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Preface 

Heterocycles play a central role in organic synthesis. Above all due to the in- 
teresting biological activities associated with a large number of these structurally 
diverse compounds, many heterocycles have been and will be challenging targets 
for total synthesis. Moreover, even if the final goal of a synthesis is not heterocyclic, 
at least a central intermediate or a key reagent used along the synthetic sequence 
most surely will be. This holds especially true if stereoselectivity is an important 
issue, as modern heterocyclic chemistry provides the synthetic organic chemist 
with an excellent arsenal of methods and strategies for the stereocontrolled con- 
struction and elaboration (including the cleavage) of heterocyctes. Recent years 
have witnessed exciting new findings in this field, and it is the aim of this two- 
volume set on "Stereoselective Heterocyclic Synthesis" within the series Topics in 
Current Chemistry to present a selection of these novel developments. 

As the guest editor I am very glad that leading researchers in this area have con- 
tributed highly inspiring accounts with up-to-date coverage to this compilation. 
Part I features chapters on "Hetero Diels-Alder Reactions in Organic Chemistry" 
by L.E Tietze and G. Kettschau describing the state of the art for these useful 
[4+ 2] cycloadditions, which yield a wide variety of heterocycles and "Tandem 
Processes of MetaIlo Carbenoids for the Synthesis of Azapolycycles" by A. Padwa 
surveying attractive routes to complex ring systems based upon 1,3-dipolar 
cycloadditions. Part II comprises chapters on "Using Ring-Opening Reactions of 
OxabicycIic Compounds as a Strategy in Organic Synthesis" by P. Chiu and 
M. Lautens focussing on the preparation and the synthetic utility of the versatile 
title compounds, "The Nucleophilic Addition~Ring Closure (NARC) Sequence for 
the Stereocontrolled Synthesis of Heterocycles" a powerful tactical combination 
discussed by R Perlmutter, "Chiral Acetylenic Sulfoxides and Related Compounds 
in Organic Synthesis" by A.W.M. Lee and W.H. Chan emphasizing the use of 
sulfur-activated acetylenic and vinyl units for the efficient preparation of 
heterocycles, and "N-Sulfonyl Imines - Useful Synthons in Stereoselective Organic 
Synthesis" by S.M. Weinreb giving a comprehensive review on the chemistry of 
these valuable electron-deficient compounds. 

I hope that the articles collected in this two-volume set on "Stereoselective 
Heterocyclic Synthesis" will not only serve experts in the field but will also 
attract the interest of scientists not yet familiar with this fascinating research 
topic. 

Dresden, March 1997 Peter Metz 
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Hetero Diels-Alder Reactions in Organic Chemistry 

Lutz E Tietze* and  Georg Ket tschau 

Institut fiir Organische Chemie der Georg-August Universit/it, Tammannstr. 2, 
D-37077 G6ttingen, Germany. FAX Int. 49 (0)5 51 3994 76 

The hetero Diels-Alder reaction is one of the most important methods for the synthesis of 
heterocycles. In this article an overview is given for the period since 1989 describing the reac- 
tion of heterobutadienes such as oxabutadienes, thiabutadienes, azabutadienes, diaazabuta- 
dienes, nitroso-alkenes and nitroalkenes as well as of heterodienophiles such as carbonyls, 
thiocarbonyls, imines, iminium salts, azo- and nitroso compounds. In addition, several other 
less common hetero Diels-Alder reactions such as cycloadditions of thiaazabutadienes, oxa- 
azabutadienes, dioxabutadienes, dithiabutadienes, oxathiabutadienes, diazaoxabutadienes as 
well as the use of N-sulfinyl-phosphaalkynes and other dienophiles are mentioned. A main 
point of discussion is the st~reoselectivity of the reactions and the preparation of enantiopure 
compounds either using dienes and dienophiles carrying a chiral auxiliary or employing 
chiral Lewis acids. A point stressed is the synthesis of natural products using hetero Diels- 
Alder reactions leading to carbohydrates, alkaloids, terpenes, antibiotics, mycotoxins, cyto- 
chalasans, antitumor agents and several other classes of natural products. 

Another topic is the use of high pressure in hetero Diels-Alder reactions discussing the 
influence on the rate constants and the stereoselectivity. Finally, modern developments such 
as reactions on solid phase, the use of catalytic monoclonal antibodies, transformations in 
aqueous solution and the microwave activation are described. 
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1 
I n t r o d u c t i o n  and Genera l  Aspects 

1.1 
Introduction 

The Diels-Alder reaction formally describes the addition of a 1,3-diene and a 
dienophile to give a six-membered ring system with one or two double bonds 
depending on the type of dienophile used (Fig. 1-1). It is clearly, even today, one 
of the most important synthetic procedures since its first general description in 
1928 by Diels and Alder [1], since it meets the requirements of a modern syn- 
thetic method [2, 3, 4] to a great extent by showing an excellent chemo- and 
regioselectivity as well as a high simple and induced diastereoselectivity in 
many cases. Furthermore, it possesses a high atom efficiency as well as bond 
forming efficiency and permits the synthesis of complex molecules from simple 
starting materials especially in those cases where the diene or dienophile is 
formed in situ in a domino type transformation [3-6]. 

b'~ a f b~a~f 
I + II m Ii I 
C~d e C~d~e 

Fig. 1-1 
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Most importantly, the scope of the Diels-Alder reaction is very high - not only 
allowing the synthesis of cyclohexenes and 1,4-cyclohexadienes using 1,3-buta- 
dienes and alkenes and alkynes, respectively, but also giving access to a multitu- 
de of different heterocycles by exchanging the atoms a - d  in the butadiene as 
well as the atoms e and f in the alkene by heteroatoms such as oxygen, nitrogen 
and sulfur. However, also dienes and dienophiles with several other atoms as 
phosphorous, boron, silicone, and selenium have been described. Thus, many 
different heterodienes and heterodienophiles have been developed over the 
years (Tables 1-1 and 1-2). 

Several reviews and books have already appeared on the hetero Diels-Alder 
reaction [3-23]. The latest general overlook are the articles of Boger and Wein- 
reb in Comprehensive Organic Synthesis covering the literature until 1989. 

In this article we describe novel developments in the synthesis ofheterocycles 
by hetero Diels-Alder reactions covering the literature from 1989. However, as a 
background and if neccessary for the understanding, also older publications will 
be presented. Due to the restriction of space only the most important and syn- 
thetically most useful dienes and dienophiles which are displayed in Table 1-1 
and Table 1-2 will be discussed in this article. 

Clearly, an important feature will be the selectivity of these reactions. In this 
respect, the control of endo- and exo-selectivity using different Lewis acids, the 
induced diastereoselectivity with chiral heterobutadienes as well as chiral 
heterodienophiles and finally the use of chiral Lewis acids for the enantioselec- 
rive synthesis will be discussed. In recent time some attention has been paid to 
hetero Diels-Alder reactions in aqueous solutions and in the presence of inor- 

Table 1-1. Selected heterodienophiles for the Diels-Alder reaction 

O N " /  N / O 
II II II II 

~ C ~  / C ~  /N  N~ 

aldehydes, ketones imines azo compounds 
iminium salts 

nitroso compounds 

+s.O S S 0 
I I  I I  I I  

I I  / C ~  S S - O  
N 

N-sulfinylimines thioaldehydes diatomic sulfur sulfur dioxide 

Se 0~.0- P N 
!1 I I I  I I I  

,i C C 
/ r  N~ I I 

selenoaldehydes N-sulfonylimines phosphaalkynes nitriles 
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Table 1-2. Selected heterodienes for the Diels-Alder reaction 

N=C= N_ N~.  
I 

~, ~- unsaturated 
carbonyl compounds 

1 -azabutadienes 1 -azabutadienes 2-azabutadienes 

I 
N N / /  I 

I~ L~ ~'~ 
~ I ~ 
I 

1, 4-diazabutadienes 1,3-diazabutadienes 1, 2-diazabutadienes 

N.- 0 

~, 13- unsaturated 
nitroso compounds 

-0.+.0 N ~ N ~ ~ 
N" 

�88 L-o ~s 
r 13- unsaturated 1-oxa-3-azabutadienes 1-thia-3-azabutadienes c~, 13- unsaturated 
nitro compounds thioaldehydes 

+S~ 

2-thiabutadienes 

0 S N ~/  

o $ I 
1,4-dio• ~, 4-dithiabutadienes ~-phospha-a-azabutadienes 

[.~~ N"N~ 

~o 
1-oxa-4-thiabutadienes 1,2-diaza-4-oxabutadienes 

ganic salts. Also sonification and microwave irradiation under solvent-free con- 
ditions have been used. In a few cases hetero-Diels-Alder reactions are induced 
electro- or photochemically. Another interesting point is the use of catalytic 
antibodies, not only to accelerate the Diels-Alder reactions, but also to allow the 
synthesis of cycloadducts having a configuration which otherwise could not be 
obtained. 

The reaction rate and the selectivity of hetero Diels-Alder reactions can also 
be influenced by applying high pressure. A large amount of knowledge has been 
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obtained in this field in the last years with detailed information about AH #, AS #, 
/XV" and zX/XV". Futhermore, the use of hetero Diels-Alder reactions in the syn- 
thesis of natural products such as alkaloids, antibiotics, carbohydrates, hetero- 
steroids, iridoids, macrocycles, mycotoxins and polyethers will be discussed. 
Finally, a first example of a hetero Diels-Alder reaction on solid support will be 
given. 

The question whether Diels-Alder reactions also occur in nature can not be 
answered yet since special enzymes catalyzing these reactions have not been 
found so far [24-25]. However, artificial catalytic antibodies for Diels-Alder 
reactions are well known [26] and recently an all-carbon [4 + 2]cycloaddition 
has been observed in the biosynthesis of two phytotoxic solanopyrones 1-1 and 
1-2 from the fungus Alternaria solani using a cell-free extract of this organism 
[27]; it is highly probable that the involved enzymes will soon be isolated 
(Fig. 1-2). 

Another all-carbon Diels-Alder reaction is proposed for the biosynthesis of 
the indole alkaloids tabersonine 1-6 and catharanthine 1-7 of the Aspidosperma 
and Iboga family [28- 31]. The compounds are formed via strictosidine 1-3, the 
first nitrogen-containing precursor of the monoterpenoid indole alkaloids, and 
stemmadenine 1-4, which is cleaved to give the proposed intermediate dehyo 
drosecodine 1-5 with an acrylate and a 1,3-butadiene moiety (Scheme 1-1). 

A hetero Diels-Alder reaction of a precursor 1-9 may be involved in the bio- 
synthesis of the lignane carpanone 1-8 (Fig. 1-3), however, there is no proof for 
such an assumption [32]. On the other hand, it is well known that pericyclic 
reactions such as electrocyclic reactions and sigmatropic rearrangements occur 
in nature e.g. in the biosynthesis of vitamine D, vitamine B12 [33-35] and ectoo 
carpene [36]. 

In this article a differentiation of concerted and two-step cycloadditions will 
not be made although this point will be briefly discussed in the theoretical part. 
However, products which could be formally formed by a hetero DielsoAlder 
reaction, but for which a different mechanism has been proven will not be inclu- 
ded. Thus, quite recently it has been shown that the formation of an oxazine by 
reaction of N-sulfinyl-p-toluenesulfonamide and an excess of propanal in the 
presence of boron trifluoride etherate does not involve a hetero Diels-Alder 
reaction [37]. 

OMe OMe 

OHC ~ 

O" "C O "H 

H3 C~''" H3 C'  ~ 

1-1 1-2 

Fig. 1-2 
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.O. '~~.N. 
N H- H,,'~M~ 

~;.o~.o,~ 
1-3 

Strictosidine 

CO2Me 

1-5 

N 

CH2OH 

1-4 

Stemmadenine 

.~~ 
H 

Dehydrosecodine 1-5 

"'o,~J 

CO2M e CO2Me 

1-6 1-7 

Tabersonine Catharanthine 
(Aspidosperma) (Iboga) 

Scheme 1-1. Proposed biosynthesis of indole alkaloids via a hetero Diels-Alder reaction 

~ : ~  ~, ~ ~  ~o 
~o o- ~ ~ o  o ; T  

1-8 1-9 

Fig. 1-3 
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1.2 
Stereochemical and Theoretical Aspects of Hetero Diels-Alder Reactions 

The stereochemistry of the cycloadducts in hetero Diels-Alder as well as of the 
all-carbon Diels-Alder reactions depends upon the different geometry of the pos- 
sible transition structures [3,12,38]. According to an endo- or exo-orientation of 
the dienophile and an (E)- or (Z)-configuration of the diene, four different 
transition structures have to be discussed which are shown exemplary for 1-oxa- 
1,3-butadienes in the inter- and intramolecular mode (Schemes 1-2 and 1-3). 

There is no clear definition for the endo- and exo-orientation for intermole- 
cular reactions. Usually the orientation with the substituent at the dienophile 
under or above the diene is called endo, however, in the case where two or more 
different substituents at the dienophile exist, this rule cannot be used anymore. 
We therefore suggest that the following rule should be applied for intermolecular 
Diels-Alder reactions: The orientation of the dienophile with the substituent 
having the highestpriority according to the Cahn-Ingold-Vrelog rules lying under 
or above the diene is called endo. The opposite is called exo. For hetero Diels- 
Alder reactions a slight modification is necessary: The orientation of the 
dienophile with the substituent at the centre being closest to the terminal 
heteroatom in the diene according to the product, which has the highest priority 
according to the Cahn-Ingold-Prelog rules lying under or above the diene is called 
endo. In cases of two terminal heteroatoms the one with the highest priority 
counts; in cases of no terminal heteroatom, the next heteroatom counts. For intra- 
molecular Diels-Alder reactions the known definition should be used; thus, the 
orientation with the chain connecting the diene and dienophile lying under or 
above the diene is called endo. 

From the transition structures, it can be seen that the cis-product can be for- 
med either by an endo-E-syn or an exo-Z-syn orientation, whereas the trans-pro- 
duct is obtained either by an exo-E-anti or an endo-Z-anti transition structure. 
For intramolecular reactions the situation is simplified since calculations have 

R 2 R 2 

/o R1 EtO' R 1 OEt 

endo-E-syn 
~ cis-cycloadduct 

R 2 

s 
R 1 I~OE t 

"OEt 

exo-Z-syn 
~ cis-cycloadduct 

Scheme 1-2. Transition structures for the intermolecular hetero Diels-Alder reaction of 
1-oxa- 1,3-butadienes 

exo-E-anti endo-Z-anti 
~ trans-cycloadduct ~ trans-cycloadduct 

R 2 

R 1 
R 1 ""~OEt EtO" 
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H ~ H~"" 
R ~ 

R 2 / - ~  R1 R 2 

e n d o -  E -  syn 
~ c i s  - cycloadduct 

, 

o x o -  E -  anti 

~ t r a n s  - cycloadduct 

H O 

e x o  - Z -  syn 

~ c i s  - cycloadduct 

H O 

endo- Z-  anti 

~ t r a n s  - cycloadduct 

Scheme 1-3. Transition structures for the intramolecular hetero Diels-Alder reaction of 1-oxa- 
1,3-butadienes 

shown that the endo-Z-anti transition structure needs not to be considered due 
to its high energy [54]. However, when discussing the stereochemistry of hetero 
Diels-Alder reactions and naturally also of the all-carbon cycloadditions one 
should keep in mind that the configuration of the diene in the ground state does 
not have to be the configuration of the reacting diene. Especially heterodienes 
can isomerise quite easily [38]. Thus, reaction of the (Z)-1-oxa-l,3-butadiene 
1-10 obtained by a Knoevenagel condensation of the corresponding benzalde- 
hyde and the pyrazolone gave nearly exclusively the cis-fused product 1-11 at 
80~ via an endo-E-syn transition structure (cis:trans = 17:1). This interpreta- 
tion is confirmed by the fact that the tert-butyl derivative 1-12 does not react at 
80 ~ due to the lack of isomerisation about the double bond. However, under 
irradiation which facilitates the isomerisation the cycloaddition takes place also 
at 80~ (cis:trans = 50:1) (Fig. 1-4). 

In contrast to the great number of calculations concerning the all-carbon 
Diels-Alder reaction [39], there are only a few theoretical studies on the hetero 
Diels-Alder reaction [41, 42, 45-53]. The general mechanism of the Diels-Alder 
reaction is still in discussion; however, in most cases a concerted reaction is 
assumed, but there is also evidence for a two-step path. The ab initio calculations 
carried out for the butadiene/ethene system by Houk, Ortega, Bernardi und 
Gajewski gave a symmetrical transition structure; only using the semiempirical 
AM1/CI method (half electron approximation) an unsymmetrical diradicaloid 
intermediate was found [40]. 

For hetero Diels-Alder reactions it has been shown by calculations that the 
transition structures are usually less symmetric than for the all-carbon Diels- 
Alder reactions; also a change from a concerted non-synchronous to a stepwise 
mechanism depending on the substituents at the reacting species and the reac- 
tion conditions can occur. 

One of the first calculations on hetero Diels-Alder reactions was done in our 
group in collaboration with Anders on the 1-oxa-l,3-butadiene (acrolein)/ethene 
system [41, 42]. The performed ab initio und semiempirical calculations show 
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CH 3 

CNa 
1-11 

that two competing reaction channels exist, a concerted and a two-step path. All 
methods used reveal a preference for a one-step mechanism, which is in agree- 
ment with experimental observations. 

In contrast, for the 1-aza-l,3-butadiene/ethene system the ab initio and 
semiempirical calculations show a preference for a two-step mechanism [43] 
which again is in agreement with experimental observations [44, 45]. 

Houk [46, 47] as well as Iursic and their groups [48] have investigated the 
hetero Diels-Alder reaction of 1,3-butadienes with heterodienophiles such as 
formaldehyde, thioformaldehyde, formaldimine, N-methylformaldimine, dia- 
zene, nitrosyl hydride, singlet oxygen and some BH~-coordinated and protona- 
ted species. Asynchronous transition structures were located with asymmetric 
heterodienophiles whereas with symmetrical dienophiles a synchronous transi- 
tion structure was produced. Importantly, the transition structures with e x o  

oxygen or nitrogen lone pairs have lower energies than the corresponding e n d o  

lone pair transition structures. 
Further calculations were performed on 2,3-diaza-l,3-butadiene with diffe- 

rent heterodienophiles such as ethene, formaldehyde and formaldimine showing 
the same exo  oxygen or nitrogen lone pair preference [49] as well as on the nitro- 
soethene/ethene system [50]. Recently, ab initio studies have also been perfor- 
med for the Lewis acid catalysed hetero Diels-Alder reaction of isoprene and 
sulfur dioxide by Sordo [51 ]. 

In addition to the purely mechanistical studies calculations on the stereo- 
chemistry of more complex molecules have been performed; the data obtained 
nicely matched the experimental results [54]. Finally, several experiments have 
been performed to prove the concertedness of the hetero Diels-Alder reactions 
of 1-oxa-l,3-butadienes [55] and show that the transition structure is un- 
symmetrical [56]. 
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2 
Oxa Diels-Alder Reactions 

2.1 
Oxa Diels-Alder Reactions with C = 0 Dienophiles 

The [4 + 2]cycloaddition of the carbonyl group of aldehydes as well as of keto- 
nes and 1,3-butadienes is a well established method for the synthesis of 
5,6-dihydropyrans which are useful substrates for the preparation of carbohy- 
drates and many other natural products. Several excellent reviews on this topic 
have appeared [ 10-12, 14, 22]. The first example of this type of reaction using 
2,4-dimethyl-l,3-butadiene and formaldehyde to give the 2,4-dimethyl-5,6- 
dihydro-2H-pyran in 60% yield was published by Gresham and Steadmen in 
1949 (Scheme 2-1, Eq. 1) [57]. 

However, employing higher aldehydes the yield was very poor, whereas with 
chloral reasonable results could again be obtained [58]. 

Thus, the scope of the cycloaddition is a little limited since only electron-defi- 
cient carbonyl groups as in chloral, glyoxylate, oxomalonate, 1,2,3-triketones as 
well as similar compounds and butadienes with electron-donating groups give 
high yields. Some older examples are shown in scheme 2-1 [57-63]. By using 
Lewis acids and on the other hand, applying high pressure, good results have 
also been seen with less reactive substrates in many cases. In addition, the use of 
chiral Lewis acids allows an enantioselective cycloaddition. In the synthesis of 

H 3 C ~  OH2 A H3C",,,[~ 
+ ~ .._ 

60 %'-- ~ T  ' ' 0  
CH 3 CH 3 

• HyCO2E t toluene, ~ c02Et 
+ 110 ~ 

C) ~ K,~C) 
OMe 60 % OMe 

[57] (1) 

[59] (2) 

Me3Si ~ + H'~r[~CO2Bu benzene, RTm Me3Si ~ c O 2 B u ~  

O 93 % ~t: O 
OMe OMe 

[62] (3) 

,• EtO2C~ ICO2Et CH3CN, ~ 
+ I~ 110 ~ 4 h~ C02E t 

0 64 % ~ C02E t 

Scheme 2-1 Older work of hetero Diels-Alder reactions of carbonyl groups 

[63] (4) 
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the perfumery product (+)-ambrenolide 2-1 neither the thermal nor the Lewis 
acid catalyzed cycloaddition was successful. However, using high pressure the 
desired product could be obtained, though in low yield Fig. 2-1 [64]. 

The reactions usually proceed with retention of the configuration of the 
diene moiety and high regioselectivity, which is controlled by the coefficients of 
the LUMO of the carbonyl group and of the HOMO of the diene; however ther- 
mally, the endo/exo-selectivity is low giving normally only a slight excess of the 
cis-compounds (e.g. cis: trans = 2:1, Scheme 2-1, Eq. 2). At higher temperature 
(e.g. 150~ or in the presence of an acid isomerisation can take place to give 
predominantly the trans-compounds (trans: cis = 4:1) [ 59]. 

In a thermal reaction hexafluoroacetone [65] and several trifluoroacetones 
[66] also react with butadienes in a straightforward fashion. 

The advantagous use of Lewis acids in the hetero Diels-Alder reaction of car- 
bonyl compounds has intensively been studied and employed by Danishefsky 
et al. [23, 67-70]. They also showed that rare earth cations are excellent and mild 
catalysts due to their high oxophilicity, even allowing the isolation of the highly 
sensitive primary cycloadducts. 

The combination of two all-carbon and one hetero Diels-Alder reaction in the 
presence of catalytic amounts of Eu(fod)3 of 2-2 and 2-3 to give 2-4 was used in 
the synthesis of vincomycinone B2 methyl ester 2-5, Scheme 2-2 [71]. 

A recent general study on the reactivity of 3-mono-O-activated dienes 2-6 
having an alkyl group at C-1 and 2-7 in the presence of a Lewis acid was perfor- 
med by Palenzuela et al. [72]. The best yields of the cycloadducts 2-8 were ob- 
tained with BF3.OEt2 in diethyl ether with an endo/exo-selectivity of 6:1 
(Fig. 2-2). Good results were also found with LiBF4 in acetonitrile/benzene. 
Aldol reactions [73], silatropic ene reactions [74] and loss of the silyl group [75] 
were not observed under these conditions. 

EtO2C~tf,~CO2Et 55 ~ 20 kbar~ 
II 
O 35 % 

Fig. 2-1 

f ~ , , ~  CO2Et 

a: p-CH 3 
b: (z-CH 3 
a : b = ~ 2 : l  

0 

2-~ 

(+)-ambrenoli6e (~3-C ~a) 
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§ 
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" -  I o 

T B D M S O ~ P h  

2-8 

BF3.OEt 2, Et20, -78 ~ < 5 min �9 86 % ( c i s "  t r a n s  = 6 �9 1 ) 

LiBF4, CHaCN/benzene, 20 ~ 20 min �9 84 % ( c i s "  t r a n s  = 6 �9 1 ) 

Fig. 2-2 

Hoffmann and his group [76] have used the cycloaddition of 4-formylfuran- 
2(SH)-ones 2-9 and butadienes such as 1-methoxy-3-trimethylsilyloxy-l,3-buta- 
diene (DanishefskT's diene) 2-10,1-trimethylsilyoxy-1,3-butadiene and 2,4-dime- 
thyl-l,3-butadienes for the construction of a manoalide substructure 2-11 which 
belongs to a class of nonsteroidal anti-inflammatory agents. According to the sub- 
stitution of the butadiene different Lewis acids such as the mild Eu(fod)3, the more 
reactive A1MeJA1CI~ and the highly reactive TiC14 had to be used (Fig. 2-3). 

Page et al. [77] have shown that 2,2-disubstituted 2,3-dihydropyrans are 
obtained in good yield (69-86 %) by" reaction of electron-deficient ketones 2-13 
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1.5 mol% Eu(fod)3 , OMe 
O ~  + , ~ ~  2. benzene,H + RT, 24 h 

0 "- 
Me3SiO 67 % 

2-9 2-10 

Fig. 2-3 

O 

0 

2-11 

with electron-rich dienes 2-12 in the presence of a Lewis acid. The successfully 
employed substrate types include 1,2-diketones, pyruvates 2-13a, acylnitriles 
2-13b and oxomalonates 2-13c. Less electron-deficient carbonyl compounds 
gave poor results. The choice and quantity of Lewis acid used was of vital 
importance for these transformations. Neither titanium tetrachloride nor tin 
tetrachloride proved to be suitable. However, zinc(II) chloride in dry benzene 
was an effective mediator. The use of substoichiometric amounts gave only low 
yields. Interestingly, in the case of butane-2,3-dione, no reaction was observed 
when 2.5 equivalents of the mediator were employed although use of 1.2 
equivalents gave 69% yield of the cycloadduct (Fig. 2-4). 

A good mediator for the hetero Diels-Alder reaction of aldehydes is the bulky, 
oxygenophilic aluminium tris(2,6-diphenylphenoxide) (ATP) 2-19 developed by 
Yamamoto [78] which allows the differentiation between two sterically discri- 
minated aldehydes. Thus, reaction of a mixture of 2-10,2-16 and 2-17 in the pre- 
sence of 2-19 gave nearly exclusively 2-15, whereas in the presence of BF3-OEt2 a 
1.3:1 mixture of 2-15 and 2-18 was formed (Fig. 2-5). 

Recently, also diiodosamarium has been used as catalyst for the hetero Diels- 
Alder reaction, however the yields and the regioselectivity in these transforma- 
tions are similar to those with Eu(fod)3 [79]. 

Good results were also obtained with lithium perchlorate in dichloromethane 
and diethyl ether. It has been shown that the lithium cation acts as a Lewis acid 
and the effects are not due to an "internal pressure" [80]. The acceleration is 
much more pronounced for hetero Diels-Alder reactions as compared to the all- 
carbon cycloadditions. With chiral aldehydes a high level of chelation control 
has been observed (see later) [ 81,82 ]. 

It should be noted that the hazardous LiC104 may be replaced by' the less 
dangerous LiNTf2 [83,84]. 

A combination of a hetero Diels-Alder reaction of an aldehyde and a radical 
reaction in a sequential transformation to give the bridged pyrans 2-22 via 2-21 
starting from 2-20 containing a seleno moiety and an electron-rich butadiene 
2-10, was described by Clive (Fig. 2-6) [85]. 

All investigations on the use of Lewis acids in the hetero Diels-Alder reaction 
of carbonyl compounds clearly show that a careful adjustment of the Lewis 
acidity for a given system is neccessary. Especially with trimethylsilyloxybuta- 
dienes a Mukayama type aldol reaction can easily take place instead of the de- 
sired hetero Diels-Alder reaction. 

In addition to the use of Lewis acids two further major aspects for this type 
of cycloadditions have been focused on in recent years. The first important 
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aspect is the application of chiral carbonyl compounds as well as of chiral buta- 
dienes either having one or more stereogenic centers in the substrate or bearing 
a chiral auxiliary. The second aspect concerns enantioselective reactions with 
chiral mediators or catalysts. 

For the diastereoselective hetero Diels-Alder reaction of carbonyl compo- 
unds using removable chiral auxiliaries, intensive studies of the uncatalyzed 
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cycloaddition of glyoxylic acid esters with the optically active alcohols menthol, 
borneol, 2-octanol and 2,2-dimethyl-3-heptanol have been performed. Disap- 
pointingly, the induced diastereoselectivities were rather low (0.4-13 %) and 
also applying high pressure did not improve these results to a reasonable extent 
[86]. In a special case the obtained diastereomers could be separated allowing 
the entry to thromboxane type derivatives [87]. 

