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Preface

These two introductory texts provide a sound foundation in the key
mathematical topics required for degree level chemistry courses. While they
are primarily aimed at students with limited backgrounds in mathematics,
the texts should prove accessible and useful to all chemistry undergraduates.
We have chosen from the outset to place the mathematics in a chemical
context — a challenging approach because the context can often make the
problem appear more difficult than it actually is! However, it is equally
important to convince students of the relevance of mathematics in all
branches of chemistry. Our approach links mathematical principles with the
chemical context, by introducing the basic concepts first, and then
demonstrates how they translate into a chemical setting.

Historically, physical chemistry has been seen as the target for
mathematical support; however, in all branches of chemistry — be they the
more traditional areas of inorganic, organic and physical, or the newer areas
of biochemistry, analytical and environmental chemistry - mathematical
tools are required to build models of varying degrees of complexity, in order
to develop a language for providing insight and understanding together with,
ideally, some predictive capability.

Since the target student readership possesses a wide range of mathematical
experience, we have created a course of study in which selected key topics are
treated without going too far into the finer mathematical details. The first
two chapters of Volume 1 focus on numbers, algebra and functions in some
detail, as these topics form an important foundation for further mathemat-
ical developments in calculus, and for working with quantitative models in
chemistry. There then follow chapters on limits, differential calculus,
differentials and integral calculus. Volume 2 covers power series, complex
numbers, and the properties and applications of determinants, matrices and
vectors. We avoid discussing the statistical treatment of error analysis, in part
because of the limitations imposed by the format of this series of tutorial
texts, but also because the procedures used in the processing of experimental
results are commonly provided by departments of chemistry as part of their
programme of practical chemistry courses. However, the propagation of
errors, resulting from the use of formulae, forms part of the chapter on
differentials in Volume 1.

Martin Cockett
Graham Doggett
York
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Power Series

In Chapter 2 of Volume 1 we saw that a po iz 1, P(x), of
degree n in the independent variable, x, is a finite sum of the form:

P(x) =co+ ;x4 cx° + -+ X" (1.1)

Such polynomial functions have as domain the set of all real (finite)
numbers; in other words, they yield a finite result for any real value of the
independent variable x. For example, the polynomial function:

P(x)=1+x+x>+x° (1.2)

will have a finite value for any real number x because each term in the
polynomlal will also have a finite value.

An infinite series is very similar in form to a polynomial except that it
does not termmate at a partlcular power of x and, as a result, is an
example of a power se

px)=co+ e x+ext 4+ e+ (1.3)

One important consequence of this lack of termination is that we need to
specify a domain which includes only those real numbers, x, for which
p(x) is finite. For example, the power series:

pX)=1+x4+x2+x>4--- (1.4)

does not yield a finite result for x > 1, or for x < —1, because in the
former case the summation of terms increases without limit, and in
the latter it oscillates between increasingly large positive and negative
numbers as more and more terms are included. Try this for yourself by
substituting the numbers x = 2 and x = —2 into equation (1.4) and then
x=0.5 and x = —0.5 and observe what happens to the sum as more and
more terms are included.

Power scries are useful in chemistry (as well as in physics, engineering
and mathematics) for a number of reasons:
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Figure 1.1 A comparison of (a)
the 3s radial function, R(x), of
the hydrogen atom with (b) an
approximation obtained by
substituting a two-term expan-
sion of the exponential part of
the function

Firstly, they provide a means to formulate alternative representations
of transcendental functions such as the exponential. logarithm and
trigonometric functions introduced in Chapter 2 of Volume 1.

Secondly, as a direct result of the above, they also allow us to
investigate how an equation describing some physical property
behaves for small (or large) values for one of the independent variables.

For example, the radial part of the 3s atomic orbital for hydrogen
has the same form as the expression:

R(x) = N2x* — 18x 4 27)e /* (1.5)

If we replace the exponential part of the function, e *’*, with the
first two terms of its power series expansion (1—x/3), we obtain a
polynomial approximation to the radial function given by:

R(x)=N(2x* = 18x+27)(1 —x/3) =~ N(8x* —2x" /3 -27x+27) (1.6)
We can see how well equation (1.6) approximates equation (1.5) by

comparing plots of the two functions in the range 0 < x < 20, shown
in Figure I.1.

R(x)

(®)

In this example, the polynomial approximation to the form of
the radial wave function gives an excellent fit for small values of x
(i.e. close to the nucleus), but it fails to reproduce even one radial node
[a value of x for which R(x)=0].

Thirdly, power series are used when we do not know the formula of
association between one property and another. It is usual in such
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situations to use a power series to describe the formula of association,
and to fit the series to known experimental data by varying the
appropriate coefficients in an iterative manner. For example, the
parameters o, f8, y in the polynomial expression:

describing the temperature dependence of the specific heat capacity of

C, = g(T), where g(T) = o + BT+ yT*

a substance at constant pressure, C,, may be found by fitting
measured values of C, over a range of temperatures to this equation.

Much of this chapter is concerned with a discussion of power series, but
before we go into detail we consider the general concepts of sequences and
series, both finite and infinite.

By the end of this chapter, you should be comfortable with the idea
that functions can be represented in series form and be able to:

1.1

Understand the distinction between Maclaurin and Taylor series
expansions and appreciate when one or the other is the more
appropriate

Understand what factors influence the accuracy of a given power
series expansion

Determine the values of x for which the power series is useful
(the interval of convergence)

Understand why the interval of convergence may differ from the
domain of the original function

Manipulate power series to obtain series for new functions
Apply some of the ideas explored in this chapter to probe the
limiting behaviour of functions for increasingly large or small
values of the independent variable

Sequences

A sequence is simply a list of terms:

each of which is defined by a formula or prescription. The sequence may be
finite or infinite, depending on whether it terminates at u,, or continues

Uy, Uy, Uz,... (17)
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indefinitely. Furthermore, the sequence u,, u,, u3, ... represents a func-
tion, with a domain specified either as a subset of the positive integers or
all positive integers.

1.1.1 Finite Sequences

The Geometric Progression

The numbers:
1,2,4,8,...,256
form a finite sequence generated by the general term:
u, =2, wherer =20,1,2,3,...,8 (1.8)

Here, the formula is just 2 raised to a power, the value of which is defined
by each element of the domain. Notice that the use of r as a counting index
is arbitrary: any other appropriate letter (with the exception of u which we
have used already) would do. A counting index such as r is often termed
adummy index . An alternative way of generating this sequence is
accomplished using a recurrence relation as the prescription, where each
successive term is obtained from the previous term. For example, the
sequence given in equation (1.8) can alternatively be expressed as:

1, r=0
“f‘{zu,_l, r=1,2,3,....8 (1.9)

which simply means that, starting from 1 as the first term, each successive
term is obtained by multiplying the previous term by 2.

The finite sequence in equation (1.8) is an example of a geometric
progression, having the general form:

a, ax, ax’, ax’, ..., ax® (1.10)

In the case of the geometric progression defined by equation (1.8), a =1,
x=2anduy,=ax"forr=0,1,2, ...

Arithmetic Progression

Consider the sequence of odd positive numbers 1, 3, 5, 7, ..., 31, which
can be expressed either in terms of the general term:

u,=2r—1, r=12,3,...,16 (1.11)
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or as a recurrence relation expressed in prescription form:

I, r=1
W_{ml+1r—23P”£ (1.12)

This finite sequence is an example of an arithmetic progression, because
each successive term is given by a sum having the general form:

a,a+d a+2d, a+3d,..., a+nd (1.13)

where, in this example, a =1, d = 2.

1.1.2 Sequences of Indefinite Length

In the sequence given in equation (1.13), the magnitudes of successive
terms progressively increase. Some sequences, however, have the property
that as the number of terms increases, the values of successive terms
appear to be approaching a limiting value. For example, the terms in the
harmonic sequence :

111 1

Ty Ty ey =y 1.14
2’3’4’ n ’ (1.14)
where u, = 1/r,r =1,2,3, ..., decrease in magnitude as r increases, and

approach zero as r tends to infinity. Thus, we can define the limit of the

sequence as:

lim (,) = lim + = 0 (1.15)

r—oo r—o r

If the limit of a sequence is a single finite value, say m, then:

lim(u,) = m (1.16)

r—oo
and the sequence is said to converge to the limit m; however, if this is not
the case, then the sequence is said to diverge. Thus, for the arithmetic
progression defined in equation (1.13), the magnitudes of successive
values in the sequence increase without limit and the sequence diverges. In
contrast, the geometric progression in equation (1.10) will converge to a
limiting value of zero if —1 <x <1.

Problem 1.1

Test each of the following sequences for convergence. Where
convergence occurs, give the limiting value:

(@z@z%,r=&l,1”.

@)W=”&Hn=hzwn

(e) w.=cosrm, r=0,1, 2, ...
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We first met the summation
notation " in Chapter 1 of Volume
1. In this example, the counting
index, r, takes values from 1 to n.

1.1.3 Functions Revisited

In our discussion of algebraic manipulation in Chapter 1 of Volume 1, we
used the three-spin model for counting the various permitted orientations
of three spin—% nuclei. If we focus on the number of arrangements where r
nuclei are in the spin-up state, then we see that there is only one
arrangement where none of the nuclei has spin up: three where one
nucleus has spin up; three where two nuclei have spin-up; and one where
all three nuclei have spin up. Thus, we can define the sequence 1, 3, 3, 1,
where the general term is given by u, = ﬁ where r=0, [, 2. 3.

In general, the number of ways of selecting r specified objects from »n

objects is given by the expression "C, = ﬁm In this example there

are three nuclei and so n=3, and there are °C, {(where r=0, 1,
2, 3) ways in which 0, 1, 2 and 3 nuclei have spin up.

Problem 1.2

Find the sequence that represents the number of arrangements of six
spin-% nuclei, with r spin-up arrangements, where r now runs from 0
to 6.

1.2 Finite Series

For any sequence of terms u;, u, us, ... , we can form a finite series by
summing the terms in the sequence up to and including the »th term:

H
S,,=ul+uz+u3+'~+u,,:Zu,. (1.17)
r=1

For example, the sum of the first » terms in the series obtained from the
sequence defined by equation (1.8) is given by:

S,=14+2+22+... 427! (1.18)

Evaluating this sum for n = 1, 2, 3, 4, 5 yields the sequence of partial sums:
Si=1,8=3 8=7 S;=15 and S5 = 31 (1.19)

If we now look closely at this new sequence of partial sums, we may

be able to deduce that the sum of the first # terms is S, =2"—-1. In
general, for a geomeftric series obtained by summing the members of
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the geometric progression, defined by equation (1.10), the sum of the first
n terms 1s given by:

S, =a+ax+ax* + - ax"7!

:a(l —x") (1.20)

1 —x

Problem 1.3

For the geometric series obtained by summing the first n terms of
the geometric progression in equation (1.8), use equation (1.20) and
appropriate values of a and x given in equation (1.10) to confirm
that the sum of the first » terms is 2"—1.

1.3 Infinite Series

We can also form aninfinite series from a sequence by extending the range
of the dummy index to an infinite number of terms:

S=u1+u2+u3+-~~=Zu,. (121)

The summation of a finite series will always yield a finite result, but the
summation of an infinite series needs careful examination to confirm that
the addition of successive terms leads to a finite result, i.e. the series
converges. It is important not to confuse the notion of convergence as
applied to a series with that applied to a sequence. For example, the
harmonic sequence given by equation (1.14) converges to the limit zero.
However, somewhat surprisingly, the harmonic series:

= 1 1 1 1
=»-=1 1.22
Z =1+ttt (1.22)
does not yield a finite sum, S, and consequently does not converge. In
other words, the sum of the series increases without limit as the number of
terms in the series increases, even though the values of successive terms
converge to zero. We can see more easily how this is true by breaking
down the series into a sum of partial sums:
1 1 1 1 1 1 1
S=1 . 1.23
+2+(3+ )+(5+6+7+8)+ (1.23)

Here, each successive sum of terms in parentheses will always be greater
than % For example:
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1 1 1 1 1 1 1 1 1 1 1 1
(§+Z)>(Z+Z) and (§+6+?+§)>(§+‘8‘+§+§) (1.24)

and, because this is an infinite series, it follows that the sum increases
without limit:

1 1 1
S>1ds+s+5+: (1.25)
1.3.1 7 Revisited: the Rate of Convergence of
an Infinite Series

In Chapter 1 of Volume 1 we saw that the irrational number, r, can be
calculated from the sum of an infinite series. One example given involved
the sum of the inverses of the squares of all positive integers:

— 1 1 1 1 1
:Zr—2—1+ stptptat o tat (1.26)

r=1
This series converges extremely slowly, requiring well over 600 terms to
provide precision to the second decimal place; in order to achieve 100
decimal places for n, we would need more than 10°° terms! However, the
alternative series:

n 1 Ix]l 1x1x2 1x1x2x3

3 T T 1x3 T Tx3x5 " Ix3x5x7 (1.27)

converges more rapidly, achieving a precision to the second decimal place
in a relatively brisk 10 terms.

1.3.2 Testing a Series for Convergence

The non-convergence of the harmonic series, discussed above, highlights
the importance of testing whether a particular series is convergent or
divergent. For a series given by:

Zu,:ul+u2+u3+--- (128)
=1

the first, and necessary, condition needed to ensure convergence is
that }Lrg u, = 0_If this condition is satisfied (as it is in the series above
for determining =), we can then proceed to test the series further
for convergence. It should be emphasized, however, that satisfying this
first condition does not necessarily imply that the series converges (i.e. we
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say that the first condition is not sufficient). For example, although the
harmonic sequence is an example of one for which u, tends to zero as
r — oo, the corresponding harmonic series is not convergent.

The Ratio Test

A number of tests are available for confirming the convergence, or
otherwise, of a given series. The test for absolute convergence is the
simplest, and is carried out using the ratio test.

For successive terms in a series, u, and u, . ;, the series:

*  converges if lim “;;:' <1 (1.29)
» diverges if lim ”;—tl|>1 (1.30)

If, however, lim
r—oo

Ury)
U

= 1, then the series may either converge or diverge,

and further tests are necessary.
The Infinite Geometric Series

The form of the geometric series in equation (1.20) generalizes to the form
of equation (1.21) where, now:

S,=a+ax+ax*+---
=iaxr—l
r=1

and u, = ax”~". On using the ratio test in equation (1.29), we find that the
series converges if

r

. | ax
lim <1
r—oolgx"

That is, when |x<1]|. This constraint on the permitted values of x, for
which the series converges, defines the interval of convergence .

Worked Problem 1.1

Q (a) Give the forms of u, | and u, for the geometric series 1 + x +
2+ +

(b) Use the ratio test to establish that the series converges and find
the interval of convergence.
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(c) Given x = 0.27, calculate the sum of the series to two decimal
places.

A (a) Since the first term in the series is a constant, we define the

rthterm asu, = x" ' and the (* + 1)thterm as u, | = x".

(b) The ratio test yields:

|2

= lim|——
r—oo|x"—

Urp)
ul’

lim

r—o0

= |x|

and so the series converges if x| < 1 and divergesif |x|> 1. If x = £+ 1,
then, as we saw earlier, further tests are required to establish whether
the series converges or diverges at these end points. However, in this
case, we can see by inspection that for x = + 1 the sum of the first r
terms will be r and thus increases without limit as r — oo. For
x = —1, the sum oscillates between 0 and 1, depending on whether r
is even or odd. In both cases, a finite sum is not obtained as r — oo,
and we can say that the series fails to converge for x= +1.
Consequently, the series converges if x takes the values —1 <x<1:
an inequality that defines the interval of convergence.

(c) Let S, designate the sum of the first n terms of the geometric
series. Table 1.1 summarizes the values of S,, and the incremental
changesforn=1,2,..., 8, using x = 0.27. We can see from the table
that in order to specify the sum to a given number of decimal places,
we have to compute its value to one more decimal place than
required, in case rounding up is necessary. In this case, convergence
to two decimal places yields a sum of 1.370 at n =6.

n
Table 1.1 Numerical summation of the geometric series 3 x"'
r=1

n 1 2 3 4 5 6 7 8

S, 10 127 13429 13626 1.3679 13693 13697  1.3698
AS, - 027 00729 00197 00053 0.0014 0.0004  0.0001

Problem 1.4

For each of the following infinite series, use the ratio test to establish
the interval of convergence:

@S=1+4+2x+3x>+4x>+---
2 3 4
B)S=1-x+L-X4+X ... (-1

xr—l
20 34

r-DiT
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2 4 2r—2
_ X m s i e L XS
(c)S_1+2 4+ +(-1) T

Hint: for part (a), you will need to find the general term first.

In general, it may not be possible to specify the value of the sum, S, in
terms of x. Instead, we chose a value of x, and compute the sum to a given
number of significant figures or decimal places.

1.4 Power Series as Representations of Functions

We have seen above that, for a geometric progression of the type given in
equation (1.10), the sum of the first # terms is given by equation (1.20).
Furthermore, for @ = 1, we can see that:

I —x"

=l4x+x? -4 x"! (1.31)
I —x

This is an important expression because it allows us to see how a function
such as %—T"; can be represented by a polynomial of degree n — 1.
However, if we now extend the progressionindefinitely to form the infinite
geometric series | +x + x2+-..+x""'+... weobtainan expansion of a
function lim k= x: which converges only for values of x in the range

n—oo 1 -

—1 <x <1 (see Worked Problem 1.1). If we now evaluate the limit as
n — oo, for any x in the interval of convergence —1 <x <1, we obtain:

l—x"_l—O_ 1
n—o ]l —x  l—-x 1-—x

(1.32)

Note that in the limit n — oo, the term x" — 0 because we are restricting
the values of x to the interval of convergence —1 <x < 1. We now see that
the function f(x) = L= can be represented by the infinite series expan-
sionl + x + x* +..- + x"7! +... which converges for -1 <x<1.
For all other values of x the expansion diverges.

The infinite geometric series is an example of a power series because it
contains a sum of terms involving a systematic pattern of change in the

power of x. In general, the simplest form of a power series is given by:
flx)=co+ex+ex’ +ex + - +ox" + - (1.33)

where ¢y, ¢1, ¢, ... are coeflicients and successive terms involve an
increasing power of the independent variable, x. Such series involving
simple powers of x are termed Maclaurin series. The more general
Taylor series are similar in form, but involve powers of (x — a):

S(x) =co+c1(x — a) + cr(x — a)2 + 3(x — a)3 + .-
+cu(x —a)" + - - (1.34)

Power series are so-called
becaus 3% ums of powers
of x with specified coefficients
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where a is any number other than 0 (in which case, we revert to a
Maclaurin series). The significance of the value of a is that it represents
the point about which the function is expanded. Thus the Taylor series
are expanded about the point x = a, while the Maclaurin series are simply
expanded about the point x = 0. Maclaurin and Taylor series are used
most frequently to provide alternative ways of representing many types
of function. In addition, such series in truncated polynomial form pro-
vide an excellent tool for fitting experimental data, when there is no model
formula available.

There are two important features associated with the generation of
power series representations of functions. First, a value of x lying in the
domain of the function must be chosen for the expansion point, a; second,
the function must be infinitely differentiable at the chosen point in its
domain. In other words, differentiation of the function must never yield a
constant function because subsequent derivatives will be zero, and the
series will be truncated to a polynomial of finite degree. The question as
to whether the power series representation of a function has the same
domain as the function itself is discussed in a later subsection. The next
subsection is concerned with determining the coefficients, ¢;, for the two
kinds of power series used to represent some of the functions introduced
in Chapter 2 of Volume 1.

1.4.1 The Maclaurin Series

Expansion About the Point x = O

Let us start by using equation (1.33) as a model expression to generate a
power series expansion for a function f{x), assuming that the require-
ments given in the paragraph above are satisfied. In order to obtain the
explicit form of the series, we need to find values for the coefficients ¢, ¢,
¢z, .... This is achieved in the following series of steps.

The original function, and its first, second and third derivatives are:

fix)=co+ x4 ex® +e3x’ +ext + - ex" 4 (1.35)
SO) = ¢ + 205 + 363 +degx® + -+ ne, X" - (1.36)
2

SAX) =20, +2x3e3x + 3x4egx + -+ n(n— e, X2+ - (1.37)

SO (%) =2x3c3+2x3x4eqx+ - +n(n—1)(n—=2)c,x" P+ (1.38)
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If we now substitute the expansion point, x =0, into each of the above
equations we obtain:

S(0) =¢y (1.39)
FM0) = ¢ (1.40)
F2(0) = 2¢, = 2!, (1.41)
F0) = 2% 3¢5 = ey (1.42)

and, by inspection, the nth derivative has the form:
7"(0) = nle, (1.43)

If we now substitute the coefficients obtained from each of the expressions
(1.39)-(1.43) into (1.35), we obtain the Maclaurin series for f{x):

709 =0+ + 502 L0

X (1.44)

This series, which is generated by evaluating the function and its
derivatives at the point x =0, is valid only when the function and its
derivatives exist at the point x = 0 and, furthermore, only if the function
is infinitely differentiable.

The Maclaurin Series Expansion for e*

The exponential function f{x) = e is unique insofar as the function
and all its derivatives are the same. Thus, since f ®(x) = e, for all n, we
have:

£0) =f10) =fP0) = fD0) =...fM0) =€’ =1 (1.45)
and, using equation (1.44), we obtain:

2 3 -1
f(x):ex:1+x+i€~+x—+-"+

2173 CER A (1.46)

in which the nth term is given explicitly.
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Figure 1.2 A comparison of
the accuracy of polynomial
approximations to the function

y = e*(x=0), using polynomials
of degrees 2—10

Truncating the Exponential Power Series

For any power series expansion, the accuracy of a polynomial truncation
depends upon the number of terms included in the expansion. Since it is
impractical to include an infinite number of terms (at which point the
precision is perfect), a compromise has to be made in choosing a sufficient
number of terms to achieve the desired accuracy. However, in truncating
a Maclaurin series, the chosen degree of polynomial is always going to
best represent the function close to x = 0. The further away from x =0,
the worse the approximation becomes, and more terms are needed to
compensate, a feature which is demonstrated nicely in Figure 1.2 and
Table 1.2.

e

Maclaurin series
y=14+x+x220 + 33+ o X (n=1)! + -

Table 1.2 The accuracy of first, second and third degree polynomial approxi-
mations to the function f(x)=e*

X 1+ x 1+x+’;—f 1+x+);—?+)‘q—? e*

0 1 1 1 1

0.0001 1.0001 1.000100005 1.000100005 1.000100005
0.001 1.001 1.0010005 1.0010005 1.0010005
0.01 1.01 1.01005 1.01005017 1.01005017
0.1 1.1 1.105 1.105167 1.1051709
0.2 1.2 1.22 1.22133 1.221403
1.0 2 2.5 2.6667 2.718282

The Maclaurin Expansions of Trigonometric Functions

The trigonometric functions sin x, cos x, tan x have derivatives which
exist at x =0, and so can be represented by Maclaurin series.
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Worked Problem 1.2

Q (a) Find the first three non-zero terms of the Maclaurin series
expansion of the sine function.

