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Preface

This book found its beginnings� as a natural outgrowth of Toby Segaran and 

Jeff Hammerbacher’s Beautiful Data (O’Reilly), which explores everything from data 

gathering to data storage and organization and data analysis. While working on that 

project, it became clear to us that visualization—the practice of presenting informa-

tion for consumption as art—was a topic deep and wide enough to warrant a separate 

examination. When done beautifully, successful visualizations are deceptive in their 

simplicity, offering the viewer insight and new understanding at a glance. We hoped 

to help those new to this growing field uncover the methods and decision-making 

processes experts use to achieve this end.

Particularly intriguing when assembling a list of potential contributors was how 

many ways the word beautiful can be interpreted. The book that founded this series, 

Andy Oram and Greg Wilson’s Beautiful Code (O’Reilly), defined beauty as a simple 

and elegant solution to some kind of problem. But visualization—as a combination of 

information and art—naturally combines both problem solving and aesthetics, allowing 

us to consider beauty in both the intellectual and classic senses.

We hope you will be as delighted as we are by the diversity of backgrounds, projects, 

and approaches represented in this book. Different as they are, the chapters do offer 

some themes to the thoughtful and observant. Look for ideas about storytelling, color 

use, levels of granularity in the data, and user exploration woven throughout the 

book. Tug on these threads, and see where they take you in your own work.

http://oreilly.com/catalog/9780596157111/
http://oreilly.com/catalog/9780596510046/
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The royalties for this book are being donated to Architecture for Humanity (http://www.

architectureforhumanity.org), an organization dedicated to making the world better by 

bringing design, construction, and development services to the places where they are 

most critically needed. We hope you’ll consider how your own design processes shape 

the world.

How This Book Is Organized
Here’s a preview of what you’ll find in this book:

Chapter 1, On Beauty, by Noah Iliinsky, offers an examination of what we mean by 

beauty in the context of visualization, why it’s a worthy goal to pursue, and how to 

get there.

Chapter 2, Once Upon a Stacked Time Series: The Importance of Storytelling in Information 

Visualization, by Matthias Shapiro, explains the importance of storytelling to visualiza-

tion and walks readers through the creation of a simple visualization project they can 

do on their own.

Chapter 3, Wordle, by Jonathan Feinberg, explains the inner workings of his popu-

lar method for visualizing a body of text, discussing both the technical and aesthetic 

choices the author made along the way.

Chapter 4, Color: The Cinderella of Data Visualization, by Michael Driscoll, shows how 

color can be used effectively to convey additional dimensions of data that our brains 

are able to recognize before we’re aware of it.

Chapter 5, Mapping Information: Redesigning the New York City Subway Map, by Eddie 

Jabbour, explores the humble subway map as a basic visualization tool for understand-

ing complex systems.

Chapter 6, Flight Patterns: A Deep Dive, by Aaron Koblin with Valdean Klump, visualizes 

civilian air traffic in the United States and Canada to reveal a method to the madness 

of air travel.

Chapter 7, Your Choices Reveal Who You Are: Mining and Visualizing Social Patterns, by 

Valdis Krebs, digs into behavioral data to show how the books we buy and the people 

we associate with reveal clues about our deeper selves.

Chapter 8, Visualizing the U.S. Senate Social Graph (1991–2009), by Andrew Odewahn, 

uses quantitative evidence to evaluate a qualitative story about voting coalitions in the 

United States Senate.

Chapter 9, The Big Picture: Search and Discovery, by Todd Holloway, uses a proximity 

graphing technique to explore the dynamics of search and discovery as they apply to 

YELLOWPAGES.COM and the Netflix Prize.

http://www.architectureforhumanity.org
http://www.architectureforhumanity.org
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Chapter 10, Finding Beautiful Insights in the Chaos of Social Network Visualizations, by 

Adam Perer, empowers users to dig into chaotic social network visualizations with 

interactive techniques that integrate visualization and statistics.

Chapter 11, Beautiful History: Visualizing Wikipedia, by Martin Wattenberg and Fernanda 

Viégas, takes readers through the process of exploring an unknown phenomenon 

through visualization, from initial sketches to published scientific papers. 

Chapter 12, Turning a Table into a Tree: Growing Parallel Sets into a Purposeful Project, by 

Robert Kosara, emphasizes the relationship between the visual representation of data 

and the underlying data structure or database design.

Chapter 13, The Design of “X by Y”: An Information-Aesthetic Exploration of the Ars 

Electronica Archives, by Moritz Stefaner, describes the process of striving to find a repre-

sentation of information that is not only useable and informative but also sensual and 

evocative.

Chapter 14, Revealing Matrices, by Maximilian Schich, uncovers nonintuitive structures 

in curated databases arising from local activity by the curators and the heterogeneity of 

the source data.

Chapter 15, This Was 1994: Data Exploration with the NYTimes Article Search API, by Jer 

Thorp, guides readers through using the API to explore and visualize data from the 

New York Times archives.

Chapter 16, A Day in the Life of the New York Times, by Michael Young and Nick Bilton, 

relates how the New York Times R&D group is using Python and Map/Reduce to exam-

ine web and mobile site traffic data across the country and around the world.

Chapter 17, Immersed in Unfolding Complex Systems, by Lance Putnam, Graham Wakefield, 

Haru Ji, Basak Alper, Dennis Adderton, and Professor JoAnn Kuchera-Morin, describes 

the remarkable scientific exploration made possible by cutting-edge visualization and 

sonification techniques at the AlloSphere. 

Chapter 18, Postmortem Visualization: The Real Gold Standard, by Anders Persson, exam-

ines new imaging technologies being used to collect and analyze data on human and 

animal cadavers.

Chapter 19, Animation for Visualization: Opportunities and Drawbacks, by Danyel Fisher, 

attempts to work out a framework for designing animated visualizations.

Chapter 20, Visualization: Indexed., by Jessica Hagy, provides insight into various aspects 

of the “elephant” we call visualization such that we come away with a better idea of 

the big picture. 
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions. Also 

used for emphasis in the text.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-

ments such as variable or function names, databases, data types, environment 

variables, statements, and keywords.

Constant width bold
Used for emphasis within code listings.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in 

this book in your programs and documentation. You do not need to contact us for 

permission unless you’re reproducing a significant portion of the code. For example, 

writing a program that uses several chunks of code from this book does not require 

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does 

require permission. Answering a question by citing this book and quoting example 

code does not require permission. Incorporating a significant amount of example code 

from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, 

author, publisher, and ISBN. For example: “Beautiful Visualization, edited by Julie Steele 

and Noah Iliinsky. Copyright 2010 O’Reilly Media, Inc., 978-1-449-37987-2.”

If you feel your use of code examples falls outside fair use or the permission given 

above, feel free to contact us at permissions@oreilly.com.

mailto:permissions@oreilly.com
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc. 

1005 Gravenstein Highway North 

Sebastopol, CA 95472 

800-998-9938 (in the United States or Canada) 

707-829-0515 (international or local) 

707-829-0104 (fax) 

We have a web page for this book, where we list errata, examples, and any additional 

information. You can access this page at:

http://www.oreilly.com/catalog/0636920000617 

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the 

O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily 

search over 7,500 technology and creative reference books and videos 

to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library 

online. Read books on your cell phone and mobile devices. Access new titles before 

they are available for print, and get exclusive access to manuscripts in development 

and post feedback for the authors. Copy and paste code samples, organize your favor-

ites, download chapters, bookmark key sections, create notes, print out pages, and 

benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full 

digital access to this book and others on similar topics from O’Reilly and other publish-

ers, sign up for free at http://my.safaribooksonline.com.

http://www.oreilly.com/catalog/0636920000617
bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com
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1

C h a p t e r  O n e

On Beauty
Noah Iliinsky

This chapter is an examination of what we mean by beauty �in the context 

of visualization, why it’s a worthy goal to pursue, and how to get there. We’ll start with 

a discussion of the elements of beauty, look at some examples and counterexamples, and 

then focus on the critical steps to realize a beautiful visualization.* 

What Is Beauty?
What do we mean when we say a visual is beautiful? Is it an aesthetic judgment, in 

the traditional sense of the word? It can be, but when we’re discussing visuals in this 

context, beauty can be considered to have four key elements, of which aesthetic judg-

ment is only one. For a visual to qualify as beautiful, it must be aesthetically pleasing, 

yes, but it must also be novel, informative, and efficient. 

Novel
For a visual to truly be beautiful, it must go beyond merely being a conduit for infor-

mation and offer some novelty: a fresh look at the data or a format that gives readers a 

spark of excitement and results in a new level of understanding. Well-understood for-

mats (e.g., scatterplots) may be accessible and effective, but for the most part they no 

longer have the ability to surprise or delight us. Most often, designs that delight us do 

*	I use the words visualization and visual interchangeably in this chapter, to refer to all types of struc-
tured representation of information. This encompasses graphs, charts, diagrams, maps, storyboards, 
and less formally structured illustrations.
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so not because they were designed to be novel, but because they were designed to be 

effective; their novelty is a byproduct of effectively revealing some new insight about 

the world.

Informative
The key to the success of any visual, beautiful or not, is providing access to informa-

tion so that the user may gain knowledge. A visual that does not achieve this goal has 

failed. Because it is the most important factor in determining overall success, the abil-

ity to convey information must be the primary driver of the design of a visual.

There are dozens of contextual, perceptive, and cognitive considerations that come 

into play in making an effective visual. Though many of these are largely outside the 

scope of this chapter, we can focus on two particulars: the intended message and the con-

text of use. Keen attention to these two factors, in addition to the data itself, will go far 

toward making a data visualization effective, successful, and beautiful; we will look at 

them more closely a little later.

Efficient
A beautiful visualization has a clear goal, a message, or a particular perspective on 

the information that it is designed to convey. Access to this information should be as 

straightforward as possible, without sacrificing any necessary, relevant complexity.

A visual must not include too much off-topic content or information. Putting more 

information on the page may (or may not) result in conveying more information to 

the reader. However, presenting more information necessarily means that it will take 

the reader longer to find any desired subset of that information. Irrelevant data is the 

same thing as noise. If it’s not helping, it’s probably getting in the way.

Aesthetic
The graphical construction—consisting of axes and layout, shape, colors, lines, and 

typography—is a necessary, but not solely sufficient, ingredient in achieving beauty. 

Appropriate usage of these elements is essential for guiding the reader, communicat-

ing meaning, revealing relationships, and highlighting conclusions, as well as for visual 

appeal.

The graphical aspects of design must primarily serve the goal of presenting informa-

tion. Any facet of the graphical treatment that does not aid in the presentation of 

information is a potential obstacle: it may reduce the efficiency and inhibit the suc-

cess of a visualization. As with the data presented, less is usually more in the graphics 

department. If it’s not helping, it’s probably getting in the way.
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Often, novel visual treatments are presented as innovative solutions. However, when 

the goal of a unique design is simply to be different, and the novelty can’t be spe-

cifically linked to the goal of making the data more accessible, the resulting visual is 

almost certain to be more difficult to use. In the worst cases, novel design is nothing 

more than the product of ego and the desire to create something visually impressive, 

regardless of the intended audience, use, or function. Such designs aren’t useful to 

anyone.

Learning from the Classics
The vast majority of mundane information visualization is done in completely stan-

dard formats. Basic presentation styles, such as bar, line, scatter, and pie graphs, orga-

nizational and flow charts, and a few other formats are easy to generate with all sorts 

of software. These formats are ubiquitous and provide convenient and conventional 

starting points. Their theory and use are reasonably well understood by both visual 

creators and consumers. For these reasons, they are good, strong solutions to common 

visualization problems. However, their optimal use is limited to some very specific data 

types, and their standardization and familiarity means they will rarely achieve novelty.

Beautiful visualizations that go on to fame and fortune are a different breed. They 

don’t necessarily originate with conventions that are known to their creators or con-

sumers (though they may leverage some familiar visual elements or treatments), and 

they usually deviate from the expected formats. These images are not constrained by 

the limits of conventional visual protocols: they have the freedom to effectively adapt 

to unconventional data types, and plenty of room to surprise and delight.

Most importantly, beautiful visualizations reflect the qualities of the data that they 

represent, explicitly revealing properties and relationships inherent and implicit in the 

source data. As these properties and relationships become available to the reader, they 

bring new knowledge, insight, and enjoyment. To illustrate, let’s look at two very well-

known beautiful visualizations and how they embrace the structure of their source 

data.

The Periodic Table of the Elements
The first example we’ll consider is Mendeleev’s periodic table of the elements, a mas-

terful visualization that encodes at least four, and often nine or more, different types of 

data in a tidy table (see Figure 1-1). The elements have properties that recur periodi-

cally, and the elements are organized into rows and columns in the table to reflect the 

periodicity of these properties. That is the key point, so I’ll say it again: the genius of 

the periodic table is that it is arranged to reveal the related, repeating physical prop-

erties of the elements. The structure of the table is directly dictated by the data that 

it represents. Consequently, the table allows quick access to an understanding of the 

properties of a given element at a glance. Beyond that, the table also allows very accu-

rate predictions of undiscovered elements, based on the gaps it contains.
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Figure 1-1.  A basic example of Mendeleev’s periodic table of the elements

The periodic table of the elements is absolutely informative, arguably efficient, and 

was a completely new approach to a problem that previously hadn’t had a successful 

visual solution. For all of these reasons, it may be considered one of the earlier beauti-

ful visualizations of complex data. 

It should be noted that the efficacy and success of the periodic table were achieved 

with the absolute minimum of graphical treatment; in fact, the earliest versions were 

text-only and could be generated on a typewriter. Strong graphic design treatment 

isn’t a requirement for beauty.

The London Underground Map
The second classic beautiful visualization we’ll consider is Harry Beck’s map of the 

London Underground (aka the Tube map—see Figure 1-2). The Tube map was influ-

enced by conventions and standards for visuals, but not by those of cartography. 

Beck’s background was in drafting electrical circuits: he was used to drawing circuit 

layout lines at 45° and 90° angles, and he brought those conventions to the Tube map. 
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That freed the map of any attachment to accurate representation of geography and led 

to an abstracted visual style that more simply reflected the realities of subway travel: 

once you’re in the system, what matters most is your logical relationship to the rest 

of the subway system. Other maps that accurately show the geography can help you 

figure out what to do on the surface, but while you’re underground the only surface 

features that are accessible are the subway stations.

Figure 1-2.  The London Underground (“Tube”) map;  2007 London Tube Map © TfL from the 
London Transport Museum collection (used with permission)

The London Underground map highlighted the most relevant information and stripped 

away much of the irrelevant information, making the pertinent data more eas-

ily accessible. It was executed with a distinctive and unique graphical style that has 

become iconic. It is widely recognized as a masterpiece and is undoubtedly a beautiful 

visualization.

Other Subway Maps and Periodic Tables Are Weak Imitations
Due to the success of the periodic table and the London Underground map, their 

formats are often mimicked for representations of other data. There are periodic 

tables of just about everything you can imagine: foods, drinks, animals, hobbies, and, 

sadly, visualization methods.* These all miss the point. Similarly, Underground-style 

*	See http://www.visual-literacy.org/periodic_table/periodic_table.html.

http://www.visual-literacy.org/periodic_table/periodic_table.html
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maps have been used to represent movies of different genres,* relationships among 

technology companies,† corporate acquisition timelines,‡ and the subway systems of 

cities other than London. 

Of these examples, the only reasonable alternate use of the latter format is to represent 

subways in other cities (many of these—Tokyo, Moscow, etc.—are quite well done). 

All the other uses of these formats fail to understand what makes them special: their 

authentic relationships to and representations of the source data. Putting nonperiodic 

data into a periodic table makes as much sense as sorting your socks by atomic num-

ber; there’s no rational reason for it because the structure you’re referencing doesn’t 

exist. Casting alternate data into these classic formats may be an interesting creative 

exercise, but doing so misses the point and value of the original formats.

How Do We Achieve Beauty?
Given the abundance of less-than-beautiful visualizations, it’s clear that the path to 

beauty is not obvious. However, I believe there are ways to get to beauty that are 

dependable, if not entirely deterministic.

Step Outside Default Formats
The first requirement of a beautiful visualization is that it is novel, fresh, or unique. It 

is difficult (though not impossible) to achieve the necessary novelty using default for-

mats. In most situations, well-defined formats have well-defined, rational conventions 

of use: line graphs for continuous data, bar graphs for discrete data, pie graphs for 

when you are more interested in a pretty picture than conveying knowledge. 

Standard formats and conventions do have their benefits: they are easy to create, 

familiar to most readers, and usually don’t need to be explained. Most of the time, 

these conventions should be respected and leveraged. However, the necessary spark of 

novelty is difficult to achieve when using utilitarian formats in typical ways; defaults 

are useful, but they are also limiting. Defaults should be set aside for a better, more 

powerful solution only with informed intent, rather than merely to provide variety for 

the sake of variety.

Default presentations can also have hidden pitfalls when used in ways that don’t suit 

the situation. One example that I encountered was on a manufacturer’s website, where 

its retailers were listed alphabetically in one column, with their cities and states in a 

second column. This system surely made perfect sense to whoever designed it, but the 

design didn’t take into account how that list would be used. Had I already known the 

names of the retailers in my area, an alphabetical list of them would have been useful. 

*	See http://blog.vodkaster.com/2009/06/25/the-top-250-best-movies-of-all-time-map/.

†	See http://informationarchitects.jp/wtm4/.

‡	See http://www.meettheboss.com/google-acquisitions-and-investments.html.

http://blog.vodkaster.com/2009/06/25/the-top-250-best-movies-of-all-time-map/
http://informationarchitects.jp/wtm4/
http://www.meettheboss.com/google-acquisitions-and-investments.html
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Unfortunately, I knew my location but not the retailer names. In this case, a list sorted 

by the most easily accessible information (location) would have made more sense than 

a default alphabetic sort on the retailer name.

Make It Informative
As I mentioned earlier, a visualization must be informative and useful to be success-

ful. There are two main areas to consider to ensure that what is created is useful: the 

intended message and the context of use. Considering and integrating insight from 

these areas is usually an iterative process, involving going back and forth between 

them as the design evolves. Conventions should also be taken into consideration, to 

support the accessibility of the design (careful use of certain conventions allows users 

to assume some things about the data—such as the use of the colors red and blue in 

visuals about American politics). 

Intended message
The first area to consider is what knowledge you’re trying to convey, what question 

you’re trying to answer, or what story you’re trying to tell. This phase is all about 

planning the function of the visual in the abstract; it’s too early to begin thinking 

about specific formats or implementation details. This is a critical step, and it is worth a 

significant time investment. 

Once the message or goal has been determined, the next consideration is how the 

visualization is going to be used. The readers and their needs, jargon, and biases must 

all be considered. It’s enormously helpful in this phase to be specific about the tasks 

the users need to achieve or the knowledge they need to take away from the visualiza-

tion. The readers’ specific knowledge needs may not be well understood initially, but 

this is still a critical factor to bear in mind during the design process.

If you cannot, eventually, express your goal concisely in terms of your readers and 

their needs, you don’t have a target to aim for and have no way to gauge your success. 

Examples of goal statements might be “Our goal is to provide a view of the London 

subway system that allows riders to easily determine routes between stations,” or “My 

goal is to display the elements in such a way that their physical properties are apparent 

and predictions about their behaviors can be made.”

Once you have a clear understanding of your message and the needs and goals of your 

audience, you can begin to consider your data. Understanding the goals of the visu-

alization will allow you to effectively select which facets of the data to include and 

which are not useful or, worse, are distracting. 
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Context of use. It’s also important to recognize the distinction between visuals 

designed to reveal what the designer already knows, and visuals intended to aid 

research into the previously unknown (though the designer may suspect the outcome 

in advance). The former are tools for presentation; the latter are tools for examination. 

Both may take standard or unconventional formats, and both benefit from the same 

process and treatments. However, it is important to be clear about which type of visual 

is being designed, as that distinction affects all subsequent design choices.

Visualizations designed to reveal what is already known are ubiquitous, appearing 

wherever one party has information to convey to another using more than just text. 

Most graphs and charts that we encounter are meant to communicate a particular 

insight, message, or knowledge that is evident in the underlying data: how a team 

is performing, how a budget is divided, how a company is organized, how a given 

input affects a result, how different products compare to each other, and so on. The 

data might reveal other knowledge or insights as well, but if they aren’t important 

for the purpose at hand, the design need not focus on revealing these other messages 

or trends. The process of designing these visualizations is therefore aided by having a 

well-defined goal.

Visualizations designed to facilitate discovery are commonly found in more specific, 

research-oriented contexts in science, business, and other areas. In these cases, the 

goal is typically to validate a hypothesis, answer a specific question, or identify any 

trends, behaviors, or relationships of note. Designing these visualizations can be more 

challenging if it’s unclear what insights the data may reveal. In contexts where the 

shape of the answer is unknown, designing several different visualizations may be 

useful.

The periodic table is an interesting hybrid of these purposes, in that it was used to 

visualize both known and unknown information. The structure of the table was 

defined by the properties of the elements known at the time, so in that way it was a 

reference to existing knowledge, as it is used today. However, this structure resulted in 

gaps in the table, which were then used to predict the existence and behavior of undis-

covered elements. In this latter mode, the table was a tool of research and discovery.

Make It Efficient
After ensuring that a visualization will be informative, the next step is to ensure that 

it will be efficient. The most important consideration when designing for efficiency is 

that every bit of visual content will make it take longer to find any particular element 

in the visualization. The less data and visual noise there is on the page, the easier it 

will be for readers to find what they’re looking for. If your clearly stated goal can’t 

justify the existence of some of your content, try to live without it.
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Visually emphasize what matters
When you’ve identified the critically necessary content, consider whether some por-

tion of it—a particular relationship or data point—is especially relevant or useful. 

Such content can be visually emphasized in a number of ways. It can be made big-

ger, bolder, brighter, or more detailed, or called out with circles, arrows, or labels. 

Alternately, the less-relevant content can be de-emphasized with less intense col-

ors, lighter line weight, or lack of detail. The zones in the Tube map, for example, are 

visually deemphasized: they exist, but clearly aren’t as relevant as the Tube lines and 

stations. 

Note that this strategy of emphasizing relevance typically applies to presentation data, 

not research data: by changing the emphasis, the designer is intentionally changing the 

message. However, highlighting different facets or subsets of unknown data is a valid 

way to discover relationships that might otherwise be lost in the overall noise.

Use axes to convey meaning and give free information
One excellent method for reducing visual noise and the quantity of text while retain-

ing sufficient information is to define axes, and then use them to guide the placement 

of the other components of the visualization. The beauty of defining an axis is that 

every node in a visualization can then assume the value implied by the axis, with no 

extra labeling required. For example, the periodic table is made up of clearly defined 

rows (periods) and columns (groups). A lot of information can be learned about an 

element by looking at what period and group it occupies. As a result, that informa-

tion doesn’t have to be explicitly presented in the element’s table cell. Axes can also be 

used to locate a portion or member of the dataset, such as looking for an element in a 

particular period, southern states, or a Tube station that is known to be in the north-

west part of London.

Well-defined axes can be effective for qualitative as well as quantitative data. In quali-

tative contexts, axes can define (unranked or unordered) areas or groupings. As with 

quantitative axes, they can provide information and support the search for relevant 

values.