However, excellent simple (exo: endo = 95: 5) and induced diastereoselectivity 
(94:6) was obtained by ]urczak [88] by applying the bornane sulfone amide 
derivative of glyoxylic acid 2-23 in the presence of a catalytic amount of a eu- 
ropium salt. Reaction of 2-23 with 1-methoxy-l,3-butadiene 2-24 gave 
predominantly 2-25a which was transformed into the lactone 2-26 aiming 
towards the synthesis of compactin (Fig. 2-7)[89]. 

, +  + . . . .  

O...1~ u OMe (~Me OMe 
O~ tO 2-25a 2-25b 

~'' R"* �9 2-23 2-24 / ~  (exo �9 endo = 95 �9 5) 

; , /  

HO~'. . [~~O H 

o 
2-2~ 

Fig.2-7 

A good induced diastereoselectivity was also found in the cycloaddition of 
glyoxylates 2-27 to butadienes connected to sugar derivatives such as diacetone- 
glucose and derivatives of galactose 2-28 at the 3-position as well as of tetra- 
benzylglucose at different positions even in an uncatalyzed fashion ranging 
from 73:27 to 96.8:3.2 as shown by David et al. [90, 91]; however, the endo/exo- 
selectivity was rather low (Fig. 2-8). 

The procedure has been employed for the synthesis of the determinant tri- 
saccharide unit of the human blood group A using 2-28 and the (-)-menthyl 
glyoxylate 2-27 as a matched pair to give the desired disaccharide 2-30 after iso- 
merisation of the primarily obtained mixture of 2-29 and 2-30. 

An excellent simple and induced selectivity could be obtained by Mulzer and 
his group [92] in the cycloaddition of 2-trimethylsilyl-oxy- 1,3-pentadiene 2-31 
and (1R,2S,SR)-8-phenylmenthyl glyoxylate 2-32 [93] in the presence of 0.2 
equivalents of anhydrous MgBr2 in THF at 0 ~ After acidic workup the ketone 
2-33 was isolated as a single diastereomer (> 98%), which was then used for 
synthesis of the C-26-C-32 tetrahydropyran moiety of swinholide. In contrast, 
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reaction of the (1R, 2S, 5R)-menthyl glyoxylate led to a 1 : 1-diastereomeric mix- 
ture with respect to the auxiliary' (Fig. 2-9). 

The use of MgBr2 is of importance since the thermal reaction of 2-32 b led to 
a 2:1-mixture of rac-2-33b and its cis-isomer, whereas with MgBr~. rac-2-33b 
was obtained in an exo/endo-selectivity' of > 95:5. The endo-transition structure 
of the intermediately formed My-chelate of 2-32b and also of 2-32a is disfa- 
voured since steric interactions between the bromine and the carbon skeleton 
of the diene occur in this arrangement. 

Recently, Breitmaier et al. [94] showed that in the hetero Diels-Alder reaction 
of triketones such as indantrione 2-34 and alloxane with the chiral 2-methyl-1- 
(1-phenylalkoxy)-l,3-butadienes 2-35 a good diastereoselectivity can be ob- 
tained. The cycloaddition proceeded regioselectively with increasing facial se- 
lectivity in correlation to the steric demand of the alkyl group at the benzylic 
position in the auxiliary to give the dihydropyran 2-36 as the major and 2-37 
as the minor product (Fig. 2-10). 
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+ H ~ CO2R 
Me3SiO O 
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Excellent diastereoselectivities were also obtained in the cycloadditions of 
chiral 3-(p-tolylsulfinyl)-2-furaldehyde 2-38 and 1-methoxy-3-(trimethylsily- 
loxy)-l,3-butadiene 2-10 in the presence of lanthanoid Lewis acids as described 
by Arai [95]. Noteworthy, the reaction of 2-38 and 2-10 in the presence of 
Yb(OTf)3, Nd(OTf)3 or Sm(OTf)3 provided the cycloadduct 2-39 as the major 
diastereomer, whereas with Eu(thd)3 the corresponding diastereomer 2-40 was 
obtained predominantly. The use of ZnC12 as Lewis acid provided the product 
2-39 and 2-40 as a 1: 1-mixture (Fig. 2-11). 

Chiral aldehydes such as N-protected cr and a-alkoxyalde- 
hydes as well as chiral butadienes derived from sugars by a Wittig reaction have 
also been used in the hetero Diels-Alder reactions successfully with the inducing 
stereogenic centers remaining in the obtained cycloadducts. 
The reaction of N-(tert-butoxycarbonyl)leucinal 2-41a by Danishefsky et al. 
with 1-methoxy-3-trimethylsilyloxy- 1,3-butadiene 2-10 gave the pyrones 2-42 
and 2-43 with an induced diastereoselectivity of 9:1 in favour of the syn-com- 
pound in the presence of Eu(hfc)3 [96]. Later Garner [97] used a N-Bocoserine 
derived aldehyde 2-41b and Danishefsky's diene 2-10. In both cases a chelation- 
control forming a complex between the nitrogen and the oxygen could explain 
the obtained selectivity. In the presence of HMPA chelation is minimized to give 
a higher extent of the anti-product 2-43 (Fig. 2-12) [97]. 

In a similar way Midland [98, 99] investigated the reaction of 1,3-dimethoxy- 
1-(trimethylsilyoxy)butadiene 2-45 [100] with a variety of N-protected cr-ami- 
noaldehydes e.g. 2-44 a - c  in the presence of several Lewis acids as Eu(hfc)3 and 
Et2A1C1, of which the latter gave the best selectivities. Using 2-44 a and 2-45 in the 
presence of Eu(hfc)3 the pyrones 2-46a and 2-47a were obtained in a ratio of 
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80:20, whereas upon reaction of 2-44b and 2-45 in the presence of Et2A1C1 a ratio 
of 92: 8 of 2-46 b and 2-47 b was found. Interestingly, with the N,N-dibenzyl deri- 
vative 2-44c [101] the selectivity was completely reversed to give 2-46c and 
2-47 c in a ratio of 1:99. The results are consistent with a chelation control in the 
former reaction, whereas 2-44c reacts in a Cram-type fashion (Fig. 2-13). In a 
similar way, also protected a-hydroxyaldehydes were used. 

O O 
oMe 

+ ~ ' O T M S  67-83 % R 1 
1 R ~ ' 2  3 CHO - ~  ~__ O O 

NR FI R1 e OMe 
MeO NR2R 3 NR2R ~ 

2-44 2-45 2-46 2-47 

a'R 1=Me, R 2=Cbz, R 3=H 
b" R1 = ~Pr, R 2 = Boc, R 3 = H 
c ' R  1=Me,  R 2=Bn,  R 3=Bn 

Fig. 2-13 
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As already mentioned, also LiCI04 can be employed to obtain a high level of 
chelation control. Thus, Reetz and his group [81] observed an excellent induced 
diastereoselectivity in the hetero Diels-Alder reaction of a chiral cr-benzyloxy- 
propanal 2-48 with the butadiene 2-10 in the presence of 15 mol % LiC104 in 
dichloromethane to afford the dihydropyrans 2-49 and 2-50. A reduction of the 
amount of catalyst led to a decrease in selectivity. Also MgBr 2 could be utilised 
in this transformation with good results, however, only when used in stoichio- 
metric amounts (Fig. 2-14). 

OMe 1. LiCIO 4, 

.c. c o �9 . . c  o . c  

TMSO 73 % O O 
OBn OBn 

2-48 2-10 2-49 2-50 

6 mol% LiCIO 4 90 �9 10 
15 mol% LiCIO4 > 95 �9 5 

Fig. 2-14 

At the same time, Grieco et al. [82] have investigated the LiC104 catalysis for 
the cycloaddition of N-protected a-aminoaldehydes to butadienes such as 
1-methoxy-3-trimethylsilyloxy-l,3-butadiene in diethyl ether to give the syn- 
cycloadducts. As already described by Midland [98, 99] for this type of transfor- 
mation, the diastereofacial selectivity could be reversed by changing the nature 
of the protecting group on the nitrogen and utilising 3.0 M LiC104 in diethyl 
ether. Thus, hetero DielsoAlder reaction of 2-51 and 2-52 under these conditions 
followed by acidic workup furnished the anti-cycloadduct 2-53 as a single dia- 
stereomer (Fig. 2-15). 

Cycloaddition of the diene 2-54 obtained from 2,4-benzylidene-erythrose by 
a Wittig reaction with sodium glyoxylate 2-55 in water for 2.5 days at reflux pro- 
vided a mixture of four adducts in good yield, but in low diastereoselectivity. 
Interestingly, for the reaction of methyl glyoxylate with the acetylated diene in 
an organic solvent higher temperature was needed (4 h, 140 ~ with decreased 
yield (25%) (Fig. 2-16) [102]. 

B n O , , " ~  CliO 

NBn 2 

1.3M LiCI04, 
OMe Et20, RT, 2 h 

OTBDMS 66 % BnO O 
NBn 2 

2-51 2-52 2-53 

Fig. 2-15 
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HO 
HO 

HO O H20, 100 ~ 2.5 d H 

HO + -,t[,CO2N a 67 % ~ H 

~ C O 2 H  
H 

2-54 2-55 2-56 

Fig. 2-16 

four diastereomers 
(28"31 "16"25) 

Based on the work of Danishefsky [70] on the cycloaddition of aldehydes to 
dienes bearing various menthyl auxiliaries, Stoodley et al. have used butadienyl 
glycosides 2-58 with the aim to synthesise (1 ~ 1)-linked disaccharides [103]. 
The reaction was performed with p-nitrobenzaldehyde 2-57 in the presence of 
an europium salt since benzaldehyde itself did not react. Reasonable induction 
was obtained in the presence of the chiral (-)-Eu(hfc)3 as a matched pair to give 
2-59 as the major product (Fig. 2-17). 

~T 
~OSiMe2~ u O2N ~ 

O2 N ~ ~ ...... ~ ~ O S i M e 2 t B u  

~ + ~ o ~  ~ mo~~ ~ul~cl~= 6., .~'  " 

o 
O~c 

O~c 

2-57 2-58 2-59 
major product" 39 % 

( 8 .1 .1 )  

Fig. 2-17 

In recent years a great improvement in the enantioselective cycloaddition of 
aldehydes as well as ketones to electron-rich dienes such as 2-10 has been achie- 
ved. Danishefsky et al. [68] have used chiral lanthanide complexes of the type 
Eu(hfbc)3 (hfbc = 3-heptafluorobutyrylcamphor) known as a chiral paramagne- 
tic NMR shift reagent. However, the enantioselectivity using this catalyst was not 
very high. Similar, less satisfying results were obtained with a cationic Ru com- 
plex containing chiral chelating diphosphines [ 104]. 

For the first time good enantioselectivities were found by Yamamoto [105, 
106] using the chiral organoaluminium reagent 2-63 which, however, is rather 
difficult to obtain. Reaction of benzaldehyde and the electron rich butadiene 
2-60 in toluene at -20 ~ for 2 h in the presence of catalytic amounts of the 



Hetero Diels-Alder Reactions in Organic Chemistry 23 

aluminium complex (R)-2-63a (10 mol%) followed by acidic worktip resulted 
in the formation of a 92:8 mixture of the cis-dihydropyrone 2-61 with an ee of 
95 % and the trans-product 2-62. By using the even more hindered aluminium 
reagent (R)-2o63 b cis/trans- and enantioselectivity could be improved (Fig. 2-18). 

Several different butadienes and aliphatic aldehydes were used with good 
success. An interesting approach for this transformation is the in situ complexa- 
tion of one enantiomer of the aluminium complex employing chiral ketones and 
thus allowing the remaining enantiomer to be utilized as a Lewis acid for the 
asymmetric synthesis. 

A better accessible chiral mediator is the (acyloxy)borane (CAB) 2-64 prepa- 
red in situ from a tartaric acid derivative and arylboronic acid at room tempe- 
rature. Hetero DielsoAlder reaction of benzaldehyde and Danishefsky's diene 
2-10 in the presence of 2-64 gave the corresponding pyrone after acidic work up 
with 52- 95 % ee depending on R. The best results were obtained with R = 2,4,6- 
Me3Ph and 2,4,6oiPr3Ph. Similarly, with 2-60 the pyrone 2-61 with up to 97 % ee 
was found [107]. 

The outstanding properties ofbinaphthol (BINOL) as a ligand in chiral Lewis 
acidic metal complexes were also demonstrated highly successfully by Mikami 
[108, 109] using a binol-titanium complex 2o69a. Even in the cycloaddition of 
methyl glyoxylate 2-66 to 1-methoxy-1,3-butadiene 2-65 which usually shows only 
a low selectivity, a reasonable cis/trans-selectivity and an excellent enantioselec- 
tivity could be obtained in the presence of catalytic amounts of this complex. 

Noteworthy, in contrast to earlier work with the complex 2o69a in the presence 
of molecular sieves (MS), the MS-free system gave a better endo-selectivity and 
enantioselectivity. Interestingly, a positive non linear effect [ (+)-NLE] [ 110] is 
observed using e.g. a mixture of (R)-2-69 a and (R)/(S)-2-69a; this effect was not 
found in the presence of a non-racemic mixture of (R)-2o69a and (S)-2-69a in 
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a �9 Ar = Ph �9 84 % yield, cis (95 % ee) �9 t rans = 92 �9 8 
b" Ar = 3,5-xylyl �9 93 % yield, cis (97 % ee) �9 t rans = 97 �9 3 
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Fig.2-18 
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absence of molecular sieves indicating that the catalytically non active (R)/(S)- 
dimer-2-69 a is not or only slowly formed in absence of molecular sieves. 

It should be noted that the new binaphthol catalyst 2-69b may give better 
results in some cases, but not always. Thus, the cis-selectivity is decreased in the 
reaction of 2-65 and 2-66 with nearly identical enantioselectivity (Fig. 2-19). 

OMe OMe OMe 
~ O 10 mol% LA*, .: 

CH=Cl=,-3ooc, ~h I 0 I 0 
+ H ." '~ CO2Me ~ + 

78 % CO2Me CO2Me 

2-65 2-66 

LA* = o0~Ti 

a ' X = H  
2-69 

b ' X = B r  

.~1 
"~1 

Fig.2-19 

2-67 2-68 

ee= 96 % ee> 90 % 

cis" trans = 88 �9 12 

Similarly, Keck [ 111 ] has used the Ti(O-i-Pr)4/BINOL complex (10 mol %) for 
the hetero Diels-Alder reaction of 1-methoxy-3-trimethylsilyloxy-l,3-butadie- 
nes 2-10 and non-activated aldehydes. The lowest enantioselectivity was ob- 
tained with benzaldehyde and the best with phenylacetaldehyde and some 
aliphatic aldehydes to give the corresponding dihydropyrans with ee values ran- 
ging from 75 % up to 97 %. 

Good enantioselectivities were also found by Togni [112] using a novel opti- 
cally active oxovanadium(IV) complex 2-72 bearing camphor-derived 1,3-dike- 
tonato ligands. The reaction of benzaldehyde with 1-methoxT-2,4-dimethyl-3- 
(triethylsilyloxy)-l,3-butadiene 2-70 in the presence of 5 mol % of bis[3-(hep- 
tafluorobutylryl)camphorato]oxovanadium 2-72 at-78 ~ gave the pyrone after 
acidic work up with a simple diastereoselectivity of 98.5 % de and 85 % ee. This 
was clearly the best result, other examples were less satisfying (Fig. 2-20). 

Also good results were obtained by ]orgensen [113] using a chiral copper(II) 
complex 2-77. However, employing butadienes bearing a methyl group such as 
2,3-dimethyl-l,3-butadiene 2-73 with alkyl glyoxylate 2-74 a mixture of Diels- 
Alder and ene product was obtained. The observed ee-values for both products 
vary only slightly. Thus, reaction of 2-73 and 2-74 in the presence of 2-77 gave 
2-75 with 85 % ee in 20 % yield and 2-76 with 83 % ee in 36 % yield (Fig. 2-21). 

It should be noted that the use of polar solvents such as nitromethane leads 
to a significant improvement of the catalytic properties of 2-77 probably due to 
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an accelerating effect of ligand dissociation from the metal to give the cationic 
copper-Lewis acid [ 114]. 

A clear two step formation of a pyrone by an enantioselective Mukaiyama- 
aldol and acid catalysed aldol dihydropyrone annulation using aliphatic and 
aromatic aldehydes and 1-methoxy-3-trimethylsilyloxy-l,3-butadiene in the 
presence of a tryptophan-derived oxazaborolidine was described by Corey et al. 
[115]. The resulting pyrone which could be assigned as a formal Diels-Alder 
adduct was obtained with a 67- 82 % ee and 57-100 % yield. 

The observation by' Corey again raises the question under which conditions a 
hetero Diels-Alder or a two-step aldol reaction takes place especially when using 
silyloxybutadienes. Thus, in several studies a clear structure determination of 
the intermediate cycloadducts was not performed, being directly transformed 
into the final pyrone by an acid-catalysed reaction. Under these conditions also 
a primarily formed aldol-adduct would yield the isolated pyrones. 
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2.2 
Oxa Diels-Alder Reactions with 1-Oxa-l,3-butadienes 

The hetero Diels-Alder reaction of a, fl-unsaturated aldehydes and ketones with 
electron rich alkenes such as enol ethers, thioenol ethers, ketene acetals, enami- 
nes, alkynyl ethers, ketene aminals and ynamines as well as selected simple alke- 
nes gives an excellent access to 2-substituted 3,4-dihydro-2H-pyrans which are 
useful precursors for the synthesis of carbohydrates, iridoids, mycotoxins and 
other natural products. Several excellent reviews on this topic have already been 
published which cover the literature until 1989 [10-12, 14, 22]. The reaction is 
controlled by a dominant interaction of the LUMO of the 1-oxa-l,3-butadiene 
and the HOMO of the dienophile and thus belongs to the Diels-Alder reactions 
with inverse electron demand. It is usually a concerted non-synchronous trans- 
formation [41, 42, 54] with retention of the configuration of the dienophile [55]. 
Electron-withdrawing groups at the 1-oxa-l,3-butadiene greatly enhance their 
reactivity by substantially lowering the energy of the LUMO of the oxabutadie- 
ne allowing the performance of the Diels-Alder reaction without the additon of 
a catalyst in several cases already at 20 ~ even with simple alkenes [ 12].An addi- 
tional effect of C-3 substituted oxadienes is the stabilisation of a cisoid confor- 
mation. On the other hand, besides the low energy difference between the 
LUMOoxabutadiene and HOMOdienophile the favourable coefficients at the reaction 
centers are equally important which can be seen from the Klopman-Salem equa- 
tion [116-118]. 

These thoughts do not only count for the 1-oxa- 1,3-butadiene, but also for the 
dienophile. Thus, in an intermolecular cycloaddition with a benzylidenepyrazoo 
lone, ethyl vinyl ether reacts about 50 times faster than (Z)-1,2-dimethoxyethe- 
ne and 1,1-diethoxyethene about 2000 times faster than 1,1,2,2-tetramethoxy- 
ethene, 3000 times faster than (E)-l,2-diethoxyethene, and 5000 times faster 
than (Z)-diethoxyethene [ 119]. 

The Diels-Alder reactions with oxabutadienes usually show a high regioselo 
ectivity, but in the presence of Lewis acids the regioselectivity is even more 
enhanced and in addition an increase of the reaction rate is normally obser- 
ved. Also the stereoselectivity is often improved. Thus, in the intermolecular 
mode under thermal activation the endo/exo-selectivity is not very high; if 
the dienophile is not too bulky as e.g. methyl or ethyl vinyl ether the endoo 
adduct is the major product. However, with tert-butyl vinyl ether the exo- 
adduct is formed preferentially. Synthetically' highly important is the fact that 
the endo/exooselectivity can be controlled to a high extent by the choice of the 
Lewis acid passing predominantly either through an endoo or an exo-transio 
tion structure. This again is presumably due to steric reasons. The application 
of high pressure increases the rate of the cycloadditions and allows the impro- 
vement of the endo-selectivity in some cases. Of general interest are the trans- 
formations which permit the in situ formation of the oxabutadiene in a do- 
mino type reaction [3,4] giving access to complex molecules starting from 
simple compounds in a highly efficient way. As usual, the reaction can be 
performed in an inter- and intramolecular mode; the latter often shows the 
higher selectivity. 
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The thermal reactions of 1-oxa-l,3-butadienes such as acroleine 2-78 with 
alkenes such as 2-79 usually need relatively harsh conditions (150 ~176 
[120]. As a side reaction polymerisation of the a, fl-unsaturated carbonyl com- 
pound can take place; addition of radical inhibitors such as hydroquinone or 
2,6-di-tert-butyl-4-methylphenol can be helpful in avoiding this unwanted 
transformation. In the described hetero Diels-Alder reaction the cycloadduct 
2-80 was obtained which was then transformed into racemic-fl-santalene 2-81 
(Fig. 2-22). 

�9 , ( )  
H 

2-78 2-79 2-80 2-81 

Fig. 2-22 ~ - Santalene 

The use of enol ethers as dienophiles improves the reaction, however, still high 
temperature is needed and endo/exo-selectivity is low. Thus, cycloaddition of 
ethyl vinyl ether 2-83 to cyclopentenecarbaldehyde 2-82 gave the cycloadduct 
2-84 as a 1:1 mixture which was used for the synthesis of iridoids (Fig. 2-23) 
[1211. 

A major breakthrough in the Diels-Alder reaction of oxabutadienes has been 
accomplished through the introduction of an electron-withdrawing group in 
the 3-position. In several papers we have demonstrated the usefulness of this 
concept which found broad acceptance after our discoveries. 

Such oxadienes like 2-85 cycloadd to enol ethers like 2-86 already at room 
temperature with complete regiocontrol and retention of the configuration of 
the dienophile as well as in many cases with good endo-selectivity [ 122-124]. In 
the reaction of 2-85 via an endo-Z-anti transition structure the major product 
was the 2,4-trans-compound 2-87 (2-87:2-88=7:1). The (Z)-configuration of 
the 1-oxa-l,3-butadiene in the transition structure is preserved due to the 
strong hydrogen bond between the carbonyl and the hydroxyl group. Using the 
corresponding O-acetylated compound 2-89a the endo/exo-selectivity is rever- 
sed to give predominantly the cis-l,4-substituted dihydropyran, since now the 
reaction takes place via an endo-E-syn-transition structure. In addition, a dra- 
matic increase in the reaction rate compared to the parent compound occurs. 

H H 

2-82 2-83 2-84 

Fig. 2-23 1 ~ 1 
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With the camphanic acid ester derivative 2-89 b a reasonable asymmetric induc- 
tion was obtained to afford the corresponding dihydropyran after crystallisation 
in 42 % yield as a single diastereomer in enantiopure form (Fig. 2-24) [124]. 

Interestingly, tricarbonyl compounds such as 2-85, but not 2-89, can also 
undergo a cycloaddition under irradiation to give a different type of dihydro- 
pyran. 

In the intramolecular mode using either alkylidene- or benzylidene-l,3- 
dicarbonyl compounds even a simple alkene moiety can act as a dienophile. 
Depending on the substitution at the dienophile either annulated or bridged 
cycloadducts can be obtained [3, 4]. The oxadienes e.g. 2-92 are prepared in situ 
by a Knoevenagel condensation of aldehydes such as 2-90 bearing the dienophi- 
le moiety and a 1,3-dicarbonyl compound such as 2-91; thus, these transforma- 
tions proceed as domino Knoevenagel hetero Diels-Alder reactions. The method 
has a broad scope since a multitude of different aldehydes and 1,3-dicarbonyl 
compounds can be used. Hetero Diels-Alder reactions of oxabutadienes obtai- 
ned from aromatic aldehydes such as 2-92 lead exclusively to the cis-fused cyclo- 
adducts like 2-93 (Fig. 2-25) [125], whereas oxabutadienes from aliphatic alde- 
hydes give the trans-fused cycloadducts predominantly (--- 98:2) [126].Applying 
this protocol a vast array of novel annulated heterocycles can be synthesized in 
a highly efficient and selective way' e.g. reaction of 2-94 and 2-95 yielded exclu- 
sively the cis-fused tetracycle 2-96 (Fig. 2-26) [127]. 

On the other hand, oxabutadienes such as 2-97 obtained from aldehydes with a 
dienophile moiety being unsubstituted at the terminus give bridged compounds 
2-98 due to the change of the coefficients at the dienophile moiety (l~ig. 2-26a) 
[ 128 ] (see also Sect. 7.1 [ 490, 492 ] ). 

In addition, also spiro compounds can be synthesized using alkylidene-cyclo- 
alkenes as a dienophile moiety [56]. Finally', as an immense enlargement of the 
scope of this protocol, the domino Knoevenagel hetero Diels-Alder reaction can 
be run as a three component transformation mixing an aldehyde such as 2-99, a 
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1,3-dicarbonyl compound such as 2-100 and an enol ether such as 2-101 to give 
the dihydropyran 2-102 (Fig. 2-27) [129]. 

Unfortunately, formylacetate cannot be applied as 1,3-dicarbonyl compound 
due to its instability; however, recently we have shown that 4,4,4-trichloro-3- 
oxobutanal may be used as a formylacetate equivalent, since after the cycloddi- 
tion the obtained trichloromethylcarbonyl group can easily be transformed into 
an alkoxycarbonyl group by a base-catalyzed solvolysis with an alcohol [130a]. 
This concept has been used for the synthesis of secologanin (Sect. 7) [130 b]. 

CHO 

2 - 9 9  

O 
, 

S CH3CN, 20~ ~ O .. 
- .  ~ t . )  

+ "OEt 97 % R S 
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Fig. 2-27 cis" trans = 66 �9 34 

With the highly reactive alkylidene-Meldrum's acid also silyl enol ethers 
undergo cycloaddition although they are usually less reactive than normal enol 
ethers [131]. With the even more reactive alkylidene-l,3-diketones such as 
methylidene-l,3-cyclohexadione 2-103 being obtained in situ by condensation 
of 1,3-cyclohexadione and formaldehyde a hetero Diels-Alder reaction also with 
simple alkenes such as 2-104 can be performed in acetic acid [132]. In addition 
to the cycloadduct 2-105 the corresponding ene product was found (Fig. 2-28). 
However, usually the chemo- and regioselectivity is high whereas the yields in 
most cases were only moderate. 

In the course of these investigations Hoffmann and his group have also deve- 
loped novel entries to t-butyl 2-methylene-3-oxoalkanoates 2-109a and 2- 
methylene-3-oxo-sulfones 2-109b by oxidation of 2-108a and 2-108b, respec- 
tively obtained by reaction of the aldehydes 2-106 and acrylate 2-107 a or phenyl 
vinyl sulfone 2-107b. The cycloadditions of these oxabutadienes to enol ethers 
and alkenes proceeded in the expected way (Fig. 2-29) [133]. 

HOAc, KOAc 
hydroquinone 
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v ~O 69 % 

OH 
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Fig. 2-28 2.7 �9 I 
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A well established procedure for the synthesis of methylenemalonate 2-111 is 
the thermolysis of the anthracene derivative 2-110 [134a]. Recently, also a new 
method for the preparation of the useful methylidene-Meldrum's acid has been 
described [ 134 b]. 

For activation of an oxabutadiene also a cyano group at the 3-position can 
.serve as shown by Bogdanowicz-Szwed. Thus, the cycloaddition of 3-cyano-ena- 
minoketones 2-112 with different enol ethers 2-113 in toluene at 100-120~ for 
48-72 h gave the corresponding dihydropyrans 2-114 in good yield (57-90%), 
however with low diastereoselectivity (3:1 - 5:1) with the cis-compound always 
being the major product (Fig. 2-30) [135a]. Earlier we had already shown that 
enaminoketones with an ester group at C-3 can be used in the cycloaddition 
with enol ethers to allow an efficient entry to branched amino sugars [135b]. 

Highly electron deficient fl, fl-bis(trifluoroacetyl)vinyl ethers 2-115, easily 
prepared by a diacylation of vinyl ethers with trifluoroacetic anhydride, react 
with electron-rich alkenes in a hetero Diels-Alder reaction smoothly at 20~ 
with excellent yield to give the dihydropyran 2-116 (Fig. 2-31). The cycloaddi- 
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tion shows a high endo-selectivity especially when using a vinyl sulfide as 
dienophile [ 136]. 

Reactions of unsymmetrical methylene 1,3-dicarbonyl compounds with enol 
ethers have been investigated by Yamauchi et al. [137]. As we have mentioned 
earlier, the a, fl-unsaturated ketone moiety in alkylidene-fl-ketoesters reacts 
exclusively as the oxabutadiene. However, high regioselectivity is also observed 
with mixed alkyl-phenyl-l,3-diketones with exclusive reaction of the aliphatic 
carbonyl group, whereas in alkylidene-l,3-dicarbonyl compounds bearing an 
aldehyde and a keto-moiety, the a, fl-unsaturated aldehyde reacts preferentially 
as oxabutadiene, but not exclusively [130a]. 

