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Preface

In volumes 220, 223, 229, and 232 several experts reported on the recent
progress of phosphorus chemistry in many fields. This chemistry is so rich, so
diversified, that a new volume appeared to be necessary in order to cover some
other aspects of such a topic and to point out the key role played by this ele-
ment.

Indeed contributions of this issue can be classified into three different
groups: i) new developments of “old themes” with different approaches and
ideas (Chaps. 1 and 6), ii) state of the art for two topics of general interest
(Chaps. 2 and 3), and iii) emerging fields of research (Chaps. 4 and 5).

The high diversity of hexacoordinated phosphorus compounds and their
use as versatile reagents are fully illustrated in Chap. 1 by S. Constant and 
J. Lacour. A large number of new structures are reported with applications in
different fields such as classical organic chemistry, bioorganic chemistry, elec-
trochemistry and photochemistry, thus affording a general overview of the
new trends in hexacoordinated phosphorus chemistry.

Studies on the formation and reactivity of phosphorus-centered radicals
continue to be a versatile source of mechanistic information and reactions in
synthetic chemistry. The recent literature devoted to the chemical reactivity
of these derivatives is surveyed by S. Marque and P. Tordo in Chap. 2. Various
new persistent or stable phosphorus-centered radicals have been described
and find applications, for example, as paramagnetic probes.

The design and the rich chemistry of phosphinous amides are described in
Chap. 3 by M. Alajarin, C Lopez-Leonardo, and P. Llamas-Lorente. Important
applications of these derivatives as metals ligands in the area of catalysis are
also emphasized.

In Chap. 4, D. P. Gates reports elegant examples of similarities that can be
found between the chemistry of carbon and that of phosphorus in low coordi-
nation numbers. The analogy between P=C and C=C bonds can be extended to
polymer chemistry. Recent advances in the addition polymerization of phos-
pha-alkenes and the synthesis and properties of p-conjugated poly (p- pheny-
lene phosphaalkene)s are described.

Chapter 5, written by M. Hissler, P. W. Dyer, and R. Reau, concerns an area of
important expansion, i.e., the synthesis and properties of p-conjugated oligo-
mers and polymers containing phosphorus moieties. The possibility of using



such systems as materials for applications in different fields (nonlinear optics,
organic light emitting diodes, or conductive polymers) is demonstrated.

Polyphosphazenes have been known for a long time. However their synthe-
sis and properties continue to attract interest because of the broad range of
applications of these polymers in different fields ranging from biology to new
materials. The contribution of M. Gleria and R. de Jaeger reports the variety of
synthetic procedures based on the ring-opening polymerization of monomers
such as (NPCl2)3 and (NPCl2)n followed by the nucleophilic replacement of the
reactive chlorines with selected nucleophiles and on polycondensation reac-
tion processes of new monomers and of phosphoranimines. The use of poly-
phosphazenes as fluoroelastomers, flame retardants and self-extinguishing
macromolecules, polymeric ionic conductors, biomaterials, and photosensitive
polymeric compounds is outlined.

This volume,as well as the four precedent volumes,describes only in part the
huge number of original papers on phosphorus-related topics. Some further
volumes will be necessary in the future to cover all aspects of this chemistry in
perpetual rebirth.

The constructive cooperation of all the co-authors and of Springer, Heidel-
berg, is gratefully acknowledged.

Jean-Pierre Majoral Toulouse, November 2004

VIII Preface
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Abstract Phosphorus derivatives with six substituents at the immediate periphery of the
heteroatom are quite common, more than usually imagined, and this review presents some
of the novel structures that have been reported in the last 5–10 years. Many derivatives of
varied charge and geometry have been synthesized in studies devoted to phosphorus reac-
tivity. A large number of compounds have also been prepared for applications in fields as
varied as: (i) classical organic chemistry, (ii) stereoselective synthesis and analysis, (iii) bio-
organic chemistry, (iv) electrochemistry, and (v) photochemistry. Selected examples of ap-
plied transformations, industrial and academic, have been selected to present a general
overview of the new trends in P(VI) chemistry.
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Abbreviations
BINOL [1,1¢]Binaphthalenyl-2,2¢-diol
BINPHAT Bis(tetrachlorobenzenediolato)mono([1,1¢]binaphthalenyl-2,2¢-diolato)-

phosphate(v)
o-Chloranil 3,4,5,6-Tetrachloro-[1,2]benzoquinone
HYPHAT Bis(tetrachlorobenzenediolato)mono(1,2-diarylethanediolato)phosphate(v)
LiHMDS Lithium 1,1,1,3,3,3-hexamethyl-disilazane
TARPHAT Bis(tetrachlorobenzenediolato)mono(dialkyl 2,3-di(hydroxybutanediolato)-

phosphate(v)
TRISPHAT Tris(tetrachlorobenzenediolato)phosphate(v)

1
Introduction

“Modern” hexacoordinated phosphorus chemistry essentially started in 1963
when Allcock and coworkers studied the reaction of phosphonitrilic chlorides
with pyrocatechol and isolated the unexpected tris(benzenediolato)phosphate
anion 1 (Fig. 1) which sees a central octahedral phosphorus bound to six oxy-
gen atoms [1–4]. Since this discovery, and now for more than 40 years, chemists
interested in organic, inorganic, physical, and applied chemistry have generated
compounds based on hexacoordinated phosphorus and studied these many 
derivatives for a variety of applications. Earlier work was reviewed in 1972 
by Hellwinkel [5] and more recent articles are those of Cavell [6] and Holmes
[7, 8]. Several manuscripts or book chapters have also been written on the topic
giving a good – yet slightly outdated – overview of the field [9–12].

The purpose of this chapter will be to describe the structures that have been
reported over the last few (5–10) years and detail the synthetic protocols used
or developed to make them. The compounds have been classified according to
their charge in three categories: anionic, neutral, and cationic. Care has been
taken to demonstrate the importance of the relationship between penta- [P(V)]

2 S. Constant · J. Lacour

Fig. 1 Selection of “historical” hexacoordinated phosphate anions



and hexacoordinated [P(VI)] phosphorus as the later compounds can be often
viewed as Lewis salts arising from a donor group interacting with a 5-coordi-
nate phosphorus. Many of the compounds are chiral and efforts to obtain these
derivatives in enantiomerically and/or diastereomerically pure forms has been
noted. Then, in the second part, some of the recent uses of P(VI) adducts are
detailed as the structural scaffold and reactivity of (pseudo-)octahedral phos-
phorus allows applications in fields as varied as: (i) classical organic chemistry,
(ii) stereoselective synthesis and analysis, (iii) bioorganic chemistry, (iv) elec-
trochemistry, and (v) photochemistry.

2
New Hexacoordinated Phosphorus Derivatives

2.1
Preamble

Hexacoordinated phosphorus centers are formally “hypervalent”and the nature
of the bonding (sp3d2) in such phosphorus compounds has been debated in the
literature, in particular with regards to the involvement of d orbitals [13]. These
compounds can be designated as s6, l6 in which s corresponds to the coordi-
nation number and l to the total number of bonds; this last parameter thus
representing the valence of phosphorus. In general, hexacoordinated phos-
phorus adopts (i) an octahedral geometry (Oh) with six identical substituents
positioned at same distance and at a 90° angle from each other or (ii) a pseudo-
octahedral arrangement (D4h) with ligands in two axial and four equatorial po-
sitions, respectively. The main criterion for establishing the presence of P(VI)
is the observance of lower frequency shifts in 31P NMR relative to analogous
P(V).When known, 31P NMR chemical shifts (d in ppm, usually negative) have
been specified.

Chemical assemblies around hexacoordinated phosphorus atoms can be 
anionic, neutral or cationic depending upon the nature of the ligands. This is
described in the following paragraphs.

2.2
Anionic P(VI) Derivatives

2.2.1
Introduction

The flagship of anionic P(VI) chemistry is of course the hexafluorophosphate
anion PF6

–, which is routinely used in all fields of chemistry as a “non-coordi-
nating” counter-ion [14]. In his pioneering work of the 1970s Hellwinkel pre-
pared several anionic phosphates, among which are compounds 1 to 4 (Fig. 1),
by combining around an octahedral P atom (i) three benzenediolato ligands

New Trends in Hexacoordinated Phosphorus Chemistry 3



(e.g., 1) [15, 16], (ii) three identical bidentate biphenylidene ligands (e.g., 2)
[17–24] and (iii) combinations of the two types of chelating moieties (e.g., 3
and 4) [15]. Since then, the field has evolved towards the formation of more
complex and/or more stable derivatives.

Figures 2, 3, 5, and 6 show anionic compounds 5 to 22 and 25 to 30, which have
been described in the literature since 1997. In these adducts, as in examples 1 to
4, the P(VI) derivatives have carbon or oxygen atoms in the immediate prox-
imity of the central (pseudo-)octahedral atom. This is probably due to the 
accessibility of the ligand precursors, the ease of their manipulation and, more
importantly, to the sheer strength of the resulting P–C and P–O bonds. They all
present tris(bidendate) structures in which the three chelating rings can be
identical (Fig. 2 and most of Fig. 6) or of two different types (Fig. 3). The lig-
ands can be monooxo (Fig. 6) or dioxo (Fig. 2 and Fig. 3). These differences in
composition have, of course, consequences for the making of the derivatives,

4 S. Constant · J. Lacour

Fig. 2 Recently published anionic P(VI) derivatives of “P(aa)3” type
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Fig. 3 Recently published anionic P(VI) derivatives of “P(aa)2(bb)” type

as different synthetic strategies need to be used for their preparation in high
yields and analytically pure form. These are detailed in the next section.

2.2.2
Synthesis

Most of the anionic compounds that have been reported contain six oxygen
atoms at the periphery of the pseudo-octahedral phosphorus. Two different
strategies have been used for the preparation of the moieties depending upon
the homogeneous (three times the same chelate) or heterogeneous (two dif-
ferent types) distribution of the bidentate ligands.

When the three ligands are the same, procedures similar to the ones devel-
oped by Hellwinkel [16, 17], Koenig [25–28] and coworkers can be utilized –
that is the one-time addition of three equivalents of bidentate ligands to PCl5
to afford the hexacoordinated phosphate anions. Ligands as varied as malonic
acid, 3,3,3-trifluoro-2-hydroxy-2-trifluoromethyl-propionic acid or oxalic acid
have been used to form 5, 6, and 7, respectively [29].Aromatic 1,2-diols are also
particularly good ligands as tetrachloropyrocatechol [30, 31], 4-methylpyro-



catechol [32], 4,5-bis(methanesulfonyl)catechols [33],tetrafluorocatechol [34]
and 3-fluoropyrocatechol [35] afford phosphates 8 (known as TRISPHAT), 9,
10, 11, and 12, respectively. The process can be easily driven to completion by
the addition of a base to the medium (aliphatic amines, lithium salts, etc.). This
last step is not always necessary as the phosphate anion is sometimes isolable
as its Brønstedt acid, as in the case of 7 [29, 36].

However, for the making of anionic phosphates containing different dioxo
ligands around the phosphorus, as exemplified by the general structure 13 in
Fig. 3, this synthetic protocol is not adapted as it leads to a random distribu-
tion of ligands around the phosphorus and to the usually unwanted formation
of complex mixtures of products.

For instance, if 1 equivalent of three different bidentate symmetrical ligands
are added to 1 equivalent of PCl5 and 1 equivalent of a base, then a “library” of
10 compounds is likely to be generated. This is represented in Fig. 4, consider-
ing the theoretical case of three different ligands (aa), (bb) and (cc) (1:1:1 ratio)
which react simultaneously with PCl5 and subsequent derivatives. A statistical
1:1:1:3:3:3:3:3:3:6 repartition among 10 possible products is expected; the de-
sired compound [P(aa)(bb)(cc)] being synthesized with a maximum 22% (6/27)
theoretical yield.

To overcome this problem and obtain desired [P(aa)2(bb)] or [P(aa)(bb)(cc)]
type products in high yields and to the exclusion of all others, it is necessary
to consider a synthetic route that allows the sequential introduction of each of
the three ligands in three different and orthogonal chemical steps. This is done
by treating PX3 derivatives (X=halogens, NR2, ORf) with diols to form mono-
cyclic adducts, which are in turn oxidized to bicyclic spirophosphoranes using

6 S. Constant · J. Lacour

Fig. 4 Statistical distribution among possible hexacoordinated phosphates from the reac-
tion of three different ligands (aa, bb and cc, 1:1:1 ratio) and PCl5. L, L¢=(aa), or (bb), or (cc)



a-diketones or ortho-quinones as oxidants, and o-chloranil in particular. To
carry out the final chelation step, it is sufficient to add a third diol ligand 
(ligand cc).After nucleophilic displacement of the last substituent X, chelation
occurs, usually in the presence of a base, to form the final ring. If substituent
X is itself a base – such as an amino group – then the two protons delivered by
the last diol are directly scavenged in solution.

This type of process was performed in 2000 by Skowronska and coworkers
when studying the formation of hexacoordinated phosphates of type 14 con-
taining 1,3,2-dioxaphosphorinane rings [37]. The starting phosphorinane is
substituted by a perfluorinated alcohol and subsequent treatment with o-chlo-
ranil and addition of tetrachlorocatechol and Et3N afforded the desired tri-
ethylammonium phosphate salts 14 (Scheme 1). Careful monitoring in 31P
NMR of the reaction medium after the addition of the oxidant allowed the 
researchers to detect many intermediates shedding light on reaction pathways.
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Scheme 1 Synthesis of hexacoordinated phosphates 14 containing 1,3,2-dioxaphosphori-
nane rings

In 2000, Lacour and coworkers reported a similar one-pot three-step proto-
col to afford phosphate anion 15, known as BINPHAT, containing a BINOL 
moiety along with two tetrachlorocatecholate ligands [38]. Starting from tris-
(dimethylamino)phosphine, subsequent additions of tetrachlorocatechol, o-chlo-
ranil and BINOL affords anion 15 in good yield and chemical purity (Scheme 2).
This procedure was extended to aliphatic 1,2-diols such as tartrate esters,
hydrobenzoins and mannose derivatives to afford the corresponding anions in
modest to good yields (61–86%): 16a–16d TARPHAT (R=Me, Et, i-Pr, t-Bu)
[39], 17a–17b HYPHAT (R=H, Br) [40] and 18, respectively [41] (Fig. 3). In all
these examples, the chiral ligands were introduced in the last step in place of
the BINOL moiety.



Following a similar protocol, novel hexacoordinated phosphate anions 19 to
22 bearing two different dioxo ligands could be simply prepared as their di-
methylammonium salts from the reaction of tetrachlorocatechol derived phos-
phoramidite 23 with a variety of symmetrical diones other than o-chloranil 
(a-diketones or ortho-quinones) and subsequent addition of tetrachlorocate-
chol to the corresponding phosphorane 24 (Scheme 3) [42].

Finally, two more anionic phosphate anions with six oxygen substituents at
phosphorus (Fig. 5) were isolated by serendipity. Compound 25 [43] was iso-
lated from the reaction of naphthalene-2,3-diol and phosphonitrilic chloride in
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Scheme 2 Synthesis of BINPHAT anion 15 containing a BINOL ligand

Scheme 3 Possible synthetic route to anionic P(VI) derivatives of “P(aa)2(bb)” type



a process analogous to the one observed by Allcock [1]. Compound 26 was iso-
lated as a decomposition product from the oxidation with o-chloranil of a
bis(4,5-benzo-1,3-dioxy-2-phospholano)dichloromethane [44].

Other anionic phosphates 27a–27e, 28, 29, and 30 (Fig. 6), which contain
both P–C and P–O bonds, have been reported since 1997. In these cases, as
shown by Akiba, Kawashima and Holmes, the synthetic strategy is slightly dif-
ferent as P–C bonds usually need to be formed prior to P–O ones.

The formation of 27a–27e, 28, and 29 makes use of a chemistry developed
by Akiba and coworkers in the 1990s for the synthesis and applications of cyclic
10-P-5 phosphoranes made of two Martin ligands. Methyl, benzyl and phenylth-
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Fig. 5 Anionic hexacoordinated phosphates 25 and 26

Fig. 6 Isolated anionic hexacoordinated phosphates containing both P–C and P–O bonds



iomethyl phosphoranes, 31, 32, and 33, respectively (Scheme 4), were prepared
and studied in the context of P(VI) chemistry. In the case of 33, reduction 
of the carbon–sulfur bond in the presence of lithium naphthalenide generated 
a carbanion, which was reacted with ketones to form the corresponding P(V) 
b-hydroxyalkylphosphoranes [45].Similarly, treatment of 31 and 32 with n-butyl-
lithium, and quenching with aldehydes and ketones yielded analogous b-hy-
droxyphosphoranes [46, 47]. Then, reactions of the isolated P(V) alcohols with
a combination of KH and 18-crown-6 afforded the hexacoordinated 2-oxa-
phosphetanides 27a–27e and 28 in moderate yields (39–49%). It is interesting
to note that the lithium salts of the b-hydroxyalkylphosphorane precursors do
not undergo cyclization reactions to form P(VI) oxaphosphetanides. These
compounds are quite kinetically stable and only the more reactive “naked”
potassium salts can form stable hexacoordinated phosphates.
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Scheme 4 Synthesis of anionic oxaphosphetanides 27–28

Akiba and coworkers reported a new type of anionic hexacoordinated
phosphorus derivative exemplified by compound 29 bearing a stable three-
membered dioxaphosphirane ring [48]. Phosphoranide 34, generated from 
P-H phosphorane 35 with KH in the presence of 18-crown-6, was exposed to
dioxygen to give crystalline 29 (50%). Phosphate 29 was found to be quite sta-
ble as a solid to ordinary room light as well as to the air at ambient temperature
for several months (Scheme 5).



Finally, in the case of 30 made by Holmes and coworkers, the starting mate-
rial was tris(o-tolyl)phosphine, which was treated sequentially with potassium
permanganate and HCl to generate phosphorane 36, which was then treated
with triethylamine to yield the desired phosphate 30 in 64% yield as its Et3NH+

salt [49, 50] (Scheme 6).
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Scheme 5 Synthesis of hexacoordinated phosphate 29 containing a dioxaphosphirane ring

Scheme 6 Synthesis of hexacoordinated phosphate 30

2.3
Neutral P(VI) Derivatives

As previously mentioned, the interaction between Lewis acidic 5-coordinate
phosphorus centers and a Lewis base donor atom is a simple route to a 6-coor-
dinate phosphorus centers and, if the donor atom is neutral (usually a nitrogen,
sulfur or oxygen atom), then the appearance of a positive charge on that atom
upon coordination upsets the negative character of the pseudo-octahedral phos-
phorus and yields a compound with a global charge neutrality. This field of
phosphorus chemistry was extensively reviewed, most recently by Cavell and
Holmes [6–8], and only novel structures since 1996 are detailed. A different 
approach to the generation of neutral P(VI) adducts consists in the generation
of dinuclear zwitterionic l4P(+)l6P(–) species. This chemistry will also be pre-
sented.



Regitz has shown that the reaction of azaphosphole 38 with two equivalents
of DEAD furnishes the zwitterionic 2:1 adduct 39 (Scheme 8) [52]. The extreme
low frequency shift of the 31P NMR signal by more than 220 ppm in compari-
son to that of the azaphosphole confirms the formation of a betaine possess-
ing a hexacoordinated phosphorus atom.

2.3.1
Via P–N Interaction

As mentioned, stabilization of neutral hexacoordinated phosphorus via nitro-
gen donation is possible and this topic has been widely studied in the past few
years.As P–N bonds are weaker and longer than those of P–C and P–O, chemists
have essentially relied on chelation to enforce their formation. Most structures
involve five- and six-membered chelating rings and the compounds that have
been reported are described in Schemes 7, 8, and 9 and Figs. 7 and 8.

In 1996, Cavell described the synthesis of neutral P(VI) compound 37 con-
taining a divalent tridentate diphenol imine ligand and three chlorine atoms by
the reaction of a bis silylated Schiff base with PCl5 to give 37 after elimination
of two equivalents of Me3SiCl (Scheme 7) [51].
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Scheme 7 Synthesis of neutral P(VI) derivative 37

Scheme 8 Synthesis of neutral P(VI) betaine 39

Octaethyl and tris(pentafluorophenyl) corroles, known as oec and tpfc, re-
spectively, are also efficient for the stabilization of P(VI) phosphorus [53, 54].
The electron-rich oec reacts with PCl3 to form (oec)P=O 40 that can be further
derived into dihydrido 41a, dimethyl 41b and diphenyl 41c compounds by re-
duction with LiAlH4 and reactions with methyl and phenyl Grignard reagents,
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Scheme 9 Synthesis of adducts 43 and 45 and equilibrium between P(V) 45 and P(III) 46

Fig. 7 Corrole-derived neutral P(VI) derivatives 41

respectively. On the other hand, electron-poor tpfc does not react with PCl3 but
with POCl3 to directly form the bis(hydroxo) coordinated adduct 41d.

Most of the work published before 1996 by Holmes and coworkers has con-
centrated on rigid cyclic systems that exhibited little flexibility, thus strongly
fixing the coordination geometry around the phosphorus. By way of contrast,
the group of Amherst has recently utilized more flexible ring systems contain-
ing a nitrogen donor group, which allows different kinds of geometries and ring
conformations. Treatment of nitrogen-containing diphenol 42 with P(OPh)3, in
the presence of N-chlorodiisopropylamine, resulted in an oxidative addition to
give a pentaoxyphosphorane with a definite P–N coordination (43, Scheme 9)
[55]. Interestingly, reaction of analogous nitrogen-containing triphenol 44 with
EtPCl2 leads to the formation of a hexacoordinated phosphorane-phosphatrane
system 45; a species that exists in solution in equilibrium with its phosphonite
form 46. This is the first example of a direct conversion of 3-coordinate to 
6-coordinate phosphorus [56].
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Fig. 8 Some tricyclic neutral hexacoordinated phosphorus derivatives with P–N donations

Fig. 9 Tricyclic neutral hexacoordinated phosphorus derivatives (48a–48n) with P–S donation

Finally, new tricyclic hexacoordinated phosphoranes with internal P–N co-
ordination were synthesized by Swamy and coworkers by oxidative addition of
cyclic phosphite precursors with quinones or with a combination of diols and
(i-Pr)2NCl [57, 58]. Various ring sizes from five to eight membered were ob-
tained showing the generality of the approach. A selection of compounds
(47a–47e) is presented in Fig. 8.

2.3.2
Via P–S or P–O–S Interactions

Since 1996, Holmes and coworkers have investigated further the formation of
hexacoordinated phosphorus derivatives by virtue of sulfur donation  [59–64].



Series of pentaoxyphosphoranes containing a sulfur atom as part of a tricyclic
ring have been characterized (48a–48n). They are reported in Fig. 9.

X-ray crystallographic analyses of the structures show that the P–S bond
distance vary over one-half of an Angstrom (2.36–2.88 Å). The derivatives were
generated using procedures similar to those utilized to form pentaoxyphos-
phoranes with P–N bonds, that is (i) the oxidation of sulfur containing cyclic
chlorophosphines with a quinone or (ii) treatment of phosphites with the 
sulfur-containing diol in presence of N-chlorodiisopropylamine. Two typical
examples of these synthetic protocols are shown in Scheme 10.
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Scheme 10 Principal synthetic routes to compounds 48

Scheme 11

The stability of the resulting P(VI) is emphasized by displacement coordi-
nate experiment as shown in Scheme 11 [59].
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Fig. 10 Tricyclic neutral hexacoordinated phosphorus derivatives with P–O donations

Fig. 11 Neutral hexacoordinated phosphorus derivatives 50 and 51

If the sulfur atom is oxidized to a sulfonyl moiety, then oxygen donation 
occurs to the phosphorus as observed in compounds 49a–49h (Fig. 10) [61,
64–66]. In most examples, the existence of an equilibrium between penta- and
hexacoordinated phosphorus was demonstrated in solution. Introduction of
electron withdrawing substituents on the ligands around the phosphorus in-
crease its Lewis acidity and consequently enhance the proportion of P(VI) over
P(V).

Furthermore, it was determined that sulfur is a stronger coordinating atom
than the oxygen of a sulfonyl group. This was established by noting that sulfur
coordinates to give phosphorus when the sulfonyl usually does not. This is the
case for compounds 50 and 51 (Fig. 11) [64].

2.3.3
Zwitterionic ll4P(+),ll6P(–) Compounds

Zwitterionic heterocyclic compounds with two phosphorus atoms of opposite
charge and different coordination were a rarity 10 years ago. This field has
emerged recently with the reports of a variety of new structures as shown in
Schemes 12, 13,and 14. Schevchenko and Schmutzler described a compound of
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Scheme 12 Synthesis of zwitterionic l4P(+),l6P(–) compounds 53, 54 and 55

this type in 1993, formed by reaction of methylenephosphinophosphorane 52,
containing a diethylaminophosphine linked to a spirophosphorane via a meth-
ylene group, with o-chloranil to form the zwitterionic adduct 53 (Scheme 12)
[67]. Later, Schevchenko extended the protocol to the reaction of 52 with iso-
cyanates to give 5-membered heterocycles 54a and 54b (R=Me and Et, respec-
tively) [68]. In 1999, he and Grützmacher further demonstrated the reactivity
of 52 with azides [69]. The organic azide moiety undergoes a Staudinger reac-
tion with the P(III) atom and the distal nitrogen then takes a bridging position
between the two phosphorus atoms to give 55.

Studying the reactivity of 1s4,2s2-diphosphete 56 with o-chloranil, Bertrand
and coworkers reported the synthesis of zwitterionic 57 in which the two phos-
phorus atoms are directly linked by a s bond (Scheme 13). Structural details of
57 were further obtained through a X-ray crystallographic analysis [70].

Finally, Schevchenko and Roschenthaler reported a new type of zwitterionic
l4P(+),l6P(–) compound through the reaction of a methylenediphosphine with
an electron-poor enone giving rise to 58 in the presence of a small amount of
Et2NH2F [71].
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Scheme 13 Synthesis of zwitterionic l4P(+),l6P(–) compound 57

Scheme 14 Synthesis of zwitterionic l4P(+),l6P(–) compound 58

2.4
Cationic P(VI) Derivatives

Four types of cationic hexacoordinated phosphorus compounds have been 
recently reported and their structures are shown in Figs. 12, 13, and 14 and
Scheme 15. In the last 10 years, a large number of substituted porphyrins (59)
have been described with hexacoordinated phosphorus atoms in the center of
the tetracoordinate ligands (Fig. 12) [72–97]. As for the neutral octaethyl cor-
roles, most of these compounds can be prepared by the reaction of the hemes
with phosphorus(III) precursors such as PCl3 or RPCl2. The mechanism of
the oxidation of the phosphorus(III) to the phosphorus(v) porphyrin is not 
clear. Peripheral tuning of properties can be achieved through the synthesis of
variously substituted porphyrins. Furthermore, due to the high chemical sta-
bility of the porphyrinatophosphorus derivatives,“axial” substitutions of labile
substituents (e.g., Cl, OH) are conveniently realized and proceed in moderate
to good yield. This brings a nice structural diversity, as shown in Fig. 12.

Hexacoordinated phosphorus compounds derived from phthalocyanines
have been similarly prepared. Hanack investigated the reaction of metal-free
phthalocyanines with POBr3 or POCl3 in presence of pyridine [98]. The corre-
sponding dihydroxyphosphorus phthalocyanine hydroxides 60 were charac-
terized.
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Fig. 12 List of some recent cationic phosphorus porphyrins of type 59

Fig. 13 List of some recent cationic phosphorus phthalocyanines of type 60
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Fig. 14 Cationic P(VI) compound 61 with two axial PIII–PV bonds

Scheme 15 One-step synthesis of BINOL-containing P(VI) cation 62

Many types of phosphorus–phosphorus bonds are known, but it is rare to find
such bonds in hexacoordinated phosphorus compounds (with the exception of
57). Cavell reported in 1998 the reaction of PCl5 with phenylbis(o-(trimethyl-
siloxy)phenyl)phosphane, yielding the corresponding bischelate 61 in decent
yield (52%) [99]. The octahedral nature of the central phosphorus atom was 
unambiguously determined by X-ray structural analysis.Two “short”axial PIII–PV

bonds (2.202 Å) lie perpendicular to the pseudo-octahedral equatorial plane.
Finally, Lacour and coworkers reported the synthesis of hexacoordinated

phosphorus cation 62 [100]. Tropolone, BINOL and PCl5 react in CH2Cl2 at 
reflux to generate in one step a novel hexacoordinated phosphorus cation.

2.5
Chirality and Isomerism

2.5.1
Preamble

Chirality is an important part of today’s chemistry and, in this respect, the
pseudo-octahedral geometry of hexacoordinated phosphorus derivatives is 
interesting as it suffices to coordinate to the central atom three identical sym-
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Fig. 15 Enantiomeric D and L hexacoordinated phosphates of “P(aa)3” type

metric bidentate ligands to form chiral D3-symmetric helical molecules of type
P(aa)3 [101]. Such compounds exist either as L (M) or D (P) enantiomers of
left- and right-handed propeller shape, respectively (Fig. 15) [102]. Many of the
compounds described in Sect. 2.2 belong to this group of molecules (e.g., 5, 7
and 11). To the exception of a few (see below in Sect. 2.5.2), they have been 
reported only in racemic form (1:1 mixture of enantiomers).

Coordination to the central P atom of two different types of symmetrical
bidentate ligands leads to structures of type P(aa)2(bb), which are this time
C2-symmetric as detailed in Fig. 16. The same chiral descriptors L and D apply
to these compounds. Derivatives like 3, 4, 14–17 and 19–22 fit this description
and have only been reported in racemic form so far. If the ligand bb is itself chi-
ral, then diastereomers are generated. This will be described in the next section.

The presence of substituents on the bidentate ligands often degenerate their
local C2-symmetry and, as a consequence, further isomerism occurs. This results
in trisbidentate derivatives of type P(ab)3 in the presence of facial or meridional
isomers, as depicted in Fig. 17 [102]. Usually, the meridional isomer is preferred
over the facial and a statistical 3:1 ratio is observed. Compounds 6, 9, 12 and 30

Fig. 16 Enantiomeric D and L hexacoordinated phosphates of “P(aa)2(bb)” type



belong to this group. To our knowledge, the question of their stereochemical 
integrity has not been studied. For 30, Holmes and coworkers only report the
formation of the meridional isomer (isolated after a crystallization). No men-
tion was made of the presence of the facial derivative.

Finally, the lower symmetry of compounds 27 and 28, of type P(ab)2(cd), and
29, of type P(ab)2(cc), could have lead to the formation of many (racemic) di-
astereomers. Interestingly, this is not the case as the configuration of the 10-P-
5 phosphorane precursors is translated integrally to the P(VI) derivatives, as
shown by Akiba and Kawashima [45–48]. Further manifestation of this phe-
nomenon will be described in Sect. 3.1. A particularly striking example is the
exclusive formation of 29 over 29¢¢ and 29≤ (Fig. 18) [48].
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Fig. 17 Enantiomeric (D, L) and diastereomeric (meridional, facial) hexacoordinated phos-
phates of “P(ab)3” type

Fig. 18 Diastereomeric phosphates 29, 29¢¢ and 29≤≤



2.5.2
Enantiopure (Diastereomerically Enriched) Phosphates

Most of the phosphorus compounds described in the previous sections are 
chiral and racemic. Attempting their resolution – that is a physical separation
of the enantiomers – was obviously attractive and this was realized as early as
1965 by Hellwinkel, who obtained both optical antipodes of 2 [18].A patent on
the synthesis and possible applications of enantiopure phosphate 2 was even
filed at the time [103].

Tris(benzenediolato)phosphate anion 1, of particular interest for its simple
preparation from pyrocatechol, PCl5 and an amine, is unfortunately configura-
tionally labile in solution as an ammonium salt. Mechanistic studies by Koenig
and coworkers have shown that the racemization of 1 is acid-catalyzed and pro-
posed an intramolecular one-ended dissociation mechanism to explain it
[25–28]. In 1997, Lacour and coworkers demonstrated that the introduction of
electron-withdrawing chlorine atoms on the aromatic nuclei of the catecholate
ligands increases the configurational (and chemical) stability of the resulting
tris(tetrachlorobenzenediolato)phosphate(V) derivative (Fig. 19). This D3-sym-
metric TRISPHAT anion 8 can be resolved by an association with a chiral am-
monium cation [31]. The L enantiomer is isolated as the tri-n-butylammonium
salt, [Bu3NH][L–8], which is soluble in pure CDCl3 and CD2Cl2. The D-enan-
tiomer is prepared as the cinchonidinium derivative, which is only soluble in
polar solvent mixtures (>7.5% DMSO in CDCl3). Interestingly, pseudo-enan-
tiomeric cinchoninium cation is essentially inefficient for the resolution of the
hexacoordinated phosphate [104].

The stereoselective synthesis of hexacoordinated phosphate anions was 
also reported by the same group. A general one-pot process was developed 
for the preparation of C2-symmetric anions 15, 16 and 17 containing enantio-
pure BINOL, hydrobenzoin, and tartrate-derived ligands respectively [38–40];
C1-symmetric anion 18 being prepared similarly in two steps from methyl-a-
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Fig. 19 D and L enantiomers of TRISPHAT anion 8



D-mannopyranoside [41]. All these anions were isolated as their dimethylam-
monium salts in good yields and chemical purity. The presence of the stereo-
genic centers of the chiral ligands induces the formation of diastereomers. In
essentially all cases, the initial salts are obtained in high diastereomeric purity.
Figure 20 shows the diastereomeric ratios and, when known, the relative con-
figuration of the major isolated compounds.

However, upon dissolution, an epimerization of the anions can occur in the
presence of acidic counter-ions. This is particularly true for 16a–16d [39]. The
nature of the solvent (MeOH, CHCl3) plays a crucial role on the kinetics of
epimerization and the position of the resulting equilibrium. For anions made
with a (2R, 3R) tartaric backbone, a L configuration is always preferred in
MeOH; the selectivity, obtained after a slow equilibration, being independent
of the nature of the ester alkyl chain (diastereomeric ratio (d.r.) 3:1). However,
in chloroform, the D diastereomer is rapidly obtained and the selectivity is best
if the ester side chain is sterically demanding (d.r. 2:1 to 9:1 from 16a to 16d)
(Scheme 16).

For the BINPHAT anion 15, of enantiomeric (D,S) or (L,R) configuration, no
such epimerization occurs. However, due to the strain of the 7-membered ring,
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Fig. 20 Diastereomeric purity and relative configuration of enantiopure chiral phosphate
anions 15 to 18 isolated after initial precipitation
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Scheme 16 Solvent-induced (controlled) epimerization of TARPHAT anions 16

Scheme 17 Temperature-induced epimerization of chiral cationic phosphate 62

3
Applied P(VI) Chemistry

The previous section focused on the structure of novel P(VI) derivatives that
have appeared in the literature in recent years. Many of the articles describing
these molecules essentially detailed the making and the characterization of the

a decomposition of the hexacoordinated phosphate anion can happen if the
Me2NH2

+ cation is not rapidly exchanged in solution for a non-acidic counter-
ion. Finally, if two strongly electron-withdrawing ligands, such as tropyliumdi-
olato moieties,are introduced along with BINOL around the P atom then the two
diastereomers can be observed, isolated and fully characterized [100]. It was
shown, using BINOL ligand of same R configuration, that the thermodynamic
isomer of the cationic derivative 62 has a relative D configuration different from
the L one of BINPHAT anion 15. This might indicate that the selectivity in 
favor of the diastereomer (L,R)-15 comes from a kinetic rather than a thermo-
dynamic control (Scheme 17).



compounds. However, quite a few reports have dealt more with applications of
the derivatives than their characterization since P(VI) compounds find useful
roles in fields as varied as: (i) bioorganic chemistry, (ii) classical organic chem-
istry, (iii) photochemistry, (iv) electrochemistry, and (v) stereoselective syn-
thesis and analysis. A rather broad selection of very diverse applications is
therefore presented in the following part.

3.1
P(VI) Derivatives in Bioorganic Studies

Modeling the active site for phosphoryl transfer enzymes represents an im-
portant and challenging task for biochemists. Most studies have outlined
mechanisms of nucleophilic attack at pseudo-tetrahedral phosphate centers
that proceed by in-line displacement reactions. However, due to (i) better un-
derstanding of P(V) chemistry, (ii) better understanding of the P(V)IP(VI)
equilibrium, and (iii) the building of experimental evidence that P(VI) adducts
are easily formed, refined mechanistic models taking into account the possible
role of high valent phosphorus have been proposed [8, 49, 50]. If the role of
P(V) is unambiguously recognized, P(VI) could also intervene. Holmes has 
recently proposed that a carboxylate group can play a role in the activation of
tyrosine in tyrosyl-tRNA synthetase leading to the formation of a P(VI) adduct
in the transition state (Scheme 18).
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Scheme 18 Possible carboxylate group participation in the activation of tyrosine in tyrosyl-
tRNA synthetase

Much effort has also been directed toward mimicking electron transfer on
natural photosynthetic systems. Recently, the group of Harada has been able to
prepare monoclonal antibodies against metallo porphyrins and show that the
biological edifice can control photoinduced electron transfer from the por-
phyrin to organic acceptor molecules in solution.As it was important to design
a biomolecule able to accommodate not only the metalloporphyrin unit but
also organic substrates, Harada recently used a hexacoordinated phosphorus



porphyrin as a hapten because of its ability to form water-stable derivatives
with specific ligands attached at the axial positions of the central P atom [90].
The resulting antibodies recognized not only the porphyrin moiety but also the
axial ligands. High selectivity, strong coordination and facile electron transfer
from the porphyrin to acceptor molecules were then displayed by the bio-
assembly. The hapten used is described in Fig. 21.

3.2
P(VI) Derivatives in Organic Chemistry

The strong Brønstedt acid nature of some hexacoordinated phosphorus deriv-
atives, [7–,H+]·(Et2O)4 in particular, was recently used within the context of an
industrial application [36]. The conjugated acid of tris(oxalato)phosphate anion
7 was found to effectively catalyze the ring-forming reaction of trimethyl-
hydroquinone 63 with isophytol 64 to give (all rac)-a-tocopherol 65 (ethylene-
carbonate/heptane 1:1, 100 °C, 90%, Scheme 19). This process is particularly 
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Fig. 21 Cationic P(VI) hapten for biomimetic photosynthetic studies

Scheme 19 Tocopherol (65) synthesis mediated by the conjugate acid of anion 7



efficient as it evolves a small amount of catalyst (0.5 mol% or less) and affords
low quantities of by-products. Other advantages are the easy and cheap prepa-
ration of 7, and the absence of heavy metals and sulfur- and fluorine-contain-
ing compounds in the process.

Kawashima [45] and Akiba [46, 47] have reported a possible use of 1,2- oxa-
phosphetanides 27–28 to generate olefins via a higher-order Horner–Wads-
worth–Emmons process. Upon heating at 80–100 °C, derivative 27c undergoes
a cycloreversion reaction to afford the corresponding olefin and a hydroxyphos-
phorane. However, this process is strongly substrate-dependent as compounds
27a, 27d and 27e react at the same temperature to “form again” benzophenones
and methylphosphorane 31, respectively (Scheme 20).

28 S. Constant · J. Lacour

Scheme 20 Temperature-induced reactions of oxaphospheranides 27–28

Evans Jr. and coworkers reported a similar olefination reaction employing
spirooxyphosphoranes of type 66. Upon treatment with a strong base (LiHMDS)
and subsequent addition of benzaldehyde, the reaction proceeded to form an-
ionic P(VI) intermediates (67, d –106 to –116 ppm) that decomposed at room
temperature to form the corresponding olefins and spiropentaoxyphosphoranes
[105]. The stereoselectivity (E:Z ratio) of the double bond-forming reaction de-
pended upon the conditions; evidence indicated the possibility of kinetic or
thermodynamic control (Scheme 21).