(b) Deduce the form of the general term, and give the interval of
convergence for the series.

A (a) Proceeding in the same manner used for the exponential
function:

)= )= = & o 9= =
sin x cos x —sin x —COS X sin x CcOS X
fO=0 N0 =1 Moy=0 MO)=-1 fMD0)=0 [O0)=1

As every other derivative is zero at x = 0, we need to go as far as the
Sth derivative in order to obtain the first three non-zero terms. Thus,
using equation (1.44) we have:

: 1 1
fix) = smx=x—§x3-+-—5—!x5 — e
(b) Finding the general term requires some trial and error! In this
case:

* The coefficients of even powers of x are zero.

e The denominators in the coefficients of the odd powers of x are
odd numbers (formed by adding or subtracting 1 to or from an
even number, 2n).

* Asthe signs of the coefficients for ¢y, ¢3, ¢s, . . . alternate, starting
with a positive value for c;, the factor (—1)"~' takes care of
the sign alternation.

* Only odd powers of x appear, suggesting that the index can be
generated by subtracting 1 from an even number; thus the power
of x in the nth term can be written as x>"~! (check that this
generates the terms x, x> and x° by substituting n =1, 2 and 3,
respectively). Therefore the general term in this case is given by

n—1
((z;nl_zl—)!xz”“ +.--,wheren=1,2,3,...

Problem 1.5

Use equation (1.44) to find the first four non-zero terms, as well as
the general term, in the Maclaurin series expansions of each of the
following functions: (a) e ™; (b) cos x; (c) (1 — x)~'.
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The Problem with Guessing the General Term: A Chemical
Counter Example

In our discussion of the geometric series and the Maclaurin series for sin x,

‘we made the assumption, from the pattern emerging from the first few

terms, that we could predict how the series will continue ad infinitum. In
most cases, this confidence is justified, but sometimes we encounter prob-
lems where finding the general term requires a knowledge of the physical
context of the problem. An example of such a problem in chemistry
involves the computation of the ion-ion interaction energy in an ionic
solid, such as NaCl. If we compute the interaction energy arising from the
interaction between one ion (positive or negative) and all the other ions in
the NaCllattice structure, then we obtain the Madelungenergy in the form:

VA AT e

Here A is the Madelung constant for the NaCl structure, and R is the
distance between any adjacent Na ™ and CI” ions. If we inspect the terms
in the series, we can see not only that the sign alternatives but also what
appears to be a pattern in the square root values given in the
denominators of successive terms. However, in contrast, it is very difficult
to see any pattern to the values of the numerators, the reason being that
there is none: we can only determine their values from a knowledge of the
NaCl structure. In this example, the first term arises from the interaction
between a Na™ ion and the 6 nearest neighbour CI” anions at a distance
VIR: the second term arises from the interaction of nearest-neighbour
ions of the same charge, which in this case involves an Na* ion and 12
second nearest-neighbour Na ™" ions at a distance v2R; the third term is
then the interaction between an Na ¥ and 8 Cl at a distance /3R, and so
on. The general term in this case is R’:’/’-], where m i1s the number of nth
neighbours at a distance of R\/n. The next term in the series is, somewhat
unexpectedly, +\1/—2§, because the number of 7th nearest neighbours at a

distance RV/7 is zero!

§ 24 24 ?
e {6 2 .8 6 }_ A

B 4reg R T 4neg R

1.4.2 The Taylor Series

Power Series of Functions Expanded About Points Other Than Zero

In many situations, we need to find the power series expansion of a
function in terms of the values of the function and its derivatives at some
point other than x = 0. For example, in the case of a vibrating diatomic
molecule, the natural choice of origin for describing the energy of the
molecule is the equilibrium internuclear separation, R., and not R=90
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(where the nuclei have fused!). We can determine the expansion of a
function f{x) about an origin x = a (Where a is now, by definition, generally
not zero) using the Taylor series which is given by the expression:

%)
2

(x_a)”+... (1.48)

f(x) =f(a) +fVa)(x - a) + (x—a) + -

A0

n!

Here, f“)(a) is the value of the nth derivative of f{x) at the point x = a.
The special case where a = 0, as discussed above, generates the Maclaurin
series.

Worked Problem 1.3

Q Find the Taylor series expansion for the function f{x) = e* about
the point x = 1.

A Since all the derivatives of e* at x =1 have the value e, the
Taylor series takes the form:

e"=e{1+(x—- 1)+(x;!1)2+(x;!1)3+_.__._()En—_li';' +} (1.49)

where the last term in the brackets is the nth term. We can see from
a plot of the Taylor series expansion of the exponential function,
shown in Figure 1.3, that far fewer terms are necessary to achieve
a good degree of accuracy in the region around x = 1 than is the
case with the MacLaurin series. However, we also see that the further
away we are from the point x = 1, the poorer the approximation and
the more terms we will need to achieve a given accuracy. Although it
is not obvious from Figure 1.3, the Maclaurin series will be better
than this Taylor series expansion for values of x close to x = 0.

"/. Taylor series to
‘“n=4fora=1

Figure 1.3 Anillustration of the
improved accuracy achieved
with the Taylor series expansion
of f(x)=e* about x=1, compared
with the Maclaurin series
(expanded about x=0)



18 Maths for Chemists

Problem 1.6

Find the first four non-zero terms in the Taylor series expansions of
the following functions, expanded about the given point, and deduce
the form of the general term for each series: (a) (1 — x) ', atx = —1;
(b) sin x, at x=7/2; (¢) In x, at x = 1.

Figure 1.4 Schematic plot of
the Morse potential energy
function (full line). The minimum
energy is at R = R.. The harmonic
approximation (see text) is shown
as a dashed line

Worked Problem 1.4

The variation of potential energy, E(R), with internuclear separ-
ation, R, for a diatomic molecule can be approximated by the
Morse potential, E(R) = De{l — g HR-R) 2, shown schematically
in Figure 1.4. The dissociation energy, D. and o are both constants
for a given molecule.

ER) .

However, one of the limitations of the Morse potential energy
is that, in contrast to the “‘experimental” curve, the value of the
energy at R =0 (corresponding to nuclear fusion) is finite, rather
than infinite. The minimum in the Morse potential energy curve
occurs at R = R, which represents the equilibrium bond length.

Q Find the first three terms in the Taylor series expansion for the
Morse function about the point R = R..
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A The general expression for the Taylor series expanded about an
arbitrary point x = a is:

109 = 1@ +19@)x — )+ (x— a1
+]i(”:l_!(a_2(x_a)"+...

Step 1. Identify R with x, R, with a, and E(R) with f(x). We can then
see that the three terms f(a), fP(a) and fP(a) are equivalent
to E(R.), EV(R,) and E®(R.), which enables us to re-express the
Taylor series in the form:

EP(R.)

E(R) = E(R.) + EV(R)(R = Re) +~—

(R R b
(1.50)

Thus, we need to evaluate each of the terms E(R.), EV(R.) and
ED(R,), corresponding to the energy and its first two derivatives,
evaluated at the point R = R..

Step 2. Evaluate E(R.) using the substitution R = R. in the energy
expression:

2
E(R.) = Dof1 — e *=Rl'= p {1 - 1}’= 0
since e = 1.
Step 3. Evaluate the first and second derivatives, E‘(R,) and

E@(R.), by applying the chain rule (the detailed working forms part
of the next Problem). Thus:

E“)(R) = 2De{1 = e‘“(R_R‘)} x e~ *R=Re)
ED(R) = 2a2De{2e_2“(R'R°) = e'“(R‘Re)}
Substituting R = R, into the above equations gives:
EV(R) =2D {1 —1}xa=0

ED(R,) = 24*D {2 — 1} = 24*D,
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Step 4. Substituting the expressions for E(R.), EV(R.) and EP(R,)
into the Taylor expansion (equation 1.50) yields:

20*D,
2!
= E(R) =a’De(R—~R.* + -

E(R)=0+0x(R—R,) + (R— R+

(1.51)

This is the total energy, E(R), to second order in R, and is commonly
known as the harmonic approximation. The expression for E(R) gives
a good approximation to the potential energy for small displace-
ments of the nuclei, but a somewhat poorer one as the displacements
from the equilibrium bond length increase, or decrease, as is seen in
Figure 1.4.

Problem 1.7

(a) Use the chain rule (see Section 4.2.4 in Volume 1) to find
(1) the first and (ii) the second derivative of the Morse function
E(R) = De{l - e"“(R‘Re)} , checking your answers with those given
in Worked Problem 1.4.

(b) Verify, by checking the values of EV(R.) and EP(R,), that E(R,)
corresponds to a minimum energy.

(c) Given that the force acting between the nuclei of the molecule is
given by F = —g—ﬁ, use equation (1.51) to find an expression for F
(for small displacements of the nuclei).

(d) The restoring force acting on a simple harmonic oscillator is
given by the expression F= —kx. Comment on any similarity
between the form of this expression and the one obtained in (c),
assuming that the displacement x is equivalent to (R—R.). What
conclusions do you draw about applicability of the harmonic
approximation for diatomic molecules?

1.4.3 Manipulating Power Series

Combining Power Series

If two functions are combined by some operation (for example, addition,
multiplication, differentiation or integration), then we can find the power
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series expansion of the resulting function by applying the appropriate
operation to the reference series; however, the outcome will be valid
only within a domain common to both power series. So, for example, if
the Maclaurin series for ¢* (interval of convergence: all x in R) is
multiplied by that for In(1 + x) (interval of convergence: —1 < x < 1), the
resulting series only converges in the common interval of convergence
—-l<x<l.

Worked Problem 1.5

Q Given that the hyperbolic cosine function cosh x is defined by:
1
coshx = 3 {¥+e7%}

use the Maclaurin series for ¢* and e™* to obtain a power series
expansion for the cosh x function. Give the form of the general term.

A If we substitute the Maclaurin series for ¢* and e ™ in the
defining equation for cosh x, we obtain:

1 x2 3 xn—l
coshx == {1+ +— + +oe

21 3! (n —1)'
o xt oy ol
+1—x+§—3—+-‘ﬁ—~--(—1) (n-l)!+m (1.52)
2 320D
=coshx = 1+2+4|+ +[2(r—1)]!+ r=1,2,.3, ...

Since both e* and e converge for all x, the above series for cosh x
will also converge for all x.

Problem 1.8

(a) Give the form of the Maclaurin series for the function sinh x,

where sinh x =1(e* —e™).

(b) Deduce the first three terms of the Maclaurin series for the
= 1

[ =

from your answers to Problem 1.5. Give the interval of convergence

for f(x).

=X

function f(x) = using the series for e taken
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A Shortcut for Generating Maclaurin Series

Sometimes we can generate Maclaurin series for a given function by a
simple substitution. For example, the Maclaurin series for the function
e~ can be found as in Problem 1.5; however, an alternative, and much
less labour intensive, approach involves writing X = —x and then using
the existing series for e*, with X replacing x.

Worked Problem 1.6

Q Use the substitution X = —x for the Maclaurin series for e* to
find the related series for e . How is the interval of convergence for
e " related to that for e*?

A The Maclaurin expansion for the exponential function e” is:

2 3 =
eX= 1 +X+£+£+_Xi+...£_.+...
20 31 4l (n—1)!
where X is the independent variable. If we now write X = —x we

obtain the series for e~ as required:

2 3 .4
X _ (e XX 1
e F=1 x+2! 3!+4! (=1

s (158)

The test for absolute convergence shows that the interval of
convergence is the same as for e*.

Problem 1.9

(a) Use the substitution X = ax and the Maclaurin series for e* to
find the series for e™.

(b) (i) Use the equality sin 2x = 2 sin x cos x, and Maclaurin series
for sin x and cos x to find the first three terms in the related series for
sin 2x. (ii) Use the substitution X = 2x and the Maclaurin series for
sin X to find the first three terms in the related series for sin 2x.
Compare your answer to (b)(i) above.

1.4.4 The Relationship between Domain and
Interval of Convergence

We saw earlier that the Maclaurin series expansion of the function
(1—x)7! takes the form | + x + x? +--.. Although the domain of £x)
includes all x values, with the exclusion of x = 1, where the function is
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undefined, the domain of the Maclaurin series, determined by applying
the ratio test, is restricted to — 1 <x < 1. The point x = 1 is excluded from
the domains of both the function and the series. However, although the
point x = —1 is clearly included in the domain of the function, since
S(—1) =1, it is excluded from the domain of the series. We can further
illustrate this by comparing a plot of the function y = fix) = (1 — x)~
with the MacLaurin series expansion of this function up to the third,
fourth, fifth and sixth terms (see Figure 1.5). Clearly the three plots
match quite well for — 1 < x < 1 but differ dramatically for all other values
of x. We also see at x= —1 that the series representation oscillates
between zero and +1 as each new term is added to the series, thus

indicating divergence at this point.

y=(1-x)1
n=>5\ b L B |
Al ' I '
' "o /
\ b
\ oL g
! bl 0
\ : ! >
Y ' /' /
X 4 s 7
\ wi o 4
\ 4 7/
\‘\ 7y . s
n=3-~ \ ,ﬁl’/' z
~ A ‘\ )//' s
~ \‘\~
ﬁ/\:—"z"" I 1
-2 /,—,«—1 0 1 X
1/, ”
7’
;oo
n=4/ '
‘ '
‘ Figure 1.5 A plot of f(x) =
i (1—x)~" (full line), compared with
' 5
' plots of the polynomial trunca-
' tions of the Maclaurin series ex-
S | pansion 1+ x+x%+ - +x"" "+
forn=3-6

1.4.5 Limits Revisited: Limiting Forms of Exponential and
Trigonometric Functions
In Chapter 3 of Volume 1 we discussed the behaviour of a function close

to some limiting value of the independent variable. Some of the examples
concern finite limiting values, but more often we are interested in how
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functions behave for increasingly small or large values in the independent
variable. It is usually straightforward to evaluate the limit of simple
functions for increasingly large or small values of x, but for some of the
transcendental functions we need to use power series expansions to probe
their asymptotic behaviour.

Exponential Functions

The behaviour of the function e*, as x tends to large or small values,
depends upon the signs and magnitudes of x and 4. Thus:

For x =0, e** = 1, irrespective of the value of a.

For large positive x, e increases without limit as x increases for
a > 0, but e** becomes increasingly small as x increases for ¢ < 0.
Regardless of the signs of x or @, e** approaches 1, for increasingly
small values of x, according to the MacLaurin power series expansion

(as seen in Problem 1.9a):

(ax)’ +(ax)3 +(ax)4 N (ax)""!

ax __
e T T T 1)

Worked Problem 1.7

Q For the radial function of a 3d hydrogen atomic orbital,
R(r) = Nr’e™"/3% (N is a normalizing constant, and aq is the Bohr
radius), find:

(a) The form of R(r) at small r, using the expansion of the
exponential function given above; (b) }1_1'% R(r); (c) rh_r.?o R(r)

A (a) R(r) =~ Nr¥(1 — 32—0+ ---) = Nr? for small r.
(b) Using the approximation from (a), we see that lins R(r)=0

(c) For large r we see that the limiting value of the function will be
determined by the outcome of the competition between the Nr? term
and the e"/?® term. As we saw in Section 2.3.4 in Volume 1, the
exponential term will always overcome the power term, and so
lim R(r) = 0.

r—oo

Problem 1.10

The Einstein model for the molar heat capacity at constant
volume, Cy, of a solid yields the formula:

oo (1.54)
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hy 2 ehv/ZkT 2
CV = SR(k_T) {—ehv/ZkT — 1
Show that at high values of 7, when we can justifiably substitute the

exponential terms by their two-term series approximations, Cy, tends
to the limit 3R.

Trigonometric Functions

In an analogous way, the series expansions for the sine and cosine
functions have the forms:

_ (ax)? o _ (ax)?

Cos ax = —T—i----, SIn ax = ax — 3

as x—0. For very small values of x, cos ax and sin ax may be
approximated by 1 and ax, respectively. However, as x increases without
limit, in both positive and negative senses, the values of the sine or cosine
functions oscillate between + 1.

T (1.55)

Problem 1.11

Consider a particle confined to move in a constant potential between
the points x =0 and x = L at which the potential is infinite. The
associated wavefunction has the form:

where # is the quantum number defining the state of the particle, and
has values 1, 2, 3, .. .. Find the expression for y: (a) at x = 0; (b) at
x = L; (c) when x is very small.

Summary of Key Points

The key points discussed in this chapter include:

1. The definition of finite sequences with examples including the
geometric and arithmetic progressions.

2. The definition of indefinite sequences and the concepts of
convergence and divergence of a sequence of numbers.
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3. The distinction between a finite series having a finite sum and an
infinite series where a finite sum exists only if the series converges.

4. Testing an infinite series for convergence: the ratio test for
absolute convergence and the interval of convergence.

5. Power series: the Maclaurin and Taylor series.

6. Power series expansions of functions: the appropriate choice of
expansion point.

7. Truncation of power series.
8. Determining the general term in a power series.

9. The Taylor series expansion of the Morse potential leading to
the harmonic approximation.

10. Manipulating power series.
11. Using power series expansions of functions to probe limiting

behaviour for increasingly large or small values of the independent
variable.




ﬁﬁmbers Revisited: Complex
Numbers

In Chapter 2 of Volume 1 we saw that the solution of a q
of the form:

ax’> +bx+c¢=0 (2.1)

can yield up to two real roots, depending on the values of the coefficients,
a, b and c. The general solution to quadratic equations of this form is
given by the formula:

—b+Vb? — dac

where the quantity b> — 4ac is known as the disc; int (see Section 2.4
in Volume 1). If the discriminant is positive, then the equation has two
real and different roots; if it is zero, then the equation will have two
identical roots; and if it is negative, there are no real roots, as the formula
involves the square root of a negative number. For example, the equation:

X' —4x+3=0
yields two real roots, x =3 and x =1, according to:

_4+16—(4x3) V4
- . -

2+ —=241=3,1
£ 3

We can represent this solution graphically (see Figure 2.1) in terms of
where the function y = x*> — 4x + 3 cuts the x-axis, where y =0.

However, if we use equation (2.2) to find the roots of the quadratic
equation:

X —4x4+6=0
we find that the solution yields:

:4i,/16—(4x6):2+\/—_8 (2.3)
2 -2 '

27
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Figure 2.1 Plots of the two
functions y = x? — 4x + 3 and
y=x°—4x + 6, showing the
presence of two and zero

real roots of the respective
equations x? —4x + 3=0and
X2 —4x +6=0

which requires us to find the square root of — 8. Graphically, we see in
Figure 2.1 that a plot of the function y=x” — 4x 4+ 6 does not cut the
x-axis at all. Logic would seem to dictate that any solution to the second of
these two equations is nonsensical, and that the result cannot possibly be
real — especially when we view the plot of the function, which clearly does
not cut the x-axis! However, there is a way of circumventing this problem
by simply extending the number system to include so-called complex
numbers , which incorporate v/—1 as a legitimate number. This concept can
naturally seem somewhat bemusing but, once we get over the shock, we
find that the treatment of complex numbers is really quite straightforward
and, more importantly, we find that they allow us to tackle real problems
in chemistry in a way that would otherwise be impossible.

This chapter extends the familiar number system to include complex
numbers containing the imaginary number i. By the end of this
chapter, you should be able to:

Recognize the real and imaginary parts of a complex number
expressed in either cartesian or plane polar coordinates
Determine the modulus and argument of a complex number,
and denote its location on an Argand diagram

Perform arithmetical operations on complex numbers

Use the Euler formula and the De Moivre theorem to evaluate
powers of complex numbers, to determine nth roots of a
complex number, and to identify real and imaginary parts of
functions of a complex variable
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2.1 The Imaginary Number i

As we saw above, the solutions to algebraic equations do not always yield
real numbers. For example, the solution of the equation x> + 1 =0 yields
the apparently meaningless result:

x=+V-1 (2.4)

because the square root of a negative number is not defined in terms of a
real number. However, if we now define the imaginary number i = v/—1,
then the two roots may be specified as x = +i. In general, an imaginary
number is defined as any real number multiplied by i. Thus, for example,
the number v/—8, which emerged from the solution to equation (2.3)
above, can be written as v/8v/—1 = /8i.

Worked Problem 2.1

Q Solve the quadratic equation x> + 2x + 5 = 0.
A The formula given in equation (2.2) for the roots of a quadratic
equation yields:

v4-20 v—16 4
2 2

x=-1% =1t X =1 V=142

Problem 2.1

(a) Draw plots of the following functions: (i) y=x* — 2x — 3 and
(ii) y = x? — 2x + 2. In each case, comment on whether the plot cuts
the x-axis and, if so, where?

(b) Use equation (2.2) to find the roots of each of the quadratic
equations x> — 2x — 3=0 and x> — 2x + 2=0. Comment on your
answers with respect to your plots from part (a).

2.2 The General Form of Complex Numbers

In the answer to Worked Problem 2.1, we obtained the required roots of
the quadratic equation in the form of a sum of a real number (—1) and an
imaginary number (2i or —2i). Such numbers are termed complex

numbers, and have the general form:

z=x+1y (2.5)
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The real and imaginary parts of a
complex number, z, are often
expressed as Re z, and Im 2,
respectively.

where x and y are real numbers, termed the real and imaginary parts of z,
respectively. Clearly, if x=0, y # 0, then - is an imaginary number
(because the real part vanishes); likewise, if x#0, y=0. then z is a real
number (because the imaginary part vanishes).