Also ynamines can be used in the hetero Diels-Alder reaction of 1-oxa-l,3- 
butadiene. Novel examples are described by Dell et al. [ 138] using e.g. the 2-ben- 
zylidene-indane-l,3-dione 2-117 and 2-118 to give 2-119 (Fig. 2-32). However, 
the yields are only modest. 

O 

2-117 

Z'4 -NO 2 
3 -NO 2 
3 -CF 3 

R~ THF, RT, 15 h ~, 

N ~ C 0 2 M e  
R2 32 - 50 % 

a 1 

m ~ N''R2 Me 

O ~ Z 

2-118 2-119 

Fig. 2-32 

Interestingly, the reactivity of oxabutadienes can also be increased by intro- 
duction of a thiophenyl group at the 3-position which was first described by 
Takaki et al. [139] and later employed by Schmidt et al. [140] and us [141]. The 
use of such oxabutadienes allows an efficient access to 3-aminosugars. 

Thus, reaction of 2-120 and 2-121 a gave a 3.9:1 mixture of 2-122 a and 2-123 a. 
2-122a could easily be desulfurized to give either the tetrahydropyran 2-124 or 
the dihydropyran 2-125. Of importance was the finding that the reaction with 
the thioenol ether 2-121b shows an excellent endo-selectivity (22:1) (Fig. 2-33). 

Interestingly, oxabutadienes with an S-alkyl group at C-3 such as 2-126, 2-127 
and 2-128 do not react, whereas 2-129 with an S-phenyl group again undergoes 
a cycloaddition. This clearly shows that activation of the oxabutadiene is caused 
by a kind of conjugation with the phenyl group over the sulfur atom [142]. 
However, one has to keep in mind that the phenylthio group is only a weak 
activating moiety compared to electron-withdrawing groups such as CN and 
CO~R (Fig. 2-34). 

On the other hand, in a series of papers we have shown that 1-oxa-1,3-buta- 
dienes 2-130 bearing an electron-withdrawing group such as CN, CO2R, CC13, 
CC1F~ and CF3 at the 2-position also express a good reactivity, which however, is 
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less pronounced than that of oxabutadienes with an electron-withdrawing 
group at the 3-position. Cycloaddition of 2-130 to electron-rich dienophiles 
2-131 gave the dihydropyrans 2-132 and 2-133 in high yield but modest to low 
selectivity (Fig. 2-35). The highest endo-selectivity was obtained employing 
2-130 with R ~ = CO2 Me and the lowest with R ~ = CCI~ (see also Sect. 8). 

Systematic investigations of the cycloaddition of the 1-oxa-l,3-butadiene 
2-134 bearing an ester moiety at the 2-position to enol ethers 2-135 in the 
presence of Lewis acids were performed by Boger et al. [144] to give the dihy- 
dropyrans 2-136 in modest to good yield (Fig. 2-~6). 

Sera et al. [145] performed similar studies, however using simple alkenes in 
the presence of SnC14. The corresponding dihydropyrans 2-139 were obtained 
generally with high stereoselectivity and partly excellent but also low yield 
depending on the alkene employed (15-93 %). The major product was always 
the 1,3-trans disubstituted compound which is presumably formed via an exo- 
E-anti-transition structure (Fig. 2-37). 

Wyler et al. [146a-c] have focused on the hetero Diels-Alder reaction of ct, fl- 
unsaturated-acyl cyanides such as 2-140 with ethyl vinyl ether, N-methylated 
uracil and 1-bromo-2-ethoxyethenes 2-141. In the latter case the dihydropyran 
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2-142 was obtained, which could be transformed into stable pyrans by elimina- 
tion of hydrogen bromide. The yields were good, however, the selectivity, except 
for the reaction of 2o140c and 2-141 a, was rather low (Fig. 2-38). 

In a similar way, also other groups have investigated the cycloaddition of a, fl- 
unsaturated acyl cyanides [146d]. 

Acyl ketenes also react with a variety of dienophiles such as enol ethers to give 
the corresponding 2-alkoxy-2,3-dihydro-4-pyranones [147]. 

A versatile approach to spiro-oxacycles is the use of cyclic a-methylene enol 
ethers employed by us in an efficient and short enantioselective total synthesis 
of the mycotoxin talaromycin B (see Sect. 7.1). Later Pale and Vogel [148] 
employed the same protocol for the preparation of spiroacetals 2-145 using e.g. 
acrolein 2-78, methyl vinyl ketone and 2-pentenal, respectively with the enol 
ether 2-143 (Fig. 2-39). In most cases the yields were only modest, however, reac- 
tion of 2-143 and 2-78 in benzene in the presence of the mild Lewis acid ZnC12 
gave 2-145 in 70 % yield as a single adduct. 

R R 
/ 0  ~,~, Br 20-80 ~ ~ 

~ + 7-240 h Br 

"OEt 50-97 % 
NC NC OFt 
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a'R=H a'Z 
b'R=Me b E  
c" R = CO2Et 

Fig. 2-38 

O 

2-143 2-78 

ZnCI 2, benzene, 18 h 
, ,  ~ 

84 % 

Fig. 2-39 

2-145 

Novel complex heterocycles such as 2-148 can easily be obtained using the 
hetero Diels-Alder reaction of enol ethers like 2-147 and 2-146 as 1-oxa-l,3- 
butadiene (Fig. 2-40) [149]. 

For the reaction of non-activated 1-oxa-l,3-butadienes several different 
Lewis acids have been developed. Thus, the MoO2(acac)2-catalyzed reaction of 
methacrolein with enol ethers gave dihydropyrans in 58% yield at 100 ~ [150]. 

Especially successful is the use of a Lewis acid in those cases, where a second 
chelating group exists in the molecule. Wada et al. [151] have shown that (E)-2- 
oxo- 1-sulfonyl-3-alkenes 2-149 cycloadd in hetero Diels-Alder reactions to enol 
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ethers 2-150 in the presence of Lewis acids like Eu(fod)3 or TiC12(i-PrO)2 with 
excellent selectivity to give the endo-products 2-151.A further advantage of this 
approach is the possibility to manipulate the obtained dihydropy'rans 2-151 at 
the side chain via formation of a sulfonyl-stabilized carbanion (Fig. 2-41). 

Alkylidene-3-indolones 2-152 react with ethyl vinyl ether 2-83 to give the cor- 
responding dihy'dropyrans 2-153 in the presence of Yb(fod)3 (Fig. 2-42) [152]. 

Also 1-ethoxy-l,2-propadiene (ethoxyallene) can be used as a dienophile in 
hetero Diels-Alder reactions. In this case the reaction was performed under dry 
state adsorption conditions on silica gel [153]. 

Desimoni and Righetti have been thoroughly investigating the effect of sol- 
vents, acid catalysis and salts on hetero Diels-Alder and ene reactions of 1-oxa- 
1,3-butadienes for a long time [ 154-156]. Recently, for the cycloaddition of 2-154 
and ethyl vinyl ether 2-83 in the presence of lithium perchlorate in different 
solvents as diethyl ether, acetonitrile, acetone, methanol, iso-propanol to give 

1-3 mol% Eu(fod)3, R20~,... ~.,.~ .~ _ c~ ..~ 
O OR2 -10 - 20 ~ L ~  SO2Ph 
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2-155 a linear increase of the relative rate by increasing the molar fraction of the 
salt was observed with a kr~ value of 850 + 80 (Fig. 2-43). There is a slight in- 
crease of the endo-selectivity in diethyl ether (without LiC104: 88112,1M LiC104: 
95/5) but no effect in methanol. The results can be rationalized by" the lithium 
cation acting as a Lewis acid [80] and, as already mentioned, not as the effect of 
an "internal pressure" [ 157]. 

A maior problem in the reaction of a, fl-unsaturated carbonyl compounds 
and alkenes proves to be the competition between hetero Diels-Alder and ene 
reactions. Intramolecular cycloadditions of 1,6- and 1,7-dienes with ester and 
cyano groups at the double bond yield the ene product nearly exclusively, but 
with alkylidene- and benzylidene-ketoesters and 1,3-diketones the Diels-Alder 
reaction is preferred under thermal conditions, however under Lewis acid cata- 
lysis also ene reactions occur [12]. 

In a series of papers Desimoni and Righetti [158-160] have now shown that 
the addition of salts such as lithium perchlorate and magnesium perchlorate not 
only accelerates the reaction, but also has a high influence on the ratio of ene 
and Diels-Alder products. Reaction of the benzylidene-l,3-diketone 2-156 with 
LiC104 at 25~ for 3 days a 85:15 ratio of 2-157 and 2-158 in 70% yield and with 
Mg(C104)~ at 25 ~ for 20 h a 7:93 ratio in 100% yield was obtained (Fig. 2-44). 
However, as expected the corresponding benzylidene-malonate gives the ene 
product exclusively under all conditions. 
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Recently a remarkable chemo- and enantioselectivity has been found using 
the trans-(4,5-diphenyloxazoline)-magnesium perchlorate complex 2-161 for 
the transformation of 2-159 to yield the ene product 2-160 with 88% ee in a 
89:11 preference (Fig. 2-45). 

In recent years several highly efficient asymmetric cycloadditions employing 
chiral oxabutadienes have been developed. The use of chiral dienophiles was less 
satisfying as shown for the cycloaddition of 2-162 to 2-120 to give the dihydro- 
pyran 2-163 (Fig. 2-46) [161c]. 

However high endo-selectivity with excellent asymmetric induction was 
obtained by" us with oxabutadienes 2-164 bearing an oxazolidinone moiety deri- 
ved from tert-leucine and enol ethers 2-165. The results are surprising, if one 
considers that the inducing stereogenic center is five atoms away (1,6-induc- 
tion). In the presence of Me~_A1C12-166 was obtained nearly exclusively; whereas 
with TMSOTf the endo-cycloadduct 2-167 was the major product showing the 
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opposite absolute configuration of the dihydropyran moiety [ 161 ]. Thus, a rever- 
sal of the facial selectivity is possible by just changing the Lewis acid to give 
access to both enantiomers of the cycloadduct with the same auxiliary. The 
results could be explained from calculations [162]. Using bidental Lewis acids 
such as Me~.A1C1 a chelate 2-171 is formed with the tert-butyl group facing down. 
However, with monodental Lewis acids such as TMSOTf, the oxenium ion 2-170 
with the opposite orientation of the tert-butyl group is presumably the interme- 
diate. Also, a reversal of the endo/exo-selectivity is possible using SnC14 as Lewis 
acid to give 2-168 as the major product again with high induced diastereoselec- 
tivity for the endo- and exo-adduct (Fig. 2-47) [ 163]. 
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An excellent asymmetric induction has also been observed by Snider et al. 
[164] in a hetero Diels-Alder reaction with the N-crotonyl oxazolidinone 2-172 
which had already been used by Evans for the all carbon cycloaddition [164b]. 
Reaction of isobutene with 2-172 in the presence of Me2A1C1 for 40 h at -30 ~ in 
CH2C1)_ provided a mixture of the alcohol 2-174 and the lactone 2-175 via the 
primarily formed cycloadduct 2-173. Treatment of the mixture with sodium car- 
bonate gave the lactone 2-175 as a pure enantiomer (Fig. 2-48). 

Ephedrine derived benzylidene-oxazepandiones 2-178 have also been proven 
as very effective chiral 1-oxa-l,3-butadienes in asymmetric hetero Diels-Alder 
reactions. Knoevenagel reaction of the aldehyde 2-176 with the oxazepanedione 
2-177 gave the (Z)-benzylidene derivative 2-178 which undergoes a hetero Diels- 
Alder reaction in the presence of Et2A1C1 to afford the cycloadduct 2-179 in good 
yield and excellent selectivity (78%, de >98%) [165]. The auxiliary could be 
removed by treatment with acid and base to give the enantiopure lactone 2-180 
(Fig. 2-49). Interestingly, the cycloaddition takes place in an exo-Z-syn fashion 
with an attack at the oxadiene syn to the bulkier groups at the stereogenic 
centers in 2-178. The reason for this unusual result is the conformation of the 
benzylidene-oxazepandione which prohibits the attack from the Si-face due to 
two hydrogens in 2-178 at the lower face [165]. 

Kaneko and Sato [166-169] have also developed several very useful chiral 
1-oxa-l,3-butadienes such as the enantiopure benzylidene-l,3-dihetero-4,6- 
dioxocyclohexanes 2-181 and 2-182 and the 5,6-dihydropyran-2,4-dione 2-183 
(Fig. 2-50) obtained by Knoevenagel condensation of the corresponding 1,3- 
dicarbonyl compound with benzaldehydes. The hetero DielsoAlder reaction of 
2-184 with ketene acetal proceeded with good yields and high selectivity to give 
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the adduct 2-185 which could easily be transformed in three steps into the 
5-ketoester 2-186 with a stereogenic center at C-3 (Fig. 2-51). 

A high asymmetric induction in intramolecular hetero Diels-Alder reactions 
was found using chiral looxa-l,3-butadienes with a stereogenic center in the 
tether [54]. Such compounds can easily be obtained by a Knoevenagel conden- 
sation of a 1,3-dicarbonyl compound such as N,N-dimethylbarbituric acid with 
a chiral aldehyde bearing a dienophile moiety [169a] (Scheme 2-3).With the ste- 
reogenic center in a-position relative to the oxadiene or dienophile moiety an 
excellent induced diastereoselectivity is obtained for the nearly exclusively for- 
med trans-cycloadduct (simple diastereoselectivity=97.9:2.1 and 98.3:1.7, 
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induced diastereoselectivity > 99:1). The observed high stereoselectivity can be 
explained by the sp~-geminal effect, which is a type of 1,3-allylic strain [ 169 b]. 

With the stereogenic center in the fl-position the induced diastereoselectivi- 
ty is controlled by the preferential equatorial orientation of the substituent in a 
chair-like transition structure. However, the selectivity is higher (96.3:3.7) than 
could be anticipated from a simple comparison with the ratio of the equatorial- 
ly and axially orientated methyl group in methylcyclohexane (95:5). 

Also, chiral a-sulfinyl-a, fl-unsaturated ketones 2-187 have been employed in 
hetero Diels-Alder reactions, however, the observed diastereoselectivities were 
less satisfying. Using Et2A1C1 as the best promotor 81.7% de and with ZnC12 
30.5% de was found (Fig. 2-52) [170a]. 

As expected, the major product was the trans-annulated compound 2-188 
which should be formed via an exo-E-anti-transition structure with an attack of 
the dienophile anti to the bulky tolyl group. An endo-Z-anti-orientation which 
would also lead to the trans-product can be excluded because of its strain [54]. 
The reaction of the corresponding a'-sulfinyl-a, fl-unsaturated ketone 2-189 
displayed a much lower induced diasteroselectivity (Fig. 2-53) [170b]. 

An interesting approach to directly linked C-disaccharides 2-191 was develo- 
ped by Dondoni et al. [171] via a hetero Diels-Alder reaction of sugar derived 
1-oxaol,3-butadienes as 2-190 bearing a thiazole moiety at position 2 as activa- 
ting group (Fig. 2-54). 

The cycloaddition with ethyl vinyl ether proceeded with excellent yield either 
under thermal conditions (80 ~ 5 days) or in the presence of LiC104 (20 ~ 17 
h). In the former case a reasonable exo/endo and induced diastereoselectivity 
was observed, however using LiC104 the asymmetric induction was null. 
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Sugar derived enals like 2- and 3-formyl hex-1- and hex-2-enopyranosides 
have also been used for the cycloaddition with enol ethers in the presence of 
Eu(fod)3 as a catalyst with good yields and high selectivity [172]. 

The enantioselective hetero Diels-Alder reaction of looxa-l,3-butadienes 
using chiral non-racemic Lewis acids is a widely unexplored field. The first suc- 
cessful example was the intramolecular cycloaddition of the heterodiene 2-194, 
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obtained in situ from 2-192 and 2-193 by Knoevenagel reaction. In this transfor- 
mation the novel diacetone glucose derived Lewis acid 2-196 promotes the con- 
densation and the cycloaddition to give the products 2-195 via 2-194 (Fig. 2-55). 
The reaction is completely cis-selective and yields the 5-methoxy substituted 
tetracycle 2-195c with 88% ee [173]. The reaction is highly solvent dependent 
with 88 % ee in isodurene, 86 % ee. in toluene, 72 % ee in tetrahydrofuran and 
34 % ee in dichloromethane. In addition, it shows a highly interesting tempera- 
ture curve with 88 % ee at 25 ~ and nearly 0% ee at -50 ~ and + 100 ~ The 
temperature dependence is in agreement with the principal of isoinversion 
[ 174]. Astoundingly, in the reaction of 2-192 d and 2-193 ent-2-195d is the major 
cycloadduct. 

Recently, Wada et al. [175, 176] have observed an excellent enantioselectivity 
for the intermolecular hetero Diels-Alder reactions of (E)-2-oxo-l-phenylsul- 
fonyl-3-alkenes 2-197- 2-199 with enol ethers 2-200 to give the dihydropyrans 
2-201 - 2-203 using the Narasaka catalyst 2-204. The best results were obtained 
with the iso-propyl vinyl ether 2-200c (Fig. 2-56). 

The titanium dibromo catalyst 2-204 gave in all cases better yields and a 
higher selectivity than the corresponding dichloro complex. The results can be 
rationalized by the formation of a chelate between the catalyst and the carbonyl 
and the sulfonyl group. 
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3 
Aza Diels-Alder Reactions 

3.1 
Reactions with C= N Dienophiles 

The formation of tetrahydropyridines by reaction of a suitable diene with an 
imino dienophile is a reaction known since more than half a century [177] and 
has been intensively studied. In general, the imines react as the electron-defi- 
cient component and their reactivity strongly depends on the electron density 
which may be tuned by activating or deactivating moieties. However, exceptions 
from this rule are possible as found by Padwa et al. [178]. They described cyclo- 
additions of imines to bis(phenylsulfonyl)ol,3-butadienes. 

Aza Diels-Alder reactions of nonactivated imines have been investigated with 
regard to the effects of electronically neutral substituents and the influence of 
Lewis acids [179, 180]. Some of the synthetic applications described below 
nevertheless take use of the higher reactivity of iminium ions or imines activa- 
ted by electron-withdrawing substituents, respectively. 

The more recent work on this area deals predominantly with the asymmetric 
induction in aza Diels-Alder reactions in order to develop a novel powerful tool 
for the stereoselective synthesis of biologically active compounds. Thus, Waldo 
mann et al. demonstrated the utility of chiral imines derived from enantiopure 
amino acids by" obtaining the cycloadduct 3-3 in very good diastereoselectivity 
from imine 3-1 and Brassard's diene 3-2 (Fig. 3-1) [181]. 

A similar approach to the synthesis of tetracyclic indole alkaloid derivatives 
has been described [182], and the use of reactive chiral iminium ions allows the 
realisation of stereoselective aza Diels-Alder reactions even in aqueous solution 
[ 183, 184]. Nevertheless it should be noted that reactions of electron-rich dienes 
with imines e. g. derived from amino acids do not necessarily proceed via a Diels- 
Alder mechanism. They may as well undergo a domino-MannichoMichael 
sequence which also efficiently leads to useful nitrogen heterocycles [ 185 - 188 ]. 

An elegant approach to indolizidine and quinolizidine derivatives using im- 
ines derived from sugars has been presented by Herczegh et al. [189-191]. The 
imine generated in situ from aldehyde 3-4 derived from D-glucose reacted 
smoothly with Danishefsky's diene to form 3-5 which was easily transformed to 
the aldehyde 3-7. Hydrogenolysis under acidic conditions directly yielded the 
castanospermine analogue 3-6 (Fig. 3-2). 

E~u02C.~ N + MeO O~T'MS 

3-1 3-2 

EtAICi 2 (1.4 equiv.) 
CH2CI2 
- 78 ~ ~ RT, 1-1.5 h 

84 %, 95 % de 

Fig. 3-1 

OMe 

ph,,,..~~N~N~O 
...~,,,..-I.,, CO~tBu 

3-3 
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Very recently, chiral tricarbonylchromium complexes have been introduced 
as novel chiral auxiliaries for aza Diels-Alder reactions [192, 193]. Using the 
brominated imine 3-8, Ktindig's group was successful in efficiently generating 
enantiopure polycyclic compounds such as 3-10 by cycloaddition of 3-8 to 
1-methoxy-3-trimethylsilyloxy-l,3-butadiene (Danishefsky's diene), subsequent 
radical cyclisation of the cycloadduct 3-9 and oxidative metal removal from 3-11 
(Fig. 3-3). 
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Numerous further chiral imines activated by" electron-withdrawing substi- 
tuents have been investigated in order to carry out stereoselective aza Diels- 
Alder reactions. In these studies, Bailey et al. have recently introduced the use of 
two inducing stereocenters in the imine. This approach proved to yield excellent 
diastereoselectivities; thus, imine 3-12 bearing a (R)-8-phenylmenthyl auxiliary' 
gave the essentially pure cycloadduct 3-13 upon hetero Diels-Alder reaction 
with cyclopentadiene (Fig. 3-4) [194-196]. 

Chiral Lewis acids have been employed by Yamamoto et al. [ 197-199] in order 
to carry out enantioselective aza Diels-Alder reactions starting from achiral 
substrates; however, these transformations required stoichiometric amounts of 
the chiral mediator 3-16 which was generated in situ from (R)-binaphthol and 
triphenylborate. The best results were obtained with the pyridine derivative 
3-14 which afforded the desired cycloadduct 3-15 in high optical purity (Fig. 3-5). 
Using chiral imines, the authors found a high level of double asymmetric induc- 
tion, and this methodology could be applied to the enantioselective total syn- 
thesis of two piperidine alkaloids. 

Further studies concerning aza Diels-Alder reactions of N-sulfonyl imines 
have been carried out by Holmes et al. [200] and Whiting et al. [201,202], and the 
utility of glyoxylato imines for the synthesis of cyclic amino acids has been inve- 
stigated by Stella's group [203, 204]. An extensive study concerning intramole- 
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cular cycloadditions of imines activated by acyl and ester moieties has been car- 
ried out by Shea et al. [205]. 

The aza Diels-Alder reactions of chiral a-alkoxy imines described by Mid- 
land et al. [206] proceeded only in the presence of strong Lewis acids due to the 
deactivation of the dienophile by the electron-donating substituent, but with 
suitable substrates, very high diastereoselectivities could be achieved. It is as 
well possible to use chiral dienes in such transformations as asymmetric 
inductors; this kind of asymmetric aza Diels-Alder reactions has recently been 
investigated by Barluenga and his coworkers [207] by employing chiral 2-ami- 
no-l,3-butadienes [208]. A noteworthy application of high pressure in aza 
Diels-Alder reactions with imino dienophiles is the synthesis of carbocyclic 
nucleosides from 2-iminomalonates by Katagiri et al. [209]. 1,3-Oxazine deri- 
vatives are avilable from imines and heterocumulenes by cycloaddition to 
dipivaloylketene [210]. The retro-aza Diels-Alder reaction has been studied by' 
Grieco et al. [211,212] in order to release reactive iminium ions.An applicati- 
on of this technique to peptide chemistry has also been developed [213]. Final- 
ly, Katritzky et al. have shown that reactive iminium ions formed from N-(a- 
aminoalkyl)benzotriazoles are suitable imino dienophiles for aza Diels-Alder 
reactions [214]. 

3.2 
Reactions with 1-Aza-l,3-butadienes 

1-Aza-l,3-butadienes [9,11] differ significantly from their oxadienic analoga 
since they may react as electron-rich as well as electron-deficient dienic compo- 
nent in aza Diels-Alder reactions. Calculations using ab initio and semiempiri- 
cal methods concerning the behaviour of (E)- and (Z)-l-aza-l,3-butadiene in 
such cycloadditions have been recently presented by our group and clearly re- 
veal the tendency of this electronically neutral 1-aza-1,3-butadiene to undergo 
a two-step cycloaddition mechanism [215 ]. 

The somewhat neutral electronic properties of unactivated 1-aza-1,3-butadi- 
enes are responsible for their low reactivity towards dienophiles which requires 
drastic reaction conditions [216]. Another drawback is the inherent instability 
of the cyclic enamines resulting from the aza Diels-Alder reaction [217]. There- 
fore, 1-aza-1,3-butadienes have only sparingly been employed for a long period 
in hetero Diels-Alder chemistry. The main approach made to enhance the reac- 
tivity of these compounds is altering the electronical properties by introducing 
suitable electron-donating or electron-withdrawing substituents. 

Thus, Ghosez et al. were successful in showing that N,N-dimethyl hydrazones 
prepared from a, fl-unsaturated aldehydes react smoothly in normal electron 
demand Diels-Alder reactions with electron-deficient dienophiles [218, 219]. 
Most of the more recent applications of such 1-aza-1,3-butadienes are directed 
towards the synthesis of biologically active aromatic alkaloids and azaanthra- 
quinones [220-224]; a current example is the preparation of eupomatidine 
alkaloids recently published by Kubo and his coworkers. The tricyclic adduct 3- 
19 resulting from cycloaddition of naphthoquinone 3-17 and hydrazone 3-18 
was easily transformed to eupomatidine-2 3-20 (Fig. 3-6) [225]. 
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A recent study performed by Ghosez et al. deals with the use of cr,fl-unsatu- 
rated SAMP hydrazones as chiral 1-aza-1,3-butadienes for asymmetric cycload- 
ditions [226]. In this investigation, the reaction of the chiral heterodiene 3-21 
with N-methylmaleimide afforded the cycloadduct 3-22 in excellent induced 
diastereoselectivity (Fig. 3-7). Thus, the selectivities obtained are very promi- 
sing, but the application of this method is restricted to highly reactive electron- 
deficient dienophiles. The complementary approach, an aza Diels-Alder reac- 
tion of an 1-aza-1,3-butadiene with a chiral dienophile, has been investigated by 
Waldner [227]. 

Other attempts to carry out normal electron demand aza Diels-Alder reac- 
tions with 1-aza-l,3-butadienes base on using N-alkoxy [228], N-silyloxy [229] 
and N-acylamino- 1-aza- 1,3-butadienes [230]. 

In contrast to the hydrazones mentioned above, a, fl-unsaturated N-sulfonyl 
imines react as electron-deficient diene component in aza Diels-Alder reactions. 
In addition to several investigations dealing with their intermolecular cycload- 
ditions under thermal and under high pressure conditions [231-234], Boger's 
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O Me 
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group has as well demonstrated the suitability of these compounds for intra- 
molecular transformations. In this event, upon simply heating a solution of the 
doubly activated 1-aza-1,3-butadiene 3-23 in toluene, the tricyclic adduct 3-24, 
accompanied by minor amounts of aromatisation product 3-25, was obtained in 
very good diastereoselectivity [235] (Fig. 3-8). 

Aza Diels-Alder reactions of N-acyl-1-aza-l,3-butadienes have also been stu- 
died and applied in synthesis [236-239]. Interestingly, Jung et al. demonstrated 
the possibility to generate N-acyl-1-aza-1,3-butadienes like 3-27 by flash vacu- 
um pyrolysis of 2-azetines such as 3-26. Subsequent cycloaddition yielded the 
bicyclic product 3-28 which is a useful intermediate in alkaloid synthesis [240] 
(Fig. 3-9). 

SO2Me SO2Me 
i I EtO2C N~. Ph 

EtO2C N EtO2C N,,,,, N ~ ,~Ph [" 

:- toluene reflux., 23 h 
~ -  + 

>90 % de O~~h [[~o 

3-23 3-24, 58 % 3-25, 0-12 % 

Fig. 3-8 

C 300-540~ .._ reflux., 28 h ~ 
,.,._ 

5-30 mm Hg 46 % from 3-26 

3-26 3-27 3-28 

Fig. 3-9 

Another elegant application of pericyclic ring opening reactions for an in 
situ release of 1-aza-l,3-butadienes has been worked out by Wojciechowski by 
extrusion of sulfur dioxide from benzosultams [241,242]. 

The decrease of electron density necessary for inverse electron demand aza 
Diels-Alder reactions can also be effected by appropiate substituents attached to 
C-2, especially by a cyano moiety. Several 1-aza-2-cyano-l,3-butadienes have 
been investigated by Fowler and his coworkers in this context [243-245]. Stri- 
kingly, the easily accessable 1-aza-l,3-butadiene 3-29 undergoes cycloaddition 
not only with electron-rich dienophiles, it reacts as well with neutral and even 
with electron-deficient dienophiles (Fig. 3-10) [246, 247]. 