Slice along relevant divisions
One last way to reduce visual clutter and make information more accessible is to 

divide larger datasets into multiple similar or related visualizations. This works well if 

the information available can be used independently and gains little (or infrequent) 

value from being shown in conjunction with the other data in the set. The risk here is 

that there may be relevant, unsuspected correlations among seemingly unrelated data-

sets that will only become evident when all the data is displayed together.
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Use conventions thoughtfully
After the influences of the intended message, context of use, and data have been taken 

into consideration for your unique situation, it’s worth looking into applying standard 

representations and conventions. Intentional and appropriate use of conventions will 

speed learning and facilitate retention on the part of your readers. In situations where 

a convention does exist, and doesn’t conflict with one of the aforementioned consider-

ations, applying it can be extremely powerful and useful. The examples we’ve exam-

ined have used default, conventional representations for element symbols, subway line 

colors, and compass directions. Most of these seem too obvious to mention or notice, 

and that’s the point. They are easily understood and convey accurate information that 

is integrated extremely rapidly, while requiring almost no cognitive effort from the 

user and almost no creative effort from the designer. Ideally, this is how defaults and 

conventions should work. 

Leverage the Aesthetics
Once the requirements for being informative and efficient have been met, the aes-

thetic aspects of the visual design can finally be considered. Aesthetic elements can 

be purely decorative, or they can be another opportunity to increase the utility of the 

visualization. In some cases visual treatments can redundantly encode information, 

so a given value or classification may be represented by both placement and color, by 

both label and size, or by other such attribute pairings. Redundant encodings help the 

reader differentiate, perceive, and learn more quickly and easily than single encodings. 

There are other ways in which aesthetic choices can aid understanding: familiar color 

palettes, icons, layouts, and overall styles can reference related documents or the 

intended context of use. A familiar look and feel can make it easier or more comfort-

able for readers to accept the information being presented. (Care should be taken to 

avoid using familiar formats for their own sake, though, and falling into the same traps 

as the designers of the unfortunate periodic tables and Tube-style maps.)

At times, designers may want to make choices that could interfere with the usability 

of some or all of the visualization. This might be to emphasize one particular message 

at the cost of others, to make an artistic statement, to make the visualization fit into a 

limited space, or simply to make the visualization more pleasing or interesting to look 

at. These are all legitimate choices, as long as they are done with intention and under-

standing of their impact on the overall utility.
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Putting It Into Practice
Let’s look at one more example of a successful, data-driven visualization that puts 

these principles to work: a map of the 2008 presidential election results from the 

New York Times.* Figure 1-3 is a standard map of the United States, with each state 

color-coded to represent which candidate won that state (red states were won by the 

Republican candidate, blue states by the Democratic candidate). This seems like a per-

fectly reasonable visualization making use of a default framework: a geographic map 

of the country. However, this is actually a situation in which an accurate depiction of 

the geography is irrelevant at best and terribly misleading at worst. 

Figure 1-3.  A geographically accurate electoral vote results map of the United States

New Jersey (that peanut-shaped state east of Pennsylvania and south of New York 

that’s too small for a label) has an area of a little more than 8,700 square miles. The 

total combined areas of the states of Idaho, Montana, Wyoming, North Dakota, and 

South Dakota is a bit more than 476,000 square miles, about 55 times the area of New 

Jersey, as shown in Figure 1-4. If we were interested in accurate geography and the 

shape, size, and position of the states, this would be a fine map indeed. However, in 

the context of a presidential election, what we care about is relative influence based on 

the electoral vote counts of each state. In fact, the combined total of those five states is 

just 16 electoral votes, only one more than New Jersey’s 15 votes. The geographically 

accurate map is actually a very inaccurate map of electoral influence.

*	Source: http://elections.nytimes.com/2008/president/whos-ahead/key-states/map.html.

http://elections.nytimes.com/2008/president/whos-ahead/key-states/map.html
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Figure 1-4.  Relative size of five states versus New Jersey

The surface area of a state has nothing to do with its electoral influence; in this con-

text, an entirely different sort of visualization is needed to accurately represent the 

relevant data and meet the goal of the visualization. To this end, the Times also created 

an alternate view of the map (Figure 1-5), in which each state is made up of a number 

of squares equivalent to its electoral vote value. This electorally proportionate view has 

lost all geographic accuracy regarding state size, and almost all of it regarding shape. 

The relative positions of the states are largely retained, though, allowing readers to 

find particular states in which they may have interest and to examine regional trends. 

The benefit of sacrificing geography here is that this visualization is perfectly accurate 

when it comes to showing the electoral votes won by each party and each state’s rela-

tive influence. For example, when we look at this new map, a comparison of the size 

of the five states previously mentioned versus New Jersey now accurately depicts their 

16 to 15 electoral vote tallies, as shown in Figure 1-6. 

Figure 1-5.  A proportionally weighted electoral vote results map of the United States

Figure 1-6.  Relative electoral vote influence of five states versus New Jersey
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You may have noticed that another trade-off was made here: because readers can’t see 

the outlines of each individual square, they can’t easily count the 15 or 16 squares in 

each of the areas we’re comparing. Also, because a decision was made to retain the 

shape of each state to the extent possible, the aggregated red and blue blocks in Figure 

1-6 are shaped very differently from each other, making it difficult to compare their 

relative areas at a glance. So, this is a great example of the necessary balancing act 

between making use of conventions (in this case, the shape of the states) and present-

ing data efficiently and without decoration.

The success of this visualization is due to the fact that the designers were willing to 

move away from a standard, default map and instead create a visual representation 

based primarily on the relevant source data. The result is a highly specialized image 

that is much more accurate and useful for its intended purpose, even if it’s not very 

well suited for typical map tasks such as navigation. (In that way, it is similar to the 

Tube map, which is optimized for a very particular style of information finding, at the 

expense of general-purpose geographical accuracy.)

Conclusion
While this has been a brief treatment of some of the strategies and considerations 

that go into designing a successful visualization, it is a solid foundation. The keys to 

achieving beauty are focusing on keeping the visualization useful, relevant, and effi-

cient, and using defaults and aesthetic treatments with intention. Following these sug-

gestions will help ensure that your final product is novel, informative, and beautiful.
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C h a p t e r  T w o

Once Upon a Stacked 
Time Series

The Importance of Storytelling in Information Visualization

Matthias Shapiro

The art of information visualization �is something of a strange beast. Very few 

disciplines require such a range of skills from their practitioners. The best visualizations 

not only require several talents, but may require their creators to move between these 

different talents quickly. Furthermore, during the process of creating the final visual, 

the creators may realize that certain information that was discarded early on is vital to 

a full understanding, or that a calculation made early in the process did not produce 

an accurate result.

In his exceptional book Visualizing Data (O’Reilly), Ben Fry identifies seven stages of 

creating an information visualization: acquire, parse, filter, mine, represent, refine, and 

interact. Each stage requires a certain level of technical or artistic talent, and informa-

tion visualization necessitates the close integration of these talents. When acquiring 

and parsing the data, the information visualization artist may be imagining how to 

interact with it. As he refines the representation, he may recall a step in the filtering 

process that excluded data that turns out to be relevant. The best visualizations tend 

to be dreamed up and executed by either single individuals with abilities across a wide 

range of disciplines, or small teams working very closely together. In these small, agile 

environments, the full range of talents can intersect and produce a stunning image or 

interactive product that can communicate a concept in a way that is more natural to 

human comprehension than a string of digits. 

http://oreilly.com/catalog/9780596514556/
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While many of the talents required for creating good information visualizations are 

widely recognized, there is one that is commonly overlooked in more formal settings—

probably because nearly every visualization author engages in it subconsciously and 

because it is such a natural part of the process that is hardly seems worth mentioning. 

This talent is the art of storytelling.

Stories have a marvelous way of focusing our attention and helping us to discern why 

the data presented is important or relevant to some part of our lives. It is only inside 

of a context that data is meaningful, and using the data as part of a story is an excel-

lent way of allowing the data to make a lasting impact. The most effective information 

visualizations will make themselves a pivotal point in a story or narrative within the 

viewers’ (or users’) minds.

Not every information visualization requires a story. Some are simply beautiful to look 

at and can exist merely as fine works of art. However, most visualizations have a goal 

or purpose and present their data in a meaningful way, in the context of some kind of 

story.

Question + Visual Data + Context = Story
Most visualization stories begin with some kind of question that orients the viewer 

to the topic and context within which the data is most meaningful. This can be done 

explicitly or implicitly, but the context must be clear. The question contains the prem-

ise and introduction to the story, and leads us up to the point at which the data can 

take over the storyline. 

Many of the key parts of a story are related as part of the process of placing the visual-

ization in a context. We frequently find the visualization context as part of an intro-

ductory text to an infographic or visualization. The context provides information that 

answers questions such as:

•	 What data are we looking at?

•	 In what time frame does this data exist?

•	 What notable events or variables influenced the data?

Consider the visualization in Figure 2-1. Assuming the user is coming to this from a 

place of relative ignorance, we can be confident only that he will understand that the 

data is mapped along a timeline and that the timeline is in some way relevant to an 

election. Outside of that, there is almost no valuable context to guide the user in mak-

ing sense of this visualization.
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Figure 2-1.  Visualization from Designer Silverlight*

If we take a step forward and assume that our user is familiar with some of the more 

famous names on the visualization, we can assume he will know that this visualization 

measures some metric related to presidential candidates in the two years preceding the 

2008 U.S. presidential election.

The full context is only revealed if the user clicks on the question mark in the upper-

right corner, at which point he is informed that the visualization maps the number 

of times each presidential candidate was mentioned in the New York Times in a given 

week. Once this information is revealed, the user can see that this is a rough map of 

newsworthiness as determined by the New York Times writers. 

Returning to the questions listed previously, we now know what data we’re looking 

at and what the time frame is. This visualization is interactive: if the user presses the 

“Play” button at the top, dots along the timeline pop out to reveal important events 

that may have influenced the data one way or another (Figure 2-2).

*	See http://tr.im/I2Gb.

http://tr.im/I2Gb
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Figure 2-2.  The visual draws attention to important events that may have influenced the 
perceived newsworthiness of the candidates

In addition to these cues, the user can draw on his knowledge of the presidential 

race to supply additional context to the data. He may recall that in the Democratic 

party there was a knock-down, drag-out primary contest between Hillary Clinton 

and Barack Obama, which is reflected in the fact that they maintained a high level of 

newsworthiness into April and May of 2008, while John McCain (who secured the 

Republican nomination in early March) lagged behind them both.

From the question “How often did the New York Times mention each candidate dur-

ing the course of the 2008 presidential campaign?,” a story emerges. This visualiza-

tion provides an engaging visual component to that story and helps the user relive the 

drama of the two-year presidential campaign in the space of a minute.

Steps for Creating an Effective Visualization
When creating an information visualization, I typically walk through the following key 

steps:

1.	 Formulate the question.

2.	 Gather the data.

3.	 Apply a visual representation.

Formulate the Question
Asking the question that drives the story you’re trying to tell is not necessarily a task 

that must be done at the beginning of the visualization journey. Don’t feel bad if you 

start digging into the data before you have a finalized question in your head. Often, it 

is not until we have a good understanding of the data that we know how to ask a good 

question about it. However, asking a question (or at least keeping a question or set of 

questions in mind) can be useful when gathering and filtering the necessary data.

You may want to start with a topic to focus your data search and refine your question 

as you gather more data. For example, let’s say we want to communicate that carrying 

out the U.S. Census is an enormous task. This is a good topic to start us out in our data 

search because it is broad enough that there are many pieces of data that can help give 

context to this idea. We could find the relevant data and create a visualization based on:
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•	 The number of surveys filled out

•	 The number of pencils used

•	 The number of miles census workers walked

My favorite U.S. Census–related data to watch is the number of federal employees 

over time. Statistics show a spike of 200,000–300,000 federal employees between 

March and July of a census year. These employment figures then drop off as the cen-

sus process completes. 

The specific question that we ultimately ask will have a heavy impact on the final rep-

resentation of the visual. For example, we might ask “How much paper does it take to 

record all the information necessary for a census?” and show sheets of paper cover-

ing a small city as a representation of the surveys, or we might ask “How many people 

does it take to count everyone in the country?” and use icons of people to represent 

the spike in federal employment figures at census time. These questions both relate to 

the original topic of the scope of the U.S. Census, but they draw from different sets of 

data and result in drastically different visuals.

When asking a question for the purposes of creating an information visualization, we 

should focus on questions that are as data-centric as possible. Questions that begin 

with “where,” “when,” “how much,” or “how often” are generally good starting 

points: they allow us to focus our search for data within a specific set of parameters, so 

we’re more likely to find data that lends itself to being mapped visually. 

Be especially careful if you find your question starts with “why.” This is a good sign 

that you are moving from a more formal portrayal of data into data analysis. 

Gather the Data
Finding exactly the data you want can be a difficult task. Often, instead of trying to 

gather your own data, you’re better off taking data that is already available and trying 

to find a way to portray it. That is, it may be better to start (as mentioned earlier) with 

a dataset and construct a question as you find patterns in the data. If you’re creating 

a data visualization for a purpose other than as a hobby or out of pure curiosity, it is 

likely that you already have a dataset to work from. However, there are still several 

datasets available that may inspire or inform some aspect of your work.

There are many good places to start looking at data. One of the largest and most 

diverse repositories can be found at Data.gov (http://www.data.gov). This site houses an 

enormous collection of data, from migratory patterns of birds to patent bibliographies 

to Treasury rate statistics and federal budget data. 

Other excellent sources of data include:

•	 The Census Bureau (http://www.census.gov) for a wide variety of demographic and 

geographic data 

http://www.data.gov
http://www.census.gov
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•	 The Bureau of Labor Statistics (http://www.bls.gov) for extensive data on employ-

ment in the United States (click on the “Databases and Tables” tab and scroll down 

to the Historical News Release Tables for the easiest access to the data)

•	 The New York Times APIs (http://developer.nytimes.com) for easy API access to huge 

sets of data including congressional votes, bestseller lists, article searches, movie 

reviews, real estate listings and sales in New York City, and more

Once you have the raw data, you may want parse it, organize it, group it, or otherwise 

alter it so that you can identify patterns or extract the specific information you wish to 

portray. This process is known as “data munging” and is usually an ad hoc attempt to 

“play around” with the data until interesting patterns emerge. If this process sounds 

a little opaque or nonspecific, don’t worry; we’ll walk through an example of data 

munging in the hands-on tutorial in the next section.

Apply a Visual Representation
Now that we have the data, we come to the task of deciding how to portray it. This 

means making decisions about what kind of visual representation of the data will aid 

viewers in understanding it. 

A visual representation is some kind of visual dimension that can change in correspon-

dence to the data. For example: an XY graph is a simple visual presentation that maps 

an x, y data point in a two-dimensional plane. Map enough points, and an obvious 

visual pattern may emerge even if there is no immediately identifiable pattern in the 

raw data itself.

Let’s take a look at the most commonly used visual representations.

Size
Size is probably the most commonly used visual representation, and for good reason. 

When differentiating between two objects, we can judge very quickly between sizes. 

Moreover, using size helps cut through the fog of comparing two unfamiliar numbers. 

It is one thing to hear or read that methadone is the most lethal recreational drug in 

the UK and quite another to see that information in the context of deaths caused by 

other dangerous drugs, as shown in Figure 2-3.

http://www.bls.gov
http://developer.nytimes.com
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Figure 2-3.  From David McCandless’s information visualization “World’s Deadliest Drugs”� 

While size is an extremely useful and intuitive representation, it is also often overused. 

Many poorly constructed graphs misinform and confuse simply because their creators 

wanted to visualize some data, but knew of only one way to visually present it. 

Color
Color is a fantastic representation method for enormous sets of data. We can identify 

many gradations and shades of color and can see differences in a high resolution. This 

makes color a natural choice for representing big-picture trends, like what we might 

see in weather maps. For this reason, it is commonly used for identifying patterns and 

anomalies in large datasets. 

Figure 2-4 is a zoomed-out view of a set of data about stocks over the course of just 

over three months.

Figure 2-4.  The 30 most watched Motley Fool CAPS stocks tracked over several months and 
visualized using a red-to-green color scale

Even though the type is far too small to read, we can easily recognize rows that show 

positive or negative growth. We can also make an overall assessment of the trends in 

the data with very little intellectual effort expended.
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Color is less useful for smaller datasets or data that is differentiated by small ranges. If 

there are not stark ranges in the data, it can be difficult for even a trained eye to spot 

important differences. 

As an example, let’s assume a dataset with a range between 1 and 100 and a color 

scheme that ranges from red (representing 1) to yellow (50) to green (100). In such a 

scheme, consider the 10-point difference in Figure 2-5. As you can see, the difference 

is subtle and may not be easily distinguishable to many viewers. 

Figure 2-5.  Color image representing the difference between 45% and 55% in a color 
visualization

If you’re creating a visualization in which it is important for viewers to be able to dis-

tinguish between data points at 45% and 55%, you may need to alter the points at 

which the colors change or steer away from using color as your primary representa-

tion method.

A word should also be put in for those who suffer from colorblindness, which affects 

nearly 1 out of 10 individuals. If you need your visualization to reach the largest pos-

sible audience, you may want to consider using ranges like black-to-white instead of 

green-to-red. For more information about design and colorblindness, consider visiting 

We Are Colorblind (http://wearecolorblind.com), a website devoted to designing in a way 

that is accessible to the colorblind.

Location
A location representation method attaches data to some kind of map or visual element 

corresponding to a real or virtual place. An everyday example of a locative visual-

ization is when we are presented with a simple outline of an airplane or a theater in 

order to choose a seat.

In Figure 2-6, we see the county-by-county crime rates for 1996 and 2008 rendered 

onto a map of Florida.

http://wearecolorblind.com
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Figure 2-6.  Florida county map shaded to indicate crime rate by county

Location presentation methods are especially valuable when the audience has some 

familiarity with the location being portrayed. Such familiarity allows the audience 

members to project their personal contexts onto the visualization and draw conclu-

sions based on their personal experience with the area. 

Networks
A network presentation shows binary connections between data points and can be 

helpful in viewing the relationships between those data points. A number of online 

network visualizations have sprung up that allow people to see maps of their friends 

on Facebook or their followers on Twitter. 

Figure 2-7 shows a network visualization of my Facebook friends and how many of 

them have “friended” one another.

Through this network mapping, we can perceive at a glance the different social net-

works to which I belong (or belonged). Furthermore, the density of the groups corre-

sponds fairly well to the social intimacy of those groups.

One thing to keep in mind with network visualizations is that if they are not carefully 

constructed, the thousands of data points may just turn into a visually messy glob of 

connections that isn’t helpful in increasing our understanding of how those connec-

tions are meaningful.
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Figure 2-7.  Nexus rendering of a network visualization of my Facebook friends

Time
Data that changes over time (stock quotes, poll results, etc.) is traditionally por-

trayed along a timeline. In recent years, though, software with animation capabilities 

has allowed us to portray such data in a different manner. Animations like the New 

York Times’s “Twitter Chatter During the Super Bowl”* (shown in Figure 2-8) com-

press a longer period of time so that we can watch the data change in an accelerated 

environment.

Pressing the “Play” button in the top-left corner starts the animation, and the most 

popular words used in Super Bowl–related tweets across the country grow and shrink 

according to their frequency of use through the course of the game. 

This visualization gives users a series of helpful contextual clues along the timeline 

indicating when major events happened in the game. By doing this, the authors pro-

vide valuable context and relieve the users from the task of remembering how the 

game played out. Instead, they can focus on the words being used in tweets across the 

country and let the application alert them when a key event is driving the data.

*	See http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html.

http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html
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Figure 2-8.  New York Times visualization of commonly used words in 2009 Super Bowl–related 
tweets

Using multiple visual presentation methods
Many excellent information visualizations use more than one of these visual presenta-

tion methods to give a full picture of the data. In the online application NameVoyager 

(http://www.babynamewizard.com/voyager), users can type in the first few letters of a 

name and see a history of how many people have given their child a name beginning 

with those letters (Figure 2-9).

Figure 2-9.  The NameVoyager baby name explorer charts name frequency by year

http://www.babynamewizard.com/voyager
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Here, two visual dimensions are presented. The first is time: we see the frequency with 

which names beginning with the entered letters were used represented along a time-

line. The second is size: shaded areas on the graph indicate how many children were 

given certain names in certain years.

This particular type of graph is called a stacked time series and is a fairly standard way of 

visualizing several pieces of information in a combined but separate manner. 

Hands-on Visualization Creation
Now that we’ve covered the basics of information visualization in a general manner, 

let’s walk through the process of building a visualization. We’ll create a static visualiza-

tion, commonly referred to as an infographic.

To do this walkthrough, we will need the following tools:

•	 Microsoft Excel (or Google Documents in a pinch)

•	 Adobe Photoshop (GIMP, a free image-manipulation program, will also work)

In order to replicate the process as closely as possible, I’ll walk through the discov-

ery process in the order in which it actually happened rather than following the 

“Question-Data-Presentation” method described earlier.

Data Tasks
When constructing this tutorial visualization, I started out messing around with 

the data and formulated the question as the shape of the information became clear. 

Because the process of sifting through data is often very ad hoc, I’ll simply describe my 

discovery in general terms. We’ll walk through the details later in this section.

Gathering the data
I decided to use easily accessible, publicly available data for this tutorial, so I started 

looking at a number of pieces of data collected by the U.S. government and placed 

online in the interest of transparency. I settled on data about vehicles traded in and 

purchased via the Car Allowance Rebate System (CARS), commonly referred to as the 

“Cash for Clunkers” program. The data I used is available in two separate Excel files at 

http://www.cars.gov/carsreport. It is also available in CSV or MDB format.

Sorting the data: The discovery version
When we’re done with this visualization, we want to feel like it provides some kind 

of insight into the individual transactions that make up this dataset. We can imagine 

someone driving in a beat-up clunker thinking to herself that she will soon be able to 

rid herself of her old, inefficient vehicle and replace it with a beautiful new one. 

http://www.cars.gov/carsreport
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What kind of vehicle is she driving? Is she looking to replace it with something similar 

but newer and more efficient (an “old sedan to new sedan” trade)? Or does she want 

to swap her vehicle for something totally different (a trade more along the lines of 

“SUV for two-door coupe”)?  

The data we’re looking at is the result of over 650,000 individual stories that each 

required motivation, drive, time, and effort to report. We won’t be able to tease out 

those individual stories from the data, but our visualization will help tell a larger story 

about those people’s choices. Our goal is to find a way to tell a story that is interesting 

and new to our users/viewers.

Here are the steps I took in sorting and filtering through the data as I was trying to dis-

cover that story.

After downloading the dataset, I started looking at the trade-in data and tried to group 

it in many different ways. Grouping it by car model seemed interesting at first, but this 

was somewhat tedious because the vehicles are grouped by engine and transmission 

type, so the same model might have several different entries. 

However, in the process of looking at the vehicles by model, I was struck by the fact 

that several makes had a fairly high number of trade-ins. I became curious to see if 

people were more eager to trade one make of vehicle over another, so I began sorting 

the vehicles by make. 

Warning: Asking questions like “are people eager to trade in one make over another?” 

is a dangerous thing to do when creating a visualization. The data can tell us a large 

number of things, but it is rare that data will give us good information on things that 

are as complex as human motivation. It is one thing to portray the data as it is and 

another thing to interpret what the data means. It would be a mistake to state as a part 

of your visualization that, because more Ford vehicles were traded in than any other 

make, people were eager to get rid of Fords. Such a statement would dismiss dozens 

of important variables, including things like market share, type of vehicles sold, Ford’s 

position in large vehicle sales, age of the vehicles, etc. It is a good rule of thumb to 

restrict a visualization to stating things that can be seen from the data alone and allow 

the users or viewers to draw their own conclusions. 

With all of that said, asking these kinds of questions internally can be an effective 

driver for discovery, so don’t shy away from asking them at this early stage—just shy 

away from answering them in the final visual.