2.3 Manipulation of Complex Numbers

The algebraic manipulation of pairs of complex numbers is really quite
straightforward, so long as we remember that, since i = v/~ 1, it follows
thati*= — 1.

Problem 2.2

Evaluate: (a) i; (b) i*; (c) i°.

2.3.1 Addition, Subtraction and Multiplication

For addition or subtraction of complex numbers, the appropriate
operation is carried out separately on the real and imaginary parts of
the two numbers.

Multiplication of a complex number by a scalar (real number) is
achieved by simply multiplying the real and imaginary parts of the
complex number by the scalar quantity. Multiplication of two complex
numbers is performed by expanding the expression (a + ib)(c¢ +1d) as a
sum of terms, and then collecting the real and imaginary parts to yield a
new complex number.

Worked Problem 2.2

Q Ifz; =1+2iand z; = -2 +1i, write down: (a) z; + z,; (b) z;2,;
(©) z; — 235 (d) 2(z; — 29).

A @Qzj+z=(14+2)+(-2+i)=14+2i—-2+i=-1+3i

() z1z =(14+2i)(-2+i)=-2+i—-4i—2=—-4-3i
(C)Zl—Zz= 1 +2l—(—2+l) =3+i

(d)2(zy —2z3) =2(3+1i) =6+ 2i

Note that all of the answers are all in the form x + iy.

Problem 2.3

If 2y =2+3i, z =—-1+1 and z3 =3 — 2i, give expressions for:
() z; + 25 — 2z3; (b) 2125 + Z3.
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2.3.2 The Complex Conjugate

Thecomplex conjugate, z*, of the complex number z = x + iy, is obtained
by changing the sign of the imaginary part of z to yield z* = x — iy. Thus,
for example, the complex conjugate of the number z, = —1 + 1, given in
Problem 2.3, is z,*= —1 —1i.

The two numbers z and z* have the properties that their sum and
product are both real, but their difference is imaginary:

z4z*=2x (2.6)
zz% = (x +ip)(x —ip) = X2 + )2 (2.7)
z—z¥ =2iy (2.8)

Problem 2.4

Express the following in the form x +iy, and write down the
complex conjugate in each case: (a) (—1-2i)+ Q2+ 7i);
(b) B —1) — (4 — 2i); (c) i(1 + 3i); (d) (1 + 3i)(3 + 2i).

2.3.3 Division of Complex Numbers

As we have seen, addition, subtraction and multiplication of complex
numbers is generally quite straightforward, requiring little more than the
application of elementary algebra. However, the division of one complex
number by another requires that a quotient such as a_xnt ?’Vl be
I X+
transformed into a complex number in the form of equation (2.5).
The solution to this conundrum is not immediately obvious, until we
remember that the product of a complex number with its own complex
conjugate zz* is a real number (see equation 2.7); this suggests that we
could achieve the required form for the quotient by multiplying both
numerator and denominator by z,*:

z1zy X +iy X2~ 1))
27y Xty Xy — 1y

(2.9)

This has the same effect as multiplying by unity since z5/z3 = 1, but it
allows us to express the quotient in the required form. Thus, multiplying
out the numerator and denominator on the right side of equation (2.9),
and collecting terms, gives:

ZL XXty | NiX X
o 242 2, 2
"5} X3+ 3 X3 +1;

(2.10)
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The net result is that the original quotient is transformed into the form of

. . . XXy +
a complex number with real and imaginary parts, %y;yz

2
Y1X2a—xX1)» Vel X3 +y)
——5———, respectively.

X5+ )3

Worked Problem 2.3

Q Using z, and z; as defined in Worked Problem 2.2, express z;/z,
in the form x + iy.
7z 142 1+2ix—-2—i_—2—i—4i+2_—_5i
z, =241 =241 -2-1i 4+2i-2i+1 5
In this example, the answer is an imaginary number, since x =0 and

and

=—i

y= -1
Problem 2.5
Express the following in the form x+iy: (a) Tl; (b) : —?;
(2 +1) 1 2=
© S
(I-2i)(2-1)

2.4 The Argand Diagram

Since a complex number is defined in terms of two real numbers, it is
convenient to use a graphical representation in which the real and
imaginary parts define a point (x,y) in a plane. Such a representation is
provided by an Argand diagram, as seen in Figure 2.2.

Figure 2.2 An Argand diagram
displaying the complex number

z=1+i, in terms of the Cartesian
coordinates (1,1) or, alternatively,
in terms of the polar coordinates
(r=V2.0=n/4)
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Problem 2.6

Plot your answers to Problem 2.3 as points in an Argand diagram.

The location of z in the Argand diagram can be specified by using either
Cartesian coordinates (x,y), where x =Re z, y =Im z, or polar coordinates
(r,6), where r = 0 and — n < 6 < =. The reason for choosing this range
of 6 values, rather than 0 < 6 < 2=, derives from the convention that 8
should be positive in the first two quadrants (above the x-axis), moving in
an anticlockwise sense from the Re z axis, and negative in the third and
fourth quadrants (below the x-axis), moving in a clockwise sense. The
quadrant numbering runs from 1 to 4, in an anticlockwise direction, as
indicated in Figure 2.2.

2.4.1 The Modulus and Argument of z

The polar coordinates r and 6 define the modulus (alternatively known as
the absolute value and sometimes denoted by |z|) and argument ,
respectively, of z. From Pythagoras’ theorem, and simple trigonometry,
the modulus and argument of z are defined as follows (see Figure 2.2):

r=q/x2+% r=0 (2.11)

tan():%: 0 = tan"'(y/x) (2.12)

Great care is required in determining 6, because it is easy to make a
mistake in specifying the correct quadrant. For example, although the
complex numbersz=1—1and z= — 1 +iboth havetan 8= — 1, they lie
in the fourth and second quadrants, respectively, as seen in Figure 2.3.

Imz
zp=-1+i 14

By

) ' oNNg2/ 1 Rez

—1" OZ2=1—i

Figure 2.3 An Argand diagram
showing the complex numbers
zy=—1+1iand Z,=1 — i with
modulus v/2 and arguments 37/4
and —n/4, respectively
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If we evaluate tan ~'( —1), using the tan ~! function on an electronic
calculator, to determine 8, we obtain — 0.7854 rad, which is equivalent to
—0.7854 x 180/n = — 45°. This places z in the 4th quadrant, which is
correct for z=1 — i but incorrect for z= — | + i. In the latter case, we
need to look at the values of x=Re z and y = Im - and choose the more
appropriate value for 6, recognizing that tan(z + 6) and tan @ have the
same value. Whether we use radians or degrees when evaluating the
argument of a complex number is largely a matter of taste or context.
However, you may find it more convenient to work with degrees when
referring to an Argand diagram because it is easier to associate a complex
number with a given quadrant in this case.

Worked Problem 2.4

Q (a) Given that tan 6 = C%%_GH’ use the addition formulae for sine

and cosine to show that tan(z + 6) =tan 6. (b) Find the modulus and
argument of the complex numbers 1 — 2i and — 1 + 2i.

A (a) Since sin 7=0 and cos == — 1, the addition formulae for
sin(w + 6) and cos(r + 6) give:
sin(n + 0) = sinw cos 6 + cos 7 sin = —sin 6
cos(m + 0) = cosm cos @ — sin 7 sin § = —cos 0
and so:
sin(n+6) —sin0

cos(m+0) —cosf tan 6

tan(n + 0) =

(b)Forz=1 — 2i,wecanidentify xand y with 1 and — 2, respectively.
Thus the modulus, 7, is v/5. The argument, expressed in degrees (for
convenience), is found by solving tan ~ 1(-2)=6,ie.6 = —63.43° or
116.17° (6 = — 1.107 rad or 2.034 rad). In this case, an Argand
diagram shows that @ is in the fourth quadrant, and so § = — 63.43°
is the correct value for the argument. For z=— 1 + 2i, it follows
again that r = v/5and 6 = — 63.43° or 116.7°. However, the correct
argument this time is 116.17°, because z lies in the 2nd quadrant.

Problem 2.7

Find the modulus and argument (in degrees) of the complex
numbers (a) — 1 — 2i and (b) 2i.

Hint: you will need to exercise a little care in determining the
argument for the second of the two complex numbers.
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2.5 The Polar Form for Complex Numbers

So far we have assumed that a complex number takes the form z = x + iy,
where x and y are the values of Re z and Im z, respectively. However,
from trigonometry (see Figure 2.2) we see that x =r cosf and y =r sin#.
Consequently, z may be expressed in terms of r,8 as:

z =r(cos0 +isin0) (2.13)

Equation (2.13) is not yet in a form that is fundamentally different from
the Cartesian form expressed in equation (2.5). However, we can obtain
an alternative, more compact, and far more powerful way of writing the
polar form of a complex number by re-visiting the Maclaurin series for
the sin#, cosf and exponential functions. The Maclaurin series for cosine
and sine are:

92 04 (71)n l 2n— 2
C086—1—§+ + - +(—2;l_——)6 (214)
) 03 95 (_l)n—l -
sinf = 9-—54' + - +m + - (215)

If we substitute each of these into equation (2.13) we obtain:

2 g3 pé o ipS
(cos(9+131n6)—r{1—|—19 g 16 +6'+1-9_+ } (2.16)

o34 s
and on re-writing the right side in terms of powers of i6 using i’= — 1,
i’= —1,i* = 1, etc., we obtain:
0y | (0 _ G0)*  (i0)°
{1+19+ 2 + 3 + a + ] + (2.17)

The braces in equation (2.17) contain the Maclaurin series for ¢ and so
we can rewrite the polar form for z more compactly as:

z=re (2.18)

Problem 2.8

Use the result that i’= —1, = —1i, i*=1, =i to evaluate:
(@) (16)%; (b) (10)%; (c) (16)*; (d) (i6)*; hence show that equation (2.17)
is equivalent to equation (2.16).
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2.5.1 Euler’s Formula
If we equate equation (2.18) with equation (2.13) we obtain:

z=rel’ = r(cos@ +isin6) (2.19)
which on cancelling r yields:

e = cos +isinf (2.20)

This important result is known as Euler’s formula.

Worked Problem 2.5

Q Express the complex conjugate of z = r(cos 0 + isin ) in polar
form.

A The complex conjugate of z can be written in terms of r,0 as
above, using the Maclaurin series for cosé and sin#, as:

s A Ui A Uk
z*=r(cosB—1sm0)=r{1—10—:2—!+—3!——+—E—§+-~}

which can be rewritten as:

_ . (i0)* (0 (@i0)* (i0)°
Z*_r{l“9+ T T TR TR

The part in braces is the Maclaurin series for e ~*? and so we can now
express z* as:

z* =re ? (2.21)

The Number '™

Using Euler’s formula to evaluate e'™ we see that:

™ = cosn + isinz (2.22)

However, as cosn = —1 and sinm = 0, we obtain the extraordinary and
elegant result that:

e = —1 (2.23)

which rearranges to a single relationship:
e"+1=0 (2.24)

containing the irrational numbers e and =, the imaginary number i, as well
as the numbers zero and unity.
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2.5.2 Powers of Complex Numbers

The advantage of using the polar form for z is that it makes certain
manipulations much easier. Thus, for example, we can obtain:

e The modulus of z directly from the product of z and z*, using
equations (2.18) and (2.21):

zz¥ = Pell%e ™ = P = r = Vzz* (2.25)
e Positive and negative powers of z:
=) = (n= 41, £2, +£3, +4,...) (2.26)

where, for a given value of n, z" is seen to be a complex number, with
modulus " and argument ##.
o Rational powers of z, where n = p/q (¢ #0):

ZPl4 — Pl46iP/0)E (2.27)

Worked Problem 2.6

Q Ifz=cosf+isin6, show that 1/zis the complex conjugate of z.

2

A As z has a unit modulus (r=1), z=¢", and 1/z=L ="
which is the complex conjugate of z (see equation 2.21).

Problem 2.9

For the two complex numbers z; = re'® and z, = re'®2, give
expressions for the modulus and argument of: (a) zyz5; (b) z1/za;
©) z:%/z*.

Problem 2.10

Express z= —1 —1i in polar form, and thus determine the modulus
and argument (in radians) of z? and z ~*.

2.5.3 The De Moivre Theorem

We have seen from equation (2.26) that the nth power of a complex
number can be expressed as:

2" = e (2.28)
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with modulus and argument /" and n6, respectively. Using Euler’s
formula, equation (2.28) becomes:

2" = r"e"™ = r"(cosnf + isin nf) = r"(cos O + isin 6)" (2.29)

After cancelling the 1" factors in equation (2.29), we obtain the De Moivre

theorem:
(cos@ +1sin6)" = cosnl + isinnf (2.30)
Problem 2.11
(a) Show that ———!———— =cosf —isiné.
(cos @ +isin 0)

(b) Give an expression for (cos 8 + isin 8)'/%.

(c) Use equation (2.29) to give expressions for the real and imaginary
parts of z".

(d) Find the real and imaginary partsof z*and z =2 wherez= — 1 —i.

2.5.4 Complex Functions

So far we have been concerned largely with the concept of the complex
number, but we can see from our discussion of Euler’s formula that
the general form of a complex number actually represents a complex
mathematical function, say f{#6), where:

S(0) =cos@ +isinf (2.31)

This function comprises a real part and an imaginary part, and so in
general we can define a complex function in the form:

f(x) = g(x) + th(x) (2.32)
where the complex conjugate of the function is given by:
fx)" = glx) — ih(x) (2.33)
Thus f(x)f(x)" is a real function of the form:
FOOAx)" = g(x)? + h(x)? (2.34)

The property of complex functions given in equation (2.34) plays a very
important role in quantum mechanics, where the wave function of an
electron, ¥, which may be complex in form, is related to the physically
meaningful probability density through the product yy*. If ¢ is a
complex function, then, from equation (2.34). yy* is a real function.
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The Periodicity of the Exponential Function

It may seem odd to think of the exponential function, = =¢', as periodic
because it is clearly not so when the exponent is real. However, the
presence of the imaginary number i in the exponent allows us to define a
modulus and argument as | and 6, respectively. If we represent the values
of the function on an Argand diagram, we see that they lie on a circle of
radius, » =1, in the complex plane (see Figure 2.4). Different values of
then define the location of complex numbers of modulus unity on the
circumference of the circle. We can also see that the function is periodic,
with period 27x:

Qil0+2mm) _ i izmn _ if (2.35)

' 1 Rez

Problem 2.12

Use Euler’s formula to show that €?®=1, and hence prove that

e0+2mm —eib form=1,2,...

Problem 2.13

(a) Use De Moivre’s theorem to show that e = cos6 — isin 6.
(b) Use Euler’s formula, and the result given in part (a), to show
that:

(i) cos § = %(e“’ +¢7%) and (i) sin 0 = %(e“’ —e¥).

Figure 2.4 The function z=¢" is
periodic in the complex plane,
with period 2r
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Problem 2.14

The solution of the differential equation describing the simple
harmonic oscillator problem (see Worked Problem 7.4(c) in
Volume 1) is:

y = Acoskt + Bsinkt
Derive an alternative form for the solution, using the function e,
and its complex conjugate, e ",
Hint: use the results given in Problem 2.13(b).

The Eigenvalue Problem Revisited

The three 2p orbitals resulting from the solution of the Schridinger
equation for the hydrogen atom can be written as:

Wy = Nie " 20rsin0e'; yo = Nye " *rcosf; W_, = Nye " rsinfe?

where N, and N, are constants, ag is the Bohr radius, r is the distance of
the electron from the nucleus, and the suffix attached to each y indicates
the value of the orientation quantum number m,. The Schrodinger
equation, [y = Ey, is an example of an eigenvalue problem (see Sections
4.3.1 and 7.4.3 in Volume 1) where, in this case. H is an operator known
as the Hamiltonian; Eis the eigenvalue (corresponding to the energy of the
system) and y is the eigenfunction (or wave function). As we saw in
Volume 1, if two functions are both solutions to an eigenvalue problem,
and associated with the same eigenvalue, then a linear combination of
the functions will also be a solution. We can use this property to construct
real orbital functions that we can visualize more easily. We explore this
idea a little further in the next problem.

Problem 2.15

(a) Find the real and imaginary parts of each of the three 2p orbitals
given above.

(b) Use the results given in Problem 2.13(b) to show that the
following linear combinations yield real functions:

Q) —

ﬁ(lﬂl +¥_1) = V2N,e"/*sin 6 cos¢

G iz(.//l —y_1) = V2N,e7"/*rsin 0 sing
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(c) Given that x =rsinfcos¢, y =rsinfsing and z=rcos®,
rewrite the three real atomic orbital functions, v, 715(‘/’1 +y_)
and — :}5 (Y1 —¥_,), in terms of the independent variables x, y and z
and hence propose new labels for the three wavefunctions.

Structure Factors in Crystallography

The intensity of the scattered beam of X-rays from the (kk/) plane of a
crystal is proportional to FF*, where F, the structure factor, is given by:

cell

F(hk[) — Zj; ezni[h.r,+ky,+lzj] (236)
J

The summation runs over the appropriate number of atoms in the unit
cell with (fractional) coordinates (x;,y;,z;) and scattering factor f;.

Problem 2.16

Metallic sodium has a body-centred cubic structure with two atoms
per unit cell located at (0,0,0) and (,1,2), respectively.

(a) Use equation (2.36) to show that F(hkl) = fu, + fua€™ e+
and, with the aid of Euler’s formula, determine its real and
imaginary parts.

(b) Show that reflections occur [i.e. when F(hkl) #0] only if h + k + [
is even.

2.5.5 Roots of Complex Numbers

The polar form of a complex number, z, raised to the power » is given in
equation (2.28) as:

= (reif?)n — rneine (237)
De Moivre’s theorem allows us to express z” in the form:
Z" = ¥"(cos nf + isin nb) (2.38)

It follows that one square root of a complex number (where n = %) is given
by:
0 6

172 _ 12 0, ... 0 _
z r (cosz+151n2) (2.39)
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The method used to retrieve the second square root is now described in
Worked Problem 2.7.

Worked Problem 2.7

Q Use equation (2.37) and the periodicity of e'? (see Problem 2.12)
to find the two square roots of —1.

A Substituting equation (2.35) for '’ in equation (2.37) yields:

= (rei(0+2m1t))n: rnei(0+2m1t)n, m=1223,...

Now, the number (—1) has r=1 and 6= =; hence:

(_1)1/2 — ei(ﬂ:+2nl7[)><l/2,m — 1’2, 37 .

= el®W/2+mm) = 1,2,3,. ..

=cos(z+mn)—|—isin(f+mn),m= 1230

2 2
Thus for m=1:
zl/zzcos%-&-isin%n:—i
For m=2:
Sn 57
1/2= i o A
% cos > +isin > i
For m=3:
Tn I
1/2= v g g B0 o
z cos 3 +1sin 2 1
For m=4:
21/2=c059—n+isin9—n=i

2 2

and so on. We see that taking m>3 merely replicates the roots
already found, and so the two square roots of —1 are +i.

This method can be extended to find the nth roots of any number.

Problem 2.17

Show that the three cube roots of i (given by i'?) are
— B4 Li, —iand 2 +1i,
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Summary of Key Points

This chapter introduces imaginary and complex numbers as a
legitimate extension of the number system. The key points discussed
in this chapter include:

1. An introduction of the imaginary number i = v/—1 as a means
to finding all roots of polynomial equations.

2. A definition of the general form of a complex number,
z = x + iy, comprising real and imaginary parts.

3. The algebra of complex numbers: addition, subtraction and
multiplication.

4. The complex conjugate and division of complex numbers.

5. The graphical representation of the complex number through
the Argand diagram.

6. The definition of modulus and argument of a complex number.
7. The polar form of complex numbers, z = re'®.
8. Euler’s formula, e = cos 6 +isin 6.

9. Powers of complex numbers and de Moivre’s theorem, e’ =
cosnf +1 sinnf.

10. Complex functions.

11. The periodicity of the exponential function, ¢'®, and the
modelling of wave phenomena.

12. The real and complex forms of atomic orbitals.

13. Finding the roots of positive, negative and complex numbers.
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Working with Arrays I:
Determinants

In all areas of the physical sciences we encounter problems that require
the solution of sets of simultaneous linear equations. These range from
seemingly mundane everyday problems to highly complex problems in
quantum mechanics or spectroscopy requiring the solution of hundreds
of simultaneous linear equations. For small numbers of such equations,
the solutions may be most straightforwardly obtained using the methods
of elementary algebra. However, as the number of equations increases,
their alegbraic solution becomes cumbersome and ultimately intractable.
In this chapter we introduce the concept of the determinant to provide
one of the tools used to solve problems involving large numbers of
simultaneous equations. The other tools required for solving systems of
linear equations are provided by matrix algebra, which we discuss in
detail in Chapter 4.

This chapter introduces the determinant as a mathematical object
which we can use to tackle problems involving large numbers of
simultaneous linear equations. By the end of this chapter, you
should be able to:

e Appreciate that a determinant expands to yield an expression or
value

e Recognize how determinants can be used to solve simultaneous
linear equations

e Expand determinants of second and third order about a given
row or column

e Use the properties of determinants to introduce as many zeros as
possible to the right (or left) of the leading diagonal

e Define and evaluate the first-order cofactors of a determinant

45




46

Maths for Chemists

3.1 Origins: the Solution of Simultaneous
Linear Equations

We begin our discussion of linear systems by introducing the determinant
as a tool for solving sets of simultaneous linear equations in which the
indices of the unknown variables are all unity. Consider the pair of
equations:

(98]

apx+apy =b (3.1)
ar X + a»ny = b7_ (32)
where ayy, ay5, a1, a3, by and b, are constant coeflicients and x and y are

the “unknowns”. We can determine the unknowns using elementary
algebra as follows:

s Multiply equation (3.1) by a,> and equation (3.2) by a to give:

ayanx + apany = byay (3.3)

a)2a31X + apany = bapy (3.4)
e Subtract equation (3.4) from equation (3.3) to yield:
(anay — apnayn)x = byay — by,
which we can rearrange to give an expression for x in terms of the

constant coefficients:

_ biay, — bya, (3.5)
ayndx — apdy

e Now, multiply equation (3.1) by a3, and equation (3.2) by a,, and
subtract the resulting equations to yield:
bya,, — ba
p = 29 1421 (3.6)

Toodapan — apdy

¢ The denominators in equations (3.5) and (3.6) are the same, and can

be written alternatively as:

a an
ay dp

=a)ay — apay (3.7)

The symbol on the left side of equation (3.7) defines a determinant of
order 2, the expansion of which is given on the right. We can similarly
express the numerators as determinants of order 2, and we see that the
value of the two unknowns is then given by the ratio of two
determinants:



Working with Arrays I: Determinants

47

by by by b
a a a a
x=112 "2 and y = Ll Wil B (3.8)
ayy dap ap ap
dy ap da dax

The purpose of introducing this notation is that it readily extends to n
linear algebraic equations in # unknowns. The problem then reduces
to one of evaluating the respective determinants of order n.

