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A Tribute to Ede Kapuy 



Preface 

Development in science depends on several factors. Among these, the role of 
individual scientists is perhaps not the most important one. Science is typically 
a body of collective knowledge and any increase in the amount of this knowledge 
is certainly due to strong interaction among scientists. Even in the past, it 
happened quite rarely that a single person, without any aid of others, dis- 
covered something fundamental or opened a new chapter in science. Great 
figures of science history have, in most cases, had rather a summarizing and syn- 
thesizing role. 

This is especially valid over the last few decades. On one hand, the amount of 
information necessary to achieve new discoveries, has increased tremendously. 
On the other hand, improvement of technical facilities has increased the speed 
of information exchange. These factors resulted in a degree of specialization in 
science that had never seen before. Most of us are experts and specialists rather 
than scientists in the classical sense. My personal feeling is that, even nowadays, 
there is a strong need for professionals with a broad knowledge and com- 
prehensive mind, although they may not be competitive in the number of their 
publications or the sizes of their grants. Every time I have met such a person 
(I can count these cases on my fingers) I have become deeply influenced by his 
or her strong intellect. 

One of the most knowledgeable quantum chemists I have ever met is certainly 
Professor Ede Kapuy, to whom this volume is dedicated on the occasion of his 70th 
birthday. Apart from being a good researcher, he is known to us as a professor with 
an extraordinary breadth of knowledge in all aspects of quantum chemistry, as 
well as in some loosely related fields such as the theory of relativity, particles 
and fields, etc. Before his retirement, he regularly sat in the library for hours, 
several times a week, read all the important journals from A to 2, and was able to 
memorize almost everything he had read. We often turned to him with difficult 
questions for which we got answers much more relevant than we could have 
obtained from the best database. He filtered the information and always pointed 
out the essence of the problem. I, personally, was never a student of his but bene- 
fited from his knowledge by many informal discussions, and his impact on my 
scientific thinking was almost as strong as that of my supervisors. 

Ede Kapuy is not only an outstanding scientist but also a person of great 
general erudition. History and geography are among his hobbies. I shall never 
forget a conversation I had with him during our preparation for the WATOC '96 
congress in Israel. His illness prevented him from joining us but he gave us advice 
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with pertinent details about important historical sights in various small cities 
some of which I had never heard of. He has himself never been to the Holy Land, 
however. 

The scientific work of Ede Kapuy covers basically two strongly related issues. 
He started his carrier with studying two-electron functions (geminals) which 
were among the main targets of investigation from the late 1950s; he joined this 
project almost in statu nascendi and published more than a dozen keynote 
papers, some of which are still being cited in recent publications. The theory of 
geminals is strongly related to the field of electron localization, and Ede Kapuy 
soon realized that an effective account of the correlation energy emerges if the 
electronic wave function is written in terms of localized quantities. This under- 
standing led to him setting up a project in which he studied many body per- 
turbation theory in terms of localized orbitals. These are the two issues that 
constitute the topics of the present Festschrift Volume, which is naturally 
entitled "Correlation and Localization". 

In organizing the volume, we felt that the best way of celebrating Kapuy's 
birthday was to produce a book which is really useful for a young generation of 
quantum chemists. Accordingly, we wanted to give a cross-section of modern 
quantum chemistry along the lines connected to Kapuy's life work; this is indicat- 
ed by the title. Unfortunately, space limitations did not allow us to invite a larger 
number of authors, neither for including extensive, voluminous reviews, thus the 
book remained necessarily incomplete. We start with a paper by Paldus and Li 
giving a short introduction into modern correlation theory for small systems. 
Then, in an article with Kutzelnigg as the senior author, we start to discuss the 
intimate connection between localization and correlation. Pipek and Bog&, 
former students of Ede Kapuy, review versions of many-body perturbation 
theory based on localized molecular orbitals. The theory of geminals is our next 
target: a didactic survey is written by the volume editor about the basis, followed 
by Roggen's paper on modern extensions of geminal models. As another alter- 
native to MO-based approaches, recent developments in ab inito valence bond 
theory constitute the topic of the following article. Then we turn to extended 
systems: Sun and Bartlett apply strict periodicity using k-space methods where 
Wannier functions may be invoked to describe localization, while locally 
perturbed inherently delocalized systems (e.g., metal surfaces) are treated by 
Kirtman. Density and density matrices are considered in the three following 
papers: Mezey discusses the properties of the molecular electron density func- 
tion and some of its approximate construction schemes, Valdemoro reviews 
recent results on the theory of reduced density matrices, while the issue is com- 
pleted by a thorough analysis by March of electron localization in density func- 
tional theory. 

The volume editor hopes sincerely that this book will contribute to a better 
understanding of the difficult problem of correlation and localization, that it 
will stimulate further discussions in this subject, and that many young scientists 
will enter this research area. Then, the enormous work Ede Kapuy started more 
than 40 years ago will certainly not have been wasted. 

Budapest, April 1999 Peter Surjkn 
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Among the post-Hartree-Fock methods, those based on the coupled cluster (CC) ansatz for
the electronic wave function proved to be extremely valuable in quantum chemical compu-
tations of the molecular electronic structure, being capable of attaining chemical accuracy
for many molecular properties of interest. While the widely exploited single reference (SR)
singles and doubles CC method (CCSD) is remarkably efficient in handling dynamic correla-
tion, a proper account of nondynamic correlation, which becomes essential in the presence of
the quasidegeneracy, requires multireference (MR) formalism. In view of the complexity and
computational demands of the available MR CC methods, it is highly desirable to design SR
CCSD-type approaches that are capable of accommodating both types of correlation effects.
One avenue to achieve this goal is offered by the so-called externally corrected (ec) CCSDme-
thods, which exploit some independent source of higher than pair clusters — whose impor-
tance rises with the increasing quasidegeneracy — to correct the standard CCSD equations.
In view of the complementarity of SR CC and MR configuration interaction (CI) methods
in their ability to describe the dynamic and nondynamic correlation effects, a particularly
suitable and affordable external source proved to be an MR CISD wave function, based on
a small active or model space, leading to the so-called reduced multireference (RMR) CCSD
approach. Following a brief outline of the origins and of the status quo of the ecCCSD and

? Also at: Department of Chemistry and Guelph-Waterloo Center for Graduate Work in
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visiting at: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. &, *?)@A Garching
bei München, Germany.
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RMR CCSD methodologies, their performance is illustrated by a few examples, and their
potential and relationship with other approaches is discussed.

Keywords: many-electron correlation problem, post-Hartree-Fock methods, coupled cluster
approaches, configuration interaction, externally corrected coupled cluster methods, reduced
multireference coupled cluster method

1
Introduction

Since the pioneering work of Heitler and London [&#@] appeared and the first
quantum chemistry textbook was written by Hellmann a decade later [#], the
need to explain chemical bonding phenomena from first principles became
recognized by molecular physicists and chemists alike. Both the valence bond
(VB) and molecular orbital (MO) methodologies proved to be of enormous
value in understanding and interpreting molecular electronic spectra, various
molecular properties, as well as chemical reactivity, even though quantitative
predictions had to await the arrival of the digital computer.
In view of the sheer mathematical complexity that we face when trying to

solve the Schrödinger equation for even the simplest of molecular systems, the
main emphasis of quantum chemical methodology has been on the design of
computationally manageable, yet reliable, approximation schemes, based on
various model Hamiltonians. Even when ignoring the relativistic effects and
freezing the nuclear motion by relying on the Born-Oppenheimer approxima-
tion [$], the problem is still too formidable for any system having more than
two electrons. For this very reason, almost all molecular applications are based
on finite dimensional models.
A very important conceptual step within the MO framework was achieved

by the introduction of the independent particle model (IPM), which reduces
the N -electron problem effectively to a one-electron problem, though a highly
nonlinear one. The variation principle based IPM leads to Hartree–Fock (HF)
equations [@, )] (cf. also [+, ?]) that are solved iteratively by generating a sui-
table self-consistent field (SCF). The numerical solution of these equations for
the one-center atomic problems became a reality in the fifties, primarily owing
to the earlier efforts by Hartree and Hartree [*]. The fact that this approxi-
mation yields well over ,,% of the total energy led to the general belief that
SCF wave functions are sufficiently accurate for the computation of interesting
properties of most chemical systems. However, once the SCF solutions became
available for molecular systems, this hope was shattered.
Although the availability of numerical solutions of HF equations is still re-

stricted to at most two-center (or linear) systems, the development of suitable
basis sets enabled the computation of SCF solutions within the Roothaan li-
near combination of atomic orbitals (LCAO) SCF formalism [,]. Generation
of such solutions, even for systems with several hundreds of electrons, is no-
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wadays routine, although the handling of general open shell states can still be
frustrating at times due to the possible multiplicity of various SCF solutions.
More importantly, however, it became abundantly clear during the late six-

ties that in spite of the conceptual importance of HF solutions and their utility
in supplying quantitative, or at least semiquantitative, information about some
molecular properties, their capability to provide a reliable description of the
electronic structure in general was rather limited. The first dramatic indication
of the inadequacy of SCF solutions emerged from Wahl’s study of the F# mole-
cule [&A]. Using a carefully optimized basis set, Wahl showed that at the SCF
level of approximation, F# is not bound: the negative SCF dissociation energy
he obtained was as large as &.+ eV!
The shortcomings of IPM are nowadays well recognized. Even though the

HF total energies are very accurate, say within A.&% of their exact value, they
are not accurate enough to describe many chemical phenomena or properties
of interest. For example, the total energies of first row diatomics are of the order
of &A# hartree, so we need at least two orders of magnitude higher precision
to achieve the so-called chemical accuracy of �& millihartree. The situation is
even more critical when considering nonenergetic properties. For this reason,
all present day quantitative studies account, in one way or another, for the
many-electron correlation effects that are lacking in the IPM descriptions.
The generally applicable post-Hartree-Fock methods that are currently wi-

dely used are basically of two types: variational and perturbative. The former
ones are typified by various configuration interaction (CI) methods (also re-
ferred to as shell model), employing a linear ansatz for the wave function in
the spirit of Ritz variation principle (cf., e.g. [&&]). Since the dimension of
the CI problem grows rapidly with the increasing size of the system and the
size of the atomic orbital (AO) basis set employed, it is necessary to rely on
truncated CI expansions, in spite of the fact that these expansions are slowly
convergent, even when based on optimal natural orbitals (NOs). Consequently,
such truncated expansions (usually at the doubly excited level relative to the
IPM reference, resulting in the CISD method) are not only unable to properly
account for the so-called dynamic correlation due to higher than doubly excited
configurations, but also lack size-extensivity.
To a large extent, both of these shortcomings can be eschewed by relying

on multireference (MR) CI approaches, which account for configurations up to
a chosen excitation (usually single and double) level (MR CISD method). This
approach is particularly effective when handling a manifold of near lying states
(that invariably arise when exploring the entire potential energy surfaces (PESs)
or curves (PECs) near the dissociation limit), since it is capable to properly
account for the so-called nondynamic correlation arising in quasidegenerate
situations.
However, even the MR CISD methods cannot properly handle dynamic

correlation, since this would require a large reference space and thus the N -
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electron spaces of too large a dimension. Consequently, the MR CISD results
are subsequently corrected both for the lack of dynamic correlation (usually
via low order perturbation theory) and size extensivity (via various versions
of semi-empirical Davidson-type corrections).
The many-body perturbation theory (MBPT) based methods [&#, &$],

whether of finite or an infinite order, are in many respects complementary
to the variational ones, being size-extensive but, at least in their single refe-
rence (SR) version, unable to properly account for nondynamic correlation as
soon as the state considered becomes quasidegenerate with some higher lying
state. The finite order SR MBPT methods are limited to the third, or at most
the fourth, order in view of the rapidly increasing computational demands. Alt-
hough the fourth order results often suffice, there are many instances where the
selective higher order terms make a significant contribution. For this reason
one usually relies on the coupled cluster (CC) approaches [&@, &), &+], based
on the exponential ansatz for the wave function, in which certain classes of
the MBPT terms are automatically summed to an infinite order by virtue of
solving the energy independent CC equations. These equations may be viewed
as recursion formulas for the generation of higher order MBPT contributions
of a certain type on the basis of the lower order ones.
For nondegenerate closed shell (CS) ground states, or even for high spin

open shell (OS) states, the CC approach at the SD level of truncation (SR CCSD
method) generally provides very reliable and precise results that are fully size-
extensive. In order to achieve the chemical accuracy of �& kcal/mol, at least
tri-excited clusters should be accounted for as well. Although a proper account
of higher than pair clusters is again computationally too demanding, except for
relatively small systems, an approximate account can be achieved perturbatively
via the CCSD(T) [&?] method (keeping in mind, however, that such an approach
will invariably break down when considering highly stretched geometries).
Indeed, CCSD and CCSD(T) approaches are presently very popular in view of
their high accuracy and reliability [&*].
In quasidegenerate situations, the role played by higher-than-pair clusters

in the SR type CC approaches can neither be ignored nor accounted for pertur-
batively [via, e.g., CCSD(T)], thus requiring an MR-type approach. Although
much theoretical work has been devoted to this problem during the past two
decades (cf., e.g., [&+, &,, #A]) and two bona fide genuine MR CC methodolo-
gies have been developed, their generic computer implementation has yet to
be carried out. Both types of methods, the so-called valence universal (VU) or
Fock space, and state universal (SU) or Hilbert space, approaches are based
on the effective Hamiltonian formalism and generalized Bloch equations (cf.,
e.g., [&+, &,, #A]), and just as the finite dimensional MR MBPT approaches
are plagued by the intruder state problems, not to mention multiple solution
problems and computational complexities involved. For this very reason, much
attention continues to be devoted to the so-called state selective or state speci-
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fic (SS) MR CC approaches that focus on one state at a time, and essentially
represent modified SR-type CC approaches that account for higher than pair
clusters in some nonstandard manner.
The complementarity of variational- and perturbative-type approaches, spe-

cifically of CI and CC methods, should now be obvious: While the former ones
can simultaneously handle a multitude of states of an arbitrary spin multipli-
city, accounting well for nondynamic correlation in cases of quasidegeneracy,
they are not size-extensive and are unable to properly describe dynamic corre-
lation effects unless excessively large dimensions can be handled or afforded.
On the other hand, CC approaches are size-extensive at any level of truncation
and very efficiently account for dynamic correlation, yet encounter serious dif-
ficulties in the presence of significant nondynamic correlation effects. In view
of this complementarity, a conjoint treatment, if at all feasible, would be highly
desirable.
Our recently developed reduced multireference (RMR) CCSD method [&+,

#&, ##, #$, #@, #)] represents such a combined approach. In essence, this is a
version of the so-called externally corrected CCSD method [#+, #?, #*, #,, $A,
$&, $#, $$, $@] that uses a low dimensional MR CISD as an external source.
Thus, rather than neglecting higher-than-pair cluster amplitudes, as is done
in standard CCSD, it uses approximate values for triply and quadruply excited
cluster amplitudes that are extracted by the cluster analysis from the MR CISD
wave function. The latter is based on a small active space, yet large enough to
allow proper dissociation, and thus a proper account of dynamic correlation.
It is the objective of this paper to review this approach in more detail and to
illustrate its performance on a few examples.
We first outline the basic idea and origins of the externally corrected CCSD

methods in Sect. #, followed by the formulation and discussion of its special
version, the RMR CCSD method, in Sect. $. In Sect. @ we present a few illust-
rative examples and summarize the general conclusions in Sect. ).

2
Externally Corrected CCSD Methods

In the standard SR CC approach, the exact (nonrelativistic) N -electron wave
function jΨ i for the state of interest (assumed to be energetically the lowest
state of a given symmetry species) is represented by the so-called cluster ex-
pansion relative to some IPM wave function jΦAi. This expansion is concisely
expressed via the exponential cluster ansatz

jΨ i = eT jΦAi; hΦAjΦAi = hΨ jΦAi = & ; (&)

with the cluster operator T given by the sum of its i-body components Ti,

T =
N∑
i=&

Ti : (#)
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In the simplest case of a nondegenerate ground state of a closed shell system,
one employs the HF wave function as a reference jΦAi and represents the i-body
cluster operators Ti as linear combinations of the i-fold excitation operators G

(i)
j ,

Ti =
∑
j

t(i)j G(i)j ; ($)

where t(i)j are the unknown cluster amplitudes and jΦ(i)j i = G(i)j jΦAi are the
i-times excited configurations (relative to jΦAi) spanning the i-times excited
subspace of the N -electron space considered.
The exponential character of the cluster expansion warrants the size-

extensivity of the resulting formalism regardless of the truncation scheme em-
ployed, as implied by a comparison with the standard linear CI expansion of
(intermediately normalized) jΨ i,

jΨ i = CjΦAi =
N∑
i=A

CijΦAi; CA = & ; (@)

which yields

C& = T&;
C# = T# + &

#T
#
& ;

C$ = T$ + T&T# + &
+T

$
& ;

C@ = T@ + &
#T

#
# +

&
#T

#
& T# + T&T$ + &

#@T
@
& ; etc.

())

Setting, for simplicity, T& = A (which is equivalent to employing Brueckner’s
maximum overlap orbitals), we have that C& = A; C# = T#; C$ = T$ and
C@ = T@ + &

#T
#
# . Thus, even when we approximate T solely by its pair clu-

ster component, T � T# (i.e., Ti = A; i 6= #), we obtain contributions from all
relevant even number of times excited configurations, since C#n � (&=n!)T n# ,
the most important one being from C@ � &

#T
#
# . Since the connected tetra-

excited cluster contribution of T@ is usually negligible in comparison with its
disconnected counterpart &#T

#
# , we see that the CCD approach, employing the

same number of unknowns as CID, also accounts for a large part of quadruples
that are entirely missed by CID.
The unknown cluster amplitudes t(i)j are determined by the energy-

independent CC equations, obtained by projecting the Schrödinger equation,
premultiplied with e�T , onto the excited state manifold, i.e.

hΦ(i)j je�T HeT jΦAi = A ; (+)

while the energy results by projecting onto the reference jΦAi,
E = hΦAje�T HeT jΦAi = hΦAjHeT jΦAi; (?)

so that

E � hΦAjH jΦAi = hΦAjH(T& + T# + &
#T

#
& )jΦAi : (*)
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Thus, the energy is fully determined by one- and two-body clusters in view of
the fact that the Hamiltonian contains at most two-body interactions. For the
same reason, Eq. (+) implies the following chain of CC equations

hΦ(&)j jH[& + T& + (T# + &
#T

#
& ) + (T$ + T&T# + &

+T
$
& )]jΦAiC = A ;

hΦ(#)j jH[& + T& + (T# + &
#T

#
& ) + (T$ + T&T# + &

+T
$
& )

+ (T@ + T&T$ + &
#T

#
& T# +

&
#@T

@
& )]jΦAiC = A ;

hΦ($)j jH[T& + (T# + &
#T

#
& ) + � � �+ (T) + T&T@ + � � �)]jΦAiC = A; etc. ; (,)

the subscript C indicating that only connected components are to be retained.
This structure reflects the block diagonal structure of the corresponding CI
chain,

hΦ(i)j jH(Ci�# + Ci�& + Ci + Ci+& + Ci+#)jΦAi = EhΦ(i)j jCijΦAi; (i = A; &; #; � � � ; N )
(&A)

where Ci = A if i < A or i > N . Thus, formally, the CC chain is obtained
by setting to zero the left hand side of the CI chain and by replacing the Ci
excitation operators by their cluster analogues, Eq. ()), while retaining only
the connected terms, the disconnected ones being cancelled by the right hand
side energy term in CI Eqs. (&A) [cf., e.g., [$)] for details]. Clearly, without
truncation, both chains are equivalent, providing the full CI (FCI) or full CC
(FCC) result, representing the exact solution for the given finite dimensional
ab-initio model (as defined by the AO basis set).
Since FCI or FCC can only be carried out for relatively small model systems,

all practical applications rely on truncated schemes. Thus, setting T$ = T@ = A,
the CC chain decouples after the second equation in the chain (,), resulting in
the CCSD method. As already pointed out, CCSD provides an excellent appro-
ximation that can be further improved by a perturbative account of T$, as in
the CCSD(T) method. Unfortunately, when considering stretched geometries
or, generally, quasidegenerate states, T$ and T@ are no longer small enough to be
neglected or handled perturbatively [in fact, in such cases, CCSD is preferable
to CCSD(T)]. The prominence of these higher than pair clusters stems from
the inadequacy of the SR formalism. Clearly, if we are able to obtain at least
approximate values of T$ and T@ clusters from some independent source, the
validity of the CCSD approximation could be extended to significantly stret-
ched geometries. This is precisely the idea of the externally corrected CCSD
(ecCCSD).
Considering the general algebraic structure of CCSD equations (for simpli-

city we drop the superscript indicating the excitation order),

ai +
∑
j

bij tj +
∑
j<k

cijktj tk + � � � = A ; (&&)

it is easy to realize that the T$ and T@ terms will only modify the absolute
terms ai, while the T&T$ term will contribute to the linear bij terms associated
with monoexcited t(&)j cluster amplitudes. In fact, even this latter term can
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be treated noniteratively using the approximate T& clusters provided by the
external source [$$].
Several possible choices of an external source have been tested so far. The

basic requirement is that such a source must provide a reasonable approxima-
tion of the most important three- and four-body clusters that are missing in
the SR CCSD approach. At the very least, we require it to describe the essential
nondynamic correlation effects. The practical aspects require that it be easily
accessible. The first attempts in this direction exploited the unrestricted Har-
tree Fock (UHF) wave function [of different orbitals for different spins (DODS)
type]. Its implicit exploitation lead to the so-called ACPQ (approximate coupled
pairs with quadruples) method [#+, #?]. Recently, its explicit version was also
developed and implemented [$&]. Although in many cases this source enables
one to reach the correct dissociation channel, its main shortcoming is the fact
that for the CS systems it can only provide T@ clusters, since the T$ contribution
vanishes due to the spin symmetry of the DODS wave function. Nonetheless,
the ACPQ method enabled an effective handling of extended linear systems (at
the semi-empirical level), which are very demanding, since the standard CCSD
method completely breaks down in this case [#?].
Another potentially suitable source is represented by simple VB-type wave

functions, which again correctly describe bond breaking situations. This possi-
bility was tested at the semi-empirical level with considerable success [#*, $A].
At the ab-initio level, the most obvious possibility is offered by CAS SCF or

CAS FCI (i.e., CI within the CAS or, equivalently, CAS SCF without the orbital
reoptimization based on RHF orbitals, cf. [$$, $@]) wave functions based on
the smallest possible active-space that warrants the correct description of the
dissociation channel at hand. This option was also suggested by Stolarczyk [#,],
although we are not aware of any concrete implementation. Our testing proved
to be very encouraging [$$, $@], particularly for open shell systems, in which
case we employed the spin-adapted CCSD based on the unitary group approach
(UGA) [&+, $+]. Even in the case of triple bond breaking, the applicability of
the CCSD approximation can be significantly extended, as will be shown in
Sect. @. Most recently, we have explored the MR CISD wave function as an
external source, as described in the next section.

3
Reduced Multi-Reference (RMR) CCSD

Relying on the above discussed complementarity of the SR CCSD and MR CISD
ansätze, it seems particularly attractive to employ the latter as an external
source of T$ and T@ corrections. In order to explicitly illustrate this comple-
mentarity and the scope of the formalism involved, let us consider a minimal
#-reference case, i.e. let us assume that a given SCF reference becomes quaside-
generate with another configuration. For a CS system this case arises when the
one-electron active-space involves only two MOs, each belonging to a different
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symmetry species. Designating these active orbitals by i and j , the N -electron
model (or reference) space will be spanned by configurations jΦAi = j(core)i{i
and jΦ&i = j(core)j|i. The corresponding two reference (#R) CISD will thus
involve single and double excitations relative to jΦAi and jΦ&i, the latter being
triply and quadruply excited relative to jΦAi.
Focusing, for the sake of simplicity, on an even-number-of-times excited

states only, and labeling core and virtual orbitals by letters from the be-
ginning (a; b; c; � � �) and the end (r; s; t; � � �) of the alphabet, respectively, we
realize that only core–virtual excitations will produce a distinct set of sta-
tes; ignoring the details of spin couplings, we can symbolically represent
them as follows: jΦA(a; b ! r; s)i = j(fcoregnfa; bg)i{r si and jΦ&(a; b !
r; s)i = j(fcoregnfa; bg)j|r si. Clearly, the former ones are doubles and the
latter ones quadruples relative to jΦAi. All other double excitations lead to
identical sets of doubles, namely the active to virtual ones to jΦA(i; i ! r; s)i
= j(core)r si = jΦ&(j; j ! r; s)i, and core to active ones to jΦA(a; b ! j; j)i
= j(fcoregnfa; bg)i{j|i = jΦ&(a; b ! i; i)i. We thus see that the #R CISD in-
volves the same number of quadruples as there are core–virtual doubles, both
proportional to n#cn

#
v in number (we designate the number of core and virtual

orbitals by nc and nv , respectively). The number of remaining doubles (core–
active and active–virtual) is much smaller, being proportional to n#c and n#v ,
respectively.
Although the MR CISD, based on a small reference space, will involve only a

small subset of quadruple excitations relative to the leading configuration jΦAi,
these quadruples will clearly be those that are primarily responsible for a pro-
per account of dynamic correlation and that guarantee the correct description
of the dissociation channel at hand. Indeed, the number of core–virtual qua-
druples is proportional to n@cn

@
v . The majority of these will, of course, primarily

contribute to the dynamic correlation and may thus be effectively represented
by their disconnected components arising through the CCSD cluster ansatz.
We can thus expect the low-dimensional MR CISD to supply us with the most
important connected triples and quadruples, while relying on the CC ansatz to
represent the remaining higher-than-pair clusters.
A similar situation to that just described for the #R CISD will clearly arise

in the general case, the number of quadruples involved being proportional to
the dimension of the model space. Nonetheless, these quadruples will represent
a very small subset of all possible quadruples, their number being essentially a
multiple of the number of doubles by the factor (M � &), M being the number
of reference configurations. Moreover, these quadruples will be used only once
to correct the absolute term of CCSD equations.
In general, the MR CISD wave function based on an M-dimensional refe-

rence space has the form

jΨAi =
M�&∑
p=A

C[p]jΦpi ; (&#)
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where C[p] = C[p]& +C[p]# designates the CI-type SD excitation operator relative to
the reference jΦpi. Clearly, the fact that the same configuration may arise by the
excitation from different references must be properly taken into account. Desi-
gnating the leading reference configuration in jΨAi as jΦAi, the SD core–valence
excitations from the remaining references, namely jΦ&i; jΦ#i; � � � ; jΦM�&i, will
represent higher-than-double excitations relative to jΦAi, so that we can rewrite
the MR CISD expansion (&#) in the SR CI form, using jΦAi as a reference,

jΨAi =
(
& +

N∑
i=&

C(A)i

)
jΦAi ; (&$)

distinguishing the relevant i-fold excitation operators by the superscript “(A)”.
Applying standard cluster analysis [cf. Eqs. ())], it is then straightforward to
rewrite this wave function in the SR CC form, namely

jΨAi = eT
(A)
& +T (A)# +∆jΦAi

= eT
(A)
& +T (A)# +fT (A)$ +T (A)@ +���gsubset jΦAi ;

(&@)

where ∆ represents a subset of higher than pair cluster operators arising
through the MR CISD ansatz.
Assuming now that the T (A)$ and T (A)@ amplitudes so obtained represent a

reasonable approximation of actual T$ and T@ clusters, we can employ the RMR
CCSD ansatz

jΨ i = eT&+T#+T
(A)
$ +T (A)@ jΦAi ; (&))

leading to a special case of the general ecCCSD. Clearly, the decoupling of the
SR CC chain of equations, Eq.(,), using approximate values of T$ and T@, should
provide a superior approximation to the standard one which simply assumes
that T$ and T@ vanish. This will be particularly the case in quasidegenerate
situations, when T$ and T@ are no longer negligible, in fact not even accessible
to a perturbative treatment. On the other hand, the SD amplitudes defining
T (A)& and T (A)# , although representing a reasonable approximation to the actual
SD amplitudes, do not properly reflect the effect of a large number of higher
excited (disconnected) clusters that are entirely absent in the low-dimensional
MR CISD approach, thus missing the essential part of the dynamic correlation.
It is thus worthwhile to recalculate these amplitudes using ecCCSD, relying
on ansatz (&)). Since only T& and T# involve the unknown cluster amplitudes,
ecCCSD is no more demanding computationally than standard CCSD, once the
initial T (A)$ and T (A)@ corrections are evaluated.
To summarize, the RMR CCSD method involves the following three steps:

(i) We choose a suitable reference space and compute the corresponding MR
CISD. Next, (ii) we compute T (A)$ and T (A)@ clusters by cluster analyzing the
MR CISD wave function of step (i), and finally (iii) we use these amplitudes to
generate and solve ecCCSD equations. The details of the actual implementation
of the RMR CCSD method for various types of reference spaces can be found
in our earlier papers [#&, ##, #$, #@, #)].
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4
Illustrative Examples

Although the existing applications of RMR CCSD, and of other versions of the
ecCCSD method, have shown considerable promise, much work remains to be
done in order to establish optimal sources of higher than pair clusters that
would be both reliable and computationally affordable, as well as to determine
the limits of applicability of this type of approaches. Here we shall only present
a few typical examples that illustrate the potential of this technique, drawing
on both the existing applications and recently generated new results.
Both most extensively tested ecCCSD approaches employ the CI-type wave

functions as a source of TQ clusters. Those using active-space triples and qua-
druples (ASTQ) are based on CAS SCF, or CAS FCI, or even truncated CAS
FCI wave functions [$#, $$, $@], while the RMR CCSD method relies on a small
reference space MR CISD wave function [#&, ##, #$, #@, #)]. Thus, in the for-
mer case, only those three- and four-body clusters are taken into account that
are obtainable through the excitations within the set of active (spin)orbitals.
Consequently, this type of ecCCSD approaches requires a large enough active-
space in order to obtain a meaningful subset of triply and quadruply excited
cluster amplitudes. Note, for example, that the minimal #-electron/#-orbital
active-space will not provide any such cluster amplitudes. We thus generally
refer to these type of approaches as the ASTQ CCSD methods. In contrast, the
RMR CCSD method employs a small reference space, but considers excitations
involving virtual orbitals as well. Thus, while the reference (or active) space
may not provide any information concerning the three- and four-body clusters
in this case (as is the case, e.g., with the #R-RMR CCSD method, employing
the minimal #-electron/#-orbital space), the SD excitations involving virtuals
will. In the following, we shall briefly compare the performance of these two
types of ecCCSD approaches.
So far, our primary focus was on the computation of potential energy sur-

faces (PESs), or curves (PECs), and a few derived properties, such as molecular
geometries and harmonic vibrational frequencies, and only little attention was
devoted to other properties (e.g., various multipolar moments, etc. [&+]). As
explained above, the main benefit of the ecCCSD approaches pertains to quasi-
degenerate situations, most often encountered for highly stretched geometries,
or in states having a genuine multi-reference character, since for nondegene-
rate systems in their equilibrium geometries the standard CCSD or CCSD(T)
approaches work extremely well [&), &+, &*]. Thus, when exploring, for exam-
ple, various static properties, the main interest in ecCCSD approaches will be
when generating property surfaces. Since these are seldom directly accessible
experimentally, it will be important to test these methods on systems where the
desired data are significantly influenced by the shape of the property surface
away from the equilibrium geometry (c.f., e.g., [$?]).
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Although the comparison with the experimental data, and their reliable
prediction and rational interpretation, represent the ultimate objective of any
theory, such an undertaking involves a multitude of unknown factors that can
play a significant role, starting with the adequacy of the model employed (as
defined by the AO basis set in our case), possible nonadiabatic or relativistic
effects, etc., including the shortcomings in the analysis of the experimental data.
It has thus been long recognized that the most dependable and least biased test
of the performance of approximate methods is the comparison with the FCI
data, representing the exact result for a chosen ab-initio model. Unfortunately,
the FCI results can be generated for only a relatively small model system, leaving
open the question of the basis-set-dependence of the investigated performance.
Nonetheless, our experience indicates that the methods performing well for
relatively small model systems also do well when applied to realistic models.
In any case, the comparison with FCI results is nowadays a sine qua non for
any new method or approximation.
As explained in the Introduction (Sect. &), the performance of standard

CCSD directly depends on the role played by higher than pair clusters. It is
thus important to test the methods that are designed to correct — at least
approximately — this inadequacy for nonequilibrium geometries, even though
they may be beneficial for equilibrium geometries as well [as is the case, for ex-
ample, for the CCSD(T) method which, unfortunately, breaks down in quaside-
generate situations]. For this reason, our primary focus is on the performance
for highly stretched geometries. Clearly, the difficulty dramatically increases
with the multiplicity of the bond being stretched.
A typical example when stretching a single bond is given in Table & for

the X#Π state of the OH radical at both the double zeta (DZ) and DZ plus
polarization (DZP) levels of approximation. Since for most applications the
absolute energies are of little importance, we also present the so-called “non-
parallelism error” (NPE), defined as the maximal difference between the exact
FCI and approximate energies for a given range of geometries considered. Thus,
when both PESs or PECs are “parallel” (i.e., separated by the same energy dif-
ference for all geometries), we have that NPE = A. Clearly, when the differences
between the FCI and approximate energies do not depend monotonically on
the varied geometry parameter (i.e., the internuclear separation R in our case),
the given NPE values are only approximate, since they are based on the results
for a finite number of geometries considered. Ideally, NPE is given by the sum
of absolute values of the maximal positive and negative energy differences. An
even better measure would be, of course, provided by the integral∫

D
j∆E(R)� ∆E(Rx)j (R)djRj ;

where ∆E(R) = E(FCI)(R)�E(X)(R), X designates the approximation employed,
D represents the parameter domain of geometries considered, Rx = Re or R1
or other suitable reference geometry, and  (R) is the optional weight factor.
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Table 1. Comparison of the SR CCSD, RMR CCSD, and ASTQ CCSD energies with the exact
FCI result for the X#Π state of OH at three internuclear separations R, R = Re = &.*$# bohr,
R = &:)Re, and R = #Re. Except for the SCF and FCI total energies, which are reported
as �(E + ?)) (in hartree), the energy differences (in millihartree) relative to the FCI result
are given in all cases. The nonparallelism error (NPE) for the interval R 2 [Re; #Re] (in
millihartree) is also given for easier comparison (see the text for details)

Method a Dimensionb Re &.)Re #Re NPE Reference

DZ basis set
SCF & A.$*@*,$ A.#,@)*+ A.&,#*$+ *@.),)
FCI $@+A(CSF) A.@*&##$ A.@#$+,& A.$?$?+& A.AAA [$$]
SR CCSD &&#(CSF) &.&,) #.?A) ).+@* @.@)$ [$$]

#R-RMR CCSD $+#(Det) &.A@* &.),& $.A@* #.AAA This work
)D-RMR CCSD +A?(Det) A.,&) &.### A.,,$ A.$A? This work

CCSD-(?,*)FCI A.)&& &.@$& &.))* &.A@? [$$]
CCSD-(?,)/$)SOCI #+*(CSF) A.?) &.,A #.$# &.)? [$@]
CCSD-(?,)/))SOCI +)+(CSF) A.?& &.A* A.&@ A.,@ [$@]

DZP basis set
SCF & A.@A+$&, A.$A#,,$ A.&,)A)A ?).*,,
FCI @@&?,#(CSF) A.)+*A&) A.@,#&AA A.@$#+@) A.AAA [$$]
SR CCSD )@A(CSF) #.@@A ).A@+ &#.+,, &A.#), [$$]

#R-RMR CCSD #A$&(Det) #.&@& #.*,+ ).)+* $.@#? This work
)D-RMR CCSD $?A)(Det) &.**A #.A,A &.+@* A.@@# This work

CCSD-(?,*)FCI &.?A# $.**) ,.A&+ ?.$&@ [$$]
CCSD-(?,)/$)SOCI #+*(CSF) &.,? @.#? ,.*A ?.*$ [$@]
CCSD-(?,&A)FCI $@+A(CSF) &.$*# #.?), ?.A#A ).+$* [$$]
CCSD-(?,)/))SOCI +)+(CSF) &.,# $.+* *.)+ +.+$ [$@]

a Except for RMR CCSD, the ecCCSD methods exploiting an ASTQ source are designated as
CCSD-source.
b The dimension is given either by the number of configurations (CSF) or by the number
of Slater determinants (Det) involved. In case of RMR CCSD and ASTQ CCSD, the indicated
dimension is that of the relevant CI (the dimension of ecCCSD being the same as that of SR
CCSD).

Table & is typical of several other examples that have been examined so far,
including a simultaneous stretching of several single bonds [#&, ##, $$, $@]. We
see that the standard SR CCSD method represents an excellent approximation,
being only about # mhartree away from the FCI energy at the equilibrium
geometry (R = Re) for both DZ and DZP basis sets. Nonetheless, this error
steadily increases with the increasing internuclear separation R (measured in
units of Re = &:*$# a.u.). The magnitude of this error, and its rate of increase
with R, are larger for a larger basis set, resulting in a considerably larger NPE
(&A.$ vs. @.) mhartree), even though the energy lowering due to the increase in
the basis set size decreases with R (from *+.* to )*., mhartree). However, since
the RHF or SCF wave function is used as a reference, the correlation energy
rapidly increases with R (from ,+.$ to &*A., mhartree in the DZ case and from
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&+&.? to #$?.+ mhartree for a DZP basis set), as does the SR CCSD error as a
percentage of the correlation energy (from &.# to $.&% and from &.) to ).$%
for DZ and DZP basis sets, respectively). Consequently, even though SCF NPE
is slightly smaller at the DZP level (yet, still enormous), the SR CCSD NPE at
the DZP level is larger by about a factor of two relative to the DZ level. This
indicates that the need for a proper account of nondynamic correlation effects
increases with the increasing basis set size.
The X#Π state of the OH radical has been examined with both the RMR

CCSD and ASTQ CCSD methods [$$, $@], thus providing a simple example for
the comparison of both types of approaches. The ASTQ CCSD results are based
on different CAS FCI related sources. The symbol (n;m) FCI indicates a CAS
FCI external source using n-electron/m-orbital active-space. A less demanding
source employs the second order CI (SOCI), designated as (n;m&=m#) SOCI,
involving (n;m& +m#) active-space, in which the m active orbitals are subdi-
vided into the m& internal and m# external ones. Thus, for example, (?,)/$)
SOCI employs a reference space involving ? electrons distributed over ) inter-
nal orbitals, together with all singly and doubly excited configurations into the
$ external orbitals. We recall that (n;m&=m#) SOCI usually represents a good
approximation to (n;m& +m#) FCI, as also indicated by our results in Table &.
The CAS FCI or SOCI corrected CCSD results represent a definite improve-

ment over the standard SR CCSD results. Nonetheless, for a given choice of the
active-space, the performance of the ASTQ CCSD approaches deteriorates with
the increasing size of the basis set. This is easily understood, since the external
source does not include excitations out of the active-space, which are more
important for larger basis sets. We should also mention that computationally
much more demanding CAS SCF wave functions are about as effective as CAS
FCI ones (cf., e.g., Tables II and III of [$$]).
For the sake of comparison, we also present two RMR CCSD results in

Table &. Here, the basic guiding principle for the choice of the reference space
is to consider suitable bonding and corresponding antibonding orbitals in the
vicinity of the Fermi level as active orbitals. In the present case, these are
the doubly occupied #OH and unoccupied #�

OH orbitals. The minimal reference
space is then spanned by the RHF configuration and by the doubly excited
configuration involving these two orbitals, and the correspondiung RMR CCSD
is referred to as #R-RMR CCSD. This type of reference space is very similar to
that employed in the study of the HF and F# molecules [##]. In the case of the
X#Π state of the OH radical, the situation is slightly different in that its HOMO
is a singly occupied $ orbital. When the singly excited # to #� configuration is
also included, the reference space is spanned by ) determinants (D), and the
relevant RMR CCSD is designated as )D-RMR CCSD.
It is immediately apparent from the results in Table & that the RMR CCSD

strategy is yet more effective for reasons given in Sect. $. Already the #R version
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Table 2. Comparison of various limited SR CI, SR CCSD, and selected RMR CCSD and
corresponding MR CISD energies with the exact FCI result for the N# molecule, obtained
with a DZ basis for three internuclear separations R, R = Re = #.A+* bohr, R = &:)Re,
and R = #Re [#$]. Except for the FCI total energy, which is reported as �(E + &A*) (in
hartree), the energy differences (in millihartree) relative to the FCI result are given in all
cases. The nonparallelism error (NPE) for the intervals R 2 [Re; &:)Re] and R 2 [Re; #Re]
(in millihartree) is given for easier comparison (see the text for details)

Method Re &.)Re #Re NPE (&.)Re) NPE (#Re)

FCI &.&A)&&) A.,)A?#* A.*+*#$, A A
SR CISD ##.+$? ,A.&&$ #&A.*,+ ++.@* &*?.#+
SR CISDT &*.&?A ?@.#,? &*&.,*, )+.&$ &+$.*#
SR CISDTQ &.$?, &$.,$* $,.$+& &#.)+ $?.,*
SR CCSD *.#*, $$.)@) �+,:,&? #).#+ &A$.@+

symmetry-non-adapted reference spacea

CAS(#,#)-MR CISD #$.@&$ ?).+AA &@).#*) )#.&, &#&.*?
CAS(@,@)-MR CISD *.@)? &+.&## $A.A@? ?.+? #&.),
CAS(+,+)-MR CISD +.?,* +.@#$ +.&+* &.&# &.$?
CAS(#,#)-RMR CCSD *.A*+ ##.$*) �??:?A& &@.$A &AA.A,
CAS(@,@)-RMR CCSD #.&#, @.++? �&):A&* #.)@ &,.+,
CAS(+,+)-RMR CCSD &.@&? &.,*? #.??) A.)? &.$+

Sz and point-group symmetry-adapted reference spaceb

(MS,)-*D-MR CISD &$.&?@ #&.?*? $&.&&$ *.+& &?.,@
(MS*)-&+D-MR CISD c &&.*@* &?.?)) $&.+&* ).,& &,.??
(MS&)-@*D-MR CISD c *.#,A *.+$@ ?.@$* &.+&d #.@+d

(MS,)-*D-RMR CCSD @.&#$ ).*#, �$*:+$* &.?& @@.@?
(MS*)-&+D-RMR CCSD #.,*# +.#A# �*:?&& $.## &@.,&
(MS&)-@*D-RMR CCSD #.&@+ #.?A@ $.AA@ A.)+ A.*+

a The symmetry-non-adapted reference space is spanned by determinants obtained by distri-
buting the active electrons over the active spin orbitals in all possible ways without imposing
any symmetry restrictions.
b The definition of model spaces (MSi) is given in [#$]. The number n of determinants (D)
spanning the reference space is also indicated by a prefix nD.
c These MR CISD results are not reported in [#$].
d These NPEs are only approximate, and cannot be obtained from the data given in the
table, since the largest deviation from FCI was found at &.#)Re (see [#$]).

decreases the NPE by a factor of two or more, while the )D version& gives by far
the best results. Most importantly, the )D-RMR CCSD performs equally well
in both DZ and DZP cases.
To illustrate how these methods work in the most challenging case when

dissociating a triple bond, we provide a brief summary of our earlier results

&We note here that since RMR CCSD is based on a special version of MR CISD, our codes
are not yet spin-adapted so that the corresponding dimensions are given in terms of the
number of Slater determinants rather than CSFs. Note also that, on average, the number of
CSFs is about one-third of the number of determinants or less.
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for the ground state of N# [#$] in Table #. In this case, NPE is given for two
regions (based on the energies for R = Re; &:#)Re; &:)Re, &:?)Re and #:ARe).
Only the DZ basis is considered, since no FCI results are available for larger
basis sets (for RMR CCSD data obtained with a DZP basis, see [#$]).
A rapid increase in the importance of higher-than-pair clusters is clearly

illustrated by the sequence of SR CI results. Even the SR CISDTQ NPEs amount
to &#.+ and $* mhartree. This clearly indicates the role played by higher-than-
@-body (both connected and disconnected) clusters as R ! 1.
We see again that RMR CCSD provides a dramatic improvement over SR

CCSD, even though larger and larger MRCIs are required if we wish to correct
at larger R values. In this case we also present the energy values obtained with
MR CISD employed as the external source. The RMR CCSD results invariably
provide significantly closer energies to FCI, although the improvements in the
NPE may be less significant. Clearly, the larger the CI used, the smaller the
difference between both energies, since when using FCI as an external source,
the ecCCSD method would simply recover the FCI result.
In addition to CAS(n; n) RMR CCSD results, we also present those based on

incomplete active-spaces. These model spaces (MSi’s) are obtained by imposing
certain restrictions on the orbital occupancies of active orbitals (see [#$]). Only
three typical spaces of the latter type, namely MSi for i = &; * and ,, involving
*, &+ and @* determinants, respectively, are included.
In concluding this section, let us note that the largest system considered so

far was the ozone molecule at the DZP level of approximation. Here we studied
the geometry and the harmonic force field for the ground state, obtaining
excellent results [#)].

5
Conclusions

The above given results, together with those published earlier [#&, ##, #$, #@,
#), $A, $#, $$, $@], clearly indicate the usefulness of incorporating the correc-
tions for higher-than-pair clusters, obtained from some external source, in the
standard SR CCSD method, and thus extending the generally excellent perfor-
mance of the latter into the regions where a strong quasidegeneracy sets in.
Although the search for the optimal source, or sources, of $- and @-body clu-
sters should be continued, there is little doubt that it is the RMR CCSD strategy
that currently represents such an optimal choice, at least within the class of
sources based on CI-type wave functions. RMR CCSD also represents a state
selective (SS) MR CC approach, whose essential features are very close to those
of genuine MR CC approaches.
The CI-type sources that have been explored so far to generate external

corrections are CAS SCF, CAS FCI, and various truncated versions of CAS FCI
(such as AS CISD, etc.). Since all these sources account for excitations involving
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only active orbitals, we refer to them as active-space triples and quadruples
(ASTQ) approaches.
Interestingly enough, there is usually a little difference between the CAS

SCF and CAS FCI ecCCSD energies. In fact, in some cases CAS SCF corrections
yield (slightly) worse results than much more affordable CAS FCI corrections
(cf., e.g., the results for the #Π state of OH, especially Tables II and III of [$$]).
This may seem surprising at first glance, since the CAS SCF energies generally
represent a very significant improvement over the CAS FCI ones. The principal
reason is the fact that the leading configuration in the CAS SCF wave function,
which is used as a reference, represents an inferior approximation to the RHF
(or ROHF) wave function, which by definition is the best single configurational
wave function from the energy point of view. One could, of course, employ CAS
SCF corrections while relying on the RHF reference in the CCSD part. This
option, which unfortunately requires an additional orbital transformation, is
being investigated by Toboła (see also [#,]) as an alternative option.
In any case, even severely truncated ASTQ approaches invariably provide a

significant improvement over the energies associated with the wave function
used as a source of TQ corrections, as well as over the standard SR CCSD.
We mention that a particularly effective truncation can be designed, as very
recently shown by Peris et al. [$*], using the CIPSI-type selection of trun-
cated active-space configurations. Nonetheless, since in all these approaches
the excitations are restricted to the active orbitals, one has to employ large
enough active-space in order to obtain reasonable T$ and T@ corrections, as
already stated (for example, the minimal #-electron/#-orbital active-space does
not provide any T$ and T@ corrections in this approach). On the other hand,
the CAS FCI and related truncated ASTQ approaches have the advantage that
the cost of extracting T$ and T@ clusters does not increase with the size of the
basis set. Unfortunately, for a chosen active space, the performance of these
ASTQ approaches deteriorates when larger and larger basis sets are employed,
indicating the importance of excitations involving virtual orbitals (not inclu-
ded in the one-electron active space). However, since the computational effort
that is required to generate CAS FCI, or truncated CAS CI, wave functions
is rather modest when compared with an overall cost (assuming that we use
a moderately large active space), and the improvements in the results in the
quasidegenerate region are significant, it is worthwhile to exploit this approach
should other versions prove to be excessively demanding.
The RMR CCSD approach certainly represents the optimal ecCCSD method

relying on the CI-type wave function. In particular, we must emphasize its
conceptual simplicity and the fact that the method is unambiguously defined
by the choice of the reference space, whose dimension can be very small indeed.
Already a #-dimensional #R-RMR CCSD often provides excellent results. This
is important, since the computational cost, in contrast to ASTQ approaches,
is proportional to the number of references employed. On the other hand, in
view of the fact that in computing a subset of T (A)$ and T (A)@ amplitudes we
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automatically generate T (A)& and T (A)# clusters, it is beneficial to exploit the latter
as the initial approximation when solving the ecCCSD equations. In fact, it was
shown recently, that one can achieve excellent results already at the linear level
of approximation (equivalent to the first iteration in the standard algorithm
for solving CCSD equations), in the framework of the so-called almost linear
(AL) CCSD approach of Jankowski et al. [$,].
In concluding this section, let us briefly mention two other techniques ai-

ming in the same direction as RMR CCSD and having at least a conceptual
relationship with it. One possibility is, of course, to consider the same sub-
set of T$ and T@ amplitudes as does RMR CCSD, but to determine them from
a set of suitably truncated SR CCSDTQ equations, in the spirit of the SS CC
approach by Adamowicz et al. [@A]. This method, referred to as CCSDtq, was
recently proposed by Piecuch et al. [@&], and is being implemented computa-
tionally. The attractive feature of this approach is undoubtedly the fact that it
does not depart from the CC formalism. On the other hand, the dimensiona-
lity of the relevant CCSDtq equations will still be quite formidable for larger
systems and/or basis sets. Even more importantly, at the conceptual level, this
approach does not account for higher-than-T@ clusters in contrast to ecCCSD.
Here we recall the fact that even though at most T@ clusters are required in
the ecCCSD approaches, they implicitly account for all higher excited clusters
that are present in the MR CISD or other wave function used as an external
source. Indeed, when we use FCI T$ and T@ cluster amplitudes, ecCCSD returns
the exact FCI energy.
The other possibility is to focus on the MR CISD wave function and exploit

the T (A)& and T (A)# clusters it provides to account for the dynamic correlation due
to disconnected triples and quadruples that are absent in the MR CISD wave
function. This approach, recently proposed and tested by Meissner and Gra-
bowski [@#], may thus be characterized as a CC-ansatz-based Davidson-type
correction to MR CISD. The duplication of contributions from higher-than-
doubly excited configurations that arise in MR CISD as well as through the
CC exponential ansatz is avoided by a suitable projection onto the orthogonal
complement to the MR CISD N -electron space. The results are very encoura-
ging, particularly in view of their affordability, though somewhat inferior to
RMR CCSD.
On the whole, the strategy of ecCCSD is already providing useful results

and its further pursuit, in whichever form it may take, should enable us to
substantially extend the range of applicability of the standard SR CCSD or
CCSD(T) methods that serve us so well in nondegenerate situations.
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1
Introduction

A good first approach to a quantum mechanical system is often to consider
one-electron functions only, associating one such function, a ‘spin-orbital’, with
one electron. Most popular are the one-electron functions which minimize
the energy in the sense of Hartree–Fock theory. Alternatively one can start
from a post-HF wave function and consider the ‘strongly occupied natural
spin orbitals’ (i.e. the eigenfunctions of the one-particle density matrix with
occupation numbers close to 
) as the best one-electron functions. Another
possibility is to use the Kohn–Sham orbitals, although their physical meaning
is not so clear.

If the wave function that one considers, is a single Slater determinant Φ, the
spin orbitals 'i from which Φ, is constructed, are not uniquely determined, but
rather there is an infinity of equivalent sets of f'ig related by unitary transfor-
mations. To some extent one can make the 'i unique if one requires either that
they are canonical (diagonalize the Fock operator) and are symmetry-adapted,
or localized (e.g. according to the criteria of Edmiston and Ruedenberg or Fo-
ster and Boys [
–�]). The localized spin orbitals have some advantages both for
the chemical interpretation and for the computation of correlation corrections.

An apparent next step is to describe the quantum mechanical state in terms
of electron-pair functions, rather than one-electron functions [,]. In fact the
concept of electron pairs plays an important role in the theory of the chemical
bond.

Again there are two ways to arrive at pair functions. One can either start
from a given n-electron wave function and construct pair functions from it, or
one can formulate an ansatz for the wave function in terms of pair functions
and obtain these by a variational or quasi-variational procedure.

One may construct pair functions from a single Slater determinant Φ or
from a post-Hartree–Fock wave function Ψ . At first glance the former choice
does not look very useful, since for Φ all information is based on the one-
electron functions, so why use a more complicated description in terms of �-
electron functions? Nevertheless the study of pair functions at the independent
particle level has both an intrinsic interest and is useful for the preparation
of their use at a correlated level [/]. Like the spin-orbitals 'i associated with
the Slater determinant Φ to corresponding pair functions  � are not uniquely
defined and one can transform a given set f'�g by any unitary transformation
to an equivalent set. One can establish uniqueness — or at least reduce the
arbitrariness — by requiring certain extremal properties of the pair functions.
This led us to the concept of extremal electron pairs, studied in detail in Part 

of this series [/].
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One possible criteron for extremal pairs is that they maximize the inverse
interelectronic distance and hence the Coulomb repulsion within a pair.

<  �(
; �)jr�


� j �(
; �) >= max : (
)

Another one is that they minimize the square of the interelectronic distance

<  �(
; �)jr �
�j �(
; �) >= min : (�)

These two criteria appear to be generalizations of the localization criteria na-
med after Edmiston–Ruedenberg and Boys respectively [
, �, �]. Nevertheless
the pair functions  �, constructed by either of these criteria, are generally
symmetry-adapted (in spite of having localized features as well); unlike for the
one-electron case there is no strict alternative symmetry-adapted vs. locali-
zed [/].

In Paper I of this series [/], the extremal pair functions for the systems He�,
Ne, F�, HF, H�O, NH� and CH, were analyzed. We now follow a different line of
thought that was also opened in Paper I, namely to use extremal pairs for the
construction of correlated wave functions. We have already pointed out that
there is a special set of extremal pair functions associated with MP� (Møller–
Plesset perturbation theory of second order). In fact we have shown, that there
are two choices for which the Hylleraas functional of MP� decomposes exactly
into a sum of pair contributions. One choice is the conventional one of pairs of
canonical spin orbitals, the other one the use of first-order pairs with extremal
norm

<  (
)
� j (
)

� >= extremum (�)

which are pairwise orthogonal to each other

<  (
)
� j (
)

� >= ı�� <  (
)
� j (
)

� > : (,)

We could further show that the extremal pairs in the sense of MP� are, to the
leading order of perturbation theory of electron correlation, equal to the first
(N� ) strongly occupied natural spin-geminals, N being the number of electrons.

We begin this paper by shortly recapitulating the concept of extremal pair
functions (Sect. �). Then we consider extremal pair functions in the con-
text of Møller–Plesset perturbation theory (Sect. �) and coupled-cluster theory
(Sect. ,). We then come to the main topic of this paper, the use of extremal
pairs in R
�-methods. To this end we formulate a new access to R
�-theory
starting with two-electron systems (Sect. /) and generalizing it to n-electron
systems (Sect. 7). We show then how extremal pairs arise in a natural way
in R
�-methods (Sect. 4). We finish (Sect. 0) by giving numerical examples
which demonstrate the gain in numerical stability by using extremal pairs in
R
�-calculations.
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2
Extremal Pair Functions

Let a Slater determinant Φ, built up from the spin-orbitals 'i, be given. Consider
further some totally symmetric hermitean two-electron operator Ω(
; �). We
wish to determine pair functions of the type (if no summation sign is used,
the Einstein summation convention over repeated indices is implied)

 �(
; �) =
∑
i<j

b�ij'ij(
; �) =


�
b�ija

jaij5 > (/)

(with j5 > the vacuum state and aj the creation operator for the spin-orbital
'j) from the requirement

<  �(
; �)jΩ(
; �)j �(
; �) >= extremum (7)

with the subsidiary condition that the  � are normalized to unity. Condition
for this stationarity is the eigenvalue equation

Ω(
; �) �(
; �) = �� �(
; �) : (4)

The  � which satisfy (4) can be chosen orthonormal, and they diagonalize Ω,
i.e.

<  �j � >= ı�� (0)

<  �jΩj � >= ��ı�� : (>)

Assuming the 'i orthonormal, the b�ij in (/) obey the orthogonality relation

b�ijb
kl
� =

∑
�

b�ijb
kl
� = ıklij ;

∑
i<j

bij� b
�
ij =



�
bij� b

�
ij = ı�� (
5)

ıklij = ıki ı
l
j � ıkj ı

l
i : (

)

Although only i < j is needed, it is sometimes advantageous to use also co-
efficients with i > j (with bij� = �bji� ) and to sum independently over i and
j .

The expectation value of Ω is, of course, given as

< Ω >=< ΦjΩjΦ >=
( N� )∑
�=


<  �jΩj � >=
( N� )∑
�=


�� =
n∑

i<j=


< 'ij jΩj'ij > (
�)

If one wants to approximate this expectation value by a sum of less than (N� )
terms, one gets the best approximation of this kind for < Ω > > 5, if one sums
over the extremal pairs with the largest eigenvalues ��.

For Ω spin-independent — which will usually be the case — the  � will be
automatically either singlet or triplet functions. The singlet and triplet blocks
can be diagonalized independently.

One possible choice for Ω is

Ω(
; �) = r �
� (
�)
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The  � corresponding to this Ω make the square of the interelectronic distance
extremal (including the maximum and the minimum). A small �� means a
small average interelectronic distance in  �. Such a pair will much demand the
inclusion of electron correlation effects, whereas for a large �� the electrons in
 � may be so distant from each other that there is little need for the inclusion
of correlation effects, at least as far as dynamic correlation is concerned.

Other choices of Ω like r�


� were discussed in Paper I [/].

3
Extremal Pair Functions in M"ller{Plesset Perturbation Theory

Extremal pairs in the context of Møller–Plesset perturbation theory were al-
ready discussed in Paper I of this series [/]. We recapitulate what we will need
in this paper.