I began sorting vehicles by make and tallying up the sums for the trade-in vehicles, 

and I thought it would be interesting to see a comparison of the makes of the trade-ins 

(Honda, Toyota, GM, Ford, Chrysler) versus the makes of the new vehicles purchased. 

As I started collecting that data, it became clear that there were so many vehicle makes, 
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it would be difficult to clearly portray that many separate data points. As a result, I 

started trying to group by “parent make”—i.e., grouping together vehicle makes by the 

companies that owned those makes. For example, Lexus is a division of Toyota, so I 

grouped Lexus and Toyota trade-ins together under the parent company, Toyota.

Eventually, I decided that the most compelling portrayal of the information would be 

to group the makes together under the parent country. This approach has the benefit of 

reducing the number of data points to about a dozen, as well as grouping the informa-

tion in a way that isn’t immediately apparent in the data. By doing this, we’re able to 

get a new and fresh look at the data.

Sorting the data: The technical version
Now that we’ve walked through the thought process, let’s walk through replicating 

that process in the files. 

If you download the Excel files, you can open them up and see that the data is 

arranged first by vehicle category (with trucks first and cars second) and then alpha-

betically by vehicle make (Acura, Audi, BMW, and so on). In order to sort the data for 

our purposes, the easiest thing to do will be to categorize the data by vehicle make. 

Later, we will determine which makes correspond to the various countries in which 

the parent companies are based.

To sort the data in Excel, simply select the New_Vehicle_Make column in the new-

vehicles file or the Trade_in_make column in the trade-in-vehicles file and select “Sort & 

Filter->Sort A to Z.” If Excel asks you if you want to expand the selection, accept that 

option.

You can add together all the cars purchased or traded for a particular make by entering 

=SUM( and using the mouse to select all the cells in the Count column for a particular 

make. As a method of checking your first attempt, add up all the Acura purchases. The 

result should be 991. Gather sums for all the makes and, if it helps you to look at the 

data, move the results to another page. 

This is the perfect time to play around with the data if you’re so inclined. Try to figure 

out which cars sold the best, or which year’s models were traded in the most frequently. 

Even in a dataset as small as this one, there are dozens of interesting questions to ask. 

One of them might pop out at you and inspire a new and compelling visualization. At 

the very least, this is an excellent opportunity to practice looking at data.

There are many ways to sort this kind of data. It might be more efficient (and would 

certainly be impressive) to write a script or small program that walks through the CSV 

file and pulls the data into a summary file that is easy to look at. The reason for using 

Excel in this example was to try to help people who are not familiar with program-

ming engage with the data and participate in creating visualizations.
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Formulating the Question
At this point in the process, we should have a firm enough grasp of what we want to 

do that we can formulate a solid question for this visualization. Our question is, “In 

the ‘Cash for Clunkers’ program, what proportion of vehicles were purchased from 

manufacturers based in which countries?”

Within the context of this question, we can choose to establish a number of relevant 

pieces of information as an appropriate setup for the visualization, keeping in mind 

that our target audience may not be intimately familiar with the topic. Here are a few 

items that will help contextualize the data:

•	 The program cost $2,850,162,500 and provided money for 677,081 vehicle 

purchases.

•	 For each vehicle that was purchased, a vehicle was traded in and scrapped.

•	 The program ran from July 1, 2009 until August 24, 2009.

•	 Vehicles eligible for trade-in had to get less than 18 miles per gallon (MPG).

•	 Vehicles eligible for purchase had to get more than 22 MPG.

For the purposes of this visualization, we’re most interested in the fact that there was 

a correspondence between vehicles purchased and vehicles scrapped. This creates an 

interesting balance (and hence a certain kind of drama) between the kinds of vehi-

cles people wanted to get rid of and the vehicles they wanted to purchase. As we put 

together the data and visualization, we’ll keep this balance in mind and orient the 

visuals accordingly.

With the question in hand, we have a solid basis for manipulating the data further by 

grouping and sorting it as guided by our question.

Grouping the data
This step takes a little bit of research. In order to group the makes by country, we 

need to find out which vehicle makes correspond to which companies. There are 

over 50 makes represented in these two files, so the research could take some time. 

In this task, Wikipedia is your friend since it will provide quick answers regarding 

the ownership of various vehicle makes (for example, Chrysler owns or owned six 

makes that are represented in this dataset) as well as the countries in which they are 

headquartered. 

I’ve provided a helpful table containing this data, to save you time (Table 2-1).
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Table 2-1.  Vehicles grouped by make, company, and country

Make Owned by Country Make Owned by Country

Jaguar Tata England Hyundai Hyundai South Korea

Land Rover Tata England Kia Hyundai South Korea

BMW BMW Germany Volvo Volvo Sweden

MINI BMW Germany Saab Sweden

Mercedes-
Benz

Daimler Germany American 
Motor

Chrysler U.S.

smart Daimler Germany Chrysler Chrysler U.S.

Audi Volkswagen Germany Dodge Chrysler U.S.

Porsche Volkswagen Germany Eagle Chrysler U.S.

Volkswagen Volkswagen Germany Jeep Chrysler U.S.

Acura Honda Japan Plymouth Chrysler U.S.

Honda Honda Japan Ford Ford U.S.

Isuzu Isuzu Japan Lincoln Ford U.S.

Mazda Mazda Japan Mercury Ford U.S.

Mitsubishi Mitsubishi Japan Merkur Ford U.S.

Infiniti Nissan Japan Buick GM U.S.

Nissan Nissan Japan Cadillac GM U.S.

Subaru Subaru Japan Chevrolet GM U.S.

Suzuki Suzuki Japan GMC GM U.S.

Lexus Toyota Japan Hummer GM U.S.

Scion Toyota Japan Oldsmobile GM U.S.

Toyota Toyota Japan Pontiac GM U.S.

Saturn GM U.S.

Keep in mind, however, that grouping the makes this way raises some questions about 

the data that we’ll need to answer before we continue. For example, Jaguar is a quint-

essentially British company with its headquarters in England. Nevertheless, it is owned 

by the Indian company Tata Motors. Should we categorize Jaguar as an English car or 

an Indian one?

The “correct” method of dealing with these kinds of questions is largely a matter of 

personal preference. The important thing to remember is to maintain consistency in 

the representation of this decision and to indicate to the viewer that you have made 

the decision one way or another. Usually, a footnote at the corner of the visualization 

is sufficient.
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Applying the Visual Presentation
At this point, we should have all of our data in exactly the format we want: vehicles 

traded or purchased, organized by country. It’s time to choose our visual presentation 

of the data.

We’ll be representing two dimensions of information in this visualization. The first is 

the quantity of cars organized by country, and the second is a visual differentiation 

between cars purchased and cars traded in. The differentiation between purchased 

vehicles and “clunked” vehicles is an “either-or” differentiation, so there won’t be any 

gradations in the information, which will simplify the presentation. To differentiate 

between vehicles purchased and traded, we can use a simple color method: red to rep-

resent “traded” and green to represent “purchased.”

Since we’re dealing with a few points of data with enormous variation, it makes the 

most sense to use size to represent the information. This presentation choice will call 

attention to the scope of this variation in an intuitive and compelling way. The easiest 

implementation will be to use circles or bars of varying sizes to represent the numbers 

of trades and purchases.

A note about area and circles
If we’re using circles to represent the data, we need to remember that we’re going to 

be varying the area, not the radius or diameter, of the circle. If we take the number of 

U.S. vehicles purchased (575,073) and choose to represent it with a radius of 50 pixels, 

we will use the following equation in Excel to determine the size of each of the other 

circles:

SQRT((US_Baseline_Radius^2 * Target_Vehicles)/US_Vehicles)

I’m taking the time to point this out because this is probably one of the most common 

mistakes when creating information visualizations with circles or with area in general. 

Scaling a circle by linearly increasing the radius or diameter will result in exponential 

increases and decreases of the area of the circle, as shown in Figure 2-11; the correct 

relationship is shown in Figure 2-10. 
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Figure 2-10.  Correct (scaling the area) Figure 2-11.  Incorrect (scaling the radius)

Having said all of that, we’re not going to use circles. Don’t worry, I have a good 

reason.

Presenting the data with country maps
Since our information story centers on countries, we’re going to use shape maps of the 

various countries and size those maps appropriately. This provides a couple of valuable 

additions to our visualization. 

First, using the shapes of the countries will give this project a visual hook. If their home 

countries are on the list, the viewers will be able to pick them out immediately and 

it will draw their attention. Along these same lines, we will be able to hook into any 

emotions our users may have concerning their home countries or any other countries 

with which they are familiar. A hook like this makes it more likely that the audience 

will remember or recommend the visualization.

Second, using country shapes instead of circles will enable the visualization to com-

municate at a number of different sizes. Even at thumbnail size, the shape of a country 

is so recognizable that the users will know that the visualization has something to do 

with different countries. A set of circles reduced down to thumbnail size just looks like 

a set of circles.

Third, if we used only circles or bars, we would be reliant on text to convey the names 

of the countries in the visualization. This isn’t necessarily bad, but comprehension time 

would be increased, as the users would have to read the text before they could under-

stand the visualization. This would increase the risk of reducing the immediate impact 

of the visualization. 

Finally, the audience is accustomed to seeing these different countries in the context of 

a world map where the relative sizes are always the same. Taking these familiar shapes 

out of that context and placing them in a context where South Korea is larger than 

Germany or the United States is smaller than Japan creates interest by violating expec-

tations. Think of it as a “twist” in the plot of the story.
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Having decided that we should use countries instead of circles, we need to find visual 

representations of the countries on our list. Our best bet on that count is to search 

for a country name along with the .svg file extension. SVG stands for scalable vector 

graphics and is an open standard for vector images maintained by the World Wide Web 

Consortium (W3C). It is a popular vector image standard, particularly for free images 

and maps, and many vector manipulation applications support it. 

Wikimedia Commons (http://commons.wikimedia.org) has a number of free, high-

quality maps in vector format. These maps scale very well and are excellent for this 

kind of project. Some of the countries that are hard to find can also be pulled from 

vector maps of the world that are available on Wikimedia Commons. These files can be 

opened as editable vector files in Adobe Illustrator or Inkscape (http://www.inkscape.org) 

or as bitmaps in GIMP. From Illustrator, the vector objects can be copied and pasted 

directly into Photoshop.

In the interest of simplicity, we’ll display only countries responsible for a certain 

minimum (1,000+ vehicles) of either the traded-in or purchased cars. This means we 

should have maps for the United States, Japan, South Korea, Germany, Sweden, and 

the United Kingdom.

Once we have images of the countries we want, we’re ready to size them for the final 

visualization.

Building the Visual
Having moved the visuals into an image-manipulation program, we need to size 

them so that they appropriately represent the proportions of vehicles traded in and 

purchased.

My methodology for this is to take the largest piece of data (in this case, it is the num-

ber of U.S.-made vehicles that were traded in: 575,073) and scale it to a size that fits 

comfortably on the canvas of the infographic. This kind of anchor shape is just a prac-

tical way of making sure that none of the graphic elements becomes too large for ele-

gant display. This piece of data becomes the anchor against which we will scale all the 

other elements.

Once we have the size of the anchor shape, we need to calculate how many pixels 

are in it. There is a trick available in Photoshop and GIMP that lets us easily count the 

pixels we have selected in a particular layer. Both applications have a window called 

“Histogram” that displays the number of pixels that are currently selected. Using this 

tool, we can determine the number of pixels in the anchor shape and calculate how 

many pixels our other shapes need to be using the following formula:

Target_Size = Target_Number * Anchor_ Size / Anchor_Number

http://commons.wikimedia.org
http://www.inkscape.org
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For example, 81,466 Japanese vehicles were traded in. If we size the U.S. map so that 

it comprises 25,000 pixels, the equation for determining how large to make the map of 

Japan would be:

Japan_Size = 81,466 * 25,000 / 575,073 = 3,542 pixels

I generally use Excel to make these calculations so that they are easy to save, double-

check, and replicate. 

Using the Histogram trick, we can resize the irregular shapes of the target countries 

and scale them until they contain the number of pixels appropriate for the correspond-

ing data point visualization.

I decided to arrange the countries along a vertical axis in order to accommodate the 

medium in which this visualization will be viewed (a page in this book). This approach 

also gives symmetry to the color elements and reinforces the green/red, bought/

clunked dichotomy of the data. 

We now have the core of our visualization done. Providing some context in an intro-

ductory blurb and adding a footnote about our decision regarding the country of origin 

for Jaguars and Land Rovers gives us the result shown in Figure 2-12. 

This visualization now meets our criteria. It sets up the story with an introduction at 

the top, it provides a compelling layout that draws the viewers’ attention, and it is 

instantly understandable. We’ve set up the “bought/clunked” dichotomy with color-

coding and reinforced it with symmetrical physical placement (important if we want 

individuals who are colorblind to be able to understand our infographic). Our visual-

ization tells what we hope is a compelling story in the minds of our viewers.



35chapter 2: once upon a stacked time series

Figure 2-12.  Final visualization
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Conclusion
This tutorial has touched on only a small subset of the skills that can be used to cre-

ate effective visualizations. A deeper foundation in fields like color theory, typography, 

computational data mining, and programming, as well as a background in the data 

subject, will all be valuable aids in creating compelling visualizations.

Despite the variety of fields that inform the visualization creation process, they are 

unified by the fact that every visualization is part of some kind of story. Even the sim-

plest bar graph displaying a company’s earnings data is drawing from information that 

is more memorable and more valuable within the larger context (perhaps a change 

in management style). It is these contexts and the stories that we associate with them 

that give visualizations their long-lasting impact and power. 
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C h a p t e r  T h r e e

Wordle
Jonathan Feinberg

Figure 3-1.  A Wordle of this chapter

By now, even people �who have never heard of “information visualization” are 

familiar with the colorful word collage known as Wordle, “the gateway drug to textual 

analysis.”* Like any such drug, Wordle was designed for pleasure, although its roots lie 

in the utilitarian tag clouds popularized by such sites as del.icio.us and Flickr.

*	See http://www.profhacker.com/2009/10/21/wordles-or-the-gateway-drug-to-textual-analysis/.

http://www.profhacker.com/2009/10/21/wordles-or-the-gateway-drug-to-textual-analysis/
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Wordle’s Origins
In 2004, my colleague Bernard Kerr and I made a social bookmarking application, 

which Bernard named “dogear” (Millen, Feinberg, and Kerr, 2006). Any application 

that lets users tag content is bound to provide a tag cloud, a vaguely rectangular collec-

tion of clickable keywords. So, when we designed dogear, we made sure to feature a 

prominent tag cloud on every page (see Figure 3-2).

Figure 3-2.  The author’s tags as they appeared in dogear

I never found tag clouds to be particularly interesting or satisfying, visually. There’s not 

much evidence that they’re all that useful for navigation or for other interaction tasks, 

either.* But when blogger Matt Jones† posted his del.icio.us tags as a beautiful, typo-

graphically lively image (see Figure 3-3), I was thrilled. I thought that there was no 

reason why a computer program couldn’t create something similar. At the very least, 

I wanted to end up with something that could—like Jones’s cloud—put the dot of an 

“i” into the lower counter of a “g”, something well beyond what tag clouds could do at 

the time.

*	See http://doi.acm.org/10.1145/1240624.1240775.

†	See http://magicalnihilism.com/2004/07/04/my-delicious-tags-july-2004/.

http://doi.acm.org/10.1145/1240624.1240775
http://magicalnihilism.com/2004/07/04/my-delicious-tags-july-2004/
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Figure 3-3.  Matt Jones’s typographically aware tag cloud

I spent a week or so creating the code for what I called the “tag explorer” (see Figure 

3-4), a Java applet that permitted users to navigate through dogear by clicking on tags 

related to the current context.

Figure 3-4.  The dogear tag explorer*

*	See http://www.flickr.com/photos/koranteng/526642309/in/set-72157600300569893.

http://www.flickr.com/photos/koranteng/526642309/in/set-72157600300569893
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It was immediately clear that the tag explorer was useful as a portrait of a person’s 

interests, as when a number of my fellow IBMers used screenshots of the tag explorer 

to illustrate their résumés and email signatures (see Figure 3-5).

Figure 3-5.  The author’s 2006 work email signature

When dogear became an IBM product,* the tag explorer did not go with it, and I for-

got all about it. When I found the tag explorer code by chance a couple of years later, I 

thought it was worth developing.

The original tag explorer was intimately tied to dogear, and to the idea of tag clouds in 

general. I wanted to find a way to decouple the word-cloud effect from the whole idea 

of “tags,” since the pleasing and amusing qualities of the word cloud seemed generally 

accessible, while “tags” were familiar only to a technologically sophisticated crowd. 

This led to the idea of simply counting words. Once I had decided to build a system 

for viewing text, rather than tags, it seemed superfluous to have the words do anything 

other than merely exist on the page. I decided that I would design something primar-

ily for pleasure, in the spirit of Charles Eames’s remark, “Who would say that pleasure 

is not useful?” This decision, in turn, made it easy to decide which features to keep, 

which features to reject, and how to design the interface (shown in Figure 3-6).

Figure 3-6.  Wordle’s text-analytics user interface

Since Wordle (as it was now called) was meant to be pleasing, I had to give some 

thought to the expressive qualities of fonts and color palettes (see Figure 3-7).

*	See http://www-01.ibm.com/software/lotus/products/connections/bookmarks.html.

http://www-01.ibm.com/software/lotus/products/connections/bookmarks.html
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>
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Figure 3-7.  Wordle provides varied palettes, fonts, and layouts

I believe that my efforts to simplify Wordle, and to emphasize pleasure over business, 

have been paid for many times over. Wordle has been used in ways I’d never antici-

pated, by far more people than I’d dared to expect. Some of Wordle’s success is due 

to the design of the web application itself, with its one-paste/one-click instant grati-

fication. However, to the extent that the design of the Wordle visualization itself has 

contributed to its ubiquity, it might be worth looking at what Wordle is not before we 

examine in detail what it is and how it works.

Anatomy of a Tag Cloud
The typical tag cloud is organized around lines of text.* If one word on a line is larger 

than another, the smaller word will have a disproportionate amount of whitespace 

overhead, which can look awkward. For example, see Figure 3-8, where “everett hey” 

has an enormous expanse of white above, because the line height is determined by its 

neighbor “everett everett”.

Figure 3-8.  Lost in White Space†

One way to mitigate the ragged whitespace caused by such extreme contrasts in size 

is to squash different word weights into a small number of bins, as del.icio.us does. In 

Figure 3-9, the “programming” tag has been used 55 times and “scripting” only once, 

but the font for the more frequently used word is only 50% larger. Notice also the use 

of font weight (boldness) to enhance the contrast between different word weights.

*	For a thorough survey of tag cloud designs, with thoughtful commentary, see http://www.smashing-
magazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/.

†	See http://manyeyes.alphaworks.ibm.com/manyeyes/page/Tag_Cloud.html.

http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://manyeyes.alphaworks.ibm.com/manyeyes/page/Tag_Cloud.html
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Figure 3-9.  Squashing the scale of differences between word weights

In effect, del.icio.us is scaling the word weights—roughly—by logarithm. It’s sensi-

ble to scale weights using logarithms or square roots when the source data follows a 

power-law distribution, as tags seem to do.*

Somewhere between these earnest, useful designs and the fanciful world that Wordle 

inhabits, there are other, more experimental interfaces. The WP-Cumulus† blog plug-

in, for example, provides a rotating, three-dimensional sphere of tags (see Figure 

3-10).

Figure 3-10.  WP-Cumulus: can’t…quite…click on “tag cloud”…

The desire to combine navigation with visualization imposes certain constraints on the 

design of a word cloud. But once we are liberated from any pretense of “utility”—once 

we’re no longer providing navigation—we can start to play with space.

Filling a Two-Dimensional Space
There are lots of computer science PhDs to be garnered in finding incremental 

improvements to so-called bin-packing problems.‡ Luckily, the easy way has a respect-

able name: a randomized greedy algorithm. It’s randomized in that you throw stuff on 

the screen somewhere near where you want it to be, and if that stuff intersects with 

other stuff, you try again. It’s greedy in that big words get first pick.

*	See http://www.citeulike.org/user/andreacapocci/article/1326856.

†	See http://wordpress.org/extend/plugins/wp-cumulus/.

‡	See http://en.wikipedia.org/wiki/Bin_packing_problem.

http://www.citeulike.org/user/andreacapocci/article/1326856
http://wordpress.org/extend/plugins/wp-cumulus/
See http://en.wikipedia.org/wiki/Bin_packing_problem.
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Wordle’s specific character depends on a couple of constraints. First, we are given a list 

of words, with associated (presumably meaningful) weights. We can’t show any word 

more than once, and we don’t want to distort the shape of the word beyond choosing 

its font size. If we remove those constraints, though, many other interesting and beau-

tiful effects are possible.

For example, you can use a randomized greedy strategy to fill almost any region (not 

just a rectangle) as long as you have a set of words as a palette, from which you can 

arbitrarily choose any word, at any size, any number of times (see Figure 3-11).

Figure 3-11.  Do not underestimate the power of the randomized greedy algorithm 

Consider Jared Tarbell’s exquisite Emotion Fractal* (see Figure 3-12), which recur-

sively subdivides a space into ever-smaller random rectangles, filling the space with 

ever-smaller words. This effect depends on a large set of candidate words, chosen at 

random, with arbitrary weights.

*	See http://levitated.net/daily/levEmotionFractal.html.

http://levitated.net/daily/levEmotionFractal.html
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Figure 3-12.  Jared Tarbell’s Emotion Fractal

If you don’t mind distorting your fonts by elongating or squashing the words as 

needed, other effects are possible. For example, Figure 3-13 shows a variation on 

the venerable treemap,* which uses text, rather than rectangles, to fill space. Each 

word fills an area proportional to its frequency; each rectangular area contains words 

strongly associated with each other in the source text.

Figure 3-13.  Word treemap of an Obama speech

*	See http://www.cs.umd.edu/hcil/treemap-history/.

http://www.cs.umd.edu/hcil/treemap-history/
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It must be said that long before there were Processing sketches and Flash applets, peo-

ple were exploring these sorts of typographical constructions in mass media and in fine 

art (Figure 3-14); we have been probing the boundary between letters as forms and 

letters as signs for a long time (Figure 3-15). The goal of these algorithmic explorations 

is to allow the wit and elegance of such examples to influence the representation of tex-

tual data.

Given this rather brief tour of the technical and aesthetic environment in which 

Wordle evolved, we’re now ready to look at Wordle’s technical and aesthetic choices in 

a bit more detail.

Figure 3-14.  Herb Lubalin and Lou Dorfsman’s Typographicalassemblage (courtesy of the 
Center for Design Study)

Figure 3-15.  Before we made pictures with words, we made words with pictures
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How Wordle Works
Wordle is implemented as a Java applet. Some of the technical details I provide here 

will be in terms of Java-specific features. Nothing described here is impossible in other 

languages, using other libraries and frameworks, but Java’s strong support for Unicode 

text processing and 2D graphics (via the Java2D API) makes these things pretty 

straightforward.

Text Analysis
We’ll now take a step back and consider some of the fundamental assumptions that 

determine Wordle’s character. In particular, we have to examine what “text” is, as far 

as Wordle is concerned.

While this kind of text analysis is crude compared to what’s required for some natural-

language processing, it can still be tedious to implement. If you work in Java, you might 

find my cue.language library* useful for the kinds of tasks described in this section. It’s 

small enough, it’s fast enough, and thousands use it each day as part of Wordle. 

