,(r). The second component 
of ~ ( r t  represents the correlation contribution to the kinetic energy. The 
corresponding field Zt~(r) is proportional to the difference of fields derived from 
the kinetic-energy-density tensor t~p(r} for the interacting and Kohn-Sham 
non-interacting systems. The difference between the kinetic-energy-density ten- 
sors for these systems may be considered as the 'source' for this field. The local 
potential representing the correlation contribution to the kinetic energy is then 
the work done Wto(r) to move an electron in the field Z t ~ ( r  ) . Since the field woo-or(r) 
is conservative, the work sum [W~e(r) + Wto(r)] is path-independent. The cor- 
responding quantum-mechanical electron-interaction energy E¢~ and correla- 
tion-kinetic-energy Tc I-p] can also be derived from their respective sources. The 
electron-interaction energy is the energy of interaction between the density p(r) 
and the pair-correlation density g(r, r'). The correlation-kinetic-energy which is 
the difference of the interacting and non-interacting kinetic energies is obtained 
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from the difference between the traces of the corresponding kinetic-energy- 
density tensors. 

The physical interpretation of the functional derivative v~S(r) as described 
allows for the a priori understanding of its structure and that of its components. 
For example, the exchange-correlation potential Wxc(r), and its exchange W~S(r) 
and correlation W~S(r) components all approach the nucleus of an atom quad- 
ratically, having zero slope there. This is the case [53] for both spherical and 
nonspherical density atoms. The reason for this structure is that, for an electron 
at the nucleus, the Fermi-Coulomb, Fermi and Coulomb hole charge distribu- 
tions are all spherically-symmetric. As such the corresponding fields at the 
electron position due to these charge distributions vanish, which in turn leads to 
the potentials having zero slope there. In the interior of the atom these poten- 
tials must exhibit shell structure but be monotonic throughout, since positive 
work must be done to remove an electron against the force of these fields. Any 
non-monotonicity of the functional derivative v~S(r) can then be attributed to 
correlation-kinetic-energy effects. Finally, in the classically forbidden region, the 
asymptotic structure of v~S(r) for all finite systems is precisely that of the work 
Wx~S(r) and can be determined exactly by solution of the differential equation in 
the work-interpretation Pauli-correlated approximation. The physical inter- 
pretation also sheds light on other theories of electronic structure. Thus, for 
example, the reason why the Slater potential VS(r) approaches the work WxKS(r) 
in the classically forbidden region of finite systems is because the Fermi hole 
becomes an essentially static charge distribution for these electron positions. 
The fact that the Fermi hole remains a dynamic charge for asymptotic positions 
of an electron in the vacuum region at a metal-vacuum interface also explains 
why the two potentials cannot be equivalent in this case. 

There is, of course, much that remains to be understood with regard to the 
physical interpretation. For example, the correlation-kinetic-energy field Zto(r) 
and potential Wt~(r) need to be investigated further. However, since accurate 
wavefunctions and the Kohn-Sham theory orbitals derived from the resulting 
density now exist for light atoms [40] and molecules [54], it is possible to 
determine, as for the Helium atom, the structure of the fields 8~S(r), 
8~S(r), 8xc(r), and Zt~(r), and the potentials W~S(r), W~S(r), Wx¢(r), and Wto(r) 
derived from them, respectively. A study of these results should lead to insights 
into the correlation and correlation-kinetic-energy components, and to the 
numerical determination of the asymptotic power-law structure of these fields 
and potentials. The analytical determination of the asymptotic structure of 
either [Zto(r), Wto(r)] or [8~S(r), W~S(r)] would then lead to the structure of the 
other. 

There is then the question of understanding the physical origin of the 
discontinuity [2] of the Kohn-Sham exchange-correlation potential v~S(r) as 
the number N of electrons passes through an integer. It would thus be of interest 
to learn whether and how each component wKS(r), W~S(r) and Wt°(r) of the 
potential contributes to the discontinuity. The addition of an infinitesimal 
amount of charge changes the density infinitesimally. However, the functional 
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dependence of the pair-correlation density and single-particle density matrix on 
the density is unknown. Thus, the changes in these properties on addition of 
a fractional charge, and therefore the change in the respective fields and work 
done, is also unknown and needs to be investigated. 

The physical description of the functional derivative v~S(r) requires know- 
ledge of the wavefunction ud for the determination of the electron-interaction 
component Weo(r) = Wn(r) + Wxc(r), and knowledge of both the wavefunction 

and the Kohn-Sham orbitals ~b~(x) for the correlation-kinetic-energy com- 
ponent W,o(r). The corresponding Kohn-Sham 'wavefunction' is then a single 
Slater determinant. It has, however, also been proposed [42, 52, 53] that the 
wavefunction • be determined by solution of the Sturm-Liouville equation 

- ~V + v(r) + W~o(r) ~bi(x) = e~bdx) (122) 

where W~(r) is the work done in the field 8e~(r) of the pair-correlation density 
g(r, r'). The wavefunction is then of the form 

V(xl . . . .  xN) = ~Bi(I)i {4h(x)} (123) 
i 

where the ~i are N-electron determinantal functions formed from the infinite set 
of spin-orbitals generated by the equation, and the Bi are appropriately chosen 
coefficients. The construction of an approximate configuration-interaction (CI) 
wavefunction in this manner differs in fundamental ways from conventional CI 
calculations. The most significant of these is that the effects of both Pauli and 
Coulomb correlations are intrinsically incorporated into the structure of the 
basis functions. This is because the orbitals are generated self-consistently from 
the field of the pair-correlation density which in turn depends upon the 
wavefunction. In addition, the asymptotic structure of the orbitals will be 
correct since the potential Wee(r) decays as ( - l/r) in the classically forbidden 
region. For these reasons it is likely that the number of configurations required 
to achieve a certain accuracy for the total energy will be reduced from those of 
standard CI calculations. We reiterate that the description of the physics of 
electron-interaction whereby the spin-orbitals are generated from a local poten- 
tial which is the work done in the field of the pair correlation density has already 
been shown to be accurate at the Pauli-correlated level. Thus, when the 
wavefunction is a single Slater determinant, ground-state energies of atoms 
equivalent to those of Hartree-Fock theory are obtained [41]. More recently, 
we have also shown [55] for atoms that when the wavefunction is assumed to be 
a product of spin-orbitals, ground-state energies equivalent to those of Hartree 
theory [55, 56] are derived. For the open-shell atoms, these Hartree, Har- 
tree-Fock and Work-interpretation calculations are all performed in the cen- 
tral-field approximation, so that the work Wee(r) is path-independent. If such an 
approximation is not made for non-symmetrical density systems, then the curl of 
the field ~fee(r) may not vanish [57], and the work W~(r) in the differential 
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equation of Eq. (122) not be path-independent. For such cases an effective 
electron-interaction potential eff Woe (r) can be constructed from the irrotational 
component of the field 8eo(r), the solenoidal component being neglected. This is 
equivalent to determining the potential from an effective static electron-interac- 
tion charge distribution eff Pee (r) sO that 

r eff(rr~ 
eff [Pee ~ ) dr' (124) Wee (r) = j ~  

where eff Pee (r)= V.dree(r)/4rc. Calculations [53] for a model nonspherical den- 
sity atom, for which the curl of the field Cee(r) does not vanish, show its 
solenoidal component to be negligible in comparison to the irrotational part, 
and therefore the corresponding effective potential w~ff(r) to be accurate. Thus, 
the use of w~ff(r) in the differential equation of Eq. (122) should lead to accurate 
results. 

As a consequence of the accuracy of the work-interpretation Pauti-corre- 
lated approximation, the exchange-correlation potential vx~S(r) has recently [58] 
been approximated by assuming its exchange component to be the work w~S(r) 
whereas its correlation component is derived as the functional derivative of an 
accurate correlation energy functional constructed [59] by modeling the 
Coulomb hole. This approximation has led to accurate results for total and 
removal energies of atoms, and should readily be applicable to molecules and 
clusters. Finally, we note that there has been other work [60] towards the 
determination of accurate Coulomb hole charge distributions. In light of the 
physical interpretation of the Kohn-Sham potential, it is suggested [61] that 
instead of first constructing an energy functional from these holes and then 
determining the correlation potential as its functional derivative, the potential 
be determined instead directly from the hole charge as the work done in its field. 
This will ensure that the same correlations are assumed in the determination of 
the energy as well as the potential. Furthermore, since the potential thus derived 
is determined from a physically correct (albeit approximate) charge distribution 
which satisfies various constraints, it will not possess any singularities that 
might exist in the structure of the corresponding functional derivative. 
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potential. We also include our benchmark test calculation of the benzene force field. We discuss the 
major findings of our force field studies of transition metal complexes: ferrocene, debenzene- 
chromium, benzene-chromium tricarbonyl, and transition metal carbonyls. We found numerous 
miss assignments in the experimental spectra. We investigated how the force constants of aromatic 
rings change upon complexation, and we provide explanations for these changes based on qualitat- 
ive orbital analysis. 

1 Introduction 

The ability to calculate molecular force fields (and geometries) is likely one of the 
most important developments in computational chemistry over the past twenty 
years. Until the end of last decade, most force field calculations had been carried 
out by the H a r t r e e - F o c k  method. In the last years, density functional theory 
(DF) has emerged as an attractive alternative to traditional ab initio techniques. 
The implementation of analytical energy gradients by Versluis and Ziegler [ t ] ,  
as well as by Fournier et al. [2], has made it possible to evaluate structures and 
force fields by DF-based methods for a large cross section of systems with 
considerable success. The implementation of analytic second derivatives within 
the DF formalism in major computer program systems made the calculation of 
force constants a routine task [3]. As a consequence, the number of studies on 
the application of DFT  to force-field calculations have increased significantly 
in the last few years. A recent review paper by Fournier and Pfipai [4] 
contains a detailed literature survey of DFT  frequency-and force field 
calculations. 

DF theory has the simplicity of an independent-particle model, yet it can be 
applied successfully to those systems-such as transition metal complexes 
- where non-dynamical electron correlation is of primary importance. DF-based 
methods are, in general, very easy to use, no matter how sophisticated the 
functional employed to describe the electron correlation. Also, more sophisti- 
cated functionals do not increase the computational requirements significantly, 
as opposed to post H a r t r e e - F o c k  ab initio calculations. The application of 
approximate density functional theory has been reviewed by Ziegler and others 
[5]. 

The application of ab initio methods in the calculation of harmonic force 
fields of transition metal complexes has been hampered by the size of these 
systems and the need to employ costly pos t -Har t ree -Fock  methods, in which 
electron correlation is taken into account. Thus, the fruitful symbiosis between 
ab initio theory and experiment, to determine empirically scaled quantum 
mechanical force fields, has been virtually absent in studies of transition metal 
complexes. 

The first DF-based calculations on vibrational frequencies of multi-bonded 
diatomics [6] (CO, CC, NN) have shown that the shape of the potential surface 
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is predicted very accurately, even for systems where the traditional Har- 
tree-Fock ab initio methods were not very successful. The simple DF-based 
Hartree- Fock - Stater model has been applied to a variety of small main group 
molecules (H20, H2S, NH3, PH3, CH4, Sill4, C2H4, etc.) [7]. These results are 
in better agreement with experiment than the Hartree-Fock predictions, and 
the frequencies are usually underestimated, as opposed to the overestimated ab 
initio results. More sophisticated DF methods were first tested by Fan and 
Ziegler in calculations on the vibrational frequencies and intensities of Ni(CO)4, 
Cr(CO)6 , as well as of some small organic molecules [8]. 

Since these early studies, many other investigations have confirmed the 
general success of density functional theory in the prediction of force constants, 
vibrational frequencies and intensities [8b, 9]. Applications of DFT in force field 
studies went beyond the validation of the method and revealed many important 
characteristics of potential energy surfaces which were not accessable by experi- 
mental methods. Experimental techniques can provide accurate information 
about the potential energy surfaces around the equilibrium geometry of small 
size molecules, by determining the harmonic and unharmonic force constants. 
However, these techniques become impractical for larger molecules, since the 
number of harmonic force constants increases quadratically with the number of 
atoms. Benzene seems to constitute the practical limit in size for the determina- 
tion of a full harmonic force field. In fact, a system as large as benzene is only 
tractable because symmetry reduces the number of distinct force constants to 34. 
It is interesting to note that the sign and magnitude of three of the empirical 
force constants of benzene are not yet in agreement with theoretical constants, in 
spite of extensive efforts in the last decade [10]. 

The information available on harmonic force fields of transition metal com- 
pounds is rather limited. Most of these molecules are too large for experimental 
determination of the complete harmonic force field. For the logo molecule of 
organometallic chemistry, ferrocene, high symmetry reduces the 57 x 57 force- 
constant matrix to 102 independent elements. Dibenzene-chromium and ben- 
zene-chromium--tricarbonyl are also highly symmetrical compounds, with 128 
and 236 symmetry unique force constants, respectively. These numbers are small 
compared to the complete set of 2415 and 1326 force constants, respectively. 
However, in spite of the greatly reduced size of the problem, the observed 
vibrational frequencies do not provide enough information to determine the 
complete harmonic force field. Therefore, the empirical determination of the 
force fields of these molecules usually involve a number of simplifying approxi- 
mations. 

The present paper summarises the findings of our studies of force fields and 
vibrational frequencies of transition metal complexes. We discuss transition- 
metal- carbonyl complexes and complexes with small aromatic rings as ligands 
in detail. Benzene has an important role in this investigation as a ligand, as well 
as an excellent benchmark test molecule. Accordingly, we also review the 
findings of our benzene force field in this report. 
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2 Technical Detai ls  

2.1 The Importance of Reference Geometry and the Exchange Correlation 
Potential 

For density functional methods, different levels of theory are represented by the 
different approximations of the exchange correlation potential. The two most 
important approximations are the local density approximation (LDA) and the 
gradient-corrected, or non-local (NL) density functionals. The former method 
obtains the expression for the exchange and correlation from the uniform 
electron gas model, while the latter also takes the first order changes in the 
density into account. Many of the verification studies have compared the 
performance of several different functionals for the prediction of the harmonic 
vibrational frequencies of main group molecules, as well as of transition metal 
complexes [11]. The general conclusion seems to be that the current approxim- 
ate density functionals afford quite adequate estimates of frequencies, even at 
their simplest level, represented by the local density approximation (LDA). 
Further, it is generally observed that the gradient-corrected (non-local) density 
functional methods provide more accurate geometries and vibrational frequen- 
cies than the simpler local DFT methods. The improved geometry at the higher 
level of calculation is especially remarkable for the transition metal complexes. 

The more accurate frequencies calculated at the non-local level can be 
explained partly by the improved reference geometry and partly by the contribu- 
tion of the non-local gradient corrections to the energy Hessian. In a recent 
study, we looked at these two effects separately. We compared frequencies 
obtained by the LDA method at various reference geometries with one another, 
as well as LDA frequencies with LDA/NL ones at given reference points. This 
study revealed that the choice of reference geometry has a more important role 
in the outcome of the calculations than the choice of the exchange-correlation 
functional. We also found that even the simplest LDA method reproduces 
experimental harmonic frequencies remarkably well, if highly accurate experi- 
mental geometries are used as reference points. Here, we provide a brief explana- 
tion and summary of these findings. 

The importance of reference geometry was pointed out as early as 1966 by 
Schwendeman, who observed that the calculated frequencies of diatomic mol- 
ecules improved when they were evaluated at the experimental geometry [12]. 
Blom and Altona, as well as Pulay and Fogarasi, also suggested that empirically 
corrected geometries should be used for HF calculations of the force fields and 
vibrational frequencies of polyatomic molecules [ 13]. Further, a recent detailed 
analysis of the effect of the reference geometry on various orders of force 
constants by Allen and Cs~sz~tr showed that the major part of the error 
introduced by the erroneous reference geometry is related to the nuclear-nuclear 
repulsion term [14]. This effect can be demonstrated by simply examining how 
the electronic and nuclear parts of the total molecular energy contribute to 
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various orders of force constants. Let us separate the electronic and nuclear 
potential energies as follows: 

V(ql,q2 ..... qn)= Ee + ~ ZAZg 
A ~ B  i r a  - -  rg[  (1) 

By differentiating Eq. (1) twice with respect to one of the internal stretching 
coordinates RAg, we get: 

t~ 2 V(ql, Rag, ..., q~) t~2Ee Z ~ B  
~R2Ag = ~ + 2 --R~AB + " "  (2) 

It is apparent from Eq. (2), that this stretching force constant is highly sensitive 
to the value of RAg due to the 1/RaAg dependence of the second term. Therefore, 
in force-field and frequency calculations the equilibirum (re) geometries should 
ideally be used as a reference point, in order to reproduce experimental vibra- 
tional frequencies. 

The description of electronic structure and the prediction of vibrational 
frequencies is significantly improved by DF methods compared to HF theory. 
As the error in the electronic contribution to the force constants become smaller 
the error in the nuclear term became increasingly dominant. Therefore, since the 
error in nuclear contribution to the force constants depends only on the 
reference geometry, one has to pay special attention to this effect when highly 
accurate force constants are desired. The molecular geometries are also pre- 
dicted very accurately by DFT methods. However, even a difference as small as 
0.001 A in a reference bond length makes a significant change in the predicted 
force constants. One cannot expect 0.001 A accuracy for molecular geometries 
even from the most sophisticated DFT methods. Although the importance of 
reference geometry was pointed out in conection with HF calculations 
[12, 13], this phenomena has never gained much attention, due to the necessity 
for scaling the HF force constants to reproduce experimental frequencies 
accurately. 

Another reason why optimized geometries are usually used for frequency 
calculations is of technical nature. This choice greatly simplifies the calculations, 
since the frequencies can be Obtained by a simple diagonalization of the mass- 
weighted Cartesian force constants. Most major quantum-mechanical programs 
do not offer other choices of reference geometry. Any geometry other than the 
optimized geometry would introduce non-zero forces on the atoms at the 
reference point, and methods that circumvent the non-zero force dilemma are 
not generally implemented. However, in our frequency calculations at structures 
other than the optimized geometry, we shall take the non-zero forces into 
account properly. (See: Computational details.) 

Our first example of the effect of reference geometry is the CH-stretching 
frequencies of benzene, listed in Table 1. The experimental vibrational frequen- 
cies [10a] of benzene represent harmonic modes. The CH-stretching frequencies 
at the LDA reference geometry are underestimated by about 100 cm- 1. On the 

45 



Attila B6rces and Tom Ziegler 

TabLe 1, The CH-stretching vibrational frequencies of benzene calculated 
at experimental and optimized reference geometries 

LDA calculations 

re~ geom. expl ~ LDA 
CH/~ 1.084 1.094 
CC/A 1.397 1.388 

exp b 
Ajg 2 3191 3193.6 3101 
Blu 13 3174 3159.8 3065 
E2g 7 3174 3170.2 3075 
E~, 20 3181 3184.4 3091 

Frequencies in cm-  t. • [64] b [10a] 

Table 2, MC-stretching frequencies ~ of chromium- and nickel-carbonyls calculated at 
different reference geometries 

LDA calculations 

C~CO)6 re[geom, expl b 
exp a CrC/A 1.916 

LDA/NL LDA 
1,917 1.862 

Alg 379.2 383.3 381.2 440,1 
E 390.6 390.6 388.4 447.1 
Flu 668,1 c 687.2 683.7 747.2 
Flu 440.5 ¢ 441.3 438.2 504.4 

Ni(COh 
exp ~ NiC/A 1.838 1.844 1.781 

A 370,8 369.1 361.8 433.4 
F2 458.9 ° 459.8 451.6 518.9 
F2 423,1 c 428.1 419.7 491.9 

1 1 a b e Frequencies in cm - . [65] [66] These frequencies contain a significant portion of MC 
vibrations, but they are not pure MC modes. 

other hand, the calculation at the experimental geometry yields excellent agree- 
ment between the theoretical and experimental CH-stretching frequencies, with 
an average deviation of only 5.2 cm- ~. Although this agreement between experi- 
ment and theory is exceptionally good, one has to be careful with its interpreta- 
tion. This reference geometry does not reflect the equilibrium value. Therefore, 
to a certain extent, the excellent agreement between theory and experiment is 
related to cancellation of errors. Nonetheless, most of the 100 cm- ~ error at the 
LDA reference geometry can clearly be accounted for by the too long CH bond 
length. 

The next examples are the metal-carbon and carbon-oxygen stretching 
frequencies of Cr(CO)6 and Ni(COh at experimental, LDA and LDA/NL 
reference geometries. Table 2 includes the MC-stretching frequencies, and 
Table 3 includes the CO-stretching frequencies of these systems. The experi- 
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Table 3. CO-stretching frequencies 1 of chromium- and nickel-carbonyls calculated at 
different reference geometries 

LDA calculations 

Cr(CO)6 ref. geom. expl b LDA/NL LDA 
exp ~ CO/,~ 1.t47 1.154 t.147 

AI~ 2139.2 2141.4 2093.1 2159.4 
E 2045.2 2050.1 2001.0 2065.2 
F1, 2043.7 2031.5 1982.0 2044.9 

Ni(CO)4 
exp a CO//], 1.141 1.150 1.143 

A 2154.1 2153.0 2086.3 2157.6 
Fz 2092.2 2084.9 2017.2 2088.5 

1Frequencies in cm-1. a [65] b [66] 

mental CO frequencies represent harmonic frequencies, while the MC frequen- 
cies are the observed fundamental frequencies. It is generally believed that the 
unharmonicity in the MC frequencies is in the range of a few cm-  1 

The CrC- and NiC-bond lengths are calculated very accurately by the 
LDA/NL method. Accordingly, the corresponding MC stretching frequencies 
are also very accurate at the LDA/NL reference geometry. There is, however, no 
significant difference between the predictions of CrC- and NiC-stretching fre- 
quencies at experimental and LDA/NL reference geometries. The LDA method 
seriously underestimates the CrC and NiC bond distance; as a result the 
corresponding CrC- and NiC-stretching frequencies are overestimated by as 
much as 64 cm-1 (15%). 

The CO-stretching frequencies of metal carbonyls are sensitive not only to 
the CO distance, but also to the metal--carbon distance due to strong coupling. 
The calculations at experimental geometry yield CO-stretching frequencies in 
excellent agreement with experiment for both Cr(CO)6 and Ni(CO)4. The 
average deviations are 10 cm-  1 (0.5%) and 4 cm-  1 (0.2%), respectively. 

The LDA/rNL method usually predicts geometries more accurately than the 
LDA method. However, this is not the case for the CO-bond length of metal 
carbonyis, where the LDA and experimental values agree very closely. Accord- 
ingly, the CO-stretching frequencies calculated at the LDA reference geometry 
are also quite accurate. However, the metal-carbon bond length, which is 
seriously underestimated by the LDA method, increases the CO-stretching 
frequencies slightly through coupling with me ta l - ca rbon  stretching vibrations. 
The LDA/NL method yields more accurate MC-bond distances, while it overes- 
timates the CO distance by 0.007 to 0.009 A. The longer CO bond results in a 50 
to 70 cm-  1 downshift for the calculated CO stretching frequencies. 

The vibrational frequencies selected here are the most prominent examples 
to demonstrate the importance of reference geometry. In the present paper we 
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omit the deformational frequencies and the CC-stretching frequencies of ben- 
zene. The reader should refer to our original paper for a detailed discussion of 
the complete set of vibrational frequencies [15]. 

Another choice that has to be made in applied density functional theory is 
the treatment of the exchange correlation potential. In Table 4, we compare the 
LDA vibrational frequencies of Cr(CO)6, and Fe(CO)5 with those of the 
LDAflqL method. This comparison could have been made at any reference 
geometry; the results would have been similar, We chose the experimental 
reference geometry. While we have seen significant differences between the 
geometries at LDA and LDA/NL level, the frequencies in Table 4 do not show 
such large deviations. The largest deviation in the stretching frequencies is the 
10 c m -  1 increase of the F t ,  CrC-stretching frequency of Cr(CO)6 (687.2 c m -  1 
by LDA). It is especially remarkable, that the MC-stretching frequencies are not 
changed significantly by the non-local corrections, even though these have an 
important  effect on the MC bond length. The E" FeCO-bending frequency of 
Fe(CO)5 increased from 551 to 566 c m -  a, which represents the largest deviation 
for deformational frequencies. 

As a conclusion, the gradient-corrected exchange correlation functional 
affords significant improvement in the geometry compared to the local methods, 
but has little effect on the calculated force constants. The previous observation, 
that LDA/NL methods provide better frequencies than LDA methods, is mainly 
due to the improved reference geometry. Although in most cases the reference 

Table 4. Comparison of LDA and LDA/NL vibrational frequencies at 
experimental geometry 

Cr[CO}6 Fe(CO)5 

LDA LDA/NL LDA LDA/NL 
AI~ 2141,4 2140.6 AI' 2101.4 2104.9 

383.3 389.3 2020.2 2019.4 
E 2050,1 2046.3 453.3 455.4 

390,6 393.8 407.7 410.4 
Fig 359.3 368.4 A2' 351.9 362.5 
F I u 2031.5 2028.1 E' 2007.3 2008.4 

687,2 697.9 658.0 668.2 
441.3 451.6 466.6 474,2 
100.6 108.4 425.8 435.9 

F2g 535.5 548.3 98.9 106.4 
90.7 92.8 49.6 44.1 

F2u 5t3.1 525.8 A2" 2010.0 2010,7 
63.9 64.8 616.7 627.4 

486.4 493,3 
101.3 110.8 

E" 550.8 565.6 
365.9 376.0 
93.5 95.6 

1 Frequencies in cm - t. 
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geometry improves the results obtained with the non-local functional, the 
CO-bond distance becomes too long, and the corresponding stretching frequen- 
cies are too low. 

2.2 The Representation of Potential Energy Surfaces for Transition Metal 
Complexes 

One of our goals was to compare the force constants of small organic molecules 
in the their free state and as ligands in transition metal complexes. Since the 
values of force constants depend on the definition of "internal coordinates", we 
paid special attention to the representation of force fields. Internal coordinates 
represent small internal displacements of the atoms of molecule, with the 
condition that all other internal coordinates remain unchanged upon displace- 
ment. Due to this condition, the same internal coordinate, - say a CC 
stretch - may represent different displacements, depending on the choice 
of the complimentary coordinates. This problem becomes especially important 
for transition metal complexes with a multicenter bond. We can illustrate this 
problem with the example shown on Fig. 1. The arrows represent the direction 
of displacement of the atoms upon stretching the CC bond. Fig. la shows the 
CC-stretching displacement for a free C2H2 molecule, while Figs. lb and lc each 
represent that of CzHz complexed to a metal M. The difference between lb and 
lc is the representation of the skeletal internal coordinates. In Fig. lb, we show 
the CC stretching displacement, with the metal-carbon bonds as complement- 
ary coordinates. The displacements have to be orthogonal to the metal carbon 
bond, since that is an internal coordinate here. Another situation is depicted in 
Fig. lc; there, the distance between the metal and the centre of the CC bond is 
defined as the internal coordinate that expresses the metal-carbon stretch. 
Fig. lc clearly shows that in this case the displacement is very similar to that in 
the free molecule. Therefore, this representation is more appropriate for the 
comparison of force constants. 

Fig. la-c. 

c 
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The internal coordinates of rt"-bonded complexes fall naturally into two 
categories: the ring coordinates and the skeletal modes. We use ferrocene as an 
example, to demonstrate the skeletal vibrations. The ring coordinates describe 
distortions of the Cp-ligands whereas the skeletal modes represent movements 
of the Cp-ligands relative to the metal, without distortion of the Cp-ring. The 
ring coordinates can be defined following the generally accepted recommenda- 
tions by Pulay, Fogarasi and co-workers [13b, 13c, 13d], but there is no stan- 
dard way to select the skeletal internal coordinates. 

Before we discuss our definition of skeletal internal coordinates, we rational- 
ize the origin of these degrees of freedom. The extra vibrational degrees of 
freedom in FeCp2, compared to those of the free Cp-ligands and Fe, are a result 

F e  

a C p l F e  Stretch 

~ n  Cp I 

~.~..... _Cp 2 
" K  Z 

c Ring internal rotation 

Fig. 2a-d. 

TCP 
- at x 

F e  

T P2 

b Cp-Fe -Cp bend 

d Ring tilt 
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of the interactions between the ligands and the central atom. This interaction 
turns the non-vibrational degrees of freedom of the separate entities into vibra- 
tional modes, when they have formed the complex. The six rotational degrees of 
freedom of the two Cp rings, R cpl, R cp2 etc., and the nine translational modes of 
the two rings and the central atom, T~ pl, Tx cp2, and T Fe etc., make up the nine 
new skeletal vibrations, as well as the six rigid motions of the total complex. The 
skeletal modes can be separated from the total translations and rotations by 
taking combinations of the appropriate symmetry. 

Structures 2a and 2b demonstrate skeletal metal-ligand stretch and ligand- 
metal-ligand bending motions, which are related to the translational degrees of 
freedom of the ligand. Examples of skeletal internal coordinates related to the 
rotations of the Cp rings are the internal rotation and the ring tilt shown in 2a 
and 2b. 

~Fe 

a Cp-Fe Stretch R D 
1 b Skeletal bending ¢x D 1 

)Fe 

~D6 

c Ring tilt ~ D6 

Fig. 3a-d. 

d Ring internal rotation "UD1 
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We studied a few alternative definitions of the skeletal modes, and found that 
the best representation makes use of a reference point (i.e. dummy atom), that is 
placed in the geometrical centre of the carbon atoms of the ring. The skeletal 
stretch can then be represented by the distance between the reference point and 
the metal atom (3a). The skeletal bend can be represented by the angle between 
the two metal-reference point vectors (3b). 

The tilting coordinate 3c, can be defined by the C - D - F e  angles, and the ring 
rotation, 3d can be regarded as C-D1-D2-C  dihedral angle. In order to use 
a physically meaningful definition for the tilting coordinate, all carbon atoms 
have to be treated equivalently. This can be done by introducing all possible 
C-D-Fe  angles. This set is a redundant set, since there are only two tilting 
degrees of freedom for each ring. Redundancies can be eliminated simply by 
taking symmetrized linear combinations. Even if the molecule has lower sym- 
metry, the highest local symmetry has to be considered in order to find the 
appropriate internal coordinates. For the internal rotation, the sum of all 
C. -Dj-D2-C.+5 n = 1 . . . .  5 coordinates are used, to ensure that all carbon 
atoms are given equivalent consideration. 

We note that the Willson type B matrix [16] for the reference point (dummy 
atom) representation can be evaluated without specific reference to Cartesian 
coordinates of the dummy atoms, by the chain rule: 

dqj(xl . . . . .  X k ,  xo(xa . . . . .  x,))/dxi = dqHdxi + (dqj/dxt))(dxo/dxi) (3) 

where XD is the dummy atom position, defined as 

n 

xD = l/n ~, Xa (4) 
O~ 

where k = 2 for stretching, k = 3 for bending, and k = 4 for the torsional 
internal coordinates. Finally, n is the number of atoms whose geometrical centre 
defines the position of the dummy atom. Thus, there is no matrix element 
between the Cartesian coordinates of the dummy atom and the skeletal internal 
coordinates. In this definition of skeletal modes, the dummy atom does not move 
independently, but only as a result of the displacements of the real atoms of the 
ring. 

2.3 Computational Details 

The reported calculations were carried out using the Amsterdam Density 
Functional (ADF) program system developed by Baerends et al. [17] and 
vectorized by Ravenek [18]. The numerical integration procedure [19] was 
developed by te Velde et al. A set of auxiliary s, p, d , f  and # STO functions 
[20] - centred on all of the nuclei, was used in order to fit the molecular density 
and represent the Coulomb and exchange potentials accurately in each SCF 
cycle. The ls 2 configuration on carbon and oxygen as well as the ls22s22p 6 
configuration of chromium, iron and nickel were assigned to the core and 
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treated by the frozen-core approximation [17,]. For transition metals, we used 
an uncontracted triple-~, polarized STO basis set, while a double-~, polarized 
STO basis set was used for C, O, and H [21]. 

All optimized geometries of transition metal complexes were calculated 
based on the local density approximation [22-] (LDA) energy expression, aug- 
mented by nonlocal corrections to exchange [23] and correlation [24-]. We shall 
refer to this method as the LDA/NL scheme, which our group has implemented 
self-consistently [25a] in energy and gradient [25b] calculations. The optimiza- 
tion of the geometries was based on the GDIIS technique, [26-] using natural 
internal coordinates [13d]. We have interfaced the ADF program with the 
GDIIS program [27-] and implemented the skeletal internal coordinates [28] for 
geometry optimization. The Cartesian force constants and dipole moment 
derivatives were calculated by numerical differentiation of the energy gradients 
[29-] and dipole moments using Cartesian displacements. An automatic scheme 
for the transformation of symmetry-related Cartesian force constants allowed us 
to make only symmetry-unique displacements [8c]. We used an integration grid 
with high enough precision to ensure numerical accuracy of 1.0 cm- 1, even for 
the low frequency vibrations. 

We have used a locally developed program package [30,], based on Schach- 
tschneider's force field program [31,] for all force field transformations and the 
normal coordinate analysis in internal coordinates. For frequencies evaluated 
at other points than the optimized geometry, the forces or energy gradients have 
to be taken into account in the force-field transformation [14]. The force 
constants in internal coordinates can be expressed in terms of the Cartesian 
energy gradients and energy Hessians as: 

~ V = S" ~2 V ,~xk ~xz + S" ~V a2xl (5) 
t3qlc3q~ ~ t~Xk~Xl ~qi t~qi ~ t3Xt ~qit~q~ 

We have implemented this transformation in our normal coordinate pro- 
gram. 