We use a Fock space notation in terms of excitation operators and matrix
elements of operators (using spin-orbitals):

aqp = aqap = ay
qap ; a

rs
pq = arasaqap = ay

r a
y
s aqap (
,)

hpq =< 'qjhj'p > (
/)

gpqrs =< 'r (
)'s(�)jg
�j'p(
)'q >; g
� = r�


� (
7)

ḡ pqrs = gpqrs � gqprs : (
4)

The Fock operator H5 and the electron interaction ĝ are then:

H5 = f pq a
q
p ; f

p
q = hpq + gipiq � gipqi ; ĝ =

∑
i<j

gij =


�
gpqrs a

rs
pq : (
0)

We start from the Hylleraas functional

F� =< Ψ (
)jH5 � E5jΨ (
) > +� Re < Ψ (
)jĝ jΦ > (
>)

with Φ the Hartree–Fock function, and the first-order function

Ψ (
) =
∑
i<j

Φij =


,
dijaba

ab
ij Φ : (�5)

In Fock space notation F� is

F� =



7
dcdkl d

ij
ab < Φjaklcd(H5 � E5)aabij jΦ >

+


�
Re dijab < Φjĝ aabij jΦ > (�
)

where Φ is the Hartree–Fock Slater determinant and H5 the Fock operator. The
labels i; j::: refer to spin-orbitals occupied in Φ, a; b::: to virtual (unoccupied)
spin orbitals, and p; q:: to arbitrary ones. The Einstein summation convention
is implied. If the basis is chosen such that

H5 = "pa
p
p (��)
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one can rewrite (�
) as

F� =


,
dabij d

ij
ab("a + "b � "i � "j) +



�
Re dijab ḡ

ab
ij (��)

Condition of stationarity with respect to variation of the dabij is

dijab("a + "b � "i � "j) + ḡ ijab = 5 (�,)

and the �nd order MP energy is

E� =


,
Re dijab ḡ

ab
ij : (�/)

Rather than taking excitations from the pairs fi; jg we now consider excitations
from general pairs � and rewrite (�5) as

Ψ (
) =
∑
�

Φ� (�7)

Φ� =


�
d�aba

ab
� ; aab� =



�
bij� a

ab
ij ; d

�
ab =



�
dijabb

�
ij (�4)

where b�ij represents a unitary transformation between the old and new pairs.
In terms of the new pairs, (�
) becomes

F� =


,
dcd� d

�
ab < Φja�cd(H5 � E5)aab� jΦ >

+


�
d�ab < Φjĝaab� jΦ > +



�
dab� < Φja�abĝ jΦ >

=


�
dab� d

�
ab("a + "b) � 


�
dab� "

�
� d

�
ab + Re d�abḡ

ab
� (�0)

with

"�� =


�
b�ij("i + "j)b

ij
� : (�>)

Condition for stationarity with respect to variation of the d-coefficients is

d�ab("a + "b) � "�� d
�
ab + ḡ�ab = 5 (�5)

and the MP� energy is

E� =


�
Re dab� ḡ

�
ab =

∑
�

E(�)
� = "�� d

�
abd

ab
� � d�abd

ab
� ("a + "b) : (�
)

This is similar to (�/), with the difference that there is a coupling between
the pairs via "�� , as it has been known for the formulation of MP� in terms of
localized molecular orbitals (LMOs).

There are two ways to ensure that E� becomes a sum of pair contributions.
One is to make "�� diagonal, which is the case for canonical pairs. The other is
to impose

d�abd
ab
� = ı��D� (��)

which defines extremal pairs in the sense of MP� theory. The relation of the
extremal pairs satisfying this criterion, to the natural geminals has been shown
in Paper I [/].
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4
Extremal Pair Functions in Coupled-Cluster Theory

We make the coupled cluster ansatz

Ψ = eSΦ; S = S
 + S� + S� + ::: (��)

for the exact wave function, with Φ a single Slater determinant reference fun-
ction and Sn the n-particle cluster operators

S
 = Siaa
a
i ; S� =



,
Sijaba

ab
ij etc: (�,)

It is possible to ‘absorb’ S
 into the reference function, by choosing the Brueck-
ner Φ rather than the Hartree–Fock Φ. Alternatively one can ‘absorb’ S
 into
the Hamiltonian by choosing H̃ = e�S
HeS
 . We assume that the Brueckner Φ
has been chosen. Then it is easily seen that

E = < ΦjH jΦ > + < ΦjHSjΦ >= E5 +
∑
i<j

eij (�/)

eij =


�
< ΦjHSijabaabij jΦ >=



�
Sijab ḡ

ab
ij (�7)

i.e. that the correlation energy can exactly be expressed as a sum of pair corre-
lation energies, and that the cluster amplitudes Sabij etc. can be obtained from
a hierarchy of equations, the leading term of which is the non-linear equation

< Φjaijab
{
H + [H; S�] +



�
[[H; S�]; S�]

}
jΦ >= 5 (�4)

Obviously the pair-cluster function S� is invariant with respect to a two-particle
transformation, i.e. alternatively to (�,) we can express S� as

S� =


�
S�aba

ab
� (�0)

where � counts the pairs. As a counterpart of (�/, �7) we then get

E = E5 +
∑
�

e�; e� =


�
< ΦjHS�abaab� jΦ >=



�
S�abḡ

ab
� : (�>)

The correlation energy is again expressed as a sum of pair energies. The coun-
terpart of (�4) becomes then

< Φja�ab
{
H + [H; S�] +



�
[[H; S�]; S�]

}
jΦ >= 5 (,5)

or

< Φja�abH jΦ > +


�

∑
�;c;d

S�cd < Φja�ab[H; acd� ]jΦ >

+


0

∑
�;c;d

∑
$;e;f

S�cdS
$
ef < Φja�ab[[H; acd� ]; aef$ ]jΦ >= 5 : (,
)

This is a non-linear system of equations for the determination of the amplitudes
S�cd , very similar to the ordinary coupled-pair equations.
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As in MP theory it is appropriate to define extremal electron pairs by re-
quiring that the coupling between different pairs in (,
) is minimized. As in
MP� theory, a first guess is to require that

Sab� S
�
ab = D̃� � ı�� (,�)

is diagonal, i.e. that the �-th and � -th pair correlation functions are orthogonal
to each other — or (equivalently) have extremal norm.

Let us tentatively assume that after introducing extremal pairs the couplings
of the different pairs are negligibly small. If there is a justification for an ‘in-
dependent pair theory’ in which one neglects the coupling between different
pairs, this will probably be in terms of these extremal pairs. If we neglect the
coupling between different pairs in (,
) we get

< Φja�abH jΦ > +


�

∑
cd

S�cd < Φja�ab[H; acd� ]jΦ >

+


0

∑
c;d

∑
e;f

S�cdS
�
ef < Φja�ab[[H; acd� ]aef� ]]jΦ >� 5 (,�)

This defines an independent electron pair approximation in terms of extremal
pairs, which can be regarded as a generalization of the independent electron
pair approximation (IEPA) [,, 0] in terms of pairs (ij) constructed form (pre-
ferably) localized orbitals. As in the discussion in Paper I for MP� [/], one can
show that the extremal pairs defined in this section are related to approximate
natural geminals corresponding to the coupled-cluster wave function.

As in the case of MP�, the problem is that one must first perform a conven-
tional CCD calculation in order to construct the extremal pairs by applying the
criterion (,�). Alternatively one can first perform an MP� calculation, which
is much cheaper, transform the canonical pairs to extremal ones in the MP�
sense and then use them for a CCD calculation.

Using extremal pairs in CCD, even if one does not take the optimal ones
in the sense of CCD, one gains two things, (a) the couplings between different
pairs are diminished, (b) the number of relevant pairs is reduced. Pairs that
have only a marginal correlation at the MP� level do not require a full CCD
treatment. This is especially important for large molecules, where the number
of relevant pairs scales with N rather than N � as the number of canonical pairs,
where N is the number of atoms.

5
The Basic Ideas of MP2-R12 for two Electron States

The most important practical use of extremal pairs so far has been in the con-
text of the R
�-methods [>]. To explain this we must first outline the essential
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features of these. An exact wave function must satisfy the correlation cusp
relation

lim
rij!5

(
@Ψ
@rij

)
av

=


�
Ψ(rij = 5) (,,)

where av stands for spherical averaging.
Let us first consider a two-electron system.
If one treats electron correlation by perturbation theory, with � as the

formal perturbation parameter, one has

Ψ = Φ(5) + �Ψ (
) + O(��) (,/)

and the cusp relation (for Φ(5) cuspfree) reads

lim
r
�!5

(
@Ψ (
)

@r
�

)
av

=


�
Φ(5)(r
� = 5) : (,7)

The ansatz for Ψ (
) to enforce (,7) is [
5]

Ψ (
) = Φ(
) + c(
 � P )r
�Φ(5) (,4)

where Φ(
) is a conventional first order wave function of the CI type which
satisfies

P Ψ (
) = P Φ(
) = Φ(
) (,0)

and where P is the projector onto the CI-space. To fulfill (,7) one should
choose c = 


� , at least for a singlet pair. It is preferable not to fix c too early but
to choose it such as to optimize the wave function, in the sense of variation
perturbation theory to be discussed now.

Let us insert (,4) into the Hylleraas functional (
>) (with H5 the two-
electron Fock operator, ĝ = H�H5, and Φ(5) the Hartree–Fock wave function)

F� = < Ψ (
)jH5 � E5jΨ (
) > +�Re < Φ(5)jĝ jΨ (
) >

= F�;conv + F�;R
� (,>)

F�;conv =< Φ(
)jH5 � E5jΦ(
) > +�Re < Φ(5)jĝ jΦ(
) > (/5)

F�;R
� = c� < Φ(5)jr
�(
 � P )(H5 � E5)r
�jΦ(5) >

+�cRe < Φ(5)jg
�(
 � P )r
�jΦ(5) > : (/
)

In (,> to /
) we have assumed that [H5; P ] = 5, i.e. that the eigenstates of H5

can with arbitrary accuracy be obtained in the CI space (i.e. that the CI basis
is sufficiently saturated at the one-electron level). This implies that the ‘mixed
term’ between ‘conv.’ and ‘R
�’ vanishes

c < Φ(5)jr
�(
� P )(H5 �E5)jΦ(
) >= c < Φ(5)jr
�(H5 �E5)(
� P )jΦ(
) >= 5(/�)

Of course, F�;conv is just the conventional Hylleraas functional, minimized by
Φ(
) while F�;R
� is an ‘R
�-correction’. (/
) can be reformulated to

F�;R
� = c� < Φ(5)jr
�(
 � P )[T � K; r
�]jΦ(5) >

+c� < Φ(5)jr
�(
 � P )r
�(H5 � E5)jΦ(5) >

+�cRe < Φ(5)jg
�(
 � P )r
�jΦ(5) > (/�)
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where T is the operator of the kinetic energy and K the exchange operator.
The second term on the r.h.s. of (/�) vanishes if H5Φ(5) = E5Φ(5). We assume

this to be the case [as we have already done in deriving (,>) to (/
)] and we
note that

[T; r
�] = ��g
� + �Û
� (/,)

Û
� = �

�
g
�~r
� � (r
 � r�) : (//)

We further neglect the commutator [K; r
�], which is justified in the so-called
standard approximation A [

]. (For a two-electron closed-shell singlet state
a formulation in which K does not arise is always exactly possible [
5]). This
allows us to rewrite (/�) as

F�;R
� = ��(c� � c)Re < Φ(5)jr
�(
 � P )g
�jΦ(5) >

+ �c�Re < Φ(5)jr
�(
 � P )Û
�jΦ(5) > : (/7)

Minimization of this R
�-contribution with respect to c leads to

�c
{

�Re < Φ(5)jg
�(
 � P )r
�jΦ(5) >

+Re < Φ(5)jr
�(
 � P )Û
�jΦ(5) >

}
+Re < Φ(5)jg
�(
 � P )r
�jΦ(5) > = 5 : (/4)

Equation (/4) can be solved for c. The result depends on P . If the basis for
the CI is complete, one gets c = 5=5, i.e. c is undetermined. If we consider
an atomic state and the CI basis is saturated up to some angular momentum
quantum number l�
, then the first and the last term in (/4) — which involve
identical matrix elements — go as (l + 


�)
�,, the second one as (l + 


�)
�7 [

].

For a sufficiently large value of l the second term is negligible and from the
variational treatment we get c = 


� as required by the cusp condition. This
exact result appears here as a consequence of variation-perturbation theory.

The R
�-contribution can be interpreted as a basis-incompleteness correc-
tion. The key expression bounded between 5 and 
 is

Re < Φ(5)jg
�(
 � P )r
�jΦ(5) >= 
 � Re < Φ(5)jg
�Pr
�jΦ(5) > : (/0)

If this is large, the R
�-correction will matter a lot; if it is small, there will not
be much need for an R
� correction.

One has actually to deal with three types of unperturbed two-electron fun-
ctions Φ(5).

(a) ‘Compact’ pairs as in the ground state of He, or H� at small internuclear
distance. There is a large probability that r
� will be small and there is a large
dynamical correlation. The variational ansatz (,4) is effective even without
the projector P . The exponential decay of the wave function takes care that
the unphysical behaviour of r
� when it is large does not matter. The ‘residual
interaction’ Û
� is ‘small’ compared to g
�. The large-l limit c = 
=� is reached
already for small l values. The R
� correction is very effective.
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(b) ‘Distant’ pairs such as for a high Rydberg state of the He atom, or a state
of a 
0g
0u configuration of H� for large internuclear distances. Such a pair is
rather well described by the reference function. The probability of two electrons
coming close to each other is small. There is neither large dynamical nor non-
dynamical correlation. The ansatz (,4) without a projector is not effective at
all in a variational treatment, because the region of large r
� would get too a
great weight. Correspondingly, for a small CI space the residual potential Û
� is
not small compared to g
�. A variationally determined factor c will come out
much smaller than 
=� (for a singlet state). The R
�-correction is, so to speak,
not accepted. Only for a very large CI space, i.e. for very large maximum l, will
the limit c = 
=� be reached, but even then the R
� correction will not be very
important.

(c) ‘Diffuse’ pairs such as a 0�
g configuration of H� at a large internuclear

distance. Here non-dynamic correlation effects matter and quasi-degenerate
perturbation theory should be applied, i.e. it is more important to include the
0�
u configuration rather than an r
� term. The R
� correction becomes effective

only if one has first taken care over the correct mixing of 0�
g and 0�

u .

6
MP2-R12 for n-Electron States

The generalization of MP�-R
� from two-electron to many-electron states is
straightforward, at least as long as we use a single coefficient c for the entire
‘cusp correction’. Instead of (,4) we now have

Ψ (
) = Φ(
) + c(
 � P )r̂Φ(5) (/>)

r̂ =
∑
i<j

rij : (75)

The counterpart of (/
) is

F�;R
� = c� < Φ(5)jr̂(
 � P )(H5 � E5)r̂ jΦ(5) >

+�cRe < Φ(5)jĝ(
 � P )r̂ jΦ(5) > : (7
)

The reformulation, similar to that from (/�) to (/7), is again possible. Hence

F�;R
� = ��c�Re < Φ(5)jr̂(
 � P )ĝ jΦ(5) >

+�c�Re < Φ(5)jr̂(
 � P )Û jΦ(5) >

+c� Re < Φ(5)jr̂(
 � P )[K; r̂ ]jΦ(5) >

+�cRe < Φ(5)jĝ(
 � P )r̂ jΦ(5) > (7�)

Û =
∑
i<j

Uij : (7�)

We can minimize (7� ) with respect to variation of c. We come to this later in
this section, after we have expressed (7�) in a Fock space formulation. Although
both the resulting c and the minimum of F�;R
� are of some practical relevance,
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we cannot expect that the use of a single coefficient c for all pairs is very
effective.

Of course, electrons are indistinguishable, and so are pairs of electrons. Only
orbitals or pairs of orbitals are distinguishable. Before we can think of using
different coefficients for different pairs we must switch from a representation
in terms of the coordinates of the electrons (configuration space) to one in
terms of orbitals labels (Fock) space. We now make this change to prepare the
use of different c-coefficients, to which we shall only come in Sect. 4.

The formulation of (/>,75) in Fock space is (for Φ(5) a Slater determinant
built up from the spin orbitals 'i)

Ψ (
) = Φ(
) +
c

,
R̄ijk�a

k�
ij Φ

(5) = Φ(
) +
c

,
(r̄ ijk�a

k�
ij � r̄ ijpqa

pq
ij )Φ

(5) (7,)

where apqij is defined by (
,) and r̄ ijpq is an antisymmetrized matrix element of
r
�.

r ijpq =< 'p(
)'q(�)jr
�j'i(
)'j(�) >; r̄ ijpq = r ijpq � r jipq : (7/)

The 'p ; 'q::: symbolize an orthonormal basis corresponding to the conventional
CI-type approach, while '$; '� refer to a complete set. Of course, this notation
is meaningful only if sums over complete sets can be performed in closed form.

We use here a formulation in terms of spin-orbitals, which is formally ea-
sier, although in actual calulations a formulation in terms of spinfree orbitals,
distinguishing between singlet and triplet pairs, is chosen.

Within the standard approximation we assume that the given basis is satu-
rated at the one-electron level, which implies that the Hartree–Fock equations
are solved exactly and that a Brillouin theorem holds even for virtual orbitals
that are not represented in the given basis. Then one can replace (7,) by the
equivalent expression

Ψ (
) = Φ(
) +
c

,
R̄ij˛ˇa

˛ˇ
ij Φ(5) = Φ(
) +

c

,

{
r̄ ij˛ˇa

˛ˇ
ij � r̄ ijaba

ab
ij

}
Φ(5) : (77)

Now ˛; ˇ; ::: refer to virtual orbitals in the complete basis, a; b; c; ::: in the given
basis. For (7�) we get

F�;R
� =
c

�
ReR̄ij˛ˇ < Φ(5)jĝ a˛ˇij jΦ(5) >

+
c�


7
R̄˛ˇij R̄

kl
4ı < Φ(5)jaij˛ˇ(H5 � E5)a

4ı
kl jΦ(5) > : (74)

To express (74) in a compact form, it is convenient to define the following
quantities [>, 
�]. To evaluate these we explicitly use for example gr = 
; i.e.


�g

$�
kl r

ij
$� = ıijkl . We define

V ij
kl =



�
ḡ$�kl R̄

ij
$� =



�
ḡ$�kl r̄

ij
$� � 


�
ḡ pqkl r̄

ij
pq = ıijkl � 


�
ḡ pqkl r̄

ij
pq (70)

Xij
kl =



�
R̄$�kl R̄

ij
$� = (r �)ijkl � 


�
r̄ pqkl r̄

ij
pq (7>)
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U ij
kl =



�
R̄$�kl Ū

ij
$� =

�
�
ıijkl � 


�
r̄ pqkl Ū

ij
pq (45)

U kl
pq =< 'p(
)'q(�)jÛ
�j'k(
)'l(�) >; Ū kl

pq = U kl
pq � U lk

pq (4
)

F ij
kl = Xmj

kl f
i
m + Xim

kl f
j
m (4�)

Qij
kl = Xrj

klg
mi
rm + Xir

klg
mj
rm (4�)

Bij
kl = R̄˛ˇkl f

4
ˇ R̄

ij
˛4 (4,)

B̃ij
kl = Bij

kl � F ij
kl : (4/)

Here f pq is a matrix element of the Fock operator. The quantities (70)–(4,

have been defined in our earlier works [>, 
�]. The B̃ij
kl defined by (4/) have

not been used previously, only the different (though related) quantity B̃ij
kl(m; n),

given later by (
5�) [
�].
For the evaluation of (74) we can then use the fact that



,
ReR̄$�ij < Φ(5)jaij$�ĝ jΦ(5) >=



�
ReR̄$�ij ḡ

ij
$� = V ij

ij (47)

< Φ(5)jaij˛ˇ(H5 � E5)a
4ı
kl jΦ(5) >= f $� < Φ(5)jaij˛ˇ[a�$ ; a4ıkl ]jΦ(5) >

= f $� < Φ(5)jaij˛ˇ
{

�ı�k a4ı$l � ı�l a
4ı
k$ + ı4$ a

�ı
kl + ıı$ a

4�
kl

}
jΦ(5) >

= ıijkl

{
f 4" ı

"ı
˛ˇ + f ı" ı

4"
˛ˇ

}
� ı4ı˛ˇ

{
ıijmlf

m
k + ıijkmf

m
l

}

= ıijkl

{
f 4˛ ı

ı
ˇ � f 4ˇ ı

ı
˛ + f ıˇ ı

4
˛ � f ı˛ ı

4
ˇ

}

�ı4ı˛ˇ
{
f ik ı

j
l � f jk ı

i
l + f jl ı

i
k � f il ı

j
k

}
(44)




7
R̄˛ˇij R̄

kl
4ı < Φ(5)jaij˛ˇ(H5 � E5)a

4ı
kl jΦ(5) >

=


0
R̄˛ˇij R̄

ij
4ı

{
f 4˛ ı

ı
ˇ � f 4ˇ ı

ı
˛ + f ıˇ ı

4
˛ � f ı˛ ı

4
ˇ

}

�

0
R̄˛ˇij R̄

kl
˛ˇ

{
f ik ı

j
l � f jk ı

i
l + f jl ı

i
k � f il ı

j
k

}

=


0
R̄˛ˇij

{
f 4˛ R̄

ij
4ˇ � f 4ˇ R̄

ij
4˛ + f ıˇ R̄

ij
˛ı � f ı˛ R̄

ij
ˇı

}

�

0
R̄˛ˇij

{
f ik R̄

kj
˛ˇ � f jk R̄

ki
˛ˇ + f jl R̄

il
˛ˇ � f il R̄

jl
˛ˇ

}

=


�
R̄˛ˇij f

4
˛ R̄

ij
4ˇ � 


�
R̄˛ˇij R̄

kj
˛ˇf

i
k

=


�
Bij
ij � 


�
Xkj
ij f

i
k � 


�
Xil
ij f

j
l =



�
(Bij

ij � F ij
ij ) =



�
B̃ij
ij : (40)
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As to the evaluation of Bij
kl [as defined by (4,)], there is a difference between the

two variants A and B of the standard approximation. Approximation A is only
used in the context of MP�-R
� as an alternative to approximation B, while in
treatments on a higher level of approximation only approximation B is applied.
In approximation B all those terms — that arise in the summation over the
complete basis — are neglected that in atomic theory decrease as (L + 
)�4

or faster, while in approximation A even terms that decrease as (L + 
)�/ are
neglected, where L is the highes orbital angular momentum contained in the
CI expansion. Note that the error of a conventional CI without r
� terms goes
as (L + 
)��.

In the standard approximation B the result for the matrix elements of B
[>, 

] is

Bij
kl = (�V � V y + U + Uy)ijkl +



�
(Q+ Qy + F + Fy)ijkl (4>)

B̃ij
kl = Bij

kl � F ij
kl : (05)

In approximation A the contribution of Q is ignored. Finally (05) becomes



�
B̃ij
ij =

{
U ij
ij � V ij

ij + 

�Q

ij
ij in approximation B

U ij
ij � V ij

ij in approximation A .
(0
)

Obviously F�;R
� is a sum of diagonal elements

F�;R
� =
∑
i<j

fij (0�)

fij = cV ij
ij +



�
c�B̃ij

ij : (0�)

Minimization with respect to c leads to

c = �
∑
i<j

V ij
ij =

∑
k<l

B̃kl
kl = �Tr(V )=Tr(B̃) (0,)

F�;R
�(opt) = �

�
(TrV )�=Tr(B̃) : (0/)

This is the improvement of the MP�-energy that one would get by including the
R
� correction with a single common factor c for all pairs. This can be a decent
result only if the basis has already been large enough, that all pairs ‘want’ a
factor c = 


� . Therefore the value (0,) can be used as a test of the quality of
the basis. It is currently used under the name ‘diagnostic’ and implemented in
the program.

Actually one has to treat singlet and triplet pairs separately and one gets a
different c for the singlet and the triplet part (for a good basis c approaches 
=�
for the singlet part and 
=, for the triplet part) and independent expressions
of type (0�) for the singlet and the triplet parts.
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7
Arbitrary and Extremal Pairs in MP2-R12 Theory

We postpone our aim to choose different c-factors for different pairs, and
consider first the possibility of using other than canonical pairs. Then (7,,77)
will be replaced by

Ψ (
) = Φ(
) +
c

�
R̄�˛ˇa

˛ˇ
� : (07)

Note that � now counts pair functions (rather than basis functions belonging
to the complete basis). For (74), in terms of pair functions  � as defined by
(/), we get

F�;R
� =
c

�
Re R̄˛ˇ� < Φ(5)ja�˛ˇV jΦ(5) >

+
c�

,
R̄˛ˇ� R̄�4ı < Φ(5)ja�˛ˇ(H5 � E5)a

4ı
� jΦ(5) >

=
c

�
Re bij� R

˛ˇ
ij d

�
kl < Φ(5)jakl˛ˇV jΦ(5) >

+
c�

,
bij� b

�
klR̄

˛ˇ
ij R̄

kl
4ıb

�
mnb

op
� < Φ(5)jamn˛ˇ (H5 � E5)a

4ı
op jΦ(5) > : (04)

In view of the orthogonality relations (
5) of the b-coefficients, (04) is identical
with (74). The counterpart of (0�,0�) is

F�;R
� =
∑
�

f� (00)

f� = cV �
� +



�
c�B̃�

� (0>)

with

V �
� =



,
bkl� V

ij
kl b

�
ij = 
 � 


�
r̄ pq� ḡ�pq (>5)

B̃�
� = B�

� � X�
�"

�
� (>
)

B�
� =



,
b�klBkl

ij b
ij
� (>�)

"�� = bkn� f mk b
�
mn (>�)

X�
� = bkl� X

ij
klb

�
ij : (>,)

MP�-R
� with a single coefficient c is invariant with respect to a unitary trans-
formation of the pair functions.

Let us now consider the possibility of choosing different c-coefficients for
different pairs.

When we first presented the MP�-R
� method [

], we did in fact choose
a generalization of the ansatz (7,,77)

Ψ (
) = Φ(
) +


,
cij R̄

ij
$�a

$�
ij Φ

(5) (>/)
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with a different cij for each pair (actually treating singlet and triplet pairs
differently). This led to the following generalization of (0�,0�)

F�;R
� = cijV
ij
ij +



�
(cij)�B̃ij

ij : (>7)

It turned out that this ansatz is not invariant with respect to a switch from
canonical to localized orbitals, and that localized orbitals are actually the better
choice [
�]. This lack of unitary invariance is, of course, unsatisfactory, and
one of us [
,] has proposed a generalization in which orbital invariance is
established. We come to this later. Let us first apply a pair transformation to
(>7).

F�;R
� = cijb
�
ij V

�
� b

ij
� +



�
(cij)�b�ij B̃

�
� b

ij
�

= c��V
�
� +



�
c�%B

�
� c

%
� (>4)

with

c�� =


�
bij� cijb

�
ij : (>0)

If for one choice of pair functions, cijij = cij is a diagonal matrix, then —
in order to get an invariant result — for any other choice of pairs c�� will
be an arbitrary hermitean matrix. This implies, vice versa, that if we choose
a hermitean matrix cijkl for canonical pairs, there should be one set of pairs
for which c�� is diagonal. Diagonality of c�� is obviously another criterion for
extremal pairs. We note that there is a set of pairs, for which the choice of a
diagonal c-matrix would mean no loss of generality.

Since there is no indication that the canonical pairs are extremal in this
sense, it is appropriate to use a non-diagonal matrix for canonical pairs, i.e. to
choose the following ansatz [
,] instead of (7,,77)

Ψ (
) = Φ(
) +


0
R̄kl˛ˇc

ij
kla

˛ˇ
ij Φ(5) : (>>)

With this ansatz the counterpart of (74) is (for an arbitrary choice of the unitary
equivalent sets of orbitals)

F�;R
� =


0
Re cklij R̄

˛ˇ
kl < Φ(5)jaij˛ˇĝ jΦ(5) >

+


7,
cmnij R̄

˛ˇ
mn < Φ(5)jaij˛ˇ(H5 � E5)a

4ı
kl jΦ(5) > R̄op4ıc

kl
op

=


,
cijklV

kl
ij +




7
cmnij B̃op

mn(k; l; i; j)cklop (
55)

B̃op
mn(i; j; k; l) =



,
R̄˛ˇmnı

ij
kl

{
f 4˛ ı

ı
ˇ � f 4ˇ ı

ı
˛ + f ıˇ ı

4
˛ � f ı˛ ı

4
ˇ

}
R̄op4ı

�

,
R˛ˇmnı

4ı
˛ˇ

{
f ik ı

j
l � f jk ı

i
l + f jl ı

i
k � f il ı

j
k

}
R̄op4ı



Extremal Electron Pairs | Application to Electron Correlation, Especially the R12 Method �4

= ıijklR̄
˛ˇ
mnf

4
˛ R̄

op
4ˇ � 


�
R̄˛ˇmnR̄

op
˛ˇ

{
f ik ı

j
l � f jk ı

i
l + f jl ı

i
k � f il ı

j
k

}

= ıijklBop
mn � Xop

mn

{
f ik ı

j
l � f jk ı

i
l + f jl ı

i
k � f il ı

j
k

}
: (
5
)

A simplification arises for canonical orbitals, where f ik = "iıik

B̃op
mn(ij) = ıijklB̃op

mn(i; j; k; l) = ıijkl

{
R̄˛ˇmnf

4
ı R̄

op
4ı � 


�
R̄˛ˇmnR̄

op
˛p("i + "j)

}

= ıijkl

{
Bop
mn � Xop

mn("i + "j)
}

= ıijkl

{
B̃op
mn + F op

mn � Xop
mn("i + "j)

}

= ıijkl

{
B̃op
mn + Xop

mn("o + "p � "i � "j)
}

(
5�)

F�;R
� =


,
cijklV

kl
ij + cmnij B̃op

mn(ij)c
ij
op : (
5�)

When this ansatz was first proposed [
,] in order to make the theory invariant
with respect to pair transformations, the relation to extremal pairs was not
yet seen. Rather the ansatz (>>) has been justified in terms of the variational
principle and it was not restricted to a hermitean cklij (which is sufficient to
guarantee invariance with respect to pair transformations).

A comment is in order at this point. If we only consider the contributions
of the diagonal coefficients cijij to (
5�) we get



,
cijij V

ij
ij + cijij B̃ij

ij (ij)c
ij
ij ; B̃ij

ij (ij) = B̃ij
ij (
5,)

i.e. if we only have a diagonal c-matrix, B̃(ij) can be replaced by B̃.
This suggests that we should consider a variant with B̃op

mn(ij) replaced by
B̃op
mn but c not replaced by its diagonal part. We consider this simplification

only for approximation A, which is then characterized by


�
B̃op
mn(ij) =



�
B̃op
mn = U op

mn � V op
mn (
5/)

whereas in approximation B we use the full B̃(ij)


�
B̃op
mn(ij) = U op

mn � V op
mn +



�
Qop
mn("o + "p � "i � "j) : (
57)

For internal use we have also defined an approximation A0, in which B̃op
mn(ij)

is not replaced by B̃op
mn, but where otherwise approximation A is used. So far

we have not yet published results with the variant A0.
If one writes the ansatz (>>) just formally, the physical meaning of the matrix

elements cijkl (especially the nondiagonal ones) is not obvious. We only know
that within the limit of a large basis [measured e.g. in terms of the diagnostic
(0,) the diagonal elements cijij should reach the value 
=� (for singlet pairs)],
the off-diagonal elements should approach 5. Since in this limit all elements of
the V and B̃ matrices become very small (and hence not very accurate), the
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c-matrix will have to be evaluated from an ill-conditioned system of equations.
It appears more stable from a numerical point of view to find first the extremal
pairs (at least approximatively) and to work with a diagonal c matrix. The
additional flexibility and the gain of orbital invariance in choosing a full CI
matrix rather than a diagonal one has inevitably to be paid for by a loss of
numerical stability.

We have hardly observed numerical instabilities on theMP�-R
�/A level, but
rather often on the higher level of approximations. These numerical instabilities
can be avoided if one no longer cares to determine the full matrix cijkl from
the stationarity condition (but rather only its eigenvalues) for eigenvectors
(extremal pairs) obtained from other information.

Let us now start from the functional (
55) and express this in terms of
arbitrary pairs, related to the canonical pairs by the transformation b�ij

F�;R
� =


,
cijklb

�
ij V

�
� b

kl
� + cmnij

{
Bop
mn � Xop

mn("i + "j)
}
cijop

= c��V
�
� + cmnij b

�
mn

{
B�
� + X�

� ("i + "j)
}
bop� c

ij
op

= c��V
�
� +



�
bij% c

mn
ij b

�
mnB�

� b
op
� c

ij
opb

%
ij

�

,
b%ijb

kl
% c

mn
kl b

�
mnX

�
� ("i + "i)b

op
� c

rs
opb

0
rsb

ij
0

= c��V
�
� +



�
c�%B�

� c
%
� � 


�
c�%X

�
� c

0
�"

%
0 (
54)

with

c�� =


,
bkl� c

ij
klb

�
ij ; "

%
0 =



�
bij0 ("i + "j)b

%
ij : (
50)

If we consider especially the approximation A, (
54) reduces to

F�;R
� = c��V
�
� +



�
c�%B̃�

� c
%
� : (
5>)

Extremal pairs, which are optimal for the calculation of the R
�-correction,
are characterized by diagonality of c��, i.e.

c�� = c� ı
�
� : (

5)

For this choice (
54) becomes

F�;R
� = c�V
�
� +



�
c��B̃�

� (


)

with

B̃�
� = �(U �

� � V �
� ) in Approximation A: (

�)

We can now proceed essentially in two ways. The first would be to construct
extremal pairs by some given criterion, e.g. by diagonalizing 
=r
�. Then we
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construct V �
� and B̃�

� for these pairs (possibly checking that the off-diagonal
elements are actually small). We then minimize with respect to c� and get

c� = V �
� =B̃�

� (

�)

The other possibility is to regard diagonality of F�;R
� as the criterion for ex-
tremal pairs, i.e. to determine the extremal pairs such that

V B̃�

V = diagonal (

,)

which is, so to speak, the most general condition for extremal pairs to be used
in MP�-R
�/A. This is essentially equivalent to choosing c hermitean and to
diagonalize it afterwards.

In MP�-R
�/B (and also MP�-R
�/A0, which we do not consider now) the
situation is a little more complicated because we have to start from (
54 ) and
not the simplified form (
5>).

Then, instead of (


) we get

F�;R
� = c�V
�
� +



�
c��B�

� � 

�
c�X

�
� "

�
�c� : (

/)

It is plausible that for this choice also X�
� is close to diagonal. Assuming that

X�
� is diagonal if c�� is diagonal, we get the simpler expression:

F�;R
� = c�V
�
� +



�
c��(B�

� � X�
�"

�
� ) (

7)

which is a sum of pair contributions.
We finally observe that under the same conditions

B�
� = bij� Bkl

ij b
�
kl = bij�

{
B̃kl
ij + Xkl

ij ("i + "j)
}
b�kl

= B̃�
� + bij� ("i + "j)b

%
ijb

mn
% Xkl

mnb
�
kl

= B̃�
� + "%�X

�
% = B̃�

� + "��X
�
� : (

4)

Hence we get, at least, approximatively, (


) again but now with

B̃�
� = �(U �

� � V �
� ) + Q�

� in Approximation B: (

0)

Our experience has been that it is usually sufficient to determine first the
extremal pairs that are optimal for MP�-R
�/A (standard choice of extremal
pairs) and to use them afterwards for MP�-R
�/B as well as for all CC-R
�
calculations. Some numerical results are given in the next section.

8
Numerical Examples of the Use of Extremal Pairs in R12-Theory

Our early calculations with the R
� method sometimes suffered from nume-
rical instability problems. These arise naturally if one uses very large basis
sets, because in the limit of a complete basis the R
�-correction becomes un-
determined. However, numerical instablities may also arise for relatively small
basis sets, namely if the B-matrices that are negative definite when evaluated
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Table 1. N�, valence-only correlation energy, in millihartrees, basis 
 (

s7p�d�f)

Method Diagonal r�
� r�


� Standard Invariant

MP�-R
�-A �,
7.�0> �,
7.�40 �,
7./>� �,
7.>5� �,
4.�>0
MP�-R
�-B �,
5.0�, �,
5.4,� �,
5.>0/ �,

.�70 �,

.0/7
CCSD-R
� �,5,.5>/ �,5�.0>> �,5,.
5> �,5,.�0/ �,5,.7/>
CCSD[T]-R
� �,�,./>, �,�,.,>� �,�,./>7 �,�,.44, �,�/.
,0
CCSD(T)-R
� �,��.4�> �,��./�4 �,��.4,� �,��.>�
 �,�,.�>,

Diagnostic A (B). S: 5.�/ (5.�4); T: 5.
� (5.50). Without R
� one gets MP�: ��>
.45/

exactly, lose this property due the application of the standard approximation.
A general experience has been that numerical instabilities hardly affect MP�
calculations. They are more serious in CC-methods, where one proceeds ite-
ratively and where a feedback of numerical instability effects is possible. The
orbital invariant method is more sensitive to numerical instability effects than
the older non-invariant approach.

We have tried several tricks to avoid the numerical instabilities, such as
setting some quantities beyond a threshold equal to zero or subjecting the
c-coefficients to an upper bound condition. None of these tricks was fully
satisfactory, but the use of extremal pairs worked in all cases.

Since it is difficult to construct the extremal pairs for the CC-R
� calculati-
ons in question, we have rather constructed the extremal pairs approximatively
by some simple criterion, and compared the results of several such choices with
the full ‘orbital invariant’ approach in those cases where it is stable. The fact
that one has not the exact extremal pairs (which diagonalize the c-matrix) leads
to some loss in the correlation energy, but this is in most cases negligibly small.

In Tables 
 to , we display the results of MP�-R
�, CCSD-R
� and CCSD(T)-
R
� calculations of F� and N� for various options of the pairs:

(a) Diagonal: a diagonal c-matrix in terms of canonical orbitals;
(b) r �
�: extremal pairs in terms of the criterion Ω(
; �) = r �
� � r
�Pr
�, with P

the projector to the given basis;
(c) r�



� : extremal pairs in terms of the criterion Ω(
; �) = r�


� ;

Table 2. F�, valence-only correlation energy in millihartrees, basis 
 (

s7p�d�f)

Method Diagonal r�
� r�


� Standard Invariant

MP�-R
�-A �7
5.755 �7
�.�75 �7
�.4�� �7
�.047 �7
�.55�
MP�-R
�-B �/>/.04, �/>0.5�> �/>0.47� �/>0.>,7 �/>>./4

CCSD-R
� �/>>.5/7 �755.
�/ �755.�
5 �755.�0� �755.070
CCSD[T]-R
� �7�5.7>7 �7�
.4,� �7�
.>�� �7�
.>>7 �7��.,40
CCSD(T)-R
� �7
>.07> �7�5.>�5 �7�
.
5
 �7�
.
4, �7�
.7/0

Diagnostic A (B). S: 5.,5 (5.�>); T: 5.
7 (5.
�). Without R
� one gets MP�: �/75.50�



Extremal Electron Pairs | Application to Electron Correlation, Especially the R12 Method ,


Table 3. N�, all electrons correlated, correlation energy in millihartrees

Method Basis Diagional r�
� r�


� Standard Invariant

MP�-R
�-A 
 �/�4.,�5 �/�0.�54 �/�>.4,� �/�5.�,5 �/�5.>�7
� �/�/.,,/ �/�/.0,/ �/�/.>0/ �/�7.5,> �/�7.
7/
� �/�4.,,
 �/�4.,>4 �/�4./�, �/�4./,� �/�4./4�

MP�-R
�-B 
 �/
>.444 �/��.�0/ �/�5.7,/ �/�
.//� �/�
.
5�
� �/�>.450 �/�5.

7 �/�5.�44 �/�5.��/ �/�5.�>/
� �/��./
7 �/��./7� �/��.7
> �/��.7�
 �/��.044

CCSD-R
� 
 �/
7.0�
 �/
4./54 �/
4.>,5 �/
0.�07 —
� �/�
.>
5 �/��.�70 �/��.��0 �/��.�7, —
� �/��.7/> �/��.77> �/��.7>, �/��.705 —

CCSD(T)-R
� 
 �/�4.��� �/�4.>0> �/�0.,
/ �/�0.47/ —
� �/,�.4>7 �/,�.
,> �/,�.�50 �/,�.�,/ —
� �/,,.4�/ �/,,.4�5 �/,,.4// �/,,.4,5 —

Diagnostic A (B), basis

, S: 5.�5 (5.�,) T: 5.5> (5.57)
�, S: 5.,5 (5.�,) T: 5.
, (5.5>)
�, S: 5.,� (5.�0) T: 5.
0 (5.
,)

Basis

: 

s7p,d�f (aug-cc-pVTZ +S(
d
f))
�: 
�s4p/d,f (aug-cc-pVQZ +S(
d
f))
�: 
/s>p7d/f (aug-cc-pV/Z +S(
d
f))

Table 4. F�, all electrons correlated, correlation energy in millihartrees

Method Basis Diagonal r�
� r�


� Standard Invariant

MP�-R
�-A 
 �4�,./0> �4�/.>�4 �4�7.44, �4�4./>4 �4�0.�,�
� �4�0.4,> �4�>.//� �4,5.�/� �4,5./00 �4,5.>/�

MP�-R
�-B 
 �4
7./75 �4
0.�7/ �4�5.5

 �4�
.5�5 �4��.��

� �4�0.
�� �4�>.��� �4�5.,�4 �4�5.7>5 �4�
.5/�

CCSD-R
� 
 �4�/.,>7 �4�7.77� �4�4.504 �4�4./7> �4�4.7,,
� �4�7.�44 �4�7.7>0 �4�4.
�> �4�4.�74 �4�4.�5


CCSD(T)-R
� 
 �4,4.5/, �4,0.�50 �4,0.7�0 �4,4.5/, �4,>.��4
� �4,0.��, �4,0.4,5 �4,>.
40 �4,>.�5/ �4,>.�,7

Diagnostic A (B), basis

, S: 5.�/ (5.�,) T: 5.
� (5.57)
�, S: 5.,5 (5.��) T: 5.
/ (5.5>)

Basis

: 

s7p,d�f (aug-cc-pVTZ +S(
d
f)
�: 
�s4p/d,f (aug-cc-pVQZ +S(
d
f)

(d) Standard: canonical pairs which diagonalize the R
� contributions to the
MP�-R
� energy;

(e) Invariant: the orbial invariant method with a general form of the c-matrix.

We also document the diagnostic, as defined by (0,), at the MP�-R
�/A
and MP�-R
�/B levels. For a saturated basis the diagnostic should reach 5./
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for a singlet pair and 5.�/ for a triplet pair. The convergence to these limiting
values is faster for MP�-R
�/A than for MP�-R
�/B. One makes the following
observations:

(
) With increase of the basis size the different pair variants appear to
converge to the same results.

(�) Among the different choices of extremal pairs, the choice ‘standard’,
which diagonalizes the R
�-contribution to MP�-R
�/A is closest to the orbital
invariant approach ‘invariant’, provided that the latter converges . The choice
‘r�


� ’ is only slightly poorer, while r �
�’ is slightly more off, but definitely better

than ‘diag’ with a diagonal c-matrix for canonical orbitals.
(�) The only case documented here, where the orbital-invariant approach di-

verges is that for the all-electron calculations of N� at CCSD-R
� and CCSD(T)-
R
� levels, for all three basis sets. Even for this example the MP�-R
�/A and
MP�-R
�/B results are numerically stable, and in valence-only calculations even
CCSD-R
� and CCSD(T)-R
� converge. Our general experience is that the ap-
proaches based on extremal pairs don’t suffer from numerical instabilities, at
variance with the orbital-invariant method. To avoid divergencies we use ‘stan-
dard’ pairs as default option.
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In this contribution the application of localized molecular orbitals for the separation of
local and long-range correlation effects in extended systems is studied in the framework
of the many-body perturbation theory. We first summarize the basic ideas developed by
Professor Kapuy for extending diagrammatic methods based on localized one-electron states
in correlation energy calculations. After describing some possible ways for characterizing the
extension and separation of localized MOs we give a flexible procedure for the truncation of
long-range correlation effects with the remarkable property that the range of the Coulomb
interaction is still kept infinite. Analyzing numerical results the convergence of localization
corrections is discussed and the separation of local correlation terms show that only the
immediate neighborhood of a localized MO plays a considerable role in excitation processes.
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1
Introduction

Independent particle (Hartree–Fock) theory has played a historical role in un-
derstanding the electronic structure of well known chemical species, small
and medium sized molecules and the basic features of chemical bonding. Alt-
hough the computational complexity of the Hartree–Fock calculation increases
as N 4 with the number of electrons N , the unbelievable development of com-
putational hardware devices as well as the refinement of theoretical methods
triggered a continuous extension of the manageable size of the systems avai-
lable for the theoretical description. Such a development, however, required
tremendous efforts and already in the early sixties ideas had emerged about
introducing useful chemical concepts like locality into the theory in order to
ease and speed up calculations and at the same time make them more transpa-
rent. The need for this kind of simplification was given even larger emphasis
as the collected independent particle results indicated that the quality of the
Hartree–Fock calculations becomes poorer with increasing system size or if
molecular interactions are targeted. Indeed, a naive physical picture suggests
that the long-range part of the electron-electron interaction should be satisfac-
torily described by the effective averaged Coulomb and exchange interaction
terms of the Hartree–Fock theory, as at large separation electrons hopefully
do not “see” the details of the motion of others. This consideration indicates a
natural connection between the remaining interaction not taken into account
in independent particle models (commonly known as electron correlation), and
localizability. Application of localized orbitals to the theoretical description of
extended systems has always played a central role in the work of Professor
Kapuy, who first studied transferability of local energy contributions and the
localized orbitals themselves within the framework of the Hartree–Fock model
[�–$] and later extended the concept of locality to electron correlation calcula-
tions mainly in the field of many-body perturbation theory (MBPT) [B, C]. The
main goal of this contribution is to summarize the basic ideas developed by
Professor Kapuy for a possible extension of the diagrammatic MBPT using lo-
calized molecular orbitals and to show numerical experiences for convergence
features of the perturbation expansion with localized orbitals, as well as to
present some evidence for the expected negligibility of long-range correlation
effects.

2
Concept of Locality

The existence of local properties in extended molecules has been known by
chemists for a long time; especially in organic chemistry the use of relatively
independent functional groups like –CH9 or –OH, etc., as building blocks of the
system is a well-working everyday practice. Also, the success of thermodyna-
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mics and statistical physics by dividing large systems to (almost) independent
non-interacting subsystems underlines the dominating role of local effects and
the negligible amount of long-range energy contributions, at least far from
phase transitions.

Quantum chemistry, however, seems to contradict to the above well known
facts, as both the N -electron wavefunction Ψ(x�;…; xN ) and the canonical
Hartree–Fock one-particle orbitals 'i(x); (i = �;…; N ) are usually extended
to the whole volume of the atomic system. Here, variable xj = (rj ; �j) is used
as a combined notation for the space and spin variables of electron j , and the
independent particle wavefunction is constructed by the usual determinant
formula [5] from one-particle functions

Ψ(x�;…; xN ) = (N !)��=� det['i(xj)]: (�)

The optimum set of one-particle orbitals f'i(x); (i = �;…; N )g is determined
from the minimum condition of the energy expectation value [6, �8]

E =
hΨ jH jΨ i
hΨ jΨ i (�)

with the additional constraint of keeping the molecular orbitals (MOs) ortho-
normal h'ij'ji = ıij ; (i; j = �;…; N ). By introducing Lagrangian multipliers
fij for each of the above constraints one arrives at the complicated integro-
differential coupled system of equations

F 'i =
N∑

j=�

fji 'j : (9)

A formal decoupling of these equations is possible, however, as the Fock-
operator

F = ��
�
∆ + Vn + VC � VX; (4)

has the following remarkable invariance property. Although (besides the con-
stant differential operator ∆ and the multiplication operator of the nuclear-
electron interaction Vn) the Coulomb and exchange operators VC and VX contain
all unknown 'i orbitals in an integral form, all terms of the Fock-operator, as
well as the N -electron wavefunction Ψ(x�;…; xN ), are invariant against a uni-
tary transformation of the MOs

' 0
i =

N∑
j=�

Uji 'j ; UU y = �: ($)

This fact can be used for choosing a specific orbital set f'can
i (x); (i = �;…; N )g

for which the Lagrangian multiplier matrix fij becomes diagonal, leading to
the canonical form of the Hartree–Fock equations

F 'can
i = "i '

can
i : (B)

Canonical MOs have the definite advantage that the diagonal Fock-matrix ele-
ments (or Lagrangian multipliers) h'ijF j'ii = "i; (i = �;…; N ) can be inter-
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preted as approximate ionization energies of the orbitals 'i [��]. We wish to
emphasize, however, that no additional reason forces us to choose the canoni-
cal orbital set; all other equivalent sets of the form ($) can be used to describe
molecular properties in the most convenient way.

Due to their relative mathematical simplicity canonical Hartree–Fock equa-
tions are used to solve the independent particle problem in an iterative,
self-consistent-field (SCF) way. Since in each iterative step Eq. (B) behaves
as an eigenvalue problem, solutions are not restricted to a finite set of so-
called occupied orbitals, occ = f'can

i ; (i = �;…; N )g, but an infinite set,
virt = f'can

a ; (a = N + �;…; 1)g, of virtual orbitals appears which does
not contribute to the N -electron wavefunction Ψ . In practical calculations the
MOs are expanded using a finite set of atomic orbitals (LCAO), and the set
virt of MOs is also restricted to a finite number of orbitals. After convergence
a unitary transformation of the form ($) with a properly chosen matrix U is
used in order to achieve chemically well-interpretable molecular orbitals. This
process is often called localization; however, in principle, any other physical
or chemical criterion can be prescribed for the resulting MOs, e.g. finding
the most delocalized orbitals [��], etc. Localization in the above sense has to
be strictly distinguished from the Anderson-type localization phenomenon in
disordered systems [�9], where due to irregularities of the one-electron Ha-
miltonian F the canonical MOs themselves are localized in an exponential way
to a given part of the whole system. In chemical species the canonical orbitals
are usually distributed over a substantial part of the molecule and there exist
unitary transformations which result in considerably more compact MOs.

As these compact orbitals are usually concentrated in the regions where core
electrons, bonds, non-bonding electron pairs are expected, the introduction of
localized MOs has played an important role in understanding the above classi-
cal chemical concepts and valence. Most of the localized orbitals, on the other
hand, are also well displaced in space from each other. This property makes
them an excellent tool for separating local and long-range electron interaction
effects.

Finding a localization transformation is usually done by satisfying a given
optimum criterion. Some well-known optimum criteria can be summarized as
searching for the maximum or minimum value of the functional

Gf'ig =
N∑

i=�

hiijΩjiii (C)

where the matrix elements of the two-electron operator Ω(r�; r�) are defined
by the expression

hijjΩjkli =
∫

'

i (r�)'j(r�) Ω(r�; r�)'


k (r�)'l(r�)dr� dr� : (5)
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The earliest approach to localized orbitals developed by Foster and Boys [�4–
�B] applies the two-electron operator

ΩB(r�; r�) = (r� � r�)� ; (6)

and functional G of (C) (i.e. the spatial extension of the MOs) is to be minimi-
zed, while the method of Edmiston and Ruedenberg [�C–�6] uses

ΩER(r�; r�) = jr� � r�j�� ; (�8)

and seeks the maximum of the corresponding functional G, i.e. the total self-
repulsion energy of the electrons. A similar, but not so widely applied loca-
lization procedure of von Niessen [�8] maximizes the charge density overlap
functional G with

ΩN (r�; r�) = ı(r� � r�) : (��)

The main disadvantage in all of the above cases is represented by the fact that
the computational complexity of the methods grows in proportion to N $. In
the specific case, however, of Boys’ procedure a fortunate transformation of
criterion (C) with (6) leads to the maximization of the equivalent optimum
criterion

GB�f'ig =
N∑

i=�

[hijrjii]� ; (��)

where only matrix elements of the one-electron position operator r appear,
resulting in a much more favorable algorithmic behavior of N 9.

The same advantageous algorithmic complexity characterizes the so-called
population localization method of Pipek and Mezey [��], where the functional
of the form

Gf'ig =
N∑

i=�

n∑
A=�

[hijPAjii]� (�9)

is to be maximized. Here, the second summation runs over all atoms A of the
molecule and the expectation value of the one-electron operator PA gives the
population of orbital 'i on atom A. By an appropriate definition of the atomic
population operator PA the quantities

Qi
A = hijPAjii (�4)

can be identified either as Mulliken’s gross atomic populations [��, �9], or
populations of Löwdin’s symmetrically orthogonalized basis sets [�4, �$], or
even Bader’s charges [�B, �C], etc. Using Mulliken’s populations, however, leads
to easily evaluable, handy formulas.

Interestingly, and probably due to a very exciting connection between the
Fermi-hole and the localized orbitals [�5], various localization methods re-
sult in rather similar localized orbitals, except for the description of double
bonds by a �- and �-orbital-pair or two equivalent  (banana) bonds. Boys’
localization gives  orbitals, while the Edmiston–Ruedenberg and the popula-
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tion localization method leads to � � � separation, which is considered to be
chemically preferable.

Some other alternatives (e.g. the procedure of Magnasco and Perico [�6])
for solving the localization problem are not discussed here, as these unfortun-
ately have the theoretical disadvantage that external requirements like a priori
definitions of bonds, lone pairs, and core orbitals have to be introduced. A more
detailed analysis of various localization methods can be found in Ref. [��].

2.1
Characterization of Localized Orbitals

The most popular way for visualizing MOs is the density or wave function
contour plot. We can also introduce other quantities that can measure the
position and the spatial extension of an LMO. The position of an LMO can
be characterized by the so-called orbital centroid, the expectation value of the
position of an electron on the given LMO, r̄i =

〈
'i jrj 'i

〉
. The spatial extension,

the size of an LMO can be measured by the dispersion of electron coordinates
placed on a given LMO

(∆r˛i)� =
〈
'i

∣∣r �˛∣∣'i

〉 � 〈
'i jr˛j 'i

〉�
˛ = x; y; z

that is coordinate-system-dependent. If we want to choose coordinate-system-
independent quantities, we can use the second moment matrix

[Si]˛ˇ =
〈
'i

∣∣(r˛ � r̄˛)
(
rˇ � r̄ˇ

)∣∣'i

〉
:

The ellipsoid determined by the [Si]
�
� and the volume of it proportional to

det
(
[Si]

�
�

)
characterize the position and the spatial extension of the LMOs.

The latest quantity is called orbital size [$4, $6].
In our calculations Boys’ localization procedure was applied to localize the

occupied and virtual orbitals in two separate blocks. The properties of the
localized virtual orbitals of normal saturated hydrocarbons are investigated
in detail in [B$] and for all-trans conjugated polyenes in [B5]. In Fig. � the
schematic plots of ellipsoids of selected occupied and virtual orbitals of C$H��

in the B-9�G* basis set are presented in the plane of the CC bonds. Only two
characteristic sets of LMOs are selected, a terminal CH bond and a CC bond.
The left panel shows the occupied and the right the virtual LMOs. The plots
of occupied and virtual LMOs in minimal basis are very similar to case (a)
and they are not presented here. We can see that the localized orbitals are well
separated and their spatial extent is restricted to a small part of the molecule
even for the diffuse &v� and &v9 LMOs. The virtual LMOs are spread along the
axis of chemical bonds and they are not restricted to the region between the
atoms.

In Table � the sizes of LMOs presented in Fig. � are shown. Using minimal
basis the sizes of the virtual LMOs are approximately the same as the size of
occupied LMOs. For the B-9�G
 basis set we can also find virtual orbitals that
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Table 1. The effective volume of LMOs presented in Fig. �

CH CC

STO-9G B-9�G
 STO-9G B-9�G


&o� 8.B9 8.B6 8.BB 8.B6
&v� 8.B$ 8.99 8.B6 8.96
&v� �.89 �.��
&v9 �.�� �.��
&v4 8.$� 8.4B
&v4 8.$8

Fig. 1. Schematic plots of ellipsoids of a) occupied and b) virtual LMOs belonging to the
CH and CC bonds of a C$H�� molecule in the B-9�G* basis set

have sizes similar to the occupied orbitals, but orbitals that are tree times larger
also appear.

3
Localized Many-Body Perturbation Theory

For treating the electron correlation problem many alternative approaches have
appeared in the literature, but basically three main streams (and variants of
them) can be distinguished.

The full configuration interaction method [94–9B] is exact in the sense that
after choosing appropriate atomic basis functions (defining the model in this
way), the resulting many-electron wavefunction is an exact eigenfunction of
the model Hamiltonian, the computational effort, nevertheless, increases in
an exponential manner. Truncation of the full CI expansion (especially after
single and double excitations, CI-SD) considerably reduces the necessary com-
putational resources, but leads unfortunately to the serious problem of non-
size-consistency [9C, 95] which makes the results even for medium systems
unrealistic. The coupled-cluster method [96, 48] theoretically properly descri-
bes extended systems as well, but numerous experiences show the enormous
increase of computational work with the size of the system.
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Perturbative approaches to the electron correlation problem have proved to
be successful even when calculating second-order corrections only; but finer
results require fourth order energy corrections, as we will see later in this text.
The reliability of a perturbation expansion greatly depends on the partitioning
of the exact Hamiltonian H = H8 + W to an unperturbed part H8 and a per-
turbation W . Good quality approximations are to be expected if the N -particle
operator H8 is chosen as the sum of equivalent one-particle Fock operators

H8(r�;…; rN ) =
N∑

i=�

F (ri) ; W = H � H8 : (�$)

The above Mœller–Plesset (MP) [$8] partitioning scheme is based on the as-
sumption that Hartree–Fock theory is adequate for describing the most im-
portant electron interaction effects. The mathematical form (�$) of the unper-
turbed Hamiltonian corresponds to a non-interacting system which has the
important consequence that all eigenfunctions of H8 are exactly known, i.e.
Slater-determinants built from canonical MOs (eigenfunctions of F ). As we will
see later this is a prerequisite of a perturbation theory based on the unperturbed
Hamiltonian H8. Rayleigh–Schrödinger perturbation theory formulas worked
out for N -electron operators of the form (�$) are, however, extremely compli-
cated, hard to systemize and contain at each perturbative order terms which are
exactly cancelled by higher-order perturbative corrections. A systematic and
economic solution to these problems is presented by the so-called many-body
perturbation theory (MBPT) where the Hamiltonian is rewritten using creation
and annihilation operators of the one-particle MOs and elegant algorithmic
methods, using graphical representations for the various perturbative correc-
tions, have been worked out which automatically take care of cancellations in
the perturbative expansion. For details we refer to the literature [4�–49].

Introducing localized one-electron MOs into the perturbation theory does
not seem to present any danger at the first sight, as the Fock-operator and con-
sequently H8 is invariant to canonical ! localized transformations. A serious
complication arises, however, because of the fact that the eigenfunctions of H8

can not be written as simple Slater-determinants of the localized molecular
orbitals any more. We have now the options either expressing the eigenfunc-
tions of H8 (i.e. Slater-determinants made of canonical MOs) as complicated
linear combinations of determinants of LMOs or changing the unperturbed
Hamiltonian to an operator with simple LMO-determinant eigenfunctions.