Remember that natural-language analysis is as much craft as science,† and even given 

state-of-the-art computational tools, you have to apply judgment and taste.

Finding words
Wordle is in the business of drawing pictures of words, each having some weight, which 

determines its size. What does Wordle consider to be a “word”?

Wordle builds a regular expression (regex) that recognizes what it considers to be 

words in a variety of scripts, and then iteratively applies that regex to the given text, as 

illustrated in Example 3-1. The result is a list of words.

Example 3-1.  How to recognize “words”

private static final String LETTER = "[@+\\p{javaLetter}\\p{javaDigit}]";
private static final String JOINER = "[-.:/''\\p{M}\\u2032\\u00A0\\u200C\\u200D~]";
/*
A word is:
    one or more "letters" followed by
    zero or more sections of

        one or more "joiners" followed by one or more "letters"
*/
private static final Pattern WORD = 
    Pattern.compile(LETTER + "+(" + JOINER + "+" + LETTER + "+)*");

*	See http://github.com/vcl/cue.language.

†	For an illuminating demonstration of this craft, see Peter Norvig’s chapter on natural-language 
processing in the sister O’Reilly book Beautiful Data.

http://github.com/vcl/cue.language
http://oreilly.com/catalog/9780596157111/
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A letter is any character that the Java Character class considers to be either a “letter” or 

a “digit,” along with @ (at sign) and + (plus sign). Joiners include the Unicode M class, 

which matches a variety of nonspacing and combining marks, other pieces of punc-

tuation commonly found in URLs (since Wordle users expect to see URLs preserved as 

“words”), the apostrophe, and several characters used as apostrophes in the wild (such 

as U+2032, the PRIME character). Wordle accepts the tilde (~) as a word joiner but 

replaces it with a space in the output, thereby giving users an easy way to say “keep 

these words together” without having to find the magical key combination for a real 

nonbreaking space character.

Determining the script
Having extracted a list of words (whatever we take “word” to mean), we need to know 

how to display those words to the viewer. We first need to know what characters we’ll 

be expected to display, so that we can choose a font that supports those characters.

Wordle’s collection of fonts is organized in terms of what scripts each can support, 

where a script is what you might think of as an alphabet: a collection of glyphs that can 

be used to visually represent sequences of characters in one or more languages. A given 

script, in Unicode, is organized into one or more blocks. So, the task now is to deter-

mine which fonts the user might want to use by sniffing out which blocks are repre-

sented in the given text.

Java provides the static method UnicodeBlock.of(int codePoint) to determine which 

block a given code point belongs to. Wordle takes the most frequent words in a text 

and looks at the first character in each of those words. In the rather common case 

that the character is in the Latin block, we further check the rest of the word to see 

if it contains any Latin-1 Supplement characters (which would remove certain fonts 

from consideration) or any of the Latin Extended blocks (which would bar even more 

fonts). The most frequently seen block is the winner.

To keep it responsive and limit its use of network resources, Wordle is designed to per-

mit the use of only one font at a time. A more full-featured word cloud might choose 

different fonts for different words; this could provide another visual dimension to rep-

resent, for example, different source texts.

As of this writing, Wordle supports the Latin, Cyrillic, Devanagari, Hebrew, Arabic, 

and Greek scripts. By design, Wordle does not support the so-called CJKV scripts, the 

scripts containing Chinese, Japanese, Korean, and Vietnamese ideographs. CJKV fonts 

are quite large and would take too long for the average Wordle user to download (and 

would cost a great deal in bandwidth charges). Also, determining word breaks for 

ideographic languages requires sophisticated machine-learning algorithms and large 

runtime data structures, which Wordle cannot afford.
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know thy data

Unicode in a Nutshell
Since Wordle understands text in Unicode terms, here’s what you have to know in order to 
understand some of the terms and notations you’ll see here.

The Unicode* standard provides a universal coded character set and a few specifications 
for representing its characters in computers (as sequences of bytes). 

A character is an abstract concept, meant to serve as an atom of written language. It is 
not the same thing as a “letter”—for example, some Unicode characters (accents, umlauts, 
zero-width joiners) are only meaningful in combination with other characters. Each charac-
ter has a name (such as GREEK CAPITAL LETTER ALPHA) and a number of properties, 
such as whether it is a digit, whether it is an uppercase letter, whether it is rendered right-
to-left, whether it is a diacritic, and so on.

A character set or character repertoire is another abstraction: it is an unordered collection 
of characters. A given character is either in, or not in, a given character set. Unicode at-
tempts to provide a universal character set—one that contains every character from every 
written language in current and historical use—and the standard is constantly revised to 
bring it closer to that ideal.

A coded character set uniquely assigns an integer—a code point—to each character. Once 
you’ve assigned code points to the characters, you may then refer to those characters by their 
numbers. The convention used is an uppercase U, a plus sign, and a hexadecimal number. For 
example, the PRIME character mentioned earlier in this chapter has the code point U+2032.

Coded characters are organized according to the scripts in which they appear, and scripts 
are further organized into blocks of strongly related characters. For example, the Latin script 
(in which most European languages are written) is given in such blocks as Basic Latin (con-
taining sufficient characters to represent Latin and English), Latin-1 Supplement (containing 
certain diacritics and combining controls), Latin Extended A, Latin Extended B, and so on.

When it comes time to actually put pixels onto a screen, a computer program interprets 
a sequence of characters and uses a font to generate glyphs in the order and location 
demanded by the context.

*	See http://unicode.org.

Guessing the language and removing stop words
It would be neither interesting nor surprising to see that your text consists mostly of 

the words “the,” “it,” and “to.” To avoid a universe of boring Wordles, all alike, such 

stop words need to be removed for each recognized language. To know which list of 

stop words to remove for a given text, though, we have to guess what language that 

text is in. 

http://unicode.org
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Knowing the script is not the same as knowing the language, since many languages 

might use the same script (e.g., French and Italian, which share the Latin script).

Wordle takes a straightforward approach to guessing a text’s language: it selects the 50 

most frequent words from the text and counts how many of them appear in each lan-

guage’s list of stop words. Whichever stop word list has the highest hit count is consid-

ered to be the text’s language.

How do you create a list of stop words? As with the definition of a “word,” described 

earlier, this kind of thing is a matter of taste, not science. You typically start by count-

ing all of the words in a large corpus and selecting the most frequently used words. 

However, you might find that certain high-frequency words add a desirable flavor to 

the output while other, lower-frequency words just seem to add noise, so you may 

want to tweak the list a bit.

Many of Wordle’s stop word lists came from users who wanted better support for their 

own languages. Those kind folks are credited on the Wordle website.

By default Wordle strips the chosen language’s stop words from the word list before 

proceeding to the next steps, but Wordle users can override this setting via a menu 

checkbox.

Assigning weights to words
Wordle takes the straight path in assigning a numeric weight to each word. The for-

mula is: weight = word count. 

Layout
Once you’ve analyzed your text, you’re left with a list of words, each of which has 

some numeric weight based on its frequency in the text. Wordle normalizes the weights 

to an arbitrary scale, which determines the magnitude of various constants that affect 

the resulting image (such as the minimum size of a hierarchical bounding box leaf, as 

described later in this chapter). You’re now ready to turn words into graphical objects 

and to position those objects in space.

Weighted words into shapes
For each word, Wordle constructs a font with a point size equal to the word’s scaled 

weight, then uses the font to generate a Java2D Shape (see Example 3-2).
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Example 3-2.  How to turn a String into a Shape

private static final FontRenderContext FRC 
    = new FontRenderContext(null, true, true);

public Shape generate(final Font font, final double weight, final String word,
            final double orientation) {
    final Font sizedFont = font.deriveFont((float) weight);
    final char[] chars = word.toCharArray();
    final int direction = Bidi.requiresBidi(chars, 0, chars.length) ?
        Font.LAYOUT_RIGHT_TO_LEFT : Font.LAYOUT_LEFT_TO_RIGHT;
    final GlyphVector gv = 
        sizedFont.layoutGlyphVector(FRC, chars, 0, chars.length, direction);
    Shape result = gv.getOutline();
    if (orientation != 0.0){
        result = AffineTransform.getRotateInstance(orientation)
                    .createTransformedShape(result);
    }
    return result;
}

The playing field
Wordle estimates the total area to be covered by the finished word cloud by examin-

ing the bounding box for each word, summing the areas, and adjusting the sum to 

account for the close packing of smaller words in and near larger words. The resulting 

area is proportioned to match the target aspect ratio (which is, in turn, given by the 

dimensions of the Wordle applet at the moment of layout).

The constants used to adjust the size of the playing field, the area in which Wordles are 

laid out, were determined by the time-honored tradition of futzing around with differ-

ent numbers until things looked “good” and worked “well.” As it happens, the precise 

size of the playing field is rather important, because the field boundaries are used as 

constraints during layout. If your playing field is too small, your placement will run 

slowly and most words will fall outside the field, leaving you with a circle (because 

once a word can’t be placed on the field, Wordle relaxes that constraint and you wind 

up with everything randomly distributed around some initial position). If it’s too large, 

you’ll get an incoherent blob (because every nonintersecting position is acceptable).

One “gotcha” to look out for is an especially long word, which could have a dimension 

far larger than the calculated width or height based on area. You must make sure that 

your playing field is big enough to contain the largest word, at least.

Remember that the playing field is an abstract space, a coordinate system not corre-

sponding to pixels, inches, or any other unit of measurement. In this abstract space, 

you can lay out the word shapes and check for intersections. When it comes time to 

actually put pixels on the screen, you can do some scaling into screen units.
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Placement
Having created a place to put words, it’s time to position the words in that space. 

The overall placement strategy is a randomized greedy algorithm in which words are 

placed, one at a time, on the playing field. Once a word is placed, its position does not 

change.

Wordle offers the user a choice of placement strategies. These strategies influence the 

shape and texture of the completed Wordle, by determining where each word “wants” 

to go. On the Wordle website, the choices are center-line and alphabetical center-line. 

Both strategies place words near the horizontal center-line of the playing field (not 

necessarily upon it, but scattered away from it by a random distribution). The alpha-

betical strategy sorts the words alphabetically and then distributes their preferred x 

coordinates across the playing field.

Interesting effects are possible through the use of smarter placement strategies. For 

example, given clustering data—information about which words tend to be used near 

each other—the placement strategy can make sure that each word tries to appear near 

the last word from its cluster that was placed on the field (see Figure 3-16).

Figure 3-16.  The result of a clustering placement strategy
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The word shapes are sorted by their respective weights, in descending order. Layout 

proceeds as in Example 3-3, with the result as illustrated in Figure 3-17.

Example 3-3.  The secret Wordle algorithm revealed at last!

For each word w in sorted words:
    placementStrategy.place(w)
    while w intersects any previously placed words:
        move w a little bit along a spiral path

Figure 3-17.  The path taken by the word “Denmark”

To make matters a bit more complicated, Wordle optionally tries to get the words to fit 

entirely within the rectangular boundaries of the playing field—this is why it’s impor-

tant to guess how big the whole thing is going to be. If the rectangular constraint is 

turned on, the intersection-handling routine looks like Example 3-4.

Example 3-4.  Constraining words to the playing field

while w intersects any previously placed words:
    do {
        move w a little bit along a spiral path
    } while any part of w is outside the playing field and
            the spiral radius is still smallish
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Intersection testing
The pseudocode in Example 3-4 breezily suggests that you move a word while it inter-

sects other words, but it does not suggest how you’d go about determining such a 

thing. Testing spline-based shapes for intersection is expensive, and a naïve approach 

to choosing pairs for comparison is completely unaffordable. Here are the techniques 

that Wordle currently uses to make things fast enough:

Hierarchical bounding boxes

The first step is to reduce the cost of testing two words for intersection. A sim-

ple method for detecting misses is to compare the bounding boxes of two words, 

but it’s not uncommon for two such boxes to intersect when the word glyphs do 

not. Wordle exploits the cheapness of rectangle comparisons by recursively divid-

ing a word’s bounding box into ever-smaller boxes, creating a tree of rectangles 

whose leaf nodes contain chunks of the word shape (see Figure 3-18). Although 

it’s expensive to construct these hierarchical bounding boxes, the cost is recovered 

by an order of magnitude during the layout. To test for collision, you recursively 

descend into mutually intersecting boxes, terminating either when two leaf nodes 

intersect (a hit) or when all possible intersecting branches are excluded (a miss). 

By taking care with the minimum size of leaf rectangles and by “swelling” the leaf 

boxes a bit, the layout gets a pleasing distance between words “for free.”

Figure 3-18.  Hierarchical bounding boxes

Broadphase collision detection

In choosing pairs of words to test for intersection, the simplest approach is to test 

the current candidate word against all of the already-placed words. This approach 

results in a hit test count around the order of N2, which is far too slow once you 

get up to 100 words or so. Therefore, Wordle does some extra work to avoid as 

much collision testing as possible.

Caching

One very simple improvement stems from the observation that if a word A 

intersects some other word B, it’s very likely that A will still intersect B if A 

is moved slightly. Therefore, Wordle caches a candidate word’s most recently 

intersected word and tests it first.
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Spatial indexing

To further reduce the number of hit tests, Wordle borrows from computational 

geometry the region quadtree, which recursively divides a two-dimensional space 

(in this case, the Wordle playing field) into four rectangular regions. Here, 

a quadtree serves as a spatial index to efficiently cull shapes from the list of 

words to be compared to some candidate shape. Once a word is placed on the 

playing field, Wordle searches for the smallest quadtree node that entirely 

contains the word, and adds the word to that node. Then, when placing the 

next word, many already-placed words can be culled from collision testing by 

querying the quadtree.

There’s an entire research field around efficient collision detection, much of which is 

very well summarized in Christer Ericson’s (2005) book Real-Time Collision Detection. I 

recommend that book to anyone who wants to play with randomized graphics algo-

rithms like Wordle’s; my own quadtree implementation is based on my understanding 

of its discussion.

Is Wordle Good Information Visualization?
If you consider Wordle strictly as an information visualization tool, certain aspects of 

its design could be criticized for their potential to mislead or distract its users. Here are 

some of my own Wordle caveats.

Word Sizing Is Naïve
Wordle does not take into account the length of a word, or the glyphs with which 

it’s drawn, when calculating its font size. The result is that, given two words used the 

same number of times, the word with more letters will take up more space on the 

screen, which may lead to the impression of the longer word being more frequent. 

On the other hand, I don’t know of any studies on how relative word size corresponds 

to perceived relative weight. What’s more, the commonly used trick of scaling by the 

square root of the word’s weight (to compensate for the fact that words have area, and 

not mere length) simply makes a Wordle look boring.

Color Is Meaningless
In a medium—your computer screen—that provides precious few dimensions, Wordle 

is shockingly free with its use of color. Color means absolutely nothing in Wordle; it is 

used merely to provide contrast between word boundaries and for aesthetic appeal.

Color could be used to code various dimensions, such as clustering (indicating which 

words tend to be used near each other) or statistical significance (as in the inaugural 

address word clouds—see Figure 3-19). Wordle could also use color to let two or more 

different texts be represented in the same space.
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Figure 3-19.  “Government” was used a lot in this speech, but not much more than in the other 
speeches; “pleasing” was used only a couple of times but is an unusual word in the corpus; 
“people” was used a lot and is unusually frequent

It should also be mentioned that Wordle makes no provision for colorblind users, 

although one can always create a custom palette via the applet’s Color menu.

Fonts Are Fanciful
Many of Wordle’s fonts strongly favor aesthetics and expressiveness over legibility. This 

has to do, partly, with the design of the Wordle website—the gallery pages would be 

monotonous without fairly broad letter-form diversity. Most importantly, a font has to 

look good in a Wordle, which may mean that it wouldn’t necessarily work well for body 

text.

For applications where legibility is paramount, Wordle provides Ray Larabie’s 

Expressway font, which is modeled on the U.S. Department of Transportation’s 

Standard Alphabets.

Word Count Is Not Specific Enough
I have seen Wordle used to summarize each book of the New Testament, leading to 

one page after another of “Lord,” which tells you nothing about how the chapters are 

distinct from one another. Merely counting words does not permit meaningful com-

parisons of like texts. Consider, for example, a blog post. It might be most revealing to 

emphasize how the post differs from other blog posts by the same author, or to show 

how it differs from posts on the same topic by other bloggers, or even to show how it 

differs from the language of newspaper reporting. 
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There are plenty of statistical measures that one may apply to a “specimen” text versus 

some “normative” body of text to reveal the specific character of the specimen, with 

proper attention paid to whether some word use is statistically significant. Given a 

more nuanced idea of word weight, beyond mere frequency, one could then apply the 

Wordle layout algorithm to display the results.

I explored this idea in an analysis of every presidential inaugural address,* in which 

each speech was compared to the 5 speeches nearest to it in time, the 10 nearest 

speeches, and all other inaugural addresses. Such an analysis has the advantage of 

revealing the unexpected absence of certain words. For example, Figure 3-20 is a visu-

alization of Harry Truman’s 1948 inaugural address. On the left is a Wordle-like repre-

sentation of the words he used, and on the right are the words that his contemporaries 

used more than he did. This visualization reveals Truman’s emphasis on foreign policy.

Figure 3-20.  Harry Truman’s 1948 inaugural address: the words in red were conspicuously 
absent from Harry Truman’s speech, relative to those of his contemporaries

*	See http://researchweb.watson.ibm.com/visual/inaugurals/.

http://researchweb.watson.ibm.com/visual/inaugurals/
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How Wordle Is Actually Used
Wordle was not designed for visualization experts, text analysis experts, or even expe-

rienced computer users. I tried to make Wordle as appliance-like as possible.

As of this writing, people have created and saved over 1,400,000 word clouds in the 

Wordle gallery. They have been used to summarize and decorate business presenta-

tions and PhD theses, to illustrate news articles and television news broadcasts, and to 

distill and abstract personal and painful memories for victims of abuse. Wordle has also 

found an enthusiastic community in teachers of all stripes, who use Wordles to present 

spelling lists, to summarize topics, and to engage preliterate youngsters in the enjoy-

ment of text.

As the survey results in Table 3-1 (Viégas, Wattenberg, and Feinberg, 2009) illustrate, 

when people use Wordle they feel creative, as though they’re making something.

Table 3-1.  How people feel when they make a Wordle

Agree % Neutral % Disagree %

I felt creative 88 9 4

I felt an emotional reaction 66 22 12

I learned something new about the text 63 24 13

It confirmed my understanding of the text 57 33 10

It jogged my memory 50 35 15

The Wordle confused me 5 9 86

So, by one traditional academic measure of a visualization’s efficacy—“I learned some-

thing new about the text”—Wordle can at least be considered moderately successful. 

But where Wordle shines is in the creation of communicative artifacts. People who use 

Wordle feel as though they have created something, that the created thing succeeds 

in representing something meaningful, and that it accurately reflects or intensifies the 

source text. This sense of meaningfulness seems to be mostly intuitive, in that many 

people do not realize that word size is related to word frequency (guessing, instead, 

that the size indicates “emotional importance” or even “word meaning”).

The special qualities of Wordle are due to the special qualities of text. Simply putting a 

single word on the screen, in some font that either complements or contrasts with the 

sense of the word, immediately resonates with the viewer (indeed, there have been 

many thousands of single-word Wordles saved to the public gallery). When you jux-

tapose two or more words, you begin to exploit the tendency of a literate person to 

make sense of words in sequence. Wordle’s serendipitous word combinations create 

delight, surprise, and perhaps some of the same sense of recognition and insight that 

poetry evokes intentionally. 
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Using Wordle for Traditional Infovis
Notwithstanding Wordle’s special emotional and communicative properties, the ana-

lytic uses of information visualization are certainly available to the expert user. To 

serve those who want to use Wordle as a visualization for their own weighted text, 

where the weights are not necessarily based on word frequency, the Wordle website 

provides an “advanced” interface, where one can enter tabular data containing arbi-

trarily weighted words or phrases, with (optional) colors.

Still more advanced use is possible through the “Word Cloud Generator” console 

application, available through IBM’s alphaWorks website.*

The ManyEyes collaborative data visualization site also provides Wordle as a text-

visualization option beside its innovative Phrase Net and Word Tree visualizations (and 

a more traditional tag cloud).†

Conclusion
People often want to preserve and share the Wordles they make; they use Wordles to 

communicate. A beautiful visualization gives pleasure as it reveals something essential.
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C h a p t e r  F o u r

Color: The Cinderella of 
Data Visualization

Michael Driscoll

Avoiding catastrophe becomes the first principle in 

bringing color to information: Above all, do no harm. 

—Edward Tufte, Envisioning Information (Graphics Press)

Color is one of the most abused and neglected �tools in data visualization: 

we abuse it when we make poor color choices, and we neglect it when we rely on 

poor software defaults. Yet despite its historically poor treatment at the hands of engi-

neers and end users alike, if used wisely, color is unrivaled as a visualization tool. 

Most of us would think twice before walking outside in fluorescent red Underoos®. 

If only we were as cautious in choosing colors for infographics! The difference is 

that few of us design our own clothes, while we must all be our own infographics 

tailors in order to get colors that fit our purposes (at least until good palettes—like 

ColorBrewer—become commonplace).

While obsessing about how to implement color on the Dataspora Labs PitchFX viewer, 

I began with a basic motivating question: why use color in data graphics? We’ll con-

sider that question next.

Why Use Color in Data Graphics?
For a simple dataset, a single color is sufficient (even preferable). For example, Figure 

4-1 shows a scatterplot of 287 pitches thrown by Major League pitcher Oscar Villarreal 

in 2008. With just two dimensions of data to describe—the x and y locations in the 

strike zone—black and white is sufficient. In fact, this scatterplot is a perfectly lossless 

representation of the dataset (assuming no data points overlap perfectly).



60 Beautiful Visualization

x position

y p
os

iti
on

–15

–10

–5

0

5

–5 0 5 10

�

�
�

�

�

�
�

�

�

��

�
�

�� �

�

�

�

� �
�

���� ���

��

�

�

�
��

��
��

�

�
�

�
�

�
�

�

�

�

�
� � �
�

�� �

�

�

�

�
�

�

��
�
�
� �

�

�
�

�

�

�

�

�

�
�

�

�

��
�
�

�
�

�

�
�

���

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�
�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

� �
�

�

�

�

�

�
�

�

�

�

�

��
�

�

�

� �

�

�

�
�

��

�
� �

�

�

�

�

�
�
�

�

�
�

�

�

�

�

�
�

�

��
��

�

�

�

�

�

��

���
��

�

�

�

�
�

�

�
�

� � �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

� �

� �
�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��
�

�

�

Figure 4-1.  Location of pitches indicated in an x/y plane

But what if we’d like to know more? For instance, what kinds of pitches (curveballs, 

fastballs) landed where? Or what was their speed? Visualizations occupy two dimen-

sions, but the world they describe is rarely so confined.

The defining challenge of data visualization is projecting high-dimensional data onto 

a low-dimensional canvas. As a rule, one should never do the reverse (visualize more 

dimensions than already exist in the data).

Getting back to our pitching example, if we want to layer another dimension of data—

pitch type—into our plot, we have several methods at our disposal:

1.	 Plotting symbols. We can vary the glyphs that we use (circles, triangles, etc.).

2.	 Small multiples. We can vary extra dimensions in space, creating a series of smaller 

plots.

3.	 Color. We can color our data, encoding extra dimensions inside a color space.

Which technique you employ in a visualization should depend on the nature of the 

data and the media of your canvas. I will describe these three by way of example.