3 Verification of the Method by the Reproduction of the Benchmark 
Benzene Force Field 

The harmonic force field of benzene is the most studied force field of any 
molecule of similar size. Due to the high symmetry of benzene, its harmonic 
force field can be expressed with only 34 distinct parameters. The modest 
number of parameters makes it possible to collect enough experimental in- 
formation to determine the complete force field. Experimentalists have obtained 
the required data by collecting information on almost all possible isotope- 
substituted species by various techniques, including non-tranditional vibra- 
tional methods based on one-photon and two-photon electron spectroscopy 
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[32]. The force field of benzene has also been studied by theoretical methods, 
with the use of extensive basis sets and explicit inclusion of electron correlation 
[33]. 

The combination of a Hartree- Fock calculation and experimental informa- 
tion laid the groundwork for the first theoretical force field, due to Pulay et al. 
[10b]. In this calculation, nine parameters, which incorporated the effect of 
neglected electron correlation, were fitted to the observed frequencies and 
Coriolis constants of benzene. The accuracy of the determined fitting parameters 
was demonstrated by simulating the effect of electron correlation on the cal- 
culated HF force field of pyridine [34], naphthatine [35] and other benzene 
analogs. More elaborate calculations [33c, 33d], including a very recent high 
level (CCSD(T)) ab initio calculations by Zhou et al. [33d] have substantiated 
the scaled HF force field of Pulay et al. 

Through a series of investigations spanning more than a decade, Ozkabak 
and Goodman (OG) have determined the complete experimental force field of 
benzene [36]. They base their approach on deriving the force constants from the 
harmonically corrected experimental frequencies. This procedure has the ad- 
vantage of producing a better fit of both the CH and CD stretching frequencies, 
that are differently perturbed by unharmonicities. Further, they collected data 

Table 5. Calculated and experimental harmonic and fundamental frequencies of benzene 
(C6H6) 

Sym. and Exp. fundamentaP estimated LDA at optimized 
Wilson no. /cm- 1 harmonica/cm- 1 geom./cm- 1 

Alg 2 3073.942 3191 3101 
1 993.071 994.4 1004 

A28 3 (1350) b 1367 1314 
B1 u 13 (3057) b 3174 3065 

12 (1010) b 1010 993 
Bzu 14 1309.4 1309.4 1379 

15 1149.7 1149.7 1125 
E2~ 7 3056.7 3174 3075 

8 1600.9764 ~ 1607 1610 
9 1177.776 1177.8 1150 
6 608.13 607.8 602 

Elu 20 3064.3674 a 3181.1 3091 
19 1483.9854 1494 1462 
18 1038.2670 1038.3 1039 

A2u 11 673.97465 674.0 664 
B2g 5 (990) b 990 985 

4 (707) b 707 713 
E18 10 847.1 847.1 830 
E2u 17 (967) b 967 952 

16 (398) b 398 399 

~[10a]. bFundamental frequencies are estimated form infrared combinations. "Strong Vs and 
vl + v6 Fermi interactions have been deperturbed, aStrong Fermi interactions involving 
v20 and three combination bands have been deperturbed. 
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from the infrared, Raman and one and two-photon electronic spectra of ben- 
zene, and of its isotope substituted derivatives. In their most recent paper [10a], 
they propose these parameters as benchmark values for future theoretical 
investigations. They have also tested the benchmark force field by simulating 
eigenvalue- and eigenvector-dependent observables. 

The field due to Pulay et al. and the OG field are in good qualitative 
agreement with each other for most of the symmetry species. Indeed, most of the 
diffrences are related to the different definitions and assumptions. However, 
major qualitative differences still remain in the e2g and e~u symmetry species, 
where one of the e2g force constants is of opposite sign and two of the elu force 
constants differ significantly in magnitude. 

Handy and co-workers have reported MP2 and Density Functional calcu- 
lations on the harmonic frequencies of benzene [10e], using an extensive 
TZ2P + f  basis set. One important outcome of this study is that the density 
functional calculations could provide very accurate harmonic frequencies at 
a fraction of the cost of the MP2 calculations. 

The valence and symmetry force constants of benzene calculated using 
density functional theory were first reported by us [10c,d]. These results are 
summarized in this section. We discuss the vibrational frequencies (Table 5), 
isotopic shifts, and absorption intensities (Table 6). Selected force constants in 
symmetry-coordinate representations are listed and compared to the fields due 
to the Pulay [10b] et al. as well as OG [10a] in Table 7. 

3.1 C6H 6 Vibrational Frequencies 

Table 5 presents frequencies calculated by the Local Density Approximation 
(LDA) [22] employed in the present study. The calculated frequencies listed in 
Table 5 are a good demonstration of the predictive power of the LDA method. It 
follows from Table 5 that calculations at the optimized geometry predict the 
C6H 6 frequencies with an average deviation of 16.7 cm- 1 (1.5%), not including 
CH stretching frequencies. 

The CH stretching frequencies (v2, VT, 1~13, V20) calculated by the LDA 
method are close to the experimental fundamental frequencies, but are under- 
estimated by 100 cm- 1 compared to the harmonic frequencies. The large devi- 
ation from the experimental harmonic frequencies can be explained by the 
sensitivity of calculated CH-stretching frequencies to the applied reference 
geometry. We have shown in the previous section that the error in the reference 
bond length is the major source of error in the CH-stretching frequencies. 

The largest discrepancy between our prediction and experiment, is the 
70 cm- 1 (5%) overestimate of the v14 b2u CC-stretching frequency. This vibra- 
tional mode can be characterized as an alternating expansion and contraction of 
the CC bonds, in which the CC-stretching coupling force constants are of 
primary importance [t0b]. This frequency is underestimated by the HF and 
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MP2 methods, due to the overestimation of the magnitude of the CC-stretching 
interaction constants, indicating the preference of these models for localized 
Kekule structures. Both the HF and MP2 methods are biased towards localized 
bonds [37], unlike the LDA approach [38], in which such a bias is not 
present. 

This frequency is overestimated in our calculation due to the 5% overesti- 
mate of the diagonal and 10-25% underestimate of the off-diagonal CC-stretch- 
ing constants. We have also calculated the vibrational frequencies at the approx- 
imate re geometry [10b]. In this set of results, the v14 b2u frequency deviates by 
only 31 cm-1; the improvement of this frequency is explained by the better 
diagonal CC-stretching force constant. The comparison of mode displacements, 
however, indicates that our force field (at re) still does not reproduce this 
vibrational mode correctly. This mode has been studied extensively by Ozkabak 
et al. [33b]. The empirical field reproduces this mode correctly, as was demon- 
strated by two-photon crossection calculations. We compared the magnitudes 
of displacements of the carbon and hydrogen atoms. Note, that all C-atom 
displacements are equal; the same holds for the H atoms in this symmetry 
species. The magnitudes of the displacements describe this mode sufficiently 
well, as all these motions are perpendicular to the CH bond. Also, the H and 
C-atoms move in opposite directions in Mode 14. The empirical field results in 
a displacement of 0.106 au. for carbons, which compares well with the value of 
0.1 t7 au from calculations based on the LDA force field. However, the cal- 
culated displacements of the H atoms are incorrect; their empirical and theoret- 
ical values are 0.174 and 0.043 au, respectively. We have tested the mode 
displacements of v15, which is also of B2u symmetry. For v15 the displace- 
ments based on the empirical and LDA (at re) force fields were virtually 
identical. 

The v6 and v12 ring-deformation frequencies are also somewhat lower than 
the experimental values. The order of the 1010 cm- 1 ring bending mode (v12) 
and the 994.4 cm- ~ CC-stretching frequency (v~) is interchanged in the theoret- 
ical spectrum. The inversion is related to the opposite signs of the errors in the 
CC-stretching and ring-bending force constants. Another discrepancy between 
the calculated and theoretical frequency order is noticed for the azg CH planar 
deformation and the b2u CC-stretching frequencies, which are 1367 and 
1309cm -~ experimentally but are 1314cm -~ and 1379cm -~, respectively, 
based on the LDA calculations. 

The out-of-plane force constants are generally an order of magnitude smaller 
than the in plane constants, and are therefore much more sensitive to numerical 
errors. The high accuracy employed in the present set of calculations was 
required for this set of frequencies in particular. The average deviation of the 
CrH 6 and C6D6 out-of-plane frequencies from experiment is only 9.4 cm-1 
(1.2%) and 7.3 cm -1 (1.2%), respectively. The frequencies of the v16 and v4, 

torsion modes are most accurate; both agree with the experimental values 
within 6 cm-1. The vs, v~0, vl ~ and v17 CH out-of-plane-deformation modes are 
slightly underestimated. 
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3.2 Eigenvector-Sensitive Quantities 

Ozkabak et al. [33b] demonstrated, in connection with the b2u force constants, 
that fundamental frequencies provide a poor criterion for the accuracy of a force 
field. Even good frequency predictions do not necessarily indicate accurate force 
constants. They suggest that eigenvector-dependent quantities, such as two- 
photon cross sections, provide a more stringent test. 

Infrared absorption intensities are also eigenvector-dependent quantities. 
However, the accuracy of the calculated absorption intensities depends on the 
dipole moment derivatives as well. There are only four infrared-active vibrations 
of benzene. One of these is a pure CH out-of-plane a2u deformation mode, and 
the corresponding vll frequencies for both CrH6 and C6D 6 are predicted very 
accurately. The eigenvector corresponding to vl 1 is mainly determined by the 
symmetry of the molecule. Consequently, the error in the calculated intensity is 
determined by the dipole moment derivatives, rather than by the accuracy of the 
eigenvector. The LDA-calculated intensity is 85 km/mol, which is in impressive 
agreement with the experimentally measured absolute intensity of 88 km/mol 
[39, 40]. Note that the empirical absolute intensities carry about __+ 10% uncer- 
tainty, due to the overlapping combination bands and experimental difficul- 
ties. The corresponding benchmark- and. calculated dipole-moment derivatives 
are t3V/t3Sll = 1.285 D/A and 1.369 D/A, respectively. The former, empirical 
dipole, derivative has been determined from 13C6H6 measurements [40] and 
reproduces the intensity of about 75 km/mol for both C6H 6 and 13C6H 6. 

The other three IR-active modes are in plane vibrations of e~u symmetry. 
Except for the CH-stretching frequency, the error in the elu frequencies is small; 
however, it is not systematic for either C6H 6 or CrDr,  indicating that the 
deformation- and CC-stretching modes are not precisely described in the LDA 
force field. Accordingly, the in plane absorption intensities are not as accurate as 
those of the a2u mode. The CH-stretching mode, v20, has a calculated intensity of 
35.8 km/mol, as contracted with the experimental value of 56 km/mol. The 
calculated intensity of the CC-stretching mode v19 is 12.2 km/mol, compared to 
the experimental value of between 14-15 km/mol. The v t 8 bending mode inten- 
sity is overestimated; the experimental value of 7.5-8.8 km/mol is significantly 
lower than the calculated estimate of 12.5 km/mol. The dipole-moment deriva- 
tives are compared to the empirical values in Table 6. In this table, we also 
included the calculated intensities for three D6h isotopomers of benzene from 
different combinations of empirical and DF eigenvectors and dipole moment 
derivatives. The intensities calculated using empirical dipole-moment deriva- 
tives allow us to test the accuracy of the eigenvectors. As it is apparent from 
these values, the overestimate of 118 for C6H6 is mainly the result of the 
improper eigenvector. Even with the empirical dipole-moment derivatives it is 
about the same as 119 , as opposed to the experimental ratio of about 2 to 3 I20 is 
calculated correctly using empirical tensors. This indicates that the theoretical 
eigenvector for this CH-stretching mode is correct, principally because there is 
not much coupling with the CH-bending and CC-stretching vibrations. Modes 
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Table 6, Comparison of calculated intensities using empirical and DFT dipole derivatives and 
eigenvectors 

empirical dipole moment 
derivatives ~ 
O#/OS 1 s~ = 0-494, b 
(~/0519 a = 0.394, 
8/~/0S2o~ = 0.770 

DFT dipole moment 
derivatives 
Op/0Slsa = 0.533, ~ 
3#/c3S19a = 0.478, 
8/~/0S2oa = 0.630 

C6H6, C6D6 ,  13C6H6 C6H6,  C6D6 ,  13C6H6 

empirical 118 7.51 7.2 6.5 9.8 9.0 8.6 
eigenvectors 119 11.6 2.3 12.6 13.6 2.7 14.8 

I2o 56.0 30.6 55.6 37.5 20.4 37.2 

LDA eigenvectors 118 10.1 8.5 8.9 12.5 10.3 i 1.1 
119 10.6 1.7 11.8 12.2 2.1 13.6 
t20 54.0 29.6 53.6 35.8 19.5 35.5 

Determined from 13C6H 6 measurements [40]. Units are D/A for dipole moment derivatives 
and km/mol for intensities. Coordinates are defined in [42]. Symmetry coordinates for CH 
deformation are scaled by rcn, so all dipole derivatives are in D//~. ~[10a], rcn = 1.084A 
¢rcH = 1.094/k. 

18 and 19 both  contain significant contr ibutions from CC-stretching and CH-  
bending coordinates making the eigenvectors more sensitive to small errors in 
the force constants. The too-high stretching- and too- low bending-force con- 
stants present an unfor tunate  situation for the eigenvectors for these two 
strongly coupled modes. 

It  is interesting to compare  the intensities calculated using empirical eigen- 
vectors and theoretical polar  tensors. As both  the theoretical values of  ~/~/~$18a 
and O~L/OS19a are overestimated, the intensity pat tern of  mode  18 and 19 
resembles the empirical pattern, closely, but  the absolute values are somewhat  
too high. On  the other  hand, the CH-stretching intensity is underestimated. Due  
to non-systematic errors in the dipole-moment  derivatives, the intensity predic- 
tions are expected to be only in qualitative agreement with experiment, even 
when correct eigenvector is used. 

Al though the frequency shift is an eigenvalue-dependent quantity,  it is 
nevertheless another  valid criterion for the quality of  a force field and the 
eigenvectors, provided that  the fundamental  frequencies are also well repro- 
duced. Accordingly, we have calculated the fundamental  frequencies of  all 
D6h isotopomers.  We expect that  the out-of-plane force field, which predicts 
the frequencies very accurately, would also give good  results for isotopic shifts. 
The average error in the out of plane C6H6 ~ C6D6 isotopic shifts is 3.5 c m -  1 
(1.6%). The experimental and (calculated) C6H6 ~ C6D6 frequency shifts for the 
vll, vs, v4, vlo, vlT, v16 modes are: - 178cm -1 ( -  177cm-1) ,  - 161 cm -1 
( - 1 6 1 c m - 1 ) ,  - 1 0 8 c m  -1 ( - l l 0 c m - 1 ) ,  - 1 8 7 c m  -1 ( - 1 8 4 c m - 1 ) ,  

- 180 c m -  1 ( _ 174 c m -  a), _ 53 c m -  1 ( _ 53 c m -  1), respectively. Fur ther  
evidence for the good  quality of our  out-of-plane force field is the isotopic shift 
of  the intense azu infrared-active out-of-plane CH deformation frequency, which 
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is accurately measured by high-resolution interferometric FTIR measurements 
[41]. The experimental 12C6H 6 ~ 12C6HsD and 12C6H 6 --* 13C12C5H6 shifts 
are - 67.0 and - 0.4 cm- ~, respectively, both of which are in excellent agree- 
ment with values of - 65.3 and - 0.4 cm- 1, respectively, force field predicted 
by the LDA. 

The isotopic shifts of the in-plane frequencies are, in general, not as good as 
the out-of-plane shifts. Most of the errors are consistent with our expectation, 
based on the error in the force constants. The C6H 6 --~ C6D 6 frequency shifts of 
the CH- and CD-stretching vibrations is an average 29 cm- ~ (3.6%) smaller 
than the experimental harmonic shifts. The frequency prediction for these 
frequencies is improved at the approximate equilibrium reference geometry. 
Accordingly, the CH- and CD-stretching frequency shifts are closer to the 
experimental values, these are predicted with an average error of 13.6 cm -~ 
(1.7%). Also, similarly to the frequencies, the frequency shifts are overestimated 
at this geometry. The CC-stretching interaction constants are underestimated in 
magnitude. Accordingly, eigenvectors of the CC-stretching modes are not of the 
same accuracy as eigenvectors of other modes. This problem is most serious in 
the b2u symmetry. Due to the overestimation of the b2u CC-stretching symmetry 
force constant and the underestimation of the planar CH-deformation constant, 
the stretching and deformation modes are more widely separated in the cal- 
culated eigenvectors than in the real vibrations. This can be seen from the 
CC-stretching frequency shift for the C6D6 isotope, that is 4 cm-1 by the 
calculation, incontrast to 23 cm- ~, as determined experimentally. On the other 
hand, the 12C6H 6 ~ 13C6H 6 isotopic shift for the CH deformation mode is 
- 10 cm- ~ experimentally and only - 2 cm- ~ according to our LDA calcu- 

lation. Interestingly, the a~g CC-stretching frequency shift is always within 
1.5 cm- ~ of the experimental shifts, this is explained by the larger separation of 
the CH- and CC-stretching modes, as well as by the fact that the CC-stretching 
coupling constants do not contribute as much to the CC-stretching force 
constant in the A~g as in the Bzu symmetry species. 

3.3 Force-field Comparison 

The empirical force field determination by Ozkabak and Goodman and the 
scaled ab initio filed by Pulay, Fogarasi and Boggs are both based on the most 
careful approach of its kind. The theoretical and empirical fields, in spite of 
the very careful studies, are different in magnitude and the sign of some 
interaction constants. It is not possible to tell which force field is closer to the 
physical force field of benzene without further studies. One of the objectives of 
this investigation was to determine whether the differences could be attributed 
to the assumptions made in the Hartree-Fock calculation. We found, that in 
spite of the differences in the quantum mechanical models, the scaled Har- 
tree-Fock and density functional force constants are very close in magnitude 
and agree in sign. 
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Comparison to experimental results is more conveniently carried out in the 
full symmetry-coordinate representation, as this is the representation in which 
the experimental force constants are directly determined. Symmetry coordinates 
are also preferable to a valence-coordinate representation, as any error in the 
experimental symmetry force constants due to unresolved effects will spread 
over the entire force field when transformed into the valence-coordinate repres- 
entation. We have used the full set of symmetry coordinates introduced by 
Whiffen 1-42]. 

The DF  calculated symmetry force constants are in very good agreement 
with the scaled ab initio force field [10c, 10d]. Except for the E2g and E l ,  blocks, 
the DF force constants are also in excellent qualitative agreement with the 
empirical constants. Also, the quantitative differences are small and systematic. 
In the E2g block, the F7,9 coupling constant agrees in sign and magnitude with 
the scaled ab initio values, whereas this constant is of opposite sign in the 
experimental O G  field. The other controversial force constants are the 
F19, 20 and F18, 20 interaction force constants in the E~u symmetry block, which 
are of the same sign in the fields due to Pulay et al. and O G  but differ in 
magnitude. The DF  value of these constants is in very good agreement with the 
scaled ab initio results. The F18,20 constant is 0.002 mdyn /~  in our calculation, 
well in line with scaled HF  value of 0.006 mdyn/~,, whereas it is 0.151 mdyn /~  in 
the O G  field. As the theoretical constants are so simiar, although they were 
obtained by two independent quantum chemical approaches, the discrepancy 
between experiment and theory is more likely related to assumptions in the 
experimental force-field determination. 

As the comparison of theoretical and experimental force constants of ben- 
zene shows, it is a very difficult task to determine complete force fields, even for 
highly symmetrical medium-size molecules. We are primarily interested in the 
determination of force fields, for substantially larger molecules, like the 
transition metal complexes of benzene for example. For  these larger systems, 
empirical determination of the force field is impractical, and the theoretical 
determination of force constants based on density functional theory seems to be 
a viable method. This application will be discussed in the next sections. 

Table 7. Disputed symmetry-force constants of benzene. Comparison with the 
benchmark empirical- and scaled ab initio fields ~ 

Sym. Force Ozkabak- LDA optimized Pulay et al. 
constants Goodman d geom. ~ Set II? 

E2 0 FT. 9(r, fl) -- 0.066 0.038 0.028 
EI~ Fla.2o(fl, r) 0.151 0.002 0.006 
Elu F19, 2o(R,r) 0.572 0.186 0.175 

a Coordinates are defined in Ref. [42]. Symmetry coordinates for ring deformation 
and for CH rock and wag are scaled by_ rcc and rcu, respectively, so all force 
constants are in mdyn/,~, brc c = 1.388~, rc~ = 1.094A a[10a]; rcc = 1.397A, 
rclt = 1.084.~ " [t0b]; rcc = 1.395A, rcH = 1.077A 
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4 The Vibrational Frequencies and Harmonic Force Fields 
of Transition Metal Complexes 

One objective of the present investigation was to acquire knowledge about how 
the interaction between the ligand and a metal atom influences the force 
constants of the ligand. In particular, we are interested in the transition metal 
complexes of the five and six membered aromatic rings. Having studied the force 
constants of ferrocene, dibenzene-chromium, and benzene-chormium-tricar- 
bonyl, we compare them with the force fields of the free Cp- ring, and free 
benzene. We also make a comparison between analogous force constants of 
ferrocene and LiCp, as well as of BzCr(CO)3 and Cr(CO)6. We shall, in addition, 
determine the force constants for the skeletal modes that describe the motion of 
the ligand(s) relative to the metal centre, and assess the magnitude of the 
coupling force constants between the skeletal and ring coordinates. The degree 
to which kinematic coupling effects contribute to the change in the benzene and 
Cp- ring-vibrational frequencies that occur on complexation will also be 
addressed. The accuracy of the calculated force field can be tested by comparing 
the corresponding frequencies to the experimental ones. This comparison also 
helps to confirm the assignment of the vibrational spectrum of these systems- or 
to modify them. 

We have seen in the first section how important it is to have an accurate 
reference geometry for frequency calculations. Therefore, we start with the 
comparison of empirical and calculated geometries. For the determination of 
geometries we have used non-local corrections in the exchange correlation 
potential (LDA/NL). This geometry was used for the determination of LDA 
force field, and the non-zero forces were taken into account in the calculation of 
internal force constants and vibrational frequencies. Further, we compare the 
calculated and observed vibrational frequencies of the transition metal com- 
plexes. We also discuss the differences between force constants of free and 
complexed small aromatic rings. 

4.1 Geometry and Conformation 

Electron-diffraction data in the gas phase [43] suggest that ferrocene prefers to 
adapt an eclipsed conformation, with an internal rotational barrier of 
0.9 + 0.3 kcal/mol. The calculated barrier derived from the vibrational fre- 
quency of the internal rotational mode is 0.72 kcal/mol [44]. Our LDA/NL 
calculation finds the eclipsed conformation to be the most stable, with a cal- 
culated rotational barrier of 0.69 kcal/mol, in good agreement with experiment. 
The structure of ferrocene has been studied by several theoretical methods. Our 
optimized geometrical parameters are similar to those that had been obtained 
previously by Fan and Ziegler [25] employing the same I , D A ~ L  scheme 
(Table 8). The LDA/NL geometry represents a better fit to experiment than 
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Table 8. Calculated and experimental geometrical parameters of CsH5, LiCsH5, and ferro- 
cene 

bond 
length/A LDA/NL exp? re b LDA/NL LDA/NL 

ferrocene ferrocene ferrocene LiCp CsH5 

C-C 1.432 1.440 + 0.002 1,431 + 0.005 1.421 1.418 
C-H 1.091 1.104 + 0.006 1.122 _ 0.020 1.092 1.096 
Fe-C 2.048 2.064 _ 0.003 2,058 _ 0.005 2.123 
Fe-H 2.829 2.814 ± 0.009 2.917 
CH-tilt 0.T ~ 1.6(4) ° c 2.6.~ 

towards away 

~[43b], based on electron diffraction measurement, b[67] estimate for the equilibrium 
parameters derived from ED rg structure with correction assuming harmonic vibrations, 
~[43a] and [45] 

results obtained by ab initio methods or by the more approximate LDA scheme. 
The Fe-C, and C ~  distances are within .01 ~, of the observed values, and this 
deviation is only slightly larger than the experimental uncertainties. The largest 
deviation between experiment and theory is in the position of the hydrogen 
atoms; our optimized C - H  distances are slightly too short. Experimentally, the 
hydrogen atoms were found to tilt towards the metal with an angle of 1.6 °, [43a, 
45] while the calculated tilting angle in 0.7 ° in the same direction. 

There is no experimental data for the geometry of the free Cp ring or for 
LiCp; the calculated values are also listed in Table 8. 

The calculated and experimental geometrical parameters for BzzCr, 
BzCr(CO)3 and Cr(CO)6 are listed in Table 9. The gas-phase data recorded for 
BzzCr is in very good agreement with our calculated geometrical parameters. 
The CrH distance is the only parameter  that significantly differs from the 
empirical values. However, the empirical Cr-H distance carries a large experi- 
mental uncertainty. 

The gas phase structure of BzCr(CO)3 has recently been determined by 
Kukolich et at. from microwave spectrum [46]. Unfortunately, this microwave 
measurement provides bond lengths with an uncertainty of 0.01-0.02 ~,. Pre- 
vious electron diffraction measurements by Chiu et al. found six equivalent CC 
bonds at 400 K, suggesting free internal rotation at that temperature [47]. This 
qualitative difference from our calculated geometry makes it dificult to compare 
this experiment with our calculations. Therefore, we included in Table 9 only 
the solid state data determined by Rees [48]. Since we can only compare the 
solid state structures of BzCr(CO)3 and Cr(CO)6, with the calculated ones, we 
cannot comment  on the absolute deviation between the calculated and empirical 
values for the free molecules. Generally, the calculated structure of BzCr(CO)3 
agrees well with the empirical data. The difference between the two distinct types 
of CC bonds is reproduced well. The calculated CrCcarbonyl distance of 
BzCr(CO)3 is too long, compared to the solid state data. However, this bond 
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Table 9. Calculated and experimental geometrical parameters of di-benzene-chromium, chro- 
mium-benzene-tricarbonyl,  and chromium-hexacarbonyl 

bondlength/A. LDA/NL  exp. bondlength/A LDA/NL exp. 

Bz2Cr a BzCr(CO)3 b 

C - C  1.418 1.423 + 0.002 CrCri~g 2.222 2.223, 2.233, 2.243 
C H 1.096 1.090 -I- 0.005 CrCearbony I 1.864 1.845 
Cr -C  2.146 2.150 + 0.002 CO 1.164 1.159, 1.157 
C r - H  2.958 2.935 + 0.040 CC 1.405 1.406, 1.407 
CH-tilt  3.2 ° 5 ° towards Cr 1.424 1.424, 1.422 

CH 1.093 1.106, 1.1t3, 1.109 
Cr(CO) 6 ¢ CrCO angle 179.8 ° 177.9 °, 178.5 ° 

CrC 1.917 1.918 CCrCearbony I 87.2 ° 89.14, 86.37 
CO 1.154 1.141 CCC 120.0 ° 120.07 °, 119.8 °, 

120.13 ° 
CCH 120.1 ° 119.72 ° 

a Bz2C r gas phase electron diffraction, uncorrected r~ values. [68] b Neutron diffraction solid state 
data. [48] ~ Neutron diffraction solid state data. [66] 

length is substantially longer according to both gas phase experiments: 1.86 ,~ 
[46] and 1.863 ~, [47], which compare well with the calculated 1.864/~ value. 
The calculated C-O distances are too large compared to the solid state values 
for both BzCr(CO)3 and Cr(CO)6, while the CrC distance of Cr(CO)6 is well 
reproduced. In both Bz2Cr and BzCr(CO)3, the benzene ring maintains the 
planarity of the carbon framework, and all of the hydrogen atoms are tilted 
equally towards the metal by 3.2 and 2.6 degrees, respectively. The direction of 
the hydrogen tilt is in qualitative agreement with empirical observations. All CC 
bonds in Bz2Cr are of the same length, while short and long CC bonds alternate 
in BzCr(CO)3. 

4.2 Vibrational Frequencies and Revised Assignments 

The comparison between experimental frequencies and our calculated values is 
the only direct way in which we can obtain information about the accuracy of 
the computational method. Also, the unusually large deviations between cal- 
culated and observed frequencies for some vibrational modes suggest uncertain- 
ties in the empirical assignments. We begin our discussion with ferrocene. 

The theoretical and experimental frequencies of ferrocene are given in 
Table 10. Our calculated frequencies, obtained by the LDA method, show good 
agreement with the experimental fundamental frequencies. The previously ac- 
cepted assignments were reported by Bodenheimer and Low [49], who con- 
firmed the main features of the original controversial assignments by Lippincott 
and Nelson [50]. Our frequency calculations have further substantiated the 
main features of these frequency assignments. The assignment of the ring 
vibrations is based on the near coincidence of the infrared and Raman bands. 
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This coincidence is explained by the weakness of the interaction between the two 
ring vibrations, as well as by the in-phase and out-of-phase combinations being 
mutually exclusive in the Raman and in the infrared spectrum. 

We have modified the original empirical assignments for the E~ and 
E~ symmetry blocks listed in Table 10, since the CH-wagging and the planar 
ring distortion frequencies deviate by 100-200 cm -1 from the experimental 
frequencies that were based on the original assignments. We have left out the 
experimental 1191 and 1189cm -1 frequencies from the fundamentals, and 
re-assigned the empirical v25, v27 and v31, v33 frequencies accordingly. Based on 
the available theoretical and empirical data, we assign the 1058, and 897 cm- 1 

frequencies to v24 and v25, calculated to be 1014 and 838 cm-1, respectively. 
Similarly, in the E~ symmetry block, the experimental frequencies of 1055 and 
885cm -~ correspond to V3o and v3~: 1025 and 845cm -~, based on LDA 
calculations. Margl et al. reported vibrational frequencies and assignments very 
similar to ours, based on first-principle molecular dynamics calculations [51]. 

Table I0. Calculated harmonic and observed fundamental frequencies (and inten- 
sities) ~ of ferrocene. 

Sym. and LDA Exp5 Sym. and LDA Exp5 
no. b no. 

A~ 1 3161 3110 E( 17 3155 (8) 3077 
3 1086 1102 18, 20 1371 (5) 1410 
2 791 814 20,18 978 (27) 1005 
4 305 309 19 808 (7) 855 

21, [22] 489 (23) 492 
A~ 5 1209 1255 22, [21] 163 (1) t79 

6 44 44 
E2' 23 3138 3100 

A~ 7 1210 1250 26,[24] 1318 1356 
24, [26] 1014 1058 d 

A~ 8 3162(15) 3103 25, [27] 838 897 d 
10 1088 (10) 1110 27, [25] 790 d 
9 777 02) 820 28,[25] 562 597 

11 458 (34) 478 
E~ 29 3139 3085 

E~ 12 3153 3086 32 [3~ 33] 1337 1351 
13, 15 1370 1410 30 [32] 1025 1055 d 
15,13 966 998 31 [33, 34] 845 885 d 
14 770 844 33,[31] 814 d 
16 362 389 34,[31] 560 569 

"Frequencies in cm-  ~, infrared absortivities in parentheses, in km/mol, b Our mode 
description is based on potential energy distribution over symmetry coordinates. We 
have indicated significant minor contributions in square brackets. In some cases two 
coordinates contribute almost equally to the normal modes; accordingly, two num- 
bers are indicated for these modes. ¢ [49] The experimental frequencies were obtained 
from solid state measurements; therefore the lower frequency values are to be re- 
garded as only approximate, a Revised assignments, see text. The 1191 (Eh) and 1189 
(E~)cm- ~ observed frequencies are not assigned to fundamentals. 
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Considering the two modes whose empirically assigned frequencies were left 
out of Table 10, a similar CsH 5- frequency was accurately predicted by our 
calculations at 1012 cm- 1, and observed at 1020 cm- 1. Also, a frequency shift of 
170 cm-1, as suggested by the empirical assignments, is not likely for planar 
vibrations, especially not in the e2 symmetries, which do not involve skeletal 
vibrations. Further, the revised assignment significantly reduces the deviation of 
the calculated CH-deformation frequencies, making them comparable with the 
deviations of served in other symmetries. 

All of the frequencies calculated by the LDA method for the non-degenerate 
modes agree well with the experimental results. Also, the calculated frequencies 
are systematically smaller than the experimental values. It is particularly re- 
markable that all of the skeletal vibrational frequencies have been accurately 
reproduced, with an average deviation of 15 cm-1. The deviation of the cal- 
culated frequencies from the experimental ones is somewhat larger than that for 
benzene. This increased deviation can be attributed to a number of factors; one 
of them being uncertainties in the frequencies determined by experiment. Differ- 
ent studies report frequencies for ferrocene that vary by as much as 40 cm- 1 for 
some normal modes [43c]. Further, for benzene, anharmonic corrections for 
most frequencies were also taken into account for the experimental frequencies. 
Some uncertainty is associated with the fact that several frequencies are active in 
solid state only where the site symmetry is reduced. The lower site symmetry is 
the result of a somewhat distorted geometry, caused by intermolecular interac- 
tions: the rings are staggered by about 10L Accordingly, these normal frequen- 
cies are somewhat different from the frequencies of Dsh symmetry which retains 
ferrocene. 

We continue with the comparison of the empirical and theoretical frequen- 
cies of the benzene complexes. The infrared spectra of BzzCr was first reported 
by Snyder in 1959 [52]. The Raman spectrum BzzCr was reported by Sch/ifer 
et al. [53], and Cyvin and co-workers published a corresponding harmonic force 
field [54]. This paper presented the latest frequency assignments for BzzCr, and 
is therefore our starting point for the discussion of the frequency assignments 
shown in Table 11. 