The first choice seems to be more natural since, H8 being invariant, the
partitioning scheme remains untouched of Mœller–Plesset type. The price to be
paid for this principal simplicity, however, is high in calculational details, as the
well-developed, systematic many-body graphical algorithms are not applicable
if the unperturbed eigenfunctions bear a complicated structure. In a series of
papers [44-45], Pulay and Sæbø developed formulas for the second- and third-
and fourth-order perturbative corrections with localized orbitals using a CEPA-
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based formalism. They also describe theoretical results for CI and coupled-
cluster treatments. Their basic idea is that after localizing the occupied orbital
space, the virtual orbitals are represented by atomic orbitals and excitations are
allowed only from a localized MO to the AOs of its immediate neighborhood
(domain). Computational results are fine, but the development of formulas
to any higher order of perturbation theory requires extra efforts that are not
algorithmizable.

3.1
Kapuy's Approach

Following the early footsteps of Amosh and Musher [$�], and Davidson [$�],
Professor Kapuy suggested and developed [$9] a many-body procedure for
calculating ground-state energy, Green’s function and cluster operator pertur-
bative corrections. Formulas for corrections at any order of the perturbation
expansion can be algorithmically generated and computerized. A summary of
the various diagram generation methods can be found in Ref. [46]. The for-
malism of Professor Kapuy’s approach is summarized briefly in this section.

The method uses the idea of redefining the unperturbed Hamiltonian out-
lined in the previous section. In the first step, occupied and virtual canonical
orbitals are localized separately by the unitary matrices U and Q as

' loc
i =

occ∑
j

Uji '
can
j ; ' loc

a =
virt∑

b

Qba 'can
b (�B)

where the first summation runs over the occupied canonical orbital set occ
and the second one on the virtual set virt. The resulting orbitals belong to
the localized occupied set, locc = f' loc

i ; (i = �;…; N )g, or to the localized
virtual set, lvirt = f' loc

a ; (a = N + �;…; M)g, where M is the number of
atomic basis functions.

The Fock operator can be represented both by canonical and localized MOs
as

F =
occ∑
i

j'occ
i i "i h'occ

i j +
virt∑

a

j'occ
a i "a h'occ

a j

=
locc∑
i;j

j' loc
i i fij h' loc

j j +
lvirt∑
a;b

j' loc
a i fab h' loc

b j (�C)

with the Lagrangian multipliers "i; "a; fij ; fab defined by the expressions (B) and
(9). Note, that off-diagonal Fock matrix elements between occupied and virtual
orbitals do not appear in (�C), as the sets occ and virt are localized separately.
The diagonal part of the localized representation of F can be separated as

F d =
locc∑

i

j' loc
i i fii h' loc

i j +
lvirt∑

a

j' loc
a i faa h' loc

a j (�5)
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which we will use for an alternative definition of the unperturbed Hamiltonian

Hd
8 (r�;…; rN ) =

N∑
i=�

F d(ri) (�6)

that leads to the partitioning H = Hd
8 + V + W with the off-diagonal one-

electron perturbation V = H8 � Hd
8 and the electron-electron interaction per-

turbation W is taken from (�$).
As the ratio of the two perturbations is not known, the formalism of the

double Rayleigh–Schrödinger (RS) perturbation theory can be used, which
looks for the ground state of the total Hamiltonian

H(-; .) = Hd
8 + -V + .W ; (�8)

with the formal expansion coefficients - and ., taking finally the values
- = . = �. Standard RS considerations lead to coupled non-linear recursive
equations for the exact ground state jΦi of H(-; .) and the energy difference
4E = E � E8 of the exact and unperturbed ground states in the intermediate
normalization (hΨ8jΦi = �)

jΦi = jΨ8i + R8
(4E � .W � -V

) jΦi (��)

4E = � hΨ8j .W + -V jΦi : (��)

The resolvent operator

R8 =
∑
i>8

jΨii hΨij
Ei � E8

(�9)

contains all eigenfunctions jΨii and eigenvalues Ei for i 6= 8 of the unperturbed
Hamiltonian Hd

8 . One of the main advantages of Kapuy’s partitioning that all
these eigenfunctions are known by simple and explicit formulas as jΨii are
Slater-determinants of the localized one-particle MOs of the form (�) and the
unperturbed energy values Ei are calculated by an appropriate sum of the
diagonal Fock-matrix elements fjj . Moreover, the unperturbed wavefunction
jΨ8i is the Hartree–Fock ground state of the system.

Solving equations (��) and (��) iteratively one arrives at the formal double
power series expansions

jΦi =
1∑

m;n=8

∣∣∣Φ(m;n)
loc

〉
; 4E =

1∑
m;n=8
m+n>8

E (m;n)
loc ;

where ∣∣∣Φ(m;n)
loc

〉
= .m-n

∣∣∣Ψ (m;n)
loc

〉
; E (m;n)

loc = .m-nE(m;n)
loc : (�4)

Convergence of these kind of formal expansions is questionable, however, it
is believed today that at least asymptotic convergence behavior is to expected.
Collecting terms in equations (��) and (��) that are proportional to the same
power of . and - on the left and right hand sides we obtain recursion formulas
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Fig. 2. Unlabelled Goldstone diagrams representing a) E(�;8)
loc , b) E(�;�)

loc terms.

for the perturbation corrections:
∣∣∣Φ(m;n)

loc

〉
=

m∑
i=8

n∑
j=8

i+j>8

E i;j
locR8

∣∣∣Φ(m�i;n�j)
loc

〉

�R8.W
∣∣∣Φ(m��;n)

loc

〉
� R8-V

∣∣∣Φ(m;n��)
loc

〉

E (m;n)
loc =

〈
Ψ8 j.W jΦ(m��;n)

loc

〉
+

〈
Ψ8

∣∣-V
∣∣Φ(m;n��)

loc

〉
: (�$)

Starting from the ground state of the unperturbed Hamiltonian we can obtain
explicit expressions for these corrections, that are very complicated especi-
ally in higher orders. With the help of diagrammatic many-body perturbation
theory these terms can be represented graphically (the detailed description
of the diagrammatic method of time dependent and time independent MBPT
can be found in Refs. [�48] and [$C], respectively). The contributions of cer-
tain diagrams will cancel and only those terms remain that are connected to
linked diagrams [$B, $C]. In Fig. � the unlabelled Goldstone diagrams [$5],
representing the terms E (�;8)

loc and E (�;�)
loc , are presented.

The E (m;8)
loc terms are given by the usual diagrams and formulas but instead

of canonical HF orbitals localized ones are used. The remaining E (m;n)
loc terms

with n 6= 8 are called localization corrections. It is clear from the definitions
above that summing up the localization corrections in any order of two-particle
perturbation W we obtain the same order correction in MP partitioning. These
terms are distinguished by the index “can”:

jΦ(m)
occ i =

1∑
i=8

m+i>8

∣∣∣Φ(m;i)
loc

〉
;
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E(m)
occ = lim

n!1 e(m;n)
loc where e(m;n)

loc =
n∑

i=8

E (m;i)
loc :

The HF energy is given by

EHF = E8 + E (�;8)
loc :

The localization corrections to the terms that are 8th or �st order in the two
particle perturbation are all zero because the diagonal part is omitted from the
one-particle perturbation just like the matrix element between the occupied
and virtual orbitals. The total electron correlation energy can be expressed as

Ecorr =
1∑

m=�

lim
n!1 e(m;n)

loc :

4
Application

In this section representative results are presented for a normal saturated hy-
drocarbon (C$H��) molecule as a model system. The CC bond length is �.$�B
Å the CH distance is �.864 Å and the bond angles are ��8ı. The LMOs were
created using the Boys’ localization procedure.

4.1
Convergence of the Localization Corrections

Comparing the canonical and localized MBPT treatment of the correlation
energy we have seen that the introduction of localized orbitals results in ad-
ditional terms in the correlation energy expression. Calculation of these terms
requires extra work which depends on the speed of convergence of the addi-
tional localization corrections. This problem was investigated for our model
system and is presented in Fig. 9. Convergence of summed up localization cor-
rections e(�;n)loc ; e(9;n)loc as a function of the order n of the one-particle perturbation
operator V is shown for the C$H�� molecule in STO-9G and B-9�G
 basis sets.
Both for the second and third canonical order the convergence is faster in the
minimal basis set than in B-9�G
 one. Using the minimal basis set, the 8th
order already gives approximately 6$% of the canonical values in both cases.
For the B-9�G* basis set in case (a) the 8th order of the second perturbation
gives �C4% and in case (b) this value is only �BC%. In the third canonical
order (m = 9) the convergence is slower than in second order (m = �). To
recover more than 66% of the canonical corrections we have to sum up the
localization corrections in the second canonical order at least up to n = B and
in the third canonical order up to n = 5.
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Fig. 3. Convergence of summed up localization corrections, a) e(�;n)loc and b) e(9;n)loc , as a
function of order n of one-particle perturbation for the C$H�� molecule in STO-9G and
B-9�G
 basis sets. The energy values are given as percentages of E(�)

occ and E(9)
occ, respectively.

4.2
Separation of Local Terms

Let us return now to the original aim of localizing molecular orbitals. The
basic expectation is that interaction between distant localized orbitals turns
out to be negligible. Before specifying more precisely what “interaction” in the
above sense means, it is necessary to define the concept of “distance” between
localized MOs. We will discuss here some alternatives that have all been tested
in our numerical calculations.

Vicinity index. One such measure of separation is based on an exact upper
bound for two-electron integrals of model wavefunctions which remains almost
always valid for realistic LCAO orbitals, as well. The vicinity index [98, 9�] of
two MOs 'i and 'j fits well into framework of population localization, as it

uses the atomic population definitions Qi
A and Qj

A of the orbitals defined by
(�4). The quantity

vij =

∣∣∣∣∣
n∑

A=�

Qi
A Qj

A

∣∣∣∣∣
�=�

(�B)

is approximately � if both MOs are localized on the same atom (core orbitals
or lone pairs), whereas vij = ���=� if one of the orbitals is localized on atom
A, and the other orbital is in a bonding situation between atoms A and B, or
if both orbitals lie in the same bonding region between A and B. The vicinity
index decreases if the orbitals are more separated. In the case where 'i and 'j

occupy different bonding regions, A–B and A–C, joining at atom A, vij � ���,
and for distant localized MOs that have no atoms in common the vicinity index
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is practically zero. Even diagonal elements of Eq. (�B) carry a physical meaning
as v��

ii gives the approximate number of atoms where orbital 'i is localized [9�].
How the introduced quantities can be used for separating local and long-range
interaction effects will be shown later in the discussion of numerical results.

An approach for separating local and long-range electron-electron inter-
action is based on the following idea. The two principal types of interaction
quantities in localized MBPT are the two-electron integrals

hijjkli =
∫

'

i (r�)'j(r�) jr� � r�j�� '


k (r�)'l(r�) dr�dr� (�C)

and the off-diagonal Fock-matrix elements

fij = h'ijF j'ji: (�5)

Physical intuition suggests that the magnitude of hijjkli should decrease with
increasing separation of orbitals 'i and 'j , and with increasing separation of
'k and 'l . In fact, the inequality

jhijjklij � L vij vkl (�6)

holds exactly for a model system and is approximately true in realistic cases, as
well [98]. Here L is an appropriate constant, vij and vkl are the vicinity indices
introduced previously. Considering (�6) the two-electron integrals are replaced
by a truncated value of

hijjklit =
{

8 if vij � vlim or vkl � vlim〈
ijjkl〉 otherwise .

(98)

The value of vlim, a free control parameter of the calculations, is tunable in
the range (8; �). According to the physical interpretation of vij , if vlim = 8 a
full calculation without truncation is done, if vlim is tuned in the range 8 �
vlim < 8:$ the long-range effects are switched off, while at 8:$ � vlim various
local correlations are also neglected. Plotting the calculated correlation energy
as a function of the control parameter vlim the relative importance of local and
long-range correlations can be traced [9�].

In order to understand the physical meaning of the above truncation let us
consider that integral hijjkli corresponds to a scattering process of the incoming
electrons j and l to the states i and k, respectively. Truncation (98) restricts
the scattering process but not the length of interaction among the electrons,
i.e. the hopping of localized electrons j and l is restricted only to a given
neighborhood but at the same time the interaction length of the Coulomb
forces is still considered to be infinite.

A similar consideration for the off-diagonal Fock-matrix elements seems to
be straightforward. The underlying inequality found by numerical calculations
[99], however, has a quite different structure compared to (�6)

jfij j � A exp(˛ vij): (9�)

The constant A(� 8:8$) is independent of the molecular system and of the
applied atomic basis functions, whereas the value of ˛ changes between �.C
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and �9.� depending on the basis set and on the system studied. This result has
to be interpreted as a reminder for being extremely cautious in neglecting long-
range Fock-matrix elements as, even at large separation of MOs (vij � 8), there
appear off-diagonal elements in the order of fij � 8:8$. This is probably due to
the well-known fact that localized orbitals have long oscillatory tails in order
to achieve orthogonality, which are magnified by the Laplacian operator of F
even far away from the center of the localized MO. Another possible reason for
the infinite-distance one-particle interaction may be an artifact of the Hartree–
Fock approximation, since it cannot properly describe dissociation, leading to
non-physical interaction at infinite separation.

Neighborhood order. In minimal basis-set calculations both the localized and
the virtual LMOs can be assigned to one or at most to two atoms. Using this
assignment (as a practical realization of the vinicity index) we can define the
neighborhood order Oij of the LMOs 'i and 'j . Two orbitals are considered
8th neighbors if they are assigned to the same atom(s), first neighbors if they
have one common atom and they are not 8th neighbors, �nd neighbors if they
are connected by one LMO, etc. Using this definition we can also assign a
neighborhood order O

(
ij
)
= Oij to the one-particle matrix elements fij and

O
(
ijkl

)
= max

(
Oij ; Okl

)
to the two electron integrals

〈
ijjkl〉.

Using the neighborhood order assigned to the two electron integrals we can
investigate the behavior of e(�;4)loc by changing the cut-off neighborhood order
Ocut and consider only those integrals where O(ijkl) � Ocut (see Fig. 4) [B�–B4].
The corresponding correlation energy contribution is denoted by e(�;4)loc (Ocut).

Fig. 4. The influence of the selection of Ocut, cut-off neighborhood order, on the value of

the e(�;4)loc (Ocut): Values are in %; the e(�;4)loc (Ocut = 1) was taken as �88%.
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We can see that up to 9rd neighbors we obtain the dominant part of this
contribution.

The concept of neighborhood order and the truncation method based on
it is similar in spirit to the method (98) based on vicinity indices. Neighbor-
hood order, however, is more sensitive to long-range orbital separations as
the vicinity index vij � 8 to a good approximation if Oij � �. In the light of
the results shown in Fig. 4 this distinction does not play any significant role
since long-range effects seem to be, according to our expectations, negligible
and this finding is also confirmed by truncated correlation energy calculations
using vicinity indices [9�]. For a small molecule and minimal basis set the
simple method described works really well but for more complicated systems
there is no way to extend the definition of neighborhood orders.

Distance of orbitals. In larger basis sets the LMOs cannot be assigned to the
atoms or atom pairs any more. A natural extension of the neighborhood order
is the distance of LMOs 'i and 'j defined by dij :=

∣∣r̄i � r̄j

∣∣, where r̄i and r̄j are
the centroids of 'i and 'j , introduced previously. The definition is meaningful
only if the distance of the orbital centroids is larger than the extension of
the orbitals. Using dij we can assign a distance of d

(
ij

)
to the one-electron

integrals fij and a distance of d
(
ijkl

)
to the two-electron integrals

〈
ijjkl〉 in

the following way

d
(
ij

)
= dij ; d

(
ijkl

)
= max

{
dij ; dkl

}
:

Similar to the previous case we can calculate the e(�;n)loc (d8) and e(9;n)loc (d8) con-
tributions that include two-electron integrals with d

(
ijkl

)
< d8 [BB–B5]. In

Fig. $ the influence of three different cut-off distances (d8=�.8, 4.8 and B.8

Fig. 5. The influence of the selection of d8 cut-off distance on the value of the e(�;n)loc (d8)

(left) and e(9;n)loc (d8) (right) as a function of n. Values are in %, the corresponding canonical
values were taken as �88%.
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a.u.) on the calculated second order (left panel) and third order (right panel)
electron correlation energy is presented in the B-9�G
 basis set. The cut-off
does not change the convergence behavior that was presented in Fig. 9. For the
second-order energy the neglected part of the complete contribution is ��$%
if d8 = �:8 a.u. and less than �% if d8 = B:8 a.u. In the third order case the
corresponding neglected parts are ��$% and �8.�%, respectively.

5
Conclusions

Numerical calculations using Kapuy’s partitioning scheme have shown that for
covalent systems the role of one-particle localization corrections in many-body
perturbation theory is extremely important. For good quality results several
orders of one-particle perturbations have to be taken into account, although the
additional computational power requirement is much less in these cases than
for the two-electron perturbative corrections. Another alternative for increa-
sing the precision of the calculations is to estimate of the asymptotic behavior
of the double power series expansion (�4) from the first few terms by ap-
plying Canterbury approximants [9�], which is a two-variable generalization
of the well-known Padé approximation method. It has also been found [B, C]
that in more metallic-like systems the relative importance of the localization
corrections decreases, at least in PPP approximation.

The main advantage of Kapuy’s method, however, is the excellent separa-
tion of local and long-range correlation effects, both of which are of theoreti-
cal and practical significance. Numerical results show that only the immediate
neighborhood of a given localized MO plays a considerable role in excitation
processes. A remarkable property of the method is that, even if long-range exci-
tations are truncated, the range of the Coulomb interaction is still kept infinite.
This possibility leads to a tremendous saving of the necessary computational
resources even for medium-sized molecules. The advantages of applying locali-
zed MBPT depend on the balance between the increased efforts for calculating
extra localization diagrams and the falling computational demands when long-
range effects are omitted, making the method most probably more and more
beneficial as the numerical treatment of extended molecular systems become
available.
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An Introduction to the Theory of Geminals
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Two-electron functions, called also geminals, have been around in quantum chemistry for
some time. They represent a generalization of one-electron orbitals accounting for intra-
orbital correlation effects. Geminal-based methods can be tailored to be variational as well
as size-consistent and size-extensive. In spite of these appealing features, geminals became
somewhat eclipsed in modern quantum chemistry because of their relative complexity and
because the associated energies do not always cover a sufficient fraction of the correlation
energy. However, several recent investigations revisit geminals and advocate the use of some
extended geminal models which may turn out to offer useful alternatives to conventional
approaches. In this paper, the formalism of two-electron functions will be reviewed in a
simple fashion, focusing mainly on qualitative and conceptual points rather than technical
details. After a short historical survey, the basic notions of geminals will be reviewed both
in first- and second-quantized notations, the latter being especially advantageous when de-
aling with geminals. A few important points about the optimization of geminal-based wave
functions will then be discussed, followed by a discussion about the inherent connection
between geminals and the localization problem. We shall close with a few remarks on the
prospect of geminal theories.
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1
Introduction

Quantum chemical approaches rely on approximate solutions to the many-
electron Schrödinger equation, which emerge either by introducing approxi-
mations of a mathematical nature (i.e., neglecting small terms in the equation
to be solved), or by simplifying the Hamiltonian through the elaboration of
some appropriate physical models. One of the most fruitful models in the hi-
story of quantum chemistry has been the one-electron model in which the in-
teraction between electrons is either neglected (cf. Hückel scheme) or averaged
(Hartree–Fock, HF). In both cases the appropriate form of the many-electron
wave function satisfying the Pauli principle is a single Slater-determinant

Φ(!; (;…; N ) = Â [
'!(x!) '((x()…'N (xN )

]
; (!)

with Â being the antisymmetrizer for N electrons and 'i denoting a one-
electron function (molecular spinorbital); the latter depends on the foursome
of spatial- and spin-coordinates xi. The vast majority of quantum chemical
calculations starts with determining the one-electron functions 'i which are of
fundamental importance not only in traditional wave-function-based approa-
ches but also in density-functional theories.

The importance of the one-electron model relies upon two facts: (i) the
approximation represented by Eq. (!) is usually a good one, and (ii) assuming
a complete set of one-electron orbitals f'ig one may develop the exact wave
function in terms of (an infinite number) of determinants of the form of Eq. (!).

For closed-shell systems, the HF wave function [Eq. (!)] is commonly re-
placed by the simpler form

Φ(!; (;…; N )=Â
[
 !(r!)˛(!)  !(r()ˇ(()… N

(
(rN � !)˛(N � !) N

(
(rN )ˇ(N )

]
;

(()

expressing that two electrons with opposite spins (˛ and ˇ) occupy the same
spatial orbital  i which depends on the spatial coordinates ri. Equation (() has
the important advantage over Eq. (!) that the former is always an eigenfunction
of the Ŝ( operator, in fact it is a singlet state.

In spite of the great success of the one-electron and the HF models, it soon
turned out that Eq. (!) and especially Eq. ((), had serious drawbacks. These
have been widely discussed in the literature. We note here merely that Eq. (()
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yields electronic energies that are too high; it completely neglects the Coulomb-
correlation among electrons; it cannot describe bond dissociation processes;
and it does not automatically reflect localized electron pairs, a fundamental
concept of empirical chemistry.

A straightforward generalization of Eq. (() emerges if, instead of the one-
electron spin-orbitals '!(!) =  !(!)˛(!) and '((() =  !(()ˇ((), one writes
the wave function in terms of two-electron orbitals  (!; ():

Φ(!; (;…; N ) = Â
[
 !(x!; x()  ((x'; x7)… N

(
(xN � !; xN )

]
; (')

where, if  i(x!; x() is antisymmetric with respect to the electronic variables
(spin-coordinates) x!; x(, the antisymmetrizer Â only takes care of inter-orbital
permutations of the electron coordinates. Following perhaps Shull [!], the two-
electron orbitals  i are often called geminals while, being suggested by the form
of Eq. ('), the term separated pairs is also used.

The analogy between the wave function of Eqs. (!–() and Eq. (') is ob-
vious. However, the physical/chemical significance of these equations is quite
different, which can be made evident by comparing the basis set expansion of
the one-electron spin-orbitals 'i(x)

'i(x) =
∑
�

ci���(x) (7)

to that of the geminals  i(x!; x():

 i(x!; x() =
∑
�<�

Ci�� Â [
��(x!)�� (x()

]
: (")

Clearly, the two-electron orbitals require a double-expansion; the � < � re-
striction is introduced to avoid double-counting of the configurations.

In the HF model one optimizes the one-electron orbitals 'i(x) or their
expansion coefficients ci�, while in geminal theories one looks for energy-
optimized two-electron functions  i(x!; x() or the coefficients Ci�� . This latter
optimization is much more complicated than the HF procedure, but the ad-
vantageous properties of geminal-based functions may compensate us for the
extra effort. The most appealing feature of a wave function built up from gemi-
nals is that it takes into account intra-pair electron correlation, which, in many
cases, is a dominant fraction of the total correlation. More detailed properties
of geminals, as well as those of the associated wave functions and optimization
strategies, will be discussed after a short summary of the history of applying
two-electron functions.
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2
History of Geminals

2.1
Beginnings

As early as !:">, Fock [(] had already suggested the use of two-electron or-
bitals. Not too much later, Hurley, Lennard-Jones and Pople published their
fundamental paper ['] elaborating the basic theory of geminals. Their work
was followed in !:"# by that of Parks and Parr [7], who discussed also the mi-
nimalization of the energy of a system of separated electron pairs. In the same
year, Ede Kapuy started a long series of papers that covered a detailed theory
of orthogonal [", 6, =] and non-orthogonal [#, :] geminals, methods for their
construction [!>, !!], possible improvements of the conventional formalism
by means of configuration interaction [!(, !'] or perturbation theory [!7, !"],
elaboration of the connection between the separated pair theory and the alter-
nant molecular orbital (AMO) method [!6, !=], as well as some applications
[!#, !", !:]. Kapuy finished this series with a short review [(>] summarizing
the developments in the separated pair theory up to !:6:.

In the meantime, the field grew and many authors joined in. There is no
room here to list all important works; merely a few will be dealt with, more or
less in chronological order.

A fundamental theorem was proven in !:6> by Arai [(!] stating that the
so-called strong orthogonality (vide infra) property of geminals is equivalent
to expanding them on mutually exclusive orthogonal subspaces of one-electron
functions. A proof for this theorem was also given by Löwdin [((]. Allen and
Shull [('] emphasized the inherent connections between geminals and the
concept of the chemical bond. An important next step was made in !:67 by
Kutzelnigg [(7], who also gave a simple proof for Arai’s theorem, introduced
the natural expansion of geminals, formulated and proved a series of new
theorems, and proposed approximate procedures for the optimization of the
wave function of Eq. ('), which he named APSG (antisymmetric product of
strongly orthogonal geminals), provided that the two-electron functions satisfy
the condition of strong orthogonality.

In !:6" Ebbing and Henderson [("] analyzed geminals in the LiH molecule
and optimized them by inspecting total energy curves as functions of orbital
rotation parameters.

Geminal-based methods were shown to be special cases of the more general
group-function formalism [(6, (=, (#]. Csizmadia et al. [(:] performed calcu-
lations on the LiH molecule. Though their geminals, being composed from a
single determinant, were not correlated, these calculations indicated that the
separation of electron pairs can be a good approximation in well localized
systems. Klessinger and McWeeny ['>] performed group function (basically
un-optimized geminal) calculations on methane, addressing even excited and
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ionized states. McWeeny and Steiner ['!] described a “pair-see” formulation
where two fully correlated electrons move in the field of the others. Van der
Hart presented a number of applications of the group function method, mostly
in the geminal approximation ['(, '', '7, '"].

Blatt ['6], Coleman ['=, '#], then Bratož and Durand [':] investigated a
special N -electron wave function in which all geminals were constrained to have
the same form, and established the relationship between this function and that
used by Bardeen, Cooper and Shieffer (BCS) [7>] to describe superconducting
systems with electron pairs. The underlying wave function was termed as the
antisymmetrized geminal power (AGP) function.

In !:6#, a group of keynote papers was published by Miller and Ruedenberg
[7!, 7(, 7']. They introduced an optimization procedure for geminals, presen-
ted a proof for Arai’s theorem, analyzed the advantages and the limitations
of the simple APSG wave function, introduced the augmented separated-pair
expansion (which develops the wave function in terms of APSG-type terms),
and tested the theory on beryllium-like atoms.

Extensive numerical studies were performed in !:=> by Silver et al.
[77, 7", 76]. These gave rise to the conclusion that, in contrast to earlier ex-
pectations, the fraction of the correlation energy covered by APSG is not too
high; it can be sometimes as low as ">%. This negative experience justified
the development of the antisymmetrized product of geminals (APG) model
[7=, 7#] in which the strong orthogonality constraint was relaxed. Nicely and
Harrison [7:] constructed APG wave functions for LiH and BH, bringing sub-
stantial improvement with respect to APSG. For the BH molecule, for which
APSG was known to fail [7"], they found that the fraction of the correlation
energy increased from #>% (APSG) to :#% (APG). Nicely and Harrison [7:]
have also considered odd-electron systems by augmenting the singlet coupled
geminals with appropriate doublet one-electron functions.

An interesting idea was used by Franchini and Vergani [">], who avoided
the expensive optimization of geminals, rather they expanded them in a loca-
lized MO basis. A notable study was published in early seventies by Robb and
Csizmadia ["!, "(, "', "7], entitled ‘The Generalized Separated Electron Pair
Model’. They have also determined geminals on a localized basis, introduced a
multi-configuration APSG ansatz, and considered one- and two-electron trans-
fer terms as well. They performed calculations on NH' and its isoelectronic
series ["!, "(, "'] as well as for the CO molecule ["7].

The generalized valence bond method [""] can be considered as a special
APSG technique, where each geminal consists only of two spatial orbitals.

Wilson and Geratt ["6] discussed a pair-function model constructing ge-
minals from non-orthogonal one-electron orbitals. Their calculations, perfor-
med on the water molecule, supported qualitative valence-shell electron-pair
(VSEPR) models ["=] of directed valence.

Further theoretical development was achieved in the late seventies, some
has proved to be useful for future applications, others represented some cul de
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sacs. Based on an idea by Silver ["#], Náray-Szabó [":] investigated all-pair N -
electron wave functions constructed from N (N � !)=( geminals. Fantucci and
Polezzo [6>, 6!, 6(, 6', 67] elaborated optimization techniques for multiconfi-
gurational SCF wave functions which were used subsequently for optimizing
geminals [6"]. Besides strong orthogonality, a set of general orthogonality con-
ditions was investigated by Wilson [66]. Interest in non-orthogonal geminals
was also increased in this period [6=, 6#].

There is no room here to collect together all important achievements in
quantum chemistry which are strongly or loosely connected to geminals; or at
least, their development was perhaps motivated by the successes or failures of
geminal theories (cf. e.g. the self-consistent electron pair method by Meyer and
its reformulations [6:, =>, =!], or the connections to valence bond theory [=(]).
We have to mention an important book by Hurley [='] in which significant
attention was paid to geminals and their localization.

In summarizing, the fundamental knowledge about constructing and using
simple as well as generalized geminal-based wave functions had been collected
by the !:#>s. In course of this work, the pioneering studies of Ede Kapuy
played an important role. The calculations performed with such type of wave
functions were mostly limited at that time, however, to small molecules and to
small basis sets.

2.2
Recent Developments

Since !:#>, developments in the area proceeded along several lines, a few ex-
amples of which are listed below.

2.2.1
Use of Relative Electron Coordinates

Already in !:=>, Robb and Csizmadia discussed the possibility of incorporating
relative electron-coordinates in geminal-type wave functions ["(]. This idea
comes up naturally as two-electron functions may, in principle, depend on the
coordinate differences rij , though this is never used in the so-called algebraic
approximation that expresses any N -electron function in terms of products of
one-electron functions. The result is a better account of electron correlation,
e.g. the correlation cusp [=7] of the wave function. The correlation energy will,
therefore, converge better with increasing basis set as compared to the algebraic
approximation. Geminals that contain relative electron coordinates are often
termed explicitly correlated.

A scientific research group, concentrated mainly at Gainesville, Florida, car-
ried out a detailed study on various quantum chemical methods, incorporating
explicitly correlated Gaussian geminals into the basis set [=", =6, ==, =#, =:].
The research in this direction is still in progress [#>, #!, #(, #', #7].
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2.2.2
Treatment of Extended (Large) Systems

Though recent computational facilities make the use of larger basis sets pos-
sible, standard geminal wave functions can only be determined accurately for
small molecules. For extended systems, including large molecules, polymers
and solids, severe approximations have to be made.

Valdemoro and Rubio proposed a geminal approach to treat covalent
crystals [#"]. They worked in a minimal basis set of Bloch orbitals and con-
structed k-vector dependent geminals.

Kirtman formulated a density matrix treatment using a separated pair an-
satz [#6]. He derived variational equations in the local space approximation to
determine fragment wave functions and discussed the role of strong orthogo-
nality in the localization of the wave function.

Following the work by Ukrainskii [#=], several other authors applied ge-
minals to describe infinite systems, mostly in the �-electron approximation
[##, #:, :>, :!]. Kuprievich treated ground and excited states of a quasi-metallic
ring of "> atoms with strongly orthogonal geminals [#:]. Karadakov et al. dis-
cussed simple geminals both in delocalized [:>] and localized [:!] representa-
tions, and found the latter superior. This confirms a general feature of geminals
that will be discussed in Sect. " in more detail.

2.2.3
Uniform Geminal Models

Several authors revisited the AGP wave function and its extensions. In the ori-
ginal form, this function is simply the product (the N -th power) of N identical
geminals. In spite of this simple form, it can offer an approximation better than
HF if the geminal is properly optimized. Fukutome has dealt with the projected
BCS wave function [:(] which is essentially equivalent APG. Some key publi-
cations in this field are due to Ortiz et al. [:'] and Sangfelt et al. [:7]. Further,
Öhrn and Linderberg have shown that the AGP wave function may serve as
an appropriate (i.e., consistent) reference state for excited state calculations
in the random phase approximation (RPA) [:", :6]. (We note only in passing
that, subject to some restriction in the excitation ansatz, the full APSG wave
function can also be used as a consistent ground state in equation-of-motion
(EOM) techniques [:=, :#].) Liu et al. has extended the AGP model to allow
for two kinds of geminals [::, !>>].
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2.2.4
Second Quantized Theory, Composite Particles

Second quantization offers a great help in dealing with elementary particles
(e.g., electrons). Geminals are entities composed of two electrons, thus their
second quantized description requires special features.

Second quantization for composite particles, in the context of quantum
chemistry, was elaborated by several authors, e.g. by Girardeau [!>!], Kvasnička
[!>(], Fukutome [!>', :(] , and Valdemoro [!>7, !>"], to name a few. The
present author used creation operators composed of two fermion operators
to describe geminals in orthogonal [!>6, !>=, !>#, :#] and non-orthogonal
[!>:, !!>, !!!, !!(, !!'] basis sets. Second quantization for geminals will be
reviewed in Sect. '.(.

2.2.5
Extended Geminal Models

In a series of papers, Røggen has formulated a general procedure to approach
the exact (full-CI) solution in terms of geminals. His approach is called the
extended geminal model. First [!!7, !!"], he introduced an extra subset of
orbitals, common to all geminals, in order to describe inter-geminal correlation
effects, and avoided the violation of strong orthogonality by the method of
moments [!!6, !!=, !!#]. This theory later evolved into a general formulation of
the many-electron problem, specifying a new route towards the exact solution
of the many-electron problem (see [!!:] and references therein, as well as the
contribution by Røggen in the present book [!(>]).

Extending the structure of the wave function is not the only way of impro-
ving the APSG approximation. In our laboratory [!>:, !>=, !>#], we proposed
the biorthogonal formulation to take care of intergeminal overlap effects, and
derived simple formulae to account for delocalization and dispersion inter-
actions using either perturbation theory or a linearized coupled-cluster-type
ansatz with the APSG reference state.

2.2.6
Applications, Qualitative Explanations, Localization

Among the links to qualitative theory, the connection to the VSEPR theory has
already been mentioned above. Another conceptually important field of appli-
cation offered by geminal-based theories is the description of two-electronic
fragments (inner shells, valence-shell two-center bonds, lone pairs, etc.) in a
polyatomic system [!!']. The inherent relation between the theory of geminals
and the localization problem has been emphasized for a long time. Due to its
importance this issue will be the focus of Sect. ".
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An important qualitative feature of geminal-based wave functions is that
they, unlike closed-shell HF, may properly describe the bond dissociation pro-
cess. This advantage was evident from the very beginning and it was analyzed
later in great detail [!(!, !((] including the extension to describe dissociation
of multiple bonds [!(']. Qualitatively correct potential curves have even been
reported as obtained from drastically simple approximate geminals [!>6, !!>].

3
The Form of Geminal Wave Functions

3.1
First-Quantized Formulation

Since the pioneering work of Heitler and London [!(7], that explained the clas-
sically non-existent bond in the H( molecule, two-electron two-center bonds
have been the targets of many investigations. The most essential features can
be understood on a minimal basis set model, where each of the two consti-
tuents contribute one basis function, say �A and �B. Then, the normalized
combinations of these,

�! =
!p

! + �( + (�s

(
�A + ��B

)
(6)

�( =
!√

! + �( � (�s

(
��A � �B

)
; (=)

with s being the h�Aj�Bi overlap, can be considered as bonding and antibonding
molecular orbitals, respectively. The � and � polarity parameters, from the
orthogonality of �! to �(, are related as � = �+s

!+�s : They are equal if s = >
(cf. semiempirical theories or the case of orthogonalized basis functions), and
both are ! for a homopolar bond. In the general case, � has to be optimized
variationally.

The singlet HF wave function in terms of MOs is clearly written as

!ΨHF = Â�!(r!)˛(!)�!(r()ˇ(() = �!(r!)�!(r()
!p
(

[
˛(!)ˇ(() � ˛(()ˇ(!)

]
: (#)

That is, !ΨHF is described as a product of a symmetric spatial and an antisym-
metric spin function !# (!; () = !p

(

[
˛(!)ˇ(() � ˛(()ˇ(!)

]
. The same function

can be transformed to the AO basis by substituting (6) and (=) into (#):

!ΨHF =
�A(r!)�A(r()+�(�B(r!)�B(r()+�(�A(r!)�B(r()+�B(r!)�A(r())

!+�(+(�s
!# (!; () :

(:)

The first two terms in the numerator describe configurations where both el-
ectrons are on A and B, respectively. These are called ionic terms. The last
two ones describe the sharing of electrons in a symmetrized way, these are the
covalent terms. For � = ! (homopolar bond), the coefficients of the ionic and
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covalent terms are equal, though physical intuition predicts the ionic terms to
have smaller weights due to correlation effects (Coulomb hole). The neglect of
electron correlation introduces a quantitative error in !ΨHF , and, even worse, it
results in a qualitative failure in the dissociation limit when �A and �B are very
far from each other. Here the weight of ionic terms should go to zero while
it is kept constant in !ΨHF for � = ! (“dissociation catastrophe”). The famous
Heitler–London (HL) wave function is obtained by keeping the covalent terms
only; it dissociates properly but, since it neglects ionic terms completely, it is
strongly over-correlated. Clearly, the best possible two-electron wave function
in this basis set emerges if one introduces an extra variational parameter in
front of the ionic terms, e.g.

!ΨWeinb =
(
c!�A(r!)�A(r() + c(�B(r!)�B(r()

+"
[
�A(r!)�B(r() + �B(r!)�A(r()

]) !# (!; () ; (!>)

with the normalization condition c(! + c(( + ("( + (c!c(s( + 7"s(c! + c() +
"(s( = !. Such a wave function was used (with optimized orbital exponents)
by Weinbaum [!("]. It is important to realize that the same form emerges if
one considers the two-configuration wave function

!Ψ =
[
�!(r!)�!(r() + #�((r!)�((r()

] !# (!; () ; (!!)

with an appropriate mixing coefficient # (“pair-excited CI”). The equivalence
of (!>) and (!!) can be seen by inserting the forms of �! and �( from Eqs. (6)
and (=). This equivalence means that, for a two-electron system, no open-shell
configurations (i.e., �!(r!)�((r() type terms) occur in the MO basis. In other
words, the analogs of the covalent configurations are missing if the MOs are
used. We emphasize that within this limited two-orbital basis set the wave
functions (!>) or (!!) are exact, they correspond to the full-CI solution of the
two-electron problem. The HF or HL functions are obviously special cases of
Eq. (!>) which can be called a geminal wave function for the two electrons.

More generally, a singlet geminal in a larger AO basis can be put down as

!Ψgeminal =
∑
mn

Cmn �m(r!)�n(r() !# (!; () ; (!()

where the diagonal terms (m = n) constitute the ionic terms while m 6= n
contribute to the covalent configurations. The same wave function was quoted
in Eq. (") in terms of spin-orbitals; now it is written in terms of spatial orbitals
with the spin function separated. Equation (!() is a generalization of Eq. (!>).
The singlet spin function !# (!; () being antisymmetric, the coefficients Cmn
must be symmetric to preserve the antisymmetry of the entire wave function.
One can therefore turn to the basis set where matrix Cmn is diagonal:

!Ψnatgem =
∑
m

Cm 'm(r!)'m(r() !# (!; () ; (!')

which is a generalization of Eq. (!!). For reasons given below, orbitals ' are
called natural orbitals and Eq. (!') is the natural representation of the geminal.
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The total wave function of a many-electron system can be constructed as
an antisymmetrized product of individual geminals [see Eq. (')]. Dealing with
this product is substantially simpler if the geminals are kept orthogonal to each
other in the strong sense, i.e.∫

 i(r!; r() k(r!; r()dr! = > : (!7)

In terms of the expansion coefficients Cmn this means∑
n

Cimn C
k
rn = > for all m; r (i 6= k) : (!")

The antisymmetrized product of strongly orthogonal geminals is denoted by
the acronym APSG. Properties of this wave function, its construction and use,
will be discussed in the forthcoming sections.

3.2
Second-Quantized Formulation

Application of the second quantized formalism to the theory of geminals does
not introduce any essentially new features but it does makes many derivations
much easier and more transparent. If the reader is not familiar with the forma-
lism of second quantization [!(6], she or he may skip the following formulae
and focus merely on the results of this section.

The second quantized analogue of Eq. (") is

 +
i =

∑
�<�

Ci�� a
+
� a

+
� (!6)

with antisymmetric coefficient matrices Ci�� . Here a+
� is an electron creation

operator on spinorbital ��. One can interpret the symbol  +
i as a composite

particle creation operator, since it creates the two-electron wave function for
the geminal i.

For the sake of simplicity, we shall assume in this review that the basis
orbitals �� form an orthonormal set. Generalization to the nonorthogonal case
can be done in a straightforward manner using the biorthogonal technique
[!(=, !(#, !(:, !>:, !!', !(6].

In an orthogonal basis, the adjoints of creation operators a+
� are the anni-

hilation operators a�. The electron creation and annihilation operators obey
simple anticommutation rules[

a+
� ; a

+
�

]
+

=
[
a�; a�

]
+ = >

[
a+
� ; a�

]
+

= ı�� : (!=)

The algebra of the composite particle creation operators  +
i is more compli-

cated. Denoting the adjoint operators by  �
i , the commutation rules, in the

general case, read:[
 +
i ;  

+
k

]
� =

[
 �
i ;  

�
k

]
� = > (!#)[

 �
i ;  

+
k

]
� = Q̂ik ;
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which can be seen by inserting the expansion (!6) of the composite operators
and using Eq. (!=). Here Q̂ik is a non-diagonal matrix of operators [!>7] that
causes serious difficulties when handling operators  in matrix elements, so
we shall get rid of it.

An important difference between Eqs. (!=) and (!#) is that the latter contains
commutators instead of anticommutators, expressing that the quasi-particles
composed of two electrons are bosons.

To avoid the difficulties represented by the non-diagonal operator matrix Q̂,
we shall introduce the strong orthogonality (SO) condition (!") under which
its form becomes substantially simpler:

Q̂ik = ıik Q̂i ; (!:)

with

Q̂i = ! �
∑
��

P i�� a
+
� a� ; ((>)

where P i�� is a matrix element of the first-order density matrix for geminal i:

P i�� = h ija+
� a�j ii : ((!)

As a result of this simplification, the rules for the evaluation of matrix elements
between APSG-type wave functions become similar to those between single
determinants [!(6]. In particular, full density matrices as well as the energy
formula can easily be evaluated.

An easy way of ensuring SO is to introduce a partition of the set of one-
electron basis functions and to expand each geminal only within a single sub-
space:

 +
i =

∑
�<�2i

Ci�� a
+
� a

+
� ; ((()

Then, the full first order density matrix becomes block-diagonal in geminal
indices:

P�� = hΨ ja+
� a�jΨ i = ıik P

i
�� (� 2 i; � 2 k) ; ((')

where the first-order density matrix for geminal i takes the simple form

P i�� =
∑
�2i

Ci��C
i
�� (�; � 2 i) : ((7)

The intra-geminal elements of the second order density matrix read:

Γ i-;�;�;� = ha+
� a

+
� a�a- i = Ci��C

i
-� (�; �; �; - 2 i) ; ((")

while the intergeminal elements have the same structure as in HF theory:

Γ-;�;�;� = ha+
� a

+
� a�a- i = P�-P�� � P�- P�� ((6)

[Many of these matrix elements are zero due to Eq. ((')]. The energy expression
for the APSG wave function is, therefore, particularly simple:
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E = hĤi =
∑
i

∑
�;�2i

heff�� P i�� +
!
(

∑
i

∑
�;�;�;-2i

[�� j�-] Ci��C
i
�-

�!
(

∑
i 6=K

∑
�;�2i

∑
�;-2K

[��jj�-] P i�� P
K
�- ; ((=)

with the effective one-electron Hamiltonian for geminal i

heff�� = h�� +
∑
k( 6=i)

∑
�;-2k

P k�- [��jj�-] : ((#)

In the above equations, h�� are the usual one-electron integrals while [�� j�-]
and [��jj�-] are the standard bare and antisymmetrized two-electron integrals,
respectively. To derive these formulae, one has merely to substitute the second
quantized form of the total Hamiltonian and apply the above rules for the
density matrix elements. The analogy of Eq. ((=) to the corresponding HF
formula is obvious.

Determination of the appropriate expansion coefficients Ci�� and the optimal
choice of the basis functions � by which the geminals are expanded will be
discussed in the following section.

4
Optimization of Geminals

4.1
Arai's Theorem

Because of the strong orthogonality condition, two-electron functions are ea-
sier to construct, and to deal with. As mentioned above, a straightforward way
of ensuring SO is to expand the geminals in mutually exclusive and orthogonal
subspaces. This seems to be a very severe restriction, but, because of a famous
statement that we call Arai’s theorem, the fact is that the existence of an ex-
pansion of this kind and SO are completely equivalent. The theorem can be
formulated as follows.

Theorem (Arai):

Given a set of geminals f ig satisfying the SO condition [Eq. (!")] and
having a basis set expansion in an orthogonal set of one-electron orbitals
[Eq. (")], it is always possible to find a unitary transformation in the
one-electron space so that in the new basis each geminal is expanded in
a subset of the one-electron functions the subsets having no common
elements.

The importance of this statement cannot be over-emphasized. Strongly or-
thogonal geminal expansions in mutually exclusive subspaces can be done with-
out any loss of generality provided one determines these subspaces which, for
brevity, will be called Arai-subspaces hereinafter.
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As listed in Sect. (., several authors have proved this theorem [(!, ((, 7(, (7].
A simple proof will be presented below.

Consider two geminals  i and  k having expansions (!6). The associated
density matrices are:

P i23 = h ija+
3 a2j ii =

∑
4

Ci24 C
i
34 ((:)

and similarly for P k. The product of these two density matrices will be:(
P iP k

)
23

=
∑
�4#

Ci24 C
i
�4 C

k
�#C

k
3# : ('>)

One may observe that under the strong orthogonality condition (!"), due to
the summation over �, this product matrix vanishes:∑

�

P i2�P
k
�3 = > : ('!)

Consequently, density matrices of different SO geminals will commute, thus
they may be brought to the diagonal form simultaneously:

P i23 = ni2ı23 ('()

and

P k23 = nk2ı23 : ('')

Substitution of this diagonal form into ('!) gives, for i 6= k,

nk2n
i
2 = > ; ('7)

which means that for any orbital 2 either of the occupation numbers ni2 or nk2
must be zero, thus in the corresponding basis sets the two subsets cannot have
a common element, Q:e:d.

In terms of spatial orbitals, the geminal coefficient matrix Cimn is symmetric
for singlets, and thus may be diagonalized by an appropriate unitary transfor-
mation [Eq. (!')]. Then, the associated spatial density matrices become also
diagonal:

P imn = (
∑
r

CimrC
i
nr = ( ımn

(
Cim

)(
: ('")

That is, diagonalizing all Ci matrices in their respective subspaces, one arrives
at a basis set in which the entire density matrix is diagonal with occupation
numbers nim = (

(
Cim

)(
. The orbitals spanning this basis set are, therefore,

the natural orbitals of the APSG wave function, justifying the name ‘natural
geminals’ used in Sect. '.!.

Arai’s theorem suggests that the optimization of geminals concerns two
issues: (i) finding the optimal Arai subspaces and (ii) solving the local two-
electronic Schrödinger equations within each subspace. These points will be
addressed below.
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4.2
Local Schr/odinger Equations

In this section, assuming that optimal or approximate subspaces for all gemi-
nals are available, we discuss the optimization of the expansion parameters Ci��
[Eq. ((()]. These are linear variational parameters, thus their optimum values
result from a local Schrödinger equation

Ĥ i iq = Eiq iq ; ('6)

one for each geminal. Here q labels the various states of geminal i, which
are eigenfunctions of the effective Hamiltonian Ĥ i. Substituting the basis set
expansion for the geminals, we arrive at the matrix equation∑

�<�2i
Hi
�-;��C

iq
�� = EiqCiq�- (� < - 2 i) ; ('=)

where the matrix elements of the effective Hamiltonian are defined by

Hi
�-;�� = hvacja-a� Ĥi a+

� a
+
� jvaci : ('#)

The local effective Hamiltonians compress all integrals whose indices belong
to the associated subspaces:

Ĥ i =
∑
��2i

heff�� a+
� a� +

!
(

∑
���-2i

[�� j�-] a+
� a

+
� a-a� ; (':)

where, in the spirit of group function theory [(6, (=], the effective one-electron
integrals are the ones defined in Eq. ((#). Substituting Eq. (':) into Eq. ('#),
the matrix elements of the local Hamiltonian are obtained in a particularly
simple form:

Hi
�-;�� = ı-� h

eff
�� � ı-�h

eff
�� + ı��h

eff
-� � ı�� h

eff
-� + [�� jj�-] : (7>)

Variational determination of the expansion coefficients Ci�� , requires the
construction and diagonalization of Hamiltonian matrices, one for each gemi-
nal. Diagonalizations have to be done iteratively, because, due to the presence
of the effective core heff , the Schrödinger equations of the geminals are cou-
pled. These iterations, however, usually converge quite fast. The Hamiltonian
matrices are of limited size, as Ĥ i is represented only in the subspace of basis
functions assigned to the geminal in question. Optimization of the subspaces
themselves is a more complicated issue.

4.3
Brillouin Theorem for Geminals

In HF theory, one has the Brillouin theorem (BT) stating that singly excited
configurations do not interact with the ground state determinant [!'>]. The
proof commonly proceeds by utilizing the properties of the HF wave function.
An alternative route was followed by Mayer [!'!, !'(, !''] who derived the
BT directly from the variational principle, permitting one to obtain the HF
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equations from the Brillouin condition. We shall follow here the same idea in
studying whether a generalization of the BT exists for the APSG wave function.

The conjunction that such a generalization must exist, is based on an ana-
logy of the BT for group functions discussed by McWeeny [(6].

We start from the general variational condition ı
[hΨ jĤ jΨ i � EhΨ jΨ i] = >;

where E is a Lagrangian multiplier, to ensure the normalization of Ψ . Carrying
out the variation of the brackets, one finds

hıΨ jĤ � EjΨ i = > ; (7!)

where ıΨ is an infinitesimal variation of the wave function within the permitted
class of functions specified by the type of Ψ . If the variation is kept orthogonal
to the wave function, i.e., hıΨ jΨ i = >, Eq. (7!) simplifies to

hıΨ jĤ jΨ i = > : (7()

Let us now study the consequences of this general result when Ψ is the APSG
wave function for N geminals

Ψ> =  +
!> 

+
(>… +

N> jvaci ; (7')

where, with the subscript >, we indicate that each geminal is in its ground state,
yielding the total ground state APSG wave function Ψ>. Varying the individual
geminals as  i> !  i> + ı i, we can write the varied APSG wave function, up
to first order, as

Ψ> ! Ψ> + ıΨ = Ψ> +
N∑
i=!

 +
!>…ı +

i … +
N> jvaci + O(() : (77)

Accordingly, the first order variation of the wave function takes the form

ıΨ =
N∑
i=!

 +
!>…ı +

i … +
N> jvaci : (7")

The next step is to study the individual variations ı i. As any two-electron
function, these variations can be expanded according to products of pairs of
one-electron functions. In the second quantized notation we may therefore, in
general, write

ı +
i =

∑
��

#�� a
+
� a

+
� ; (76)

where #-s are first-order infinitesimals. However, any choice of #-s does not
represent a permitted variation (that keeps the APSG form). To remain within
the permitted function class, let us separate three possible types of variations:

ı +
i =

∑
��2i

#i�� a
+
� a

+
� +

∑
�2i

∑
k( 6=i)

∑
�2k

#ik�� a
+
� a

+
� +

∑
k;l( 6=i)

∑
�2k

∑
�2l

#kl�� a
+
� a

+
� : (7=)

It is not difficult to see that the third term completely destroys geminal i,
putting both electrons into other subspaces. Since such a variation will not
be permitted, we set #kl�� = >. The first term is also easy to manage, as it
preserves geminal i in the sense that it puts both electrons onto subspace i.
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Such a function can be expanded using the locally complete set of two-electron
functions  iq:∑

��2i
#i�� a

+
� a

+
� =

∑
q 6=>

ıtiq  
+
iq ; (7#)

where q runs over all excited states of geminal i. The ground state (q = >) is
left out as it would not be a variation. The varied wave function is thus:

ıΨ =
N∑
i=!

∑
q 6=>

ıtiq  
+
!>… +

iq… +
N> jvaci : (7:)

=
N∑
i=!

∑
q 6=>

ıtiq  
+
iq  

�
i> jΨ>i

It is easy to see by substitution that such a variation remains orthogonal to Ψ>,
thus the variational condition becomes:

N∑
i=!

∑
q 6=>

ıtiq hΨi>!iq jĤ j Ψ>i = > (">)

which, for arbitrary ıtiq, can hold only if

hΨi>!iq jĤ j Ψ>i = > : ("!)

Verbally, excitations that remain within a geminal do not interact with the
ground state. This result can be referred to as the local Brillouin theorem. It
is equivalent to solving the local Schrödinger equations as described in the
previous section.

It remains to consider the third type of variation, the middle term in
Eq. (7=). It has the effect of moving a single electron from geminal i to k.
It can be transformed to the form∑

�2i

∑
k( 6=i)

∑
�2k

#ik�� a
+
� a

+
� =

∑
k( 6=i)

∑
�2i

∑
�2k

7ik�� a
+
� a� 

+
i ; ("()

where the infinitesimals 7-s are in a one-to-one correspondence with #-s:

#ik�� =
∑
�2i

Ci�� 7
ik
�� ;

which can easily be verified by substituting the expansion of geminal  +
i , letting

Eq. ("() act on the vacuum state, and comparing the coefficients. Since such a
variation remains also orthogonal to Ψ>, the variational condition yields∑

i 6=k

∑
�2i

∑
�2k

7ik�� hΨ> j a+
� a�Ĥ j Ψ> i = > ; ("')

which, for arbitrary variations implies

hΨ> j a+
� a�Ĥ j Ψ> i = > (� 2 i; � 2 k; i 6= k) : ("7)

These equations constitute the nonlocal part of the Brillouin theorem for ge-
minals. They can be formulated as the APSG wave function is stationary with
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respect to variations that move an electron from one geminal to another. Such
variations are known to be described by an appropriate unitary transforma-
tion within the orbital space [!'7], thus satisfaction of the Brillouin theorem
is equivalent to finding the optimal Arai-subspaces.

4.4
MCSCF Philosophy

Optimization of the APSG wave function requires the fulfillment of both the
local and nonlocal Brillouin conditions [Eqs. ("!) and ("7)]. The former can be
achieved by solving the local Scrödinger equations [Sect. 7.(] while the latter
requires a laborious orbital optimization.

Efficient techniques for optimizing orbitals have been elaborated in multi-
configuration SCF (MCSCF) theory (see e.g. the book by McWeeny [!'7] and
refs. therein). Since the APSG wave function represents a special class among
MCSCF functions, these procedures can be applied to determine the optimal
Arai-subspaces [6"].

The basic idea of the optimization techniques mentioned is to express the
energy as a function of orbital rotation parameters, and to make the energy
stationary with respect to the variation of these parameters. The optimization
is most simply done by the gradient technique. For the rotation of two orbitals,
m and n, one has the gradient

gmn = ((Fmn � Fnm) ; ("")

where F is a generalized Fockian, which for an APSG wave function reads

Fmn =
∑
l2i

hmlP
i
ln+

∑
spl2i

[
sljpm]

Γ ipnsl+
∑
l2k

∑
j( 6=i)

∑
ps2j

[
sljpm]

Γpnsl ("6)

(m 2 k; n 2 i) :

To reach the minimum, one has to set up an iterative procedure. Starting with
an initial guess for the orbitals, the local Schrödinger equations are solved
to get the geminals, from which the generalized Fockian and the gradients
are evaluated. Then the orbitals are transformed in the direction of gradients;
this transformation can be made more effective (but more laborious) with the
aid of a Hessian. In the resulting new orbital basis new geminals have to be
constructed and the procedure is repeated till convergence. Invoking natural
geminals further increases the effectivity of the procedure.

As a result of optimization, unique Arai-subspaces emerge, but the form
of the orbitals spanning the subspaces is arbitrary. The orbitals can be made
unique by fixing them as the natural orbitals in each subspace.

An interesting feature of this optimization procedure is that the dimensions
of Arai-subspaces have to be given as input parameters. They specify the overall
structure of the wave function and can be guessed by chemical intuition or
optimized in a “trial-and-error” scheme.
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Table 1. Test calculations for LiH in STO-6G basis for comparison to another optimized
APSG method

Method Energy [atomic units]

HF �=::666'
Optimized in Ref. [6"] �=::=:#!
SLG-Boys �=::#>#"
Optimized APSG �=::#>:>

One has to keep in mind that orbital rotation is a highly nonlinear pro-
cedure, and, unless checked, one can never be sure whether it converges to
the absolute minimum in the parameter space: local minima as well as saddle
points may also be reached. An example of this will be shown in Table !.

4.5
Using Localized Orbitals

To speed up the convergence of orbital optimizations, the selection of a proper
initial guess has to be done with care. For reasons given in the following pa-
ragraph, localized MOs obtained at the HF level often provide a good starting
point.

An example is given in Table ! where the total energy of the LiH molecule is
shown at different levels. Although the basis is very small (minimal STO-6G),
the subspace optimization is not trivial as shown by the second row of the table:
the corresponding energy was supposed to be optimized if Ref. [6"], but, using
Boys’ localized MOs (LMOs) as an initial guess, one gets a better energy without
any optimization. Varying the Boys orbitals one may still achieve an energy
lowering of >.>" mH. (The acronym ‘SLG-Boys’ in the Table means ‘strictly
localized geminals’, expressing that the geminals are not fully optimized but
are expanded in orthogonal subspaces of Boys’ localized MOs.)

Localized HF MOs can be used not only for accelerating convergence, but
even to bypass the whole expensive optimization process simply by approxima-
ting the optimum orbitals with the localized ones. Clearly, besides occupied HF
orbitals, the virtual ones must also be localized with some criterion. If the Boys
localization is applied, the virtuals can be assigned to the occupied ones by a
simple distance criterion. It is not necessarily true, however, that Boys orbitals
represent the best choice. It may be worthwhile checking energetically localized
Edmiston–Ruedenberg LMOs [!'", !'6], or any other set of LMOs. The idea by
Pulay [!'=] to substitute virtual MOs with atomic orbitals, projected out from
the occupied space, is also promising.

The fact that Boys LMOs represent an appropriate initial guess can also be
inferred from Fig. !. We plot there the variation of the total energy of some
molecules as a function of a single selected orbital rotation parameter. The
scale is chosen so that the Boys LMOs correspond to > degree. It is apparent
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Fig. 1. Dependence of the total energy of the H7 cluster, the water and HF molecules, as a
function of an orbital rotation parameter. a H7 cluster, mixing the occupied MOs of the two
H( molecules. b H(O, mixing the occupied MOs of the two O–H bonds c HF, mixing the
bonding LMO of the F–H bond to the lowest nonbonding MO on F

that in two of the cases the variational minimum is almost at >ı, while for the
hydrogen fluoride it is at around (>ı but it is still closer to the Boys limit than,
let us say, to the canonical MOs.