Problem 3.1

Solve the following simultaneous equations for x and y by
evaluating the appropriate determinants according to equation
(3.8):

2x+y=35 (3.9

lx+8=9 (3.10)

Hint: you will need to associate each of the coefficients a;;, a2, @31,
ay,, by and b, in equations (3.1) and (3.2) with those in equations
(3.9) and (3.10).

This type of problem arises in a chemical context quite frequently. For
example, the activation energy of a chemical reaction can be determined
by measuring the rate constant for a particular reaction at two different
temperatures. The relationship between rate constant and temperature is
given by the Arrhenius equation:

k = Ae™E/RT (3.11)

where E, is the activation energy for the reaction, and 4 is the so-called
pre-exponential factor. We can convert the Arrhenius equation to a linear
form by taking logs of both sides:

lnk:InA—% (3.12)

If we now measure the rate constant at two different temperatures, T, and
T>, we obtain a pair of simultaneous linear equations which we can solve
for the two unknowns, E, and In A4:

E,
= — 1
Ink; =In4 RT, (3.13)
E,
Ink, =In4 - —= (3.14)

RT,
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Problem 3.2

(a) By analogy with equations (3.1) and (3.2), identify which terms
in equations (3.13) and (3.14) correlate with the constant coefficients
a1, diz, Gz1, @z, by and b, and which terms correlate with the
unknowns, x and y.

(b) If the temperatures on the Fahrenheit and Centigrade scales are
T and ¢, respectively, we can express the relationship between the
two as 7' = at + b, where a and b are unknowns. By analogy with
equations (3.1) and (3.2), use the method of determinants to obtain
the values of @ and b by using the boiling and freezing points of
water on the two temperature scales. Hence find the formula
relating T to .

Hint: the boiling and freezing points of water on the Fahrenheit scale
are Ty, = 212 °F and T; = 32 °F.

3.2 Expanding Determinants

In general, a determinant of order n is defined as a square array of n
elements arranged in # rows and » columns:

ay dyp o A
ayy dyy - dyy 3 15)
Ayl Ay "7 Ay,

The elements of this determinant are denoted by a;; or b;, where i denotes
the row and j the column number. Note that the letter used commonly
derives from the label applied to a related square matrix —a consequence of
the common definition of a determinant as an operation on a square matrix
(see Section 4.1 in Chapter 4). We have seen above in equation (3.7) that a
determinant of order 2 is evaluated in terms of the elements a;; which lie at
the intersection of the ith row with the jth column of the determinant.

A determinant of order 3, which might result from a problem
involving three simultaneous equations in three unknowns, is expanded

as follows:
ayp app a3

_ dy  ax ) axn
a1 dxp | =4 —dap
azy  dsz dz;  ds3
dasz; dz di3
)y ap
+a]3 (316)
as;  daz
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ion proceeds by taking the elements of the first row in turn,
and multiplying each one by the determinant of what remains on crossing
out the row and column containing the chosen element, and then
attaching the sign (-1)"*/. The signed determinants of order 2 in equation
(3.16) are known as the first-order co s A1y, A1 and A4,; of the three
elements a1, a;; and a3, respectively.

In general, the n* cofactors of any determinant of order n are obtained
by deleting one row and ore column to form a determinant of order n— 1,
the value of which is multiplied by an odd or even power of -1, depending
upon the choice of row index and column index. Thus, if the ith row and
Jjth column of a determinant of order » are both deleted, then the jjth
cofactor, A4, is formed from the value of the resulting determinant of
order n - 1, multiplied by (-1)'"/. For example, the cofactor 4;, of the
determinant of order 3 in equation (3.16) is obtained by deleting the first
row and the second column of the determinant, and multiplying the
resulting determinant of order 2 by (—1)! "%

_ 1+2|d21 3| _ (a1 apxs
Ap=(-1) = - (3.17)
as)  az aszy  asz
Rewriting equation (3.16) in terms of the three cofactors:
a a a a a a
A” — 22 23 , - _ 21 23 and A13 — 21 22 (3]8)
az  as; ds; dass as  as
yields:
any ap apg
a1 Gy an|=anAy +apd;p+asd; (3.19)
az) as  as

If we now expand each of the cofactors (all determinants of order 2)
according to equation (3.7), we obtain the full expansion of the
determinant, given in equation (3.20), expressed as a sum of three positive
and three negative terms:

an  ap a3
ay) Gy Gy | = 911422033 — Ay1dx3az — Ajpds Az + d1pdxnds)
ay; azx ay| T 41302143 — 4130203 (3.20)
In this example, the determinant is initially expanded from the first row,
but in fact we could just as easily expand from any row or column.
Thus, for example, expanding from column two gives the alternative
expansion:

a4 a2 43
@ an an|=apdin +andn +andy (3.21)
a3 a4y adxn
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which, upon expanding the cofactors, yields:

ap dp dps
N ) a a a a
dr) an  dyy| = —dp3 az: aii 22 (111 (llz
as  dzy  di ‘ - : -
ay a
—ayp| (3.22)
2 dx

Expanding each of the determinants of order 2 in equation (3.22) yields
equation (3.20), but with the six terms on the right in a different order.
A slightly quicker route to ensuring the correct signs in the sum of the
cofactor values is obtained by remembering the general rule for expansion
from any row or column in pictorial form:

+

[+ 1+
b+

(3.23)

+
[+ 1+

We shall discuss cofactors again when we meet matrix inverses in
Chapter 4.

Worked Problem 3.1

Q Expand the following determinants from the given row or
column, as indicated:

cos —sinf 0
sin 0 cosf 0
0 0 1

(@) |(1) (1)|, (b) , from column 3.

A From the definition given for the expansion of a determinant of
order 2, we have:

(a)

0 1 _
; 0|_0—1x1_ 1

cosf —sinf O
sin 0 cosf 0[=0+0+1x
0 0 1

cosf —sinf
sin 6 cos 6

= cos°0 + sin’0 = 1.

Problem 3.3

18—
0 30
200 =0

Expand from (a) column 2 and (b) row 2.
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1 0 -2
(a) Evaluate the cofactors Ai3, 455, A3, and A,z 0f |2 8 4.
SN0 )

(b) Expand the cofactors 4;, and 4,; of

Problem 3.4

cosf —sinf 0
sin 6 cosf 0
0 0 1

3.3 Properties of Determinants

(1)

(2)

(3

Q)]

A determinant is unaltered in value if a/l rows and columns are
interchanged, e.g.:

121 |1 3
3 4:’2 4|__2 (3.24)

A determinant changes sign if two rows or columns are inter-
changed:

1 2 2 1
‘3 4|:—|4 3|=—2 (3.25)

A factor can be removed from each element of one row (or column)
to give a new determinant, the value of which when multi-
plied by the factor gives the original value of the determinant. For
example:

12 11
|3 4‘=2\3 2‘=f2 (3.26)

Here, the factor 2 has been removed from column 2. Conversely,
when a determinant is multiplied by a constant, the constant can be
absorbed into the determinant by multiplying the elements of one row
(or column) by that constant.

The value of a determinant is unaltered if a constant multiple of one
row or column is added to or subtracted from another row or column,
respectively. For example, if we subtract twice column 1 from column
2, we obtain:

1 2] [1 0
\3 4‘:\3 _2‘_—2 (3.27)

A determinant can only have a
value if the elements are numbers.
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3.4 Strategies for Expanding Determinants

where n>3

We can take a number of different approaches for evaluating
determinants of higher order:

(a)

(b)

(c)

For determinants of 3 or lower order, it is easiest to expand in full
from the row or column containing the greatest number of zeros (for
example, see Problem 3.3).

For determinants of order 4 to about 6, it is best to introduce as
many zeros as possible to the right (or left) of the leading diagonal
using properties (1)—(4) (Section 3.3). If all the elements to the right
or left of the leading diagonal are zero, then:

ap, 0 0 0
day) (5% 0 s 0
0= a)axndss - dyy (3.28)

a3 dz diz
ay) Ay QApy - Ay

and the expansion of the determinant is given by the product of the
elements lying on the leading diagonal.

When expanding determinants of high order (n > 5), it is best to use
one of the widely available computer algebra systems (Maple,
Mathematica, efc.) or a numerical computer algorithm. There are
many chemical situations in which we have to expand determinants
of large order. For example, in computing the vibrational
frequencies of ethene, it is necessary to expand a determinant of
order 12 (for a non-linear molecule containing N nuclei, the order
will be 3N — 6).

Problem 3.5

Expand each of the following determinants:

1 2 3 1 0 -2
@] 0 8 2, (b)|2 8 41: (i) from row 2;
-2 4 2 3 2 2

(ii) using row/column operations to transform the first row to 1 0 0
before expansion from row 1; (iii) using row/column operations to
transform all the elements to the right of the leading diagonal to
zero, before expanding from row 1.
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Problem 3.6

In using the Hiickel model for calculating the molecular orbital
energies, ¢, for electrons in the = shell of the allyl system, it is
necessary to solve the following equation:

a—e B 0
B a—e p
0 B a—c¢

=0 (3.29)

where the symbols « and f are parameters (both negative in value) of
the model.

(a) Use property (3) of determinants to remove a factor of  from
each row (or column) of the determinant shown in equation (3.29).

Hint: division of each element in one row or column by f results in a
new determinant, the value of which is multiplied by f. Thus
division of every element in the determinant results in a new
determinant, the value of which is multiplied by g°.

(b) Show that, on making the substitution x=(x — &)/, the
expansion of the determinant yields x* — 2x = 0.

(c) Find the three roots of this equation.

(d) Deduce the three orbital energies.

Summary of Key Points

This chapter develops the concept of the determinant as a precursor
to a more complete treatment of matrix algebra in Chapter 4. The
key points discussed include:

1. The use of determinants to solve sets of simultaneous linear
equations.

2. The expansion of determinants of low order in full.
3. Cofactors of determinants.

4. Properties of determinants, and their use to simplify the
expansion of determinants of high order.
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Working with Arrays II:
Matrices and Matrix Algebra

In the previous chapter we saw how determinants are used to tackle
problems involving the solution of systems of linear equations. In general,
the branch of mathematics which deals with linear systems is known as
linear algebra, in which matrices and vectors play a dominant role. In
this chapter we shall explore how matrices and matrix algebra are used
to address problems involving coordinate transformations, as well as
revisiting the solution of sets of simultaneous linear equations. Vectors
are explored in Chapter 5.

Matrices are two-dimensional arrays (or tables) with specific shapes

and properties:
X1
2 -1
(5 ) (xz), (12 3)

X3

Their key property is that they give us a formalism for systematically
handling sets of objects — called elements — which, for example, can be
numbers, chemical property values, algebraic quantities or integrals.
Superficially, matrices resemble determinants, insofar as they are con-
structed from arrays of elements; however, as we shall see, they are really
quite distinct from one another. The most important difference is that
while a determinant expands to yield an expression (and a value, when its
elements are numbers), a matrix does not!

In this chapter we develop matrix algebra from two key perspectives:
one makes use of matrices to facilitate the handling of coordinate
transformations, in preparation for a development of symmetry
theory; the other revisits determinants and, through the definition of
the matrix inverse, provides a means for solving sets of linear
equations. By the end of this chapter, you should:

55
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e Recognize the difference between a matrix and a determinant

* Recognize how matrices can be used to handle large linear
systems in a compact way

* Be comfortable working with basic operations of matrix algebra
(addition, subtraction, multiplication)

* Recognize specific kinds of matrix

e Use the special properties of a square matrix to evaluate its
determinant and inverse

e Understand the basic principles of group theory

4.1 Introduction: Some Definitions

A matrix is an array of elements, comprising # rows and /m columns,
enclosed in parentheses (round brackets). By convention. matrices are
named using bold typeface letters of upper or lower case, such as A or b,
so we could, for example, label the matrices above as:

X

B=(2 ! - =(1 2 3
_(0 3), c=|x} d=(1 3)
X3

The elements of the matrix are usually denoted a;; or b,; (depending on the
letter used to label the matrix itself), where i denotes the row and j the
column number. Thus, for example, the matrix B above has two rows and
two columns, and is said to be a 2 X 2 matrix; however, as the matrix is
square, it Is sometimes named a square matrix of order », with elements
assigned as follows:

b]| :2, blZ = —1, bp_] :0, b22 =3

Sometimes, it is more convenient to use the notation (B); to indicate
the jjth element of matrix B. Similarly, the 3 X 1 matrix ¢ is called a
column matrix, and the 1 X 3 matrix d is called a row matrix. The general
matrix, A, having order (n X m), is called a rectangular matrix with
elements:

any dpp o Ay
dyy dypy Ay

A= . . . . (4.1)
Ay Qpy " Ay

Two matrices A and B are equal if, and only if, a;= b, for all i,;. This
also implies that the two matrices have the same order.
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Problem 4.1

. 1 1 1 3 -1 1
Foreachofthematrlcesb—(2 D) 2),c_(1 _3),d=(0)

and e=(0 —i 1 1i): (a) name their shapes; (b) list their

elements; (c) give their order.

4.2 Rules for Combining Matrices

In this section we explore the matrix analogues of addition, subtraction
and multiplication of numbers. The analogue for division (the inverse
operation of multiplication) has no direct counterpart for matrices.

4.2.1 Multiplication of a Matrix by a Constant

The multiplication of a matrix, A, by a constant c (a real, imaginary or
complex number) is achieved by simply multiplying each element by the
constant, resulting in the elements changing from a; to cay, for all i,j.

Problem 4.2

Multiply the following matrices by 2:

4 5 2
(a)B:( 1 6); ®c=| |
-4 3 -3

i W Nivn

4.2.2 Addition and Subtraction of Matrices

If two matrices have the same order, then addition and subtraction are
defined as:

C = AtB, with ¢; = a;+by;, for all i,j (4.2)

Neither addition nor subtraction is defined for combining matrices of
different orders.

Worked Problem 4.1

Q Given the following matrices (notice that A has real, complex
and imaginary elements):
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2 21 =3 45 3 11
A=|1 2 8 1.B= 1 6],C=|1],D=14 1
5 —4+i 1 —4 3 2 51

2
and F = ( 1 ), evaluate:

4
(a) G=2B + D; (b) M=C—-2F; (c) H=iA.

8 10 1 1 9 11
A (a)G:( 2 12)—1—(4 l)z( 6 13).
-8 6 S -3 7
3 2 3—-4 —1
(b)M:(1)_2(1)=(1_2):(_1).
2 4 28 —6

2 2 —3 21 —2 -3i
e©H=i|l1 2 Bl=11 2i 8 |.
D —d i 1 5i —4i—1 i

Problem 4.3

1 i 1 —i cosf sinf
IfA=(~i 1)’ B:(i 1)’ RZ(—sinG cosH)and

S — (cosH —sin0

" \sinf cos@ )’ eaRiees:

(a)A+B,(b)A—B,(c)R+Sand(d)R—SintermsofC=( L 1)

i -1 0
andD=(0 1).

4.2.3 Matrix Multiplication

Given an n X m matrix, A, and an m X p matrix, B, then the ijth element,
¢, of the resulting n X p product matrix C = AB, is found by selecting the
i,j values and then, for each choice, summing the products of the elements
in row i of A with those in column j of B (Figure 4.1):

C = A B

(nxp) (nxm) (mxp) (4.3)
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a1 ap Qe dim

by;

sz

by Figure 4.1 The product of an
nx mmatrix, A, and an mx p
matrix, B, is an n x p matrix, C,
whose Jjjth element, ¢y, is found
by summing the products of the

by elements in row i of A with those
in column jof B

A number of features relating to matrix multiplication are worthy of note:

If the number of columns in A is not equal to the number of rows in B,
then multiplication is undefined.

In general, even if AB is defined, then BA may not be defined.

If AB and BA are both defined, their orders may differ.

Even if AB and BA have the same order, the two product matrices
may not be equal. In these circumstances, matrix multiplication is
non-commutative, i.e. AB # BA.

Worked Problem 4.2

Q Where defined, determine the products (a) AB and (b) BA of the
following matrices:

1 3 1 1 2
A—(3 1) and B—(1 ’ 1)

A (a) Matrix A is 2 X 2 and B is 2 X 3; thus the product AB is
defined, as the number of columns in A is same as the number of
rows in B. The product matrix will have order (2 X 3) (the number of
rows in A and the number of columns in B):

13\l 1 2
AB‘(3 1)(1 2 1)

((Ix1)+(3x1) (Ix1)+(3x2) (I1x2)+@3x1)
_((3xl)—|—(lx1) (3x1)+(1x2) (3x2)+(1><1))

(4 7 5
“\4 5 7)

(b) BA is undefined because the number of columns in B is not same
as the number of rows in A.




60

Maths for Chemists

Problem 4.4

For the matrices:

1 2 1 -1 (-1 1 _
A=(2 1),B—(_l 2),C—(_l 1),D—(l 2) and

1= ( _?I ), find each product matrix specified below, where defined,

and give its order, as appropriate:
AB, BA, AC, BC, DE, ED, DA, AD, EA, AE, AB - BA, (AB)C,
A(BC), AB + C), AB + AC.

Properties of Matrix Multiplication

You may have observed from your answers to Problem 4.4 that
multiplication of matrices follows similar rules to that of numbers,
insofar as it is:

* Associative :
(AB)C = A(BC) (4.4)

* Distributive:
A(B+C) = AB+ AC (4.5)

One exception is the commutative law. In general, matrix multiplication is:
¢ Non-commutative:

AB # BA (except in certain special situations) (4.6)

As we suggested earlier, there is no general way of defining matrix
division; however, for some square matrices we can define an operation
that looks superficially like division, but it is really only multiplication
(see Section 4.6).

4.3 Origins of Matrices

4.3.1 Coordinate Transformations

Matrices have their origin in coordinate transformations, where, in two
dimensions, for example, a chosen point, with coordinates (x,y), is
transformed to a new location with coordinates (x',)"). For example,
consider an anticlockwise rotation of the point P in the xy-plane, about
the z-axis, through an angle 6, as shown in Figure 4.2.
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0 Q .y

O P (x,y)

Figure 4.2 Rotation about the
14 z-axis of the point P (x,y), through
an angle 6to Q (x',y’); a is the
angle between OP and the x-axis

We can use simple trigonometry to relate the coordinates of Q to those
of P by expressing the Cartesian coordinates in terms of polar coordinates.
Thus, the (x,y) coordinates of point P become:

x=rcosa and y=rsina 4.7)
and those of point Q become:
X' =rcos(@+a) and ) =rsin(0+a) (4.8)

If we now use the addition theorems for cosine and sine (see Volume 1,
Section 2.3.3), we obtain the expansions:

x" = rcos(0 +a) = rcos 8 cosa — rsin O sina = xcos 0 — ysin§  (4.9)
y' = rsin(0 + «) = rsin § cosa + rcos @ sina = xsin 0 + ycos 6 (4.10)

which allows us to express the coordinates of Q (X', y’) in terms of those of
P (x,):

x'=xcos 0 — ysin 0

4.1
y' = xsin 0 + ycos 0 (411)

Equation (4.11) describes the transformation of coordinates under an
anticlockwise rotation by an angle, 6. This coordinate transformation is
completely characterized by a square matrix, A, with the elements cos 6
and +sin 6, and the column matrices, r and ¥ , involving the initial and
final coordinates, respectively:

cos —sinf) , (X (x
A‘(sin() COSQ)’I_(}/)"—(})) (4.12)
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Figure 4.3 Reflection of the
point P (x,y), in the y-axis to
obtain the point Q (—x,y)

We can now use matrix notation to replace the two equations (4.11) by
the single matrix equation (4.13):

x'"\y fcos® -—sinb)fx
y )] \sin@ cos@)\y (4.13)
r = A r

We can confirm that equation (4.13) correctly represents the coordinate
transformation by evaluating the product matrix Ar on the right side:

X"\ [xcos0—ysin6
y' ) \ xsin0+ycos @ (4.14)
o= Ar

Since ' and Ar are both 2 X 1 matrices, we can equate the elements
in ¥ with those in Ar, to restore the original equations, which
confirms equation (4.13) as the correct matrix representation of
equations (4.11).

Worked Problem 4.3

Consider the coordinate transformation involving reflection in the
y-axis (Figure 4.3). We can see that this transformation simply
involves a change in sign of x, with the value of y remaining
unchanged. Thus the transformed point, Q, will have coordinates

<, ¥)=(=x.y).
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We can represent this transformation in terms of a matrix
equation r’ = Cr, where C is a 2 X 2 matrix characterizing reflection
in the y-axis, and r and r’ are the column matrices containing the
initial and final coordinates, respectively.