For Bz2Cr, the Alg, Elg, and Ezg symmetry vibrations are Raman active, 
while the A2u and Elu symmetry vibrations are active in the infrared absorption 
spectrum. These selection rules hold only for the vapour phase and solution 
spectra, whereas, all gerade vibrations are Raman active and all ungerade 
vibrations are infrared active, in the solid state, due to the lower site symmetry in 
the crystal. The vibrations that are only active in the solid state are expected to 
be weak in intensity. The assignments of the CH-stretching frequencies is very 
uncertain, the observed values ranging from 2900 to 3050 cm-1, while the 
highest and lowest calculated frequencies are only 20 cm-1 apart. A similar 
anomaly is present for the frequencies of the CD vibrations of perdeuterated 
BzzCr. These vibrations range from 2122 to 2278 cm -1, while the calculated 
numbers range from 2264 to 2292 cm- 1. This observation can only be explained 
by anharmonic effects. We have modified the assignments of twelve frequencies 
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Tab le  11. C a l c u l a t e d  h a r m o n i c  a n d  obse rved  f u n d a m e n t a l  f requencies  ~ of  
d i - b e n z e n e - c h r o m i u m  

Bz2-h 12Cr Bzz-d 12 C r  
L D A / g e o / N L  exp  L D A / g e o / N L  exp  

A I g 259.4 277 b 241.6 
762. I 791 b 579.8 566 c 
958.3 970 ~ 912.0 920 ~ 

3088.7 3053 b 2291.9 2267 ~ 
A2g 1288.5 1001.9 1021 c 
B l g 1106~9 783.8 

1389.3 1308 ¢ 1387.9 
B2g 601,1 534.8 

874,1 698.8 
974.4 929.0 955 c 

3069,0 2264,4 2125 ~ 
E 1B 329.4 335 b 303.4 

805.9 811 b 627.2 
981.8 999 b 773.1 802 ¢ 

1397,5 I430  b 1251.3 1282 ~ 
3086.5 2282.8 2212 ~ 

A z u 454.6  456" 409.4 408 a, 421 a 
760.1 794 ¢ 614.3 
957.2 971 ~ 912,6 929" 

3087,7 3047 ~ 2290.7 2315" 
B2,  1111.4 1115 ~, 1142 ¢ 786.5 826~? 

1394,3 1393.8 
E2g 429.4  409 ~, 400  b 385.1 

610.6  604  b 578.6 566 ~ 
869.6 910  b 689.5 699 ~ 

1110.4 1143 b 812.6 835 c 
1484.2 1508 b 1444.4 
3075,7 2269.1 2212 ¢ 

A1o 45.6 41,5 
1287.5 1294 ~ 100 t.  1 

B l .  595.8 534.1 
864.8 868 ~ 851" 686.8 
983.9 1014" 936.6 

3068.7 2265.8 2260 ~ 
Ex~ 140.7 171~? 128.9 

490.0 490  ~ 480.1 481" ,479 ~ 
828,7 836" 642.2 669" ,664  ~ 
985.6  999 ¢ 780,1 802 ~ 

1394.9 1426 ~ 1248.0 1271 ~ 
3086.1 3047" 2281.7 2278 ~ 

E2u 363.9 338.1 
595.1 554.5 
805.6 629.9 

1095.7 1115" 803.5 
1438.1 1391.7 
3076.2 2267.0 

1Frequenc ies  in cm 1 • [ 52 ]  b [53 ]  Solid s ta te  d a t a ,  w a v e n u m b e r s  shou ld  
be  cons ide r ed  as a p p r o x i m a t e .  ~ [54 ]  
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of BzzCr and its deuterated analogue. In the following, we discuss the assign- 
ments of the Bz2Cr frequencies, refering to the frequencies of the non-deuterated 
molecule unless otherwise indicated. 

The assignments of the 811 cm-1 Raman line in the E1g symmetry species is 
labelled uncertain in the empirical assignments; this assignment is confirmed by 
the calculation. In the E2g representation, the observed band at 1508 cm- 1 was 
originally not assigned to any fundamental vibration, while the 1631 cm- 1 band 
was assigned to it instead. Our calculation could not confirm this assignment or 
the assignment of the corresponding vibration of the deuterated molecule. Since 
not all the observed Raman bands are listed in the literature for the deuterated 
molecule, we could not find any alternative for this molecule. The frequency 
observed at 152 cm- 1 is not likely to be the empirical value for the internal ring 
rotation in A lu symmetry. Our calculations have reproduced a similar frequency 
for ferrocene very well-(both the observed and calculated values being 
44 cm- 1); therefore we do not believe that the empirical assignment is correct. 
The similarities between the ring-ring interactions of Bz2Cr and ferrocene 
suggests that this frequency should be closer to the ferrocene value. The 
similarity between the ring interactions of Bz2Cr and ferrocene is not only 
confirmed by this study but is also indicated by the observed spectrum. The 
observed 152 cm -1 band might be the second overtone of the internal ring 
rotation frequency. This is also allowed by the symmetry rules, since Alu x 
A~ x A l u = A 1~; and the calculated harmonic frequency of the second overtone 
would be 136.8 cm- 1. The difference between the theoretical estimate and the 
observed frequency could be explained by the large anharmonicity of this mode. 
In the same A~ symmetry no observed frequency had originally been assigned 
to the in-plane CH-bending vibration, whereas the calculation suggests that the 
band observed at 1294cm -1 should be selected. The observed 456 and 
490 cm- 1 frequencies are interchanged between A2~ and Elu, compared to the 
original assignments. There is an unusually large difference between the ob- 
served and calculated frequency for the big CC-stretching frequency. This 
frequency is related to the benzene b2u CC-stretching vibration, which is recog- 
nized to be a pathological case for quantum mechanical calculations of vibra- 
tional frequencies. This example demonstrates that, despite the generally good 
agreement between the LDA-calculated and observed frequencies, we have to 
exercise caution not to assign bands purely on the basis of matching frequencies. 

The vibrational frequencies of Bzfr(CO)3 have been recorded by several 
groups. As opposed to the Bz2Cr spectra that were recorded on older instru- 
ments, English, Plowman and Butler recorded the observed spectra with a high- 
resolution instrument, using solution and solid state samples [55-]. These 
authors were mainly interested in the CO region of the spectrum, therefore not 
all regions of the spectrum is listed are their publication. In our frequency 
assignments we use as many of the frequencies reported by English et al. as 
possible. For frequencies that were not reported by English et al., we refer to 
studies by Adams et al. [56], Bisby et al. [57] and Sch~ifer et al. [58]. 
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An important outcome of our frequency assignment is the confirmation of all 
of the frequency identifications made by English et aL in the CO region [55]. In 
our assignments, the parallel and perpendicular CrCO-bendings are systemati- 
cally interchanged with respect to those of English et al.; this might be attributed 
to differences in notation. In our assignments, a CrCO bend is considered 
parallel if it is in the symmetry plane of the molecule. 

Also, our normal coordinate analysis revealed that the Cr-CO-, ring-Cr-C- 
and the C-Cr-C-bending coordinates are strongly coupled in E symmetry. In 
A 1 symmetry, the C-Cr-C umbrella opening mode is coupled with the Cr-C-O 
parallel bend. For details of the assignments the reader is referred to Table 12, in 
which we also included mode descriptions based on the criterion of potential 
energy distribution. The frequency related to the Bzu C-C stretching vibration is 
overestimated, as it is for free benzene and for Bz2Cr. 

The observed frequencies at 45 or 46 wavenumbers in the solid state deserves 
special attention. This frequency has previously been neither assigned to any 
fundamental vibrations nor explained. In line with our calculation, we suggest 
that this vibration is the overtone of the internal rotation frequency. This 
explanation is also consistent with the symmetry rules, as the first overtone of a2 
is a~. Our experience shows that the calculation usually reproduces these low 
frequency vibrations fairly accurately. 

The geometry, force field, and harmonic frequencies of Cr(CO)6 calculated 
by density functional methods have been reported previously [8, 25, 58]. The 
frequencies calculated with our current procedure are listed in Table 13, along 
with the experimental data. All CO-stretching frequencies are systematically 
underestimated by about 50 cm- 1. This error is clearly related to the too-long 
CO distance of the reference geometry. If we could improve the reference 
geometry, the fit of the calculated CO frequencies to experiment would be better. 
The only other noticeable deviation is that of theft, Cr-C-O bending frequency, 
calculated to be 687 cm- 1 while observed at 668 cm- ~; this error may be related 
to the anharmonic contribution to the frequency. When these frequencies are 
not included the average deviation is only 2.46 cm - ~, which is in the range of the 
anharmonicity of these vibrations. Even the overall average deviation of 
12 cm- ~ is excellent agreement. This exceptionally good agreement between the 
observed and predicted frequencies is a further indication that the method 
combining the LDA/NL reference geometry with the LDA force field is the most 
accurate approach to the calculation of the vibrational frequencies of transition 
metal systems. 

4.3 Comparison of Force Fields 

In this section, we discuss the differences and similarities between the force fields 
of the free Cp- ring, ferrocene and LiCp, as well as between that of benzene, 
Bz2Cr and BzCr(CO)3. The corresponding force constants are listed in Table 14 
and 15, respectively. We also compare our force constants with the empirically 
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determined force constants, to the extent they are available. Here, we discuss the 
force constants in the valence coordinate representation, which is more appro- 
priate for chemical interpretations of interactions; they will primarily be used in 
the present section, where we study the relation between chemical bonding and 
force constants. We use standard notation in most cases: R stands for CC 
stretche, r for CH-stretche,/~ for CH in-plane deformations, ~, for CH out-of- 
plane deformations. We also use s for CO- and u for metal-carbon stretching 
coordinates. The numbered internal coordinates are linear combinations of 
skeletal coordinates, they are explained in the text and listed in the original 
reference [10c, 10d, 59]. The internal coordinates for the benzene complexes are 
shown on Figs. 4a-b, and 5a-b, as examples. 

Cp complexes. In comparing the ring force constants between Cp2Fe, CpLi 
and Cp- we start with the CC-stretch. The numerical values for the diagonal 
CC-stretching force constant of Cp2Fe, CpLi and Cp-  are calculated to be 
between the force constant of benzene and the C2-C3 constant of butadiene. The 
CC-bond strength and-force constant increase in the following order: butadiene 
[60] (5.092 mdyn/~,), ferrocene (5.542 mdyn/~,), LiCsH5 (5.758 mdyn/A), C5H5- 
(5.857 mdyn/A), and benzene 1-10c, 10d] (6.619 mdyn/A). This trend also follows 
increasing bond order, as well as decreasing bond length. The lengthening of the 
CC bond in ferrocene, compared to C5H5-, is the consequence of orbital 
interactions between the metal and the rings. Both the back-donation of metal 
d-electrons into the n* orbitals of the Cp-ring and the donation of n-electrons 
into the unoccupied d-orbitals on the metal decreases the CC bond order and, 
consequently, the CC bond strength and stretching force constant. Similar 
interactions are not possible between Li and the ring, since there is no d-orbital 
in the valence shell of Li. Therefore, the CC bond length in LiCp changes by only 
0.003 ~, compared to CsH~, while for ferrocene the elongation is .014 ~,. Also, 
the CC stretching constant of LiCsH5 is closer to that of C ;  than to that of 
ferrocene. 

Except for those constants that are zero by symmetry for the planar ring, all 
CC coupling constants in LiCp and Cp- are similar in magnitude and sign, and 
differ in many cases from those of Cp2Fe. Thus, the interaction constant in 
ferrocene between the CC stretch and the in-plane ring deformation (R3q41) is 
significantly smaller than corresponding constant of the free Cp- ring, as 
a consequence of lowered CC-bond strength. The R3q49 constant, that repres- 
ents the CC interaction with the metal-ring stretch, is almost an order of 
magnitude larger for ferrocene than for LiCp. The positive sign of this interac- 
tion constant indicates that a stretch of the metal-ligand distance strengthens 
the CC bond as donation and back-donation is reduced. Such a strong effect is 
not present in LiCp, which is kept together mainly by electrostatic interactions. 
Ferrocene also exhibits a strong coupling between the CC stretch and the Cp 
ring tilt through R3q56. This is understandable, since ring-tilt influences the 
degree of donation and back-donation, and thus the CC stretch. 

The CH-bond length, bond strength, and -stretching constant exhibit the 
opposite trend to that found for the CC bonds. In the series CsH~-, LiCsHs, and 
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Table 13. Calculated harmonic and observed fun- 
damental frequencies of chromium-hexacarbonyl. 

CrtCO) 6 
LDA/geo/NL exp ~ 

Alg 2087.9 2139.2 
384.9 379.2 

E 1998.3 2045.2 
393.5 390.6 

FI~ 359.6 364.1 
Flu t977.9 2043.7 

687.4 668.1 
449.7 440.5 
943 97,2 

Fz~ 534A 532.1 
89,1 89,7 

F2u 511,5 510.9 
66.3 67,9 

, [693 

Table 14, Selected valence force constants of ferrocene, C5Hs, LiCsHs. 

ferrocene CsH~ LiCsH 5 description 

R2/2 5.5418 5.8567 5.7577 CC stretch 
R1/R2 0.4877 0.4558 0,4646 
RIR6 0.0746 
R~fll 0.1096 0.1084 0.1160 
Rift3 0.0111 0.0097 0.0084 
R3q41 0.3286 0.4547 0.4459 
R3q49 0.3334 0.0468 
R3q56 -0.2781 -0.0957 
r2/2 5.4148 5.2415 5.3730 
r171 0.0719 0.0221 
rLq41 -~1076  --0.1736 -0.1390 
fl2/2 0.3999 0.3921 0.4035 
fllfl2 0,0084 0.0126 0.0094 
fllfl3 --0.0095 --0.0107 --0.0111 
fllq42 --0.0576 --0.0670 --0.0687 
72/2 0.4038 0.2876 0.3431 
7~72 -E0215  -0,0445 -0.0320 
~173 0,0122 0,0309 0,0288 
~1q44 -- 0.2158 -- 0.2063 -- 0,2296 
~tq49 0.0360 - 0.0166 
qa12/2 1.5590 1.5820 1.6187 
q41q4~ 0.0375 
q442/2 0.5124 0,5835 0.5898 
q~92/2 3.2430 1.0838 
q49q5o 05213 
q512/2 0.3101 
qslq56 -- 0.0447 
q532/2 0,0031 
qs42/2 1.3543 0.4792 
qs4qs5 --0.0796 

CH stretch 

CH planar def. 

CH out-of-plane def. 

ring planar def. 

ring out-of-plane def 
Cp-Fe stretch (49-50) 

Cp-Fe-Cp bend {51-52) 

ring internal rotation 
ring tilt (54-57) 

~Coordinates defined in [59]. Units are mdyn/A, mdyn A/rad and mdyn/rad for 
stretches, stretch-bend and bends, respectively. 
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ferrocene, the CH-bond lengths decrease as 1.096, 1.092, 1.091 A, respectively, 
while the corresponding force constants increase to 5.242, 5.372 and 5.425 
mdyn/~,, respectively. This trend is also a consequence of the metal-ligand 
interaction. Thus, as the CC bond order and length decreases, the orbitals 
describing the adjacent CH bonds gain more s character from carbon, increasing 
the CH bond strength. The CH stretching force constants in the Cp-systems are 
comparable to or slightly larger than that in ethylene, calculated to be 5.249 
mdyn//~, by our LDA calculations. 

The coupling constants between CH stretches and other coordinates are 
very small, except for r171 and rlq41. The r~7~ interaction constant is zero in 
Cp- by symmetry, and takes on a positive value in ferrocene and LiCp. The 
Qq4~ coupling constant is the only off-diagonal force constant of significance in 
Cp-.  Its absolute value is reduced somewhat in LiCp and even more in Cp2Fe. 

The in-plane ring-deformation constants (q21/2), the out-of-plane ring-defor- 
mation constants (q24/2), the in-plane CH-deformation constants (fl2/2) as well 
as the coupling constants involving q41, q44 and fl, are not significantly different 
in the three systems. Also, off-diagonal force constant that vanish by symmetry 
in Cp-  are insignificant in LiCp and Cp2Fe. 

The value of the diagonal ), force constant, representing the out-of-plane CH 
deformation, is almost 50% larger in ferrocene than in the free ring. This is the 
coordinate for which the corresponding diagonal force constants show the 
largest percentage difference between the free Cp-ring and ferrocene. A reason 
for the increased CH-wagging force constant can be found, if one considers the 
interaction between the hydrogen ls orbital and the n* orbital at the distorted 
position. In ferrocene, the energy of the re* orbital is substantially increased, 
compared to the free Cp- ring. Therefore, this stabilizing interaction is less 
noticeable in Cp2Fe than in the free Cp-  ring. The lack of stabilization increases 
the force constants of ferrocene. The value of the diagonal "f force constant for 
LiCp is also somewhat larger than that of Cp-.  

Most coupling constants between ring coordinates on two different rings in 
ferrocene are small. Significant coupling effects are seen only between the planar 
ring distortions q41q45. 

Comparing the skeletal force constants for LiCp and ferrocene, it is apparent 
that both the metal-Cp stretching and the tilting force constants are about three 
times as large for ferrocene. This is the consequence of the different electronic 
structure of the two compounds, the five covalent Fe-C bonds being stronger 
than the mainly electrostatic Li ÷ Cp-  interaction. Further, for ferrocene, there is 
strong coupling between the two FeCp stretches. Also, the tilting coordinates 
show appreciable interactions with the tilting of the other ring, and with the 
skeletal bendings. The positive sign of the interaction constant between the two 
skeletal stretches indicates that the stretching of one metal-ring bond allows 
increased orbital interaction between the metal and the other ring. 

We have also compared our data with the experimentally determined force 
constants. Since the only reported ferrocene force field is based on treating the 
C sH 5 rings as separate entities, a direct comparison is not possible. The normal 
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coordinate analysis of the entire ferrocene complex was reported by Brunvoll, 
Cyvin, and Schafer [61]. These authors, however, did not list their refined force 
constants, but only the result obtained by using the force field of CsHi .  
Therefore, we compared their CH- and CC-stretching force constants for the free 
Cp ring with our calculated data. The calculated diagonal constants compare 
well with the empirical data, especially the CC-stretching constants, that is 5.565 
and 5.857 mdyn/A, based on experiment and our calculations, respectively. The 
CH-stretching constant is 5.242 mdyn/A by our calculations and 5.102 mdyn/~, 
from experiment. The difference is related to the too-short CH-bond length at 
the calculated reference geometry as well as the effect of anharmonicity. The 
empirical interaction constants do not compare well with the calculated values. 
Based on our calculation, the RxR3 force constant ( - .020 mdyn/A) should be 
smaller by an order of magnitude than the R1R2 coupling constant (0A64). In 
the experimental result, the R1R 3 term is about 20% larger in absolute magni- 
tude, and of opposite sign ( -0.365 mdyn/A), compared to the R1R2 coupling 
constant (0.292 mdyn/A). The CH-stretching interaction constants are not in 
agreement with our calculated data. The empirical rlr2 and the rlrs interaction 
constants are - 0.066 and 0.037 mdyn/A, while they are 0.018 and 0.004 based 
on our calculations. Previous experience with force field calculations shows that 
the signs and magnitudes of the calculated LDA force constants resemble the 
physical values [10c, 10d]. Therefore, this comparison also shows that it is very 
difficult to determine reliable force constants empirically for medium size mol- 
ecules. 

Hartley and Ware have determined the metal-Cp stretching constants of 
ferrocene, empirically from solid state frequencies [62]. These values are in good 
agreement with our calculated data. The empirically diagonal and interaction 
force constants are 3.15 and 0.56 mdyn/&, respectively, while they are 3.243 and 
0.521 mdyn/A according to LDA calculations. 

Benzene complexes. We continue with the comparison of the empirical and 
calculated force constants of BzCr(CO)3 and Bz2Cr. We are also interested in 
comparing the analogous force constants of benzene, BzzCr, BzCr(CO)3, and 
Cr(CO)6. Such a comparison should help to assess the degree to which force 
constants can be transferred between different transition metal complexes. The 
question of transferability is of crucial importance for the development of 
molecular mechanics and dynamics force fields applicable to transition metal 
complexes. We shall also provide an analysis of the changes upon complexation 
in the benzene and CO force constants based on qualitative orbital theory. 
Attention will finally be given to the coupling force constants betwen the ligand 
coordinates and the skeletal coordinats, as well as between the CO and benzene 
force constants in BzCr(CO)3. 

The internal coordinates were selected so as to make it physically meaningful 
to compare force constants of different molecules. For the free and the coor- 
dinated benzene ring, the internal coordinates selected were based on sugges- 
tions by Pulay et al. [10b, 13c]. The C-Cr-C bending coordinates of Cr(CO)6 
were chosen in a way that allowed analogous definitions in the case of 
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r4 

r5 

R3 R2 

r 6 
/ 

[6 

Rl 

a Internal coordinates for benzene 

x 

11 12 a', 

R ~ r  1 

r3 ~ r 2  

b The internal coordinates of Cr(Bz)2 

Fig. 4a, b. 

BzCr(CO)3. The skeletal internal coordinates, e.g. ligand-metal stretching, 
ligand tilting, etc., are based on our previous recommendations [59]. The 
significant force constants of benzene, Bz2Cr, BzCr(CO)3 and Cr(CO)6 are 
compared in Tables 15-17. 

The empirical information about the force constants is very limited for both 
Bz2Cr and BzCr(CO)3. We have to emphasize that for the direct comparison of 
force constants one has to use the same internal coordinate systems. (See Section 
2.2.) A study by English et al., using accurate frequency assignments provides the 
most thorough normal coordinate analysis for BzCr(CO)a. This study serves as 
our reference for the comparison of empirical and calculated potential constants 
[55]. Prior to this study, the reported CO- and CrC-stretching force constants 
for BzCr(CO)3 obtained by different authors had ranged from 13.55 to 
14.64 mdyn/~ and from 1.6 to 3.88 mdyn//~, respectively. This wide range of 
values is the consequence of the different approximations used in the normal- 
coordinate analysis. 

Although, English et al. used compliance constants for the normal coordi- 
nate analysis, the compliance field was finally inverted to the more familiar force 
constant representation. Since the internal coordinate system used here is 
fundamentally different from that of English et al., the comparison of force 
constants, although informative, can only be qualitative. The empirical CO- 
stretching and CO-CO-stretching coupling constants, 15.41 and 0.3, respective- 
ly, compare well with the calculated values of 15.09 and 0.23. The difference in 
the diagonal constants is related to the somewhat too long CO-bond lengths of 
our reference geometry. 
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gr 
a lntemal coordinates tbr BzCr(CO)3 

Fig. 5a, b. 

RD [ '~D2 

4 

b Internal coordinates for BzCr(CO)3 

The calculated CrC-stretching constants are expected to be very accurate 
since the related frequencies are reproduced well for both BzCr(CO)3 and 
Cr(CO!6. We calculate the diagonal CrC-stretching force constants to be 2.729 
mdyn/A, while it is 2.4 mdyn/A according to the experiment. The coupling 
constants between two CrC stretches are - 0.031 and 0.285 according to theory 
and experiment, respectively. The differences between the CrC stretching con- 
stants cannot be attributed solely to the different internal coordinate systems. 
We believe, rather, that the differences are related to the lack of information in 
the empirical determination of force constants; this could only be established by 
comparing the compliance constants, but those are not reported by English et al. 

The bending force constants are in general more seriously effected by the 
different definitions of internal coordinates, as is the case for the CrCO bending 
force constants. The perpendicular bending force constants are 0.813 and 0.484 
mdyn A/rad, according to experiment and theory, respectively. Further, the 
effect of several large coupling constants, neglected in the empirical study, was 
incorporated into the diagonal constants. For example, the coupling between 
the C-Cr-C bending and the Cr-C-O bending coordinates was neglected in the 
empirical study, although some of these constants can be as large in magnitude 
as half of the diagonal constants themselves. Such important coupling constants 
are the 7qq46 and the elq45 constants, listed in Table 16. 

The empirical data concerning the force constants for Bz2Cr is even more 
limited. Therefore, we do not make a quantitative comparison with the empiri- 
cal force constants of Bz2Cr. However, our data clearly support the qualitative 
observation by Snyder [52] who reported, that CC-stretching force constants of 
benzene change considerably upon coordination and the CH-out-of-plane con- 
stants are close to those of ferrocene. 
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We begin the comparison of similar force constants in different molecules 
with the benzene type force constants of free benzene, Bz2Cr, and BzCr(CO)a, 
listed in Table 15. The most remarkable difference in the stretching force 
constants is noted for the CC-diagonal and coupling force constants. The 
diagonal CC-stretching constant of Bz2Cr is 5.956 mdyn/~,, while the corres- 
ponding constant of benzene is 6.952 mdyn//~. The downward shift in the value 
of this stretching constant is related to the increased CC-bond length in Bz2Cr, 
compared to benzene itself. The interaction between the benzene ring and the 
metal is realized through electron donation from the metal to the n* orbitals of 
benzene and back-donation from the n orbitals of benzene to the unoccupied 
d orbitals of the metal. Both of these interactions decrease the CC-bond order 
and -bond strength, explaining why the bond length is increased and the force 

Table 15. B e n z e n e - l i k e  fo rce  c o n s t a n t s  ~ 

po t .  t e r m  B z 2 C r  b e n z e n e / L D A  B z C r ( C O h  B z C r ( C O ) 3  s y m m .  ineqv .  

r r /2  5 ,1994 5.210 5.3615 

r i r 2 (o )  0 .0024  0 .006  0 .0056  
r l  r3 (m)  --  0.0061 0 .002 --  0 .0029 

r : a ( p )  - -  0 .0016  0 .003 - 0 .0016  
r l R 1  0 .0837 0 .094 0 .0698 r l R  6 = 0 .0695  

r l R 2  - 0 .0108  - 0 .004  - 0 .0174  r l R  s = - 0.0131 
r I R 3  - 0 .0267 - 0 .016  - 0 .0176  r l R 4  = - 0 .0178  

r l f l2(o)  0 ,0052 0 .009 0.0081 r l f l6(o)  = - 0 .0077 
r l f l3 (m)  - 0 .0029  - 0 .008 - -  0 .0048 r i f f s ( m )  = 0 .0045 
r l q19  - 0 .0769 - 0 .113 - 0 .0737 
r l q 2 o ,  - 0 .0917  - 0 .103 - 0 .0728 

R 1 R I / 2  5.9558 6 .952 6.3061 R 2 R 2 / 2  = - 5 .7869 

R l R2(o)  0 .5324  0.651 0 .5468 
R 1 R 3 ( m )  - 0.0411 - 0.381 - 0.0861 
R 1R4(p) 0 ,0785 0 .307 0 .0738 

R 1 fi i  .1573 0 .162  0 .1696  R2f12 = 0 .1680  
Ri f t3  - 0 .0056  - 0 .018 - 0 .0069  R2f16 = - 0 .0078  

R i f t 4  0 .0104  0.021 0 .0137 R2f15 = 0 .0133  
R l q 2 o ,  0 .1242  0 .125 0.1081 Rzqzo~ = - 0 .2590  

(Rlq*0~2)  
tiff1~2 0.4723 0.491 0 .4854  
[1132(o) - 0 .0086  0 .008 0 .0065 

f l l f l3(m) 0 .0086  - 0 .011 - 0 .0100  

fl lf l4(P) - 0 .0031 - 0 .002 - 0 .0022 
fi2q2oa - 0 .0578 - 0 .067 - -  0 .0669 
q l o q i g / 2  1.2111 1.213 1.2489 
q z o a q 2 o J 2  1.2486 1.207 1.2342 
)' 1)' 2/2 0 .4217  0 .442  0 .4408 

2:1Y2(o) - 0 ,0340  - 0 .072  - -  0 .0513 
~:173(m) 0 .0069 0 .006  0 ,0048 
Y~'4(P) - 0 ,0113  - -  0 .022  - -  0 .0130  

Ylq2s - 0 .1357  - 0 .158 - 0 .1392  
~lq29a - -  0 .1782  --  0 .146  --  0 .1712 

yl~'6(o) = - 0 .0347 

~ C o o r d i n a t e s  d e f i n e d  in [59 ] .  U n i t s  a r e  m d y n / A ,  m d y n  ,~,/rad a n d  m d y n / r a d .  
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constant is decreased. A similar effect plays a role in the change of the CC-bond 
length and stretching force constants of BzCr(CO)3. However, in case of 
BzCr(CO)3, the picture is complicated by the presence of the three CO groups 
opposite to the ring. All CC bonds of the ring trans to the CO groups are shorter 
and stronger, while the others are longer and weaker. We note that the presence 
of the CO group significantly reduces the positive charge on the Cr atom. While 
the calculated charge of Cr in BzzCr is 1.7, it is only 0.95 in BzCr(CO)3. 

We also observed a significant decrease in the magnitude of the CC-stretch- 
ing coupling constants. The ortho and meta coupling constants of free benzne 
are large, as is characteristic of aromatic and conjugated systems. The signifi- 
cantly decreased coupling in the complexes is a result of the strong donation 
into the ring r~* orbitals. 

The remaining force constants for the planar vibrations of benzene are not 
significantly changed after complexation. However, the out-of-plane ring-defor- 
mation force constants change significantly. While the q2s diagonal force con- 
stant is decreased, the q29 force constant is increased. The q28 internal coordinate 
describes the motion that brings the planar ring into a chair conformation through 
alternating expansion and contraction of the carbon-chromium distance. 

During the study of ferrocene, we noticed a significant increase in the CH 
out-of-plane displacement force constant, compared to the free ring. This in- 
crease was explained by the lack of a stabilising interaction between the 
re* orbitals and the ls orbital of the hydrogen in ferrocene, due to the higher 
energy of the 7r* orbital in the complex. Since the z~* orbitals are of higher energy 
in the free benzene ring than in the free Cp- ring, relative to the CH-bonding 
orbitals, similar stabilizing interactions are not present either in the free benzene 
ring or in the complex. Therefore, we have not noted any change in the values of 
the CH-wagging force constants of benzene upon complexation. 

We continue our discussion with a comparison of the force constants of 
BzCr(CO)3, and Cr(CO)6, listed in Table 16. The CO diagonal stretching force 
constant is smaller for BzCr(CO)3, than for Cr(CO)6. At the same time, an 
opposite trend is apparent for the CrC-stretching constants. Both trends can be 
explained by stronger back-donation to the CO ligands in BzCr(CO)3, where 
only three strong r~-acceptors compete for electrons. The diagonal Cr-C-O- 
bending constants are increased somewhat in BzCr(CO)3, compared to 
Cr(CO)6. Even more pronounced differences are noted in the C-Cr-C bending 
constants. These trend can also be related to the stronger back-donation in 
BzCr(CO)3. 

The diagonal and off-diagonal skeletal force constants are listed in Table 17. 
The value of the ligand-metal stretching force constant of Bz2Cr is very close to 
that of ferrocene; they are 3.119 and 3.243 mdyn/A, respectively. The corres- 
ponding force constant for BzCr(CO)3 is significantly smaller, 2.298 mdyn/A. In 
both benzene complexes there is strong coupling between the CC stretch and the 
benzene-chromium stretch, and the coupling constant is positive. Upon the 
increase of the metal-ligand distance, the force on the CC bond acts to reduce 
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Table 16. Force constants for the CrCO internal coordinates in BzCr(CO)3 and 
Cr(CO)6 a 

pot. term BzCr(CO)3 Cr(CO)6 pot. term BzCr(CO)3 Cr(CO)6 

slsl/2 15.0934 16 .2166  nlnl/2 0.4740 0.4345 
sas2 ff2264 0.1801 nln2 0.0044 0.0049 
SlUl 0.7579 0.6566 nle2 -0.0031 0.0056 
slu2 -0.0606 -0,0603 nlq~3 0.1552 0.1706 
sin1 0.0205 0.000 ntq44 -0.0627 -0.0754 
sin2 ~0035 -~0026  nlq46 -0.1338 
slq43 0.0220 0.0044 nlqs0 -0.0257 
slq44 -0.0387 -0.0031 elei/2 0.4838 0.4345 
slq4s -0.1299 ele2 -0.0182 -0.0049 
slqso 0.0533 elq,5 -0.2286 0.1828 
ulul/2 2.7290 2.2361 elq47 ~0902 
ulu2 -0.0305 -0.0128 ~1q49 0.0040 
Ulnl --0.0515 0.0000 qa3q43/2 0.7289 0.9467 
Uln 2 0.0310 0.0194 q 4 3 q 4 s  --0.0770 
u : 2  -0.0213 0.0194 q44q44/2 1.0724 0.8059 
ulq44 0.0368 0.0005 q 4 4 q 4 6  -0.3644 
ulq46 -0.0264 q44qso 0.0195 
ulq4s 0.2106 q46qa6/2 0.9315 
ulqso -0.1484 q46qs0 0.0514 

aCoordinates defined in [59]. Units are mdyn/,~, mdyn A/rad and mdyn/rad for 
stretches, stretch-bend and bends, respectively. 

Table 17. Selected skeletal force constants a 

Bz2Cr BzCr(CO)3 b BzzCr BzCr(CO)3 

Riq6i 0.2711 0.2112 q28q69 
Rlq62 0.0028 q29~q64 
R2q64 02176 0 .1034  q61q61/2 3.1186 
R2q66 0.0127 q61q62 0.2816 
R2q68 0,0244 q63q63/2 1.2250 
qlgq69 0.0157 q63q65 -0,1524 
q2o,q64 0.0561 q63q67 -0.0409 
~lq61 0.0680 0 .0405  q67q67/2 0.2797 
~1q63 -0.0832 -0.0819 qogq69/2 0.0041 

- 0.0096 
- 0,0760 

2.2976 

1.0365 

0.001V 

aCoordinates defined in [59]. Units are mdyn/~,, mdyn ,~/rad and mdyn/rad for stretches, 
stretch-bend and bends, respectively, bThe internal coordinates are numbered according to the 
definition of Bz2Cr. CThe definition of internal rotation is different for Bz2Cr and BzCr(CO)3. 

the CC bond length, as a result of decreased electron donation from the metal to 
the n* orbitals of the benzene ring. 