1. Vary Your Plotting Symbols
In Figure 4-2, I’ve layered the categorical dimension of pitch type into our plot by 

using four different plotting symbols.
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Figure 4-2.  Location and pitch type indicated by plotting symbols

I consider this visualization an abject failure. There are two reasons why graphs like 

this one make our heads hurt: because distinguishing glyphs demands extra attention 

(versus what academics call “preattentively processed” cues like color), and because 

even after we’ve visually decoded the symbols, we must map those symbols to their 

semantic categories. (Admittedly, this can be mitigated with Chernoff faces or other 

iconic symbols, where the categorical mapping is self-evident).

2. Use Small Multiples on a Canvas
While Edward Tufte has done much to promote the use of small multiples in infor-

mation graphics, folding additional dimensions into a partitioned canvas has a dis-

tinguished pedigree. This technique has been employed everywhere from Galileo’s 

sunspot illustrations to William Cleveland’s trellis plots. And as Scott McCloud’s unex-

pected tour de force on comics makes clear, panels of pictures possess a narrative power 

that a single, undivided canvas lacks.

In Figure 4-3, plots of the four types of pitches that Oscar throws are arranged hori-

zontally. By reducing our plot sizes, we’ve given up some resolution in positional 

information. But in return, patterns that were invisible in our first plot and obscured 

in our second (by varied symbols) are now made clear (Oscar throws his fastballs low, 

but his sliders high).
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Figure 4-3.  Location and pitch type indicated by facets

Multiplying plots in space works especially well on printed media, which can display 

more than 10 times as many dots per square inch as a screen. Additional plots can be 

arranged in both columns and rows, with the result being a matrix of scatterplots (in 

R, see the splom function).

3. Add Color to Your Data 
In Figure 4-4, I’ve used color as a means of encoding a fourth dimension of our pitch-

ing data: the speed of pitches thrown. The palette I’ve chosen is a divergent palette 

that moves along one dimension (think of it as the “redness-blueness” dimension) in 

the Lab color space,* while maintaining a constant level of luminosity.
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Figure 4-4.  Location and pitch type, with pitch velocity indicated by a one-dimensional color 
palette

*	See http://en.wikipedia.org/wiki/CIELUV_color_space.

http://en.wikipedia.org/wiki/CIELUV_color_space
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On the one hand, holding luminosity constant has advantages, because luminosity 

(similar to brightness) determines a color’s visual impact. Bright colors pop, and dark 

colors recede. A color ramp that varies luminosity along with hue will highlight data 

points as an artifact of color choice.

On the other hand, luminosity—unlike hue—possesses an inherent order that hue 

lacks, making it suitable for mapping to quantitative (and not categorical) dimensions 

of data. 

Because I am going to use luminosity to encode yet another dimension later, I decided 

to use hue for encoding speed here; it suits our purposes well enough. I chose only 

seven gradations of color, so I’m downsampling (in a lossy way) our speed data. 

Segmentation of our color ramp into many more colors would make it difficult to dis-

tinguish them.

I’ve also chosen to use filled circles as the plotting symbol in this version, as opposed 

to the open circles used in all the previous plots. This improves the perception of each 

pitch’s speed via its color: small patches of color are less perceptible. However, a con-

sequence of this choice—compounded by the decision to work with a series of smaller 

plots—is that more points overlap. Hence, we’ve further degraded some of the positional 

information. (We’ll attempt to recover some of this information in just a moment.)

So Why Bother with Color?
As compared to most print media, computer displays have fewer units of space but a 

broader color gamut. So, color is a compensatory strength.

For multidimensional data, color can convey additional dimensions inside a unit of space, 

and can do so instantly. Color differences can be detected within 200 milliseconds, before 

you’re even conscious of paying attention (the “preattentive” concept I mentioned 

earlier).

But the most important reason to use color in multivariate graphics is that color 

is itself multidimensional. Our perceptual color space—however you slice it—is 

three-dimensioned. 

We’ve now brought color to bear on our visualization, but we’ve only encoded a single 

dimension: speed. This leads us to another question.

If Color Is Three-Dimensional, Can I Encode Three 
Dimensions with It?
In theory, yes—Colin Ware (2000) researched this exact question using red, blue, and 

green as the three axes. (There are other useful ways of dividing the color spectrum, 

as we will soon see.) In practice, though, it’s difficult. It turns out that asking observers 

to assess the amount of “redness,” “blueness,” and “greenness” of points is possible, but 

doing so is not intuitive.
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Another complicating factor is that a nontrivial fraction of the population has some 

form of colorblindness (also known as dichromacy, in contrast to normal trichromacy). 

This effectively reduces color perception to two dimensions.

And finally, the truth is that our sensation of color is not equal along all dimensions: 

there are fewer perceptible shades of yellow than there are “blues.” It’s thought that 

the closely related “red” and “green” receptors emerged via duplication of the single 

long wavelength receptor (useful for detecting ripe from unripe fruits, according to 

one just-so story).

Because of the high level of colorblindness in the population, and because of the chal-

lenge of encoding three dimensions in color, I believe color is best used to encode no 

more than two dimensions of data.

Luminosity As a Means of Recovering Local Density
For the last iteration of our pitching plot data visualization, shown in Figure 4-5, I will 

introduce luminosity as a means of encoding the local density of points. This allows us 

to recover some of the data lost by increasing the sizes of our plotting symbols.
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Figure 4-5.  Location and pitch type, with pitch velocity and local density indicated by a two-
dimensional color palette (see inset for details)
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Here we have effectively employed a two-dimensional color palette, with blueness-

redness varying along one axis to denote speed, luminosity varying along the other to 

denote local density. As detailed in the “Methods” section, these plots were created using 

the color space package in R, which provides the ability to specify colors in any of the 

major color spaces (RGB, HSV, Lab). Because the Lab color space varies chromaticity inde-

pendently from luminosity, I chose it for creating this particular two-dimensional palette.

One final point about using luminosity is that observing colors in a data visualization 

involves overloading, in the programming sense. That is, we rely on cognitive func-

tions that were developed for one purpose (seeing lions) and use them for another 

(seeing lines).

We can overload color any way we want, but whenever possible we should choose 

mappings that are natural. Mapping pitch density to luminosity feels right because 

the darker shadows in our pitch plots imply depth. Likewise, when sampling from the 

color space, we might as well choose colors found in nature. These are the palettes our 

eyes were gazing at for millions of years before the RGB color space showed up.

Looking Forward: What About Animation?
This discussion has focused on using static graphics in general, and color in particular, 

as a means of visualizing multivariate data. I’ve purposely neglected one very powerful 

dimension: time. The ability to animate graphics multiplies by several orders of mag-

nitude the amount of information that can be packed into a visualization (a stunning 

example is Aaron Koblin’s visualizations of U.S. and Canadian flight patterns, explored 

in Chapter 6). But packing that information into a time-varying data structure involves 

considerable effort, and animating data in a way that is informative, not simply aestheti-

cally pleasing, remains challenging. Canonical forms of animated visualizations (equiva-

lent to the histograms, box plots, and scatterplots of the static world) are still a ways off, 

but frameworks like Processing* are a promising start toward their development.

Methods
All of the visualizations here were developed using the R programming language and the 

Lattice graphics package. The R code for building a two-dimensional color palette follows:

## colorPalette.R
## builds an (m x n) 2D palette
## by mixing 2 hues (col1, col2)
## and across two luminosities (lum1,lum2)
## returns a matrix of the hex RGB values
makePalette <- function(col1,col2,lum1,lum2,m,n,...) {
    C <- matrix(data=NA,ncol=m,nrow=n)

*	See http://processing.org.

http://processing.org
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    alpha <- seq(0,1,length.out=m)
    ## for each luminosity level (rows)
    lum <- seq(lum1,lum2,length.out = n)
    for (i in 1:n) {
        c1 <- LAB(lum[i], coords(col1)[2], coords(col1)[3])
        c2 <- LAB(lum[i], coords(col2)[2], coords(col2)[3])
        ## for each mixture level (columns)
        for (j in 1:m) {
            c <- mixcolor(alpha[j],c1,c2)
            hexc <- hex(c,fixup=TRUE)
            C[i,j] <- hexc
        }
    }
    return(C)
}

## plot a vector or matrix of RGB colors
plotPalette <- function(C,...) {
    if (!is.matrix(C)) {
        n <- 1
        C <- t(matrix(data=C))
    } else {
        n <- dim(C)[1]
    }
    plot(0, 0, type="n", xlim = c(0, 1), ylim = c(0, n), axes = FALSE, 
            mar=c(0,0,0,0),...)

    ## helper function for plotting rectangles
    plotRectangle <- function(col, ybot=0, ytop=1, border = "light gray") {
        n <- length(col)
        rect(0:(n-1)/n, ybot, 1:n/n, ytop, col=col, border=border, mar=c(0,0,0,0))
    }

    for (i in 1:n) {
        plotRectangle(C[i,], ybot=i-1, ytop=i)
    }
}

## Let's put it all together.
## We make two colors in the LAB space, and then plot a 2D palette
## going from 60 to 25 luminosity values.
library(colorspace)
lightRed <- LAB(50,48,48)
lightBlue <- LAB(50,-48,-48)
C <- makePalette(col1=lightBlue, col2=lightRed, lum1=60, lum2=25, m=7, n=7)
plotPalette(C, xlab='speed', ylab='density'
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Conclusion
As this example has demonstrated, color—used thoughtfully and responsibly—can be 

an incredibly valuable tool in visualizing high-dimensional data. The final product—

five-dimensional pitch plots for all available data for the 2008 season—can be explored 

via the PitchFX Django-driven web tool at Dataspora labs (http://labs.dataspora.com/

gameday/).
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C h a p t e r  F iv  e

Mapping Information: 
Redesigning the New York City 

Subway Map
Eddie Jabbour, as told to Julie Steele

Maps are one of the most basic data visualizations that we have; �we’ve 

been making them for millennia. But we still haven’t perfected them as a tool for 

understanding complex systems—and with 26 lines and 468 stations across five bor-

oughs, the New York City subway system certainly is complex. The KickMap™ is the 

result of my quest to design a more effective subway map, and ultimately to encourage 

increased ridership.

The Need for a Better Tool
I was born in Queens and raised in Brooklyn. The first subway map I saw was my 

father’s, circa 1960. It made a vivid impression on me because it intimidated me. I saw 

a gray New York with red, green, and black lines running all over it like a grid (see 

Figure 5-1), and hundreds of station names attached.* It reminded me of a complex 

electrical diagram that I couldn’t understand; it looked very “adult-serious” and even a 

little scary. I hoped I’d never have to deal with it.

*	 I now know that map was an early version of the Salomon map. Years later, when I was doing
research for the creation of the KickMap, I got to appreciate the beauty of the design of this map.
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Figure 5-1.  The 1958 New York City Subway map designed by George Salomon. 1958 New 
York City Subway Map © MTA New York City Transit. Used with permission.
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London Calling
In college I majored in design, and I spent half a year studying at the University of 

London. I was all on my own in a huge city I had never been to before. I quickly 

learned that the London Underground was the way to get around and that the “Tube 

map” was the key to understanding it. That map (which of course is the acclaimed 

Beck map seen in Figure 5-2) was brilliantly friendly: simple, bright, functionally col-

orful, designed to help users easily understand connections between lines, and physi-

cally tiny. Folded, it fit easily into my pocket, to be whipped out at a second’s notice 

for immediate reference (which I did often!). 

Figure 5-2.  Harry Beck’s map of the London Underground makes a complex system appear 
simple and elegant. 1933 London Tube Map © TfL from the London Transport Museum 
collection. Used with permission.

London was a medieval city, and therefore its street pattern is random. You cross a 

crooked intersection and the name of the street you’re on changes. There’s no num-

bered grid to provide a frame of reference (like in New York), and moving through 

the city can be a disorienting experience. The genius of the Beck map is that it makes 

order out of this random complexity, with the River Thames as the only visual (and 

geographic) point of reference to the aboveground world. And for that reason, the 

map’s layout is iconic: when you think of London, you probably think of that Tube 

map. But even as a design student, I didn’t think much about the form of it at the 

time—it was just so simple and easy to use that travel felt effortless. 
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The combination of that effective little map and my unlimited monthly “Go As You 

Please” pass allowed me to use the Underground daily to explore London. I went any-

where and everywhere with ease and got the most that I could out of that great city. 

The Tube map imparted information so quickly and clearly that it became an indis-

pensible tool and an integral part of my experience. It made me feel that London was 

“mine” after only a couple of weeks of living there. What a fantastic and empowering 

feeling! 

In fact, I formed such a warm attachment to that valuable tool that at the end of my 

stay, just before I left the city, I went to my local Underground station and got a brand 

new Tube map, and when I returned home to New York I had it framed.

New York Blues
When you come back to your own city after six months away, you look at everything 

with new eyes. When I got back to New York, I saw our subway map—really saw it—

for the first time since I was a kid. And I thought, compared to London’s, our subway 

map is poorly designed. 

I remember thinking that the New York subway map was the opposite of the Beck 

map: huge in size, unruly in look, cluttered, and very nonintuitive. I realized that 

this map was in many ways a barrier to using our great subway system—the oppo-

site of the Tube map, whose simplicity was a key to understanding and using the 

Underground.

Even as a designer, however, if I ever thought of creating my own subway map I must 

have quickly dismissed the idea. This was in the late 1970s, and I’m not a T-square 

kind of guy. The amount of discipline and mechanical time it would have required for 

anyone but an experienced draftsman to undertake such an endeavor was unthink-

able in that precomputer era. 

The map’s deficiencies left my mind as I pursued my design career. Like most New 

Yorkers, I used the subway map rarely and never carried it. This was in part because 

of its size: it was as large as a foldout road map. If I needed the map’s information to 

get to a new location, I would tear out the relevant six-inch square portion from a free 

map in the station and throw the rest of it in the trash! I often saw tourists struggling 

with the physical map and felt bad for them, remembering my great experience as a 

student in London.
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Better Tools Allow for Better Tools
Now, fast-forward to one night years later when I was taking an out-of-town client 

to dinner at a downtown restaurant. As we waited for the train, he confided to me 

that New York’s subway intimidated him. I was surprised: the crime and grime of the 

1970s–1990s were virtually gone from the system, and I was proud of our shiny new 

air-conditioned cars and clean stations. But in our conversation on the way down-

town, I realized that his fear lay in not being able to decipher the complexity of the sys-

tem: all the lines and connections. That’s when I realized that the problem for him, 

too, was the map. My client was very well traveled and urbane; if he found the system 

intimidating, then there really was something wrong with the communicator of that 

system—the map.

At that moment the subway map re-entered my consciousness, and it hasn’t left since.

At that point, it was 2002. I had my own design agency and my own staff, each of us 

with our own computer loaded with a copy of the greatest and most elegant graphic 

design tool available. I realized that now, just one person using a graphic design pro-

gram like Adobe Illustrator had the power to create his own subway map! And I chal-

lenged myself to do something about the map.

Size Is Only One Factor 
When I decided to try making a new map as a weekend project (ha!), the first thing 

I considered was the size. Since the New York City subway system has about twice as 

many stations as London’s, I decided to give myself twice as much space as the Tube 

map takes. (Even doubling the size of the Tube map, the result was about one-fifth the 

size of the existing New York subway map.)

First, I took a paper version of the official Metropolitan Transit Authority (MTA) map 

(a version of which is shown in Figure 5-3), cut it up with scissors, and put it back 

together in a more efficient way (literally with Scotch® tape), just to see the possibili-

ties. I was encouraged as I managed to reduce the area by more then half. Gone were 

the 56 bus pop-up boxes and other nonsubway information! Then came the labori-

ous task of creating an actual map. I entered all the station names and lines into an 

Illustrator document, and in two months, voilà! I had my very own smaller map! I 

folded it and easily put it in my wallet, and I carried it around and showed it to all my 

friends. They liked its size, but of course nobody wanted to actually use it, because it 

still had many of the major design issues that made the MTA map difficult to use. 
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Figure 5-3.  The 2004 version of the MTA New York City subway map, based on a design by 
Michael Hertz. Besides its visual complexity, incomplete information missing on the map itself 
forces the the user to rely on the complex charts in the lower right section—right where sitting 
people block its view in the subway cars—and in the stations where this information, displayed 
on large posters, is also difficult to read since it is often less than 18 inches off the ground. New 
York City Subway Map © Metropolitan Transportation Authority. Used with permission.
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It was one thing to reduce the size, but another thing to realize that the way the data 

was presented was not the best way to present it. So I asked myself: how would I present 

all this data? 

To answer this question, I had to ask a few more: 

•	 What maps came before this map? 

•	 Were there any previous conceptions that were discarded but perhaps still 

relevant? 

•	 What was it about New York City and its subway that historically made it so diffi-

cult to map clearly and efficiently? 

Looking Back to Look Forward
I did a research dive, and I started buying old transit maps on eBay. I studied sub-

way maps, New York City street maps, and transit maps from all over the world that 

I had collected on my travels. I filtered through all the design approaches and eclecti-

cally took as much as I could from ideas that had already been implemented (some 

brilliantly). 

Of course, in addition to the map designed by George Salomon that had been my 

father’s subway map, I studied carefully the map designed by Massimo Vignelli (see 

Figure 5-4), which the MTA used from 1972 until 1979, when it was replaced by the 

Tauranac-Hertz MTA map (which, 30 years later, still prevails). Vignelli’s map appealed 

to me immediately because, although big, it took obvious inspiration from Beck’s Tube 

map, with its 90- and 45-degree angles, explicit station connections, and the use of 

color to denote individual lines. There were also some smart aspects of the current 

MTA map that I wanted to keep, despite finding it on the whole unwieldy because 

there is so much information crammed onto it. In addition, I borrowed liberally from 

other past efforts that had been discarded or forgotten.
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Figure 5-4.  The 1972 MTA New York City subway map designed by Massimo Vignelli. 
Confusingly distorted geography for style’s sake—yet a stunning design icon. 1972 New York 
City Subway Map © MTA New York City Transit. Used with permission.
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New York’s Unique Complexity
As I conducted my research, I started to realize that New York City had its own unique 

set of challenges that made its subway system impossible to accurately and clearly 

map using just a diagrammatic method, as other cities like London, Paris, and Tokyo 

had done. It was also clear that a pure topographic mapping approach wouldn’t work, 

either; New York’s unique geography and its gridiron street system both have an 

impact on mapping its subway system. 

There are four significant and conflicting aspects of the New York City subway system 

that make it impossible to successfully map with either a strict diagrammatic or topo-

graphic format:

•	 The narrow geography of the principal thoroughfare, Manhattan Island, which 

has 17 separate subway lines running up and down Midtown alone in a width of 

six city blocks.

•	 The “cut and cover” method used to construct subway tunnels and elevated lines 

that follow the city’s gridiron street patterns. Because New York City’s subway 

generally follows its gridded street routes, there is a strong psychological link 

between the subway and the aboveground topography that is not found in a 

medieval city like London.

•	 The unique system of many of the subway lines running local, then express, then 

local again along their routes. 

•	 Its formative history, with the current system evolving from three separate and 

competing subway systems (the IRT, BMT, and IND) that were poorly coordinated 

to work as a whole system. (The chaotic tangle of these three competing routes, 

as they meander and fight their way through the dense street plans of lower 

Manhattan, downtown Brooklyn, and Long Island City, is the most difficult part of 

the system to map clearly and accurately.)

The KickMap, shown in Figure 5-5, is based on a combination of ideas I selectively 

borrowed from many earlier maps (some dating back to the 19th century) and my 

own innovations. I believe that this unique combination makes my map easier to use 

than most of the preceding efforts. In the following sections, I’ll discuss my inspirations 

and innovations in more detail.
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Figure 5-5.  The KickMap as it was released in 2007.
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Geography Is About Relationships
Most of the boroughs—Queens, Brooklyn, Manhattan, and to some extent, the 

Bronx—already have a grid on top of the subway system because of the way the streets 

were planned. This makes the aboveground geography not only an intuitive starting 

point, but also an integral part of the user’s experience. Knowing your location—take 

42nd Street and 7th Avenue as an example—places you in the grid, which makes it 

easy to judge distances and locations. This is why the numerous geographical errors 

that appear in New York City subway maps (like the Vignelli map infamously placing 

the 50th Street and Broadway stop west of 8th Avenue instead of east) are so glaring 

and easy to spot.

One of the issues I have with some previous versions of the New York subway map 

is that I have a hard time believing that the designers ever actually rode the subway 

as an integral part of their lives in the city. There’s a disconnect between many of the 

decisions they made and the reality of the subway. As part of my design process, I rode 

the lines and exited the stations at every major intersection with which I was unfamil-

iar. There is a strong relationship in New York between the aboveground and the below-

ground, and since subway riders don’t cease to exist when they leave the subway, it’s 

important for the map to express this relationship as clearly as possible. Otherwise, the 

result is an uncomfortable feeling of disorientation.

Include the Essentials
Consider the L line in Brooklyn. As a passenger on the train, you’re jostled around as 

you travel and you don’t really notice that the line is curving or turning corners along 

major streets and intersections. But when you get out at the Graham Avenue station, for 

instance, it’s obvious that Metropolitan Avenue and Bushwick Avenue are two major 

thoroughfares that intersect each other at a right angle. Why wouldn’t that show up 

on the map? If you didn’t know how the streets intersected and you just saw a sign for 

one or the other as you came out of the subway, it would be very difficult to figure out 

what was going on.

On the Vignelli map, this portion of the L is depicted as a straight line (see Figure 

5-6[a]). The Hertz map (Figure 5-6[c]) shows both Metropolitan and Bushwick 

Avenues, but the line resembles nothing so much as a wet noodle as it half-heartedly 

depicts the route. I chose to carefully draw a stylized but accurate line describing the 

path as it runs along each major avenue there, believing this to be the best approach 

because it is the most helpful to riders (Figure 5-6[b]).
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C

Figure 5-6.  A portion of the L line in Brooklyn as depicted by (a) the Vignelli map, (b) the 
KickMap, and (c) the Tauranac-Hertz map.

Conversely, I sometimes made stylistic simplifications to the geography in order to 

help riders. For example, Queens Boulevard, a major thoroughfare in Queens, was 

originally five different farm roads, and as a result it jigs and jogs a bit as it makes its 

way from the Queensboro Bridge east across the borough. Recent maps didn’t cap-

ture its relationship to the subway because they either ignored it entirely (as in the 

Vignelli map, shown in Figure 5-7[a]) or obscured it (as in the current MTA map, 

shown in Figure 5-7[c]). On my map, I styled Queens Boulevard as a straight line; see 

Figure 5-7(b). I chose to do this so that users could easily see its path and identify the 

“trade-off” subway lines that travel along it—where one subway line runs along the 

road and then veers off and another line takes its place. In this case, the 7 line runs 

along Queens Boulevard until it veers off along Roosevelt Avenue, and the R/V/G/E/F 

lines come down from Broadway and pick up its path east. My stylized approach uses 

logic to better convey the subway’s relationship to the streets of Queens, which is not 

clearly apparent on either the Vignelli map or the current MTA map. 
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Figure 5-7.  The trade-off along Queens Boulevard as depicted by (a) the Vignelli map, (b) the 
KickMap, and (c) the current MTA map.

Another “trade-off” I felt it was important to show clearly is at 42nd Street in Midtown 

Manhattan, where the 4/5/6 line jogs over from Park Avenue to Lexington Avenue 

(see Figure 5-8). A would-be rider walking along in Midtown or Murray Hill needs to 

know which street to go to for a subway entrance. The Vignelli map obscures the shift 

by treating it as a straight line, relying on text to convey the road switch, and once 

again the current MTA map is at best vague and noodley. In my map, it’s clear which 

way the user should go.  
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A B C

Figure 5-8.  A portion of the 4/5/6 line in Manhattan as depicted by (a) the Vignelli map, (b) the 
KickMap, and (c) the current MTA map.