Q Show that the matrix C characterizing reflection in the y-axis is
-1 0
c=(% 1)

A The coordinate transformation written as a matrix equation is:

(x’)_(——x)_ cn e\ x

y - y _(6’21 sz)(J/)

r = C r

where c¢13, €12, €21 and ¢y, are the elements of the matrix C which
characterize reflection in the y-axis. Multiplying out the right side,

we have:
cux+ Cpy =—X and Cc X + cny =1y

Thus, if we compare the x and y coefficients on each side of these
equations, we obtain:

C11:—1,6‘12=0,021=0 and c22=1andsoC=(—é (1))

Sequential Coordinate Transformations

The effect of applying two sequential coordinate transformations on a
point, r, can be represented by the product of the two matrices, each one
of which represents the respective transformation. We need to take care,
however, that the matrices are multiplied in the correct order because, as
we saw above, matrix multiplication is often non-commutative. For
example, in order to find the matrix representing an anticlockwise
rotation by 6, followed by a reflection in the y-axis, we need to find the
product CA (and not AC as we might initially assume!).

Problem 4.5

(a) Find the matrix, D, describing the coordinate transformation
resulting from reflection in the line y = x.

(b) (i) Find the matrix, E, describing the coordinate transformation
resulting from a reflection in the line y = x, followed by a reflection
in the y-axis (see Worked Problem 4.3). (ii)) Find the matrix,
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Figure 4.4 The nuclear con-
figuration for BF3 in the xy-plane.
The z-axis is perpendicular to
the paper, and passes through B.
Three of the mirror planes are
perpendicular to the paper, and
contain the boron and one of
the fluorine nuclei, respectively,
the fourth mirror plane is lies in the

F, describing the coordinate transformation that results from a
reflection in the y-axis followed by a reflection in the line y = x.

In each case, check your answer graphically, by using the matrices
E and F to transform the coordinates (1, 2) to their new location

<, ¥).

4.3.2 Coordinate Transformations in Three Dimensions:
A Chemical Example

In preparation for the discussion of group theory in Section 4.9, let us
consider how we might use matrix representations of coordinate
transformations to characterize the shape of a molecule - something of
vital importance, for example, in describing the vibrational motions in a
molecule. In order to accomplish this objective, we need to consider only
those linear transformations in three dimensions that interchange
equivalent points in a molecule. One example of such a transformation
involves the interchange of coordinates defining the positions of two
fluorine nuclei in the planar molecule BF;. We can achieve this result
by extending the rotation and reflection coordinate transformations in
Figures 4.2 and 4.3 to three dimensions. For BF3, there are four mirror
planes, but, for the moment, let us focus only on the yz mirror plane,
which is perpendicular to the plane of the molecule and contains the
boron and the fluorine nucleus F; (Figure 4.4).

plane of the molecule and con-

Fy
y

F') F3

tains all of the nuclei
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The matrix C, defined in Worked Problem 4.3, describes reflection in
the y-axis of a point defined by the two coordinates (x,y). We can rewrite
matrix C in terms of all three coordinates as follows:

X -1 0 0 X
y1i=1 01 0|}y
z 0 0 1 z (4.15)
r = C r

where we note that the z-coordinate is unchanged by the coordinate
transformation. Thus, a reflection in the yz-plane interchanges points
located at the nuclei F, and F;.

If we now rotate an arbitrary point (x,p,z) about the z-axis, the x- and
y-coordinates are transformed according to matrix A, defined in equation
(4.12), but the z-coordinate is unchanged; thus:

x cos -sinfB O\ /x
Yy |=1]sin0 cos6 0{}y
4.1
z 0 0 1 z (4.16)
r = B r

An anticlockwise rotation of 6=2n/3 (equivalent to 120°) about the
z-axis described in equation (4.16) transforms a point located at either F,
F, or F; to an equivalent point located at F,, F; or Fy, respectively.

The important point here is that if the coordinates of points are
represented in matrix form, then the geometrical actions involved in
carrying out a rotation or reflection may also be represented by matrices,
which enables us to mimic problems in geometry using matrix algebra
that is, geometrical operations on points can be replaced by
representations acting on column matrices containing the coordinates of
points. We shall re-visit these ideas in Section 4.9, where we develop a
brief introduction to the principles of symmetry theory.

4.4 Operatlons on Matrlces

e === e

4.4.1 The Transpose of a Matrix

Given an n X m matrix, B, we can construct its tra :
interchanging the rows and columns. Thus the ijth element of B becomes
the jith element of BT according to:

(B); = (B"); (4.17)
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Worked Problem 4.4

1 1
Q Findthetransposeof:(a)Bz(3 2);(b)C:(0 -1 1)
4 1

i ()

Problem 4.6

Find the transpose of each of the following matrices:

@a=(5rg emg)®c=(1 Jep=(} 3 1)

sin 0 cos 0

Problem 4.7

If X is an n X m matrix, then: (a) give the order of XX' and
XTX; (b) use the matrix B from Worked Problem 4.2 to find BBT
and B'B.

4.4.2 The Complex Conjugate Matrix

Taking the complex conjugate of every element of a matrix, A, yields the
complex conjugate matrix, A*; that is, (A*); = (A);*. If all the elements of

A are real, then A* =A.

4.4.3 The Complex Conjugate Transposed Matrix

The transpose of the complex conjugate matrix (sometimes termed the

adjoint matrix), is written as A" and defined such that:

A= (A" =(A") = (AT), = (A"),.

If A*=A (a real matrix) then A" =A".

(4.18)
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Problem 4.8

IfA = ( Ij-i] ;), give the forms of A* and A'.

Problem 4.9

. (1 1-i (1 1+1),
ShowthatforthematrlcesA—(1+i _1 )andB—(H_i 0 )

(a) (AB)* = A*B*; (b) (AB)' = BfAT.

Note: these results are valid for any matrices A and B, for which
multiplication is defined.

4.4.4 The Trace of a Square Matrix

The trace of a square matrix, A, of order n, denoted by trA, is defined as
the sum of its diagonal elements:

trA = Z (A); (4.19)
i=1

1 -1 0
For example, the matrix A = (2 -3 1 ), hastrA=1-3 + 0=-2.

1 =2 0
Since the transpose of a square matrix leaves the diagonal unchanged, we
see that trA =trAT.

Problem 4.10

For the matrices:

1 -1 0 1 -11 1 -10
Az(o 3)’ B=(1 —2)’ C=( 1 0) g D= (1 =, 0)’
show that:

(a) tr(AB) = tr(BA); (b) tr(ABC) = tr(CAB) = tr(BCA); (c) tr(D"D) =
tr(DDT).
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4.4.5 The Matrix of Cofactors

The cofactor of a determinant, which we first defined in Section 3.2, is
characterized by a row and column index, in much the same way as we
characterize the elements in a matrix. Thus, we can form the matrix of
cofactors by accommodating each cofactor in its appropriate position.
For example, the determinant:

aypy  ap
a dan

detA = (4.20)

gives rise to the four cofactors Ay, 4,5, Ay and A,,, which may be
collected together in the matrix of cofactors, B:

A A a —a
B___( 11 12):( 22 2[) 421
Ay Axp —ap  ay (421)

4.5 _The Determinant of a Product of Square Matrices

For two square matrices, A and B, of order n, the determinant of the
product matrix AB is given by the product of the two determinants:

det(AB) = det(BA) = det A xdetB (4.22)

We now return to a further discussion of some special matrices that arise
in a chemical context.

So far, we have met matrices of different orders, but we have not been
concerned with the properties of their constituent elements. In this
section, we introduce the null and unit matrices, and then present a
catalogue of important kinds of matrix that are common in developing
mathematical models used, for example, in the calculation of vibrational
frequencies of molecules, distributions of electron density and other
observable properties of molecules.

4.6.1 The Null Matrix

The general mt
If the matrix is:

ix is an » by m matrix, all of whose elements are zero.

e Rectangular, it is named as O,,,,,.

¢ Square (n=m) it is named as O,,.

* A column matrix, it is named O,;, or more commonly as 0.
Given an m X n matrix X:

Onm an = Om Xf'ﬂnO"’N = 0)71 (423)
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4.6.2 The Unit Matrix

The unit matrix is a square matrix of order n, denoted here by E,,, whose
leading diagonal elements are all unity (i.e. have value 1) and whose
off-diagonal elements are zero. Thus, for example:

1 0 1 00
0 0 1

The elements of E, may be denoted e, but in practice they are usually
specified using the Kronecker delta, which is written as:

s 1 for i=j
e’j—a"f—{o, for i#j (425)

where i=j designates a diagonal position and i #j a non-diagonal
position.

As E, is an n X n matrix, E,A (pre-multiplication of A by E,) is equal to
A if A has order (n X p); likewise, AE, (post-multiplication of A by E,)
yields A if A has order (p X n).

Problem 4.11

For each of the following matrix products:

13 13
123 123
(@) 0|2 2 L) O (©QEs| 2 2 );(d) E;;
23(0 1) (4 5 6) & 3(0 1) (4 5 6) :

1 3
(e)(2 2)E3, give the resultant matrix, where the product is
0 1

defined.

Problem 4.12

. 0 -1 1
cos @ —sin 6 .
IfA—(sinB cos())andG—(% —11 %)

(a) (1) find detA, and the matrix of cofactors, B; (ii) show that
BTA =E, detA; (b) show that HTG = E; det G, where H is the matrix
of cofactors of det G.
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4.7 Matrices with Special Properties

4.7.1 Symmetric Matrices

A square matrix, A, is said to be symmetric if it has the property
(A)i/= (A)jj; that is:

A=AT (4.26)

For example, the following matrix is symmetric:

21 3
A:(l 4 3
330

as reflection in the leading diagonal leaves the array of elements
unchanged in appearance.
For any # by m matrix X, both X"X and XX are symmetric matrices.

4.7.2 Orthogonal Matrices
An orthogonal matrix, A, is a square matrix of order n with the property:
ATA=AAT =E, (4.27)

It follows from Property (1) of determinants (see Section 3.3), that
det A=detA”, since the value of a determinant is unchanged if all
columns and rows are interchanged. It also follows from equation (4.22)
that det(AAT)=detA x detA =(detA)? and from the property of an
orthogonal matrix given in equation (4.27) that (detA)®>=detE,=1.
Consequently, since (detA)? = 1, it follows that, for an orthogonal matrix,
detA = + 1. However, it does not necessarily follow that an arbitrary
matrix satisfying this criterion is orthogonal, since it must also satisfy
equation (4.27).

Problem 4.13

Lk
(a) Find the value(s) of k& for which the matrix A = (‘{5 _1) is
V2 V2

orthogonal. Check your answer by verifying that ATA = AAT = E,,.

cosf@ sinf 0
(b) Find the value(s) of 6 for which R = (sin 6 cosb 0) is
orthogonal. 0 0 1
Hint: cos 260 = cos? 6 — sin® 6
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-1 1
satisfies the condition det A= +1. Check your answer against
equation (4.27) and comment on whether the matrix A is orthogonal
or not.

(c) Find the value(s) of k for which the matrix A :( 1 k)

As we shall see in later sections, orthogonal matrices play an important
role in defining the coordinate transformations that are used in
characterizing the symmetry properties of molecules.

4.7.3 Singular Matrices

A square matrix, A, for which detA =0, is said to besingular . Such
matrices usually arise when the number of variables (or degrees of
freedom) is over-specified for the chosen model, as would occur, for
example, in:

* Using the same atomic orbital twice in constructing molecular
orbitals in the Linear Combination of Atomic Orbitals (LCAO)
model.

* Solving an inconsistent set of equations.

4.7.4 Hermitian Matrices

A complex square matrix, that is equal to the transpose of its complex
conjugate, is called an Hermitian matrix; that is:

A=A (4.28)

Problem 4.14

(a) Verify that the matrix A = ( i 1) is Hermitian.

1

(b) If x is the 2 by 1 column matrix (1 and A is the Hermitian
matrix in part (a), show that x'TAx = —1.

4.7.5 Unitary Matrices
A square matrix U, of order #, is satd to be unitary if:

U'U = UUT = E, (4.29)

Superficially, using the same
atomic orbital twice in
constructing molecular orbitals
using the LCAO method may
seem misguided; however, there
are cases when the second
occurrence of the atomic orbital is
disguised
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It follows from the definition of a unitary matrix that detU= +1.
As for orthogonal matrices, an arbitrary matrix having the property
detU= +1 is unitary only if the requirements of equation (4.29) are
satisfied.

Hermitian and unitary matrices play the same role for matrices with
complex elements that symmetric and orthogonal matrices do for
matrices with real elements. These features are summarized in Table 4.1.

Table 4.1 A summary of special square matrices
Matrices with real elements Matrices with complex elements
Transpose, AT Complex conjugate transpose, AT

2 5 - 2 3 2 3+i 2

3 4 5 4 —i 4 )7 \s-i 4
Symmetric A=A" Hermitian A=AT
(2 5 2 3+i

5 3 3—-i 1
Orthogonal ATA = AA" = E, Unitary U'u = uu' = E,
(cos() —sing )( cosf sin0 )—E (% %)(71; V—%) .

sing  cosf J\ —sind cos0 ) 2 ioafli T

V2 2/ N\ 2

A conseguence of the above is that A consequence of the above is that
detA = +1 detU = +1

Symmetric, Hermitian, orthogonal and unitary matrices all arise in the
quantum mechanical models used to probe aspects of molecular structure.

Problem 4.15

Classify each of the following matrices according to whether they
are symmetric, Hermitian, orthogonal or unitary:

@ a=(_ o) ®B=2(4 ) ©@c=(] )
(d) 1)=(_11 ‘é).

We now proceed to identify the last of the special matrices that are
important to us.
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4.7.6 The Inverse Matrix

The inverse of a square matrix A, of order n, is written A~! and has the
property:
AAT'=AT'A=E, (4.30)

and exists only if detA # 0. If detA = 0, then A is singular and A™' does
not exist. We saw in Problem 4.12(a) that the transposed matrix
of cofactors, BT, is related to A and detA — irrespective of the order of
A - according to the formula:

B'A = E,detA (4.31)
Rearranging equation (4.31) gives:

1 T n
detAB = (4.32)

E
but we know from equation (4.30) that A~ = X", and so:

1
-1 T
AL = B 4,
det A (4.33)

which provides us with a formula for obtaining A~' from B” and det A. It
should be remembered, however, that A~ exists only if A is non-singular.

‘Worked Problem 4.5 |

Q Find the inverse of the matrix A = ( i _; )

A First, det A=1 + 1=2. The matrix of cofactors of A is:
_(An A\ _ (1 -1 t_( 1 1
B_(A2l 4 )=\ 1) T B =l
Thus the inverse of matrix A is given by:
4 111
1 = — =
sty ( -1 1 ) ( . )

Check: use the definition of the matrix inverse to confirm that
AA'=A"TA=E,

G (-

B—= D —
NI—= D=

(ST S o

1
2
AL
2
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Problem 4.16

1 -1 1
Find the inverse of the matrix A = (—1 -1 1), and demon-
strate that AA™! = A™'A = E;. 1 11

The inverse matrix has many uses, but of particular relevance to us as
chemists is the role they play in:

e The solution of sets of simultaneous linear equations.

¢ Developing the concept of a group which, in turn. underpins the basis
of symmetry theory.

4.8 Solving Sets of Linear Equations

Suppose we have a set of three equations, each of which is linear in the
unknowns x;, X, X3:

ay Xy +apxy +aixy = by

ar X + a»X| + anx; = b2 (434)

az Xy + apx) + ayzx; = by

where the a;; and b, (i,j=1, 2, 3) are constant coefficients. If all the b; are
zero, then the equations are called homogeneous, but if one or more of the
b; are non-zero, then the equations are called inhomogeneous,

We can write the three linear equations (4.34) as a single matrix

equation:
ay dp dpg X1 by
a4y ax» 4z x| =|b (4.35)
ay; axn ayp/ \X3 by

and then check that equations (4.35) and (4.34) are equivalent,
by evaluating the matrix product in the left side of equation (4.35) to give:

anx, + apX; + a;3x; by
ay Xy + anx; +anxy | = | b (4.36)

az Xy + asX; + apix; by

We now have two 3 X 1 matrices, which are equal to one another; because
this implies equality of the elements, we regenerate the original linear
equations given in equation (4.34). If we now rewrite equation (4.35) in a
more compact form as:

AXx =Db (4.37)
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and pre-multiply by A™', the matrix inverse of A, we obtain:
A"Ax=A"" (4.38)
Since A"'A=E, and E,x=x, it follows that the unique solution is
given by:
x=A""b (4.39)

However, this solution is meaningful only if det A is non-singular. If A is
singular, the equations are inconsistent — in which case, no solution is
forthcoming.

Worked Problem 4.6

Q (a) Confirm that the following equations have a single, unique
solution:

X1 —X+x3=1
— X —x2+x3 =2 (440)
x| + X +x3 = —1
(b) Find the solution.

A (a) Rewriting equation (4.40) in matrix form gives:

1 -1 1 X1 1
-1 -1 1 x | = 2
1 1 1 X3 -1
A X b

The set of equations has a unique solution as det A=-4 (see
Problem 4.16), indicating that the equations are consistent.

(b) Following the procedure in Worked Problem 4.5, and
with reference to the answer to Problem 4.16, we find

1L_1 ¢
5 55
Al = —% 0 % . Thus, the solution, according to equation
11
0 3 2

(4.39), is given by:

-

—
XX
N—
I
|

(<=0 STER ST
(=) N!—'

D= NI— O

o~
e
N—
Il
I
DOt pmed DO

from which we see that x; = -5, x, = -1, x; =1.
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Problem 4.17

Find the values of x, y, z that satisfy the equations:
x+2y+3z=1
8y+2z=1
—2x+4y+2z=2

So far we have considered only the solutions to sets of inhomogeneous
linear equations where at least one of the b; is non-zero. If, however, we
have a set of homogeneous equations, where all the b; are zero, then we
may define two further possible limiting cases:

* Ifdet A # 0and b=0 (all 4, are zero), then this approach will only
ever yield the solution x =0, i.e. x;, =x,=x3=0. since x=A"'0=0.

e Ifdet A=0, and b=0, then, again, A1 will be undefined. However,
although the solution may yield the so-called trivial result x =0,
other solutions may also exist.

4.8.1 Solution of Linear Equations: A Chemical Example

In Problem 3.6, we saw how the molecular orbital energies for the allyl
system are determined from the solution of a determinantal equation.
At this point, we are now in the position to understand the origin of
this equation.

In the Hiickel model, the result of minimizing the energy of the
appropriately occupied n molecular orbitals results in the following set of
linear equations in the unknown atomic orbital coefficients, c¢,, together
with the molecular orbital energy, &:

cila—e)+cp=0
C'1ﬁ+C2(OC—£)+C3ﬁ=O (441)
B+ ce(a—e)=0

Equations (4.41) may be more succinctly expressed as a single matrix

equation:
(e )
[} (a —¢) i} ol|=0 (4.42)
0 B (x—¢)/ \c3

or in more compact form as Ac = 0, where 0 is a null column matrix.
Equations (4.41) provide an example of a set of homogeneous equations,
because the right-side constant coeflicients, equivalent to b, in equation
(4.34), are all zero (and hence the appearance of the null column matrix 0
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in the equivalent matrix equation 4.42). The trivial solution to equation
(4.42), where ¢y =c;=¢3=0 (¢=0) is of no physical significance, as
the molecular orbitals do not then exist — another example of how
important it is to use physical intuition to interpret the significance of
a mathematical result! A more detailed study of the mathematics indi-
cates that equation (4.42) has a non-trivial solution if det A =0, the
solution of which yields the orbital energies ¢ = a, T /2, as seen in
Problem 3.6.

Problem 4.18

The three molecular orbitals for the allyl system are obtained by
solving the set of simultaneous equations (4.41) for each value of
&, in turn, to obtain the atomic orbital coefficients, c;.

(a) For ¢=a, show that ¢3;=-c; and that ¢;=0.

(b) For & = o + v/2B, show that ¢, = v/2¢; and ¢3=c;.

(c) For & = o — /2B, show that ¢, = —v/2¢, and ¢c3=c;.

(d) For each of the three orbital energies, construct the column
matrix, ¢;, where each element is expressed in terms of c;.

4.9 Molecular Symmetry and Group Theory

One of the key applications of matrices in chemistry is in the char-
acterization of molecular symmetry. In Section 4.3 we saw how it was
possible to represent the coordinate transformations associated with
rotation and reflection, in terms of matrices. These notions are now
explored in the next section, where we develop some of the basic ideas of
group theory.

4.9.1 An Introduction to Group Theory

A group consists of a set of elements (e.g. numbers or square matrices), for
which there is a specified mode of combination (for example, addition,
subtraction, multiplication), subject to the four following requirements:

(a) For any R, S in the set, the combination RS is a member of the
set (closure).

(b) For any R, S and T in the set, the mode of combination must be
associative, i.e. R(ST) =(RS)T.

(c) There is an identity element E such that, for any element, R, in
the set, RE=ER =R.
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The elements of a group should
not to be confused with the
elements of a matrix or
determinant!

(d) For each R, there is an inverse element R™', such that RR™' =
R 'R=E.

The number of elements in the group is termed its order, which may be
finite or infinite.

Worked Problem 4.7

Q Investigate whether the set of integers forms a group under each
of the following modes of combination:

(a) addition; (b) subtraction; (c) multiplication.

A (a) Addition: the sum of any two integers is an integer (closure
satisfied); addition of integers is associative; the identity element
is zero (e.g. 2+0=0+2=2); the inverse of any integer n is —n
[e.g. 2 + (—2) =0, the identity element], and —» is an integer which
is in the set. Since all four criteria are satisfied, the set of integers
forms a group of infinite order under addition.

(b) Subtraction: the difference of any two integers is an integer
(closure satisfied); subtraction of integers is not associative, e.g.
(3—4) —2= -3, while 3 — (4 — 2) = 1, and so the set of integers does
not form a group under subtraction.

(¢) Multiplication: the product of any two integers is an integer
(closure satisfied); multiplication is associative; the inverse of any
non-zero integer # is the rational number 1/r, which is not an integer
and so the set of integers does not form a group under multiplication.

Problem 4.19

Demonstrate that the set of numbers G; ={1, —1, i, —i} forms a
group of order 4 under multiplication.

4.9.2 Groups of Matrices

Groups of non-singular (square) matrices are of special interest in
chemistry, because they are used to characterize molecular and solid-
state structures according to their symmetry properties. This is vital when
determining;:

Whether spectroscopic transitions of all kinds are forbidden or
allowed.