The values of the force constants of Bz2Cr for ligand-metal-ligand bending-, 
ligand tilting-, and internal rotation are very close to those of ferrocene. The 
corresponding constants of BzCr(CO)3 are somewhat different, a feature that 
might also be related to (unavoidable) differences in the definitions of the 
internal coordinates. 
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The interaction force constants between the benzene ring and the Cr(CO)3 
fragment of the BzCr(CO)3 complex are listed in Table 18. In general, we note 
that there are many important coupling constants between these two fragments 
of the complex. The most important are the interaction constants between the 
CC-stretching constants and the CrC- and CO-stretching constants. The R1 CC 
stretch is strongly coupled with both the CrC (u2) and the CO (s2) bond 
stretching coordinates in the positions trans to the CC bond. The R2 CC stretch 
is coupled with CrC (u0 and CO (Sl) bond stretches, which are in a quasi- 
eclipsed position to the Rz CC bond. The couplings between the CC-stretching 
coordinate and the Bz-Cr-C bendings are also significant; for example, the 
Rlq46 and Rlq47 coupling constants. Also, the longer CC bonds (R2, R4, R6) are 
coupled with the C - C r - C  bending coordinates. This interaction is shown in the 
values of the R2q43 and R2q44 coupling constants. The planar and out-of-plane 
of the benzene deformations ring are also coupled with the Bz-Cr-C- and 
C-Cr-C- deformation coordinates. 

As the values in Table 18 indicate, the coupling between the benzene ring 
and the rest of the complex cannot simply be neglected, which was often the 
practice in the course of the normal-coordinate analysis of this compound, 
based on observed vibrational frequencies. As mentioned before, the normal- 
coordinate analysis from the reverse vibrational problem cannot provide all of 
the significant coupling constants of the harmonic force field; this is simply due 
to the paucity of experimental information. Quantum mechanical calculations 
are necessary to obtain information about the significant coupling constants. 

4.3.1 Transfer of force constants and kinematic coupling 

The vibrational frequencies of the free Cp ring and corresponding frequencies of 
ferrocene are remarkably different for some modes. Similar differences are seen 
between the frequencies of benzene and of the complexed benzenes. Differences 
in the frequencies can arise for two reasons. The most obvious reason is the 
differences in the force fields, but the same force field can produce different 
frequencies if the reduced masses are different, due to the different kinetic energy 
matrix. Brunovoll and co-workers realized that the reduced masses of benzene 
and that of the complexed benzene are significantly different, and this- accord- 
ing to Brunvoll and co-workers-is the main reason why the frequencies differ 
from those of benzene [63]. 

During the first normal-coordinate studies of ferrocene, the authors treated 
the Cp rings as separate entities; [50] therefore, the effect of the changing 
reduced mass was not introduced in this treatment. The revision of the nor- 
mal-coordinate analysis of ferrocene by Brunvoll and co-workers, based on the 
treatment of the ferrocene complex as a whole, has demonstrated that similar 
kinematic coupling effects play a significant role in the normal vibrational 
frequencies for ferrocene as well [43c]. This study also concluded that the 
differences between the frequencies of ferrocene and those of the free Cp- ring are 
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Tab le  18. C o u p l i n g  c o n s t a n t s  be tween  the  Bz r ing  a n d  C O  in BzCr(CO)6  ~ 

pot .  t e rm BzCr(CO)3 pot .  t e rm  BzCr(CO)3 pot .  t e r m  BzCr(CO)3  

r l s l  0.0031 R~q47 0 .0800 q2oq44 - 0 .0290 
r ls2  - 0 .0034 Rzsl  0 .0553 q2oq46 - 0 .0352 
r ls3  0.0011 R2s 2 - 0 .0119 y l s t  0.0023 
f lu1  0.0017 R2u l  - 0.0393 yis2 0.0025 
r lu2  - -  0.0011 Rzu2 0 .0t  36 71s3 - 0 .0222 
r lu3  0.0068 R2u 3 0.0136 y l u l  - 0 .0052 
r lq43  - 0 .0039 R2n l  - 0 .0147 ylu2 - 0 .0065 
r lq44  0,0023 Rzn2 - 0 ,0134 ~1u3 0.0115 
riq4~ 0 .0050 R : 2  0.0063 71n2 0 .0084 
r lq46  --  0.0031 R27t a --  0 .0134 Yle3 0 .0026 
r lq47  --  0.0041 Rze 3 - 0 .0063 71q43 0,0085 
R l s l  - 0 .0065 Rzq43 - 0 .0295 Ylq~a - 0 .0018 
Rls2  0 .0394 R2q4. 4 0.0754 Ylq45 0.0112 
Rls3  - 0 .0065 R2q46 0.0378 "Ylq46 - -  0 .0043 
Rlu~ 0.0138 Rzq48 0 . I938  )'1 q47 - 0 ,0130 
R l u 2  - 0 .0368 fllSS - 0 .0047 q2sel  - 0 .0016 
R l u s  0.0138 f l lua  0.0022 q28e2 - 0.0045 
R l n l  0 .0119 f l l ~ 3  0 .0028 q29aSl 0 .0125 
R 5 1  0 .0028 f l lq4s 0.0022 qz9aS2 --  0 .0062 
RItZ 2 --  0 .0159 fl lq46 - 0 .0055 q29~s3 --  0 .0062 
R : r a  0 .0119 f l lq4s  0.0035 q29aUl -- 0 .0215 
Rle3 --  0 ,0030 q19gt 0 .0147 q29au2 0 ,0107 
R lq43  0.0097 qEosl - -  0 .0019 q29au3 0.0107 
R1q44 0 .0010 q2o~S2 0.0010 q29~nl 0 .0082 
Rlq,*s 0 .0016 q2oul  - 0.0031 q29~q44 - 0 .0317 
Rlq,~6 - 0.0461 q2ou2 0.0016 q29aq46 0.0216 

a C o o r d i n a t e s  def ined  in [59] ,  Un i t s  a re  m d y n / A ,  m d y n  A / r a d  a n d  m d y n / r a d .  

mainly attributed to kinematic coupling effects, whereas the ring force constants 
are essentially identical for the two compounds. 

In order to test the effect of kinematic coupling, we calculated the harmonic 
frequencies of ferrocene, based on the valence force constants of the free Cp- 
ring but without coupling constants between the skeletal and ring coordinates. 
This calculation has confirmed that some frequencies change due to the mixing 
of skeletal and internal ring vibrations as a result of the kinematic effects. 
However, the change in the frequencies is significantly less in magnitude than in 
previous studies. The E~ CH wagging frequency shifts from 620 cm-1 to 669 
(E~) and 659 (E'~)cm-1, whereas Brunvoll et al. report a shift from 625 to 673 
(E~) and 859 (E~)cm- 1. According to our results, the A~ CH wagging frequency 
shifts from 629 cm- 1 to 641 (A'I) and 643 (A~)cm- l, as opposed to the shift from 
710 cm -~ to 941 (A'I) and 892 (A~)cm-1 reported previously. 

The differences between the results of this and previous studies underline the 
importance of a proper representation of the skeletal modes. On the basis of our 
normal-coordinate analysis with the complete force field, the contribution of the 
skeletal coordinates in those frequencies that exhibit shifts is not more than 5% 
in terms of the potential energy distribution. This contribution is far too small to 
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explain several frequency shifts of more than 200 cm-1. Also, the quantum 
mechanical data showed a 50% increase in the CH wagging force constant, 
underlining the fact that the shifts of the CH wagging frequencies are mainly 
due to the increased force constant rather than of skeletal-ring mode 
interactions. 

Our normal-coordinate analysis of Bz2Cr also reveals that there is no 
significant kinematic coupling between the skeletal and ring coordinates, and 
the frequency shifts of the benzene vibrations are related to changes in the force 
constants, and not to the kinematic coupling effect suggested by Brunvoll et at. 
[61]. Coupling between coordinates depends on the values of both the coupling 
force constants and the off-diagonal elements of the kinetic energy matrix. In 
our representation, the off-diagonal G-matrix elements between the ring-metal- 
stretch and the CC stretch are zero, while it can be as much as 20-30% of the 
diagonal elements, if metal-carbon bonds are used to represent the skeletal 
vibrations. This large coupling is related to the interdependence of the CC and 
metal-carbon bonds. It is likely, therefore, that the strong coupling between 
skeletal and ring vibrations reported by Brunvoll et al. are related to the 
artefacts of their internal coordinate representation. 

5 Conclusions 

This set of studies establishes a systematic computational procedure for calcu- 
lating the force constants and vibrational frequencies of transition metal com- 
plexes. We showed that accurate reference geometries are crucial for obtaining 
good results. The LDA/NL method provides geometries very close to experi- 
mental ones. These geometries can be used in the force field and frequency 
calculations, for which the LDA method is already quite accurate. Our study 
also points out that special attention should be given to the internal coordinate 
representation of the potential constants, when the force constants of complexed 
and free molecules are compared. We suggest physically meaningfull internal 
coordinates to represent the skeletal distortions. 

We have reproduced the vibrational frequencies of benzene, transition metal 
carbonyls and transition metal complexes of benzene and cyclopentadiene fairly 
accurately. Our calculations indicate some ambiguities in the original empirical 
frequency assignments for ferrocene and dibenzene-chromium, for which we 
suggest alternatives. Our calculations confirm the frequency assignments for 
BzCr(CO)~. 

The comparison of the force constants of the free aromatic rings with those 
of the complexes show substantial changes in the force fields upon complexa- 
tion. Major changes were seen in the force constants for out-of-plane distortions 
and CC-stretching coordinates. 
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This set of calculations represents a successful new area of application for 
density functional theory. These calculations provide the first complete force 
fields for ferrocene, dibenzene-chromium, and benzene-chromium-tricarbonyl. 
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The geometrical arrangement of the atoms is one of the most important properties of any material. 
In principle, it can be found from calculations of the total energy of the system, but accurate 
solutions of the Schrtdinger equation can be found for relatively few systems, and the density 
functional formalism combined with simulated annealing at finite temperatures - provides 
a method for both calculating energies and avoiding unfavourable minima in the energy surface. We 
outline some of the methods that can provide experimental spectroscopic information about the 
structures of atomic clusters, and we show how density functional calculations can aid, in particular, 
the analysis of photodetachment measurements and provide interesting and unexpected results. 

1 Introduction 

Atomic clusters have been the central topic of so many conferences [1], summer 
schools [2], and books [3] that it is becoming a clich6 to note their importance. 
"Clusters" mean different things to different people - in particular, the number of 
atoms comprising a "cluster" is a matter  of taste or convention but to many 
researchers they provide a fascinating area between the physics of atoms and 
small molecules, on the one hand, and bulk phases on the other. In previous 
articles, I have surveyed particular aspects of clusters, including their generation 
and spectroscopy [4] and some of their bonding trends [5]. In the present work, 
I shall focus on the spatial arrangement of the atoms and how theory can aid the 
interpretation of experimental data, particularly photoelectron detachment data 
from negative ions. 

The geometrical arrangement of the constituent a toms is one of the most 
important  properties of any material. This may be self-evident to chemists or 
molecular physicists, as the study of molecules and their interactions implies 
a knowledge of the atomic positions. It was certainly so for molecular biologists 
such as Francis Crick, who wrote: "If  you want to study function, study 
structure" [6]. It may be less obvious to those physicists who seek universal 
rules that apply to all systems. In emphasizing the geometrical structure and 
related properties, we address at the outset problems that are specific to 
individual systems, although structural trends can be quite fascinating. 

Clusters are generally considered to be aggregates of one or two elements, so 
that methods for determining structural information about molecules are obvi- 
ous candidates for the study of clusters. A long established and one of the most 
accurate methods - X-ray diffraction - can sometimes be used, and we shall give 
examples below. Structural information can often be found from the rotations 
and vibrations of molecules, and infrared and Raman spectroscopy have also 
been used for this purpose. The improvement in mass separation techniques in 
recent years has provided new possibilities for studying dusters and their ions. 
Cluster cations with many thousands of atoms can be detected, and high- 
resolution spectroscopy can be performed on cluster anions. The analysis of 
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these data often requires a thorough study of the energy surfaces for the duster 
and its ions, and one of the goals of the present paper is to discuss the role that 
density functional calculations can play. 

In principle, the stable geometric arrangements of atoms in any material - in 
the present case, neutral and charged molecules and dusters - can be found from 
calculations of the total energy E of the system of electrons and ions for a set of 
nuclear coordinates {Rl }. If the calculation is performed for all possible config- 
urations, the most stable structure is that with the lowest energy. There are two 
distinct problems associated with this procedure: the calculation of E for one 
geometry, and the determination of the most stable of the possible structures. 

It is natural to seek to determine the energy E from the exact wave function 
of the system, as we could then calculate not only the total energy 

E~s = (t/'l ~1 t / '> / (~  I ~>, (1) 

where ~ is the Hamiltonian describing the interactions in the system, but also 
many other properties of interest. In practice, however, the numerical effort 
required to calculate accurate energies increases rapidly as the number of 
electrons increases. Nevertheless, we shall see that such "ab initio" methods have 
made valuable contributions to the cluster studies. 

The second problem - the determination of the most stable structures 
amongst the many possible - is at least as difficult, since the number of 
geometrical configurations grows rapidly as the number of atoms N increases. 
Alternative schemes for finding low-energy structures are required in systems 
where the ground state is unknown or there are many local minima, and 
Kirkpatrick et al. [7] suggested "simulated annealing" at an elevated temper- 
ature as a possibility. The analogy to annealing techniques of experimentalists is 
immediate, since all methods for improving the perfection of a crystal rely on 
raising the temperature. The kinetic energy of the ions means that the system is 
less likely to become trapped in the high-lying minima of the energy surface, and 
slow cooling can result in energetically favourable structures. 

The density functional (DF) formalism [8], with a local spin density (LSD) 
approximation for the exchange-correlation energy, provides a tractable 
method for performing energy calculations with predictive value in a range of 
systems. Car and Parrinello [9] showed, moreover, that it could be combined 
with molecular dynamics (MD) - particularly with the simulated annealing 
strategy - to give a parameter-free method for calculating electronic properties 
that makes no assumptions about ground state geometries. The use of finite 
temperatures allows an efficient sampling of the potential energy surface, and 
the method has been invaluable in extending our knowledge of the structures of 
molecules and clusters, as well as liquids and amorphous materials. In the 
present chapter, I focus on the clusters of some main group elements (groups 13, 
15 and 16) and on the analysis of photoelectron spectra of these systems. 
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2 Determination of Cluster Geometries 

2.1 X-ray Diffraction 

The group 16 elements provide some of the best characterized atomic clusters. 
The elements S and Se, in particular, are unique in that many allotropes are 
molecular crystals comprising regular arrays of well-separated rings of two-fold 
coordinated atoms. X-ray structure analyses have been performed for S,, 
n = 6-8, 10-13, 18, 20 and Se,, n = 6, 8 [10, 11], and we show the structures of 
S, found in Fig. 1. There are five crystalline modifications of selenium: four 
comprise Se6 and Se8 rings, and trigonal Se consists of parallel helical chains 
1-10]. Mixed crystals of the form Se,Sm [12] and a range of sulphur oxides (S,O, 
n = 5-10; S~Oz, SlzO2) El3] and ions are also known. The preparation of these 
clusters has been reviewed by Steudel [11]. 

The presence of many molecules with well established structures provides an 
ideal test of any method of calculation, and this is one of the reasons that our 

Fig. 1. Structures determined by X-ray diffraction for sulphur clusters S., n = 6-8, 1013, 18, 20 
(after Steudel [72]) 

90 



Structure and Spectroscopy of Small Atomic Clusters 

first tests of the MD/DF method focused on group 16 clusters and molecules. 
Unfortunately, the possibility of preparing single crystals is largely restricted to 
the chain structures that arise in this main group. Although there are elements of 
other groups with a range of structural forms (boron and phosphorus are 
familiar examples), there are few for which the structure of clusters can be found 
from X-ray diffraction. It is then necessary to use other (perhaps less direct) 
spectroscopic methods. 

2.2 Vibrational Spectroscopy 

Ultraviolet, infrared and Raman spectroscopy have been used widely to study 
the modes of vibration - and therefore the structural properties - of molecules. 
These methods have provided invaluable information for many small clusters in 
the gas phase, particularly diatomic molecules [14]. There are also very precise 
data on some larger elemental clusters with symmetrical structures (an example 
is tetrahedral P4 [15]), and recent Raman spectroscopy measurements on Si, 
clusters (n = 4,6,7) [16] have confirmed the predictions of HF-based calcu- 
lations [I 7]. Nevertheless, the application to larger clusters in the gas phase has 
not been widespread to date. One reason has certainly been the difficulty in 
performing reliable calculations for comparison purposes. 

The high symmetry of some of the sulphur structures (Fig. 1) and the 
presence of a number of twofold degenerate vibrations mean that the infrared 
and Raman spectra are quite different, so that it is often possible to identify these 
species, even in mixtures with other molecules of this type in the gas and liquid 
phases [11]. The correlations found between the vibration frequencies and 
structural properties (e.g., the relationship in a ring structure between the length 
of a bond and the dihedral angle) have been very useful in making structural 
predictions in cases where X-ray diffraction data are presently unavailable. 

2.3 Photoelectron Spectroscopy 

The most stable structure of a particular cluster is often closely related to the 
structures of clusters of a similar number of atoms, and it is not surprising that 
the vibrational properties also show relatively smooth changes with changing 
cluster size. The difficulty of identifying individual clusters by their vibrations 
alone can be avoided if the clusters can be separated according to their masses, 
and recent advances in mass spectroscopic techniques have been very important 
for the study of cluster structures. Mass separation is, of course, usually per- 
formed on charged systems. 

Examples of work on positively charged clusters are provided by studies of 
sulphur [18] and phosphorus [19], where clusters could be identified up to 56 
and over 6000 atoms, respectively. The trends in the mass abundances may give 
some indication of the structures to be expected. Measurements of the ionization 
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energies of clusters (for the transition X, ~ X +), as in the case of P and As [20], 
can also provide useful information. Spectroscopy of neutral clusters obtained 
by photodetachment of mass-selected negative ions is also possible if the neutral 
clusters are subsequently photoionized. The transient ion signal provides in- 
formation about the motion of the atoms, particularly if the ionization processes 
result in a significant change in the geometry. This technique has been applied to 
small Ag clusters [21]. Photoelectron spectroscopy of negative ions is also 
a promising method for determining structural information about clusters and is 
the main focus of the work described here. 

The past t 0-15 years have seen significant improvements in the negative ion 
spectroscopy of molecules [22]. In Fig. 2 we give an example of the data that can 
be obtained and how it can be analyzed. A beam of negatively charged ions is 
produced (AI£ in the present example) and the excess electron is detached, for 
example by a laser pulse of known energy. If the kinetic energy of electron can be 
determined, so can its binding energy (BE). The problem for the theorist is 
illustrated on the right hand side of Fig. 1. The low-lying states of AI2 must be 
found, and the excitation energy to different states of At2 calculated. If the 
ionization process is very rapid, the possible final states will have the same 
geometry as that of the anion. Transitions between states for which the most 
stable geometries are very similar wilt evidently lead to sharper peaks in the 
measured spectrum than transitions between states where the optimum struc- 
tures are very different. 

In addition to these energy differences (vertical detachment energies, VDE), 
it is sometimes possible to resolve vibrational structure in the binding energies 
(an example can be seen in Fig. 1 for BE -,~ 3.2 eV). The measured vibration 
frequency can then be compared with calculated values corresponding to the 
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Fig. 2. Comparison of measured photoelectron spectrum for AI~- [63] with calculated energy 
differences for transitions between the ground state of AI~ and states of the neutral dimer [44] 
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final state of the transition (here the 5Z~- state of AIz). In principle, it should be 
possible to study the vibrational structure of low-lying states of both the anion 
and the neutral cluster, although this will depend on the resolution of the 
measurement. Fig. 1 shows the "interface" between theory and experiment in 
a diatomic molecule. In larger clusters, of course, the representation of the 
interatomic coordinates and the comparison between theory and experiment is 
much more complicated. 

There have been numerous photodetachment studies of small cluster anions, 
and we now give some examples. Noble metal clusters (Cu;,  Ag~-, Au~-, 
n = 1-10) have been studied by Ho et al. [23], who resolved vibrations in all 
three dimers. Studies of alkali metal cluster anions have included those of Na~- 
(n = 2-5), K,-(n = 2-19), Rb2-a, and Csz-3 [24,25]. Carbon cluster anions 
C~- have photoelectron spectra that are consistent with linear chains for n = 2-9 
and monocyclic rings for n = 10-29 [26]. Photoelectron spectra of Sb~- and Bi~- 
to n = 4 [27] show rich vibrational structure for the dimers, and the spectra of 
the larger clusters could be interpreted in terms of ab initio calculations. The 
threshold photodetachment (zero electron kinetic energy, ZEKE) spectrum of 
Si~- [28] shows a progression of well-resolved transitions between the ground 
state of the rhombic anion (D2h , 3B2g ) and vibrational levels of the first excited 
state of the neutral cluster (D2h, 2B3u). The measurements were consistent with 
ab initio predictions of Rohlfing and Raghavachari [29]. As noted by the 
authors of the experimental work [28], "the role of ab initio calculations in 
interpreting these spectra cannot be overemphasized. In the absence of experi- 
mental force constants for Si4, ab initio calculations are needed to perform any 
reasonable assignment of the observed vibrational progressions". 

The interpretation of the measured spectra is a challenge to the theoretician. 
This challenge has certainly been met in the case of clusters containing s-valence 
electrons (alkali metals, alkaline earths, and noble metals), and a detailed review 
has been given by Bonarir-Kouteck~ et al. [30]. These authors show, for 
example, that ab initio calculations for the ground states of Nai-5 and Na2-5 
and excited states of the anions reproduce in a quantitative fashion the meas- 
ured excitation energies and allow an assignment of the anion geometries. We 
shall show below that MD/DF calculations can provide similar information for 
main group elements with more complicated valence structures. 

3 Structures from Total Energy Calculations 

The energy of a system is given in terms of its exact wave function ~ by Eq. (1). If 
we seek instead a reliable estimate of the wave function, it is common to rely on 
the Rayleigh-Ritz principle: 

E' = (~1~1 ~ ) / ( ~  14~} > E~s, (2) 
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for an approximate solution ~, with the equality applying to the exact solution 
tp. In practice, this means that improvements in the wave function are reflected 
in the energy expression (2), with small decreases in E' implying a wave function 
that is approaching convergence. We now show how this variational principle is 
applied to molecules and clusters. 

3.1 Hartree-Fock and Related Methods 

One of the earliest approximations for 7 j is due to Hartree, who considered 
"independent" electrons moving in the field of the other electrons in the system. 
The variational wave function has the form of a product of single-particle 
functions, i.e., 

q ' ( r l ,  r~ . . . .  ) = ¢ ~ ( r l ) . . .  ~,(r.) (3) 

The variational principle then requires that each of the functions Oi(vl) satisfies 
a one-electron Schr6dinger equation of the form 

-- ~ + Vext + ~i ~ti(r) : ~i~li(r), (4) 

where I%xt is the potential due to the nuclei, and the Coulomb potential ~i is 
given by Poisson's equation and arises from the average field of the other 
electrons. The state of the system is then defined by the single particle functions 
~0i(r), the eigenvalues ei, and the occupancy of the "orbitals" so defined, The 
Hartree-Fock (HF) approximation, obtained by replacing the product by 
a single (Slater) determinantal function ("configuration"), leads to an additional 
non-local "exchange" term V~ v in the Schr6dinger equation: 

V~nV ~(r) =- S dr' V~e (r, r')O(r') , (5) 

but the same single-particle picture. HF energies are more accurate than those of 
Hartree calculations, and the approximation has been an indispensable bench- 
mark in molecular physics since its inception. 

In spite of the familiarity of Hartree-Fock calculations, it has long been 
known that the resulting total energies are inadequate for many purposes. An 
improved energy results if we take a linear combination of configurations, and 
this procedure for improving the many-particle wave function - "configuration 
interaction" (CI) - leads, in principle, to the exact wave function. We have noted 
that this allows the calculation of many properties of interest, but the numerical 
effort required increases dramatically with increasing electron number. Quan- 
tum Monte Carlo (QMC) methods offer an alternative and very reliable ap- 
proach to the determination of the wave function of the interacting system. With 
appropriate choices for the ionic pseudopotential and trial wave function, they 
have been applied recently to calculations for single geometries of Si, clusters up 
to n = 20 [31]. 
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3.2 Density Functional Formalism 

I shall focus here on the method that is the topic of this volume, the density 
functional (DF) formalism, which is also free of adjustable parameters and can 
lead to reliable predictions of structures and energy differences in a range of 
systems. The basic theorems are [32]: 

(1) Ground state (GS) properties of a system of electrons and ions in an 
external field l'~xt can be determined from the electron density n(r) alone. 

(2) The total energy E is such a functional of the density, and E In] satisfies 
the variational principle E[n] >_ E~s. The density for which the equality 
holds is the ground state density, nGs. 

The usual implementation of this scheme results from the observation of Kohn 
and Sham [33] that the minimization of E In] is simplified if we write (we adopt 
atomic units with e = h = m = 1): 

E[n] = To[n] + S drn(r)(Ve~t(r) + ½q~(r)) + Exc[n] , (6) 

where To is the kinetic energy that a system with density n would have in the 
absence of electron-electron interactions, ~0(r) is the Coulomb potential, and 
Ex, defines the exchange-correlation energy. The choice of kinetic energy term 
allows us to reduce the numerical problem to the solution of single-particle 
equations of Hartree-type, with an effective potential related to the functional 
derivative of E~. The most widely used approximation for E~ is the local spin 
density (LSD) approximation 

E~ s°  = ~ dr n(r) exc In T (r), n~ (r)],  (7) 

where e~¢ In T, n I ] is the exchange and correlation energy per particle of a homo- 
geneous, spin-polarized electron gas with spin-up and spin-down densities 
n ~ and n ~, respectively. 

3.3 MD/DF Calculations 

If we use the DF formalism (with the LSD approximation for the exchange- 
correlation energy) to describe the energy surfaces of the system in question, 
then the determination of the most stable structures must address two minimiz- 
ation problems. (i) The DF variational principle requires that - for each geo- 
metry - the density be varied to minimize the energy. (ii) The ions must be 
moved to minimize the energy. We may do both simultaneously by viewing E as 
a function of two interdependent sets of degrees of freedom: the single particle 
orbitals {~} that lead to the density, and the ionic coordinates {Rl} [9], 

l_Z z,z, 
+ Exc In(r)] + 2 ,  ~ s I Rt - Rs I" (8) 
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To minimize this function, we follow the trajectories of {tp~} and {Rt} given by 
the Lagrangian 

1 .~2 

+~Aii(!drOit~*-6,j) (9) 

and the corresponding equations of motion 

6E 
~ , ( r ,  t) - - -  + Y~ A,~O~(~, t), 

g~,* (r, t) , (10) 

MIRt = - VR, E. 

Here Mx are the ionic masses,/~ are fictitious "masses" associated with the 
electronic degrees of freedom, dots denote time derivatives, and the Lagrangian 
multipliers Aij are introduced to satisfy the orthonormality constraints on the 
¢~(r, t). From these orbitals and the resultant density n(r, t) = Y, I ~(r ,  t)I z we 
evaluate the total energy E, which acts as the classical potential energy in the 
Lagrangian (9). With an appropriate choice of #~, the (artificial) Newton's 
dynamics for the electronic degrees of freedom prevent transfer of energy from 
the classical to the quantum degrees of freedom over long simulation periods. 
The method can be applied to both traditional M D  applications and simulated 
annealing. 

3.4 C o m p u t a t i o n a l  D e t a i l s  

While DF  calculations have been performed with a great variety of numerical 
techniques and with numerous basis sets to represent the single-particle func- 
tions ~kl, most M D / D F  calculations to date have used a plane wave (PW) basis 
expansion and a pseudopotential representation of the electron-ion interaction 

Vex t : 

Vext(r) = ~ Vps(r - -  R I ) ,  

i ( t l )  

/ = 0  

where/~ is the angular momentum projection operator. Our experience with the 
prescriptions for determining va(r) given by Bachelet et al. [34] and Stumpf et al. 
[35] indicates that accurate calculations require components of vt up to at least 
l = 2. The eigenfunctions of the effective Kohn-Sham Hamiltonian are expanded 
in the PW basis 

M 

~0~(r) = ~,~,(r) = ~ c k exp(i(k + G,).r) (12) jG. 
n = l  
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leading to the self-consistent eigenvalue problem 

HmnCjG. = ejCja" , 
n 

Hmn = finn {a,~[ 2 + Vest(G,, - Gn)  + ~ ( G ~  - Cam) + Vx¢(Gm - G , )  , (13) 

where the index k has been deleted. 
We generally use a face-centred-cubic unit cell [lattice constant 15.9 A] with 

constant volume [1000A 3] and periodic boundary conditions (PBC). This 
supercell geometry leads to a weak interaction between the individual clusters, 
and the accurate reproduction of the symmetries in $6, Ss and $12 [36], for 
example, shows that the results are insensitive to the choice of boundary 
conditions. The cut-off energy for the plane wave expansion (11) of the electronic 
eigenfunctions ~Pi (10.6-14.0 Ry) leads to ~ 4000-6000 plane waves for a single 
point (k = 0) in the Brillouin zone (BZ). 

The MD parts of the procedure are initiated by displacing the atoms 
randomly from an arbitrary geometry, with velocities ~Pi and/~x set to zero, and 
using a self-consistent iterative diagonalization technique to determine those 
ffi that minimize E. With the electrons initially in their ground state, the 
dynamics (9) generate Born-Oppenheimer (BO) trajectories over several thou- 
sand time steps without the need for additional diagonalization/self-consistency 
cycles. In typical applications, the "mass" #i of the electronic degrees of freedom 
was 300-t800 a.u., and the MD time step A t  = 1.7-3.4 x 10-16 s. If the mean 
classical kinetic energy of the atoms defines a "temperature" T, the energy 
surfaces are probed by varying T, and the minima in the potential energy 
surfaces are found by reducing T slowly to zero. 

4 M D / D F  Calculations - Structures 

To demonstrate the usefulness of the MD/DF approach, we now discuss 
applications to structure determination in clusters of elements of groups 13, 15, 
and 16. Clusters of the last two are typically covalently bonded systems. The 
bulk systems are generally semiconductors or insulators, and there is a substan- 
tial energy gap between the highest occupied and lowest unoccupied molecular 
orbitals. The first, typified by aluminium, show aspects of "metallic" behaviour. 
One of the advantages of the DF method is that it can be applied with 
comparable ease to elements of all atomic numbers. 

4.1 Group 13 Elements: AI, Ga 

Work on Aln has included magnetic properties, [37] ionization thresholds and 
reactivities, [38], static polarizabilities [39], and measurements of collision- 
induced dissociation of AI~ + [40]. The dimer is the best studied of the aluminium 
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clusters, although the nature of the ground state has only recently been estab- 
lished. The best candidates are the 3I/, (tr?,) and 3S~- (~z 2) states, and experi- 
mental work [41] supports theoretical predictions [42,43] that the 3//u state is 
slightly (less than 0.025 eV) more stable. Experimental and theoretical spectro- 
scopic parameters for low-lying states of A12 are compared in Table I. The 
M D / D F  calculations [44] agree well with available data for A12 [14,41], 
although the 3H, state is a little (0.08 eV) less stable than the a22~- state. The 
equilibrium separations re and vibration frequencies toe agree very well with 
experiment for both states. The overestimate of the well depth (2.03 eV com- 
pared with the experimental value 1.5 eV [14]) is similar to those found in other 
sp-bonded systems [8]. 

The results of the M D / D F  calculations for the larger clusters show the 
following patterns: 

1. The existence of numerous isomers illustrates the relative ease of electron 
transfer between rc-orbitals (which dominate in the bonding in planar struc- 
tures) and ~r-orbitals. Planar structures are the most stable for n < 5, three- 
dimensional structures for n > 5. There is a transition at n = 6 to ground 
states with minimum spin degeneracy, so that it is essential to incorporate 
spin in the calculations of lighter clusters. The structural variety is consistent 
with the "metallic" nature of the elements: The valence sp-shells in the atoms 
are less than half-filled, and the separation in energy between the highest 
occupied and lowest unoccupied orbitals is usually small. 

Table 1. Molecular parameters r e [atomic units], ~oe [cm "-I] for 
low-lying states of Al2, with energies ( A E )  relative to the ground 
state 

State re oge A E 

3H.(a?.): 
(a) 5A35 284.97 
(b) 5.150 277 
(c) 5.19 284 
(d) 5.095 290 

Expt. (e) 5.10 284.2 

32." o Or~ ): 
(a) 4.687 355.15 
(b) 4.711 343 
(c) 4.78 340 
(d) 4,672 340 

Expt. (e, f) 4.660 350.01 

(d) 4.444 435 
(g) 450 +__ 40 

+ 0.06 
+ 0.02 
+ 0.02 
- 0.08 
> 0  

+ 1.59 
+ 1.6 

References: (a) [42]: coupled-cluster doubles + ST(CCD). 
(b) [43]: complete active space SCF/second order CI 
CASSCF/SOCI. (c) [71]: multireference configuration interac- 
tion (MRD-CIL (d) [44]: MD/DF.  (el [41]. (f) [14]. (g) [63]. 
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2. The stable forms in both A1, and Ga,  clusters are found by capping smaller 
clusters, as we show in Fig. 3 for AI5 to Allo. The structures comprise 
triangles with patterns of dihedral angles similar to those found in bulk 
aluminium and in 0t-gallium [44]. 

3. The bonds in Ga2 are 3-7% shorter than those in AI2. It is very unusual for 
the lighter of two elements in the same main group to have longer bonds, but 
this general feature of these clusters is also reflected in the structures of the 
bulk elements. The nearest neighbour separation in f.c.c. AI is 5.411 a.u., and 
a weighted average over the seven near neighbours in a-Ga (5.107 a.u.) is 
5.3% less. The bond lengths are consistent with the extent of the valence 
orbitals [44], the s-orbital, in particular, being considerably more compact in 
Ga than in AI. This is a consequence of "d-block contraction", which is 
particularly pronounced in Ga [44]. 