5
Geminals and Electron Localization

5.1
Uniqueness of Geminals

While a single-determinant wave function is known to be invariant — up
to an irrelevant phase factor — against any unitary transformation among the
orbitals it is constituted from, no such degree of freedom exists for an APG wave
function.This is easily seen by mixing geminals  ! and  ( in Ψ =  +

!  
+
( jvaci:

 0
! = cos˛  ! � sin˛  ( ("=)

 0
( = sin˛  ! + cos˛  (
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by which the transformed wave functions becomes

Ψ 0 =  0+
!  0+

( jvaci ("#)

=
[
cos˛ sin˛

(
 +

!  
+
! �  +

(  
+
(

)
+ cos( ˛  +

!  
+
( � sin( ˛  +

(  
+
!

] jvaci :

For a general ˛, this wave function is not equal to Ψ for two reasons: (i) dia-
gonal terms like  +

!  
+
! , which vanish for single determinants, now survive;

(ii)  +
(  

+
! =  +

!  
+
( without sign change. This latter point affects only the nor-

malization of Ψ , but the former brings in configurations absent in Ψ . Both are
consequences of the Bose-like commutation rules [Eq. (!#)].

There are only special values of the rotation angle ˛ for which Ψ 0 = Ψ: if
either cos˛ or sin˛ is zero. These values correspond to leaving the geminals
unchanged (sin˛ = >) or to interchanging  ! and  ( (cos˛ = >). Accordingly,
apart from trivial permutations, geminals cannot be subjected to unitary trans-
formations without changing the many-electron wave function.

This “no-transformation-theorem” for geminals has important consequen-
ces. In HF theory, one can freely localize the MOs, or keep them in canonical
form, or even make them maximally delocalized [!'#]. This whole stuff is,
however, completely arbitrary. In contrast, the uniqueness of individual gemi-
nals in an APG wave function offers important information on localization and
delocalization: if a geminal happens to be localized in a molecule, it is not a
matter of an ambiguous transformation but it is an inherent property of the
geminal. We must note here that geminal-based wave functions can be, and
usually are, superior to the HF wave function.

A last remark needs to be made about the connection of unitary transfor-
mations and strong orthogonality. The reader may easily verify that the com-
mutation rule (!#), expressing the SO condition algebraically, is not invariant
against a unitary transformation of geminals. Such transformations, therefore,
may preserve only the weak orthogonality but not SO. This fact underlines the
irrelevance of global geminal transformations in APSG theory, emphasizing the
uniqueness of individual geminals in a many-electron wave function.

5.2
Qualitative Considerations

The conclusion of the previous paragraph is that a geminal is either localized or
delocalized, independently of any auxiliary conditions. Qualitative arguments
have led to the further conclusion that geminals are usually localized in space.
To see this, one has to recall that correlation always stabilizes the energy, and
that a geminal-type wave function accounts for nothing but intra-geminal cor-
relation. Consequently, letting the shape of a geminal become optimized in
space, it will be energetically favorable to end with a compact function for
which the dynamic correlation energy of the two electrons sitting on it is lar-
ger. This argument does not hold for situations where the static correlation is
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dominant, for in this case a spatially extended geminal may emerge to account
for the long-range static correlation effect (cf. bond dissociation process).

The fact that energy-optimized geminals are usually localized in space was
predicted a long time ago by Hurley [='], and was investigated in more detail by
Luken [!':]. The essence of these investigations is that in the natural orbital
representation [Eq. (!')] the geminals are dominated by a principal orbital
having the highest (close to ( ) occupation number and a secondary orbital
being also occupied appreciably (the rest of the orbitals usually have quite
small occupation numbers). An approximate minimization of the energy leads
to conditions for the forms of the principal and secondary orbitals that are
similar to those of a localization criterion.

The spontaneous localization of geminals may also be important in exten-
ded systems, where long-range correlation effects may appear in the form of
localization. For example, there is no way to describe the so called Wigner-
crystal in a free electron gas (see e.g. [!7>]) at the HF level, while in principle
it should be possible with a geminal wave function.

These conceptually important results may have a practical impact, too. They
constitute the basis of the approximate procedures discussed in Sect. 7.", which
avoid the time-consuming optimization of the orbitals by constructing the
geminals from localized MOs.

6
Outlook

When they were introduced and first investigated, geminals were of interest
to quantum chemists because they promised to give the correlation energy to
chemical accuracy. Though it soon turned out that it was not the case, geminals
have still retained their significance because they exhibit certain properties
that serve as some kind of standards for most sophisticated wave functions.
A proper many-electron method has to obey certain conditions: (i) it should
give an upper limit to the energy (variational character); (ii) it should be exact
for a two-electron unit; (iii) should be it size-consistent/extensive. Most of the
widely accepted modern quantum chemical approaches violate one or more
of these conditions: perturbational and coupled-cluster approaches are not
variational, truncated CI schemes are not size-extensive, and neither of them
takes care properly of two-electron units in their simplest (single-reference)
forms; thus they are unable to describe the bond-fission process. Geminal-
based methods belong to that family of multi-configurational schemes which
simultaneously satisfy the above requirements. Therefore, if their construction
and optimization can be done more effectively and their deficiencies solved at
a reasonable cost, geminals may show a great promise.

Among multi-configurational approaches, the geminal approach, in parti-
cular the APSG method, is distinguished for several reasons. First, it correlates
all electron pairs; thus APSG embodies highly excited determinants relative to
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HF, while keeping the structure of the HF wave function as far as possible.
In its fully variational form, it may yield a smooth potential surface with any
kind of geometry, including extremely large bond distances, and it is free from
the intruder-state problem (unfortunately, this does not hold for approximately
optimized APSG).

The a priori localized nature of geminals is quite important and promising.
Computationally, localization permits one to develop efficient algorithms that
scale, in the limit of large N , quadratically or even linearly with the number
of geminals (N ). Conceptually, localization means that a geminal-type wave
function may represent classical chemical concepts (such as the two-electron
bond, lone pairs, etc.) in an unambiguous manner. In fact, we believe that the
best possible quantum chemical representation of local bonds in a molecule
is an APG-type wave function. Thus the limitations of this model reflect the
limitations of these concepts themselves.

The above-mentioned items are mainly valid for the ground state. Calcula-
tion of excited and ionized states with geminals has only been marginally dealt
with in the literature, though it is not ab ovo evident that such wave functions
were less appropriate for that purpose. Formally, the APSG wave function may
serve as a correlated reference state for various excited-state methods, though
the localized features of the wave function will be almost certainly lost. This,
again, reflects the objective fact that excited (or ionized) states of molecules
have, in most cases, delocalized characters.

Much work has still to be done before the above expectations and hopes can
be verified or disproved, allowing geminal-based approaches to occupy their
due place in the arsenal of modern quantum chemistry. The recent increasing
interest in these schemes indicates that the substantial efforts of Ede Kapuy in
the fifties and sixties will not have been wasted.
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discussions and for reading the present manuscript. This work was supported in part by the
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The extended geminal models are reviewed with emphasis both on their conceptual struc-
ture and computational feasibility. A new numerical model which drastically reduced the
computation time at the cost of a very small reduction in accuracy, is introduced. A review
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models.
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1
Introduction

Localization is a key element in order to correlate quantum mechanical calcu-
lations and central chemical concepts such as the chemical bond, lone pairs,
atoms in a molecule and valence. In a conventional approach one usually ap-
plies a localization procedure to the orbitals of a Slater determinant which
defines a many-electron function. Unfortunately, these localization procedu-
res are not a proper part of the basic theory. Even though these procedures
might be based on reasonable physical arguments, they are subjected to an ele-
ment of arbitrariness. However, there is a class of self-consistent field models
where the occupied orbitals are uniquely determined, and where the localized
character of the orbitals is a result of the optimization of the many-electron
function. Within this class we notice the APSG (anti-symmetric product of
strongly orthogonal geminals) model [,] and modern valence bond theory
[+–2]. The extended geminal (EXGEM) models introduced by Røeggen [C–,1]
can be based on an APSG function as the zero-level approximation. Hence,
the interpretative features which can be attributed to the APSG model can be
transferred to this class of EXGEM models. In addition the EXGEM models
have an additive structure which facilitates the analysis of electron correlation
contributions.

In this work we shall review the essential features of the extended gemi-
nal models, sketch some numerical refinements of the models, consider some
important applications and present some new numerical results on the neon
dimer.

2
Extended Geminal Models (EXGEM)

In this section we present the extended geminal (EXGEM) ansatz, discuss the
choice of root function, and comment on numerical models, i.e. different ap-
proximations to the full configuration interaction (FCI) equations defining the
terms in the general EXGEM model.

2.1
The General EXGEM Ansatz

The general extended geminal model is a particular way of constructing a FCI
wave function [C]. For a closed shell +N -electron system we have the following
ansatz for the wave function:

ΦEXG = ΦAPSG +
N∑

K=,

M [N�,;,]A[+N ]
{
Φ[+N�+]

[K] Ω[+]
K

}
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+
N∑

K,<K+

M [N�+;+]A[+N ]
{
Φ[+N�1;1]

[K,K+]
Ω[1]
K,K+

}
+ � � �

+
N∑

K,<K+<���<Kp
M [N�p;p]A[+N ]

{
Φ[+N�+p;+p]

[K,K+���Kp ] Ω
[+p]
K,K+���Kp

}
+ � � � +Ω[+N ]

K,K+���KN

= ΦAPSG +
N∑

K=,

ΨK +
N∑

K,<K+

ΨK,K+ + � � � +
N∑

K,<K+<���<Kp
ΨK,K+���Kp + � � � + Ψ,+���N

= ΦFCI : (,)

In Eq. (,) ΦAPSG denotes the APSG function, fM [N�p;p]g are normalization
constants, A[+N ] is the antisymmetrizer, Φ[+N�+;+]

[K] is the APSG approximation
of the (+N � +) electron cluster generated by deleting the geminal of electron
pair K in ΦAPSG, Ω[+]

k is a two-electron correction function. There are analogous
definitions of the higher order terms in Eq. (,). In the more compact notation,
ΨK represents a single pair correction term, ΨK,K+ a double pair correction
term, and so on. The expansion ΦEXG is identical to a FCI expansion.

The energy can formally be evaluated within the framework of the method
of moments. Since by construction we have〈

ΦAPSG j ΦEXG〉
= , ; (+)

it follows

EEXG =
〈
ΦAPSG j HΦEXG〉

= EAPSG +
N∑

K=,

"K +
N∑

K,<K+

"K,K+ + � � �

+
N∑

K,<K+<���<Kp
"K,K+���Kp + � � � + ", +���N ; (")

where

EAPSG =
〈
ΦAPSG j HΦAPSG〉

(1)

"K =
〈
ΦAPSG j HΨK

〉
(2)

"K,K+ =
〈
ΦAPSG j HΨK,K+

〉
(C)

"K,K+���Kp =
〈
ΦAPSG j HΨK,K+���Kp

〉
(#)

", +���N =
〈
ΦAPSG j HΨ,+���N

〉
(6)

In Eqs. (")–(6),H is the conventional spin-independent electronic Hamiltonian,
i.e.

H =
+N∑
i=,

h(i) +
+N∑
i<j

g(i; j) : ( )
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The interpretation of the terms in Eq. (,) is very simple. The function

Ψ [K] = ΦAPSG + ΨK (,!)

describes the correlated state of electron pair K when the rest of the system is
described by an APSG approximation. Similarly,

Ψ [K,K+] = ΦAPSG + ΨK, + ΨK+ + ΨK,K+ (,,)

describes the correlated state of the electron pairs K, and K+ when the rest of
the system is described by an APSG function. The interpretation of the higher
order terms has an equally simple structure.

The derivation of the general extended geminal model [C] is based on infi-
nite order Rayleigh–Schrödinger perturbation theory. A reordering of the terms
in the perturbation expansion leads to a set of FCI equations defining the terms
fΨK g; fΨK,K+g; : : : and the corresponding energy corrections. These FCI equa-
tions are in accordance with the interpretation of the terms fΨK g; fΨK,K+g; : : :
given in the preceding paragraph.

2.2
The Root Functions in EXGEM Models

The APSG functions in Eq. (,) has the form

ΦAPSG = M [N ]A[+N ]

{
N∏

K=,

Λ̃K (x+K�,; x+K )

}
; (,+)

where M [N ] is a normalization constant determined by the equation〈
ΦAPSG j ΦAPSG〉

= , : (,")

The geminals fΛ̃K g are products of an orbital part and a spin function which
is singlet coupled, i.e.

Λ̃K (x,; x+) = ΛK (r,; r+)#!(�,; �+) : (,1)

The orbital space is partitioned into N + , subspaces, one subspace for each
electron pair and a virtual space. The geminals are defined in terms of the
orbitals of the associated orbital space:

ΛK (r,; r+) =
nK∑
k=,

aKk '
K
k (r,)'

K
k (r+) : (,2)

In Eq. (,2), f'K
k g are natural orbitals (NOs). The ordering of the orbitals is

according to the relation

jaKk j � jaKk+,j; k = ,; :::; nK : (,C)

Since the geminals are normalized we have
nK∑
k=,

jaKk j+ = , : (,#)
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Let f'V
i ; i = ,; :::; nV g denote an arbitrary orthonormal basis of the virtual

space. The following orthonormality conditions are then valid:

〈
'K
k j 'L

l

〉
= ıKLıkl ; (,6)〈

'K
k j 'V

i

〉
= ! ; (, )〈

'V
i j 'V

j

〉
= ıij : (+!)

Equation (,6) expresses the strong orthogonality condition.
A proper APSG function is characterized by nK > , for all geminals. In the

case nK = ,, K = ,; :::; N ; the APSG function is simply a restricted Hartree–
Fock (RHF) wave function. By using nK = , for the core geminals and nK = +
for the valence geminals, the APSG approximation is identical to a generalized
valence bond perfect pairing (GVB/PP) scheme [,2–,#]. It should be empha-
sized at this point that it is only the dimensions of the orbital subspaces which
are fixed a priori. The form of the orbitals and the expansion coefficients faKk g
are determined by the optimization procedure [,6–+!].

By assuming nK > , for the valence geminals, one of the advantages of
using an APSG function, is the unique character of the geminals. There can be
no mixing of the geminals without changing the wave function ΦAPSG. For a
large group of molecules, the geminals have a localized character and thereby
allowing a simple identification with lone pairs and electron-pair bonds. An
excellent exposition of this aspect of the APSG model is given by McWeeny
[+,] in his monograph “Coulson’s Valence”.

The localized character of the geminals can be displayed by introducing the
concepts of charge centroids [++] and charge ellipsoids [+", +1] of the geminal
one-electron densities. By using these localization measures, we can classify
the geminals as core electron pairs, lone pairs and bond pairs [+2].

There is an arbitrariness in the choice of dimensions fnK g of the geminal
orbital subspaces. However, one can argue that for the valence geminals the
proper choice is nK = + as in the GVB/PP scheme. In this case there is one
orbital for each electron. One is then guaranteed a qualitatively correct picture
of the disruption of an electron-pair bond.

There is a subtle weakness in adopting a proper APSG function as the root
function in the EXGEM models. It has its origin in the basis sets used for
calculating the energy terms f"K g; f"KLg; : : :, Eqs. (1)–(#). The correlation term
Ω[+]
K is expressed in terms of the orbital basis set

f'K
k ; k = ,; :::; nK g [ f'V

i ; i = ,; :::; mV g ;

the term Ω[1]
K,K+

is expressed in terms of

f'K,
k,
; k, = ,; :::; nK,g [ f'K+

k+
; k+ = ,; :::; nK+g [ f'V

i ; i = ,; :::; mV g ;
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and with similar constructions for the higher order terms. As a consquence the
weakly occupied natural orbitals (NOs) of the partner geminals to the geminal
K , i.e. ⋃

L 6=K
f'L

l ; l = +; :::; nLg ;

are excluded in describing the correlation term Ω[+]
K . Similarly, the weakly oc-

cupied NOs⋃
L 6=K,;K+

f'L
l ; l = +; :::; nLg

are excluded in describing the correlation term Ω[1]
K,K+

. For triple pair terms and
higher order terms we have an effect of the same kind. This orbital deficiency
at a certain level is corrected at the next level. However, from a computational
point of view, it is very inconvenient since it implies that to obtain a high
accuracy in a calculation, the truncation of the EXGEM expansion, Eq. (,),
must be at a high order. This particular weakness of the EXGEM models was
discovered when the models were applied to weakly bonded complexes. In
a calculation on the HF dimer, using an APSG function with nK = + for
the valence geminals, and an EXGEM expansion truncated at the double pair
level, the EXGEM value for the binding energy of the dimer was only half the
value of the correct one. A careful analysis showed that this disastrous result
could be traced back to the mentioned orbital deficiency when the intersystem
correlation terms f"K,K+g were calculated. Hence, when EXGEMmodels are used
for a study of intermolecular interactions, it is most convenient to use a RHF
function as the root function or basic approximation.

By adopting a RHF function as the root function, the occupied orbitals
f'K

, g are no longer unique. The RHF function is invariant by any unitary trans-
formation of the orbitals. To obtain localized orbitals we have to resort to a
localization scheme. In most applications of the EXGEM models based on a
RHF function as the basic approximation, localized orbitals are determined by
minimizing the Coulomb repulsion energy between the corresponding electron
pairs [+C]. Recently, Ahmadi and Røeggen [+#] introduced a new localization
scheme for the occupied orbitals in supermolecule calculations of intermolecu-
lar interactions. The localized supersystem orbitals are obtained by minimizing
a least-square deviation from the isolated subsystem orbitals. This procedure
eliminates the arbitrariness inherent in conventional localization schemes.

2.3
Energy Partitioning as an Interpretative Tool

One important feature of extended geminal models is an energy partitioning
which leads to a simple interpretation of the total energy. When the geminals
are localized in space, it is possible to identify molecular fragments. These
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fragments can be of three types: (,) the fragment consists both of nuclei and
electron pairs, (+) the fragment consists of only electron pairs, and (") the frag-
ment consists of only nuclei. Røeggen and Wisløff-Nilssen [+6] demonstrated
that the total electronic energy, defined as the total energy in the absence of
nuclear motion, i.e.

EEXG
tot = EEXG + Enuc ; (+,)

where Enuc is the nuclear electrostatic energy, can be written as a sum of intra-
and interfragment energies. If �; ı; �; : : : denote the different fragments, we have

EEXG
tot =

∑
�

E� +
∑
�<ı

E�ı +
∑
�<ı<�

E�ı� + � � � : (++)

In Eq. (++), E� denotes the internal energy of a fragment, E�ı denotes the
interaction between the fragments � and ı, and so on. The two-fragment term
E�ı includes the Coulomb interaction between the relevant charge and charge
distributions, exchange interaction (with its origin in the antisymmetrization
of the wave function) and correlation terms. The three-fragment terms, i.e.
fE�ı�g, and higher-order terms are interfragment correlation contributions.

There is of course no unique way of partitioning a molecular complex. Ho-
wever, there might exist natural fragments. A natural fragment can be defined
with respect to a particular distortion of the molecular system. If due to the
distortion, the fragment � exhibits a change in the internal energy E� which
is of the same order of magnitude or smaller than the corresponding change
in the total electronic energy, one might denote � as a natural fragment with
respect to this distortion. Røeggen and Wisløff-Nilssen used this approach in
describing the difference in equilibrium bond angles in H+O and H+S, NH"

and PH". For weakly bonded complexes there are obvious natural fragments
or subsystems. A particular energy decomposition scheme for these type of
complexes has been advocated by Røeggen [+ ] and Røeggen and Dahl ["!].

2.4
Numerical Models

The energy correction "K,K+���Kp is in principle defined by the lowest eigenvalue
�min of the FCI equation

Heff (,; +; :::; +p)Φ�(,; +; :::; +p) = �Φ�(,; +; :::; +p) ; (+")

and corrections obtained at the lower levels [C]. In Eq. (+"), Heff is an effective
Hamiltonian for the +p-electron cluster in question. To solve FCI equations for
higher order clusters, i.e. +p � 1, with large basis sets, is out of question from
a computational point of view. Approximations have to be introduced. In the
development of EXGEMmodels, several approximations have been constructed
[#–,1]. The very recent model advocated by Røeggen and Wind [,1] is the
most elaborate one. This latter model is based on an RHF function as the
root function. The FCI equations for the four-electron clusters are solved by
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using a restricted set of NOs. The six-electron FCI equations are approximated
by coupled cluster (CC) approximations: CCSD, CCSD(T) and CCSD(TQ). The
acronyms are the conventional ones; SD means single and double excitations,
CCSD(T) is a model correct up to fourth order, and CCSD(TQ) includes all
corrections necessary to make the model correct up to fifth order energy.

To improve the computational feasibility of the EXGEM models, we now
introduce the following simplifications. For the single pair corrections f"K g
we first calculate an MP+-approximation, denoted by f"MP+

K g, using the proper
subsystem basis [,1]. The MP+-approximation requires only a small subset of
transformed two-electron integrals. On the basis of the MP+-approximations,
the geminals are ordered in groups. Within a fixed numerical accuracy, all the
geminals in a group have the same value for the MP+ correction. This procedure
defines which geminals are symmetry related. By following the assumption that
if the MP+ corrections are equal for a set of geminals, then the FCI corrections
must also be equal, we calculate only one FCI correction for each group. Furt-
hermore, this FCI correction is calculated using a set of NOs constructed using
the first order wave function correction. The dimension of the orbital space
defined by this set of NOs, is considerably smaller than the full virtual orbital
space for the subsystem. Let "̃FCIK and "̃MP+

K denote respectively the FCI and MP+
corrections when this truncated basis set is used for the calculations. We then
introduce the following approximation for the single pair correction "K :

"K = "̃FCIK � "̃MP+
K + "MP+

K

= "̃FCIK +
(
"MP+
K � "̃MP+

K

)
(+1)

= "̃FCIK + "BSEK :

The term "BSEK represents a basis set extension (BSE) effect calculated at the
MP+-level. As the dimension of the truncated orbital space is increased, the
magnitude of the term "BSEK is reduced.

For the double pair corrections we introduce a similar procedure. Both for
intra- and intersubsystem corrections we calculate MP+-like corrections f"MP+

KL g.
Based on these corrections, the four-electron clusters are ordered in groups, all
elements in a group having the same value for the MP+-like correction. As in the
single pair case, all elements or four-electron clusters in a group are symmetry
related. For each group we calculate a four-electron FCI correction based on a
truncated set of NOs [,1]. Hence, we use the following approximation for the
four-electron FCI corrections:

"KL = "̃FCIKL � "̃MP+
KL + "MP+

KL

= "̃FCIKL +
(
"MP+
KL � "̃MP+

KL

)
(+2)

= "̃FCIKL + "BSEKL :

As in the two-electron case, the superscript ˜ denotes a quantity calculated
in terms of the truncated set of NOs. The basis set extension effect (BSE) is
calculated at the MP+-level.
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Since the FCI corrections are based on different truncated virtual orbital
spaces, it is very important to have an efficient algorithm for the transformation
of two-electron integrals. A Cholesky decomposition of the two-electron matrix
is then very convenient [",, "+]. A two-electron integral [� j ��] is related
to the integral tables (obtained by the Cholesky decomposition) fL� ;t ; t =
,; :::; rıg by the relation

[� j ��] =
rı∑
t=,

L� ;tL�� ;t ; (+C)

where rı is the effective numerical rank of the two-electron matrix. The trans-
formation of the two-electron integrals is performed in accordance with the
formulas

 i =
m∑
�=,

X�U�i (+#)

Lij ;t =
m∑

�; =,

U�iL� ;tU j (+6)

[ij j kl] =
rı∑
t=,

Lij ;tLkl;t (+ )

The algorithm defined by Eqs. (+#)–(+ ) can be effectively coded for both vector
and parallel processor computers.

3
Applications

In this section we shall briefly comment on previous works based on exten-
ded geminal models (Sect. ".,) and present a case study of the neon dimer
(Sect. ".+).

3.1
Previous Works

The extended geminal models have been used to calculate the interatomic
potential for the ground state of diatomic complexes comprising an alkali ion
and a noble gas atom: NeLi+ [""]; ArLi+ ["1]; ArNa+, NeNa+, HeNa+ ["2];
HeKa+ ["C]. On the basis of the potentials for NeLi+ and HeKa+, mobility
coefficients were calculated ["#, "6]. There was a very good agreement between
the calculated and measured mobility coefficients. The deviation being of the
order of ,% or lower.

Røeggen and Ahmadi [" ] have studied the F- and H-bonded isomers of
HF/ClF. The F-bonded isomer was found to have the largest binding energy.
The energy partitioning scheme was utilized in order to obtain a simple phy-
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sical explanation concerning the prediction of the shapes of van der Waals
complexes by pure electrostatic interactions. An analysis of the electron donor-
acceptor complexes H+OF+, H+OCl+ and H+OClF, was performed by Dahl and
Røeggen [1!]. The partitioning scheme was utilized also in this work to illu-
minate the bonding of the complexes.

The dimer (H+)+ and the trimer (H+)" have been extensively studied using
extended geminal models. Røeggen andWind [1,] presented a detailed analysis
of the bonding of the (H+)+ dimer. Two extreme geometrical structures were
considered: the T structure and the linear structure. A full potential energy
surface of (H+)+ within the rigid rotor approximation was calculated by Wind
and Røeggen [1+]. Wind and Røeggen [1"] demonstrated that the isotropic po-
tential of the dimer, could be calculated directly to a very good approximation
by considering a special orientation of the two molecules in the complex. The
relative error of the isotropic potential calculated in this way, was less than
,%. Wind and Røeggen [11] have also studied the non-additivity in the (H+)"
trimer. The isotropic part of the three-body non-additive energy was derived.
Near the equilibrium geometry the global error of the three-body potential was
estimated to be #% or less. At large distances the results were found to be in
accordance with the Axilrod–Teller–Muto triple-dipole approximation.

Røeggen and Almlöf [12, 1C] have studied the three-body potential for
the ground state of He" using extended geminal models. For the triangular
structure and an interatomic distance R = 2:C au (i.e. a distance close to
the equilibrium distance for the dimer) the following value was found for the
three-body potential: �!:+! ˙ !:!+ �hartree. In the long range the calculated
three-body potential was very close to the Axilrod–Teller–Muto triple dipole
energy.

Røeggen and Almlöf [1#] used an extended geminal to calculate the
interatomic potential for the ground state of Be+. The calculated binding
energy was �".# mhartree, to be compared with the experimental result of
�":6+ ˙ !:!2 mhartree.

3.2
The Neon Dimer as a Case Study

The basis set adopted in the study of the neon dimer is a contracted
[6s,Cp ,2d,1f ,"g] set of Gaussian type functions (GTFs). The set is constructed
in the following way. We start by an uncontracted (,+s,#p) set of GTFs [1 ].
This set is contracted to [Cs,1p] using contraction coefficients from an atomic
SCF calculation and keeping the most diffuse functions uncontracted. To this
set of contracted s- and p-type functions we add a set of ("d,+f ,,g) polariza-
tion functions [2!]. The resulting set of [Cs,1p ,"d,+f ,,g] GTFs is augmented by
two sets of diffuse functions in each symmetry. The exponents of the diffuse
functions are determined as an even-tempered extension of the smaller set,
and for the g-type functions we use the same ratio as for the f -type functions.
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Fig. 1. Intersection between the xy -plane and the charge ellipsoids of the localized orbitals
of the neon dimer. Relative interatomic distance twice as large as on figure. Charge centroids
are marked with a cross and nuclear positions with a dot. The numbering of the ellipsoids
is utilized in Table ".

In this work we use an integral threshold of ,!�6 au for the Cholesky de-
composition of the two-electron matrix.

For the dimer we choose an interatomic distance equal to 2.61 au. This
distance is close to the assumed minimum of the potential [2,].

The construction of the localized orbitals are as follows. For the isolated
neon atom the ,s-orbital is chosen to be identical to the canonical ,s-orbital.
Four equivalent valence orbitals are determined by the Boys localization pro-
cedure [2+]. These orbitals have a tetrahedral-like structure, i.e. the charge
centroids of the orbitals coincide with the corners of a tetrahedron. As a star-
ting point for the minimal distortion localization (MDL) of the orbitals of the
dimer, for each isolated atom a valence charge centroid is positioned along the
interatomic axis and between the nuclei. Hence, for each atom three charge
centroids are pointing away from the neighbouring atom. Furthermore, the
charge centroids outside the interatomic region are rotated to an eclipsed po-
sition (see Fig. ,). The MDL procedure yields localized orbitals which are very
similar to the orbitals of the isolated atoms [+#].

The first question to be addressed is the question of the accuracy of the
advocated numerical model. For the intrasystem terms, the errors in the calcu-
lated correlation terms compared with the FCI definition of the corresponding
terms, should be smaller than the truncation error of the extended geminal
expansion. As demonstrated by Røeggen and Wind [,1], by truncating the ex-
tended geminal expansion at the triple pair level, the error in the calculated
correlation energy compared with the FCI result, is less than ,%. With the
adopted basis set, the calculated correlation energy for the isolated neon atom
is �!.""!#!!#, hartree. By using a truncated virtual space in approximating "K
and "KL, Eq. (+1) and (+2), the sum of these errors should be less than say ,% of
the calculated correlation energy. Since there are five single pair terms and ten
double pair terms involved, this amounts to a maximum of error for the indivi-
dual terms of the order of !.!!!+ hartree. In Table , we have displayed the value
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Table 1. A valence shell single pair correction term for the neon atom as a function of the
dimension of the truncated virtual spacea;b

m "̃FCIK "̃BSEK "K

+! –!.!+# 6!C "+ –!.!!! C 1 !6 –!.!+6 2!! 1,
"! –!.!+6 ,1" #+ –!.!!! +1" !6 –!.!+6 "6C 6!
1! –!.!+6 +21 1# –!.!!! !6, ," –!.!+6 ""2 C!
2! –!.!+6 +62 26 –!.!!! !"+ 2" –!.!+6 ",6 ,,
C! –!.!+6 + # ", –!.!!! !,, 6C –!.!+6 "!# ,#

a Energies in hartree.
b All valence geminals are equivalent.

of a valence shell single pair correction term as a function of the dimension
of the truncated virtual space. By considering the basis set extension effect,
"̃BSEK , we can see that this criterion is satisfied for a dimension of the truncated
space between "! and 1!. The double pair correction terms require a somewhat
larger truncated space. According to Table + we must use a dimension which is
between 2! and C!. For the intersystem correlation terms the criterion must be
formulated in absolute terms. Since the error in the calculated potential is as-
sumed to be less than 2 �hartree, the error in the calculated intersystem double
pair correction terms should be smaller than say !.+ �hartreee. According to
Table ", this criterion is satisfied when the dimension of the truncated virtual
space is equal to C!. In the calculation on the neon dimer we therefore use
C!, C! and #! as the dimensions of the truncated virtual spaces for the single,
double and triple pair corrections, respectively.

In Table 1 we present results from the calculation on the neon dimer. The
equilibrium distance of the potential is not determined in this work. But ba-
sed on previous experience with extended geminal models, say on the He+
dimer [12] and the Be+ dimer [1#], we can safely assume that the equilibrium
distance obtained by a geometry optimization, is close to the experimental
value. Hence, the quantity �U (R = 2:61 au), where U (R) is the interatomic

Table 2. A valence shell double pair correction term for the neon atom as a function of the
dimension of the truncated virtual spacea;b

m "̃FCIKL "BSEKL "KL

+! –!.!"! +,# ,! –!.!!+  C! !C –!.!"" ,## ,C
"! –!.!", 61C C2 –!.!!, "2, #6 –!.!"" , 6 1"
1! –!.!"+ C"1 #1 –!.!!! 2## !" –!.!"" +,, ##
2! –!.!"+  16  1 –!.!!! +"6 62 –!.!"" ,6# # 
C! –!.!"" ,!1 1C –!.!!! !C1  C –!.!"" ,C 1+

a Energies in hartree.
b All pairs of valence geminal are equivalent.
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Table 3. Intersystem valence double pair correction terms for the neon dimer as a function
of the dimension of the truncated virtual spacea;b;c

m (K; L) "̃FCIKL "BSEKL "KL

+! (+,#) –!.!!! !2" #C –!.!!! !!2 2! –!.!!! !2 +C
(+,6) –!.!!! !,C  C –!.!!! !!, # –!.!!! !,6 #2

"! (+,#) –!.!!! !26 +, –!.!!! !!+ !# –!.!!! !C! + 
(+,6) –!.!!! !,6 , –!.!!! !!! 6, –!.!!! !, !!

1! (+,#) –!.!!! !2 6C –!.!!! !!, !1 –!.!!! !C!  !
(+,6) –!.!!! !,6 C" –!.!!! !!! 2! –!.!!! !, ,"

2! (+,#) –!.!!! !C! !1 –!.!!! !!!  ! –!.!!! !C!  1
(+,6) –!.!!! !,6 6, –!.!!! !!! "# –!.!!! !, ,6

C! (+,#) –!.!!! !C! " –!.!!! !!! C# –!.!!! !C, !C
(+,6) –!.!!! !,6  ! –!.!!! !!! +6 –!.!!! !, ,6

a Energies in hartree.
b See Fig. , for the numbering of geminals.
c Interatomic distance R = 2.61 au.

potential, should be close to the binding energy. In this work then we estimate
the binding energy to be ,"2.6! �hartree. According to Asiz and Slaman, the
best experimental value is ,"".6! �hartree. Pertaining to the results in Table 1,
we would like to emphasize the following points. First, there is a small but
significant change in the intrasystem correlation energy. For each atom this

Table 4. Partitioning of the interatomic potential for the neon dimera;b

Component Isolated monomer Dimer ∆U

ERHF
� –,+6 21+ !!,.1+ –,+6 21, #!,. 1 +  .16

2∑
K=,

"K –,+# C!C.2 –,+# C!,.1, 2.,6

2∑
K<L

"KL –+," ,1!.,, –+," ,+2.C+ ,1.1 

2∑
K<L<M

"KLM ,! !12.  ,! !1".11 –+.22

Ecoul,;+ –1!1.,! –1!1.,!

Eexch,;+ –,,+.#" –,,+.#"∑
"KL (intersystem) –+"C."6 –+"C."6∑
"KLM (intersystem) –+2.6, –+2.6,∑
"K,���Kp (intersystem – higher order)c ,!.!+ ,!.!+

U –,"2.6!

a Energies in �hartree.
b Interatomic distance R = 2.61 au.
c From Wind and Røeggen [16].
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change is ,#.,+ �hartree, compared with �""! #!!.#, �hartree for the total
correlation energy for the isolated atom. Second, if for intersystem correlation
we include only double pair correction terms, the calculated value for the po-
tential is �,+!.!, �hartree. By including the triple pair correction terms, this
value changes to �,12.6+ �hartree. Hence, an accurate value for the potential
requires that even higher order terms are included. In this work we have added
a coupled-cluster correction for this higher order term [11]. This leads finally
to the accurate result displayed in Table 1.

4
Concluding Remarks

The extended geminal models have two main advantages. First, the conceptual
structure which facilitates interpretation. This property is utilized in several
studies on intermolecular interactions where energy decomposition schemes
illuminate the character of the bonding. Second, the models are highly accurate.
This feature is related to the FCI corrections on which the models are based. The
reported calculations on few-electron systems illustrate this point. However, as
demonstrated by the calculation on the neon dimer reported in this work, a
high accuracy of a calculation on larger systems, require that at least triple pair
corrections are included.

The extended geminal models take care of the electron correlation problem
for closed shell systems. The basis set problem becomes the bottleneck. By ad-
opting the Cholesky decomposition of the two-electron matrix, and storing the
integral tables, one can handle basis sets comprising up to say, 2!! functions.
For systems requiring more than 2!! functions one possibility is to recalcu-
late integrals. However, we are presently working on an alternative approach.
This approach is based on defining atoms in a molecule or solid. For intra-
atomic wave-function terms a local basis set is adopted. When considering the
diatomic terms, a two-center basis is adopted, the triatomic terms require a
three-center basis and so on. In this way one might deal with large systems
without the necessity of adopting extremely large basis sets. Progress in this
particular research program will be reported elsewhere.
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1C. Røeggen I, Almlöf J (,  C) J Mol Struct (Theochem) "66:"",
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We concentrate in the present account on certain recent developments linked to extensions of
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optimised virtual orbitals to reduce still further the number of nonorthogonal configurati-
ons required in accurate calculations of ground and excited state potential energy surfaces.
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1
Introduction

Valence bond theory will always have a special place in chemistry, not least
because it provides such appealing visual representations and interpretations
of molecular electronic structure. Unfortunately, early computational imple-
mentations were hampered by difficulties linked to the nonorthogonality of
the orbitals and/or of the structures. This was one reason why valence bond
(VB) approaches were largely eclipsed by molecular orbital (MO) theory. These
technical problems have now largely been overcome, but the fact remains that
calculations that include only the traditional covalent structures tend to deli-
ver disappointing accuracy. In order even to compete with self-consistent field
(SCF) calculations, it proves necessary to include significant numbers of addi-
tional structures, particularly ionic ones. All of this detracts, of course, from the
original appealing simplicity of the basic VB picture. Nonetheless, the language
of VB theory continues to permeate much of chemistry.

Coulson and Fischer [
] realised that the admixture of ionic structures into
the Heitler and London [�] covalent description of H� was entirely equivalent
to allowing a (relatively small) degree of delocalisation of the H(
s) functions,
and it is now widely accepted that the quality of compact VB wavefunctions
is strongly related to the freedom of the orbitals to deform and to overlap in
the bond-forming directions. Part of the philosophy of so-called modern VB
approaches is to allow unprejudiced optimisation of the orbitals. Specifically,
we use the label ‘classical VB’ for wavefunctions based on strictly localised
orbitals, whereas the term ‘modern valence bond’ signifies one or more spatial
configurations constructed from completely general, nonorthogonal orbitals,
and combined with all allowed ways of coupling together the electron spins so
as to obtain the required resultant. Although the orbitals often turn out to be
fairly localised, the generation of localised (e.g. atomic-orbital-like) orbitals is
not a goal in itself.

Recent years have certainly seen the re-emergence of ab initio VB theory,
particularly in ‘modern’ form, as a serious tool for computational chemistry,
with a significant role being played by spin-coupled theory ['–<] and its va-
rious extensions. The spin-coupled approach was probably first used by Kaldor
[#], who demonstrated for atoms the power of using different spin functions to
describe correctly, in a compact way, delicate properties such as electron spin
density at the nucleus. Spin-coupled (SC) theory was developed for molecules
by Gerratt ['] and his subsequent collaborators. Early work on molecules was
also carried out by Goddard and coworkers [
&], who initially used an orbital
equation method to optimise the orbitals, and named their approach generali-
sed valence bond (GVB). The SC formalism corresponds to full GVB. However,
most GVB calculation involve strong orthogonality (SO) constraints, according
to which only two orbitals at a time are allowed to overlap and, in general,
these two electrons are constrained to have opposite spin [

]. An approach to
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the fully nonorthogonal case was made by Chipman and Palke [
�], in which
orbitals were approximately optimised in a cyclic procedure. Their method em-
ployed an approximate expression for the energy and relied on using only the
perfect-pairing (PP) spin function.

The combination of the SC (full GVB) approach and a traditional VB code
gave rise to spin-coupled valence bond (SCVB) calculations [.]. Many other
groups have also been active in the general area of ab initio modern VB calcu-
lations and we mention important contributions such as resonating VB [
'],
the TURTLE program [
.], the breathing orbital method [
=], the general mul-
tistructural method [
0], the tableau function approach of Gallup [
/], and the
bonded tableau valence bond formalism [
<, 
#]. Various spin-coupled-like ap-
proaches have also been developed by others, including Penotti [�&] and Manby
and Doggett [�
]. In the present article, however, we concentrate on a brief ac-
count of some aspects of our own work. Given the availability of a number of
reviews of the SC and SCVB approaches [=–<], we emphasise instead the recent
development of the SCVB* and CASVB strategies.

2
Spin-Coupled Theory

The spin-coupled wavefunction is based on a single configuration of N singly
occupied nonorthogonal orbitals:

Ψ = Â
(
Φcore�
��…�NΘN

SM

)
: (
)

The spin-coupled orbitals, ��, are expanded in an underlying atomic orbital
(AO) basis set f	ig:

�� =
M∑
i=


ci�	i (�)

without preconceptions as to their degree of localisation. Using an efficient
second-order procedure, the SC wavefunction is optimised variationally with
respect to the �� and to the spin-coupling coefficients, cSk, which define the
optimal N -electron spin eigenfunction ΘN

SM (with total spin S and projection
M):

ΘN
SM =

f N
S∑

k=


cSkΘ
N
SM ;k : (')

For the construction of spin eigenfunctions see, for example, Ref. [��]. There
are obviously many parallels to the multiconfiguration self-consistent field
(MCSCF) methods of MO theory, such as the restriction to a relatively small
‘active space’ describing the chemically most interesting features of the electro-
nic structure. The ‘core’ wavefunction for the inactive electrons, Φcore, may be
taken from prior SCF or complete active space self-consistent field (CASSCF)
calculations, or may be optimised simultaneously with the �� and cSk.
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In general, SC wavefunctions are not invariant to linear transformations of
the SC orbitals, and so the �� and ΘN

SM are a unique outcome of the optimization
procedure. The optimal SC orbitals often, but by no means always, turn out to
be well-localised functions, similar in shape to their classical VB counterparts.
A key difference, however, is the existence of small, but crucial distortions
of the orbitals towards other centres. The total spin function, characterised
by the spin-coupling coefficients, cSk, provides useful information about the
recoupling of electronic spins as bonds are broken and new ones are formed
during chemical reactions. The SC wavefunction may be extended by adding
further configurations, in which case we may speak of a multiconfiguration
spin-coupled (MCSC) description.

Some of the most efficient algorithms currently available for spin-coupled
calculations involve the expansion of the SC wavefunction in terms of Slater
determinants, leading to a summation over (N–p)-dimensional cofactors for
the p-particle density matrix [�']. For calculations involving the full spin space,
a further saving can be achieved by the use of projected spin functions [�.].
An alternative strategy is provided by CASVB (see Sect. =).

The SC approach has now been applied to a very wide range of problems,
spanning all of the main branches of chemistry, often providing important new
insights into the nature of chemical bonding. A number of recent reviews are
available [0–<].

3
Spin-Coupled Valence Bond Calculations

At convergence of the spin-coupled minimisation procedure, the orbitals satisfy
equations which can be recast in the form [.]

F̂ eff� �j
� = "j��

j
� : (.)

The effective operators F̂ eff� are each of dimension M , the total number of basis
functions. Diagonalisation of each operator gives rise to M orbitals, one of
which is the corresponding occupied orbital. The virtual orbitals are denoted
�j
�, where j labels the position in the list and "j� plays the role of an orbital
energy. In this fashion, a ‘stack’ of virtual orbitals is obtained for each electronic
coordinate. The orbitals are mutually orthogonal within a given stack but they
are not in general orthogonal to orbitals in the other stacks.

Excited configurations may be constructed by replacing one or more occu-
pied SC orbitals with a virtual orbital, frequently taken from the same stack as
the occupied orbital, in which case it is referred to as a ‘vertical’ excitation. If
the occupied orbital is replaced with a virtual from a different stack, then this is
referred to as a ‘cross’ excitation. A linear combination of the reference SC confi-
guration and the excited configurations described above constitutes a so-called
spin-coupled valence bond (SCVB) wavefunction. We use the term configura-
tion to denote a particular orbital product, with all possible modes of coupling
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together the electron spins. The term structure is used to denote instead a par-
ticular orbital product together with a particular mode of spin coupling. By
allowing double occupancy of the occupied and virtual SC orbitals it is possi-
ble to generate additional configurations, which are called spin-coupled ionic
configurations, where this nomenclature comes from classical VB terminology.
Obtaining the expansion coefficients via resolution of the corresponding se-
cular problem, which requires the evaluation of the hamiltonian and overlap
matrices between nonorthogonal VB structures, gives the total energy of the
system. This ‘nonorthogonal configuration interaction’ SCVB procedure can be
used for further refinement of the spin-coupled wavefunction, taking account
of those contributions to the correlation energy which are not recovered by
the single-configuration spin-coupled wavefunction. This same procedure also
produces excited states of the N -electron system.

Applications of SCVB up to ca. 
##
 were reviewed in Ref. [0]. More recent
studies have concentrated on excited states of organic ‘�-electron’ systems, on
intermolecular forces and on charge transfer processes. The SCVB approach
turns out to be well suited to the study of charge transfer collisions invol-
ving highly stripped atomic ions with helium or atomic hydrogen. Accurate
state-dependent cross sections and rate constants are required not only for the
modelling of various astrophysical environments but also for fusion plasma
density impurity diagnostics. In general, it proves necessary to investigate the
potential energy curves, avoided crossings and nonadiabatic radial couplings,〈
Ψij@=@RjΨj

〉
, for several states of the quasimolecule over an extended range of

nuclear separation, R. Accurate asymptotic energy separations are important,
but it is also crucial to maintain a consistently high level of accuracy for all the
relevant states over the entire range of R. It has now become almost routine to
calculate several states of the same symmetry, as well as other symmetries, with
asymptotic energies accurate to very few tenths of an eV, and to compute the
nonadiabatic couplings. The state-dependent cross sections obtained via subse-
quent fully-quantum-mechanical close-coupling calculations [�=, �0] are often
in close harmony with reliable experimental measurements, when available.

The SCVB method has been used to study all the singlet and triplet valence
excited states, as well as the n = ';. singlet and triplet Rydberg states of benzene
below the first ionisation potential at #.�= eV. The ‘covalent’ valence excited
states may be well described using �=� separation and a frozen � core, whereas
the error in the computed transition energies to the ‘ionic’ states was somewhat
larger, indicating that these states require additional �=� correlation for their
proper description. The Rydberg states are very well described, provided that
a suitable � core is used, derived from calculations on the C0H0+ ion. The
numerical accuracy for the transition energies [�/] was comparable to that
from the largest MO-CI or CASSCF-CI calculations reported at the time. The
SCVB method is clearly a powerful tool for describing the excited states of
medium-sized molecules such as benzene, affording at the same time a clear
view of the wavefunctions for the various states. While it turns out that there
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is room for improvement, particularly for the excited states of ionic character,
it is clear that the SCVB approach is able to identify the physical reasons why
certain states are more difficult to describe and thus require a more advanced
treatment.

The SCVB method has also been applied to the study of weakly interac-
ting systems. The resulting approach is fully variational and carefully avoids
one of the main difficulties that plagues conventional MO supermolecule cal-
culations, namely the basis set superposition error (BSSE). This is achieved
in an a priori fashion by expanding the occupied SC orbitals (and the corre-
sponding virtuals) in the basis functions located only on the sub-system with
which the orbital is associated. An early application to the LiH…He system
gave encouraging results, which highlighted the accuracy of the method rela-
tive to previous supermolecule studies. The absolute minimum was found for
the collinear approach of the helium atom to the lithium end of LiH. A small
shallow secondary minimum, which might influence the dynamics at very low
collision energies, was found for the collinear approach, i.e. of helium to the
Hı� end of LiH [�<].

The SCVB method is very successful for including dynamical correlation
into the description of ground and excited states of systems with a small num-
ber of electrons. Higher and higher accuracy requires a significant number of
SC virtual orbitals for each active electron and thus a wavefunction formed
from many structures. It is obvious that calculations on systems with larger
numbers of electrons will rapidly become untenable. To overcome this severe
size restriction, it is necessary to find ways to achieve equivalent, or almost
equivalent, results with much smaller numbers of virtual orbitals. Considering
that the standard SC virtuals already come from diagonalisation of a physically
reasonable operator, the next stage in improving virtuals must require a more
specific optimisation of the orbitals with respect to the correlation energy con-
tributions to be taken into account by the wavefunction. This is the topic of
the next section.

4
SCVB*

We consider first an N -electron all-double-excitation SCVB expansion with one
optimal virtual orbital �+i for each stack i:

Ψ = C&Ψ& +
N∑
i=


N∑
j>i

CijΨij (=)

where

Ψij = Â


�&
�

&
�…�+i …�+j …�&N

f N
S∑

k=


cijSkΘ
N
SM ;k


 : (0)
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In order to reduce the computational effort, we adopt the following simplifying
strategy [�#, '&]:

(
) We first perform a standard SC calculation to obtain orbitals �&i and the
spin-coupling coefficients c&Sk (cf. Eqs. (
)–(')).

(�) The corresponding spin-coupling coefficients cijSk for the excited configu-
rations are taken to be the same as c&Sk.

(') The virtual orbitals �+i are optimised using a second-order perturbation
theory approximation to the energy ['
] so that we need only evaluate the
diagonal and first row elements of the hamiltonian and overlap matrices:

E(�) =
〈
Ψ&jĤ jΨ&

〉
+

N∑
i=


N∑
j>i

[〈
Ψ&jĤ jΨij

〉 � 〈
Ψ&jĤ jΨ&

〉 〈
Ψ&jΨij

〉]�
〈
Ψ&jĤ jΨ&

〉 〈
Ψij jΨij

〉 � 〈
Ψij jĤ jΨij

〉 (/)

(.) An approximate expression is adopted for the hessian, requiring no ad-
ditional terms not already computed for the gradient of the energy with
respect to the free parameters.

(=) To overcome the possible onset of linear dependence, we project out the
occupied SC orbitals from the full basis set, and expand the virtual orbitals
in this projected basis.

(0) The resulting orbitals are then used in a standard nonorthogonal CI ex-
pansion (single and double vertical excitations) in order to relax the spin-
coupling coefficients and to find a variational bound for the energy. We
refer to such an expansion as an SCVB* wavefunction. In order to improve
the description of one-electron properties, we may choose to include, at
very little additional cost, configurations with double occupancy of the
occupied and/or virtual orbitals.

The combination of an approximate form for the hessian with a second-
order perturbation expression for the energy results in an overall orbital op-
timisation strategy that scales extremely favourably both with the number of
‘active’ electrons and with the number of basis functions. In this way, the cur-
rent upper limit to the applicability of the method is fixed by the determination
of the SC occupied orbitals, �&i ; the number of active electrons that can be trea-
ted is therefore currently about 
�–
.. Obviously, the use of an alternative
formalism for the reference configuration, e.g. SCF or GVB–SOPP, could allow
the basic method to be extended to larger systems.

Calculations for LiH and Li� showed that four-configuration SCVB* expan-
sions represent a significant energy improvement over the standard single-
configuration SC wavefunction ['&]. For the 
 ∑+ electronic ground state of
LiH, configurations based on �� and ��x (or ��y ) double excitations make a
contribution, providing radial and angular correlation, respectively. The � and
�x virtual orbitals were optimised separately, and the �y components were
obtained by symmetry. The final variational wavefunction, denoted SCVB*–.,
contained just the SC configuration and double excitations for the valence el-
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ectrons into � , �x and �y virtuals. While the SC wavefunction overestimates
the position of the minimum, Re, by �..%, the SCVB*–. wavefunction unde-
restimates it by only &.#=%. A much greater difference is seen, however, in the
values of the dissociation energy, De. The SC wavefunction recovers //% of the
experimental value while SCVB*–. obtains #=%. Full-valence complete active
space (FVCAS) calculations in the same basis set give essentially the same va-
lue of Re and a slightly superior value of De (by &.&' eV), recovering #0% of
the experimental value. A 
�0#–configuration �-electron full CI (FCI) in the
same basis gives a very slight improvement in Re and recovers #<./% of De, i.e.
SCVB*–. is less than .% (&.
 eV) short of the best possible valence-only result
for this basis. Furthermore, comparisons with conventional SCVB calculations
suggest that the SCVB*–. optimised virtuals span a significant proportion of
the energetically-useful available space.

Analogous calculations were performed for Li�, for which the SC wave-
function overestimates the value of Re by #.<% and recovers only .�% of the
experimental value of De. The SCVB*–. wavefunction, however, represents a
significant further improvement, overestimating Re by only &./% and recover-
ing #
.=% of De. FVCAS calculations in the same basis set recover #.% of De

(a &.&' eV improvement), while �-electron FCI calculations produce a further
energy lowering of less than &.&&. eV.

The various approximations implicit in the SCVB* approach make the sca-
ling of computational effort with numbers of electrons and of basis functions
somewhat less severe than is the case for the multiconfiguration spin-coupled
method of Penotti [�&], making it possible to perform calculations on larger
systems, and SCVB* may compare favourable with CASVB, which is described
in a later section.

Our interest in LiH and LiH+ arises mainly from the role that such molecules
are expected to play in the chemistry of the early universe. It is important to be
able to analyse in detail the efficiency of various processes that could lead to the
formation of rotationally and/or vibrationally hot LiH molecules by collision
with the most abundant partners, such as He, H, and H+. We have applied
the SCVB* approach to the computation of accurate potential energy surfaces
involving these weakly interacting systems. We have already commented on
the possibility of performing BSSE-free ab initio variational calculations in
the context of SC theory. The agreement for the LiH…He system between
the values obtained with the SCVB* method and the previous standard SCVB
results [�<] was very good everywhere. The SCVB* results turned out to be
of better quality and comparable to standard SCVB calculations including up
to 
= virtual orbitals and corresponding to a set of � 
&&& doubly excited
configurations. Even the small secondary minimum of about &.&
mHartree at
long distance was well reproduced.

Our ability to describe accurately the interaction of LiH with He offered
the opportunity to consider the formation of LiH in highly rotationally and/or
vibrationally excited states during collisions with He in the primordial clouds.



Ab Initio Modern Valence Bond Theory 

'

For this purpose, we employed the SCVB* method to study the general features
of the full potential surface. The target molecule LiH was initially treated as
a rigid rotor at its equilibrium geometry and the behaviour of the interaction
was examined over a wide range of orientations and relative distances for the
impinging He projectile. The general features of the anisotropy of the poten-
tial were analysed in relation to earlier MBPT calculations ['�] on the same
system and were found to be rather different, especially in the short-range
repulsive region for both directions of He approach along the diatomic bond.
The full vibrational potential energy surface was also presented by performing
the calculations for five different values of the molecular bond length ['']. The
ab initio surface was then employed in the calculation of rotationally inelastic
state-to-state cross sections. The comparison with the available experiments
and with earlier calculations allowed us to relate in detail the features of the
computed anisotropic, short-range interaction potential with the outcomes of
the collisional excitation processes. The corresponding excitation rates were
also evaluated between the lower-lying rotational levels and for a range of tem-
peratures of astrophysical interest. The detailed comparisons with experiment
indicate that the SCVB* potential energy surface provides better agreement
with the measurements than does the earlier MBPT surface of Silver ['�]. The
new potential energy surface is less anisotropic in the repulsive region and also
exhibits a weaker long-range coupling with rotations, but it produces inelastic
cross sections which are in better accord with the experiments, justifying the
expectation that the SCVB* surface provides a rather realistic description of
the intermolecular interactions.

The vibrational heating efficiency of LiH molecules in collisions with He
atoms was the subject of further study ['.]. The excitation and relaxation rates
over a broad range of temperatures were reported, together with the average
energy transfer indices. It was found that in spite of the weak nature of the van
der Waals interaction, the strong anisotropy of the surface leads to rovibrational
excitation rates which are larger, for example, than those exhibited by the He–
CO ['=] or He–N� ['0] systems.

We have also analysed the reaction of Li with H�, with the aim of performing
classical and quantum dynamical studies on the potential energy surface. To
maintain absolute consistency in the calculations as the spatial arrangement of
the three atoms changed symmetry, we have evaluated separately four discrete
sets of virtual orbitals: each was expanded only in a subset of the AO basis re-
lating to certain classes of functions. The four sets were created by dividing the
full AO basis into one group containing just s functions and three groups each
containing just one of the components of the p functions and the appropriate
components of the d functions. Each of the four sets of virtual orbitals was
optimised separately. From these orbitals, it was possible to create an SCVB*
wavefunction which was equally flexible over the entire potential surface and
did not change in character when the spatial arrangement of atoms changed
symmetry. Without this technique, problems could have been experienced, par-
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ticularly when the system passes through the collinear geometries. The final
wavefunction consisted in total of just /' configurations (�#' structures); this
extremely compact set is composed of all possible doubly excited configura-
tions which involve only vertical excitations of SC-occupied orbitals into one
of their four associated virtual orbitals, supplemented with all the singly ionic
configurations in which a single virtual orbital is doubly occupied.

Rather extensive calculations were performed for the most important fea-
tures of the lowest reactive surface of the process H + LiH ! Li + H�. The
five occupied orbitals from the single–configuration SC calculation included a
clearly defined lithium 
s� pair, which remains overwhelmingly singlet coupled
at all points on the surface. At some positions on the potential energy surface,
the three remaining orbitals are heavily localised on a particular atomic centre
(for instance, when there is one isolated hydrogen atom) whereas at others
they are delocalised over more than one centre (for instance, when all three
atoms are in close proximity). It is clearly a very important feature of the SC
method that there is no external predetermination of the degree of localisation
of the orbitals. The spin coupling of the electrons in the three occupied va-
lence orbitals also varies with geometry, as the nature of the orbitals changes.
A perfect pairing scheme dominates at some points, whilst at others a more
complicated situation occurs. The SCVB*–/' wavefunction recovers #'% of the
binding energy, overestimating Re by only &.&
=Å. The same kind of accuracy
is obtained for the H� asymptotic potential curve: the SC and SCVB* wave-
functions recover </% and #/% of the binding energy, respectively, and both
reproduce the position of the minimum almost exactly. In the non-asymptotic
regions of the potential, it is interesting to note that the SCVB* approach lowers
to �mH (&.&= eV) the height of the barrier that blocks the path to a potential
well in the linear Li–H
–H� arrangement, as R(H
–H�) is reduced while R(Li–
H
) is kept fixed at ' a&, a geometry at which the height of the SC barrier is
about 
&mH (&.�/ eV). The SCVB* ab initio points were interpolated using a
two-dimensional spline function in order to be able to treat the two variables
within the dynamical codes employed for an exploratory analysis of its reactive
behaviour in the special two-dimensional arrangements, involving the Li–H–H
and H–Li–H collinear structures. Both the highly exothermic depletion reac-
tion H + LiH(v) ! Li + H� and the endothermic Li + H�(v) ! LiH + H
formation reaction where analysed in terms of classical reactive trajectories
and of a quantal treatment based on the time-dependent wave packet method.
These preliminary collinear results based on the new SCVB* surface already
appeared to be able to say a great deal about specific features of the reaction
and the likely success of classical calculations for a full treatment ['/].