Another novel, highly reactive 1-aza- 1,3-butadiene which is derived from ben- 
zothiazole reacting with several dienophiles at room temperature in the absence 
of any catalyst has been described by Sakamoto et al. very recently [248]. 



52 L. F. Tie tze  �9 G. K e t t s c h a u  

Ph 
I 

N C . , ~ O E t  
•...•_/OEt 
90 ~ 36 h 

91% 

Ph 
I 

3-29 

71% 

~...~_../C02 M e 

90 ~ 40 h 

Ph Ph 
~ ~ 

90~ 23h N C y ,  N y P h  

76 % 

Ph Ph 
I I 

4 �9 1 

Fig. 3-10 

However, activation with suitable substituents is not the only method to make 
1-aza- 1,3-butadienes react in aza Diels-Alder reactions. Nevertheless, Lewis acid 
catalysis has not yielded good results in this area of hetero Diels-Alder chemi- 
stry. Interestingly, Lewis and Bmnsted acids promote a [3 + 2] cycloaddition 
process instead of the aza Diels-Alder reaction upon addition of a, fl-unsatura- 
ted hydrazones to quinones [249]. 

Blechert et al. have opened a very elegant alternative to the classical hetero 
Diels-Alder methodology by generating the cationic radical 3-31 - which might 
be conceived as 1-aza-1,3-butadiene - from the 2-vinyl indole 3-30 by means of 
a single electron transfer process. In the presence of the tetrahydropyridine 
derivative 3-32 the radicalic intermediate was transformed into the tetracyclic 
compound 3-33 which contains the complete skeleton of the alkaloid gonio- 
mitine [250, 251]. The authors have postulated a stepwise mechanism for this 
[4+2] process, therefore it should be understood as a formal hetero Diels-Alder 
reaction (Fig. 3-11). 

Considerable acceleration of cycloadditions involving electron-rich 1-aza- 
1,3-butadienes by ultrasound irradiation has been observed recently [252, 253]. 
Thus, the application of sonochemical techniques might emerge as helpful tool 
for Diels-Alder reactions of 1-aza-1, 3-butadienes. 

3.3 
Reactions with 2-Aza-1, 3-butadienes 

Like 1-aza- 1,3-butadienes, 2-aza- 1, 3-butadienes may react as electron-rich or as 
electron-deficient component in aza Diels-Alder reactions upon appropriate 
substitution; however, they differ in not necessarily needing an activation by 
appropriate substituents for sufficiently high reactivities. Another significant 
difference to the reactions of loazaol,3-butadienes is the widespread use of 
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Lewis acid catalysis for aza Diels-Alder reactions of 2-aza-l,3-butadienes [254]. 
In analogy to the hitherto discussed aza Diels-Alder reactions, evidence for a 
non-concerted mechanism of these transformations has emerged. Thus, Mellor 
et al. have found that under suitable conditions azaanthraquinone 3-34 does not 
only form the expected cycloadduct 3-37 upon treatment with a-methylstyrene 
and formaldehyde, but the tertiary alcohol 3-36 is also generated presumably via 
cation 3-35. Alcohol 3-36 is easily converted into the cycloadduct 3-37 and 3-35 
is therefore supposed to act as intermediate in a non-concerted multistep 
sequence (Fig. 3-12) [255,256]. More recent studies on N-arylimines performed 
by Laschat et al. have corrobated the assumption that non-concerted processes 
represent a noteworthy mechanistic pathway in reactions of 2-aza-l,3-buta- 
dienes with suitable dienophiles [257]. 

The reaction sequence depicted in Fig. 3-12 involves an in situ generation 
of a 2-aza-l,3-butadiene and thus represents a typical domino process [3, 4]. It 
has found an interesting application in the synthesis of aza steroids [258, 259]. 
This elegant approach takes advantage of Grieco's observation that in reactions 
of N-aryl imines with cyclopentadiene the latter compound is employed ex- 
clusively as dienophilic (!) component [260]. 

The reactivity of 2-aza- 1,3-butadienes lacking any activation by electron den- 
sity influencing substituents in hetero Diels-Alder reactions with carbo and 
hetero dienophiles has been thoroughly studied by Barluenga et al. [261]. As 
valuable application of this methodology a stereoselective approach to 1,3-ami- 
no alcohols has been developed [262,263]. The generation of chiral, halogenated 
2-aza-l,3-butadienes like 3-38 allowed to investigate the diastereofacial selec- 
tivity in cycloaddition reactions with different dienophiles, and upon treatment 
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of 3-38 with the azo compound 3-39, the 1,2,4-triazine 3-40 was formed in very 
good diastereoselectivity (Fig. 3-13) [264, 265]. Similar cycloadducts derived 
from 3-38 type 2-aza-l,3-butadienes have turned out to be easily convertable 
into 1H- 1,4-diazepine derivatives [266, 267]. 

An intramolecular aza Diels-Alder reaction of as well electronically neutral 
N-aryl imines useful for the synthesis of novel tetrahydropyridine derivatives 
has been introduced by our group [268]. The reactive intermediate 3-43 exhibit- 
ing the 2-aza-l,3-butadiene subunit was generated in situ from the aldehyde 
3-41 and the amino isoxazole 3-42 and led directly to the diastereomerically 
pure cycloadduct 3-44 (Fig. 3-14). In contrast to the reactions studied by Barlu- 
enga, the 2-aza-1,3-butadiene acts as electron-deficient component in this case. 

Strikingly, some changes regarding the substitution pattern dramatically 
influenced the stereoselectivity of this hetero Diels-Alder reaction. Upon attach- 
ment of two methyl groups to the dienophilic terminus, the stereoselectivity was 
almost lost entirely, and additional substitution of the benzene moiety with two 
chlorine atoms at C-2 and C-4 resulted in a complete reversal of stereoselectivity. 

Intramolecular cycloadditions of N-aryl imines [269] have also found wide- 
spread use in the synthesis of tri- and tetracyclic compounds like octahydro- 
acridine derivatives [270-273]. In these studies tricarbonylchromium comple- 
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xes have been employed in order to control the stereochemical course. Thus, imi- 
no complex 3-45 was smoothly converted into the cycloadduct 3-46 which upon 
oxidative demetalation yielded the octahydroacridine derivative 3-47 as single 
diastereomer (Fig. 3-15) [274]. However, this investigation which was carried 
out by Laschat et al. does not include the use of enantiomerically pure chromi- 
um complexes. 

An approach directed towards the synthesis of more complex octahydroacri- 
dines has been described by Beifuss and his coworkers very recently. Starting 
from aniline 3-48, the reactive N-aryl iminium ions 3-50 and 3-51 were genera- 
ted by reaction with a diastereomeric mixture of the aldehyde 3-49. These inter- 
mediates underwent a cationic [4++ 2] cycloaddition via an exo-E-anti transi- 
tion state to give the octahydroacridines 3-52 and 3-53 as only products out of 
16 possible stereoisomers (Fig. 3-16). The cis/trans-ratio as well as the (E)-con- 
figuration of the dienophilic double bond were completely retained during the 
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whole domino process [275]. The described methodology basing on cationic 
2-aza-l,3obutadienes takes advantage of the enhanced reactivity of iminium 
ions and has successfully been applied to the stereoselective preparation of 
1,2,3,4-tetrahydroquinolines [276, 277]. 

Activation of 2-azaol,3-butadienes for inverse electron demand aza Diels- 
Alder reactions can also be achieved by introducing electron-withdrawing sub- 
stituents. Thus, Barluenga's group has developed 3,4-bismethoxycarbonyl-2- 
azao 1,3obutadienes which undergo smooth intramolecular cycloadditions upon 
heating [278]. 

On the other hand, also the reverse activation of 2-azaol,3-butadienes with 
electron-donating substituents has intensively been studied. Ghosez et al. have 
originally developed this synthetical tool for the preparation of pyridones, 
piperidones and pyrimidones [279-281]. More recently, this group extended the 
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scope of this reaction to the asymmetric a-functionalisation of carboxylic 
acids. In this example, 2-aza-l,3-butadiene 3-54 underwent a stereoselective 
cycloaddition with the chiral nitroso dienophile 3-55. The cycloadduct 3-56 was 
reductively cleaved to give 3-58 which upon hydrolysis yielded the desired 
amino acid 3-57 in enantiomerically pure form (Fig. 3-17) [282]. 

Ghosez et al. could also achieve high asymmetric inductions by reacting elec- 
tron-rich 2-aza-l,3-butadienes with a, fl-unsaturated chiral oxazolines [283]. 
Other applications of electron-rich 2-aza-l,3-butadienes in normal electron 
demand aza Diels-Alder reactions have been aimed at the preparation of natu- 
ral cibrostatines [284] and azaanthraquinones [285]. 

A less usual type of 2-aza-l,3-butadienes is the class of C=C-conjugated 
carbodiimides like 3-59. They are readily available from iminophosphoranes 
and react smoothly with carbo- and hetero dienophiles to yield the desired 
heterocycles, e.g. 1,3-oxazine 3-60 (Fig. 3-18) [286-288]. 
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3.4 
Reactions with N= N Dienophiles 

Azo compounds like esters or imides of azo dicarboxylic acid act as reactive die- 
nophiles in normal electron demand hetero Diels-Alder reactions due to the 
strong activation caused by' two electron-withdrawing moieties. In the last years, 
considerable attention has focused on alkyl and phen)rl derivatives of 1,2,4-tria- 
zoline-3,5-diones since their cycloadditions to chiral dienes proceed with often 
excellent facial selectivities. Thus, when reacting an oxapropellane derived 
diene with N-methyltriazolinedione, Paquette et al. obtained the cycloadduct as 
single diastereomer, but both maleic anhydride and N-phenyl maleimide were 
distinctly less reactive and turned out to undergo cycloadditions with poor 
selectivities [289]. 

There exist numerous studies dealing with hetero Diels-Alder reactions of 
triazolinediones with chiral dienes. In these investigations, Barluenga et al. 
achieved high stereoselectivities in cycloadditions of N-phenyltriazolinedione 
with chiral 2-alkoxy-l,3-butadienes [290] and Enders et al. were successful in 
using chiral 2-amino-l,3-butadienes bearing a C). symmetrical morpholino 
moiety in a similar study [291]. The use of dienes with a chiral substituent 
attached to C-1 has been described by' Franck's [292] and Breitmeier's groups 
[293], and the successful use of a novel, highly oxygenated diene has enlarged 
the scope of these transformations [294]. Recently, Stoodley et al. have intro- 
duced the sugar-linked chiral diene 3-61 which reacts highly diastereoselectively 
not only with triazolinediones, but also with the acyclic azo dienophile 3-62 to 
give the pyridazine derivative 3-63 (Fig. 3-19) [295, 296]. Again, the hetero 
dienophiles turned out to be superior to N-phenylmaleimide or tetracyano- 
ethylene with regard to facial selectivity. 

Furthermore, azo dienophiles have been employed in diene-transmissive 
hetero Diels-Alder reactions of cross-conjugated trienes which allow the 
straightforward construction of polycyclic compounds [297]. Theoretical in- 
terest has been directed to the hetero Diels-Alder reaction of diethyl azo di- 
carboxylate with 1,3-cyclohexadiene whose concerted course was demonstrated 
by means of a high pressure study [298]. 

C02Me C_02Me ~ t~u02C" ~ 
tBu02 c'~~.. . 

O CH2CI 2 reflux., 5 d t5 
, 

F T-OAc F T -OA  
OAc OAc OAc OAc 

3-61 3-63 
Fig. 3-19 single diastereomer 



Hetero Diels-Alder Reactions in Organic Chemistry 59 

3.5 
Reactions with Diaza-l,3-butadienes 

A plethora of different acyclic and cyclic diaza dienes has been employed in aza 
Diels-Alder reactions. With regard to acyclic dienes, the main interest has focused 
on the cycloadditions of 1,3-diaza-l,3-butadienes. A current example of these 
transformations is the preparation of highly substituted pyrimidine derivatives 
such as 3-65 by cycloaddition of diaza-l,3-butadienes e.g. 3-64 with electron- 
deficient acetylenes (Fig. 3-20) [299]. 

NH 
I I  

CI3 C'fl 'L N ~ NMe 2 

3-64 

MeO2 C ----- CO2M e 

toluene, RT, 0.5 h 

98 % 

Fig. 3-20 

CO2Me 

CI3C--~/~~ C02Me 
3-65 

Acyclic 1,3-diaza- 1,3-butadienes undergo hetero Diels-Alder reactions not 
only with ketenes [300- 302] and oxazolines [303, 304], they also react with - 
electron-rich dienophiles such as enamines [305, 306]. Intramolecular trans- 
formations of this kind efficiently yield complex polycyclic molecules such as 
the tetracyclic compounds 3-69 and 3-70. These adducts were synthesised by 
our group starting from the aldehyde 3-66 and the thiadiazole 3-67. Under the 
reaction conditions in situ generation of the isomeric 1,3-diaza-l,3-buta- 
dienes 3-68 occurred followed by a hetero Diels-Alder reaction to give the 
cycloadducts (Fig. 3-21) [307]. Strikingly, the stereochemical result of these 
transformations does not depend on the configuration of the dienophilic 
double bond and therefore the cycloaddition is thought to follow a two-step 
mechanism. 

The formation of pyridazines from 1,2-diaza- 1,3-butadienes and electron-rich 
dienophiles has been reported [308]; on the other hand, tetrazine and triazole 
derivatives have been prepared from these heterodienes and azo esters [309]. Aza 
Diels-Alder reactions of 1,4-diazaol,3-butadienes have been employed for the 
synthesis of unsymmetrical pyrazine derivatives by Heathcock et al. [310 ]. 

Cyclic, electron-deficient diaza- 1,3obutadienes, e. g. pyrimidines, pyridazines, 
triazines and tetrazines have proved to be an extremely versatile synthetical 
tool. Extensive studies aimed at the use of these dienes in the synthesis of natuo 
ral products stem from Boger's group [11]. 

Theoretical and synthetical studies carried out by van der Plas et al. deal with 
intramolecular aza Diels-Alder reactions of co-alkynylpyrimidines [311,312]. 
The substrate 3-71 initially formed a bridged adduct 3-72 upon heating with 
subsequent release of the fused pyridine derivative 3-73 by retro-Diels-Alder 
reaction (Fig. 3-22). 

Pyridazine dienes behave similarly to pyrimidines inasmuch they as well 
tend to undergo a cycloaddition-cycloreversion sequence involving the extru- 
sion of nitrogen in the latter step. Condensed pyridazines have been employed 
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as starting materials in the synthesis of isoquinoline derivatives [313, 314], and 
due to the strong activation effected by two electron-withdrawing substituents, 
4,5-dicyanopyridazine 3-74 has emerged as particularly reactive heterodiene 
[315]. A noteworthy feature of the cycloaddition-cycloreversion sequence men- 
tioned above is the formation of a new diene moiety which is capable to under- 
go a second cycloaddition. Nesi and Giomi have impressively demonstrated the 
feasibility of this process by reacting 3-74 with 2,3-dimethylbutadiene which 
predominantly reacted as dienophilic (!) component [316]. The reaction se- 
quence leading to the tricyclic product 3-76 is thought to proceed via the bicyclic 
primary adduct 3-75 from which the vinylcyclohexadiene 3-77 is generated 
upon loss of nitrogen by cycloreversion. A final all-carbon Diels-Alder reaction 
then yielded 3-76 (Fig. 3-23). 

N~CN " ~  N.~ N 
, , ~lioN CHCl  3 , 110 ~ 48 h N 

' ' ' 64 % ~ N C ~ -  -"'"~ 

3-74 3-75 

I -N 

CN NC 

NC 

3 - 7 6  Fig. 3-23 3 - 7 7  

Various triazines have been investigated with regard to their cycloaddition 
chemistry which again exhibits a pronounced tendency to undergo cy.cloaddi- 
tion-cycloreversion sequences. Upon treatment of the electron-deficient 1,3,5- 
triazine 3-78 with amidine 3-80, formation of the adduct 3-82 by cycloaddition 
trapping of the tautomeric enamine 3-81 occurred. Subsequent elimination of 
ammonia led to the amidine 3-83 which then tautomerized to 3-84. This inter- 
mediate underwent a retro-Diels-Alder reaction leading to the highly substituted 
amino pyrimidine derivative 3-79 (Fig. 3-24) [317]. This impressive domino reac- 
tion developed by Boger et ~d. has been successfully applied in the total synthesis 
of P-3A [318], bleomycin A2 [319] and numerous derivatives thereof [320- 324]. 

Further recent work on cycloaddition chemistry of nitrogen heterocycles 
deals with 1,2,4-triazines. These cyclic dienes undergo a cycloaddition-cyclore- 
version series as well; in this case, nitrogen is evolved and thus a pyridine deri- 
vative is generated as final product. Snyder et al. efficiently constructed the 
canthine skeleton by" heating the indolyl-tethered 1,2,4-triazine 3-85 which 
yielded the tetracyclic product 3-86 (Fig. 3-25) [325,326]. 
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An investigation concerning intramolecular aza Diels-Alder reactions of 
3-(w-alkynyl)-l,2,4-triazines has been published by Taylor et al. [327]; and 
trichloro-l,2,4-triazine has been introduced as novel triazine diene recently 
[328]. 1,2,4-Triazines are a useful alternative of 1,4-diaza-l,3-butadienes with 
regard to the aforementioned synthesis of pyrazines since Taylor's group has 
found them to undergo cycloadditions with nitriles followed by extrusion of 
nitrogen [329]. This reaction is noteworthy since it is a Diels-Alder reaction of 
both electron-deficient diene and dienophile. 

The synthesis of pyrrole and indole [330] derivatives by- aza Diels-Alder reac- 
tions of appropriate 1,2,4,5-tetrazines is another valuable synthetical option 
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based on cycloaddition reactions of cyclic diaza-l,3-butadienes. Using this 
methodology, Boger and his coworkers efficiently constructed a bipyrrolic inter- 
mediate for the synthesis of the DNA cross-linking agent isochrysohermidin 
[331]. In the presence of excessive 1,2,4,5-tetrazine 3-88, the diene 3-87 reacted 
as bisdienophile in a double Diels-Alder reaction followed by the extrusion of 
nitrogen and methanol to yield the 4,4'-bis-1,2-diazine 3-89. Subsequent reduc- 
tire ring contraction then gave the desired bipyrrole 3-90 (Fig. 3-26). 

OMe 

/ OMe 
MeO 
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MeO2C --"~\ />--- CO2Me 

N-N 
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MeO'~~-- N Zn/HOAc, MeO.~'zN H 
MeOw- ~ ' ~  RT, 24 h ~_._ Me~ ~ 

~ CO2Me 68% ~ -CO2Me 
MeO2C--'(k\ //~'- CO2Me MeO2 C ' ~  N / ~  CO2Me 

N-N H 

3-89 Fig. 3-26 3-90 

4 
Nitroso- and Nitro Diels-Alder Reactions 

4.1 
Reactions with N=O Dienophiles 

The generation of an 1,2-oxazine 4-1 by hetero Diels-Alder reaction is a trans- 
formation which opens a versatile array of highly functionalised acyclic and cyc- 
lic structures. Thus, pyrrolidine derivatives 4-2, amino alcohols 4-3 and aza 
sugars 4-4 are easily available from these cycloadducts. Cyclic dienes, e. g. 4-5 are 
converted into bicyclic adducts 4-6 representing straightforward intermediates 
for aminocyclitols 4-7 (Fig. 4-1). 

Since numerous applications of nitroso dienophiles in natural product syn- 
thesis [8] and, in particular, aza sugars [332] have been reviewed in the last 
years, these topics will only be discussed briefly here and only some exemplary 
and very recent transformations are presented in this article. 
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Lewis acid catalysis, apparently" dispensible due to the very high reactivity of 
nitroso dienophiles, has not yet been investigated although such a study has been 
suggested by" Streith and Defoin [8]. Thus, examples of asymmetric catalysis lack 
completely in this area of hetero Diels-Alder chemistry. Nevertheless, cyc.loaddi- 
tions involving nitroso dienophiles have reached an advanced level concerning ste- 
reoselectivity and therefore much attention has been paid towards the preparation 
and application of chiral, enantiopure dienophiles and dienes for these reactions. 

The use of the chiral, pyrrolidine derived nitroso dienophile 4-8 for the enantio- 
selective synthesis of amino acids [333] has already been outlined in chapter 3.3, 
and a multitude of other pyrrolidine derived chiral nitroso dienophiles has been 
investigated by Streith et al. [334, 335]. Kresze and Vasella have developed sugar 
derived nitroso dienophiles 4-9 and 4-10 which bear a stereogenic center directly 
attached to the reactive moiety [336, 337]. Such compounds have proven their syn- 
thetical potential in syntheses of aminocyclitols 4-7 [338-340] and azasugars, 
namely 5-amino-t~-allose derivatives [341]. It is worth mentioning that up to four 
stereogenic centers have been constructed in one step by use of this methodology 
[338]. Chiral cr-hydroxy acyl nitroso dienophiles such as 4-11 have also been found 
to give good stereoselectivities in cycloaddition reactions. It is thought that a fixed 
conformation caused by an intramolecular hydrogen bond is responsible for this 
observation [342, 343]. Furthermore, the pyrroline derived dienophile 4-12 recent- 
ly introduced by Shustov et al. gave a promising asymmetric induction in a prelimi- 
nary study [344]. Finally, Streith et al. subjected numerous chiral nitroso dienophi- 
les to cycloaddition reactions with the chiral diene 4-13 in order to study double 
asymmetric induction in nitroso Diels-Alder reactions (Fig. 4-2) [345]. 



Hetero Diels-Alder Rea(tions in Organic Chemistry 65 

~OMe Ph3C- 0 

" - A " ] o  o o 
- " 0""1 I ,-, I ~ N = O  

~ ' , , ' ~ -  N I o, 
"OMe - ~ 

4-8  4-9  4 -10  

o....o ..... 

4 oJ,,  o a 

4-11 4 -12  4 - 1 3  

Fig. 4-2 

In some recent investigations carried out by Streith's [346, 347] and Wyatt's 
groups [348], also.chiral dienes turned out to exhibit noteworthy" potential for 
asymmetric cycloadditions to achiral nitroso compounds. 
However, the often excellent diastereoselectivity is not always accompanied with 
comparable high regioselection. The following example dealing with structural- 
ly more complex substrates might illustrate this problem. 
The structurally quite unusal chiral diene 4-14 bearing a fl-lactame moiety is 
known to undergo Diels-Alder reactions with appropriate nitroso dienophiles 
in excellent yields, but the regioselectivities of such transformations are low 
[349]. Upon cycloaddition to dienophile 4-15, the adduct 4-16 was thus formed 
together with its regioisomer 4-17. However, both compounds are valuable syn- 
thetic intermediates since the main product could be converted into the pyr- 
rolidino sugar derivative 4-18. The minor regioisomer yielded the erythrose 
derivative 4-19 [350]. These two compounds represent novel, interesting aza- 
sugar-fl-lactam hy'brides (Fig. 4-3). 

Another elegant approach directed towards the synthesis of aminoerythrose 
derivatives such as 4-22 has overcome the regiochemical drawbacks discussed 
above. Thus, the achiral, pyrrolidine derived diene 4-20 reacted with the nitroso 
compound 4-15 which was generated in situ from the corresponding hydro- 
xamic acid. Independent of the double bond configuration in the diene, 4-21 
was formed as a single diastereomer resulting from a rapid isomerisation of the 
less reactive (E,Z)-isomer into the (E,E)-configurated species. This isomerisa- 
tion only took place if the periodate used for the in situ generation of the nitroso 
dienophile was impurified by traces of iodine (Fig. 4-4) [351,352]. 

An interesting application of a chiral nitroso dienophile combined with the 
conversion of the primarily generated 1,2-oxazine into a cyclopentene derivati- 
ve has been carried out by" Miller et al. and is directed towards the synthesis of 
carbocyclic nucleoside analoga such as 4-28 [353-355]. The alanine derived die- 
nophile 4-23 cycloadded to cyclopentadiene giving two diastereomeric, however 
easily separable adducts 4-24 and 4-25. The N-O bond of 4-24 was then reduc- 
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tively cleaved; subsequent acetylation of the resulting intermediate yielded the 
allylic acetate 4-27 which smoothly underwent a palladium catalysed allylic ami- 
nation. Again, the main product 4-26 was formed together with some minor 
regioisomeric byproduct which could be separated. A short sequence then led to 
4-28. Although suffering from some limitations in regio- and diastereoselectivi- 
ty, this seems to be a novel and innovative application of chiral nitroso dieno- 
philes (Fig. 4-5). 

As a current example of a stereoselective intramolecular Diels-Alder reaction 
using nitroso dienophiles, Kibayashi's studies aimed at the enantioselective total 
sysnthesis of (-)-pumiliotoxin C 4-31 shall be discussed here [356, 357]. The 
chiral nitroso compound 4-30 derived from L-malic acid was generated in situ 
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from 4-29 and underwent intramolecular hetero Diels-Alder reaction yielding 
the bicylic intermediate 4-32 in 4.5:1 diastereoselectivity. This compound proved 
as suitable for the further conversion into the natural product 4-31 (Fig. 4-6). 

Other novel and noteworthy investigations concerning Diels-Alder reactions 
of nitroso dienophiles are on the one hand directed to novel accesses to these 
dienophiles [358]; on the other hand, synthetical approaches to nortropanes 
[359, 360], pyrrolocastanospermine analogs [361] and novel annelated indoles 
[362] have been developed basing on this powerful preparative tool. 

4.2 
Reactions with Nitrosoalkenes as Heterodienes 

The hetero Diels-Alder reaction of nitrosoalkenes with electron-rich olefins has 
been known for a long time [363]. A detailed mechanistic study carried out by 
Reissig et al. has given evidence that this inverse electron demand cycloaddition 
is a concerted process [364]. Recent ab initio calculations dealing with the reac- 
tion between ethylene and nitroso ethylene strongly corrobate this view [365]. 
In this work, ]ursic and Zdravkovski have also investigated the influence of BH3 
as Lewis acid catalyst. However, cycloadditions of nitrosoalkenes already pro- 
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ceed under very mild conditions in the absence of such catalysts; thus, the neces- 
sity of using Lewis acids in these transformations is apparently limited. 

Figure 4-7 shows a typical hetero Diels-Alder reaction of a nitrosoalkene. 
Upon in situ generation of the heterodiene 4-34 from the oxime 4-33, cycloaddi- 
tion occurred in the presence of the silyl enol ether 4-35 to give the 5,6-dihydro- 
4Hol,2-oxazine 4-36 in excellent yield [366]. Such conversions are very suitable 
for achieving kinetic resolutions of E-/Z-isomeric silyl enol ethers since the 
Z-isomers are distinctly less reactive towards 4-34 [367]. 

~OTMS 

Na2CO3 Ph . ~  Ph Ph 
~ r l  Et20, RT_ RT, 12 h CI 

NOH "- N ~O ~ TMS 
9O % 
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Fig. 4-7 

Replacement of the phenyl moiety in 4-34 by a strongly electron-withdrawing 
substituent leads to a lower electron density and thus enhances the reactivity 
of the heterodienic compound. Indeed the corresponding trifluoro methyl 
derivative underwent cycloadditions with alkenes which had failed to react with 
4-34 [368]. The activated nitrosoalkene 4-37 has been applied to the synthesis of 
proline derivatives. Cycloadduct 4-39 resulting from the cycloaddition of in situ 
generated 4-37 with enamine 4-38 gave the desired proline derivative 4-40 upon 
reductive ring contraction (Fig. 4-8) [369]. 
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The array of dienophiles amenable to these hetero Diels-Alder reactions is 
not limited to enol ethers and enamines since allylsilanes and simple alkenes 
have also been successfully employed [370, 371]. More recently, it has been 
shown that methoxy allenes such as 4-41 undergo formation of 6H-1,2-oxazines 
4-43 upon cycloaddition to nitrosoalkenes such as 4-34 and subsequent tauto- 
merisation of the intermediate exo-methylene compound 4-42 (Fig. 4-9) [372, 
373]. In these studies, 4-43 proved to be a versatile synthetical intermediate 
allowing oxidative demethylation or reductive removal of the methoxy group as 
well as nucleophilic substitutions after the generation of an azapyrylium ion 
[372-374]. Furthermore, ring contraction reactions of these oxazines leading to 
pyrroles [373] and y-lactames [375] are known. 

Indoles may as well serve as dienophilic compounds for hetero Diels-Alder 
reactions with nitrosoalkenes. However, the resuking adducts are not stable and 
undergo further conversion to oximes which represent useful intermediates for 
the straightforward synthesis of tryptophane derivatives [376, 377]. 