Leave Out the Clutter
While I felt that it was important to show certain shapes aboveground, I also felt that it 

was important to leave out certain pieces of belowground information. There are sev-

eral places where the subway tunnels cross and overlap each other beneath the sur-

face. This may be important information for city workers or utility companies trying 

to make repairs, but for the average commuter, showing these interactions just creates 

visual noise. I tried to reduce that noise by cleanly separating the lines on the map so 

they don’t overlap. Consider the different depictions of the 4 line and the 5 line in the 

Bronx (Figure 5-9); sure, the MTA’s paths may be accurate, but they’re also confusing, 

and riders don’t really need to see those particular details to understand where they’re 

going.
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A B

Figure 5-9.  The 4 line and the 5 line as depicted by (a) the KickMap and (b) the current MTA 
map.

Coloring Inside the Lines
The belowground geography is important, but it’s more vital for the users to under-

stand which belowground lines will take them where they want to go.

In 1967, the MTA moved past the tricolor theme used on the Salomon and earlier 

maps and began to use individual colors to illustrate individual lines. However, this 

shift didn’t help simplify the system. It essentially had 26 lines assigned 26 random 

colors, which didn’t really tell the user anything beyond illustrating the continuity of a 

given route. Vignelli’s map (Figure 5-10[a]) continued with this color system.

The Tauranac-Hertz (current MTA) map attempted to simplify things by collapsing 

multiple subway lines onto one graphic line, but this actually made understanding the 

subway system more complicated, as now you had to read the text next to each and 

every station to learn whether a specific line stopped there or not; see Figure 5-10(c). 

What it did get right was that it color-coded sets of subway lines that use the same 

track—for example, the A/C/E lines are all blue, and the 4/5/6 lines are all green. If 

you look at the “trunk” lines that run north and south through Manhattan, the colors 

move from blue to red to orange to yellow to green, creating a spectrum effect. These 

colors are memorable and help riders discern which lines will take them in the general 

direction they want to go.
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In my map, I preserved the best elements of both approaches; see Figure 5-10(b). 

I reused the spectral colors on the trunk lines, highlighting an elegance and reality 

inherent in the system that Tauranac-Hertz understood, but kept it clear by represent-

ing each route with its own graphic line. Technically, I did what Vignelli did in that I 

used 26 distinct colors, but I grouped them in six or seven families of color and used dif-

ferent shades for each line in a given family: the A/C/E lines use shades of blue, the 

4/5/6 lines use shades of green, and so on.

A B C

Figure 5-10.  The Manhattan “trunk” lines as depicted by (a) the current MTA map, (b) the 
KickMap, and (c) the Vignelli map.

I also made use of line IDs and colors for the station dots.* The crucial idea here was 

that the map should be quickly scannable, rather than just readable. At each station 

where a line stops, I placed the name of that line inside a dot: this way, users can eas-

ily see exactly which trains stop at which stations without having to read a list of lines 

next to each station name. Use of different colored dots enables users to tell at a glance 

whether the train always stops there or has special conditions, such as weekday/weekend 

or peak hour/off-peak hour restrictions. 

Finally, there are about 80 stations in the city where, if you’ve missed your stop, you 

can’t just get out and conveniently switch direction. I highlighted these locations by 

placing a small red square next to the station name, indicating to riders who need to 

turn around which stations to avoid if they don’t want to have to leave the station, 

cross the street, and re-enter the station on the opposite side. The current MTA map 

shows all the heliports in the city but doesn’t provide users with this simple but impor-

tant piece of subway information—a perfect example of its confused priorities.

I believe that taken together, these decisions highlight the innovations that make the 

KickMap more useable than those that came before it.

*	This was a big aha moment in my process.
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Sweat the Small Stuff
Those decisions were easy for me, but other choices were more difficult. Which geo-

graphic features did I really need to keep? What angles should I use? How much bus 

and ferry information should I include?

So, after creating my first comprehensive map that met my initial challenges (Figure 

5-5), I decided to refine it and incorporate all of my learning. I was excited.

Try It On
In the car industry, it is common to build what is called a test mule, which is a proto-

type or preproduction car into which every possible experimental feature is crammed; 

that prototype then undergoes a series of drivability tests to determine what should be 

removed (because it’s not essential or doesn’t work quite right). I did the same thing 

with my map: I created a version (shown in Figure 5-11) into which I put every fea-

ture that I might possibly want. Illustrator’s layers feature really came in handy here; I 

put a lot in this map that I ultimately turned off or toned down.

Figure 5-11.  My version of a test mule for the map: I put lots of information in and then edited 
it down.
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The mule map allowed me to evaluate a variety of trade-offs, such as:

The street grid

I wanted to present the structure of the streets without interfering with the sub-

way info wherever I could. You’ll notice that the mule map includes a lot more 

streets and street names than the final design.

Beaches

I thought green spaces were important, and that New Yorkers should be able to 

find their way to beaches by subway rather than by car. My mule map included 

municipal swimming pools as well, but ultimately I decided to remove them. 

Coastline features

It was important that real people—like, say, my mom—could easily use this map, 

and she couldn’t care less about certain geographic details (like Steinway Creek 

or Wallabout Bay) that I included in the mule map. That was a reason to simplify 

and stylize. But I also wanted to make something any map geek or lover of New 

York City (like me!) could appreciate. So, there were instances where I let my pas-

sion take over. I decided to pay homage to certain subway feats, so I included fea-

tures like the Gowanus Canal, which the Smith/9th Street station crosses and has 

to clear (at 91 feet, it’s the highest elevated station in the system).

Angular design

In the final design I standardized a lot of the angles, but I broke that standardiza-

tion if I had to for clarity’s sake. I wasn’t a slave to the angles. Stylization is fine, 

but my goal was to take the stylization and make it work so that riders can always 

understand what’s going on aboveground. I also decided to consistently place sta-

tion names on the horizontal for easier reading, like on the London Tube map, 

instead of cramming them in at arbitrary angles.

Bridges and tunnels

One of my goals for this project was to come up with a tool that would encourage 

people to take the subway instead of a car. For this reason, I decided to leave out 

all the car bridges and tunnels (except for the iconic Brooklyn Bridge). I wanted to 

keep the experience of navigating the subway as clean and easy as possible, with-

out the temptation of using a car, to encourage users to keep riding.

Many of these choices were influenced by the following principle.

Users Are Only Human
There are certain New York icons that help orient the rider and are reassuring. To 

the extent that they represent something familiar, maps can be quite emotional. So, I 

saw preserving such icons as a way to build friendliness into this tool. I did not design 

a geographically precise topographical map; I designed a map that is emotionally and 

geographically accurate in a relational sense—Manhattan looks like Manhattan, Central 
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Park is green, the Hudson River is blue, and the subway stations are positionally accu-

rate in relation to one another and the streets (Delancey Street is shown east of the 

Bowery, etc.). 

For the same humanistic reason, I included certain celebrated landmarks—the Statue 

of Liberty, Ellis Island, and the Brooklyn Bridge. And I didn’t just include them with 

nametags; I actually included their familiar shapes, as was done on subway maps back 

in the 1930s.*

A City of Neighborhoods
When I travel on the subway to see my mom, I’m not going to see her at the 95th 

Street subway station; I’m going to see her at her home, which is in Bay Ridge, 

Brooklyn. This is an important aspect of New York: it is a city made up of neighbor-

hoods, and native New Yorkers think of the city in those terms. That’s our frame of 

reference: we travel from, say, Washington Heights to Bay Ridge.

The current MTA subway map includes some neighborhood names, but they are just 

dark blue words that compete with the station names and do little to describe the 

areas. There’s no hierarchy of information. By color-coding the neighborhoods—which 

has been done on maps of the city since at least the 1840s—in an unobtrusive way 

(using pastel tones) and writing their labels in white text so they wouldn’t visually 

interfere with the black text of the station names, I was able to provide layers of infor-

mation without compromising the clarity and functionality of the subway map. 

Again, these elements were literally created in separate digital layers in Illustrator. This 

allowed me to turn the neighborhoods on and off to determine what really needed to 

be there and to make several variations of the subway map with and without them. 

One Size Does Not Fit All
I believe that separating functions is an important key to any useful visualization or tool.

Another benefit of the layered approach was that it allowed me to custom-tailor the 

map to the user interface later. The KickMap is available as iPhone and iPad applica-

tions, and in that context, the map’s detail automatically changes as the user zooms in 

or out. Besides the apps, commuters still read subway maps in many different con-

texts: there is the foldout printed version, the huge ones they hang in the stations, the 

ones they post in the train cars (right behind the seats so that you have to peer past 

someone’s ear to read them), and the one that is posted online. Currently, you get 

basically the same map in each place, but that shouldn’t be the case: in each context, 

a slightly different version, optimized just for that specific environment, should be 

available. 

*	 I wanted to put the Empire State Building in there, but it would have cluttered up Midtown, and 
my goal all along was that it really had to be a simple and functional subway map!
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Each version should have its own design, tailored to the context in which it appears. 

The big maps that hang in the stations, for instance, should show you the neighbor-

hoods, but the one in the subway car that riders reference to make quick decisions, 

like whether to get off at the next station, need not. And why does the map in the 

subway car have to give you all that bus information? 

Contexts aren’t just physical, either. After 11:00 pm in New York, 26 routes reduce to 

19. So, in addition to the main day/evening KickMap, I made the night map shown 

in Figure 5-12. Instead of relying on a text-heavy, hard-to-read chart at the bottom 

of a one-size-fits-all map to determine when a certain route is available, a night map 

should be available to riders (not only on their iPhones, but also in the subway cars).

Figure 5-12.  The night version of the KickMap shows only the lines that run between 11:00 p.m. 
and 6:30 a.m.



89chapter 5: mapping information: redesigning the new york city subway map

When it came to making a night map, I simplified the day/evening version and took 

out most of the street and neighborhood information, as it seemed redundant.

Also, I do love the simple and elegant aesthetic of Beck’s Underground map, and keep-

ing the night map’s form simple pays homage to it!

Conclusion
Ultimately, I do think the KickMap accomplished most of my goals: to make the sub-

way lines and their connections as clear as possible for easier navigation, and to pro-

vide users with a clear representation of where they are once they exit a station so that 

the subway feels familiar and welcoming to all.

My main goal, however, was to get my map out there into the hands of subway rid-

ers. After the MTA rejected my design, I found an alternative way to distribute it, via 

Apple’s iTunes—two apps, one free and one paid, for the iPhone, iPod Touch, and iPad. 

All of the choices I made were aimed at trying to make the user experience as seam-

less and pleasant as possible. Clearly I’m striking a chord, as over 250,000 people (and 

counting) have now downloaded copies of the KickMap from iTunes. That’s really 

great but I still want the KickMap—or something superior—to replace the current 

one in the subway system. I want people to be comfortable and even happy when 

using our unbeatable 24-hour subway system. It is a complex system, but if people 

know how easy it can be—if the map becomes a friend* instead of an obstacle—ridership 

will increase. Ultimately, that benefits not only the system itself, but also all of us who 

live, work, visit, and breathe here. 

*	I think many people are passionate about the subway map as a great symbol of New York. The map 
shows the subway as kind of a dynamic capillary system nourishing the city. This is true not only 
conceptually but also historically: the subway was built to “nourish” new residential areas with 
cheap transportation to and from the central business districts so the City could continue to grow 
and thrive. 
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Flight Patterns: A Deep Dive
Aaron Koblin with Valdean Klump

There are roads in the sky. We can’t see them, but they are there: distinct, 

sharply defined avenues, traversed by thousands of airplanes every day. As individ-

ual observers we might never guess this was the case, but plotting the raw flight data 

shows us otherwise (Figure 6-1).

Flight Patterns is a project I started in 2005 that visualizes civilian air traffic in the 

United States and Canada. It exists in two mediums: still imagery, which traces aircraft 

arriving and departing from U.S. and Canadian airports over a 24-hour period, and 

video imagery, which depicts the same data in motion. In this chapter, I’ll show you 

some of these images and talk about the techniques I used to render them. I’ll also 

share some thoughts on why I find this project so compelling, and why I hope you will 

as well.*

*	All of the images in this chapter are available in high resolution online, so if you find them intrigu-
ing, I recommend that you visit my website to get a better look at them: http://www.aaronkoblin.
com/work/flightpatterns/. On the site, you may zoom in to the visualizations as well as view them in 
colors indicating aircraft altitude, model, and manufacturer. You may also view videos of the flight 
data in motion.

http://www.aaronkoblin.com/work/flightpatterns/
http://www.aaronkoblin.com/work/flightpatterns/
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Figure 6-1.  Flight Patterns, a visualization of aircraft location data for airplanes arriving at and 
departing from U.S. and Canadian airports

To begin with, I want to draw your attention to what I believe are the two most strik-

ing features of the visualization. The first is the tendency of airplanes to follow the 

exact same flight paths as other planes. When I originally rendered the data, I expected 

to see tight groupings of planes close to airports and a vast dispersion between them. 

Instead, I found the opposite: flight paths between airports tend to cluster, and then, as 

the planes get closer to landing or departing, their flight paths tend to disperse (Figures 

6-2 and 6-3). 

When you think about it, this is quite interesting. The sky is wide open, without any 

natural restrictions whatsoever, so planes can travel by any route they choose. And yet 

when looking at Flight Patterns, it almost appears as if there’s a map to the sky, a kind 

of aerial highway system, with designated routes between various destinations. You 

can even make out the roads.

Why is this happening? To be honest, I don’t know for sure. The routes may simply 

be the most efficient flight paths, or—more likely, I think—they may be determined 

by a combination of many factors: the airplanes’ autopilot systems, government-

mandated flight paths, directions from the carriers, air traffic control systems, rules 

meant to limit traffic over areas with large populations, and meteorological factors 

such as wind direction and air pressure. Regardless, I think this tendency is striking, 

because it shows the logical organization of a completely open space. It’s for this rea-

son that I chose the word “patterns” for the name of the project.
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Figure 6-2.  Closeup of a section of Figure 6-1 that reflects what I expected to find throughout 
the data: flight paths going in every direction

Figure 6-3.  Another closeup that reflects what I found to be common instead: clear, bright lines 
that indicate flight paths followed closely by high volumes of planes
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The second striking feature of Flight Patterns is that it allows us to visualize the vast-

ness of the U.S. and Canadian air transportation system. To me, this is what makes 

data visualization so valuable. We cannot grasp the totality of flight traffic in the U.S. 

and Canada by looking up at the sky or by seeing the raw numbers, but we can under-

stand it through visualization. Viewed together, the flight paths show us more than the 

sum of their parts: they show us a system—and the system, I believe, is beautiful. It 

reveals something not just about flight paths, but about the geography of human pop-

ulations, and more broadly, of our species’s clear desire to travel.

Techniques and Data
Flight Patterns was created with Processing,* a programming language that is particularly 

suited for data visualization. Once the flight data was procured (always a critical step), I 

wrote a simple Processing program to translate each data point’s latitude and longitude 

into a 2D map on my computer screen. Concurrently, I added selective color to each 

point to indicate information such as altitude and aircraft model. I then exported all of 

these images as TGA files.

The videos were a little trickier. Showing the airplanes as moving dots failed to reveal 

the progress of each flight. So instead I drew lines between each data point, and, after 

a set time interval (3 minutes or 5 minutes, depending on the dataset), I added a 4% 

black opacity layer over the entire map. This meant that older flight paths would fade 

into the background over time, which helped to show the planes’ progress.

The data used in Flight Patterns is a processed version of the Aircraft Situation Display 

to Industry (ASDI) feed, a record of all civilian flight paths that is published by the 

FAA.† The feed is available only to companies with ties to the aviation industry. Thanks 

to my colleague Scott Hessels, I received 28 hours’ worth of this flight data in 2005. 

My initial visualization was a contribution to the Celestial Mechanics project com-

pleted along with Gabriel Dunne at UCLA’s Design | Media Arts program.

The initial dataset I worked with was from March 19–20, 2005, and includes 141,029 

flights, sampled every 3 minutes, for a total of 6,871,383 data points. Three years later, 

in 2008, I worked with Wired magazine to obtain another dataset. This data came from 

August 12–13, 2008, and includes 205,514 flights, sampled every minute, for a total of 

26,552,304 data points.

The data I received that was derived from the ASDI feed included the following infor-

mation for each data point:

*	See http://processing.org.

†	“Civilian” means all nonmilitary commercial and private flights tracked by the FAA.

http://processing.org
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>
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•	 Latitude

•	 Longitude

•	 Altitude

•	 Aircraft manufacturer

•	 Aircraft model

•	 Timestamp

•	 Flight number

If you are interested in seeing some of the data yourself, the FAA presently provides a 

sample of the ASDI feed in XML format at http://www.fly.faa.gov/ASDI/asdi.html.

Color
Flight Patterns does not use any complex mapmaking techniques: simply plotting the 

data speaks for itself. However, color plays an important role in telling different stories 

using the same flight paths. Figures 6-4 through 6-9 show some examples.

Figure 6-4.  In this map, color indicates altitude, with pure white meaning the plane is at ground 
level

http://www.fly.faa.gov/ASDI/asdi.html
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Figure 6-5.  A closeup on the Atlanta airport, clearly showing the layout of the runways (again, 
color indicates altitude)

Figure 6-6.  In this map, color is used to distinguish between different models of aircraft
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Figure 6-7.  A map of a single aircraft model, showing only flights on Embraer ERJ 145 regional 
jets

Figure 6-8.  Another map of a single aircraft model, showing only flights on Boeing 737 jets
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Figure 6-9.  In this map, separate colors show takeoffs and landings: orange indicates a 
descending plane and blue indicates an ascending plane

Motion
In motion, Flight Patterns reveals new pieces of information, including aircraft direc-

tion and volume over time. The visualization tracks flights from one evening to the 

next in order to show the country falling asleep and waking up the following day 

(Figures 6-10 and 6-11). 

Figure 6-10.  The East Coast wakes up: this still image, from 7:31 a.m. EST on March 20, 2005, 
shows high activity on the East Coast and virtual stillness on the West Coast (except for a few 
redeye flights flying northeast from Hawaii)



99chapter 6: flight patterns: a deep dive

Figure 6-11.  At 4:10 p.m. EST, we see a very different story: at this moment, air traffic peaks 
with 19,255 planes in the air

On my website, I’ve also included a video of a 3D visualization that plots altitude along 

the z-axis in a 3D projection. In order for this axis to be discernible versus the lateral 

scale of the continent, I’ve exaggerated the altitude considerably, and it makes for a 

dense but interesting visualization. It doesn’t print well, however. I recommend you 

take a look online if you’re interested.

Anomalies and Errors
Like many datasets, the data I used in Flight Patterns contained a number of errors 

and anomalies, some of which I removed. For example, while trying to find the fast-

est flight in the dataset, I identified one flight that crossed the entire country in 6 

minutes—clearly an error. Another flight zigzagged dramatically (and impossibly) 

north and south while crossing the country—another clear error. I removed both of 

these flights.

There were other anomalies, however, that I kept. For example, the flight paths over 

the north Atlantic appear jagged (Figure 6-12). I opted to keep this data in the visual-

ization because it was important to show the flights coming from Europe. I don’t know 

why those errors are there. They could indicate problems with the planes’ instru-

ments, the processing of the ASDI, or an error by the data supplier. After fretting about 

it for a long time, I decided to simply leave the data as it was. Also, when looking for 

the shortest flight, I found that over 3,000 aircraft had reported their locations without 

ever departing the airport; I kept these anomalies, too.
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Figure 6-12.  Flight paths over the north Atlantic show some anomalies in the data

If you look carefully at the visualization, you will notice some interesting features. One 

obvious example is the restricted no-fly zones over Nevada (Figure 6-13). It doesn’t 

appear as if these no-fly zones are completely restricted, though: a tiny number of 

flights crossing this dark space are just discernable.

Figure 6-13.  A closeup look at no-fly zones in the southwest United States
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Every time you work with large, organic datasets, you will find errors and anomalies, 

and I think it’s important to consider how to handle them. For each case, I ask myself, 

will I harm the integrity of the data by manipulating it? If the answer is yes, it’s best to 

simply leave the data as it is or, in the case of obvious errors, remove them entirely. If 

anything, you should celebrate anomalies rather than removing them (and be sure to 

investigate them for the interesting stories).

Conclusion
Flight Patterns is a simple data visualization, and this simplicity makes it compelling 

for several reasons. For one thing, the project reveals a map of our air transit system, 

which is something that has never before been visualized publicly, as far as I’m aware. 

Secondly, the visualization is easy to understand, even though it is made entirely from 

data—the airports in the visualization create nodes that conform to our geographical 

conception of North America (Figure 6-14). Likewise, the densest flight paths fall over 

areas of high population, just as we’d expect.

Figure 6-14.  A closeup on the southwest United States—how many airports can you identify?



Finally, I find Flight Patterns compelling because it is comforting. This is perhaps a 

strange emotion to associate with a map, but by showing the orderliness of air trans-

port and by uncovering the mystery of how planes get from place to place, Flight 

Patterns reveals a logical system that we are only a tiny part of when sitting in seat 

16A at 34,000 feet. It’s comforting, I think, to see a system that works so well, at such 

a high volume. With over 200,000 flights in one day in the U.S. and Canada alone, we 

truly have created roads in the sky, every one of them guiding thousands of people 

from origin to destination, and with a remarkable safety record. In this sense, Flight 

Patterns is more than a data visualization: it is a showcase for the miracle of modern 

air travel.
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C h a p t e r  S e v e n

Your Choices Reveal Who You Are: 
Mining and Visualizing  

Social Patterns 
Valdis Krebs

Data mining and data visualization go hand in hand. Finding complex patterns 

in data and making them visible for further interpretation utilizes the power of comput-

ers, along with the power of the human mind. Used properly, this is a great combina-

tion, enabling efficient and sophisticated data crunching and pattern recognition.

In this chapter, we will explore several datasets that reveal interesting insights into 

the human behaviors behind them. Patterns formed by event attendance and object 

selection will give us clues into the thinking and behavior of the humans attending the 

events and choosing the objects. Often, our simple behaviors and choices can reveal 

who we are, and whom we are like.

Early Social Graphs
In the 1930s, a group of sociologists and ethnographers did a small “data mining” 

experiment. They wanted to derive the social structure of a group of women in a small 

town in the southern United States. They used public data that appeared in the local 

newspaper. Their dataset was small: 18 women attending 14 different social events.

They wondered: could we figure out the social structure (today we call it a social graph) 

of this group of women? To this end, they posed the following questions:

•	 Who is a friend of whom? 

•	 Which social circles are they all in? 

•	 Who plays a key role in the social structure? 



104 Beautiful Visualization

Identifying network structures normally involves invasive interviews and surveys. 

Would it be possible to derive network structures by just examining public behaviors? 

The real question was: do public choices reveal who you are and whom you are like?

Being able to see actual connections inside any human system, organization, or com-

munity is critical to understanding how groups work and how their members behave. 

Social network analysis (SNA) is a currently popular set of social science methods used 

for marketing, improving organizational effectiveness, building economic networks, 

tracking disease outbreaks, uncovering fraud and corruption, analyzing patterns found 

in online social networks, and disrupting terrorist networks. SNA techniques can also 

reveal underlying network structures in the Southern Women dataset, as we will see 

in a bit. 

SNA started as sociometry in the early 20th century. Jacob Moreno’s drawings of friend-

ship links (or sociograms) between students in his school are very popular amongst 

social science historians, and business scholars point to the famous Hawthorne fac-

tory worker studies from earlier in the century and the sketches of work interactions 

between the “Bank Wiring Room” employees. Friendship ties amongst the Wiring 

Room employees are illustrated in Figure 7-1.