The description of the interaction of LiH colliding with H+ presents new
problems, mostly because the surface describing LiH+H+ corresponds to the
asymptotic region of the excited state of LiH�+, whose ground state dissociates
to LiH+ + H. The separation between these asymptotic states is =.=–0 eV. The
states remain well separated also in the other asymptotic region corresponding
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to Li+ +H� and Li +H�+, respectively. We describe briefly a new approach for
treating excited states belonging to the same symmetry as the ground state. We
first identified the ground state SC orbital with the highest orbital energy, and
projected it out of the original atomic basis set. Subsequent optimisations were
then carried out in this projected basis set, so that all of the occupied and virtual
orbitals for the excited state are necessarily orthogonal to the chosen ground
state orbital. Finally, by constructing a wavefunction represented by the ground
and excited state SC configurations and by single and double excitations to the
optimal virtual orbitals of each state, and including also all of the singly ionic
structures, a very compact set of 
�= structures is generated, describing both
the LiH+H+ and the LiH+ +H systems. Solution of the usual nonorthogonal
secular problem provides the description of both the ground and excited states.
We denote the final variational wavefunctions SCVB**–
�=. Comparison with
FCI calculations in the same basis set (� �:= � 
&0 configurations) suggests
that the performance of the SCVB** wavefunction is astonishingly good for
both the ground and excited states ['<]. The accuracy of the results not only
shows that expanding SC-occupied and virtual orbitals for the excited state in
the orthogonal complement of just a single ground state SC-occupied orbital is
viable for this system, but also that this is a promising method for future work.
An alternative approach for the direct optimisation of orbitals for excited states
is provided by CASVB.

5
CASVB

The CASVB strategy ['#–.<] exploits the invariance of wavefunctions of full-
CI form to arbitrary nonsingular linear transformations of the active orbitals.
The method may be used to carry out a (typically) nonunitary orbital trans-
formation such that the representation of the total CASSCF wavefunction is
dominated by a compact, easy-to-interpret component of modern VB form.
In order to be able to realise this goal, we require efficient procedures for
carrying out exactly the transformation of the structure space induced by a gi-
ven general orbital transformation, as well as schemes for determining orbital
transformations that lead to ‘useful’ representations of the CASSCF wavefunc-
tion. The CASVB algorithms may be adapted so as to enable fully-variational
optimisation of fairly general types of (multiconfiguration) modern VB wa-
vefunctions, so that this strategy also represents a significant advance in the
development of VB methodology. In all modes of using the CASVB approach,
important features for the quality of the final description include the unbiased
optimisation of both the VB orbitals and the mode of spin coupling, and also
flexibility in the choice of the form of wavefunction. In order to ensure reliable
convergence, we prefer an exact second-order optimisation scheme involving
first and second derivatives with respect to all of the variational parameters.
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For a many-electron space that is closed under linear transformations O of
the defining orbitals, we decompose such a transformation into simpler ‘orbital
updates’:

O = O

(#
)O
�(#�)O
'(#')…Omm(#m� ) (<)

with

O�% (#) : �% ! �% + #�� : (#)

The effect of the corresponding linear transformation of the many-electron
structure space, T(O), on a given vector of CI coefficients, may then be realised
by m� applications of the replacement operators:

T(O�% (#)) = (1+ #E(˛)�% )(1+ #E(ˇ)�% ) = 1+ #E(
)�% + #�E(�)�% ; (
&)

in terms of the spin-orbital single-replacement operators E(˛)�% and E(ˇ)�% , or,
equivalently, in terms of the spin-averaged single- and double-replacement
operators E(
)�% and E(�)�% .

We may partition a CASSCF wavefunction, ΨCAS, according to

ΨCAS = cVBΨVB + c?
RESΨ

?
RES ; (

)

in which ΨVB is of VB type, and the ‘residual’ Ψ?
RES is the orthogonal com-

plement. To this end, we adopt the so-called ‘overlap criterion’, in which we
maximise

SVB =
hΨCASjΨVBi
hΨVBjΨVBi 
�

: (
�)

With a suitably chosen ΨVB, more than ##% of a ground-state CASSCF wavefun-
ction may typically be brought to VB-like form. Provided CASSCF solutions
are available, it is straightforward to extend this strategy to obtain modern
valence bond wavefunctions for states that are second or higher within a par-
ticular symmetry [.0, ./].

The variational description of a ground state is obtained of course by mi-
nimising the energy expectation value

EVB =

〈
ΨVBjĤ jΨVB

〉
hΨVBjΨVBi (
')

with respect to all the free parameters. In the CASVB strategy, we employ an
iterative two-step procedure:

(
) optimise the active-space parameters, i.e. the orbital transformation and
the vector of VB structure coefficients,

(�) with the set of CASSCF CI coefficients defined by step (
), optimise the
orbitals (in the MO basis) with respect to core-active, core-virtual, and
active-virtual orbital rotations (using a CASSCF procedure).

Because the final wavefunction is essentially a constrained form of the CAS-
SCF function, much of the impressive technology of CASSCF procedures imme-
diately becomes available, including the efficient evaluation of analytic energy



Ab Initio Modern Valence Bond Theory 

/

gradients (e.g. for geometry optimization). For excited states, optimisation of
the ith root is achieved by seeking a saddle point of order i�
 [.0, ./]. Multicon-
figuration wavefunctions [.'] for ground and excited states, obtained with the
CASVB method, provide useful benchmarks for the (approximately) optimised
orbitals used in the SCVB* and SCVB** approaches.

As an alternative to fully-variational calculations, carrying out step (
) on
its own simply gives an ‘energy-based’ representation of ΨCAS. We have gene-
rally found very close agreement for ground and excited states between the
descriptions generated by the energy-based and (cheaper) overlap-based cri-
teria.

The excited states investigated so far with CASVB can be classified into
three main categories:

(
) recoupling of electron spins;
(�) ‘valence’! ‘valence’ orbital excitations, so that the excited state has doubly

occupied orbitals (so-called ‘ionic’ configurations);
(') ‘valence’! ‘virtual’ orbital excitations, including those leading to Rydberg

states.

The optimisation of excited states of types (
) or (') is usually straightfor-
ward, but excited states of type (�) may require particular care in the choice
of reference function [.0, ./]. In addition to excited states, recent applications
have been concerned, inter alia, with the mechanisms of gas phase pericyclic
reactions [.<] and with the modes of spin coupling for rival spin multiplicities
in organic �-electron systems [./, .#].

Our CASVB code includes sophisticated techniques for exploiting point
group symmetry [.
, ./] and for analysing the resulting wavefunctions [.., ./].
The practical limit on the number of active electrons (�
.) for calculations with
the full spin space is determined by the current speed of CASSCF procedures.
CASVB is incorporated as a standard feature in MOLPRO [=&] and we are
actively seeking ways to make all of the methodology more widely available
via other packages.

6
Final Remarks

As has been described in numerous review articles, approaches based on spin-
coupled theory can provide highly visual representations of correlated electro-
nic structure and have made important contributions to the development of ab
initio modern valence bond theory. We have chosen in the present account to
concentrate on certain recent developments.

We have indicated the ability of spin-coupled valence bond (SCVB) cal-
culations to provide compact, though accurate, nonorthogonal configuration
interaction expansions for ground and excited states. These wavefunctions can
be made even more compact using the SCVB* method, which starts from direct
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physical ideas and a perturbation theory approach to generate virtual orbitals
that are particularly suitable for the inclusion of electron correlation effects for
the problem at hand. The overall strategy scales favourably with the numbers
of active electrons and of basis functions. An important aspect is the ability to
describe correctly intermolecular interactions in a framework that avoids basis
set superposition error. Applications have been described here for reactions
that are important for understanding the lithium chemistry of the early uni-
verse. We have also illustrated the progress made so far for optimising occupied
and virtual orbitals for excited states within an SCVB*-like formalism.

We have outlined the basic features of the CASVB approach, which may
be used to generate modern VB representations of complete active space self-
consistent field wavefunctions for ground and excited states. The same code
may be used for the fully-variational simultaneous optimisation of the inactive
and active orbitals and structure coefficients for fairly general types of ground
and excited state modern VB wavefunctions, including single- and multicon-
figuration spin-coupled descriptions. The methodology also provides analytic
gradients as required, for example, in geometry optimisations.

It should be clear that the use of nonorthogonal orbitals (and structures)
does not lead to formalisms of hopeless complexity, as might have been suppo-
sed, but instead opens up new avenues and novel strategies for incorporating
physical ideas into algorithms that reduce the complexity of accurate descrip-
tions of molecular electronic structure.
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1
Introduction

It is well known that electron correlation plays a key role in understanding
the most interesting phenomena in molecules. It has been the focal point of
atomic andmolecular theory for many years [)] and various correlated methods
have been developed [']. Among them are many-body perturbation theory [&]
(MBPT) and its infinite-order generalization, coupled cluster (CC) theory [<, E],
which provides a systematic way to obtain the essential effects of correlation.
Propagator [(–A] or Green’s function methods (GFM) [)?–)<] provide another
correlated tool to calculate the electron correlation corrections to ionization
potentials (IPs), electron affinites (EAs), and electronic excitations.

As in finite systems, electron correlation is critical to a description of many
of the most interesting problems in extended systems, polymers, surfaces, and
crystals [)E, )(]. These include band structures and band gaps, phonon spec-
tra, mechanic properties, cohesive energies, optical and magnetic properties,
superconductivity, etc. Although it remains one of the foremost problems in
the field of electronic structure, some significant progress has recently been
made in the theory and their applications.

Compared to finite systems, extended systems are much more difficult to
treat. One approach is to treat increasely large clusters, perhaps assisted by
some kind of localization approach [)=], and extrapolate to infinity [)>–)A].
However, such extrapolations are difficult, slowly convergent, and not very
satisfying formally. We believe a superior approach is to properly treat the
periodic symmetry at the correlated level. Since this introduces lattice summa-
tions which go to infinity in both Hartree–Fock (HF) and correlated methods,
it is essential to be sure the calculated results are converged with the summati-
ons [)', '?–'E]. The band energies, in particular, are more sensitive to the cutoff
of the lattice summations than the total energy per unit cell ['(, '=]. Multipole
expansion techniques have been applied in HF calculations to obtain converged
results and also to accelerate the calculations ['']. After thirty years of deve-
lopment, converged and reliable HF packages for polymers and crystals have
become available ['>–&(], although further improvement is certainly possible.

Since the size of a periodic polymer or crystal is infinite, correct scaling
with size (i.e. size extensivity [&=, &>]) is an essential prerequisite for a correla-
ted theory to be applied to extended systems. It is well known that CC/MBPT
has this property [&=, &>], and so they are appropriate tools for extended sy-
stems while the traditional configuration interaction (CI) methods are not.
This raises the prospect that a converging series of approximations somewhat
analogous to the molecular paradigm, SCF < MBPT (') � MBPT (&) < CCD <
CCSD � MBPT (<) < CCSD(T ) < CCSDT < Full CI , can be envisioned, though,
of course, full CI is never possible for an infinite system. The availability of
this paradigm would complement improving DFT methods and GW approxi-
mations in resolving the puzzles of electron correlation in polymers, surfaces,
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and crystals [&A–<']. In brief, we would like to be able to make the same kind
of applications for infinite systems as we do today for finite ones, and these
include higher-order correlated CC methods, analytical gradients and hessians,
plus methods for excited and ionized states.

In particular, orbital energies in extended systems are important quantities.
They form the so-called band energies or band structure. The HF band ener-
gies contribute the first approximations for IPs and EAs [<&]. Beyond the HF
approximation, one defines correlated quasi-particle band energies as IPs and
EAs for occuiped and unoccpied orbitals, respectively [<<], via MBPT [<<–<>],
CC [<A–E)], and propagator [(–A] or Green’s function methods (GFM) [)?–
)<]. Explicit expressions for any given-order correction have been recently
derived [E'].

The simplest correlated method is second-order MBPT [MBPT(')], and the
first element in the above paradigm. MBPT(') has been shown in molecules to
typically account for > A?% of the correlation energy and to offer a factor of two
improvement in other properties [E]. MBPT(') was first applied to extended
systems by Kunz and coworkers [<<], They derived the formulas and discussed
the effect of the MBPT(') correlation correction to band energies for insu-
lators. The method was implemented by Suhai for one-dimensional, periodic
systems and applied to determine the structures and band gaps in polyacety-
lene and some other systems [E&–E(]. He showed that MBPT(') corrections
have a strong effect on both equilibrium structures and band gaps [E&, EE].
From the inverse Dyson equation with the irreducible self-energy part in the
diagonal approximation (e.g. GFM), Liegener [E=] calculated the second- and
third-order corrections to the band gap for alternating trans-polyacetylene.
However, there was a large inconsistency between the MBPT(') and GFM cor-
rections for band energies.

Recently, we implemented both MBPT(') and second-order GFM for poly-
mers, and studied the convergence of the corrections with lattice summation
cutoff (N ) and number of k-points (K) taken in the first Brillouin zone in the
integrations over the reciprocal lattice ['(]. We found the corrections to band
energies to converge much slower with N and to demand much larger K values
than that of the total energy per unit cell. We calculated the total energy and
band gap for alternating trans-polyacetylene at several geometries and basis
sets and showed that the previous results had been obtained before convergence
with the lattice summations had been properly reached ['(]. We also showed
both theoretically and numerically that the MBPT(') correction to the total
energy per unit cell converges with lattice summation cutoff N as )=N & while
the MBPT(') correction to the band energy converges one power slower ['=].
It has also been proven recently that any-order corrections of MBPT, CC, and
MBGF will converge with lattice summations, provided that the evaluation is
correctly treated ['<, 'E].

X-ray (XPS) [E>–()] and ultraviolet (UPS) [('–(E] photoelectron spectros-
copy provide rich information about the valence bands and useful tools to
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check the accuracies of developing theories. We applied MBPT(') to polyethy-
lene and showed that electron correlation effects for the valence bands in po-
lyethylene vary from ).E eV to E.< eV [((]. The correlated quasi-particle band
energies given by MBPT(') with a polarized (-&)G** basis accurately explain
the measured photoelectron spectra (XPS, UPS) of polyethylene and resolve
long-standing disagreements among the experiments.

MBPT(') has also been applied to calculate vibrational frequencies of po-
lymers. With the translational symmetry, one can only calculate the vibratio-
nal modes with the reciprocal vector k = ?. These modes are of particular
importance since they give rise to infrared and Raman spectra [(=]. We ap-
plied MBPT(') to polymethineimine and calculated its equilibrium structure,
band gap, and vibrational frequencies with basis sets STO-&G, (-&)G and (-
&)G** [(>]. Both basis set and electron correlation have a strong influence on
its vibrational frequencies as well as its optimized geometry and band gap.
With respect to in-phase (k=?) nuclear displacements, Hirata and Iwata very
recently calculated the MBPT(') vibrational frequencies of polyacetylene for
basis sets STO-&G and (-&)G with analytical gradients [(A]. They showed that
MBPT(') greatly improves the HF vibrational frequencies for polyacetylene.

Recently, CC methods have been pursued by Förner, Ladik and cowor-
kers [=?]. They derived the equations with localized orbitals and applied the
L-CCD and CCD to polyacetylene. Since it is much more difficult to implement
and requires more computational effort than MBPT, the method was executed
with further approximations which prohibit an accurate assessment of the me-
thod. MBPT(') has also been applied to cases where conduction and valence
bands are quasidegenerate [=), ='] and to study high Tc superconductivity [='].

In this short review, we will concentrate on MBPT and GFM methods and
their application to polymers. In Sect. ', we will give a brief summary for HF
theory and establish notations. Then in Sects. & and <, we will give the basic
formulas for MBPT(') corrections to the total energy per unit cell and band
energies. The second-order GFM equation will also be given. In Sect. E, we will
discuss the convergence of MBPT(') with the cutoffs for lattice summations and
integrations over the reciprocal space. In Sect. (, we will address higher-order
MBPT corrections and their convergence with lattice summations. In Sect. =,
we will compare Bloch and Wannier orbitals. In Sects. >, A, and )?, we will
address XPS and UPS, geometry and vibrational frequencies, band gaps and
excitations, and the applications of MBPT(') to these properties. Conclusions
will follow in Sect. )).

2
Hartree-Fock Method

An infinite system which is periodic in � directions (� = ), ', & for polymers,
surfaces, and crystals, respectively) is described by a reference unit cell and �
basis vectors, a), ..., a� . These vectors point to the directions of the periodicity
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and their sizes give the repeat lengths in the directions. Then the nonrelativistic
Hamiltonian of the system is

H = �)
'

∑
i

r'
i +

)
'

0∑
l;l0;A;B

ZAZB
jRl0 + RB � Rl � RAj

�
∑
i;l;A

ZA
jri � Rl � RAj +

∑
i<j

)
jri � rj j ; ())

where Rl = l)a) + ::: + l�a� and Rl0 = l0)a) + ::: + l0�a� are the lattice vectors,
ZA and ZB are the charges of the nuclei A and B at position RA and RB in the
reference unit cell, respectively, and the prime excludes Rl = Rl0 and A = B.

The periodicity of the system means that it has translational symmetry,
whose irreducible representations are all one-dimensional. They can be clas-
sified by the so-called reciprocal lattice vector k = k)b) + :::+ k�b� where bj
(j = ); :::; �) are determined by ai � bj = ıij , i = ); :::; �. When ki (i = ); :::; �)
are limited to the region [��; �], the k space is called the first Brillouin zone.

Let f�˛(r)g be atomic orbitals in the reference unit cell. Then according
to the periodicty of the system, the atomic orbitals in the ith unit cell are
f�l˛(r) = �˛(r �Rl)g. With the atomic orbitals, one can construct symmetrized
orbitals by

�k˛(r) =
)pN

∑
l

eik�Rl �l˛(r) ; (')

where N ! 1 and k is limited to the first Brillouin zone. The overlap matrix
of the symmetrized orbitals is block diagonal, e.g.

h�k˛(r)j�k0ˇ(r)i = ık;k0Sk
˛ˇ ; (&)

where

Sk
˛ˇ =

∑
l

eik�Rl h�˛(r)j�lˇ(r)i : (<)

With symmetrized orbitals and closed shell assumption, the Fock matrix of
the system can be expressed as

Fk˛;k0ˇ = ık;k0F k
˛ˇ ; (E)

which is also block diagonal and whose diagonal blocks are given by

F k
˛ˇ =

∑
l

eik�Rl

[
T l˛ˇ + V l

˛ˇ + 'J l˛ˇ � Kl
˛ˇ

]
: (()

T l˛ˇ , V
l
˛ˇ , J

l
˛ˇ , and K

l
˛ˇ in Eq. (() are the kinetic, electron-nucleus, Coulomb and

exchange energy matrices, respectively. Then HF orbitals can also be classified
according to the reciprocal lattice k and be written as

 nk(r) =
∑
˛

Cnk
˛ �˛k(r) ; (=)
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where Cnk
˛ are required to satisfy

∑
˛ˇ

(
Cnk
˛

)�
Cn

0k
ˇ Sk

˛ˇ = ınn0 (>)

by orthonormalization. The Hartree–Fock equation for the system is ['(, '>–
&(]

FkCnk = "HFnk SkCnk : (A)

The orbital energies "HFnk form the well-known HF energy bands, where n
is the band index. According to Koopmans’ theorem [<&], the band energies
for the occupied bands i and unoccupied bands a, are equal to the correspon-
ding ionization potentials and electron affinities, respectively. When (aka) and
(iki) are the lowest unoccupied and the highest occupied orbitals, respectively,
∆"HF (iki ! aka) reaches its minimum. This minimum value is called the HF
band gap. Let us denote it as EHFg .

From the HF block orbitals �nk(r), the HF ground state of the system can
be constructed as

ΦHF
? = A

∏
nk!

(nk!) ; ()?)

where A is the antisymmetrizing operator and ! is the spin quantum number
of the spin orbitals. The total HF energy of the system is infinite while the total
energy per unit cell, e.g. the total energy divided by the number of unit cells,
has a finite value

EHFuc =
∑
l˛ˇ

[
'T l˛ˇ + 'V l

˛ˇ + 'J l˛ˇ � Kl
˛ˇ

]
D?l
˛ˇ

+
)
'

0∑
l;A;B

ZAZB
jRl � RB + RAj ; ()))

where D?l
˛ˇ is the electron density matrix ['(, &(] and the prime excludes Rj �

RA + RB = ?.
In Eqs. (<), (() and ())), there are infinite summations in the overlap matrix

Sk , the Fock matrix Fk , and the total energy per unit cell EHFuc . There are also
infinite summations in T lpq, V

l
pq, J

l
pq, and K

l
pq. The infinite lattice summations in

Sk , Tl and Kl converge themselves while Vl , Jl and the internuclear interactions
have to be summed together to get converged results ['?–'']. In real calcu-
lations, cutoffs for the lattice summations have been imposed and multipole
expansion techniques have been applied to hasten the convergence [''].
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3
Correlated Method for Total Energies

From perturbation theory, we know that the exact total energy of the system
can be expressed as

E = EHF + E(') + E(&) + ::: : ()')

Since the total energy is infinite in an extended system, we are more interested
in the total energy per unit cell, which is defined as

Euc = E=N
= EHFuc + E(')uc + E(&)uc + ::: ; ()&)

for which the analytical expression of EHFuc has already been given in Eq. ())).
From Raleigh–Schrödinger perturbation theory [&], one can get analytical

expressions for any given-order MBPT correction to the total energy per unit
cell. Here we focus on the second-order MBPT correction which is given by ['(]

E(') =
)
N

∑
iki jkj

∑
akabkb

{
'jhikijkj jr�)

)' jakabkbij' � Re[hikijkj jr�)
)' jakabkbi

�hbkbakajr�)
)' jikijkji]

}
=
[
"HFiki + "HFjkj � "HFaka � "HFbkb

]
; ()<)

where i, j and a, b denote occupied and unoccupied bands, respectively, and
Re[x] is a function which takes the real part of x. The two-electron integrals
in Eq. ()<) are infinitesimal numbers [)E]. They approach zero when N ! 1.
To separate the infinitesimal factor, we can write ['(]

h(pkp)(qkq)jy�)
)' j(rkr )(sks)i = ıkq ;T(kr+ks�kp )Q(pqrskpkrks)=N ; ()E)

where

Q(pqrskpkrks) =
∑

R);R';R&

exp
[
i
(
kr � R) � (

kr � kp
) � R' + ks � R&

)]

�
∑
pqrs

(
C
ikp
˛

)�(
C
qT (kr+ks�kp )
4

)�
Crkrˇ Csks#

(
˛ˇR) j4 R'#R'+R&

)
()()

has a finite value. Substituting Eq. ()E) in Eq. ()<) and replacing the summa-
tions over the reciprocal vector k in the first Brillouin zone, we get ['(]

E(') =
)

W&

∑
ijab

∫
BZ
dki

∫
BZ
dka

∫
BZ
dkb

{
'jQ(ijabkikakb)j'

�Re[Q(ijabkikakb)Q
�(ijbakikbka)

]}
/(

"HFiki + "HFjT (ka+kb�ki) � "HFaka � "HFbkb

)
; ()=)

where BZ means the integral range is the first Brillouin zone and W is the
volume of the first Brillouin zone.
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4
MBPT and GFM for Band Structure

Beyond the HF approximation, the band energies are defined as ionization po-
tentials for occupied or valence bands, and as electron affinites for unoccupied
or conduction bands, respectively [<<]. They are no longer one-electron ener-
gies, but are quasi-particle energies, which can be calculated via MBPT ['(, <<–
<>], CC [<(d), E, <A–E)], and propagator [(–A] or Green’s function methods
(GFM) [)?–)<].

From Eqs. (() and (A), one can see that the orbital relaxation due to the
removal or addition of an electron to the neutral system is infinitesimal. Then
it is reasonable to use HF orbitals of the neutral system as the orbitals of its
ion and anion systems and use the orbitals to construct their zeroth-order
wavefunctions. Let us use E+(iki) to denote the total energy of the ion system
whose zeroth-order wavefunction can be obtained by removing an electron in
the  iki orbital from the ground state HF wavefunction of the neutral system.
Then the band energy "iki is given by

"iki = E � E+(iki) : ()>)

Similarly, let us use E�(aka) to denote the total energy of the anion system
whose zeroth-order wavefunction can be obtained by adding an electron to the
 aka orbital to the HF wavefunction of the neutral system and then the band
energy "aka is determined by

"aka = E�(aka)� E : ()A)

It should be mentioned that although the orbital relaxation in each orbital is
infinitesimal, the collective effect on the total energy has a finite contribution
since the number of orbitals is infinite [E']. The orbital relaxation can be ac-
counted for by an operator when the total energy of an ion system is calculated.
Since the total energies on the right-hand sides of Eqs. ()>) and ()A) are all
infinite, we need to directly calculate the difference of the two energies on the
right-hand side of each equation, which has a finite value. The orbital relaxa-
tion starts to have finite contributions in the third-order correction, or even in
a first-order correction if non-canonical orbitals are used [E'].

Just as for the total energy, we can use perturbation theory to express "nk

as

"nk = "HFnk + "(')nk + "(&)nk + ::: ; ('?)

where n indicates either an occupied or unoccupied band. Using MBPT for E,
E+(iki), and E�(aka), respectively, and then taking differences of the energies
in Eqs. ()>) and ()A), one can get an analytical expression for a direct evaluation
of any given-order correction to the band energies [E']. For the second-order
correction, the analytical expression can be written as ['(]

"(')nk = U (nk; ?) + V (nk; ?) ; ('))
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where

U (nk;∆") =
(
)
W

)' ∑
iab

∫
BZ
dka

∫
BZ
dkb

{
'jQ(niabkkakb)j'

�Re[Q(niabkkakb)Q
�(nibakkbka)

]}
/ (

∆" + "HFnk + "HFjT (ka+kb�ki) � "HFaka � "HFbkb

)
; ('')

V (nk;∆") =
(
)
W

)' ∑
aij

∫
BZ
dki

∫
BZ
dkj

{
'jQ(naijkkikj)j'

�Re[Q(naijkkikj)Q�(najikkjki)
]}

/ (
∆" + "HFnk + "HFaT (ki+kj�k) � "HFiki � "HFjkj

)
: ('&)

There are no singularies in Eqs. ('') and ('&), e.g. the denominators do not
vanish, provided "HFnk satisfies the condition that

"HFlu + EHFg > "HFnk > "HFho � EHFg ; ('<)

where "HFlu and "HFho denote the lowest unoccupied and highest occupied HF orbi-
tal energies, respectively. In the range given in Eq. ('<), the single determinant
approximation for ion and anion systems should be reasonable. Beyond that
range, the approximation may break down since degeneracy among zeroth-
order determinants could occur. It is also reasonable to argue according to
Eqs. ('') and ('&) that the second-order correction "(')iki

for the valence bands

are positive while the second-order correction "(')aka
for the conduction bands

are negative. (The U(P) and V(P) should be exchanged in Eq. (EE) and the
associated paragraph in reference ['(].) Then the second-order MBPT energy
band gap is smaller than the HF energy band gap.

The propagator [(–A] or Green’s function method (GFM) [)?–)<] provides
another approach to calculate the quasi-particle energy bands. The Dyson equa-
tion provides the exact E(N ˙ )) energies in a formally one-particle picture,
but the equation can only be solved approximately in real applications [E=].
With the irreducible self-energy part in the diagonal approximation being cor-
rect to second-order, the inverse Dyson equation can be written as ['(]

"(d)nk = U (nk; "(d)nk ) + V (nk; "(d)nk ) ('E)

and solved iteratively. The first iteration corresponds to Eq. (')). When one goes
to a third-order approximation, one needs to consider the off-diagonal elements
of the second-order correction since they are likely to be more important than
the third-order corrections. However, it is much more expensive to calculate
the off-diagonal elements.
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5
Convergence of MBPT(2) Corrections with Cutoffs

From Eq. ()(), we know that there are three lattice summations which go to
infinity, in the expression of Q(pqrskpkrks). In the real calculations, we have
to cutoff the summations. N denotes the cutoff for the lattice summations. In
Eqs. ()=), (''), and ('&), there are integrations over k in the first Brillouin
zone. In real calculations, the integrations are done with a numerical method,
e.g. the integrations become summations of the integrand at a set of points
chosen in the first Brillouin zone. For crystals, one may need to take the so-
called “special” sets of points which have been shown to be efficient [=&, =<]
while for polymers, we can simply let the chosen points be evenly distributed
in the first Brillouin zone. Let us use K to denote the number of the points.
Then the MBPT(') corrections to both the total energy per unit cell and the
band energy are functions of the cutoff, N and K . We have shown that the
correction to the band energy converges much slower than that to the total
energy per unit cell ['(]. To get reliable and meaningful results, one must
check the convergence of the corrections with the cutoffs, especially for the
corrections to the band energies.

For polymers, we can get analytical expressions for the convergence of E(')uc

and "(')nk with the lattice summation cutoff N . Let us use E(')uc (N ) and "(')nk (N )
to denote the approximate MBPT(') corrections to the total energy per unit
cell and energy of the nth band with the reciprocal vector k, respectively. With
multipole expansion techniques, we have shown that when N is large enough,
E(')uc (N ) is related to the exact value E

(')
uc by ['=]

E(')uc (N ) = E(')uc � A=N & + ::: ; ('()

where A is a constant. This indicates that E(')uc in polymers converges with the
lattice summation at least as fast as )=N &. For the band energy, one of the two
terms, U and V , converges with N as fast as E(')uc while the other is one power
slower. Then "(')nk (N ) can be expressed as ['=]

"(')nk (N ) = "(')nk � Bnk=N
' � Cnk=N

& + ::: ; ('=)

where Bnk and Cnk are constants for a given nk. From Eqs. ('() and ('=),
we know that the MBPT(') correction to a band energy converges one power
slower than that to the total energy per unit cell.

6
Higher-Order MBPT Corrections and Their Convergence
with Lattice Summations

The formal expressions for higher-order MBPT corrections for both the total
energy and band energy are the same as those for the total energy and quasi-
particle energy, respectively, in finite systems. By substituting Eq. ()E) and
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replacing the summations over the reciprocal vector k by (N =W)
∫
BZ dk in

the first Brillouin zone, all the infinite and infinitesimal factors in the MBPT
expressions for the total energy per unit cell and band energy cancel each
other. Then in the expressions, there are only summations over band indices
and integrations over the reciprocal vector in the first Brillouin zone ['<]. These
arithmetic operations do not introduce divergence but Q(pqrskpkrks) can, and
then the integrands may have singularities [)', =E].

By using the multipole expansion for Q(pqrskpkrks), one can show that it
becomes divergent or singular when and only when ['<]

p = r ; kp = kr ; q = s ; kq = ks : ('>)

It is easy to see that some of the Q(pqrskpkrks) integrals in the third-order
MBPT become singular at certain points in the the space formed by the k
vectors ['<, =E].

The MBPT diagrams can always be classified into three types. In the first
type of the diagrams, the two-electron integral Q(pqrskpkrks) never satisfies
the above condition, such as the diagrams of E(')uc and "(')nk . For these types
of diagrams, there is no divergent problem at all since each Q(pqrskpkrks)
converges with lattice summations at any point of k space. The second type of
diagrams are those, in which some of the two-electron integrals Q(pqrskpkrks)
diverge at discrete points in k space. We have shown that in this case, the value
of such a diagram is still uniformly convergent with lattice summations ['<].
In the third type of diagrams, some of the Q(pqrskpkrks) diverge in a region.
Then the value of each diagram becomes infinite or diverges with the lattice
summations. However, these diagrams always occur in pairs [)', =E]. In each
pair, the divergent parts of the two diagrams cancel each other [)', '<, 'E].
Therefore, any order of MBPT correction either to the total energy per unit
cell or to the band energies converges with lattice summations ['<, 'E].

7
Wannier Orbitals Versus Bloch Orbitals

Besides Bloch orbitals, Wannier orbitals [=(] are also widely used in solid state
physics. They are defined as Fourier transformations of the Bloch orbitals, e.g.

Wnl(r) = Wn(r � Rl)

=
)pN

∑
k

e�ik�Rl  nk(r) : ('A)

They can also be expressed as summations over atomic orbitals [)E]

Wnl(r) =
∑
j

∑
˛

dn˛j�˛(r � R˛ � Rl � Rj) ; (&?)

where dn˛j are Fourier transformations of the HF orbital coefficients C
nk
˛ . For

insulators and semiconductors, the coefficients dn˛j decrease rapidly. Then with
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a given cutoff, each Wannier orbital spans a finite number of unit cells, i.e. it is
localized. Since Bloch orbitals have freedom to add phase factors, the Wannier
orbitals are not unique. Thus, one can obtain better localized Wannier orbitals
by adjusting the phase factors of the Bloch orbitals. Several approaches have
been developed to obtain optimized Wannier orbitals [E<, ==]. However, the
intrinsic sizes of the Wannier orbitals, e.g. the best localized Wannier orbitals
which one can obtain by any optimization approach, are determined by the
interactions of the particles in the system and the basis set ['=]. Compared to
Bloch orbitals, Wannier orbitals are localized orbitals while compared to atomic
orbitals, they are delocalized. The optimized Wannier orbitals in a conjugate
polymer with an STO-&G basis set typically span five unit cells on each side of
the reference cell [)E]. Their sizes may become larger when a larger basis set is
used, especially the Wannier orbitals of the conduction bands. Of course, the
size of a Wannier orbital is also dependent on the cutoff of the coefficients dn˛j .

One can transform the two-electron integrals over atomic orbitals to those
over the Wannier orbitals and then transform the integrals to those over Bloch
orbitals [)E, E&]. As in finite systems, the number of the nonzero two-electron
integrals over localized Wannier orbitals is much less than that of those over
delocalized Bloch orbitals. In fact, the latter has an infinite value considering k
as a continuous variable. However, the two-electron integrals over Bloch orbi-
tals are continuous functions of the reciprocal vectors. The continuity enables
us to calculate the integrals only at a set of discrete points in the space of the
k vectors. Then the number of the two-electron integrals which need to be
calculated over Bloch orbitals is not necessarily larger than that of those over
the Wannier orbitals for a given accuracy, yet the two-step procedure brings an
extra approximation, to which the MBPT corrections to band energies are more
sensitive than that to the total energy per uint cell, since the former conver-
ges one power slower with the cutoff of the lattice. Furthermore, a seven-step
procedure [=>] can be developed for the direct transformation described in
Eq. ()() while it cannot when Wannier orbitals are used. The seven-step pro-
cedure reduces the computational cost approximately by K , which is about
twenty for polymers, compared to the conventional four-step procedure. So
far, all our MBPT(') calulations for polymers ['(, '=, ((, (>] have been done
on IBM/R(??? workstations.

8
Structure and Phonon Spectra

8.1
Geometry Optimization

For an infinite system which is periodic in � directions, the independent va-
riables required to describe the nuclear structure are the internal coordinates
in one unit cell and the � basis vectors, a), ..., a� . Besides the translational
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symmetry, the system may have point symmetry. In this case, the number of
independent coordinates can be further reduced. Let us use r = r); r'; :::; rm to
denote the independent internal coordinates of the system. Then the Hartree–
Fock (HF) total energy per unit cell EHFuc , and the MBPT(') total energy per
unit cell EMBPT (')uc , where

EMBPT (')uc = EHFuc + E(')uc ; (&))

(or total energies per unit cell of other correlated methods for a given basis
set) are functions of r), r', ..., rm. They are also the functions of a), ..., a� . The
optimized geometries of a method within the basis set are the geometries at
which the energy of the method has minimum values. There can be more than
one optimized geometry for a system. The geometry at which the system has the
lowest energy is the most stable structure of the system. The other minima also
correspond to other equilibrium structures. In a crystal, different equilibrium
structures correspond to different phases. In a polymer, they correspond to
different forms, e.g. polyacetylene has all-trans, trans-cisoid, and cis-transoid
forms. The the transitions and the transition paths among phases or forms of
a system can also be determined by locating saddle points [=A] and following
steepest descent lines [>?], which connect the saddle points and the minima, on
the energy surface. The energy of the system at an equilibrium structure also
provides the information for determining the cohesive energy of the system at
the structure.

8.2
Vibrational Frequencies

Just as in molecules, the nuclei in an infinite, periodic system vibrate around
their equilibrium positions according to their vibrational modes which are
called phonons in solid state physics. They determine the system’s specific heat,
thermal conductivity, thermal expansion, infrared and Raman spectroscopy,
and other mechanical properties [>)–>&].

When the nuclei vibrate, they may break the system’s translational sym-
metry. However, one can still classify the vibrational modes by the reciprocal
vector k. The vibrational frequencies !(k) which belong to the reciprocal vec-
tor k are determined by [>), ><]

Det
∣∣M�)='FX(k)M�)=' � !(k)'I

∣∣ = ? ; (&')

where M is the mass matrix which is diagonal, I is an identity matrix, and F is
the matrix of the force constants given by [>E]

fFX(k)gA0> 0;A> =
@'Euc

@Y †kA0> 0@YkA>
: (&&)

The energy Euc in Eq. (&&) can be EHFuc , E
MBPT (')
uc or other correlated total energy

per unit cell. The coordinates YkA are Fourier transforms of the nuclei’s Carte-
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sian coordinates. They break the system’s translational symmetry except those
where k = ?.

When k = ?, the nuclei in different units vibrate in phase, e.g., the trans-
lational symmetry is always kept. The vibrational modes for k = ? can be
observed in an infrared (IR) spectra and then are called fundamental fre-
quencies [(=]. For a polymer with screw symmetry such as polyethylene, the
vibrational modes for k = �=a are also observable in an IR spectra [(=]. For
the vibrational modes for k = ?, the matrix of force constants becomes [(>]

fFXgij =
@'Euc
@xi@xj

; (&<)

where xi and xj are the Cartesian coordinates of the nuclei in the reference
unit cell. Since the translational symmetry is always kept, the energy derivatives
@'Euc=@xi@xj can be calculated by either finite difference or analytical methods.

When k 6= ?, the translational symmetry is broken in the vibrational mo-
tions. Then the finite difference method can no longer provide the energy
derivatives required in Eq. (&&) since the translational symmetry is required in
all ab initio methods applied to calculate the energy of an extended, periodic
system. One may cause the reciprocal vector of a certain vibrational mode to
vanish by enlarging the unit cell of the system (the so called “super cell”) [>)],
but this is very expensive.

For k = ?, the Fock matrix and its derivatives with respect to the dis-
placements of the nuclei are always block diagonal. Then one can directly
apply the analytical derivative methods developed for finite systems to exten-
ded systems [(A, >(, >=, >>]. But when the displacements break the translational
symmetry, the Fock matrix and its derivatives are no longer block diagonal. To
solve the CPHF equations, one needs to use the symmetrized (normal mode)
coordinates instead of the Cartesian coordinates of the nuclei. Efficient analyti-
cal methods have been developed to calculate the energy derivatives for k 6= ?
with both plane wave [>A–A?] and general basis functions [>E]. The latter can be
functions of nuclear coordinates and have linear dependence. These methods
reduce the computational cost required to calculate the phonon spectrum with
k 6= ? to the same as that needed for the spectrum at k = ?.

8.3
Application to Polymethineimine

Figure ) shows the structure of all-trans-polymethineimine and Table ) lists the
optimized geometries for both HF and MBPT(') methods with three basis sets,
STO-&G, (-&)G, and (-&)G** [(>]. We can see that both the size of the basis
sets and electron correlation have a strong influence on the stable structure,
especially on the difference between the two bond lengths, rN=C and rC�N .

Table ' presents the HF and MBPT(') fundamental vibrational frequencies
for all-trans-polymethineimine [(>]. The vibrational frequencies listed in each
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Fig. 1. The structure of polymethineimine and the five independent internal coordinates:
rN=C , rC�N , rC�H , ˛, and ˇ

Table 1. The optimized geometries for polymethineimine using both HF and MBPT(') with
three basis sets, STO-&G, (-&)G, and (-&)G** (units: Å and degree) [(>]

rN=C rC�N rC�H ˛ ˇ

HF/STO-&G ).'>)< ).<E)E ).?A=& ))(.(& )'E.?&
MBPT(')/STO-&G ).&&(= ).<>&( ).))A? ))&.=( )'(.&&
HF/(-&)G ).'(E= ).&>&A ).?>=( )'?.&? )').>'
MBPT(')/(-&)G ).&?&A ).<?A> ).)?>> ))>.&) )''.A(
HF/(-&)G** ).'()( ).&()= ).?A&A ))A.() )').EE
MBPT(')/(-&)G** ).'>EA ).&=)= ).)?'& ))>.)A )''.)(

Table 2. Fundamental vibrational frequencies with symmetry A0 calculated with different
methods and basis sets (unit:)/cm). Unscaled [(>]

C-N str. C-H def. C=N str. C-H str.

HF/STO-&G )&?E.A< )E)=.)A )>((.(( &E=(.EA
MBPT(')/STO-&G )?)<.A' )&E'.?= )E?E.AA &&<?.&?
HF/(-&)G )'E=.)A )E'=.>' )(A(.>A &)=(.><
MBPT(')/(-&)G ))=&.)' )&A(.?> )EA(.EA 'AE=.A'
HF/(-&)G** ))<?.E= )&=A.<A )(?=.?< &)&E.EE
MBPT(')/(-&)G** )??A.== )'(E.EE )E>'.=( 'AA(.=&
Experiment [A)] )<)? )('? &)=?

row are calculated by the combination of method and basis given in the first
column at the corresponding optimized structure listed in Table ). It is easy to
see that both basis set and electron correlation have a large influence on the
vibrational frequencies.

For STO-&G, the HF vibrational frequencies are larger than the experimen-
tal values. MBPT(') [A)] improves the numerical results by a few hundred
wave numbers. When the (-&)G basis is used, both HF and MBPT(') pro-
vide good agreement with experiment. When the larger basis set (-&)G** is
used, MBPT(') frequencies are even smaller than those obtained with (-&)G,
although MBPT(')/(-&)G** frequencies still match the measured values rea-
sonably well.
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It is not clear that the experimental results are for pure all-trans-poly-
methineimine, as other cis-transoid and trans-cisoid structures are possible.
In fact, Hirao and Iwata recently stated that the experiment results are for
cis-transoid-polymethineimine, and reported DFT results with the L&YP fun-
ctional [>=]. To clarify this issue, we are calculating the MBPT(') structures
and vibrational frequencies for other isomers of polymethineimine. Further
experiments are also needed to compare with theory.

9
X-Ray and Ultraviolet Photoelectron Spectroscopy

9.1
Formalism

X-ray (XPS) [E>–()] and ultraviolet photoelectron spectroscopy (UPS) [('–
(E] provide rich information about the valence bands of extended systems.
The further development of angle-resolved UPS (ARUPS) can even be used to
directly observe the band structures. Then they can provide a tool to directly
check theory.

The line intensities of the measured XPS and UPS spectra depend on both
the photoionization cross sections and the frequency distribution of the inci-
dent radiation, e.g. [((]

I(E) =
∑
i

∫
ti(E0)di(E0)F (E � E0; Γ)dE0 ; (&E)

where ti(E0) is the photoelectron cross-section of the orbital on the ith band
with orbital energy E0, di(E0) is the band’s density of states (DOS), and
F (E � E0; Γ) is the energy distribution of the incident radiation around the
frequency of the maximum intensity. The photoionization cross-sections are
functions of the angle of incident radiation, the energy of the radiation, and
the angle of the emitted electrons. Hence, the ARUPS spectra varies with these
three parameters [(E]. The energy distribution of the incident radiation can
be described by a linear combination of Lorentzian and Gaussian curves with
a half-width at half-maximum Γ , e.g.,

F (x; Γ) =
wl
�

Γ
x' + Γ '

+
wg
Γ

√
ln'
�
exp

[
� ln'
Γ '

x'
]
; (&()

where wl and wg are the weight of the Lorentzian and Gaussian curves, respec-
tively.

9.2
Application to Polyethylene

Polyethylene has been well studied both experimentally and theoretically, alt-
hough the purity of a polymer sample is always an issue. Several experimental
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Fig. 2. The HF, LDA, BLYP, and MBPT(') valence bands of all-trans polyethylene with basis
set (-&)G as a function of k [((]

XPS and UPS for polyethylene have been reported while there are some di-
screpancies among them [(?, (), (E]. Semi-empirical methods provided some
agreement with experiment in selected energy ranges, but failed in others [(E].
HF offered a better description of the general features [A'–A<], but the diffe-
rence between theory and experiment varied from ' eV to E eV in the energy
range of the valence bands. Recently, we applied MBPT(') to interpret the
measured XPS and UPS data and help resolve the discrepancies [((].

Figure ' shows the HF, two DFT variants (LDA and gradient corrected
BLYP), and MBPT(') band structures of polyethylene calculated with the (-
&)G basis set [((]. The MBPT(') bands are above the HF and below the DFT
ones. The correlation shift is different at different points in the bands, being
around ' eV for the first two bands. For the third band, the shift is about E
eV at ? and & eV at �=a. Table & list the calculated and measured peaks, the
positions of which are not sensitive to the distribution of the incident radiation
in the spectra [((]. The HF values are much larger than the measured data
while DFT results are too small. As expected, MBPT(') greatly reduces the
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Table 3. Comparison among the peaks in the density of states calculated using HF, BLYP,
and MBPT(') with basis sets (-&)G and (-&)G**, respectively, and those measured by XPS
and ARUPS [((] unit: eV

I.P. Is I) I' Ix I& I< II) II'

HF (-&)G )?.E) )'.&) )'.E' )(.?> )>.&= ').<& &?.')
HF (-&)G** )?.EE )'.&= )'.(< )E.AA )>.'= ').E? &?.?&
BLYP (-&)G E.A& =.&A =.<? )?.'< )).=& )&.=? )A.A'

MBPT(') (-&)G >.?> A.E? )?.&' )?.=E )&.<< )E.A) )>.<> 'E.?A
MBPT(') (-&)G** >.<?a )?.EA )).?( )&.E< )E.AA )>.&A '<.((

XPS [(?] Polyethylene >.( A.( )).' )'.( )&.> )>.? '&.(
XPS [()] C&(H=< A.> )).) )&.= )E.< )>.? '&.>
ARUPS [(E] C&(H=< )?.E-)'.? )<.? )E.E )>.& '<.(

a MBPT(')/(-&)G** calculations have been done only at the peaks.

Fig. 3. Comparison between the experimental and the MBPT(') XPS for polyethylene [((].
Solid line: experimental XPS measured by Pireaux et al. [)(b]; circles: the MBPT(') photo-
electron spetra shown in Fig. 'c.
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differences between theory and experiment. By considering the width of the
incident radiation, the Is has been shown as the result of the overlap among I),
I' and the IP peaks while Ix is an artifact in the earlier experiment.

Figure & is a direct comparison between the MBPT(') photoelectron spectra
and the experimental XPS spectra measured by Pireaux et al. [()b] where the
II) peak of the two spectra have been superimposed. In our calculation, the Γ
in Eq. (&() was taken as ?.=E eV, which is the FWHM of the radiation used in
the experiment [AE]. Figure & shows that the two spectra match very well, even
including the three small peaks.

Shake-up effects may start to contribute from the II' peak. That may be the
reason why the measured peak is higher than calculated and also the reason
the intensity beyond the II' peak is strong.

10
Band Gaps and Excitation Energies

The band gap in an extended system is defined as the difference between the
lowest band energy in the conduction band and highest band energy in the
valence band [)E]. In the zeroth-order approximation, it equals the lowest ex-
citation energy. But it is no longer correct beyond the zeroth-order approxima-
tion. Thus one should be careful when comparing calculated energy band gaps
with experiment. Most of the measured band gaps in the literature are obtained
from absorption spectra which are determined by excited states (excitons) of
the systems.

The zeroth-order wavefunction of an excited state in an extended system
cannot be described by a single determinant since the energies of the excited
determinants form continuous bands. The states associated with the same band
are degenerate since the energy difference between two adjacent states is an
infinitesimal number. Thus, to calculate the energy spectrum of excited states,
one needs to use degenerate MBPT, two-particle green function theory or a
method like EOM-CC [E].

10.1
Polyacetylene

The optimized MBPT(') geometries of polyacetylene using MBPT(') with se-
veral basis sets were given by Suhai [E&, EE]. At these geometries, he calculated
the MBPT(') band gaps of the system with the basis sets. Using GFM described
in Eq. ('E), Liegener [E=] also calculated the band gaps of polyacetylene with
three different basis sets at one geometry given by Suhai. There was a large
inconsistency among these calculated band gaps. Recently, we showed that the
inconsistency should come from the nonconvergence of MBPT(') corrections
to the band energies with lattice summation cutoff N ['(]. As mentioned be-
fore, the MBPT(') correction to a band energy converges one power slower with
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Table 4. EHFg , E(')g and EHFg +E(')g for alternating trans-polyacetylene (unit: eV) ['(]

Geometry G) and (-&)G** G' and DZP G& and DZP

EHFg (.&A< (.'>< E.E=<

E(')g '.&() '.E<? '.&E'

EHFg + E(')g <.?&& &.=<< &.'''

N and is more sensitive to K than that of the total energy per unit cell ['=]. To
get reliable results, one has to check the convergence of the corrections with
the cutoffs carefully.

Table < lists the MBPT(') band gaps of polyacetylene calculated with basis
set (-&)G** and DZP at three different geometries by us [&(]. The cutoffs
N and K are both '). The geometries used in the calculations are listed in
Table E. The first two were given by Suhai [E&, EE] and the last one was an
experimentally estimated geometry [A=]. The band gaps obtained are <.?&&,
&.=<<, and &.''' eV, respectively. There is no direct measurement of the band
gap, defined as a quasi-particle energy difference of the lowest unoccupied and
highest occupied orbitals. Instead, the absorption spectrum of polyacetylene
crystalline films rises sharply at ).< eV and has a peak around '.? eV [A=].
To explain this measured spectrum, one needs to calculate the density of the
system’s excited states and the absorption coefficients of the states.

Let us use ∆ to denote the bond alternation of polyacetylene, e.g. ∆ = r'�r).
Then the data in Table < show that the smaller the value of ∆, the smaller the
band gap. However, the HF and MBPT(') band gaps do not approach zero when
∆ approaches zero ['(]. They even do not become zero when ∆ vanishes, except
for the screw symmetry enforced in the HF calculation. The discontinuity of
the HF band gaps around ∆ = ? is due to fact that a single determinant cannot
describe the system when ∆ = ?. The discontinuity is also known in finite
systems. This phenomenon occurs when a system changes symmetry from a
geometry which has a higher symmetry than those around it and at which
there are at least two orbitals of the same representation, having exactly the
same orbital energy, but when one is occupied while the other is not. This is
the situation of polyacetylene at ∆ = ?.

10.2
Polymethineimine

Table ( lists the HF and MBPT(') band gaps with three basis sets for po-
lymethineimine. The structure of the system used in each calculation is the
optimized geometry obtained with the same method and basis. The number
of unit cells in the lattice summation is the same as that used in geometry
optimization, namely '). From the table, we can see that electron correlation
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Table 5. The geometries of polyacetylene used in Table < (units: Å and degree) ['(]

rC=C rC�C rC�H ˛ 4

G) [E&] ).&((? ).<E?? ).?A?? )'&.A? ))>.?E
G' [EE] ).&(&< ).<<E? ).?>=' )'&.=E ))>.)&
G& [A(] ).&>?? ).<&?? ).?A?? )''.?? ))>.E?

Table 6. Band gaps calculated using HF and MBPT(') with three basis sets, STO-&G, (-&)G,
and (-&)G** (unit: eV) [(>]

"v;max "c;min Eg

HF/STO-&G �=:&)'( '.=E?' )?.?('>
MBPT(')/STO-&G �(:)?AA '.)E'< >.'('&
HF/(-&)G �A:?=?E �?:>'E? >.'<E<
MBPT(')/(-&)G �=:E=?A �':E((> E.??<)
HF/(-&)G** �>:A&&) �?:&A?? >.E<&)
MBPT(')/(-&)G** �=:()(( �':>&<? <.=>'(

has a dramatic effect on the band gap. The MBPT(') band gap obtained with
(-&)G** is <.=>'( eV. Considering that the band gap of polyacetylene computed
at the same level is <.?&& eV ['(], we can estimate that the first peak in the
polymethineimine’s absorption spectrum would occur at about '.=E eV if we
can assume the same difference between the MBPT(')/(-&)G** band gaps and
the first peak in the absorption spectrum for the two systems.

11
Conclusions

Compared to finite systems, it is of critical importance for extended systems
that the calculated electron correlation corrections properly converge with lat-
tice summations and the integrations over the reciprocal vectors. It has been
shown that any-order MBPT corrections to both the total energy per unit cell
and band energies converge with the summations and the integrations. For the
MBPT(') corrections, the analytical expressions for their convergence beha-
vior with the lattice summation cutoff have been derived, which show that the
MBPT(') correction to a band energy converges one power slower than that to
the total energy per unit cell.

MBPT(') has been applied to several polymers to determine their equili-
brium structures, vibrational frequences, XPS and UPS spectra, and band gaps.
It has been shown that even the MBPT(') correction has a strong effect on their
structures and remarkable improvements to the HF results for the other three
quantities, especially the XPS and UPS spectra, have been made.

MBPT(') is just the first step in the construction of an electron correlation
paradigm for polymers, surfaces, and crystals. We certainly believe that higher-
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order correlations correction are necessary and are working on the next step in
the paradigm.We are also developing similar MBPT(') level approximations for
electronic excitations. As in all systems, the interplay between band structure (a
one-particle propagator quantity) and excited states (a two-particle propagator
quantity) will be crucial in the reliable treatment of optical properties.
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(c) Brédas JL, André JM, Delhalle J ()A>?) J Chem Phys <E:)?A

'&. Deleuze M, Delhalle J, Pickup BT, Calais JL ()AA') Phys Rev B <(:)E((>
'<. Sun JQ, Bartlett RJ ()AA=) J Chem Phys )?(:EEE<
'E. Nooijen M, Bartlett RJ ()AA=) Int J Quantum Chem (&:(?&
'(. Sun JQ, Bartlett RJ ()AA() J Chem Phys )?<:>EE&
'=. Sun JQ, Bartlett RJ ()AA>) Phys Rev Lett >?:&((A
'>. Del Re G, Ladik JJ, Biczó G ()A(=) Phys. Rev. )EE:AA=
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1
Introduction

It is a pleasure to contribute to this volume in tribute to Professor Ede Kapuy.
The primary issues that will be addressed in the current chapter, namely lo-
calization and correlation, are those that were advanced by Professor Kapuy
himself during the major part of his scientific career. Like him we have adopted
a non-conventional approach that will, hopefully, serve as a strong stimulus for
further activity in the field.

One of the most difficult problems for ab initio quantum chemistry is to
determine the potential energy function for a chemical reaction on a metal
surface. Why is this so? First of all, the metal substrate is strongly delocalized.
This means that the system cannot be modeled [�] by considering just a small
or medium-sized cluster of metal atoms. On the other hand, the band structure
techniques that would simplify calculations for a bare metal surface cannot be
directly applied because the translational symmetry is broken by the presence
of the reactants. As a result one has the difficulty of dealing with extended inter-
actions without the benefit of simplifications due to symmetry. Many problems
involving surfaces, interfaces, impurities, or defects in solid state materials fall
under this broad rubric along with various solution phenomena as well.

For a number of years we have been developing a very general approach
to the type of situation described above. Our family of methods, based on
the Local Space Approximation (LSA), may be viewed either as an embedding
technique or as a procedure for combining various fragments of a system in
order to generate the whole. As such it has elements in common with some
of the numerous specific methods that have been presented for embedding or
for combining fragments. However, the LSA possesses the following unique set
of properties: (�) it can be applied to infinite systems; (7) it can be adapted
for use with any level of electronic structure theory or with different levels for
different regions; (�) a systematic scheme for monotonic improvement towards
the ‘exact’ result is obtained; (4) long-range interactions between the local
region of interest and the surroundings are automatically included; and (6)
electronic charge may be freely transferred between the local region and its
surroundings.

Although this chapter is intended as a review, albeit with primary emphasis
on our own work, in the course of writing several new developments have oc-
curred. Thus, in addition to presenting the basic ideas in terms of a single deter-
minant model (Hartree–Fock, Kohn–Sham density functional theory), Sect. 7
also contains an improved procedure for including the orbital overlap between
fragments. Then, in Sect. �, we develop an entirely new hybrid LSA method
where correlation in the local interaction region is treated by conventional ab
initio quantum chemistry techniques (including triple excitations as well as
singles, doubles and quadruples) while the surroundings are treated within
Kohn–Sham theory. The simplifications that can be achieved due to translatio-
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nal symmetry, when one of the fragments is infinitely periodic, are explored
in Sect. 4. Finally, Sect. 6 contains a review of the studies carried out, thus far,
to test the efficacy of the LSA methodology.

2
Basic Ideas/Hartree{Fock and Kohn{Sham Density Functional Theory

Since the LSA is a density-matrix-oriented approach, most of the basic ideas
can be conveyed in terms of either the Hartree–Fock (HF) version or the ver-
sion based on Kohn–Sham density functional theory (KS–DFT). We start by
partitioning the entire system into two or more fragments. It is assumed that
the fragments are amenable to an HF or KS–DFT treatment when separate but
not, at least by ordinary means, when combined. An example is a catalytic
reaction on a metal surface which may be described by two fragments — the
bare surface on the one hand and the molecular reactant on the other. De-
pending upon the nature of the surface reaction it may be advantageous to
further partition the molecular reactants. In general, the fragments may be
either strongly, weakly, or non-bonded entities; the bonds may be either loca-
lized or delocalized; and the division may occur at a reactive site or far from
such a site. Obviously, the possibilities are legion. The only strict requirement
is that an HF or KS–DFT calculation be feasible for each of the fragments.

We wish to determine the HF or KS–DFT solution when the fragments are
allowed to interact. As usual this problem may be solved iteratively starting
with some initial guess for the density matrix. (Strictly speaking, in the KS–
DFT case one only needs the density function which may, of course, be derived
from the density matrix.) In order to generate an initial guess let us assume that
an unrestricted (for convenience) HF or KS–DFT calculation has been carried
out on each fragment and that the spins are correctly paired between entities
where bonding interactions will take place. In that event, one may construct
(for each spin) an approximate initial density matrix, R�, for the entire system
as the direct sum of the density matrices of the individual fragments. However,
R� will not be idempotent because the basis functions on one fragment are not
orthogonal to those on another.

The lack of idempotency indicates that the density matrix is not derivable
from a single determinant wavefunction and the first step is to correct this defi-
ciency. A couple of ‘purification’ schemes are available. One of them, originally
proposed by McWeeny [7], has proven useful of late [�–6] in furtherance of the
quest for linear scaling. In our original formulation [�] we suggested another
procedure based on a sequence of symmetric orthogonalizations. Here we pre-
sent a new treatment that is more in keeping with the overall LSA method. If the
direct sum overlap matrix corresponding to R� is denoted by S�(R�S�R� = R�),
then the idempotency condition for the interacting fragments may be written:

(R� + ∆RS)(S� + ∆S)(R� + ∆RS) = R� + ∆RS (�)
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where ∆S contains the inter-fragment overlaps, and ∆RS restores idempotency.
It is easy to show that

∆RS = �R�∆S A��R� = �R�(A��)†∆S R� (7)

with A = [1 + R� ∆S]. Exactly analogous relations hold for the unoccupied
counterpart of R, which is denoted by U and satisfies

RSU = 0 = USR ; USU = U : (�)

∆US may be otained from Eq. (7) by replacing R� with U� and A with 1+U� ∆S.
The matrix elements of ∆S fall off exponentially with the distance between
atomic centers. Thus, in practice, one can specify a region in space beyond
which the overlap integrals between fragments may be neglected. If ∆SC is the
projection of ∆S onto this cut-off region, then ∆RS becomes

∆RS = �R� ∆SC[1C + (R�)C ∆SC]��R� � �R� YR
C R� : (4)

At this point we define the ‘local space’, L, as the subset of the total ato-
mic orbital (AO) basis that is strongly engaged in the coulombic interactions
between fragments. This assumes that these interactions are localized to some
degree, which is the only assumption of our method. The choice of a particular
L is, clearly, a matter of judgment. However, as L is systematically enlarged we
know that an increasingly more accurate description of the interacting system
will be obtained. At the same time the interaction energy monotonically ap-
proaches the correct value for the total AO basis. Thus, varying the size of L
is exactly like varying the size of the basis set in an ordinary calculation. As
a side benefit, the LSA method can be used [K] to determine the location of
important interactions between fragments. Of course, the subspaces L and C
may or may not be the same.