The most likely mechanisms of some classes of organic reaction,
where symmetry controls the outcome.

The arrangement of species in the unit cell of solid-state structures.
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When deciding whether a given set of matrices of order » forms a group
under multiplication, we can disregard associativity as one of the criteria
because multiplication of matrices is a/lways necessarily associative — and
so we only need to check for closure, the presence of E,, and identify all
inverses.

Worked Problem 4.8

Let us consider, as an example, the set, G, of the following three
matrices of order 2 to see whether they form a group under
multiplication:

1 0 -1 _\ -1 B
G;=3A= = 2 = 7 2
={a=(o 1) (3 25) ==(Ck 2))

Table 4.2 Multiplication table for the set of matrices Gs

'&‘N

w

First
operation

Second
operation

A
A
B
C

The best way of checking the group requirements is to construct
the multiplication table as shown in Table 4.2.
We can see that this set of matrices forms a group, as:
1. The set is closed under multiplication.
2. Bis the inverse of C, and vice versa.
3. A is the identity element, which is its own inverse.

Problem 4.20

Construct a multiplication table for each of the following sets of
matrices to confirm that the sets constitute groups of order 4 under
matrix multiplication:

(a)G4={A=((1) ?),B=(_(} _?)’C=(_(i (1))’1):((1) _(1))}'
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Figure 4.5 The nuclear con-
figuration for H,O in the yz-plane.
The x-axis is perpendicular to the
paper, and passes through O.
One of the two mirror planes lies
in the plane of the paper, whilst
the second is perpendicular to
the paper and contains the O
atom. The principal axis of
rotation is the z-axis

10 0

® si=qa=( 1)8=(T 1) ¢=( o) 0

List the inverse of each element in groups G4 and Sg.

0
—-i0

0 —i

(%

)b

4.9.3 Group Theory in Chemistry

Molecules are classified in terms of their symmetry properties by
constructing groups of matrices that describe coordinate transform-
ations, resulting in the interchange of chemically equivalent points. For
any given molecule, these coordinate transformations form the elements
of a particular point group that describes its symmetry properties. For
example, the water molecule is bent in its ground state, with a bond angle
of approximately 105° (see Figure 4.5). If we rotate an initial point lying
above the plane of the molecule, directly over one of the hydrogen nuclei,
through 180°, about the principal axis passing through the oxygen
nucleus in the molecular plane (the z-axis in Figure 4.5), the transformed
point will lie below the other hydrogen nucleus. Likewise, reflection in the
plane perpendicular to the molecular plane, and containing the principal
axis of rotation (the xz-plane), transforms the initial point to an
equivalent point lying above the other hydrogen nucleus. However,
reflection in the plane of the molecule (the yz-plane) transforms the initial
point to one lying directly below the original hydrogen nucleus. Clearly,
the identity operation leaves the initial point unmoved. These three
symmetry operations are known as the C,, o, and o/ . respectively, and
together with the identity element, E, constitute the four elements of the
(5, point group to which water belongs.
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If the location of one of the nuclei is taken as the initial point, then we see
that each symmetry operation just exchanges (or leaves unmoved) the
coordinates of chemically equivalent nuclei. It transpires that if we follow
the procedure of physically moving the nuclei, rather than a representa-
tive point in space, then each matrix generated is the inverse of the one
associated with the appropriate coordinate transformation, although the
traces of the respective matrices are the same. This is helpful because in
most applications of group theory we work with the traces rather than the
elements of the transformation matrices.

Problem 4.21

How many symmetry operations can you list that interchange chemi-
cally equivalent nuclei in the planar molecule BF; (see Section 4.3.2)?
Hint: how many mirror planes and axes of rotation are there?

Summary of Key Points

In this chapter we have introduced the matrix as a means of
handling sets of objects and discussed the key aspects of matrix
algebra. A great deal of this chapter has involved a cataloguing of
the properties and types of matrices, but we have also tried to
emphasize the chemical importance of matrices, in particular in the
vital role they play in the classification of molecular symmetry and
the development of group theory. The key points discussed
include:

1. An introduction to matrix notation.

2. Rules for combining matrices through addition, subtraction and
multiplication.

3. How matrices are used to represent coordinate transformations,
and hence to characterize the symmetry properties of molecules.

4. Operations on matrices containing real and complex elements.
5. Special matrices, including the unit matrix and the null matrix.

6. Matrices with special properties.

In the context of group theory the
trace of a matrix is usually referred
to as the character.
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7. The matrix of cofactors and the definition of the inverse matrix.
8. The application of matrix algebra for solving sets of simul-
taneous linear equations — homogeneous and inhomogeneous
equations.

9. An introduction to molecular symmetry and group theory.

10. Elucidating the characteristic electronic structures associated
with molecules.

11. Introducing some of the concepts necessary in the study and
use of vectors.



Vectors

Many of the physical quantities which we deal with from day to day, such
as mass, temperature or concentration, require only a single number (with
appropriate units) to specify their value. Such quantities are called scalar
quantities, specified exclusively in terms of their value. However, we
frequently encounter other quantities, called vectors, which require us
to specify a magnitude (a positive value) and a direction. Velocity is an
example of a vector quantity, whereas speed is a scalar quantity (in
fact speed defines the magnitude of velocity!). This is why we say that
an object travelling on a circular path with constant speed (such as an
electron orbiting a nucleus in the Bohr model of the atom) is accelerating:
its velocity changes with time because its direction is constantly changing,
in spite of the fact that the speed is constant (see Figure 5.1).

In the example shown in Figure 5.1, we define both the position and
velocity in terms of vectors. The position of the electron at any given time is
given by a position vector, referenced to an origin O. So, when the electron
is at point P, its location is defined by the vector a, whereas when it has

Figure 5.1 The velocity and
position vectors of an electron at
two points P and Q in a circular
Bohr orbit

83
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moved to point Q, the position is defined by a different position vector, b.
We can also represent the velocity at points P and Q by the two vectors, v,
and v, both of which have the same magnitude (length) but whose
direction is different.

In chemistry, we meet many physical quantities and properties that
require us to specify both magnitude and direction. These include:

The magnetic and electrical properties of atoms, molecules and solids.
Forces between molecules.

Velocity of a molecule in the gas phase.

Angular momentum (associated with rotational and electronic spin
motions).

In order to qualify properly as a vector, a quantity must obey the
rules of vector algebra (scalar quantities obey the rules of arithmetic).
Consequently, we need to describe and define these rules before we can
solve problems in chemistry involving vector quantities. Linear algebra
is the field of mathematics that provides us with the notation and rules
required to work with directional quantities.

In this chapter, we discuss the concept of the vector from a number
of perspectives, ranging from the graphical description to a presen-
tation of vector algebra and on to examples of how we can apply
vector algebra to specific chemical problems involving directional
properties. By the end of the chapter, you should understand how:

e Vectors are defined geometrically in terms of direction and
magnitude

e Vectors are defined algebraically, using base vectors

e Vectors are combined using addition or subtraction

o The scalar and vector products are defined and used

e The triple scalar product is defined and used for calculating the
volume of a parallelepiped

o Matrix representatives of vectors are formulated and used

5.1 The Geometric Construction of Vectors

A vector is represented mathematically by a directed line segment ,
the length of which corresponds to the magnitude of the vector, whilst
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its orientation, taken together with an attached arrow, indicates its
direction. To simplify matters, we first consider vectors in two dimensions

(2-D space), and then extend the concepts to dealing with vectors in three
or more dimensions.

5.1.1 Vectors in Two Dimensions

Consider the three directed line segments representing the vectors shown
in Figure 5.2: all three have initial and final points, which may or may not
be labelled, whilst the arrow indicates the direction. In each case the
position of the initial point is of no significance. The magnitudes (lengths)
of the left-most and right-most vectors are the same, but their directions
are opposite; the middle vector has the same direction as the left vector,
but twice its magnitude.

P 2a

5.1.2 Conventions

1. Vectors are represented by symbols such as a, b,... and their
respective magnitudes are given by |a|, |b|,..., or just a, b,... An
alternative notation, OP, is sometimes used when we wish to describe a
displacement in space between two points (in this case, points O and P).
2. The vectors @ and b are said to be equal if their magnitudes and
directions are the same, irrespective of the locations of their respective
initial points. Hence, any directed line segment with the same length and
direction as a is represented by a.

3. unit vector is a vector having unit magnitude (or length). Unit
vectors are symbolized by a, l;, ..., and correspond to the vectors a, b, . ..
divided by their own magnitude. For example:

a
a=— (5.1)
|al
4. A null vector, 0, has zero magnitude and consequently no direction is
defined.

Figure 5.2 Representations of
the vectors a, 2aand —a as
directed line segments
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5.2 Addition and Subtraction of Vectors

5.2.1 Vector Addition

Consider the two vectors @ and b shown in Figure 5.3:

Figure 5.3 Vectors aand b o S——>—T
with initial points O and S,

respectively

The sum of @ and b is given by the vector ¢, which is found in the
following series of steps:
(a) Translate the vector b until its initial point coincides with that of a:

R
e b

(b) Construct a parallelogram as indicated in Figure 5.4:

Figure 5.4 The parallelogram
formed in the addition of the two
vectors @aand b

The directed line segment OQ represents the vector ¢, deﬁned as

the sum of a and b. Furthermore, as OQ OP+PQ OR+RQ
follows that c=a + b=5b + a, from whu,h we see that addmon is

commutative; in other words, a displacement OR followed by RQ clearly

leads to the same final point as a displacement OP followed by PQ
Since OR and PQ are equivalent, and represent the same vector b, we
can use a triangle to summarize the relationship between a, b and the
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resultant vector ¢ (see Figure 5.5). For this reason, the equalityc=a + b
is often known as the triangle rule .

(@] Figure 5.5 The triangle rule,
inwhiche=a+b

5.2.2 Vector Subtraction

The subtraction of two vectors can be thought of as the addition of
two vectors that differ in their sign. If we think of this in terms
of displacements in space, then the first vector corresponds to a
displacement from point P to point Q, for example, whereas a second
identical vector with opposite sign will direct us back to point P from
point Q:

a

P+5Q

The net result is the null vector — we end up where we started:
at+—-a=a—-a=0 (5.2)
It follows that subtraction of two vectors, a and b, is equivalent to adding

the vectors @ and —b, and so we can define vector subtraction in a general
sense as:

d=a+(—b)=a—b (5.3)

which can be expressed in terms of a variant of the triangle rule, as seen in
Figure 5.6.

Figure 5.6 Vector subtraction
represented in terms of the
triangle rule

It also follows from Figure 5.6 thatif a + b= ¢, then ¢ — a = b, which
we represent graphically in two ways in Figure 5.7:
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Figure 5.7 Two alternative
representations of the subtrac-
tion of two vectors

() (b)

P b=-a+c

o o S

Note that both representations are equivalent, in spite of the fact that
the initial and final points of vector b are located at different points in
space in the two representations. Thus, since the vector is fully defined
simply by its direction and magnitude, the locations of the initial and final
points are unimportant, unless we define them to act in specific locations.

Problem 5.1

Use the vectors a and b in Figure 5.5 to construct parallelograms,
defined by the vectors: ¢ =a+2b and d = 2a—b.

5.3 Base Vectors

Any kind of operation on a vector, including addition and subtraction,
can be somewhat laborious when working with its graphical represen-
tation. However, by referring the vectors to a common set of unit vectors,
termed base vectors, we can reduce the manipulations of vectors to
algebraic operations.

In three-dimAensional space, a convenient set of three unit vectors is
provided by f,j and k, which are directed along the x, y, and z Cartesian
axes, respectively (Figure 5.8).

Figure 5.8 Base vectors in
three dimensions for the
Cartesian coordinate system
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In this system of coordinates, if a point P has the coordinates (x,y,z),

then the directed line segment OP, extending from the origin O to point P,
corresponds to the vector r. If we apply the triangle rule twice, we obtain:

r = 0Q+QP (5.4)
— OR+RQ+QP (5.5)
= r=xiA—|—yjA+ k (5.6)

Equation (5.6) expresses r as a sum of the vectors xi, yf and zk, which are
called the projections of r in the direction of the x-, y- and z-axes. The
magnitudes of each projection are given by the x-, y- and z-values,
respectively, defining the location of P; however, in the context of vectors,
these values (coordinates) are known as the components of r; if the
components are all zero, then this defines the null vector. Note that for
problems in two dimensions, only two base vectors are required, such as,
for example, i and f

The Magnitude of (—)i’)

If we apply the Pythagoras’ theorem, first to triangle ORQ in Figure 5.8,
and then to triangle OQP, we obtain an expression for the magnitudeof r
in terms of its components:

r| = (& +y* + )2 (5.7)

5.3.1 Vector Addition, Subtraction and Scalar
Multiplication using Algebra

The algebraic approach to vector addition and subtraction simply
involves adding or subtracting the respective projections, xi, yj and zk, of
the two (or more) vectors. Scalar multiplication requires each projection
to be multiplied by the scalar quantity.

Worked Problem 5.1

Q Ifu=i+j+2kandv=—-2{—j+k find: (a) 2v; (b) w — 2v;
©) |u — 2v|.

A (a)2v=—4i—2j+2k.

(b)u—2v=(+j+2k) — (—4i — 2]+ 2k) = (5i + 3)).

©) |u—2v] = V5% + 32 = V34,
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Problem 5.2

If a=i+j—2k b=i+k c=i+j+k and d=i-2k, find:
(a) 3a—2b; (b) —2a—b; (c) a+b—c—d; (d) |a—d|;

(e) (a+c)/|a+ c|; (f) the magnitude of the vector in (e);

(g) |a] — |e].

Figure 5.9 The planar complex
ion Co(CN)3~, where the carbon
atoms are represented by black
spheres and the nitrogen atoms

by coloured spheres

Problem 5.3

Consider the planar complex ion Co(CN)i‘, shown schematically in
Figure 5.9. The central Co lies at the origin, and the four CN™
ligands lie on either the x- or y- axis; R is the Co—C interatomic
distance.

(a) Identify the unit vectors directed toward each of the four CN™
ligands.

(b) Give the forms of the four vectors, directed from Co to each
C atom.

(c) Find the vectors specifying one of the shortest and one of the
longest C—C distances, and hence determine these distances in terms
of R.

Hint: the representation of vector subtraction shown in Figure 5.7(a)
may be helpful.
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5.4 Multiplication of Vectors

In algebra, as we saw in Chapter 2 of Volume 1, the act of multiplication
is an unambiguous and well-defined operation indicated by the sign x.
In the algebra of vectors, however, multiplication and division have no
obvious conventional meaning. Despite this drawback, the two kinds of
multiplication operation on pairs of vectors in widespread use are defined
in the following subsections.

5.4.1 Scalar Product of Two Vectors

Consider the vectors a and b in Figure 5.10, in which the angle between
the two vectors is 6

o\

h\V

The scalar product is defined as:

a-b=>b-a=|a||blcosO (5.8)
The right side of equation (5.8) indicates that the result is a scalar
(number), and not another vector, because it involves the product of the
magnitudes of the two vectors, with the cosine of the angle between them
(a positive or negative number, depending on the angle). Thus, since |a|
and |b| are, by definition, positive numbers, the sign of the scalar product is
determined by the value of the angle 6. In particular, the scalar product is:

e Positive for an acute angle (8 < 90°).
» Zero for 8 = 90°.
* Negative for an obtuse angle (90° < 6 < 180°).

By convention, the angle 6is restricted to the range 0 < 6 < 180°. If =
90°, then a.b=0, and a and b are said to be orthogonal On the other
hand, the scalar product of a vector with itself (6 =0°; cos 6= 1), yields
the square of its magnitude:

a-a=|a]®, implying that |a| = a a (5.9)

The x symbol used in the

ommonly
; thus, 6xy is

e called dyadics anc
role in theoretical aspects of
Raman spectroscopy, for
example

Figure 5.10 Two vectors aand
b, inclined with respect to one
another at an angle 6
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Figure 5.11 The relationship
between vector direction and
angle

Furthermore, if a is of unit magnitude, then @-a =1, and a is said to be

normalized.

Specifying the Angle 6

In some situations, it is important to be aware of how the sense of
direction of the two vectors a and b affects the choice for the value of the
angle between them. For example, the angle 6 between the vectors in
Figure 5.10 constitutes the correct choice, because the two vectors are
directed away from the common point of origin. However, if vector a (or
vector b) is directed in the opposite sense (the dashed directed line
segment in Figure 5.11), then we determine the angle between a and b by
realigning the two vectors to ensure once again that they are directed
away from the common origin point. The angle is then defined as 180° - 6
(Figure 5.11).

N

The Scalar Product in the Chemical Context

Scalar products arise in a number of important areas in chemistry. For
example, they are involved in:

¢ Determining the energy, W, of a molecular electric or magnetic dipole
interacting with an electric or magnetic field, W= -—-pu.-E or
W= —pu,-H, respectively.

e Evaluating the consequences of the intermolecular dipole—dipole
interactions in molecular crystalline solids.

e Crystallography, where the scalar triple product (see Section 5.5.3) is

used to evaluate the volume of a crystallographic unit cell.

Scalar Products of Vectors Expressed in Terms of Base Vectors

The scalar product of two vectors a and b, expressed in terms of base
vectors, is obtained by taking the sum of the scalar products of each base
vector pair, together with the appropriate product of components.
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Worked Problem 5.2

Q Find the scalar product of the vectors a = i+j—2k and
b=1i+k

A We find the scalar product of @ and b using the respective
components (1,1,—2) and (1,0,1). Thus, expanding the brackets
yields:
a- b—(t+] 2k) (t+k)
=i ditik+jivj k—2k-i-2% Kk (5.10)

We now use equation (5.8) to evaluate each scalar product of base
vectors, to obtain:

f-z‘:f-f:lé-l?:l (0 =0) (5.11)
ij=ik=k-j=0 (6=90° (5.12)

which, on substitution into equation (5.10), gives:
ab=14+0+04+0-0-2
=-1

Problem 5.4

If a=2§+3l$, b=f+f+l€ and c=f—2f+l€, find: (a) a-c;
b)a-(b— 2c);(c)a-(b + a); (d) b-c.

Finding the Angle Between Two Vectors

In the previous section we saw that, in spite of appearances, we do not
need to know the angle between two vectors in order to evaluate the scalar
product according to equation (5.8): we simply exploit the properties of
the orthonormal base vectors to evaluate the result algebraically.
However, we can approach from a different perspective, and use the
right side of equation (5.8) to find the angle between two vectors, having
evaluated the scalar product using the approach detailed above. The next
Worked Problem details how this is accomplished.

Worked Problem 5.3

Q Use equation (5.8) to find the angle between the vectors a =
f+j—2kandb=t°+k.

Vectors which are orthogonal to
one another, as well as being
normalized, are said to be
orthonormal.
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A Since the scalar product of these two vectors is negative, and has
the value —1 (Worked Problem 5.2), we know that the angle 6 is
obtuse. The next step involves substitution of the vector magnitudes
la) = v/6 and |b|V/2 into equation (5.8), in order to determine the
value of cos 6:

—1=v6xV2xcosf = cosh = — : !

VNN

Since cos 6 is negative (an obtuse angle), and 6 is restricted to
0=<6=180°, we obtain the result §=106.7°.

Problem 5.5

(a) Using the definition of the vectors a, b, and ¢ in Problem 5.4, find
the angle between (i) @ and (b—2c) and (ii) b and c.

(b) Find a value of 4 for which the two vectors d = 3i — 2] k and
e=i+ /lj + 2k are orthogonal.

Simple Application of the Scalar Product: the Cosine Law
for a Triangle

If the sides of the triangle OPQ in Figure 5.5, formed from the vectors a, b
and ¢ have magnitudes a, b and ¢, respectively, and B is the angle opposite
b, then we can use equations (5.8) and (5.9) to find a useful relationship
between «a, b, ¢ and B.

The triangle rule ¢ = a + b may be rewritten as b = ¢ — a, from which
we form the scalar product b - b:

b-b=(c—a) (c—a)=a-a+c-c—2ac (5.13)

However, since we know that the scalar product of a vector with itself

yields the square of its magnitude (equation 5.9), and that the angle
between a and ¢ is B (and not 180° — B), it follows that:

b-b=0b =d +c*—2accos B (5.14)

This can be extended to construct analogous expressions involving the
angles 4 and C, opposite vectors a and c, respectively.

Problem 5.6

Use the triangle rule in the form ¢ = a + b to derive the form of the
cosine formula involving the angle C.
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Hint: find an expression for c¢-c¢ and decide, using Figure 5.11,
whether the angle 6 (in degrees) between the vectors a and b is the
same as angle C or the angle 180°— C. Remember: the cosine
formula given above always has the same form, regardless of the
choice of a, b and ¢ or angles 4, B and C.

Problem 5.7

The complex ion CoCl;~ adopts a tetrahedral shape, in which the
Co lies at the centre of a cube of side 2a, and the Cl~ species are
located on alternate cube vertices; the Co—Cl interatomic distance
is taken as R. The coordinate axes are chosen to pass through
the centres of opposite pairs of cube faces, with the Co lying at the
origin, as shown in Figure 5.12.

(a) Given that the coordinates of the four Cl1™~ ligands are (a,—a,—a),
(—a,a,—a), (a,a,a) and (—a,—a,a), write down the algebraic form of
the four vectors, ry, r», ¥3 and ry, directed from the central Co (0,0,0)
to the four ligands.

Figure 5.12 The complex ion
CoCl3~, where the coloured
spheres represent a Cl™ species
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(b) Find the magnitude of any one of the Co—Cl vectors, and hence
express a in terms of R.

(c) Use the triangle rule shown in Figure 5.7(a) to find a vector
associated with the interligand distance, and hence find its
magnitude in terms of R.

5.4.2 Vector Product of Two Vectors

In the previous section we defined the scalar product as a vector operation
resembling the act of multiplication, which results in a scalar (or number,
with or without units). We can now define a second type of vector
multiplication known as the ve ot , which results in another
vector rather than a number. The vector product is defined as:

axbhb=—bxa=|a||b|sin@-n (5.15)

or prc

where 7 is the unit vector orthogonal (perpendicular in 2-D or 3-D space)
to the plane containing @ and b. Since there are two possible choices for A
(up or down), the convention for selecting the appropriate direction for
requires the vectors a, b and 7 to form a right-handed system of axes, as
shown in Figure 5.13.