Finally, phosphorus porphyrins, such as some of those detailed in Sect. 2.3.1
have attracted attention in organic chemistry for their unique photochemical
properties. Aida reported that basic aqueous solutions of benzonitrile in the
presence of 59a undergo under irradiation (l>420 nm) a clean transformation
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Scheme 21 Higher order Horner–Wadsworth–Emmons olefination via hexacoordinated 
intermediates 67

Scheme 22 Hydration of benzonitrile catalyzed by cationic porphyrin 59a

3.3
Photochemical and Photophysical Properties of P(VI) Derivatives

As just mentioned, phosphorus porphyrins have unique photochemical prop-
erties. Their photophysics is also interesting. Emitter-quencher assemblies
based on porphyrin building blocks have attracted attention due to their po-
tential to serve as models in photosynthetic research (see [90] for an example)
or for the development of photoswitches that could be used for the fabrication
of molecular electronic/optical devices. In this context, Maiya and coworkers
constructed a P(VI) porphyrin system 59b with two “switchable” azobenzene
groups positioned in the “apical” positions of the pseudo-octahedral phospho-
rus atom [92]. Photoswitch ability (luminescence on/off) was demonstrated as

to benzamide [80]. Most probably, 59a upon photoexcitation in the presence of
OH– is reduced to the corresponding anion radical, which then undergoes elec-
tron-transfer to existing O2 to generate O2

– (or HO2
– in the presence of water);

this latter reagent being responsible for the observed reactivity. Obviously,
this application of 59a could have been part of the next paragraph on photo-
chemical applications and it constitutes a good introduction to the next topic
(Scheme 22).
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Scheme 23 Photoswitch ability (luminescence on/off) of 59b as a result of the E to Z iso-
merization-induced modulation

The ease of introduction of axial substituents on phosphorus porphyrins 
was also used by Shimidzu and coworkers to link a large number of porphyrin 
arrays with molecular conducting tetrathiophene wires (Fig. 22) [76, 77]. The
P(VI) porphyrin unit tending to be an electron acceptor acts as a photo-induced
hole generator. The tetrathiophene tending to be an electron donor is able to
transfer the positive hole just as molecular electric wire. The conductivity of this
donor-acceptor polymer was shown to be strongly enhanced by photoirradia-
tion, indicating that the formation and transfer occur efficiently along the poly-
meric chain. This also suggests the possibility of effective photoswitching.

Rao reported measurement of third-order optical non-linearity in the
nanosecond and picosecond domains for phosphorus tetratolyl porphyrins
bearing two hydroxyl groups in apical position [89]. Strong nonlinear absorp-
tion was found at both 532 nm and 600 nm. The high value of nonlinearity for
nanosecond pulses is attributed to higher exited singlet and triplet states. Time
resolved studies indicate an ultra-fast temporal evolution of the nonlinearity in
this compound.

a result of the E to Z isomerization-induced modulation of the intramolecular
photo-induced electron transfer between the axial azobenzene subunits and
the basal porphyrin scaffold (Scheme 23).
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Fig. 22 Phosphorus porphyrin arrays with molecular conducting tetrathiophene wires

3.4
Electrochemical Applications of P(VI) Derivatives

Numerous investigators have attempted to develop inexpensive, nontoxic, highly
soluble and thermally, chemically and electrochemically stable lithium salts to
replace the common but problematic LiPF6 in so-called lithium batteries. In this
context, lithium tris[benzenediolato]phosphate or [Li,1] was synthesized and
utilized as Li battery electrolytes for Li/V2O5 cells [106]. The specific conduc-
tivity (3.89 mS cm–1) in an ethylene carbonate-tetrahydrofuran binary mixture
was somewhat low. It can be explained by the high viscosity of the large anion.
In spite of the low conductivity, a rather high cutoff potential of 3.7 V vs Li/Li+

was measured. For the lithium salt of tris(oxalato)phosphate anion or [Li,7]
much higher specific conductivity (7.0–9.7 mS cm–1) was measured in a vari-
ety of solvent conditions and the cutoff potential was found to be higher
(~4.0 V) [29]. Later, Nanbu investigated the thermal stability and electrolytic
properties of tris[4-methyl-1,2-benzenediolato]phosphate or [Li,9] [32]. The
specific conductivity of the salt itself is rather modest (2.3 mS cm–1) but the
equimolecular mixture of [Li,9] and [Li,PF6] showed – not too surprisingly –
an improvement in conductivity (5.3 mS cm–1). However, more importantly, the
cyclic efficiencies in the electrolyte solutions containing a mixture of [Li,9] and
LiPF6 were much better than those in LiPF6 only. Finally, Nanbu, Eberwei and
coworkers reported the electrochemical study of [Li,11] and [Li,12] [34, 35].
These two salts presented the very high cutoff potentials vs. Li+/Li with values
of 3.95 and 4.3 V, respectively.

Akiba investigated the electrochemical behavior of a variety of phosphorus
octaethylporphyrin derivatives; all compounds showing a single reversible ox-
idation wave [91]. The absolute difference in potential between the first ring-
centered oxidation and reduction varies from 2.19 to 2.36 V in dichloromethane.
These values are within the range of the HOMO-LUMO gap observed for most
metalloporphyrins.

The synthesis of thin films of organic conducting polymers on a nanome-
ter scale is one of the challenges of nanotechnology. Electrochemical poly-



merization is a well-established method for preparation of such films as their
thickness can be controlled by limiting the charge passed during the poly-
merization. Tanaka [81] and Shimidzu [72, 76] and coworkers reported the
construction of ultra-thin films by deposition on gold crystals or on electrodes
of oxidatively polymerized “wheel-and-axle” type phosphorus porphyrins
(59c)/oligothienyl units. A selected example of the chemical process is de-
scribed above (Scheme 24).

3.5
Stereoselective Applications of Enantiopure Anionic P(Vl) Derivatives

Many chemical reactions and processes involve cationic reagents, intermediates
or products. Cations can be sometimes prochiral or chiral and most applications
that involve these moieties lead to racemic molecular or supramolecular as-
semblies. To afford instead non-racemic or enantiopure products, and benefit
from possible new applications, an asymmetric ion pairing with chiral anions
can be considered – the counterions behaving as asymmetric auxiliaries, ligands
or reagents [107]. Recently, the chemistry of P(VI) phosphate anions has been
rejuvenated for exactly this purpose [108, 109].Applications of anions like 8 and
15 as NMR chiral shift reagents, as resolving agents for organic and inorganic
cations and as chiral auxiliaries in stereoselective processes have been 
reported and some of them are detailed below.
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Scheme 24 Electrochemical Polymerization of “wheel-and-axle”type phosphorus porphyrins



3.5.1
NMR Determination of Enantiomeric Purity

As already mentioned, chiral cations are involved in many areas of chemistry
and, unfortunately, only few simple methods are available to determine their
optical purity with precision. In the last decades, NMR has evolved as one of the
methods of choice for the measurement of the enantiomeric purity of chiral
species [110, 111].Anionic substances have an advantage over neutral reagents
to behave as NMR chiral shift agents for chiral cations. They can form dia-
stereomeric contact pairs directly and the short-range interactions that result
can lead to clear differences in the NMR spectra of the diastereomeric salts.

An overall efficiency of TRISPHAT 8 and BINPHAT 15 anions as NMR chi-
ral shift agents for chiral cations has been demonstrated over the last few years.
Additions of ammonium salts of the D or L enantiomers of 8 and 15 to solutions
of racemic or enantioenriched chiral cationic substrates have generally led to 
efficient NMR enantiodifferentiations [112–121].Well-separated signals are usu-
ally observed on the spectra of the diastereomeric salts generated in situ.

Sometimes, a direct ion-pairing of the chiral cations and anions 8 or 15 is
necessary to maximize the NMR separation of the signals [115, 116]. Cationic
species as different as quaternary ammonium, phosphonium, [4]heterohelice-
nium, thiiranium ions, (h6-arene)manganese, ruthenium tris(diimine) have
been analyzed with success (Fig. 23).

TRISPHAT anion 8 seems to be more particularly efficient with cationic
metallo-organic and organometallic substrates. BINPHAT 15 has often-supe-
rior chiral shift properties than 8 when associated with organic cations such as
ammonium cation 68 (Fig. 24). In all these examples, solvent polarity influences
the quality of the separation since ion association is crucial. Solvent or solvent
mixtures of low polarity are preferred for these experiments.
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Fig. 23 Selected examples of chiral cations analyzed successfully with anions 8 or 15



Recently, Lacour, Sauvage and coworkers were able to show that the associ-
ation of chiral [CuL2]+ complexes (L=2-R-phen, 6-R-bpy and 2-iminopyridine)
with TRISPHAT 8 leads to an NMR enantiodifferentiation, which allows the de-
termination of the kinetics of racemization of the complexes (bpy=2,2¢-bipyri-
dine; phen=1,10-phenanthroline) [119]. This type of application has recently
been reported in conjunction with chiral sandwich-shaped trinuclear silver(I)
complexes [122]. Several reports, independent from Lacour’s group, have con-
firmed the efficiency of these chiral shift agents [123–127]. Finally, TRISPHAT
can be used to determine the enantiomeric purity of (h6-arene)chromium com-
plexes. These results broaden the field of application of 8 to chiral neutral, and
not just cationic, species [114, 128, 129].

3.5.2
Resolution of Chiral Cations

Many chemical reactions and processes yield cationic racemic products, and 
either a resolution or a stereoselective synthesis must be envisaged to obtain
the chiral cations in an enantioenriched or enantiopure form. Resolution has
been strongly studied [130] and selected representative examples of such pro-
cesses mediated by chiral P(VI) anions are presented.

Preparative chromatographic resolution procedures have overall freed
chemists from the constraint of dependency on crystallization. They are most
often performed with covalent diastereomer mixtures but ionic salts can also be
separated. Recently, it was found that the lipophilicity of TRISPHAT anion 8
profoundly modifies the chromatographic properties of the cations associated
with it and the resulting ion pairs are usually poorly retained on polar chro-
matographic phases (SiO2, Al2O3) [131]. Using enantiopure TRISPHAT anion,
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Fig. 24 1H NMR spectra (400 MHz, CDCl3, parts) of a) [rac-68][I], b) [rac-68][D-8], c) [rac-
68] [D,S)-15] and d) [R-68][(D,S)-15]



accessible from [cinchonidinium][D-8] or [Bu3NH][L-8] salts, the chromato-
graphic resolution of chiral cations is feasible, as the diastereomeric ion pairs 
often possess rather different retardation factors. For instance, [Ru(bpy)3]2+

and [Ru(Me2bpy)3]2+ (Me2bpy: 4,4¢-dimethyl-2,2¢-bipyridine) complexes were
separated into diastereomeric homochiral [D-RuL3][D-8]2 and heterochiral
[L-RuL3][D-8]2 salts by column chromatography over silica gel (eluent CH2Cl2)
[132]. Rather large differences in retardation factors were observed (DRf
0.10–0.23). The resolution can also be performed on preparative thin-layer
chromatographic (TLC) plates. The protocol was extended to monocationic
cyclometallated ruthenium complexes 69 and to a configurationally stable
mononuclear iron(II) complex 70 (Fig. 25) [116, 133].

The lipophilicity of the TRISPHAT anion 8 also confers to its salts an affin-
ity for organic solvents and, once dissolved, the ion pairs do not partition in
aqueous layers. This rather uncommon property was used by Lacour’s group to
develop a simple and practical resolution procedure of chiral cationic coordi-
nation complexes by asymmetric extraction [134, 135]. Selectivity ratios as high
as 35:1 were measured for the enantiomers of ruthenium(II) trisdiimine com-
plexes, demonstrating without ambiguity the efficiency of the resolution pro-
cedure [134].

An extension of this protocol was further developed for a diiron(II) triple
helicate and afforded in separated phases the P or M enantiomers of the
[Fe2L3]4+ helix 71 (Fig. 25) [135].

3.5.3
Stereoselective Chemistry Induced by Chiral Anions

Chiral compounds are sometimes configurationally stable as solids and con-
figurationally labile in solution. When optically active samples of these deriv-
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Fig. 25 Chiral cationic coordination complexes 69, 70 and 71



atives are solubilized, a racemization occurs due to the free interconversion of
the enantiomers in solution. To obtain these compounds in one predominant
configuration over time, a possible strategy is to add stereogenic elements to
their backbone; intramolecular diastereoselective interactions happen and
favour one of equilibrating diastereomers [136, 137]. If the chiral compounds
are charged, an alternative strategy to control their configuration is to consider
their asymmetric ion pairing with chiral counter-ions [138]; intermolecular –
rather than intramolecular – diastereoselective interactions then control the
stereoselectivity (Pfeiffer effect) [139, 140].

Unfortunately, in most of the previous examples, the extent of the asym-
metry-induction was determined by chiroptical measurements (ORD, CD)
that gave qualitative and not quantitative information. The NMR chiral shift
efficiency of TRISPHAT 8 and other hexacoordinated phosphate anions was
therefore considered as an excellent analytical tool to provide accurate mea-
surement of the induced selectivity by NMR spectroscopy.

Configurationally labile cations, as varied as [Fe(Me2bpy)3]2+ 72 (Fig. 26),
[Fe(phen)3]2+ and [Co(Me2bpy)3]2+ complexes, dicobalt(II) triple helicates, di-
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Fig. 26 1H NMR spectra (parts) of equilibrating salts [D-72]D-8]2 and [L-72][D-8]2 in
[D6]DMSO/CDCl3 and resulting diastereoselectivity
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Fig. 27 Chiral configurationally labile cations 73, 74 and 75

quat 73, monomethine dye 74 and quaternary ammonium 75, were paired with
enantiopure anions 8 and/or 15 [38, 41, 141–144]. In all cases, an enantiodiffer-
entiation of the interconverting enantiomers of the chiral cations was observed
in 1H NMR spectroscopy. In most cases, the analyses could be performed at
room temperature, as the interconversion was slow on the NMR time scale, e.g.,
72 (Fig. 26).

For cations 74–75 (Fig. 27), low temperature NMR experiments were nec-
essary to reveal stereodynamical behaviors and allow the observation of split
signals for the enantiomers [38, 144]. Stereoselective recognition between the
chiral cations and anions was observed in essentially all cases as integration
of the split signals revealed the preferential occurrence of one diastereomeric
salt over the other.

Diastereomeric ratios as high as 20:1 can be observed for some of the sub-
strates, e.g., salt [72][D-8] [41, 141]. The selectivity strongly depends upon the
polarity of the solvent medium.An increase in the diastereoselectivity is usually
observed upon the decrease of solvent polarity. This is interpreted as the result
of closer interactions between the ions. In most cases, induced CD spectra could
also be measured allowing the determination of the preferred configuration of
the chiral cations.

4
Conclusion

In this review, we hope that we have been able to show the high diversity of
P(VI) chemistry in the nature of its derivatives as well as in their subsequent
applications. Our feeling is that P(VI) chemistry has strongly matured over the
last 5–10 years. However, there is still much ground to be covered and, no doubt,
new and more selective P(VI) chemistry will be prepared to achieve new struc-
tures and develop more efficient solutions to desired goals.
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Abstract The recent literature devoted to the chemical reactivity of the main families of
phosphorus centered radicals is surveyed.Various tin-free radical chain reactions involving
L2P-H or L2P(O)-H compounds as hydrogen donors and the corresponding phosphinyl
(L2P�) or phosphonyl [L2P(O)�] radicals as chain carriers have been developed. The photo-
Arbuzov rearrangement of arylalkylphosphites has been intensively investigated and applied
to the preparation of biologically active phosphonates. Single electron transfer reactions in-
volving phosphoniumyl radicals have been applied to the dediazoniation of arenediazonium
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salts and to the oxidation of trivalent phosphorus compounds. The versatile chemistry of
phosphoranyl radicals has been illustrated through various original reactions like the syn-
thesis of phosphonates via free radical Arbuzov reactions and radical chain desulfurizations.
New persistent or stable phosphorus centered radicals have been characterized. Different re-
ports have shown that the properties of an organic free radical can be dramatically changed
when a phosphorus group is in the vicinity of the radical center.

Keywords Phosphinyl · Phosphonyl · Phosphoniumyl · Phosphoranyl ·
Persistent phosphorus centered radicals

Abbreviations
ACN Acetonitrile
AIBN Azobisisobutyronitrile
aN EPR nitrogen hyperfine coupling constant
aP EPR phosphorus hyperfine coupling constant
BPO Benzylperoxide
DCA 9,10-Dicyanoanthracene
DCN 1,4-Dicyanonaphtalene
DEPMPO 2-Diethoxyphosphoryl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide
DMPO 2,2-Dimethyl-3,4-dihydro-2H-pyrrole-1-oxide
EPHP Ethylpiperidinyl hypophosphorus acid
EPR Electron paramagnetic resonance
HIV Human immunodeficiency virus
ISC Inter-system crossing
Mes 2,4,6-Trimethylphenyl
Mes* 2,4,6-Trit-butylphenyl
Ms Mesyl group
NMP Nitroxide-mediated radical polymerization
Nu Nucleophile
Ph Phenyl
Pm Polymer chain of m units
Rf Perfluoroalkyl
RT Room temperature
S Singlet state
SET Single electron transfer
SG1 N-tert-Butyl-N-(1-diethylphosphono-2,2dimethylpropyl)nitroxide
SOMO Single occupied molecular orbital
T Triplet state
TBDMS tert-Butyldimethylsilyl
TBP Trigonal bipyramidal
TEMPO 2,2,6,6-Tetramethyl-1-piperidinyloxy radical
TMS Trimethylsilyl group
Tol Tolyl group
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1
Introduction

This chapter surveys the literature published from 1995 to 2003, concerning the
reactivity and the chemical applications of the four main families of phospho-
rus centered radicals, i.e., phosphinyl (L2P�), phosphonyl (L2P�=O), phospho-
niumyl (L3P�+) and related charged species, and phosphoranyl (L4P�) radicals.
Due to their specificity, a section is devoted to the generation and properties of
persistent and stable phosphorus centered radicals.

2
Phosphinyl Radicals, L2P �

Although their chemistry is less developed than that of phosphonyl, phospho-
niumyl or phosphoranyl radicals, many structural studies have been devoted
to phosphinyl radicals [1]. Like their nitrogen analogs, phosphinyl radicals are
p-type radicals (Fig. 1) and because of the very small s character of their
SOMO, the magnitude of their phosphorus hyperfine coupling constants aP is
below 15 mT [1].

Due to their weak P–H bonds (≈370 kJ mol–1) [2] and the high rate constants
for the transfer of the P–H hydrogen [3] (k=1.5 107 L mol–1s–1 for Ph2PH and
k=5.0 105 L mol–1s–1 for (c-hexyl)2PH), diaryl and dialkyl phosphines present a
high interest as H-donors. Since the corresponding phosphinyl radicals are good
chain carriers [4, 5], diaryl and dialkyl phosphines can be added to olefinic or
acetylenic compounds through radical chain reactions. Simpkins et al. [6] used
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Fig. 1 Structure of phosphinyl radicals

Scheme 1 5-exo Cyclization initiated by phosphinyl radical addition onto an alkyne



the H-donor capability of diarylphosphines and the rapid addition of the 
corresponding phosphinyl radical onto unsaturated center to trigger 5-exo
cyclizations, which afforded good yields (60%) of phosphinated bicyclo com-
pounds (Scheme 1).

3
Phosphonyl Radicals, L2P�=O

3.1
Reactivity

The characteristics of a large number of phosphonyl radicals [L2P(O)]� have
been extensively listed over the last three decades [1]. Phosphonyl radicals 
are s radicals [7] (Fig. 2) and due to the significant s-character of their SOMO
they exhibit phosphorus hyperfine coupling constants aP ranging from 30 mT
to 70 mT [1].

The reactivity of electrochemically generated phosphonyl radicals has been
recently reviewed by Kargin and Budnikova [8] and will not be considered here.
The reactivity of phosphonyl radicals is mainly accounted for by the three
processes [9] shown in Scheme 2: radical addition (1), atom transfer (2 and 3),
and electron transfer (4).

The substitution of a functional group for a hydrogen atom is a very impor-
tant transformation in synthetic organic chemistry. Barton et al. [10] developed
various radical chain defunctionalization reactions using dialkylphosphonates
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Fig. 2 Structure of phosphonyl radicals

Scheme 2 Reactivity of phosphonyl radicals

Scheme 3 Radical chain reaction involving phosphonyl radicals



(R2P(O)H) and phosphonates (RO2P(O)H) as hydrogen atom donors and the
corresponding phosphonyl radicals as chain carriers (Scheme 3).

The reactivity shown in Scheme 3 results from the low bond dissociation en-
ergy (BDE) of the P–H bond [11] (k=1.2 105 M–1s–1 for the H-transfer from
RO2P(O)H to a primary C-centered radical) and the fast halogen-atom trans-
fer from a C-halogen bond to a phosphonyl radical [9, 12] (k=4 105 M–1s–1 for
t-Bu-Br and k=8.3 108 M–1s–1 for Cl3C-Br). Piettre et al. [13] pointed out that
these chain reactions were even more efficient when dialkylthiophosphites and
the corresponding dialkylphosphinothioyl radicals were involved.

Addition of phosphonyl radicals onto alkenes or alkynes has been known
since the sixties [14]. Nevertheless, because of the interest in organic synthesis
and in the initiation of free radical polymerizations [15], the modes of gener-
ation of phosphonyl radicals [16] and their addition rate constants onto alkenes
[9, 12, 17] has continued to be intensively studied over the last decade. Narasaka
et al. [18] and Romakhin et al. [19] showed that phosphonyl radicals, generated
either in the presence of manganese salts or anodically, add to alkenes with
good yields.

Bentrude et al. [20] reported the first photo-Arbuzov rearrangement of
arylethylphosphites (Scheme 4). The direct photolysis of arylethylphosphites
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Scheme 4 Photo-Arbuzov rearrangement of arylethylphosphites

Scheme 5 Photo-Arbuzov rearrangement of arylethylphosphites via a short-lived singlet
proximate radical pair mechanism. Reprinted with permission from [22]. Copyright 2001
American Chemical Society



generates a short-lived singlet proximate radical pair of benzylic and phos-
phonyl radicals in the solvation cage [16a, 21, 22]. Then, high degree of recom-
bination in the solvation cage affords the Arbuzov products [21, 22] (Scheme 5).
The change in the configuration of the benzylic carbon strongly depends on the
structure of the radicals involved in the radical pair [22].

Different results were observed when a triplet-state photosensitizer (such 
as perylene) was used to generate long-lived triplet proximate radical pairs in
the solvation cage. Because of the long-lived triplet state, radicals escape from
the solvation cage and the typical reactivity of free radicals is observed, i.e.,
high amounts of aryldimer and complete stereorandomization when chiral
phosphites were used (Scheme 6) [22]. The small amounts of compounds with 
retention or inversion of configuration result from the slow triplet to singlet
inter-system crossing (ISC) [22].
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Scheme 6 Photo-Arbuzov rearrangement of arylethylphosphites via a long-lived triplet
proximate radical pair mechanism. Reprinted with permission from [22]. Copyright 2001
American Chemical Society

3.2
Applications

The versatility, predictability and functional-group tolerance of free radical
methodology has led to the gradual emergence of homolytic reactions in the
armory of synthetic chemistry. Tin hydrides have been successfully employed
in radical chemistry for the last 40 years; however, there are drawbacks associ-
ated with tin-based chemistry. Organotin residues are notoriously difficult to
remove from desired end products, and this, coupled with the fact that many
organotin compounds are neurotoxins, makes techniques using tin inappro-



priate for syntheses of drugs, medicines and other formulations intended for
human consumption [23]. Therefore, to overcome these problems [23], it is of
the highest interest for radical chemists to develop new tin-free reducing agents
and radical chain carriers [24]. The versatility of phosphorus compounds as tin
hydride substitutes has been reviewed by Parsons [4] and Studer [5], and only
a few typical examples are mentioned hereafter. Barton et al. [10] developed 
the use of R2P(O)H compounds as reducing agents and their corresponding
R2P(O)� radicals as chain carriers in the Barton–McCombie deoxygenation 
reactions (Scheme 7).
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Scheme 7 Barton–McCombie deoxygenation reaction in the presence of (MeO)2P(O)H

Scheme 8 C–C Bond forming reactions involving the use of L2P(O)H reagents

Murphy et al. showed that EPHP [25] and L2P(O)H [26] can also be used in
radical C–C bond forming reactions (Scheme 8). Recently, Piettre et al. [27]
used the sodium salt of hypophosphorous acid as H-donor and the subsequent
phosphonyl radical as phosphonylating agent for the preparation of 3-fura-
nosyl-6¢-furanosylphosphinate (Scheme 9).

Good yields in conjunctive reductive/addition/cyclization reactions car-
ried out with (RO)2P(O)H compounds were obtained by Parson et al. [28]
(Scheme 10).



Fluorinated phosphonates exhibit interesting properties as enzyme inhibi-
tors, chelating agents or as fuel cell electrolytes [29]; however, only few methods
of preparation for these compounds are available. Burton et al. [30] developed
several methods to prepare fluorinated phosphates which involve phosphonyl,
and likely phosphoranyl radicals as chain carriers (Scheme 11).

Because of their fast addition onto alkenes, phosphonyl radicals have found
wide use as initiating radicals in photo-polymerizations. Several groups [31]
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Scheme 9 Tandem sequential radical process using the sodium salt of hypophosphorous
acid. Reprinted with permission from [27]. Copyright 2002 American Chemical Society

Scheme 10 Reductive cyclization involving phosphonyl radicals. Reprinted with permission
from [28a]. Copyright 2001 Pergamon Press



developed various precursors (typical examples are given in Fig. 3) and the 
P-centered radicals resulting from their photolytic decomposition were studied
intensively [9, 12, 17]. The preparation of cross-linked biodegradable poly-ester-
poly-(propylene fumarates) [32], the preparation of polymers for transdermal
curing, and stereolithography [33] are typical applications of these photo-ini-
tiated free radical polymerizations. Diethylphosphonyl radical has been used to
initiate the radical telomerization of vinylidene fluoride [34].

Phosphonyl radicals have been used to functionalize the (60)-, (70)- and
(76)-fullerenes [35]. Radical phosphonylation (Scheme 12) of alkenes has been
developed by Motherwell et al. [36] for the preparation of fluorophosphony-
lated analogs of riboses that exhibit high potential biological activity [37].

The photo-Arbuzov rearrangement of allyl-, benzyl- and naphtylmethyl-
phosphites (Scheme 13), first developed by Bentrude et al. [20], found applica-
tions in the preparation of phosphonates (70–90%) [38]. Arylphosphonates
have been shown to act as protein tyrosine kinase inhibitors [39] or non-hy-
drolyzable analogs of phosphorylated tyrosine residues [40].
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Scheme 11 Preparation of fluorinated phosphonates involving phosphonyl and phospho-
ranyl radicals as chain carriers

Fig. 3 Photo-initiators releasing phosphonyl radicals for photo-initiated free radical poly-
merizations
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Scheme 13 Photo-Arbuzov rearrangement of arylphosphites

Scheme 12 Radical phosphonylation of difluoromethylencarbohydrates

4
Phosphoniumyl Radicals, L3P �+

The electrochemical generation and reactivity of phosphoniumyl and related
charged radicals have been recently reviewed by Kargin and Bunikova [8]. In
1995,Yasui reviewed the reactivity of trivalent phosphorus compounds in sin-
gle electron transfer (SET) processes [41] and, in 1990, the EPR features and 
reactivity of phosphoniumyl radicals were reviewed by Tordo [42].

The structures of phosphoniumyl and related charged radicals have been 
extensively listed over the last three decades [1]. Phosphoniumyl radicals are s

Fig. 4 Structure of phosphoniumyl radicals



radicals (Fig. 4) with phosphorus hyperfine coupling constants aP in the range
20 to 80 mT [1].

4.1
Reactivity

The b-scission of a phosphoniumyl radical yields a cation and a phosphonyl
radical, while its reaction with a nucleophile generates a phosphoranyl radical
which can undergo SET reactions and a- or b-fragmentations (Scheme 14).
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Scheme 14 Reactivity of phosphoniumyl radicals

4.1.1
Phosphoniumyl Radicals in Single Electron Transfer

Under irradiation, in the presence of sensitizers like 9,10-dicyanoanthracene
(DCA) or 1,4-dicyanonaphtalene (DCN), phenylallylphosphites are able to 
rearrange to yield the corresponding phosphonates [43]. First, a radical cation
(vinyl radical cation or phosphoniumyl radical) is generated by SET to the 
excited single state of DCA or DCN. Then, a nucleophilic or a radical attack 
of the phosphorus atom onto the vinyl moiety provides a 1,3-distonic radical
cation. The rearrangement of the distonic radical cation to yield a phosphonate
could proceed either through the formation of a diradical which undergoes 
b-fragmentations or through the homolytic cleavage of the C–O bond to provide
the phosphonate moiety and a vinyl radical cation, the latter being reduced by
SET (Scheme 15).

Recent results of Bentrude et al. [44] suggest that a vinyl radical cation is first
generated, and that the 1,3-distonic radical cation is reduced to a diradical 
involving a phosphoranyl radical moiety. However, because the phosphite and
styryl moieties of phenylallylphosphites exhibit very close oxidation potentials
[45], the presence of a phosphoniumyl radical cannot be totally ruled out.

Bentrude et al. [46] developed the 1,4-conjugate addition of silylphosphites
to cyclic enones induced by photochemical SET. They showed that high yields



of phosphonylated cyclic ketones can be obtained in very mild conditions (6 h
at RT) while in the absence of photo-excitation the reaction requires much more
drastic conditions (12 h at 180 °C) [47]. Under irradiation, conjugated ketones
are readily excited to a triplet state [48] and in the presence of Me3SiOP(OMe)2,
a SET occurs to generate a radical ion pair. The decomposition of the ensuing
phosphoniumyl radical generates the trimethylsilyl cation and a phosphonyl
radical, which recombine with the enone radical anion to yield (78–92%) the
4-phosphonylated ketones (Scheme 16).
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Scheme 15 SET induced photorearrangement of phenylallylphosphites. Reprinted with 
permission from [43]. Copyright 2000 American Chemical Society

Scheme 16 1,4-Addition of phosphonyl radical to enones triggered by a SET
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Scheme 17 Oxidative addition of phosphoniumyl radicals onto alkenes

4.2
Applications

The SET-induced rearrangement of phenylallylphosphites developed by Ben-
trude et al. [43, 44] was used for the synthesis of new nucleotides bearing
phosphonate moieties (Scheme 18) [40, 50, 51], which are active against HIV
[52] and act as adenosine deaminase inhibitors [53].

4.1.2
Addition of Phosphoniumyl Radicals onto Alkenes

Romakhin et al. [49] showed that anodically generated phosphoniumyl radicals
can add onto alkenes to yield phosphonylated alkenes through an anodic oxi-
dation/addition/anodic oxidation/elimination/nucleophilic attack sequence
(Scheme 17).

Scheme 18 Preparation of nucleotide-based phosphonates via SET-induced rearrangement
of allylphosphites



Properly substituted phosphonates, which serve as key intermediates for the
synthesis of biologically active compounds [39, 54], have been prepared via the
photo-induced 1,4-addition of phosphites onto Michael ketones (Scheme 19).
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Scheme 19 1,4-Addition of phosphite onto Michael ketones via photoinduced SET

Scheme 20 Dediazoniation of arenediazonium salts via SET

Recently, Lee [58] showed that phosphoniumyl radicals generated via SET
can be used to generate carbocations (Scheme 22).

SET reactions involving phosphoniumyl radicals have been developed by 
Yasui et al. [41, 55], particularly for the dediazoniation of arenediazonium salts
[56] (Scheme 20) and for the oxidation of trivalent phosphorus compounds 
[41, 57] (Scheme 21).



5
Phosphoranyl Radicals, L4P �

The various structures [59], EPR parameters [1] and reactivity [59] of phos-
phoranyl radicals have been extensively reviewed over the last three decades.
This section presents only the main trends, and the last developments con-
cerning these species.

5.1
Structures

It is commonly accepted that, depending on the substituents bonded to the
phosphorus atom, phosphoranyl radicals adopt either a trigonal bipyramidal
(TBP-e) structure (Fig. 5a), with the odd electron in a phantom equatorial site,
or a tetragonal (s*) structure (Fig. 5b) [59b, 59c, 1]. The TBP-e structure with
the highest spin density in equatorial position is the most frequent structure
for L4P�. However, calculations [60] and a few experimental results [1c] sug-
gested the existence of TBP-a structures (Fig. 5c), a conclusion that has been
violently controverted [61]. TBP-e and s* structures have been clearly identi-
fied by EPR spectroscopy and their EPR spectra are characterized by very large
phosphorus hyperfine coupling constants (0.6 T to more than 1.0 T for some
TBP-e structures [1]). It is noteworthy that for phosphoranyl radicals bearing
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Scheme 21 Oxidation of diarylphosphites via SET

Scheme 22 Carbocations resulting from the SET generation of phosphoniumyl radicals.
Reprinted with permission from [58]. Copyright 2000 Korean Chemical Society
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Fig. 5 Structures of phosphoranyl radicals

Three- and pentacoordinate organic phosphorus compounds can be oxidized
through a free radical Arbuzov reaction, i.e., formation and b-scission of a
phosphoranyl radical (Scheme 24). The b-scission is regioselective; homolysis
occurs on a ligand located in an equatorial site. Both a- and b-scissions are
strongly dependent on the strength (bond dissociation energy) of the cleaved

Scheme 24 b-Scission of phosphoranyl radicals

a vinyl or an aryl ligand the odd electron is localized in the p system of the un-
saturated ligand (Fig. 5d). Nevertheless, the main decay routes for these radicals
are analogous to those of phosphoranyl radicals with a TBP-e structure [62].

5.2
Reactivity

5.2.1
Displacement (aa-scission) and Free Radical Arbuzov (bb-scission) Reactions

The displacement of a ligand L from the phosphorus atom of a phosphoranyl
radical can easily occur via a-scission of the L–P bond (Scheme 23). The frag-
mentation is a regiospecific process, i.e., the leaving group must be apical
(Scheme 23) and it occurs via an intermediate s* structure (Fig. 5).

Scheme 23 a-Scission of phosphoranyl radicals



bond and on the polarity and steric effects of the phosphorus ligands. Detailed
studies of a- and b-scission of phosphoranyl radicals are available in the reviews
of Bentrude [59a–c] and Roberts [59d]. Other possible reactions of phospho-
ranyl radicals have also been listed in these reviews [59a–d].

The trapping of alkyl, alkoxyl and alkylthiyl radicals by trivalent phospho-
rus compounds, followed by either a-scission or b-scission of the ensuing
phosphoranyl radical, is a powerful tool for preparation of new trivalent or pen-
tavalent phosphorus compounds [59]. However, the products of these reactions
strongly depend on the BDE of the bonds, which are either formed or cleaved.
For example, the addition of phenyl radicals on a three-coordinate phosphorus
molecule occurs irreversibly, while that of dimethylaminyl (Me2N�) or methyl
radicals is reversible, the amount of subsequent b-scission (formation of com-
pound C) depending on the nature of Z and R¢ (Scheme 25). For tertiary alkyl
radicals and stabilized alkyl radicals no addition is observed (Scheme 25) [63].

The strained hydrocarbon [1,1,1] propellane is of special interest because
of the thermodynamic and kinetic ease of addition of free radicals (R�) to it.
The resulting R-substituted [1.1.1]pent-1-yl radicals (Eq. 3, Scheme 26) have
attracted attention because of their highly pyramidal structure and consequent
potentially increased reactivity. R-substituted [1.1.1]pent-1-yl radicals have a
propensity to bond to three-coordinate phosphorus that is greater than that of
a primary alkyl radical and similar to that of phenyl radicals. They can add ir-
reversibly to phosphines or alkylphosphinites to afford new alkylphosphonites
or alkylphosphonates via radical chain processes (Scheme 26) [63]. The high
propensity of a R-substituted [1.1.1]pent-1-yl radical to react with three-coor-
dinate phosphorus molecules reflects its highly pyramidal structure, which is
accompanied by the increased s-character of its SOMO orbital and the strength
of the P–C bond in the intermediate phosphoranyl radical.
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Scheme 25 Influence of the nature of ligands on the a- and b-scission of phosphoranyl 
radicals. Reprinted with permission from [63]. Copyright 1997 American Chemical Society
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Scheme 26 Reaction of R-substituted [1,1,1]pent-1-yl radical with three-coordinate phos-
phorus compounds. Reprinted with permission from [63]. Copyright 1997 American Chem-
ical Society

Scheme 27 Trimethyl phosphite as alkoxyl radical scavenger to characterize C–O vs C–C
fragmentation for oxyranylcarbinyl radicals. Reprinted with permission from [64]. Copy-
right 2003 American Chemical Society

Alkoxy (RO�) radicals react at near diffusion controlled rates with trialkyl
phosphites to give phosphoranyl radicals [ROP(OR¢)3]� that typically undergo
very fast b-scission to generate alkyl radicals (R�) and phosphates [OP(OR¢)3]. In
a mechanistic study, trimethyl phosphite, P(OMe)3, has been used as an efficient
and selective trap in oxiranylcarbinyl radical systems formed from haloepoxides
under thermal AIBN/n-Bu3SnH conditions at about 80 °C (Scheme 27) [64]. The
formation of alkenes resulting from the capture of allyloxy radicals by P(OMe)3
fulfils a prior prediction that, under conditions close to kinetic control, products
of C–O cleavage (path a, Scheme 27), not just those of C–C cleavage (path b,
Scheme 27) may result.



5.2.2
Triplet-Sensitized Photorearrangement

During the last decade, Bentrude et al. [65] has shown that the triplet-sensitized
photorearrangement of allylphosphites and analogs (Scheme 28) is a powerful
method for preparation of alkylphosphonates from phosphites. Moderate to high
yields were observed when triphenylene was used as photosensitizer [66, 67].
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Scheme 28 Triplet-sensitized photorearrangement of allylphosphites. Reprinted with per-
mission from [67]. Copyright 2000 American Chemical Society

Scheme 29 Intermediates involved in the triplet-sensitized photorearrangement of al-
lylphosphites. Reprinted with permission from [67]. Copyright 2000 American Chemical
Society

Stereo studies involving spirophosphoranyl biradicals showed that the re-
arrangement occurs with almost complete retention of configuration at phos-
phorus (Scheme 29) [66, 67].

Scheme 30 represents the energy diagram for the photorearrangement shown
in Scheme 29. Quenching of the triplet state of the sensitizer by the cis allyl
phosphate, cis-1, generates the triplet state, T1

1,2, of the 1,2-biradical 2. The 1,2-bi-
radical is trapped by the phosphorus atom to afford the triplet state, T1

1,3, of the
spirophosphoranyl 1,3-biradical 3. Then, inter-system crossing generates the
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Scheme 30 Energy diagram of the triplet-sensitized rearrangement of allylphosphites.
Reprinted with permission from [67]. Copyright 2001 American Chemical Society

more stable S0
1,3 singlet state, 4, which may either fragment via a-scission to 

regenerate the starting material or undergo pseudorotation (M4 mode) to bring
the CH2 group to an equatorial position, 5, before to fragment to the final
cis-phosphonate, cis-6 (Scheme 29) [66, 67].

5.2.3
Single Electron Transfer Processes

In the course of the 1990s, Yasui et al. [41b, 68] showed that, depending on the
ligands attached to the phosphorus atom, phosphoranyl radicals may decay via
three main processes: a-scission, b-scission and SET (Scheme 31). For example,
in the presence of 10-methylacridinium iodide, phosphoranyl radicals generated
from phenyl diphenylphosphinite decayed mainly via a-scission (Scheme 32)
whereas phosphoranyl radicals generated from iso-propyl diphenylphosphinite
decayed only via a SET process (Scheme 33). The reactivity of the phosphoni-
umyl/phosphoranyl radical tandem has already been discussed in Sect. 3.

Kampmeier [69] reported that, under irradiation at 313 nm, di-p-tolyliodo-
nium hexafluorophosphate reacts rapidly with triphenylphosphine in acetone-

Scheme 31 Decay of phosphoranyl radicals via a-scission, b-scission and SET. Reprinted
with permission from [68]. Copyright 1994 Wiley Interscience
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Scheme 32 Decay reactions of [Ph2P(OH)OPh]�. Reprinted with permission from [68]. Copy-
right 1994 Wiley Interscience

Scheme 33 SET decay of [Ph2P(OH)Oi-Pr]�. Reprinted with permission from [68]. Copyright
1994 Wiley Interscience

Scheme 34 SET process for tetraaryl phosphoranyl radicals. Reprinted with permission from
[69]. Copyright 1993 American Chemical Society

d6 or acetonitrile-d3 to give p-tolyltriphenylphosphonium salt and 4-iodotoluene
(Scheme 34). All the experimental observations agree with a radical chain re-
action involving tolyl and phosphoranyl radical intermediates.

5.2.4
Second Order Homolytic Substitution, SH2

During the last two decades, Bentrude et al. [70] has shown that phosphoranyl
radicals exhibiting very slow a- and b-fragmentations react with alkyl disul-
fides via SH2 homolytic substitution (Scheme 35) [70b]. The reactivity of phos-
phoranyl radicals in these SH2 reactions depends strongly on the substituents
attached to the phosphorus atom and on the structure of the disulfides [70c].