According to the assumption we have made the change in the density matrix,
∆RX, due to the coulombic interaction between fragments will be more or less
localized. It is tempting to set ∆RX = XL. By doing that, however, one is forced
[5] to split off the local space from the remainder of the system to satisfy the
idempotency condition. This results in an ordinary cluster model which does
not allow electron transfer to or from the surroundings and, as we will see in
Sect. 6, is unsuitable for our purposes. In order to properly embed the cluster
we take advantage of the fact that the sum of the occupied and unoccupied
molecular orbital (MO) spaces is identical to the total AO space. So, instead of
∆RX = XL, we write

∆RX = R�RL R + R�RUL U + U�URL R + U�UL U (6)

where R is initially RS
� = R� � R� YR

C R� and U is given by an exactly analogous
expression.

The effect of the projectors R and U is to spread out the local interaction
over the entire system. In general, then, only part of each occupied orbital of the
interacting fragments will be included within L. As a result L will contain a non-
integral number of electrons as desired for appropriate transfer of electronic
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charge between the local space and the surroundings. As the size of the local
space is increased more and more of the interaction is included. Thus, the only
question is — how rapidly do the calculations converge to the ‘exact’ result?

The local space matrices �RL , �
RU
L , ... must be chosen in such a way as to

maintain idempotency. We have shown elsewhere [�] that this can be done by
means of the following prescription

�RUL = XL [1L + UL XL RL XL]
�� =

(
�URL

)†
; (�a)

�RL = ��RUL UL XL ; �UL = XL RL �
RU
L ; (�b)

whereXL is now a completely arbitrary local space matrix to be determined. The
initial RL is (RS

�)L. On subsequent iterations RL will be the local space projection
of the updated density matrix. It is convenient to rewrite R = RS

� + ∆RX in
terms of the initial projectors (after correction for overlap), i.e.

∆RX = RS
� �

R
L RS

� + RS
� �

RU
L US

� + US
� �

UR
L RS

� + US
� �

U
L US

� (K)

so that all the updating information is contained in the local space matrices
�RL , �

RU
L , ... .
After the first iteration �RL = �RL , �

RU
L = �RUL , ... . On succeeding iterations

we use ∆RX from Eq. (K) to obtain R = RS
� +∆RX and ∆UX = �∆RX to obtain

U = US
�+∆UX. Then substitution into Eq. (6) determines the updated �RL , �

RU
L , ...

in terms of the � matrices. The resulting formulas involve straightforward
matrix multiplications and additions entirely within the local space. In Eq. (K)
∆RX is projected in terms of RS

� and US
�. Later we will find it convenient to go

back one step further to R� and U�. This is readily done by taking advantage
of Eq. (4).

In order to complete our description of the LSA method all that remains is
to specify XL and, then, to evaluate the interaction energy. An optimum choice
for XL is determined by the variation condition which yields [��] the local
space analogue of a familiar result, namely (RFU+UFR)L = 0. Here F is either
the Fock or the Kohn–Sham matrix. Since R , F and U all depend upon XL,
this is a nonlinear relation that must be solved iteratively. The simplest, but
least efficient, method of solution is steepest descents which corresponds to
the choice

XL = �(RFU + UFR)L (5)

where the optimum scaling constant, � , is determined by minimizing either
the total energy (i.e., maximizing the magnitude of the interaction energy) or
the trace (tr) of [(RFU + UFR)L(RFU)L]. More efficient conjugate gradient and
quasi-Newton procedures are applicable as well. The simple relationship bet-
ween XL and R (or U) through Eqs. (�a), (�b), and (K), indicates that analytical
gradients should be straightforward to implement.

We turn now to construction of the Fock matrix and calculation of the
energy. The quantities that are required are the projections (RFR)L; (RFU)L =
(UFR)†L, and (UFU)L. Following exactly the same procedure used to obtain
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the � matrices in Eq. (K) from the � matrices in Eq. (6) one can determine
[��] (RFR)L, (RFU)L, ... from (RS

�FRS
�)L, (R

S
�FUS

�)L, ... through simple matrix
multiplications and additions on the local space. Furthermore, as indicated
earlier, it is straightforward to express the latter in terms of the original R�

and U� utilizing Eq. (4). Assuming that C = L, the pivotal quantities become
(R�FR�)L, (R�FU�)L, ... . Otherwise, we would need to use whichever space (C
or L) is the larger of the two. One convenient strategy is to follow convergence
to the ‘exact’ result along the path on which C = L as the size of the local space
is increased.

The next step is to take into account the fact that F depends upon R. Indeed,
in the spin-polarized treatment F is a function of both spin density matrices
(although the matrices (R�FR�)L, (R�FU�)L, ... above are all associated with one
spin or the other). The corrections to F due to interaction between fragments
come from three sources. Since F depends upon R there will be overlap effects
due to ∆RS and electronic charge redistribution effects due to ∆RX. In addition,
there will be new nuclear-electron attraction terms. In analogy with R (cf., Eq.
(K)) we write

F = F� + ∆FS + ∆FX (�)

where ∆FS includes the new nuclear-electron interactions as well as the con-
tribution due solely to ∆RS (i.e. ∆RX = �). We will focus on the more difficult
∆FX term which arises from the electron-electron interactions.

In HF theory the change, ∆FX, due to a change in the density matrix of the
same spin is

(∆FX)�	 =
∑

;�

(∆RX)
�
[
(�	 j
�)� (�� j
	 )] (��)

where the Greek indices refer to AOs of the entire system. The contribution
due to a change in the density matrix of opposite spin has exactly the same
form as the first term on the right hand side (rhs) of Eq. (��). Since no new
considerations are involved, we will ignore the latter in order to simplify the
presentation. Using Eqs. (4) and (K) in (��) leads to a set of terms that are
typified by∑

ab2L
qRUab

∑

;�

(R�)
a(U�)�b
[
(�	 j
�)� (�� j
	 )] (��)

where qRUL is a local space matrix which is a sum of various products of the �L,
YL, (R�)L and (U�)L matrices. Note that the indices a; b, ... denote local space
AOs. In addition to the R� ... U� term displayed in (��) there are also R� ... R�

and U� ... U� terms. The double sum over 
, � represents a half-transformation
of the two-electron integrals from the full space to the local space. It is exactly
analogous to the first two steps of the usual 4-index transformation except that
the MO coefficients are replaced here by matrix elements of R� or U�. These
calculations are time-consuming and it is fortunate, therefore, that they can
be circumvented in the conventional HF procedure. In the LSA/HF treatment,
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when applied to problems such as chemisorption on metals, there are major
simplifications that follow from the translational symmetry of the substrate,
as we will see in Sect. 4. Furthermore, we intend to go beyond the HF level
(cf., Sect. �), in which case such an integrals transformation (or its equivalent)
cannot be avoided even in conventional calculations. Finally, an alternative to
the usual method of evaluation, based on numerical integration, is discussed
immediately below. The latter approach can be very efficient when used in
standard quantum chemistry methods and has a number of advantages in
the present context. In any event the double sum over the full space is done
externally, i.e. prior to the SCF iterations, whereas the double sum over the
local space is done internally.

A recent development in ab initio quantum theory has been the introduction
of (partially) numerical schemes for dealing with the two-electron integrals in
a way that reduces the scaling with the size of the system. One of these is
the pseudospectral (PS) [�7, ��] technique, which is closely related to another
procedure known as resolution of the identity (RI) [�4–��]. The use of these
schemes in conjunction with the LSA has been discussed in detail elsewhere
[�K]. Here we present just the basic idea behind the PS approach.

Referring to expression (��) we look at the coulomb term given by (�	 j
�).
First, an analytical integration is done to obtain the set of numerical one-
electron potentials:

A
� (rg) =
∫
dr
�
(r)�� (r)

jrg � rj (�7)

on a preset grid of points rg . Then A
� (rg) is transformed to the local space
by constructing

ARU
ab (rg) =

∑

�

(R�)
a A
� (rg)(U�)�b : (��)

The advantage of Eq. (��) is that the double sum does not have to be repeated
for each �, 	 pair. On the other hand, it must be evaluated at each grid point. We
will see later (Sect. 4) that the calculation is considerably simplified when one
of the fragments has translational symmetry. Additional simplifications due to
the absence of inter-fragment matrix elements in R� will also be explored at
that time.

The interaction energy (∆E) is given by a term, �7 tr [∆Vne]R�, due to swit-
ching on the nuclear-electron attraction between fragments plus the overlap
and electron redistribution contributions [��]

∆ES;X =
�
7
tr [F(R�) + F(R)] ∆R : (�4)

In Eq. (�4) a sum over both spin components is understood. The most diffi-
cult part of ∆E to calculate is the charge redistribution term that comes from
F(R) ∆R in Eq. (�4). In order to evaluate this contribution we must multiply
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the expression in (��) by ∆R�	 , which (using the same analysis that led to (��))
may be written as a sum of terms typified by∑

c;d2L
pRUcd (R�)�c (U�)	d : (�6)

(Here pRU is similar to qRU except that contributions from ∆RS are also in-
cluded.) Multiplying (��) by the above expression and, then, determining the
trace (i.e. summing over �; 	 ) completes the remaining half of the 4-index
integrals-transformation. In the numerical procedure this may be accomplis-
hed by means of two quarter-transformations which utilize

ZUa (rg) =
∑
�

(U�)a� ��(rg) and ZRa (rg) =
∑
�

(R�)a� ��(rg) : (��)

Again, the sum over the full space indices is done externally leaving a sum
over the four local space indices to be carried out on each iteration along with
a weighted sum over the grid points. Note that the sum over the local space
orbital indices of ARU(rg) may be carried out separately from the sum involving
the orbital indices of the local space Z vectors. Although we have considered
only the coulomb energy it should be clear that the same general approach
is applicable to the exchange energy. Important modifications [��, �K] can be
made to the numerical method to improve accuracy but they do not affect the
general description given here. In the RI scheme a set of fitting functions plays
a somewhat similar role to the points on a grid in the PS technique. The RI
approach is even more similar to the numerical procedures usually employed
in connection with DFT.

The construction of FKS and calculation of the energy in DFT is akin to the
PS version of the HF treatment in that both combine numerical and analytical
techniques. For the coulomb (Hartree) term, which is identical in either case,
exactly the same procedure could be followed. However, in DFT it is usual to
replace the matrix A
� (rg) with a vector Ai(rg) obtained by fitting the density
function � using an auxiliary set of basis functions fi. The contribution to �
from the effects of inter-fragment overlap and electron redistribution may be
found using (�6). Multiplication of the typical term in ∆R�	 — see expres-
sion (�6) — by ��(r) �	 (r), followed by summation over � and 	 , yields the
corresponding term in ∆�:

∆�(r) =
∑
a;b

ZRa (r)ZUb (r)p
RU
ab + ::: : (�K)

One can either fit the individual products Za(r)Zb(r), in complete analogy
with the RI approach, or fit ∆�(r) after summing over a; b (as well as over all
4 components indicated by ... in Eq. (�K)).

Next we consider the exchange–correlation potential (and the binding
energy) which can also be evaluated by means of an intermediate fitting pro-
cedure. That is, in fact, the approach taken in our original paper [5] based
on Sambe and Felton’s [�5] DFT treatment. (It is feasible as well, to determine
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FKS by integrating directly over the exchange–correlation potential vXC[�]). The
corresponding contribution to the binding energy is obtained from a numerical
integration of the expression

∆EXC =
∫ (

"XC[��] + ∆"XC
)
∆�dr +

∫
∆"XC��dr

(
∆"XC = "XC[�� + ∆�]� "XC[��]

)
(�5)

where "XC is the energy density. The remaining contributions to the binding
energy are the same as in the HF model. In Eq. (�5) �� (and ∆�) is the total
density, obtained as the sum of the two spin components.

A major appeal of DFT lies in its computational efficiency. Even if a conven-
tional method is deemed necessary for the local space it will often be desirable
to treat the surroundings at the DFT level. Thus, one is led to consider hybrid
treatments within the LSA as discussed in the next section.

3
Hybrid LSA Methodology

Thus far we have focused on a single determinant treatment, either HF or KS–
DFT, of the entire system. For various reasons — greater accuracy, transition
states, excited states, etc. — it may be desirable to undertake a configuration
interaction (CI) or a coupled cluster or many-body perturbation theory (CC or
MBPT) calculation on just the local space. We present below the first formula-
tion of a hybrid approach that will do this within the LSA methodology. Much
of the following will be general; where specifics are required we particularize
to the KS procedure for the surroundings. The HF method could be utilized as
well, although for a metal it is not as appropriate.

It is assumed that a single determinant calculation has been carried out
using the LSA and that the resulting (HF or KS) density matrix is available in
the form of Eq. (K). As discussed on other occasions [�, ��], the first step is to
generate a set of localized MOs (i.e., LMOs) that are associated with the local
space. These LMOs define the occupied electron pairs (and triples, quadruples,
etc.) that will be considered in the subsequent CI, CC, or MBPT treatment. An
appropriate density-matrix-based localization procedure has been developed
by Foster and Weinhold (FW) [7�] following earlier ideas due to Roby [7�].
Starting with RL the FW scheme leads to a set of orthogonal local space natural
hybrid orbitals (NHOs) associated with bi-centric bonds and mono-centric
lone pairs. These NHOs are appropriate for systems where the bonds (and
lone pairs) are well-localized. However, for chemisorption on a metal surface
and other problems of interest this will often not be the case. In general,
then, we prefer to obtain LMOs from the entire RL without projecting onto
atomic and di-atomic subspaces. (If it is possible to further localize any of the
resulting orbitals, then that can be determined by a separate calculation on
the appropriate subspace). The transformation from AOs to LMOs on the local
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space will be denoted by BL. LMOs with small occupancy can be eliminated
at this point. Unless they have exactly unit occupancy, even the most highly
occupied LMOs will contain contributions from the unoccupied (virtual) space.
However, we want to work with orbitals that are completely occupied despite
the fact that this can only be accomplished through a partial delocalization.
Thus, the unoccupied contributions are annihilated, as in our previous work
[��], by projection with R:

�LMOL = BL R �AO : (��)

Here �LMOL is the column vector of LMOs that are associated with the local space
but contain contributions from the entire set of AOs in the column vector �AO.
In Ref. [��] SR was used instead of R. Either choice will suffice to eliminate all
virtual state contributions but it is simplest to use Eq. (��). At this point the
orbitals �LMOL are non-orthogonal; they will be orthogonalized later on.

We never explicitly utilize the LMOs of the surroundings. They could be
determined in a manner similar to the local space LMOs except that they must
be orthogonal to the latter. In principle, the usual Gram–Schmidt procedure
could be employed for that purpose. Finally, it is convenient to symmetrically
orthogonalize the local space LMOs which involves only local space operations
since, from Eq. (��), SLMOL = BL RL B†L:

�̄LMOL = (SLMOL )��=7 �LMOL : (7�)

The general approach used in LSA methods to introduce electron correla-
tion is based on Meyer’s [77] self-consistent electron pair (SCEP) theory, later
extended by Ahlrichs [7�] and Dykstra et al. [74–7K]. Additional important
improvements in SCEP theory were made by Saebo and Pulay [75–��] leading
ultimately to their very successful ‘local correlation’ treatment. We have adop-
ted many of the specific features devised by Saebo and Pulay. Indeed, at first
glance, the similarity between their treatment and ours might be more evident
than the differences. However, the LSA deals particularly with the situation
where a calculation of the entire system is impractical at any level. Thus, in
contrast with Saebo and Pulay’s procedure, our method applies even for the
HF model. Moreover, because we start with isolated fragments the LSA me-
thod can be utilized to treat fully delocalized problems like chemisorption on
a metal surface which are not amenable to a ‘local correlation’ treatment.

At the heart of SCEP theory lie the matrices, CP, that give the coefficients
for excitation of electrons from a given pair of occupied MOs (P = ij) to an
arbitrary pair of AOs p; q. In the spin-unrestricted treatment i and j refer to
spinorbitals with i > j . The use of a matrix formulation in an AO basis leads
to a perfect fit between SCEP theory and either the KS/ or HF/ LSA method.
In treating pair correlations the idempotency condition on R is replaced by a
strong orthogonality requirement on the double excitations — namely, CPSR =
0 = RSCP or, equivalently,

CP = U XP U (7�)
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where XP is arbitrary. Clearly, it is much easier to satisfy the strong orthogo-
nality for CP than the more complicated idempotency condition for R.

The form of the SCEP treatment will vary in certain aspects depending
upon whether it is employed to carry out a CI, CC or Moller-Plesset (MP)
perturbation theory calculation. However, the differences are modest and the
same quantities appear in one place or another. For convenience we utilize
here the MP perturbation theory version of SCEP as formulated by Pulay and
Saebo [��, ��] for their local correlation treatment. The (Hylleraas) variation
condition on the first-order coefficient matrix, C(�)

P = CP, may be written in
the form

hT(7)ij ıC+
ij i = 0 (77)

where the angular brackets signify the trace. In Eq. (77) T(7)ij is the second order
residuum matrix which, in an AO spinorbital representation, is given by

T(7)ij = (Kij � Kji) + (F Cij S+ S Cij F)� S
[∑

k

Fik Ckj + Fkj Cik
]
S : (7�)

Here (Kij)pq = (ip jjq), F is the AO matrix corresponding to the operator

F = h +
∑
i

(Jii � Kii) : (74)

(Jii)pq = (iijpq), and Fik is the matrix element hijFjki. As above the AOs are
denoted by p; q; r , ... while the LMOs are i; j; k, ... . Even for k 6= i, Fik will
generally be non-zero in an LMO basis. Furthermore, the KS (as opposed to
HF) orbitals are only approximate eigenfunctions of F since the latter is an HF
Hamiltonian. This will show up later in the fact that RFU;UFR 6= 0.

For a complete SCEP treatment of the entire system the sum in Eq. (74)
would run over all occupied LMOs. In the hybrid LSA method we want to limit
the sum to the LMOs associated with the local space and replace the remainder
by an appropriate potential. Within the KS procedure we make the replacement∑
i

(Jii � Kii) !
∑
i2L
(Jii � Kii) +

{
vH[�] + vXC[�]

} � {
vH[�L] + vXC[�L]

}
(76)

where �L is the density calculated from the orthogonalized local space LMOs.
Note that vH[�]+ vXC[�] accounts for electron correlation throughout the ent-
ire system. After subtracting vH[�L] + vXC[�L] correlation effects within the
surroundings, as well as those between the surroundings and the local space,
will remain. In treating correlation within the local space, therefore, we must
exclude terms that couple the local space with the surroundings so that such
terms are not double-counted. Consequently, the sum over k in Eq. (7�) is
restricted to local space LMOs.

At this point we introduce the LSA by substituting (XP)L for XP in Eq. (7�).
Then the variation condition in Eq. (77) becomes h(U T(7)ij U)L(ıX

†
ij)Li = �, or

(U T(7)ij U)L = 0 (7�)
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since all the elements of (ıX†
P )L are freely variable. In combination with the

expression for the residuum T(7)ij (cf. Eq. (7�)) this condition leads to a set
of linear coupled equations that determine the matrices (Xij)L for ij 2 L. It
follows immediately that (Xij)L = �(Xji)L = �(Xij)†L.

Now let us examine, in turn, each of the local space matrices arising from
the rhs of Eq. (7�). The first is

[
U Kij U

]
L with Kij = Kij � Kji. This matrix can

be evaluated by exactly the same methods that were discussed earlier in connec-
tion with the HF/LSA method. In fact, using Eqs. (��) for the (non-orthogonal)
local space LMOs one is led to exactly the same integral transformation that
was discussed in Sect. 7. If this is done by the conventional method, then the
entire set (all i > j) of

[
U Kij U

]
L matrices may be determined prior to the

self-consistent iterations. Alternatively, the numerical scheme of Sect. 7 can be
employed. Then

[
U Kij U

]
ab can be written as a sum of terms each having the

form: ∑
rg

Za(rg)Zi(rg)Abj(rg) : (7K)

Here we have omitted the superscripts R and/or U on Z and A, which will
vary from term to term. Because of the factorization in the above expression
it is straightforward to calculate all matrix elements (ab) for all pairs (ij) in
parallel. Although one can delay the sum over grid points until solving for
(Xij)L that does not appear to be profitable.

Thus far we have not utilized Saebo and Pulay’s partitioning of the unoccu-
pied space into domains [7�, ��, �7] although that is the primary reason for the
computational savings they achieve over conventional correlation treatments.
This was done deliberately because we envision application to problems where
there is substantial delocalization, such as chemisorption on metal surfaces.
Saebo and Pulay’s procedure, on the other hand, was designed specifically for
the case of a system with localized bonds. Nonetheless, the general idea of do-
mains (of arbitrary size) could be incorporated within the LSA method simply
by allowing for a different local space to be associated with each P = ij pair.
For well-localized LMOs (small domains) this should improve efficiency; for
delocalized LMOs, especially if there are large components near the periphery
of L, one might improve accuracy by using a local space that is centered near
the periphery.

Now let us proceed to the second term on the rhs of Eq. (7�). Using Eq. (4�)
for Cij and, then, taking the local space projection of the U ... U component as
in Eq. (7�), this term becomes

(UFU)L(Xij)L UL + UL (Xij)L(UFU)L : (75)

As defined by Eqs. (74)–(76) F is a combination of terms from the HF and KS
Hamiltonians. Thus, we have already described how to evaluate all contributi-
ons to (UFU)L in Sect. 7. The set of matrices (Xij)L (i > j) are the quantities
to be determined. They may be obtained in the usual manner by transforming
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to a temporary molecular orbital type basis on the local space which diagona-
lizes (UFU)L. If UL were diagonal in this basis, and the interpair coupling (last
term on the rhs of Eq. (7�)) could be ignored, this would yield an immediate
solution. Since that is not the case (Xij)L must be determined iteratively as in
the usual SCEP treatment.

The last term on the rhs of Eq. (7�) describes the coupling between pairs.
When substituted into Eq. (7�) it takes the form

�UL

∑
k2L

[
Fik (Xkj)L + Fjk (Xik)L

]
UL : (7�)

We observe that the sum over k is restricted here to the local space as discussed
in connection with Eq. (76). Finally, using the self-consistent set of (Xij)L the
local MP second-order energy for a UHF reference function may be obtained
as [��]:

E(7)L =
�
4

∑
i;j2L

h[U Kij U
]
L (Xji)Li : (��)

The last step in the hybrid (DFT + MP7)/LSA treatment is to calculate the total
binding energy, ∆E. In analogy with Eqs. (74)–(76) the hybrid expression is
given by

∆E = ∆EKS[�] +
{
∆EHFX;L + ∆E(7)L � ∆EKSXC[�L]

}
(��)

where the quantity in curly brackets is the difference between the HF + MP7
energy and the KS energy for the local space. Since the one-electron terms
and the Hartree energy are the same in either case (both calculated with KS
orbitals) only the exchange and correlation contributions remain. As before,
∆E denotes the energy change arising from the interaction between fragments
due to orbital overlap and nuclear-electron attraction as well as the resulting
electron redistribution.

The SCEP formalism is readily extended to yield the MP� andMP4methods.
Using the third-order energy expression of Saebo and Pulay [��] together with
Eq. (7�) one obtains

E(�)L =
�
5

∑
ij

h(U T(�)ij U)L(Xji)Li (�7)

with

T(�)ij = T(7)ij + K(Cij) + 7
∑
k

{
(Kik � Jik)CkjS � SCjk(Kki � Jki)� (Kjk � Jjk)CkiS

+SCik(Kkj � Jkj)
}
+

∑
kl

{
(kijlj)� (kjjli)} SCklS : (��)

Except for[
K(Cij)

]
�	 =

∑

�

(�
j	�)(Cij)
� (�4)



��� B. Kirtman

all the terms on the rhs of Eq. (��) have appeared previously. When substituted
into Eq. (�7) the latter term gives the energy contribution:∑

abcd

∑
ij

(Xji)ab(Xij)cd
∑
�	
�

Ua�Ub	Uc
Ud� (�
j	�) : (�6)

It is easy to show that the summation over �, 	 , 
, � leads to the same 4-
index transformations that were discussed in Sect. 7 and, therefore, no new
considerations arise in evaluating this expression.

The appropriate SCEP formulas for the fourth-order energy, excluding the
triples contribution, have also been given by Saebo and Pulay [��]. Although
there are some new aspects as far as the singles term is concerned, much of
the treatment is very similar to what we have already presented. For example,
the equation for the second-order pair coefficient matrix, C(7)

ij , is the same as
Eq. (7�) except that one must substitute

T(4)ij = T(�)ij � Kij +
[
T(7)ij

]cij!c(7)ij (��)

for T(7)ij . Then the local energy due to the second-order pair excitations may
be calculated from Eq. (�7) simply by relacing (Xji)L with its second-order
counterpart and multiplying by 7. The fourth-order energy due to quadruple
excitations is given by

E(4)Q;L =
�
5

∑
i;j2L

h(uij � uji)SCijSi (�K)

in which

uij =
∑
k;l2L

{hKkl CjiiCkl � 4Cij Kkl Clk

� 4hKkl CljiCik + 5Cik Kkl Clj
}
: (�5)

Applying the LSA we find, for example, that the second term on the rhs of
Eq. (�5) generates

��
7

∑
ijkl2L

hUL(Xij)L(U Kkl U)L(Xlk)LUL(Xji)Li : (��)

All of the other contributions are similar in the sense that they involve lo-
cal space matrix products where UL occurs twice, XL occurs three times, and
(U K U) occurs once.

In the SCEP formalism single excitations are included through an AO matrix
d which has only an R ... U component or, within the LSA,

d = RyLU : (4�)

The analogue of Eq. (7�) — combined with Eq. (7�) — is then

(RFU)ab +
[
RLyL(UFU)L � (RFR)LyLUL � �

7

∑
i;j2L

(R Kij U)L(Xji)LUL

]
ab
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� �
7

∑
i;j2L

(RS)ai
[
RK(Cij)U

]
jb = � (a; b 2 L) : (4�)

This relation is similar to the one used to determine (Xij)L, which was obtained
by substituting the expressions in (75) and (7�) into Eqs. (7�) and (7�). Thus,
the solution for yL may be found iteratively in the manner described earlier for
(Xij)L. An (RFU)ab term appears here because the KS orbitals are not exact ei-
genfunctions of the local space HF Hamiltonian. By including (RFU)L together
with the usual single excitation terms the former is implicitly being treated as
a second-order perturbation (although it could easily be changed to first-order
if necessary). Given yL the singles contribution to the local fourth-order energy
can be evaluated as

E(4)S;L = h(RFR)LyLULy
†
L � y†LRLyL(UFU)Li : (47)

The extension of the SCEP formalism to account for the computationally
demanding triples contribution to the fourth-order energy has not previously
been addressed either on its own or in connection with the ‘local correlation’
treatment. However, it is not too difficult to do so since an expression (albeit
messy) for the key tensor quantity, (wijk)pqr , has already been given by Krishnan
et al. [�K]. In analogy with Eq. (7�) we write the triples coefficients in the form

(Cijk)pqr = Upp 0Uqq0Urr 0(Zijk)p 0q0r 0 (4�)

using the summation convention (both here and in the remainder of this sec-
tion) for repeated indices. (The tensor Zijk in Eq. (4�) and the following should
not be confused with the column vector Z(rg) in Sect. 7.). From the analogue
of Eq. (7�) one obtains the condition that determines Zijk. Comparing with
Eq. (7�) we now have (wijk)abc instead of (U Kij U)ab ; expression (75) is repla-
ced by

[(UFU)aa0Ubb0Ucc0 + Uaa0(UFU)bb0Ucc0 + Uaa0Ubb0(UFU)cc0] (Zijk)a0b0c0 (44)

and the coupling terms (cf. Eq. (7�)) become

�Uaa0Ubb0Ucc0
[
FilZljk + FjlZilk + FklZijl

]
a0b0c0 : (46)

Finally, the local fourth-order energy due to triple excitations is

E(4)T;L = (wijk)abc(Zijk)abc (4�)

All indices in Eqs. (44)–(4�) refer to the local space.
This completes our treatment of MP perturbation theory through fourth-

order. We have shown elsewhere [�] that the SCEP approach is readily adapted
for CC and CI calculations within the LSA as well. As already noted, essentially
the same quantities appear in all cases. Thus, our formalism is now sufficient to
include the CCSD(T) procedure, which is the current method of choice where
feasible.
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4
Application of Translation Symmetry for Fragments
with Inˇnite Periodicity

If one or more of the separated fragments is infinitely periodic in �, 7, or �
directions the translational symmetry can lead to considerable simplification.
For sake of discussion let us examine the situation where a relatively small
atomic or molecular fragment (I) interacts with an infinitely periodic system.
The latter fragment (II) may be divided into geometrically identical unit cells
along the direction(s) of translational symmetry. Prior to interaction the AOs
and all the electronic properties of these unit cells will be the same. After
interaction the electronic properties will change but the AOs remain unaltered.

We concentrate on the 4-index integrals transformation from the full space
to the local space, which is a major computational bottleneck in the hybrid
treatment (although only half-transformations are needed in second-order per-
turbation theory). Along the way the simplifications for the initial KS–DFT/LSA
calculation due to symmetry will be evident. One procedure for handling the
two-electron integrals is the numerical prescription given in Sect. 7 along with
Eqs. (�7)–(��). In that event we utilize the matrices A
� (rg) defined in Eq. (�7).
The AOs �
 and �� may be associated with either fragment. For fragment II
each orbital can be specified by the unit cell, the atomic center within that cell,
and the orbital type. The location of the unit cell, in turn, requires an index
(possibly compound) for the position in the direction(s) of translational sym-
metry and another for the remaining directions. In the following discussion
we suppress all indices except the one that refers to the position of the unit cell
in the direction(s) of translational symmetry and that index will be denoted
by ˛, ˇ, etc. For fragment (I) we associate a different cellular index with each
atomic center.

The grid points, rg , have yet to be specified. We adopt the viewpoint [�5]
that any chemical system may be divided into space-filling regions as follows.
First, an inner sphere is constructed for each atomic core. Then, the interstitial
region associated with a particular atom is obtained by surrounding the inner
sphere with a Voronoi polyhedron generated by the orthogonal planes that
bisect the lines connecting that atom to all of its neighbors. At the same time a
boundary surface is introduced (except for an infinite crystal) so that atoms on
the periphery will be completely bounded by a polyhedron as are atoms in the
interior. Finally, the outer region consists of all space external to the boundary
surface. In principle, this procedure could be applied at any given geometry to
both the interacting and the non-interacting fragments. However, if each non-
interacting fragment is treated as if the other fragment were not present, then
the polyhedra for atoms near the reactive site would generally be different for
the two cases (interacting vs. non-interacting). In order to avoid this situation,
and maintain translational symmetry as much as possible, we use the polyhedra
of the isolated fragment II even when the interaction is switched on. For exactly
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the same reasons we modify the polyhedra for the atoms of isolated fragment I
if necessary so that they do not overlap with those of fragment II. On the other
hand, there is no way to retain complete translational symmetry in the outer
region. For that region we use the space which is external to both fragments.
This means that the following translational symmetry arguments apply to all
grid points associated with the atoms of fragment II but only to that portion
of the external region which is unmodified by the presence of fragment I. We
label the grid points of fragment II, like the AOs, using just the unit cell index
in the direction(s) of translational symmetry.

The quantities A˛ˇ(r& ) where ˛; ˇ; &;2 II are exactly the same for both
the interacting and the non-interacting fragments. Because of translational
symmetry we have

A˛ˇ(rg& ) = A0ˇ 0(rg& 0) (ˇ 0 = ˇ � ˛; & 0 = & � ˛) (4K)

where the rhs has been obtained by carrying out a uniform translation so that
cell ˛ is at the origin, denoted by 0. Thus, in terms of unit cells, A˛ˇ(r& ) is
effectively a two-dimensional array. Although the array dimensions are infinite,
in practice they can be truncated to a finite range in keeping with the following
discussion. Assuming that the AOs are Gaussian-type functions, then A˛ˇ(r& )
will fall-off as exp (�'jR˛ � Rˇ j7) for all r& , where jR˛ � Rˇ j is the distance
between the unit cells containing the two orbitals (here R is a position vector
not to be confused with the density matrix) and ' is an appropriate orbital
exponent. This exponential decay provides a basis for discarding all ˛, ˇ pairs
with jR˛ � Rˇ j greater than some preset value. On the other hand, if ˛ and
ˇ refer to the same unit cell then A˛˛(r& ) will fall-off as �=jR& � R˛j. For ˛
in (or near) the local space a saving feature is that A˛˛(r& ) is later multiplied
by a pair of elements from the local space ZL(r& ) vector, which leads to an
additional fall-off factor of �=jR& � R˛j� in a �-dimensional metal as we will
see shortly. The same factor will also occur for & in (or near) the local space
and ˛ in the surroundings. In this case it is due to the density matrix elements
that appear in Eq. (��).

The two-electron integrals involve a second AO pair which leads to the in-
troduction of local space ZL vectors (cf. Eq. (��)). Let the local space orbital a in
Eq. (��) belong to unit cell ˛ in fragment II and let the grid point lie in unit cell
& (& 2 II). Then, by the same reasoning that led to Eq. (4K), ZII˛ (r& ) = ZII0 (r& 0)
with & 0 = & � ˛. (Note that R� and U� have no matrix elements connecting
different fragments.) In terms of unit cells, this means that ZIIL (r& ) is, opera-
tionally, a one-dimensional vector quantity. For Gaussian-type AOs the value
of ZIIL (r& ) will be dominated by contributions from orbitals in & or its vicinity.
Hence, if & is far from the local space the value of ZII˛ (r& ) will fall-off with
distance in the same manner as the density matrix element (R�)˛& , or (U�)˛& ,
which is �=jR˛ � R& j� in a �-dimensional metal. This explains the �=jR˛ � R& j�
decay discussed above in connection with A˛˛(r& ).
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In the foregoing analysis the symmetry arguments were applied separately
to A˛ˇ(r& ) and Z˛(r& ). Thus, even if only one (or two or three) of the local
space orbital indices is associated with fragment II, it is possible to take some
advantage of translational symmetry. On the other hand, this does not pertain
to the numerical integration over the unit cells that lie outside the periodic
region. If the alternative procedure of Sect. 7 is followed— i.e., the two-electron
integrals are evaluated analytically at the outset and subsequently transformed
to the local space — then the application of symmetry is more limited. In that
event there are two scenarios. When all four local space orbitals are associated
with fragment II, the translational symmetry may be utilized in exactly the
same manner as it is in a conventional band structure calculation of a perfectly
periodic system. Otherwise, there is no simplification due to symmetry.

5
`Proof of the Method' Calculations

Although some ab initio calculations using the LSA have been carried out [4, �]
most of the treatments, thus far, have employed semi-empirical Hamiltonians
with the aim of proving the efficacy of the method. One key question is the
convergence behavior with respect to increasing the size of the local space,
particularly in delocalized systems such as a chemisorbed atom or molecule
on a metal surface. For the case of atomic hydrogen adsorbed on tungsten, a
comparison with the finite cluster approach has been made using an Anderson–
Newns Hamiltonian. Two important points have emerged from this study [�].
First, the chemisorption binding energy (BE) calculated by the LSA method
approaches the correct value monotonically when the local space is systema-
tically increased in size. This may be contrasted with the finite cluster result
which shows large oscillations even when hundreds of metal atoms are inclu-
ded. These oscillations, which are now recognized as a common phenomenon,
cannot generally be prevented [��] by any known scheme. The second point is
that the initial convergence in the LSA treatment is rapid. When we include in
the local space just those metal AOs that interact directly with the adsorbate
the error in the BE is ��.�%. This is reduced to �.K%, �.5%, 6.6%, 4.�%, ... as
successive shells of metal atom nearest neighbors are added. The monotonic
behavior suggests that extrapolation procedures can be developed to improve
accuracy. No hybrid LSA calculations were attempted since the theory was not
available at the time.

In a related vein, it is of interest to apply the LSA to a case where the local
interaction occurs within the delocalized system rather than at a surface. One
example is an impurity embedded in a �-dimensional metal. Another example,
that we have examined [4�], is the cleavage of a (formal) C–C single bond in
a (-conjugated polyacetylene chain. Using an INDO Hamiltonian it was found
that a local space containing only one or, at most, two carbon ( AOs on either
side of the broken bond is sufficient to completely restore the (-conjugation.
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Along the carbon backbone the addition of � AOs on the originally bonded
atoms plus those on the nearest and next-nearest neighbors leads to a BE that
is accurate to well within �%.

The ability of the LSA to account for long-range polarization was tested [4�]
by means of a CNDO/7 calculation on the ˛-glycylglycine Zwitterion dimer.
In this example the dimer is formed through an ion-pair hydrogen bond (‘salt
bridge’) connecting the monomers. The large BE (
 6� kcal/mol) of the salt
bridge is strongly influenced by the equal and opposite ionic charges on the end
groups. Indeed, all cluster models (which always omit the end groups) yield a
BE roughly a factor of 7 too large. In comparison, using a local space consisting
of just the AOs directly involved in the N–H...O hydrogen bond, the LSA treat-
ment gives about the same 6% accuracy that is obtained for an ordinary weak
(BE 
 6 kcal/mol) hydrogen bond in a species without charge separation. Thus,
the long-range polarization is automatically taken into account when starting
with the separated fragments.

The semiempirical results described above show considerable promise. Ho-
wever, the LSA methodology has yet to be fully implemented in an ab initio
framework. Those ab initio calculations that have been done were carried out
on small well-localized systems. For such cases the HF results [��] confirm our
conclusions drawn from semiempirical treatments. In the one instance where
electron correlation was considered [�], the error in the LSA pair correlation
energy was less than �.� kcal/mol at the equilibrium geometry. It is clear that
further tests are warranted, particularly for delocalized systems with correla-
tion included either at the KS–DFT level throughout or by means of the hybrid
treatment given in Sect. �.
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1
Introduction and Conceptual Framework

Molecular electron densities determine molecular properties. A formal proof of
this intuitively evident principle was provided by the Hohenberg–Kohn theo-
rem [�], establishing that a ground state, nondegenerate electron density uni-
quely determines the energy, as well as all other properties of the molecule [�–
-]. However, local electron densities, their representation, interpretation, and
chemical role within the general framework of quantum chemical localization
[;–�A], represent an important challenge for both theoretical and empirical
chemistry, and in this contribution some of these problems and potential an-
swers will be reviewed, with special emphasis on chemical functional groups.

The quantum chemical concept of local electron densities and the traditio-
nal organic chemistry concept of functional groups have much in common.

Functional groups are among the universally accepted and frequently used
conceptual tools of organic chemists, invoked in most mechanistic models of
organic reactions, synthesis planning, and in the interpretations and explana-
tions of biochemical processes. By contrast, the concept of local, fuzzy electron
density clouds, as a potential tool for interpreting static and dynamic molecu-
lar properties, has been only recently employed in a systematic way within the
framework of quantum chemistry. In fact, functional groups and local electron
densities have analogous roles in the description of molecular properties, and
the increasing recognition of this connection and its actual level of utilization
by chemists is a reflection of the accelerating pace at which rigorous theore-
tical chemistry tools, such as quantum chemical electron density clouds, are
becoming a routine component of the conceptual tool-box of chemists. Ho-
wever, some contrast between the interpretations of traditional and quantum
chemical functional group concepts remain, and the purpose of this chapter
is to point out the essential connections between the empirical model and the
modern quantum chemical approaches.

This contrast is in part due to the difficulty of invoking fuzzy three-
dimensional electron density clouds in a mechanistic interpretation of reac-
tions, which is also hindered by the perceived classical nature of the concept of
localization. Classical objects, often used in analogies when modeling molecu-
lar structures, usually exhibit localized features, yet the very concept of loca-
lization apparently conflicts with the delocalized nature of molecular electron
distribution and the Heisenberg uncertainty relation.

Within the quantum chemical description of molecular electron density
clouds, a natural criterion, the Density Domain criterion, provides a quantum
chemical definition for functional groups [�%–�<]. Furthermore, techniques
that generate fuzzy electron density contributions for local molecular moieties
that are analogous to the fuzzy electron density clouds of complete molecules,
determined by the analytic Additive Fuzzy Density Fragmentation (AFDF) me-
thod [�.–��], or the earlier numerical-grid MEDLA method [��, �A], are also
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applicable for the computation of local electron density clouds suitable to re-
present functional groups within each molecule. Hence, functional groups can
be described and analyzed using essentially the same tools which are employed
in the electron density analysis and shape analysis of complete molecules.

1.1
The Quantum Chemical Concept of Localization

The chemical concept of localization is based on the classical assumption that
molecular electron densities are confined to finite regions of space. Although
various quantum chemical approaches have been proposed to implement this
concept within a theoretical framework, this is essentially a classical idea that
disregards some aspects of the Heisenberg uncertainty relation. Nevertheless,
the interpretation of molecular properties and chemical reactions strongly re-
lies on the inherent assumption that both complete molecules and various,
chemically identifiable, molecular pieces can be assigned to various regions
of space, at least in some approximate sense. The explanation of the appa-
rent success of this essentially classical assumption within a quantum chemical
framework is a nontrivial problem.

If the model is confined to nonrelativistic quantum mechanics, then the
consequences of the Heisenberg relation are not incompatible with a simple,
pictorial interpretation of quantum mechanical localization. A simple localiza-
tion scheme involves a series of monotonically shrinking volumes, contracting
to a single point of the space. As the position information becomes less un-
certain, eventually leading to complete localization, any such process implies
a gradual and eventually complete loss of momentum information. Neverthe-
less, the idea of localization by this scheme, however unlikely as a practical
proposition, is still meaningful within nonrelativistic quantum mechanics.

More severe conceptual problems arise in relativistic quantum mechanics,
where the analogous scheme leads to completely non-physical results. In the
process leading to formal localization and to complete uncertainty of mo-
mentum information, the information on the reference frame itself is lost,
consequently, one can no longer determine what events can be regarded as
simultaneous. Consequently, a conventional, classically interpreted localization
approach within a relativistic quantum mechanical framework leads to non-
sensical results. For example, if one assumes that localization is possible [;]
and, as an initial condition, a relativistic particle is forced to be fully localized
at some time t = $, then the complete uncertainty of the reference frame im-
plies that the same particle is already spread over the whole space at any later
time t > $. Within such a model causality is lost, and the relativistic model
itself becomes self-contradictory [;].

Nevertheless, in an approximate sense, localization is a useful concept for
the interpretation of molecular properties and the dynamic aspects of molecu-
lar interactions. Since atomic nuclei within molecules dominate electron den-
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sity distributions, and since rather reliable approximate models of nuclear be-
havior in molecules can be obtained using models involving some degree of
nuclear localization, the influence of localized nuclear arrangements on the
primarily delocalized molecular electron density cloud also provides a basis
for approximate localization schemes of molecular electron distributions.

Within the approximate molecular orbital framework several useful loca-
lization schemes have been introduced for the determination of localized mole-
cular orbitals. These localized orbitals have been assumed to model some of
the earlier, semi-empirical concepts of bonding electron pairs, lone pairs, and
other local molecular regions assumed to have a dominant role in some chemi-
cal reactions [+, <, ., ��, ��]. These approaches include an orbital localization
technique that can be easily adapted to the reverse process of delocalization
[��, ��]. This latter method has also been proposed for the determination of
the “most delocalized” molecular orbitals [��, ��, �A], reflecting some of the
long-range properties of electron distributions within molecules. Most of these
methods are options within some of the current quantum chemistry program
packages, such as the GAMESS Quantum Chemistry Program Package [�A].

1.2
Subsystems of Molecular Systems

Subsystems of electron density distributions of molecules can be obtained by
a variety of methods; here we shall be concerned with two, fundamentally
different approaches:

(i) subdivision of the space into various compartments di, resulting in mole-
cular fragments of sharp boundaries;

(ii) a fuzzy decomposition of the molecular electron density into fragments
of no boundaries, yielding fuzzy fragment densities that are not only re-
miniscent of the electron densities of complete molecules but also can be
superimposed on one another, resulting in an exact reconstruction of the
original electron density of the complete molecule.

The former approach is subject to the constraints imposed by the recently
proven “Holographic Electron Density Theorem” [�%, �-]:

‘‘Any nonzero volume piece �d(r) of the nondegenerate ground state el-
ectron density fully determines the ground state electron density �(r) of
the entire, boundaryless molecular system.’’

Note that the holographic electron density theorem has been proven for
boundaryless electron densities, where the boundaryless, fuzzy nature of the
complete electron density is an essential feature if realistic molecular represen-
tations are to be considered [�%, �-]. Note that an earlier result on subsystems
used models where both the subsystem and the complete system were assumed
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to be finite and bounded [�$], that is, confined to finite, bounded domains of
the space, a condition that is not valid for real molecular electron densities.

According to the fundamental Hohenberg–Kohn theorem of density func-
tionals [�], the ground state energy E, and the ground state wavefunction Ψ
(hence, essentially all ground state properties of the molecule) are uniquely
determined by the nondegenerate ground state electron density �(r) [�–-].
Since any nonzero volume piece �d(r) determines the complete density, which
in turn determines all molecular properties, a combination of the holographic
electron density theorem with the Hohenberg–Kohn theorem provides a state-
ment stronger than the original Hohenberg–Kohn theorem. This stronger result
can be stated as the “Local Density Information Completeness Theorem” [�;]:

‘‘Any nonzero volume piece �d(r) of the nondegenerate ground state elec-
tron density fully determines the ground state energy E, the ground state
wavefunction Ψ (up to a phase factor), and the expectation values of all
spin-free operators defined by the ground state wavefunction Ψ ’’.

Take now any local, nonzero volume domain c of arbitrary but fixed shape
and size within the ordinary, three-dimensional space, and refer to it as the
standard domain c. For example, take c as the unit cube, using a unit length
convenient for molecular size. Consider all possible ground state, nondege-
nerate local electron densities �c(r) within this domain c. The Local Density
Information Completeness Theorem [�;] implies that the energy E of complete
molecules is a unique functional of the local electron density �c(r) within the
standard domain c:

E = E(�c) : (�)

This result, known as the Local Density Functional Energy Theorem Over Stan-
dard Domains [�;], is a statement stronger than the Hohenberg–Kohn theorem,
implying that the molecular energy is a unique functional not only of the com-
plete ground state electron density, but also of the electron density within any
local, nonzero volume standard domain of arbitrary but fixed shape and size.
Of course, this theorem contains the original Hohenberg–Kohn theorem as a
special case, if the standard domain c is chosen as the full space, c = EA.

Energy is not the only property that is so determined by the electron density
fragment �c. Since the (non-degenerate, ground state) local electron density
�c(r) in any standard domain c fully determines the complete density �(r),
which in turn fully determines the molecular wavefunction Ψ (up to a phase
factor), all molecular properties P which can be expressed as expectation va-
lues of spin-free operators defined by the ground state wavefunction Ψ are also
determined by the local electron density �c(r) in the standard domain c. Con-
sequently, any such property P is also a unique functional of the local electron
density �c(r) within the standard domain c:

P = P (�c) : (�)
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This result, known as the Local Density Functional Property Theorem Over Stan-
dard Domains [�;], is the fundamental statement on the role of local molecular
domains in determining the properties of complete molecules.

These results concern the theoretical basis of chemistry. However, they are
also of relevance to the application of local shape analysis and to the subsequent
use of numerical local shape descriptors in correlations with various, not-well-
understood experimental results, such as biochemical activities in complex
biochemical systems, potency data in pharmaceutical drug design approaches,
experimental toxicities in toxicological risk assessments, etc. [�+–A;].

If fuzzy decompositions of molecular electron densities are considered, then
the fragments themselves are fuzzy objects with no boundaries; far away from
the nearest nucleus, the density value for each fragment density converges
to zero exponentially with distance. The principles of fuzzy electron density
fragmentation schemes are reviewed in Sect. �. Fuzzy fragment densities can
be studied using level sets, that is, domains of the space enclosed by isodensity
contours. Such domains, called density domains, provide a theoretical basis for
the study of functional groups. Density domains have been discussed from the
perspective of molecular similarity measures in an earlier study [�.], and in
Sect. A only a brief summary will be given, followed by a discussion of density
domain properties relevant to functional group analysis.

2
Local Electron Densities, the Additive Fuzzy Density Fragmentation
(AFDF) Principle, and the Adjustable Density Matrix Assembler (ADMA)
Method

If one follows approach (ii) to the study of subsystems of molecules, as out-
lined in Sect. �.�, then it is natural to consider subsystems having properties
analogous to complete molecules. In fact, it is possible to define molecular sub-
systems with electron densities whose convergence properties are analogous to
those of complete molecules.

2.1
Representation of Local Electron Densities: the Additive Fuzzy Density
Fragmentation (AFDF) Principle

Consider an arbitrary classification of the nuclei of the molecule into various
families

f�; f�; ::: ; fk; ::: ; fm : (A)

Whereas this classification of nuclei into families is arbitrary, the fuzzy electron
density fragments obtained are simpler to interpret and identify with chemi-
cally relevant local molecular regions if the nuclei within each family fk are all
those which fall within some local domain of the three-dimensional space.
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A general, additive, fuzzy density fragmentation scheme (AFDF scheme)
has been described in [�.], as outlined below.

Consider a small molecule in some fixed nuclear configuration K and the
corresponding ab initio LCAO molecular wavefunction Ψ expressed in terms
of a basis set of n atomic orbitals 'i(r) (i = �; �; ::: ; n), where r is the three-
dimensional position vector variable. Consider the corresponding n�n density
matrix P, the electron density �(r) expressed in terms of the elements Pij of
this density matrix P, and the atomic orbitals 'i(r):

�(r) =
n∑
i=�

n∑
j=�

Pij'i(r)'j(r) : (%)

For each nuclear family fk an additive fuzzy electron density fragment �k(r)
can be defined by a general Additive Fuzzy Density Fragmentation (AFDF)
scheme proposed earlier [�.]. According to this scheme a fragment density
matrix Pk of dimension n� n is defined in terms of its matrix elements P kij as

P kij = Pij if both atomic orbitals 'i(r) and 'j(r) are centered on nuclei of
the k-th nuclear family,

= f (k; i; j)Pij if precisely one of atomic orbitals 'i(r) and 'j(r) is cen-
tered on a nucleus of the k-th nuclear family,
where f (k; i; j) > $, f (k; i; j) + f (k0; i; j) = �, and where
the k0-th nuclear family contains the other nucleus,

= $ otherwise . (-)

The factors f (k; i; j) can be chosen in a variety of ways; for example, take a
scalar property A(i) that can be assigned to atomic orbitals and does not change
sign (formal electronegativity is one such possible choice). With respect to the
scalar property A(i) a suitable function f (k; i; j) is defined by

f (k; i; j) = A(i)=[A(i) + A(j)] ; (;)

where the atomic orbital 'i(r) is assumed to be centered on a nucleus that
belongs to the nuclear family of index k.

The k-th fuzzy, fragment electron density is defined in terms of the fragment
density matrix Pk, as

�k(r) =
n∑
i=�

n∑
j=�

P kij 'i(r)'j(r) : (+)

The general AFDF scheme of Eq. (-) ensures that the sum of the fragment
density matrices P kij is equal to the density matrix of the molecule, consequently,

one can easily show that the sum of the fragment densities �k(r) is equal to
the density �(r) of Eq. (%) of the molecule:

Pij =
m∑
k=�

P kij (<)
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and

�(r) =
m∑
k=�

�k(r) : (.)

The earliest and simplest implementation of the general scheme of Eq. (-)
has involved the choice of

f (k; i; j) = $:- for all indices k; i; j ; (�$)

which in fact corresponds to a scheme analogous to Mulliken’s population
analysis scheme without integration. This scheme has been used in the MEDLA
numerical approach to the construction of macromolecular electron densities,
including ab initio quality electron densities for the proteins crambin, bovine
insulin, the gene-- protein (g-p) of bacteriophage M�A, the HIV-� protease
monomer of �-;% atoms, the proto-oncogene tyrosine kinese protein �ABL
containing <+A atoms, as well as some important drug molecules, including the
anti-cancer drug taxol [��, �A, A+–A.]. One should note that the usual criticism
of Mulliken’s scheme for the calculation of formal atomic charges stems from
the artificial nature of the very concept of atomic charge within a molecule,
and the present scheme as applied to electron densities without integration
provides a valid, fully additive, fuzzy density fragmentation scheme.

The AFDF local molecular pieces can be used to build high quality ap-
proximate electron densities for large molecules, and also to study the local
molecular subsystems themselves.

2.2
A Local Density Computational Method based on the Adjustable Density Matrix
Assembler (ADMA) Approach

Whereas the first applications of the general AFDF scheme involved the numeri-
cal representation and numerical superposition of local electron densities on a
rectangular grid [��, �A, A+–A.], a more advanced approach involves the analy-
tical construction of density matrices of larger, composite molecular fragments
and of macromolecular density matrices. This approach, the Adjustable Density
Matrix Assembler (ADMA) method [�$, ��], is proposed for the computation
of local and intermediate range electron densities within large molecules, if
the spatial distribution of electron density above some chemically significant
density threshold, say, $.$$� a.u. (atomic unit), is found in an extensive volume
of the space. Typical examples of such extensive molecular pieces with chemi-
cally significant roles are large segments of protein backbones, or collections
of interconnected functional groups in segments of long chain polymers. The
main features of the ADMA method are outlined below.

The macromolecular density matrix P('(K)) of the large molecule M (or
large molecular fragment M) of nuclear configuration K is assembled from
local, fragment density matrices Pk('(Kk)) obtained from high quality ab in-
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itio calculations on small parent molecules Mk of nuclear configurations Kk.
Each fragment density matrix is obtained by applying the AFDF fragmentation
method for the small parent molecules Mk, where the local surroundings of
the actual nuclear family fk of the k-th fragment in the parent molecule Mk is
identical to the local surroundings of the same set fk of nuclei in the large tar-
get molecule M . The presence of these identical “coordination shells” around
the nuclei of each fragment used in the construction of the macromolecular
density matrix P('(K)) of large moleculeM ensures that the local interactions
are properly described by the technique. In other words, each parent mole-
culeMk contains several additional nuclei, beyond those required for the given
fragment associated with the nuclear family fk, and their presence and the
presence of the associated electron density contributions ensure that the k-th
fuzzy electron density fragment includes the relevant share of electron density
interactions with its local surroundings. The size of the “coordination shell”
exactly reproduced in the parent molecules Mk is adjustable; usually, a shell of
-.$ Å thickness appears sufficient.

The following, mutual compatibility conditions simplify the construction
of the macromolecular density matrix P('(K)):

(a) The local coordinate systems of the AO basis sets of all the fragment
density matrices Pk('(Kk)) have axes that are parallel and have matching orien-
tations with the axes of the reference coordinate system of the macromolecule
M . This can always be ensured by a simple similarity transformation of the
fragment density matrix Pk('(Kk)), using an orthogonal transformation T(k)

of the AO sets.
(b) Each parent molecule Mk may contain only complete nuclear families

from the sets of nuclear families f�; f�; ::: ; fk; ::: ; fm, of the target macromole-
cule M . Some of these families are those surrounding the family fk of nuclei
representing the “anchor points” of the actual density fragment. In addition,
each parent molecule Mk may contain a few more nuclei at their peripheral
regions in order to avoid “dangling bonds”.

In order to identify the index assignment of various local density matrix ele-
ments P kij ('(Kk)) in the macromolecular density matrix P('(K)), the following
notations are introduced.

The number of atomic orbitals in the nuclear family fk of the target macro-
molecule M is denoted by nk. For each pair (fk; fk0) of nuclear families a quan-
tity ck0k is defined as

ck0k =
{

�, if nuclear family fk0 is present in parent molecule Mk

$ otherwise :
(��)

A given atomic orbital belongs to several lists of orbitals, depending on
whether its contribution to a parent molecule or to the target macromolecule
is considered. Accordingly, the serial number of a given atomic orbital '(r) is
denoted by a, or i, or x, depending on the actual reference to a given collection
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of atomic orbitals, where each collection actually contains the atomic orbital
'(r). These indices a, or i, or x are used in the notations

'a;k0(r) ; 'ki (r) ; and 'x(r) (��)

with reference to orbital sets{
'a;k0(r)

}nk0
a=� (�A){

'ki (r)
}npk

i=�
(�%)

and {
'x(r)

}n
x=� (�-)

respectively. Here nk0 is the total number of orbitals within the set (�A) of atomic
orbitals associated with the nuclear family fk0 , nP k is the total number of atomic
orbitals in set (�%) involved in the k-th fragment density matrix Pk('(Kk)),

nP k =
m∑
k0=�

ck0knk0 ; (�;)

and n is the total number of atomic orbitals in set (�-) involved in the density
matrix P(K) of the target macromolecule M .

Index x for each AO 'a;k0(r) = 'ki (r) = 'x(r) is determined by the serial
index a in the AO set of nuclear family fk0 as follows:

x = xf (k
0; a) = a+

k0��∑
b=�

nb : (�+)

In this notation the subscript f in xf (k0; a) indicates that indices k0 and a refer
to a family of nuclei (in the actual case, to family fk0).

Three additional quantities are introduced for each index pair k and i, with
respect to all nuclear families fk00 for which ck00k 6= $:

a0
k(k

00; i) = i �
k00∑
b=�

nbcbk ; (�<)

k0 = k0(i; k) = minfk00 : a0
k(k

00; i) � $g ; (�.)

and

ak(i) = a0
k(k

0; i) + nk0 : (�$)

Using these auxiliary quantities the index x = xP (k; i) of an AO basis fun-
ction in the density matrix P(K) of target molecule M can be computed from
the row (or column) index i and serial index k of fragment density matrix
Pk('(Kk)). The index x = xP (k; i) depends on indices i and k and can be
expressed using index k0 and the function xf (k0; a)

x = xP (k; i) = xf (k
0; ak(i)) : (��)

The subscript P in the index function xP (k; i) indicates that indices k and i
refer to the fragment density matrix Pk('(Kk)).
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The actual index calculations can be restricted to the nonzero elements of
each fragment density matrix Pk('(Kk)), and the macromolecular (or large
fragment) density matrix P(K) can be assembled iteratively:

PxP (k;i);xP (k;j)(K) ( PxP (k;i);xP (k;j)(K) + P kij (Kk) : (��)

Usually, the parent molecules Mk are confined to some limited size that
allows rapid determination of the parent molecule density matrices within a
conventional ab initio Hartree–Fock–Roothaan–Hall scheme, followed by the
determination of the fragment density matrices and the assembly of the macro-
molecular density matrix using the method described above. The entire itera-
tive procedure depends linearly on the number of fragments, that is, on the
size of the target macromolecule M . When compared to the conventional ab
initio type methods of computer time requirements growing with the third or
fourth power of the number of electrons, the linear scaling property of the
ADMA method is advantageous.