Figure 5.13 The axis conven-
tion for determir}ing the sign of
the unit vector n directed per-
pendicular to the plane contain-
ing the vectors aand b

If we imagine the action of a right-hand corkscrew, in which a is
rotated towards b, in an anticlockwise sense when viewed from above, the
corkscrew moves in the direction of #; it follows that the analogous
corkscrew motion taking b to a (clockwise) yields a movement in the
direction of _,\';' Consequently, the vector products involving the base
vectors j and k, or, by suitable changes, any other pair of base vectors,
are determined by forming a right-hand clockwise system, as seen in
Figure 5.14.
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(@ (b)

N
&N

] vector prod%ct (@) kxj=—iand

y (b) f x k = i determined by look-
ing down the x-axis and imagin-
ing the action of a right-handed
corkscrew motion (see text for
details)

A \ A 4\ Figure 5.14 Formation of the
K ,7\ 7 KA A A A
J

Although analogous results can be derived for other pairs of base
vectors, the simplest aid for obtaining the appropriate result is to use the
diagram shown in Figure 5.15. The vector product ix j, for example, is
verified by moving in a clockwise manner from i to j to the next base
vector k. However, _]Xl yields —k because anticlockwise circulation
introduces a negative sign.

f'\ Figure 5.15 The vector pro-
duct of any two base vectors,
moving in a clockwise or anti-

A clockwise direction, yields resul-
J tant vectors of positive or
negative signs, respectively

In forming the vector product of two vectors @ and b, we should
remember that:

* The order of operation is very important: the operation is not
commutative (equation 5.15).
e The resulting vector is orthogonal to both a and b, implying that:

‘(axb)=0 and b-(axb)=
* The operation is not generally associative: Alt

(axb)xc#ax(bxc)

o[V /JH the vector P

Vector Products in a Chemical Context

Vector products arise when:

e Working with the angular momentum, [/ (a vector property),
associated with the circular motion of a particle of mass, m, moving
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under a constant potential about a fixed point with velocity and
position described by the vectors:

vy X
v = (v_\.) and x = (t)
V. z

In this instance the angular momentum /=r X mv =r X p, where

mv,
p=\mv,
vy,

is the linear momentum. Such model systems have particular relevance
when considering the orbital motion of an electron about a nucleus
in an atom, or about the internuclear axis in a linear molecule.
Evaluating the volume of a crystallographic unit cell through the
scalar triple product (see Section 5.5.3).

Worked Problem 5.4

Q (a) Use equation (5.15) to express the vector products ixi, f X ]
and k x k in terms of the base vectors i, j and k.

(b) With the aid of Figure 5.15, find the vector products ix ]A, ixk
and jx k.

A (a)ixi=|i||f|sin6 A=1x1"sin0-74=0,sincesin0 = 0.

The outcome is the same for jxj and &k x k, and so:
fxf:fxf:l@xl?._—.o

It is important not to confuse this result with the analogous scalar

products. .
(b)l)(_] k le——-_[, xk =1

A

Problem 5.8

Use the definitions of @ and ¢ in Problem 5.4, and the results of
Worked Problem 5.4, to find: (a) axc; (b) cxa; (c) [exal;

() (%) xJ; () i (%)

5.4.3 Area of a Parallelogram

The vector product of @ and b provides a route for calculating the area of
a parallelogram. We explore this method in Worked Problem 5.5.




Vectors 99

Worked Problem 5.5

Consider the parallelogram OPQR in shown in Figure 5.16. If we
extend OR to point T and drop perpendicular lines from P to S and
from Q to T, we construct a rectangle with the same area as the
original parallelogram: a result achieved by chopping off the triangle
OPS from the left side of the parallelogram and reattaching it at the
right side.

Q (a) Explain why the areas of the triangles OPS and RQT are
equal.

(b) If the directed line segments O_li and Ci’), are represented by
the vectors a and b, show that the area of the parallelogram is
given by |alh.

(c) Deduce that the area, 4, of the parallelogram is given by |a x b|.

A (a) The areas of the triangles OPS and RQT are equal because
the lengths of the sides OP and RQ are the same, as are the angles
ZPOS and ZQRT.

(b) Given the equivalency of the two triangles OPS and RQT, the
area of the rectangle SPQT must be the same as that of the
parallelogram OPQR. Consequently _gle area of the parallelogram
must be equal to the nggnitude of ST multiplied by_}_l)le heiggt9 of
the rectangle, 4. Since ST has the same magnitude as OR, and (B is
represented by the vector a, it follows that the magnitude of ST is
equal to the magnitude of a. Thus, the area 4 = |a|h.

(c) As triangle OPS is right-angled, it follows that 4 = |b|sin# and
A = |a||b|sin § = |ax b|, where ax b = |a||b|sinf - 7.

Figure 5.16 The area of the
parallelogram OPQR is given by
|a x b{, where the vectors aand b
represent the di_rgcted line seg-

ments OR and OP, respectively
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Problem 5.9

Fora = a,f+ a2f+a3l}\,b= b|f+ b2f+ b3leandc = clf+ c2f+c3lz,
show that: .

(@) a-b=a\b) + ayby + azbs; (b) bxe = (bye3 — b3cy) i — (bye3 —
bscy) j + (bicy — bacy)k.

5.5 Matrices and Determinants Revisited:
Alternative Routes to Determining
Scalar and Vector Products

5.5.1 The Scalar Product

If the components of the vectors @ and & in Problem 5.9 form the elements

a, b

of the column matrices v, = (az) and v, = (bz), then the scalar
as by

product a - b takes the form:
b,

vy = (aayas )(bz) = aiby + ayby + a3bs,
b3

giving the same result as in Problem 5.9(a).

5.5.2 The Vector Product

If we compare the form of the vector product given in the answer to
Problem 5.9(b) with the expansion of a determinant of order three, given
in equation (3.20), we see that, if the correspondences:

an =1 ap =1, a3 =k
ay =by, ay==>b,, ay=0b;
az) =€y, Qa3 =0C, 433 =1C3

are made, then:

~ A A

i j k
bxc=|b, b, by (5.16)
g € (3

Using the properties of determinants, we see that exchanging rows two
and three results in a change of sign of the determinant: such a change
corresponds to the vector product ¢ x b and is consistent with equation
(5.15)and b X ¢ = —¢ x b.
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Problem 5.10

Ifa= f+f+l$ and b = f—f+ k: (a) use equation (5.16) to find the
vector ax b; (b) find |ax b| and specify a unit vector in the direction
of axb.

5.5.3 The Scalar Triple Product

If we define three vectors a, b and ¢, as in Problem 5.9, the expression
a- (bxc), known as the scalar triple product, yields a scalar quantity,
the magnitude of which provides the formula for the volume, V, of a
parallelepiped with adjacent edges defined by vectors a, b and ¢ (an
example in chemistry being a crystalline unit cell). If the determinantal
representation of b X ¢ is used, then, on expanding the determinant from
the first row, and evaluating the three scalar products, we obtain:

A A A

i j k
a-(bxc)=a-[b, b, by
g € 3

= a-Ji(bacs — byez) — ] (bres = bser) + K (brex — b))} (5.17)
= a)(byc3 — b3cy) — ar(bic3 — bscy) +az(bic; — byey) (5.18)

which, in turn, may be converted back into determinantal form:

a a a3
a’(bX(,') = bl b2 b3 (519)
g € (3

Thus, the volume (a positive quantity), V, of the parallelepiped formed
from a, b and ¢ has the formula:

V=la-(bxc) (5.20)
We explore the application of the scalar triple product for evaluating

the volume of a crystallographic unit cell in the final two problems of
this chapter.

Problem 5.11

Ifa=a, f+ 03’:, b= b,f and ¢ = czj: use equation (5.19) to find
an expression for a - (b X ¢).

Since a - (b x ¢) may be negative,
we take the modulus to ensure a
positive result.
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Problem 5.12

Crystalline naphthalene has a monoclinic unit cell, defined by the
vectors in Problem 5.11, where |a| = 0.824 nm, |b| = 0.600 nm,
le] = 0.866 nm and the angles between a and b, a and ¢, and b and ¢
are o = 90°, f=122.9° and y = 90°, respectively:

(a) Give the values of b; and c,.

(b) Use equation (5.8) for the scalar product a - ¢ and your answer to
Problem 5.11 to show that a, x 0.866 nm =0.824 x 0.866 x cos
nm?, and hence find the value of a,.

(¢) Use equation (5.9) to show that |a| = \/a? + a$, and hence find
the two possible values for as.

(d) Use equation (5.19) to calculate the volume of the unit cell for
naphthalene, using the positive value for a; obtained in (c).

Note: repeating the calculation of the volume of the unit cell using
the negative value for a; yields an identical result for the volume of
the unit cell. The negative value for a; arises as a legitimate
mathematical solution, but has little physical relevance other than to
reflect the unit cell in the xy-plane.

Summary of Key Points

This chapter provides a description of some of the mathematical
tools required to understand the properties of chemical and physical
quantities that are defined not only by magnitude but also by
direction. The key points discussed include:

1. The graphical definition of a vector.

2. A geometrical method for the addition and subtraction of
vectors.

3. The properties of Cartesian base vectors.

4. An algebraic method for the addition and subtraction of
vectors.

5. The scalar and vector products of two vectors.
6. The scalar triple products, involving three vectors.
7. Working with vectors using matrix and determinantal notation.

8. A selection of mathematical and chemically based examples, to
illustrate practical applications of vectors.




Answers to Problems

1.1. (a) lim & = 0; converges.
S0 >

. 1
(b) ’}m o = converges.

(c) lim cos rx; oscillates between +1.
r—0o0

n—1 n

1.2. n=6;r=0,1,2,3,4,5,6; 6C,:ﬁ

720 720 720 720
M TR T T e T T
720 720 720
2x24_15’ 1x120_6’ 1x720_l'

1.3. Geometric series 1,2,4,8,...2", =>a=1,ax =2, ax’=4, =

a=1,x=2 1—x")_1—2"_1—2"

Using equation (1.20): S, = a( I L 2" — 1.

1l —x

14. 3) S=14+2x+3x2+4x3 4+ .-

ot U (P DX (r+ 1)\'
"u, orx! r )

()

x| <1, ie. for —1 <x< 1.

U, =rx

Urpl
u,

- lim

r—00

= lim

r—00

= |x|; converges if
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2 3 4 r—1

g o iyt
b)yS=1 x+2! 3!+4! o (=1) =1
Upiy (—1 '% _(—1)(r——l)!x’_—_x
u, (_1)’—‘(-"’__’1')!_ rix™1 o
lim |2 — | =Y = 0, .. converges for all x.
r—oo| Y, r
2 4 ,y X2
(C)S=l+?—z+ +(—1) —>
wo | (CUE _-xr-2) (1o
u, _( ])"‘-2\':'_‘2 2r N r]”
lim [ — x_Z — X
r—oo| U, r
= l—le, . converges for l—le < l,ie. when — 1 <x< 1
1.5. ()
A =e™ fO(x) = D) =e*  [Ox)= e
o) —e  [Ox) = —e~
=1 0 =-1 0 =1 100 =-1
Ao =1 190 =1
) x2 x3 ( l)n—lxn—l
..f‘(X):l-—X-f'E—y%- U,,— (}’l—l)'
(b)
fix)=cosx f(x)=-sinx fP(x)=—cosx fP(x) =sinx
fOx)=cosx [O(x) =—sinx
=t slo=0  fAoy=-1  O0)=0
S90) =1 r9(0) =0
N X2 X4 ’C6 B (_l)n—1x2n~2
f(\) =1~ 91 +$ 6! =+ ) Un (2n — 2)'
(c)
fx)=1=-0)" ) =01-x72 fP)=1x21-x)"
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f(x)—1+x+2'2—’f+3'3—’,‘—---
=>f(x)=1+x+x +x° + .-, U,,=x""l.
1.6. (a)
f)=1-x)7" fOx)=1-x)7 fAx)=1x21-x"
FO%) =1x2x3(1-x)"*
fi=1) =3 FH(=1) =4 B-1) =3
( 1) =%
1 1 2(x+ 1% 6(x+1)>
fx) =5+ 3 D+ =+ Texai
2 3 e
i) = (x:1)+(x§1) +(x-1|-61) e, Un:(x;;l) 1
(b)
fix)=sinx fW(x)=cosx fP(x)=—sinx fB(x) = —cosx
f@(x)=sinx  fO)(x)=cosx
=1 M@ =0 fAo=-1 fO0)=0
A0 =1 f0)=0
)= 1= g =3 4= 2 - 2Ty
(—l)n_l T\ 28—
U"—(zn—z)v(x“i)2 2
(©)
fx)=lx fMx)=1/x fOx)=-1/x* [Ox)=2/5
SO =-6/x*  fO(x) =24/x°
=0 fAay=1 sAm=-1 190 =2
SO(1) = -6 (1) =24
S0 =04 (= 1)~ ix— D24 x— 1) = 2 (e — 1
-1 -1 -1
(x) =(x—1) > T4 ;
n-1 (X —1)°
Un—(—l) : n
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1.7. @) () E(R) = DJ1 —e*F R Let u=1-e®R) =
du _ aew(R-Rey

dR
dE(R) _ _ —4(R—R.)
E(R) = Do = —= = 2D = 21)6{1 —e }
dE(R) _dE(R) du _ ~«(R-R.) ~«(R-R.) _ pAl)
e w{ }xae = EMR.
(i) EV (R)= EDE{I — e‘“(R‘Re)}xae““(R‘Re). Using the product rule:

\~ v
u

EP(R) =2De{l —e‘“(R"RL’)}x—ocze_“(R_Rf) +oe X R-RIx 2y p e HR-R)

= —20(2Dee_°‘(R_Re) +2a2Dee‘2a(R_Re) +2aze—2&(R—Re)
(2) (R) =4062Dee_2d(R_R°) —20(2Dee_“(R—Re)
E@(R)=20? De{26—2a<R—Rc> _e—am_&)}_

(b) EM(R,) = 21){1 R, R>}xae “Re=R) = 2D {1-1}x a=0;
therefore a maximum or minimum.

E(z)(Re) — 2a2De{2e—2a(Re—Re) _ e—zx(Re—Re)} _ 2a2De{2 1} = 2052De;
positive; therefore a minimum.

(c) E(R)=o’D(R— R.)>= Letu=R—-R, = 3—; =1
dE(R
E(R) = «’Dou* = d(u ) _ = 20*D.u = 2¢*D.(R — R.)

dE(R) _dE(R) du
dR ~ du dR

__4dER) _ >
Thus F = T 20°D(R — R,).

(d) If k = 2¢°D, and x = R — R,, then F = —kx = the expression
for F obtained in (c) has the same form as the restoring force acting
on a simple harmonic oscillator.

= 20°De(R — R) X 1 =20’ D.(R — R.).

1.8. (a) sinhx = %(e"' —e™)

1 |t +Y2+X3+ L \,n-—l .
=2 31 CEN

.‘('2 x3 X4 : Xn—l
B I S SR A R
( Syoyta Tt
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1 2x+2x3+ N 2! i
217 T 3 [

(2n —1)!
x3 x5 xZn-l
A TR I v oy s
e " “y 1

{1+x+x2+x3+'-- x"+~-}

x2 x3 X3 X4 x4 .X4
R TI FTRNETE Sl E TR TR TE A

2 3

= e
- 2 3

The Maclaurin power series expansion of e~ converges for all x,
and of (—1—17) converges for —1 < x < 1, so the interval of convergence

of the Maclaurin series of f{x) = (—E‘Y—) s -1 <x<l.

eX—1+X+X2+X3+X4+ L—l-i- ;
1.9. (a) 207 317 4l (n—1)! ’
if X =ax, then:2 . . ( ]
o ~ (ax) (ax) (ax) ax)"”
e =14+ax+ o + 3 + a0 (n—l)!+

(b) (i) sin2x = 2sin xcos x

) x3 XS 1 Xz X4

ih2x =2 8}634—32)CS = 2% 8x3+_32x5_
SIN ZX = 42X 6 120 = 3 5
3
Gy sinX = X2+ X i = 2x, then:
A (2x)*  (2x)°
sin2x = 2x — 3 + 5
3 2'.5
i P B e

3! 5!
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hv hv/ZkT 2
1.10. CV_3R( ) {W}

hv 1 (gl:)z?]f
hv/ZkT_ s B
1+2kT o + 1, for large T.
hv 2]
hv 1 (T) i
m/kT _ 1 _ hv 1 L
€ =1+ k T+2 o 1
hv)~ 1
hv 1 (T) i hv
_?7"+T+'“~_k~_ forlarge T.
hv 1 )? hv\2 (kT )?
Therefore, hl:llrlgeCTV 3R( ){hv/kT} 3R(ﬁ) {F}—3R.
1.11. (a) sm%f»—for small x. At x =0, smT—0=>|// 0.
2 .
(b) Atx=L, ¢y = zsmnnzo, whenn=1,23,...
2mt
Wh 1
(c) en x is small, Y = LL

2.1. (a)

-2x-3
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(b) (i) X —2r—3—0 x2EVA——(XIx3)_ V16

2 ~ltg
=142=3, 1.
- +./4= 2) V=2
(ii) x2—2x+2=0:>x=2+ 4 §4x1x2)=1iT4
=1iﬁ2”"lzli%—1ii.

Part (1) has two real roots corresponding to where the curve cuts the
x-axis. For part (ii), there are no real roots and so the curve does not
cut the x-axis.

22. a) P=ixi’=ix—1= —i.
b *=ix?P=ix—-i=1.
() P =ixi*=ix1=i
23. (@) z1+2,=2+31)+ (-1+1i) =1+4i.
nozy 4z — 223 = (14 4i) — 2(3 — 21) = —5 + 8i.

() 212, = (243i)(-1+i) = —24+2i—3i+3i’=—2-i—3=—5—i.
B=0B3-2)3-2)=9—-6i—6i4+4i°’=9—12i—4=>5—12i.
sz + 23 = (=5—i)+ (5 — 12i) = —13i.

24. (a) z=(—1-20)4+(2+7)=1+5;z"=1-5i.
®b) z=03-i)—4-2)=-1+i; ! =—1—i

© z=i(1+3i)=i—-3=-3+i; z* = -3 —1i.
@) z=(143i)(3+2i) =3+2i+9%i—6=—3+11i; 2 =—3—11i.

U T T S

25. @) ;=7x==1=-i

g 1d 11 2%i 24d-24d1 3-d 3 i

O S = 3viTa a1 5 5 5
e I b . G e L W

OU-me—n 2-i-4-2_ -5 -5 '&

_5i-10 -2 i

25 5 5
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2.6.
z=-5+8i Imz|
5_
T T T T T T | L A | T LA |
5 4 3 2 -l I 2 3 4 5Rez
-5+
-107
rz=—13i

2.7. () z=—1-2i; r=v12422 =5, § = tan™' (=2/ - 1) =
tan~'2 = 63.43°, —116.56°. z lies in the 3rd quadrant and so
0 =—-116.56°.

(b) z=2i; r=+22=2; 0 =tan"'(2/0); undefined at 6= 90°,
—90°. In this instance, 0 = 90°.

2.8. (a) (i0)* = —6%; (b) (i0)® = —i6?; (c) (i0)* = 6*; (d) (i0)° = i6°.

(10 (10)° | (10)* (i)
z=r{1+19+(12!) +(‘3!) +(‘4!) +(‘5!) o
2 i3 pd inS
= r{l +i6 — % — %+%+ lsi' + } same as equation (2.16).

2.9. (a) 212, = rie?% x e = rre@+%); modulus = rry,

argument =6, + 0,.

zy n€ v e e i(6,-6,) I

(b) —=——p-=—¢€""xe " =—e""""; modulus =—, argument =
Zy ryer- ra %) %)

0, —0,.
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2 2.2i0 2 2 2
7y _ e e -4, _ T i(20,-46y) z
il A — ok — 1 h). = b

© === 7o, = 4€ ¢ = e ; modulus = —,
5 e # r %

argument = 26, — 460,.

210. z=-1-i, r=vV124+12=v2, f=tan'(-1/=-1)=
tan~'1 = n/4, —3n/4, but in 3rd quadrant and so § = —37/4.

Thus,z = V2e Fio 2 =2 %= 2e‘¥";modulus= 2, argument =

—3n/2=m/2.

1 ..
774 = Ze3m; modulus = 1/4, argument = 37 = + &, but from the

definition of the argument, 6 = n is the only acceptable result.

2.11. (a) (cosO+isinf)™' = cos — O +isin — O = cos§ — isin 6.
(b) (cos®+isinh)'/? = cos/2 +isinb/2.
(c) 2" =r"cosnh+ir'sinnf

real imaginary

(d) z=-1-i;r=V?2;0=—3n/4= z=+2{cos(3n/4) —isin(3n/4)}.

2 = V2 {cos(9n/4) —isin(9n/4)} =vV2 V2 iV V2 ' =220

272 = V2 {cos(~3n/2) — isin(~31/2)}

= S {eos(3n/2) +isin(3%/2)} = 3 x i =

0-+2mm) __ i \i2mn i0

2.12. ¢ = cos 2mn +isin2mn = 1; € e’e " = ¢v.

2.13. (a) e 7% = cos(—0) +isin(—0) = cos 0 — isin 6.
(b) e™% = cos§ — isin 6 and e = cos + isin 6.
(i) Adding the two expressions yields:
: . 1,. :
e +e7% = 2cosf +isinh —isinf = 2cos O = cosf = E(e‘e + e"e).

(i) Similarly, subtracting the two expressions yields:
e —e% = cosf — cosf +isinf +isinh = 2isinf

= sinf = %(eio — e”“’).
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2.14. y = Acoskt+ Bsinkt

1 . . . .
Ly = A Xz(elkt + e—lkt) + Bx%(elkt _ e—lk!)
A A i, By B iy
=3 e + > € + 2ie 2ie

_ A B ikt (A B —ikt
—( +21)e + ) 2i)e .