5.3
Applications

The free radical Arbuzov reaction has been developed for the preparation of
vinyl- and arylphosphonates in good to excellent yields. Oligonucleotides, suit-
ably modified in the vicinity of the phosphorus backbone to impart nuclease
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Scheme 35 SH2 reactions of phosphoranyl radicals with alkyl disulfides

resistance, are the key molecules in the antisense approach to antiviral and 
antitumor therapy [51, 71]. The free radical Arbuzov reaction has been used to
prepare phosphonate oligonucleotide precursors. For example [72], the rapid
5-exo digonal cyclization of 5-hexynyl and 3-oxa-5-hexynyl free radicals gen-
erates vinyl radical intermediates, 1 (Scheme 36), which are readily trapped 
by P(OMe)3. b-Scission of the resulting phosphoranyl radicals, 2, yields the 
targeted vinylphosphonates, 3, which are precursors of deoxy ribonucleoside-
based phosphonates (vide infra) [62, 72, 73].

Scheme 36 Preparation of vinylphosphonates via free radical Arbuzov reaction

The reactivity of phosphites described in Scheme 27 has been applied to 
various oxiranes to afford the expected alkenes in low (15%) to excellent (95%)
yields (Fig. 6) [64].

Roberts et al. [74] took advantage of the rapid and selective b-scissions of
phosphoranyl radicals, to develop a radical chain desulfurization affording new
substituted a-alkyl acrylates in good to moderate yields (Scheme 37).

Various phosphines are valuable ligands for metal centers involved in cat-
alytic and noncatalytic organometallic chemistry. Unfortunately, phosphines
are readily oxidized to phosphine oxides and to prevent their oxidation they



Reactivity of Phosphorus Centered Radicals 65

Fig. 6 Alkenes issued from the reduction of oxiranes in the presence of trialkylphosphites

Scheme 37 Radical chain desulfurization involving phosphoranyl radicals as chain carriers.
Reprinted with permission from [74]. Copyright 1998 Pergamon Press

Scheme 38 Radical chain desulfurization or deselidization of phosphine sulfides or se-
lenides to afford phosphines

must be stored in unreactive forms [75] such as phosphine sulfides (R3P=S) or
selenides (R3P=Se). Then, an easy and friendly method for removal of the sul-
fur or the selenide atom is needed. Taking advantage of the fast addition of silyl
radicals to a P=S or P=Se bond and the fast and selective a-scission of the 
�P–S or �P–Se bond of a phosphoranyl radical, Chatgilialoglu et al. [76] showed
that phosphine sulfides and phosphine selenides, in the presence of tris(tri-
methylsilyl)silane, are reduced to the corresponding phosphines with high
yields (Scheme 38).



As already mentioned, the reduction of di-p-tolyliodonium salt into p-tolylio-
dide in the presence of triphenylphosphine (Scheme 39) [69] involves a SET, the
intermediate phosphoranyl radical behaving as one electron-reductant.

The triplet-sensitized photorearrangement of allylphosphites [65– 67] offers
a rapid and efficient access (60–70% yields) to oligonucleotides, which are 
key molecules in the antisense approach to antiviral and antitumor therapy
(Scheme 40) [39, 40, 73].

66 S. Marque · P. Tordo

Scheme 39 SET reaction involving phosphoranyl radicals. Reprinted with permission from
[69]. Copyright 1993 American Chemical Society

Scheme 40 Triplet-sensitized photorearrangement of allylphosphites applied to the prepa-
ration of dinucleosides

Phosphoranyl radicals can be involved [77] in RAFT processes [78] (re-
versible addition fragmentation transfer) used to control free radical poly-
merizations [79].We have shown [77] that tetrathiophosphoric acid esters are
able to afford controlled/living polymerizations when they are used as RAFT
agents. This result can be explained by addition of polymer radicals to the 
P=S bond followed by the selective b-fragmentation of the ensuing phospho-
ranyl radicals to release the polymer chain and to regenerate the RAFT agent
(Scheme 41).



6
Persistent and Stable Phosphorus Centered Radicals

Since the discovery of the first persistent radical by Gomberg [80], the prepa-
ration of persistent and stable organic radicals has been a stimulating challenge
for chemists [81]. Hereafter, P-centered radicals are classified as persistent or
stable according to the definition given by Ingold and Griller [81]. Persistent
and stable P-centered radicals have been recently reviewed by Power [82] and
Geoffroy [83], therefore, only some typical examples will be discussed. It must
be noted that although the characterization of various persistent and/or stable
P-centered radicals can be considered as an outstanding result, their chemistry
is not developed and many of them are still considered to be chemical cu-
riosities.

6.1
Structures

Recently, Rankin et al. [84] obtained the X-ray structure of the stable pnictinyl
radical and observed a very unusual conformational arrangement, i.e., a syn-
syn arrangement of the H–C–P–C–H bond sequence (Fig. 7).

The first p-phosphaquinone radical anion (Fig. 8), another example of stable
phosphinyl, was prepared by Yoshifuji et al. in 1998 [85].
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Scheme 41 Phosphoranyl radicals as intermediates in RAFT polymerizations

Fig. 7 Preferred conformation of the stable pnictinyl radical



Other recently discovered p or s stable or persistent P-centered radicals are
shown in Fig. 9. Chemical or electrochemical oxidation of Mes*P=C(NMe2)2 re-
sults in the immediate formation of a deep violet solution of radical cation I
(Fig. 9) [86]. The violet solid I can be kept for a few weeks in a glove box or for
a few days in solution under nitrogen atmosphere.

The persistent radical anion II was obtained by chemical or electrochemical
reduction of the parent neutral compound. The EPR spectrum of II is composed
of a triplet of triplet (aP(2P)=3.50 mT and aP(2P)=0.89 mT) characteristic of a
planar conjugated structure (Fig. 9) [87]. Amazingly, the dianion III was found
to be paramagnetic exhibiting an EPR spectrum composed of a distorted dou-
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Fig. 8 Structure of p-phosphaquinone radical anion

Fig. 9 Structures of new persistent and/or stable P-centered radicals
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Fig. 10 Structure of persistent phosphoranyl radicals

blet of doublet (aP(1P) 6.17=mT and aP(1P)=2.78 mT) [87]. The authors inter-
preted the EPR spectrum of III assuming that each diphosphene moiety bears
an unpaired electron (occupying the P=P p* orbital) and is independent of the
other CPPC group (Fig. 9). The dianion III has a non-planar geometry, the mid-
dle ring adopts an orientation that “insulates” the spins from one another. The
redox-induced geometrical changes for III are analogous to the behavior of a
so-called molecular switch [87].

Radical IV can be considered as a unique phosphorus radical species. Re-
duction of the parent macrocycle with sodium naphtalenide in THF at room
temperature gave a purple solution. The EPR spectrum displayed a signal in a
1:2:1 pattern, with aP(2P)=0.38 mT. DFT calculations on radical IV models in-
dicated a P–P distance of 2.763 Å (P…P is3.256 Å in the crystal structure of the
parent compound and the average value of a single P–P bond is 2.2 Å). Ac-
cording to the authors, the small coupling constant arises from the facts that the
principal values of the hyperfine tensor are of opposite sign and  that the s P�P
one electron bond results from overlap of two 3p orbitals [88].

Radical V represents the first phosphorus analog of hydrazyl radical [89]
(Fig. 9), obtained by the chemical reduction of [Mes*MeP=PMes*]+O3SCF3

–

using tetrakis(dimethylamino)ethylene as electron donor. The isotropic cou-
pling constants (aP1=13.92 mT and aP2=8.92 mT) indicate a larger spin density
on P1 than on P2, which retains a significant degree of pyramidalization. It is
noteworthy that, due to stronger interaction between nitrogen 2p orbitals, for
hydrazyl radicals the unpaired electron is almost equally delocalized over the
two planar nitrogen centers [89].

Bertrand et al. [90] isolated red crystals of radical VI, which were stable 
under inert atmosphere. The EPR signal of a THF solution of VI displayed a
five-line pattern with an intensity ratio 1:3:4:3:1 due to coupling to two equiv-
alent phosphorus (aP=0.94 mT) and one nitrogen (aN=0.99 mT) nucleus.

Phosphoranyl radicals were observed by EPR at the end of the sixties [91].
For a long time, phosphoranyl radicals, particularly the alicyclic ones [59], were
considered as elusive species. However, recently, Marque et al. [92] observed the
first strongly persistent (t1/2=45 min at RT) alicyclic phosphoranyl radicals
(Fig. 10) when they irradiated bis(trialkylsilyl)peroxides in the presence of
tris(trialkylsilyl)phosphites. The increased lifetime of the ensuing phospho-
ranyl radicals is a consequence of the presence of four bulky R3SiO groups
around the phosphorus. The bulkiness of the substituents hampers the di-
merization and the SH2 reaction of phosphoranyl radicals with the peroxide 
initiator. Furthermore, the high strength of the P–O and O–Si bonds results in
slow a- and b-scissions [93].



7
Miscellaneous

The results reported in the previous sections illustrate the importance and ver-
satility of P-centered radicals in organic chemistry. In this last section we would
like to mention various reports that show that the presence of a phosphorus
substituent close to a radical center can dramatically influence its properties.

The b-(phosphatoxy)alkyl radical migration was first described, indepen-
dently, by Crich et al. and Giese et al. [94]; an example of this rearrangement is
shown in Scheme 42 [95]. A huge amount of work has been reported concern-
ing the applications and the mechanism of this rearrangement [95, 96]. Very
strong evidence has emerged that the whole range of chemistry observed is due
to a radical ionic fragmentation, the differences being due to the extent of por-
tioning between contact ion pairs (CIP), solvent-separated ion pairs (SSIP), and
diffusively free radical ions and ions [97].
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Scheme 42 Example of b-(phosphatoxy)-alkyl rearrangement

Spin trapping coupled with EPR allows the visualization of transient free
radical populations by reacting short-lived radicals with a spin trap to produce
persistent spin adduct radicals [98]. The technique has been widely used in the
field of biological sciences, particularly to characterize oxygen-centered rad-
icals (O2

�–, HOO�, HO�) involved in oxidative stress [99]. For a long time DMPO
(2,2-dimethyl-3,4-dihydro-2H-pyrrole-1-oxide) has been the most widely used
spin trap for superoxide (O2

�–), one of the most important transient radical in
free radical biology. However, the half life of the DMPO superoxide spin adduct
is short (close to 1 min) and in many instances its EPR detection is rather te-
dious. Tordo et al. [100] showed that the trapping of superoxide is much eas-
ier when 2-diethoxyphosphoryl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide
(DEPMPO, Scheme 43) is used as spin trap, the half life of the DEPMPO-su-
peroxide spin adduct being close to 15 min. Although the influence of the
phosphoryl group is not yet completely understood, preliminary results clearly
show that it favors conformations of the spin adduct stabilized by anomeric
interactions involving the nitroxyl p system and the C–OOH bond. DEPMPO
has also been shown to be more convenient than DMPO for the spin trapping
of other oxygen- and sulfur-centered free radicals.

The development of controlled/living radical polymerization processes,
yielding polymers with narrow polydispersities and a high percentage of liv-
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Scheme 43 Spin trapping of superoxide with DMPO and DEPMPO

Scheme 44 Simplified mechanism of NMP

ing chains is a major achievement of the last decade of research in the polymer
field [101]. Nitroxide-mediated radical polymerization (NMP) is illustrated in
Scheme 44 When the persistent radical effect [102] is established, the excess of
free nitroxide prevents the self-termination of polymer radicals, which grow
through successive deactivation–dissociation cycles whereby they are alterna-
tively transformed into dormant alkoxyamines and activated into active poly-
mer radicals by thermal homolysis. Hence, a majority of dormant living chains
can grow until the monomer is depleted, resulting in a polymer with large 
living character and small polydispersity index. A complete kinetic modeling
of NMP has been carried out, and the kinetic conditions required for a suc-
cessful process have been established. [103] These studiesand various experi-
mental results have emphasized the importance of the equilibrium constant
K=kd/kc . For the polymerization of a monomer M, the K value depends on the
structure of the nitroxide used to control the polymerization. For example, only
the radical polymerization of styrenic monomers can be partially controlled
with 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO). To overcome the
TEMPO limitations, other types of nitroxides were tailored. Tordo et al. [104]
prepared stable acyclic b-phosphonylated nitroxides (Fig. 11) and showed that
for the NMP of a given monomer, the optimal K value can be approached by 
adjusting the size and the electronegativity of the phosphonyl group Y2P=O
(Y=R, RO, Ph, PhO...). Nowadays, the [N-tert-butyl-N-(1-diethylphosphono-
2,2dimethylpropyl)nitroxide], named SG1 (Fig. 11), is the most efficient ni-
troxide to control the radical polymerization of various styrenic and acrylic
monomers [105].



8
Conclusion

Studies on the formation and reactivity of P-centered radicals continue to be
a versatile source of mechanistic information and reactions of interest in syn-
thetic chemistry.Various new persistent or stable P-centered radicals have been
described and could find applications as paramagnetic probes. The possibility
of influencing the properties of organic free radicals bearing an appropriately
located phosphorus group should find interesting applications.
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Abbreviations
AMMP Aminophosphane phosphinite
BARF Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
CAS Chemical Abstracts Service
Cp Cyclopentadienyl
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DIPEA Diisopropylethylamine
DMAP 4-Dimethylaminopyridine
NMR Nuclear magnetic resonance
PNP N,N-Bis(diphenylphosphino)-2,6-diaminopyridine
TEA Triethylamine

1
Introduction, Scope and Time Frame

Tervalent organophosphorus compounds containing one single P-N bond with
the valency of each atom saturated by protons or carbons (but no other het-
eroatoms) have been known since their discovery by Michaelis more than one
century ago [1] and named indistinctly as aminophosphanes, phosphanamines,
phosphazanes, or phosphinous amides. This last chemical nomenclature is the
one used by the Chemical Abstracts Service (CAS) for indexing these compounds
and is also the one that best delimits the scope of this review: those species de-
rived from the parent H2P-NH2 (phosphinous amide in CAS nomenclature) by
partial or total substitution of protons by hydrocarbon radicals (Table 1).

Between all the classes of substituted phosphinous amides summarized in
Table 1, those with the P atom totally substituted are more stable than others
with H–P bonds, as in many other classes of organophosphorus compounds.
Between those, the trisubstituted or fully substituted (typed in boldface) are by
far the most stable and the main actors of the chemistry described in the fol-
lowing pages.

Also covered by this review are those compounds bearing two or three
phosphane units at the same N atom, that is those derived from (H2P)2NH (N-
phosphino phosphinous amide in CAS nomenclature) and from (H2P)3N, N,N-
bis(phosphino) phosphinous amide, but not those bearing more than one amino
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Table 1 Phosphinous amides

Parent  Monosubstituted Disubstituted Trisubstituted Tetrasubstituted
Compound

H2P-NH2 R1P(H)-NH2 R1R2P-NH2 R1R2P-N(H)R3 R1R2P-NR3R4

H2P-N(H)R2 H2P-NR1R2 R1P(H)-NR2R3

R1P(H)-N(H)R2



group at the same P atom, i.e., derived from HP(NH2)2, phosphonous diamide,
or P(NH2)3, phosphorous triamide, which have been left out of the following
discussion in order to keep this review within reasonable space limits.

This chapter will also deal with compounds containing two or three phos-
phinous amide units, which, for simplicity, will be named here as bis(amino-
phosphanes) or tris(aminophosphanes) but not with phosphinous amides con-
taining other additional organophosphorus functionalities as, for instance, the
so-called aminophosphine phosphinites (AMMP), which have been the subject
of increasing attention in the literature dealing with catalytic asymmetric trans-
formations and have been treated in other reviews [2, 3].

This chapter will not cover compounds containing heteroatoms linked to the
P and/or N atom of the P–N unit, with the notorious exception of those with
N–Si bonds (N-silyl phosphinous amides) due to its particular relevance in
terms of chemical reactivity.

To the best of our knowledge, the chemistry of phosphinous amides has not
been reviewed before. This is why this account, whilst not comprehensive due
to space limitations, is intended to serve as a summary of the most represen-
tative details of the chemistry of these species and also as an introduction to
their use in catalysis. For these reasons, the time frame is not restricted to the
last few years (although focused on them) but occasionally dates back as far as
necessary.We will present first a short overview of the main reactions used for
preparing phosphinous amides and second the more relevant characteristics of
their chemical behavior. Special attention will be devoted to the most recent de-
velopments of these compounds as ligands in transition metal complexes with
catalytic applications.Although we have tried to be thorough, most probably we
have omitted some works that merit citation due to the difficulty in coping with
the strong dissemination of the pertinent literature. We apologize in advance
to any authors who find their work in this area neglected in this account.

Other recently published treatises and reviews on organophosphorus chem-
istry that partially deal with phosphinous amides include those dedicated to the
preparation and properties of tervalent phosphorus acid derivatives [4], inor-
ganic backbone phosphanes [5], new chiral phosphorus ligands for enantios-
elective hydrogenation [6, 7], the asymmetric synthesis of organophosphorus
compounds [8], bidentate organophosphorus ligands [9] and to bis(diphenyl-
phosphino)amine and related ligands [10].

2
Stability and Properties

The stability of phosphinous amides depends, to a large extent, on the sub-
stituents at phosphorus and nitrogen. Normally, tetrasubstituted and N,P,P-
trisubstituted phosphinous amides are stable and well-known compounds. The
parent compound H2PNH2 is a volatile compound that is formed on hydrolysis
of a solid state solution mixture of magnesium phosphide and magnesium 
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nitride [11]. It has been proposed that H2PNH2 is presumably formed by pho-
tolysis of NH3+PH3 mixtures, and that this compound decomposes to a reddish
polymer (PN)x that is partially responsible of the coloration of Jupiter’s atmos-
phere [12].

P-Unsubstituted phosphinous amides H2PNR2 are practically unknown,
with the notorious exceptions of H2PN(SiMe3)2 [13] and H2PN(CF3)2 [14, 15].
PH-Phosphinous amides are also rare, although some examples of RP(H)NH2,
RP(H)NHPh and RP(H)NEt2 have been prepared with their phosphorus atom
coordinated to a W(CO)5 fragment, and were, in this form, stable towards air
oxidation [16]. In free state, they decompose via a-elimination of HNR2 to phos-
phinidenes RP and their secondary products [17]. The two silyl substituents on
nitrogen make RP(H)N(SiMe3)2 stable [18].

All attempts to prepare (CH3)2PNH2 have met with failure [19, 20] but
(CF3)2PNH2 [14], Ph2PNH2 [21] andtBu2PNH2 [22] are moderately stable. Al-
though bis(phosphino)amines have occasionally been claimed to exist in two
isomeric forms, R1N(PR2

2)2 and R2
2P-P(=NR1)R2

2 [23, 24], they have been
widely used as normal tervalent organophosphorus compounds.

N,N-Bis(phosphino) phosphinous amides N(PR2)3, commonly called triphos-
phinoamines, are still virtually unknown, with the exceptional reported exis-
tence of N(PF2)3 and N[P(CH3)2]3 [15, 19, 20]. The usual synthetic approaches
to N(PPh2)3 give instead the isomeric Ph2P-P(Ph2)=N-PPh2 [25].

The P–N bond in phosphinous amides is essentially a single bond, so the
lone pairs on N and P are available for electrophilic reagents and for donor
bonding towards metal atoms. Proton addition to the N atom of H2PNH2 has
been calculated to loosen the P–N bond, whereas protonation at P renders this
bond stronger than in the parent molecule [26]. NH-Phosphinous amides are
practically not associated by intermolecular hydrogen bonds [27].

Hindered rotation around the P–N bond has been observed at low temper-
ature in tetrasubstituted phosphorus amides [28]. For Ph2PN(SiMe3)2, two dif-
ferent Me3Si groups are observed below –65 °C, the calculated activation energy
for P–N rotation being 10.2 Kcal mol–1 [29]. Chiral phosphinous amides with
stereogenic phosphorus atoms have been prepared [30, 31].

3
Synthesis

Among the routes for preparing phosphinous amides, the most frequently used
method is the aminolysis of halophosphanes, most usually chlorophosphanes
[32–34], because a number of such halophosphanes are easily accessible from
commercial sources. These reactions usually provide the target species, i.e.,
trisubstituted compounds 1 in Scheme 1, in high yield. The HCl liberated from
the reaction forms a salt with an organic base (either excess of the starting
amine or externally added as, for example TEA or DBU, sometimes in the pres-
ence of DMAP) which is insoluble in the reaction solvent, typically diethyl ether
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or tetrahydrofuran, and therefore leads to facile separation and purification of
the desired products. Care needs to be taken to exclude water from the reaction
medium to prevent the hydrolysis of the phosphinous amides.

The reaction temperature varies between –40 and 110 °C, depending on the
reactivity of both counterparts, amine and chlorophosphane.As usual, aliphatic
amino groups react faster than aromatic and heteroaromatic ones due to their
greater nucleophilic strength. These differences in reactivity allow chemose-
lective phosphinous amide formation, as that represented in Scheme 2 where
the P–N bond is formed exclusively at the aliphatic NH2 group of 2 but not at
the heteroaromatic NH2, whose lone pair is extensively delocalized in the elec-
tron-withdrawing purine ring [35].
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Scheme 1

Scheme 2

The generalized application of the aminolysis of halophosphanes has been
the method of choice for the preparation of a wide variety of chiral phosphinous
amides by starting from enantioenriched primary amines [36]. The aminolysis
reaction occurs efficiently even when the halophosphane is placed in the coor-
dination sphere of a metal, as in the palladium and platinum complexes of the
type cis-M(Ph2PCl2)2Cl (M=Pd, Pt) [37, 38].

Not only N–H bonds from amines can participate in the aminolysis reaction,
but also less nucleophilic urea, thiourea and biuret NH units can react with
halophosphanes in an effective manner, forming the corresponding phosphi-
nous amides with additional functionalities at the nitrogen atom [39–44].

N-Unsubstituted imines have been similarly converted into N-alkylidene
phosphinous amides, as 3, in reactions run in the presence of triethylamine [45]
(Scheme 3).

Scheme 3



An elegant preparation of similar compounds, 4, has been recently reported
by Majoral [46]. The hydrozirconation of nitriles with Schwartz’s reagent
[Cp2Zr(H)Cl]n (abbreviated as [Zr]-H in Scheme 4) leads efficiently to the cor-
responding N-zirconaimine, which when reacted with chlorophosphanes gave
4 by an exchange reaction, along with the loss of the metal fragment [Cp2ZrCl2].
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Scheme 4

In the aminolysis processes for preparing phosphinous amides it is possible
to replace the organic base by n-BuLi, Na or K, which leads to the initial de-
protonation of the amine and formation of an amide anion. This anion can be
subsequently reacted with the halophosphane for forming the new P–N bond
[47–51]. This methodology has been particularly successful for preparing
phosphinous amides with the nitrogen atom forming part of an heteroaromatic
ring [52–57] (Scheme 5).

Scheme 5

An alternative method for preparing phosphinous amides makes a profit on
the high affinity between silicon and halogen atoms. This is the driving force
of the reactions between halophosphanes and N-(trimethylsilyl)anilines, N-(tri-
methylsilyl)amides or N-(trimethylsilyl)ureas and thioureas, as represented in
the Scheme 6. In these processes the desired P–N bond and an halosilane are
simultaneously formed [53, 58–60].

Scheme 6

A slightly different approach to phosphinous amides is represented in
Scheme 7. It consists of the sequential substitution of the two halogen atoms of
a dihalophosphane first by an amine and then by an alkyl group, by using an
organometallic reagent in this last step. The method is especially well suited for
synthesizing tetrasubstituted phosphinous amides with two different groups at
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Scheme 7

Scheme 8

Scheme 9

4
Prototropic Equilibrium

Phosphinous amides bearing protons at the nitrogen atom, that here we will
call NH phosphinous amides, such as 6, may be involved in prototropic equi-
libria with their PH phosphazene forms 7 [18, 68–70] (Scheme 10). This kind
of prototropic equilibria, paralleling that between phosphinous acids R2P-OH
and phosphane oxides R2P(O)H [4], have been evidenced in some particular

The amino interchange reaction is another method commonly used for
preparing phosphinous amides [67] (Scheme 9). The low boiling points of di-
methylamine and diethylamine allow their displacement from N,N-dimethyl 
and N,N-diethyl phosphinous amides, respectively, by other less volatile amines,
leading to new members of the same class. High reaction temperatures are 
nevertheless required.

Scheme 10

the phosphorus [20, 61–64]. A number of the required dihalophosphanes are
commercially available.

Species 5 (Scheme 8), commonly known as dialkylaminodifluorophosphines,
are readily synthesized via the selective cleavage of the phosphorus–carbon
bond of difluoro(trichloromethylphosphane) by the action of secondary amines
[65, 66]. Compounds 5 show selective F/H exchange with LiAlH4/HN(iPr)2 to give
the respective PH2 (P-unsubstituted) phosphinous amides [13].



cases by means of spectroscopic methods, mainly NMR [71, 72]. Ab initio 
calculations have shown the tervalent phosphinous amide H2P-NH2 to be
nearly 30 Kcal mol–1 more stable than the tautomeric tetracoordinate form,
phosphazene H3P=NH [50, 70].

The position of the phosphorus–nitrogen diad tautomeric equilibrium 6 to
7 depends on the nature of the solvent and the substituents at the phosphorus
and nitrogen atoms, shifting towards the tautomeric form possessing the least
mobile protons. It has been postulated that the presence of an electron-with-
drawing group, whether on the N or P atom, decreases the basicity of such atom
and thus the proton migrates to the one that has become the more basic center
of the molecule [69, 73–75].As far as the solvent is concerned, Kolodiazhnyi and
coworkers reported that going right in the following solvent sequence: chloro-
form – methylene chloride – benzene – diethyl ether, the tautomeric equilibrium
is gradually shifted towards the NH phosphinous amide form [72].

This prototropic equilibrium has been also studied in substrates bearing 
metals linked to the nitrogen atom in the form of Cp2MCl or CpMCl2 groups
[76–78], and the influence of different ligands at the metal center on the result-
ing equilibrium between the kinetically favored NH phosphinous amide and 
the thermodynamically stable tautomeric PH phosphazene form has been dis-
cussed (Scheme 11).
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Scheme 11

The equilibrium position corresponds well with the Lewis acidity of the metal
center. By increasing the electrophilicity of the metal fragment the equilibrium
concentration of the PH form increases [79]. Some computational studies un-
ambiguously confirm the experimental results [78].

5
General Chemistry

5.1
The Phosphinous Amide Anions

Phosphinous amides of general structure R1R2PNHR3 are easily converted 
to their respective anions by metals or bases. For instance, they can be easily 
deprotonated by alkyllithium reagents to give the [R1R2PNR3] anions (8-A or
8-B, illustrated in Scheme 12).

The phosphorus atom in both resonance forms is in the P(III) oxidation
state. Resonance form 8-A has a formal negative charge on the nitrogen atom,
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Scheme 12

Scheme 13

The experimental barrier for interconversion of the cis and trans isomers 
of [PhNPPh2]– is 8 kcal mol–1, and the barriers of other derivatives have been
calculated to be in the range 7–32 kcal mol–1, where the larger barriers are as-
sociated with the presence of substituents on the nitrogen that are moderately
electron-withdrawing [50, 87].

whereas in resonance form 8-B the negative charge is located on the phospho-
rus atom. Form 8-A is expected to predominate if the greater electronegativity
of the nitrogen atom is the dominant factor; however, form 8-B, in which phos-
phorus has expanded its octet, results in additional stabilization due to reso-
nance delocalization of the charge and N–P multiple bonding [50].

Although anions of type 8-A have been known for many years, almost as
long as their parent phosphinous amides, detailed studies on these species have
attracted less attention. In 1982, Cowley presented spectroscopic and synthetic
evidences indicating that an anion similar to type 8-B was preferred over type
8-A [80, 81]. The first known X-ray structure of one of such anions was not 
reported until 1992 [82]. The specific anion, [PhNPPh2]–, with lithium as the
countercation, exhibits a dimeric structure and also contains diethyl ether, and
is best described as [PhN(Li)PPh2(OC2H5)]2. Because there are both N-Li and
P-Li interactions in the solid state, this anion was viewed as a resonance hybrid
phosphinous amide-iminophosphide (8-A-8-B) ion. Since then, several papers
have been published describing the structure of some related anions and 
dianions in which the lithium ion is not always associated exclusively with the
nitrogen [50, 74, 83, 84]. In all the examples where a P–Li interaction is observed
in the solid state, this interaction could not be ascertained in solution by using
31P or 7Li NMR spectroscopy.

Complexation of these anions with other metals gives interesting hetero-
metallic complexes in which both the N- and P-centers are involved in coordi-
nation to the metal [47, 85, 86]. In addition to the experimental work, ab initio
calculations have been carried out that focus on the short N–P bond to delin-
eate the location and/or distribution of the negative charge [87]. These theoret-
ical investigations suggest that the most simple alkyl/aryl derivatives are best 
described as phosphinous amide anions with the negative charge essentially 
located on nitrogen, and that there is enough hyperconjugative bonding to 
enforce two ground-state conformations for 8-A, cis and trans (Scheme 13).



These phosphinous amide anions are presumably responsible for the for-
mation of the by-products N-phosphino phosphinous amides 11 and mono-
phosphazenes derived from diphosphanes 12 in the sequential treatment of
primary amines with n-BuLi and chlorophosphanes for preparing NH phos-
phinous amides [75, 88] (Scheme 14). Compounds 11 and 12 are presumably
derived from anions 9 and 10, respectively, generated by deprotonation of the
newly formed phosphinous amide with the lithiated amine R1NHLi. In solution,
9 can establish a metallotropic equilibrium with 10.

86 M. Alajarín et al.

Scheme 14

5.2
Reactions at Phosphorus or Nitrogen

Phosphinous amides behave as normal phosphanes in many of their reactions
occurring at the phosphorus atom. The presence of the lone pair on the adja-
cent nitrogen atom has been shown to increase the nucleophilicity of the phos-
phorus although in an extent not comparable to the a effect seen in N–N and
N–O nucleophiles [89]. It has been argued that repulsive interaction between
the N and P lone pairs may raise the energy of the latter, thus rendering it more
basic and nucleophilic [90], whereas dp-pp interactions are of minor relevance
in this respect. The effect is relatively small, and phosphinous amides are not
classified among the typical a-nucleophiles. Besides nucleophilic reagents,
phosphinous amides are also electrophilic at phosphorus, as the nitrogenated
part can be displaced by strong nucleophiles, as will be shown below.

Oxidation occurs when exposed to air, with hydrogen peroxide [30], dialkyl
peroxides [18] or manganese dioxide [32, 91] to produce the corresponding 
oxide, that is, the phosphinic amides R1R2P(O)NR3R4. Reactions with sulfur 
[30, 92] or selenium [93] yield the respective thio- or selenoanalogs. Similarly,
the Staudinger imination reaction of phosphinous amides with organic azides
produces the expected imines R1R2P(=NR5)NR3R4 [67, 94], the P(V) phos-
phaanalogs of the amidines. When R3=H, these compounds can be deproto-
nated by the action of sodium and the resulting salts further alkylated at the 
nitrogen [94].



Phosphinous amides are regioselectively alkylated at phosphorus, and the re-
sulting aminophosphonium salts are generally stable [20, 61].With phosphinous
amides bearing protons attached to the nitrogen atom, the NH-aminophos-
phonium salts can be easily deprotonated by organic bases such as TEA, DIPEA
and DBU, to yield the corresponding phosphazenes (iminophosphoranes, phos-
phane imines) [92, 95–97]. The full sequence constitutes a novel entry, via P–C
bond formation, to this widely utilized class of P(V) derivatives, from which the
P=O and P=S analogs can be readily prepared by aza-Wittig type reactions
[98–101]. The method has been applied to the preparation of polyfunctional
organophosphorus compounds, such as the tris(iminophosphorane) 13, triox-
ide 14 (X=O), and trisulfide 14 (X=S), starting from reactive organic poly-
halides [95] (Scheme 15).
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Scheme 15

In this context, the treatment of the N-phosphinyl iminoethers 15 with
methyl iodide furnish the P-methyl phosphonium iodides, which by heating ex-
perience an O-dealkylation, reminiscent of the Arbuzov reaction, for yielding
the N-acylphosphazenes 16 [45] (Scheme 16).

Scheme 16

A number of NH phosphinous amides have been P-alkylated by previous
conversion to their corresponding anions [59, 74]. A particular case of double
alkylation takes place with the anion derived from the N-phosphino phosphi-
nous amide NH(PPh2)2 yielding the diphosphonium salt 17 [102] (Scheme 17).
When neutral, its methylation is reported to give the P–H phosphazene-phos-
phonium salt 18 [103].

NH-Phosphinous amides are also alkylated at phosphorus by electrophilic
olefins, such as acrylonitrile and acrylamide, with concomitant formation of a
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Scheme 17

phosphazene unit [104] (Scheme 18). Similar P–H additions to the activated
C=C double bond of P-vinyl phosphane oxides, sulfides and imines have been
recently been carried out by our research group [105].We have also used other
types of electrophilic olefins and acetylenes in related processes, and the results
will be reported in due course.

Scheme 18

Other reactions that resulted in the formation of P=N double bonds are
those of NH phosphinous amides with tetrahalomethanes [106–108]. The 
reaction products, P-halophosphazenes 19, may be further elaborated by 
substituting the halogen atom with amines or Grignard reagents (Scheme 19).

Scheme 19

Occasionally, attempts at introducing a new PR2 group on the nitrogen atom
of an NH phosphinous amide, with the aim of preparing N,N-bis(phosphino)
phosphinous amides, result in the generation of monophosphazenes derived
from diphosphanes, as seen in the preparation of 20 which occurs by P–P bond
formation [74] (Scheme 20). The authors of this work claimed that the electron-



withdrawing cyano group may determine that the tautomeric phosphazene
R1

2P(H)=NR2 dominates in the reaction with Ph2PCl.
Tetrasubstituted phosphinous amides of the type R2NPPh2 have been suc-

cessfully arylated at phosphorus by the action of bromobenzene, in a process
catalyzed by NiBr2, to give the aminophosphonium bromides [R2NPPh3]+ Br–

[109]. Other representative members of this class form phosphane–borane com-
plexes [62], are aminated at phosphorus by chloramine to yield bis(amino)phos-
phonium salts [110] and have been claimed to be protonated at phosphorus by
ethereal tetrafluoroboric acid, as determined by NMR analysis [111].

NH-Phosphinous amides can be metallated at nitrogen, via their corre-
sponding anions [78, 112, 113] as well as borylated [114] and silylated [22, 115,
116]. In this last case, the isomeric P-silylphosphazenes are also occasionally
obtained.

5.3
Reactions that Fragment the P–N Bond

The hydrolysis of phosphinous amides leading to their constituents, amine
and phosphinous acid, is an easy process that is usually followed by the self-
condensation of the acid to yield the diphosphane monoxides 21 [117, 118]
(Scheme 21).
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Scheme 20

Scheme 21

The P–N bond also breaks when the phosphinous amides react with gaseous
HCl, producing the expected amine hydrochloride and the corresponding
chlorophosphane [14] (Scheme 22).



Aqueous HCl solutions hydrolyze the P–N bond to give the amine hy-
drochloride and R2P-OH, which then disproportionates and is oxidized to
diphenylphosphinic acid. A “free” phosphinous amide anion, with the coun-
tercation complexed by a crown ether, has been shown to be hydrolyzed and ox-
idized to the corresponding phosphinite with unusual ease [119]. Formic acid
in toluene can be utilized for converting P,P-disubstituted phosphinous amides
into their respective phosphane oxides [30].

The course of the reaction of phosphinous amides with carboxylic acid chlo-
rides is dependent on the characteristics of the N-residue. Thus with N-aryl
compounds this reaction gives chlorophosphanes and carboxamides. With
N-alkyl analogs the primary reaction products have not been identified but
they hydrolyzed to carboxaldehydes [120].

In a similar way to the aminolysis of the P–N bond mentioned above
(Scheme 9), alcoholysis of phosphinous amides leads to the alkyl esters of the
respective phosphinous acids [30, 121]. This reaction occurs with inversion 
of the absolute configuration of the phosphorus atom, and has been used in 
a synthetic sequence leading to optically active tertiary phosphanes 22 [122]
(Scheme 23).
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Scheme 22

Scheme 23

Only in a particular case can the R2N group of N,N-disubstituted phosphi-
nous amides be nucleophilically displaced by the action of organometallic
reagents at phosphorus, as recently reported [123]. Whereas NEt2 or NiPr2 re-
mained unaltered by Grignard reagents and alkyllithiums, the NMePh group
could be displaced by RLi reagents. This fact has been used in a sequential syn-
thesis of chiral tertiary phosphanes that is based on the selective displacement
at phosphorus of a Cl in the presence of a NMePh residue and further dis-
placement of this last by RLi (Scheme 24).

The results of the reaction of carbonyl compounds, aldehydes and ketones,
with NH phosphinous amides can be interpreted as occurring on the PH phos-
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Scheme 24

Scheme 25

More recently, Balakrishna et al. disclosed that the reaction of similar sub-
strates with formaldehyde occurs with insertion of a methylene group between
phosphorus and nitrogen to give PhNHCH2P(O)Ph2 [125]. This is simply a new
example of the same type of reaction. Following this communication, the re-
action was studied in more depth by the same research group using different
aldehydes. They showed that whereas benzaldehyde and formaldehyde behave
as above yielding 24, other aliphatic aldehydes give instead a-hydroxyalkyl
phosphane oxides 25 [118] (Scheme 26).

phazene tautomeric form, via aza-Wittig processes. Thus, as early as 1966 ben-
zaldehyde was reported to react with N,P,P-triphenyl phosphinous amide to
give a-diphenylphosphinyl-N-benzylaniline 23 [124] (Scheme 25). The reaction
products result from the addition of diphenylphosphane oxide to the C=N
bond of the imine resulting from the initial aza-Wittig process.

Scheme 26

Cyclohexanone reacts similarly to give the corresponding imine and
Ph2P(O)PPh2 [124].
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Scheme 27

Scheme 29

6
N-Silyl Phosphinous Amides

The N-silyl phosphinous amides present some particularities in their reac-
tivity that make these compounds worth commenting on separately. They 
are stable and can be easily prepared in the usual way by reaction of N-silyl
substituted primary amines or hexamethyldisilazane with halophosphanes
[48, 49, 128, 129] or by N-silylation of the appropriate phosphinous amides [72,
107]. The reductive Ph–P bond cleavage in N-silyl phosphazenes Ph3P=NSiMe3
by the action of sodium is a peculiar example of preparing Ph2PNHSiMe3 [130].

It is well known that trialkylsilyl groups are prone to migrate via different
types of molecular rearrangements [131]. This behavior serves to explain some

In contrast to the results above, the reaction of a-ketocarboxylic esters fol-
lows a different course giving 26, the product of P–H addition of the tautomeric
PH phosphazene form to the keto C=O double bond [126] (Scheme 27).

Scheme 28

We have investigated the reaction of NH phosphinous amides with diphenyl-
cyclopropanone. The products were unequivocally identified as the correspond-
ing b-phosphinyl carboxamides 27 resulting from the hydrolysis of a presumed
heterocyclic intermediate (Scheme 28) These results await publication.

Finally, the N-propargyl-P,P-dialkyl or diaryl phosphinous amides re-
arrange at room temperature to the P-(4-azabutadienyl)phosphanes 28 [127]
(Scheme 29). Interestingly, this rearrangement did not occur in other struc-
turally similar P–N functionalities (R=OEt, OiPr, NEt2).



of the most important reactions of N-(trialkylsilyl)phosphinous amides, always
in connection with their nucleophilicity at phosphorus. Thus, oxidation of
N,N-bis(trimethylsilyl)-P,P-dimethylphosphinous amide 29 does not end at the
primary oxidation product 30 but instead this step is followed by a subsequent
[1,3]-Si shift from nitrogen to oxygen yielding 31 [48, 132, 133] (Scheme 30).
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Scheme 30

The oxophilicity of silicon is also the driving force that allows the reaction
of the same silylated reagent 29 with oxiranes [134], aldehydes and ketones
[135, 136], and enones [136] for yielding functionalized N-silylphosphazenes
(Scheme 31).

Scheme 31

The reactivity of N-silyl phosphinous amides versus some of the functional
groups in the scheme above has no precedent in nonsilylated analogs.

An interesting [1,3]-Si shift from nitrogen to nitrogen has been observed 
in the Staudinger imination reaction of N-tert-butyl-N-trimethylsilyl-P,P-di-
methyl phosphinous amide 32 with trimethylsilylazide [137]. The steric bulk
provided by the tert-butyl group seems to determine the direction of the silyl
shift (Scheme 32).

Scheme 32



Apart from silyl shifts, other reactions that are also characteristic of this
class of compounds or their derivatives are due to the easy formation of halo-
gen–silicon bonds. Phosphonium salt 34, resulting from the addition of bromine
to 33, undergoes spontaneous desilylation by the action of the bromide anion
to give the P-bromophosphazene 35 [138, 139] (Scheme 33).
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Scheme 33

The stable P-unsubstituted phosphinous amide H2PN(SiMe3)2 has been
shown to suffer the nucleophilic displacement of the disilazane moiety by the
action of thiols R-SH giving the phosphinous thioesters R-S-PH2 [13]. For the
sake of brevity we shall not comment on other relevant reactions of N-silyl
phosphinous amides, such as the anionic P-silylation [115] and P-alkylation
[22], the consecutive dialkylation of PH derivatives [18] and the fluorodesily-
lation of P-fluoro-N-silyl derivatives [140].