4.2 Group 15 Elements: P, As 

There have been many studies of the crystalline structures of elemental phos- 
phorus [ 10, 45], and the microscopic structures of the amorphous modifications 
(red, black, grey vitreous) are still the subjects of considerable attention. Gas 
phase clusters have been of interest for many years, and Martin [19] has 
detected mass spectroscopically P,+ clusters up to n > 6000. Nevertheless, little 
experimental information was available until recently on the structure of clus- 
ters with n > 4, and this is also true for arsenic clusters, As,. 

We have performed MD/DF calculations for neutral and charged clusters of 
phosphorus and arsenic with up to eleven atoms [46, 47]. The geometries and 

a b c 

Fig. 3a-f. Structures of the most stable isomers calculated for aluminium clusters AI., n = 5-10 [44] 
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vibration frequencies in P2 and P4 agree well with experimental data, so we may 
expect reliable predictions for structures that have not yet been established 
experimentally. The tetrahedral structure is favoured in P4, but there is a large 
"basin of attraction" for a Dza "roof" structure, i.e., this is the closest minimum 
for a large region of configuration space. It is also a prominent feature in the 
low-lying isomers of P5 to P8 [46]. 

One of the most unexpected results obtained was for P8, where the much- 
studied cubic (Oh) form corresponds to a shallow local minimum in the energy 
surface. Simulated annealing ted, however, to the C2~, structure (Fig. 4b), which 
is much (ca. 1.7 eV) more stable. This "wedge" structure, which may be viewed 
as a (distorted) cube with one bond rotated through 90 °, is a structural unit 
in violet (monoclinic, Hittorf) phosphorus [48]. A second isomer of P8 (Dzh, 
Fig. 4a) is also much more stable than the cubic form. There is a striking 
analogy between the structures of the Ps-isomers and those of the valence 
isoelectronic hydrocarbons (CH)8. The cubic form of the latter (cubane) has 
been prepared by Eaton and Cole [49], and can be converted catalytically to the 
wedge-shaped form (cuneane) [50]. 

The structures of P8 and the prediction ofa C2~, isomer as the most stable in 
P6 have been confirmed by subsequent calculations using HF-based methods 
[51,52]. One interesting question that could not be answered definitively by 
calculations using the LSD approximation is the relative stability of P8 and two 
P, tetrahedra, as binding energies can sometimes be overestimated substantially 
by the LSD approximation [8]. This effect is already apparent in the calculated 
atomization energies in clusters up to P4, where experimental results are 
available. The LSD calculations indicated that the C2~ isomer of P8 was slightly 
more stable than two tetrahedra, while the opposite result was found in calcu- 
lations using HF-based methods [51,52]. To examine these issues in more 
detail, Ballone and Jones [47] performed calculations on phosphorus and 
arsenic clusters with up to 11 atoms using a non-local (gradient corrected) 
extension of the LSD approximation [53]: 

x~Z (14) 
E ~  = E Ls° - b Z . (  dr n4a/3 1 + 6bx~ sinh-1 x~" 

t7 

a 

Fig. 4a, b. Calculated structures for Ps- a D~h, b Cz,.. The latter (cuneane) form is the most stable 
[46] 
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where 

I Vn~t. 
b = 0.0042 a.u. (15) X a ~ .  n 4 / 3  

The parameter b was adjusted by Becke [53] to reproduce the exchange energies 
of some closed-shell atoms, and it has been found that this modification to the 
LSD approximation gives significant improvements to calculated atomization 
energies in numerous small molecules [53]. 

The geometries of P, and As, clusters change very little on using the 
non-local approximation [47, 48] for Ex,, and changes in the ordering of the 
isomer energies for a given cluster are small and restricted to clusters with more 
than nine atoms. The dissociation energies of P2-P4, however, now agree much 
better with the experimental values, and the wedge-shaped Ps isomer is slightly 
less stable than two phosphorus tetrahedra, in agreement with the predictions of 
HF-based methods. 

A further test of non-local corrections is provided by the isomers of P10 
(Fig. 5). MD/DF calculations with the LSD approximation [46] indicated that 
structure 5a, recognizable as a structural unit of the chains in Hittorf's phos- 
phorus [48], was the most stable, while HF-based methods [52] favoured the 
C, structure 5b by a small amount (less than 0.1 eV). Incorporation of the 
non-local modifications to Exc changed the relative stability of the two isomers, 
with the C~ form now lying ~ 0.1 eV lower. Some additional comments on 
gradient corrections to Exc are given in Sect. 6. 

4.3 Group 16 Elements: S, Se 

MD/DF calculations [54] performed on clusters up to $13 showed that it is 
possible to determine low-lying energy minima even if the initial geometry is far 
from the correct structure. Starting from almost linear chains [S3_6] or from 
nearly planar rings [$7-13], the calculated structures agreed well with experi- 
ment in all cases where X-ray data were available. An example is S12, where the 
symmetry (D3d) and structural parameters (bond length d = 3.97 a.u., bond 
angle ct = 106 °, dihedral angle y = 88 °) agree well with measured values 

Fig. 5a, k Two isomers of Plo. a C~, b C2~ [47] 
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(3.88 a.u., 106.2 °, 87.2 °, respectively). We also obtained plausible predictions in 
cases where single crystal specimens have not yet been prepared: In $5 we found 
an "envelope" (C~) structure and a C2 structure with almost the same energy, 
and the predictions of the structures of $4, $5 and $9 have been confirmed by 
subsequent HF-based calculations [55]. 

The results for the $9 molecule are particularly interesting. While this 
molecule can be prepared in microcrystalline form [ 11, 56], the absence of single 
crystals has ruled out an X-ray structure determination. However, after ana- 
lyzing the Raman spectra, Steudel et al. [56] concluded that the constituent 
molecules have nearly identical structures, with S-S bonds in a narrow range 
,,~ 3.90 a.u. From structural trends found in other sulphur ring molecules, they 

predicted that the dihedral angles lie in the range 70 ° < 7 -< 130°, eliminating 
the possibility of Cs symmetry and allowing only C1 and C2. Our calculations 
led to a C2 ground state structure that fulfils all of the above criteria. 

Perhaps the most interesting feature of the structural trends in the S, clusters 
is, however, the difficulty of interpolating between or extrapolating from known 
structures. In $9, for example, the knowledge of the structures of several 
members of the family on either side (n = 6-8, 10--13), does not allow us to 
predict unambiguously either the structure or even the pattern of dihedral 
angles ["motif"] [11, 57] of the most stable isomer. Isomers with quite different 
structures can have very similar energies, and the assignment of the ground 
state requires quantitative measurements or calculations rather than qualitative 
arguments. 

5 M D / D F  Calculations - Photoelectron Detachment  Spectroscopy 

In the present section, we extend the discussion of Sect. 2.3 and show that the 
combination of MD/DF calculations and photoelectron detachment measure- 
ments can give useful structural information about clusters. The MD/DF 
calculations have a dual focus: (a) the calculation of the structures of isomers, i.e., 
locating the minima in the energy surfaces for each cluster anion, (b) determin- 
ing, for these structures, the energy differences between the anions and states of 
the neutral clusters. The comparison with experiment involves both such verti- 
cal excitation energies and the vibration frequencies, quantities that are parti- 
cularly useful if the values for different isomers of a cluster are distinctly 
different. 

Energy calculations for charged systems require care in a supercell geometry 
with PBC, particularly where the energies of charged and neutral systems are 
compared. In order to calculate the VDE (ionization energies of the anions) we 
use the scheme of von Barth E58] to relate the multiplet energies of the neutral 
clusters to the energies of single determinantal states. As discussed in Ref. [59], 
we extrapolate the Coulomb energy of the cluster in the above unit cell to give 
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the corresponding energy for an isolated cluster with the same charge distribu- 
tion. Vibration frequencies are calculated by using an eigenmode detection 
scheme [60] to analyze non-thermally-equilibrated MD trajectories for the 
system in question. For a neutral cluster with the optimum structure of an 
anion, for example, we remove an electron from the anion and allow the system 
to evolve in MD runs (at 300-500 K) to find the closest minimum on the energy 
surface of the neutral cluster. The cluster atoms are then displaced by small 
random amounts, and the trajectories followed for 2000 to 5000 time steps at 
300 K. 

The negative ion source (pulsed arc cluster ion source, PACIS) has been 
described in detail elsewhere [61, 62], and its features are outlined here for the 
case of sulphur. Ions are produced in a carbon arc, the lower electrode of which 
is shaped like a crucible and contains a reservoir of S. A pulse of He gas is 
flushed through the gap between the electrodes during ignition. The He/S 
plasma cools in an extender and forms clusters, which grow further on cooling in 
a supersonic jet. Adjustments of the source that influence the structure of the 
dusters include the He stagnation pressure and the voltage and duration of the 
arc. However, the most important parameter is the time spent by the clusters in 
the extender. 

The beam of anions is separated, according to their velocities, into a se- 
quence of cluster bunches with a defined mass. A selected bunch is irradiated by 
a laser pulse of a given photon energy (2.33, 3.49 or 4.66 eV), and the electrons 
detached are guided by magnetic fields towards an electron detector. The kinetic 
energy of the electrons is related to the times-of-flight, and the binding energy 
(BE) is the difference between the photon energy and the kinetic energy. The 
energy resolution of the electron spectrometer, which depends on the kinetic 
energy of the electrons and the velocity and reactivity of the anions, is typically 
40-70 meV. 

5.1 Group 13 Elements 

The vertical excitation energies from states of AI~ ~ Alz can be observed in 
photoelectron detachment spectroscopy of negative ions, a technique that has 
been applied to AI, and Ga, dusters up to n = 15 [63]. For A12, there is a peak 
at ,-~ 4.2 eV that shows a vibrational structure with toe = 450 ___ 40 cm-1, in 
good agreement with the excitation energy from the anion (Fig. 1) and the 
calculated vibration frequency of the 5S,- state of the neutral dimer (Table 1). 

A detailed analysis of the structures and excitation energies in clusters of AI 
and Ga is in progress. We have noted above that transitions between states with 
the same equilibrium geometry, as is the case for the calculated ground state 
geometries of A13 and AI3, should give rise to sharp peaks in the photoelectron 
spectrum. This is confirmed by the measurement, for which the peaks in the 
spectra of AI~ and Ga3 are the sharpest features found in these clusters [63]. 

103 



R. O, Jones 

5.2 Group 15 Elements 

Structures and energies have been calculated for P,- ions for n = 1-9 [64], and 
we focus here on aspects that are needed for the comparison with experiment. In 
earlier studies of the trimer anion P£, two groups [65, 66] found three low-lying 
minima: an equilateral triangle (D3h, 3A~), a linear closed-shell singlet 
(Dun, 1Zo+ ), and a bent (C2~.) triplet. The first two were so close in energy that 
a definite prediction of the ground state was not possible. In the MD/DF 
calculations the linear structure has the lowest energy, but the D3h and 
C2~ structures are only 0.06 and 0.27 eV less stable. The calculated geometries 
agree well with the earlier work [65, 66]. The vertical detachment energies of the 
three structures differ significantly, being 3.00 eV, 1.88 eV, and 1.73 eV, respec- 
tively. The inclusion of non-local modifications to the energy functional reverses 
the energy ordering of the two most stable non-linear structures, with energies 
relative to the linear structure being - 0.08 and 0.27 eV. 

The neutral phosphorus tetramer has the familiar tetrahedral (Ta) structure. 
The additional electron in the anion, however, results in a Jahn-Teller distortion 
that is so large that the equilibrium structure (Fig. 6d) should not be analyzed in 
terms of tetrahedral symmetry. The vertical detachment energies calculated for 
transitions to the lowest-lying singlet and triplet structures are 1.35 and 2.91 eV, 
respectively. Relaxation of the neutral tetramer from the anionic structure to the 
tetrahedral form results in an energy lowering of 1.16 eV. 

For the pentamer anion, Hartree-Fock calculations 1-67, 68] give a consis- 
tent picture of both geometry and vibration frequencies of the planar isomer. 
The MD/DF calculations lead to two low-lying isomers: The planar ring (Dsh, 
Fig. 6e) has bonds of length 3.96 a.u. and is 1.44eV more stable than the 
structure (Fig. 6f) related to the most stable form found for the neutral penta- 
mer. There is a striking difference between the vertical detachment energies of 

a b c 

e 

3 

f 

Fig. 6a-f. Calculated structures of a--e P~-, d P2, and e--f P ;  [64] 
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the two isomers of the anion (Dsh: 4.04 eV, C2v: 2.08 eV). The calculated 
vibration frequencies [64] are about 10% below the Hartree-Fock values, which 
are generally higher than experimental frequencies by approximately this 
amount [68]. 

The MD/DF calculations predict several local minima in the energy surface 
for Pff. The two most stable are derived from the cuneane structure, with 7a 
being more stable by 0.22 eV. In Fig. 7b, there is a large expansion in two of the 
parallel bonds. This configuration is unstable to annealing at 300 K, with one of 
the stretched bonds breaking and the other contracting to give structure 7a with 
lower symmetry (C~). A similar situation occurs in the structures related to 
a cube, where the more symmetrical structure 7d has four expanded bonds. The 
more stable 7c - with energy 1.3 eV above that of 7a - has one broken bond and 
seven bonds of length comparable with those in the cubic form of P8- Annealing 
from the Dzh structure of P8 [46] also results in structure 7c. The calculated 
VDE values are significantly higher for the most stable isomer 7a [3.0 eV] than 
for all others, e.g., 2.5 eV in Fig. 7c. 

The trends in the structures of the phosphorus cluster anions allow those of 
the neutral clusters, although the anion structures are generally more open. The 
structures are "three-dimensional" from n = 4 and favour three-fold coordina- 
tion, although two-fold coordinated atoms generally have shorter bonds. The 
shortest bonds found were the multiple bonds in the dimer and trimer. Bonds in 
rectangular structural units (bond angles ~ 90 °) are generally longer than those 
in triangular units, and the presence of rectangular units is energetically un- 

favourable. 
The PACIS has been used to generate phosphorus cluster anions P~- up to 

n = 9. Photoelectron spectra recorded at photon energies hv = 2.33 eV, 3.49 eV, 
and 4.66 eV are shown in Figs. 8, 9a, and 9b, respectively. The spectra of 
P2 show four electronic transitions (Fig. 9b, A-D), and feature A is assigned to 
the ground state transition (VDE 0.68 + 0.05 eV). Vibrational fine structure is 

Fig. 7a-d. Calculated structures of P~- [64] 
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Fig. 8. Photoelectron spectra of P,- clusters 
(n = 1-4) recorded at hv = 2.33 eV photon en- 
ergy [64] 

resolved at low photon energy for both dimer and trimer (Fig. 8). The calculated 
frequencies are in good agreement with available experimental data for P2 and 
P i ,  and the calculated values for the al modes of the C2~ structure of P3 agree 
well with the measured values for this molecule. 

The spectra of P3 (Figs. 9a, b) show three peaks, and it is probable that more 
than one isomer can be generated, depending on the experimental conditions. 
The calculated vertical excitation energies to the first two states in P3 are 
(1.73 eV, 3.70 eV for C2~) and (1.88 eV, 4.08 eV for D3h ). Either structure could 
be present, but we note that both isomers have a large gap in the excitation 
spectrum, so that the strong peak at 2.89 eV must come from another structure. 
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Since the linear isomer gives a vertical excitation at 3.00 eV, the measured 
binding energy curves are consistent with the existence of at least t w o  isomers, 
one of them linear. 

There are two pronounced peaks in the measured spectra of P;(1.35 eV, 
2.69 eV), both of which can be interpreted in terms of transitions from a "roof"- 
shaped isomer 6d. The calculated excitation energies to the lowest singlet and 
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Fig.  9a ,  b. Photoelectron spectra of P~- clusters (n = 2-9)  recorded at a hv = 3.49 eV and 
b hv = 4.66 eV photon energies [64 ]  
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Fig. 9. Continued 

first triplet states of P4 are 1.35 eV and 2.91 eV, respectively. The broad first 
peak indicates a large difference between the geometries of the most stable 
isomers of the anion and neutral clusters. The calculated adiabatic electron 
atfinity, the difference between the lowest energies of P£ and P4 (0.19 eV), agrees 
satisfactorily with the onset in the measured spectra. 

108 



Structure and Spectroscopy of Small Atomic Clusters 

The photoelectron spectra of P~ for hv = 3.49 eV (9a) and 4.66 eV (9b) are 
very different. The features observed in the former (A, B, C) are located at almost 
the same BE's as the corresponding features in the spectrum of P3 (Fig. 9a), and 
we assign the observed peaks to P j  that has been generated by a photofragmen- 
tation process. The spectrum of P~ recorded with a photon energy of 4.66 eV 
(9b) is consistent with a high electron affinity. A single peak at 4.04 eV dominates 
the spectrum of P5 in Fig. 9b, in excellent agreement with the calculated value 
for the planar pentagonal form (6e). The C2v isomer (6f) related to the "roof plus 
atom" isomer predicted to be the most stable in P5 lies much higher in energy 
and has a much lower excitation energy. There is no evidence that this isomer is 
generated by the PACIS. 

Calculations of the vertical excitation energies for Pa are consistent with the 
results of total energy calculations, which indicate that the perturbed cage 
structure (7a) is the most prevalent. The agreement between the measured VDE 
(3.05 eV) and the calculated value (3.02 eV) is very good, while the values for the 
other three isomers are much lower (2.34-2.55 eV). 

The overall comparison between theory and experiment provides a consis- 
tent picture of the cluster isomers and their photoelectron spectroscopy. In those 
cases, such as P£, P~, and Pa, where the calculations give a definite prediction 
of the form of the most stable isomer, the calculated energy differences are in 
good agreement with experiment. The measurements indicate that the most 
stable form of Pa (with high probability P8 as well) has a "wedge" (cuneane) 
rather than a cubic structure. In Pa,  where the present and earlier calculations 
predict the existence of three isomers with different structures but very similar 
energies, we show that the source generates at least two isomers, one of them 
linear. Spectra for P~ taken with hv = 3.49 eV (below the electron affinity 
4.04 eV) show fragmentation into P3 and P2. 

5.3 Group 16 Elements 

We have extended the previous MD/DF calculations on neutral sulphur clusters 
[54] to sulphur anions up to $9. The results for the dimer and trimer, e.g. 
vibration frequencies for the anions $2 and $3 and for the neutral systems, 
agree well with previous work. Of particular interest is the prediction of stable 
"chain" structures in addition to the "ring" structures familiar from the neutral 
clusters (see above). Fig. 10 shows the most stable isomers of the former and 
representative isomers of the latter, of which there are many for n > 5. Of 
particular interest are chains with a planar tetramer at one or both ends, because 
such structures had not been found in the neutral chains. The most stable 
structures are generally opened or puckered rings of the neutral clusters, where 
at least one bond is strained or broken by the presence of the additional electron. 
The ground states of S~, $7, S~ and $9 belong to this family. 

Of the many chainlike structures we show the all-trans helices in Fig. 10 (to 
illustrate other structures we show those of $7 in Fig. 11). The planar motif with 
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Fig. I0. Vertical detachment energies of sulphur anions S,-. n = 1-9. Circles: experiment, crosses: 
calculations, including values for helical chains. The bars cover the values for other chain structures 
[59] 

a CI e C1 

d C1 e Cl 

Fig. lla-f.  Calculated structures of S~ [59] 

app rox ima te ly  Cz,, symmet ry  occurs  in $2 and in sect ions of  the larger  anions.  
St ructures  consis t ing ent i rely of  this pa t t e rn  exist only for even values of  
n (S£,  $6-, S~), where  they are  a m o n g  the most  s table  isomers.  In  Fig. 10 we also 
show the ca lcula ted  VDE values for cage- and  ringlike s tructures  found for the 
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anions. For the former, we show both the ranges of VDE values and the result 
for the helical chain for n = 6-8. 

The VDE of the two classes of structures are strikingly different. While the 
broken rings show almost constant or even decreasing VDE with increasing 
cluster size, the values for the chains increase initially and then saturate near $6. 
The outermost electron is more tightly bound in the chains, and an analysis of 
the densities shows that the additional electron occupies an antibonding orbital 
localized mainly on the terminal bonds. $2, where the additional electron 
occupies an orbital with a pronounced antibonding character, has a particularly 
low VDE. This picture, where the potential energy is lower in chains with larger 
distances between the ends, is consistent with the saturation of the VDE found 
in longer chains. 

The above predictions have been confirmed in large part by photoelectron 
spectroscopy of the same ions [59]. In Fig. 12 we compare mass spectra of 
S~- clusters obtained at two different adjustments of the PACIS. Adjustment 
a favours small clusters with n = 2-7, which probably result from a relatively 
slow "annealing" of the clusters. Apart from the trimer, clusters with n < 6 have 
a very low intensity in spectrum b, which is the result of more rapid cooling. The 
progression starts at $6 and reaches a maximum at Si-0. Only $3, $6 and 
S 7 have relatively high intensities in both spectra. The photoelectron spectra for 
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Fig. 12. Mass spectra of S~- clusters. 
Upper frame is for adjustment a (slow 
cooling of the sulphur plasma), lower 
frame for adjustment b (more rapid 
cooling). The larger average size in 
the latter is due to the higher concen- 
tration of S in the carrier gas [59] 
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$6 and S~ (Fig. 13a, b) are quite different for the two adjustments, suggesting 
that different isomers have been generated. 

We assign the dominant features (A, B, C) observed to photoemission from 
two isomers of $6, denoted (I) and (II), respectively. The only vibrational fine 
structure observed for hv = 4.66 eV, feature A in the spectrum of $6 (II), 
corresponds to a frequency of 570 __+ 32 cm 1 [64]. Two different spectra (Fig. 
14c, d) have also been recorded for $7, corresponding to two different isomers 
S~ (I) and S~ (II). We now show that the comparison between theory and 
experiment for the vertical detachment energies (VDE) and vibration frequen- 
cies allows us to identify both ring and chain isomers for $6 and $7, although 
no vibrational structure could be resolved in the latter. Vibrational fine struc- 
ture is resolved in the hv = 3.49 eV spectra for n = 2,3,4 (Fig. 14). 

Fig. 10 shows a comparison of the calculated VDE - for the most stable 
closed and open isomers - with values extracted from the photoelectron spectra. 
Values are shown for both spectra of $6 and S~-. The overall agreement is 
remarkably good. For the clusters up to S~ the experimental VDE agree with 
the values for the most stable closed structures to within 0.15 eV, and the two 
measured values for $6 and S~ are very close to the calculated VDE of the most 
stable closed and open forms. The experimental values for Sff and $9 are in the 
same range as those for the chainlike structures. 

In addition to transitions to the most stable states of the neutral clusters 
[Fig. 10], information can be obtained by measuring transitions into excited 
states of S,. The first three peaks in the dimer (1.84,2.45,2.73 eV) are in 
satisfactory agreement with the calculated excitation energies to the 3Z~-, lAg, 
and 1Z+ states of $2 (1.91, 2.45, 2.98 eV). In $3, the measured excitation energies 
(2.50, 3.7, 3.9 eV) are consistent with transitions for the open structure to the 
1A1, 3A2/3B 1 and 3B 2 states of the neutral cluster (2.64, 3.73/3.77, 3.95 eV), but 
not with excitations for the ring structure (1.34,2.93,2.94eV for the 
1A1, 3A2, 3B~ states, respectively). The measured binding energies in S,~ are 
consistent with the calculated multiplet structures of the closed CEv and 
D2h geometries, but not with those for the open CEh form (2.89, 3.36, 4.07 eV for 
1Ao, 3B,, 1Bu, respectively). 

For $4, the measured frequencies are closer to the calculated values for the 
Czv and D2h isomers than those of the C2h form, which is consistent with the 
relative stabilities calculated. The only frequency measured for the $6 structure 
(570_ 32 cm-1) is significantly higher than both the calculated and Raman 
frequencies of the D3d isomer and falls in a pronounced gap of the spectrum for 
the Dab isomer. Since the vibrational structure was only observed in spectrum 
$6- (II), it appears that the neutral cluster has insufficient time to relax to one of 
the more stable isomers during the measurement. It is also consistent with the 
observation [69] that all unbranched sulphur rings regardless of the size have no 
fundamental frequencies above 530 cm-1. This picture is supported by the 
existence of a totally symmetric (a) vibration with frequency 619 cm- 1 for the 
neutral hexamer with the helical (C2) geometry found for the Sg anion. 
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The comparison between theory and experiment (Fig. 10) indicates that 
clusters generated by the source are ringlike up to S~ and chainlike for S~ and 
$9. S~- and $7 can occur in both forms, with source adjustments a and 
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Fig. 14a-e. Photoelectron spectra of 
S# clusters (n = 1-5) recorded for 
hv = 3.39 eV photon energy [59] 
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Fig. 14. Continued 

b favouring rings (low VDE) and chains (higher VDE), respectively. The photo- 
electron spectra [Fig. 14a-d] then provide spectroscopic evidence for the exist- 
ence of different cluster isomers in the gas phase. The calculated and measured 
vibration frequencies are consistent with this picture. 

The transition from closed to open structures as n increases may be surpris- 
ing at first sight, since our calculations predict that closed isomers are the most 
stable for all cluster sizes. In fact, the smallest clusters have few isomers, the 
relaxation of the structure is more rapid, and only the most stable ringlike 
structures are observed. A relatively low energy is, however, not the sole 
criterion for the occurrence of particular structures in a duster  beam. Rings are 
observed for $6 and ST when conditions allow a slower cooling of the plasma 
and more time for structural rearrangement. Structure formation is necessarily 
more complex in closed structures than in chains, where growth can occur by 
the addition of terminal atoms. Ring formation from S£ chains is hampered by 
the negative charge localized on the terminal atoms, in contrast to neutral 
clusters, where simulated annealing indicates that all chain structures relax to 
a closed form if the additional electron is removed. 

The preference for chain isomers in the larger clusters can be appreciated by 
examining the pattern of the signs of the dihedral angles ("motif") in different 
structures. Closed structures require distinct patterns (such as 
+ - + - + - + - in the most stable isomer of S~), while open structures 

can have many combinations of + ,  - ,  and 0, since the beginning and the end 
of the chain are not constrained to coincide. The configurational freedom of 
chains means that they are favoured if the time available for cluster formation is 
too short to allow annealing. The observation of chainlike isomers is consistent 
with the higher electron affinities found in these structures [59], since such 
clusters are more likely to survive growth, fragmentation and charge transfer 
processes. Clusters with lower EA are not excluded, as we have seen in $6 and 
$7, and suitable annealing of the cluster beam could lead to ringlike structures. 
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6 Discussion and Concluding Remarks 

The geometrical structure of molecules and clusters is a topic of widespread 
importance. For the theorist this involves two distinct aspects: the calculation of 
the total energy of the system of electrons and ions for a given geometry, and the 
determination of the most stable of the structures associated with the many 
minima in the energy surface. 

The approach we have discussed here addresses both problems with compa- 
rable emphasis. The density functional formalism, with the LSD approximation 
for the exchange-correlation energy, provides us with an approximate method of 
calculating energy surfaces, and the results have predictive value in many 
contexts. DF can also be carried out with comparable ease for all elements. 
When coupled with MD at elevated temperatures (simulated annealing), it is 
possible to study cases where the most stable isomers are unknown, or where the 
energy surfaces have many local minima. 

The acceptance of DF methods as a method for calculations on clusters and 
small molecules has been enhanced by the improved results obtained for 
atomization energies when non-local approximations for E= are used. Gradient 
corrections give, for example, the same ordering of levels in Plo and the same 
relative stability of P8 and 2P4 that were found in HF-based calculations. It 
would be incorrect, however, to assume that non-local corrections provide 
a panacea for problems that may arise in using the LSD approximation. Recent 
work in isomers of C2o [70], for example, has shown that the inclusion of 
gradient corrections changes the relative stability of cage and ring isomers by 
more than 7 eV. There are also substantial deviations from the experimental 
multiplet structure of C2. Although gradient corrections yield very good agree- 
ment with experiment for the formation energy of the measured ground state 
(1S+~, the next highest state (3Hu) is predicted to be ~ 0.7eV m o r e  stable, g /  

a relative error that is larger than in LSD calculations. There remains consider- 
able scope for the improvement of more reliable energy functionals in the DF 
framework. In any event, the geometries found in LSD calculations generally 
provide very reliable estimates that can be used as input for ab initio methods of 
energy calculation, as done in the QMC calculations of Ref. [31]. 

The combination of MD/DF calculations and photodetachment spectro- 
scopy provides a useful approach to the problem of determining the structure of 
atomic clusters. The PACIS provides a flexible method for generating clusters of 
many materials and for performing photoelectron spectroscopy on them. The 
elements include metals (solid and liquid), semiconductors, and highly reactive 
materials such as phosphorus. There is little doubt that the source will provide 
interesting data for many other systems. For the analysis of these data, or for 
predictions of interesting systems for study, the MD/DF approach should prove 
to be an ideal tool. 
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The application of the density functional formalism to the analysis of the electronic structure of 
clusters of nontransiton metals, in particular alkali metals, is reviewed. The emphasis is on simple 
models that can be applied to medium-size and large clusters: spherical jellium model (SJM), 
deformed jellium model (DJM) spherically averaged pseudopotential model (SAPS) and cylindric- 
ally averaged pseudopotential model (CAPS). The main characteristic of this class of clusters is the 
formation of electronic shells, whose effects are manifested in the peculiar variation of cluster 
stability as a function of size. These shell effects persist up to very large duster sizes. They also seem 
to control the dissociation behavior of multiply charged species. The second main topic is the 
response of small clusters to an external (dipole) electric field. At the appropriate frequency the 
whole valence-electron cloud responds, executing collective oscillations against the ionic back- 
ground. We also review the effect of impurities, as well as the effects of mixing and segregation in 
clusters formed by two or three different elements. Finally, clusters of noble metals are briefly 
discussed. 

1 I n t r o d u c t i o n  

The terms cluster or small particle are used to denote  an aggregate con ta in ing  
from a few atoms up to a few thousand  atoms. Due to their small size, the 
properties of the clusters are often different from those of the corresponding bulk 
material.  By studying the behavior  of clusters, one expects to ob ta in  informat ion  
on the early stages of the growth of matter. Typical questions which arise are: 
How many  atoms a cluster of a metallic element must  conta in  in order to 
develop metallic properties?, or how properties like geometric structure and  
melt ing temperature  change with cluster size? These and  similar quest ions have 
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motivated the development of experimental techniques for producing small 
clusters, as well as a series of experimental and theoretical studies of their 
properties. The key to the explanation of most properties of clusters is the large 
surface to volume ratio. 

Supported bimetallic clusters are used as catalysts for the conversion of 
automobile exhausts to nontoxic gases and the refinement of crude oil in the 
petroleum industry [1]. Great expectations exist for the synthesis of exotic 
materials, an example being the fullerite crystal, in which the units are 
C6o clusters [2]. The miniaturization of electronic components may soon reach 
sizes at which cluster physics becomes relevant. The existence of particularly 
stable clusters is often advocated in the construction of models of amorphous 
systems. These examples provide evidence for the technological importance of 
small or medium-size atomic clusters. 

One of the theoretical techniques that has been used most fruitfully to 
explain the experimental observations about cluster properties is density func- 
tional theory (DFT) [3, 4]. In this paper we review that work, with emphasis on 
the simple models that have led to a unified view of many cluster properties. For 
this reason, we restrict the discussion to simple metallic elements, in particular 
(although not exclusively) to alkali metals, for which such simple models best 
apply. 

2 Types of Clusters 

Clusters can be classified according to the type of chemical bonding between the 
atoms forming the aggregate. Interactions between inert-gas atoms involve 
a weak central pair force. This means that Van der Waals clusters will be 
characterised by close-packing of atoms. In Metallic clusters the interatomic 
forces are more complex and, in some cases, partly directional. The simple 
metallic elements (Na, AI, etc) reveal a non-smooth variation of their properties 
as a function of cluster size. On the other hand, the variation of the properties of 
transition metal dusters, although less spectacular, is interesting because of their 
catalytic applications. Covalent bonding is the dominating factor leading to 
network clusters of materials like Si, Ge and C; a well known example is C6o. The 
clusters of Ionic Materials like NaCI or CuBr are composed of closed-shell 
positive and negative ions. Molecular clusters are typical of organic molecules 
and of some closed-shell molecules like I z. Finally, hydrogen-bonded clusters 
are formed by closed-shell molecules containing H and electronegative 
elements. 

Since our interest is in the applications of DFT, we will concentrate on 
metallic clusters, which provide ideal systems on which to apply this formalism. 
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3 Magic Numbers of Alkali Metal Clusters 

Sodium vapour, or other alkaline vapours, can be expanded supersonically from 
a hot stainless steel oven with a fine exit nozzle, resulting in well focussed cluster 
beams. Clusters form as a result of collisions between Na atoms in the tiny 
expansion zone, terminating some tenths of a millimeter beyond the nozzle. The 
clusters warm up because the condensation is an exothermic reaction, so there 
also is a tendency for evaporation from the clusters. As the expansion proceeds, 
collisions between Na atoms end and the tendency of atoms to evaporate from 
the hot clusters dominates. Each cluster loses mass and cools down. In the 
evaporation chains, clusters with low evaporation rates, i.e., with strong binding 
energies, tend to become abundant. 

In 1984, Knight and his coworkers performed an experiment of this kind 
[5, 6]. They found an abundance distribution showing prominent maxima 
and/or steps at cluster sizes N -- 8, 20, 40, 58 and 92. The arguments given above 
indicate that clusters composed of 8, 20, 40, 58 and 92 atoms are especially 
stable. Since Na is a monovalent atom, the total number of valence electrons in 
these clusters is also 8, 20, 40, 58 and 92, respectively. Similar experiments have 
confirmed the same magic numbers in the mass spectra of other alkaline 
elements (Li, K, Rb, and Cs). Furthermore, measurements of the ionization 
potential, IP, as a function of cluster size show that the value of IP drops 
abruptly between N and N + 1 at precisely the values N = 8, 20, 40, 58 and 92, 
that is, at the magic numbers, as well as at N = 2 and N = 18 [6]. This result 
shows that the electrons are bound more tightly in the magic clusters. 