In order to carry out asymmetric cycloadditions of nitrosoalkenes, Reissig et 
al. have introduced chiral enol ethers derived from terpenes [378] and from the 
glucose derivative 4-46 [379]. Using these compounds, considerable asymmetric 
induction has been obtained; thus, the 5,6-dihydro-4H- 1,2-oxazine 4-45 was for- 
med by" hetero Diels-Alder reaction of 4-34 with chiral 4-44 in good diastereo- 
selectivity (Fig. 4-10) [379]. 

Other current investigations concerning cycloadditions of nitrosoalkenes are 
directed towards employment of more complex dienophtles, e. g. N,N-bis-tri- 
methylstlyl enamines [380, 381] or 2,5-dihydrooxepines [382]. Furthermore, 
interest focuses on exploring the scope of subsequent reactions of the cycload- 
d.ucts, such as stereoselective halogenation [383], cis-dihydroxylation [384] and 
numerous reductive [385] as well as acid or transition metal induced [386] 
transformations of 5,6-dihydro-4H- 1,2-oxazines. 
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4.3 
Reactions with Nitroalkenes as Heterodienes 

If nitroalkenes are employed as heterodienes in hetero Diels-Alder reactions 
instead of nitrosoalkenes, cyclic nitrones are formed. These cycloadducts under- 
go numerous subsequent reactions, and especially the combination of this hetero 
Diels-Alder reaction with a 1,3-dipolar cycloaddition is an extremely power- 
ful tool for the synthesis of polycyclic alkaloids. This domino [4+ 2]/[3+2] 
cycloaddition chemistry has been comprehensively reviewed by Denmark and 
Thorarensen very recently, and this review also covers many hetero Diels-Alder 
reactions of nitroalkenes being not part of this sequential transformation [5]. 
Therefore the present article will focus on some selected examples which might 
highlight the advanced state of the art concerning stereocontrol of these reac- 
tions. On the other hand, an insight shall be given into the multitude of polycy- 
clic structures accessible by means of nitroalkene cycloaddition chemistry. 

Chiral dienophiles, e.g. enol ethers and enamines, allow to conduct these 
hetero Diels-Alder reactions in a highly stereoselective manner. In an exemplary 
transformation described by B/ickvall et al. the nitrone 4-50 was formed as a 
single diastereomer upon treatment of the chiral enamine 4-48 with the nitroal- 
kene 4-49 which was generated in situ from the seleno compound 4-47 [387]. 
Interestingly, the enamine 4-48 did not only act as dienophile, it also catalysed 
the initial base induced elimination of PhSeH from 4-47 (Fig. 4-11). 
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It is as well possible to obtain excellent simple diastereoselectivities in intra- 
molecular cycloadditions of appropriate achiral nitro- 1,n-dienes [388 ]. 

Cyclic nitrones generated by' [4 + 2]-cycloaddition of nitroalkenes undergo 
various, synthetically very valuable reactions. Thus, Denmark et al. have develo- 
ped an elegant access to different enantiopure, 3- and 3,4-substituted pyrrolidi- 
ne derivatives by reductive ring contraction of the cyclic nitrone resulting from 
a hetero Diels-Alder reaction [389, 390]. Upon reaction of E-2-nitrostyrene 4-51 
with the chiral enol ether 4-52 in the presence of the bulky Lewis acid MAPh 
(4-53), three diastereomeric cycloadducts 4-54, 4-55 and 4-56 were formed. 
Hydrogenolysis of the main product 4-54 yielded the desired pyrrolidine 4-57 in 
excellent optical purity and allowed nearly quantitative recovery of the chiral 
auxiliary (Fig. 4-12) [391]. It is noteworthy that the nature of the Lewis acid cata- 
lyst, especially its steric demand, decisively influences the stereochemical cour- 
se of such cycloadditions [392]. 

However, far the most powerful synthetical methodology involving cycload- 
dition chemistry of nitroalkenes is the combination of a hetero Diels-Alder reac- 
tion with a 1,3-dipolar cycloaddition of the resulting nitrone. Up to six stereo- 
genic centers may be constructed in the course of this protocol, and a multitude 
of preparative options results from applying either intra- or intermolecular 
varieties of the single steps and from the different modes to connect the resul- 
ting cyclic entities (Fig. 4-13). 

Thus, there exist four subclasses of this sequential transformation, and e. g. 
the inter [4 + 2]/intra [3 + 2] reaction allows the efficient construction of fused 
and spiro connected tricyclic compounds (Fig. 4-14). 

Very recently, Denmark's group was successful in opening a third, bridged 
cyclisation mode within the inter [4+2]/intra [3+2] subclass of domino 
[4 + 2] ! [3 + 2] cycloadditions by' attaching the dipolarophilic double bond to the 
dienophile [393]. The initial Lewis acid catalysed hetero Diels-Alder reaction of 
the nitroalkene 4-58 and the 1,4-diene 4-59 yielded the nitrone 4-60 as single 
diastereomer which upon heating smoothly underwent a 1,3-dipolar cycloaddi- 
tion to give the bridged polycycle 4-61 (Fig. 4-15). 

The hitherto discussed transformations clearly demonstrate the great value 
of using chiral dienophiles for hetero Diels-Alder reactions of nitroalkenes. 
Recent studies deal with the application of various chiral alcohols in order to get 
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access to novel, highly stereoselectively reacting dienophiles [394]. Chiral nitro- 
alkenes derived from thymidine nucleosides have also attracted considerable 
attention [395]. The novel carbohydrate derived chiral nitroalkene 4-62 under- 
went a domino [4 + 2]/[3 + 2] cycloaddition leading firstly to the nitrone 4-63 and 
then to the bicyclic adduct 4-64 which was obtained as a single diastereomer. 
Strikingly, this process did not require the presence of any catalyst (Fig. 4-16) 
[396]. 

The described sequential transformations involving hetero Diels-Alder reac- 
tions of nitroalkenes represent a very mature synthetical tool. Its application to 
the total synthesis of several alkaloids will be briefly discussed in the Sect. 7 of 
this article. 

H 

,_, ,_, o, t I + -O H 
R*,,'"~-~ ,~O ~ /~'--OEt ~ OEt 

AcO H ~ +  O- EtOH. aT., d ~ 89% _ [A~,. .  R:~__OE t ~ .  AcO"c~:~ 

4-62 4-63 4-64 

R* = D-lyxo-(CHOAc)3CH2OAc 
Fig. 4-16 

5 
Thia Diels-Alder Reactions 

5.1 
Reactions with C=S Dienophiles 

Thiocarbonyl compounds are well known dienophiles which yield thiopyran 
derivatives upon hetero DielsoAlder reactions with suitable dienes. Amongst 
them, the thioaldehydes exhibit the highest reactivity in these cycloadditions, 
but their low stability often requires to generate them in situ [397, 398]. Inte- 
restingly, one of these methods itself represents a retro-thia Diels-Alder reaction 
since cycloadducts of thioaldehydes and anthracene undergo cycloreversion 
upon refluxing in toluene [399]. These adducts may be conceived as "chemical 
stores", and it is even possible to transform the stored thioaldehyde and release 
it then in modified form by cycloreversion [400]. In addition to hetero Diels- 
Alder reactions with an external diene, the in situ generated thioaldehyde may 
undergo ene reactions [401,402] and, if tethered to a diene, intramolecular 
cycloadditions [402, 403]. 

The stereoselectivity of hetero Diels-Alder reactions of thioaldehydes and 
cyclopentadiene has thoroughly been investigated by Vedejs and his coworkers 
[404]. In general, these cycloadditions proceed only with moderate endo selec- 
tivities; for high endo-selectivities, very bulky thioaldehydes are necessary. This 
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study includes an investigation of asymmetric induction effected by chiral thio- 
aldehydes, and the racemic heterodienophile 5-2, generated in situ from 5-1 by 
photolysis, cycloadded to Danishefsky's diene with excellent facial selectivity to 
give the enone 5-3 (Fig. 5-1). However, this high level of induced diastereoselec- 
tion is not yet general in such transformations. 

In a more recent study, Koizumi et al. employed terpene derivatives as chiral 
auxiliaries attached to thioaldehydes [405], but these heterodienophiles gave 
only moderate diastereoselectivities in reactions with cyclopentadiene. Mazzan- 
ti et al. have investigated the hetero Diels-Alder reaction of thioketones bearing 
an asymmetric silicon atom directly attached to the thiocarbonyl moiety which 
induced diastereoselectivities up to 50% de [406]. 

Cycloadditions of thiocarbonyl compounds have been employed in the syn- 
thesis of biologically active agents. Thus, azocine derivatives [407] and novel 
opiate antagonists [408] have been prepared using this strategy. More recently, 
an a-thioketo ester has been transformed into various derivatives of aprikalim 
which has attracted interest as potassium channel activator [409]. Kirby's group 
has efficiently constructed the thiashikimic acid derivative 5-7 by releasing the 
thioglyoxylate 5-5 from its anthracene adduct 5-4 in the presence of the diene 
5-6 [410]. The desired thiapyrane 5-7 was easily available from the main cyclo- 
adduct 5-8 (Fig. 5-2). 
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Due to the high reactivity and high sensitivity of thioaldehydes, Lewis acid 
catalysis has not been applied to thia Diels-Alder reactions. However, Heim- 
garten et al. clearly demonstrated the suitability' of Lewis acids to make less 
reactive thiocarbonyl compounds, e.g. thiazole thiones, react as heterodieno- 
philes in hetero Diels-Alder reactions [412]. 

5.2 
Reactions with Thia-l,3-butadienes 

Similarly to the homologous 1-oxa-l,3-butadienes, 1-thia- 1,3-butadienes are 
known to be very suitable and reactive substrates for hetero Diels-Alder reac- 
tions. However, in contrast to the oxa-l,3-butadienes which in general act as 
electron-deficient component in such cycloadditions, thia-l,3-butadienes pre- 
dominantly undergo normal electron demand Diels-Alder reactions with elec- 
tron-deficient dienophiles. Nevertheless, also some reactions of thia-1,3-butadi- 
enes involving electron-rich dienophiles have been described [412, 413]. Thia- 
1,3-butadienes considerably tend to dimerize due to their high reactivity in 
hetero Diels-Alder reactions [414]. 

Enaminothiones such as 5-10 bearing an electron-donating dialkylamino 
moiety have been extensively used as thia-l,3-butadienes [415-417]. In a typi- 
cal procedure, 5-10 cycloadded to the oxoglutaconic acid derivative 5-11 in the 
absence of any catalyst under very mild conditions. Subsequent elimination of 
dimethylamine yields the thiopyran 5-12 (Fig. 5-3) [418]. 

NMe2 0 0 

..~ C02Me 

+ _ HNMe 2 ~ 
Ph Me02 C'~ 88 % Ph" "S" "C02Me 

5-10 5-11 5-12 

Fig. 5-3 

Enaminothiones react smoothly with heterodienophiles such as azo esters as 
well [419]. Very recently, thioacetylindoles which also may be conceived as ena- 
minothioketones have been subjected to hetero Diels-Alder reactions with 
numerous electron-deficient dienophiles [420]. 

As another interesting class of thia- 1,3-butadienes, Fishwick et al. have intro- 
duced 2-N-acylamino-l-thia-l,3-butadienes [421] which strikingly react with 
electron-rich as well as with electron-deficient dienophiles [422, 423]. This 
behaviour may be illustrated by the cycloadditions of thia-l,3-butadiene 5-13 
with ethyl vinyl ether and acrylonitrile (Fig. 5-4). 

1-Thia-l,3-butadienes have been successfully employed in intramolecular 
hetero Diels-Alder reactions [414, 424, 425]. More recently, some interesting 
varieties of such intramolecular cycloadditions which allow the efficient con- 
struction of sulfur containing polycyles have been worked out by Saito's group. 
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Such syntheses take advantage of transannular intramolecular hetero Diels- 
Alder reactions [426], another impressive example is the diene transmissive 
hetero Diels-Alder reaction of the thioketone 5-14. The diene 5-15 formed by 
this cycloaddition underwent a second Diels-Alder reaction with N-phenyl- 
maleimide to yield the fused polycycle 5-16 as single diastereomer (Fig. 5-5) 
[427]. 

The use of Lewis acids in order to catalyze hetero Diels-Alder reactions of 
thia-1,3-butadienes is not widespread, but recent investigations stemming from 
Saito et al. reveal a remarkable acceleration of these transformations in the pre- 
sence of A1CI~ or EtA1C12 [428]. In a first study concerning asymmetric hetero 
Diels-Alder reactions of thia-l,3-butadienes, Saito et al. found Lewis acids to 
have a beneficial effect on the induced diastereoselectivities. Thus, the thioke- 
tone 5-17, generated in situ by thermal cycloreversion from its dimer, underwent 
a' completely endo-selective cycloaddition upon treatment with (-)-dimenthyl 
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fumarate 5-18 to give the cycloadducts 5-19 and 5~ However, the induced dia- 
stereoselectivity did not exceed 71% de in this study (Fig. 5-6) [429]. 

Basing on this investigation, 5-17 has been cycloadded to numerous chiral 
dienophiles in order to increase the asymmetric induction [430]. The use of 
chiral oxazolidinones allowed tO obtain induced diastereoselectivities up to 92 % 
de. On the other hand, the complementary application of enantiopure, chiral 
thia-l,3-butadienes introduced by Fishwick et al. has yielded very promising 
results [431]. Upon in situ generation of the chiral heterodiene 5-22 from 5-21, a 
completely exo-selective cycloaddition occurred in the presence of cyclopente- 
ne leading to the fused thiopyran 5-23 as a single diastereomer (Fig. 5-7). 
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Hetero Diels-Alder reactions of 1-thia-1,3-butadienes have furthermore been 
employed for the construction of novel fullerene derivatives and in this work, 
Eguchi's group was successful in obtaining yields up to 69 % of the novel fullere- 
ne adducts [432]. Thiochroman-fused fullerenes were also synthesised [433]; this 
method takes advantage of the in situ generation of the heterodiene - o-thio- 
quinone - by thermal cycloreversion of benzothiet [434, 435]. Other current 
investigations concerning Diels-Alder reactions of 1-thia-l,3-butadienes deal 
with the synthesis of heterocycle-fused thiopyrans [436] and with exploring the 
reactivity of carbothionic esters as heterodienes [437]. 

In contrast to 1-thia- 1,3obutadienes, the use of 2-thiao 1,3obutadienes in heteo 
ro Diels-Alder reactions has only sparingly been studied. First work concerning 
the stereochemical course of intramolecular cycloadditions involving 2-thia- 
butadienes has been carried out by Beifuss et al. very recently [438]. The catio- 
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nic 2-thia-l,3-butadiene 5-25 was formed upon treatment of the aldehyde 5-24 
with thiophenol and underwent a cationic cycloaddition yielding three diaste- 
reomeric hexahydrothioxanthenes 5-26, 5-27 and 5-28 (Fig. 5-8). 

Thus, 2-thia-l,3-butadienes have emerged as useful, nevertheless only little 
explored heterodienes which are expected to attract considerable interest in 
future research. 
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6 
Miscellaneous Hetero Diels-Aider Reactions 

In addition to the mentioned oxa-, aza- and thia-1,3-butadienes and the hither- 
to discussed dienophiles, a multitude of polyheterodienes and -dienophiles have 
been employed in recent hetero Diels-Alder reactions. The array of heteroatoms 
amenable for such cycloadditions is by" no means restricted to oxygen, nitrogen 
and sulfur since there exist numerous reactions involving less common hetero- 
atoms such as phosphorus, silicon or selenium. 

A well-studied class of polyheterodienes is represented by 1-thia-3-aza-l,3- 
butadienes which yield 1,3-thiazine derivatives upon cycloaddition to suitable 
dienophiles [13 ]. They have been thoroughly investigated by Barluenga's group; 
these studies clearly demonstrate their high reactivity towards electron-defi- 
cient dienophiles [439] including azo compounds [440] and activated nitriles 
[441]. 1-Thia-3-aza-l,3-butadienes also undergo smooth intramolecular hetero 
Diels-Alder reactions with unactivated C=C double bonds [442]. Very recently, 
Guingant et al. has employed chiral dienophiles in order to open an asymmetric 
route to 1,3-thiazines [443]. Thus, the Lewis acid catalysed reaction of the 
heterodiene 6-1 with the Evans-type oxazolidinone derivative 6-2 yielded the 
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cycloadduct 6-3 as a single diastereomer. Strikingly, under thermal or high pres- 
sure conditions a reversal of stereoselectivity occurred (Fig. 6-1). 

Hetero DielsoAlder reactions of 1-thia-3-aza-1,3-butadienes have also attrac- 
ted theoretical interest resulting in a study dealing with kinetic and thermody- 
namic parameters of such cycloadditions [444]. 

/V-Acylimines which may react as looxa-3-aza-l,3-butadienes represent a 
class of heterodienes which exhibit a close relationship to 1-thia-3oaza-l,3- 
butadienes [13]. A very impressive application of such an 1-oxa-3oaza-l,3- 
butadiene has been worked out by Swindell et a1.[445]. The asymmetric hetero 
Diels-Alder reaction described therein opens a very elegant approach to the 
A-ring side chain of taxol. This synthesis takes advantage of the bulky chiral 
auxiliary attached to the dienophile 6-5 which upon cycloaddition with the 
looxao3-aza-l,3-butadiene 6-4 yielded the 1,3-oxazine derivative 6-6. Sub- 
sequent hydrolysis, hydrogenolysis and transesterification gave the methyl 
ester of the taxol A-ring side chain 6-7 in good endo and excellent n-facial 
selectivity (Fig. 6-2). 
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Other, less extensively investigated bisheterodienes are 1,4-dioxa-, 1,4-dithia- 
and 1-oxa-4-thia-l,3-butadienes. Thus, several 1,4-benzodioxines have been 
synthesised by Nair et al. starting from o-benzoquinones [446,447]. In an earlier 
work, Dondoni has studied their reactivity towards the C=C double bond of 
several oxazoles [448]. Cyclic dithiaoxalates have been employed as 1,4-dithia- 
1,3-butadienes in hetero Diels-Alder reactions yielding annellated 1,4-dithianes 
[449]. Very recently, also 1-oxa-4-thia-l,3-butadienes have been introduced as 
novel bisheterodienes [450]. They have been employed in a promising noncon- 
ventional glycosidation protocol presented by Franck et al. [451]. After being 
formed in situ from its precursor 6-8, the heterodiene 6-9 cycloadded to the gly- 
cal 6-10. Subsequent reductive cleavage of the resulting cycloadduct 6-12 yielded 
the glycoside 6-11 in moderate yield (Fig. 6-3). 

Conceptionally related glycosidation methodologies stem from Leblanc's 
[452] and Schmidt's groups [453]. They involve azodicarboxylates (which actual- 
ly are well known to react as heterodienophile, see Sect. 3.4.) as 1,2-diaza-4-oxa- 
1,3-butadienes; the resulting cycloadducts are valuable intermediates e. g. for the 
synthesis of N-acetyllactosamine [454]. 

Numerous studies have dealt with different types of sulfur-containing hetero- 
dienophiles. Thus, hetero Diels-Alder reactions of N-sulfinyl dienophiles have 
been thoroughly studied by Weinreb et al. [454]; the resulting cycloadducts 
represent useful and versatile intermediates in the synthesis ofhomoallylic ami- 
nes [455] or pyrroles [456]. Further work using this type of S = N dienophiles 
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has been directed towards the preparation of biotin [457]. The reactivity of such 
dienophiles strongly depends on an activation by' an electron-withdrawing 
moiety attached to the nitrogen [454]; upon substitution with an electron-dona- 
ting group, the application of high pressure or Lewis acid catalysis is required to 
induce a cycloaddition to a 1,3-diene [458]. It is noteworthy that a Lewis acid 
catalysed hetero Diels-Alder reaction of 1,4-dimethylbutadiene with the dieno- 
phile 6-14 yielded exclusively the cycloadduct 6-13. However, under high pres- 
sure conditions 6-15 was formed as main product (Fig. 6-4). 

Asymmetric hetero Diels-Alder reactions of N-sulfinyl dienophiles with chi- 
ral dienes have been found to proceed with very good induced diastereoselec- 
tivities [459]. 

N-Sulfonyl dienophiles are extremely reactive electrophiles which cannot be 
isolated. Nevertheless, a recent study carried out by' Schaumann et al. reveals 
them to react with various carbo- and heterodienes in formal hetero Diels-Alder 
reactions [460]. 

Sulfur dioxide is known to readily undergo cheletropic reactions with 1,3-die- 
nes for a long time. However, Vogel's group was successful in demonstrating that 
at low temperatures sulfur dioxide is indeed able to act as heterodienophile in 
hetero Diels-Alder reactions [461, 462]. Thus, isoprene and sulfur dioxide 
underwent a reversible cycloaddition to form sultine 6-16 as single regioisomer 
at - 60 ~ At - 40 ~ the well-known cheletropic reaction leading to the sulfolene 
6-17 occurred (Fig. 6-5) [463]. 

Several ab initio studies of these reactions including an investigation of Lewis 
acid catalysis and solvent effects have been published by Sordo et al. [464-466]. 
Their results concerning regio- and stereoselectivity in the hetero Diels-Alder 
reactions of sulfur dioxide to isoprene are in good agreement with the experi- 
mental findings mentioned above. 

Diatomic sulfur has also been shown to undergo hetero Diels-Alder reac- 
tions, and the complementary cycloreversion of suitable dithiines has been 
introduced as useful preparative method for the generation of this highly reac- 
tive form of sulfur [467, 468]. 
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Finally, some dienes and dienophiles bearing less common heteroatoms 
shall be discussed. Thus, Diels-Alder reactions involving phosphaalkynes as 
heterodienophilic component have extensively been used for the preparation of 
phosphabenzenes and Dewar-phosphabenzenes [469]. Another interesting 
approach to 3:l 3, 3',t3-diphosphinines (i.e. 3,3"-diphospha-biphenyles) and to 
other oligoaromatic, phosphorus-containing compounds has been developed by 
M/irkl and his coworkers [470]. The cycloadditions described therein involve 
1,3-azaphosphinines (which may be conceived as 1-phospha-3-aza-1,3-butadie- 
nes) as 4rr component. 

Some Sila-Diels-Alder reactions are also known; thus, the sterically stabilized 
silylidenephosphane 6-18 gave the adduct 6-19 in quantitative yield upon treat- 
ment with cyclopentadiene (Fig. 6-6) [471]. 

Sakurai et al. were successful in reacting even tetramethylsilene (Me2Si = SiMe2) 
with benzene in a photochemical [2 + 4] cycloaddition at 10 K in an argon matrix 
[472].With mentioning the suitability ofiminoboranes [473] and selenoaldehydes 
[474] to serve as dienophiles in hetero Diels-Alder reactions, this enumeration of 
exemplary, less usual hetero Diels-Alder reactions shall be completed. 

Pr3S i -  P = Si(Pr3C6H2) 2 
toluene, RT, 5 h 

100 % 
SiIPr 3 

6-18 Fig. 6-6 6-19 

7 
Natural Product Syntheses by Hetero Diels-Alder Reactions 

7.1 
Syntheses with Oxa Diels-Alder Reactions 

The dihydropyrans resulting from an oxa Diels-Alder reaction represent valua- 
ble intermediates for the synthesis of numerous natural compounds. In particu- 
lar, they exhibit many structural elements of carbohydrates. It is therefore not 
surprising that both the normal electron demand cycloaddition of dienes to car- 
bonyl dienophiles as well as the reaction of 1-oxa-1,3-butadienes with electron- 
rich alkenes have extensively been used for the synthesis of sugar derivatives. 
Nevertheless, various approaches to other natural products have been worked 
out by means of these powerful tools. 

In early work which have been summarized very recently [23], Danishefsky 
et al. have investigated hetero Diels-Alder reactions of carbonyl compounds in 
order to yield glycals. Numerous further contributions to the stereoselective 
synthesis of dihydropyran derivatives by high pressure or Lewis acid induced 
Diels-Alder reactions of carbonyl compounds have been made by Iurczak et al., 
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and as current application of this approach in natural product synthesis, his for- 
mal synthesis of compactin and mevinolin [89] has been discussed in Sect. 2.1. 

This methodology which bases on Oppolzer's sultams has also been employ- 
ed in the synthesis of 2,6-N,N-diacetyl-D-purpurosamidine C [475,476]. Hetero 
Diels-Alder reactions of carbonyl dienophiles are furthermore involved in the 
preparation of (+)-ketoheptulosic acid [477] and in the already mentioned 
asymmetric approach to the C-26-C-32 tetrahydropyran subunit of swinholide 
A [92]. 

The inverse electron demand hetero Diels-Alder reaction of 1-oxao 1,3obuta- 
dienes and electron-rich dienophiles is an extremely versatile tool in natural 
product synthesis. This cycloaddition represents the key step of numerous 
approaches not only to carbohydrates, but also to terpenes, alkaloids, polyethers, 
steroid derivatives and various biologically active metabolites. 

The advanced state of the art in carbohydrate synthesis basing on hetero 
DielsoAlder reactions of 1-oxa-l,3-butadienes has opened an access to enano 
tiopure sugar derivatives. Thus, our group found the cycloaddition of the chiral 
heterodiene 7-1 and the electron-rich alkene 7-2 under the influence of Me~AIC1 
to give the dihydropyran 7-3 in excellent endo selectivity (endo/exo > 50:1) and 
as well excellent induced diastereoselectivity (54:1) [478]. A short sequence 
involving one simple recrystallisation then led to the ethyl-fl-D-mannopyrano- 
side 7-4 in enantiomerically pure form (Fig. 7-1). 

Two aspects of this work are noteworthy: Firstly, the excellent induced dia- 
stereoselectivity results from a very remote inducing stereocenter (1,6oasymme- 
tric induction) and secondly, the asymmetric induction can be reversed by 
changing the Lewis acid. Thus, the sequence also allows the entrance into the 
unnatural r-series by performing the cycloaddition with the same substrates but 
in the presence of TMSOTf. 
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The use of chiral 1-oxa-l,3-butadienes for the stereoselective preparation of 
carbohydrates has also been investigated by Schmidt et al. [479]. The elegant 
syntheses of N-acetyl-fl-D-neuraminic acid derivatives are an impressive result 
of these studies [480]. 

A very recent study presented by Dujardin et al. describes the complementary 
use of chiral enol ethers as dienophiles in oxa Diels-Alder reactions. This 
approach has yielded promising results with regard to the synthesis of enantio- 
merically pure carbohydrates [481]. Further noteworthy studies directed to the 
preparation of biologically active amino sugars from enaminoketones have been 
carried out in our group [110]. 

There are numerous indole alkaloids known which bear a dihydropyran 
moiety. Amongst them, strictosidine plays an outstanding role as biosynthetic 
intermediate more than two thousand natural alkaloids are derived from. 
Our group has synthesised analoga of this important natural product by the 
highly efficient domino-Knoevenagel-hetero Diels-Alder protocol (see Sect. 2.2) 
and was successful in converting the resulting cycloadducts into dihydro- 
corynantheine derivatives [482]. 

(-)-Tetrahydroalstonine 7-7, a heteroyohimboid alkaloid, has been synthesi- 
sed in enantiopure form by Martin et al. by means of an oxa Diels-Alder reaction 
as key step. The trienic precursor 7-5 underwent a thermal intramolecular cyclo- 
addition to form a 5:1 mixture of 7-6 and its 15fl-epimer. The main cycloadduct 
was then subjected to a straightforward sequence to yield the natural product 
7-7 (Fig. 7-2) [483-485]. In earlier work, Ogasawara et al. have employed a con- 
ceptionally different domino Knoevenagel-hetero Diels-Alder approach to this 
alkaloid and other natural products [486-488]. 

Our powerful domino-Knoevenagel-hetero Diels-Alder procedure has also 
proven its value in the synthesis of terpene derivatives. Thus, 1-ethoxysecologa- 
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"- ~ ,~CH3 
81% H~,,. -" 

. , . ,  

/ 
"[ N 

~ "~CH3 
H " '  " 

"/-7 
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nin-aglycon 7-12 has been prepared by means of an extremely efficient three 
component reaction which involved 7-8 and 7-9 as substrates for the formation 
of the intermediate 1-oxa-1,3-butadiene by Knoevenagel condensation and 7-10 
as dienophile to be employed in the subsequent cycloaddition. The cycloadduct 
7-11 was then easily converted into the secologanin derivative 7-12 which was 
isolated in 12% overall yield [489] (Fig. 7-3). 