3
Functional Groups and the Density Domain Criterion

The concept of density domains can be introduced in the context of isodensity
contour surfaces. A molecular isodensity contour surface, MIDCO G(K;a), of
nuclear configuration K and density threshold a is defined as the collection
of all points r of the AD space where the electronic density is equal to the
threshold value a. In the notation for electron density it is useful to specify the
nuclear configuration K of the molecule and in the forthcoming discussion the
notation �(K; r) will be used for the electron density of nuclear configuration
K . Accordingly, the MIDCO G(K;a) is defined as

G(K;a) = fr : �(K; r) = ag : (�A)

We shall assume that the molecular electronic density �(K; r) is a conti-
nuous function of the position variable r, implying that the set of all points r
fulfilling the defining equation (�A) for any given MIDCO G(K;a) forms a set
of continuous closed surfaces. In the simplest case, a MIDCOG(K;a) is a single
closed surface.

The density domain DD(K;a) associated with the MIDCO G(K;a) is the
point set that includes all the points r of the corresponding MIDCO G(K;a) of
the same density threshold a, and all points r enclosed by G(K;a):

DD(K;a) = fr : �(K; r) 	 ag : (�%)

The shape and size of a MIDCO G(K;a) and the associated density domain
DD(K;a) depend on the choice of the threshold value a and on the nuclear
configuration K of the molecule.

Consider a subfamily fk of nuclei of a molecule M of nuclear configuration
K with the following property: there exists a density threshold a such that a
corresponding density domain DD(K;a) is connected and contains the family
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fk of nuclei and no other nuclei of the molecule. If this condition is fulfilled,
then these nuclei form the nuclear family fk of a quantum chemical functional
group Fk(K). With respect to the given atomic orbital basis set and ab initio
wavefunction representation, the functional group Fk(K) of molecule M of
nuclear configuration K is composed from the nuclear set fk and the associated
fuzzy electron density fragment �k(K; r) that can be computed by the AFDF
method:

Fk(K) = fk [ �k(K; r) : (�-)

This definition is consistent with the following general property of indivi-
dual molecules: a molecule placed in the vicinity of other molecules preserves
its separate identity as long as there exists a MIDCO G(K;a) of some density
threshold a that separates the nuclei of this molecule from the nuclei of the
other molecules. In the case of functional group Fk(K) of molecule M , the exi-
stence of a density domain DD(K;a) and the associated MIDCO G(K;a) that
separates the nuclei fk of the functional group Fk(K) from all other nuclei of
the molecule M also indicates that this fuzzy piece Fk(K) of the molecule M
also has some degree of limited autonomy and separate identity. This sepa-
rate identity is what qualifies the functional group Fk(K) as a significant and
possibly chemically characteristic fuzzy part of the molecule.

In general, formal molecular fragments that are larger than the conven-
tional functional groups can also be represented by fuzzy moieties of electron
densities, dominated by several nuclei. The shapes of molecular fragments with
density domains indicating separate identity have important chemical conse-
quences, and these shapes can be characterized by topological shape analysis
methods [%$].

Besides a quantum-chemically motivated definition of functional groups,
density domains also provide a detailed description of chemical bonding, ba-
sed on the interfacing of fuzzy electron density regions. In this description of
chemical bonding some of the topological features of molecular electron den-
sities play a prominent role. In particular, there are only a finite number of
topologically different density domains within each molecule, a fact that pro-
vides a natural, topological characterization of molecular electron densities.
These topological sequences form the basis of an algebraic characterization in
terms of homology and homotopy groups, describing the essential features of
molecular shapes.

According to the electron density threshold a, there are several typical sha-
pes of density domains, falling within various electron density ranges. A list
of these ranges and subranges is given below, starting with high density thres-
holds.

Atomic range: Only individual nuclear neighborhoods appear as disconnected
density domains with precisely one nucleus within each density domain.

Strictly atomic range: All the atomic density domains are convex sets.
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Prebonding range: At least one density domain is no longer convex as it takes the
shape of a breaking droplet, which eventually joins a neighboring density
domain.

Functional group range or Bonding range: Some nuclear neighborhoods are
connected and form density domains containing two or more nuclei; howe-
ver, not all nuclei of the molecule are contained within a common density
domain.

Molecular density range: All nuclei of the molecule are found within a common
density domain, establishing the essential molecular pattern of bonding.

Skinny molecular range: There exists at least one multiply connected set on the
surface of the density domain DD(K;a) along which the density domain is
not locally convex (such as a formal “neck region”).

Corpulent molecular range: No locally nonconvex multiply connected set on
the surface of the density domain (no neck region) occurs, but there exists
at least one local nonconvex region along the surface of the density domain
DD(K;a).

Quasi-spherical molecular range: All density domains are convex.

Collectively, the atomic and the functional group ranges form the localized
range, whereas the molecular density range is the global density range.

Among the various density domains those defining functional groups are
of special significance. In the following section one application of these special
density domains DD(K;a) will be discussed.

4
The Role of the Holographic Electron Density Theorem and the
Predictability of Differences in the Reactivities of Functional Groups

It is a natural expectation that the local, fuzzy electron density contributions of
functional groups, influenced by the interactions with other parts of the mole-
cule, should provide the clues to their reactivity. A given type of functional
group, for example, a carbonyl group, shows different degrees and even diffe-
rent types of reactivities depending on the rest of the molecule. The influence
of the interactions between a given functional group and the local surroun-
dings or even remote surroundings has been long used by chemists to explain
the differences in reactivities and to plan strategies to achieve a given synthetic
goal.

For typical functional group electron densities, most of the corresponding
electronic charge is enclosed by those density domains DD(K;a) that provide
the very criterion for classifying the given fuzzy molecular piece as a functional
group. This feature provides a natural connection to the application of the
holographic electron density theorem to functional groups: the nonzero volume
domain d in the formulation of the theorem can be taken as one of these
density domains DD(K;a). Since a large contribution from the fuzzy electron
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density associated with the functional group F is found within these density
domains, one may expect that the differences in functional groups induced by
their surroundings are well detectable and are clearly reflected in the electron
densities enclosed by these density domains.

Based on the holographic electron density theorem one can reformulate
and quantify the influence of surroundings on functional groups. Consider
two molecules A and B, both containing a given type of functional group F .
Although the chemical composition of the functional group F , in the limited
sense as indicated by the chemical formula, is the same in the two molecules
A and B, they nevertheless, have different reactivities as a consequence of
the influence of their differing surroundings. Accordingly, the two groups are
distinguished as FA and FB, indicating that they belong to the two different
molecules A and B. The corresponding AFDF density contributions of these
functional groups to the total electron densities �A(r) and �B(r) of the two
molecules are denoted by �FA(r) and �FB(r), respectively.

Though the two functional groups are formally the same, recognized as the
functional group F , the two versions, FA and FB, are found in the two different
molecules. Consequently, it is reasonable to assume that there exists an electron
density threshold aAB and two density domains DDFA(K; aAB) and DDFB(K; aAB)
in the two molecules where these density domains are actually suitable to
serve as the density domain in the defining criterion for the functional group.
One may take aAB as the average value of all such electron density thresholds.
The electron densities �FA;aAB(r) and �FB;aAB(r) in the corresponding two density
domains, DDFA(K; aAB) and DDFB(K; aAB), respectively, are necessarily different,
otherwise, the unique extension property of local densities, a consequence of
the holographic electron density theorem, would imply that the two molecules
A and B are also the same; that is,

EXT �FA;aAB(r) = �A(r) (�;)

EXT �FB;aAB(r) = �B(r) ; (�+)

where

�FA;aAB(r) = �FB;aAB(r) (�<)

implies

�A(r) = �B(r) ; (�.)

contrary to the initial assumption.
The holographic electron density theorem does not exclude the possibility

that two MIDCOs, for example, the two MIDCOs GFA(K; aAB) and GFB(K; aAB)
on the boundaries of the two density domains DDFA(K; aAB) and DDFB(K; aAB)
coincide,

GFA(K; aAB) = GFB(K; aAB) ; (A$)

even if

�FA;aAB(r) 6= �FB;aAB(r) : (A�)
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Nevertheless, this is a very unlikely event, and within any open range of density
thresholds a, satisfying the condition that these MIDCOs separate the nuclei of
the functional group F from the rest of the nuclei of the respective molecules
A and B, there must exist a continuum of threshold values a0 such that

GFA(K; a
0) 6= GFB(K; a

0) : (A�)

In fact, according to the holographic electron density theorem, no density
threshold interval [aA; aA] of positive width exists where GFA(K; a) = GFB(K; a)
for every value a from this interval. In other words, any MIDCO pair fulfilling
the condition

GFA(K; a) = GFB(K; a) (AA)

must be isolated, if such a pair exists at all.
Consequently, if the selected threshold aAB happens to belong to a coincident

MIDCO pair, GFA(K; aAB) = GFB(K; aAB), then an infinitesimal change of the
threshold value is sufficient to avoid coincidence. In the following discussion
we shall assume that the threshold aAB does not belong to a “shape degeneracy”
expressed by GFA(K; aAB) = GFB(K; aAB) for �FA;aAB(r) 6= �FB;aAB(r).

A function �FA�B;aAB(r) is defined as

�FA�B;aAB(r) = �FA;aAB(r)� �FB;aAB(r) ; (A%)

where the superposition of the two functional groups FA and FB, and the im-
plied superposition of the corresponding functions �FA;aAB(r) and [��FB;aAB(r)]
minimizes the maximum value of the function j�FA;aAB(r)� �FB;aAB(r)j,

max j�FA;aAB(r)� �FB;aAB(r)j = min : (A-)

The set Z of points r where the function �FA�B;aAB(r) is zero,

Z =
{

r : �FA�B;aAB(r) = $
}

(A;)

provides a topological characterization for the differences between the two
versions, FA and FB, of functional group F . If shape degeneracy occurs, then
a typical set Z subdivides the space into compartments and the pattern of
these compartments can be described by three-dimensional homology groups
[%$]. Alternatively, the patterns these compartments produce on �D MIDCO
surfaces, GFA(K; aAB) and GFB(K; aAB), can be described by the general Shape
Group Method [%$].

5
Symmetry Deˇciency as a Diagnostic Tool for Atypical Functional Groups

The fuzzy electron density cloud of a complete molecule, as well as that of a
functional group, can be treated as a formal fuzzy set. Fuzzy sets are defined
in terms of their membership functions specifying for each element its “degree
of belonging” to the given fuzzy set. In the case of electron densities a scaling
procedure is required in order to ensure that the membership values fall within
the usual interval of [$, �], where a value of � for the membership function of an
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element indicates complete belonging, whereas a membership function value
of $ indicates a compete lack of this element belonging to the given fuzzy set
A.

Considering a set of possible functional groups F�; F�; ::: ; Fm, of a molecule
X, and the associated functional group electron densities �F� (r), �F� (r); ::: ; �Fm(r),
we first note that the thresholds are not restricted to any specific value.

For scaling purposes, the maximum value �max;i of the electron density
�Fi (r) within a spatial domain DFi containing all the nuclei of functional group
Fi is used as a reference:

�max;i = max
{
�Fi (r) ; r 2 DFi

}
: (A+)

We shall assume that a point r = rmax;i is chosen where this maximum density
value �max;i is realized for the given functional group:

�Fi (rmax;i) = �max;i : (A<)

The fuzzy membership function for points r of the space describing their
“degree of belonging” to the functional group Fi is defined as

�Fi (r) = �Fi (r)=�max;i : (A.)

In many fuzzy electron density problems the density contributions of the
functional groups and other moieties of the molecule X are also considered. In
such cases, the membership function �Fi (r) defined above is no longer appro-
priate. An alternative fuzzy set approach, that includes the effects of the electron
density contributions of all other functional groups of the molecule, is based
on Mezey’s additive fuzzy density matrix fragmentation method [�$, ��].

The complete molecule X is regarded as a collection of appropriately ar-
ranged, mutually interpenetrating electron density clouds of functional groups
F�; F�; ::: ; Fj ; ::: ; Fm, where each fuzzy electron density fragment Fj contains the
corresponding set of nuclei. As a consequence of the exact additivity property
of the AFDF scheme, at each point r the total electronic density �X(r) of mole-
cule X is given as the sum of functional group electron densities:

�X(r) =
∑
j

�Fj (r) : (%$)

The corresponding fuzzy membership function �Fi;X(r) for points r of the
space belonging to functional group Fi of molecule X can be defined as

�Fi;X(r) = �Fi (r)
[
�max;i=�X(rmax;i)

]
; (%�)

equivalent to the density ratio:

�Fi;X(r) = �Fi (r)=�X(rmax;i) : (%�)

These fuzzy membership functions �Fi;X(r) describe the ”degree of belon-
ging” of individual points r to various functional groups F�; F�; ::: ; Fi; :::; Fm of
molecule X.

For the fuzzy electron densities of functional groups a conceptually sim-
ple computational tool is often useful to diagnose the change of shape due to
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interactions of the functional group with the rest of the molecule. If the ideal
functional group has some symmetry, which is not uncommon if the functional
group involves only a few nuclei, then deviations from the ideal symmetry may
serve as an indication of the influence of the surrounding molecular regions.
Since the contribution of a functional group to the overall fuzzy electron dis-
tribution of the molecule is also a fuzzy electron density cloud, it is natural to
evaluate the deviation of the functional group contribution from the ideal sym-
metry using fuzzy set methods. For this purpose we shall review briefly some
of the essential properties of fuzzy symmetry deficiency measures, following a
more detailed earlier description [�+].

We shall require an auxiliary measure, the cardinality m(A) of a fuzzy set
A. This measure m(A) that can be regarded as a generalization of the concept
of mass for fuzzy sets. The measure m(A) of a fuzzy set A can be defined as
the integral

m(A) =
∫
X�A(x)dx : (%A)

The integration is over the whole domain X of fuzzy set A, and the associated
n-dimensional volume element dx refers to the metric and dimension of the
underlying set X. The integration is replaced by summation if the underlying
set is a discrete set.

With respect to a family of symmetry elements,

R = fR�; R�; :::; Rmg (%%)

a fuzzy set A is regarded as an R-set by definition if set A has each of the
symmetry elements Ri of family R.

With respect to the given family R of symmetry elements, a fuzzy set B is
regarded as an R-deficient set by definition if B has none of the point symmetry
elements of family R. Infinitesimal distortions are sufficient to destroy a given
symmetry element, consequently, the total mass difference between a fuzzy set
of some symmetry and another fuzzy set that does not have this symmetry can
be infinitesimal. As far as mass is concerned, R-deficient fuzzy sets and fuzzy
R-sets can be nearly identical.

The concepts of maximal mass R-subset and minimal mass R-superset pro-
vide numerical measures for the evaluation of the degree of symmetry defi-
ciency of various electron density contributions of functional groups.

Maximal R-subset: The fuzzy set B’ is a maximal R-subset of fuzzy set A if B0

is an R-set, A 
 B0, and no R-set B00 exists such that B00 
 B0, B0 6= B00, and
A 
 B00. Note that the fuzzy, maximal R-subset of B0 is not necessarily unique
for any given fuzzy set A.

Maximal mass R-subset: The fuzzy set B is a maximal mass R-subset of fuzzy
set A if B is a fuzzy R-set, A 
 B, and if for all maximal fuzzy R-subsets B0

of fuzzy set A, m(B0) � m(B). Note that, the fuzzy, maximal mass R-subset B
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is not necessarily unique for any given fuzzy set A; however, the mass m(B) is
already a unique number for each fuzzy set A.

Minimal R-superset: The fuzzy set C 0 is a minimal R-superset of fuzzy set A
if C 0 is an R-set, C 0 
 A, and if no fuzzy R-set C 00 exists such that C 0 
 C 00,
C 0 6= C 00, and C 00 
 A. The fuzzy, minimal R-superset C 0 is not necessarily
unique for any given fuzzy set A.

Minimal mass R-superset: The fuzzy set C is a minimal mass R-superset of
fuzzy set A if C is an R-set, C 
 A, and if for all minimal fuzzy R-supersets C 0

of fuzzy set A, m(C) � m(C 0). Note that, a fuzzy minimal mass R-superset C is
not necessarily unique for a given fuzzy set A, but the mass m(C) is a unique
number for each fuzzy set A.

If the fuzzy set A is an R-set then B and C are the same, unique set, A itself:

B = C = A : (%-)

Of course, in such a case there is no symmetry deficiency concerning the
symmetry elements in set R.

More interesting are those cases where the ideal functional group has a
given family R of symmetry elements, but some of the actual versions of the
functional group in a set of diverse molecules miss some or all of these symme-
try elements as a result of the influence of the surroundings of the functional
group within the molecules. In some instances the functional group may ex-
hibit large deviations from the ideal symmetry, and such large deviations are
likely to correlate with unusual reactivity properties. Measures of the degree
of symmetry deficiency, when applied to fuzzy electron density contributions,
may provide useful clues for such unusual reactivities.

The relations involving a fuzzy set A, a maximal mass fuzzy R-subset B
of fuzzy set A, and a minimal mass fuzzy R-superset C of fuzzy set A define
various measures for symmetry deficiency.

Specifically, the internal R-deficiency measure ıR;B(A), defined as

ıR;B(A) = � �m(B)=m(A) (%;)

and the external R-deficiency measure ıR;C(A), defined as

ıR;C(A) = � �m(A)=m(C) (%+)

provide numerical tools for the evaluation of symmetry deficiency.
By taking set A as the fuzzy set of electron density of a functional group,

the deviations from any ideal symmetry R can be characterized.
If applied to functional groups, then the internal R-deficiency measure

ıR;B(A) refers to electron density contributions actually present within the
molecule, whereas the external R-deficiency measure ıR;C(A) may involve fuzzy
sets that do not necessarily occur within the given molecule.



Local Electron Densities and Functional Groups in Quantum Chemistry �<-

Taking the average of the two measures ıR;B(A) and ıR;C(A) defines the
following R-deficiency measure:

∆R;B(A) = (ıR;B(A) + ıR;C(A))=� : (%<)

Similar to the external R-deficiency measure ıR;C(A), the R-deficiency mea-
sure ∆R;B(A) may involve fuzzy sets which are not physically present within the
given molecule.

Whereas both the external R-deficiency measure ıR;C(A) and the R-
deficiency measure ∆R;B(A) are mathematically correct and valid tools for com-
parisons of the degrees of symmetry deficiencies and their correlations with
unusual reactivities of functional groups, the actual physical existence of fuzzy
sets involved in the determination of the internal R-deficiency measure ıR;B(A)
nevertheless suggests that this measure is likely to provide more reliable cor-
relations with variations in the chemical reactivity of functional groups.

6
Summary

Specific aspects of the quantum chemical concept of local electron densities
and functional groups of chemistry have been discussed, with emphasis on the
Additive Fuzzy Density Fragmentation (AFDF) Principle, on the Adjustable
Density Matrix Assembler (ADMA) Method of using a local density matrix
formalism of fuzzy electron density fragments in macromolecular quantum
chemistry, and on the fundamental roles of the holographic electron density
theorem, local symmetry, and symmetry deficiency.
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Electron correlation in atoms and molecules finds a very natural expression in terms of the
reduced density matrices within the formalism of second quantization. The fundamental
relations of this theory lead here to a discussion of the correlation effects and their connexion
with two properties of the group functions frequently studied by Prof. Ede Kapuy: strong
orthogonality and the concept of independence. The other aim of this paper is to examine
the direct expression of the correlation effects in terms of reduced density matrices.

Keywords: Reduced density matrices, electron correlation, strong orthogonality, contracted
Schrödinger equation

1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : �""

2 Theoretical Background : : : : : : : : : : : : : : : : : : : : : : : �"3

�.� The Global Operators in Second Quantization : : : : : : : : : : : �"3

3 Independence and Strong Orthogonality : : : : : : : : : : : : : : �3#

4 The First Order Contracted Schrödinger Equation
and the Correlation Energy : : : : : : : : : : : : : : : : : : : : : �3�

7.� The Correlation Matrices : : : : : : : : : : : : : : : : : : : : : : : �3�

5 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : �3"

6 References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : �33

Topics in Current Chemistry, Vol. �#�
© Springer Verlag Berlin Heidelberg �333



�"" C. Valdemoro

1
Introduction

The study of electron correlation, in terms of reduced density matrices (RDM’s)
may be approached from many different points of view. My first purpose here is
to connect the main relations involving RDM ’s with some concepts appearing
in the theory developed by Prof. Ede Kapuy [�–A]. Thus, after an introductory
theoretical background (Sect. two), I look again at the concepts of independence
and of strong orthogonality within an extended second quantization framework.

My second aim here is directly related with the research project which is
being developed in our laboratory at present: the iterative solution of the first
and second order contracted Schrödinger equations, (�- and �-CSE respec-
tively).

In �3D$ Nakatsuji [$] and Cohen and Frishberg [D], by integrating the
Schrödinger equation over the variables of N -� and N -� electrons, obtained
the first- and second order density equations respectively. These density equa-
tions were elements of a hierarchy of coupled integro-differential equations.
Each equation by itself was undetermined ["], since the p-CSE solution was a
function of the (p+�)- and of the (p+�)-CSE. By applying a matrix contrac-
ting mapping (CM) to a matrix representation of the Schrödinger equation,
Valdemoro obtained [3] a totally equivalent hierarchy of matrix equations, the
CSE’s. Since then, the question of how to decouple this hierarchy of equations
has been underlying our research. An algorithm for obtaining a satisfactory
approximation of a p-RDM in terms of the lower order RDM ’s was found in
the early nineties [�#–��]. This result opened the way towards an iterative so-
lution of the CSE [��–�7]. In a similar way, as in the Hartree–Fock theory,
there are many possible ways of looking for a rapid convergence and a stable
solution in the case of the CSE. Several such procedures have been proposed
[��–�D] but probably this part of the method can still be improved. However,
the crucial step for obtaining good results is not the iterative scheme itself but
the optimization of the algorithm for approximating a p-RDM as a function
of the t-RDM for t < p . The importance of this problem was pointed out by
Nakatsuji and Yasuda [�A,�$], who on the basis of the Green function perturba-
tion theory and its asymptotic limit to an RDM expansion, proposed a method
for improving the quality of the approximated �-RDM and 7-RDM . The same
RDM expansion was obtained by following an alternative approach described
by Mazziotti [�D,�"].

Notwithstanding the very good results obtained by these authors, I consi-
der that this question is still an open and challenging problem which deserves
further study. In this respect, Valdemoro et al. [�3], recently reported the exact
structure of the pure two- and three-body terms, as well as some basic pro-
perties of the two-body terms.

Here, I will focus my attention on an interesting feature of the �-CSE. Mainly,
that the �-CSE accepts at least two solutions [$,D,��]: the FCI and the Hartree–
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Fock (HF) one. This property is exploited (Sect. 7) for obtaining an equation
in which both the correlation energy and the correlation matrices appear ex-
plicitly. These correlation matrices are defined here as the difference between a
F CI-RDM and the corresponding HF-RDM . By applying the arguments given
in [�3] the exact structure of these correlation matrices can be expressed in
terms of the �-RDM and of the first order transition RDM ’s. A calculation of
the ground state of the beryllium atom illustrates the formalism.

2
Theoretical Background

In the occupation number representation within the second quantization for-
malism, which will be used here, the �-RDM takes the form:

�DΦ
ij =

〈
Φjby

i bj jΦ
〉
; (�)

where the operators by and b create/annihilate an electron on the N -electron
state denoted as jΦi and i and j represent orthonormal spin-orbitals. Thus,
are expressed in a compact and clear formula both the integration over the
variables of N � � electrons and the representation of a matrix element in
the spin-orbital basis. This formula is easily generalized when the aim is to
consider explicitly the variables of more than one electron. Thus, the r -RDM
(the integration concerns N � r electron variables) is written in this notation
as:

rDΦ
i�;i�;:::;ir ;j�;j�;:::;jr =

�
r !

〈
Φjby

i�
by
i�
: : : by

ir
bjr : : : bj�bj� jΦ

〉
: (�)

When one imposes a definite order to the spin-orbital indices, i.e. i� < i� <
::: < ir and similarly for the j string, the factor �

r ! disappears.

2.1
The Global Operators in Second Quantization

Usually, when working in second quantization, the developments consider the
creator/annihilator operators of each single electron explicitly. However, one
may define the global operators (GO), which create/annihilate more than one
electron at a time. After one becomes familiar with their algebra, the use of the
GO’s enhances the directness of the deductions and renders the results more
compact and thus easier to analyse, unless one wishes to stress an one-electron
property. These GO’s, which will be used in the following section, are defined
as:

rBy
Θ � by

#�
by
#�
: : : by

#r
; (�)

with #� < #� < : : : < #r , and
rBΛ � b�r : : : b��b�� : (7)
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These definitions may be extended to any basis of orthonormal r -electron
states. Thus, if one has a basis of Slater determinants (Λ), then any state jIi is:

jIi =
∑
Λ

CIΛ jΛi (A)

and
rBy
I �

∑
Λ

CIΛ rBy
Λ : ($)

The algebra obeyed by these GO’s [�#]( which follows from that of the single
electron operators) is summarized in the relation

qBI rB
y
J � (��)rq rBy

J
qBI =

q��∑
k=#

(��)(r�q)q+k
( �K
r�q+k)∑
�=�

(�Kk )∑
�=�

DJI�� (
r�q+k)By

�
kB� ;

(D)

where

DJI�� = hJ jBy
� B� jIi :

In Eq.(D) we have assumed that, q < r (the case r < q, which has a very similar
structure, is not needed here). We will assume in what follows that the states
denoted by the capital Latin letters (I; J; ::) correspond to general states of the
form described in Eq.(A). The lower case Greek letters always refer to a single
determinant unless it is explicitly mentioned. Equation (D) is valid also for
q = r and in this case it should be noted that the term corresponding to k = #
is just ıI ;J

3
Independence and Strong Orthogonality

Strictly speaking, an independence shown by the probability distributions de-
rived from two states implies an absence of interaction between the systems or
subsystems described by these two states; however, in practice, the great success
of models which combine the concept of independence with a non-negligible
interaction shows that “except for a relatively small correlation error, on average
two systems may show an independent behaviour even if they interact rather
strongly”. The most obvious example of this is the Hartree–Fock method.

The aim of this section is to look at the concept of independence from the
second quantization point of view, and in connection with the anticommuta-
tion/commutation properties of the GO’s.

Let us consider Eq. (D). If the states I and J were independent, the r:h:s
of this equation would be zero. That is, BI and By

J would exactly com-
mute/anticommute, since the only thing that should be done when shifting
their order would be to multiply the new product by (��)qr . The condition

DJI�� = # (")
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for all the configurations � and � corresponding to (r��) and (q��) electrons
respectively, would imply that all the terms of the r:h:s: of the equation would
also be zero since all the lower order DJI would be obtained by contraction of
a matrix equal to zero. A similar analysis, where the RDM ’s only appeared im-
plicitly, was carried out for geminals by Surján ten years ago [��,��]. Equation
(") expresses, within this formalism, the strong orthogonality condition which
was introduced in the fifties [�,��–�$] and whose applicability continued to be
discussed in the sixties [�D–�$] when the separated groups and pairs theory
became one of the main centers of interest in quantum chemistry. It should be
noted that the interest in discussing the connection among separability, inde-
pendence, and strong orthogonality has not lessened, hence McWeeny’s recent
analysis of the separability of quantum systems [�D].

It seems, therefore, that the strong orthogonality between two states im-
plies, according to Eq.(D), that the operators which create and annihilate those
states commute, or anticommute, according to whether (qr) is even or odd
respectively.

When the states I and J describe groups of the same number r of electrons,
the condition expressed by Eq.(") may be softened by referring, in an averaged
way, to a concrete state of a system, Φ. Thus, let us consider q = r and take
the expectation value of Eq.(D) by jΦi,

r D̄Φ
JI � (��)r

� rDΦ
JI = ıI ;J �

(r��)∑
k=�

(��)k tr (kD
JI kD

Φ
) ; (3)

where r D̄Φ is the r -order holes reduced density matrix (r -HRDM), which pro-
vides the complementary information to that given by the r -RDM .

When I 6= J , the condition

(r��)∑
k=�

(��)k tr (kD
JI kD

Φ
) = # (�#)

describes an effective or average independence (or average strong orthogona-
lity) of the states I and J when the N -electron system is in state Φ. Let us
suppose that r = � and that Eq.(�#) is fulfilled for all I 6= J and r = �. In this
case, on average, there would be no correlation between the different geminals.

At this stage, let me just mention another approach which is also concer-
ned with the separability and independence among pairs and groups [�"–7�]
but where the strong orthogonality condition is not explicitly imposed. This
method approximates the �-RDM , without a previous knowledge of the wave
function, by modeling the N -electron system as

(N
p

)
effective independent pairs

whose states are described by the eigenvectors of the spin-adapted reduced
Hamiltonian; which is a two electron matrix which contains all the relevant in-
formation about the N -electron system. The similarity of this approach to that
of the separated pair methods focused here is, due to the terminology, more
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apparent than real; which explains why the conditions set in both approaches
are not the same.

Let us now return to Eq.(3) and analyse it for I = J . In this case, if the r:h:s
of Eq.(3) were equal to one, the geminal I would behave as a boson. Let us
therefore examine to what extent this is possible under the usual conditions.
Since one is free to choose the form of the one electron orthonormal basis set,
I will consider that this basis is formed by natural orbitals, thus one may write:

� � tr (�D
II �D

Φ
) = � �

∑
i

�D
II
i ; i

�D
Φ
i ; i : (��)

Clearly all the products which are added up in the second term of Eq. (��) are
positive; therefore the total value of these terms may be small but it cannot
have the value zero unless the occupation number of the geminal I in Φ is only
generated by the non-diagonal contributions∑

� 6=�
DII�;� hΦjBy

� B� jΦi ; (��)

which usually is not the case. Thus, in general, a positive and not too small
value of Eq.(��), corresponds to a small occupation number of I in Φ.

4
The First Order Contracted Schr)odinger Equation
and the Correlation Energy

It has been shown [�7,�D,�3], that an intermediate step in the deduction of the
�-CSE is

hΦjĤ by
p" bq" jΦi = EΦ

�DΦ
p"q" ; (��)

where Φ is an eigenstate of Ĥ , and " represents here the spin variable which
is being considered. In what follows, in order to reduce the number of indices
and thus simplify the reading, whenever the spin variable is equal to " it will
be omitted. I will also omit the upper index Φ when it can be inferred. From
Eq.(��) follows the final form of the �-CSE :

E �Dp ; q = (h �D )p ; q + �
∑
i;j;#

hij
�Dpi# ; qj#

+ �
∑
`;#

(V �D)p`# ; q`# + �
∑

i;j;k;`;#;# 0
Vij ;`k

�Di# j# 0p ; `#k# 0q ; (�7)

where i; j; k; `:: represent the orthonormal orbitals, # and # 0 denote the spin
variables, h groups the one electron integrals and V the two electron ones.
Equation (�7) is an alternative and equivalent form to that of the �-CSE given
previously [�3]. In Eq.(�7), the one electron terms of the Hamiltonian appear
explicitly, instead of being included into an effective two-electron matrix, oH
[�7]. In this way, when the Hartree–Fock solution is taken as a reference, the
analysis of the correlation effects is more direct. Note that the indices are free



Electron Correlation and Reduced Density Matrices �3�

to take any values, which implies that the �-RDM and the �-RDM contain the
factors �

�! and
�
�! respectively [see Eq.(�)].

An important feature of the �-CSE is that it is exactly satisfied by at least two
sets of RDM ’s [$,D,��,�3], the set corresponding to the Hartree–Fock solution
and the set corresponding to the F CI solution. In what follows, the set of HF
matrices, as well as the corresponding energy will be distinguished from those
corresponding to the exact F CI solution by an upper index (	). Thus the HF
form of Eq.(�7) is written

E	 �D	
p ; q = (h �D	 )p ; q + �

∑
i;j;#

hij
�D	

pi# ; qj#

+ �
∑
`;#

(V �D	)p`# ; q`# + �
∑

i;j;k;`;#;# 0
Vij ;`k

�D	
i# j# 0p ; `#k# 0q : (�A)

Let us now subtract Eq.(�A) from Eq.(�7). The r:h:s: of the new equation has the
same form as that of the �-CSE, except that the RDM elements are replaced by
those of the correlation terms of first, second and third order. These correlation
matrices will be denoted in what follows by �W ; �W and �W respectively which
are defined as:

iW = iD � iD	 : (�$)

The resulting equation may therefore be expressed as:

Ecorr (�D	
p ; q + �Wp ; q) + E	 �Wp ; q = (h �W )p ; q + �

∑
i;j;#

hij
�Wpi# ; qj#

+ �
∑
`;#

(V �W)p`# ; q`# + �
∑

i;j;k;`;#;# 0
Vij ;`k

�W i# j# 0p ; `#k# 0q ; (�D)

that is

Ecorr
�Dp ; q = F(�W ; �W ; �W ; E	) ; (�")

and since the HF solution may be assumed to be known, the correlation energy
(Ecorr ) is just a function of the W’s. Equation (�D), which will be referred to as
the correlation energy equation (CEE), is very appealing since it aims directly
at what is unknown and it can, in principle, be iterated in a similar way to
the �-CSE. However, as is later shown, a successful iterative solution of this
equation relies on a successful approximation of �W and �W.

4.1
The Correlation Matrices

In the previous paragraph, the �W ; �W and �W were globally defined by Eq.(�$),
which emphasizes that the HF solution is taken as a reference.

The structure of the �W and �W will now be examined more closely.
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The 2& . When reordering the four operators appearing in Eq.(�) for r = �
according to the pattern bybbyb and then inserting the resolution of identity
after the first two operators, the �-RDM may be decomposed as

�! �D
Φ
ij ; k` � hΦjby

i b
y
j b`bkjΦi

= �D
Φ
i ; k

�D
Φ
j ; ` � �D

Φ
i ; ` ıj ; k +

∑
Φ0 6=Φ

�D
ΦΦ0

i ; k
�D

Φ0Φ
j ; ` (�3)

or, equivalently, by replacing ıj ;k by (�D + �D̄)j ; k

�! �D
Φ
ij ; k` = �D

Φ
i ; k

�D
Φ
j ; ` � �D

Φ
i ; `

�D
Φ
j ; k � �D

Φ
i ; `

�D̄
Φ
j ; k

+
∑
Φ0 6=Φ

�D
ΦΦ0

i ; k
�D

Φ0Φ
j ; ` ; (�#)

where ∑
Φ0 6=Φ

�D
ΦΦ0

i ; k
�D

Φ0Φ
j ; ` =

∑
Φ0 6=Φ

hΦjby
i bkjΦ0ihΦ0jby

j b`jΦi ; (��)

and since there are four equivalent ways of reordering the operators according
to this pattern, there are also four equivalent expressions of this type for the
�-RDM .

The first two terms of the r.h.s. of Eq.(�#) are an antisymmetrized product
of one-electron probabilities, therefore they can also be used as a reference
in the absence of correlation in the �-RDM [�A–�3]. The main drawback, in
considering these two terms as a reference, is that they do not form an N -
representable �-RDM . On the other hand, the �-, �-, �-HF -RDM ’s as zero-
correlation references are N -representable, well behaved RDM ’s, which is a
strong argument in favor of taking them as references.

Let us replace the different RDM elements in Eq.(�3), by their expression
in terms of the corresponding HF -RDM and �W elements. Then

�! �Wij ; k` = �D	
i ; k

�Wj ; ` + �Wi ; k �D	
j ; ` + �Wi ; k �Wj ; `

� �Wi ; ` ıj ; k � �D	
i ; `

�D̄	
j ; k +

∑
Φ0 6=Φ

�D
ΦΦ0

i ; k
�D

Φ0Φ
j ; `

= �!�W ij ; k` � �D	
i ; `

�D̄	
j ; k +

∑
Φ0 6=Φ

�D
ΦΦ0

i ; k
�D

Φ0Φ
j ; ` : (��)

The simplest way to reach this result is to replace directly the Kronecker ı
appearing in Eq.(�3) by �D	 +� D̄	. Note that the possibility of replacing a
Kronecker ı by its expression in terms of the �-RDM and the �-HRDM , irre-
spective of whether the state of reference is an F CI or an HF one, implies that
�W = ��W̄ .

In Eq.(��) �!�W represents the contribution of �W to the �-RDM . Another
type of term appearing in Eq.(��) is a product of an element of the �-HF -HRDM
by an element of the �-HF -RDM . Finally, the last type of term is expressed in
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Table 1. Some values of �W

ij̄ ;k¯̀ �D �D	 �!�W
∑

Φ0 6=Φ
�D

ΦΦ0
i ; k̄

�D
Φ0Φ
j ; ¯̀

��̄;��̄ #.333� � �#.##�� #.###A
��̄;��̄ #.3"7D � �#.#�A� #.####
��̄;��̄ #.#�7D # #.#�7" #.####
��̄;��̄ #.�#A" # #.�#A" #.####
��̄;��̄ �#.##�" # #.###� �#.##�3
��̄;77̄ �#.#�3� # #.#### �#.#�3�
��̄;��̄ #.3D�$ � �#.#�3� #.##�"
��̄;��̄ #.#��" # #.#�7$ �#.##�"
��̄;��̄ #.��#3 # #.�#7� �#.##$$
��̄;��̄ �#.#77� # #.#��� �#.#AA#
��̄;��̄ #.##�# # #.###� #.##�"
��̄;77̄ �#.##�7 # #.#### �#.##�7

terms of the first order transition RDM ’s and describes the simultaneous virtual
excitations of two electrons. It is thus a pure two-body correlation term [�3].

In order to analyse the relative importance of these terms, a F CI calculation
for the ground state of the berylium atom was carried out. The basis was a Slater
double zeta one [7�], and the orbital basis of representation was the Hartree–
Fock one (the bar over the orbital index indicates that the spin function is
ˇ). The most significant values for the ˛ˇ block of the �-RDM are reported
in Table �. Note that in this case the product of the �-HRDM and �-RDM
elements is zero due to the spin orthogonality; which is why it has been chosen
to illustrate the relative importance of the pure two-body effects with respect
to the pure one-body ones. The results in Table � show that the two largest
contributions are of the �!�W type. When looking more closely at these data,
it appears that the relative importance of �!�W and the pure two-body term in
an element depends on the kind of orbitals involved in that element. That is, it
depends on whether the orbitals, in the HF configuration, are doubly occupied
(o), doubly empty (e), the frontier orbital homo (h) or lumo (l). Thus:

� In the element ��̄; ��̄, of the type oō; oō, the correlation error is small, due
to a cancellation of nearly half the �!�W by the two body term.

� In the elements of the type: oō; ll̄, oō; eē, where the correlation error is
nonnegligible, the dominant contribution is the two-body one. In fact, the
�!�W contribution is only significant when the o orbital is the homo one.
In this case both contributions partially cancel each other.

� The homo and lumo play an important role, particularly in the elements
whose labels are: xh̄; xh̄, hh̄; ll̄ and hl̄; hl̄. In all these elements there is some
cancellation between the one- and two-body terms.

� The two-body effect is very important in the hh̄; ll̄ element.
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The 3& . Considering Eq.(�) for r = � and proceeding in a similar manner
as for the �-RDM case, one finds thirty six possible and equivalent ways of
reordering the operators in a sequence bybbybbyb. Therefore, the formula that
will be given here is just one of these �$ possible ones.

�! �Dijk ; `mn = �Di ; ` �Dj ; m �Dk ; n

+ � �Dij ; mn ık ; ` � � �Dik ; mn ıj ; ` � �Di ; ` �Dj ; n ık ; m

� ık ; m
∑
Φ0 6=Φ

�D
ΦΦ0

i ; `
�D

Φ0Φ
j ; n + �Di ; ` (

∑
Φ0 6=Φ

�D
ΦΦ0

j ; m
�D

Φ0Φ
k ; n )

+ (
∑
Φ0 6=Φ

�D
ΦΦ0

i ; `
�D

Φ0Φ
j ; m ) �Dk ; n +

∑
Φ0;Φ00 6=Φ

�D
ΦΦ0

i ; `
�D

Φ0Φ00

j ; m
�D

Φ00Φ
k ; n :

(��)

Now the HF -RDM is

�! �D	
ijk ; `mn =

∑
P

(��)P (�D	
i ; `

�D	
j ; m

�D	
k ; n) ; (�7)

where the
∑

P (��)P symbol antisymmetrizes the product by permuting either
the annihilator indices, `;m and n or, alternatively, the creator indices and
multiplying by ˙ according to the parity of the permutation. The structure of
the �W follows directly by applying Eq.(�$); and, after some algebraic operations
involving the results of the previous paragraph, one has:

�! �Wijk ; `mn = �!�Wijk ; `mn + �!�Wijk ; `mn + �!�D̄ijk ; `mn

+ �!�D̄ijk ; `mn +
∑

Φ0;Φ00 6=Φ

�D
ΦΦ0

i ; `
�D

Φ0Φ00

j ; m
�D

Φ00Φ
k ; n ; (�A)

where the meaning of the new symbols is:

�!�Wijk ; `mn = � �D	
i ; ` ık ; m

�Wj ; n + ıj ; `
�Wi ; m �Dk ; n

� ık ; m
�Wi ; ` �Dj ; n + �D	

i ; `
�D	

j ; m
�Wk ; n

� �!�Wik ; mn ıj ; ` + �!�Wij ; mn ık ; `
+ �!�Wij ; `m �Dk ; n ; (�$)

�!�Wijk ; `mn = � ıj ; `
∑
Φ0 6=Φ

�D
ΦΦ0

i ; m
�D

Φ0Φ
k ; n + ık ; `

∑
Φ0 6=Φ

�D
ΦΦ0

i ; m
�D

Φ0Φ
j ; n

+ �Di ; ` (
∑
Φ0 6=Φ

�D
ΦΦ0

j ; m
�D

Φ0Φ
k ; n )

+ �Dk ; n (
∑
Φ0 6=Φ

�D
ΦΦ0

i ; `
�D

Φ0Φ
j ; m ) ; (�D)



Electron Correlation and Reduced Density Matrices �3D

Table 2. Some values of �W

ijk̄; ` mn̄ �D � �D
	 �!�W �!�W

∑

Φ0;Φ00 6=Φ
�D

ΦΦ0
i ; `

�D
Φ0Φ00
j ; m

�D
Φ00Φ
k ; n

�D̆ � �D
	

���̄;���̄ �#.#�A7� �#.#�A"A #.####� #.###7� �#.#�A7�
���̄;���̄ �#.#�D3A �#.#�3DD #.##�"# #.####� �#.#�D3A
���̄;���̄ #.��#"� #.�#7�� #.##$$# �#.##### #.��#"�
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�D	
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�D	
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k ; `

�D	
ij ; mn � � �D̄	
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�D	

ij ; `n � � �D̄	
j ; `

�D	
ik ; mn ;

(�")
�!�D̄ijk ; `mn = � �D	

i ; n
�D̄	

jk ; `m : (�3)

As previously mentioned, there are thirty-six equivalent ways of writing the
�W but the same type of terms are involved in all of them. In a similar way as
in the second-order case, the relative importance of the different contributions
of the correlation matrices is illustrated in Table �. The quantities shown cor-
respond to elements of the ˛˛ˇ block of the �-RDM obtained for the ground
state of the berylium atom in the same calculation as was done previously; and
therefore, in this case, and for the the elements reported here, the �!�D̄ and the
�!�D̄ contributions are zero. In the last column I have included the difference
with respect to the HF -RDM of �D̆, which denotes the approximate �-RDM
before renormalization, obtained by applying the algorithms previously used
by Valdemoro et al. [�7]. For the present purpose, it is not necessary to enter
more fully into the structure of �D̆ for which the interested reader may find a
detailed discussion in its spin-free form, in [��,��].

There are two results in the data reported in Table � which I find both
striking and surprising. Unexpectedly it appears that the largest error of �D̆
which occurs in the elements simultaneously involving the homo and the lumo
is not due to the omission of three-body correlation effects, as the developments
of Nakatsuji and Yasuda [�A,�$] seemed to imply, but is rather a result of
subtracing instead of adding this three-body contribution to the joint effects
of the one- and the two-body contributions. That is, in the F CI calculation
and for these elements, the three correlation matrices practically cancel each
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other, whereas in D̆ subtraction of the three-body effect practically multiplies
by a factor of two the sum of the one- and the two-body correlation effects.
The other striking feature of these results is that the really significant three-
body correlation effect is shown by the elements �77̄; ���̄ and �77̄; ���̄. And,
surprisingly enough, these two elements are well estimated by the �D̆. If more
extended calculations confirm these two kinds of results, the estimation of the
�-RDM could be straightforward, provided that the �-RDM is known.

The special role played by the homo and lumo was also observed in a recent
calculation [7�] of the BeH�, where the molecular orbitals belonged to five
different symmetries. But in this case the empty and occupied concepts must
be extended to each symmetry.

As a conclusion to this section, let me remark that what is interesting about
the partitioning given here is that the analytical form of all the contributions to
each correlation matrix is known exactly, which, in my view, favours our search
for their reliable estimation. The other expansions proposed in the literature
establish the correspondence of the different terms of the RDM expansion with
the perturbative series diagrams [�A,�$] or with the terms obtained through
the use of Schwinger probes [�D,�"]. A given term of these expansions does not
necessarily coincide with a p-body correlation effect which in some instances
may be misleading. For instance, what is denoted here as a pure p-body term
does not coincide with what Mazziotti defines in [�"] as a connected term of
order p although the ideas behind both denominations are very closely related.

5
Concluding Remarks

What has been reported here shows that for the �-CSE or the CEE to be ope-
rative several questions need to be answered. They may be summarized in one
comprehensive one: Can a practical procedure be devised to approximate the
�W, the �W and the �W?

In the �W case there is, I think, no problem since, provided the higher
order conditions are fulfilled, each iteration should improve the �-RDM , and
consequently the estimation of the �W would also improve.

Knowledge of the exact structure of the �W and of the �W ( the 7W, although
not commented on here because it does not play any role in the �-CSE, has
also been developed) provides a sound base for devising algorithms for the
evaluation of these matrices. In my view, if more complex calculations were to
confirm the results reported here in Tables � and �, the problem that remains
to be solved will be limited to the evaluation of only a few elements in these
matrices, in particular in the �W case.

Evidently, if our objective were to solve the �-CSE instead of the �-CSE, the
problem would not be so hard, since at each iteration the �W should improve;
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and this matrix together with �W are possibly sufficient to obtain satisfactory
estimates of the �W and the 7W.

On the other hand, the real challenge is to solve the �-CSE or, equivalently,
the CEE; hence a good algorithm is needed for approximating all the elements
of �W. A partitioning of the pure two-body part of �W according to the spin
of the excited states (entering in the pure two-body term) was given in [�3].
It was also shown there that there existed a relation linking the different spin
parts of this term with products of an element of the correlated �-RDM by
an element of the �-HRDM . Unfortunately there were more unknowns than
equations, which means that this very important question remains fully open.
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Pérez-Romero, who revised the manuscript of this work. This work has been supported by
the Dirección General de Investigación Científica y Técnica del Ministerio de Educación y
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After a discussion of the form of low-order density matrices built from strongly orthogonal
geminals, density functional theory is utilized to deal with the phenomenon of Wigner
electron crystallization. This is followed by a brief treatment of localized versus molecular
orbital theories of electrons, illustrated by the stretched H) molecule. Then a synthesis
of density functional and density matrix theory is effected by deriving, following Holas
and March, the exchange-correlation potential in terms of first- and second-order density
matrices. Localization of correlated electrons by applied magnetic fields is finally discussed,
with the example of magnetically induced Wigner solidification as a focal point.
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1
Introduction, Plus a Little History

Ede Kapuy visited my research group in the University of Sheffield, UK for =
months around /8==, having been awarded a (then) DSIR Research Fellowship
(later Science Research Council, UK: SRC). Many happy thoughts about those
months come back as I write this contribution to this volume honouring Ede. As
he came alone to England, he spent some time most weekends at our Sheffield
home, with my late wife Joan, our two sons (teenagers at that time) and myself.
My two sons and Ede were mostly in occupation of the room where we had a
record-player, along with our sons’ collection of the music popular at that time.
Joan and I used to go to the farthest region of the house on these occasions
as Eddie (as we all called him!) and our boys renormalized the unit of sound
from the decibel to the megabel! But as well as fine scientific collaboration,
these six months saw the forging of a firm friendship between Eddie and our
family.

Returning to the science, we wrote together as a result of this visit, a paper
in the Journal of Mathematical Physics [(/8=3) 6:/8/2] entitled ‘Two-body orbi-
tals for one-dimensional fermion gas with application to repulsive ı-function
interactions’. Some of the quantitative results used in this study will be sum-
marized in Sect. ) below. However, it is highly relevant to the theme of the
present article, namely ‘Localization via Density Functional Theory’, to note
the motivation for the above paper by Ede and myself. This can be summarized
by quoting the first part of the Introduction to that work:

‘While some definite progress has been made in the search for a valid
variational method based on low-order density matrices [/–2] rather
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than on a many-body wave function, the necessary and sufficient con-
ditions for a trial second-order density matrix (which determines the
total energy when only two-body interactions involved) are in a form
which, with present techniques, render them rather unsuitable for prac-
tical applications [=]’.

The appeal to an admittedly restrictive model of repulsive ı-function in-
teractions between the Fermions was motivated by the desire to compare and
contrast with the Overhauser [3] spin density wave state. Strongly orthogo-
nal two-body functions (geminals) were employed by Ede and myself in the
above model problem. Such geminals have implications for low-order density
matrices, which we shall discuss immediately below.

2
Low-Order Density Matrices Built from Strongly Orthogonal Geminals

The starting point was to take a set of geminals  I (/; )); I = /; ); :::; N , which
satisfy the strong orthogonality conditions∫

 �
I (/; )) J (/; -)d/ = ,; J 6= I : (/)

The notation here is such that /,),.., refers to both space and spin coordinates,
while  I is assumed normalized to unity, and antisymmetrized such that

 I (/; )) = � I (); /) : ())

Then one can construct a normalized antisymmetric )N -body wave function
of the form

Ψ =
[
)N

()N )!

]/=)∑
P

(�/)P  /(/; )) )(-; .)::: N ()N � /; )N ) (-)

where P denotes permutations which interchange the electrons between the
geminals. This wave function takes account of the simultaneous correlations
of N pairs including the corresponding unlinked clusters such that even if one
passes to an infite system N ! 1 one transcends the Hartree–Fock appro-
ximation unless the two-body functions are simple products of one-electron
spin orbitals.

With restrictions to two-body interactions, the Hamiltonian can formally
be written as

H = H(,) +
)N∑
˛=/

H(˛) +
)N∑

ˇ>˛=/

H(˛; ˇ) : (.)

The expectation value of H is then readily calculated as

E = H(,) +
N∑
I=/

∫
 �
I (/; )) [H(/) + H()) + H(/; ))] I (/; ))d/ d)
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+)
N∑

I;J=/

∫
d/ d) d- d.H(/; -) [/� P/-]

� �
I (/

0
; )) I (/; )) �

J (-
0
; .) J (-; .) : (2)

Of considerable interest for what follows is that the first- and second-order
density matrices � and Γ are given by [6]

� (/
0
; /) =

N∑
I=/

�I (/
0
; /) = )

N∑
I=/

∫
 �
I (/

0
; )) I (/; ))d) (=)

and

�)(/
0
; )

0
; /; )) =

N∑
I=/

 �
I (/

0
; )

0
) I (/; ))

+
/
.

N∑
I;J=/

f�I (/0
; /)�J ()

0
; )) + �I ()

0
; ))�J (/

0
; /)

��I ()0
; /)�J (/

0
; ))� �I (/

0
; ))�J ()

0
; /)g : (3)

The fact that these /DM � and )DM �) have been calculated from the demon-
strably antisymmetric many-body wave function (-) using the strong ortho-
gonality conditions (/) is important for what follows in the context of density
functional theory (DFT) to which we now turn.

3
Origins of Density Functional Theory:
the Thomas{Fermi{Dirac Statistical Method Applied to Heavy Atoms

Thomas (T) [8] and Fermi (F) [/,] independently proposed to treat the elec-
trons in a heavy atom as a Fermi gas in which free electron relations were used
locally. Then, with the ground-state density �(r) taken as the basic variable of
the theory, the ground-state energy ETF can be constructed from their statisti-
cal method (valid, as already remarked, for heavy atoms: i.e. an assumed large
number of electrons) as

ETF = ck

∫
�(r)2=- dr �

∫
Ze)

r
�(r) dr +

/
)
e)
∫

�(r)�(r
0
)∣∣r � r0 ∣∣ dr dr

0
(6)

where ck is given from the kinetic energy of a uniform Fermi gas as

ck =
-h)

/,m

(
-
6�

))=-
; (8)

while Z is evidently the atomic number. Minimizing the energy ETF with respect
to the density �(r), with the constraint that (with N now denoting the total
number of electrons)∫

�(r) dr = N (/,)
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one finds, with  introduced as the Lagrange multiplier taking care of the
normalization constraint (/,) as the density is varied, the Euler equation of
the variational problem posed by Eq. (6):

 TF =
2
-
ck �(r)

)=- � Ze)

r
+ e)

∫
�(r

0
)∣∣r � r0 ∣∣ dr

0
: (//)

This equation has been solved self-consistently for atomic ions with N 
 Z and
one of its principal results, due to Milne [//], is that the ground-state energy
of neutral atoms is given by

EN=ZTF = �,:33Z3=- (e)=a,) : (/))

While Eq. (/)) represents the correct prediction of the non-relativistic Schrö-
dinger equation as Z ! 1, in the range of the Periodic Table corrections
are needed. One is due to the fact that Eq. (//) near the point atomic nucleus
assumed, shows that �(r) diverges as r�-=) and this is due to neglecting density
gradients in the Fermi gas model employed. This, as was shown by Scott [/)],
corrects [/-, /.] Eq. (/)) with a term (/=))Z). Earlier Dirac had introduced the
exchange energy A into the Thomas–Fermi atom, with the result

A = �cX
∫
�(r).=- dr : cX =

-
.
e)
(
-
�

)/=-
; (/-)

again from Fermi gas theory (exchange hole: see below). Adding A on to ETF
in Eq. (6) and again performing the minimization with respect to �(r) yields
the Euler equation of the Thomas–Fermi–Dirac (TFD) method as

 TFD =
2
-
ck�

)=- � Ze)

r
+ e)

∫
�(r

0
)∣∣r � r0 ∣∣ dr

0 � .
-
cX�

/=- : (/.)

Though Eq. (/.) is a result of Dirac’s work [/2], he then solved the quadratic
equation presented for �/=-.

3.1
Dirac{Slater Exchange Potential

Much later Slater [/=] emphasised that one could instead view the exchange
term �(.=-)cX�/=- as an exchange potential VX adding to the Hartree atomic
potential

� Ze)

r
+ e)

∫
�(r

0
)∣∣r � r0 ∣∣ dr

0
: (/2a)

Thus

V DS
X = �.

-
cX�

/=- (/2)

where the superscripts DS denote Dirac–Slater. Cortona [/3] has ‘optimized’
such a �/=- exchange potential for lighter atoms and Table / has been construc-
ted from some of his data, in which he connects with Slater X˛ theory. While
the foundations of the optimized potential method and the Harbola–Sahni ap-
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Table 1. Absolute atomic total energies (Ry) calculated by Hartree–Fock (HF), optimized
potential (OPM), Harbola–Sahni (HS) and using the self-consistent X˛ (SC–X˛) method by
Cortona [/2] (table constructed from data in Table II of Cortona’s paper [/3])

Atom HF OPM HS SC–X˛

He 2.3)- 2.3)- 2.3). 2.3))
Li /..6=2 /..6=2 /..6=. /..6=-
Be )8./.= )8./.2 )8./.) )8././
B .8.,26 .8.,2= .8.,2) .8.,2/
C 32.-33 32.-3- 32.-3, 32.-3,
N /,6.6,) /,6.38= /,6.38) /,6.38.
O /.8.=/8 /.8.=/2 /.8.=/, /.8.=,8
F /86.6/8 /86.6/= /86.6/, /86.388
Ne )23.,8. )23.,8/ )23.,6. )23.,==
Na -)-.3/6 -)-.3/) -)-.3,) -)-.=8/
Mg -88.))8 -88.))) -88.)/) -88.),/
Al .6-.32- .6-.3.= .6-.3-= .6-.3)2
Si 233.3,8 233.3,/ 233.=66 233.=38
P =6/..-3 =6/..)= =6/../. =6/..,=
S 382.,/, 382.,,, 38..86= 38..836
Cl 8/6.8=. 8/6.823 8/6.8., 8/6.8)8
Ar /,2-.=-2 /,2-.=)- /,2-.=,6 /,2-.28=

proach referred to in the table will be briefly touched on below, suffice it to
say that the last - columns in the table are based on a ‘local’ exchange poten-
tial VX(r), in contrast to the Hartree–Fock method which has a non-local or
energy-dependent potential. The degree of agreement between the alternative
local potential VX(r) methods is almost fully quantitative, testifying to the utility
of Slater’s original idea [/=] based on the TFD Euler equation (/.). Of course,
the kinetic energy used in Eq. (/.) is transcended (the term (2=-)ck�(r))=- is
an electron gas theory, whereas all the methods in Table / correctly calculate
this single-particle kinetic energy by fully wave-mechanical theories).

However, correlation effects can alter the physics and chemistry of multi-
centre molecules and solids, and it is important in the present context therefore
to ask first how the Fermi gas model, utilized directly in writing the kinetic
energy density ck�(r)2=- in Eq. (6) and the corresponding exchange energy
density �cX�(r).=- in Eq. (/-) is modified by electron correlation. The answer,
anticipated in the pioneering work of Wigner [/6, /8] is dramatic. Electrons
eventually localize, due to strong electron-electron repulsions, on the sites of
a lattice, forming the so-called Wigner electron crystal [/6, /8]. This area has
been reviewed by Care and March [),] in considerable detail. However the
presentation below follows closely that given subsequently by Senatore and
March [)/].
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4
Homogeneous Electron Assembly: Eventual Localization
at Sufˇciently Low Density in Wigner Electron Crystal

Related to the work of Overhauser [3]; see also Young [))], and of Kapuy and
March already referenced in Sect. /, in the study of electron correlation, it is
natural enough to begin with the homogeneous electron fluid (i.e. the so-called
jellium model of a metal) in which electrons repelling Coulombically move in
a nonresponsive uniform, positive neutralizing background charge.