Cluster stabilities can also be deduced from dissociation energies in frag- 
mentation experiments [7]. In a typical photodissociation experiment, cluster 
ions like Na~ are excited by laser light to a highly excited state (Na~)*. The 
excited cluster can evaporate a neutral atom, 

(Nar~)* ~ Na~_ 1 + Na (1) 

if enough excitation energy to overcome the binding energy D of the atom is 
localized into a single vibrational mode: 

D = E(Na~_ 1) + E(Na) - E(Na~) > 0 . (2) 

Statistical methods, together with experimental information on the fraction of 
dissociated clusters, have been used by Br6chignac et al. [7] to obtain the 
binding energy, D, in the case of the photodissociation of Na~ and K~. The 
most relevant conclusion is the occurrence of abrupt drops of the evaporation 
energy between Na~" and Na~, between Na~- and Nail0 and between Na~l and 
Na~z; similar behavior is observed in the case of K. The photodissociation 
experiments are performed for ionized clusters, in which the number of valence 
electrons is N~ = N -- t. Thus, high binding energies occur for clusters with 2, 
8 and 20 electrons. The dissociation experiments indicate unambiguously that 
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the magic character is associated with the number of valence electrons in the 
cluster, and corroborate the magic numbers obtained in the abundance spectra. 
The same conclusion can evidently be deduced from the ionization potentials or 
from the analysis of the mass spectra of clusters generated by the liquid metal 
ion source (LMIS) technique [8], in which nascent cluster ions are produced 
directly. 

4 Spherical Jellium Model 

Solid state physicists are familiar with the free- and nearly free-electron models 
of simple metals [9]. The essence of those models is the fact that the effective 
potential seen by the conduction electrons in metals like Na, K, etc., is nearly 
constant through the volume of the metal. This is so because: (a) the ion cores 
occupy only a small fraction of the atomic volume, and (b) the effective ionic 
potential is weak. Under these circumstances, a constant potential in the interior 
of the metal is a good approximation--even better if the metal is liquid. 
However, electrons cannot escape from the metal spontaneously: in fact, the 
energy needed to extract one electron through the surface is called the work 
function. This means that the potential rises abruptly at the surface of the metal. 
If the piece of metal has microscopic dimensions and we assume for simplicity its 
form to be spherical - like a classical liquid drop, then the effective potential 
confining the valence electrons will be spherically symmetric, with a form 
intermediate between an isotropic harmonic oscillator and a square well [10]. 
These simple model potentials can already give an idea of the reason for the 
magic numbers: the formation of electronic shells. 

In general, energy levels for electrons bound in a spherically symmetric 
potential are characterised by radial and angular-momentum quantum num- 
bers, k and I respectively (k-1 is equal to the number of nodes in the radial wave 
function.) For fixed k and l, the magnetic quantum number m can take the values 
m = 1,1-1 . . . .  -l, and the spin quantum number takes the two values s = + 1/2 
and - 1/2. This gives the total degeneracy 2(2l + 1) for a (k,l) subshell. We 
know from atomic and molecular physics that closed-shell configurations are 
very stable, because of the large energy gaps between electronic shells. However, 
the detailed form of the confining potential controls the precise relative ordering 
of the (k, l) subshells, and also dictates which gaps are large and which are small 
where only large gaps lead to enhanced stability. So, for a precise explanation of 
the magic numbers of the alkali-metal clusters, a realistic representation of the 
effective potential is required. 

An accurate selfconsistent potential can be constructed by applying DFT 
[3,4, 11] within the context of the spher ical  j eUium mode l  (SJM) [12]. In this 
model the background of positive ions is smeared out over the volume of the 

123 



J.A, Alonso and LC. Balb/ts 

cluster, to form a positive charge distribution with density: 

~n~., r < R 
n + (r) = ~0, r < R (3) 

The radius R of the background is related to the number of atoms N in the 
cluster by the equation, 

4 7rR3 NO (4) 
3 

where f2 is the experimental volume per atom in the bulk metal. The constant 
n% is related to O and to the valence Z(Z = 1 for alkali elements) by 

z = n~ O .  (5) 

This positive background provides the external attractive potential. (Hartree 
atomic units will be used through the paper unless explicitly stated): 

r 1 V~xt(r) = - f n+(rl) d3r ' (6) 
J l r - r ' l  

which is parabolic inside the sphere of radius R, and purely coulombic outside. 
DFT is then used to calculate the ground state electronic distribution for 

interacting electrons in this external potential. This is achieved by solving the 
Kohn-Sham single-particle equations, 

-- ~ I7 + Vezr(r) 4)i(r) = e~cPi(V) (7) 

and constructing the electron density from the occupied single particle orbitals: 

oc t  

n(r) = ~ I~bi(r)l 2 . (8) 
i = l  

The effective potential in Eq. (7) represents the average effect of the attraction 
from the ions and the repulsion from the other electrons. It is given by 

V~ss = V~x, + Vu + Vx<. (9) 

Vu is the classical repulsive electrostatic potential of the electronic cloud, 

f n(r'), dar, (10) v,,(~) = j l--5-~, I 

and Vx< is the exchange and correlation part. Normally Vxc(r) is calculated using 
the local density approximation (LDA) [4]. 

The spherical jellium model has been applied to alkali metal clusters by 
many authors (see Ref. [-6-]). Fig. (1) shows the self-consistent effective potential 
for a sodium cluster with twenty atoms. The degenerate levels are filled up to 
electron number Ne = 20. In a spherical cluster with 21 electrons, the last 
electron will have to occupy the I f  level above (dashed line). This electron is less 
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Fig. 1. Self-consistent effective potential for Na2o in the spherical jellium model. The occupied 
electronic shells are indicated, as well as the lowest unoccupied shell. 

firmly bound than the 20th electron by at least 0.5 eV, and should be easier to 
remove by photo-ionization. This explains why the ionization potential drops 
with the opening of a new shell. The total energy of the cluster, E(N), can also be 
calculated as usual in DFT: 

O C t  

E(N) = ~ - (~b, lV2]0,) 
i = l  

i ffn(r)n(r') +]jj ah.a r'+ Vex,(r)n(r)d3r+Exc+Esetf. (11) 

The first term in this expression is the kinetic energy of the electrons, the second 
is their classical electrostatic interactiorl, and the third gives the interaction 
between the electronic cloud and the positive background. Ex¢ is the exchange- 
correlation energy of the electrons and, finally, Eseg is the electrostatic self- 
interaction of the positive background. 

The total energy per atom, E(N)/N, of alkali metal clusters in this model 
is a smooth function of N except for kinks at N -- 8,18, 20, 34, 40, 58, 92, ... 
[6]. To better display the abrupt changes in the total energy, we can define 
a quantity 

A2(N) = E(N + 1) + E(N -- 1) -- 2E(N) (t2) 

which represents the relative stability of a cluster with N atoms in comparison to 
clusters with (N + 1) and (N - 1) atoms. If the highest occupied level is just filled 
by the electrons in a cluster of N atoms, and the next available level is separated 
from this filled level by a sizable energy gap, the total cluster energy will jump 
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from E(N) to E(N + 1). This gives rise to a peak in A2(N). A peak in A2(N) then 
indicates that a cluster of size N is very stable. The higher stability suggests that 
this cluster should be more abundant in the mass spectrum than dusters with 
N + 1 or N -  1 atoms. Az(N) is shown in Fig. 2 for lithium, sodium, and 
potassium clusters with N up to 95. Peaks in A2(N) appear at N = 2 (not 
shown), 8, 18, 20, 34, 40, 58 and 92. This is consistent with the experimental mass 
spectra discussed above. 

The calculation confirms that the magic numbers are due to the closing of 
electronic shells: The levels are filled in the order ls, lp, ld, 2s, l f ,  2p, lg, 2d, lh, 
3s... Filling these levels with the maximum number of electrons allowed leads to 
the subshell closing numbers 2,8,18,20,34,40,58,68,90,92 .... The number 
N = 34, which appears after filling the I f  level is a magic number of secondary 
importance, that is also observed in the experiments. On the other hand the 
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numbers 68 and 90, which correspond to the filling of the 2d and l h  shells, are 
more difficult to observe, because the gaps between the 2d and l h  levels, and 
between the l h  and 3s levels, are small. Groups of levels that are close in energy 
will be called shells, so only the gaps between shells lead to observable conse- 
quences. 

The calculated ionization potentials of Li, Na and K reproduce the drops 
associated with the closing of electronic shells [6]. However, the spherical 
jellium yields sawtoothed curves which lack fine structure between shell clos- 
ings. In addition, the sawtooth rises above the experimental data before falling 
sharply at the next shell-closure. This behavior contrasts with the observed 
ionization potential curves, which remain rather flat between magic clusters, 
exhibiting a staircase profile. 

Experiments on noble metal clusters (CuN, AgN, AuN) indicate the existence 
of shell-effects, similar to those observed in alkali clusters. These are reflected in 
the mass spectrum [10] and in the variations of the ionization potential with N. 
The shell-closing numbers are the same as for alkali metals, that is 
N = 2, 8, 20, 40, etc. Cu, Ag and Au atoms have an electronic configuration of 
the type nd ~ o (n + 1)s 1, so the D FT jellium model explains the magic numbers if 
we assume that the s electrons (one per atom) move within the self-consistent, 
spherically symmetric, effective jellium potential. 

5 Electronic Shell Effects in Large Clusters 

As the size of an alkali metal cluster increases, the gaps between electronic 
energy levels become smaller [12]. Eventually, when N is sufficiently large, the 
discontinuous energy levels evolve into the quasicontinuous energy bands of the 
solid. When does this occurs? In other words, when are shell effects no longer 
discernible? Experiments indicate that shell effects remain important up to 
clusters with a few thousand valence electrons [13-16]. As an example, Table 
1 lists the shell-closing numbers observed by Martin et aL [14] for sodium 
clusters with sizes up to ~ 850. These shell-closing numbers are revealed by 
large drops in the measured ionization potential. 

The magic numbers appear at approximately equal intervals when the mass 
spectrum is plotted on a N Ua scale. More precisely, A N  1/3 ,~ 0.6 between two 
consecutive magic numbers, where N 1/3 gives the linear dimension of the clusters 
[14]. One can understand qualitatively why shell structure should occur at 
approximately equal intervals on an N 1/3 scale [14]. Note that an expansion of 
N in terms of the shell index K will always have a leading term proportional to 
K 3. One power of K arises because we must sum over all shells up to K in order 
to obtain the total number of particles. A second power of K arises because the 
number of subshells in a shell increases approximately linearly with shell index. 
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Finally, the third power of K arises because the number of particles in the largest 
subshell also increases with the shell index. Then: 

NK ~ g 3 * (13) 

When the number of electrons in the cluster increases, the number of 
electronic subshells also increases. Nevertheless, theoretical calculations have 
shown that groups of energy levels bunch together, leaving sizable empty gaps 
between them [17, t8]. However, do theoretical calculations for large clusters 
produce the precise bunching of energy levels that is required to explain the 
magic numbers observed in the experiments [13-16]? Although handling such 
a large number of electrons becomes more difficult, DFT calculations (a) lead to 
the bunching effect, that is to the N 1/3 periodicity, and (b) give magic numbers in 
close agreement with experiment. 

The results of spherical jellium calculations performed by Genzken for Na 
clusters [18] are displayed in Fig. 3. After the cluster energy has been calculated 
as a function of N, it can be conveniently separated into a smooth and an 
oscillating part: 

E(N)  = Ear(N) + E~h¢,,(N) (14) 

which is in accord with the idea of Strutinky's shell correction theorem [19]. The 
liquid drop model can be used to write Ear(N) as the sum of a (negative) volume 
term, a surface term and a curvature term [20]: 

E~v(N) = ebN + as N2/3 + acN 1/3 • (15) 

The bulk energy per atom, eb, is obtained from the theory of the homogeneous 
electron gas [9]: 3( y eb = ( 3 / / : 2 )  2 /3  (n°)  2/3 - ~ (~1°) 1/3 + ec(n °) . (16) 

As the electrostatic contributions cancel out, eb just contains kinetic (first term), 
exchange (second term) and correlation (third term) contributions and is a func- 
tion of the average valence electron density n °. 

In addition the jellium model for a planar surface can be employed to 
calculate a~ [21]. However, Genzken obtained a~ from a plot of the slope of 
( E ( N ) / N  - eb) versus N-  1/3, to suppress the shell oscillations for large values of 
N. Finally the curvature energy at was fixed in a similar way by the slope of 
a plot of E(N)  - ebN - as N2/3 versus N-  1/3 . 

Subtracting the average part E,v(N) from E(N)  defines the shell correction 
term E~h~(N) in Eq. (14). This term is the energy actually plotted versus N 1Is in 
Fig. 3. The pronounced oscillations exhibit sharp minima at the shell-closing 
numbers. The differences between these and the experimental magic numbers 
[15, 16] are rather small. The amplitude of the shell oscillations varies with size: 
the shell oscillations are enveloped by a slowly varying amplitude, the super- 
shell. The shell effects vanish periodically, but with a much larger size scale 
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Fig. 3. The periodically varying contribution of valence electrons to the binding energy of a spheri- 
cal sodium cluster (Eshez l in eq, (14)). Magic numbers are indicated. After Ref. [18]. 

(AN 1/3= 6). The first supershell node occurs at N ,~ 850). Calculations by 
Nishioka et al. [17], using a nonselfconsistent Woods-Saxon potential (instead 
of the spherical jellium model) give N ~ 1000. This node has been observed, 
although the experiments also show some internal discrepancies: the first node is 
located at N ~ 1000 in Ref. [15] while it is at N ~ 800 in 116]. The experimental 
discovery of supershells confirms the predictions of nuclear physicists. However, 
supershells have not been observed in nuclei due to an insut~cient number of 
particles. In summary, the existence of supershells is a rather general property of 
a system formed by a large number of identical fermions in a confining potential. 

The supershell structure of lithium clusters has also been studied by Gen- 
zken [18]. The agreement with the experimental data [22] is even better than in 
the case of sodium. The experimental and the theoretical supershell node is 
found at N ~ 820. 

The effect of finite temperature on the shells and supershells has been 
analyzed by Genzken for sodium clusters. For this purpose, calculations of the 
cluster "free energy" were performed by treating the valence electrons as a ca- 
nonical ensemble in the heat bath of the ions [23]. (The spherical jellium model 
is even better at finite temperature.) Finite temperature leads to decreasing 
amplitudes of shell and supershell oscillations with increasing T. This is parti- 
cularly important in the region of the first supershell node at N ~ 850, which is 
smeared out already at a quite moderate temperature of T = 600 K. However, 
temperature does not shift the positions of the magic numbers. 

Similar shell and supershell effects have been observed in the trivalent metals 
A1, Ga and In [24-26]. However, in order to explain the details, it is necessary to 
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go beyond the simple spherical jellium model. Although we present the improve- 
ments over the SJM below, we end this section by pointing out that the analysis 
of fine details suggests the need to go beyond the SJM even in the case of alkali 
metal clusters. An early example concerning large clusters is provided by the 
work of Lange et at. [27]. These authors have also performed DFT calculations 
of the ionization potential based on the spherical jellium model, with the 
objective to understand the drops in the measured ionization potentials of alkali 
metal clusters. However, to obtain the precise details in the drops of the 
ionization potential, the homogeneous jellium background had to be deformed 
slightly, by making the inner part of the clusters more dense. The results 
obtained by this inhomogeneous spherical jellium model are given in Table 1. 

6 Impurities in Simple Metal Clusters 

By supersonic expansion of mixed vapours, Kappes and coworkers [28] have 
obtained clusters containing a small amount of impurity atoms. In particular, 
we concentrate here on a series of clusters with the formula ANB,  that is, the 
cluster contains N atoms of type A (alkali element) and a single impurity of type 
B (monovalent or divalent). The systems studied are listed in Table 2, along with 
the experimental abundance maxima in the small-size range. The order chosen 
for the list in the Table is that of increasing values of An% = n%(B) - n°+ (A), 

Table 1. Total number of electrons in closed shell 
sodium clusters [14] 

Shell Experiment Inhomogeneous 
Jellium 

A 2 
13 8 
C 18 
D 20 
E 34 
F 40 
G 58 
H 68 
I 92 
J 138 
K 198 
L 263 
M 341 
N 443 
O 557 
P 700 
Q 840 

+ 2  
+ 5  
+ 5  
+ 5  
+ 5  
+1 5  
+ 15 

2 
8 

18 
20 
34 
40 
58 
68 
92 

138 
196 
268 
338 
440 
562 
704 
854 

(198) 
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Table 2. Abundance maxima observed in hetero- 
atomic A•B dusters. The abundance maxima are 
characterised by the number of valence electrons 
in the cluster. Also given is the difference An°+ 
between the jellium background densities of 
A and B metals 

A/B n°+ (B) -- no+ (A) Maxima 

Na/Ba 0.0008 8, 18 
Na/Sr 0.0014 8, 18 20 
K/Na 0.0018 8, 20 
Na/Eu 0.0023 8, t8 
Na/Li 0.0029 8, 20 
Na/Ca 0.0029 8, 20 
Na/Yb 0.0033 8, 20 
K/Li 0.0047 8, 20 
Na/Mg 0.0088 8 10 
K/Mg 0.0106 10, 20 
K/Hg 0.0106 10, 21 
Na/Zn 0.0155 10, 20 
K/Zn 0.0173 10, 20 

Density Functional Theory of Clusters 

where no+ (B) and n°+ (A) are the jellium density parameters of the pure metals 
B and A respectively (see Eq. (5)). 

The main feature in the Table is the observation of a new magic number, 
corresponding to ten valence electrons, for a large enough value of An°+. This 
new magic number begins with the system Na/Mg in this list. An associated 
feature that occurs earlier in the list is the vanishing of the magic number 
Ne = 18. Baladr6n and Alonso [29] have demonstrated that the origin of the 
new magic number is "again" a shell-effect. 

In general, the presence of the impurity atom induces a strong perturbation 
of the electronic cloud of an alkali cluster. The different nature of the impurity 
can be accounted for by a simple extension of the jellium model. The foreign 
atom is assumed to be at the cluster centre, and both subsystems - impurity and 
host - are characterized by different ionic densities in a jellium-like description. 
The following positive-charge background is then assumed: 

no+(B), r < R B  
n+(r) = no+(A), RB< r < R (17) 

O, r > R  

Rn is the Wigner-Seitz radius of metal B; that is, the radius of a sphere with 
volume O(B) and R is the cluster radius, easily obtained from O(A), f2(B) and the 
number of atoms. 

All values of no+ (B) - no+ (A) in Table 2 are positive, that is, the impurity 
provides a more attractive potential than the host. As a consequence, the 
original energy gap between the 2s and ld  levels is reduced. This is because the 
s-type electrons have a large probability of being near the center of the cluster, 
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where the potential has become more attractive; enhancing the stability of the 2s 
electrons. When the attractive power of the impurity is strong enough, the order 
of the ld  and 2s levels is reversed, leading to a new level ordering ls, lp, 2s, ld, 
that differs from that in the pure jetlium model (ls, lp, ld, 2s). Ten electrons fill 
the first three subshells (Is) 2 (ip)6 (2s)Z, so N~ = 10 appears as a magic number. 
Evidently, for this level ordering, the next magic number  is N e = 20, correspond- 
ing to the configuration (ls) 2 (ip)6 (2s)2 (ld)1O. In other words, the appearance of 
Ne = 10 is associated with the absence of N~ = 18. A quantitative view of this 
effect is given in Fig. 4, where we have plotted the stability function: 

S(Ne) = E(AN-1B) + E(Au + 1B) - 2E(ANB) . (18) 

Here S is written as a function of the number of valence electrons in the ANB 
cluster; this number is given by N~ = NZ(A) + Z(B). Since Z(A) = 1, the clus- 
ters AN-~B and AN+ ~B differ from ANB by one electron. The cluster energies 
needed in Eq. (18) have been calculated by the same density functional technique 
described above for pure metal clusters. At the top of Table 2 we have Na/Ba. 
An ° is very small in this case, and the order of the subshells is the usual one of 
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the standard jellium model. As the attractive power of the impurity atom 
increases, the peak in S(Ne) for Ne = 18 first decreases in magnitude and then 
disappears. This is so because the 2s level comes so close to the ld level that the 
gap separating them vanishes. Finally, on increasing the attractive strength of 
the impurity even more, the 2s level becomes more stable than the ld level, 
giving rise to the new shell closing numbers. The new peak at N~ = 10 appears at 
Na/Mg, just as in the experiment. 

7 The Spheroidal Model 

The spherical assumption is very successful in explaining the most prominent 
features of the ionization potential and the mass spectra of simple metal clusters. 
However, there is evidence of many small features which the SJM is unable to 
explain. Whenever a top-shell is not completely filled (N ¢ 2,8,20 .... ), the 
electronic density becomes non-spherical, which, in turn, leads to a distortion of 
the ionic background. This Jahn-Teller type distortion, similar to those ob- 
served for molecules and nuclei, leads to a splitting of all spherical shells into 
sub-shells [30]. Deformed clusters are prevalent for open-shell configurations. 
Clemenger [31] has studied the effect of deformations for alkali clusters, using 
a modified-three-dimensional harmonic oscillator potential. The model con- 
siders different oscillation frequencies along the z axis, (chosen as the symmetry 
axis; and perpendicular to it. The model Hamiltonian used by Clemenger also 
contains an unharmonic term, that serves to flatten the bottom of the potential 
well. Due to the deformation, the highly degenerate spherical shells are split into 
sub-shells. 

The jellium background model has been extended by Ekardt and Penzar to 
account for spheroidal deformations [30, 32]: the ionic background is represent- 
ed by a distribution of positive charge with constant density and a distorted, 
spheroidal shape. The advantage over Clemenger's model is that the spheroidal 
jellium model is parameter-free and that the calculation of the electronic wave 
functions is performed self-consistently. Due to the cylindrical symmetry of the 
problem, the azimutal quantum number m is still a good quantum number for 
the electronic states, as is the parity with respect to the reflection at the 
midplane. However, the angular momentum l is no longer a good quantum 
number and, as a consequence, the problem is intrinsically two-dimensional. 
This makes the Kohn-Sham equations harder to integrate. 

Assuming major axes a and b for an axially symmetric spheroid, a distortion 
parameter ~/can be defined: 

2(a - b) 
q= a + b  (19) 

The deformation parameter q describes how prolate or oblate the cluster is. This 
distortion parameter is determined for each cluster by minimizing its total 
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energy. The main first-order effects of the spheroidal model are energy splittings 
proportional to r/. These lead to fine structure in the stability function A 2(N) (see 
Eq. (12)), which has, in addition to the usual peaks of the spherical jellium model, 
smaller subshell-filling peaks at N = 10, 14, 18, 26, 30, 34, 36, 38, 44, 50, 54, etc. 
All the fine-structure peaks predicted by A 2(N) are observed in the experimental 
mass spectra [6]. Some examples of the agreement follow: the fourfold patterns 
in the l f a n d  l g  shells appear correctly, as well as the twofold pattern in the 2p  

shell, corresponding to the filling of a prolate subshetl at N = 36 and an oblate 
shell at N = 38. 

8 General Discussion of the Ionization Potential 

The ionization potential IP is the energy necessary to extract one electron from 
the neutral cluster. For a macroscopic solid this is called the work function, W. 
In this case Lang and Kohn [33] have shown that W can be expressed as the 
sum of three terms 

W = Des + P~c - Ev (20) 

where all contributions are taken to be positive. The first, electrostatic term, Des, 
represents the surface dipole barrier, resulting from the spilling of electronic 
charge beyond the positive jellium background boundary. The second, #xc, is the 
exchange and correlation contribution to the chemical potential of an uniform 
electron gas. These two terms mainly determine the depth of the potential welt. 
The kinetic energy term, Ev ,  is the bulk Fermi energy. Perturbative inclusion of 
the ion pseudopotentials decreases the calculated values by ~ 10% and leads to 
work functions for the alkali metals in reasonable accord with experiment 
Similar agreement was also obtained for other simple metals. 

When the size of the metallic piece is microscopic, a correction term is 
required. If this correction is calculated from simple classical electrostatic consid- 
erations as the energy required to remove an electron from a metallic sphere of 
radius R, the following result is obtained for the ionization potential [34]: 

1 e 2 
I P  = W + - - -  (21) 

2 R  

and the corresponding expression for the electron affinity E A  is: 

1 e 2 
E A  = W - - - -  (22) 

2 R  

Theoretical considerations based on density functional theory, which transcend 
the simple electrostatic arguments, indicate that a more correct form of these 
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equations is [35]: 

I P =  W +  

1 ) e 2 
E A  = W -  ~ + c --~ . (24) 

The constant ½ comes from the classical electrostatic energy and c is a mater- 
ial-dependent constant, arising from the electronic kinetic and exchange-cor- 
relation energies. These equations are valid for R that is large compared to the 
atomic radius, that is, when shell effects become negligible. The exact value of 
c is not known. DFT calculations for the SJM [20, 36] give c ,.~ 0.08 or a little 
bit larger (c ~ 0.14) [37]. These values, in particular the last, are consistent with 
the empirical value c ,~ 0.12 _+ 0.06 obtained from a photoemission study of 
very large Ag clusters containing 5000-40000 atoms [38]. Numerous studies of 
medium size clusters, N ~< t00, of different metallic elements give a good fit to 
experiment with c = 1/8 = 0.125 [39,40]. 

The general agreement of spherical droplet predictions with the ionization 
potential and electron affinity data has several implications: (1) The assumption 
of spherical symmetry is viable (N > 10). (2) The size dependence of IP and EA is 
overridingly determined by changes in curvature above the level of quantum size 
effects, which are typically no larger than 10% of the IP. (3) Valence electrons 
are delocalized, even for very small clusters. 

9 Odd-Even Effects in the Ionization Potentials 

Superimposed on the smooth behavior described by equations (23) and (24), the 
experimental data on the ionization potentials and electron affinities show two 
additional features. One, which has already been discussed, is the shell-closing 
effect. The second effect, which can be observed in clusters of monovalent 
s-electron metals, is an odd-even effect, also apparent in the mass spectra. Some 
examples follow: 

(i) In ionization potential measurements of alkalis (NAN, KN, N < 20), N-even 
clusters systematically have slightly larger values (by 0.1-0.2 eV) than their 
N-odd neighbors [41]. 
(ii) An inverse effect is found for the electron affinity of noble metal clusters, 
with N-odd clusters having higher photodetachment thresholds [42]. 
(iii) The mass spectra of both positive and negative noble-metal clusters ob- 
tained by ion bombardment, shows an odd-even alternation in the abundances, 
with N-even clusters being less abundant than their N-odd neighbors [10, 43]. 
This effect is observed up to N ~ 40. 
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Ab initio DFT calculations, using the local-spin-density approximation for 
exchange and correlation, reproduce the odd-even effects in the ionization 
potentials and binding energies [44]. In these calculations, the granular struc- 
ture of the ionic cores is retained, although these are often replaced by (non 
local) pseudopotentials. The calculations are difficult, because the geometrical 
conformation of the cluster (that is, the positions of the ions) has to be calculated 
by minimizing the total energy. 

The odd-even effect results from the interplay between cluster deformation 
and spin effects. In Fig. 5 we show the evolution of the molecular orbitaIs for the 
calculated most stable geometrical conformations of alkaline clusters with sizes 
N ~< 14. First of all, there is a smooth increase of the binding energy of the ls 
orbital with increasing cluster size. (We use a notation which reflects the nodal 
character of the molecular orbitals and allows relating them to the orbitals of 
the jellium model.) Also the binding of the manifold of/p-type levels shows an 
overall increase with increasing N. However, contrary to the predictions of the 
spherical jellium model, the lpx, lp r and lp= orbitals are not degenerate. The 
splitting occurs because the cluster, and thus the effective DFT potential acting 
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Fig, 5. Evolution of the molecular orbitals of alkali metal clusters with duster size, corresponding to 
the most stable structure for each cluster size [45]. Orbital energies are in arbitrary units. PL and 
S denote planar and spherical structures, OE and PE pertain to oblate and prolate ellipsoids, 
respectively. Redrawn from data in Ref. [45]. 
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on the electrons, is not spherical. The characteristic shape of the duster  is 
indicated at the bottom of the picture. The magnitude of the energy difference 
between (lpx, lp r) and lp= orbitals reflects the degree of distortion from spheri- 
cal symmetry. The lp= orbital has a lower binding energy than (lpx, lpy) in 
oblate dusters and the order is reversed for prolate ones. When this splitting is 
combined with the fact that double occupation of a p-orbital increases its 
binding energy over that of single occupation (spin-pairing effect), then the 
odd-even effect in both the ionization potential and relative cluster stability 
(mass abundance) is explained. The splitting of the p levels is a self-consistent 
effect. When the p-shell is not fully occupied, the electron density is not 
spherically symmetric. This, in turn, induces a distortion of the cluster geometry 
away from the spherical shape, that leads to a splitting of the p-levels. Similar 
arguments concerning the splitting of the d-shell, etc, rationalize the odd-even 
effect for larger clusters. In summary, the origin of the odd-even effect is 
a Jahn-Teller-type deformation of the ground state of the duster from its 
spherical shape, leaving only the double degeneracy of each level due to spin. 

The strong fluctuation of IP or of the mass abundance is an electronic- 
structure effect, reflecting the global shape of the cluster, but not necessarily its 
detailed ionic structure. This is demonstrated in Fig. 6, where the ionization 
potentials of sodium clusters obtained by the spheroidal jellium model [32] are 
compared with their experimental values [46]. The odd-even oscillation of IP 
for low N is reproduced well. The amplitude of these oscillations is exaggerated, 
but this is corrected by using the spin-dependent LSDA, instead of the simple 
LDA [47]. The same occurs for the staggering of AE(N ) [48]. 
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Fig. 6. Comparison of the ionization potential of sodium clusters, obtained with the spheroidal 
jellium model [32] and experiment [46]. Redrawn from data in Ref. [32]. 
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10 Response  to a Static Electric Field 

The net force acting on a neutral system in the presence of an static (time 
independent) inhomogeneous electric field E(r) can be expanded as: 

F = E(ro) f An(r)dr + VE(ro) f An(r)(r-  ro)dr 

, f + ~ VZE(ro) An(r)(r - ro)Zdr + ... (25) 

where An(r)= n(r ) -  n+(r), and n(r) and n+(r) are the electronic and ionic 
densities, respectively. The first term does not contribute in a neutral system, 
and the second term is the product of the field gradient VE(ro) times the induced 
dipole moment p of the system. If the deformation of the ionic density due to the 
applied electric field is small, then the force on the system is, in first order 

F ~ p VE(ro) (26) 

where p can be written as the product p = c~E(ro) of the polarizability ~ and the 
applied field. Based on these ideas, Knight and coworkers determined the 
polarizability of neutral alkali clusters by measuring the deviation of a cluster 
beam that travels through a region where an inhomogeneous electric field has 
been applied [49]. The polarizabilities of AI clusters were also determined by the 
same method 1-50]. 

Within DFT, the polarizability, 7, of a cluster can be calculated using linear 
response theory [51]. We begin by considering the ground state of the system. 
The ground-state density is calculated, as usual, by solving the single-particle 
Kohn-Sham equations. Let us now apply a static electric field, characterized by 
a muitipole potential of the form 6 VL = Eor L Y°L(O), where Eo is a small number 
and Y[(O) is a spherical harmonic. The system then develops an induced 
moment PL of magnitude PL = eLEo in response to the field. The first-order 
response of the system is characterized by a small change in the one-electron 
wave functions qS~(r) ~ ~i(r) + fi~b~(r). The corresponding change in the electron 
density can be written, 

o e ¢  

n(r) = ~ kbi(r)[ z ~ n(r) + fin(r) (27) 
i = l  

where fin(r) is given by fin(r)= 2Re [ Y ~ I  ~*(r)fi~i(r)]. Using first-order per- 
turbation theory and the Kohn-Sham equations, one obtains a set of equations 
for the changes fiq~ in the wave functions when the perturbing field is present: 

[~ V 2 +  ~ss-e~] fi~b~(r)= 6V~ss(r)~b,(r) (28) 
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where: 

~--3 , fin(r') fin(r) ovLDA 
fiV~::(r) = Eor L Y°L(O ) + j a r  ~ + 0n(r) (29) 

is the self-consistent potential associated with the change in electron density due 
to the external field. 

The calculation of the polarizability, 0eL proceeds by first solving the 
Kohn-Sham equations for the field-free cluster, and thus obtaining q~i and ei. 
Then, after solving Eqs. (28) and (29) self-consistently to get the set of functions 
fiqSi(r), fin(r) is evaluated, and the L-order polarizability is finally obtained as: 

~L = ( l /Eo)  f d 3 rr  L Y°L(O) fin(r) . (30) 

In the case of L = 1 (dipole polarizability) this formula reduces to: 

=L=l=~fzfin(r)dar. (31) 

The calculated electric dipole polarizabilities of some Na clusters with closed 
electronic shells are given in Table 3 (see column LDA-SJM) [52]. The cal- 
culations employed the spherical jellium model. The results are expressed in 
units of the classical polarizability R 3. The enhancement of ~ over its classical 
value is directly proportional to the fraction of the electronic charge that extends 
beyond the positive background in the field-free system. The agreement with 
experiment is reasonable, although the theory systematically underestimates the 
polarizabilities. 