Secologanin 7-13 is a direct precursor of strictosidine and is therefore of 
outstanding importance with regard to the biosynthesis of alkaloids. Further- 
more, its formyl moiety itself could also been subjected to the domino-Knoeve- 
nagel-hetero Diels-Alder protocol to yield bridged homoiridoids [490]. Another 
important application of this methodology to the chemistry of terpenes is the 
synthesis of deoxyloganin [491 ]. 

The domino-Knoevenagel-hetero Diels-Alder reaction is furthermore suita- 
ble for the efficient preparation of D-homosteroids [492]. Another effective use 
of this method is the synthesis of heterosteroids, which are interesting due to 
their potential pharmacological properties [493]. 

Spiroketals are not only important building blocks of polyethers but also may 
represent themselves highly active natural products. The suitability of oxa Dielso 
Alder reactions to efficiently generate this structure will be demonstrated by two 
impressive examples. Thus, our group prepared the mycotoxine (-)-talaromycin 
B 7-17 by a nine-step synthesis in 5 % overall yield in enantiopure form. The 
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chiral enol ether 7-14 underwent an oxa Diels-Alder reaction with the hetero- 
diene 7-15 to give 7-16 as main product amongst four diastereomeric cycload- 
ducts. Although complete separation of 7-16 from its byproducts was not pos- 
sible at this stage, four subsequent steps yielded chemically and optically pure 
(-)-talaromycin B (Fig..7-4) [494]. 

Recent work from Ireland's group directed to the synthesis of monensin subu- 
nits takes as well advantage of the suitability of hetero Diels-Alder reactions for 
generating spiroketals [495]. In situ generation of the highly labile dienophile 7-19 
from 7-18, subsequent cycloaddition to acrolein which acted as 1-oxa-l,3-buta- 
diene and reduction yielded the spiroketal 7-21 accompanied by small amounts 
of diastereomeric byproducts. A mild acid catalysed rearrangement is the next 
key transformation to the spiroketal subunit 7-20 of monensin 7-22 (Fig. 7-5). 

Snider et al. have synthesised the antiinsectan (+)-leporin [496] 7-26 using 
the domino-Knoevenagel-hetero Diels-Alder sequence. The intermediate 1-oxa- 
1,3-butadiene 7-25 was formed in situ by condensation of the pyridone 7-23 and 
the dienal 7-24. Subsequently, a hetero Diels-Alder reaction occurred accompa- 
nied by minor side reactions. Thus, the desired cycloadduct 7-27 was formed only 
in moderate yield as 5:1 mixture with its trans-fused diastereomer (Fig. 7-6). 
Functionalisation of the nitrogen atom yielded the natural product. A similar 
reaction sequence occurred in the synthesis of the structurally related free radi- 
cal scavenger (+)-pyridoxatin, however, in this approach the hetero Diels-Alder 
reaction represented only a side reaction competing with the desired intramole- 
cular ene reaction [497]. 

Beyond the hitherto discussed syntheses, there exist numerous further cur- 
rent and impressive applications of Diels-Alder reactions involving 1-oxa-l,3- 
butadienes which can only briefly be mentioned here due to the limits of space. 
Burke's group has developed an elegant retro-oxa Diels-Alder/all-carbon-Diels- 
Alder protocol which was employed as key step in the total syntheses of (+)- 

OBz 
OBz toluene, -.- 
i ~ C 0 2 M e  0 ~ ~ RT, 13 h r'""'~'~( ~C02Me 

+ ~ 

77 % 
0 ~ 

7-14 7-1,5 7-16 + 3 diastereomers 

0 

HO OH 
7-17 

/ 

Fig. 7-4 



88 L. E Tietze. G. Kettschau 

OMOM 

T B D M S O ~  
"-" Br 

i I ~ 

7-18 

Dess-Martin oxid., 
NEt 3, Hydroquinone 

OMOM 

T B D M S O ~  O 
~ �9 

i ~ 
7-19 

1. ~"CHO 
2. NaBH 4 

39 % from 7-18 

OMOM OMOM 

TBDMSO MeO " ' " 1 ~  _..~ T B D M S O ~ . ,  OH 

~ O ' ~ ~ ' ~  ~ -  ~ , H O ' ~  
. 
. .  

CO2H 
7-20 7-21 

OH 

MeO " " ' / ~  

.~176 ..... '~ ~ o  "-'.. | H - O-.../ H2OH 
_, ~o'~, ~'o~, '~'O~H 

7-22 

Fig. 7-5 

OH 

H 

7-23 

Ph.  
I 

OMe 
7-26 

Et3N 
EtOH. A. 20 h 

7-24 

2 steps 

55 % overall 

Fig. 7-6 

,~ 

o '~ 
Ph 

H 

7-25 

I 35% 

Ph ~ll~.O,.~ H 

<. 
H 

7-27 



Hetero Diels-Alder Reactions in Organic Chemistry 89 

pulo'upone [498] and of the ionophore antibiotic indanomycin [499, 500]. Other 
applications of 1-oxa-l,3-butadienes have been aimed at the preparation of 
cannabinoids [ 501,502 ], carbapanems [ 503 ] and the antibiotic ramulosin [ 504]. 

7.2 
Syntheses with Aza Diels-Alder Reactions 

Hetero Diels-Alder reactions with imino dienophiles have been employed as key 
step in several syntheses of naturally occuring alkaloids. With regard to stereo- 
selective transformations, the approach to (S)-anabasin worked out by Kunz et 
al. impressively illustrates the high utility of natural carbohydrates as source of 
chirality in asymmetric synthesis [505]. The N-galactosyl imine 7-28 underwent 
a Lewis acid catalysed aza Diels-Alder reaction with Danishefsky's diene which 
proceeded with excellent induced diastereoselectivity to yield the adduct 7-29. 
A short sequence then afforded the desired alkaloid 7-30. This work also deals 
with the suitability of several other dienes and imino dienophiles for such trans- 
formations (Fig. 7-7). 

Two very elegant alkaloid syntheses basing on intramolecular cycloadditions 
of imino dienophiles have been published by Grieco and his coworkers. The pre- 
paration of (+)-eburnamonine 7-32 is very efficient since imine 7-31, available 
from 6-valerolactam in a straightforward sequence, is directly converted into 
the desired alkaloid 7-32 by aza Diels-Alder reaction and subsequent isomerisa- 
tion of the newly formed double bond. (Fig. 7-8) [506]. 

The in situ release of a reactive iminium ion by cycloreversion of an azanor- 
bornene [211,212] and a subsequent intramolecular aza Diels-Alder reaction 
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~ ' ~ O ~  2. H2SO 4, EtOH, reflux., 12 ~11 
77 % 

Et Et 
7-31 Fig. 7-8 7-32 

represent one important key step of the biomimetic total synthesis of (+_)-pseu- 
dotabersonine 7-37 [507]. Thus, upon heating 7-33 in the presence of a Lewis 
acid, formation of the two diastereomeric cycloadducts 7-35 and 7-36 with the 
intermediacy of the iminium ion 7-34 occurred. The main product 7-35 was then 
transformed to the alkaloid 7-37, and it is noteworthy that the remaining fifth 
ring was formed by an intramolecular all-carbon Diels-Alder reaction which 
completely established the relative configuration of pseudotabersonine. Since all 
present stereogenic centers had been destroyed before this cycloaddition, the 
low stereoselectivity of the previous aza Diels-Alder reaction proved to be no 
serious drawback (Fig. 7-9). 
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Further applications of imino dienophiles to the synthesis of natural or bio- 
logically active compounds have been directed to (-)-cannabisativine [508] and 
HIV-1 protease inhibitors [509]; Bailey's investigations of the enantioselective 
synthesis of pipecolic acid derivatives have already been discussed in Sect. 3.1. 

Syntheses of natural products involving aza Diels-Alder reactions may also 
employ aza-l,3-butadienes as nitrogen containing component. Amongst the 
1-aza-l,3-butadienes, Boger's N-sulfonyl-l-azabuta- 1,3-dienes have recently 
proven to be versatile intermediates for antitumor agents such as streptonigro- 
ne [510] and fredericamycin A [511 ].Whilst in the latter total synthesis the hete- 
ro Diels-Alder reaction represents a very early key' transformation as part of a 
convergent synthetic strategy, the cycloaddition of the doubly activated hetero- 
diene 7-38 with the ketene acetal 7-39 effects the completion of the tetracyclic 
streptonigrone skeleton. The resulting cycloadduct was directly subjected to an 
aromatization protocol leading to 7-40; a short sequence then afforded the natu- 
ral product 7-41 (Fig. 7-10). 

The preparation of amphimedine 7-46 published by Echavarren and Stille 
[512] is a noteworthy application of 2-aza- 1,3-butadienes in natural product 
synthesis since it is an interesting combination of hetero Diels-Alder methodo- 
logy with a palladium catalysed cross coupling. Thus, dienophile 7-44 was for- 
med by" Stille coupling of the triflate 7-42 with the stannyl aniline 7-43. This qui- 
none then underwent cycloaddition to the 2-aza-l,3-butadiene 7-45; an acid 
catalysed hydrolysis of the cycloadduct 7-47 and subsequent N-methylation 
completed the synthesis of amphimedine 7-46 (Fig. 7-11). 
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Another hetero Diels-Alder reaction of a 2-aza-l,3-butadiene is part of 
Heathcock's extremely efficient polycyclization protocol leading to the skeleton 
of the Daphnyllum alkaloids [513]. This powerful sequential transformation is 
started by the generation of the highly reactive dialdehyde 7-49 from the corre- 
sponding diol 7-48. Upon treatment with ammonia and subsequent protonation, 
the cationic 2-aza-1,3-butadiene 7-50 is formed which then undergoes an intra- 
molecular cycloaddition to yield the iminium ion 7-51. This intermediate is con- 
verted to the polycyclic final product 7-52 by an aza ene reaction. It is notewor- 
thy that a closely related polycylisation cascade leading to the saturated analo- 
gon of 7-52 occurs if ammonia is replaced by methylamine. Heathcock et al. have 
applied these unique synthetical tools to the total syntheses of (+)-codaphni- 
phylline 7-53 [514], (+)-daphnilactone A [515], bukittinggine [516], (-)-seco- 
daphniphylline [517] and a number of related products (Fig. 7-12). 

Franck's preparation of (-)-cryptosporin is an interesting natural product 
synthesis involving an isoquinolinium salt as cationic 2-aza-l,3-butadiene 
[5181. 

Boger et al. have worked out numerous total syntheses of natural products 
basing on aza Diels-Alder reactions of electron-deficient N-heterocycles which 
act as diaza-l,3-butadienes [I i]. The key steps of these reactions have been 
highlighted in Sect. 3.5. 
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7.3 
Syntheses with Miscellanous Hetero Diels-Alder Reactions 

The outstanding versatility of 1,2-oxazine derivatives resulting from hetero 
Diels-Alder reactions of nitroso dienophiles has been exploited in a multitude 
of natural product syntheses which have been reviewed recently [8]. Therefore 
the discussion in this paper shall focus on some very recent, typical applications 
of nitroso dienophiles. 

An asymmetric Diels-Alder reaction of a chiral nitroso dienophile has been 
employed by Ganem et al. in order to open an elegant access to enantiomerical- 
ly pure (+)-mannostatin A 7-57 and several derivatives thereof [ 519 ]. The cyclo- 
addition of the heterodienophile 7-54 derived from mandelic acid to 1-me- 
thylthiocyclopentadiene 7-55 proceeded only in moderate diastereoselectivity, 
however, the desired product 7-56 was easily separated from its diastereomer. 
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It is noteworthy that both components are highly reactive and both required an 
in situ generation. The cycloadduct 7-$6 was then subjected to a reductive ring 
contraction, acetylation, and a highly diastereoselective bishydroxylation to 
yield 7-~8 which upon several protecting group transformations gave man- 
nostatin A 7-57 in enantiomerically pure form (Fig. 7-13). 

Streith and Defoin have employed nitroso dienophiles for numerous prepa- 
rations of azasugars [392]. A very recent publication of this series describes the 
synthesis of glycosyl transferase inhibitors such as 1,6-dideoxynojirimycin 
7-6S[520, 521]. This approach as well takes advantage of a chiral heterodieno- 
phile, namely the mannose derivative 7-60 developed by Kresze and Vasella. 
Upon cycloaddition of 7-60 and 7-$9, a 85:15 mixture of cis- and trans-7-61 was 
formed which was directly N-protected to give 7-62. The chiral auxiliary was 
easily recovered as mannolactone 7-63 after the hetero Diels-Mder reaction. The 
mixture of diastereomers 7-62 was chemically resolved since only cis-7-62 reac- 
ted in the subsequent bishydroxylation step to give enantiopure 7-64 (however, 
as E/Z-mixture of the oximes). Configurational inversion via a cyclic sulfate 
which then was cleaved by nucleophilic attack yielded 7-66 as main product. 
Conversion into 1,6-dideoxynojirimycin 7-6S was accomplished by reductive 
N-deprotection and hydrogenolysis (Fig. 7-14). 

Many further important natural product syntheses are covered by the afore- 
mentioned review. Particularly noteworthy amongst them are Hudlicky's syn- 
theses of conduramines [522] and (§ [523] since they employ 
enantioselective microbial oxidations of halobenzenes as source of chirality. 
Racemic lycoricidine has also been prepared by Martin et al.; this synthesis exhi- 
bits an interesting Heck cyclisation as key step in addition to the hetero Diels- 
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Alder reaction [524, 525]. Danishefsky et al. have used nitroso dienophiles for 
the synthesis of mitomycin K and antibiotics of the FR 900482 family, the latter 
ones are structurally unique aziridino-l,2-oxazine derivatives [526-529]. An 
approach directed to the cephalotaxus alkaloids has been worked out by" Fuchs 
et al. [530], and several indolizidine alkaloids have been prepared by" Keck's [531] 
and Kibayashi's groups [532,533]. Kibayashi et al. also synthesised Nuphar pipe- 
ridine alkaloids in enantiomerically pure form by" means of an asymmetric 
nitroso Diels-Alder reaction [534]. 

Cycloadditions involving nitroalkenes as heterodiene have been employed as 
part of Denmark's domino [4 + 2]/[3 + 2] cycloaddition protocol for the synthe- 
sis of natural products. Since also this methodology has just been exhaustively' 
reviewed [5], its value for alkaloid synthesis might be exemplarily demonstrated 
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by discussing the asymmetric synthesis approach to (-)-rosemarinecine 7-71 
[535]. Starting from the nitroalkene 7-67 and the chiral enol ether 7~ the 
[4+ 2]/[3+ 2] process catalysed by the bulky Lewis acid methylaluminiumo 
bis(2,6odiphenylphenoxide) installed all stereogenic centers present in the 
natural product. The transformation of cycloadduct 7-69 into the natural 
product involved a reductive ring contraction to construct the pyrrolizidine 
skeleton 7-72 (which allowed as well essentially complete recovery of the chiral 
auxiliary 7-70) and the cleavage of the lactol by means of Red-A1 as key steps 
(Fig. 7-15). 
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Finally, a thia Diels-Alder reaction representing a less common cycloadditi- 
on type in natural product synthesis shall be discussed. Thus, Vedejs et al. have 
included such a cycloaddition into an elegant strategy aimed at the synthesis of 
macrocyclic [11]-cytochalasans such as zygosporin E 7-76 [536-538]. Thus, 
release of the thioaldehyde 7-73 from its phenacyl sulfide precursor in the pre- 
sence of the silyloxydiene 7-74 yielded 7-75 as 2:1 mixture with its C/0 epimer. 
Fortunately, equilibration of this mixture raised the ratio up to 10: 1. Several sub- 
sequent steps yielded the tetracyclic intermediate 7-77; cleavage of its thioether 
moiety then liberated the 11-membered macrocycle present e.g. in zygosporin 
E 7-76 (Fig. 7-16). 
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8 
High Pressure Applications in Hetero Diels-Alder Reactions 

High pressure has developed as an efficient tool in organic synthesis especially 
in cases where the substrates are sensitive and large negative AV # can be expec- 
ted as in cycloaddition reactions. The older work on high pressure application 
in hetero Diels-Alder reactions focused mainly on the increase of the reaction 
rate, whereas in newer work in addition the influence of high pressure on the 
selectivity is studied. Moreover, careful measurements of the kinetics and the 
determination of AV #, AS #, AH #, and AAV # have been performed for cyclo- 
additions of 1-oxa-1,3-butadienes to allow also a mechanistic interpretation. As 
already mentioned, an increase of the reaction rate can also be obtained by using 
Lewis acids in many cases, thus, this method shows a similar effect to the appli- 
cation of high pressure [539]. However, the mechanistic reasons are completely 
different and there are several examples where only the application of high pres- 
sure allowed a transformation [e. g. 64]. 

Although several research groups have investigated the effect of high pressu- 
re on all-carbon Diels-Alder reactions, there are much less examples for the 
hetero Diels-Alder reaction. Thus, mainly only two groups are working on high 
pressure hetero Diels-Alder reactions. Thus, ]urczak has worked on the cycload- 
dition of oxa-dienophiles, whereas we are investigating the reaction of 1-oxa- 
1,3-butadienes under high pressure in co-operation with Buback. 
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Recently, ]urczak et al. analysed the Eu(fod)3-mediated high pressure cyclo- 
addition of 1-methoxy-l,3-butadienes 8-1 to chiral aminoaldehydes 8-2 with 
different protecting groups. There was no increase in selectivity by applying 
high pressure. Thus, reaction of 8-1 a and 8-2 either in the presence of Eu(fod)3 
or without the Lewis acid gave 8-3 a and 8-4a in the same ratio. However, the 
change of the protecting groups at the nitrogen led from a chelate to a non- 
chelate control to give 8-3 as the major product (Fig. 8-1) [540]. Similar effects 
on changing the protecting groups at the nitrogen had already been discussed 
earlier (see Sect. 2.1). 

Comparable results were also obtained in the hetero Diels-Alder reaction of 
8-1 and 8-5. Again, the ratio of the products 8-6 and 8-7 was not changed under 
high pressure (Fig. 8-2) [541]. 

In a similar fashion, Achmatowicz et al. have studied the cycloaddition of 
1-acetoxy- and 1-trimethylsilyloxy-3-methyl-1,3-butadiene with diethyl oxoma- 
lonate and isopropyl glyoxylate under thermal and high pressure conditions 
[5421. 

Vandenput et al. applied high pressure to perform hetero Diels-Alder reac- 
tions with unactivated 1-oxa-l,3-butadienes such as 8-8 and enol ethers 8-9 in 
the presence of a weak Lewis acid. The cycloadditions led to the dihydropyrans 
8-10 as a mixture of diastereomers in 23 to 85% yield (Fig. 8-3) [543]. 

1.15-20 kbar, 
NR1R 2 NR1R 2 

~OMe + H ~ O  N R1R2'- . . . .  2. H § m o I% E U ( E t 2 0 ,  50 ~ f~ ,..-- H ~  + H ~ ' ~  

(~Me OMe 

8-1 8-2 8-3 8-4 

a: R1R 2 = H,Cbz a: 1 " 2.5 
b: R1R 2 = Pht b: 5 �9 1 
c: R1R 2 = Bn,Boc c: 16 �9 1 

Fig. 8-1 

OMe i [ ~ " ~ O  
O 

8-1 8-5 

Et20, 50 ~ 
H= : 0 H .. 0 

o 

~Me OMe 

8-6 8-7 

20 kbar + Eu(fod)3 = 86 �9 14 (64 %) 
20 kbar = 84 �9 16 (57 %) 

Fig. 8-2 
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R 1 = H, CH 3 " R 2 =CH3"  R3 = H, CH 3 " R 4 = Et, P r "  R3R 4 = (CH2) 3 

Fig. 8-3 

8-10 

As already discussed in Sect. 2.2, the reactivity of 1-oxa-1,3-butadienes can 
be enhanced by introducing an electron-withdrawing group at the 2-position. 
But, with an electron-donating group such as a methoxy group at the 4-position 
the reactivity drops again greatly. However, the cycloadditions of these compo- 
unds can be accelerated by applying high pressure, besides using Lewis acids. 
Thus, reaction of 8-11 and 8-12 at 24 ~ and 13 kbar led to the diastereomeric 
cycloadduct 8-13 in 82% yield as shown by Boger et al. (Fig. 8-4) [544]. A 
change of the diastereoselectivity under high pressure was not detected. This is 
consistent with earlier attempts to increase diastereoselectivity by applying 
high pressure; but the observed differences in activation volumes did not exceed 
1 cm 3 mol-:. 

As the first example of a pressure induced change in selectivity we have found 
a significant increase in diastereoselectivity by applying high pressure for the 
cycloaddition of the 1-oxa-l,3-butadienes 8o14 and ethyl vinyl ether 8-12. The 
difference in the activation volume of the transition structures leading to the cis- 
and trans-cycloadducts 8-15 and 8-16, respectively depends on the size of the 
substituent R at the 2-position of the 1-oxa-l,3-butadiene. Thus, for 8-1,Ic with 
the small ester moiety a AAV #= 2.4 + 0.2 c m  3 mol -~, for 8-14b with the trifluoro- 
methyl group a AAV#= 3.8 + 0.1 cm 3 mol -~ and with the even bigger trichloro- 
methyl moiety a zXAV#= 5.9 + 0.5 cm 3 mol -~ was observed. 

OMe OMe 

+ ~_~ 

MeO2C "OEt MeO2C OEt 

8-11 8-12 

Fig. 8-4 

8-13 

cis : trans 

toluene 110 ~ = 1.8 : 1.0 
neat 24~ 13kbar =5 .7 :1 .0  
CH2CI 2 24 ~ 6.2 kbar = 5.7 : 1.0 
CH2CI 2 -78~ EtAICI 2 = 0.8 : 1.0 
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In these systems there is a twofold advantage of applying high pressure. First, 
according to the remarkable large difference in activation volume the diastereo- 
selectivity is enhanced toward high pressure at constant temperature. Secondly, 
also a substantial AAH # is found causing an increase of diastereoselectivity 
toward lower temperature. As AV # is fairly large and negative, high pressure 
enables the cycloaddition to be run with reasonable rate even at 0 ~ Thus, the 
selectivity of the reaction of 8-14c and 8-12 can be increased from 1.67:1.00 at 
90~ and i barto 13.6" 1.00 at 0.5 ~ and 6 kbar to give 8-15a as the major pro- 
duct (Fig. 8-5) [545]. 

The detailed analysis of the reactions has revealed that the endo-transition 
structures are influenced by high pressure to a much larger extent than the exo- 
transition structures. Thus, a pressure dependent increase in diastereoselectivi- 
ty can always be expected if a high steric hindrance exists in the endo-transition 
structure [ 546]. 

In a similar way, also the cycloaddition of 8-14 to substituted enol ethers has 
been analysed [547]. In these investigations the correlation between steric hin- 
drance and pressure induced diastereoselectivity is not so clear cut. However, an 
interesting result is the cycloaddition of 8-14b to 8-17 to give the spiro-compo- 
und 8-18 as the major adduct, indicating that 8-17 isomerises intermediately to 
the exo-methylene enol ether which reacts faster than 8-17. But as expected, 

NPht 1 bar ~ 7  kbar NPht NPht 

R "OEt "~OEt R OEt R 

8-14 8-12 8-15 8-16 

o=< 
Pht 

a: CCI 3 

b: CF 3 
r CO2Me 

solvent z~,V # [cm3/mol] hA, H # [kJ/mol] 

CH2CI 2 5.9 • 0.5 8.1 • 1.7 
n-heptane/ 
isodurene 5.3 • 0.4 
CH2CI 2 3.85 • 0.1 8.7 • 2.7 
CH2CI 2 2.4 • 0.2 10.0 • 0.9 

Fig. 8-5 
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under high pressure the formation of the annulated cycloadduct 8-19 is en- 
hanced. Noteworthy, the isomerised enol ether could not be detected in the reac- 
tion mixture by NMR spectroscopy. 

A clear correlation between the stabilisation of the endo-transition structure 
and the size of substituent at the 2-position of an 1-oxa-1,3-butadiene is again 
seen in the cycloaddition of the N-acetyl-enaminoketone 8-20 to 8-12. As ex- 
pected, the reaction of 8-20a to give 8-21 a and 8-22a shows only a very small 
z~V #, whereas with growing bulkiness of R as in 8-20b and 8-20c an increase of 
AAV # is observed with the formation of the trans-cycloadduct 8-22 as the major 
product under high pressure. Because of the pressure effect it can clearly be 
deduced that 8-22 is formed via an endo-Z-anti-transition structure, presum- 
ably due to a strong hydrogen bond in the (Z)-diastereomer and a steric dis- 
crimination of the (E)-diastereomer of 8-20. However, an exo-E-anti-transition 
structure would give the same product (Fig. 8-7) [548]. 

An effect of high pressure on the diastereoselectivity is also observed for 
intramolecular hetero Diels-Alder reactions as found for the cycloaddition of 
the benzylidene-isoxazolone 8-23 to afford the cis-annulated 8-24 as the major 
product together with the trans-diastereomer 8-25 (Fig. 8-8) [549]. However, 
the difference in activation volume with AAV #= 1.6 +_ 0.2 cm 3 mol -~ is rather 
small. The activation volume with AV #= 19.6 _+ 0.5 cm 3 mol -~ at 343 K lies sig- 
nificantly below the usual values found for intermolecular cycloadditions of 
1-oxa-1,3-butadienes, indicating that this reaction may be on the border line to 
a two-step reaction; but see also below. 

M e O 2 C ' , , ~  IN/AC 

R ,,,,~,O...H + [L, OE t 

8-20 8-12 

1 bar ---~-5 kbar 
70 - 140 "C, 
CH2CI2 

NHAc NHAc 

m Me02C~ + Me02C~ 
R" "O" ~OEt R "'"OEt 

8-21 

R &AV # [cm3/mol] 

a:H <1 
b: Et 3.8 • 0.3 
r ~Pr 4.6 • 0.3 

8-22 

&z~H # [kJ/mol] 

1.5 • 0.2 
2.1 ,-0.3 

Fig. 8-7 

p .  

8-23 

~ h 

N 

8-24 

Fig. 8-8 

~ , , ~ H  ph 

N 

8-25 
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An influence of high pressure on the regioselectivity in hetero Diels-Alder 
reaction of 1-oxa-1,3-butadienes was found for the intramolecular cycloadditi- 
on of 8-26, which led to the annulated product 8-27 and the bridged compound 
8-28 (Fig. 8-9). As expected, towards higher pressure formation of the annulated 
product 8-27 is favoured (AAV#=2.0_+0.2cm3mol 1 in tetrahydrofuran). 
However, highly surprising is the unusual large solvent effect on the activation 
volume, which does not correlate with the polarity of the solvent. This must be 
understood as being due to a difference in solvation of the substrate in different 
solvents as confirmed by measurement of their molar volumes; in contrast, the 
molar volume of the transition structure seems to be unaffected by solvent. 
Thus, whenever solvent effects on organic reactions are studied by pressure- 
induced changes, it is recommendable to determine activation volumes and 
molar volumes of the substrates and products to locate the transition structure 
on the absolute volume scale [550]. 

In a similar system, namely the intermolecular cycloaddition of 8-29 to give 
the two enantiomers 8-30 and ent-8-30 also a pressure induced increase in enan- 
tioselectivity using the Narasaka catalyst 8-31 was observed. Whereas the reac- 
tion proceeds with 4.5 % ee at 20 ~ and 1 bar, an ee of 20.4 % was observed at 
20~ and 5 kbar (Fig. 8-10) [551]. 

However, the results should be taken as an exception, since in our understan- 
ding of enantioface differentiating transformations enantioselectivity is obtai- 
ned by discrimination of one of the two enantiofaces of a molecule usually due 
to steric hindrance. Since under high pressure the sterically more crowded tran- 
sition structure is preferred, a decrease in enantioselectivity should be observed 
under high pressure. This indeed was found for the intermolecular all-carbon 
Diels-Alder reaction of 2-methyl-l,3-butadiene to a crotonic acid derivative 
[552]. A divergent result may be obtained if the differentiation is caused by 
electrostatic reasons. 
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[cm3/mol] 

1.5• 
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Fig. 8-9 



Hetero Diels-Alder Reactions in Organic Chemistry 103 

OMe 

l b a r ~  5kbar O 
o 

" "  ~ oA. A o 
o I 

8-29 

LA*= 

Ph Ph 

P h ~  " = ' ~ ' O ,  Ti,Cl 
Me" O ~ p : "  "Cl 

8-31 Fig. 8-10 

8-30 + ent- 8-30 

1 bar" 4.5 % ee 
5 kbar" 20.4 % ee 

Some older examples of the application of high pressure in hetero Diels- 
Alder reactions are found in excellent reviews and books on this topic 
[552-561]. In addition a few hetero Diels-Alder reaction under high pressure 
have already been mentioned in the foregoing chapters. 