7
Organic Reactions Catalyzed by Metal Complexes Bearing Phosphinous
Amide Ligands

Almost neglected for long time, phosphinous amides are now being widely
used as ligands in the preparation of metallic complexes and this utilization is
characterized by a spectacular growth in the last ten years, especially by the 
numerous contributions, among others, of Woollins and coworkers [141–145].
As the volume of published work in this theme is really huge, we will focus here
on those complexes bearing phosphinous amide ligands that have advanced
into the field of catalysis of important organic transformations. The pioneer-
ing works in this area of Fiorini and coworkers in the late seventies should be
specially recognized [146–150].

Following the general trend of this account, monodentate phosphinous
amide ligands and bidentate N-phosphino phosphinous amides or bis(amino-
phosphanes) are included in the following discussion, but not other bidentate
ligands bearing additional, different phosphorus functionalities, as for instance
phosphinous amide-phosphane bidentate ligands.

The complexes are presented here under the heading of the organic reaction
they catalyze.



7.1
Alkene Hydrogenation, Hydroformylation and Polymerization

The ligand N,N-bis(diphenylphosphino)-2,6-diaminopyridine (PNP, 36 in
Scheme 34) has been used in the preparation of complexes of type [M(PNP)-
Cl]Cl·L (M=Ni, L=H2O; M=Pd, L=EtOH, M=Pt) and mer-[M(NPN)(CO)3]·
2THF (M=Cr, Mo, W), which have been used as catalysts in the hydrogenation
of styrene to ethylbenzene. The relative activity in the homogeneous catalytic
reaction decreases in the series of the [M(PNP)Cl]Cl·L complexes on going
from M(II)=Ni to Pd and then to Pt [151].
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Scheme 34

The catalytic hydroformylation of alkenes has been extensively studied. The
selective formation of linear versus branched aldehydes is of capital relevance,
and this selectivity is influenced by many factors such as the configuration of
the ligands in the metallic catalysts, i.e., its bite angle, flexibility, and electronic
properties [152, 153]. A series of phosphinous amide ligands have been devel-
oped for influencing the direction of approach of the substrate to the active 
catalyst and, therefore, on the selectivity of the reaction. The use of Rh(I) cat-
alysts bearing the ligands in Scheme 34, that is the phosphinous amides 37 (R1,



R2=Ph; R3=R4=alkyl, aryl), 38 (R=Et; R1=R2=R3=H) the bis(aminophosphanes)
39 R1=Me, CH2Ph, Tos; R2=iPr, Ph), 40 (R1=H; R2=R3=Ph) and 41 (R1=H;
R2=R3=Ph), or the heterocyclic monodentate ligands 42 (R1=H, COCH3, R2=
R3=R4=H, R5=R6=Ph), 43 (R1=R2=Ph) and 44 (R1=R2=Ph) achieved a high 
degree of regioselectivity in favor of the formation of linear versus branched
aldehyde [142, 154–157] (Scheme 35).
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Scheme 35

Scheme 36

In most cases the conversion degrees and the yields in aldehydes are good
(86–95%) and the regioselectivity goes from 1.2:1 to 31.1:1, depending on the
ligand used.

Wass and coworkers have reported several applications of catalysts based 
on nickel(II) complexes of bulky N-phosphino phosphinous amides 38. In fact,
the ligands bearing ortho-methoxy-substituted aryl groups (38, R1=OCH3 in
Scheme 34), along with a chromium source and an alkyl aluminoxane activa-
tor, are extremely active and selective ethylene trimerization catalysts [158].
Analysis of the products in the hydroformylation of 1-hexene by GCMS reveals
good selectivity, typically >85%, the main by-products being C10 olefins. The
steric bulk provided by the ortho-substituents on ligand 38 plays a critical role
in establishing the catalytic performance.Specifically, the potential for the ortho-
methoxy groups to act as pendant donors and to increase the coordinative 
saturation of the chromium center is an important factor.

Nickel(II) complexes of ligands 38 (R=H, Me; R1=H, Me, Et,iPr, CH3O; R2=H,
CH3O; R3=H, F, CH3O) are highly active catalysts for ethylene polymerization
[86, 159], whereas palladium(II) complexes possess catalytic properties in the
copolymerization of CO and alkenes [160] (Scheme 36).

7.2
Suzuki–Miyaura Reaction

It is well known that the use of electron-rich phosphanes as ligands accelerate
the key oxidative addition step of the Suzuki–Miyaura reaction [161]. In that
sense, phosphinous amides are good candidates for testing as efficient ligands
for this cross-coupling reaction: the amino groups are strongly electron-do-
nating making the phosphanes stronger s-donor ligands and so facilitating the
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Scheme 37

7.3
Asymmetric Allylic Alkylations

Chiral phosphinous amides have been found to act as catalysts in enantio-
selective allylic alkylation. Horoi has reported that the palladium-catalyzed 
reaction of (±)-1,3-diphenyl-2-propenyl acetate with the sodium enolate of
dimethyl malonate in the presence of [PdCl(p-allyl)]2 and the chiral ligands 45
gave 46 in 51–94% yields and up to 97% ee (Scheme 38). It is notorious that
when the reaction is carried out with the chiral phosphinous amide (S)-45a, the
product is also of (S) configuration, whereas by using (R)-45b the enantiomeric
(R) product is obtained [165].

easy oxidation of the transition metal. Thus, aminophosphanes 37 (R1=R2=Ph,
cyclohexyl,iPr, tert-butyl; R3=R4=iPr, Me3Si, 2-pyridyl, 2-pyrimidyl, pyrazinyl,
2-quinolinyl; R3-R4=(CH2)5, (CH2)2O(CH2)2; R3=Me, R2=Me2NCH2CH2) have
been used in the preparation of Pd(II)-37 catalytic complexes and tested in 
several Suzuki couplings (Scheme 37). The biphenyl products are obtained in
76–99% yields [162–164].

Scheme 38

Phosphinous amides 47–49 (Scheme 39), closely related to those in the
scheme above but with a new scaffold supporting the sulfur and phosphorus
functionalities, have been recently reported to catalyze the same reaction [166].

Scheme 39



Phosphinous amides, based on proline and tetrahydroisoquinoline car-
boxylic acid, bearing a second donor center (50, Ar=Ph; R1=H, CH3,iPr, Ph;
R2=H, CH3,iPr, Ph and 51, R1=H,iPr; R2=H,iPr) (Scheme 40) have been developed
for use in allylic alkylation and amination of substituted propenyl acetates,
yielding the corresponding products in 87–98% (5–94% ee) and 29–97%
(14–93% ee) respectively [55, 167]. With bidentate ligands of type 38 where
R=(S)-PhMeCH, and with the bis(aminophosphanes) 52 (R=Ph) similar allylic
alkylations have been also tested [168, 169].
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Scheme 40

Scheme 41

The efficiency of a catalytic system based on the bis(aminophosphane) 53
in the asymmetric alkylation of 3-acetoxycyclohexene with dimethyl malonate
has been tested [170]. Concerning the enantioselectivity of this reaction, the ee
values are generally quite low and the best result for this ligand is only 31% ee.

7.4
Asymmetric 1,4-Addition to Enones

A series of chiral phosphinous amides bearing pendant oxazoline rings (50,
R1=H,iPr; R2=H,iPr, 51, R1=H,iPr; R2=H,iPr and 54, R1=H,iPr; R2=H,iPr in
Scheme 41) have been used as ligands in the copper-catalyzed 1,4-addition of
diethylzinc to enones. Two model substrates have been investigated, the cyclic
2-cyclohexenone and the acyclic trans-chalcone. The addition products are 
obtained quantitatively in up to 67% ee [171].

7.5
Asymmetric Hydrogenation of C=C and C=O Bonds

In the area of the asymmetric hydrogenation of C=C double bonds, the reduc-
tion of unfunctionalized olefins has been scarcely explored, in comparison with



the extensively explored asymmetric reduction of functionalized alkenes con-
taining heteroatoms. Gilbertson and coworkers have developed a series of irid-
ium catalysts with enantio-enriched phosphinous amide ligands 50 based on
proline (Scheme 42). The catalytic family resulted from variation of the sub-
stituents at the oxazoline ring and at the phosphorus atom, and by combining
with several counterions [57].
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Scheme 42

The asymmetric hydrogenation of various methylstilbenes led to the corre-
sponding 1-methyl-1,2-diarylethanes with enantioselectivities ranging from
83:17 to 97:3. The use of catalysts prepared with ligands 50 was extended to the
asymmetric hydrogenation of a number of styrene derivatives, proving that, in
general, the reduction of trisubstituted double bonds proceeds with fair to good
enantioselectivity.

In recent years, the catalytic asymmetric hydrogenation of a-acylamino
acrylic or cinnamic acid derivatives has been widely investigated as a method
for preparing chiral a-amino acids, and considerable efforts have been devoted
for developing new chiral ligands and complexes to this end. In this context,
simple chiral phosphinous amides as well as chiral bis(aminophosphanes) have
found notorious applications as ligands in Rh(I) complexes, which have been
used in the asymmetric hydrogenation of a-acylamino acrylic acid derivatives
(Scheme 43).

Scheme 43

In Table 2 we have summarized the optical yields obtained by using the dif-
ferent enantio-enriched ligands investigated in this reaction, and the respective
literature citations.

Bidentate chiral bis(aminophosphanes) such as 55–57 (Scheme 44) have
been used for the Rh(I)-catalyzed asymmetric hydrogenation of itaconic acid
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Table 2 Enantioselective hydrogenation of a-acylamino acrylic acid derivatives

Ligand cc (%) Reference

<3 [172]

6–74 [173, 174]

9–83 [175]

70–93 [147]

41–94 [173, 174, 176–179]

77–99 [180]

90–99 [181]

77–99 [181–184]
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Scheme 44

derivatives 58, the enamide 59 and the enol acetate 60. Good to excellent enan-
tioselectivities were obtained (up to 99.5% ee) [150, 185, 186].

The use of C2 symmetric bis(aminophosphanes) such as 39 (R1=(S)-(–)Ph-
CH(CH3); R2=Ph) and not symmetrically substituted bis(aminophosphanes)
such as 52 (R1=cyclopentyl, cyclohexyl, Ph; R2=cyclopentyl, cyclohexyl, Ph) 
as ligands in asymmetric hydrogenation reactions of activated ketones has 
resulted in the preparation of the corresponding optically active alcohols in
17–80% ee [148, 187]. Complexes bearing the bis(aminophosphane) ligands 52
have been used for the asymmetric reduction of dihydro-4,4-dimethyl-2,3-
furandione and of N-benzylbenzoylformamide. They can be modulated for 
obtaining alternatively both enantiomers of the product, just by replacing a
phenyl by a cycloalkyl group at the phosphorus atoms of the ligand.

7.6
Asymmetric Hydroboration

Despite the extensive applications of phosphinous amides as chiral ligands in
Rh(I) complexes with catalytic activity, there is still playground available for ex-
panding its usefulness to other relevant organic transformations. One of these
reactions is the catalytic hydroboration of alkenes, where the attempts made 
to date with this kind of ligands have not been specially successful in terms of
optical yield. Bis(aminophosphanes) 52 (R=Ph, 2-MeC6H4, 2-MeOC6H4; R1=R2

cyclohexyl, Ph) have been used in the asymmetric catalyzed hydroboration 
of norbornene by catecholborane, giving exo-norborneol as the major prod-
uct in all the reaction conditions investigated, although with moderate enan-
tioselectivities (12–77% ee). On the other hand, hydroboration of styrene,
3-methyl-2-cyclohexen-1-one and isophorone, and further transformation 
of the resulting alkylboranes into the corresponding alcohols, have been
achieved in moderate chemical yields (57–64%), and poor enantiomeric ex-
cesses (8–42%) [188].
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Scheme 45
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1
Introduction

Given the fact that phosphorus is in Group 15 while carbon is in Group 14, one
might predict that the structures, bonding and reactivity of their respective
compounds would be quite different. In many respects this is the case. However,
a remarkable parallel chemistry has built up around the fact that, in low-coor-
dination numbers, phosphorus strongly resembles carbon. In many ways,
low-coordinate phosphorus behaves more like its diagonal relative than its ver-
tical congener, nitrogen. This has led to phosphorus being called “the carbon
copy” and the establishment of a burgeoning field of chemistry at the inter-
face between organic and inorganic chemistry (for comprehensive reviews 
see [1, 2]).

This review will outline a new area of research that has, until recently, been
unexplored in low-coordinate phosphorus chemistry. Researchers are begin-
ning to extend the established analogy between P=C and C=C bonds to macro-
molecular science. The motivation for these investigations is the prevalence of
C=C bonds in polymer chemistry, both as monomers for addition polymer-
ization and as functional units in p-conjugated polymers. Furthermore, the in-
corporation of phosphorus into the polymer backbone may lead to materials
with interesting properties and possible specialty applications. This article will
review recent developments and provide the author’s perspective on combin-
ing the areas of multiple bonding in phosphorus chemistry with inorganic
polymer synthesis.

2
The Phosphorus–Carbon Analogy

As an illustration of the phosphorus–carbon analogy, consider the result of
replacing a carbon fragment (CR2) by a phosphorus moiety (PR) in each of
the common low-coordinate organic compounds (1C–4C) shown in Fig. 1. For 
example, the replacement of a single carbon in an alkene (1C) results in a phos-
phaalkene (1P). Similarly, the phosphaalkynes (2P) are isolobal relatives of the
alkynes (2C), and terminal phosphinidene complexes (3P) can be related to the
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metal carbenes (3C). In the case of free carbenes (4C), there are two possible
phosphorus analogs, the free phosphinidenes (4P) and the phosphenium ions
(4¢P).With the exception of olefins and alkynes, many of the simple compounds
depicted in Fig. 1 were not known as isolable species until the later part of the
last century. For example, isolable carbenes have only been reported recently
[3, 4], yet their impact on chemistry has been immense; from challenging our
ideas of structure and bonding to their applications as ligands in catalysis (for
reviews see [5–7]). The development of the various classes of low-coordinate
phosphorus compounds depicted in Fig. 1 is fascinating and the reader is urged
to consult the many excellent reviews outlining this vast area. Reference[8] has
detailed chapters on 1P–4¢P . For selected reviews on phosphaalkenes and
phosphaalkynes see [9–14]. Reviews dealing specifically with phosphaalkenes
are cited elsewhere in this review. For recent reviews on phosphinidines and
metal- phosphinidines see [15–18]. For reviews on phosphenium ions see
[19–21].

This review deals specifically with the parallels between P=C and C=C
bonds [1, 2, 22]. The analogy between phosphaalkenes (1P) and olefins (1C),
as shown in Fig. 1, manifests itself not only in their structure and bonding, but
also in the synthetic methods used for their preparation (see Sect. 3) and their
reactivity. Many of the parallels in the reactivity of P=C and C=C bonds can
be explained, in part, by the similar electronegativities of the elements (C 2.5
vs P 2.2) and their electron accepting and releasing abilities. In addition, the
results of calculations and photoelectron spectroscopy have revealed that the
p-bond in phosphaethylene is the HOMO (–10.3 eV) while the phosphorus
lone pair is slightly lower in energy (–10.7 eV) [23]. This suggests that, like eth-
ylene, most reactions of phosphaethylene will occur at the p-bond, although
the close spacing of the orbitals also makes reaction at the phosphorus lone
pair possible.

It is not within the scope of this review to exhaustively discuss the novel re-
activity of phosphaalkenes. Here, just a few striking examples from molecular
chemistry will be chosen to highlight the phosphorus–carbon analogy. For
more details regarding the fascinating reactivity of phosphaalkenes, the reader
is urged to consult the numerous reviews from which the following examples
are taken [1, 2, 22, 24–32]. Firstly, simple reactions of olefins such as the 1,2-ad-
dition of polar molecules (i.e., HX) across the C=C bond are also observed with
phosphaalkenes (A). Depending upon the substituents, the P=C bond can either
be normally polarized P(d+)-C(d–) or inversely polarized P(d–)-C(d+) [24] to-
wards addition. There is also a remarkable [n+2]-cycloaddition chemistry for
phosphaalkenes.A well known example would be the phosphorus analog of the
Diels–Alder reaction (B). This method represents a powerful route to new types
of heterocycles. There are also phosphorus analogs of the Cope rearrangement
(C). Even catalytic hydrogenations using rhodium phosphine catalysts are
known for P=C bonds, however, the lone-pair at phosphorus must first be pro-
tected through coordination to tungsten (D). Like olefins, h2 complexes of
phosphaalkenes to transition metals are observed although h1 complexation
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through phosphorus is the most common coordination mode. There are even
phosphorus analogs of p-allyl complexes and phospha-ferrocenes. Numerous
parallels have also been observed in the methods used to prepare P=C bonds,
and this is the subject of the next section.

3
Phosphaalkenes: Background and Synthesis

A brief history of (3p-2p)p bonds between phosphorus and carbon followed
by an introduction to the methods of phosphaalkene synthesis that are perti-
nent to this review will be provided. The earliest stable compound exhibiting
(3p-2p)p bonding between phosphorus and carbon was the phosphamethine
cyanine cation (1) [33].An isolable substituted phosphabenzene (2) appeared
just two years later [34]. The parent phosphabenzene (3) was later reported in
1971 [35]. These were remarkable achievements and, collectively, they played an
important role in the downfall of the long held “double bond rule”. The elec-
tronic delocalization of the phosphorus–carbon multiple bond in 1–3, which
gives rise to their stability, unfortunately prevented a thorough study of the
chemistry and reactivity of the P=C bond.
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It wasn’t until 1976, when G. Becker reported the first stable and isolable
acyclic compounds featuring localized p-bonding between carbon and phos-
phorus (7: R=Me, tBu, Cy, Ph; R¢=tBu) [36], that detailed investigations of the
chemistry of the P=C bond could be undertaken. This elegant reaction involves
condensing a bis(trimethylsilyl)phosphine (4) with an acid chloride (5) to give
an intermediate acylphosphine (6), which rearranges to the phosphaalkene (7),
often isolated as a mixture of E- and Z- isomers.This 1,3-silatropic rearrangement
is analogous to the keto-enol tautomerization observed in organic chemistry.
However, in this case the phosphaalkene tautomer 7 (enol) is formed quantita-
tively because of the relative weakness of the P–Si bond in the acylphosphine 6
relative to the strong Si–O bond in 7. From a preparative standpoint, this method
is probably the most convenient and versatile route to phosphaalkenes with min-
imal steric protection [37–43]. The rearrangement reaction can also be exploited
to prepare phosphaalkenes with a-positioned nitrogen or sulfur atoms.
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The first phosphaalkenes without heteroatom substituents (9, R=2,4,6-
Me3C6H2, 2,6-Me2C6H3; R¢=R≤=Ph) were reported by Bickelhaupt and cowork-
ers in 1978 [44]. The synthesis involved the base-induced dehydrohalogenation
of 8, and the P=C bond was stabilized by the sterically bulky substituents at
phosphorus and carbon.A key observation, as it relates to this review, was that
the attempted synthesis of phosphaalkenes bearing the 2-methylphenyl or
phenyl group at phosphorus using the same strategy gave an uncharacterized
product which was called “polymeric” material [44, 45].



Another method that has been used to prepare phosphaalkenes is the phos-
pha-Peterson reaction, a phosphorus analog of the Peterson olefination [46–49].
In this reaction a lithium silylphosphide is treated with an aldehyde or ketone
to yield the phosphaalkene (9). Analogous reactions can be conducted with
bis(trimethylsilyl)phosphines (10) and ketones (11) using a catalytic quantity
of anhydrous base (i.e., NaOH, KOH) [50]. Generally, the reactions proceed
cleanly and in high yield. Sufficiently bulky substituents must be employed to
stabilize the P=C bond and prevent rapid dimerization to 1,3-diphosphetaines.
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The phosphorus analog of the Wittig reaction is another interesting route 
to phosphaalkenes [51]. This reaction involves treating a phosphoranylidene-
phosphine 12 (the “phospha-Wittig” reagent) with an aldehyde 13 and yields
the corresponding phosphaalkene (E-14) in high yield. Initial work involved co-
ordinating the phospha-Wittig reagent to transition metals [52]. Recently, it was
discovered that reducing ArPCl2 with Zn dust in the presence of excess PMe3
affords free phospha-Wittig reagents (12) provided bulky ortho-substituted
aryl groups (i.e., 2,6-dimesitylphenyl or Mes*=2,4,6-tri-tert-butylphenyl) are
used [53]. Treatment of 12 with aldehyde generally affords the phosphaalkene
with E-stereochemistry. This is a very convenient method of preparing phos-
phaalkenes with bulky substituents.

Numerous other reactions can be used to access phosphaalkenes. For ex-
ample, treating the primary phosphine Mes*PH2 with CH2Cl2 in the presence
of KOH gives Mes*P=CH2 [54]. In addition, interesting reactions of tantalum-
or zirconium-phosphinidenes with aldehydes have afforded phosphaalkenes
[55, 56]. The 1,3-hydrogen rearrangement of secondary vinylphosphines to
phosphaalkenes has also been used to prepare phosphaalkenes [57, 58].
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4.1
Enthalpy Considerations

The addition polymerization of carbon–carbon double bonds is driven by the
thermodynamic favorability of forming two s bonds in the polymer from a
s+p bond in the monomer. A simple calculation based upon theoretically 

4
Addition Polymerization of P=C Bonds

The addition polymerization of olefins (E) is perhaps the most common
method of polymer synthesis, and is an industrially important reaction for the
C=C bond. Despite widespread interest in developing stable multiply bonded
systems containing inorganic elements [59], addition polymerization has been
limited primarily to C=C, and in some cases C=O, bonds. The possible exten-
sion of addition polymerization to other multiple bonds would provide access
to novel macromolecules containing inorganic elements. The incorporation of
inorganic elements into the backbone of linear macromolecules has attracted
considerable attention due to the prospect of finding materials with novel prop-
erties and, therefore, possible specialty applications [60, 61]. However, the main
barrier to the widespread development of inorganic polymers has been the lack
of suitable methods for their preparation. In this regard, condensation and
ring-opening polymerization methods have attracted the most attention and
are viable routes to a variety of inorganic macromolecules. In contrast, addition
polymerization has often been dismissed as a method to prepare inorganic
polymers due to the lack of suitable multiply bonded monomers. Given the nu-
merous examples discussed in Sects. 2 and 3, where the molecular chemistry of
phosphaalkenes appears to copy that of olefins, it might be possible to extend
addition polymerization to P=C bonds (F).

This section will provide details of recent efforts to polymerize phospha-
alkenes. It will begin with an introduction to the factors that must be considered
when attempting to polymerize P=C bonds. In addition, a historical context will
be provided since, perhaps ironically, it was so-called polymerization reactions
that plagued early efforts to prepare compounds possessing heavier element
multiple bonds. Finally, it will close with the first successful polymerization of
a P=C bond to give poly(methylenephosphine)s.



determined bond enthalpies for ethylene (Es+p=660 kJ mol–1; Es=370 kJ mol–1

[62]) gives an enthalpy of polymerization (DHo
p) of –80 kJ mol–1. For phospha-

ethylene, a similar rough calculation based upon calculated bond dissociation
energies (Es+p=482 kJ mol–1; Es=276 kJ mol–1 [62]) gives a DHo

pof –70 kJ mol–1.
These calculations suggest that, at least on the basis of enthalpy considerations,
it should be possible to polymerize P=C bonds. By extension, except for sim-
ple diatomics of the first row (i.e., N2, O2, etc.), it should be possible to prepare
polymers from numerous multiple bonds of the p-block elements since most
are thermodynamically unstable with respect to polymerization.

The exact enthalpy of polymerization for a particular monomer will depend
on the steric and electronic effects imposed by the substituents attached to the
E=E¢ double bond. For olefins, resonance stabilization of the double bond and
increased strain in the polymer due to substituent interactions are the most im-
portant factors governing DHo

p. For example, propylene has a calculated DHo
pof

–94.0 kJ mol–1, whereas the polymerization of the bulkier 2-methylpropene is
less exothermic (–78.2 kJ mol–1) [63]. Due to resonance effects, the experi-
mentally determined DHo

p of styrene (–72.8 kJ mol–1) is less exothermic than
that for propylene, while that for bulkier a-methylstyrene is even less favorable
(–33.5 kJ mol–1) [63]. In general, bulky 1,2-disubstituted olefins (i.e., PhHC=
CHPh) are either very difficult or impossible to polymerize.

Similar considerations must be made when choosing the appropriate mono-
mers for polymerization studies of phosphaalkenes. The substituents on the
P=C bond should be large enough to kinetically stabilize the starting material,
but not large enough to make polymerization endothermic. The polymeriza-
tion reaction must be exothermic since most addition polymerization reactions
carry a large negative DSo

p (i.e., –103.8 J K–1 mol–1 for styrene) [63].

4.2
“Polymerization” in Early Attempts to Isolate Compounds 
with Heavier Element Multiple Bonds?

“Polymerization” has often been mentioned as an undesired consequence in
many early efforts to isolate heavier element analogs of common organic func-
tionalities.A famous example is from Kipping’s work, from which it was shown
that “silicone” was in fact a polymer [R2SiO]n and not the simple ketone analog
“R2Si=O” initially postulated [64]. Although R2Si=O is still unknown as a stable
compound [65, 66], and does not factor into the formation of polysiloxanes by
condensation, the common name for the polymer (silicone) has stuck. The lack
of success in early attempts to prepare heavy element (p-p)p bonds led to their
inclusion in Dasent’s 1965 monograph entitled Non-Existent Compounds. This
book alluded to polymerization as a common fate in failed attempts to prepare
heavy element multiple bonds [67]. Experimental and theoretical studies of the
instability of E=E¢ bonds also led to the “classical double bond rule”, which stated
that elements of principle quantum number greater than two should not be able
to form (p-p)p bonds with themselves or with other elements [68, 69].
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In phosphorus chemistry, the association of multiple bonds with “polymer-
ization” goes back to the proposed structure of “phosphobenzene” (PhP=PPh)
isolated in 1877 by Köhler and Michaelis. This compound was later shown to be
the cyclic oligomeric (PhP)n (n=5 or 6) [70]. Another example comes from
Gier’s breakthrough 1961 paper reporting the synthesis of HC�P, the phos-
phorus analog of hydrogen cyanide [71]. Interestingly, he mentioned that “The
monomer polymerizes slowly at –130 ° and more rapidly at –78 ° to a black
solid” which analyzed as (HCP)x and was pyrophoric. Spontaneous polymer-
ization of kinetically unstable phosphaalkynes has subsequently been men-
tioned numerous times [72–75]; however, the “polymers” have received little or
no characterization. Recently, a deliberate attempt to polymerize PhC�P
showed that low molecular weight products (MS up to 1200 g mol–1), primarily
composed of saturated P–C rather than P=C bonds, were formed [76]. It is 
well-known that the kinetically stabilized phosphaalkyne tBuC�P will undergo
multiple cycloaddition reactions forming the fascinating tetraphosphacubane
(tBuCP)4 [77] and more recently a hexamer [78]. Theoretical studies have pro-
vided evidence that open chain alternatives may be thermodynamically more
stable [79]. Clearly, the possibility of polymerizing phosphaalkynes to high
polymers is very exciting. Of particular interest is the linear polymer (RC=P)n,
which would be the phosphorus analog of poly(acetylene) and would likely
possess exciting properties.

“Polymerization” has also been mentioned or alluded to in the preparation
of kinetically unstable transient phosphaalkenes [27]. In their landmark paper
on the first detection of unstable phosphaalkenes, including HP=CH2, Hopkin-
son, Kroto, Nixon, and Simmons reported short half lives (1–2 min) for these
species [80]. In later studies on the preparation of HP=CH2, it was mentioned
that the compound was not stable at 77 K in the solid state and forms a polymer
of low solubility [81]. The generation of the transient phosphaalkenes RP=
C(H)CH3 (R=H, Me, Ph) by the base-induced rearrangement of RP(H)CH=CH2,
reportedly led to a “slow polymerization ... in the absence of chemical trapping
agents” (R=H) [82]. The other phosphaalkenes (R=Me, Ph) were also unstable
with “self-condensation” being the major decomposition pathway, however, the
product(s) were not characterized. Similarly, in the thermal decomposition of
phosphabicyclooctadienes (“masked phosphaalkenes”), in situ generated
phosphaalkenes (PhC=CH2 and MeP=CH2) underwent “intermolecular reac-
tions to give product mixtures ... consistent with tertiary phosphines as would
arise from head-to-head or head-to-tail reactions” [83].

A common theme in the speculated “polymerization” reactions discussed 
in this section is that the “polymers” were generally uncharacterized or were
composed of small cyclic oligomers. No evidence for high molecular weight
polymers from low-coordinate phosphorus compounds was obtained. Of
course, multiple bond formation, not polymerization, was the focus of these
studies.
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4.3
Poly(methylenephosphine)s

The problem with using the unstable species discussed in Section 4.2 as mono-
mers for addition polymerization is that they are not like ethylene. They are not
kinetically stable. It is the kinetic stability of olefins that makes them so useful
as monomeric precursors to high molecular weight macromolecules. To mimic
olefins, kinetically stable phosphaalkenes would be chosen as monomers. How-
ever, this is a balancing act, since for C=C bonds it is known that too much 
kinetic stability (i.e., employing very large substituents) leads to monomers
that will not polymerize. Therefore, when my group began to investigate this
area in 1999, we tried to copy carbon and study the reactions of potential poly-
merization initiators with kinetically stable phosphaalkenes possessing mini-
mal steric protection.

Initial investigations were focused on phosphaalkene 15 containing the bulky
supermesityl group, which is easily prepared from the reaction of Mes*PH2
(Mes*=2,4,6-tri-tert-butylphenyl) and CH2Cl2 in the presence of KOH [54].
Compound 15 was chosen as a possible monomer for polymerization studies
because large substituents would only be found on every second atom in the
polymer. The stoichiometric reaction of 15 and GaCl3, a potential cationic ini-
tiator, resulted in intramolecular C–H activation of the o-tBu group to afford co-
ordinated ylid 18, which was characterized crystallographically [84]. The adduct
16 was detected as an intermediate in the low temperature 31P NMR spectrum
of the reaction mixture. Evidence for the involvement of a transient phosphe-
nium species 17, the anticipated propagating species in a cationic polymeriza-
tion, was obtained from labeling studies in analogous reactions with DOTf. To
date, high molecular weight polymers have not been obtained from 15.
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In a separate study, a stable phosphaalkene 19 that was less likely to undergo
intramolecular C–H activation was studied [85]. This monomer can be pre-
pared using based induced dehydrochlorination [44] or following a phospha-
Peterson route [50, 86]. If the monomer 19 is vacuum distilled to purify, in 
addition to the distilled product, a gummy material that solidifies upon cool-
ing is obtained as a residue [85]. From this residue poly(methylenephosphine)
20 can be separated, which has a molecular weight (Mn) of 11,500 g mol–1

(PDI=1.25) by GPC (vs. polystyrene). The NMR spectra of 20 were consistent
with a regioregular polymer resulting from head-to-tail enchainment. Polymer
20 is the first to contain a backbone of alternating phosphorus and carbon
atoms. The polymer is stable in water-containing solutions however, solutions
of the polymer are slowly oxidized under air atmosphere.
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The presence of a phosphine in the main chain of polymer 20 provides nu-
merous possibilities for chemical functionalization. Indeed, air- and moisture-
stable poly(methylenephosphine oxide) 21 can be obtained on oxidation with
air, or more conveniently, using H2O2 [85]. Reaction of 20 with elemental sulfur
affords the phosphine sulfide polymer 22 and the phosphine-borane polymer 23
can be obtained after treating 20 with BH3·THF (Fig. 2). It is also possible to
functionalize the phosphine centers in 20 using several other well-established 
reactions of molecular phosphines [87]. In each reaction, there is no evidence
for degradation of the polymer and the GPC molecular weights determined are
virtually the same as those for 20.Laser-light scattering results on 22 suggest that
the GPC molecular weights (vs. polystyrene) underestimate the true molecular
weight by roughly a factor of two [85]. Remarkably, the phosphine oxide poly-



mer 21 is quite thermally stable and shows no weight loss until 320 °C when 
analyzed using TGA.

The monomer 19 can also be polymerized using analogous methods of
initiation to those employed in organic polymer science. Radical initiators af-
ford regioirregular polymers, whereas anionic initiators add selectively to the
phosphorus atom of the P=C bond and thus yield a regioregular polymer [85].
The product of the initial addition of MeLi across the P=C bond, Mes(Me)P-
CPh2Li, was identified spectroscopically. The polymers obtained from anionic
initiation are spectroscopically identical to those obtained from the thermol-
ysis. Reasonable molecular weights (ca. 5000–10,000 g mol–1) are obtained when
methyllithium is used as an initiator.
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Fig. 2 Film of the poly(methylenephosphine oxide) 21

To a polymer chemist, it is perhaps surprising that a multiple bond contain-
ing three rather large substituents can be polymerized. In olefin chemistry, sim-
ilar highly substituted olefins would not polymerize on the basis of the kinetic
and thermodynamic factors discussed in Section 4.1. Using cyclodimerization
as a model, the calculated enthalpies for substituted olefins suggest that the
dimerization of Mes(H)C=C(H)Mes is slightly endothermic (+21 kJ mol–1),
whilst that for Mes2C=CMes2 is a whopping +2191 kJ mol–1 [88]. Therefore, why
is phosphaalkene 19 polymerizable while olefins bearing similar substituents 
are not? One possible explanation is that the increased size of phosphorus with



respect to carbon (P, rcov=1.10 Å; C, rcov=0.77 Å [89]) reduces steric interactions
in the polymer. For comparison, high molecular weight peraryl polysilanes
[Ar2Si]n (Si, rcov=1.18 Å) are common while the analogous peraryl polymeth-
ylenes [Ar2C]n are unknown [90]. In addition to size, in poly(methylenephos-
phine)s the phosphorus atom only possesses one side-group rather than two
in a polyolefin. This may leave room for phosphorus to accommodate larger
substituents than are possible in analogous olefin polymers where there are
two substituents at each carbon. Of course, theoretical studies of the energy
parameters in the polymerization of 1 will need to be performed to either con-
firm or refute these hypotheses.

5
pp-Conjugated Polymers Containing P=C Bonds

Polymers with p-conjugated backbones are an important class of materials
that have captured the imagination of the scientific community due to their 
remarkable properties and exciting applications [91–95]. While most of the
work on p-conjugated polymers has focused on all-carbon systems, there has
been considerable interest in incorporating heteroatoms into the p-conjugated
backbone (i.e., polythiophene, polypyrrole, polyaniline) to tune their properties.

5.1
Survey of pp-Conjugated Phosphorus Polymers

In the past few years, there have been an increasing number of reports of
p-conjugated polymers that incorporate phosphorus atoms into the main chain.
For example, phosphorus analogs of polyaniline have been prepared. Low mol-
ecular weight poly(p-phenylenephosphine)s 24 can be prepared using a palla-
dium-catalyzed condensation polymerization of 1,4-diiodobenzene and primary
phosphines, while p-bromophenyl-substituted secondary phosphines afford
higher molecular weight polymers [96, 97]. There has also been considerable
interest in the development of poly(ferrocenylphosphine)s 25, however, their
possible p-conjugation has not been thoroughly investigated [98, 99]. It is also
worth mentioning that novel emissive poly(vinylene arsine)s 26 have recently
been prepared [100, 101], although, at present their phosphorus analogs are 
unknown.

To date, most of the research on p-conjugated phosphorus polymers has fo-
cused on incorporating phosphole units into the polymer backbone, by anal-
ogy with polypyrrole. For example, Tilley and coworkers have isolated the lu-
minescent phosphole polymer 27 (R=nC5H11) as an isomeric mixture after the
skeletal replacement of a Cp2Zr moiety by PhP in a pre-polymer that was pre-
pared using a novel zirconocene diyne-coupling strategy [102]. Low optical
band gap hybrid polyphosphole-polythiophene polymers 28 have been pre-
pared by Réau and coworkers using electropolymerization [103, 104]. Recently,
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an exciting application for phosphole oligomers was reported with the devel-
opment of the first phosphorus-based LEDs [105]. Chujo’s group have recently
reported the synthesis of the phosphole polymers 29 using the Heck–Sono-
gashira reaction [106].An excellent recent review is available on p-conjugated
molecular and polymeric systems containing Group 14 and 15 elements, in
particular phospholes and siloles [107].

5.2
Poly(p-phenylenephosphaalkene)s

One of the most important p-conjugated organic polymers is poly(p-phenyl-
enevinylene) PPV, which consists of a backbone of alternating phenylene and
vinylene moieties [91–95]. Due to the isolobal relationship between P=C and
C=C bonds, the possible replacement of the vinylene groups in PPV with
phosphaalkene units might give a poly(p-phenylenephosphaalkene) PPP that
possesses interesting electronic properties. The key challenge to making PPPs
is to find suitable methods to assemble the alternating phenylene and phos-
phaalkene units into a linear polymeric structure. A step growth polymeriza-
tion would require monomers of high purity and reactions that proceed with
high conversions (>99%) to give reasonable molecular weights of PPP. Despite
these possible problems, there have recently been several reports of the syn-
thesis and characterization of PPPs.
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UV-vis spectra of samples of 32 exhibit broad absorbances (lmax=328–
338 nm) that presumably result from a p-p* transition. For comparison, model
mono- and bis-phosphaalkenes 33 and 34 were also prepared and their UV-vis
spectra show broad absorbances at 310 and 314 nm, respectively. As expected,
the polymer 32 is red-shifted with respect to these small molecule models. The
red-shift is moderate (ca. 20 nm) when compared with the red shift observed
with that for trans-PPV versus trans-stilbene (ca. 130 nm). More striking is the

In 2002, the first example of a poly(p-phenylenephosphaalkene) 32 was 
prepared in our laboratory using condensation followed by 1,3-silatropic re-
arrangement to assemble the P=C bond [108]. The silylated diphosphino-
benzene 30 was simply heated for ca. 1 day at 85 °C in the melt with diacid
chloride 31. The new p-conjugated PPV analog was soluble in polar organic
solvents and the molecular weight was determined using end group analysis
(Mn=2900–10,500 g mol–1). This modest molecular weight corresponds to a de-
gree of polymerization of 5–21. Heating for longer periods yields insoluble
polymers, presumably arising from higher molecular weights or partial cross-
linking.



yellow color of polymer 32 compared to the colorless monophosphaalkene
33 (Fig. 3).

Recently, a second report by Protasiewicz and coworkers outlined an alter-
nate synthesis of poly(p-phenylenephosphaalkene)s [109]. This approach used
the phospha-Wittig route to assemble the P=C bonds. Insoluble PPPs 37 were
obtained when with the bulky diphosphine 35 (Ar=4-tBuC6H4) was treated with
various dialdehydes 36 (linker=1,4-phenylene, 2,5-thienyl, 1,1¢-ferrocenyl) in
the presence of Zn and PMe3. Using a n-hexyloxy-substituted 1,4-phenylene
linker in the aldehyde afforded a soluble orange polymer 38. The molecular
weight (Mn) of 38 was estimated at 6500 g mol–1 using end group analysis. This
corresponds to a degree of polymerization of 6.

Interestingly, the absorbance band maximum for the polymer 38 (lmax=
445 nm), was identical to the model compound 39. This suggests that the pres-
ence of the bulky 2,3,5,6-tetraaryl-substituted phenylene spacer might partially
disrupt the p-conjugation. X-ray crystallographic data for the model compound
39 seems to support a moderate degree of p-conjugation [110]. For a fully 
conjugated system the phenylene and P=C bonds should be coplanar. In the
solid-state structure of 39 the central phenylene unit is twisted by 71° out of the
plane of the P=C moiety while the outer phenyl groups are only twisted by 22°.
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Fig. 3 THF solutions of monophosphaalkene (left) and poly(p-phenylenephosphaalkene)
(right) at similar concentration
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Remarkably, the polymer 38 showed fluorescent properties with an emission
maxima at 545 nm and an efficiency of approximately 8% of that for E-stilbene
[109]. This is the first time fluorescence has been reported for a PPP.

As a final note, during the final stages of preparing this review the first 
example of a “diphosphene-PPV”was reported [111]. This exciting new polymer
contains P=P bonds spaced by p-phenylenevinylene units in the main chain, has
a degree of polymerization of approximately 6, and shows emissive properties.