To improve the agreement with experiment, two kinds of corrections have 
been applied. The first consists in smoothing the discontinuity of the jellium 
density at the cluster surface. For this purpose, the original step-density is 
replaced by a continuous function that models a surface with a finite thickness of 
about 1 a.u. [52]. As a consequence, the electron density is more extended and 
the polarizability increases in this finite surface jellium model (see column 
FSJM), improving the agreement with experiment. The FSJM also improves 

Table 3. Electric dipole polarizabilities in units of R 3, of neutral 
sodium clusters in the spherical jellium model (SJM) and in a jellium 
model with finite surface thickness (FSJM) 

LDA 1-52] 

N SJM FSJM Exp [49] WDA 1-54] 

8 1.45 1.71 1.77 __+ 0.03 1.81 
18 1.33 1.53 
20 1.37 1.61 1.68 __+ 0.10 1.63 
34 1.27 1.46 
40 t.32 1.56 1.61 _____ 0.03 1.53 
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other fundamental properties. For instance, Fig. 2 shows that the magic charac- 
ter of N = 40 is weaker than that of N = 34 in the SJM, which is contrary to 
experiment. The FSJM increases the 2p - lg energy gap in the single-particle 
spectrum, and thus increases the magic character of N = 40, restoring agree- 
ment with experiment [52]. 

Other correction consists in replacing the LDA by a more accurate, nonlocal 
Vxc (r) goes to description of exchange and correlation. In a neutral cluster, Loa 

zero exponentially at larger r. However, in the non-local weighted-density 
approximation (WDA) [53], the asymptotic behavior of V~c is proportional to 
( - l/r). This slower decay gives a more extended density tail, and consequently 
a higher polarizability [54]. This is shown in the column WDA of Table 3. These 
calculations also employed the spherical jellium model. 

11 Dynamical Response 

Using a method analogous to that for static case, the linear response theory can 
be developed within the LDA for the case when the external electric field, 
characterized by the potential F~xt(r; co)= Eo rL Y°Lei'% is time-dependent. This 
leads to the time-dependent density functional theory (TDLDA) [55]. 

In this case, the external field induces a time-dependent perturbation of the 
electron density of the cluster, 6n(r,t), with Fourier components cSn(r,o~). The 
key quantity for calculating the response of the system in the linear response 
regime is the dynamic susceptibility )~(r,r';co), which relates the individual 
components, 6n(r, co), of the induced density to those of the applied field: 

p. t 6n(r;co) = x(r,r ' ;~) Vext(r,o))dr. (32) 

Again, the interest is primarily on the case of a dipole field, for which 
Vext(r,~o) = Eoze i~'t. The dynamical polarizability ~(m), which, in this case 
(L = 1) is the ratio of the induced dipole moment and the external field strength, 
becomes: 

~(co)=~ofz~Sn(r;o~)dr (33) 

The dynamical polarizability evidently reduces to the static one of Eq. (31) in the 
case of o9 = 0. Using Fermi's golden rule, one finally obtains the photoabsorp- 
tion cross section of the cluster, 

4n~o 
a(co) = - -  Im ~(~o) (34) 

C 

where c is the velocity of light and Im e(m) indicates the imaginary part of e(o~). 
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Let us now return to the calculation of Z (r, r'; co). In its Kohn-Sham formula- 
tion, DFT is a theory of independent particles moving in an effective self- 
consistent field. Thus Eq. (32) can be rewritten, 

f " 6n(r; to) = zo(r , r  ,to)SVejy(r'; to)d3r ' (35) 

where xo(r,r';to) is the independent-particle (or noninteracting) susceptibility, 
and 6V~::(r'; to) is the self-consistent perturbing potential (cf. Eq. (29)): 

,. [ 6n(r" ; 09) 2 E 
t ¢  ~ . . . .  ~n(r";to) dar'. ~ V~ss(r';to) = Vext(r ,to) + J I r' _ r"l dar" + j on(r )on(r  ) 

(36) 

A convenient way of writing 8 Ve:: is 

' f ~V~lr(r,to) = V~xt(r';to) + K(r ' , r" )6n(r" ;o) )d3r"  (37) 

where we have introduced the nonlocal Kernel, or residual particle-hole interac- 
tion: 

1 ~2Exc 
K(r ' , r" )  = I r' _ r"l + 6n(r ' )6n(r")  " (38) 

If the LDA is used for E~c, the local field correction, which is the last term in (38), 
becomes a local function. 

Inserting the expression (37) for 6V~:: in (35), and using the form (32) for 
6n(r;to) on both sides of the resulting equation, the following Dyson-type 
equation is obtained for the interacting dynamic susceptibility: 

v. v. f z ( r , r ,w)  = Zo(r,r,to) + Xo(r, r l ; t o ) K ( r l , r 2 ) z ( r 2 , r ' ; t o ) d 3 r l d 3 r z  

(39) 

which has to be solved iteratively. 
Finally, the single-particle (or non-interacting) susceptibility, which is 

needed to solve Eq. (39) has the form 

0C¢ 

Xo(r,r ,to) = Y, (~ ,  (r)~,(r)(~(r,r ,~, + h~o) 
i=1 

+ ~i(r)d?*(r')G*(r, r'; ei - hto)} (40) 

where the q~i are the occupied single particle states of the ground state KS 
calculation for the field-free system, ei are the corresponding single-particle 
energies and G(r,r';e~ +_ hw) are the retarded Green functions associated to the 
effective Kohn-Sham potential: 

I 1 E + ~ -- V~ss(r) G(r , r ' ;E)  = 6(r - r') (41) 
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Before discussing the results of the theoretical calculations, let us explain the 
way experimentalists obtain the photoabsorption spectrum of metallic clusters. 
Knight's group was the first to measure photoabsorption spectra, that are based 
on the fact that the clusters fragment upon absorption of light of the appropriate 
frequency; this effect induces a deviation of the cluster away from the initial 
direction of the molecular beam [56]. The ratio between the number of clusters 
of a given size arriving at the detector with and without light excitation gives the 
value of the absorption cross section. The process involved in this depletion 
experiment is the excitation of a collective mode (surface plasmon) at an energy 
that is about 3 eV for sodium clusters. Since this energy is higher than the 
binding energy of an atom in the Na aggregate (approximately 1.1 eV), the 
excited cluster decays by evaporating single atoms. Using a statistical model and 
assuming that the energy of the collective mode is converted into vibrations, the 
time required to evaporate an atom turns out to be 10-12-105 seconds for 
clusters with a size between 8 and 40 atoms. This time is very short compared to 
the time of flight of the molecular beam in the spectrometer ( ~ 10-3 seconds). 
Consequently one can assume that the photoabsorption and photoevaporation 
cross sections are equal. The collective excitations (or surface plasmons) in 
metallic clusters are similar to the giant dipole resonances in nuclei. 

The integral of a(o~) gives rise to the dipole sum rule, 

fo 4n2 a(~) d~ = ~ mx (42) 

where ml = eZh2Z/2m. Z is the number of electrons taking part in the collective 
motion. Consequently, the experimental determination of afro) helps identify the 
collective nature of a resonance. 

The classical theory of dynamic polarizability developed by Mie predicts 
a single dipole resonance at a frequency given by 

Z/• h3c2 (43) 

where m is the electron mass and R = rs Z1/3 is the cluster radius (rs is the radius 
of a sphere containing one electron.) This gives for ~oMie a value equal to one 
third of the bulk plasma frequency, ~%j. 

Linear response theory (TDLDA) applied to the jellium model follows the 
Mie result, but only in a qualitative way: the dipole absorption cross sections of 
spherical alkali clusters usually exhibit a dominant peak, which exausts some 
75-90% of the dipole sum rule and is red-shifted by 10-20% with respect to the 
Mie formula (see Fig. 7). The centroid of the strength distribution tends towards 
the Mie resonance in the limit of a macroscopic metal sphere. Its red-shift in 
finite clusters is a quantum mechanical finite-size effect, which is closely related 
to the spill-out of the electrons beyond the jetlium edge. Some 10-25% of the 
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Fig. 7. Schematic representation of the collective dipole spectra of sodium clusters obtained in linear 
response theory [57]. The quantity plotted is tr(to) as the percentage of the total dipole strength, ml, 
normalized to 100% (see Eq. (42)). The lowest spectrum (Nao~) represents the classical limit, where 
100% of the strength lies in the surface plasmon (frequency ~oMie) and the volume plasmon 
(frequency e~) has zero strength. For finite clusters the surface plasmon is red-shifted and its missing 
strength is distributed over the remainder of the strongly fragmented volume plasmon. 

dipole strength is typically found at higher energies and can be interpreted as 
a reminiscence of a strongly fragmented volume plasmon. 

Often the dominant peak is fragmented into two or more lines. The frag- 
mentation of the collective strength in spherical clusters can be attributed to an 
interference of specific particle-hole (or more complicated) excitations with the 
predominant collective mode. This fragmentation may be compared to Landau 
damping in the solid, although there it refers to a collective state lying in 
a single-particle continuum. 

As compared to experiment, all spherical jellium calculations yield an 
insufficient redshift of the Mie resonance. This is connected to the low polariza- 
bility. Therefore, a jellium density with a smooth surface [52], or other 
corrections found to improve the polarizability, also improve the position of the 
dipole resonance. Replacing the LDA by a nonlocal description of exchange and 
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correlation within the time-dependent DFT provides a step in the right direc- 
tion. Self-interaction corrections (SIC) have been applied by Pacheco and 
Ekardt [58] and the weighted density approximation (WDA) by Rubio et al. [59]. 
The behavior of the exchange-correlation potential is improved in the asymp- 
totic (large r) region and the local field correction (see Eq. (38)) is also improved. 
The number of bound states increases as compared with LDA, and thus the 
Landau damping as well. The plasmon resonances are displaced toward lower 
frequencies, leading to better agreement with experiment. Nonlocal effects play 
an essential role when the plasmon excitation occurs near the ionization thre- 
shold. In this case fragmentation of the plasmon resonance is expected. This 
should be the case for negatively charged clusters of a certain size. For small 
negative clusters, the collective resonance frequency lies in the region of 
transitions to the continuum of states, where Landau damping produces a large 
broadening of the resonance. As the cluster size increases, the plasmon fre- 
quency approaches the region of discrete states, because its value changes at 
a much lower rate than the increase in the ionization threshold of the negative 
cluster. Then, when the plasmon frequency is close to this ionization threshold, 
fragmentation of the plasmon is expected. This expectation has been confirmed 
by calculations for large negatively charged potassium [59] and sodium clusters 
[60]. Fragmentation is obtained using the WDA, but not if the LDA is used 
instead. This is because the LDA predicts a lower ionization threshold (identi- 
fied with -~noMo, where HOMO indicates the lowest bound orbital of the 
"negative" cluster), which remains well separated from the plasmon resonance. 

There are other deviations from the single-resonance Mie formula that are 
reproduced by the jellium model calculations [61]. In open-shell clusters a fur- 
ther splitting of the dipole resonance is observed; it is a consequence of their 
static deformation and can easily be described by the TDLDA calculations 
within the context of the spheroidal jellium model [61]. The double-peak feature 
in the photoabsorption cross section of positively charged clusters has been 
observed for K;1 by Brechignac E62], for Ag clusters in the region 10 ~< N ~< 16 
by Tiggesb~iumker et al [63-], and also for Na clusters [64]. The double peak 
indicates the two modes corresponding to excitation along the main axis of the 
spheroid and perpendicular to it. The results of Borggreen [64] reveal the 
systematics of cluster shapes observed when adding electrons to the N = 8 and 
N = 20 spherical clusters: spherical ~ prolate ~ oblate ~ spherical. This se- 
quence is reproduced by the spheroidal jellium model [-30, 32]. In larger clusters 
it is not easy to disentangle the effects of static deformations from those of the 
fragmentation mechanism discussed above. 

The observed widths of the resonance peaks are more difficult to explain 
microscopically than their positions. The decay mechanisms of the collective 
dipole resonances are, both theoretically and experimentally, still rather poorly 
understood. More experimental information on their temperature dependence 
and on the detailed line form is required in order to shed light on this 
problem. 

144 



12 Triaxial Deformations 

Density Functional Theory of Clusters 

A splitting of the dipole resonance into three peaks has been observed in some 
sodium clusters [64]. This observation is interpreted as corresponding to collec- 
tive vibrations of the valence electrons in the directions of the principal axes of 
a triaxially deformed cluster, and has motivated an extension of the deformed 
jellium model to fully triaxial shapes. Lauritsch et al. [65] have applied this 
model to Na12 and Na14. 

The potential energy surfaces of these two clusters were calculated with the 
intention to study the splitting of the dipole resonance, as well as the competi- 
tion between possible shape isomers. The triaxial (or ellipsoidal) deformations of 
the jellium density can be classified in terms of the Hill-Wheeler coordinates 
(fl, y) for quadrupole deformations [66]. /3 describes the overall quadrupole 
deformation. ~ = 0 °, 120 °, 240 ° describe prolate deformations and 7 = 60°, 180°, 
300 ° describe oblate ones; all other values of 7 refer to truly triaxial shapes. In 
addition to the shape deformation of the positive background, Lauritsch et al. 
also allowed the jellium density to have a diffuse surface profile that could be 
modelled with a Fermi function. The ground state of Na12 is predicted to be 
triaxial, with deformation parameters fl = 0.54, ~ = 15 °, and is energetically well 
separated from competing prolate and oblate configurations. Na14 is character- 
ised by axially symmetric minima: the two lowest configurations, prolate and 
oblate respectively, are almost degenerate in energy. The oblate minimum is 
rather soft in the y-direction whereas the prolate minimum predicts stiffer 
y-vibrations. The pronounced shape isomerism found for both clusters bears 
some resemblance to that found by fully microscopic quantum chemical [67] or 
ab initio DFT calculations [68]. 

Lauritsch et al. [65] obtained the resonance energies of the collective dipole 
oscillations of the valence electrons from the approximation: 

h2 f 02 
(he°i)2 = Nmm darn(r) ~ V~xt(r) (44) 

,a i 

where V~xt(r ) is the electrostatic jellium potential, m is the electron mass, and 
i runs over the spatial directions, i.e. ri = {x,y, z} for triaxial clusters and 
ri-- {r, z} for axial ones. Expression (44) is obtained from the random-phase 
approximation (RPA) sum rules [57,69]. The resonance energies were cal- 
culated for the most prominent minima in both dusters and the results are 
shown in Table 4. Three different energies are obtained for the ground state of 
Na12, reflecting its triaxial shape. The three energies are in qualitative agree- 
ment with the three experimental peaks [64], although the calculated energies 
are 10-15% too high due to the simple sum-rule approximation. Each of the 
two competing axial states of Nax4 is characterized by a double-peak structure 
where ho~r has double weight compared to h~oz. The actual strength distribution 
will be an incoherent superposition of the two isomeric minima, but the precise 
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Table 4. Dipole surface plasmon energies in a.u. obtained by Lauritsch 
et al. [65] from the RPA dipole sum rule approximation (44). 

Nal2 Nat4 

triaxial oblate prolate 

hcox bogy ho~. h~o, h~oz h~r h~o~ 
0.105 0.119 0.085 0.093 0.125 0.114 0.085 

outcome is difficult to predict because it can depend sensitively on the formation 
process of the clusters. 

Kohl et al. [47] have extended the calculations to a larger set of Na clusters 
(Na = 2-20). They confirm the results of the spheroidal jellium model: prolate 
clusters after the magic numbers N = 2 and N = 8 and oblate ones before N = 8 
and N = 20. However, a transition region formed by triaxial shapes was found 
separating the prolate and oblate regimes. The width of this transition region is 
very small between N = 2 and N = 8, containing only the cluster Nas, but 
comparatively large between N = 8 and N = 20. The triaxial minimum is well 
developed in Na5 but triaxiality of the others is extremely soft so that thermal 
fluctuations easily wash out the triaxial signatures in the dipole resonance 
energies. 

13 Fission of Charged Clusters 

Stable multiply charged clusters can be observed only above a critical size, No, 
that depends on the metal and on the charge state. In the case of alkali metals, 
the critical size for the observation of doubly charged clusters is 25 for Li [70], 
27 for Na [39, 71], 20 for K [70], and 19 for Cs [72]. Critical sizes of clusters as 
highly ionized as Na~ + and Cs~ + have also been determined [73]. 

These critical sizes are determined studying charged clusters produced by 
multi-step ionization of hot larger clusters that lose a sizeable part of their 
excitation energy by evaporating neutral atoms. This causes the ionized dusters 
X~ ÷ to shrink up to sizes N ~ No. For sizes around No, monomer evaporation 
competes with another dissociation channel, asymmetric fission, in which two 
charged fragments of different size are emitted. Electronic shell effects are 
manifested in the fission channel, with preferential emission of closed-shell 
fragments, such as Na~, K~-, or K~- [74]. 

However, stable multiply charged clusters have also been detected below No. 
This occurs if they are created in a multi-step ionization process starting from 
cold neutral clusters [39, 71], and indicates the existence of a stabilizing fission 
barrier. These experimental facts show that cluster fission is a barrier-controlled 
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process, and have prompted interest in calculating these barriers. Old DFT 
studies of charged cluster fragmentation using the SJM were based on pure- 
ly-energetic criteria, which only involve the energies of the initial and final states 
[75]. These early studies correctly predicted that emission of closed shell 
fragments (Na~-, Na t  .... ) is likely to occur. 

However, consideration of the fission barrier is necessary in order to under- 
stand the nature of N~ and calculate its value. For hot large clusters the preferred 
decay channel is evaporation, 

X~, + -~ X~,+_I + X (45) 

because the barrier against fission is larger than the heat AHe required to 
evaporate a neutral atom. On the other hand, small clusters undergo fission: 

X 2+ --* X2+_3 + X~- (46) 

because the fission barrier is, in this case, smaller than AHe. (In (46) we have 
assumed, for simplicity, that the most favourable fission channel is the emission 
of a charged trimer.) 

A schematic representation of these two cases is shown in Fig. 8. AHe is given 
by the energy difference: 

AHe = E(X2+-I) + E ( X )  - E ( X  2+) (47) 

and F,,, the fission barrier height, is the difference in energy between the 
fissioning cluster at the saddle point and the parent cluster: 

F,, = E(saddle) - E ( X  2+) . (48) 

If the fission barrier vanishes, the cluster is absolutely unstable with respect to 
fission. 

So far, no experimental model-independent determinations of fission barrier 
heights are available. A promising method has been proposed by Br6chignac 
et al. [70] which employs two ingredients: one is the experimental branching 
ratio of fission to monomer evaporation corresponding to the same doubly 

N<N c 
2+ NaN. 1 + Na 

N >N c 

Fm AHe T ~ Na2+l + Na 

r mil o \ + T 
o I II . . . . . . .  

° 

Fig. 8. Competition between fission and evaporation, dHe and AH s are the heats of evaporation 
and fission, respectively. F,, and B,. are the fission and fusion barrier heights, respectively. 
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charged cluster, and the other is the dissociation energy of that cluster singly 
ionized. More sophisticated fission-barrier calculations have been performed by 
Landman and coworkers [76] for small Na 2+ and K~ + clusters (N ~< 12) by 
combining DFT and molecular dynamics. These microscopic calculations have 
shown the possible existence of double-hump barriers, as in nuclear physics, and 
have also reproduced the emission of a charged trimer as the predominant 
fragmentation channel; unfortunately the method becomes very difficult to 
apply for large clusters. 

It has been found convenient to express Fm as the sum of two terms [77]: 

F,, = Al ly  + B,, . (49) 

The first term is the heat fission, 

AH I = E(X~+_3) + E(X~)- E(X~ +) (50) 

and B,. is the barrier for the opposite process of fusion of the two fragments to 
give the parent cluster, that is: 

x _3 + + . (51)  

Even in the jellium model, the calculation of AHe and F,, is a formidable 
task. Very often, either the parent cluster or the final products are not magic, so 
to obtain the energy of each isolated fragment one has to carry out a deformed 
jellium calculation, in which the positive background adopts shapes whose 
equilibrium deformation has to be determined in a self-consistent manner. 
Furthermore, a detailed description of the barrier requires solving the KS 
equations for a sequence of jellium shapes connecting the initial configuration, 
spherical or deformed, with the final one corresponding to two separated 
fragments, each at its equilibrium deformation. Several shape parametrizations 
of this kind exist [78]. 

The fission reaction N ~2 + ~ Na~l + Na~- has been studied [79], modelling o,24 

the fissioning cluster by axially symmetric jellium shapes corresponding to two 
spheres smoothly joined by a portion of a third quadratic surface of revolution 
[80]. This family of shapes is characterised by three parameters: the asymmetry, 
A, that is fundamental to the description of asymmetric fission, the distance 
parameter, p, which is proportional to the separation between the emerging 
fragments, and the "deck" parameter, )~, which takes into account the neck 
deformation. 

Given a cluster configuration defined by a set of values of the jellium 
parameters (A, p, 2), the density of the valence electrons is calculated self-consis- 
tently by minimizing the total energy of the system. Fig. 9 shows the barriers 
obtained for two different jellium parameterizations, both of them characterised 
by A = 0.3134. The first (dashed line) corresponds to the jellium shapes sche- 
matically shown at the top of the figure, where the cluster is forced to elongate 
up to s = t8.3 a.u. (p = 1.175) and scission occurs at s = 23 a.u. After that point, 
the barrier slowly tends from below to the classical Coulomb barrier (point-like 
coulombic repulsion between the fragments). The solid line in Fig. 9 corresponds 
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Fig. 9. Kohn Sham total energy for the fission process Na~,~ ~ Nafl + Na~ as a function of 
fragment separation for two different fission pathways. The dashed and continuous lines correspond 
to the jeltium shapes schematically shown at the top and bottom of the figure, respectively [79], 

to the fission pathway described by the jellium configurations shown at the 
bottom, in which the neck starts at s = 6.1 a.u. (p = 0.35). Other fission paths 
have also been studied; the result is that the solid line leads to the minimum 
barrier height, Fm= 0.14 eV. This is obtained as the difference between the 
energy at the maximum of the barrier (s = 22 a.u.) and the energy of the 
minimum at s = 17 a.u. This minimum is the ground state of the cluster, which is 
nonspherical because this cluster has the outermost shell only partially filled. 
The tendency of this cluster to asymmetric fission is already apparent in its 
ground state, which can be considered to be a supermolecular ion Na~l - Na~-. 
A similar result has been found for K~] in DFT molecular dynamics calcu- 
lations [76]. 

A useful observation is that the saddle point corresponds to a configuration 
in which the emerging fragments are already separated and tied up by the 
electronic cloud. This is a general property, valid for asymmetric and symmetric 
fission channels of any fissioning cluster [77, 79]. As a consequence, if the goal is 
only to obtain the barrier height Fm and not the full details of the barrier shape, 
one can start the calculation with a configuration of two tangent jellium spheres, 
and then increase their separation. This is the so called two-jellium-spheres 
model (TJSM) [81,82], which has been employed to investigate the competition 
between fission and evaporation. Of course, an independent calculation has to 
be performed in order to obtain the ground state of the (spherical or deformed) 
parent cluster. 

At very large separations, the interaction between the fragments is just the 
pure Coulomb repulsion between point charges. For separations near the 
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touching configuration, the electronic densities of the fragments overlap, giving 
rise to a bonding charge similar to that in ordinary diatomic molecules. This 
bonding charge is responsible for the lowering of the repulsion energy below the 
pure coulomb repulsion; this lowering leads, in fact, to a maximum in the barrier 
[83]. 

Electronic shell effects are evident in the case discussed here, and affect many 
others. The separation of Fm into the two terms of Eq. (49) is useful, because the 
shell effects are concentrated in AHj,  as early studies had already hinted 
[75,84]. For this reason calculation of B,, has also been performed, using 
a simple version of DFT, namely an extended Thomas-Fermi (ETF) approxi- 
mation, within the framework of the TJSM [81, 82]. The ETF functional differs 
from that in Eq. (11) in the kinetic energy, which is approximated by: 

E~rF = 3 (an2)2~3 f n(r)'/a d3r + ~ f ~ d3r . (52) 

The first term is the local Thomas-Fermi energy and the second gives the von 
Weisficker quantum correction [11]. A value fl = 0.5 for the coefficient in this 
term has been found convenient for jellium clusters [85]. The results obtained 
for B,, are in good agreement with those from a full Kohn-Sham calculation. 
The ETF method is also useful to calculate the fission barrier F,, for very large 
clusters [86], where the importance of shell effects is expected to decrease and 
a full KS calculation becomes tedious. 

We have indicated above that the fusion barrier can be interpreted as the 
pointtike coulomb repulsion between "colliding" fragments, (with positive 
charges q - 1 and 1 respectively, plus a bonding (negative) contribution from 
the density overlap: 

B(s) q -  1 = - -  + Vts) . (53) 
s 

For the charged-trimer emission, good agreement with the calculated fusion 
barriers of alkali metal clusters has been obtained by Garcias et al. [87], using 
the following parametrization of the bonding potential: 

V(s) = -- VoRo exp [ -- ~(s - Ro)] (54) 

in which Vo = O.O08/rs .r~ is the radius of the Wigner-Seitz cell in the metal, 
Ro = R1 + R2 = rs [(N - 3) U3 + 31/3] is the sum of the radii of the two frag- 
ments, and ~ = 0.2. A qualitative justification for the form of V(s) has been given 
using DFT [871. Crucial for this justification is the exponential decay of the 
electron densities of the separated fragments (see Ref. [87] for details). A single 
value, c~ = 0.2, describes the entire alkali group, but different values may be 
needed for other groups. 

Combining the fusion-barrier calculated in this way with the heats of fission 
AHy (see Eq. 50) obtained from a classical metallic drop model, Garcias et al. 
obtained the fission barrier heights F,, for alkali metal clusters with charges 
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q = 1-7. The explicit expression for A Hy is 

A H f  = as [(N --  3) 2/3 + 3 2/3 - N 2/3] 

1 [ q ( 4 q - 1 ) ( q - 1 ) ( 4 q - 5 ) 3  2/3] 
(55) 

rs [_ ~ i 7 3  8 (N  - 3) 1/3 8 j  " 

This expression arises by adding in the metal-drop energy of Eq. (15), .a term 
accounting for the coulomb energy of a charged duster [70, 74], and neglecting 
the curvature term. 

The heat of evaporation of a neutral monomer from the parent charged 
cluster xq, ÷ (see Eq. (47)) can also be calculated using the metallic drop model: 

q ( 4 q - l , [  1 1 ] 
Z l n e =  as[(N - 1) 2/3 q- 1 - N 2/3] - 8 r  7 ~/-i-t3 (N -- 1) 1/3 " 

(56) 

Comparison of A He and Fm then leads to a prediction of the critical numbers for 
the observation of charged clusters. The results, given in Table 5, are in very 
good agreement with the experimental critical numbers, shown in parentheses in 
the Table, except for Na clusters with very high charge (q = 6 or 7). 

14 d-Electrons in Noble Metal Clusters 

It was mentioned in Sect. 4 that electronic-shell effects appear in the mass 
abundance [10,43], ionization potentials [88], and electron affinities [89] of 
noble metal clusters that are very similar to those observed for alkalis. These can 
be readily interpreted within the spherical jellium model if we treat the noble 
metal atoms as monovalent, that is, each atom contributes its external s-electron 
only. Even more, odd-even effects are also observed for small N in the properties 
mentioned above, and have been explained by Penzar and Ekardt [32] within 
the context of the spheroidally deformed jellium model. 

This provides information on the electronic structure near the top of the 
occupied orbitals of the cluster. The next question is how much deeper we can 

Table 5. Calculated [87] and experimental (in parentheses [73]) appearance critical sizes for 
the observation of multiply charged alkali metal clusters as a function of charge q. 

q Li Na K Rb Cs 

2 24 (25 ± 1) 26 (27 ± 1) 24 (20 ± 1) 24 (19 ± 1) 
3 56 63 (63 ± 1) 59 (55 ± 1) 59 (54 + 1) 
4 103 117 (123 ± 2) 110 (110 ± 5) 109 (108 + 3) 
5 164 185 (206 _+ 4) 173 172 
6 240 268 (3t0 ± I0t 249 247 
7 330 366 (445 ± I0) 337 335 

23 (19 ± 1) 
57 (49 + 1) 

105 (94 ± 1) 
165 (155 + 2) 
236 (230 ± 5) 
319 (325 ± 10) 
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probe down into the band structure of noble metal clusters. Smalley and 
coworkers [90, 91] have used Ultraviolet Electron Spectroscopy (UPS) to probe 
the 3d electrons of negative copper clusters (Cu~ ~) with N up to 410 atoms. 
Probing the d-band requires high photon energies. These authors found a 
large peak, roughly 2 eV higher than the weak initial threshold, which moves 
smoothly with cluster size. For the small clusters, its position merges with the 
position of the d levels of the copper atom. For the large clusters, the peak 
matches welt with the sharp onset of the 3d band in the UPS of bulk copper. For 
all of these clusters, it seems safe to attribute this feature to the photodetachment 
of primarily 3d-type electrons. Unlike the large size-dependent variations of the 
UPS threshold, which is associated to the 4s electrons, the 3d features shift 
monotonically with the cluster size, as is consistent with the different valence 
nature of these spectral features. 

In the conventional band picture of solid noble metals, the valence band 
contains the localized d-electrons as well as the extended s-electrons, and s-d 
mixing is substantial [9]. The picture of valence electrons is far from that of the 
free electrons in simple metals. It is, therefore, intriguing how well the shell 
model also works in noble metals. 

Fujima and Yamaguchi [92] have performed selfconsistent DFT calcu- 
lations for Cu clusters with sizes up to Cu19 and a variety of model structures: 
Cu6-octahedron, CUB-CUbe, Cu12-icosahedron, Cu~3-icosahedron, Cu13- 
cuboctahedron, Cu15-rhombic dodecahedron. Cu19-combination of cubocta- 
hedron and octahedron, using the DV (discrete variational) X~ method. An 
analysis of the molecular orbitals shows that these can be classified as two types. 
The first type is formed by molecular orbitals built from atomic 3d orbitals. 
These expand a narrow energy range of comparable width to that of the d-band 
of the solid, and do not mix with the second type of molecular orbitats, which are 
derived from atomic 4s-4p orbitals. The 3d charge is localized around atoms, 
whereas the sp charge is extended over the whole cluster. 

Next, Fujima and Yamaguchi tried to relate the results of their DV calcu- 
lation to the shell model. If one disregards the molecular orbitals with d- 
character on the atoms, the sequence of the remaining molecular orbitals can be 
reproduced fairly well by considering a spherical model potential with a small 
unharmonic term (this is essentially the form of the effective potential one 
obtains in the spherical jellium model). However, if the cluster lacks a central 
atom, as in the case of the icosahedral structure of Cu12, a 3-dimensional 
Gaussian potential barrier has to be added, to simulate the missing atom. The 
one-to-one correspondence between the energy levels of the DV method and the 
simple model potential leads to the conclusion that the shell model is applicable 
to Cu clusters. The d-band is located in energy between the ls and lp levels of 
the shell model for 3 ~< N ~< 8 - more precisely between the molecular orbitals 
with overall symmetries comparable to those of the ls and lp levels - between 
the lp and ld levels for 9 ~< N ~< 18, between the ld  and 2s levels for 
19 ~< N ~< 20, and so on. 
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15 The Spherically Averaged Pseudopotentiai (SAPS)Modal 

In spite of the success of the jellium model in explaining the electronic properties 
of simple metal clusters, in particular when deformations of the background 
away from the spherical symmetry are allowed, introduction of the granularity 
of the ions is a desirable next step for many purposes. A first-principles DFT 
approach is possible for small or medium size clusters, but solving the 
Kohn-Sham equations in this many-center problem, and especially the calcu- 
lation of the equilibrium geometry, becomes a difficult computational problem 
for large clusters. With large clusters in mind, a method has been introduced 
[93] that goes one step beyond the usual jellium model, by employing 
pseudopotentials to describe the electron-ion interaction, although the method 
makes several drastic approximations concerning the net external pseudopoten- 
tial. Those approximations make the problem of solving the Kohn-Sham 
equations tractable for large dusters. 

Consider now a cluster where the ions are placed at positions {Rj}j= 1...N. If 
each ion is replaced by a local pseudopotential, vp~ ( I r -  Rj[), then the total 
external potential seen by the valence electron cloud of the duster is: 

N 

j = l  

The usual calculation of the equilibrium geometry starts by assuming an 
initial geometry {Rj}i,,i,i,,t. The Kohn-Sham equations are then solved selfcon- 
sistently in the standard way to obtain the electron density and the total energy 
of the cluster. Since the initial geometry was chosen arbitrarily, small displace- 
ments of the ions from their initial positions can lower the total energy of the 
cluster. Another way of stating this is that the forces acting on the atoms are not 
zero for this initial configuration. An efficient way to continue is to displace each 
atom a small distance in the direction of the net force Fj acting on it; this strategy 
is called steepest-descent relaxation. This process generates a new set of ionic 
positions {R j}. The total energy of the cluster is calculated for the new geometry 
and the cycle is repeated again and again until all the forces vanish, that is, until 
the energy of the cluster is at a local minimum. This gives us one of the many 
possible isomers of the cluster. If we want to obtain the geometry corresponding 
to the absolute energy minimum, the entire process just described has to be 
repeated, starting with a new set {R j} i,,i,~t of"initial" ionic coordinates. Evident- 
ly after trying many initial configurations we have a better chance of finding the 
absolute equilibrium geometry, or at least one isomer with an energy close to it. 

Other more sophisticated methods of calculating the equilibrium structure 
exist. One of the most effective is the technique of simulated annealing [94], 
which allows for surpassing potential energy barriers in the potential energy 
hypersurface, but it requires intensive computational effort. 
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Experience with the spherical jellium model suggests that, at least for clusters 
with a nearly spherical shape, one may simplify the process of solving the KS 
equations by replacing the external pseudopotential of eq. (57) by its spherical 
average about the cluster centre [93]: 

V~s(r)--,  vSAPS(r )  . (58) 

In this way one arrives at the SAPS (spherically averaged pseudopotential) 
method, This simplification drastically reduces the computational effort since 
we now have a problem of interacting electrons that are moving in an external 
spherically symmetric potential well. Despite this simplification, the SAPS 
method goes a long way beyond the jeUium model, since: 

a) The SAPS potential is less smooth than the external potential of the spherical 
jellium model. 
b) Although the ion-electron interaction only retains the radial part of the total 
pseudopotential, the ion-ion interaction Eio,.io, is calculated for the true three- 
dimensional array of ions, that is: 

Eio,.~o, = ~, U ( J R , -  Rj]) , (59) 

One can set limits of validity to the SAPS model. The cluster cannot be too 
small, because small clusters with open electronic shells deform away from 
spherical symmetry. On the other hand, very large clusters have the tendency to 
form planar surface facets. The intermediate cluster range between those two 
limits is well adapted to SAPS. 