Figure 7-1.  Early 20th-century social graph used in studying workflows amongst employees

SNA maps a human system as nodes and links. The nodes are usually people, and the 

links are either relationships between people or flows between people. The links can 

be directional. When the nodes are of only one type—for example, people, as in the 

Moreno and Hawthorne studies—it is called one-mode analysis. 

However, the Southern Women study began as a slightly more complex form of social 

analysis: two-mode. There were two sets of nodes—people and events—and the links 

showed which people attended which events. The social graph for the two data modes 

are shown in Figure 7-2. The women are the blue nodes on the left, while the events 

that each attended are the green nodes on the right. People are represented by circles, 

while events are represented by squares.
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Figure 7-2.  Two-mode view of the Southern Women social event dataset

This diagram reveals various types of conclusions, such as:

•	 Woman #3 attended more events than woman #18.

•	 Event #8 had the most attendees.

Other than these simple observations, the two-mode view does not reveal any obvious 

patterns, such as the women’s social structure or the relationships among the events. 

To see these deeper insights, we can transform the two-mode data into one-mode data 

by using a popular social network analysis technique: transforming nodes to links. In the 

first transformation, we’ll take the event nodes and view them as links instead: 

Woman X is connected to woman Y as they both attended Event Z.

The more events the women attended together, the stronger their tie is. We can also 

shift the focus to look at the network of events: 

Event A is connected to event B if they were both attended by the same woman, C.
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The more women who attended the same two events, the stronger the connection is 

between the two events. There are many methods to calculate the link strength when 

transforming a two-mode network to a one-mode network. In this example, we use 

the simplest method: adding up the co-occurrences.

The network of events is shown in Figure 7-3. A thicker line reveals a stronger rela-

tionship between two events—i.e., that more women attended both events. The SNA 

software organizes the network according to who is connected to whom using an 

advanced graph layout algorithm: a node’s place in the network is determined by its 

connections and the connections of those connections.

Figure 7-3.  Layout of events based on attendance by people in common

The center of the graph attracts the better-connected nodes, while the less-connected 

nodes are pushed toward the periphery. Thus, it is obvious at a glance which events 

were most important in this social calendar. However, we still do not have a picture of 

what interests us the most: the emergent social network of the women in this small 

town. To begin to reveal that network, I used my gradual inclusion method, which 

focuses initially on the strongest ties in the structure and then gradually lowers the 

membership threshold to reveal weaker ties in the network, allowing more people 

to connect to whoever is there already. This method usually ignores the very weak 

ties in the data, dismissing them as social noise. In this case, with the small dataset, the 

dismissal of light connectivity must be done carefully. In a dataset with millions of 

nodes and millions of choices, adjusting the bar for social noise is usually a less delicate 

operation.
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Using a five-point scale, with 5 indicating the strongest tie between two nodes and 1 

indicating the weakest, I started using my gradual inclusion method with strength = 5 

links—in other words, identifying those women who had attended the most events in 

common. Figure 7-4 reveals the strongest ties based on event attendance.

I immediately saw two clusters form: one with women #1, #2, #3, and #4, and the 

other with women #12, #13, and #15. I colored the nodes using two different colors to 

distinguish the membership in each group.

Next, I included the next lower level of ties: strength = 4 links. This resulted in new 

members being included in each cluster, but did not reveal any connection between 

the two clusters. As you can see in Figure 7-5, we still have two distinct groups.

Figure 7-4.  Strongest ties amongst women 
based on common event attendance

Figure 7-5.  The two strongest link levels 
between women attending common social 
events

Including the strength = 3 ties revealed bridging between the groups, as Figure 7-6 

illustrates. This is common in most social structures: the strongest ties occur within a 

group, while the weaker, less frequent ties occur between groups. There were also some 

weaker ties within each group, indicating that not everyone within a given group has 

a strong tie to all members of that group.
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Figure 7-6.  The two groups are bridged with gradual inclusion of weaker ties

Our social structure is still missing a few nodes: women #16, #17, and #18. They have 

not met the criteria for attachment in any of the previous waves of inclusion using the 

gradual inclusion method. Perhaps they are new in town, or are just less social and have 

attended fewer events, making it more difficult to determine their membership. These 

three women attach to the network when I lower the threshold to strength = 2 links. 

Now all women are attached to the network, while the original two-cluster structure 

remains. Woman #16 is the only one that does not obviously belong to one cluster or 

the other; she has equal infrequent ties to both clusters. I therefore classify her as a 

member of neither cluster (not both clusters!) and color her purple. The final emergent 

social graph is shown in Figure 7-7.
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Figure 7-7.  Emergent social graph of women based on common attendance at social events

All 18 women have now been placed in the social network based on their attendance 

of local social events. This social network reveals a few interesting things about this 

small town’s social structure:

•	 Two distinct social clusters exist.

•	 The clusters are connected. This social overlap reveals some possible commonality 

in interests and relations between the two clusters.

•	 Various network roles emerge. Some women are connectors, bridging the two 

clusters, while others act as internal core members, connecting only to their own 

groups.

Social graphs like that in Figure 7-7 can be used for marketing purposes or word-of-

mouth campaigns. More information can usually be gathered than this simple example 

provides, but some deductions can nonetheless be drawn from this data:

•	 Woman #6 will probably not be influenced by what woman #12 does or says.

•	 Woman #4 probably has the highest internal influence within the blue cluster. She 

may be the one that reinforces the status quo with everyone in her group.
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•	 Woman #9 in the blue cluster is the boundary spanner—the person bridging the 

two clusters—and probably brings new ideas and opinions into the group. It is 

good that she has at least one strong tie within the group, to woman #4, who is 

well connected within the group. People who bring new ideas into a group often 

need at least one strong, internally well-connected ally.

•	 Women #16, #17, and #18 may be new in town or may not be “joiners.” They 

have some access to what is happening in the groups, but they may not have 

access to the real private information in either group because of their weaker 

connections.

Different data-mining algorithms often produce different results, even with a small 

dataset such as this one. Over the years, various sociologists and network scientists 

have re-examined this interesting little dataset, applying their fresh new algorithms 

to see what patterns emerge. Figure 7-8 shows the results from 21 of the most popu-

lar studies. Our results match those of study #13, by Linton Freeman (Freeman 2003): 

women #1–9 are in one group, women #10–15 and #17–18 are in the other group, 

and woman #16 belongs to both groups. Freeman was a key player in establishing the 

field of social network analysis (Freeman 2004) and was especially important in estab-

lishing some early network metrics that are still popular today (Freeman 1979).

Figure 7-8.  Results of 21 studies of the Southern Women social event dataset by network 
scientists (Freeman 2003)

Look at the various membership groupings in Table 7-1. Most of the studies came to 

highly similar conclusions, and all found two distinct clusters in the data. However, 

there is not total agreement about who is in each cluster, especially for women #8–18. 
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This table illustrates membership groupings well, but it does not reveal network roles 

and social distances. The network map in Figure 7-7 does reveal the nuances of the 

social structure and shows the points of failure in the network—that is, where it is most 

likely to break down. For instance, if woman #3 were to move away, the network 

would be disrupted the most. It would be interesting to see how both woman #4 and 

woman #9 would respond to the exit of woman #3. 

Social Graphs of Amazon Book Purchasing Data
Amazon.com allows easy access to summary purchase data (transaction data is aggre-

gated to prevent individual identification). The book purchasing data Amazon provides 

forms a similar network dataset to the event network in Figure 7-3. Instead of attend-

ing the same social events, on Amazon, people are connected to one another by pur-

chasing the same books. In both cases, connections are made because certain people 

make the same choices as others. 

On each item’s page, Amazon provides the following information:

Customers Who Bought This Item Also Bought 

When people buy two items, an association is formed between those items. The more 

people purchase both items, the stronger the association is and the higher on the list 

the also bought item appears. Although usually people are represented by nodes, in this 

case Amazon’s customers are the links in the network, and the items they purchase 

are the nodes. Consequently, Amazon is able to generate a network that provides sig-

nificant information about its customers’ choices and preferences, without revealing 

any personal data about the individual customers. Patterns are revealed, while privacy 

is maintained. With a little data mining and some data visualization, we can get great 

insights into the habits and choices of Amazon’s customers—that is, we can come to 

understand groups of people without knowing about their individual choices. 

Determining the Network Around a Particular Book
One of the cardinal rules of human networks is “birds of a feather flock together.” 

Friends of friends become friends, and coworkers of coworkers become colleagues. 

Dense clusters of connections emerge throughout the social space. In the social net-

works we visualize, we see those birds of a feather near each other on the map.

Let’s take a look at a popular computer book available via Amazon: Toby Segaran and 

Jeff Hammerbacher’s Beautiful Data (O’Reilly). Among other information, the book’s 

Amazon page provides a product description, publication details, and a brief list of 

“also bought” books. What does this list tell us about the book we are viewing? Being 

a student of networks, my inquiry about this book did not stop at the also bought books 

listed on this web page (one step in the network). I wanted to know what would hap-

pen if I followed the links to each of those books and joined the lists I found there into 

a network (one and two steps in the network).

http://oreilly.com/catalog/9780596157111/
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Key to understanding the dynamics of networks is the ability to perceive the emer-

gent patterns of connections that surround an individual node, or that are present within 

and around a community of interest. I wanted to see the network in which my book 

of interest was embedded. Seeing those connections can provide insight into the net-

work neighborhood—the network surrounding this book—which can help a consumer 

make a smarter purchase. 

Tracing the network out two steps from the focus node is a common procedure in 

social network analysis when studying ego networks. An ego network allows us to see 

who is in one’s network neighborhood, how they are interconnected, and how this 

structure may influence the ego—the focus node.

As I collected the also bought books around Beautiful Data, I wondered:

•	 What themes would I see in the books and in their connections?

•	 What other topics interest the readers of Beautiful Data?

•	 Will Beautiful Data end up in the center of one large, massively interconnected 

cluster or be a part of one distinct community of interest amongst several?

Figure 7-9 shows the book network surrounding Beautiful Data. Each node represents 

a book purchased on Amazon. A gray line links books that were purchased together, 

with the arrowhead pointing in the direction of the also bought book. The red nodes 

represent other books published by O’Reilly Media, while the yellow nodes represent 

books from other publishers.

In networks, it is not the number of connections one has, but where those connections 

lead, that creates advantage. The golden rule in networks is the same as in real estate: 

location, location, location. In real estate, what matters is physical location: geography. In 

networks, it is virtual location, determined by the pattern of connections surrounding 

a node. 

The nodes in Figure 7-9 self-organize, in the graph space, by their ties to also bought 

books. This allows similar books to self-organize together to form clusters of like topics, 

which reveal the human communities of interest behind the book clusters. In Figure 

7-9, two obvious groupings cling together by topic:

•	 The bottom-right grouping is all about programmers and programming.

•	 The grouping at the top of the graph is all about the Semantic Web.

Although clusters emerge in Figure 7-9, they are not as obvious as some others that 

we will see later; these clusters are intermixed and overlap, especially around other 

books about modern programming methods and processes. 
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Figure 7-9.  The network neighborhood of books surrounding Beautiful Data

In addition to clusters of like topics, in Figure 7-9 there are clusters around the pub-

lishers, designated by the node colors: red books connect to other red books and yel-

lows connect to other yellows. This indicates that people who like O’Reilly books 

tend to buy other O’Reilly books. Node size also appears to form a weak pattern of 

connectivity across similarly sized nodes. Large nodes, the nonlocal influence across 

the graph, connect to other large nodes, while medium and small nodes often con-

nect to one another. This is a pattern we often see in human networks—again, birds 

of a feather flock together. It is not a pattern we see with the physical structure of the 

Internet, though, where many small nodes connect to a few very large nodes, creating 

an obvious hub-and-spoke pattern. That is often referred to as a scale-free network.

Next, I examined the network measures of each node/book, to see which nodes were 

well positioned in the web of connections. Since this is a directed network, much like 

the World Wide Web, I calculated influence metrics similar to Google’s PageRank. 

These metrics were calculated using both direct and indirect links around each node. 

Like on the Web, a better-connected node transfers more influence. These metrics do 

not reflect sales volumes or the popularity that quantity conveys; rather, they reveal 

what thousands of Amazon purchasers feel belong together—what the “birds of a 

feather” books are. The larger nodes have greater influence in this community of inter-

est based on the pattern of also bought purchases.
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Another common network measure is structural equivalence. This measure reveals 

which nodes play a similar role in a network. Equivalent nodes may be substitutable 

for one another in the network. As an author, I would not like my book to be substi-

tutable with many other books! As a reader, however, I would like equivalent choices. 

In Figure 7-9, the two books with the most similar link pattern to Beautiful Data are 

Cloud Application Architectures and Programming the Semantic Web. 

Another value-added service that Amazon provides is reader-submitted book reviews. 

A person considering the purchase of a particular book may be aided by the many 

reviews that accumulate. Unfortunately, the reviews can be skewed: an author with a 

large personal network can quickly get a dozen or more glowing reviews of his latest 

book posted to Amazon, and a reader with a grudge can do the opposite. Doing com-

parison shopping based on reader reviews alone may, therefore, be misleading.

The book network map may be a better indicator than individual reviews of which 

other books to buy. Books linked from many other similar books reflect critical choices 

made by purchasers, who spent money on those books. Surely this behavior is not 

random; it is executed on the basis of thought and comparisons. A purchase decision is 

the best review of all, even if it is never written. 

The book network maps I’ve shown are designed to eliminate the peripheral nodes in 

the network (i.e., those with very few connections). The network map in Figure 7-9 

shows a 3-core network—a network in which each node has a minimum of three con-

nections to other nodes. To achieve this, all nodes with only one or two incoming 

links were removed. These were nodes that led to other communities of interest, that 

represented new or very old books, or that had very few also bought links from this 

community.

Putting the Results to Work
These community-of-interest maps can also work in a similar capacity with other 

consumer items. If I am not familiar with a product, an author, an artist, a vintage, a 

brand, a movie, or a song, I would like to be able to judge it by the company it keeps—

its network neighborhood. Here are the relevant questions to ask:

•	 What nodes point to this item?

•	 What communities is it a member of?

•	 Is it central in the community?

•	 Does it bridge communities?

•	 Are there equivalent alternatives?

It appears that as a customer of Amazon, I can make smarter decisions by viewing 

the embeddedness—the context within the network—of various items Amazon sells in 

different communities of interest. Other vendors, such as Netflix and Apple’s iTunes, 
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probably do similar analysis before recommending a movie or a new song or artist. By 

gathering information on thousands of customers and what they choose and organize 

together, a vendor can form a product-to-product network like that in Figure 7-9, or 

even a person-to-person network like that in Figure 7-7. Both maps will indicate likely 

influence patterns and what it makes sense for customers to purchase/rent/download 

together. 

Here are some network rules of thumb that we can distill from the Amazon analysis:

•	 If you have read one nonfiction book of a structurally equivalent pair, you may 

not be in a rush to read the second, since the second book probably covers the 

same information as the first book. On the other hand, you may wish to read a 

large number of structurally equivalent fiction titles (can’t get enough of those 

cyber-thrillers!).

•	 If you liked books A, B, and C and want to read something similar, find which 

books are linked to A and B as well as C. You can only see this in the network dia-

gram; you cannot see these linkages in Amazon’s individual lists unless you open 

three browser windows and compare the lists yourself.

•	 If you want to read just one book about topic X, find the book with the highest 

network influence score in the cluster of topic-X books. This follows the Google 

PageRank approach and may reveal a book with excellent “word of mouth” 

appeal.

•	 If the book you are looking for is not in stock, find which other books are struc-

turally equivalent to that book. These will provide similar content and may be 

available.

A book author and/or publicist could use her knowledge of existing book networks to 

position a book where there is a hole, or gap in the network. A publisher could review 

evolving book networks, which may change weekly, to adapt its marketing efforts. 

Amazon, of course, is still the big winner: it has all the data, and a rich upside of hith-

erto untapped possibilities for analyzing the data and applying the findings.

Social Networks of Political Books
Visualizing book networks on Amazon not only helps us choose which books to pur-

chase, but also gives us insights into larger trends and patterns in a particular sphere of 

interest. One area that is ripe for exploration is politics. Purchase patterns on Amazon 

often reflect the results of countrywide surveys of political beliefs and choices.

Two books are connected in the book network if Amazon reports that they were fre-

quently bought together by the same consumer. I don’t arrange or color the nodes 

before feeding the also bought data through my social network analysis software, 
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InFlow 3.1.* The software has an algorithm that arranges the layout of the nodes based 

on each node’s connections. Once the software finds the emergent pattern and identi-

fies any clusters, I review the books in each cluster and then see whether they naturally 

cluster as blue, red, or purple (my coloring scheme follows the conservative-as-red and 

liberal-as-blue convention that became popular in the United States during the 2000 

presidential election; purple is a combination of red and blue and is used to describe 

books that fall between the two popular political camps).

I have been doing a social network analysis of the purchase patterns of political books 

since 2003. Unsurprisingly, from my very first mapping I saw two distinct political 

clusters: a red one designating those who read right-leaning books and a blue one des-

ignating those who read left-leaning books. In my 2003 network analysis, I saw just 

one book holding the red and blue clusters together. Ironically, that book was named 

What Went Wrong. This map is shown in Figure 7-10.

Figure 7-10.  Divide of political books in 2003

In the 2004 map (Figure 7-11), constructed several months before the 2004 U.S. presi-

dential election, several books held the two clusters together. Again, at least with the 

better-selling books, there was very little crossover between the right and left camps: 

people on each side appeared to be reading more and more books that supported their 

existing frames of mind. This is not to say that no readers were reading both red and 

blue books, but they appeared to be in the minority. I looked only at Amazon’s best-

selling books and at the most common also boughts for each book, focusing on the most 

frequent and intense interactions (as when examining the strong ties in a human 

network). A deeper look into the Amazon data (if Amazon permitted it) might reveal 

*	See http://orgnet.com/inflow3.html.

http://orgnet.com/inflow3.html
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these weaker, less frequent, connections amongst blue and red books. I would expect 

to see a small minority reading books on both sides—many might be in academia, 

teaching or taking courses where both sides of an issue are presented and debated.

Figure 7-11.  Divide of political books in 2004

I continued to create these political book maps using Amazon data from 2005 through 

2007, and I kept getting the same strong red/blue divide. The books changed over time, 

but the overall network pattern remained the same. How strong was this pattern? To test 

it, I experimented with my data collection approaches—were the strong patterns 

an artifact of my methods? No! Regardless of the data collection method, as long as 

I followed accepted practices—such as “snowball sampling” (Heckathorn 1997)—

the results showed strong red and blue clustering. Occasionally a different collec-

tion method would result in a few new books sneaking into the mix, but the overall 

pattern remained stable. The emergent political book network pattern was not sensi-

tive to data collection methods and cutoffs, indicating that the pattern was strong and 

persistent.

In 2008, with the U.S. presidential election approaching, I decided to take several snap-

shots of the political network. How would it change as we moved closer to Election 

Day? I captured the network at three critical junctures:

•	 At the end of the primary season

•	 After the last convention

•	 Right before Election Day in November
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I expected the red/blue divide to persist, but wondered if any interesting patterns 

would appear as the presidential election process moved through its phases.

In June 2008, after the major party candidates had been chosen via the primary pro-

cess, I turned again to the predictive patterns of partisan political polemics. At the Iowa 

caucus in January of that year, Obama had said, “we are not a collection of red states 

and blue states, we are the United States of America,” and McCain proclaimed his pur-

ple “maverick” roots. But what did the book data tell us?

Figure 7-12 was created during June 2008. As a little experiment, I added a new color: 

light blue. According to the Amazon sales data, these books cluster with the other 

blues. But looking at the titles and authors, they do not fit in with the common blue 

themes and the supporters of previous iterations of blue nodes. At this point in time, 

popular conservatives, independents, and libertarians were all finding more connec-

tion with the blue readers than with the red readers. The reds had only George Will 

bridging them to the rest of the U.S. political world, and a split on the right between 

the “old conservatives” and the “neo-cons” emerged, with the old conservatives more 

aligned with the progressives than with the neo-cons in the summer of 2008.

Figure 7-12.  Political book purchase patterns during June 2008

In August 2008, several anti-Obama books appeared. A new pro-Obama book, with a 

foreword written by Obama himself, was also in prerelease and being sold on Amazon. 

Figure 7-13 reveals who was reading these books. The pro-Obama book, Change We 

Can Believe In, is solidly in the blue cluster, indicating that people who had already 
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purchased pro-Obama books were also purchasing this positive book. Similarly, the 

anti-Obama books—The Obama Nation and The Case Against Barack Obama—were pri-

marily being purchased by people who had already purchased other anti-Obama 

books. One of the anti-Obama books, though, is connected to one of the purple books, 

The Late Great USA. Could some undecided voters, not happy with the state of the 

country, have been reading this book to make up their minds about Obama?

Figure 7-13.  Political book purchase patterns during August 2008

No books on McCain, either pro or con, were amongst Amazon’s best-selling politi-

cal polemics. Did people already know enough about him at this point in the election 

cycle, or were they not interested in him? The pattern of connections between the 

books in the map in Figure 7-13 indicate that the most influential political books at the 

end of the summer of 2008 were What Happened and The Post American World—neither 

addressed the current election! What Happened was written by the former press secre-

tary for George W. Bush, but it was being purchased by the blue readers only.

Social network analysis and data mining/visualization provide us with two categories 

of outcomes:

•	 Expected versus unexpected results and insights

•	 Positive versus negative results and insights

These categories intersect, as illustrated in Figure 7-14. In the hundreds of social net-

work analysis projects I have participated in, I have found that clients typically most 

enjoy seeing what they did not anticipate—the unexpected (and especially negative 

unexpected) patterns that can lead to problems. 
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Figure 7-14.  Discovery matrix for social network analysis

Let’s examine our last graph using the discovery matrix in Figure 7-14. In late October 

2008, as both presidential campaigns sprinted toward the finish line, I took one more 

look at the political books being purchased and the patterns they created. The pre-

election network map is shown in Figure 7-15. A few unexpected patterns emerge in 

this map, along with one expected pattern.

Figure 7-15.  Political book purchase patterns a few weeks before the November 2008 election

Unlike in all the previous maps, there are no bridging books between the red and blue 

clusters—the two sides are totally separate! Red and blue have nothing in common! 

This pattern reflects the immense polarization and animosity evidenced in the cam-

paign rallies in the run up to the election. Political issues and the great economic prob-

lems of the time were not being discussed. This pattern can be classified as a negative 

expected based on the daily actions of each campaign.
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Another revelation of the visualization in Figure 7-15 was that right-leaning readers 

had been buying the key book of community organizers, Rules for Radicals. This same 

group had mocked community organizing! Why were right-of-center readers buying 

this book, which was normally popular with a left-of-center audience? Was the right 

trying to figure out why Obama’s campaign, based on community organizing princi-

ples, had been so successful? This was an unexpected pattern, but whether you think it 

should be classed as positive or negative probably depends on which side you are on.

A final unexpected pattern was that those buying positive books about Obama were 

not buying other political books. The “about Obama” cluster is disconnected from 

the other clusters that contain political polemics. This pattern may indicate that these 

readers are interested only in Obama and this election, not in politics in general. 

An expected pattern also jumps out from this pre-election political book network map. 