2.15. (a) ¥, = Nje®rsing e'¢

real imaginary

Yo = Nye™*0rcos 0; real, no imaginary part.
_y = Nie 7psing e ¢
Yo 1 &

real imaginary

() @) Y +y¥_; = Nie7*rsine® + Nye "2 sin g
= Nye~"/%r sin f(e' + e7'%), but e'® + e“¢ = 2cos ¢ and so:

1 2
%('ﬁl +y) = ENle_'/z‘“rsioncosqb

= V2N,e "y sin 6 cos o.
(i) Y,—y_;=Ne"*rsinfe — Nje "/ psin fei¢
=Ne7""* rsinf(e'® —e™*), but ¥ — e i* = 2isin ¢ and so:

%(l//l —Y) = %Nle_’/za"rsinexzisinqﬁ
= V2N,e"/*rsin fsin ¢.

(©) Yo = Nae™*rcos0; z=rcosf = Yy = Noe">%z. Thus we
can relabel  as .

1 : .
75(!/11 +¥_) = V2N,e " sin Bcos ¢; x = rsin fcos ¢
= !/lx = V2Ne 20y,
= V2N;e™"*sin Bsin o; y = rsinfsin ¢

\/— (!/Il
= l//y = \/—Nle—r/Zaoy.
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cell

2.16. (a) F(hkl) = Z fjezni[hxj+kyj+lzj]
J

= F(kl) = fug@ OO0 | o 2milbyripity] _ 4 o itk

Euler’s formula: € = cos 0 +isin 6

= F(hkl) = fua + frua€™ "
= fNa +/naf{cos(h + k + D +isin(h + k + )n}.

(b) F(hkl) = fxa +fna{ cOsth+ k+Dn + isin(h+k+)n }

= 1 when h+k+/ even =0 for h+k+/ even, odd
= —1 when h+k+I odd

~ F(hkl) = 2f\a, for n even;= 0 for n odd.

2.17. For the complex number i, r=1 and 6 = % hence:

il/3 _ ei(7z/2—{~2m7r)><1/3 - ei(1t/6+2m1:/3)

(1: 2mn) .. (n 2m7r)
=cos{—+——) +1smn|—-+——

6 3 6 3
Form=1:
5m V3 1
]/3: i i S — L 2
1 cos( )+1sm(6) > +21
For m=2:
3n 3
1/3 _ I SR el
1 cos(2)+1sm(2) 1;
Form=3:
137 137y V3 1
.]/3= ~I ‘.3 e _.‘
1 cos( c )+1sm( 6) > +21
Form=4:

17n 17n V3 o1
|/3 - « . —_ -
1 —cos(—6 )+1s1n(—6 )— 5 +21,

and so on. We see that taking m = 4 merely replicates the roots
already found, and so the three cube roots of i are —@—&-%i, —i

V3, 1;
and7+§1.
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3.1. 2x+y=>5and Ix+8y=9:

i
40 -9 222.
12 1] ll 16—- 155 7
18
9 5‘
O E R DTS
!2 1. 16—4 15}
18
3.2. (a) a”El,ale—- 1 , by =Inky; ay =1, azvz——l—,
T, ) RT;
b=Inky; x=InAd, y= E
(b)a;; =100, a;, =1, by =212;a,, =0, ap =1, b, =32;
‘212 32 32 212
21232 180 9 100| 3200
— and b= =300 =32

100 l‘ 100 100 5° \lOO 1}

and so the formula relating T to tis T = %t + 32.

-1 2
3.3. (a) 300 =1|g _°|+3|; _§|+2’(1) (2)’
2 —2 2
—0+3(—2-4)4+0=—18.
-1 2
120 1 2 1 -1
(b) : _; =0|_2 _2|+3’2 _2‘+0’2 -
—0+3(—2—4)+0=—18.
10 -2 Lo
3.4. () |2 8 4| Ay=(-1)° =38;
32 2
Ap= (-3 T3|=2--6=8
Ay =1 1)5 '2. 1(4 - —4) = —8;
A23:( =—1X2=—2
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cosf —sinf 0
(b) |sinf® cosf O0]:
0 0 1
_ (_1y3|sin@ 0__. _
AIZ—( 1) 0 1 - Slne’
Agy = [~1) ‘3(1)“9 ? = —1x—sinf = sin .
3.5. (a)
1 2 3
. 2 3 1 3 1 2
o 05 2l=o2 3L Y1) 2
2 4 2 4 2 2 2 -2 4
=0+82—--6)—2(4——4) =64 —16 = 48.
1 23 1 0
(i)] 0 8 2|= Subtract twice col 1 fromcol2 =| 0 8
-2 4 2 -2 8
1 00 8 2
and then 3 times col | fromcol3 =| 0 8 2 =1'8 8'
-2 8 8
=64—-16=
1 00
(i11) Starting from | 0 8 2|, subtract 1/4 col 2 from col 3
-2 8 8
1 00
= 0 8 0]|=1x8x6=48.
-2 8 6
Lo 0 -2, 1 —2| 1 0
®d) @ [2 8 4 :—2‘2 2|+8'3 2‘—4'3 2l=
3 2 2
20— —-4)+82——-6)—4(2—-0) = -8+ 64 —8 =48.
1 0 =2 1 00
() |2 8 4| = Add twice col 1 to col 3 = |2 8 8
32 2 3 2 8
llg §=64—16:48.
1 00
(iii) Starting from (2 8 8|, subtract col 2 from col
3 2 8

1 0 0
2.8 0
6

=1'§ (6) =1x8x6 =48.
3 2

3
2
2

48.

3=
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a—¢ B 0
36.| f a—-¢ B |=0:
0 B a—c¢
a—¢ o—¢€
1 0 1 0
B oa—¢€ B a—¢€
@@ 1 1 |Bp=0=] 1 1 |=o
o—e o—¢€
0 1 0 1
B B

10 x 1 11

1 x l=x| |—1| |=x(x2—l)—(x—0)=x3—
1 x 0 x

0 1 x |

X 0
I x 1
0 1 x
©x—2x=0= x(x* —2) =0, when x =0, +V2.
@ x=(z—2)/B=a—Px=c=s=a aFV2h.

XxX—x=x—-2x= =x1—2x=0.

Chapter 4

1 1 1 3 -1 1
4.1.b—-(2 _9 2),c—(l _3),d—(0)and
e=(0 —-i 1 i):
(a) b, rectangular; ¢, square; d, column; e, row.

(b) byuy=1,by=1,b35=1, byy =2, by = -2, by3 =2.

cn=3,cn=-1,¢3=1, cpp=-3.
d“ = 1, d21 =O
e =0,ep=—l,e3=1, ey =1i.

() b,2X3;¢,2%2;d,2X1;e,1x%x4.

4 5 8 10
4.2. (a) 2B=2( 1 6):( 2 12);
—4 3 -8 6
2 4 5
=( 1 6).
-4 3

1 i) (1 —i\ (2 0
i l)+(i 1):(0 2)‘21)'

(b) 2C =2

s v

43. (a) A+B

I
— NI L NI
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(b) A-B:(_} i)_(: "i)z

[ cosO sinf cos0
© R+S= (—sinH cosH) ( sin 6

= 2cos OD.

_ [ cos@ sin0 cosf
@) R—5= (—sinO cosB) B ( sin 6

=2sin0C.

4.4.AB=(;_ f)(_i —1):(—11

- () )(
AC=(; f)(:i :):(j g)
BC=(_: _21)(:} }):(—(1) ;

0 2 ]
(_2i 0 ) = 2iC.

—sin@)  [2cos0
cosf) \ 0

—sin0) 0
cosf ) \-2sinf

ED:(_?;)(I 2):(_31 _g):2x2.

DA = (1 2)(; f):(s 4):1x2.
AD not defined.
EA not defined.

se= (5 1)(3) =

=>AB—BA=(_11 3)—(‘; 5):(_3 g):2><2.
)

0
2cos 6

2sin 0
0

)
)
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4.5 (a) Reflection in the line y = x will result in the x and y values
interchanging. We can represent this coordinate transformation as:

Y X dy dn)\y
r = D r
Multiplying out gives:

dyx+dpy=y=d,; =0,
d21x+d22y=xi d21 = 1,

(b) (i) E = CD

(i) F=DC =

4.6 (a) AT =

0 1
=D= .
(i o)

(% )07 0
(v 0)(%0 V)

cos 0
—sin 6

sin 6
cosf )

dp=1
d22=O

I
—
|
=
O —
~—

(b) CT = (‘} “i)

11
(c) DT=<3 2).
4 1

T ; T —
4'7 (a) XHIHXIHII =hnX n’ XHIM XIIH'I =mXxm.

o -1

Loy
BTB=(1 2)(1
21
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ey _f L BN 1 1-4% 73 1~
AB‘(l—i —1)(1—i 0 )”(0 —2i)‘

® @) = (1, %)

pab (1 1=i\( 1 1=i\_( 3 0
BA‘(1—1 0 )(1+i —1)“(1—i —21)'

a10@ an=(3 1) 2)-(7} 2)

= tr(AB) = -1 —6=—7

BA:(? _;)((1) ‘é):(? _?):Mr(BA)=0—7=—7.

(b) ABC:(_31 _2)(‘1 é):(_g “é):tr(ABC)=4+3=7.

CAB=(—; (1))(_; —2)2(—1 _g)

= tr(CAB) =4+3=7

sca=(0 2)(F 4)=(14 )

= tr(BCA) =1 + 6 =7.

I 1%, 1 o 2 =30
(c)DTl):(—l —2)(1 5 0):(—3 5 0)
0 0 0 00

=tr(D'D)=24+54+0=7.
11
1 -1 0 2 3
DDT:( ) -1 -2 =( )
I -2 0 ( g 0) 35
=tr(DDT)=2+5=7.
13
00 0 00
arr () 0)(3 %)_(0 41

1 2 3}/0 0 0)\.
(b)(4 5 6)(0 0 0)1sundeﬁned.
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S = O

1 0\ /1 3 1 3
(c)(O 0)(2 2):(2 2).
0 1/\o 1 0 1
1 00
1 3 1 2 3
(d)(4 6)(8 (1) ?)=(4 5 6)'

1 3\/1 0 0
@12 2)1{0 1 0) is undefined.
0 1/\0 0 1

cosf —sinf
sin 0 cosf

B— cos § —sind
" \sin@ cos@

(ii)BTAz( cosf sine)(cose —sinB):(l 0).

—sinf cos0 /\ sin6 cosf 0 1

W N

4.12 (a) (i) detA = = cos’0 + sin’0 = 1;

(1 0 (1 0 _ oT
EzdetA—(0 l)xl_(o 1).ThusE2detA—B A.

-1 1 01 0 —1
Gz':—( 1 1):2;622:(1 1):_1;6232_(1 1):_1?

0 1 0 —1
-3 0 3 3 2 -1\ /0 —11
H:( 2 -1 -1}|=H"G=| 0 -1 2 (2 =1 2)
-1 2 2 3 -1 2/\1 11
300
=10 3 0o}
0 0 3

dethlﬁ %l%—lﬁ _}|=0+3=3; therefore

1 00 300
E;detG=|0 1 0)><3: 0 3 0.
0 0 1 0 0 3
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i
k
4-13(3)A=(7]5 [)7de[A:————:il

B f V2
k 1 k 1 31
SN SRS 5y [ W R S I e (P )
= \/§ t +2=> 2 1 2 2’2

3v2 V2 301
:>k:———,—:———7—,
2 ' 2 22

3 r,y f 1 =2, .1 (52 T T
Fork=——7= A A_(_2 5),AA _( )=>A A#AATAE,.

L g (1 0\ . .1 (10 Th  aaT_
Fork—%,A A—(O 1),AA ‘(0 l)=>A A=AAT=E,

The only valid solution is k = \—};

cosf sinf 0
(b)) R=| sinf cosf 0 |;detR =cos’>0 —sin’0 = +1.
0 0 1

However, cos 20 = cos’ 0 — sin® § and so cos26 = +1

=20 =cos”' +1 =0,+nmm=0=0, il%n,nz 1,2,3,..
1 0 0 01 0 .
=R=]0 1 0], for=0R=]|1 0 0 ,for9=§;
0 0 1 0 0 1
-1 00 0 -1 0 -
R= 0 -1 0),for6=m;R=] -1 0 0 ,for():'T,—s.
0 01 0 01 -~
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In each case, RT = R.

RR'

RRT

RRT

L RTIR=RRT=E,.

'—'2’—‘,n=1,2,3,..

For 0 =0, +

=+1=k=0,-2

) detA=1+k=1+k

Fork=0:

)

-1
1

2
-1

0
1

=-2:

For k

)
)

5
-3

(
(

Il

)

-1
1

~.Not orthogonal.

-3
5

2
-3

-2
1

), ~A=A"

344
1

0
3-i
3i—1

0 3—11-i)’ Al

< B |

4.14. (a) A = (

); xTAx

3i—1-3i=-1.

1
1

)6)
31—1)

0
31

(b) Ax

(1 i)
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4.15. (a)A:(_l. l); AT=( 1 (l)).'.Hermitian.
v 1 1 1 1y _( 2 i), .
AA _(—i 0)(—-i 0)—(—i 1).. Not unitary.
(b)B:—(__Ii _i); BTzi( 1 _;) Hermitian.
1
2

2 0 10 .
(0 2)—(0 1)..Umtary.

@D = (_i ‘é); DT = (_; ‘é) = Symmetsic,

o= (4 )4 0)-(3 )

. Not orthogonal.

I -1 1 1 -1 0

4.16 detA=|—-1 -1 1| = addcol2tocol3=|-1 -1 0
1 11 1 1 2
1 00 20
and thenaddcol 1 tocol 2 =detA=|—-1 -2 0 =| |:—4.
22
1 22
-2 2 0
The matrix of cofactors of A is B = 2 0 2}
0o -2 -2
-2 2 0
BT=| 2 0 -2
o -2 -2
1 1 -2 2 0
Therefore A~! = 2 ABT:—Z 2 0 =2
et 0 —2 -2
§ 4 o
=| - 0 1
0 4}
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(=

S o= I~

1 -1 0
Check: AA™'=[-1 -1 1)
1

1 1

= O M=
M= B|—

4.17. x+2y+3z=1
8y+2z=1
—2x4+4y+2z=2

1 2 3 b 1
08 21lryI=11
-2 4 2/\: 2
A X b

8 —4 16 g8 8
Matrix of cofactors B= 8 8 —8|;, BT=|-4 8

-20 -2 8 16 -8

(= =
oS = O
-0 O

-20
-2 |
8

8 2 0 2 0 8
detA—’4 2—2'_2 2+3\_2 4| =8-8+48 =148
| 1( g 8 —20) i & &
A7 = B =—|-4 8 2|=|-% | L
detA B\ -8 8 Lol
3 6 6

5

=07Z:

——
ty N
SN—

Il
|

wi— Sl— o

Q\!_.. aN— SN—

|

o Rl 3
P
[N I
SNS—

Il

|

NI— O ol—

-
Il
|

N -
-

0 B 0\ /¢ e p
(a) For ¢ = a, (B 0 B)(c’g)=(c’1,3 +C3ﬂ):(
0 ﬂ 0 C3 ('2B

=>6=0;cf+a=0 = =0, c3=—¢

0
0
0
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-2 B 0 ¢l
(b) For e = o + V28, B V28 B (cz)
0 B —~V2p
—V2Be, + 0 0
=1 c1f—V2per + apf | = ( )
2B — V2Pe

= —\/iﬁcl I Czﬂ =0; Clﬁ o \/EﬁCZ + C3ﬂ =0; Czﬂ — \/EBQ =0

=)= \/icl, 3 =¢y.

V2B B 0 \/a
(Fore=a—v28, | B V28 B (62)
0 B V28] \c
V2Be; + e 0
=l caBf+V2Ber+cap|=]0
2B+ V2Bes 0

= \/Eﬂcl +0f=0; ¢;f+ \/iﬁcz +f=0; ,f+ \/E,Bc3 =0

= ¢y = —V2c, 3 =c¢.

1 1
(d) For e = a, c:cl( 0 ); for e = o + /28, c=c1(\/§);
-1 1
1
fors:oc—\/fﬁ, c = _—
1
4.19. Identity is 1.
—Ix—-1=1)
—1xi=—i
Ix—i=i Product of any two yields another member of
. . ’-
1Xi=~—1 the group.
IXx—-i=1
—ixX—i=-1 ]
Inverse of 1 is 1.
Inverse of —11is —1.
Inverse of i is —1.
Inverse of —1iis i.
Multiplication is associative: (—1 xi)x —i = —1 X (iX —i) = —1.

.. The set G, forms a group.
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4.20. (a)
A B C D
A|lA B C D
B|B A D C
clc D B A
DD C A B
(b)
A B C D
AlA B Cc D
B|B A D C
clc p A B
DD C B A

4.21. One three-fold axis of rotation, three two-fold axes of
rotation, one mirror plane containing the plane of the molecule, and
three mirror planes perpendicular to the plane of the molecule.

5.1. (a)

(b)
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5.2, (a)3a—2b=3(i+j—2k) —2(i+ k) =i+ 3f — 8k.

(b) —2a—b=-2(+j—2k)— (i+k)=—3i— 2/ + 3k.

©a+b—c—d=(i+j—2k)+ ({+k)— (@ +j+ k) — (@ - 2k)
= 0i + 0 + 0k = 0.

() la—d| = |+j—2k) - (i - 26)| =|i|=1.

atc  ((+j-20)+(@+j+k)  28+2—k

© Sl T B e G
la + ¢l |(i+j—2k)+(i+j+k)| V24224 12
242k 2. 2: 1,

© [pi+3i- 3= JO++ =1

© la| - lel = |G +j—26)| - | + ] + &)
=VIi+ti+4 - VI+1+1=v6-3.

5.3. (2) i, —J, —i, J.
(b) Ri, —Rj, —Ri, Rj.

(c) Shortest: e.g. r=Ri— Rj; Ir| = I—Rf— Rf' =vVR*+ R2=+/2R.

Longest: e.g. p= —Ri+ —Ri = —2Ri; |p| = |—2Ri| =2R.

54. @)a-c=(2+3k) - (—2j+k) =2-i+3k-k=5.

(b)a-(b—2¢)=(2+3k) (—i+5—k)=—2ii—3k-k=-5.

18.

©a (b+a)= (2 +3k)-Gi+j+4k)=6i i+ 12k &k
@b-c=@G+j+k)-(-2+k)=ii-2j+k-k=o0.

55. (a) ()a-(b—2c)=—-5=|a||(b—2¢)|cosb

la] = V22 + 32 = V13,

(b —2¢)| = V12 + 52 4+ 12 =27

= ———=1cos0 = 0 = 105.48"°.
V13v27
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(i) b-c =0 =1b|.|c|cos O = 0 = 90°.
(byd-e=3i—2j—k) (i+1+2k)=3i-i-2)jj—2k-k=1-2].

| =V32+22+ 12 = V14
le| =V12 +i2+22 =5+ 12
1 =24 = V14V5 + A2c0s90° = 0

= 1-2A=0 = 1=2, = ).:%.

5.6. c=a+b = cc=(a+b)-(a+b)=aa+2ab+b-b
a 2abcosf b?

We need to exercise some care here because the quantity a - b will
yield an angle 0 = 180° — C which in this example is an acute angle,
rather than the obtuse angle required. Consequently, we must
substitute 180° — C for 6, which therefore gives:

¢ ¢=d>+ b +2abcos(180° — C) = a* + b* — 2abcos C.

5.7. (a) r = ali— aj — ak; ry = —ai + af~ ak; ry = ai + af + ak;
ry = —ai — aj + ak.

(b)|r3|:\/§a_3:\/§a = R=V3a = azi.

() ry — s = (ai + aj + ak) — (—ai + aj — alé) = 2ai + 2ak;
|"3—"2|=W=@=\/§a=%@=2—\\//—?~

5.8. (a) axc= (2+3k)x({—-2+k)= (-4 xj)+ (2 x k) +

(3k x i) —(6kxj) = —4k — 2j + 3j + 6i = 6i + j — 4k.

(b) exa = (i—2j+k)x (20 + 3k) = (3 x k) + (—4f x i) — (6] x k) +
(2k xi) = —3j + 4k — 6i + 2j = —6i — j + 4k.

(©) lexal = V36 + 1+ 16 =/53.

(d) (%)) xj=kxj=—i

() ix(jxj)=ix0=0.
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5.9. (@)a-b=(aji + 021 + a3k) (bll + b21 + byk)

=abii-i+a byf - j+ asbsk - k = = a1b, + arb, + azbs.

(b) bxe = (bii + by + byk) X (c1i+ caf + c3k)
= biCyi X+ byesi Xk + bye, fx i+ byesfx k + byek x i
+ bycrk X j
= bicyk — byesj — byerk + byesi + byeyj — byeyl
= (bacs — b3er)i — (byes — byey)j + (brey — by k.

J
1

AU 1| s o
+kl1 _1|—2l—2k.

—11’

i jk
5.10. (a) axb=|1 1 1
1 -1 1

1
(b) lax b| = |21 2k| V22122 f
D s

. Unit vector = —1 — IE e

NN )

5.11. Fora:a2f+a3/€, b=b|f, C=sz1

0 a, as 0
a (bxe)=|by 0 O0|=a;s 0 ¢ ‘:a3b,cz.
0 ¢ 0 .

5.12. (a) b = b/ and |b| = 0.600 nm; ¢ = ¢,j and || = 0.866 nm:
= 0.600 nm and ¢; = 0.866 nm.
() a- ¢ = (arj + azk) - (¢2)) = are, = 0.824 % 0.866 x cos f nm?

= a, x 0.866 nm = 0.824 x 0.866 x cos f nm*
= a; = 0.824nm X cos 122.9° = —0.448 nm.

(©) la] = /a3 + @} = /0.4482 + ¢ = 0.824 nm

= 0.679 = 0.448% + a3

~a3 =0.679 — 0.2003 = 0.479 nm>.
= a3 = +0.692 nm.

(d) Volume of the unit cell is given by:

a-(bxe) =asbic; = 0.692x0.600 % 0.866 = 0.36 nm®.
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