9 
Novel Developments in Hetero Dieis-Alder Reactions 

9.1 
Hetero Diels-Alder Reactions on Solid Support 

A first example of a hetero Diels-Alder reaction on solid support has recently been 
described by us [562]. The three component domino transformation was per- 
formed by a Knoevenagel condensation of resin-linked acetoacetate 9-1 with alde- 
hydes in the presence of piperidinium acetate at 20~ The obtained polymer- 
bound 1-oxa- 1,3-butadienes were reacted with enol ethers at 60 ~ in CH2C1 z . Final 
cleavage of the formed dihydropyrans from the polymer was achieved by basic 
transesterification with sodium methanolate. The final products 9-2 of the library 
were obtained in good yield and with over 90% purity without any further 
chromatographic purification. This demonstrates the feasibility and the great 
advantage of performing hetero Diels-Alder reactions on a solid support (Fig. 9-1). 

RICHO O 
O O ~ OR 2 ~ ~ . ~ ~  

NaOMe~ R~ ~ V ~OR 2 

9-1 Fig. 9-1 9-2 
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9.2 
Use of Monoclonal Antibodies in Hetero Diels-Alder Reactions 

Many examples of the use of catalytic monoclonal antibodies for a variety of 
organic transformations and especially for Diels-Alder reactions have been 
described in the last years since its discovery by Lerner and Schultz [563]. 

Recently, a hetero Diels-Alder reaction of an arylnitroso dienophile 9-4 and (E)- 
piperylene 9-3 to give the two regioisomeric cycloadducts 9-5 and 9-6 in the pre- 
sence of a catalytic antibody has been published by Pandit and his group [564]. 
The most successful hapten used was the bridged compound 9-7 (Fig. 9-2). 

o 

+ catalytic antibody 
NHPr ~ 

O O 

9-3 9-4 9-5 

H3C ' ~  + 

CONH(CH2)sCO2H O 

9-7 Fig. 9-2 9-6 

NHPr 

NHPr 

There was a rate enhancement of kcat/kuncat = 1205 and also a slight change in 
the selectivity compared to the uncatalyzed reaction (9-5"9-6"uncatalyzed 
= 58" 42; catalyzed =47" 53). 

A retro hetero Diels-Alder reaction to release an anthracene derivative 9-9 and 
nitroxyl (HNO) from the corresponding cycloadduct 9-8 by a catalytic antibody 
has been described by Reymond and Lerner [565]. As a haptene the acridinium 
salt 9-10 was used (Fig. 9-3). The antibody obtained is of great biological interest 
as a prodrug release system since the liberated nitroxyl is easily oxidized by the 
ubiquitous enzyme superoxide dismutase to give nitric oxide (NO) which acts as 
a chemical messenger for several important bioregulatory processes. 

9.3 
Hetero Diels-Alder Reactions in Aqueous Solution 

Many organic reactions show a tremendous acceleration if performed in an 
aqueous solution [566, 567]. This has especially been shown for the Diels-Alder 
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I 
GHa 

9-10 Fig. 9-3 

catalytic antibody 

~CONH-CH2CH2-OH 

CHa 

9-9 

+ HNO 

reaction, a fact which has already been mentioned several times in this article. 
After the work of Grieco [568, 569] on aqueous hetero Diels-Alder reactions 
of iminium salts, in one of the newest examples of this type of transforma- 
tion, Engberts and his group [570, 571] have compared the kinetics of the 
reaction of the tetrazine 9-11 and some styrols 9-12 in aqueous and organic 
solvents to give a dihydropyridazine 9-13 via a cycloaddition followed by a 
fast retro Diels-Alder reaction and a H-shift. In all cases a rate enhancement of 
about 100 was observed performing the reaction in water (Fig. 9-4). 

+ 

- N H  ~ 

H o,Ro  

Hetero Diels-Alder Reactions in Organic Chemistry 

9--11 9-12 9-13 

Fig. 9-4 

As another example, Lubineau [572] has shown that well available glyoxylate 
cycloadds to several dienes such as cyclopentadiene, cyclohexadiene and iso- 
prene. The reaction of cyclopentadiene 9-14 and glyoxylic acid 9-15 in water 
at pH 0.9 is complete within 90 min at 40~ to give the diastereomeric 
a-hydroxylactones 9-16 and 9-17 via a cycloadduct as the primary intermediate 
(Fig. 9-5). 

Lately, also an enantioselective hetero Diels-Alder reaction of a butadiene 
and glyoxylate in water has been described. The yields and the observed 
selectivities were higher in water, but the effect was not very pronounced 
[5731. 
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( ~  , ~  40 "C, 90 min, H20 + 
H CO2H 83 % 

OH H ~- 

N 

~ 0 

H 

9-14 9-15 9-16 9-17 

73 27 
Fig. 9-5 

9.4 
Microwave Activation of Hetero Diels-Alder Reactions 

As already mentioned, hetero Diels-Alder reactions can be accelerated by apply- 
ing Lewis acids and high pressure. However, also the application of microwaves 
can increase the reaction rate [574]. Thus, the usually little reactive methyl vinyl 
ketone 9-19 cycloadded to highly sensitive ketene acetals such as 9-18 within 
10 min at 20 ~ under microwave irradiation to give the dihydropyran 9-20 in 
69% yield. Using other ketene acetals yields of up to 95 % could be achieved 
(Fig. 9-6). 

~ ~ ~ ~ ~  ~ MW, 780 W, 10 min ~ + 
CH 3 69 % 

9-18 9-19 

Fig. 9-6 

H3C Ph 

9-20 

10 
Conclusion 

The multitude of hetero Diels-Alder reactions found in the literature clearly 
demonstrates the importance of this transformation. Thus, this type of cycload- 
dition is today one of the most important methods for the synthesis of hetero- 
cycles. Striking features of this method are the tremendous diversity, excellent 
efficiency especially in those cases where the reactive dienes and dienophiles are 
formed in situ, and high stereoselectivity in many cases. There is a broad scope 
and only little limitation. In recent years the use of Lewis acid, the development 
of diastereoselective and enantioselective reactions as well as the application 
of high pressure gave an enormous push. In addition, many of the obtained 
heterocycles can be transformed into acyclic compounds allowing the stereo- 
selective preparation of e.g. amino and hydroxyl functionalized open chain 
compounds or even carbocycles to be of interest. Also, for the synthesis of natu- 
ral products, the hetero Diels-Alder reaction is of great value. Since heterocycles, 
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especially N-heterocycles, are of great pharmacological potency it can be expec- 
ted that this method will have a booming importance in the field of combina- 
torial chemistry. 
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Mesoionic compounds have proven to be valuable intermediates in organic chemistry from both 
physical and synthetic perspectives. These substances contain a masked 1,3-dipole within their 
framework and are therefore willing participants in 1,3-dipolar cycloadditions. Our interest in 
the chemistry of mesoionic dipoles stems from studies in our laboratory dealing with the 
rhodium(II)-catalyzed reactions of a-diazo carbonyl compounds in the presence of various 
heteroatoms. The isomtinchnone class of mesoionics is easily generated from the Rh(II)-cataly- 
zed reaction of a-diazo imides and readily undergoes cycloaddition with both electron-rich and 
electron-deficient dipolarophiles. This article compiles our findings in the general area of cas- 
cade reactions of isomtinchnones together with relevant work from other laboratories. 
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1 
Introduction 

Tandem reactions are among the most powerful strategic tools available to the 
synthetic organic chemist because they rapidly increase the complexity of a sub- 
strate while at the same time making economical use of available functional 
groups [1-12]. Over the past several years, transition-metal based cascade reac- 
tions have gained particular importance in organic synthesis since they allow 
simultaneous formation of more than one bond in a single synthetic operation 
with high stereoselectivity [13-20]. The Rh(II)-catalyzed tandem cyclization- 
cycloaddition reaction of a-diazo ketones [21] has been developed in these labo- 
ratories as a general approach to nitrogen-containing polycyclic compounds [22]. 
Our primary purpose in writing this review is to highlight the importance of tan- 
dem processes of metallo carbenoids for azapolycyclic synthesis. It is the intent of 
this article to broadly define the boundaries of our present knowledge in this field. 
Such an overview will put into perspective what has been accomplished and hope- 
fully provide impetus for further investigation of this general approach. 

§ 

0 R transition RCO . , .0~ _ R 
. - f y  RCOCHN2 + metal 

R H R 

Scheme 1 

2 
Isomiinchnone Cycloadditions 

The 1,3-oxazolium-4-oxides (isomiinchnones) are readily obtained through the 
transition metal-catalyzed cyclization of a suitable a-diazoimide [23]. This type 
of mesoionic oxazolium ylide corresponds to the cyclic equivalent of a carbonyl 
ylide and readily undergoes 1,3-dipolar cycloaddition. The first successful pre- 
paration and isolation of an isomiinchnone induced by a transition metal pro- 
cess was described by Ibata and Hamaguchi in 1974 [24]. They observed that 
when diazoimide 1 was heated in the presence of a catalytic amount of 
Cu(acac)~_, a red crystalline material precipitated from the reaction mixture. The 
red solid was assigned as isomiinchnone 4 on the basis of its spectral data and 
elemental analysis. Mesoionic ylide 4 was found to be air-stable for several weeks 
and its overall stability was attributed to its dipolar aromatic resonance struc- 
ture. Formation of the isom~inchnone ring can be rationalized by initial genera- 
tion of a metallo-carbenoid species which is then followed by cyclization onto 
the neighboring carbonyl oxygen to form the dipole [25]. 
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Our research group [26-28] as well as Maier's [29-30] has independently 
utilized the Rh(II)-catalyzed reaction of diazoimides as a method for generating 
isomtinchnones. The starting diazoimides are readily constructed by acetoacy- 
lation [31] or malonyl-acylation [32] of the corresponding amides followed by 
standard diazo transfer techniques [33]. Intramolecular trapping of the rho- 
dium carbenoid by the lone pair of electrons of the neighboring carbonyl group 
leads to the desired mesoionic system 6. Both groups have shown that these reac- 
tive species can be trapped with dipolarophiles to give cycloadducts in high 
yield. 

r R 1 
/ 0 + 0 / ~_ _.o~ a~ ~"~~ o~ o ~ N 2 0  Rh** " R 3 

---- al  2 -= = O ~ N " ~  I::la - 0  ~ ~ 'R  2 ~, 
g ~ 

Scheme 3 

Ibata was the first to show that the"masked" carbonyl y'lide embedded within 
the isomtinchnone framework would readily undergo 1,3-dipolar cycloaddition 
with various dipolarophiles [34]. The isolable isomtinchnone 4 was observed to 
react with dimethyl fumarate to produce cycloadduct 7 which possesses the 
7-oxa-2-azabicyclo[2.2.1]heptane skeleton. When the reaction of I was carried 
out using catalytic amounts of Cu(acac)~_ in the presence of various dipolaro- 
philes, smooth dipolar cycloaddition was observed to occur giving mixtures of 
e n d o  and exo isomers. In most cases, the exo isomers were favored. All of Ibata's 
isomtinchnone cycloadditions contain aromatic substituent groups, presumab- 
ly selected to facilitate dipole formation. The synthetic utility of the cycloaddi- 
tion reaction is diminished, however, because of the low reactivity of the aroma- 
tic substituents toward further manipulation. 
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Several years ago our research group became interested in using the dipolar 
cycloaddition of isomiinchnones for the construction of a variety of alkaloid 
systems [26-28].Since little was known about the interaction of rhodium car- 
benoids with amido carbony1 groups, we sought to answer several questions: (1) 
would a nucleophilic amide or imide functionality cyclize more or less efficient- 
ly than a keto group to form a carbonyl ylide? (2) would the reactive diazo keto- 
ne in the presence of an activated n-bond be subject to cycloaddition across the 
diazo group producing a pyrazoline cycloadduct? and (3) would the given pro- 
pensity for metal carbenoids to undergo addition and C-H insertion reactions 
be competitive with isomiinchnone formation? [35]. To help answer these que- 
stions, the Rh(II)-catalyzed reactions of cyclic diazoimides 8-11 were investiga- 
ted. When diazoimide 9 (n = 1) was treated with Rh2(OAc)4 in benzene (80 ~ 
the initially formed rhodium carbenoid cyclized onto the adjacent imide 
carbonyl group to generate isomiinchnone 12. This reactive species readily 
underwent 1,3-dipolar cycloaddition with N-phenyl-maleimide to give cycload- 
duct 14 (n = 1) as a 1.2:1 mixture of exo/endo isomers in 78 % yield. No evidence 
of fl-lactam formation, derived from competitive C-H insertion, was observed in 
the crude reaction mixture [35]. The ring size was reduced to a four-membered 
ring (8; n=0)  and enlarged to a six- (10; n = 2) and seven- membered ring (11; 
n = 3). In all cases, high yields (i.e. 70-90%) of the expected cycloadducts (13, 
15, and 16) were obtained. Interestingly, the cyclic cases where n = 1 and n = 3 
(i. e. 9 and 11) showed little exo/endo selectivity, but the cases of n = 0 and n = 2 
(8 and 10) resulted in a single diastereomer. 

The results obtained clearly demonstrated that the initially formed rhodium 
carbenoid prefers to cyclize onto the adiacent imide carbony1 group to form an 
isomiinchnone rather than undergo C-H insertion. The explanation proposed to 
rationalize this result is that the preferred rhodium carbenoid conformer 17 is 

_• Me 
Me O. ~:::::0 0 

/ . . . ~ .O  N2 Rh2(OAc)4 +O N ~ o ~ N  0 

Me ~ ~ N-phenyl " ~Ph 
0 0 ~leimide 

8; n--O 12 13; n=O 
9; n=l 14; n--1 
10; n=2 15; n=2 
11" n=3 16; n--3 

Scheme 5 
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the one which avoids unfavorable dipole repulsion between the two carbonyl 
groups of the imide (i.e. 18). The conformational rigidity imposed by' the cyclic 
imide ring was demonstrated to be inconsequential for carbonyl ylide formati- 
on. This was shown by carrying out the tandem cyclization-cycloaddition 
sequence with acyclic imides 19 and 20. Both substrates readily reacted with 
N-phenylmaleimide to give diastereomeric mixtures of cycloadducts 21 and 22 
in good yield. Again, no products derived from C-H insertion into the N-substi- 
tuents were observed. 

o o  o ,  

LnM ~ LnM ~ ~  
0~0~~,=0 ~ O~C~H3-~(~ dipole 

CH3\ / repulsion 

17 (preferred) 18 

1 
§ 

3 C-H insertion 
not observed 

R 0 Rh~(OAe)4 C'H3 , . , .  
CH31N,~,,~~CH3 0 N-phenyl 

0 0 maleimide CH31N ~ ~) N" ~ 

19; R=CH3 21; R=CH3 
20; R=CH2CH 3 22; R=CH2CH3 

Scheme 6 

Ph 

When diazoimide 19 (or 20) was deacetylated [36] and the resulting diazo- 
amide 23 (or 24) was subjected to rhodium(II) acetate, the yield of the corre- 
sponding cycloadduct (i. e. 25 or 26) was significantly diminished. One explana- 
tion for this different reactivity is the inherent decrease in electrophilic charac- 
ter conferred upon the intermediate rhodium carbenoid when the diazo carbon 
bears a hydrogen atom rather than an acetyl group. This decrease in electrophi- 
licity may alter the rate of carbenoid attack on the remote carbonyl group to the 
point where alternative reactions can occur. Another possible explanation to 
account for the diminished reactivity is that the preferred conformation of the 
intermediate rhodium carbenoid may not be the one that results in carbonyl 
ylide formation [35]. 

Unsymmetrical dipolarophiles were found to undergo intermolecular cyclo- 
addition with isomtinchnones with high regioselectivity [27]. For example, the 
decomposition of diazoimide 9 with Rh2(OAc)4 in the presence of methyl vinyl 
ketone resulted in the formation of two products identified as 27 and 28 in 27 % 
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and 44 % yield, respectively. The regiochemical outcome is consistent with FMO 
considerations [27]. Prolonged heating of cycloadduct 27 afforded the bicyclic 
lactam 28. This rearrangement presumably occurs through nitrogen lone pair- 
assisted opening of the oxygen bridge of 27 to give an acyl iminium ion which 
then undergoes proton loss. 

The first example of a bimolecular 1,3-dipolar cycloaddition between an 
isom~inchnone and an electron-rich dipolafophile was reported by our group 
several years ago [27]. The reaction of diethyl ketene acetal and isom~nchnone 
9 gave cycloadduct 29 in high yield. Again, only one regioisomer was obtained 
and the regiochemistry encountered is consistent with cycloaddition involving 
the HOMO of diethyl ketene acetal and the LUMO of isom/inchnone 12 (n - 1). 

qH3 0 0 CH3 
~ 

o 

CH3 methyl vinyl + 
0 0 ketone 

~ o~CH3 
9 

27 28 

I ~ t 
Scheme 8 

0 
~ ,0,/~CH3 Z ~  0 N~ 

OEt N @  ~ OEt 

0 0 CH~OEt 

9 29 

Scheme 9 
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3 
Intramolecular Isomiinchnone Cycloadditions 

An interesting example of an intramolecular 1,3-dipolar cycloaddition of an 
isomfinchnone with an unactivated alkene to produce a complex polycyclic 
compound in one step has been reported [26-30]. The isom~nchnones derived 
from the Rh2(OAc)4-catalyzed reaction of acyclic diazoimides 30- 34 were found 
to undergo facile cycloaddition onto the tethered n-bond to provide polycyclic 
adducts 35-39. A notable feature of this cycloaddition is that only one diaste- 
reomer is formed. The relative stereochemistry of cycloadduct 39 was deter- 
mined by X-ray crystallography [29]. This confirmed the fact that addition of the 
olefin took place endo with regard to the isomiinchnone dipole. Only low yields 
of cycloadducts were observed when the deacylated diazoimides were subjected 
to the cyclization-cycloaddition reaction [29]. This result indicates that the reac- 
tivity of the 1,3-dipole is significantly diminished in the absence of the electron- 
withdrawing acyl group and that alternative pathways then become competitive. 

This methodology was further extended, leading to an increase in complexi- 
ty of the resulting polyheterocyclic systems, by employing a series of cyclic dia- 
zoimides [28]. Treatment of cyclic diazoimides 40-42 with Rh2(OAc)4 led to 
good yields of cycloadducts 43-45. Only one diastereomer was produced in 
each cycloaddition. Once again, the stereochemical outcome is the result of an 
endo cyclization of the n-bond onto the isomfinchnone dipole and this was con- 
firmed by an X-ray crystallographic analysis of cycloadduct 43 [28]. 

~ " ~  R 2 0 
0 ~ ~'~CH3 Rh2(OAc)4 

o 

~; R~=R2=H 35; R~=R2=H 
31" R~=H; R2=CH3 ~;  R~=H; R2~H3 
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~ CH 3 0 
O~ ~ CH3 

o 

0 0 CH3 
33 ~ 

0 ~ CH3 
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Scheme 10 
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Lengthening the alkenyl tether by one carbon atom was observed to have no 
effect on the ability of the isomiinchnone to cycloadd across the olefinic 1-bond. 
This was shown in a study of the cycloaddition behavior of diazoimide 46 which 
afforded cycloadduct 47 in 86 % yield as a single diastereomer [28]. 

The generality of the method was further demonstrated by synthesizing cyc- 
lic diazoimides 48 and 49 in which the alkenyl tether was placed alpha to the 
nitrogen atom [28]. When these diazoimides were treated with a catalytic amo- 
unt of Rh2(OAc) 4, the tandem cyclization-cycloaddition process gave polycycles 
50 and 51 in 69 % and 76 % yield, respectively. With both of these systems, the 
length of the alkenyl tether proved to be crucial for the intramolecular cycload- 
dition reaction across the isomiinchnone dipole. Only when the tether was a 
butenyl group was cycloaddition observed. If the length of the tether was in- 
creased or decreased by one methylene unit, no products derived from intra- 
molecular cycloaddition were encountered [28]. 

0 

CH3 
48; n=l 
49; n=2 

Rh2(OAc)4 

Scheme 13 

0 , ~  CH3 

50; n=l 
51" n=2 
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4 
Cyclization-Cycloaddition-Cationic ~r-Cyclization Reactions 

The 1,3-dipolar cycloaddition of isomiinchnones derived from a-diazoimides of 
type 52 provides a uniquely functionalized cycloadduct (i.e. 53) containing a 
"masked" N-acyliminium ion. By incorporating an internal nucleophile on the 
tether, annulation of the original dipolar cycloadduct 53 would allow the con- 
struction of a more complex nitrogen heterocyclic system, particularly B-ring 
homologues of the erythrinane family of alkaloids [37]. By starting from simple 
acyclic diazoimides 52, our research group has established a tandem cyclization- 
cycloaddition-cationic 1-cyclization protocol as a method for the construction 
of complex nitrogen poly-heterocycles of type 54. 

R 1 ~ 0  ~ 
r i; ~ 

~ N u e  

O 

Nuc 

52 53 54 

Scheme 14 

Rh ++ 
A=B H +v 

R2,,,,,,,~OH 

~ A  

~...~Nuc 

The first example of such a process involved the treatment of diazoimides 55, 
56 and 57 with a catalytic quantity of rhodium(II) perfluorobutyrate in CH2C12 at 
25~ The cycloadducts 58 (98%), 59 (95%), and 60 (90%) were produced. 
Formation of the endo-cycloadduct with respect to the carbonyl ylide dipole in 
these cycloadditions is in full accord with molecular mechanics calculations 
which show a large energy difference between the two diastereomers. When the 
individual cycloadducts were exposed to BF3. OEh (2 equiv) in CH2C12 at 0 ~ the 
cyclized products 61 (97 %), 62 (95 %), and 63 (85 %) were isolated as single dia- 
stereomers. The cis stereochemistry of the A/B ring junction for 61-63 was assig- 
ned by analogy to similar erythrinane products obtained via a Mondon-enami- 
de type cyclization [38-40] and was unequivocally verified by an X-ray crystal 
analysis of all three cycloadducts. In all three cases the anti stereochemical rela- 
tionship is still maintained between the hydroxyl stereocenter (from the oxygen 
bridge) and the bridgehead proton (R2 = H) or methyl (R2 = CH3) group. 

When the dipolar cycloadduct 65, derived from the unsubstituted alkenyl dia- 
zoimide 64, was exposed to BF3. OEh, the resulting cyclized product 66 (90%) 
was identified as the all syn tetracyclic lactam 66 by X-ray crystal analysis. Thus, 
in contrast to the other three systems, the bridgehead proton of 66 lies syn to the 
hydroxyl stereocenter of the original cycloadduct. 

It is assumed that the intermediate N-acyliminium ions formed from the 
Lewis acid-assisted ring opening of the isomiinchnone cycloadducts undergo 
rapid proton loss to produce tetra-substituted enamides. In the case of 65, this 
process is clearly evident as witnessed by the stereochemical outcome observed 
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in product 66. Loss of the bridgehead proton H A in 67 (dihedral angle 90 ~ with 
respect to the N-acyliminium ion n-bond) is fast relative to rr-cyclization. Intra- 
molecular axial reprotonation of enamide 69 from the fl-face generates the dia- 
stereomeric iminium ion 70 which then undergoes intramolecular cationic 
1-cyclization from the least sterically congested face to give the observed all syn 
isomer 66. Molecular mechanics calculations show that the cis A/B ring fusion in 
66 is 4.6 kcal favored over the trans diastereomer and presumably some of this 
thermodynamic energy difference is reflected in the transition state for cycliza- 
tion. The additional methyl group present in the related 6/5 cycloadduct (i. e. 68) 
promotes loss of the proton adjacent to it and this results in the formation of 
enamide 71. Stereoselective reprotonation from the least congested a-face re- 
generates 68 which is trapped intramolecularly by the aromatic nucleus. Cycliza- 
tion always occurs from the least hindered side as has already been established 
by Mondon and coworkers [38]. Cationic cyclizations of this type are known to 
be governed by steric control [41]. In the case of cycloadduct 59, the bridgehead 
proton does not exist and thus deprotonation can occur in only one direction. 
Apparently the initially formed iminium ion, derived from 58 (i.e. 67b; n = 2), 
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undergoes fast rr-cyclization prior to proton loss. In this case, the deprotona- 
tion step is significantly slower than in the 6/5 system due to the larger dihedral 
angle (113 ~ proton H a and the n-system of the N-acyliminium ion. The 
stereochemical outcome in 61 is the result of a stereoelectronic preference of the 
aromatic ring of the N-acyliminium ion for axial attack from the least hindered 
side. 

Two additional systems which illustrate the scope and variety of rr-systems 
which can be employed in this tandem process are outlined below. The Rh(II)- 
catalyzed reaction of diazoimide 72 gave rise to a transient bicyclic adduct that 
was not isolable, as it underwent rapid ring opening to give the conjugated indenyl 
enamide 73 (85 %). Exposure of 73 to BF3. OEt2 in CH2C12 at 40~ resulted in a 3:l- 
mixture of diastereomeric tetracyclic lactams 74 in 88% yield thereby demon- 
strating that tethered alkenes can also be utilized in the third step of these casca- 
de reactions. Another substitution variation that was also investigated correspon- 
ded to the placement of an indolyl tether on the amide nitrogen. Thus, treatment 
of diazoimide 75 with Rh2(pfb)4 gave cycloadduct 76 (98%) which was read@ 
converted to 77 as a single diastereomer (in 60% isolated yield). The stereoche- 
mical assignment is based on analogy to the tetracyclic system 66. 
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We used this method as the key sequence in the synthesis of (+)-lycopodine 
(78). The intramolecular isomiinchnone cycloadduct 81 was envisaged as the 
precursor of the key Stork intermediate 79 (via 80) [42]. The heart of our 
synthetic plan was the formation of the latter intermediate by a Pictet-Spengler 
cyclization of the N-acyliminium ion derived from 81. Central to this strategy 
was the expectation that the bicyclic iminium ion originating from 81 would 
exist in a chair-like conformation [42, 43]. Cyclization of the aromatic ring onto 
the iminium ion center should take place readily from the axial position. The 
readily available heptenoic acid 82 would serve as the precursor for the a-dia- 
zoimide, the direct progenitor of the isomiinchnone dipole. This extension of 
the tandem cycloaddition-cationic 1-cyclization protocol to the formal syn- 
thesis of (+)-lycopodine (78) is outlined below. 

Piperidine 79 was synthesized by the Barton-McCombie reaction [44] of 80 
which gave the expected amido-ester (96 %) as a 3:2-mixture of diastereomers. 
The mixture was hydrolyzed to the corresponding carboxylic acid which, upon 
thermal decarboxylation, gave the desired N-benzyl lactam (85 % overall yield) 
as a single diastereomer. The structure was unequivocally established by a 
single-crystal X-ray analysis. Reduction of the lactam with LiAIH4 (81%) follo- 
wed by debenzylation via catalytic hydrogenation (Pd/C) afforded the key Stork 
intermediate 79 [42]. The preparation of 79 constitutes a total synthesis of (_+) 
-1ycopodine (78) and is based on a sequential dipolar-cycloaddition N-acylimi- 
nium ion cyclization. This approach is particularly attractive as the starting 
ct-diazoimide can be prepared efficiently on a large scale and the cycloaddition 
and cyclization reactions are highly stereospecific. We are currently investigating 
the application of the methodology outlined here to other alkaloidal targets. 
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5 
Cycloadditions Across Heteroaromatic ~-Systems 

Given the propensity for isomtinchnones to undergo dipolar cycloaddition with 
electron-rich dipolarophiles, systems in which the alkenyl group was incorpora- 
ted into an electron-rich heteroaromatic ring were also studied [28]. Nitrile 
oxides and nitrile imines are known to undergo intramolecular 1,3-dipolar 
cycloaddition with furan and thiophenes [45-48]. This observation led our 
group to synthesize furanyl diazoimides 83 and 88 with the hope that intra- 
molecular cycloaddition across the heteroaromatic system would occur. The 
Rh(II)-catalyzed reaction of 83, however, failed to give the desired furanyl cyclo- 
adduct 84. However, in the presence of DMAD a novel sequence of cycloaddi- 
tions occurred. The initial transient isomtinchnone 85 first underwent bimole- 
cular cycloaddition with DMAD to provide cycloadduct 86 which, in turn, 
underwent a subsequent intramolecular Diels-Alder reaction to give polycycle 
87[28]. 
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As was mentioned earlier, the chain length of the tethered alkenyl group can 
influence the outcome of the cycloaddition reaction. When the chain length 
between the furanyl and isomiinchnone ring was increased by one methylene 
unit, as in 88, intramolecular dipolar-cycloaddition occurred producing cyclo- 
adduct 89 in high yield [49]. The ability of diazoimide 88 to undergo the intra- 
molecular cycloaddition is presumably due to orbital overlap between the dipo- 
le and dipolarophile which is undoubtedly assisted by formation of the six- 
membered ring. 