6
Conclusion and Outlook

This review has shown that the analogy between P=C and C=C bonds can in-
deed be extended to polymer chemistry. Two of the most common uses for
C=C bonds in polymer science have successfully been applied to P=C bonds.
In particular, the addition polymerization of phosphaalkenes affords func-
tional poly(methylenephosphine)s; the first examples of macromolecules with
alternating phosphorus and carbon atoms. The chemical functionality of the
phosphine center may lead to applications in areas such as polymer-supported
catalysis. In addition, the first p-conjugated phosphorus analogs of poly(p-
phenylenevinylene) have been prepared. Comparison of the electronic prop-
erties of the polymers with molecular model compounds is consistent with
some degree of p-conjugation in the polymer backbone.

This new area of chemistry is still at a very early stage of development with
most of the breakthroughs occurring in the last couple of years. The future
holds promise for more exciting developments in the use of P=C bonds in poly-
mer science and it is very possible that applications may be found for these new
types of materials. In addition, an exciting prospect for the future is the further
expansion of these methodologies, which are so common for C=C bonds, to
other phosphorus-containing multiple bonds and other p-block elements.
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Abbreviations
Alq3 Aluminium tris(2-hydroxyquinolate)
b Quadratic hyperpolarisability
DCJTB 4-(Dicyanomethylene)-2-tert-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-

4H-pyran
DR1 Disperse red 1
Eg HOMO-LUMO gap
EL Electroluminescence
ITO Indium-tin-oxide
NLO Nonlinear optic
a-NPD N¢-Diphenyl-N, N¢-bis(a-naphthyl)-1,1¢-biphenyl-4,4¢-diamine
OLED Organic light emitting diode
PDI Polydispersity index
PPV para-Phenylene-vinylene
Tg Glass transition temperature

1
Introduction

In the last decade, p-conjugated oligomers and polymers based on a backbone
of sp2-bonded carbon atoms have attracted huge interest owing to their po-
tential application in electronic devices (e.g. light-emitting diodes, thin film
transistors, photovoltaïc cells, laser dyes, NLO materials, etc.) [1]. These con-
jugated organic materials combine the advantages of being lightweight with
ease of processing and offer the potential to have their optical and electronic
properties tuned by exploiting the enormous versatility and scope of organic
chemistry. Significantly, oligomers are not only model compounds used for elu-
cidating the properties of the corresponding polymers, but can also themselves
be used as advanced materials for devices (e.g. OLEDs, field effect transistors,
etc.) [1].

The simplest organic p-conjugated polymer, polyacetylene (A) (Fig. 1) can
exhibit conductivities in the metallic regime upon doping [2]. Following this
seminal discovery in the 1970s, there has been intense research into the prepa-
ration of new linear-conjugated frameworks of increased robustness and en-
hanced performance. Aromatic building blocks have been widely used due both
to their high stability and ease of substitution, allowing chemical engineering
on the molecular scale. A prominent class of organic material of this type are
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the poly(p-phenylenevinylene)s (B) (PPVs), which are probably nowadays the
most studied p-conjugated systems [1]. The discovery in 1990 that PPVs are
electroluminescent was a milestone in the field of molecular materials, with
modified PPVs now being used commercially for the manufacture of OLEDs [3].

A related, but equally fruitful strategy for the preparation of new opto-elec-
tronic materials, involves the incorporation of heteroatoms into the backbone
of conjugated polymers, with two general approaches being possible. The first
involves the use of aromatic heterocyclopentadiene subunits, such as pyrrole
or thiophene. Oligomers and polymers (C) (Fig. 1) are two important classes 
of conjugated systems offering a combination of novel electronic properties,
excellent stabilities and structural diversity. Thiophene-based derivatives (C)
are among the most widely investigated p-conjugated systems and have been
used in numerous applications (e.g. electrical conductors, sensors, NLO mate-
rials, etc.) [1].

The second strategy is to replace the vinylene bridges of PPV (B) by a het-
eroatom possessing a lone pair that can participate in the p-conjugation [4].
Representative examples of this class of derivative (D) (Fig. 1) are the polyani-
lines and poly(p-phenylenesulfide) [1a,b].

Clearly, the development of new advanced organic materials is directly re-
lated to the ability of chemists to design and create novel structures and, sub-
sequently, to establish structure–property relationships, with a view to further
honing the desired attributes of the materials. It is now well recognised that the
optical and electronic properties of macromolecules (A)–(D) vary significantly
with both the magnitude of their HOMO-LUMO gaps and the electron density
associated with their carbon backbones [1e–h, 5]. The most commonly used
approach for tuning these two parameters consists of introducing pendent sub-
stituents with specific electronic and/or steric properties. However, derivatives
(C) and (D) offer another unique tuning mode, which arises due to the pres-
ence of heteroatomic moieties in the main polymer backbone. This opens up
the possibility of incorporating heteroatoms with different properties (such as
electronegativity, polarisability, size of atoms and orbitals, energies of s and 
p valence orbitals, hybridisation, etc.), which allows materials engineering to 
be undertaken at the molecular level. Nitrogen and sulphur have been used 
extensively for such purposes. In marked contrast, phosphorus has received 
little attention until very recently. This is rather surprising, since organophos-
phorus derivatives offer a variety of structures and exhibit a versatile reactiv-
ity [6, 7].

This account will summarise results in the development of p-conjugated
materials incorporating phosphorus moieties with emphasis on the conceptual
design and specific properties that result directly from the presence of the 
P-atom. Polyphosphazenes, which are the most familiar synthetic polymers 
incorporating phosphorus [8], will not be included in this review since they do
not display the type of p-conjugation as sought in systems (A)–(D).
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2
Macromolecules Containing Phosphaalkene Moieties

The properties and reactivity of low-coordinate carbon and phosphorus species
are very similar in many regards [6]. The P=C unit is almost apolar, and its 
conjugative properties are comparable to those of the C=C bond [6, 9]. Thus,
using this diagonal analogy, the simplest p-conjugated system incorporating
phosphorus that can be envisaged would be poly(phosphaalkyne) (F) (Fig. 2),
the P-containing analogue of polyacetylene. Indeed, it has been established that
phosphaalkynes (E) that lack sterically demanding R substituants (e.g. those
bearing merely R=H, Ph) can undergo thermally induced polymerisation re-
actions [6, 7]. However, the resulting macromolecules feature mainly saturated
trivalent P-fragments with only some phosphaalkene moieties [10]. In contrast,
thermolysis of the more hindered t-BuC�P affords a mixture of tetraphos-
phacubane and other cage compounds [6, 11a]. Alternatively, in the presence 
of metal complexes, several types of oligomer can be formed including 1,3,5-tri-
phosphabenzene, tricyclic derivatives or cage compounds [6, 11b,c].

Kinetically stabilised 1,3-diphosphabutadienes are known [7, 12], but the
formation of oligomers or polymers (F) (Fig. 2) is probably hampered by the
quite low thermodynamic stability of the P=C p-bond (43 kcal mol–1 versus
65 kcal mol–1 for ethylene). Hence, by once again invoking the carbon-phos-
phorus analogy [6], incorporation of an aromatic aryl group into the backbone
of the polymers appeared as a clear strategy for increasing the stability of these
p-conjugated systems. Indeed, the first p-conjugated macromolecule contain-
ing phosphaalkene moieties was the PPV-analogue (3) (Scheme 1) [13]. This
compound was prepared by thermolysis of bifunctional derivatives (1) and (2),
a process involving thermodynamically favourable [1,3]-silatropic rearrange-
ments of an intermediate acylphosphine to phosphaalkene moieties [7]. Ac-
cording to NMR measurements, macromolecule (3) is a mixture of Z and E
isomers, with the degree of polymerisation varying from 5 to 21. Remarkably,
thermogravimetric analysis revealed that this polymer is stable up to 190 °C
under an atmosphere of dry helium [13].

The family of P=C-containing polymers was considerably broadened fol-
lowing the introduction of a highly efficient synthetic strategy based on inter-
mediate “di-phosphaWittig” reagents [14]. Polymers (6a–d) featuring different
linkers were readily obtained from aryl-substituted derivative (5) (Scheme 1)
[15]. The soluble macromolecule (6d) contains an average of 12 phosphaalkene
moieties per chain (n=6) in an E-configuration. Remarkably, although (6d) de-
composes slowly in solution, it is stable under air for a week in the solid state [15].
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Fig. 2 Structure of poly(phosphaalkene)



The Rise of Organophosphorus Derivatives in p-Conjugated Materials Chemistry 131

Scheme 1

Derivatives (3) and (6d) (Scheme 1) exhibit broad absorption bands with
values of lmax of 328–338 nm and 445 nm, respectively. In both cases, these
bands extend into the visible region with high optical end absorption, lonset ca.
400 nm for (3) and ca. 540 nm for (6d), revealing rather low optical HOMO-
LUMO separations. These low energy transitions are not observed for model
diphosphaalkenes (3a) and (6e) (Scheme 1) featuring the same substitution
pattern [13, 15]. Together, these data are clearly in favour of extended p-con-
jugation involving the phosphaalkene moieties in oligomers (3) and (6d). No-
tably, (6d) showed fluorescence with broad emission centred around 530 nm
[15]. However, the fluorescence intensity is weak compared to that of the 
corresponding all-carbon analogues.

These preliminary results show that oligomers incorporating phosphaalkene
moieties are readily available by different routes and suggest that the P=C units
exhibit efficient conjugative ability. Although structure/property relationships
have still to be established, it is clear that macromolecules of increased stability,
higher degree of polymerisation and controlled chain length are exciting targets.

3
Macromolecules Containing Phosphole Rings

The extraordinary impact of thiophene and pyrrole derivatives for the engi-
neering of p-conjugated materials, naturally led to the consideration of phos-
pholes as potential building blocks. However, phosphole exhibits electronic



properties that are markedly different from those of the highly aromatic thio-
phene and pyrrole rings [16]. The tricoordinate phosphorus atom of phosphole
possesses a pyramidal geometry, with a lone pair having pronounced s-char-
acter. These geometric and electronic features prevent an efficient endocyclic
conjugation of the electron-sextet. In fact, delocalisation within the phosphole
ring arises from a hyperconjugation involving the exocyclic P-R s-bond and the
p-system of the dienic moiety [17]. The consequence, which was confirmed by
experimental and theoretical studies [16], is that phosphole exhibits low aro-
matic character. This property, which sets phosphole apart from thiophene and
pyrrole, may be of great interest for the tailoring of p-conjugated materials
since conjugation is enhanced for macromolecules built from monomer units
exhibiting low resonance energies [1h, 5a]. This phenomena is nicely illustrated
by theoretical work that showed that the energy gaps Eg of oligo(phosphole)s
are significantly lower than those of the corresponding oligo(pyrrole)s
(DEg=0.9–1.6 eV) or oligo(thiophene)s (DEg=0.5–0.8 eV) [5a, 18a].

3.1
Oligo(phosphole)s and Derivatives

Phospholes can readily be prepared on a large scale and are known with a vast
range of substituants [6, 16b,c]. However, the synthesis of oligo(phosphole)s
analogous to (C) (Fig. 1) is a real synthetic challenge since the low aromatic
character of phosphole prevents the functionalisation of the P-Ca,a¢ carbon
atoms via electrophilic substitution and inhibits their preparation using elec-
tropolymerisation. As a consequence, no poly(phosphole)s have yet been re-
ported, although bi- and tetra-phospholes have been prepared by stepwise
routes (Scheme 2).
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Scheme 2

The discovery that the oxidative coupling of 2-lithiophosphole, obtained
from (7a), led to biphosphole (8a) (Scheme 2) was a breakthrough [19], open-
ing the way to oligo(phosphole)s. This very efficient methodology has been 



applied to the preparation of the quater(phosphole) (9), the longest oligo(phos-
phole) known to date, using bromo-capped biphosphole (8b) (Scheme 2) [20].
Di- and tetra-(phosphole)s are generally obtained as mixtures of diastereo-
isomers, due to the presence of stereogenic P-centres.

X-ray diffraction studies of (8a) (R1=CH3) and (9) revealed that these de-
rivatives suffer from rotational disorder. The dihedral angle between the two
phosphole rings in (8a) is about 46.6° [21], while in (9) the twist angle between
the two inner rings is 25.1°, and that between the outer pair is 49.7° [20]. These
distortions should preclude these oligo(phosphole)s from possessing extended
p-conjugated systems. However, the twists are probably due to packing effects
in the solid state since the colour of these compounds varies from pale yellow
(8a,b) to deep orange (9), suggesting rather high lmax values and, consequently,
low optical HOMO-LUMO gaps. The red shift observed on going from (8a,b)
to (9) hints that, in line with theoretical studies [5a, 18], the energy gap of
oligo(phosphole)s seems to decrease with increasing chain length.

Bromo-capped biphosphole (8b) is also the precursor of cyclic derivatives,
as illustrated by the synthesis of the fully unsaturated macrocycle (11), via a
Wittig reaction involving the 5,5¢-bis(carboxaldehyde) (10) (Scheme 2) [22].
An X-ray diffraction study revealed that macrocycle (11) is distorted, with an
all-trans-disposition of the four P-phenyl substituants.

Other conjugated systems featuring biphosphole cores have also been pre-
pared by an elegant and efficient method, which starts from the readily avail-
able 1-arylphospholes (12) (Scheme 3) [23]. Thermolysis of (12) yields the cyclic
tetramer (13) via a series of concerted [1,5]-sigmatropic shifts of Ar, H and P,
together with two dehydrogenation steps (Scheme 3). The reductive cleavage of
the P-P bonds of (13) gives the 2,2¢-biphospholide dianions (14), which act as
bidentate nucleophiles towards a wide variety of electrophiles, allowing for the
preparation of oligomers (15a-d) [23, 24]. Note that 2,2¢-biphospholes lacking
from substituent at the 5,5¢-postions are also accessible via the dehydrohalo-
genation of the corresponding 1,1¢-di(halogenophospholium) salts.

The versatility of this latter synthetic approach is underlined by the diver-
sity of substituents that can be included on the P-ring (e.g. phenyl, dithienyl)
and the secondary structures possible (namely linear or cyclic). Furthermore,
the reactivity of the P-atom of the phosphole ring is retained in these com-
pounds (15a–d), affording ready access to derivatives including those bearing
transition metal fragments (16) and (17) [24]. Complexes (16) and (17) were
obtained as single diastereoisomers and were studied by X-ray diffraction [24].
In both compounds, the bithienyl moieties are almost coplanar, the angles be-
tween the phosphole and the thiophene rings being rather small (15.2°–24.3°),
while the phosphole-phosphole interplane twist angles are somewhat larger:
66.26±0.14° for (16) and 55.6±0.3° for (17). The lengths of the C–C links between
the rings (1.42–1.47 Å) are in the range expected for Csp2–Csp2 single bonds.
These data suggest a certain degree of delocalisation of the p-system over the
six heterole rings, in spite of the rather large twist angles. This assumption is
supported by an electrochemical study performed on the bis(thioxophosphole)
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Scheme 3

derivatives of (15a) and (15c), which revealed that the anion-radicals and 
dianions exhibit relatively good stabilities and that the nature of the 2,5-biphos-
phole substituents (phenyl versus bithienyl) has a profound influence on the
electrochemical behaviour of these species [23c].

In conclusion, a variety of linear or cyclic oligo(phospholes)s and their de-
rivatives are accessible via a set of efficient synthetic strategies. The potential
of these compounds as advanced p-conjugated systems is broadened by the
presence of reactive trivalent P-centres, which allow a range of additional
chemical modifications to be achieved. However, elucidation of structure–prop-
erty relationships for these derivatives is still needed.



3.2
Co-Oligomers and Derivatives

3.2.1
Phospholes Linked by All-Carbon Bridges

Macromolecules in which aromatic building blocks are linked by ethenyl or
ethynyl bridges (e.g. PPV, oligo(thienylenevinylene)s [1h, 25], poly(para-phenyl-
eneethynylene)s [26], etc.) are versatile molecular wires that have found nu-
merous applications in the field of OLEDs, NLOs, sensors, polarisers for liquid
crystal displays, etc. Surprisingly though, very few derivatives incorporating
phosphole rings linked by a double or a triple bond have been reported to date.
Initially, access to oligo(phospholyleneethynylene)s was hampered since 2,5-di-
bromophosphole (7b) (Scheme 4) and its iodo-bromo analogue were found not
to undergo Stille-type couplings with 1-stannyl-alkynes [27].Again, a route to
the target co-oligomers was made possible using 2-lithiophospholes. Treating
the intermediate 2-lithio-5-bromophosphole with (tert-butylsulfonylacetylene
18) (Scheme 4) gave rise to derivative (19) that can be converted into (21) us-
ing the same synthetic strategy employing trimethylsilyl-protected alkyne
(20) (Scheme 4). The modest yields of these reaction sequences (typically
around 30%) precludes using this approach to prepare polymers starting from
(18) and (19).
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Scheme 4

Only the simplest oligo(phospholylenevinylidene), i.e. two phosphole rings
linked by an ethenyl bridge, is known to date. The aldehyde (22) (Scheme 4),
readily obtained from the corresponding 2-lithiophospholes, undergo McMurry
coupling to afford the E-derivatives (23) in high yields [19b]. The efficiency of
this synthetic route from (7b) to (23) underlines the robustness of the phosp-
hole ring!

Notably, derivatives (19), (21) and (23) are all orange in colour, suggestive of
the presence of an extended p-conjugated system [19b, 27]. This is supported



by an X-ray diffraction study of 2,5-di-(phenylethynyl)phosphole, which re-
vealed that the C–C linkages between the P-ring and the C�C moieties are
rather short, 1.423(3)–1.416(3) Å [27].

Thus, compounds (19), (21) and (23) are potential building blocks for the
preparation of longer oligomers or polymers since they possess reactive termini.
However, further progress towards longer oligomers or polymers is currently
hampered by the low efficiency of coupling reactions involving phosphole rings.

3.2.2
Alternating Phosphole–Heterole Structures

Amazingly, the 2,5-diphenylphospholes (24) and (25) (Scheme 5), which were
the first phospholes to be prepared in the early sixties [28], exhibit extended 
p-conjugated systems. Both derivatives show absorption in the visible region,
lmax 358 nm for (24) and 374 nm for (25), and Stoke’s shifts varying from
100 nm for (24) to 120 nm for (25) [29]. Furthermore, X-ray analysis of com-
pound (25) revealed that the three rings are almost coplanar [30]. However,
this important structural observation was not considered at that time. Conse-
quently, the interest in the use of phospholes as building blocks for the con-
struction of p-conjugated systems only dates from the 1990s.
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In 1991, Mathey et al. prepared a series of 2,5-(diphosphole)-thiophene and
-furan oligomers (28a,b), and the corresponding thiooxo-derivatives (29a,b)
(Scheme 6) [31]. The key step in their synthesis is an electrophilic substitution
performed on the protected phosphole (26). Adducts (27a,b) [31] were then
transformed into the s3,l3-phospholes (28a,b) through a classical deprotec-
tion–bromination–dehydrohalogenation sequence [32]. No UV-vis or elec-
trochemical data are reported for these co-oligomers, however, the colour of
the crystalline derivatives (28a) (orange) and (28b) (bright yellow), suggest
relatively high values of lmax. Note that an X-ray diffraction study of (28b)
showed that one phosphole ring is coplanar with the central furan unit, while
the second P-heterocycle is twisted (dihedral angle, 40.1±0.1°). The two inter-
ring C–C bond distances, 1.452(4) and 1.461(6) Å, lie between those observed
for C–C single and double bonds, a feature that is in favour of a certain degree
of delocalisation [31].

The first systematic evaluation of the optical and electrochemical properties
of phosphole-based co-oligomers, and subsequent optimisation of their struc-
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ture for optoelectronic applications, was undertaken with 2,5-di(heteroaryl)-
phospholes (32) (Scheme 7). These compounds are not accessible by electrophilic
substitution on protected phosphole (26) (Scheme 6), since this reaction gives
rise to 2,4-dithienylphospholene [31]. However, they are readily prepared via a
general organometallic route known as the Fagan–Nugent method [33].

Scheme 6

Scheme 7

The key to obtaining the desired 2,5-substitution pattern is to perform 
the metal-mediated oxidative coupling of diynes (30) possessing a (CH2)3 or a
(CH2)4 spacer (Scheme 7) [34, 35, 36, 37]. The zirconacyclopentadienes (31) are
extremely air- and moisture-sensitive derivatives that react with dihalogeno-
phosphines to give the corresponding phospholes (32a–e) in medium to good
yields (Scheme 7). This route is highly flexible since it not only allows electron-
deficient and electron-rich rings to be introduced in the 2,5-positions, but also
permits the nature of the P-substituent to be varied. This is a crucial point in
order to be able to fully elucidate the structure/property relationships for these
new types of phosphole-based co-oligomers.



At the outset, it is interesting to note that the stability of derivatives (32) 
is directly related to the nature of the P-substituent. 1-Phenylphospholes are
easily purified, air-stable solids, while the 1-alkyl- (32c) and 1-amino-phosp-
holes (32d) (Scheme 7) are extremely air- and moisture-sensitive compounds.
According to X-ray diffraction studies, the three heterocycles of s3,l3-phosp-
holes (32a) [35] and (32b) [34] are almost coplanar, with the phosphorus atoms
being strongly pyramidalised. For both compounds, the lengths of the C–C
linkages between the rings are in the range expected for Csp2–Csp2 single
bonds. These solid state data suggest a delocalisation of the p-system over the
three heterocycles.

In solution, phospholes (32a–e) present broad absorptions in the visible 
region attributed to p-p* transitions [36]. The values of lmax and the optical
end absorption lonset, depend dramatically upon the nature of the 2,5-sub-
stituents of the phosphole ring [34, 35, 36].An important red-shift was recorded
on replacing the phenyl groups of (32e) either by 2-pyridyl (lmax=36 nm) or 
2-thienyl rings (lmax=58 nm) [36]. These data suggest that the HOMO-LUMO
gap gradually decreases in the series (32e)/(32b)/(32a), a feature that was con-
firmed by high-level theoretical calculations. The origin of these bathochromic
shifts was initially interpreted in terms of intramolecular charge transfer 
that favours the delocalisation of the p-system [36]. The observation that the
highest value of lmax, i.e. the lowest HOMO-LUMO gap, was recorded for 2,5-
dithienylphosphole (32a) was attributed to the fact that phospholes possess
low-lying LUMO levels (high electron affinity), favouring charge-transfer from
the electron-rich thienyl substituents. A recent study proposed that the more
pronounced p-conjugation in (32a) was due to a better interaction between the
HOMO of phosphole with the HOMO of thiophene, compared to that with
pyridine [18e].

The optical data and theoretical studies show that the lowest HOMO-LUMO
gap is achieved for (32a), structurally based on an alternating arrangement of
thiophene and phosphole rings. The value of lmax recorded for (32a) (412 nm)
is considerably more red-shifted than those of related 2,5-dithienyl-substituted
pyrrole (322 nm), furan (366 nm) or thiophene (355 nm), and very close to that
of the 2,5-dithienyl-derivative based on a non-aromatic silole unit (420 nm) [38].
These results clearly establish that phospholes are excellent building blocks for
the construction of p-conjugated co-oligomers exhibiting low HOMO-LUMO
gaps.

Not only the absorption behaviour, but also all the physical properties of
derivatives (32) are related to the nature of the 2,5-substitution pattern. For 
example, a blue-green emission is observed for di(2-pyridyl)phosphole (32b)
whereas the emission of di(2-thienyl)phosphole (32a) is red-shifted (Dlem=
35 nm) [36]. Likewise, cyclic voltammetry (CV) revealed that derivative (32a),
featuring electron-rich thienyl substituents, is more easily oxidised than com-
pound (32b), which possesses electron-deficient pyridyl substituents [36].

In contrast to other heterocyclopentadienes (e.g. siloles and pyrroles), phos-
pholes possess a reactive heteroatom. This feature allows direct access to a range
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Scheme 8

of new p-conjugated systems (33)–(38) from single P-containing chromophores
(32a,b), without the need for additional multi-step syntheses (Scheme 8). Sig-
nificantly, these chemical modifications of the nucleophilic P-centres have a
profound impact on the properties of the phosphole oligomers as a whole.
Exploitation of this unique way of tailoring p-conjugated systems has led to the
optimisation of the properties of thiophene-phosphole co-oligomers, which
have subsequently been used as materials for OLEDs. Upon sublimation, phos-
phole (32a) decomposed while the more thermally stable thioxo-derivative
(34a) formed homogeneous thin films on an indium-tin-oxide semi-transpar-
ent anode (ITO), allowing a simple layer OLED to be prepared [39]. This device
exhibited yellow emission for a relatively low turn-on voltage of 2 V. The com-
paratively low maximum brightness (3613 cd m–2) and electroluminescence
(EL) quantum yields (0.16%) can be increased by nearly one order of magni-
tude using a more advanced device, in which the organic layer consisting of
(34a) was sandwiched between hole- and electron-transporting layers (a-NPD
and Alq3, respectively). Upon doping the layer with the red-emitting dopant
(DCJTB), the EL efficiency is further enhanced up to 1.83% with a maximum
brightness of ca. 37,000 cd m–2 [39]. These results constitute the first examples
of OLEDs based on p-organophosphorus materials.

In an extension to this work, the ligand behaviour of (32a) can be utilised in
an innovative approach whereby metal complexes are investigated as materi-
als for OLEDs. The Au(I) complex (38a) is thermally stable enough to give ho-
mogeneous thin films upon sublimation in high vacuum. The corresponding
single layer device exhibited an EL emission covering the 480–800 nm domain



[39]; the low energy emissions are very probably due to aurophilic interactions
in the solid state [40]. This work nicely illustrates the contribution of P-chem-
istry to the tuning of the optical properties of phosphole-based materials.

The evolution of optical and electrochemical properties with increasing
chain length is one of the central principles used in the understanding of the
characteristics of novel p-conjugated systems [1e,h, 41]. Considering the in-
terest in thiophene-phosphole (Th-Phos) derivatives as smart materials, the
synthesis of yet longer, but still well-defined oligomers, has been investigated
[42]. The Fagan–Nugent method allows for the preparation of oligomers
(40a,b) (Scheme 9), in moderate yields, from the corresponding bis- and tris-
diynes (39a,b). Compounds (40a,b), as well as their thiooxo-derivatives (41a,b),
are obtained as air stable powders. They exist as a mixture of diastereoisomers
due to the presence of stereogenic P-centres.
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Scheme 9

The UV-vis spectra of Th-(Phos-Th)2 (40a) revealed a lmax (490 nm) consid-
erably higher than that recorded for quinquethiophenes (ca. 418 nm) [43]. Thus,
as observed for the model molecule (32a), replacing a thiophene subunit by a
phosphole ring induces an important decrease in the optical HOMO-LUMO gap.
It is also noteworthy that oxidation of the P-atoms of (40a) induces a batho-
chromic shift in the value of lmax [42].A similar trend has been observed with the
shorter oligomers (32a), hence it seems a general feature that oligo(a,a¢-thio-
phene-phosphole)s incorporating s4-P rings have smaller HOMO-LUMO gaps
relative to those based on s3-P rings. The absorption maxima (lmax), as well 
as the longest wavelength absorption (lonset) regularly shift to lower energy as the
extent of the p-conjugated path increases [42]. Chain extension also leads to a 
decrease in their oxidation potentials and an increase of their reduction poten-
tials. These data clearly showed a lowering of the HOMO-LUMO gap upon in-
creasing the chain length of the a,a¢-(thiophene-phosphole) oligomers. It is thus
likely that the saturation of the effective conjugation has not been reached with
oligomer (41b) containing seven rings. This result, along with the good stability
and solubility of Th-(Phos-Th)2,3, should encourage the search for new pathways
to longer oligomers with alternating thiophene and phosphole subunits.



3.2.3
Miscellaneous Structures

The fact that phospholes can act as ligands toward transition metals has consid-
erably expanded the potential of phosphole-based derivatives for further devel-
opment as OLEDs.The situation is very similar in the field of NLO materials.The
archetypical NLO-phores can be represented as D-(p-bridge)-A, where D and A
are donor and acceptor groups, respectively [44]. Theoretical studies have sug-
gested that phospholes can act as efficient (p-bridges) for the engineering of
NLO-phores [16f, 5b]. The NLO response of donor/acceptor-substituted phosp-
hole (42) (Scheme 10) (bx=6.17¥10–30 e.s.u.) was computed to be significantly
greater than that of related derivatives featuring a pyrrole (bx=5.59¥10–30 e.s.u.),
a thiophene (bx=5.49¥10–30 e.s.u.) or a cyclopentadiene (bx=6.04¥10–30 e.s.u.)
central ring [5b]. This trend was attributed to the low aromatic character of
phosphole compared to that of either the pyrrole or thiophene rings. However,
the electronic density (i.e. the excess/deficiency of electrons) associated with
the p-bridge has also been shown to play a crucial role. According to theoret-
ical calculations, chromophores (43) and (44) (Scheme 10) having stilbene-like
bridges in which one phenyl is replaced by a phosphole ring, also exhibit good
NLO responses [5b]. As expected from the quite high electronic density found
on the a-P carbon atoms [5b], the highest NLO activity is observed for deriv-
ative (44) having a donor NH2 substituent on the phosphole ring.
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Scheme 10

Phospholes (45a) and (45b) (Scheme 11), which bear an electron-deficient
pyridine group and a classical electron-donor group at the 2- and 5-positions,
respectively, exhibit moderate NLO activities (b1.9 mm, ca. 30¥10–30 e.s.u.) com-
pared to classical chromophores such as DR1 (b0, 50¥10–30 e.s.u.) [45]. These
low values are consistent with the weak acceptor character of the pyridine
group. However, the potential of dipoles (45a) and (45b) in NLO is considerably
increased by their P,N-chelate behaviour towards d8 metal centres such as
Pd(II) [37, 46]. 2-(2-Pyridyl)phospholes (45a,b) react with [Pd(CH3CN)4][BF4]2
to afford the corresponding complexes (46a,b) (Scheme 11). In accordance with
the trans-influence [47], heteroditopic P,N-dipoles (45a,b) undergo a stereos-
elective coordination leading to a close parallel alignment of the dipoles on the
square-planar d8 palladium template. Thus, the trans-influence can overcome
the natural anti-parallel alignment tendency of dipolar chromophores at the
molecular level. Furthermore, complexes (46a,b) exhibit high NLO activities
(b1.9 mm, ca. 170–180¥10–30 e.s.u), which are much higher than the sum of the
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Scheme 11

contributions of the two sub-chromophores (45a,b) [45]. The augmentation of
the NLO activity upon coordination is probably due to the onset of ligand-
to-metal-to-ligand charge transfer that contributes coherently to the second
harmonic generation.

Other types of p-conjugated systems incorporating pyridylphosphole moi-
eties have been prepared with a view to establishing structure–property rela-
tionships (derivative (47), Scheme 12) or to study the photophysical properties
of dinuclear transition metal complexes containing bridging p-conjugated 
ligands (derivative (49), Scheme 12). As expected, derivative (47) exhibits a
value of lmax that has been red-shifted compared to the simple di(2-pyridyl)-
phosphole (32b) (Dlmax=37 nm).An X-ray diffraction study of the correspond-
ing complex (48) showed that the five heterocycles are almost coplanar with
twist angles ranging from 1.8(16)° to 18.3(17)° [35]. Dinuclear transition metal
complexes (50), containing bridging p-conjugated ligands based on two ter-
minal 2-pyridylphosphole moieties bridged by a thiophene ring, are readily
obtained from (49) (Scheme 12) [48]. Coordination of chromophore (49) to
ruthenium centres has been shown to have only a marginal influence on the
p-p* transition of the extended conjugated system [48].

Scheme 12



Dibenzophosphole was the first phosphole to be prepared [49], and the re-
lated fused dithienophosphole derivative (54) (Scheme 15) is also known [50].
It is important to note that these benzo-annulated derivatives do not exhibit
the typical electronic properties and reactivity pattern of phospholes, since the
dienic system is engaged in the delocalised benzene or thiophene sextet [6b,
16]. Dibenzophospholes have only very recently been used as building blocks
for the preparation of p-conjugated systems (51b) (Scheme 13) relevant to
OLED applications [51]. This polymer (51b), prepared by Ni-catalysed coupling
of derivative (51a) (Scheme 13), is obtained with a high polydispersity (Mn=
5¥102, Mw=6.2¥103). Interestingly, this macromolecule is photoluminescent in
the solid state with a lem of 516 nm [51].
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Scheme 13

P-chiral dibenzophosphole oxide (52a) (Scheme 14) shows liquid crystalline
behaviour [52], a property that is of interest in the area of electro-optical dis-
plays [53]. Chiral resolution of (52a) was achieved by column chromatographic
separation of the diastereoisomers obtained following coordination of the 
s3-benzophosphole (52b) to chiral cyclometallated palladium(II) complexes
[52]. Notably, the presence of a stereogenic P-centre is sufficient to generate a
chiral cholesteric phase.

Scheme 14

Two types of symmetric fused dithienophospholes exist, which differ accord-
ing to the position of the S atoms as illustrated by compounds (53) [54] and (54)
[50] (Scheme 15). The s3,l3-dithieno[3,2-b:2¢,3¢-d]phosphole (55) has recently
been considered as a potential subunit for the construction of p-conjugated ma-
terials [55] (Scheme 15). Exploitation of the reactivity of the nucleophilic P-atom
of (55) allows access to derivatives (56) and complexes (57) (Scheme 15). The 
absorption and emission behaviour of these species varies with the nature of
the P-moieties. Upon oxidation of the P-centre of (55), bathochromic shifts of
lmax and lem were observed: lmax 344 nm for (55) and ca. 373 nm for (56), and
lem 422 nm for (55) and ca. 460 nm for (56) [55]. These results nicely illustrate
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Scheme 15

Scheme 16

how the tuning of the optical properties of these chromophores can be achieved
via modifications at phosphorus.

3.3
Copolymers

Although, to date, no homo-polymers based on phosphole are known, three
types of copolymer incorporating phosphole rings have been prepared. The
first type, (60a,b) (Scheme 16), has been described by Don Tilley and co-work-
ers [56]. These macromolecules were obtained as an 80/20 isomeric mixture of
2,4- and 2,5-connected phospholes by zirconocene-coupling of rigid diynes
(58), affording intermediate complexes (59a,b) (Scheme 16) [56]. The biphenyl-
phospholyl polymers were isolated as air stable, soluble powders exhibiting
rather high molecular weights (Mw=16,000, Mn=6200) according to GPC analy-
sis. Although multinuclear NMR spectroscopy and elemental analysis support
the proposed structures, the presence of a small number of diene units cannot
be ruled out [56]. The polymer mixture (60a,b) exhibits an absorption maxima
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in its UV-vis spectrum at 308 nm with a lonset of 400 nm. These values are con-
sistent with a relatively high band gap, probably due to a preponderance of
cross-conjugated segments [56]. Polymers (60a,b) exhibit interesting photolu-
minescence properties with emissions in the bluish-green region associated
with large Stokes shifts of 162 nm.

A second type of phosphole-containing p-conjugated copolymer was ob-
tained by electropolymerisation of thienyl-capped monomers [35, 36], which
involves the generation and coupling of radical cations [57]. The major coupling
process should induce a,a¢-linkages, but the formation of some 2,4-linkages 
that disrupt the conjugation can also take place. Insoluble and electro-active 
materials (61) (Scheme 17) were obtained on the working Pt electrode with 
2,5-(dithienyl)phosphole monomers featuring s3,l3-,s4,l4- and s4,l5-P moieties
(Scheme 17) [35, 36]. Polymers (61) were amenable to p- and n-doping processes
with good reversibility. Absorption spectra of the de-doped polymers showed
that the values of lonset were considerably red-shifted compared with those ob-
served for the corresponding monomers (32a)–(36a) (Scheme 17, Table 1) [36].
These data suggest that the electro-active materials formed on the electrode pos-
sess rather long conjugation pathways.A remarkable feature is that the electro-
chemical (doping range) and optical properties (lmax, lonset) of these materials
obtained by electropolymerisation depend on the nature of the phosphorus
moiety (Scheme 17, Table 1), exactly as was observed for the P-containing
monomers (32a)–(36a).

Scheme 17

Table 1

Y lmax lonset lmax lonset

32a PPh 434 500 poly(32a) 463–567 724
33a P(O)Ph 432 496 poly(33a) 568 780
34a P(S)Ph 423 503 poly(34a) 529 754
36a P+MePh 442 528 poly(36a) 627 905

It is difficult to establish the degree of polymerisation of materials (61) due
to their insolubility, which prevents GPC analysis and standard spectroscopic
studies. The important bathochromic shift of the lonset observed in the series:
(34a) (496 nm)/(62) (600 nm) (Scheme 18)/poly(34a) (754 nm), suggests that
(61) are oligomers. Note that electropolymerisation of monomers (40a) and
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Scheme 18

Scheme 19

(41a) (Scheme 9) also leads to electro-active materials presenting almost re-
versible p-doping behaviour [42].

The first well-defined p-conjugated polymer having a phosphole ring in a 
repeating unit was obtained by Chujo et al., using the Heck-Sonogashira cou-
pling of (63) with the co-monomers (64a–c) (Scheme 19) [58]. Note that the
preparation of 2,5-(diaryl)-phosphole of type (63) according to the Cu-modified 
Fagan–Nugent method (Scheme 19) was recently patented [59].Macromolecules
featuring free s3,l3-P centres (65a–c) are isolated in moderate to low yields as
soluble powders. They are air-stable in the solid state and their degree of poly-
merisation ranges from 15, for (65a), to 7 for (65c). The UV-vis absorptions of
(65a–c) are red-shifted in comparison to that of 2,5-diphenylphosphole (32e)
(Scheme 7), indicating an effective extension of the p-conjugation. The emission
properties of these macromolecules can be tuned by varying the nature of the
co-monomer, green and blue emission are observed with polymers (65a,b) and
(65c), respectively [58].

Polymers incorporating phosphole subunits are still very rare. However, the
pioneering work described in this section shows that such macromolecules are



accessible via diverse synthetic routes, and that they exhibit quite good stabil-
ity as well as valuable optical and electrochemical properties.

4
Macromolecules Containing Phosphine Moieties
Over the last decade, poly(p-phenylenevinylene)s and related materials have
found a place amongst the most industrially significant materials for the
preparation of OLED-type devices [1, 60]. Since replacing carbon moieties by
heteroelements as constituents of the primary polymer backbone has proved
an excellent means of tuning the materials’ opto-electronic properties, it is un-
surprising that phosphorus-containing analogues of PPV and related macro-
molecules have been prepared and investigated.

4.1
Poly(p-Phenylenephosphine)s

Redox active polyanilines (D¢) (Fig. 3), in which the heteroatom participates in
p-conjugation by virtue of its lone pair, are amongst the oldest and best known
photochromic materials, often prepared by galvostatic polymerisation of aque-
ous HCl solutions of anilines [61]. More recently, polymer (D¢) has been prepared
via metal-mediated C–N bond formation from aryl-halides or -triflates with
amines, affording N-substituted polyanilines [62] and oligoanilines [63]. Despite
the prevalence of such polymers containing nitrogen, the corresponding
poly(para-phenylenephosphine)s (D≤) that possess main chain s3,l3-phos-
phorus centres have appeared only recently.

By analogy with modern routes for the preparation of well-defined polyani-
lines (D¢), palladium-catalysed cross coupling of 1,4-diiodobenzene and primary
aryl- and alkyl-phosphines affords the comparatively short chain polymers
(66a–c) (Mn=1000–4000) (Scheme 20), that can be oxidised either by atmospheric

The Rise of Organophosphorus Derivatives in p-Conjugated Materials Chemistry 147

Fig. 3 Structure of polyanilines and poly(para-phenylenephosphine)s

Scheme 20



oxygen or by H2O2 to afford derivatives (67a–c) [64]. Soluble materials (66a–c)
are formed with narrow polydispersities (PDI=1.3–1.5) and are amenable to
characterisation by GPC and multinuclear NMR spectroscopy. The UV-vis spec-
tra of polymers (66a–c) show absorption values attributed to p-p* transitions
with lmax ranging between 276 and 291 nm [64]. These rather low values are
probably due to the fact that the P-atoms of these polymers retain a tetrahedral
geometry that prevents efficient conjugation of the phosphorus lone pair with
the aryl groups. However, the bathochromic shift observed on going from triph-
enylphosphine (lmax=263 nm) to 1,4-diphenylphosphinobenzene (lmax=275 nm)
and then to (66b) (lmax=291 nm) is supportive of the presence of some ex-
tended p-delocalisation for the latter. Contrastingly, the oxidised materials
(67a–c) exhibit a number of new absorption bands and all display a shift in
lonset from 520 (unoxidised) to 800 nm (oxidised).