Whereas the electron density (now constant: �, say) was used above, it will
be convenient in this section to work with the mean interelectronic separa-
tion rSa,, where a, is the Bohr radius h)=me), with m the electron mass. This
separation is defined precisely by

�, =
-

.�r -S a
-
,
: (/=)

The jellium model just defined affords, in fact, the basis for the so-called
theory of the inhomogeneous electron gas [)-], which had its origin in the
Thomas–Fermi–Dirac method already discussed above. This latter theory was
formally completed by the Hohenberg–Kohn theorem [).]. This states that the
ground-state energy of an inhomogeneous electron fluid is a unique functio-
nal of its electron density �(r). Unfortunately, however, the functional is not
known. There are a number of reviews already available both on the electron
gas [)2–)3] and on density functional theory [)6–-2]. Thus the discussion be-
low can be kept relatively brief, focusing in particular on the manner in which
Wigner electron crystallization can be treated within the density-functional
framework.

Therefore, in what follows the focus will be on the regime of extremely low
densities �, ! ,, or equivalently from Eq. (/=), rS ! 1, leaving aside, in the
main, the range of high and real metallic densities (for simple s–p metals rS
lies between ) and 2.2). Here, let us recall though that at high densities, i.e.
rS ! ,, the kinetic energy dominates the potential energy and an independent-
electron description affords a useful starting point to describe the electron
assembly. Indeed, a single plane-wave Slater determinant of spin orbitals is a
Hartree–Fock solution for the jellium model yielding a homogeneous density
distribution [)2] and a ground-state energy per electron given by

EHF
N

=
[
):)/
r )S

� ,:8/=
rS

]
Ry : (/3)

The Thomas–Fermi kinetic energy density ck�(r)2=- derives directly from the
first term on the RHS of Eq. (/3), the Dirac exchange energy density�cX�(r).=-
coming from the second term. Many-body perturbation theory on this state,
in which electrons are fully delocalized, yields a precise result [-=, -3] for the
correlation energy EC in the high-density limit as A ln rS+B, where for present
purposes the correlation energy is defined as the difference between the true
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ground-state energy E, and its Hartree–Fock approximation EHF , namely EC =
E, � EHF .

4.1
Crystallization (Wigner) of Electrons at Low Density

In the opposite, extremely low-density limit rS ! 1, it was Wigner [/6, /8]
who stressed that the above delocalized picture failed completely and that, once
the potential energy became large in comparison with the kinetic contribution,
the electrons would want to avoid one another maximally. Wigner emphasized
that this situation would be reached by electrons becoming localized on the
sites of a crystal lattice. He then argued that one must find the stable structure
by minimizing the Madelung energy. Of the lattices so far studied, the body-
centred-cubic (bcc) structure has the lowest Madelung contribution. This then
yields, again for the ground-state energy per electron

lim
rs!1

E

N
= �/:38)

rS
Ry : (/6)

This demonstrates, when compared with the Hartree–Fock plane wave result
(/3) that this latter approximation is no longer useful as rS ! 1, the energy
being too high by a factor of about ). Another way of saying this is that in
this extremely low density limit the correlation energy is about equal to the
exchange energy in Eq. (/3): an evidently strongly correlated assembly leading
to electron localization.

Though the above argument can leave no doubt that in the jellium model
there will be a localized assembly of electrons, i.e. a Wigner crystal, in the
extremely low density limit, the actual analytic calculation of when the electron
liquid, at absolute zero of temperature, freezes as the density is lowered has
proved very delicate [),]. Eventually, this matter was settled using quantum
Monte Carlo computer simulation by Ceperley and Alder [-6]. They found in
this way that the crystallization first occurred at rS �= /,,. Herman and March
[-8] subsequently pointed out that, for the Wigner crystal phase, the theoretical
expression [.,, ./]

E(rS) =
�/:38/6=

rS
+
):=2

r -=)S

� ,:3-
r )S

Ry (/8)

without any adjustment at all, reproduces the energies to within ,./)., ,.,,-,
,.,,) and ,.,,=mRy respectively. The uncertainties in the corresponding com-
puter calculations are ,.,/,, ,.,,-, ,.,,) and ,.,,/mRy. Prior to the work of
Herman and March [-8] the Ceperley–Alder ground-state energy data for the
electron fluid in the jellium model had been accurately fitted, over the entire
range of rS studied, by Vosko et al. [.), .-] and by Perdew and Zunger [..].
Widespread use of these fits has subsequently been made in DFT within the so-
called local density approximation (LDA). The density-functional treatment of
Wigner crystallization by Senatore and Pastore [.2] will be summarized below.



Localization via Density Functionals ),8

4.2
Density-Functional Treatment of Wigner Crystallization

Let us summarize the underlying assumption of the local density approxima-
tion (LDA) as follows:

ELDAXC

[
�
]
=
∫
"XC(�(r)) dr : (),)

The unknown exchange-correlation energy functional EXC[�] is thereby appro-
ximated in terms of the exchange-correlation energy for the particle, "XC(�,) of
the electron fluid discussed above at uniform density �,. "XC(�,) is accurately
known, as referenced earlier.

Of the situations where the above theory, based on the use of uniform
electron-gas relations locally, is too crude, the electron Wigner crystal at zero
temperature (i.e.in the completely degenerate limit) constitutes one example.
This has been explored in the work of Senatore and Pastore [.2].

To perform such calculations, one needs the response function ,(q) of the
homogeneous interacting electron liquid: a quantity that is not known exactly.
Therefore Senatore and Pastore [.2] have employed the so-called STLS (Singwi,
Tosi, Land, Sjölander) decoupling scheme [.=] to generate ,�/(q) from the
structure factor S(q) obtained from quantum Monte Carlo (QMC) simulations.

Senatore and Pastore [.2] study, in fact the coexistence between a fully
spin-polarized liquid and a regular crystalline phase. After demonstrating the
inadequacy of the LDA (Eq. ),) they propose an approximation for exchange
plus correlation in which one considers, rather than the full functional EXC[�],
the difference

∆ = EXC
[
�S
]� EXC

[
�,
]

()/)

between the solid and the liquid phase. They then appeal to an expansion of
∆ about the liquid, in powers of the density difference

�Q(r) = �S(r)� �, : ()))

To second order their expansion yields

EXC
[
�S
]
= EXC

[
�,
]
+
/
)

∫∫
dr dr

0[�,�/(r�r
0
)+,�/

, (r�r
0
)
]
�Q(r)�Q(r

0
) : ()-)

In Eq. ()-), ,(r) and ,,(r) are the static response function of the homogeneous
liquid and the response function of the noninteracting electrons (namely the
Lindhard function [.3]).

The calculation of the ground-state energy of the Wigner electron crystal
necessitates the self-consistent solution of the Slater–Kohn–Sham equations for
the Bloch orbitals of a single fully occupied energy band, since there is one
electron per unit cell and one is concerned with the spin-polarized state [.2].
This was accomplished by standard computational routines for energy band-
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structure studies. The conclusions of Senatore and Pastore can be summarized
as in the following.

The quadratic approximation ()-) leads to freezing into the bcc lattice at
rS = /,), in good agreement with QMC simulations [-6]. The Lindemann
ratio � (rms-deviation about the lattice site divided by the nearest-neighbour
separation of the vibrating electron crystal) of ,.-. was obtained [.2], where
QMC suggests that � = ,:-, ˙ ,:,) for all quantum assemblies investigated
to date. The calculated electron density still proves to be quite localized. This,
together with the high symmetry of the periodic lattice, prompted Senatore and
Pastore [.2] to consider a possibility of a tight-binding approximation in which
Bloch orbitals are built from one Gaussian orbital [--] per site with a width
determined variationally. By this approximation considerable simplification is
achieved, whereas the results for the rS value for freezing and the Lindemann
ratio � change only slightly. For further details the reader is referred to the
original paper [.2].

5
Localized versus Molecular Orbital Theories of Electrons:
Example of Stretched H2 Molecule

Correlation in atoms introduces largely quantitative changes. As seen above,
qualitative changes can come about in ‘condensed’ phases. Here, we consider
briefly the case of the stretched H) molecule, going back to the work of Coulson
and Fischer [.6] (CF). Their work is a forerunner of the so called generalized
valence bond theory.

Suppose instead of atomic orbitals (say H atom /s orbitals in the simplest
case) /a on proton a and / � b on proton b, one formed asymmetric orbitals
/a + 1/b , , < 1 
 / and /b + 1/a, the former representing, with 1 < /, the
electron primarily but not wholly belonging to nucleus a etc. Then CF formed
the (unsymmetrized) variational wave function

ΨCoulson–Fischer = [/a(/) + 1/b(/)] [/b()) + 1/a())] : ().)

If H denotes the total Hamiltonian of the H) molecule, CF found 1 as a function
of the internuclear distance R by minimizing < H > with respect to the wave
function ().). Their findings were: (a) for R < /:=Requilibrium, 1 = /; (b) for
R > /:=Requilibrium, 1 falls quite rapidly to zero as the H) molecule is stretched
further. For 1 = /, Eq. ().) is the molecular orbital wave function built as a
linear combination of atomic orbitals, whereas for R > /:=Requilibrium one sees
that electrons quickly ‘go back on to their own atoms’.

It is relevant in this context that, in work on the cleavage force of crystalline
Si, Matthai and March [.8] have used a coordination-dependent force field due
to Tersoff [2,] to study related ‘bond-breaking’ in a condensed phase. Tersoff ’s
force field was fitted to available density-functional calculations, With such a
force law, Matthai and March [.8] concluded that the Si bond is comparable in
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its ‘elasticity’, but now in the condensed covalent network of solid Si, with the
H) molecule in free space. Mechanical properties of solids appears therefore to
be an area where electron correlation may play an important role, especially
in systems such as Si or d-electron metals, with rather well defined directional
bonding.

Let us conclude this section by returning to the electron density from the
Coulson–Fischer wave function. Writing a normalization factor @ on the RHS
of Eq. ().), one finds

�CF (/; R) =
∫
Ψ)
Coulson–Fischer (/; )) dr)

= @) [/a(/) + 1(R)/b(/)]
) [/ + )1S(R) + 1)

]
: ()2)

Here S(R) is the overlap integral
∫
/a/bdr and /a and /b are taken as normali-

zed to unity. While S is a smooth function of R, the CF calculations show that a
derivative discontinuity exists in 1(R) at R = /:=Requilibrium. Simple approxima-
tions in density functional theory do not reproduce this type of ‘bond-breaking’
behaviour.

6
Some Remarks on Low-Order Density Matrices and Electron Localization

Let us briefly return to the jellium model, but in connection now with low-
order density matrices. Young and March [-] exploited in early work the fact
that in this model the energy of the uniform electron fluid can be specified
completely in terms of its second-order density matrix ()DM). Mayer [/] had
therefore suggested that trial density matrices satisfying all the usual physi-
cal conditions might be used to determine variationally correlation energies
and pair functions. It subsequently emerged that the particular choice made
by Mayer did not satisfy all the Pauli conditions on the )DM. However, the
variational )DMs set up by Young and March [-], and designed to embrace
both the homogeneous electron liquid and the broken symmetry phase on fre-
ezing into the Wigner electron crystal, were satisfactory from the above point
of view and these workers investigated the consequences of using such forms.
Since one the matrices which was proposed [-] was a generalization of the
Hartree–Fock expression, a description of correlation effects was assured and
it appeared that this should be useful for all densities. Later in the chapter, the
relation of such a )DM to an antisymmetric N -electron total wave function
will be formally discussed and it will then be clear that the )DM of Young
and March, especially in the localized electron regime rS >�= /,, of the Wigner
crystal, is worthy of further investigation.

Turning from the jellium model to electron correlation in molecules, it is
worth noting here that Klein and March [2/] have reopened the long-standing
question of the relation between first- and second-order density matrices in
relation to the approximation of perfect pairing and natural orbitals. Using per-
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fect pairing, the examples of H), already treated above, and the H) dimer are
employed to motivate a more formal treatment of (N=)) pairs. For the H) dimer
and the general case of (N=)) pairs, the strong orthogonality constraint discus-
sed in Sect. ) is again invoked. A characteristic of the treatment of Klein and
March [2/] is that natural orbital and natural geminal expansions of first- and
second-order density matrices respectively are reduced from generally infinite
to finite sums within the framework adopted [2/]. As in the complementary tre-
atment of jellium set out immediately above, the procedure of Klein and March
allows an approximation transcending Hartree–Fock theory, and in their case
a relation between first- and second-order density matrices can be exhibited.

This is the point at which to demonstrate the intimate connection between
density functional and density matrix theory. The link will be forged by ex-
pressing the exchange-correlation potential VXC(r) of DFT in terms of the / and
)DMs of the atom, molecule, or finite cluster under consideration. The result
for VXC(r) in terms of low-order DMs is due to Holas and March [2)].

7
Exchange-Correlation Potential of Density Functional Theory
in Terms of First- and Second-Order Density Matrices

To motivate the approach of Holas and March [2)], let us briefly set out the
early work of March and Young [2-], who set up the so-called differential
virial theorem for independent fermions moving in / dimension (x) only in
a common potential energy V (x). If t(x) denotes the kinetic energy per unit
length at position x, their result was

@t

@x
= �/

)
�(x)

@V

@x
+
/
6
�

000
(x) ()=)

That this is indeed the differential form of the customary virial theorem is
readily seen by multiplying Eq. ()=) throughout by x and then integrating over
all x from �1 to +1. Some elementary integrations by parts recovers the
usual (integral) virial theorem of Clausius, in, of course, now fully quantum-
mechanical form [2.].

To make contact between Eq. ()=) and the study of Holas and March [2)],
let us rewrite the equation as an expression for the force �@V=@x, to find

� @V

@x
=

)
�(x)

@t

@x
� /
.
�

000
(x)

�(x)
: ()3)

This Eq. ()3) may be viewed as a ‘force balance’ equation, the total force F on
the LHS being ‘balanced’ by a kinetic (K) piece FK plus a contribution which,
in three-dimensions, involves the Laplacian (L) of the electron density �(x),
and the corresponding force we shall write as FL. Thus Eq. ()3) has the form

F = FK + FL : ()6)
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The first step in the study of Holas and March [2)] was to generalize this Eq.
()6) to fully interacting electrons moving in three dimensions.

7.1
Force Balance Equation for External Potential

If the external potential energy (�Ze)=r in an atom having nuclear charge Ze)
is written as Vext , then their generalization of Eq. ()6) is a vector force balance
equation:

Fext = �@Vext
@r

= FK + FL + Fee ()8)

where Fee represents the force term from the full electron-electron interactions.
However, only one of the three terms on the RHS of Eq. ()8) can be written
in terms of the ground-state electron density �(r), namely FL, which is given
by [2)]:

FL = �/
.

rr)�(r)
�(r)

; (-,)

which evidently is the --dimensional generalization of the last term on the RHS
of Eq. ()3).

If we denote the electron-electron Coulombic interaction e)=jr � r0j by
u(r; r0), then it is not difficult to show [./] that the electron-electron con-
tribution Fee(r) in Eq. ()8) involves the pair correlation function, say n)(r; r0),
which is the diagonal element of the second order density matrix �)(r; r0; r; r0)
through

Fee = )

∫ ru(r; r0
)n)(r; r

0
) dr

0

�(r)
: (-/)

Evidently the kinetic term FK which remains in Eq. ()8) must be determined
by the fully interacting first-order density matrix �/(r; r0). Holas and March
[2)] express FK in terms of a vector field z(r) through

FK =
z(r)
�(r)

: (-))

This field is related to the kinetic-energy density tensor by

z˛(r) = )
∑
ˇ

@

@rˇ
t˛ˇ(r) : (--)

The final step here is then to relate the kinetic-energy density tensor t˛ˇ to the
fully interacting /DM �/(r; r0) through [22]

t˛ˇ(r) =
/
.

(
@)

@r 0
˛@r

00
ˇ

+
@)

@r
0
ˇ@r

00
˛

)
�/(r

0
; r

00
)jr0=r00=r : (-.)



)/. N.H. March

This is a real symmetric tensor, the trace of which is the non-negative kinetic-
energy density

t(r) =
∑
˛

t˛˛(r) � , (-2)

leading to the global kinetic energy

T =
∫
t(r)dr : (-=)

7.2
Gradient of Exchange-Correlation Potential VXC (r)

The next step in the Holas–March study was to form from the above, formally
exact, theory based on the many-electron Schrödinger equation, the gradient
of the exchange-correlation potential energy VXC(r). This is the many-electron
part of the one-body potential to be inserted in the one-body Schrödinger
equations (the so-called Slater–Kohn–Sham (SKS) equations)

r) i(r) +
)m

h̄)
["i � V (r)] i = , (-3)

which purport to generate the exact ground-state density �(r) as

�(r) =
occupied states∑

i

 �
i (r) i(r) ; (-6)

This is, of course, a formal statement, in that VXC(r) enters V (r) through

V (r) = Vext + e)
∫

�(r
0
)∣∣r � r0 ∣∣ dr

0
+ VXC(r) : (-8)

In terms of the exchange-correlation energy functional EXC[�], VXC is the fun-
ctional derivative:

VXC(r) =
ıEXC

[
�
]

ı�(r)
: (.,)

Clearly, if an approximation is made to EXC[�] (which, as discussed further
below, must have in it fingerprints of the antisymmetry of the N -electron fully
interacting wave function), this approximation will be exacerbated by the fun-
ctional differentiation required in Eq. (-8).

One of the considerable merits of the Holas–March theory of VXC(r), to be
completed immediately below, is that the functional derivative in Eq. (.,) is
entirely bypassed. The price paid, of course, is that one needs through Eq. (-/)
the pair function n)(r; r0) of the fully interacting system, and the near-diagonal
behaviour of the /DM �/(r; r0).

One can immediately apply the above force balance arguments to the single-
particle SKS force �@V (r)=@r � FS . Then

FS = f�/
.

rr)�(r) + zS(r)g=�(r) (./)
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Hence the desired gradient of the exchange-correlation potential FXC =
�@VXC=@r is given by

FXC =
fz(r)� zS(r) +

∫
dr

0 [ru(r; r0
)
] [
�(r)�(r

0
)� )n)(r; r

0
)
]g

�(r)
: (.))

Thus, with FXC given in Eq. (.)) VXC is determined as the line integral:

VXC(r,) = �
r,∫

1
dr:FXC (.-)

Eqs. (.)) and (.-) embody the Holas–March results for the exact exchange-
correlation potential in terms of low-order density matrices; both fully interac-
ting and non-interacting matrices built from SKS one-electron wave functions
being involved.

7.3
Generalizations and Separation of VXC (r)
into Exchange and Correlation Contributions

Subsequent to the study of Holas and March summarized above, Levy and
March [2=] have effected a generalization which permits a formulation as a
function of the electron-electron repulsion coupling constant 1. As will be
discussed below, the purpose of their generalization is to allow VXC(r) to be
separated into exchange and correlation contributions. This is achieved by then
developing relations which are associated with each order in 1. The first-order
development yields a formal expression for the exact exchange potential VX(r),
given by

VX =
ıEX

[
�
]

ı�(r)
: (..)

Holas and March [2)] had earlier pointed out that a zero-order approximation
to their exact line-integral form (.-) was the Harbola–Sahni [23] approxima-
tion to VX . The exchange expression of Levy and March [2=] identifies the
correction to the Harbola–Sahni approximation to VX . It is thereby shown that
this correction, which is small in atoms, is zero if the Hartree–Fock single de-
terminant, for the given density, is identical to the SKS single determinant for
the same density. From the work of Görling and Ernzerhof [26], it is known
that these determinants are generally quite close in atoms.

Higher-order terms in the expansion in the coupling constant 1 yield formal
expressions for the corresponding parts of the exact correlation potential:

VC(r) =
ıEC

[
�
]

ı�(r)
: (.2)

By way of motivation, it is to be noted [2=] that it is especially important to
have knowledge of a separate exact expression for VC when one employs an
approximation to VX which does not include line integrals or if one attaches
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an approximation for VC to an exact optimized effective potential (OEP) study
or to a Hartree–Fock calculation. Consequently Levy and March [2=] derive an
explicit formal expression for VC , which is given below.

The idea in Ref. [2=] is then to expand the pair function n1) (r; r
0) for coupling

constant 1 around the non-interacting SKS point 1 = ,: i.e.

n1) = n,) + 1nc);/ + 1)nc);) + ::: (.=)

with a similar expansion for the /DM. Then, at the exchange only level, with
superscript HS denoting the Harbola–Sahni result:

VX(r,) = V HS
X (r,) +

r,∫
1

dr:z(� c/ ; r)�
�/(r) (.3)

where 1C/ is the order 1 contribution to the /DM. Correlation is handled in a
related way by Levy and March [2=] and the reader is referred to their original
study for the details.

An alternative approach to VXC using integral equations involving /–-DMs
has also been developed by Holas and March [28]. The partition of these in-
tegral equations for exchange and correlation potentials paralleling the above
separation of line integral formulae into VX and VC has been given by Holas
and Levy [=,].

It is also of relevance in the present context to note that the perturbation
theory of Görling and Levy [=/] has been applied by Holas and March [=)] to
provide a calculational scheme for exact exchange and correlation potentials
based on the equation of motion for the density matrix.

8
Some Simpliˇed Forms of EXC Based on Adiabatic Connection Method

Levy et al. [=-] have used the scaling parameter 1 (introduced above in the
context of the adiabatic connection method) to propose some very practical
modifications of existing EXC[�] functionals. These workers first point out
that the idea of an adiabatic connection is taking on new importance. The
earlier references include those of Harris and Jones [=.], Langreth and Perdew
[=2], Gunnarsson and Lundqvist [==], Levy [=3] and Harris [=6]. The exchange-
correlation energy functional EXC[�] (following Refs. =2 and ==, and the review
in Parr and Yang [-)]) may be written as

EXC
[
�
]
=

/∫
,

d1 U 1
XC

[
�
]

(.6)

where

U 1
XC

[
�
]
=
〈
Ψ 1
�

∣∣V̂ee∣∣Ψ 1
�

〉
� J

[
�
]

(.8)
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and J [�] denotes the Coulomb energy. In Eq. (.8) Ψ 1
� is the ground-state wave

function of a Hamiltonian H1 which describes a system of electrons in which
the electron-electron Coulombic repulsion is scaled:

Ĥ1 = T̂ + 1V̂ee +
∑
i

V1(ri) : (2,)

It also minimizes the constrained search expression [=8, 3,], for fixed �:〈
Ψ 1
�

∣∣∣T̂ + 1V̂ee
∣∣∣Ψ 1

�

〉
: (2/)

In the above expressions, �(r) is to be interpreted as the exact ground-state
density of H1 . The form (2/) was anticipated by Percus [3/] who gave an
expression for the non-interacting kinetic energy functional.

It is next to be noted that Becke [3), 3-] has used the above approach in
the context of a two-point integration formula. Thus he replaces Eq. (.6) by

EXC
[
�
] � /

)

(
U ,
XC + U /

XC

)
(2))

where U ,
XC denotes the exchange energy of the SKS determinant and U

/
XC is the

potential energy contribution to the exchange-correlation energy of the fully
interacting system. These considerations led Becke to his half-and-half DFT
functional: the forerunner of this fruitful three-parameter functional. However,
as discussed in Ref. [=-], Becke’s three-parameter functional [3.], in contrast
to the half-and-half functional, really results from a partial abandonment of
the adiabatic connection idea.

Levy et al. [=-] examine adiabatic scaling in the Thomas–Fermi–Dirac me-
thod set out earlier in this chapter, and also propose a formula for U /

xc in Eq.
(2)). These two aspects will be taken in turn below.

8.1
Electron-Electron Scaling with Constant Density: Thomas{Fermi{Dirac Limit

For the ensuing discussion, let us write the Hamiltonian H1 in the form

Ĥ1 = T̂ + 1V̂ee +
N∑
i

V1(
[
�
]
; ri) : (2-)

The ground-state density � in this approach is fixed independently of 1 and in
atomic units

T̂ = �
N∑
i

/
)

r)
i ; V̂ee =

∑
i<j

/
rij
: (2.)

The Thomas–Fermi–Dirac (TFD) ground-state (GS) energy corresponding to
different 1 and a definite density �,(r), is now introduced as the minimum
obtained from

ETFDGS;1;�, = min
�

[∫
V1(
[
�,
]
; r)�(r)dr + F TFD1

[
�
]]
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=
∫
V1(
[
�,
]
; r)�,(r)dr + F TFD1

[
�,
]

(22)

where

F TFD1

[
�
]
= ck

∫
�2=-(r)dr + 1J

[
�
]� 1cX

∫
�.=-(r)dr : (2=)

Here J [�] is explicitly

J
[
�
]
=
/
)

∫ ∫
�(r/)�(r))

r/)
dr/ dr) : (23)

The stationary principle yields

V1(
[
�,
]
; r) = �ıF TFD1

[
�
]

ı�(r)
(26)

evaluated at � = �,. It follows that

V1(
[
�,
]
; r) = �2

-
ckf�,(r)g)=- � 1

∫
�,(r

0
)∣∣r � r0 ∣∣dr

0

+
.
-
1cXf�,(r)g/=- : (28)

One now observes that in this TFD limit the scaling of the one-body potential V1
is such that V1 is linear in 1. One may write the ground-state energy explicitly
as

ETFD = �)
-
ck

∫
�2=-, (r)dr � 1

)

∫
�,(r/)�,(r))

r/)
dr/ dr)

+
/
-
1cX

∫
�.=-, (r)dr : (=,)

Evidently again, as was the case with V1 , ETFDGS;1;�,, the ground-state energy cor-
responding to electron density �,(r) at a coupling constant 1, is linear in 1.

8.2
Two-Point Adiabatic Connection Formula Revisited

In Ref. [.8], a relook was taken at the expression to be used for U /
XC in Eq. (2)).

Bearing this need for U /
XC in mind, the starting point was the formula [32, 3=]

U /
XC[�] = )EXC[�]� @EXC[�1]

@1
j1=/ (=/)

where

�1(r) = 1-�(1r) : (=))

Eq. (=/) is in fact a special case of the result

U 1
XC[�] = )1EXC[�] + 1)

@EXC[�/=1]
@1

: (=-)

In Eq. (2)), one could use the exact formula for U ,
XC and could approximate U

/
XC

using some model, through the use of Eq. (=/). The resulting approximation
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to EXC will be denoted by EXC and is evidently given by

EXC =
/
)
U ,
XC[�] +

/
)
Umod;/
XC [�] : (=.)

Here ‘mod’ refers to some model for U /
XC and

Umod;/
XC [�] = )EmodXC [�]� @EmodXC [�1]

@1
j1=/ : (=2)

Combining Eqs. (=.) and (=2) evidently yields

EXC[�] =
/
)
U ,
XC[�] + EmodXC [�]� /

)
@EmodXC [�1]

@1
j1=/ (==)

or

EXC[�] =
/
)
EX[�] +

/
)
EmodX [�] + EmodC [�]� /

)
@EmodC [�1]

@1
j1=/ ; (=3)

the requirement having been imposed that

EmodX [�1] = 1EmodX [�] ; (=6)

which is the correct scaling of exchange and, use having been made of the fact
that U ,

XC[�] equals the exact exchange functional EX[�]. Formulae (==) and
(=3) are the desired generalized linear (two-point) results [=-].

8.3
Validity of Two-Point Formula (Linear Approximation)

Following Ref. [=-] again, it is useful to examine the validity of the linear
approximation when the exact U 1

XC is employed. It is known that U
1
XC[�] mo-

notonically decreases [32] as 1 increases and that [3=]

U 1
XC[�] = 1U /

XC[�/=1] (=8)

and also [3=, 33]

U /
XC[�/=1] � constant + 1�/U ,

XC[�] (3,)

as 1 ! ,. Thus, it can be inferred that U 1
XC[�] is linear at sufficiently small 1.

To proceed, let us, in Eq. (=/), use

EXC[�] = EX[�] + EC[�] (3/)

and also recognize that

EX[�] = U ,
XC[�] : (3))

Furthermore

U /
XC[�] = EX[�] + EC[�]� TC[�] (3-)

and one consequently deduces that Eq. (2)) implies

EC[�] ' /
)

(
EC[�]� TC[�]

)
: (3.)

This Eq. (3.) would evidently be exact if

EC[�] = �TC[�] : (32)
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It turns out, however, that the exact relation connecting EC[�] and TC[�] is [32]

EC[�] = �TC[�] + @EC[�1]
@1

j1=/ : (3=)

Equation (32) is a useful approximation only if @EC[�1]=@1j1=/ is small. Some
insights are provided in Ref. [=-] concerning improvements of LDA but the
interested reader is referred to the original study for the details [=-].

9
Rosina's Theorem and (Formal) Reconstruction Procedure of N -Electron
Wave Function from Second-Order Density Matrix

It has been known for a long time, especially from the work of Dirac [/2] and
of Löwdin [36], that the (now idempotent) /DM is sufficient to determine the
N -electron wave function for the case of a single Slater determinant. It has
been equally clear to many workers in the field that such knowledge of the
/DM cannot be adequate to reconstruct the N -body wave function for the
fully interacting electron system, without appeal to the total Hamiltonian.

Here, attention will be drawn to the important work of Rosina [38] and
to the subsequent discussion of his study by Mazziotti [6,]. As summarized
in Ref. [6,], Rosina showed that the ground-state )DM for a quantum system
completely determines the exact N -electron ground-state wave function with-
out any specific knowledge of the exact Hamiltonian except that it has no more
than two-particle interactions. Mazziotti [6,] points out that a consequence
of this theorem is that any ground-state electronic )DM precisely determines
within the ensemble N -representable space a unique series of higher p-DMs
where ) < p 
 N . He asserts that these results provide important justification
for the functional description of the higher DMs in terms of the )DM.

With the theoretical underpinning provided by Rosina’s theorem, Mazziotti
[6,] proposes a new reconstruction procedure in which the p-DM is genera-
ted from the )DM by imposing contraction and p-ensemble representability
conditions. For a p-DM to be p-representable, Mazziotti stresses that it must
be Hermitian, antisymmetric and positive semidefinite. By his procedure he
establishes contact with the earlier studies of Valdemoro [6/] (see also the fol-
lowing chapter) and of Nakatsuji and Yasuda [6)]. His principal conclusion,
based on numerical examples, is that

‘through its direct determination of the )DM without the wave function
the contracted Schrödinger equation [6-, 6.], coupled with a reconstruc-
tion strategy, provides a fresh path towards the calculation of electron
correlation’.

Though different in philosophy from the above, it is relevant here to note
that approaches using the diagonal element of the )DM have been proposed by
Ziesche [62] and by Gonis [6=]. In these studies, generalizations of the original
density functional theorems have been effected. These approaches, as well as
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that based on the contracted Schrödinger equation [63] are well worth further
study in the area of strongly correlated electron assemblies [66] and of electron
localization

10
Localization of Electrons Aided by Applied Magnetic Fields

In this penultimate section, consideration will be given to the way in which
suitable applied magnetic fields can aid electron localization, driven initially by
Coulomb repulsion. Then it is natural enough to start with the Wigner electron
crystal, discussed in zero magnetic field B = , in Sect. ..

10.1
Magnetically-Induced Wigner Solidiˇcation (MIWS)

In /8=6, Durkan et al. [68] discussed the localization of electrons in impure
semiconductors by a magnetic field. From this idea, in which a Wigner tran-
sition which was aided by a magnetic field in n-type In Sb at low temperature
was proposed, has grown an area termed MIWS (magnetically-induced Wigner
solidification).

Though the above proposal was concerned with a dilute three-dimensional
electron gas, much of the interest more recently has been focussed on the two-
dimensional electron gas that can be produced in a GaAs/AlGaAs heterojunc-
tion. The magnetic field B is applied perpendicular to the plane of the electron
gas. That Wigner electron solidification could occur in such a system at a cri-
tical magnetic field was demonstrated in the experiments at He- temperatures
of Andrei et al. [8,]. Their idea was that an electron fluid could not sustain
shear, whereas an electron solid could. By an ingenious experiment involving
magnetophonons, these workers demonstrated that, beyond a critical magne-
tic field, the electron assembly could sustain shear waves, thus establishing
the existence of a Wigner electron solid. Proof of crystallinity experimentally,
should it exist, will require diffraction experiments. Wigner solidification was
subsequently confirmed by the photoluminescence experiments of Buhmann
et al. [8/], on the consequences of which the ensuing discussion is focussed.

10.2
Melting Curve of Wigner Electron Solid with and without Magnetic Field

Ferraz et al. [8)] treated the melting of the Wigner electron crystal in three
dimensions for B = ,. Figure / shows two asymptotes which they established in
the (T; �) plane. As � ! ,, the Wigner electrons, because of negligible overlap
between electrons on different sites, can no longer tunnel and all fingerprints
of quantum mechanics are then lost. One is dealing with the non-degenerate
limit of the jellium model, or what is called by plasma physicists the one-
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Fig. 1. Reduced melting curve T=T � (schematic depiction only) of three-dimensional Wigner
electron crystal versus reduced density �=��. Upper curve is classical asymptote. Melting
curve of quantal crystal is shown coming out from �=�� = /, T = , with vertical slope. The
small piece shown will continue steeply upwards until it meets the classical asymptote

component plasma (OCP). It is known from computer simulation, starting
with the pioneering study of Brush et al. [8-], that this OCP freezes (into a
now classical Wigner electron crystal) when the ratio Γ = (e)=rS)=kBT reaches
a value of � /3,. This yields the asymptotic T / �/=- shown schematically in
Fig. /. In Ref. [3/], it was also argued that the melting curve came out vertically
from the density �C (determined by Ceperley and Alder as corresponding to
rS � /,,) at which the Wigner crystal forms at T = ,: i.e. in its ground-state.

One must join these two asymptotes, and in Ref. [8)] this was attempted
by approximate integration of the appropriate form of the Clausius–Clapeyron
equation. However, the definitive work as to how the two asymptotes connect
is that of Ceperley et al. [8.]. The melting curve of the quantal system closely
follows the OCP melting curve T / �/=- until � closely approaches �C and
then plunges rather suddenly, consistent with the vertical slope of the melting
curve coming away from the point T = ,, � = �C . This situation in Fig. /
for B = , will now be contrasted with that found in the experiments on the
two-dimensional electron gas in a strong magnetic field B .

The phase diagram in Fig. ) is taken from Buhmann et al. [8/] and is
consistent with their experiments, plus additional theoretical requirements.
The most important of these is that the Laughlin liquid is very stable, even
down to T = ,, for particular values of the Landau level filling factor of the
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Fig. 2. Schematic phase diagram as proposed by Buchmann et al. [8/] for the two-
dimensional Wigner electron solidification in a magnetic field perpendicular to electron
assembly. Landau filling factor ? is the independent variable [66]. The four Wigner solid
phases are labelled C/ to C.. t denotes the reduced melting temperature (compare Fig. /
which, however, is for three dimensions and zero magnetic field)

form //m, where m is an odd integer. As Fig. ) shows, there are four regions
proposed in which the localized Wigner electron solid is stabilized.

Lea, March and Sung [82–83] have analyzed the consequences of such a
phase diagram using thermodynamics [86] plus some many-electron concepts
such as composite fermions. It would take us too far from our main theme to
develop this in detail. However, at the end of the following sub-section, we shall
return briefly to the phase-diagram in Fig. ), but there confining attention to
the ground-state, T = ,.

10.3
Density Matrices and Density Functionals in Strong Magnetic Field

With a view to future application to localization of electrons already observed
in MIWS treated above, this sub-section will summarize the investigation of
Holas and March [88] on density matrices and density functionals in strong
magnetic fields.

In their study, the equation of motion for the first-order density matrix
(/DM) is first constructed for interacting electrons moving under the influ-
ence of applied external scalar and vector potentials. The electron-electron
Coulombic repulsion is there the coupling to the )DM. This equation of mo-
tion is then utilized to establish the differential virial equation for interacting
electrons moving in a magnetic field of arbitrary strength. The integral form
of the virial theorem, as derived by Erhard and Gross [/,,] is recovered by
suitable integration of this differential form.

The exchange-correlation scalar potential of the current-density functional
theory of Vignale and Rasolt [/,/, /,)] is then derived. Again as in the zero
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field case treated above, the /DM and )DM of the fully interacting system,
as well as their non-interacting counterparts, are involved. Naturally, for non-
zero magnetic field B, the vector potentials are also involved. The Hartree–Fock
/DM for atoms and molecules in magnetic fields is shown in the study of Holas
and March [88] to obey the same equation of motion as the fully interacting
/DM.

If the external scalar potential is denoted by v(r), and the vector potential
A imposed is related to the application of a strong magnetic field B:

B = curlA (33)

then if T denotes the global kinetic energy the integral virial theorem reads

)T [�/] + Eee[A)] =
∫
drr�(r)r:r(v(r) + e)

)mc)
A)(r)))

+
∫
dr jp(r; [�/])fr:r � /ge

c
A(r) : (36)

The kinetic energy T is given in terms of the kinetic energy operator t(r):

t̂(r) = � h̄)

)m
r)(r) (38)

and the /DM 1/ by:

T [�/] =
∫
dr/ t̂(r/)�/(r/; r

0
/)jr0

/=r/
(6,)

=
∫
dr
∑
˛

t˛˛(r; [�/])

while the electron-electron interaction Eee is, in terms of the Coulomb inter-
action u and the pair function n):

Eee[n)] =
∫
d/ d)u(/))n)(/)) : (6/)

The gauge-invariant physical current j(r) is related to the paramagnetic current
jp(r) entering the above integral virial theorem by

j(r) = jp(r) +
e

mc
�(r)A(r) : (6))

The first achievement of the study of Holas and March [88] is to establish the
differential form of the above virial theorem [their Eq. ()./2)]. Again, as in the
zero field case treated above, this differential virial theorem is interpreted as
a force-balance equation. The well-known Lorentz force of electromagnetism
then appears quite naturally in this equation.

One consequence of their equation is that the one-electron result of Amovilli
and March [/,-], namely

� rv = r
(
h̄)

6m

(r�
�

))
� h̄)

.m
r)�

�
+
m

)
j)

�)

)
(6-)

is recovered.
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Of particular importance for future work on the Wigner electron solid are
the forms established by Holas and March for the exchange-correlation poten-
tials. As, however, no such application is available to date, let us conclude this
discussion of localization of electrons by applied magnetic fields in referring
briefly to the computer simulation study of Ortiz et al. [/,.] on the stability of
the Wigner electron solid relative to the Laughlin liquid, the seat of the fractio-
nal quantum Hall effect. This was, of course, already referred to above in the
context of the melting curve of the Wigner electron solid in two dimensions.

In the investigation of Ortiz et al. [/,.], a stochastic method is presented
which can handle complex Hermitian Hamiltonians where time-reversal inva-
riance is broken explicitly. These workers fix the phase of the wave function
and show that the equation for the modulus can be solved using quantum
Monte Carlo techniques. Then, any choice for its phase affords a variational
upper bound for the ground-state energy of the system. These authors apply
this fixed phase method to the )D electron fluid in an applied magnetic field
with generalized periodic boundary conditions.

Let us turn to summarize the results of applying the above method to study
the transition between an incompressible Laughlin liquid and a Wigner solid.
Ortiz et al. first note that there are two independent parameters characterizing
the )D electron fluid in the presence of an applied magnetic field. The first is
the usual variable rS , which measures the interelectronic spacing in units of the
Bohr radius. In terms of areal density �; rS = /=f��g/=). The other parameter
is the Landau level filling factor ? . This can be written in terms of the magnetic
length l, defined for present purposes by l = /=B/=). Then ? is equal to )e)=r )S .
As Ortiz et al. emphasize, it is the interplay between these two parameters that
determines the zero-temperature phase diagram. As ? is decreased, or rS is
increased, one can expect the )D electron assembly to undergo a first-order
transition between a Laughlin liquid and a Wigner solid.

Prior to the fixed phase study of Ortiz et al., the variational Monte Carlo
method was used by Zhu and Louie [/,2] to study the magnetic-field-induced
electron localization into a Wigner electron solid in the fractional quantum
Hall effect regime. The energy they obtained for this solid phase (rS = ),)
compared with the best energy available then for the liquid obtained by Price
et al. [/,=] led Zhu and Louie [/,2] to conclude that there would be a transition
to the Wigner solid for ? = /=2. The improved energies for the liquid obtained
by Ortiz et al. lead to the conclusion ‘that further work must be done to show
definitively which phase is stable at ? = /=2.’ Perhaps the application of DFT
to this magnetically-induced Wigner solid, complementing thereby the work
of Senatore and Pastore, can lead to further insight bearing on the T = , phase
diagram of Fig. ).
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11
Summary and Future Directions Involving Electron Localization

In his early researches, Ede Kapuy was already exploiting strongly orthogonal
geminals and low-order density matrices (cf. Sect. ) above). In collaborative
work with the present writer, extended systems were also embraced, and much
use made of localized Wannier functions, rather than Bloch orbitals: see also
March and Stoddart [/,3]. Though the Hohenberg–Kohn theorem formally
completed the Thomas–Fermi–Dirac method, which [cf. Eqs. (6) and (/-)]
wrote the ground-state energy E quite explicitly in terms of the ground-state
density �(r), no route exists within the density functional theory itself to deter-
mine the exchange-correlation energy function EXC[�]. The work of Holas and
the present writer has, however, expressed the exchange-correlation potential
VXC(r) quite explicitly in terms of low-order density matrices.

In jellium, Young and March [-] had already constructed trial density ma-
trices to be used variationally, but many constraints must be applied which lie
in the requirement that a trial density matrix describing electrons in molecu-
les and solids must come from some antisymmetric N -electron wave function.
This is already appearing as a difficulty with even some of the most successful
DFT prescriptions, which are known occasionally to go below an exactly calcu-
lated ground-state energy. Obviously, in a variational method, this must reflect
the fact that some fermionic constraint has been violated, assuming one’s star-
ting point is the exact many-electron Hamiltonian. Of course, as the Thomas–
Fermi–Dirac method makes quite clear, the antisymmetry of the N -electron
wave function is reflected in the functionals. In the SKS approach [/=, /,6], the
density �(r) is N -representable, but the difficulty lies in approximating EXC[�]
and hence the crucial VXC(r) as its functional derivative. Though VXC(r), in some
sense, is an irreducible minimum of information for many-electron theory, it
must be tackled from first-principles through hierarchical equations (compare
the contracted Schrödinger equation due to Cohen and Frishberg [6-] and
to Nakatsuji [6.]; see also Mazziotti [6,] and other references therein, or the
reduced Green function approach; see, for example, Kurth [/,8]).

Key examples of the simplest kind which reflect extreme examples of elec-
tron localization are Wigner electron solids, with and without applied magnetic
fields, and ‘stretched’ chemical bonds. An obvious example is the H) molecule,
where at /:=Requilibrium electrons ‘go back on to their own atoms’. With direc-
tionally bonded solids, such as covalently bonded semiconductors like Si and
Ge, one can expect mechanical properties like cleavage force [.8] and extended
defect propagation [//,] (e.g. screw dislocations and also cracks) to involve the
breaking of chemical bonds and hence electron correlation and localization.
Ede Kapuy was, of course, well ahead of his time in his recognition of the im-
portance of quantitatively dealing with electron localization in both molecules
and extended systems. It is a privilege to dedicate this chapter to a firm friend
and a fine theoretical scientist.



Localization via Density Functionals ))3

Acknowledgements. The writer is greatly indebted to Professor A. Holas (Warsaw) for much
collaboration and valuable discussions on many aspects covered in this chapter. The oppor-
tunity to bring this work to fruition was afforded by a visit to ICTP, Trieste. The author
wishes to thank Professor Yu Lu and his colleagues in the Condensed Matter Theory Group
for much stimulation and encouragement in the general area of density functional theory
and for generous hospitality. Finally, the work surveyed here on matter in intense magnetic
fields has been partially supported by ONR. Especial thanks are due to Dr P. Schmidt of that
Office for his continuing support.

Appendix: Exchange-Correlation Potential
in Exactly Solvable Hooke's Atom

Qian and Sahni [///] have used the Holas–March route to the exchange-
correlation potential VXC(r) to construct this quantity in an exactly solvable
model. This is the so-called Hooke’s atom, in which two electrons, mutually re-
pelling Coulombically, move in an external harmonic potential. For a particular
choice of spring constant, the ground-state wave function is analytically known.
In the study of Qian and Sahni (see their Fig. /)), the exchange-correlation
potential VXC is calculated exactly from the Holas–March [2)] approach. In
particular, Qian and Sahni make a full study of the contribution to VXC from
the correlation kinetic energy.

It is also of importance to record here that the same authors have sub-
sequently considered analytically the asymptotic structure of the correlation-
kinetic component of the exchange correlation potential VXC(r) in atoms. Their
finding is an r�2 decay, with a strength proportional to the product of the square
root of the ionization potential and an expectation value associated with the
resulting ion. The interested reader is referred to their paper for full details.
The final comment in this Appendix is that, for this Hooke’s atom, March et
al. [//)] have achieved one of the long-term aims of DFT by constructing an
explicit, third-order differential equation for the ground-state electron density.
The shape of this equation has similarities to that for independent electrons
moving in a harmonic potential [//-].

12
References

/. Mayer JE (/822) Phys Rev /,,:/238
). Tredgold RH (/823) Phys Rev /,2:/.)/
-. Young WH, March NH (/8=,) Proc Roy Soc (London) A)2=:=)
.. Carlson BC, Keller JM (/8=/) Phys Rev /)/:=28
2. Coleman AJ (/8=-) Rev Mod Phys -2:==6
=. Garrod C, Percus JK (/8=.) J Math Phys 2:/32=
3. Overhauser AW (/8=,) Phys Rev Lett .:./.,.=)
6. Kapuy E (/826) Acta Phys Acad Sci Hung 8:)-3
8. Thomas LH (/8)=) Proc Camb Phil Soc )-:2.)
/,. Fermi E (/8)6) Z Phys .6:3-
//. Milne EA (/8)3) Proc Camb Phil Soc )-:38.



))6 N.H. March

/). Scott JMC (/82)) Phil Mag .-:628
/-. Ballinger RA, March NH Phil Mag .=:).=
/.. March NH, Plaskett JS (/82=) Proc Roy Soc A)-2:./8
/2. Dirac PAM (/8-,) Proc Camb Phil Soc )=:-3=
/=. Slater JC (/82/) Phys Rev 6/:-62
/3. Cortona P (/886) Phys Rev A23:.-,=
/6. Wigner EP (/8-.) Phys Rev .=:/,,)
/8. Wigner EP (/8-6) Trans Faraday Soc -.:=36
),. Care CM, March NH (/832) Adv Phys ).:/,/
)/. Senatore G, March NH (/88.) Rev Mod Phys ==:..2
)). Young WH (/8=/) Phil Mag =:-3/
)-. See, for example, Lundquist S, March NH (/86-) The theory of the inhomogeneous

electron gas. Plenum, New York
).. Hohenberg P, Kohn W (/8=.) Phys Rev /-=:B6=.
)2. See, for example, March NH, YoungWH, Sampanthar S (/8=3) Themany-body problem

in quantum mechanics. Cambridge University Press, Cambridge, UK
)=. Singwi KS, Tosi MP (/86/) Solid State Phys -=:/33
)3. Ichimaru S (/86)) Rev Mod Phys 2.:/,/3
)6. Bamzai AS, Deb BM (/86/) Rev Mod Phys 2-:82
)8. Ghosh SK, Deb BM (/86)) Phys Reports 8):/
-,. Callaway J, March NH (/86.) Solid State Phys -6:/-=
-/. Jones RO, Gunnarsson O (/868) Rev Mod Phys =/:=68
-). Parr RG, Yang W (/868) Density functional theory of atoms and molecules. Oxford

University Press, Oxford, UK
--. March NH (/88)) Electron density theory of atoms and molecules. Academic, New

York
-.. Gross EKU, Dreizler RM (/882) Density functional theory NATO ASI Series B Physics

vol --3
-2. Kryachko ES, Ludena EV (/88,) Density functional theory of many-electron systems.

Kluwer Press, Dordrecht
-=. Macke W (/82,) Z Naturforsch 2a:/8)
-3. Gell-Mann M, Brueckner KA (/823) Phys Rev /,=:-=.
-6. Ceperley DM, Alder BJ (/86,) Phys Rev Lett .2:2==
-8. Herman F, March NH (/86.) Solid State Commun 2,:3)2
.,. Coldwell-Horsfall RA, Maradudin AA (/8=,) J Math Phys /:-82
./. Carr WJ, Coldwell-Horsfall RA, Fein AE (/8=/) Phys Rev /).:3.3
.). Vosko SH, Wilk L, Nusair M, (/86,) Can J Phys 26:/),,
.-. See also Painter GS (/86/) Phys Rev B).:.)=.
... Perdew JP, Zunger A (/86/) Phys Rev B)-:2,.6
.2. Senatore G, Pastore G (/88,) Phys Rev Lett =.:-,-
.=. Singwi KS, Tosi MP, Land RH, Sjölander A (/8=6) Phys Rev /3=:=68
.3. See, for example, Jones W, March NH (/862) Theoretical Solid State Physics. Dover

(Reprint Series), New York, Vol /
.6. Coulson CA, Fischer I (/8.8) Phil Mag .,:-6=
.8. Matthai CC, March NH (/883) J Phys Chem Solids 26:3=2
2,. Tersoff J (/868) Phys Rev B-8:22==
2/. Klein DJ, March NH (/882) Theochem (Netherlands) -26:/2/
2). Holas A, March NH (/882) Phys Rev A2/:),.,
2-. March NH, Young WH (/828) Nuclear Physics /):)-3
2.. March NH (/88=) Molecular Physics 66:/,-8
22. See also Nagy A, March NH (/883) Molecular Physics 8/:283



Localization via Density Functionals ))8

2=. Levy M, March NH (/883) Phys Rev A22:/662
23. Harbola MK, Sahni V (/868) Phys Rev Lett =):.68
26. Görling A, Ernzerhof M (/882) Phys Rev A2/:.2,/
28. Holas A, March NH (/883) Int J Quant Chem =/:)=-
=,. Holas A, Levy M (/883) Phys Rev A2=:/,-/
=/. Görling A, Levy M (/88-) Phys Rev B.3:/-/,2
=). Holas A, March NH (/883) Phys Rev A2=:-283
=-. Levy M, March NH, Handy NC (/88=) J Chem Phys /,.:/868
=.. Harris J, Jones RO (/83.) J Phys F.://3,
=2. Langreth DC, Perdew JP (/86,) Phys Rev B)/:2.=8
==. Gunnarsson O, Lundquist BI (/83=) Phys Rev B/-:.)3.
=3. Levy M (/86-) In: Keller J, Gasquez JL (eds) Density functional theory. Springer, New

York
=6. Harris J (/86.) Phys Rev A)8:/=.6
=8. Levy M (/838) Proc Natl Acad Sci USA 3=:=,=)
3,. Levy M (/86)) Phys Rev A)=:/),,
3/. Percus JK (/836) Int J Quant Chem /-:68
3). Becke AD (/88-) J Chem Phys 86:/-3)
3-. Becke AD (/866) J Chem Phys 66:/,2-
3.. Becke AD (/88-) J Chem Phys 86:2=.6
32. Levy M, Perdew JP (/862) Phys Rev A-):),/,
3=. Levy M (/88/) Phys Rev A.-:.=-3
33. Görling A, Levy M (/88)) Phys Rev A.2:/2,8
36. Löwdin PO (/822) Phys Rev 83:/2,8
38. Rosina M (/8=6) Reduced density operators with application to physical and chemi-

cal systems. In: Coleman AJ, Erdahl RM (eds) Queen’s papers in Pure and Applied
Mathematics No. //. Queen’s University, Kingston, Ontario

6,. Mazziotti DA (/886) Phys Rev A23:.)/8
6/. See, for example, Valdemoro C, Tel LM, Perez-Romero E (/883) Adv Quantum Chem

)6:--
6). Nakatsuji H, Yasuda K (/88=) Phys Rev Lett 3=:/,-8
6-. Cohen L, Frishberg C (/83=) Phys Rev A/-:8)3
6.. Nakatsuji H (/83=) Phys Rev A/.:./
62. Ziesche P (/88=) Int J Quant Chem =,:/-=/
6=. Gonis A, Schulthess TC, Turchi PEA, van Ek J (/883) Phys Rev B2=:8--2
63. See also Dawson K, March NH (/86.) J Chem Phys 6/:262,
66. March NH (/883) Electron correlation in molecules and condensed phases. Plenum,

New York
68. Durkan J, Elliott RJ, March NH (/8=6) Rev Mod Phys .,:6/)
8,. Andrei EY, Deville G, Glattli DC, Williams FIB, Paris E, Etienne B (/866) Phys Rev Lett

=,:)3=2
8/. Buhmann H, Joss W, von Klitzing K, Kukuskim IV, Plant AS, Martinez G, Ploos K,

Timofeev VB (/88/) Phys Rev Lett =:8)=
8). Ferraz A, March NH, Suzuki M (/838) Phys Chem Liquids 8:28
8-. Brush SG, Sahlin HL, Teller E (/8==) J Chem Phys .2:)/,)
8.. Ceperley DM (/886) private communication
82. Lea MJ, March NH, Sung W (/88/) J Phys Condens Matter -:CL.-,/
8=. Lea MJ, March NH (/88,) Phys Chem Liquids )/:/6-
83. Lea MJ, March NH (/88/) J Phys Condens Matter-:-.8-
86. See also, for B = ,, Parrinello M, March NH (/83=) J Phys C8:L/.3
88. Holas A, March NH (/883) Phys Rev A2=:.282



)-, N.H. March: Localization via Density Functionals

/,,. Erhard S, Gross EKU (/88=) Phys Rev A2-:R2
/,/. Vignale G, Rasolt M (/863) Phys Rev Lett 28:)-=,
/,). Vignale G, Rasolt M (/866) Phys Rev B-3:/,=62
/,-. Amovilli C, March NH (/88,) Chem Phys /.=:),3
/,.. Ortiz G, Ceperley DM, Martin RM (/88-) Phys Rev Lett 3/:)333
/,2. Zhu X, Louie SG (/88-) Phys Rev Lett 3,:--2
/,=. Price R, Platzman PM, He S (/88-) Phys Rev Lett 3,:--8
/,3. March NH, Stoddart JC (/8=6) Repts Prog Physics -/:2--
/,6. Kohn W, Sham LJ (/8=2) Phys Rev /.,:A//--
/,8. Kurth S (/886) Proc Crete Int Workshop on Electron correlation and material pro-

perties (to be published)
//,. March NH, Razavy M, Paranjape BV (/886) J Appld Phys, 6.:),8
///. Qian Z, Sahni V (/886) Phys Rev A23:)2)3
//). March NH, Gal T, Nagy A (/886) Chem Phys Lett (in press)
//-. Lawes GP, March NH, (/838) J Chem Phys 3/:/,,3



Author Index Volume 201 -203 
Author Index Vols. 26-50 see Vol. 50 
Author Index Vols. 51 - 100 see Vol. 100 
Author Index Vols. 101 -150 see Vol. 150 
Author Index Vols. 151 -200 see Vol. 200 

The volume numbers are printed in italics 

Baltzer L (1999) Functionalization and Properties of Designed Folded Polypeptides. 202: 39 - 76 
Bartlett RJ, see Sun J-Q (1999) 203: 121 - 145 
Bogtir F, see Pipek J (1999) 203:43 -61 
Brand SC, see Haley MM (1999) 201 : 81 - 129 
Bunz UHF (1999) Carbon-Rich Molecular Objects from Multiply Ethynylated n-Complexes. 

201:131-161 
Chamberlin AR, see Gilmore MA (1999) 202: 77-99 
Cooper DL, see Raimondi M (1999) 203: 105 - 120 
de Meijere A, Kozhushkov SI (1999) Macrocyclic Structurally Homoconjugated Oligoacetylenes: 

Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotanes. 201 : 1-42 
Diederich F, Gobbi L (1999) Cyclic and Linear Acetylenic Molecular Scaffolding. 201 :43 -79 
Famulok M, Jenne A (1999) Catalysis Based on Nucleid Acid Structures. 202: 101 - 131 
Gilmore MA, Steward LE, Chamberlin AR (1999) Incorporation of Noncoded Amino Acids by 

In Vitro Protein Biosynthesis. 202: 77-99 
Gobbi L, see Diederich F (1999) 201 :43- 129 
Haley MM, Pak JJ, Brand SC (1999) Macrocyclic Oligo(phenylacety1enes) and Oligo(pheny1- 

diacetylenes). 201 :81- 129 
Imperiali B, McDonnell KA, Shogren-Knaak M (1999) Design and Construction of Novel 

Peptides and Proteins by Tailored Incorparation of Coenzyme Functionality. 202: 1 - 38 
Jenne A, see Famulok M (1999) 202: 101 - 131 
Kirtman B (1999) Local Space Approximation Methods for Correlated Electronic Structure 

Calculations in Large Delocalized Systems that are Locally Perturbed. 203: 147- 166 
Klopper W, Kutzelnigg W, Miiller H, Noga J,Vogtner S (1999) Extremal Electron Pairs - Appli- 

cation to Electron Correlation, Especially the R12 Method. 203:21-42 
Kozhushkov SI, see de Meijere A (1999) 201 : 1-42 
Kutzelnigg W, see Klopper W (1999) 203:21-42 
Li X, see Paldus J (1999) 203: 1-20 
March NH (1999) Localization via Density Functionals. 203:201-230 
McDonnell KA, see Imperiali B (1999) 202: 1-38 
Mezey PG (1999) Local Electron Densities and Functional Groups in Quantum Chemistry. 

203: 167- 186 
Miiller H, see Klopper W (1999) 203:21-42 
Noga J, see Klopper W (1999) 203: 21 -42 
Pak JJ, see Haley MM (1999) 201 :81- 129 
Paldus J, Li X (1999) Electron Correlation in Small Molecules: Grafting CI onto CC. 203: 1-20 
Pipek J, Bogar F (1999) Many-Body Perturbation Theory with Localized Orbitals - Kapuy's 

Approach. 203:43-61 
Raimondi M, Cooper DL (1999) Ab Initio Modern Valence Bond Theory. 203: 105 - 120 
Rneggen I (1999) Extended Geminal Models. 203:89- 103 
Scherf U (1999) Oligo- and Polyarylenes, Oligo- and Polyarylenevinylenes. 201: 163-222 



232 Author Index Volumes 200 - 203 

Shogren-Knaak M, see Imperiali B f 1999) 202: 1 -38 
Steward LE, see Gilmore MA (1999) 202:77-99 
Sun J-Q, Bartlett RJ (1999) Modern Correlation Theories for Extended, Periodic Systems. 

203:121-145 
Surjan PR (1999) An Introduction to the Theory of Geminals. 203: 63 - 88 
Valdemoro C (1999) Electron Correlation and Reduced Density Matrices. 203: 187-200 
Vogtner S, see Klopper W (1999) 203 :21-42 