Our group has also encountered success in cycloadding an isomiinchnone 
dipole across an indole double bond [28]. Cycloadduct 91 was generated in high 
yield as a single diastereomer from the Rh2(OAc)4-catalyzed reaction of dia- 
zoimide 90. The assignment was unequivocally established by an X-ray crystal 
structure. The ready construction of these poly-heterocycles in one step and in 
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high overall yield clearly demonstrates the potential of intramolecular dipolar- 
cycloadditions of isomiinchnones as a strategy for natural product synthesis. 

6 
Cycloadditions Across Triple Bonds 

The cycloaddition of isomtinchnones with acetylenic dipolarophiles followed by 
the extrusion of an alkyl or aryl isocyanate (RNCO) has proven to be an effec- 
tive method for the synthesis of substituted furans. The Ibata group investigated 
the bimolecular 1,3-dipolar-cycloaddition of aryl-substituted isomtinchnones 
with a number of acetylenic dipolarophiles [50].Aryl diazoimides of type I were 
heated in the presence of a catalytic amount of Cu(acac)2 and the appropriate 
acetylenic dipolarophile. Formation of the substituted furan was found to be 
temperature-dependent; higher temperatures (ca. 120 ~ were needed for com- 
plete conversion to the furan. It was reasoned that the extrusion of methyl 
isocyanate was not as facile as the loss of carbon dioxide from sydnones and 
mtinchnones [50]. 

Non-aryl substituted isomtinchnones also undergo the same transformation 
but under less rigorous conditions. Thus, when acyclic diazoimides 19 and 20 
were subjected to Rh2(OAc)4-catalyzed decomposition in the presence of 
DMAD, cycloaddition followed by extrusion of methyl isocyanate occurred to 
give the substituted furans 94 and 95 [35]. 

Instead of losing methyl isocyanate, the extrusion of a tethered alkyl isocya- 
nate occurred when the bicyclic diazoimide 96 was used. The rhodium(II) ace- 
tate-catalyzed reaction of 96 in the presence of DMAD produced furano-isocya- 
nate 98 in 85% yield. The anticipated cycloadduct 97 was not isolated, but 
instead underwent a subsequent [4+2] cycloreversion under the reaction condi- 
tions to give the observed product. The initially formed furanoisocyanate 98 was 
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characterized as its urethane derivative 99 by reaction with methanol [26-28]. 
Interestingly, treatment of the structurally related dibenzyl(diazoacetyl)urea 
100 with Rh2(OAc) 4 and DMAD afforded cycloadduct 101 which was stable 
enough to be isolated [26-28]. 

Several additional examples of the intramolecular cycloaddition of unactiva- 
ted acetylenes with isomiinchnones were reported by Maier [30]. This cycload- 
dition approach represents an efficient method for providing rapid access to 
annulated furans present in several sesqui- and diterpenes, such as the panicu- 
lides [51], furanonaphthoquinones [52], furodysin, and furodysinin [53, 54]. The 
decomposition of acyclic acetylenic diazoimides 102 and 103 with Rh2(OAc)4 
resulted in cycloaddition and retro-Diels-Alder extrusion of methyl isocyanate 
to give annulated furans 104 and 105 in good yield. The overall transformation 
is closely related to the intramolecular Diels-Alder reactions of acetylenic oxa- 
zoles extensively studied by ]acobi and coworkers [55]. 
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An interesting feature of isom~inchnones is their ability to undergo 1,3-dipo- 
lar cycloaddition with carbonyl compounds, a reaction which is unprecedented 
with m~inchnones [56]. This is illustrated by the reaction of diazoimide 106 with 
Cu(acac)2 in the presence of several different aldehydes and ketones which resul- 
ted in the formation of cycloadducts of type 107-109. When benzil was used as 
the dipolarophile, the regioselectivity was reversed giving rise to cycloadduct 
110 as the only regioisomer. 

7 
Formation of Azomethine Ylides Derived from Imines and Oximes 

The interaction of a metallo carbene with an imine nitrogen atom to give a 
transient azomethine ylide has attracted attention over the past decade [57]. 
Some of the standard methods for generating azomethine ylides involve the 
thermal or photolytic ring opening of aziridines [58], desilylation [59], or dehy- 
drohalogenation [60] of iminium salts, and proton abstraction from imine deri- 
vatives of a-amino acids [61]. Azomethine ylides are of interest because these 
dipoles undergo facile 1,3-dipolar cycloaddition with n-bonds to give pyrrolidi- 
nes which, in turn, have been used to prepare a variety of alkaloids [62]. 

The tandem reaction of carbenoids with simple imines to form azomethine 
ylides which then undergo 1,3-dipolar cycloaddition with various dipolarophi- 
les was first reported in 1972 [63 ]. Thus, treatment o~ phenyldiazomethane with 
copper bronze in the presence of excess N-benzylidene-methylamine resulted in 
the isolation of imidazoline 112. Formation of this product was rationalized by 
carbenoid addition onto the imine nitrogen to give azomethine ylide 111 which 
then underwent a 1,3-dipolar cycloaddition with another molecule of imine to 
produce the observed product. Bartnik and Mloston subsequently extended this 
observation by using other dipolarophiles [64]. For example, catalytic decompo- 
sition of phenyl-diazomethane and N-benzylidene-methylamine in the presence 
of dimethyl maleate or benzaldehyde gave pyrrolidine 113 and oxazolidine 114, 
respectively. In both cases, no product resulting from the trapping of the ylide 



138 A. Padwa 

ArCH=N 2 

CH 3 Ph .N. CH3 

"NN-~. ph~l~H 
Ph ~ .  "'Ar " ' 

I CH~ 
11~ 

+ PhCH=NCH3 

I Cu-bronze 

Ph~.+N~H ArCHO. 

H Ar 
111 

J imethyl 
male, ate 

CH302C= C02CH 3 

P h " " ~ A  r 
! 

CN~ 
~ 

Scheme 29 

Ar 

I 

CH 3 
114 

with a molecule of imine could be observed. Catalytic decomposition of phenyl- 
diazomethane with other Schiff bases was found to proceed via formation of a 
trans-1,3-dipole. Depending on the size and quantity of the substituent groups, 
the ylide either undergoes cyclization in a conrotatory sense to a cis-aziridine or 
[3 + 2]-cycloaddition to an available n-bond. The reactivity of double bonds 
toward the ylide was found to decrease in the order C=C --~ C=O -~ C=N. 

Since they were first isolated from penicillins, thiazoloazetidinones such as 
115 have become versatile intermediates in the synthesis of various fl-lactam 
antibiotics. Soft electrophiles prefer to attack at the sulfur atom whereas hard 
electrophiles react with the thiazoline nitrogen. Thomas and coworkers have 
investigated the reaction of thiazoloazetidinone 115 with metal carbenoids 
[65]. Treatment of 115 with a large excess of ethyl diazoacetate in the presence 
of copper (II) acetoacetonate and dimethyl fumarate gave the bis-methoxycar- 
bonyl adduct 117. The formation of this material involves an initial addition 
of the ethoxycarbonyl carbenoid onto the thiazoline nitrogen to produce 
azomethine ylide 116. This reactive dipole undergoes a subsequent 1,3-dipolar 
cycloaddition with the added dipolarophile to give the observed product. The 
reaction was found to be both regio- and stereoselective. No products derived 
from the reaction of the carbenoid at the sulfur atom or at the C-C double 
bond were observed. The stereochemistry at C-3 of the cycloadduct is consi- 
stent with approach of the fumarate ester from the less hindered side of the 
ylide. 

The formation and intramolecular dipolar cycloaddition of azomethine 
ylides formed by carbenoid reaction with C-N double bonds has recently been 
studied by the author's group [66]. Treatment of 2-(diazoacetyl)benzaldehyde 
O-methyl oxime (118) with rhodium (II) octanoate in the presence of dimethyl 
acetylenedicarboxylate or N-phenylmaleimide produced cycloadducts 120 and 
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121, respectively. The cycloaddition was also carried out using p-quinone as the 
dipolarophile. The major product isolated corresponded to cycloadduct 122. 
The subsequent reaction of this material with excess acetic anhydride in pyridi- 
ne afforded diacetate 123 in 67 % overall yield from 118. This latter compound 
incorporates the basic dibenzo[a,d]cyclohepten-5,10-imine skeleton found in 
MK-801 [67], which is a selective ligand for brain cyclidine (PCP) receptors that 
has attracted considerable attention as a potent anticonvulsive and neuro-pro- 
tective agent [68, 69]. 

The oxime nitrogen lone pair of electrons must be properly oriented so as to 
interact with the rhodium carbenoid [66]. Thus, subjection of the E-oximino 
isomer 124 to a catalytic quantity of Rh2(OAc) 4 in CH2C12 (40~ with a slight 
excess of DMAD afforded the bimolecular cycloadduct 126 in 93% yield. In 
sharp contrast, when the isomeric Z-oximino diazo derivative 125 was exposed 
to the same reaction conditions, only indanone-oxime 127 (80%) was obtained. 
The formation of this product probably occurs by an intramolecular C-H inser- 
tion reaction. 

The success achieved with the Rh(II)-catalyzed transformations of E-oxi- 
mino diazo carbonyl compounds prompted our group to study some additio- 
nal systems where the C-N n-bond was configurationally locked so that azo- 
methine ylide formation would readily occur. To this end, we investigated the 
Rh(II)-catalyzed behavior of isoxazoline 128 in the presence of DMAD. This 
reaction afforded the azomethine-derived cycloadduct 129 as a 4:l-mixture of 
diastereomers in 65% yield. A similar transformation occurred using the 
a-diazoacetophenone derivative 130 which produced isoxazolo[3, 2-a]isoqui- 
noline 131 as a 2:1-mixture of diastereomers in 82% yield. 
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8 
Pyridinium Ylides 

Since their introduction in 1960 [70], pyridine ylides have become increasingly 
popular probes of the dynamics of carbenes which lack chromophores [71 - 76]. 
The combination of high reactivity, favorable spectroscopic properties, and long 
ylide lifetime has allowed the study of the dynamics of a variety of "invisible" 
carbenes [77]. The technique has found use in the study of aryl, arylhalo, alkyl, 
alkylalkoxy, alkylhalo, arylsiloxy, and dialkyl carbenes [78-81]. A number of 
examples dealing with the preparation of stable pyridinium ylides have also 
been reported in the literature [82-85]. Pyridinium tetraphenylcyclopentadi- 
enylide (133) was synthesized by irradiating 2,3,4,5-tetraphenyl-diazocyclopen- 
tadiene (132) in pyridine. Addition of water precipitated the purple ylide 133 in 
almost quantitative yield [82-84]. This process appears to be general for a num- 
ber of substituted pyridines (i.e. 2-picoline, 3-picoline, and 2,6-1utidine). In an 
analogous fashion, N-dicyanomethylide 134 was prepared from the photolysis of 
diazomethane-dicarbonitrile in pyridine [85]. 

Although the transition metal-catalyzed reaction of a-diazocarbonyl com- 
pounds with aromatic molecules has received much attention in recent years 
[86], the metal-catalyzed behavior of these compounds with N-containing 
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heteroaromatics has not been extensively studied.An early example involved the 
preparation of isoquinoline-carboethoxymethylide 135 by the thermal decom- 
position of ethyl diazoacetate in the presence of isoquinoline [87]. The same yli- 
de could also be obtained from N-carboethoxymethylene isoquinolinium bro- 
mide by the elimination of hydrogen bromide. Ylide 135 is a red crystalline solid 
which is stable in the absence of moisture. The dipolar character of 135 was esta- 
blished by its reaction with dimethyl acetylenedicarboxylate which led to the 
formation of cycloadduct 136. Platz and coworkers reported that the photolysis 
of phenylchlorodiazirine 137 in the presence of both pyridine and DMAD pro- 
duced cycloadduct 139 in 30% yield by dipolar-cycloaddition of DMAD to the 
ylide followed by loss of HC1 [88]. 
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As part of our group's continuing involvement with the chemistry of azo- 
methine ylides, we became interested in examining the cyclization of a-diazo 
substituted N-containing heteroaromatic systems as a method for ylide gene- 
ration.Apart from the above examples using pyridines [78] and isoquinolines 
[87], little was known about the diazo cyclization process with N-heteroaro- 
matic systems when we initiated our work in this area [89]. The Rh(II)-cataly- 
zed reaction of a-diazoacetophenone in the presence of 2-methylthio-pyridine 
and dimethyl acetylenedicarboxylate gave 3-benzoyl-l,2-dicarbomethoxy- 
3,5-dihydro-5-methylthioindolizine (143). The formation of 143 proceeds via 
a pyridinium ylide formed by attack of the nitrogen lone pair on the electro- 
philic keto carbenoid. Subsequent dipolar cycloaddition of ylide 141 with 
DMAD occurs at the less substituted carbon atom to give cycloadduct 142. 
This transient species is converted to 143 by means of a 1,5-sigmatropic hydro- 
gen shift. The results are also consistent with the formation of the regio-iso- 
meric cycloadduct 144 which undergoes a 1,5-thiomethyl shift, perhaps via the 
tight ion pair 145. 

A related cyclization occurred using 1-diazo-3-[(2-(pyridyl)thio]-2-pro- 
panone (146). The initial reaction involves generation of the expected pyridini- 
um ion 147 by intramolecular cyclization of the keto carbenoid onto the nitro- 
gen atom of the pyridine ring. Dipolar cycloaddition of 147 with DMAD affords 
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cycloadduct 148 which undergoes a subsequent 1,5-hydrogen shift to give 149 
followed by fragmentation of CO and CH2S to produce indolizine 150. 

Interestingly, the Rh(II)-catalyzed reaction of 1-(3'-diazo)-acetonyl-2-pyri- 
done (151) with DMAD was found to give cycloadducts derived from an azo- 
methine ylide. The initial reaction involves generation of the expected carbonyl 
ylide dipole by intramolecular cyclization of the keto carbenoid onto the oxygen 



Tandem Processes of Metallo Carbenoids for the Synthesis of Azapolycycles 145 

atom of the amide group. A subsequent proton exchange generates the thermo- 
dynamically more stable azomethine ylide 152 which is trapped by DMAD, 
eventually producing cycloadduct 153. The formation of products 150 and 155 
from cycloadduct 153 proceeds by an acid-catalyzed C-O bond cleavage giving 
pyridinium ion 154. This transient species can lose a proton and lactonize to 155 
or else undergo fragmentation to afford formaldehyde, carbon monoxide and 
indolizine 150. 

Azomethine ylide cycloadducts derived from keto carbenoid cyclization onto 
a thiobenzoxazole have also been encountered in our studies. When 1-diazo-3- 
[2-benzoxazolyl)thio]-2-propanone (156) was used, the initially formed cyclo- 
adduct 158 undergoes a subsequent 1,3-sigmatropic thio shift to give the ther- 
modynamically more stable product 159. A good analogy can be found in the 
literature for the suggested 1,3-sigmatropic shift [90]. 

156 157 

I DMAD 

~ C02Me ~ 1,3-thiOshift 
~J~O C02Me 

159 158 

Scheme 40 

An entirely different reaction occurred when 2-(4-diazo-3-oxobutyl)-benzo- 
xazole (160) was treated with Rh(II) octanoate. In addition to undergoing di- 
polar cycloaddition to produce cycloadduct 162 (20%), the highly stabilized 
dipole (i. e. 161) formed from the benzoxazole isomerized by proton exchange to 
produce the cyclic ketene N,O-acetal 163. This compound reacted further with 
the activated 1-bond of DMAD to give zwitterion 164. The anionic portion of 164 
then added to the adjacent carbonyl group, producing a new zwitterionic inter- 
mediate 165. In the presence of water, this species was converted to the phenolic 
lactam 166. 
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9 
Nitrogen Ylides Derived From Diazocarbonyls and Nitriles 

1,3-Oxazoles with various substitution patterns are well-known heterocycles for 
which a number of methods of synthesis have been reported [91]. Acyl carbenes 
or functionally equivalent species have been found to undergo cyclization with 
nitriles to give oxazoles in high yield via nitrile ylide intermediates [92, 93]. This 
reaction can be induced to occur under thermal, photolytic or catalytic condi- 
tions [91, 94, 95]. Huisgen and coworkers were the first to study this process in 
some detail [94]. Thermolysis (or copper catalysis) of a mixture of ethyl diazo- 
acetate and benzonitrile resulted in the formation of oxazole 168. The isolation 
of this product is most consistent with a mechanism involving metallo carbene 
addition onto the nitrile nitrogen atom to generate dipole 167 which then cycli- 
zes to produce oxazole 168. 

Dimethy1 diazomalonate undergoes reaction with nitriles in the presence of 
rhodium (II) acetate to give 2-substituted-4-carbomethoxy-l,3-oxazoles (169). 
The reaction proceeds with a wide range of nitriles [95-101]; however, cyclo- 
propanation is a competing process in the case of unsaturated nitriles [91]. 

Kende and coworkers have reported on the formation of a nitrile ylide inter- 
mediate from carbenes and methyl acrylonitrile. Thermolysis of p-diazooxide 
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170 in methyl acrylonitrile as solvent gave the spirocyclic product 173 in 48 % 
yield [102].The formation of 173 was interpreted in terms of the generation of 
nitrile ylide 172 followed by 1,3-dipolar cycloaddition across the C-C double 
bond of a second molecule of methylacrylonitrile. The regiochemistry of the 
cycloaddition is consistent with FMO theory. 

In a somewhat similar manner, diazodicyanoimidazole (174) was found to 
give the fused heterocycle 176 when heated in benzonitrile [103 ].This reaction 
presumably involves the intermediacy of nitrile ylide 175. 

NC= ~.N NC. N N -N.< Ph 
. c ,~ .>= . ,  ~,c--. ~_ ~ ~-~_=c-~. . . ~ ~ ~ . ~ . ~  

& N c ~ N  NC Ph 
174 175 

176 
Scheme 44 
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10 
Dipole Cascade Processes 

1,3-Dipoles are extremely valuable intermediates in synthetic organic chemis- 
try. Their best known reaction corresponds to a 1,3-dipolar-cycloaddition reac- 
tion [62]. Less attention, however, has been attached to the interconversion of 
one dipole to another [104-108]. Rearrangement of 1,3-dipoles is encountered 
far less frequently than analogous carbocation [109-111], carbene [ 112, 113], or 
radical reorganizations [ 114-116]. Those rearrangements which do occur can 
be divided into a small number of types, defined either by the overall structural 
change or by the nature of the individual steps involved. Several years ago our 
research group introduced a new method for azomethine ylide formation in 
which the key step involved a dipole rearrangement. This reaction, which we 
have termed a "dipole cascade" involves three distinct classes of 1,3-dipoles 
[117]. It is initiated by a rhodium(II)-catalyzed a-diazo ketone (177) cyclization 
onto a neighboring carbony1 group to generate a carbonyl ylide dipole (178) 
which then undergoes a subsequent proton shift to give an azomethine ylide 
(179). 

R3 .H R3 .H R 3 
R,~. I N . ~ O  Rh(ll) hydrogen 

,,,t X . . J < "  
CHN2 

R2- -0 + R 2 0 H 

1 ~  178 179 

~r 45 

The wealth of strategically located functionalities that result from this novel 
cascade process was uncovered during an examination of the reaction of (S)-1- 
acetyl-2-(1-diazoacetyl)pyrrolidine (180) with 1.5 equiv of dimethy1 acetylene- 
dicarboxylate in the presence of a catalytic quantity of rhodium(II) acetate. 
Very little ( < 10 %) of the expected carbonyl ylide-derived cycloadduct (i. e. 182) 
was obtained [117]. Instead, the major product (90%) corresponded to struc- 
ture 185. A mechanism that rationalizes the formation of this product involves 
generation of the expected carbony1 ylide dipole 181 by intramolecular cycliza- 
tion of the keto carbenoid onto the oxygen atom of the amide group. Isome- 
rization of 181 to the thermodynamically more stable azomethine ylide 183 
occurs via proton exchange with a small amount of water that was present in 
the reaction mixture. 1,3-Dipolar cycloaddition with dimethyl acetylenedicar- 
boxylate provides cycloadduct 184, which undergoes a subsequent 1,3-alkoxy 
shift to generate the tricyclic dihydrop)rrrolizine 185. MNDO calculations show 
that cyclic carbonyl ylides of type 181 have higher heats of formation (ca. 
15 kcal/mol) than the corresponding azomethine ylide 183. Some of this ener- 
gy difference is presumably responsible for the ease with which the dipole reor- 
ganization occurs. 
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In the dipole cascade reaction, a proton must be removed from the a-carbon 
atom in order to generate the azomethine ylide. When the a-position of the pyr- 
rolidine ring was blocked by a benzyl group, formation of the azomethine ylide 
dipole could not occur. In fact, treatment of diazoketone 186 with rhodium(II) 
acetate in the presence of dimethyl acetylenedicarboxylate afforded only the 
carbonyl ylide-derived cycloadduct 187 in 95% yield [117]. 

/"-'~/CH2Ph 
",,.NJ~O 

I CHN2 COPh 

186 

Rh2(OAc)4_ 
, 

_ 

DMAD 

Scheme 47 

~ ~CH2Ph 

Me02C' 'C02Me 
187 

A further example of the dipole cascade process was encountered in a study 
of the Rh(II)-catalyzed decomposition of a-diazoketone 188 which gave the 
novel carbonyl rearrangement product 192 [ 118]. Intramolecular trapping of the 
rhodium carbenoid by the benzimidazolone carbonyl group generates the 
stabilized carbonyl ylide 189. Collapse of 189 to the epoxide 190 followed by ring 
opening gave the zwitterion 191. Attack of the alkoxide ion on the more electro- 
philic carbonyl (ketone vs ester) and carbon migration then gave product 192. 

When the reaction of 188 was carried out in the presence of DMAD, two unu- 
sual addition/rearrangement products were obtained and identified as compo- 
unds 196 and 199 in 33 % and 24 % yield, respectively. Under these conditions the 
rearrangement product 192 was not observed. Formation of the unexpected 
products 196 and 199 resulted from the trapping of two isomeric ylides. Bimole- 
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cular cycloaddition of the expected carbonyl ylide 189 with DMAD gave the 
[3 + 2]-cycloadduct 194, which under the reaction conditions fragmented to 
zwitterion 195. Carbon to oxygen acyl migration then generated the eight-mem- 
bered dienol lactone 196. Rearrangement of 195 to 196 can be seen as a vinylo- 
gous rearrangement of 191 to 192 and underscores the thermodynamic driving 
force for this type of transformation. Formation of 199 requires the tandem 
cascade of carbonyl ylide 189 to azomethine ylide 193. Condensation of 193 with 
DMAD resulted in the [3+2]-cycloaddition product 197. Fragmentation to 
zwitterion 198 followed by proton transfer eventually afforded pyrrolobenzimi- 
dazole 199. 

In the case of a-diazo ketoamide 200, the carbonyl ylide dipole is suffi- 
ciently stabilized via resonance to be trapped by dimethyl acetylenedicar- 
boxylate to give cycloadduct 201 in 90 % yield [ 119]. No material derived from 
azomethine ylide cycloaddition was observed. The closely related a-diazo 
ketoamide 202 was also examined. Most interestingly, treatment of 202 with 
rhodium(II) acetate in the presence of dimethyl acetylenedicarboxylate affor- 
ded cycloadduct 203 in 60% yield. The initial reaction involved generation of 
the expected carbonyl ylide dipole 205 by intramolecular cyclization of the 
keto carbenoid onto the oxygen atom of the amide group. This highly stabil- 
ized dipole does not readily undergo 1,3-dipolar cycloaddition but rather 
isomerizes to the cyclic ketene N,O-aceta1206 by proton exchange. This mate- 
rial reacted further with the activated n-bond of the dipolarophile to produce 
zwitterion 207. The anionic portion of 207 added to the adjacent carbonyl 
group, affording a new zwitterionic intermediate 208. Under anhydrous condi- 
tions, epoxide formation occurred with charge dissipation to give the ob- 
served cycloadduct 209. The high efficiency of the dipole cascade, in conjunc- 
tion with the intriguing chemistry of the resulting cycloadducts, presents 
numerous synthetic possibilities for the preparation of complex hetero- 
cycles. 
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11 
Application of the Tandem Cyclization-Cycloaddition Sequence to the 
Pentacyclic Skeleton of the Aspidosperma Ring System 

As mentioned above, our group has extensively employed the tandem cyclizati- 
on-cycloaddition reaction of rhodium carbenoids as the key strategic element 
for the efficient syntheses of a wide variety of polycyclic nitrogen heterocycles. 
More recently, we have developed a fundamentally new approach to the con- 
struction of the pentacyclic skeleton of the aspidosperma ring system which 
involves a related domino cascade reaction [ 120]. This new strategy was succes- 
sfully applied to the synthesis of desacetoxy-4-oxo-6,7-dihydrovindorosine 
(211).The approach used is shown below in antithetic format and is centered on 
the construction of the key oxabicyclic intermediate 212. We reasoned that 211 
should be accessible by reduction of 212, which, by analogy with our previous 
work, should be available by the tandem rhodium(II)-catalyzed cyclization- 
cycloaddition of a-diazoimide 213. Cycloaddition of the initially formed dipole 
across the pendant indole 1-system [49] would be expected to result in the 
simultaneous generation of the CD-rings of the aspidosperma skeleton [121]. 
The stereospecific nature of the internal cycloaddition reaction should also lead 
to the correct relative stereochemistry of the 4 chiral centers about the C-ring. 
In a recent publication, we described our initial experiments which verified the 
underlying viability of this approach to the aspidosperma skeleton [ 120]. 

The synthesis of a-diazoimide 213 commenced with the easily available 
fl-ketoester 215. N-Acylation of 215 with N-methylindole-3-acetyl chloride (214) 
using 4/~ molecular sieves as a neutral acid scavenger gave the desired imide 
(65%) which was readily converted to the requisite a-diazoimide 213 (90%) 
using standard diazo transfer methodology [122]. When a-diazoimide 213 was 
treated with a catalytic quantity of Rh2(OAc) 4 in benzene at 50 ~ cycloadduct 
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212 was isolated in 95 % yield as a single diastereomer. The structure of 212 was 
firmly established by X-ray crystallographic analysis which revealed that the 
cycloadduct contains the same relative stereochemical centers (C~., C3, Cs and 
C1~.) as those found in vindoline [123]. The formation of 212 occurs by cycliza- 
tion of the initially formed rhodium carbenoid (derived from 213) onto the 
neighboring piperidone carbonyl oxygen to give dipole 216 which subsequently 
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cycloadds across the indole 1-bond. The isolation of 212 is the consequence of 
endo cycloaddition with regard to the dipole, and this is in full agreement with 
the lowest energy transition state. The cycloaddition can also be considered 
doubly diastereoselective in that the indole moiety approaches the dipole 
exclusively from the side of the ethyl group, away from the more sterically 
encumbered piperidone ring. 

Cycloadduct 212 was subsequently converted to desacetoxy-4-oxo-6,7-dihy- 
drovindorosine 211 via intermediate 217 in high overall yield thereby proving 
the merits of the method. The tandem cyclization-cycloaddition sequence is 
particularly attractive as four of the stereocenters are formed in one step with a 
high degree of stereocontrol. 
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12  

C o n c l u s i o n  

Tandem ylide generation from the reaction of metallo carbenoids with nitro- 
gen-containing substrates continues to be of great interest both mechanistically 
and synthetically. Effective ylide formation in transition metal-catalyzed reac- 
tions of a-diazo compounds depends on the catalyst, the a-diazo species, the 
nature of the substrate, and competition with other processes. The many struc- 
turally diverse and highly successful examples cited in this review clearly indi- 
cate that the tandem reaction of metallo carbenoids has evolved as an important 
strategy for the synthesis of polyaza heterocycles. It is reasonable to expect that 
future years will see the continued evolution of the cascade chemistry of transi- 
tion metal carbenoids derived from a-diazocarbonyls in organic synthesis. As is 
the case in all new areas of research using catalysts, investigation of the chemi- 
stry of these transition metal complexes in the future will be dominated by" the 
search for asymmetric synthesis. 
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