Since metal-catalysed C–C bond-forming reactions are extremely well-es-
tablished and reliable, an alternative route to polymers (D≤) has been investi-
gated starting with the bis(p-bromophenyl)phosphines (68a,b) (Scheme 21)
[65]. Disappointingly, though, this approach was also found to be inappropri-
ate for the formation of high molecular weight polymers.A dark red insoluble
solid was isolated from the Ni-catalysed coupling reaction of (68a), which was
believed to be (69a). However, homo-coupling of phosphine (68b) afforded a
low molecular weight (Mn=1000), pale yellow material (69b), which could be
oxidised to afford (70b). The colour of (69b) is indicative of limited p-conju-
gation.
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Scheme 21

Although of limited success, this Ni-catalysed coupling strategy builds on a
previous report of the successful, direct synthesis of poly(4,4¢-diphenylphenyl-
phosphine oxide) (70c) from bis(p-chlorophenyl)-phenylphosphine oxide (71)
(Scheme 21) [66]. The white soluble material (70c) (lmax~280 nm) was found
to have a single phosphorus environment by 31P NMR spectroscopy, a com-
paratively high molecular weight (Mn=15,300) together with a low molecular



weight distribution (PDI=1.6), and to exhibit a high Tg (365 °C) with consid-
erable thermal stability (<5% weight loss at 550 °C). Reduction of (70c) was
achieved by reaction with phenylsilane, to give a poorly soluble, intensely
brown-red-coloured material (72). Surprisingly, however, despite the intense
coloration, only a small red-shift was observed relative to (71) (Dlmax~20 nm),
which has been attributed to a possible partial re-oxidation at phosphorus.

An example of branched (p-phenylene)s (75) incorporating phosphorus
moieties (Scheme 22) was obtained adventitiously during attempts to synthe-
sise soluble linear (p-phenylenes) using Pd-catalysed Suzuki couplings [67a].
Thus, reaction of derivatives (73) and (74) in the presence of a palladium-tri-
(o-tolyl)phosphine catalyst system, led to the formation of linear poly(p-pheny-
lene)s of high molecular weight [67a]. In contrast, on replacing tri(o-tolyl)-
phosphine by triphenylphosphine, aryl-aryl interchange took place with the
ArPd(PPh3)2I complexes [67b] leading to the formation of branched polymer
(75) (Scheme 22). It should be noted that although the concentration of the
phosphine ‘defects’ is very low, they have a significant impact on the properties
(e.g. molecular weight, viscosity, etc.) of the polymers. A related exchange 
between phenyl groups of triphenylphosphine and iodophthalocyanines in the
coordination sphere of Pd(II), leading to mono-, bis- and tris-(phthalocya-
nine)aryl phosphonium salts, has recently been reported [68].
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Scheme 22

4.2
Phosphine-Ethynyl Co-Oligomers

Replacement of the para-substituted phenyl unit of alternating phosphine-ary-
lene polymers by an ethynyl group, gives rise to a new family of p-conjugated
materials. Indeed, compounds (77) and (78) were prepared in 53% and 3% iso-



lated yields, respectively, through reaction of dihalophosphine (76) with an 
excess of ethynylmagnesium bromide (Scheme 23) [69]. These derivatives 
were subsequently transformed into triphospha[3]pericyclyne (79) and tetra-
phospha[4]pericyclyne (80) via a double deprotonation, followed by addition
of 1.5 equivalents of dihalophosphine (76). Notably, derivatives (79) and (80)
exhibit strong absorption bands in their UV-vis spectra that extend out to
nearly 300 nm, showing that these heterocycles display cyclic electronic inter-
actions [69].

150 M. Hissler et al.

Scheme 23

In a related strategy, ethynylphosphines (81) have been prepared with a view
to synthesising polyphosphacyclopolyyne materials such as (82) (Scheme 24)
[70]. Interaction between the phosphorus lone pairs and the organic p-systems
is supported by the fact that the phosphorus atoms of mono- and di-silyl-
capped analogues of bis(arylphosphine) derivative (81) exhibit an unusually
low inversion barrier (65 kJ mol–1 versus 130–140 kJ mol–1 for classical alkyl-
or aryl-phosphines). Indeed, the rings (82) exhibit values of lmax at ca. 300 nm,
consistent with this assumption.

Scheme 24

In a further extension to this approach, longer chain oligomers (83)–(86)
have been prepared via two different methodologies, either a Cadiot–Chod-



kiewicz coupling involving bis(copper) salts, or an Eglinton coupling of termi-
nal alkyne moieties (Scheme 25) [70]. Each of the oligomers (83)–(85) presents
a number of bands in their UV-vis spectra in the range lmax=308–210 nm,
consistent with a degree of extended p-conjugation. Notably, however, the 
insolubility of the higher molecular weight, yellow-coloured oligomer (86) pre-
cluded UV-vis analysis.
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Scheme 25

It is noteworthy that photoluminescent poly(vinylene-arsine)s have also
been prepared by radical copolymerisation of phenylacetylene and an arsenic
atomic biradical equivalent [71].

4.3
Phosphine-Ferrocene Co-Oligomers

Ferrocene has been extensively used as a building block to prepare organo-
metallic polymers and heteroatom-bridged poly(metallocenes)(G¢)–(G¢≤)(Fig.4).



152 M. Hissler et al.

Fig. 4 Heteroatom-bridged poly(metallocenes)

Scheme 26

These derivatives have been the focus of numerous investigations since the na-
ture of the bridging atom has key implications for the properties of the polymers
[72]. Although, not p-conjugated materials in the true sense, the phosphorus-
containing materials (G≤¢) show a range of properties that offer significant
promise for the future. In particular, the ring-opening polymerisation (ROP) of
the strained [1]-ferrocenophane monomers (87)–(89) allows the various poly-
mers (90)–(95) to be prepared with high molecular weights and narrow poly-
dispersities (Scheme 26) [73]. In line with the living nature of this process, block
copolymers with either poly(dimethylsiloxane) or poly(ferrocenylsilane) seg-
ments have also been isolated.



5
Phosphorus Bearing Extended pp-Conjugated Substituents

Conceptually and synthetically more straightforward molecules can be prepared
through incorporation of chromophores onto simple phosphine moieties. The
phosphorus fragment can be used either to influence or to organise the p-con-
jugated systems. This section will focus only on derivatives tailored in order to
exhibit specific properties related to applications in NLO, opto-electronics or as
sensors.

In a series of remarkable papers, K. Tamao and S.Yamaguchi have shown that
the physical properties of triarylboranes and triarylsilanes can be modified 
using structural changes induced by increasing coordination numbers [74]. In
the same way, the tuning of the photophysical properties of PAr3 systems (96–99)
(Scheme 27) according to the coordination number of the P-atom has been
achieved [75].
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Scheme 27

UV-vis spectroscopic analysis revealed that the s3,l3-phosphine (96) exhibits
a broad absorption band at ~390 nm due to the p-p* transitions associated 
with the anthracene moieties, together with a band at 437 nm, probably due to
extended p-conjugation through the P-lone pair [76]. The UV-vis spectra of de-
rivatives (97)–(99) are blue-shifted (Dlonset, ca. 40–80 nm). This bathochromic
shift can be ascribed to the inductive effects of the phosphorus moieties or to a
through-space interaction between the anthracene substituents [75]. Moreover,
it has been established that the fluorescence properties of these partially con-
jugated molecules are highly dependent upon the coordination number of the
central P-atom. The s3,l3-phosphine (96) has almost no fluorescence as a result
of quenching by the P-lone pair. The s4,l4- (97) and s4,l5- (98) derivatives show



weak fluorescence with relatively large Stokes shifts, again presumably as a 
result of through-space interactions between the anthracene substituents. In
sharp contrast, the penta-coordinate s5,l5-compound (99) shows an intense flu-
orescence with a small Stokes shift; the quantum yield is ~30–100 times greater
than those of either (97) or (98), comparable to that of anthracene itself. This 
latter phenomenon is thought to result from the equatorial disposition of the
three anthracenyl moieties, an arrangement evident from 31P NMR spectroscopy.

More recently, the fluorescence properties of related 9,10-diphospha-an-
thracenes (100–103) (Scheme 28) have been investigated [77], since previous
studies have shown that the analogous N- and Si-disubstituted species exhibit-
photoluminescence [78], electroluminescence, and are potential materials for
light-emitting electroluminescent devices [79]. Starting from the known phos-
phine 9,10-(Ph2P)2C14H18 (100) [80], the bis(chalcogenide) derivatives (101)–
(103) have been isolated in high yields (Scheme 28).
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Scheme 28

In solution, only compound (101) exhibits a detectable emission (lem~
450 nm). Contrastingly, in the solid state, derivative (102) shows very intense
fluorescence at lem=508 nm, (101) displays a weak, broad emission at lem=
482 nm, while (103) shows no emission at all [77]. However, it was established
that the presence of near stoechiometric quantities of toluene are necessary to
observe fluorescence of (102) in the solid state. Indeed, the asymmetric unit 
of (102), established crystallographically, contains one toluene molecule that 
interacts via its ortho-hydrogen atoms with the central ring of the anthracene.
The emission is thus due to this solid state T-shaped excimer. Hence, (102) can
act as a potential toluene chemosensor [77]. It is noteworthy that this T-shaped
orientation is not possible with derivatives (101) and (103), nicely illustrating
the possible impact of P-chemistry for tuning the properties of p-conjugated
systems in the solid state.

Diphenylphosphino groups have also been investigated as auxiliary donor
groups for the tailoring of potential second- and third-order NLO-phores. Their
syntheses used the versatile starting material p-diphenylphosphanyl-ben-
zaldehyde (104) (Scheme 29) and a set of classical synthetic transformations
(e.g.Wittig reactions, McMurry couplings) [81]. Dipole (105) exhibited a blue-
shifted value of lmax, relative to that of its N-analogue (108). This property may
be of interest in terms of a trade-off between transparency and NLO activity,



which are important parameters for the engineering of valuable second order
NLO-phores [44]. Again, these results highlight the ease of tuning of the opto-
electronic properties of heteroatom-containing polymers.

Two series of centrosymmetric diphenylphosphino-capped chromophores
(106) and (107a–d) (Scheme 29) have been synthesised with a view to prepar-
ing materials with potential third order NLO properties [81]. Comparison of
the UV-vis data of compounds (106) and (109) confirms that replacing N by P
induces a blue-shift in the value of lmax [81]. The systematic increase in the
number of conjugated C–C double bonds in the series of polyenes (107a–d)
(Scheme 29) led to a pronounced red-shift in the values of lmax: 341 nm for
(107b) and 418 nm for (107d), as expected. Notably, these UV-vis data are sig-
nificantly blue-shifted from the values obtained for the analogous series of
bis(diphenylaminodiphenyl)polyenes, which span the range lmax 389 (n=1) to
449 nm (n=3) [81].

The opto-electronic properties of branched structures have been an area of
some interest for a number of years, especially as NLO and light-emitting ma-
terials [82]. In particular, the use of p-conjugated dendrimers (mono-disperse
macromolecules [83]) has flourished for a number of reasons:

1. The possibility of their bearing multichromophores (arranged either sym-
metrically or asymmetrically about the core)

2. Their ability to achieve a high chromophore density (for example, it is
possible to introduce three conjugated chains about a single N-atom core in
contrast to the two more normally possible with a linear macromolecule) [84]

3. The prospect of investigating the ternary structure of these materials as a
consequence of their potentially 3D nature [85]
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Indeed, conjugated dendrimers built from an N-containing core exhibit im-
pressive energy transfer efficiencies as well as very strong electronic interactions
of the participating chromophore building blocks, a result of planarisation 
at nitrogen facilitating good orbital overlap between the different chromo-
phores [86].

More recently, efforts have been made to prepare P-containing dendritic core
branched structures bearing p-conjugated substituents. The 3-D chromophores
(110) and (111) with a C3 and D2 (approximate T) symmetry (Scheme 30), re-
spectively, have been prepared according to classical routes [87]. The UV-vis
data suggest that the subchromophores in (110) and (111) are almost elec-
tronically independent. Derivative (110) has a small dipole moment, and can
be viewed as an almost purely octupolar system, like (111). Compared to their 
tin analogues, the phosphorus derivatives (110) and (111) have higher b val-
ues due to the more efficient phosphonium acceptor [87]. Furthermore, the
NLO activity of octupolar compound (111) is almost three times larger than
that of the dipolar subchromophore (112) with almost no cost in terms of
transparency. The related octupolar phosphonium salt (113) (Scheme 30) was
investigated with the aim of obtaining NLO-active crystals that remain trans-
parent across all, or nearly all, the visible region [88]. Structural analysis of
(113) revealed a weakly distorted ionic structure of the NaCl-type. The tetra-
hedral phosphonium ion retains an almost pure octahedral symmetry in the
solid state. The crystal is transparent throughout the visible region and ex-
hibits a moderate NLO activity [88]. These two examples nicely illustrate the
potential of phosphorus derivatives for the engineering of octupolar deriva-
tives.
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More recently, P-cored derivative (116) was prepared from a straightforward
combination of a Heck coupling, to afford an intermediate functionalised stil-
bene phosphine oxide (114), a Horner–Wittig reaction yielding the phosphine
oxide (115), and finally trichlorosilane reduction (Scheme 31) [89]. Using sim-
ilar strategies, both the valence isoelectronic N- (117) and C- (118) cored den-
drimers have been prepared (Scheme 31).

The geometry of the central core P-atom of (116) was found to be pyrami-
dal, as might be expected for a (p-substituted triphenyl)-s3, l3-phosphine, while
that for the N-based systems was trigonal planar (in agreement with the pla-
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nar structure of NPh3 [90]). An examination of the UV-vis spectra of deriva-
tives (116)–(118) revealed that the value of lmax for the P-containing species
(376 nm) is red-shifted relative to that for the C-cored species (lmax=325 nm),
but blue-shifted with respect to the N-based analogues (117) (lmax=430 nm).
This effect has been rationalised in terms of mesomeric effects. For the planar-
cored compound (117) an efficient overlap of the N-lone pair with the adjacent
carbon p-orbital gives rise to efficient conjugation with the oligo-PPV chains,
whereas for the larger pyramidal phosphorus (116), the P-lone pair to Cp-or-
bital overlap will be significantly less efficient. Further studies to examine the
fluorescence behaviour of the three compounds (116)–(118), found that the
geometry, structural arrangement of dipoles about the core, and extent of elec-
tronic delocalisation, all have a direct impact on this property [89]. This con-
clusion was confirmed by a study on related tris(4-styrylphenyl)phosphine 
derivatives [91].

A similar investigation has probed the photophysical behaviour of some 
related “dendrimer-like”s3, l3-pnictogens (119)–(121) bearing potentially con-
jugating side chains (Scheme 32) [92]. These molecules are related to 1,3,5-
tris(N-7-azaindolyl)benzene and 4,4-bis(N-7-azaindolyl)benzene that have
shown considerable promise as bright blue-emitting OLEDs [93]. Each of the
three group 15-based compounds has been shown to adopt a similar pyrami-
dal geometry, with a propeller-like, approximate C3 symmetry, characterised in



the solid state by X-ray crystallography; the C–E–C bond angles decrease down
the series, as expected.

Luminescence studies revealed that compounds (119)–(121) displayed
broad emission bands at 298 K, with lmax ranging from 387 nm to 371 nm 
for the P to Bi derivatives, respectively [92]. On cooling to 77 K, compound
(119) displays both a fluorescent band (lmax=372 nm) and a phosphorescent
band (lmax=488 nm, lifetime 38(6) ms). For the heavier congeners only an en-
hanced phosphorescent band could be observed at 77 K (lmax=483 nm (120),
lifetime 3.44(4) ms; lmax=478 nm (121), lifetime 0.577(8) ms), consistent with
efficient interstate mixing of the singlet and triplet states. The attenuation in
phosphorescent decay lifetimes down the series corresponds with the in-
creasing heavy-atom effect. These luminescence data have been probed using
ab initio calculations for compounds (119) and (120), which revealed that 
although both have HOMOs involving p-orbitals localised on the side chains,
for (105) the HOMO is dominated by the P-lone pair. Significantly, however,
the HOMO-LUMO gap is comparable for both compounds, suggesting that the
observed luminescence is due to p-p* transitions with some lone pair con-
tribution from the central atom, E. The low phosphorescent emission intensi-
ties and long decay lifetimes in the solid-state makes compounds (119)–(120)
poor candidates for OLED emitter components. However, this investigation
does, once again, highlight that incorporation of main group elements into
conjugated systems can have a profound influence on photophysical proper-
ties.

6
Conclusions

The chemistry of p-conjugated systems incorporating P-moieties has really
only come to the fore following the pioneering work started in 1990 on phos-
phole-based oligomers, and that on related phosphine-ethynyl co-oligomers.
The last five years have seen an extraordinary expansion in this new area with
the synthesis of novel derivatives exhibiting a plethora of different structures.
However, the chemistry of p-conjugated systems incorporating P-units remains
in its infancy. Structure–property relationships have still to be established in or-
der to fully exploit the potential of P-moieties in the construction of conjugated
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Abstract In this paper the synthesis, properties and applications of poly(organophos-
phazenes) have been highlighted. Five different classes of macromolecules have been de-
scribed, i.e. phosphazene fluoroelastomers, aryloxy-substituted polymeric flame-retardants,
alkoxy-substituted phosphazene electric conductors, biomaterials and photo-inert and/or
photo-active phosphazene derivatives. Perspectives of future developments in this field are
briefly discussed.

1
Introduction

It is now a common feeling that our world cannot survive as it is without plas-
tics [1]. Starting from 1930, when the macromolecular concept started to gain
acceptance in the scientific community [2], the advances in polymer science
have been so striking that plastics have invaded almost every aspect of modern
human life, both as daily materials and as sophisticated substrates able to cover
high-tech applications [3]. A very easy and simple way to check this assertion 
is to visit the “The Macrogalleria” web site (1st floor) [4] where an extensive 
exemplification of the most common and important plastic applications in 
different fields is provided in a really immediate and impressive way.

From a historical point of view, organic macromolecules were developed
first [5], and the reasons for this are basically twofold. On one side the ease of
the preparation of these materials in a controlled and reproducible way [1] and
the outstanding properties of the resulting organic polymers [6–8]; on the other
side the availability of oil on the market and the big effort put by oil compa-
nies into the production of a large variety of different monomers at very low
prices [9].

After 50 years of almost uncontested domination of the plastics market 
by organic polymeric materials, however, some important drawbacks of these
substrates are becoming evident [10]. These problems mainly concern their
poor flexibility at very low temperature, limited stability at high temperature
(especially in oxygenated environments), high tendency to swell in the presence
of organic solvents, scarce biomedical compatibility, lack of thermal and/or
electric conductivity, and low resistance to fire and to UV and high energy 
radiations (X- and g-rays, electron beams, etc.) [11].

During the last three decades the consideration of inorganic [10, 12–16] and
organometallic [17–20] polymers in an effort to overcome these problems and
to expand the utilization of plastics to situations where organic materials fail
has become more and more important; this is marked by the astonishingly high
number of publications appearing in this area.

The reasons for the success of inorganic and organometallic macromolecules
over the corresponding organic materials stand on the structure–property re-
lationships existing in these polymers.

As reported in Table 1, inorganic polymers (e.g. polysiloxanes and polyphos-
phazenes) usually posses wider angles and longer bonds among skeletal atoms
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Table 1 A few general features of both organic and inorganic polymers

than do organic macromolecules, the inorganic linkage also showing a con-
siderable ionic character.

The structural characteristics of inorganic macromolecules bring about im-
portant consequences as far as their chemico-physical features are concerned
[9], compared to the corresponding properties of organic polymers. Inorganic
plastics, in fact, form very good elastomers at low temperatures (due to an 
enhanced skeletal flexibility and depressed values of Tg). They are much more
stable towards homolytic chain scission and high temperature oxidation and
behave as flame- and fire-resistant substrates due to the elevated content of in-
organic elements. In some cases, furthermore, they show very good biological
compatibility, water solubility, and radiation resistance due to the presence of
stronger bonds and transparency to very short wavelength radiation.

At present the situation in the field of inorganic polymeric materials is 
dominated by polysiloxanes (silicones) [14, 24–27], whose utilization as low
temperature elastomers, thermally stable fluids, biomaterials etc., is definitely
well established.

There are, however, other classes of inorganic and organometallic polymers
that deserve consideration due to their considerable scientific and applicative
relevance, such as polysilanes [28–31], polycarbosilanes [32, 33], polysilazanes
[33], polyborazines [34, 35], polythiazenes [36], and, as an example, polymetal-
locenylsilanes [37].

Among these polymers, poly(organophosphazenes), POPs, occupy a special
position [38].



Although the preparation of the starting material for synthesizing these
macromolecules dates back to 1834 [39], their synthesis and characterization was
described by H. R. Allcock only in the middle of the 1960s [40–43]. Since then,
they have experienced an explosive development [10, 12, 13, 15]. Almost every 
industrialized country in the world (USA, Europe, India, East Asia, etc.) has put
years of effort into investigating and developing these materials, preparing an 
elevated number of macromolecules of different structures and properties, with
a great deal of potential in a wide range of industrial and technological fields.

Now polyphosphazenes seem to be ready to move from the level of a mere
scientific curiosity to the rank of industrially and commercially important
macromolecules [10, 12, 13, 15].

In this article we highlight some fundamentals concerning phosphazene
macromolecules, together with the most significant achievements that have 
appeared in literature during the last 10 years. For previous important infor-
mation on these substrates adequate literature will be provided.

2
Synthesis of Poly(organophosphazenes)

2.1
Preliminary Synthetic Considerations

The synthesis of poly(organophosphazenes), POPs, is a research area that has
involved a lot of effort in the past by many scientists active in the phosphazene
domain. There are several important reasons for this, basically related to the
high cost of the starting products [44] used to prepare POPs, to difficulties in
carefully controlling the reactions involved in the preparative processes [38]
and to the need for accurately predicting both molecular weight and molecu-
lar weight distribution of the POPs produced [38, 45].

Decreasing the cost of production of POPs is a major problem, to make
them competitive with other less expensive or almost inexpensive organic
macromolecules. For this reason, different synthetic approaches have been
taken into consideration, implying the use of different monomers (such as
hexachlorocyclophosphazene) [13], low molecular weight starting reagents
(PCl5, NH4Cl, (NH4)2SO4, etc.) [46–52], short linear phosphazene oligomers
[53, 54], and variable types of chlorinated or substituted phosphoranimines
[10, 55, 56] and phosphoranes [38, 57].

At the same time, ring-opening-polymerization (ROP) processes, which
dominated the phosphazene field for decades [38], tend now to be substituted
by polycondensation reactions. These seem to be more feasible and repro-
ducible, easier to carry out, and able to guarantee predictable MWs and MW
distributions for these materials [10].

Finally, substituted phosphoranimines seem to be able to avoid substitu-
tional processes carried out on highly reactive polymeric phosphazene inter-
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mediates (e.g. polydichlorophosphazene), whose completeness is mandatory
for the stability and constancy of properties of the final POPs [38].

In this section we will provide an almost exhaustive view of the synthetic
strategies used to prepare POPs.

2.2
Synthesis of Poly(organophosphazenes)

In general terms, the synthesis of poly(organophosphazenes) can be obtained
by using three main strategies, as reported in Fig. 1. These approaches imply:

I. Preparation of poly(dichlorophosphazene), (NPCl2)n, a polymeric inter-
mediate from which the great majority of POPs have been prepared by nu-
cleophilic substitution of the highly reactive chlorine atoms with carefully
selected organic substituents

II. Use of polycondensation processes of substituted phosphoranimines to 
obtain already substituted poly(organophosphazenes)

III. Utilization of ROP processes of completely or partially substituted cyclo-
phosphazenes to obtain POPs having predictable chemical structures

All these processes will be illustrated in some detail.
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2.3
Process I: Synthesis of Poly(organophosphazenes)
Through Polydichlorophosphazene and Nucleophilic Substitution
of its Chlorines with Nucleophiles

2.3.1
Part 1 – Synthesis of Polydichlorophosphazene

Polydichlorophosphazene is commonly considered as the “key polymer” from
which almost all poly(organophosphazenes) are generated [38].

170 M. Gleria · R. De Jaeger

Table 2 Synthesis of polydichlorophosphazene by different methods

Year Author(s) References

1897 N.S. Stokes 59
1939 O. Schmitz-Dumont 60
1949 B.R. Dishon 61
1951 F.Patat 62–65
1959 T.R. Manley 66

J.O. Konecny 67, 68
1960 D. Chakrabartty 69

N.L. Paddock 70, 71
1961 M.W. Spindler 72

R.A Shaw 73
1962 V. Caglioti 74, 75

F.G.R. Gimblet 76
1963 J.R. Soulen 77

M. Kajiwara 78–82
1965 F.L. Chui 83

H.R. Allcock 13, 40–42, 84–89
1966 P. Porta 90
1967 J.R. MacCallum 91, 92
1968 R.O. Colcluogh 93

The synthesis of this material is one of the major processes in phosphazene
chemistry, as proved by the unbelievably high number of papers and patents
that have appeared since the beginning of the phosphazene history [10, 58].

A list of different authors that have been involved in designing new prepar-
ative strategies for obtaining this polymer under controlled conditions is given
in Table 2.
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Table 2 (continued)

Year Author(s) References

1970 R.W. Jenkins 94
G. Allen 95

1971 V.V. Kireev 96–104
1972 J. Emsley 105
1977 K.A. Reynard 106–108
1978 A.F. Halasa 109, 110

D.L. Snyder 111, 112
R.L. Dieck 113–116

1979 T.A. Antkowiak 117
J. Retuert 118, 119
V.V. Korshak 120–123

1980 – 124–126
J. Behnke 127, 128
T. Kinoshita 129, 130
D.P. Sinclair 131
Y. Osada 132–135
J.W. Fieldhouse 136–139
E.D. Hornbaker – H.M. Li 46, 47, 53, 54, 140–147

1982 E. Devadoss 148–150
H.G. Horn 151
S. Besecke 152
R. De Jaeger 38, 57, 153–180

1983 – 181
M.S. Sennett – R.E. Singler – 58, 182–188
M.K. Potts

1984 M. Gleria 189–191
1985 D.F. Graves 192
1986 B. Chu 193, 194
1987 A.J. Klein 195

C.C. Kirkpatrick 196
S.S. Krishnamurthy 197

1988 I. Maruyama 198, 199
M.V. Milashvili 200

1989 W.L. Hergenrother 201
J.H. Magill 202–207
M. Kouril 208, 209

1990 V.T. Stannett 210
1991 C.H. Kolich 211
1993 Y.S. Sohn 212, 213
1994 F. Okada 214
1995 H.R. Allcock – I. Manner 215–243
1998 C.W. Allen 48–50

C.H. Chen 244
2003 G.A. Carriedo 51, 52



As can be seen, this list encompass authors starting from the end of 1800, up
to the beginning of this century. For the preparation of (NPCl2)n they used at
least four different methods (Fig. 2), which will be described in some detail in
the paragraphs below.

2.3.1.1
Ring-Opening Polymerization Process of Hexachlorocyclophosphazene

This ROP of hexachlorocyclophosphazene to polydichlorophosphazene is very
relevant in phosphazene chemistry as it has been used in almost every labora-
tory in the world for the preparation of poly(organophosphazenes) starting
from the middle of the 1960s up to recent times [38]. H. R. Allcock discovered
in 1965 [40–42] that (NPCl2)3 can open its inorganic ring thermally, under
strictly controlled experimental conditions (250 °C, vacuum of 10–2 torr, and 
reaction time of 8–12 h), to form polydichlorophosphazene in a reasonable
yield, but in a rather slow and irreproducible way [38]. Moreover, the final poly-
mer obtained shows a very variable MW and MW distribution, with a strong
tendency to produce crosslinked materials [45].

Attempts at controlling the experimental parameters governing this reaction
led many scientists active in the phosphazene field to:

1. Consider alternative polymerization processes in solid state, inducing the
polymerization reaction of N3P3Cl6 thermally [40–42], photochemically [61,
67, 68], g-radiolytically [66, 210], using X-rays [74, 75, 90] or electron irra-
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diation [72], under plasma conditions [132, 135, 195, 208, 209], or in the 
ionization chamber of a mass spectrometer [189–191]. In many cases, a 
variety of catalysts having a very variable chemical structure have been used
[38] to promote the ROP process.

2. Move from solid to solution conditions [68, 80, 89, 108, 118, 119, 131, 138,
182–184, 186, 187, 202, 205–207, 245], mostly using chloroarylated solvents
(e.g. o-dichlorobenezene [80, 245] or 1,2,4-trichlorobenzene [182–188, 202,
205–207]) and Lewis acids [58, 182–188] or sulphonated chemical com-
pounds [131, 202, 205–207] as catalysts to improve reaction efficiency.

Most of these methods have been widely reviewed in previous literature [38]
and will not be commented on further in this article.

2.3.1.2
Utilization of Low Molecular Weight Chemical Precursors

The use of low molecular weight phosphorus compounds (e.g. PCl3 or PCl5) 
in combination with variable types of ammonium salts [NH4Cl or (NH4)2SO4],
under suitable experimental conditions, leads to the preparation of linear 
chlorinated phosphazenes of different molecular weight and molecular weight
distribution, according to one-pot syntheses or two-step processes. This ap-
proach to the synthesis of polydichlorophosphazene is described in Fig. 3.

Hornbaker and Li [46, 47, 53, 54, 136–147] used this approach to prepare 
[Cl-(PCl2=N)nPCl3]+PtCl6

– of relatively low molecular weight by using a two-
step process based on the preliminary reaction of PCl3, Cl2, HCl and NH3 in
monochlorobenzene at 100–140 °C to produce linear phosphazene oligomers
(having the chemical structure reported above and n=2–9) followed by a suc-
cessive reaction with NH4Cl at 130–150 °C to enhance the final polymerization
degree of the material to 300–900.

More interesting,especially from the applicative point of view, is the approach
proposed by C.W. Allen in 1998 [48–50], based on the utilization of a one-pot
two-step reaction of ammonium sulfate with phosphorus pentachloride, to 
produce dichlorophosphynoyliminotrichlorophosphorane (vide infra) at 165 °C
followed by polycondensation of this monomer to polydichlorophosphazene by
heating at 225 °C. The great advantage of this process is the possibility of pro-
ducing the polymer starting from very simple and inexpensive compounds in
just one step, using a procedure that does not imply the use of organic solvents.

The most recent approach to the synthesis of polydichlorophosphazene
starting from low molecular weight phosphorus precursors was proposed by
Carriedo in 2002 [51, 52], who reacted PCl5 in combination with NH4Cl in 1,2,4-
trichlorobenzene at reflux temperature in the presence of CaSO4·2H2O and 
sulfamic acid, HSO3NH2.A total yield of 31% (vs PCl5) in high molecular weight
(106 Dalton) (NPCl2)n could be obtained. However, a few technical problems 
reported by the authors concerning this synthetic approach presently limit the
preparation of polydichlorophosphazene to laboratory scale level.
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Fig. 3

2.3.1.3
Solution Polymerization Processes

The solution polymerization process for hexachlorocyclophosphazene to poly-
dichlorophosphazene is an interesting and attractive alternative to the classic
bulk thermal polymerization reaction of this trimer.

Several authors have attempted to accomplish this process, experimenting
with different solvents and variable experimental conditions. The most signif-
icant experiments are reported in Fig. 4 for the solution polymerization of
(NPCl2)3 using different solvents.

In general terms, the conclusions that can be drawn from these experiments
are that solution polymerization processes have some basic advantages with re-
spect to the corresponding molten state analogous reactions: the reaction speed
in solution is usually reduced to half or one third of the original value in solid
state [89] and appears therefore to be much more controllable, while the poly-
mer viscosity is usually decreased. They show, however, some important draw-
backs consisting mostly in the low molecular weight of the polymers prepared
[89], in a strong influence in the type of polymer formed [118] (linear or cross-
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Fig. 4

linked) and, mostly, in the pronounced reactivity of the P–Cl bond of hexa-
chlorocyclophosphazene with some of the solvent (typically protic solvents)
exploited for the polymerization process [118, 119].

2.3.1.4
Polycondensation Reaction

The discovery that new types of monomers, as alternatives to hexachloro-
cyclophosphazene, can be used to prepare polydichlorophosphazene is due to 
R. De Jaeger in the early eighties [57, 153, 172, 174–176, 178–180, 246–252] who
first reported the thermally induced polymerization process of dichlorophos-
phynoyliminotrichlorophosphorane Cl3P=N-P(O)Cl2 at 270–300 °C to form
(NPCl2)n with delivery of POCl3 as by-product. This process was immediately
brought to pilot plant scale by Ph. Potin at Atochem [57, 155, 158, 161–168,
170–180, 248, 250–261]. According to this procedure, the molecular weight of
the final polymer obtained could be better regulated than in the ROP process
of (NPCl2), and the molecular weight distribution limited to around 2 [166, 168,
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Fig. 5

Fig. 6

178], while the effect of water on the polydichlorophosphazene reticulation
could be controlled [155, 171, 175, 179].

Following the same line I. Manners and H. R.Allcock [215, 216, 218, 219, 241]
reported, in the middle of the nineties, an analogous polycondensation process
using a different monomer (i.e. trichloro(trimethylsilyl)phosphoranimine,
Cl3P=NSiMe3) at room temperature, both in the solid state and in solution (e.g.
dichloromethane), activated by traces of PCl5. This led to the preparation of
polydichlorophosphazene accompanied by the concurrent formation of chlo-
rotrimethylsilane, a low molecular weight by-product delivered during the
process. These polycondensation processes are summarized in Fig. 5.

As the synthetic approach to polydichlorophosphazene put forward by R. De
Jaeger has been already described in several recent review articles [10, 38, 57,
172], in this paper we will illustrate only the polycondensation approach pro-
posed by I. Manners and H. R. Allcock, together with the consequences of this
reaction on the preparation of chain phosphazene copolymers (block copoly-
mers) [220, 223, 224, 232–234, 240], and star polymers [222].

The experimental conditions for this reaction are as follows: carefully puri-
fied trichloro(trimethylsilyl)phosphoranimine, both in solid state or in solution
(anhydrous dichloromethane or toluene) is treated with PCl5 in a well defined
monomer/initiator ratio in a temperature range between –10 °C and 35 °C for
variable periods of time. The lower the initiator concentration, the smaller the
number of initiated chains and the higher the final molecular weight of (NPCl2)n
obtained. Furthermore, the higher the reaction temperature, the slower the time
needed for the reaction to occur. Finally, the molecular weight of the poly-
dichlorophosphazene prepared by condensation polymerization processes in
solid state appears to be lower and have a broader molecular weight distribution



than the same process carried out in solution. The reaction mechanism pro-
posed for this process is shown in Fig. 6.

This reaction mechanism is able to account for several characteristics shown
by this reaction. First of all the existence of a terminal group (e.g. –PCl3

+) that
remains reactive after completing the consumption of the phosphoranimine
classifies this reaction in the category of the living polymerization processes.
This fact has important consequences that can be summarized below:

a. The living head is able to add more of the same monomer, increasing the
molecular weight of the final material in a way that depends on the feeding
conditions.

b. It can also initiate different monomers, i.e. partially or completely substi-
tuted phosphoranimine monomers, providing the way to produce phosp-
hazene block copolymers of well defined structure. Interesting materials
synthesized in this way have the structure reported in Fig. 7.
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Fig. 7

Fig. 8

c. Star polymers can be prepared if multifunctional cores are used that contain
3 or more phosphoranimine units, like Fig. 8.

The fact that this polycondensation process takes place at room temperature,
with careful control of both molecular weight and molecular weight distribu-
tion of the final polymers or copolymers produced are definitive advantages
over the corresponding ROP reaction of (NPCl2)3 in molten state.



2.3.1
Part 2 – Substitution reaction of the chlorines

Regardless of the way in which polydichlorophosphazene is prepared (vide
supra), this polymer should be handled almost immediately because of the ex-
treme reactivity of the chlorine atoms attached to the phosphorus of the poly-
phosphazene chain toward nucleophilic groups and water.

This argument has been reviewed in many articles in the past and the cor-
responding problems in reaching the highest substitution level of the P–Cl
bonds in the polydichlorophosphazene deeply analysed [38]; therefore, it will
not be considered in detail here. What is important to stress in the present 
paper is that the replacement of these chlorine atoms with variable types of
nucleophiles provides many different classes of hydrolytically stable phosp-
hazene materials, as reported in Fig. 9.

Up to now, nine classes of different polyphosphazenes are known and char-
acterized: substituted with aliphatic alcohols [40, 41, 262–281] or phenols [41, 95,
277, 282–297], with aliphatic [42, 298–300] or aromatic [301–304] amino groups,
with di-functional spiro hydroxy (e.g. dihydroxybiphenyl [305] or di hydroxy-
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binaphthyl [306–308] derivatives), or thiolic groups [292, 309, 310], and with
aliphatic and aromatic residues directly attached to the polyphosphazene skele-
ton through P–C bonds [311–313].

In the same scheme, moreover, it is evident that, besides phosphazene ho-
mopolymers, the substitution of the chlorines with two (or more) different sub-
stituents leads to the preparation of substituent phosphazene copolymers [263]
containing different homosubstituted and heterosubstituted monomeric units.
Moreover, the cationic polymerization of phosphoranimines [215–217] pro-
duces polymers with living reactive ends (vide supra) from which the prepa-
ration of chain phosphazene copolymers (block copolymers) [220, 223, 225,
229, 232–235, 239, 240] formed by different polymeric backbones linked to-
gether in a unique macromolecule could be obtained.

2.4
Process II: Synthesis of Poly(organophosphazenes) 
Through the Polymerization of Substituted Phosphoranimines

In spite of the fact that the preparation of polydichlorophosphazene nowadays
can be reached in many different ways and with great efficiency (vide supra),
the substitution of the chlorine atoms of this polymer to form stable poly-
(organophosphazenes) is still a source of problems as it can be seldom driven
to completeness and a very small amount of unreacted chlorines is always 
present in the final phosphazene material [38]. The complete elimination of
these chlorines is mandatory if the modification of the phosphazene materials
over time has to be successfully prevented.

In this context, phosphoranimine compounds (both homosubstituted with
an unique group or bearing two different groups at the phosphorus) play a fun-
damental role because their polymerization under different experimental con-
ditions eventually leads to fully substituted polyphosphazenes with no residual
chlorines on the phosphazene skeleton. The general scheme of the phosphora-
nimine polymerization processes is reported in Fig. 10.

As can be seen, the first example of phosphoranimine polymerization process
was proposed by E. P. Flindt and H. Rose [314] in 1977 for tris(trifluoroethoxy)-
N-(trimethylsilyl)phosphoranimine, which could be polymerized to poly[bis-
(trifluoroethoxy)phosphazene] (MW 4000–10,000) by simple heating at 200 °C.

A few year later (1980) R. H. Neilson and P.Wisian-Neilson started their long
term research project on the preparation of alky, aryl, and alkyl/aryl phosp-
hazene polymers and copolymers [55, 56, 315–334] prepared in the same way
by thermal polymerization of a variety of phosphoranimine derivatives [55,
329, 335, 336] to the corresponding phosphazene macromolecules. The poly-
mers obtained by long heating (several days) at high temperatures (160–220 °C)
showed relatively low (about 50,000) molecular weight.

At the beginning of the nineties K. Matyjaszewsky [337–353] re-investigated
this field and discovered that phosphoranimine polymerization processes
could be induced in an anionic fashion by the action of tetrabutylammonium-
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Fig. 10

fluoride [337–343, 345, 348, 350–352] or N-methyl-imidazole [339, 345, 354] ini-
tiators under considerably milder experimental conditions (90–100 °C), and
for considerably shorter reaction times (a few hours). Both phosphazene ho-
mopolymers [337–341, 343, 345, 352] and random [342, 348, 351, 352] and
block [348, 350–352, 354] copolymers could be prepared according to this
method, which made the synthesis of phosphazene chain copolymers accessi-
ble for the first time.

Finally, in 1995, the room temperature polymerization approach put forward
by I. Manners and H. R. Allcock [217, 221, 227] allowed the cationic polymer-
ization of variably substituted phosphoranimines, according to Fig. 10. The 
substituents exploited for the polyphosphazenes synthesized are also reported
in the same scheme.



2.5
Process III: Preparation of Polyphosphazenes by Ring Opening Polymerization
Processes of Substituted or Partially Substituted Cyclophosphazenes

The problem of the thermally induced polymerization reaction of partially or
completely substituted cyclophosphazenes has been considered in the past by
several authors [355–357], and more recently by H. R. Allcock [358]. This is 
because of the ease of synthesizing these substrates, the possibility of prepar-
ing structurally regulated poly(organophosphazenes), and the lack of any ad-
ditional nucleophilic substitution processes on the poly(organophosphazenes)
obtained by the ROP process of fully saturated trimers.