16 Results of the SAPS Model for Homoatomic Clusters 

Figure 10 shows the calculated radial distribution of atoms in Na25 and Na30, 
taking as origin the cluster centre [93]. The empty-core pseudopotential [95] 
was used in the calculations. These results illustrate how the clusters are formed 
by shells of atoms. For clusters of small size, most atoms form a surface shell, 
and only a few atoms are in the inner region. The surface shell has a width of 
nearly one atomic unit. The evolution of the population of the outer and inner 
shells has been studied in detail for the case of Cs~ [963. Between N = 7 and 
N = 18 the centre is occupied by one single atom. The population of the inner 
region increases slowly after N = 18, forming an inner shell, leaving an empty 
hole at the centre of the cluster. At N = 40 one atom again occupies the center of 
the cluster and the configuration of a central atom plus two surrounding atomic 
shells persists until N = 64, when a third shell begins to grow in the inner region 
of the cluster. The restructuration mechanism for increasing N is then: (n 
shells) ~ (n shells + 1 central atom) ~ (n + 1 shells). 
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Fig. 10. Radial distribution of 
atoms in Naz5 and Na3o cal- 
culated by the SAPS model 
[93]. 

In conclusion, a strong geometric reconstruction of the cluster occurs as it 
grows, at least in the case of simple metals. New atomic shells grow in the 
innermost region of the cluster when there is enough free space to accomodate 
first one single atom, and then additional atoms. There is a complementary view 
of this effect: The distance between the central atom and the surface atoms 
increases slowly between Cs7 and Cs18, since more and more atoms must be 
accomodated in the surface layer. For  Cs18 this distance has already become 
slightly larger than the nearest-neighbor distance, db,",, tk = 9.893 a.u., in bulk Cs. 
The SAPS calculation indicates that Cs19 reconstructs its geometry in order to 
avoid interatomic distances larger than db~ tk. This is achieved by placing the 
additional atom in the interior of the cluster rather than on the surface. For CS63 
the situation is analogous. Now the central atom is surrounded by an atomic 
shell of 19 atoms with a mean radius nearly identical to that of Csl8 again larger 
than db~ tk. The next cluster, Cs64, has two atoms in the innermost region, just 
like Cs19. 

A contraction of the cluster volume with respect to that of an equivalent 
piece of bulk metal has also been predicted [96]. The calculated cluster radius is 
smaller than the radius assumed in the spherical jellium model, where the 
volume is the same as that of an equivalent piece cut out of a macroscopic metal. 
This global contraction seems to be a general feature of small metallic clusters, 
and is well documented experimentally [97]. The volume contraction explains 
the discrepancies between experimentally determined static polarizabilities of 
small aluminium clusters and those obtained from jellium calculations [98]. The 
measured polarizabilities of A1N clusters with N < 40 are smaller than those 
predicted by a SJM calculation. The classical static polarizability (per atom) for 
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a metallic sphere of radius R is: 

g 3 

ecla.~sic,~ N (60) 

For a jellium sphere the polarizability is enhanced, because the electronic charge 
density spills out beyond the jellium edge, and the polarizability can be written: 

(R + 0) 3 
a J e l l i u  m - -  (61) 

N 

where 6, which is related to the electronic spill-out, is small and approximately 
constant for all sizes. The fact that the jellium polarizabilities of small AI clusters 
are larger than the experimental ones indicates that R is overestimated in this 
model. The SAPS calculation lowers the values of R and leads to better 
polarizabilities [98]. 

At the end of Sect. 5 we mentioned the work of Lange and coworkers [27], 
noting how these authors modified the spherical jellium model in order to 
obtain the required sequence of magic numbers - reflected in the sudden drops 
of the ionization potential - for large clusters of alkali metals. Success was 
achieved by deforming the positive charge background to make the cluster 
denser in its inner part. SAPS calculations [99] have provided a microscopic 
interpretation of the model used by Lange and coworkers. An analysis of the 
interatomic distances in CsN clusters with sizes up to N = 80 shows that the 
distribution of interatomic distances is not homogeneous, those in the inner 
region of the cluster being shorter than in the outer region. Additional calcu- 
lations for Mg clusters [100] indicate the same effect. The inhomogeneous 
contraction of interatomic distances seems to be a general effect in simple metal 
clusters. 

The SAPS model has been used to study the influence of cluster geometry on 
the photoabsorption spectrum calculated using TDLDA. Since only clusters 
with nearly spherical global shape can be treated by this method, we restrict the 
following discussion to this class of clusters. Photodeptetion experiments for 
Na8 [101,102] show a single resonance peak at 2.53 eV whereas the SJM gives 
the plasmon peak at 2.92 eV, SAPS calculations, using a pseudopotential 
developed by Manninen [103], have been performed for two cluster geometries: 
Dgd (square antiprism) and T d (tetracapped tetrahedron) [104]. These can be 
viewed as formed by one and two shells of atoms, respectively: the latter (Ta) is 
the ground state geometry, obtained from ab initio Configuration Interaction 
(CI) calculations [105]. For a fixed geometry, the position of the calculated 
plasmon peak depends on the interatomic distances. When these distances are 
taken from the CI calculations [105], the plasmon peaks are obtained at 2.52 eV 
(Ta) and 2.54 eV (D4n), in very good agreement with experiment. It should be 
noticed that the CI interatomic distances are about 15% smaller than those 
measured in bulk sodium. The insensitivity of the peak position to the detailed 
structure of the duster reveals the fact that the plasmon position is determined 
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by its volume. Knowledge of the structure is, however, essential in order to 
describe the fragmentation of the plasmon, that arises from the presence of 
nearby particle-hole transitions. A two-peak structure has been observed in the 
photoabsorption spectrum of Na2o [106]. The energies of the larger of these two 
peaks is 2.42 eV and that of the smaller one is 2.78 eV. The fragmentation of the 
surface plasmon is attributed to the proximity of a particle-hole transition. The 
SJM reproduces the two-peak structure, but the energies are larger, namely 
2.72 eV and 2.98 eV respectively. A calculation for the geometry predicted by the 
SAPS model, which consists of a nearly spherical surface shell formed by 18 
atoms enclosing two atoms inside it, leads to two peaks with energies closer to 
the experimental values [104]. 

For Cs8, a fragmentation peak (at 1.48 eV) has been observed near the 
surface plasmon line at 1.55 eV [107]. Using the SJM, one obtains the surface 
plasmon at 1.79 eV, but not the fragmentation, The SAPS model predicts the 
square antiprism as the ground-state geometry of Cs8. By properly choosing the 
cluster radius (R = 9.09 a.u.) and the core radius (re = 4.6 a.u.) for the Manninen 
pseudopotential, the SAPS model leads to a good fit to the experimental 
plasmon peak and to its fragmentation [104]. The radius adopted, R = 9.09 a.u., 
corresponds to interatomic distances 10% smaller than in bulk Cs. A good fit 
could not be obtained for tested geometries other than the square antiprism. 

Non-local exchange-correlation effects have been considered in the study of 
Na~-i [108]. The measured spectrum shows a surface plasmon at -~ 2.64 eV 
[62]. The SAPS geometry is formed by a surface shell with eighteen atoms 
enclosing three others in the interior. The combination of geometrical (SAPS) 
corrections and nonlocal (WDA) effects leads to a peak position at 2.70 eV. 

A promising extension of the SAPS model has been achieved by Sch6ne et al. 
[109]. These authors expand the external potential of Eq. (57) about the center 
of the cluster: 

l 
Ws(r) = VSApS(r) + ~ ~ Vl.in(r) Y~ (62) 

i=1 In=-1 

where the first term in the expansion is the SAPS potential. The second part of 
the pseudopotential was included perturbatively up to second order on top of 
a SAPS calculation. Selecting several isomeric geometries taken from ab initio 
molecular-dynamics DFT calculations [68], Schrne et al. obtained the same 
ground state geometry of Na8 as in the ab initio DFT calculations. Incidentally, 
this geometry is different from the one obtained by the CI method [105].) The 
main problem with the perturbative approach of Schrne et al. is that in practice 
it can only be applied to rather symmetric clusters; so full geometrical optimiza- 
tion is not possible. Similar ideas, based on a perturbative introduction of 
geometrical effects beyond SAPS, have also been applied by Rubio et al [110] to 
C6o. Sch6ne et al. have also explored the post-SAPS effects on the collective 
electronic response. 

In contrast, a simplified version of the SAPS model has been proposed by 
Spina and Brack [11 I]. Their main assumption is that all atoms in a given shell 
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are at exactly the same distance from the cluster centre. An additional simplifica- 
tion is that the discrete point-like distribution of the ions in a shell is replaced by 
a uniform continuous distribution. In this way, the number of variational 
parameters corresponding to the ions is drastically reduced. The number of 
atoms in the shells, and the radii of these shells, are the variational parameters of 
the model. The results for the radii and populations of the shells agree well with 
those of the original SAPS, and make it possible to perform calculations for 
large clusters with very modest computational effort. 

Lerm~ et al. [112] have applied the SAPS model to the study of shells and 
supershetts in large dusters. For this purpose, they started with the simplified 
SAPS model of Spina and Brack [111]. The first aim was to investigate to what 
extent the granularity of the ionic background could modify the electronic shell 
structure of the SJM. Ab-initio DFT calculations [44, 67, 68] for small (N < 25) 
clusters and SAPS calculations for N < 100 [113] preserve the electronic shell 
structure of the SJM. The calculations of Lerm6 et al., for clusters with up to 
a few thousand electrons, show that in spite of the periodic distortions that 
modulate the effective potential, strong level-bunching occurs, characterized by 
the same bunching observed in the SJM. However, there are differences in the 
subshell structure. Lerm6 et al. [112] compared the results obtained with and 
without the simplification of Spina and Brack for the layer width, and they 
concluded that the subshell structure is sensitive to the details of the model as 
regards the ionic distribution. (The width of the ionic layers is influenced by the 
temperature.) They then turned to a study of the supershells. The introduction of 
pseudopotentials shifts the supershell nodes to lower electron numbers com- 
pared to the SJM, and the magnitude of the shift also depends on the width 
assumed for the atomic layers. However, the radial region close to the cluster 
center has no effect on the electronic shell structure, which is controlled only by 
the structure of the layers, near the surface. The precise parameterization of the 
atomic pseudopotential is also of a fundamental importance. The non-cou- 
lombic short range behavior of the pseudopotential results in an increase of the 
softness of the effective potential at the surface. 

17 Formation of Shells of Atoms in Large Clusters 

When the mass spectrum of large-NaN clusters is plotted versus N 1/3, the magic 
numbers appear at approximately equal intervals. However, the experiments of 
Martin et al. [14] show that the period of appearance of these features changes 
abruptly in the size region 1400-2000 atoms. The new periodicity, which is 
observed starting at ~ 1500 atoms and persists up to the largest clusters studied 
(N ~ 22000), is interpreted as reflecting the formation and the filling of shells of 
atoms. For small or medium size clusters, we know that the cluster shape 
changes every time an atom is added. However when the cluster size is large 
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enough, changes in its global shape become more and more difficult and a new 
growth pattern emerges. It is believed that large clusters grow by adding shells of 
atoms to a rigid cluster core. The magic numbers observed in the experiments 
suggest that as the alkali metal clusters grow, they form closed-packed or nearly 
closed-packed polyhedra with icosahedral or cuboctahedral (fcc) shape. The 
total number of atoms Nx in a cluster containing K shells of atoms is [114], 

N~ = ~(10K 3 -- 15K 2 + I l K  - 3) (63) 

which are in very good agreement with the main features of the experimental 
mass spectra. Similar features are also observed for alkaline-earths [115, 116]. In 
this group an analysis of the secondary features of the mass spectrum is possible. 
This analysis gives information about the progressive formation of each shell, 
and indicates a "sub-shell" filling (faceting) process that is consistent with the 
icosahedral structure [115, 1 t6]. It has not yet been possible to perform similar 
analysis for the alkali metals, but DFT calculations using the SAPS model give 
support to the icosahedral structure for these clusters as well [117]. 

The structure observed in the mass spectra obtained by Martin and 
coworkers [14, 115, 116] reflects size-dependent variations of the ionization 
potential. Although it is clear that the ionization potential will have a maximum 
value for a closed "electronic shell" and then drop, it is far from evident why 
a similar drop occurs after the closing of a "shell of atoms". SAPS calculations 
have been performed for model clusters with bcc structure and nearly spherical 
shape [118]. The clusters were modelled by starting with a central atom and 
adding a first atomic coordination shell of 8 atoms around the central atom, and 
then a second coordination shell of 6 atoms, etc. By proceeding in this way, the 
clusters modelled are nearly spherical and the SAPS approximation is more 
adequate. Clusters in the neighborhood of several atomic shell-closings 
(N = 169, 331,531,941, 1243, 1459, 1807 and 2085) were explored by calculating 
the ionization potential IP as a function of size. IP suffers a drastic change after 
completion of a shell of atoms. In all cases there is a change in the slope of IP as 
a function of N, and a maximum is often observed there. 

The structures detected in the experiments (cuboctahedral or icosahedral) 
have faceted surfaces and are less spherical than the model bcc clusters. How- 
ever, we expect that the main result obtained for the model bcc clusters, namely 
the drastic change of IP after completion of a shell of atoms, can be extrapolated 
to more realistic geometries and to the relevant size range. 

How can the transition from shells of electrons to shells of atoms be 
interpreted? Small sodium clusters are soft. There is no difficulty for the atoms to 
arrange themselves into a spherical conformation if this is demanded by the 
closing of an electronic shell or for the cluster to adopt deformed shapes in the 
case of open electronic shells. That is, small clusters behave like soft droplets, not 
necessarily liquid. When the size reaches about 1500 atoms, the electronic shell 
effects have become less intense and, consequently, changes in the global cluster 
shape become more difficult to attain. Under these circumstances, the formation 
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of closed-packed symmetrical structures is more effective, and further growth 
takes place by condensation of atoms onto the surface of a rigid core, to form 
new shells of atoms. 

The structure of bulk Na is body-centered-cubic. Consequently, the 
transition to the bulk structure has not yet occurred for N ~ 20000, in the Na 
clusters formed in Martin's experiments. Alonso et al. [119] have proposed that 
the reason why the bcc phase is not yet formed at these large sizes is that the 
screening cloud, n~C'(r), around a Na ÷ ion in a finite Na cluster depends so 
strongly on duster size, that nSCr(r) has not yet converged to its bulk limit even 
for clusters with ten thousand atoms. Since n~Cr(r) determines the effective 
interionic potential, which, in turn, determines the crystal structure of a metal 
[9], it is not surprising that much larger sizes appear to be required for the bcc 
structure of the bulk to develop. Further work along these lines is required in 
order to fully understand the screening of an ion in a finite cluster and its 
relation to concepts derived from bulk properties [120]. 

18 SAPS Model for Clusters with a Single Impurity 

Here we are concerned with the question of how, embedding a highly reactive 
impurity, like oxygen, in an alkali-metal cluster changes the size-dependent 
electronic and structural properties of the host cluster. The case of Cs clusters 
with a single oxygen impurity (CsNO) has been studied in detail [99, 121,122]. 
The only relevant comments about the SAPS calculation for this particular case 
are the following: a) The oxygen atom was placed at the cluster center, b) The inner 
electrons of the oxygen atom are also included in the calculation [99,121]. The 
electronic configuration of the free oxygen atom is (ls) 2 (2s) 2 (lp)4. The lp shell 
becomes filled in the cluster by the valence electrons donated by the Cs atoms. 
Then the electronic shells of the cluster are filled in the following sequence: 3s, 
2p, ld, t f, 4s, 3p, lg, 2d,... This sequence results in closed-shell configurations 
when the number of Cs atoms (N) is 4, 10, 20, 34, 36, 42, 60 .... The onset of the 4s 
shell is practically degenerate with I f  and the same lg with 3p. In conclusion, 
pronounced shell-closing effects only occur for N = 10, 20, 36 and 60. These shell 
closings are reflected in the calculated ionization potentials that display drops at 
these particular sizes. The main features of the experimental IP [122] agree well 
with the calculation: the predicted drops at N = 10, 20, 36 show up in the 
experiment, although the theoretical calculation exaggerates the oscillations of 
IP. In summary, the oxygen atom in CsNO forms an anion 0 2- and the 
remaining N - 2 valence electrons of the cluster behave in the simplest way: that 
is, they give rise to shell effects. The experimental information [122] indicates 
that an analogous effect occurs for clusters with more than one oxygen atoms: 
that is, in clusters of composition CsNOx there are N - 2x free-electrons. 
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A second aspect of interest concerns the structural effects induced by the 
presence of the oxygen impurity [99]. The strong ionic bonding between the 
oxygen and the Cs atoms produces a rearrangement of the inner part of the CsN 
cluster. We can distinguish two cases: If the central site in CsN is empty, the 
introduction of the oxygen atom produces only a small rearrangement of the 
innermost Cs shell: the radius and the population of this shell change only 
slightly. In contrast, when the central site in CsN is occupied by a Cs atom, the 
structural rearrangement is drastic: a few Cs atoms, in most cases six, are split 
from the outer part to form a Cs shell directly surrounding the oxygen impurity. 
The radius of this shell is about 5 a.u. In contrast, the radius of the first 
coordination shell around a central Cs atom in a pure CsN cluster is much larger. 
Part of the reason for this difference is that the atomic size of Cs is Brger than 
that of oxygen, so Cs needs a larger hole to be accomodated. The strong ionic 
bonding also contributes. The population of the first coordination shell around 
the oxygen impurity is remarkably stable. With only a few exceptions, this shell 
is a group of six Cs atoms in octahedral arrangement around the O atom. As 
a consequence, the radius of this shell is also very stable. Both the sixfold 
coordination and the bond length in the Cs60 core agree with the correspond- 
ing properties of solid Cs20. 

19 Mixing and Segregation Effects in Binary Alkali "MicroaUoys" 

Experimental work on clusters containing similar amounts of two alkali-metal 
species is scarce. The main representative work has been done by Kappes et al 
[123]. These authors performed supersonic expansions of a mixture of lithium 
and sodium vapors. The most salient results are: a) mixed Na-Li clusters are 
produced; b) the magic numbers, revealed by the abundance in mass spectra, are 
the same as for the two pure species, that is, Ne = 2, 8, 20, 40, .... where Ne indi- 
cates the number of valence electrons in the cluster; c) there is an enrichment in 
the light element, Li, with respect to the initial composition of the mixed atomic 
vapors. 

The fact that the magic numbers are the same as for pure Li or Na clusters is 
easily understood. If we think again in terms of the jellium-on-jellium model of 
Sect. 6, n°+ ( L i ) -  n~(Na)=  0.0029 a.u., which is a very small number. This 
indicates that a jellium model, in which the jellium density is an average of the Li 
and Na densities, will predict well the magic numbers in the mixed clusters. 
However this "averaged jellium" model would be unable to say anything about 
the distribution of atoms in the cluster, or about mixing properties. 

The SAPS model has been used for these purposes [124]. Steepest-descent 
relaxation, starting with a number of initial random geometries, was used to 
obtain the ground state geometries. The radial atomic distribution in Na9Li9 is 
given in Fig. 11 as an example. This cluster can be described as a single shell with 

161 



J.A. Alonso and L.C. Balbfis 

radius R -,~ 7 a.u., formed by seventeen atoms enclosing a Na atom at its centre. 
The picture is very similar to that in homonuclear alkali clusters [93]. Another 
feature can also be observed: the Na atoms are at a slightly larger distance from 
the cluster centre than the Li atoms. The phase diagram of bulk Na-Li alloys 
indicates complete immiscibility in the solid and a large miscibility gap in the 
liquid phase. This tendency appears to be less drastic in small clusters. The 
surface is responsible for reducing the demixing tendency: atoms on the surface 
have greater freedom to adjust their positions and to accomodate themselves in 
a convenient environment. This has been corroborated by calculating the heat of 
solution of a Li impurity in Na clusters: 

AEso~ = E(NaNLi) - E(NaN) - E(Li) . (64) 

The calculated values of AEso~ are negative for the sizes studied (N ~< 20). This 
explains why Na-Li  clusters are formed in supersonic expansions. To study the 
enrichment of the clusters in Li the heat of the reaction 

Na,  Li,, + Li -o Na,_ 1Li,,+ 1 + Na (65) 

was calculated. The values obtained are also negative, that is, substitution of 
a Na atom by a Li atom is favorable. During supersonic expansion, clusters are 
formed after many cycles involving atom aggregation and atom evaporation, so 
reaction (65) will be effective in promoting Li enrichment. 

A phenomenon that sometimes occurs in bulk alloys is the preferential 
segregation of one of the components at the surface, that is, the enrichment of 
the outermost surface layers(s) in one of the components. The slight outward 
shift of the Na atoms relative to the Li atoms can be interpreted as a manifesta- 
tion of this tendency. The difference between the Wigner-Seitz radii of Na and 
Li is ARws(Na-Li) = 0.72 a.u. This difference increases for K - N a  and Cs-Na, 
namely ARws(K-Na) = 0.87 a.u. and ARws(Cs-Na) = 1.81 a.u. Since the prop- 
erties of alkali metals and alkali atoms vary smoothly with atomic number, we 
expect that the effects observed in Li -Na clusters will be enhanced for K - N a  
and Cs-Na clusters. 

The radial atomic distribution in KloNalo  shows a drastic difference with 
respect to the Na-Li  case: the Na and K atoms are welt separated in "different" 
shells [125]. The Na shell has a radius, R ~ 6 a.u. and the K shell, or surface shell, 
has R ~ 10 a.u. The tendency of the heavier element to migrate to the cluster 
surface is common to Na-Li  [124], K - N a  [125] and Cs-Na [113] clusters, and 
is driven by the lower surface energy of the heavy element. This tendency is 
stronger in K - N a  than in Na-Li.  A difference between bulk Na-Li  and K - N a  
alloys is that an ordered stoichiometric compound (KNaz) forms in the second 
alloy but not in the first one. In fact, studying larger clusters like K34Na34, it is 
observed that not all the K atoms are segregated at the outer part of the cluster 
[125]; instead, there is an alternation of shells, which can perhaps be interpreted 
as a precursor of the ordering tendency in the bulk alloy. Evidently both much 
larger cluster, and the proper composition are required for this ordering tend- 

ency to develop fully. 
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Cs-Na clusters [113] show similar features to those already discussed for 
K-Na. The alternation of Na and Cs shells, and the presence of Cs at the surface, 
are consistent with the lower surface energy of Cs and with the existence of the 
bulk compound CsNa2. Inspite of these structural effects, the electronic config- 
uration in K-Na  and Cs-Na clusters remains rather simple, and the electronic 
magic numbers are the same as for those of pure unmixed clusters. 

Surface segregation also affects the collective electronic response properties. 
If we start with the ground state geometry of a mixed cluster - for instance, that 
in Fig. t 1 - two types of structural change can be imagined: One is a simple 
exchange of the positions of several Li and Na atoms, and the other is a drastic 
change in the geometry. TDLDA calculations for K-Na  clusters indicate that 
these two changes have different effects on the collective electronic response 
[125, 126]. The calculated photoabsorption cross section of K2oNa2o is plotted 
in Fig. 12. The continuous curve corresponds to the ground state SAPS ge- 
ometry. This can be viewed as an inner shell formed by eleven Na atoms plus 
a surface shell, split into two subshells: the outer surface-subshell containing all 
of the twenty K atoms and the inner surface-subshell formed by eight Na atoms. 
Finally, the cluster center is occupied by a Na atom. The segregation of K atoms 
at the surface is evident. 

The calculated photoabsorption spectrum of this cluster shows a collective 
excitation with a peak at 2.12 eV. The tail of the resonance extends up to 3 eV, 
and concentrates a sizable amount of strength, due to particle-hole transitions 
that interact with the collective excitation and lead to its broadening. One of the 
most important particle-hole transitions is that from the H O M O  level to the 
continuum; the energy of this ionization threshold is indicated by the arrow at 
,-~ 2.6 eV. Similar TDLDA calculations have been performed for pure Na [104] 

and pure K [127] clusters. Comparing the positions of the collective resonances, 
it can be concluded that the position of the resonance in K20Na2o is closer to 
that in pure K clusters; thus, the surface, made of K atoms, controls the 
frequency of the collective resonance. 
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Fig. 12. Comparison of the calculated photoabsorption cross-sections for two isomers of the cluster 
K2oNa20. The continuous curve corresponds to the ground state geometry. The left- and right 
arrows mark the ionization threshold (-enoMo) of the isomer and ground state respectively 1-125]. 

If the positions of some Na  and K atoms are simply exchanged, preserving 
the general architecture of the clusters, the shape of the calculated photoabsorp-  
tion spectrum turns out to be very similar to the one of the cluster ground state, 
although shifted to slightly higher energies; that is, as the surface becomes 
enriched in Na  the position of the collective resonance shifts smoothly towards 
the energies characteristic of Na clusters. The same effect has been found for 
other clusters studied: K ,Na , ,  n = 4, 5, 15, 26 1-126]. In all these cases the surface 
is rich in potassium and the plasmon peak occurs at an energy of 2.0 2.1 eV. 
Calculations on model structures in which the structure is conserved but the 
surface is enriched in sodium shift the peak towards higher energies while 
preserving the form of the spectrum. 

A drastic geometrical change can be simulated by taking the geometry of one 
of the isomers that are usually found in the process of searching for the ground 
state. The dashed curve in the Fig. 12 corresponds to an isomer having a struc- 
ture that - compared to that of the ground state of K20Na20 described above 

- has fewer atoms in the inner shell and on the outer-surface sub-shell, and more 
on the inner-surface sub-shell. The energy of this isomer is 0.12 eV per atom 
above that of the ground state. The prominent collective resonance is now 
fragmented, because the ionization threshold, indicated by the left arrow, inter- 
acts more strongly with the ptasmon peak. In summary,  the form of the 
photoabsorpt ion cross section is sensitive to the cluster geometry and to the 
degree of segregation. This can be useful to ellucidate the structure of the dusters 
produced in the usual gas-phase experiments. 
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The new features introduced by a third component  have been studied on 
Cs.KloNa~o clusters with varying n [128]. In this case an efficient search for the 
lowest energy structure - or low lying relative minima close in energy to the 
ground state necessarily requires the use of simulated annealing [94]. The 
most salient feature is the segregation of the Cs atoms at the surface. This is due 
to the lower surface energy of Cs with respect to K and Na. Another relevant 
observation concerns the location of the K atoms. It is convenient to begin by 
recalling that KloNa~o is a cluster with two shells: an internal shell formed by 
Na atoms and a surface shell formed by K atoms [125]. When Cs atoms are 
added to this cluster, these atoms prefer to sit on the surface. The geometrical 
information is collected in Fig. 13, which shows the positions of the different 
atomic shells, the position of each being identified by its mean radius. For small 
n, both the K and the Cs atoms can be viewed as forming the surface, although 
the mean radius of the Cs subshell is a little bit larger than the mean radius of  the 
K subshell. This indicates a highly corrugated surface. As more and more Cs 
atoms are added to the cluster, more and more surface sites become occupied by 
Cs atoms and an increasing amount of K atoms lose direct access to the surface. 
In such a case, a migration of K atoms towards the inner part of  the cluster is 
observed. Starting with n = 21, a few K atoms are still on or near the surface but 
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the majority have migrated to the inner region. The extreme situation occurs for 
n ~ 33, where all the K atoms have migrated to the interior of the cluster; the 
cluster can now be viewed as formed by a surface Cs-shell and an inner shell 
containing the K and Na atoms, Even more, for n > 33 this inner shell is formed 
by two well-defined subshells: the inner one contains the K atoms and the outer 
subshell the Na atoms: an striking inversion of the location of the K and Na 
subshells has occurred. 

The peculiar behavior of the K atoms is a consequence of the interplay 
between two effects: the first is the surface effect, and the other is an elec- 
tronegativity effect. The first one is responsible for the presence of K atoms at 
the surface of KloNalo,  as well as for the formation of a Cs surface when this 
element is added of the KloNalo  core. However, as the K layer becomes 
increasingly covered by Cs atoms and the K atoms lose direct access to the 
surface, the electronegativity effect comes into play. As the electronegativity 
represents the power of an atom to attract electrons in a molecule or compound, 
electronic charge flows from regions of low electronegativity to regions of large 
electronegativity until the electronegativities become equalized. This charge 
flow has the effect of stabilizing the system, providing an ionic-type contribution 
to the binding. The electronegativities of Na, K and Cs are 2.70, 2.25 and 1.95 
Volts, respectively, on Miedema's scale [9]. Evidently, a sequence of layers 
Cs -Na-K is more favorable, in order to maximize electronegativity differences, 
than a sequence C s - K - N a  since Cs-Na contacts have a larger electronegativity 
difference than Cs-K contacts. This, in our view, is the reason why the K atoms 
exchange their positions with the Na atoms. 

21 Cylindrically Averaged Pseudopotential (CAPS) Model 

Although very useful for certain classes of clusters, the SAPS model has its 
limitations for small or medium size clusters, because many of these are de- 
formed. Nevertheless. deformed-jellium calculations indicate that most clusters 
still maintain axial symmetry (see Sect. 12) and that truly triaxial deformations 
are rare. These are good reasons to assume that the valence electron cloud is 
nearly axially symmetric, even if the ionic structure is fully three-dimensional. 
Taking up this idea, Montag and Reinhard [129] have developed the cylindric- 
ally averaged pseudopotential scheme (CAPS), which is the extension of the 
SAPS to axial symmetry. The essential approximation is to reduce the treatment 
of the electrons to axial symmetry and using cylindrical coordinates (p, z). In this 
way, only the cylindrical average of the pseudopotential 

N 
V cAes (z, p) = ~, fps(Z, p;z j ,  p j)  (66) 

j = i  
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Op,(z,p;z~,pj) = ~ vps(If- Rjl)d~o (67) 

is seen by the electrons. A proper choice of the z axis is critical for the success of 
the method. Montag and Reinhard considered the inertia tensor f of the ionic 
distribution and identified the z axis with the principal axis of [ whose mo- 
mentum li deviates most from the average momentum ]-= (11 + 12 + I3)/2. The 
electrons see an axially symmetric potential and separate accordingly as: 

q~,u (P, q~, z) = R, u ( p, z) e - ,u~ (68) 

The Kohn-Sham equations were solved for sodium clusters on an axial coordi- 
nate space grid, and "softened" pseudopotentials were used. 

The calculation of the ground-state geometry and electronic structure pro- 
ceeds by an interlaced iteration of the Kohn-Sham equations and the ionic 
stationary conditions. The Kohn-Sham equations were solved by a damped 
gradient iteration method and the ionic configuration was iterated with 
a simulated annealing technique, using a Metropolis algorithm. 

The results obtained show that the geometry of small Na clusters can be 
characterized in "slices" of ions with the same cylindrical coordinates (p j, z j). 
The cluster can then be classified by the sequence {nx ... . .  nk}o/p of n~, the number 
of ions in a slice s, and the global shape - oblate (o) or prolate (p) - of the 
configuration, The ions on a slice are usually arranged on a ring, although in 
some cases an additional central ion appears in it. The structures predicted for 
several neutral and charged Na clusters are: N a z - { l l } p ,  N a ~ -  {3}o, 
Na4 - {121}p, Na6 - {15}o, Na + - {151}p, NaB - {2222}9, Naao - {1441}r 
In all these cases there is agreement with the geometries predicted by ab initio 
DFT [44,68] and configuration interaction [67, 130, 131] methods. For Na + 
the CAPS ground state geometry is {122}p, and a low lying isomer {212}p was 
also found. Ab initio D F T  and CI methods also predict these to be the two 
lowest isomers, although in the opposite order. To summarize, CAPS provides 
a reliable and efficient method to calculate the structure of metal clusters. CAPS 
can be very useful for studying the fission of doubly charged clusters, where the 
repulsion between the excess positive charges often leads to axial symmetry 
along the fission path. 

22 Ab Initio Calculations 

The description of simple metal clusters reviewed in this paper has been based 
on simple models: spherical jellium model (SJM), deformed jellium model (DJM), 
spherically averaged pseudopotential model (SAPS) and cylindrically averaged 
pseudopotential model (CAPS). These models allow us to perform calculations 
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on medium and large size clusters, so that trends can be studied as a function of 
cluster size; numerous examples have been provided. 

A detailed unconstrained consideration of the ionic structure requires a fully 
three-dimensional treatment of the electronic wavefunctions. Even if one re- 
places the effect of the atomic cores by pseudopotentials, the labor involved in 
solving the Kohn-Sham equations for a medium size cluster is substantial. If, in 
addition, we want to compute the ground state geometrical configuration of the 
cluster, the computational difficulties increase enormously. The pioneering work 
of Martins, Buttet and Car [44], starting with several reasonable candidate 
geometries and optimizing the structures with the steepest-descent method, 
allowed them to connect the ab-initio calculations with the SJM, and to provide 
reasons for the success of this model and its extension, the spheroidal jellium 
model. A crucial step has been provided by the introduction of the Car- 
Parrinello method [132] which combines DFT with molecular dynamics tech- 
niques to perform a simultaneous optimization of the electronic and nuclear (or 
ionic) degrees of freedom. At the present time, however, calculations for large 
clusters become cumbersome and the method is restricted to small clusters, 
usually containing no more than twenty atoms [68]. But this and other related 
ab initio molecular dynamics methods [133] are, no doubt, the most promising 
techniques for the treatment of medium- and large-size clusters in the near 
future. 
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