Following these investigations, however, it emerged quite clearly that the 
reduction in the number of chlorine atoms on the cyclophosphazenes, and the
corresponding increase in the number of organic side groups, dramatically
changes the polymerization behaviour of the phosphazene cycles. This is pos-
sibly due to the fact that in substituted cyclophosphazenes, the original P–Cl
bonds of hexachlorocyclophosphazene (responsible for the ionic nature of the
ROP process of this trimer) are replaced by pure covalent P–C bonds, which
usually break in an homolytic fashion.

When the ROP process is attempted on partially or completely substituted
cyclophosphazenes in molten state several phenomena can take place:

1. A true polymerization reaction
2. A ring-expansion reaction to tetramers, pentamers, etc.
3. The decomposition reaction of the cyclophosphazene phosphorus sub-

stituents
4. No reaction at all

The occurrence of one of these situations rather than another depends on the
chemical nature of the cyclophosphazene exploited and on the experimental
conditions selected for the polymerization process. These facts are illustrated
in Table 3.

In general terms it appears that:

a. The higher the number of organic groups inserted in the cyclophosphazene,
the lower is the probability of the polymerization process and the higher is
the possibility that a ring-expansion reaction takes place on the trimer

b. The higher the bulkiness of the substituent organic groups on the trimer, the
higher the probability of ring-expansion polymerization processes

c. The presence of non-geminal substituent groups on the trimer favours poly-
merization processes, while geminal substitution can favour side reactions

d. Substituent groups on the cyclophosphazene that show strained structure or
ring distorsion favour polymerization processes

e. Cyclophosphazenes that are not able to polymerize thermally for any reason
may open their cycle and form polymer chains during thermal treatments
in the presence of variable amount of N3P3Cl6
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f. Hexa-substituted cyclophosphazenes can polymerize under particular con-
ditions to the corresponding fully substituted polyphosphazenes, even if this
event is rather unusual

g. Thermal and/or chemical instability of the cyclophosphazene side substi-
tuents usually prevent both polymerization and ring-expansion processes
from taking place, favouring the onset of decomposition phenomena

h. The presence of chlorine instead of fluorine atoms in the cyclophos-
phazene usually depress the polymerization temperature of the cyclophos-
phazene

The following substituent groups for the cyclophosphazenes have been studies
in great detail: alkyl [357, 359–363], aryl [362, 364, 365], trifluoroethoxy [88, 362,
366–368], phenoxy [369], organosilicon [362, 370–375], carboranyl [376–378],
ruthenocenyl and/or ferrocenyl groups, the latter being linked to the cyclo-
phosphazene ring with a single bond [379, 380] or in a transanular fashion
[379–382] (see Fig 11).

To conclude this synthetic section, it appears very clear that the experi-
mental approaches for preparation of POPs are very numerous and give ac-
cessibility to phosphazene polymers and copolymers with different structures
and properties. Moreover, it has been recently estimated [10, 383] that the total
number of polyphosphazenes reported up to now in the literature is about 700,
and that these materials can find potential practical application as flame- and
fire-resistant polymers [44, 283, 384–388] and additives [389, 390]; thermally
stable macromolecules [391]; chemically inert compounds [392]; low temper-
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Table 3 Influence of experimental parameters on the reactivity of partially or completely
substituted cyclophosphazenes during a ROP process
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ature elastomers [393–399]; biomaterials [400–407]; and as photosensitive and
photostable substrates [408–413]. In addition they can be used as materials for
nonlinear optics [414–422]; liquid crystals [423–429]; membranes [430, 431];
microelectronic technologies [304, 432–435]; organometallic and coordination
chemistry [436–440]; electric conductivity [441, 442]; preparation of hybrids
[443] (sometimes using the sol-gel approach [444–446]); polymer blends [447];
piezoelectricity [448, 449] and electrochromism [450]. In this respect, poly-
(organophosphazenes) can be considered as one of the most important classes
of macromolecules ever invented by human mind.

3
Polyphosphazene Properties

Understanding the properties of poly(organophosphazenes) is a fascinating and
relatively simple problem, and the analysis of the structure–property relation-
ships of these compounds is a powerful tool for solving this problem.

In fact, considering the basic structure of these materials (vide supra), it can
be immediately realized that the basic features of poly(organophosphazenes)
are the result of two main contributions. The first one is fixed and is basically
related to the intrinsic properties of the -P=N- inorganic backbone, while the
second is variable and mostly connected to the chemical and physical charac-
teristics of the phosphorus substituent groups. Skeletal properties in phos-
phazene macromolecules intrinsically due to the polymer chain are briefly
summarized below.

Fig. 11



3.1
Skeletal Features

Chain Flexibility 

Chain flexibility of the POP skeleton is very high and the corresponding tor-
sional barriers for these macromolecules are estimated to be well below 1 kcal/
bond/repeat [451].

As described in several review articles [409, 452–454] and books [10, 13, 15],
this is basically due to the inherent features of the dp-pp bond in phosphazenes,
which allows the permanent overlapping of the 2pz orbital of the skeletal ni-
trogens with any one of the 3p orbitals of the phosphorus atoms [455]. Such a
high chain flexibility generated very low glass transition temperatures in these
polymers, which can reach values of about –100 °C when suitable flexible sub-
stituent groups (e.g. n-butanol) are present on the skeletal phosphorus [274].

Thermal Stability

The phosphazene backbone has a particularly high resistance to thermal treat-
ment and to homolytic scission of the -P=N- bonds, possibly due to the com-
bination of the high strength of the phosphazene bond and its remarkable ionic
character [456]. As a consequence, the onset of thermal decomposition phe-
nomena (as detected, for instance, by TGA) are observed at considerably high
temperatures for poly[bis(trifluoroethoxy)phosphazene], [NP(OCH2CF3)2]n
[391, 399, 457], for phosphazene copolymers substituted with fluorinated 
alcohols of different length [391, 399, 457], for polyspirophosphazenes sub-
stituted with 2,2¢-dihydroxybiphenyl groups [458], and for poly(alkyl/aryl)-
phosphazenes [332].

Fire and Flame Resistance, and Self-Extinguishing Properties

A major feature of the polyphosphazene skeleton is its ability to resist fire and
combustion due to the inorganic elements constitutive of its structure [44, 387,
388, 459, 460]. Moreover, the action of skeletal nitrogen and phosphorus atoms
can be enhanced by inserting additional inorganic elements (F, Cl, Br, J, B,
metals, etc.) in the substituent groups [459, 460].

The intrinsic limiting oxygen index (LOI) for certain POPs could be about
60 when the phosphazene chemical structure is based almost exclusively on 
inorganic elements, decreasing considerably when the organic component in
the chemical structure of the side substituents is enhanced [459, 460].Additional
features which may be of potential practical interest in polyphosphazenes 
are that these polymers can export their inherent fire stability to other macro-
molecules, for instance by blending processes, thus acting as outstanding
flame-retardant additives for commercial organic macromolecules [44, 389,
390, 461–463].

184 M. Gleria · R. De Jaeger



Biomedical Features

Phosphazene polymers can act as biomaterials in several different ways [401,
402, 407]. What is important in the consideration of skeletal properties is that
the -P=N- backbone can be considered as an extremely stable substrate when
fluorinated alcohols [399, 457] or phenoxy [172] substituents are used in the
substitution process of the chlorine atoms of (NPCl2)n, but it becomes highly
hydrolytically unstable when simple amino acid [464] or imidazole [405–407]
derivatives are attached to the phosphorus. In this case, an extraordinary de-
molition reaction of the polymer chain takes place under mild hydrolytic con-
ditions transforming skeletal nitrogen and phosphorus into ammonium salts
and phosphates, respectively [405–407, 464]. This opens wide perspectives in
biomedical sciences for the utilization of these materials, for instance, as drug
delivery systems [213, 401, 405, 406, 464] and bioerodible substrates [403, 404].

Spectral Transparence to UV and Visible Radiation

Due to the special nature of the -P=N- bond present in the phosphazene poly-
mer chain no delocalization of the p electron is allowed in these materials,
their resonance being limited within the three P-N-P atomic system [409]. This
fact introduces important chemical characteristics to the phosphazene skele-
ton, i.e. lack of the classic organic double bond reactivity (e.g. halogen or hy-
dracid addition reactions); the impossibility of light- or heat-induced cis-trans
isomerization reactions on the phosphazene “double bond”, and the absence
of electric- or thermal-skeletal conductivity. For the same reason, moreover,
the phosphazene backbone is completely transparent to visible and deep UV
radiation up to 220–230 nm [408–411, 413]. From a spectroscopic and a pho-
tochemical point of view these facts account for the fact that any absorption 
at wavelengths below these values has to be attributed to s-s* transition of the
-P=N- skeletal bond [465], while for absorptions at wavelengths longer than
230 nm the spectroscopic features of the substituent groups attached to the
phosphorus atoms of the -P=N- inorganic chain have to be invoked [409–411].
This observation, in combination with the great synthetic versatility of poly-
phosphazenes described above, makes these macromolecules ideal candidates
for the preparation of photo-inert or photosensitive materials tailored for par-
ticular applications [413].

Two Geminal Substituent Groups Attached at the Skeletal Phosphorus Atoms

The synthetic versatility based on the nucleophilic substitution of the chlorine
atoms of (NPCl2)n described in Fig. 9 gives the possibility of preparing phosp-
hazene homopolymers bearing nine different classes of possible substituents.
Moreover, it is also possible to use two (or more than two) nucleophiles to 
replace the chlorines of an unique (NPCl2)n macromolecule, also using these
groups in different relative percentages. In this way, phosphazene substituent
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copolymers [263] are accessible that bear in their chemical structure hetero-
substituted -P=N- units (see Fig. 9).

The presence of monomeric units bearing mixed substituents is an impor-
tant contribution to the disruption of the regular structure of phosphazene
homopolymers [274, 409]. From this originates the lack of crystallinity in phos-
phazene substituent copolymers with respect to the corresponding homo-
polymers, together with the formation of amorphous materials and the onset
of elastomeric properties [274, 409]. The larger the structural difference be-
tween the substituent groups at the phosphorus, the higher the efficiency of this
phenomenon [466]. Furthermore, it has been evaluated, on the basis of simple
molecular models, that the distance between two substituent groups geminally
substituted to the same phosphorus of the polymer skeleton is about 2.5–3 Å
[412]. This distance is sufficiently short to allow the onset of intramolecular 
interactions between the two phosphorus substituents. These facts open the
possibility of forming intramolecular excimers [467–473], of inducing energy
[410, 474, 475] or electron transfer [410, 476] processes, and of obtaining hy-
drogen abstraction phenomena [296, 477] in suitably designed phosphazene
macromolecules. Eventually, substituting different groups on the same
polyphosphazene skeleton may induce modifications in solvent solubility [478,
479], chemical reactivity [296, 480], and in other very important chemico-phys-
ical properties of these materials.

3.2
Substituent characteristics

In contrast, considering the characteristics of the substituent groups currently
used in the chlorine replacements of polydichlorophosphazene, it can be im-
mediately realized that they can be very variable depending on the chemical
structure of the nucleophile selected for these reactions. A list of the preferred
chemical compounds usually exploited for the phosphazene substitutional
processes is reported in Table 4.

Table 4 shows that the substrates usually involved in the reaction with poly-
dichlorophosphazene belong to the categories of aliphatic or aromatic com-
pounds containing in their own chemical structure free -OH and/or -NH2 func-
tionalities, which can be easily found on the market in great abundance and at
cheap prices.

These circumstances being so and given:

1. The large number of possible substituents available for the substitution
processes of the chlorine atoms on polydichlorophosphazene [38]

2. The possibility of substituting two or more different groups on the same
polyphosphazene skeleton [263], even in different relative percentages, to
form phosphazene substituent copolymers [399, 457]

3. The possibility, through living cationic polymerization processes, to produce
linear chain phosphazene copolymers [486]

4. The great ease of polyphosphazene functionalization processes [38]
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Table 4 Usual substituent groups in phosphazenes



it can be concluded that the number of phosphazene macromolecules accessi-
ble in this way is almost infinite, and that the range of properties and potential
applications covered by these substrates is extremely large.

3.3
Polymer properties

This statement can be proved very easily by considering four different types of
general POP properties and their variability as a function of the side sub-
stituents on the polymer skeleton, i.e. glass transition temperature (Tg), mor-
phology, solvent solubility and limiting oxygen index (LOI). The values of these
parameters are reported in Tables 5–8.

Considering first Table 5, it can be seen that Tg values for the reported
poly(organophosphazenes) spanned from very low (–105 °C in the case of
poly[bis(n-butoxy)phosphazene]) up to very high (+220 °C for poly[tris(2,2¢-
dioxy-1,1¢-binaphthyl)phosphazene]), covering almost all the intermediate
temperatures between these two limits. Low Tgs are indicative of very high tor-
sional freedom of the polyphosphazene chain, which is manifested clearly
when flexible substituents of reduced bulkiness are used in the substitution
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Table 5 Glass transition temperature values for selected poly(organophosphazenes)

Polymer Tg References

[NP(OCH2CH2CH2CH3)2]n –105 274
(NPF2)n –96 452
[NP(OCH2CH3)2]n –84 274
[NP(OCH3)2]n –76 40
[NP(OCH2CF3)2]n –66 274
(NPCl2)n –63 452
{NP[O(CH2)3C6H5]2}n –47 274
{NP[OCH2(CF2)6CF3]2}n –40 487
[NP(OC6H4-p-n-C3H7)2]n –34 283
[NP(OC6H4-p-C2H5)2]n –19 283
[NP(OC6H4-p-sec-C4H9)2]n –16 283
[NP(OC6H5)2]n –8 274
[NP(OC6H4-p-iso-C3H7)2]n –0.10 283
[NP(OC6H4-p-CH3)2]n +2 283
[NP(OC6H4-p-CH2C6H5)2]n +13,8 488
[NP(NHCH3)2]n +14 452
[NP(OC6H4-p-SCH3)2]n +37 489
[NP(OC6H4-p-COC6H5)2]n +50 490
{NP[OC6H4-p-N(CH3)2]2}n +60 489
[NP(OC6H4-p-OH)2]n +80 491
[NP(NHC6H4-m-F)2]n +80 301
[NP(NHC6H5)2]n +91 452
[NP(O2C12H8)]n +160 305, 307
[NP(O2C13H8Cl2)]n +220 306



process of polydichlorophosphazene (e.g. short chain aliphatic alcohols, fluo-
rinated alcohols, etc.). As soon as more rigid substituents are inserted in the
phosphazene chain (e.g. one aromatic ring), Tgs start to increase significantly,
passing from –34 °C for poly[bis(4-n-propylphenoxy)phosphazene] up to +2 °C
for poly[bis(4-methylphenoxy)phosphazene]. Tg values are further enhanced
as soon as the number of aromatic ring in the phenoxy substituents along 
the skeleton increases to 2, increasing from +13.8 °C for poly[bis(4-benzyl-
phenoxy)phosphazene] up to +50 °C for poly[bis(4-benzoylphenoxy)phos-
phazene]. This is the result of the increased rigidity of the substituent inserted
in the polymer chain, and may also be manifested with substituents of different
nature, such as 4-N,N¢-dimethylamino-phenoxy groups, reported by Haddon
[489]. Moving from alkoxyde or aryloxide substituents in polyphosphazenes to
aliphatic or aromatic amino derivatives, Tg values are further increased (from
+14 °C for poly[bis(methylamino)phosphazene] to +91 °C for poly[bis(anilino)-
phosphazene]), basically because of the contribution of two factors: the increased
rigidity of the amino substituents passing from aliphatic to aromatic primary
amines, and the onset of intramolecular hydrogen bonding [301, 492]. These lead
to the formation of the chain structures (see Formula below) that introduce a
strong decrease in the skeletal flexibility of the phosphazene polymer backbone
and induce a corresponding increase in the Tg of the resulting materials.
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Additional lack of chain flexibility is introduced in the polyphosphazene
skeleton when polyspirophosphazenes are considered. These materials are ob-
tained by reacting 2,2¢-di-hydroxy biphenyl or 1,1¢-binaphthyl derivatives with
polydichlorophosphazene [305], leading to the formation of polymers having
the structure shown in Formula below.



In this case chain mobility is strongly inhibited by the rigid structure of the
side phosphorus substituents and the resulting Tgs are exceedingly high for the
usual standard of phosphazene macromolecules.

Moving now to solubility parameters, Table 6 reports the solubility of a 
variety of polyphosphazenes according to the nature of the phosphorus sub-
stituent groups present in these macromolecules. As can be seen, inserting 
nucleophiles with marked hydrophobic character in the phosphazene skeleton
(e.g. methoxy-, thrifluoroethoxy-, phenoxy-, etc. substituents), makes the re-
sulting macromolecules predominantly soluble in organic solvents. As soon as
the polarity of the side substituents increases (like in methylamino-, polyethyl-
eneoxide- of glucosyl- derivatives) water solubility become accessible. The same
holds true when sulfonic acid groups are introduced in aromatic aryloxy-sub-
stituted polyphosphazenes, while for polyphosphazenes containing free hy-
droxylic, carboxylic groups or ethylamine substituents, the solubility is pro-
moted by using alkaline or acid solutions, respectively.

Similarly, Table 7 shows the morphology characteristics of selected poly-
phosphazenes.

Morphological features for POPs can range from low-temperature elas-
tomers (when aliphatic alkoxy substituents of different length are attached to
the polyphosphazene skeleton), to crystalline, film- and fibre-forming materials
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Table 6 Solubility of selected poly(organophosphazenes)



(for trifluoroethoxy or phenoxy polymers), to microcrystalline thermoplastic
materials in the case of poly[bis(4-ethylbenzoatephenoxy)phosphazene], and
eventually to amorphous glassy materials when aromatic amines (e.g. aniline)
are attached to the polyphosphazene chain.

If we consider the LOI values reported in Table 8, it can be clearly seen that
the flame resistance of polyphosphazenes is very high and can reach values
above 60 when halogenated phenoxy groups (e.g. 4-bromophenoxy) are at-
tached to the polymer chain. However, enhancement of the carbon content 
in the materials (i.e. by increasing the percentage of organic substituents in 
the chain) induces a concurrent decrease in the flame resistance of POPs, which
can be depressed to 23.4 in the case of poly[bis(4-isopropylphenoxy)phos-
phazene].

Two additional observations are also possible looking at the LOI numbers
reported in the Table:

1. Almost every intermediate value between the above mentioned limits can be
obtained just by selecting the appropriate substituent to support on the phos-
phazene skeleton

2. Even the lowest value of LOI reported in Table 8 for the 4-iso-propylphe-
noxy-substituted POP is still considerably higher than those of the most
common organic polymers (17.4 for polyethylene, 17.8 for polystyrene and
18.3 for ABS rubber [283])
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Table 7 Morphology of selected poly(organophosphazenes)
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Table 8 Limiting oxygen index (LOI) for selected poly(organophosphazenes)



The general conclusion is that the phosphazene macromolecules synthesized
and characterized up to now show a large range of properties and that they can
potentially be exploited in many different applicative domains.

Of course, not all the phosphazene polymers that have been synthesized are
equally important. Many of them, in fact, have a mere academic or speculative
interest, and will not be described in this article. A few other classes of POPs,
however, do occupy an important place in phosphazene history, and have been
seriously considered for industrial development and commercialization. These
polymers are basically those in which the properties of the inorganic -P=N- skele-
ton overlap to the highest extent those of the phosphorus side substituents. In the
successive sections of this article we will describe in some detail the most im-
portant classes of polyphosphazenes that fulfil this condition.

4
Polyphosphazenes Substituted with Fluorinated Alcohols

Fluorinated polyphosphazene materials are very important substrates that were
synthesized and developed at the end of sixties [41, 263] both by academic and
industrial laboratories. Several industries and government agencies showed 
an extraordinary interest until the middle of the eighties because of their out-
standing mechanical properties [396, 398, 491, 501], low temperature elas-
tomericity [393, 394, 502–507], chemical inertness [41, 392] and reactivity [482,
483, 508–512], water [41] (contact angle value for PTFEP films at about 100
[513]) and oil [502–506] repellency, surface functionability [514–516], flame 
retardancy [452, 460] and self-extinguishibility [501], thermal stability [391,
517–519], and relative resistance to UV [520], g-radiation [41, 521] and oxida-
tive processes [522, 523]. These materials were also found to be useful for the
preparation of membranes [430, 431, 524–527], fuel hoses and gaskets [528,
529], seals and o-rings [530, 531], channel sealants [532], coatings on fabrics
[533, 534], and biomaterials [535–539]. Furthermore, they are presently the 
object of a renewed interest because of the ease of introducing fluorinated
residues in partially substituted phosphazene macromolecules during substituent
and/or chain copolymerization processes (see, as examples references [312,
540]). The whole topic has been reviewed recently [399, 457].

The general structure of polyphosphazenes substituted with fluorinated 
alcohols is described by the Formula below while the basic structure–property
relationships for these substrates are collected in Table 9.
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Table 9 General characteristics of fluorinated phosphazene polymers and copolymers

Skeletal properties Substituent properties Polymer properties

Chain flexibility Small dimensions and/ Low Tg materials
or chain mobility

Chain flexibility One substituent x=y, Z=F
Crystalline materials

Chain flexibility. Two substituents x=1, y≠1, Z=F
Two different of different length Amorphous elastomers
substituents at the P

Presence of P and N Presence of F Self-extinguishing materials.
Potential flame retardant 
additives

Presence of P and N Presence of F Thermally stable polymers

Presence of P and N Presence of F. Low tendency Chemically resistant   
at the highest to oxidation of the polymers. Low surface  
oxidation state fluorinated substituents energy. Biocompatibility.

Polymers for airspace
applications

Presence of P and N Presence of fluorinated Chemical reactivity and 
alkoxy groups properties modification

As reported in Table 5 and in other recent publications [399, 491], polymers
with very low Tg are expected when the inherent skeletal flexibility of poly-
phosphazenes is coupled with fluorinated alcohols of low dimensions and/or of
high chain mobility. In fact, the Tg values for POPs substituted with fluorinated
alcohols vary between –50 °C and –90 °C, confirming the extreme chain mo-
bility of these polymers and the existence in them of very low torsional energy
barriers.

As far as the morphology of these materials is concerned, we can distinguish
at least two different cases depending on the type of fluorinated alcohol(s) at-
tached to the phosphorus atoms of the polyphosphazene skeleton:

1. x=y=1, 2, 3,...., and Z=H or F
2. x≠y, with x=1 and y=2, 3, 4, and Z=H or F

In the first case only one type of fluorinated alcohol is exploited in the substi-
tution reaction of the reactive chlorines present in polydichlorophosphazene
to form polyphosphazene homopolymers. Possible fluorinated substituents 
explored are: CF3CH2O [41], H(CF2)2CH2O [541, 542], CF3CF2CH2O [541],
CF3CHFCF2CH2O [543], CF3(CF2)2CH2O [541, 542, 544, 545], CF3O(CF2)2CH2O
[542], HCF2(CF2)3CH2O [542], CF3(CF2)3CH2O [542], CF3(CF2)5CH2O [542],
HCF2(CF2)5CH2O [542] and CF3(CF2)6CH2O [95, 487, 542, 545]. Although for
some of these materials only marginal studies have been carried out in the 



determination of their morphology, the general conclusion [546] is that most
of them are semi-crystalline materials, possibly because of the similarity of the
phosphorus substituents attached to the polyphosphazene skeleton that facil-
itate chain packing and crystallization processes.

The most known and investigated substrate of this class is poly[bis(trifluo-
roethoxy)phosphazene], PTFEP, a polymer formally derived by the general for-
mula above by putting x=y=1 and Z=F. The general structure of this compound
is shown below.
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This polymer is important in the polyphosphazene field, both because it was
the first macromolecule of this class early synthesized by H. R.Allcock in 1965
[40, 41] and also because of its extremely interesting properties and applica-
bility [399, 457, 547]. This is a semi-crystalline material [399], with a Tg of
–66 °C [392], a T(1) at about 78–80 °C (variable with the thermal heating), and
a melting temperature of 242 °C [399]. It is soluble in most common organic
solvents (THF, acetone, methylethylketone), but insoluble in alcohols, hydro-
carbons, and water. It is able to form transparent tough films [541] and to be
drawn in fibres [548]. From a morphological point of view it behaves in a rather
complex way [424, 452, 549], passing reversibly from the original spherulitic
structure (3D, a-orthorombic) below T(1), as obtained by solvent casting [550],
to a more extended mesomorphic arrangement (2D-hexagonal) above T(1)
[551], to melt eventually at 242 °C. Cooling below Tm reforms the 2D-hexagonal
morphology, while additional cooling below T(1) results in the formation of a
new needle-shaped and brittle microcrystalline phase with a 3D-g-orthorombic
arrangement. The whole morphological behaviour of PTFEP is described ex-
haustively [547].

When x=1 and y=2, 3, 4, .... and Z=H or F, a new class of polyphosphazene
substrates is obtained, which derive from the simultaneous substitution of two
different fluorinated alcohols of different lengths on the same polydichloro-
phosphazene macromolecule. The general structure of the substrates is reported
below.



The presence in these copolymers of hetero-substituted monomeric units
randomly dispersed along the phosphazene skeleton brings about the extreme
difficulty of the polymeric chains to be packed in regular structures. They lose,
therefore, the original stereo-regularity of the parent phosphazene homopoly-
mers (microcrystalline materials), and show only amorphous structures, with
sharp decrease in the values of the Tg (collapsed up to about –90 °C) and with
the onset of remarkable elastomeric properties [399, 409, 457].

S. H. Rose in 1968 [263, 265] first described the reaction of polydichloro-
phosphazene with trifluoroethoxy groups coupled with a second fluorinated
alkoxy residue of longer chain. During the successive twenty years they were
deeply investigated by Horizon Inc. [263, 265, 502–506, 518, 544, 552–554],
AMMRC [396, 452, 555–557], NASA [517, 522, 523], The Firestone Tire and 
Rubber [393, 519, 528, 530, 533, 558, 559], and Ethyl Co. [507, 560, 561] for the
applications described above (vide supra).

A new series of properties are expected for polyphosphazenes when the
percentage of inorganic elements inherently present in the -P=N- skeleton is
artificially enhanced by introducing fluorinated alcohols as side phosphorus
substituents. This facilitates their application in different fields.

The first phenomenon observed is the improved resistance of these materi-
als to combustion, in a way that they may be classified as intrinsically self-ex-
tinguishing substrates. For instance, the LOI value for PTFEP is reported to be
48 [452], which is much higher than reported for classical organic plastics [283],
while phosphazene fluoroelastomers have been considered as fire-retardant 
materials since the very beginning of their preparation and utilization [562].
Similarly to aryloxy- and arylamino- substituted POPs [389, 390] (vide infra), it
may be expected that the flame-resistance properties of phosphazene fluoro-
elastomers could be successively exported to stabilize organic macromolecules
when blended with these materials.

An additional consequence of the heavy presence of fluorinated sub-
stituents in phosphazene fluoroelastomers is their remarkable thermal sta-
bility, strictly correlated to the high inertness of the C–F bonds present in the
side fluoroalkoxy substituents. The thermal behaviour of PTFEP, for example,
has been investigated by a variety of scientists [391, 563–567] under different
experimental conditions. From these investigations it seems that the processes
undergone by the polymer under thermal treatment are basically depoly-
merization reactions forming low molecular weight cyclic oligomers (basically
trimers and tetramers [NP(OCH2CF3)2]3,4 [564]), accompanied by random
scission phenomena that take place at weak points statistically distributed
along the polyphosphazene skeleton [565, 566].

Similarly to PTFEP, phosphazene fluoroelastomers proved to be rather stable
to thermal treatments up to 175 °C [560, 561], while for temperatures above this
value degradation phenomena start to be relevant.

Also for these substrates, chain scission is believed to start from weak sites
having the structure shown in Formula below [391], which possibly derived
from the incompleteness of the chlorine atom substitutional processes in the
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parent polydichlorophosphazene with fluorinated nucleophiles, and are
thought to be able to induce polymer chain scission and degradation with se-
vere decrease in the molecular weight of the materials. These reactive units
seem to be the major factor in the determination of the successive thermal his-
tory of phosphazene fluoroelastomers.

From literature data it clearly appears that three strategies are of importance
in enhancing the thermal stability of these materials:

1. The possibility of reducing the number of weak points randomly distributed
along the polyphosphazene skeleton by using different types of transition
metal complexes as polymer stabilizing species [568–575], according to the
general stabilization mechanism reported below using Zn/hydroxyquinolate
complex as an additive [568, 570] ( Fig 12)
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Fig. 12

2. The presence of an appropriate compounding [560, 561], which is generally
obtained by reinforcing polymers with clay, carbon black, silica, etc.

3. The possibility of reticulating the materials by carefully introducing addi-
tional substituent groups in the polymer during the synthetic process (1–2%
or less), prone to undergo selected reactions (e.g. allylic double bonds [576–
579]), and/or by addition of appropriate external additives (e.g. sulfur [578]
or hydroperoxides [531, 576–578, 580]) to these polymers

The mixed substituent polyphosphazene shown in Formula below is an exam-
ple [391]. In the typical formulation:

Polyphosphazene 100 parts
Coated silica 30 parts
Magnesium oxide 6 parts
Antioxidants 2 parts
Peroxide 1 part



it shows a service life of about 1000 h at 150 °C, which decreases to 300 h at
175 °C and falls to 120 h when the polymer is thermally treated at 200 °C.

The presence of fluorinated alcohol substituents in polyphosphazenes has
relevant implications also as far as the chemical stability and reactivity of these
substrates is concerned.

In fact, fluorinated polyphosphazenes are usually considered to be extremely
stable towards chemical agents and aggressives due to the presence of C–F
bonds in the side phosphorus substituents. PTFEP, for instance, appears to be
completely insensitive to several, most common, solvents (aliphatic and aro-
matic hydrocarbons, alcohols and water), to acids (e.g. acetic acid), and to bases
(e.g. pyridine and concentrated NaOH solutions), although some decomposition
could be observed in triethylamine and in concentrated H2SO4 [41]. Phos-
phazene fluoroelastomers, moreover, are known to be completely insoluble in
aromatic solvents [533] and petroleum-resistant materials [502–506, 552].
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Fig. 13

Fig. 14
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The same fluoroalkoxy substituents, however, are able to enhance substitu-
tional reactivity of fluorinated polyphosphazenes by originating methatetical
exchange reactions on polymers in the presence of new nucleophiles and un-
der appropriate experimental conditions. Thus, a series of exchange reactions
at phosphorus atoms bearing the trifluoroethoxy substituents in PTFEP have
been described by H. R. Allcock [508] (Fig. 13), Cowie [482, 483] (Fig. 14), and
Ferrar [509] (Fig. 15), while surface modification of PTFEP films were reported
by Allcock [514, 515] (Fig. 16 or 17) and by Lora [516] (Fig. 18).

Fig. 18

Fig. 17

Fig. 16

Fig. 15
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These reactions allowed a light crosslinking reaction of PTFEP to occur
(providing an alternative way to prepare phosphazene fluoroelastomers [508]);
permitted the introduction of free hydroxyl groups in fluorinated polyphosp-
hazenes and the successive preparation of hybrid materials through the sol-gel
approach [512, 581]; led to the synthesis of new electric conducting polymers
[482, 483]; and offered the possibility of deeply modifying both adhesion prop-
erties and hydrophilicity of the PTFEP films [514–516].

In conclusion, polyphosphazenes containing fluoroalkoxy groups as side
phosphorus substituents constitute one of the most relevant class of macro-
molecules of this family and have attracted remarkable interest in the past be-
cause of their outstanding properties and wide range of applicability, especially
in low and high temperature domains, and have received renewed interest in
more recent times [399, 457].

5
Aryloxy-Substituted Polyphosphazenes

Fire retardancy is an often occurring theme in phosphazene chemistry and nu-
merous reviews have focused on this subject over the years [10, 44, 387, 393, 396,
582]. In this article we will treat only aspects related to the flame-retardant
properties of aryloxyphosphazene copolymers, which are the subject of the
greatest number of applications.

Polyphosphazenes are intrinsically fire-resistant materials because of the
presence of phosphorus and nitrogen in the polymeric chain. A low flamma-
bility is thus one of the most important properties of polyphosphazenes,
particularly of the polyaryloxyphosphazenes I, in which R may be H, halogens,
and alkyl or alkoxy groups.

These polymers are self-extinguishing in air with LOI between 24 and 65
(see Table 8). Their thermal stabilities (300–400 °C) are typical of organic poly-
mers, but the char yields are higher (~30%), and a low heat release capacity is
observed [582].

The development relative to the flame-retardant properties of polyphosp-
hazenes has been principally centred around the aryloxyphosphazenes
copolymers II.

Small amounts of reactive sites, e.g. o-allylphenoxy, eugenol groups (0.1–
5 mole%) are generally incorporated in these copolymers to assist crosslinking
reactions,which can be attained by using peroxides, sulfur or radiation [578,583].
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Table 10 Glass transition temperatures and limiting oxygen index values for selected 
aryloxyphosphazenes copolymers [284, 584, 585]

[N=P(OC6H4R)x(OC6H4R¢)2-x]n

x R R¢ Tg LOI
1 H p-CH3 27

H p-C2H5 –18 28, 27
H p-OCH3 +0.74 25
H p-iso-C3H7 25.8
H p-O-n-C4H9 –11.2 23.7
H p-sec-C4H9 –8.1 25.9
H p-tert-C4H9 +22 26
m-CH3 p-CH3 27
p-C2H5 p-O-n-C4H9 –16.9 24.8
p-OCH3 p-CH3 +5.9 25.3
p-OCH3 p-C2H5 –3.76 24
p-OCH3 p-iso-C3H7 +3 26
p-OCH3 p-tert-C4H9 +24.1 25
p-OCH3 p-O-n-C4H9 –5.03 24
p-OCH3 p-C9H19 2.23 25
p-O-n-C4H9 p-iso-C3H7 –9.47 23.9

0.5 p-OCH3 H 25.8
0.4 p-OCH3 H 28.7

The properties and applications are very variable according to the nature
and the ratio of the substituents, the crosslinking reaction and the formulation;
but one always finds a good fire resistance resulting in a high oxygen index, a
low smoke and low toxicity/corrosivity of off-gases. Some LOI values and Tg
for the unfilled copolymers are reported in Table 10. The corresponding poly-
mers ranged from rigid-like materials to elastomers with Tg between –18 and 
+24 °C.

Among these copolymers, the two structures III and IV are of particular in-
terest. They have been commercially available for a limited period of time from
the Ethyl Corporation and Atochem Societies under the trademarks EYPEL A
and ORGAFLEX A, respectively. Polymer III is more elastomeric (Tg=–18 °C
[10]) than polymer IV (Tg=–5 °C [584]).

After formulation with a flame retardant filler such as alumina trihydrate
Al2O3·3H2O, hydrated silica or calcium carbonate, a peroxide curing agent and



a chemical blowing agent such as azobis formamide, these polymers can be
used to form materials with an excellent combination of physical, mechanical
and flame-retardant properties for the following end uses: thermal and acoustic
insulation foams [586, 587], cushioning foams [384], electric cable insulation
and jacketing [588, 589], and fire resistance in a wide range of areas from floor
covering to coatings for electronic devices [590]. Oxygen indicies of 28–48 were
obtained.

As an example, a foam prepared from III, alumina trihydrate as a filler,
benzoyl peroxide as a curing agent, and azobis formamide as a blowing agent,
leads to a material with an oxygen index of 48, a long-term stability to at least
150 °C, and a smoke density about one fifth that of a commercial foam [284].

Aryloxyphosphazene copolymers can also confer fireproof properties to
flammable materials when blended. Dieck [591] have used the copolymers III,
and IV containing small amounts of reactive unsaturated groups to prepare
blends with compatible organic polymers crosslinkable by the same mechanism
which crosslinks the polyphosphazene, e.g. ethylene-propylene and butadiene-
acrylonitrile copolymers, poly(vinyl chloride), unsaturated urethane rubber.
These blends were used to prepare foams exhibiting excellent fire retardance
and producing low smoke levels or no smoke when heated in an open flame.
Oxygen index values of 27–56 were obtained.

Flexible foams with oxygen index values of 40–53 were also prepared by the
same authors from blends of copolymer IV and a silicone elastomer, (a phenyl
vinyl polydimethylsiloxane) [592].

We can finally note the preparation of blends from an elastomeric and an
non-elastomeric copolymers II (x=1) [585]. These blends can be used to pre-
pare films, fibres or coatings, and foams that exhibit excellent fire resistance
and produce low smoke levels.

6
Polyphosphazenes as Ionic Conductors

The classical example of a solid organic polymer electrolyte and the first one
found is the poly(ethylene oxide) (PEO)/salt system [593]. It has been studied
extensively as an ionically conducting material and the PEO/lithium salt com-
plexes are considered as reference polymer electrolytes. However, their ambient
temperature ionic conductivity is poor, on the order of 10–8 S cm–1, due to the
presence of crystalline domains in the polymer which, by restricting polymer
chain motions, inhibit the transport of ions. Consequently, they must be heated
above about 80 °C to obtain isotropic molten polymers and a significant increase
in ionic conductivity.

In these complexes, the cations coordinate with the oxygen atoms of the
backbone and, under the influence of an electrical potential, they are trans-
ferred from an oxygen atom to another through the amorphous region of the
polymer assisted by the segmental motion of the polymer backbone.
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Therefore, an ideal polymer electrolyte must be flexible (associated with a low
Tg), completely amorphous,and must have a high number of cation-coordination
sites to assist in the process of salt solvatation and ion pair separation (see
Table 11). A review on this subject has been recently published by Inoue [594].

6.1
Polymer Electrolytes Based on Poly[bis(methoxyethoxyethoxy)phosphazene] 

The first polyorganophosphazene to be studied as polymer electrolyte was poly-
[bis(methoxyethoxyethoxy)phosphazene] (MEEP), V, synthesized by Allcock
[272] in 1984.
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Table 11 Structure and properties of phosphazene-based ionic conductors

Skeletal properties Substituent properties Polymer properties

Flexibility Low dimensions or great Low-temperature 
flexibility of the substituents elastomers

–60 °C<Tg<–100 °C
Amorphous

Insulating skeleton Able to coordinate metals Ionic conductivity

This polymer, which is characterized by a very low Tg(–84 °C) and an absence
of crystallinity, forms complexes with a large variety of salts, e.g. MSO3CF3
(M=Li, Na, Ag), Sr(SO3CF3)2, LiBF4, LiCF3COO, LiSCN and LiCLO4 [595].

It is believed that in these systems the cations coordinate with the oxygen
atoms of the methoxyethoxyethoxy side groups as indicated in Formula below,
thus facilitating ion-pair separation.

Lithium triflate was the most used salt and the temperature dependence of
the electrical conductivity of a series of (LiSO3CF3)x/MEEP complexes with a
ratio metal cation/MEEP repeat unit 0.125≤x≤0.25 was studied. It was shown



that the conductivity and Tg increase with x, whereas a higher Tg lowers the
conductivity. Consequently the conductivity passes through a maximum, which
was found for x=0.167 [272].

Therefore, the temperature dependence of the conductivity of complexes
(LiX)0.167/MEEP (X=CF3COO, SCN, SO3CF3, BF4) were also compared. The 
highest conductivity was obtained with BF4, and the activation energies for ion
transport were found to be similar, suggesting that the mechanism for ion mo-
tion is independent on the salt. The lithium transport number, which varies
from 0.3 to 0.6, depending on the complexed salt, does not change with con-
centration.

Similarly, the temperature dependence of the conductivity of (triflate
salts)0.25/MEEP complexes (the cations being Sr, Na, Li, Ag) has been studied.
It was shown that the conductivity increases in the order Sr<Na≈Li<Ag.

The conductivity of the LiX/MEEP complexes, which is in the range of
2.7¥10–5 S cm–1 for X=SO3CF3,increases to 5¥10–5 and 6¥10–5 S cm–1 for X=AsF6
and CLO4, respectively [10].

Complexes of MEEP with alkali-metal polyiodide salts MEEPx,MIn (M=Li,
Na, x=2–16, n=1–9) were also prepared by reaction of the complexes MEEPx,MI
with I2 vapour. Complexes with higher iodine content show high conductivity,
for example 4¥10–3 S cm–1 at 30 °C for MEEP,NaI15. The variation of the con-
ductivity of the MEEPx,NaIn complexes as a function of salt concentration is
characterized by the absence of a maximum, indicating that the conduction
mechanism is less reliant on the segmental motion than in the other MEEP/salt
complexes. This mechanism is thought to involve an iodide transfer between
polyanions [596].

The conductivity of the LiSO3CF3/MEEP complexes, although higher than
those of the lithium salts/PEO complexes (3 orders of magnitude higher), are
still inadequate for practical devices. This was the reason for the attempt at 
increasing these values by synthesizing a series of poly(organophosphazene)s
with longer linear ethyleneoxy [597], mixtures of linear alkoxy and methoxy-
ethoxyethoxy [278] or branched ethyleneoxy [597] side chains. The maximum
ionic conductivity obtained for all these LiSO3CF3/polymer systems are reported
in Tables 12–14.

In the case of linear oligoethyleneoxy side groups (Table 12), the maximum
conductivity increases with the length of the side group from 2.6¥10–5 S cm–1 for
x=1 to 4.8¥10–5 S cm–1 for x=6. After x=6, the conductivity decreases probably
on account of the formation of microcrystallites.

A Raman vibrational spectroscopy study of a series of complexes [N=P-
(O(CH2CH2O)xCH3)2]n/LiSO3CF3 (x=1, 2, 5) with oxygen/lithium concentration
ratios of 10/1 and 40/1 (oxygen atoms from the side chains ) was undertaken by
Frech [598]. By using the analysis of the ds (CF3) mode in the triflate anion, it was
shown that for x=1, 2, 5 at the 40/1 concentration the percentage of free ions in-
creases with the length of the side chain (2–24%) and the ion-pairs predominate
(98–71%). For the same complexes at the 10/1 concentration there are no free
ions observed and the triple ions [Li2Tf]+ predominate (~95%).
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Table 12 Maximum conductivity of the [N=P(O(CH2CH2O)xCH3)2]n/LiSO3CF3 systems 
at 25 °C

[N=P(OR)2]n/lithium  triflate systems [R=(CH2CH2O)xCH3]

x 1 2 3 4 6 8
Conductivity (s¥105 S cm–1) 2.6 2.7 3.2 3.7 4.8 4.5

The mechanism of ion transport in the MEEP/metal salt complexes has been
modelled on the PEO transport mechanism, that is to say in terms of jumps of
the metal ion between the ether oxygen nuclei of the side groups, the nitrogen
atoms of the backbone being not involved in the coordination [599].

However, a recent study of the lithium ion complexation with 15N-labelled
polyphosphazenes, including 15N-MEEP, was performed by Luther [600]. The
data obtained for the MEEP/LiSO3CF3 system by NMR, IR and Raman spec-
troscopies do not support that assumption, and show that the coordination of
the lithium ion also occurs with the nitrogen nuclei.

The introduction in the polymer of non-coordinative -O-(CH2)x-CH3 side
chains (Table 13) leads to a decrease of the conductivity from 1.29¥10–5 for x=2
to 1.9¥10–6 S cm–1 for x=9, which shows that a great number of donor sites is
primordial for the ion transport [278].

The conductivity obtained for the polymers bearing branched side chains
(Table 14) are similar to those obtained with the linear oligoethyleneoxy ana-

Table 13 Maximum conductivity of the [N=P(O(CH2CH2O)2CH3)(O(CH2)xCH3)]n/LiSO3CF3

systems at 25 °C

[NP(OR1)(OR2)]n/lithium triflate systems*; R1=(CH2CH2O)2CH3; R2=(CH2)xCH3

x 2 3 4 5 6 7 8 9

Conductivity 1.29 1.06 0.91 0.72 0.54 0.37 0.21 0.19
(s¥105 S cm–1)

* In these polymers, the ratios of the different side groups determined by 1H NMR spec-
troscopy are approximately 1

Table 14 Maximum conductivity of the polyphosphazenes with branched ethyleneoxy
sidechains/lithium triflate systems at 25 °C

[N=P(OR)2]n/lithium triflate systems; R=CH2–CHO–(CH2CH2O)xCH3
|
CH2O(CH2CH2O)xCH3

x 0 1 2 3

Conductivity 0.16 1.2 3.7 3.9
(s¥105 S cm–1)



logues. However, they have the advantage of a higher dimensional stability,
since they can be cast as thin films whereas MEEP is a viscous gum.

Polyphosphazenes bearing crown ethers (12-crown-4, 15-crown-5 and 18-
crown-6) as single or as mixed substituents with trifluoroethoxy or methoxy-
ethoxyethoxy groups were synthesized by Cowie [601, 602] and Allcock [484]
and their conductivity studied because it was shown that the incorporation of
crown ether molecules into a polymer electrolyte could increase their ionic
conductivity. In these macromolecules, the crown ether units were linked to the
backbone through oxymethylene spacer groups.

The conductivity of the single-substituent polymer complexed with lithium
triflate or lithium perchlorate is not measurable (<10–8 S cm–1). The conductiv-
ity of the co-substituted polyphosphazenes with methoxyethoxyethoxy groups
in the ratio methoxyethoxyethoxy/crown ethers 3/1 complexed with LiClO4 are
6¥10–6, 1.2¥10–5 and 1.1¥10–5 S cm–1 for 12-crown-4, 15-crown-5 and 18-crown-
6, respectively [10]. (The highest conductivity found for the co-substituted
polyphosphazenes with trifluoroethoxy groups and 12-crown-4 with a six meth-
ylene spacer, complexed with LiBF4, is 10–5 S cm–1 at room temperature).

The ionic conductivity of the MEEP/metal salt systems was improved by
adding a-Al2O3 particles into the complexes. Chen-Yang [603] obtained a con-
ductivity s=9.7¥10–5 S cm–1 for the composite polymer complex MEEP/Li-
ClO4/2.5 wt% Al2O3. The cation transport number was in this case 0.77.

To improve the dimensional stability of the oligoethyleneoxy phosphazene/
metal salt complexes, some attempts have been reported which concern the
chemical modification of the parent polymers, their chemical or radiation
cross-linking, or the use of blends.

An example of this approach concerns the incorporation in the polymer of
aryloxy groups. The two structures VI and VII have been synthesized both con-
taining the same 50/50 molar ratio of aryloxy and oligoethyleneoxy groups.
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The gum-like co-substituted polymers VI have lower Tg than polymers VII,
which form excellent films. The highest ionic conductivity at 25 °C reported for
the VI and VII/LiN(SO2CF3)2 complexes are 3.5¥10–5 and 2.4¥10–5 S cm–1 for VI
(x=7.3 ) and VII (x=7.3) complexed with 0.328 and 0.5 mol salt/polymer repeat
unit, respectively [604].

Gel electrolytes were also prepared by Allcock [605] from co-substituted
polyphosphazenes with various ratios of methoxyethoxyethoxy and trifluo-
roethoxy side groups, lithium triflate and propylene carbonate. These gel elec-
trolyte systems have a better mechanical stability than MEEP. The highest ionic
conductivity obtained was 7.7¥10–4 S cm–1 at 25 °C for a gel containing 37.5%
of polymer with 80% and 20% of methoxyethoxyethoxy and trifluoroethoxy



side groups, respectively, 12.5% of lithium triflate and 50% of propylene car-
bonate.

A chemical cross-linking of MEEP was obtained by Shriver [606] by using
polyethylene glycol (PEG) dialkoxide, which also forms polymer salt com-
plexes. The cross-linked polymers were prepared by substituting a part (1 and
10 mole%) of the methoxyethoxyethoxy ethanol by PEG in the synthesis of
MEEP. Contrary to the MEEP, the amorphous polymers obtained do not flow
and are stable even at 140 °C. The maximum ionic conductivity at 30 °C, ob-
tained after complexation with LiSO3CF3, are 4.1¥10–5 S cm–1 for MEEP/PEG
1% complexed with 6.4 wt% salt and 3¥10–5 S cm–1 for MEEP/PEG 10% com-
plexed with 8.9 wt% salt. These values are comparable with those obtained with
the parent linear polyphosphazenes.

The dimensional stability of MEEP/LiSO3CF3 complexes were also improved
without loss of conductivity by irradiation with g-rays [607, 608], or by UV 
irradiation, with or without photo-initiator [609].

MEEP/(LiX)n electrolytes, which can be processed into thin films without
physical treatment or addition of a second polymer, have been obtained by
Abraham [610]by dissolving MEEP and LiAlCl4 in acetonitrile. The complexes
MEEP/(LiAlCl4)0.13 and MEEP/(LiCLO4)0.25 have almost the same conductivity
at 25 °C, 1.2¥10–5 and 1.7¥10–5 S cm–1, respectively.

Dimensionally stable MEEP-based polymer electrolytes were also obtained
by the same authors forming composites with poly(ethylene oxide) PEO, poly-
(propylene oxide) PPO, poly(ethylene glycol diacrylate) PEGDA and poly(vinyl-
pyrrolidinone) PVP. Several complexes MEEP/PEGDA-(LiX)n, MEEP/PVP-(LiX)n
(X=BF4, ClO4) and MEEP/PEO-(LiX)n, MEEP/PPO-(LiX)n [X=BF4, ClO4, AsF6,
SO3CF3, AlCl4, N(SO2CF3)2] have been studied [611].

The maximum conductivity at 25 °C, 6.7¥10–5 S cm–1, was obtained for the
complex MEEP/PEO-[LiN(SO2CF3)2]n containing 55 wt% of MEEP, 45 wt% of
PEO and a 0.13 Li/O mole ratio. A similar conductivity 6.5¥10–5 S cm–1 was 
obtained for the complexes MEEP/[LiN(SO2CF3)2].

The study of the MEEP/PEO-(LiX)n and MEEP/PPO-(LiX)n complexes, (X=
BF4, ClO4) by 7Li NMR spectroscopy, DSC and X-ray diffraction showed that they
were multiphase with amorphous MEEP and crystalline PEO phases. Strong
cation–anion association effects were also observed [612].

The sol-gel technique was also used to prepare solid electrolytes containing
MEEP, triethoxysilane (TEOS) and lithium triflate. Homogeneous, transparent
and mechanically stable materials have been obtained by Guglielmi [611] from
a partially hydroxylated MEEP and TEOS, which after doping with LiSO3CF3
exhibited a conductivity in the range 3¥10–6 S cm–1 at 60 °C.

Similar materials were synthesized by Kim [613] from MEEP and TEOS. The
highest conductivity 4.6¥10–5 S cm–1 at room temperature was obtained for
10 wt% of TEOS and 15 wt% of LiSO3CF3. The conductivity decreases with in-
creasing of the amount of TEOS, contrary to the Tg, which is not significantly
affected. Phase separation between MEEP and TEOS seems to be responsible
for this behaviour.
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6.2
Phosphazene Electrolytes with Alternative Structures

Other research has been performed with the objective of determining how
changes in the structure of the polymer affect the solid ionic conductivity.
Some examples are given below.

The polystyrene derivatives with pendant oligo(oxyethylene)cyclotriphos-
phazenes VIII and IX were synthesized by Inoue [614, 615] and the ionic con-
ductivity of their complexes with LiCLO4 investigated. The maximum ionic
conductivity obtained for these complexes are reported in Table 15.
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Table 15 Maximum conductivity of the polystyrene derivatives VIII, IX/LiClO4 systems 

Polymers VIII, IX/LiClO4 systems

n 2 3

Conductivity Polymer VIII 1.8 (30 °C) 1.8 (30 °C)
(s¥105 S cm–1) 25.7 (100 °C) 37.8 (100 °C)

Polymer IX 12 (90 °C) 11 (60 °C)

The authors explain these high conductivities by an ion transport through a
conducting phase consisting of a number of oxyethylene chains. Being obtained
from polystyrene derivatives, these values also indicate that the flexibility of the
backbone is not essential to achieve a high conductivity.

The ionic conductivity of complexes of the polymer VIII n=3 with potassium,
sodium and cesium thiocyanates were also determined. The conductivity of
the polymer complexed with CsSCN is in the order of 10–4 S cm–1 at 30 °C, and
10–3 S cm–1 at 90 °C [616].

Polymers with -CH2O(CH2CH2O)n- spacers (n=1, 2) between the polystyrene
backbone and the pendant penta(methoxyethoxyethoxy)cyclotriphosphazene



were also synthesized. A maximum conductivity close to 10–4 S cm–1 at 50 °C
was obtained for n=2 [617].

Complexes LiClO4/crown ethers (18-crown-6 and 12-crown-4) and LiClO4/
azacrown (1,4,8,11-tetra(2-methoxyethyl)-1,4,8,11-tetraazacyclotetradecane)
were added to the polymer VIII (n=3) [618]. All these additives improve the
conductivity of the complex VIII/LiClO4, the azacrown still being more effec-
tive. The highest conductivity (12.6¥10–5 S cm–1 at 30 °C, 96.2¥10–5 S cm–1 at
90 °C) was obtained for the system VIII/LiClO4/azacrown with a ratio Li/O=0.05.

Based on the behaviour of the glass transition temperature of the VIII/Li-
ClO4/additives systems, it was suggested that the Li+ ions interact preferentially
with the CH3-(OCH2CH2)3- chains in the first case (crown ethers), and with aza-
crown in the second. This result also suggests that in case of azacrown, the an-
ions are mainly responsible for conduction.

The polynorbornenes X bearing cyclotriphosphazenes with -O(CH2CH2O)x-
CH3 (x=1, 2, 3, 7.2) side groups have been prepared via ring opening metathe-
sis polymerization (ROMP) and complexed with LiSO3CF3 and LiN(SO2CF3)2
(10–60% molar ratios) by Allcock [619, 620].
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The mechanical properties of X depend partly on the length of the oli-
goethyleneoxy groups. The polymers are solid for x=1, highly viscous gums for
x=3 and elastomers for x=7.2. The maximum conductivity of these complexes
at 30 °C are reported in Table 16. Gel electrolytes have also been obtained by
adding propylene carbonate (PC) (10–50 wt%) to these polynorbornene de-

Table 16 Maximum conductivity of polynorbornenes bearing cyclotriphosphazenes/lithium
salt systems at 30 °C

Conductivity of polymers X/metal salt systems (s¥105 S cm–1)

x y X/LiSO3CF3 X/LiN(SO2CF3)2

1 1 Not detectable Not detectable
1 2 0.5 2.2
1 3 0.9 2.1
1–2 7.2 3.8 4.9



In the systems with polystyrene derivatives VIII, IX and multi-armed cy-
clotriphosphazenes XI, XII the conductivity seems to be dependent on the rel-
ative concentrations of inter- and intra-molecular complexes (Table 17).

Three other MEEP-type polyphosphazenes were synthesized by Allcock
[622]. Polymers XIII and XIV were prepared via the cationic “living” poly-
merization of phosphoranimines, and polymers XV by ring opening polymer-
ization.
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rivatives. The conductivity of the X/LiSO3CF3/PC and X/LiN(SO2CF3)2/PC sys-
tems are two orders of magnitude higher than the solvent-free complexes. At
30 °C, the maximum conductivity is 1.9¥10–3 S cm–1 for 50 wt% of PC and
LiN(SO2CF3)2, and 1.2¥10–3 S cm–1 for 50 wt% of PC and LiSO3CF3.

Multi-armed polymers with a cyclotriphosphazene core XI and XII have been
synthesized from the reaction of polyethylene glycol monomethyl ethers with
acid chlorides of hexakis(3,5-dicarboxyphenoxy) and hexakis(4-carboxyphe-
noxy) cyclotriphosphazenes. Their complexes with LiClO4 were investigated,
and their maximum conductivities are reported in Table 17 [621].
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Table 17 Maximum conductivity of multiarmed cyclotriphosphazene/LiClO4 systems

[N=P(OR)2]n/LiClO4 systems

R=4-CH3-(OCH2CH2)n-OC(O)C6H4-XI R=3,5-(CH3-(OCH2CH2)n-OC(O))2C6H3-XII

n 11.8 3 7.2 11.8

Conductivity 1.7 (30 °C) 0.4 (30 °C) 1.8 (30 °C) 4.0 (30 °C)
(s¥105 S cm–1) 26 (90 °C) 10.0 (90 °C) 29.1 (90 °C) 60.1 (90 °C)

The maximum conductivities of XVI /LiClO4 complexes at 30 °C are 1.5¥10–7

(x=4) and 2.2¥10–8 S cm–1 (x=5) for a molar ratio LiClO4/PN=0.2. The FTIR and

Table 18 Maximum conductivity of the polymers XIII-XV/lithium triflate systems at 25 °C

Polymer XIII XIV XV

Conductivity 2.38 3.70 (n=60) 4.3
(s¥105 S cm–1) 2.70 (n=180)

The variations of the conductivity of the corresponding complexes with salt
concentration with lithium triflate were similar to those of MEEP, with a pas-
sage through a maximum when this concentration increased. The maximum
conductivities of these complexes are reported Table 18.

The maximum ionic conductivities of the complexes XV/LiAsF6 and XV/ 
LiClO4 at the same temperature are 5¥10–5 and 6¥10–5 S cm–1, respectively [10].
XV is completely amorphous from –100 to +100 °C. Its Tg is –74 °C in the ab-
sence of salt. Its dimensional stability is considerably higher than that of the lin-
ear MEEP with a similar molecular weight, and it forms free-standing films.

Poly[bis(amino)phosphazenes] XVI and a series of polyphosphazenes bear-
ing Methoxy-ethoxyethoxy and alkylamine side groups XVII have been syn-
thesized and complexed with LiClO4 by Chen-Yang [623, 624].



NMR spectra of these polymer electrolytes indicate an interaction of the side
chain nitrogen with the lithium ions. The co-substituted polymers XVII have
a Tg between –50 and –65 °C and form amorphous polymer electrolytes with
LiClO4 which give free-standing films with a good dimensional stability. It was
shown that the conductivity increases with the percentage of -O(CH2CH2O)2CH3
side groups. The highest conductivity at 30 °C, 2.2¥10–5 S cm–1, was obtained for
m=4, x=0.8, y=1.2 and a ratio LiClO4/PN=0.25.

Based on the synthesis of polyphosphazenes and of diblock copolyphosp-
hazenes by the living cationic polymerization of phosphoranimines [237, 241],
the triblock poly(phosphazene-ethylene oxide) copolymer XVIII was synthe-
sized by Allcock [223].
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XVIII shows in DSC a melting transition at 38 °C for the PEG segment. The
conductivity at room temperature of the complexes of XVIII with LiSO3CF3
(5–10 wt%) are between 8¥10–6 and 2¥10–5 S cm–1.

Polyphosphazenes sulfonates XIX with the anion covalently attached to 
the polymer are a new class of cation conductors that have been synthesized by
Shriver [625]. They were obtained by reaction of NaOC2H4SO3Na with an ex-
cess of polydichlorophosphazene in the presence of 15-crown-5, followed by the
reaction of the partially substituted product with the sodium salt of poly(eth-
ylene glycol methyl ether). The conductivity at 80 °C of the polymer with x=1.8,
m=7.22 is 1.7¥10–6 S cm–1. This low conductivity can be attributed to an ex-
tensive ion pair formation between the sodium and sulfonate ions.

In conclusion, polymer electrolytes based on phosphazene backbone and
containing ether side chains are, after complexation with alkali metal salts,
among the highest ionically solvent-free polymer salt complexes, with con-
ductivities in the order of 10–5–10–4 S cm–1. However, these conductivities are
still below the value of 10–3 S cm–1, which is considered to be the minimum for
practical applications. Therefore the design of new polyphosphazenes elec-
trolytes with a higher conductivity and also a higher dimensional stability still
remains a challenge for future researchers.



7
Polyphosphazene Biomaterials

As already stressed in the Introduction to this article, the use of organic plastics
as biomaterials is expected to evolve in a natural way towards the utilization of
increasingly higher quantities of inorganic polymers, because of the limitations
inherently present in the first class of materials which seem to be absent or 
reduced in the second type of macromolecules.

In this section we will describe the general principles that determined the
biological applications of polyphosphazenes in different domains, putting an
effort into establishing their specific utilization on the basis of structure–prop-
erty relationships. This argument has been covered by several different review
articles in the past [400–406, 626] and has been recently highlighted by H. R.
Allcock [627] and E. Schacht [407].

Polyphosphazenes can be considered as “biomaterials” in several different
ways, depending on the type of utilization one can predict for these substrates.
In this regard, we will consider three different topics concerning water-soluble
POPs and their hydrogels, bioerodible POPs for drug delivery systems and for
tissue engineering, and the surface implications of POP films.

As already reported in Table 6, the solubility of phosphazene polymers 
is strongly influenced by the nature of the substituent groups attached at the
phosphorus atoms along the -P=N- skeleton.Water-solubility, for instance, can
be induced in polyphosphazenes by using strongly polar substituents (e.g.
methylamine [84], glucosyl [495], glyceryl [496], polyoxyethylene mono-
methylether [273] or sulfonic acid [497, 498] derivatives), or may be promoted
by acids or bases when basic (amino substituents like ethylamine [499]) or
acid (e.g. aryloxy carboxylate [499] or aryloxy hydroxylate [295]) substituents
are exploited.

Water-soluble polyphosphazenes have been extensively investigated because
of their potential use for vehiculating molecules of therapeutic relevance in hu-
man bodies. Early papers by H. R.Allcock in this area dealt with phosphazenes
substituent copolymers containing methylamino groups as water-solubilizing
agents in a percentage ranging between 80 and 90% of the available sites in 
the phosphazene backbone, while the remaining P–Cl reactive groups were 
replaced by suitable bioactive molecules, as reported in Table 19.

Thus polyphosphazenes bearing PtCl2 anticancer agents were reported in
1976 [628–630]; in 1979 water-soluble polyphosphazenes containing pendent
imidazolyl groups were described that were able to complex Fe(II) and Fe(III)
porphyrins in the attempt to produce synthetic analogues of myoglobins and
hemoglobins [631, 632]; polymers functionalized with steroid moieties were 
reported in 1980 [633], and some local anaesthetics water-solubility were syn-
thesized in 1982 [634, 635, 638].

Table 19 also describes polyphosphazenes bearing oligopeptide side chains
(Gly-Pro-Gly and Gly-Val-Ala tripeptides) [636], potentially useful for tissue 
engineering, and polymers bearing N-acetylglycine substituents [637]. The
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antibacterial or antifungal activity of water-soluble polyphosphazenes has been
investigated [639].

More recently, some water-soluble polyphosphazenes have been used to 
prepare hydrogels by controlled reticulation under a variety of conditions, in the 
attempt at using them in tissue engineering or in the preparation of biological
systems containing trapped drugs or biologically active molecules (e.g.enzymes,
human cells, etc.). The release of these species under controlled experimental
conditions was the main aim of these investigations. The resulting polyphos-
phazene hydrogels are reported in Table 20.

Poly[bis(methylamino)phosphazene], for instance, has been radiation cross-
linked [640] for the preparation of phosphazene-based membranes. MEEP, a
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Table 19 Water soluble polyphosphazenes
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Table 20 Polyphospazene hydrogels

polymer originally prepared as a solid state polymeric electrolyte [272, 273]
(vide supra), could be crosslinked under a variety of conditions [480, 606–611,
641, 642] to form highly hydrophilic, dimensionally stable, materials.Additional
polyphosphazene matrices having polyethyleneoxides monomethylether res-
idues with longer chains or branched structures as phosphorus substituents
have been also prepared and investigated [647, 648]. These hydrogels were
tested first for the diffusion release of dyes [643], and later it was demonstrated
that they possess a lower critical solution temperature (LCST), whose value in
some cases is very close to human body temperature [644]. This fact allows the
polymers to contract and precipitate when heated at a temperature above
LCST, while being soluble when cooled below this temperature. As a conse-
quence, potential applications in drug release or retention as a function of
temperature could be predicted for these materials. Finally, enzyme immobi-
lization in polyphosphazene hydrogels was achieved by Allcock [649], who



succeeded in trapping amidohydrolase in MEEP matrices crosslinked by 60Co
g-irradiation. The interesting aspect of these hydrogels was that the trapped
enzyme retained a high activity (80% of the original value) even after sub-
strate irradiation.

Poly[(4-carboxylatophenoxy)(methoxyethoxyethoxy)phosphazene] copoly-
mers of variable compositions were synthesized by Allcock [645] in 1996. These
polymers were found to be soluble in alkaline solutions.When crosslinked (by
g-rays or by addition of CaCl2 to the polymer solution) the resulting hydrogels
were found able to contract or expand as a function of the pH of the solution
and their utilization as pH-responsive materials for drug delivery systems could
be envisaged.

Additional polyphosphazene hydrogels deal with polymers in which gluco-
syl side groups are co-substituted with trifluoroethoxy, phenoxy, methylamino
or methoxyethoxyethoxy moieties [646].

A different approach to polyphosphazene-based drug delivery systems deals
with hydrolytically unstable phosphazene substrates, able to degrade in a con-
trolled way under physiological conditions in human body. A list of these bio-
erodible substrates is reported in Table 21.

As reported elsewhere in this article, the polyphosphazene skeleton usu-
ally proved to be highly inert to chemical aggressives. Starting from the end
of seventies [464, 650] there was a series of papers in which it was clearly 
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Table 21 Polyphosphazene-based bioerodible materials



indicated that the presence on polyphosphazene substrates of simple amino-
acids esters [464, 650–653], imidazole [654–657], or glycolic or lactic acid 
esters [658] is able to induce hydrolytic instability [627] in the -P=N- skeletal
units.

The observed degradation of the macromolecules transforms the P and N
atoms of POPs into phosphates and ammonia, respectively, i.e. into species that
are biocompatible and can be metabolized and excreted when present in mod-
erate concentration [627]. The entity of the described degradation phenom-
ena seems to depend not only on the nature of the phosphorus substituents
(amino acids, imidazole, etc.) but also on the relative percentage of possible
co-substituent groups on the polyphosphazenes, their bulkiness and their 
hydrophilicity. The crucial step in this process seems to be correlated with the
possibility of hydrolytically generating skeletal units of the structure shown in
Fig. 19, which rapidly convert into phosphazane intermediates [671] able to in-
duce the degradation of the polymer chain [464, 652, 672]. Other chemical
groups like glyceryl [496] or glucosyl [495, 646] appear to be much less effec-
tive in inducing the hydrolytic instability of POPs.
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Fig. 19

These discoveries generated a lot of effort over the successive 25 years in the
preparation of especially designed drug delivery systems for the controlled re-
lease of radioactive progesterone [654], colchicine [656], naproxen [657, 673,
674], mitomycin C [675–677], inulin [678], trimethoprin [657], succinylsul-
fathiazole [657], ethacrynic acid [653], and steroids [633], regardless of whether
these drugs are physically trapped in polyphosphazene matrices, or chemically
bonded to the polymer skeleton.

Concurrent with these investigations, polyphosphazene matrices, function-
alized with aminoacid esters or with imidazole groups, became of importance
because of their tissue engineering aspects in bone regeneration [655, 656, 679],
treatment of periodontal diseases [657], and nerve reconstruction problems
[680–682] in which the remarkable biocompatibility of POP matrices was cou-
pled with their tuneable biodegradability.

The last important topic concerning the use of POP bioerodible materials
deals with poly[bis(4-carboxylatophenoxy)phosphazene], PCPP [683–687]. This
polymer is very important not only for the preparation of bone or tooth regen-
eration composites [688], but also as a micro-encapsulant of drugs [401, 659,
660], vaccines [403, 404, 661, 662], and proteins [663] under very mild experi-
mental conditions due to the possibility of crosslinking it by the action of CaCl2
solutions, according to the scheme in Fig. 20. The reticulation reaction could be
reversed very easily by treating the phosphazene gel with NaCl physiological
solutions, thus inducing the release of the trapped species.



The same polymer was later shown to possess striking immunoadjuvant 
features [403, 664–670], i.e. to be able to enhance the immunologic response of
the body to the stimulus of an antigen.

The third topic in polyphosphazene biomaterials that will be described in
this article concerns surface implications. One of the major problems in the uti-
lization of polyphosphazenes in solid state is their exploitation in the con-
struction of implantable devices, for which good physical properties, minimum
biological response, and good resistance to fungal or bacterial colonization may
be required.

For these goals several POPs with inert surface characteristics have been 
considered in the past, as reported in Table 22. As can be seen, the polyphosp-
hazenes involved in this research are mostly substituted with phenoxy or with 
fluoroalkoxy groups, which are substituents able to impart hydrophobic char-
acteristics to the surface films of these materials. Thus polyphosphazenes sub-
stituted with fluoroalkoxy, ring-substituted aryloxy or arylamino groups were
first tested by Wade for intramuscular implantation in rats [689]. Penton ex-
plored the possibility of using fluoroelastomers containing trifluoroethoxy 
and superior fluorinated alcohols for mammalian implantation [538]. Reichert
investigated the influence of molecular motion (both skeletal and side chain)
on the thrombogenesis [537], while Gettleman invented a new crosslinked (by
the action of di- or tri- acrylates) composite for elastomeric denture liners [539,
690–696]. Fluoroelastomer utilization for lined denture was also proposed by
May [535], while Joung used crosslinked fluoroelastomers for catheter coatings
[536, 580]. An additional application of elastic polyphosphazenes deals with
cardiovascular problems. In this context, the elasticity of the exploited materi-
als could be obtained by exploiting flexible side phosphorus substituents in a
random distribution along the -P=N- backbone and by light crosslinking of the
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Fig. 20



polymeric substrates.All these arguments, including blood compatibility, have
been recently reviewed [697].

The modification of the surface properties of polyphosphazene films could
be achieved in several different ways, and the most important types of modi-
fications carried out over the years are reported in Table 23.

The first example deals with poly[bis(trifluoroethoxy)phosphazene], PTFEP,
film, whose surface is intrinsically hydrophobic but can be converted to hydro-
philic by the action of NaOH in dioxane at 80 °C in the presence of tetrabutyl-
ammonium bromide [514, 515], or by metathetical exchange of trifluoroethoxy
moieties with variable types of alkoxides groups [482, 483, 515] (vide supra).

The surface of aryloxy-substituted polyphosphazenes can be modified by a
variety of chemical reactions, such as:

a. Sulfonation to enhance surface hydrophilicity of aryloxy-substituted POPs,
and to provide the possibility of forming surface hydrogels [698]; nitration
to insert -NO2 chemical groups on the surface of poly[bis(phenoxy)phosp-
hazene] films; these functions were successively exploited for a number of
reactions such as reduction to -NH2 to achieve the surface linkage of pro-
teins and enzymes [699], and diazotization of the amino groups for the 
surface insertion of cathecolamine units through coupling processes at the
diazo groups [700].
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Table 22 Surface implications in polyphosphazenes: surface inertness
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Table 23 Surface implications in polyphosphazenes: surface modification by chemical 
reactions

b. Surface oxidation of methyl groups in poly[bis(4-methylphenoxy)phosp-
hazene] to form carboxylate moieties [701] and their successive utilization
for additional functionalization reactions; the same polymer was also stud-
ied for the surface insertion of the blood anticoagulent Heparin to prepare
polyphosphazene films with anti-thrombogenic properties through the pre-
ventive modification of the methyl groups with N-bromo-succinimide (NBS)
[290, 702].

Polyphosphazene films could also be modified very easily by grafting organic
polymers onto the surface using chemical, photochemical or g-radiolytic pro-
cesses. In almost all cases these studies led to the increase in the surface hy-
drophilicity and biocompatibility of the phosphazene films without depressing
their bulk features.

According to examples reported in Table 24 the surface hydrophilicity of
PTFEP films could be considerably enhanced by methatetically exchanging tri-
fluoroethoxy moieties with polyethyleneoxide groups in a chemical way [516]
(vide supra). The use of g-rays led Allcock to graft MEEP onto the film surface
of several outstanding organic macromolecules, significantly decreasing their
surface hydrophobicity [703]. Using the same technique, Lora succeeded in the
preparation of phenoxy- and/or trifluoroethoxy-substituted POPs with grafted



poly(vinyl pyrrolidone) [704, 705], poly(N,N-dimethylacrylamide) [706] and
poly(N,N-dimethylaminoethyl methacrylate) [707]. This last polymer was fur-
ther manipulated to bind heparin antithrombogenic units [707].

Finally, surface properties of PTFEP were modified photochemically by light-
induced grafting of poly(N,N,-dimethylacryl amide) onto the film surface of this
material to achieve a remarkable enhancement of its hydrophilicity [513].

As a conclusion of this section we would like to stress once again the strate-
gic importance of POPs as biological substrates that appear to be one of the
most probable “break-throughs” for a wide-range industrial and commercial
utilization of poly(organophosphazenes).

8
Photo-active and Photo-inert Polyphosphazenes

The behaviour of phosphazene polymers upon irradiation with UV-vis light
has been the object of several review articles during the last 20 years [408–413,
708] and for this reason it will be not treated in detail in this paper. The short
summary of the topic presented here deals with the consideration that the pho-
tochemical behaviour of POPs originates in the combination of the transparency
of the skeleton of these materials (up to well inside in the UV range of the 
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Table 24 Surface implications in polyphosphazenes: surface modification by grafting 
reactions



spectrum [409, 413, 453, 709]) with the great synthetic versatility of polyphos-
phazenes [15], which allows the insertion of many different chromophoric
species.

The general structure of the polyphosphazenes investigated can be described
by Formula below in which only one type of substituent has been attached to
the polyphosphazene chain.
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Table 25 describes the features of the -P=N- skeleton of POPs, and the spec-
troscopic and photochemical properties of the substituent groups, whose ad-
dition determines the final characteristics of the resulting polymers.As can be
seen, the first series of polyphosphazenes considered for photochemical stud-
ies contained substituent groups (e.g. trifluoroethoxy, ethoxy and phenoxy
[520]) that showed absorptions at very short wavelengths (240–280 nm), com-
parable with the UV limit of the skeletal transparency. These materials proved
to be considerably inert to UV irradiation, giving rise only to crosslinking phe-
nomena when irradiated in solid state using light of 254 nm [520].

When compounds with more complicated chemical structures were taken into
consideration as possible polyphosphazene substituents, the polymers started to
show spectroscopic absorptions at wavelengths longer than 240–280 nm. As a
consequence, significant photochemical activity started to be observed for POPs,
intimately correlated to the photochemical features of these groups.

Thus, phosphazene polymers substituted with 4-tolylamino [710, 711] or 
b-naphthoxy [711] substituents showed photo-activity originating from the first
excited singlet state of these chromophores, while for phosphazene substituents
containing free carbonylic groups in their chemical structure (e.g. poly[bis(4-
benzoylphenoxy)phosphazene] [475, 712]) the photochemical activity was found
to derive from the first excited triplet state of these substituents. In both cases,
skeleton demolition and degradation of the polymers were observed upon ir-
radiation of air-saturated solutions of the materials, while photoreticulation
took place in the absence of molecular oxygen or in solid state [409–411, 413].
For arylamino-substituted polyphosphazenes, moreover, a remarkable solvent
effect was observed when carrying out photolysis in solvents of increasingly
high electron affinity (e.g. CH2Cl2, CHCl3 and CCl4) [302]. Similar results have
been found during irradiation of poly(methyl/phenyl)phosphazene, as reported
a few years later by Hoyle [413, 713, 714].

Substituent groups on a polyphosphazene chain containing mobile hydrogen
atoms (4-isopropylphenol [715, 716], 4-benzylphenol [293, 718], etc.) showed a
completely different photochemical reactivity both in solution and in solid state
under accelerated conditions, based mostly on the light-induced oxidation of
these groups and radical formation reactions.
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Table 25 Photochemical properties of selected poly(organophosphazenes)



When the substituent groups in the polyphosphazenes were azobenzene
[719] or spiropyran [720] derivatives, photochromic polymers were obtained,
showing reversible light-induced trans-cis isomerization or merocyanine for-
mation, respectively. Only photocrosslinking processes by [2+2] photo-addi-
tion reactions to cyclobutane rings could be observed when the substituent
groups on the phosphazene backbone were 4-hydroxycinnamates [721–723] or
4-hydroxychalcones [722–724].

It can also be mentioned that polyphosphazenes substituted with aromatic
groups, such as phenols or naphthols, can form inter- and intra- molecular 
excimers by coupling reaction of the planar aromatic rings of the substituents
under illumination [467–471, 473, 725]. These species disappear as soon as the
light is switched off.

Another class of photochemically relevant polyphosphazenes is formed by
macromolecules having chromophores able to absorb light in a selective way
and to transfer it to external species, thus inducing different reactions by energy
transfer processes. In some cases electron transfer processes are also involved.
These situations are described by Formula below and the corresponding poly-
mers and external reagents are reported in Table 26.

224 M. Gleria · R. De Jaeger

Table 25 (continued)

Thus, the photo-activity of poly[bis(4-benzoylphenoxy)phosphazene] under
illumination could be finely tuned by irradiating the polymer in the presence of
variable amount of naphthalene, a typical triplet state energy quencher [474].
The same polymer could be used as polymeric photosensitizer to induce the
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Table 26 Energy- and electron- transfer processes involving excited polyphosphazenechro-
mophores

light-sensitized trans-cis isomerization of stilbene and piperylene, the cyclo-
dimerization reaction of indene and the valence isomerization of norbornadi-
ene to quadricyclane [490], while a phosphazene macromolecule functional-
ized with Rose Bengal residues [726] was found to be able to photosensitize the
formation of singlet oxygen. All these types of processes occurred by energy-
transfer reactions. When electron-transfer processes were involved, charge-



transfer complexes were always formed among the polyphosphazene substi-
tuents (b-naphthoxy and/or 4-toluidine) and trinitrofluorenone as a dopant, and
remarkable photoconductivity phenomena were observed [291, 727, 728].

Similarly, energy-transfer processes, together with electron transfer and hy-
drogen abstraction reactions could be induced in poly(organophosphazenes)
in an intramolecular way by preparing POPs geminally substituted at the same
phosphorus with two different substituent groups.

The general structure of these materials is shown in Formula below while
the corresponding structures and processes are described in Table 27.

In these processes poly[bis(4-benzoylphenoxy)phosphazene] has mostly
been used as photosensitive substrate because of the triplet state reactivity
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Table 27 Light-induced intramolecular processes for phosphazene copolymers
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of the excited benzophenone moiety present in its chemical structure [712].
The actual process taking place during illumination of these substrates de-
pends strictly on the nature of the second substituent groups that is geminally
attached to the same phosphorus of the phosphazene backbone. In fact, in-
tramolecular hydrogen abstraction processes could be observed when the 
second phosphazene substituent was benzophenone [475, 712], 4-isopropyl-
phenol [296] or methoxyethoxyethanol [480] followed by extremely efficient
crosslinking phenomena of the polymer substrates and complete insolubi-
lization of the materials in a very short time. The same result could be ob-
tained when the couple benzophenone/3-N,N¢-dimethylphenol [476, 729] are
geminally supported on the same phosphorus atoms along the polymer chain,
in this case by a light-induced electron-transfer reaction followed by a proton
migration process.

In the frame of photochemical research, phosphazene polymers have also
been exploited in combination with external reagents able to selectively absorb
impinging light and induce reactivity on these materials. The general reaction
scheme is shown below.

All the materials involved in this research are described in Table 28.
Poly[bis(4-benzoylphenoxy)phosphazene] could be used as polymeric pho-

tosensitizer to induce the photocrosslinking of poly[bis(4-isopropylphenoxy)-
phosphazene] by means of the recombination of phosphazene macroradicals
produced by hydrogen abstraction processes on the side isopropylphenoxy
substituents [716]. Similarly, free benzophenone chromophores were used to
photoreticulate poly[4-isopropylphenoxy)phosphazene] [715, 716] or poly[bis-
(methoxyethoxyethoxy)phosphazene] [641, 642]; this last material with the aim
of introducing dimensional stability in polymeric films of this polymer and to
use them as solid state electrolytes for secondary batteries. In the same vein,
Pintauro reported the light-induced reticulation processes of phosphazene co-
polymers co-substituted by phenol and 4-ethylphenol [730], and by phenol and
variable 3- or 4- alkylated aryloxy groups to produce polymeric crosslinked
films suitable for exploitation in membrane technology [731].

In conclusion, all these types of light-induced reactions involving polyphos-
phazenes readily account for the great importance assumed by this topic in the
phosphazene domain and for the remarkable application potentials of espe-
cially designed phosphazene materials.



9
Conclusion

In this paper the scientific and technologic relevance of poly(organophos-
phazenes) are accounted for on the basis of the synthetic versatility of these
materials and of their structure–property relationships.

A variety of synthetic procedures have been described based on the ring-
opening polymerization processes of (NPCl2)3 to (NPCl2)n followed by the 
nucleophilic replacement of the reactive chlorines with carefully selected nu-
cleophiles, and on polycondensation reaction processes of new monomers and
of substituted phosphoranimines.
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Table 28 Hydrogen abstraction reactions in phosphazene polymers and copolymers pho-
tosensitized by external reagents



Furthermore, polyphosphazene features are interpreted as the resultant com-
bination of two basic contributions: one coming from the properties inherently
due to the polyphosphazene inorganic backbone (-P=N-), the other being due
to the characteristics possessed by the exploited nucleophilic substituents.

On this basis, five classes of different polyphosphazenes are considered 
as outstanding examples of this type of macromolecules, in which skeletal and
substituent features overlap to the highest extent. The reported materials are
elastomers, flame retardants and self-extinguishing macromolecules, polymeric
ionic conductors, biomaterials, and photosensitive polymeric compounds; all of
them based on the polyphosphazene structure.

A few considerations about future developments and applications of the 
described polyphosphazenes are also discussed.
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