Since 2004, there have been more registered Democrats than Republicans, so it makes 

intuitive sense that there are more blue books. In contrast, the right focuses on fewer 

books to get its message across (the book network map does not reflect volume of 

books sold, so it is possible that readers on the right actually buy a greater volume of 

fewer books—we don’t know, as Amazon does not reveal this data). This is probably 

viewed as a positive expected pattern by both sides, but for different reasons. The right is 

likely to view its approach as more focused, while the left interprets it as the opposi-

tion lacking a variety of opinions. Conversely, the left is likely to view the larger num-

ber of books on its side positively, as representing a diversity of opinions, while the 

right may view it as indicating a scattered and unfocused message. 

Conclusion
As the visualizations presented in this chapter have illustrated, our choices reveal who we 

are, and whom we are like. The decisions we make identify not only certain aspects of 

ourselves, but also what groups we belong to. Since “birds of a feather flock together,” 

our choices provide many insights into the behaviors of others in our groups. In the 

future (on the Web, for example), many of our choices may not be conscious: our 

smartphones will communicate with other nearby smart devices looking for ways to 

connect with their owners. These devices may be programmed to look for the pat-

terns we have examined here. A few brave souls may program their devices to selec-

tively break the typical patterns in which they are embedded—for instance, a red-book 

reader could strike up a conversation with a blue-book reader after their devices reveal 

the opportunity to exchange viewpoints.

The Amazon data illustrated that we can gain deep insights into the political choices 

and behaviors of different groups without knowing anything about the individuals 

belonging to those groups. Private data does not need to be revealed for us to under-

stand large-scale political patterns based on book purchases. Even more amazing, this 

data, along with the simple visualizations created to display it, matched the findings 

of expensive nationwide surveys of potential voters. An hour collecting and mapping 
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Amazon data gave some of the same insights as thousands of hours spent collecting 

and analyzing voter survey and interview data. The Pareto 80/20 rule works well here: 

we get 80% of the insight for much less than 20% of the time invested—an excellent 

payoff when properly matching data mining with data visualization!
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C h a p t e r  Eig   h t

Visualizing the U.S. Senate 
Social Graph (1991–2009)

Andrew Odewahn

In early 2009, many news stories �emphasized the collapse of bipartisanship. 

Although much of this reporting was of the typical “he said, she said” variety, one arti-

cle in particular caught my attention. Chris Wilson, an associate editor at Slate, wrote 

a great piece in which he used voting affinity data and graph visualization to help 

explain Senator Arlen Specter’s party switch (Wilson 2009). The graph showed two 

large party clusters (Democrats in blue, Republicans in red), connected by a few tenu-

ous threads of senators who consistently voted across party lines.* One of these was 

Specter. 

The piece got me thinking on several dimensions. First, it was really cool to see quanti-

tative evidence making the case for what was an essentially qualitative story. With one 

glance, you could see that something interesting was happening with Specter that pre-

saged his break with his party. It made me wonder if there was similar evidence about 

other stories in the news. For example, a lot of reporting fixated on various Senate 

coalitions—the “Gang of Fourteen,” the “New England Moderates,” and the “Southern 

Republicans”—and how they were aiding or thwarting some initiative or another.

Basic civics would have you believe that the Senate, unlike the House, was designed 

by the Founders to dampen coalitions like these. It’s a simple body: there are 100 

senators, two from each state, who stand for election every six years. Elections are 

staggered so that roughly a third of the Senate is up for reelection every two years, 

*	I should note here that in this context, “graph” means a collection of nodes and edges, not an x, y 
data plot.
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which implies that Senate coalitions can change, but not drastically. While senators 

can switch parties, retire, or even die mid-term, these events don’t happen that often. 

Finally, incumbency itself conveys huge advantages. Once in office, senators simply 

aren’t voted out very often. 

I was curious about whether I could use graph visualization to paint a broad picture 

that revealed the structural dynamism in the Senate over time. If the high school story 

is really true—that the Senate is an inherently conservative body, in the literal sense of 

tending to oppose change—then the graphs should remain relatively stable. If it’s not, 

then perhaps a visual representation might provide some insights into the incredibly 

important events that were shaping America in 2009, and the way reporters were cov-

ering them.

In this chapter, I’ll describe how I used voting data to explore these questions visually. 

I’ll begin by walking you through the steps required to actually produce the visualiza-

tion. Next, I’ll show you the results, discuss how the graphs change over the 18-year 

period I examined, provide a bit of historical context, and draw some general conclu-

sions about the merits of the “high school civics” view of the Senate. After that, I’ll 

discuss why this is a beautiful (and not merely interesting) visualization, as well as 

explore the many warts it picked up along the way. Finally, I’ll share some general 

insights I’ve gleaned through this process that I hope you can put to use in your own 

work.

Building the Visualization
I started with the basic guidelines suggested in Wilson’s article: 

•	 Nodes represent senators; each node has a numerical label that corresponds to an 

alphabetical list of senators.

•	 Nodes are colored based on party affiliation. They follow the standard convention 

of blue for Democrats and red for Republicans. (I also used green for Independents 

and yellow when a party affiliation wasn’t included in the data source.)

•	 Nodes are connected with an edge if those two senators voted together more than 

65% of the time over the course of the selected timeframe.

In addition, I decided to orient the graphs so that the Democrats were on the left and 

the Republicans were on the right. And, because I wanted to understand how the 

Senate had evolved, I chunked the data into meaningful timeframes and created a plot 

for each one.

I settled on the legislative session as my basic unit of time. A legislative session lasts 

two years, begins and ends on January 3, and is often referred to as “Congress.” Each 

Congress is numbered consecutively. For example, the 104th Congress covers the 
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period from January 3, 1995 to January 3, 1997; the 105th Congress covers the period 

from January 3, 1997 to January 3, 1999; and so on. (At the time of this writing, the 

111th Congress is in session.) 

The session was an attractive unit for two reasons. First, it’s the shortest consistent 

time span. The Senate is a dynamic body whose membership can change at any time, 

particularly during election years, so using a period longer than two years would have 

risked muddying the relationships by introducing new senators partway through 

the voting record. Second, and more prosaically, it’s the level at which the data was 

reported, so it was a very convenient choice.

With these preliminary choices out of the way, there were three steps involved in 

building the visualization: gathering the raw data about senators and their votes, com-

puting an affinity matrix that described how tightly the senators were aligned, and 

then putting the information into GraphViz (a toolkit for graph visualization) to turn 

the relationships into a picture. The following sections describe each of these steps in 

depth.

Gathering the Raw Data
My visualization required two main types of data: metadata about individual sena-

tors (name, party affiliation, etc.), and a record of their votes over an extended time. 

Initially, as many of the big government data sites (data.gov, thomas.com, etc.) publish 

information via feeds, the lack of history appeared to be a major obstacle. A particu-

lar vote in a session of Congress will be published as it happens, but it is difficult to go 

back in time to retrieve a full voting record.

Fortunately, I discovered the site GovTrack (http://govtrack.us), which bills itself as “a 

civic project to track Congress.” While it largely provides the same data as the other big 

government sites, it also performs (among other things) the very valuable function of 

aggregating the feeds into XML files going back to 1991, with partial records available 

for sessions predating that one. My project therefore included full records of every-

thing from the 102nd session going forward, but the pre-1991 data was incomplete. 

You can download any and all of the data I used for free from the site’s “Source Data” 

page.* The site has great documentation that clearly describes how to download the 

data and how it is structured.

On GovTrack, senator metadata is kept in a file called people.xml. There are two ver-

sions of this file: a current file, which contains data on just the people serving in 

Congress now, and an historical file, which contains data on everyone who has ever 

served in Congress. I used the historical version for this project.

*	 See http://bit.ly/4iZib.

http://govtrack.us
http://bit.ly/4iZib.
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In both of these files, information about individual senators (or representatives) 

appears in a <person> element; each person had a unique ID that is used consistently 

for that person across the GovTrack datasets. Information about party affiliation is in 

a child element called <role>. For example, here is the entry for John Kennedy, who 

was both a representative and a senator (and president, of course):

<person id='406274' 
   lastname='Kennedy' firstname='John' middlename='Fitzgerald' 
   birthday='1917-05-29' ... >
   <role type='rep' 
      startdate='1947-01-01' enddate='1948-12-31' 
      party='Democrat' state='MA' district='11' />
   <role type='rep' 
      startdate='1949-01-01' enddate='1950-12-31' 
      party='Democrat' state='MA' district='11' />
   ...
   <role type='sen' 
      startdate='1959-01-01' enddate='1960-12-31' 
      party='Democrat' state='MA' district='' />
</person>

Voting data in GovTrack is organized by two-year legislative sessions. The votes are 

recorded by roll call, which is when the senators come together to vote “Yea” or “Nay” 

on an issue before them. There are typically several hundred roll calls over the course 

of a session. 

GovTrack records each roll call as an XML file. The next listing, for example, is an 

excerpt of the roll call file s1995-247.xml, which was a vote taken in the 104th Congress 

on whether to permit the Bell operating companies to provide interLATA commercial 

mobile services. (Some of these votes are pretty dull.) Note that each <voter> element 

has an id that links back to the people.xml file:

<roll 
   where="senate" session="104" year="1995" roll="247" 
   when="802710180" datetime="1995-06-09T11:03:00-04:00" 
   updated="2008-12-30T13:34:55-05:00"
   aye="83" nay="4" nv="13" present="0">
   ...
   <voter id="400566" vote="+" value="Yea" state="MN"/>
   <voter id="300016" vote="-" value="Nay" state="WV"/>
   <voter id="400559" vote="-" value="Nay" state="WA"/>
   <voter id="300011" vote="0" value="Not Voting" state="CA"/>
   <voter id="400558" vote="0" value="Not Voting" state="GA"/>
   ...
</roll>
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These files—the historical people file and all of the various roll call files—contained 

all the data I wanted. However, with over 6 MB of data in the people.xml file and sev-

eral thousand roll call votes across the full GovTrack dataset, I wanted this data in a 

more convenient format. So, I wrote some scripts to extract only the part of the data 

I needed for my visualization and stored it in a SQLite database. The schema is shown 

in Figure 8-1. In the interests of simplicity, I assigned a party based on only the most 

recent <role>, a decision that would come back to haunt me.

people

senator_id
name
party

votes

roll
senator_id

vote

Figure 8-1.  Simple database schema for representing the raw data required for the visualization

Computing the Voting Affinity Matrix
With the raw data munged into a more pliant format, I was ready to tackle the prob-

lem of computing the affinities that would represent the edges in the graph. This 

entailed building an affinity matrix (Figure 8-2) that tallied the number of times differ-

ent senators voted the same way on the same bills. I could use this matrix to back out 

the edge conditions.

Senator B

Se
na

to
r A

412038

41
20

38

40
15

31

40
18

56

40
20

77

…

40
50

86

N/A

401531 N/A N/A

401856 N/A N/A N/A

402077 N/A N/A N/A N/A

… N/A N/A N/A N/A N/A

405086 N/A N/A N/A N/A N/A N/A

Add edge if:
   [Sen. A, Sen. B]

> 0.65# Roll Call Votes

Figure 8-2.  An affinity matrix
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The following pseudocode illustrates the basic logic:

# Select all distinct roll calls from the vote table
roll_list = 
   select 
      distinct roll 
   from 
      votes
# Process each roll call vote in roll_list
for roll_idx in roll_list: 
   # Process "Yea" votes, then "Nay" votes
   for vote_idx in ["Yea", "Nay"]:
      # Find the senators that cast this vote on this roll call
      same_vote_list =
         select 
            senator_id 
         from 
            votes 
         where
            roll = roll_idx and 
            vote = vote_idx  
      # Now tally all the pairs of senators in the list
      for senator_a in same_vote_list:
         for senator_b in same_vote_list:
            affinity_matrix [senator_a, senator_b] += 1
            affinity_matrix [senator_b, senator_a] += 1
# Translate the raw matrix into edges
N = length(roll_list)  # Represents the number of votes in the session
for senator_a in affinity_matrix.rows:
   for senator_b in affinity_matrix.columns:
      if (affinity_matrix[senator_a,senator_b] / N) > 0.65 then:
         add an edge between Senator A and Senator B

Because this is a fairly intensive set of computations, I saved the results in another 

table in my database. 

Visualizing the Data with GraphViz
The final step was to turn all this data—the senator metadata and voting records—into 

a series of images. GraphViz (http://www.graphviz.org), an open source graph visualiza-

tion package, was a perfect tool for this job.

Graph visualization is the study of various layout algorithms that take an abstract 

representation of the nodes and edges in a graph and turn it into a picture. I used 

GraphViz’s “neato” layout algorithm, which works by simulating nodes as positively 

charged particles and edges as springs. Nodes push each other apart, and the edges pull 

related nodes together. Initially, everything is plopped down randomly on a plane, and 

then the algorithm simulates the push and pull of these counterbalancing forces to 

http://www.graphviz.org
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compute final x, y coordinates for each node that represent the “best” overall layout. 

(For this reason, algorithms like this are called “force-directed layout” algorithms.) 

Figure 8-3 illustrates the concept.

Random
configuration

Iterations

Equilibrium
configuration

+ +
+ +

+
+

+ +

+

+

+ +

+

+

+ +

Figure 8-3.  Neato, a force-directed layout algorithm included in GraphViz, simulates nodes as 
charged particles and edges as springs

The structures that emerge from this process are proportional to the density of con-

nections within the underlying data. So, a tightly connected group of senators should 

create a subcluster that repels other subclusters. It’s also worth noting that, because it 

controls the presence or absence of edges, the cutoff value for assigning an edge based 

on voting affinity determines the degree of clustering observed in the graph. A very 

low value (say, 20%) would result in relatively few substructures, because many of the 

votes within a session are routine procedural matters on which most senators agree. 

Conversely, a very high value (say, 95%) would result in a very fragmented graph, 

because only the most strongly connected pairs would emerge; this graph would sim-

ply look like a collection of random dots that were occasionally connected. The 65% 

cutoff seemed to be the point that best balanced these competing tensions.

A language called DOT describes the nodes and edges to GraphViz. DOT is straight-

forward: nodes are declared using unique labels, and edges are declared by connecting 

two (or more) of these node labels together with a -> symbol. Various other attributes 

(color, label, etc.) are defined by placing them in square brackets next to the object 

they modify. 

Here is an example DOT file (Gansner, Koutsofios, and North 2006):

digraph G{ 
   a[shape=polygon,sides=5,peripheries=3,color=lightblue,style=filled]; 
   c[shape=polygon,sides=4,skew=.4,label="helloworld"] 
   d[shape=invtriangle]; 
   e[shape=polygon,sides=4,distortion=.7]; 
   a -> b -> c; 
   b -> d; 
} 
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Figure 8-4 shows the corresponding image generated in GraphViz.

Figure 8-4.  A sample image generated by GraphViz

So, to create the Senate visualization, I just had to create a DOT file and feed it into 

GraphViz. This required another script that packaged all the information saved in the 

database in the preceding steps—the senator’s IDs, the labels in an alphabetical list, 

node colors based on party affiliation, and the edges from the affinity matrix—and fed 

them into a templating engine that would produce a DOT representation. Here’s the 

template:

1	 Digraph {
2	

3	 #for $senator in $vote_data.nodes:
4	    $senator['id'] [
5	       shape="circle",
6	       style="filled",
7	       color = $senator['color'],
8	       label = "$senator['label']"
9	       fontsize = "128",

10	       fontname = "Arial",
11	    ];

12	 #end for
13	

14	 #for $e in $vote_data.edges:
15	    "$e['senator_a']" -> "$e['senator_b']" [arrowhead = none];
16	 #end for
17	 }

Note that the for loops on lines 3 and 14 are used to loop through the nodes and 

edges, respectively. The items in bold are variables that are replaced on each iteration.
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The Story That Emerged
Once I’d pieced together all the scripts I needed and turned them into images, a 

remarkably coherent story emerged.

Figure 8-5 shows the structure of the 102nd Senate session, which ran from January 

3, 1991 to January 3, 1993. During this session, President George H.W. Bush served 

as president for a year, the first Gulf War was fought, and Bill Clinton was elected 

president (in 1992, midway through the session). Although two distinct voting blocks 

emerge, a considerable degree of overlap in the center is apparent, both in terms of the 

number of senators (i.e., nodes in the middle region) and the edges (i.e., number of 

cross connections). 

Figure 8-5.  Structure of the 102nd Senate session (January 3, 1991 to January 3, 1993)

Figure 8-6 shows the structure of the 104th session, just two years later. This (and 

the preceding two years) represents the “Republican Revolution,” in which the 

Republicans retook both the House and the Senate for the first time in almost 40 

years. It was a period marked by intense partisanship, and it saw such events as the 

government shutdown, voting on the Republicans’ “Contract with America,” and (on 

the national scene) the bombing of the Murrah federal building in Oklahoma City. The 

Senate graph reflects the deep divisions, with both parties locked into separate, tight 

little balls.



132 Beautiful Visualization

Figure 8-6.  Structure of the 104th Senate session (January 3, 1995 to January 3, 1997)

Figure 8-7 is a composite of the next six sessions.

Figure 8-7.  Structures of the 105th through the 110th Senate sessions (January 3, 1997 to 
January 3, 2009)
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Some of the events and notable structures that occurred over these sessions include:

•	 105th session (January 3, 1997 – January 3, 1999). The Republican-controlled 

House votes to impeach President Clinton during this session. Note the distinct 

split in the Democratic block, which occurs regularly with the Democrats over the 

sample period.

•	 106th session (January 3, 1999 – January 3, 2001). The impeachment trial of 

President Clinton is held in the Senate over this term. Although the Senate, like 

the House, is held by the Republicans, it votes to acquit. It’s interesting that the 

Republican block shows a clearly defined and significant split in this session; this is 

one of the few times this happens so clearly with the Republicans over the entire 

18-year period surveyed. 

•	 107th session (January 3, 2001 – January 3, 2003). The attacks of September 

11th (and the later anthrax attacks directed against the Senate itself) occur during 

this session; the Iraq war is also authorized. Although there is a small split in the 

Democratic block that consists mostly of a few senators thought of as more lib-

eral, it’s a period of renewed strength in the center, as more connections are made 

across party lines than at any time since 1991.

•	 108th session (January 3, 2003 – January 3, 2005). The Iraq war begins in this 

session. This session is almost a return to the 104th Congress, with the exception 

of Ben Nelson (D, NE), who votes with a small group of moderate Republicans 

consisting of Olympia Snowe (ME), Susan Collins (ME), and Norm Coleman 

(MN). While the remaining Republicans stay fairly cohesive, the small Democratic 

fracture remains. 

•	 109th session (January 3, 2005 – January 3, 2007). The annus horribilis for the 

Republican party—the Tom Delay and Jack Abramoff scandals, a deeply divi-

sive vote on the Terry Schiavo case, and the disastrous response to Hurricane 

Katrina (“You’re doin’ a heckuva job, Brownie!”) all occur during this session. 

Despite this, the Republican senatorial block remains remarkably close-knit. The 

Democratic block, on the other hand, continues to fracture, with a larger group of 

senators shifting toward the small, more liberal block.

•	 110th session (January 3, 2007 – January 3, 2009). The Democrats take control 

of both the House and the Senate in this session. Unlike in previous sessions, the 

Democratic block looks remarkably unified, while the Republican block is frag-

mented and diffuse.

Although none of the sessions depicted in Figure 8-7 shows as dramatic a break as 

the one between the 102nd and the 104th, there is a consistent pattern of a fracture 

in one (or both) of the main blocks over the six sessions. The first six months of the 

111th Congress (the session in progress at the time this was written) continues this 
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pattern even more distinctly. As shown in Figure 8-8, the Democratic unity from the 

110th session has given way to an almost even split in the block. The Republican Party 

shows a conservative core surrounded by a fragmented periphery of moderates.

Figure 8-8.  Structure of the first six months of the 111th Senate session (January 3, 2009 – 
around July 1, 2009)

So, it does appear that the coalition story that was the talk of the summer of 2009 is 

backed up in the data. In fact, the Senate has been a dynamic place since at least 1991, 

with alternating coalitions, parties, and even individuals shaping the directions of key 

decisions. 

Of course, in retrospect, this is hardly news. This pattern of alternating coalitions 

probably goes back to the very founding of the United States, as George Washington 

warned in his Farewell Address of 1796 (Figure 8-9).
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Figure 8-9.  George Washington’s Farewell Address of 1796, from the Rare Book and Special 
Collections division of the Library of Congress*

Here’s what our first president had to say about the tendency of political parties to 

form factions:†

This spirit, unfortunately, is inseparable from our nature, having its root in the strongest 
passions of the human mind. It exists under different shapes in all governments, more 
or less stifled, controlled, or repressed; but, in those of the popular form, it is seen in 
its greatest rankness, and is truly their worst enemy.

The alternate domination of one faction over another, sharpened by the spirit of 
revenge, natural to party dissension, which in different ages and countries has perpe-
trated the most horrid enormities, is itself a frightful despotism. 

Washington’s warning, directed as it is toward “different ages and countries,” strikes 

me as being as true today as it was back then. So, while the coalition story of 2009 

might be news, the fundamental pattern is actually quite old. The characters come and 

go, but the story stays the same.

*	See http://en.wikipedia.org/wiki/George_Washingtons_Farewell_Address.

†	See http://avalon.law.yale.edu/18th_century/washing.asp.

http://en.wikipedia.org/wiki/George_Washingtons_Farewell_Address
http://avalon.law.yale.edu/18th_century/washing.asp
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What Makes It Beautiful?
When I was asked to contribute to this book, one of my first thoughts was “But my 

graphs are so ugly!” The labels are inconsistent across time and somewhat askew, and 

there are a few glaring inaccuracies in the way I assigned political parties. (I’ll describe 

these flubs in detail shortly.) But as I thought about it further, I decided that the work 

gets one fundamental thing right, and this makes the warts forgivable.

The choice of a network of related senators as the visual framework was the key ele-

ment in making this a beautiful visualization. Perhaps the best way to see why is to 

compare it with another depiction that shows pretty much the same thing, but in 

a different way. Consider Figure 8-10, which is a time-series chart of a partisanship 

index that appeared in McCarty, Poole, and Rosenthal (2008).

Figure 8-10.  An interesting, but not particularly beautiful, visualization of bipartisanship

Now, there is absolutely nothing wrong with this chart, and it does a fantastic job 

of showing that conservatism took off among Republicans in the mid-1970s. It gets 

even more interesting when you consider how well it reflects the impact of Nixon’s 

“Southern Strategy,” which cynically exploited fears about civil rights to turn the once 

solidly Democratic South into a Republican stronghold. However, while it accurately 

makes its point, it doesn’t provide additional elements that resonate with the viewer, 

and it takes some studying to see the story.
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This is not the case with the social graph approach. For example, knowing that each 

dot represents a senator, you’re naturally drawn in to wonder, “Who is that person so 

far off from the main group?” and then delighted to discover that it’s John McCain 

being all “mavericky.” It’s also interesting to see the rise in partisanship not as a simple 

line on a chart, but as two opposing camps pitted against each other, connected by 

only a few people across the middle; or to see the complete breakdown of bipartisan-

ship in the 104th Congress, when both parties balled up into a hedgehog defense; or to 

see the internal conflicts within each block as they responded to the broader events of 

the times.

The possibility for such resonances is what makes my graphs beautiful, rather than 

just interesting. A line graph can illustrate a fact, and can do so very clearly, but it 

rarely incites you to probe further and engage with the information. Like a good story, 

a beautiful visualization should draw you in, provoke questions, and offer a sense of 

exploration and discovery.

If you can get this element right, viewers will overlook some warts. And my project 

had several of these.

And What Makes It Ugly?
Although I’m pretty happy with what my graphs ended up showing, there are a few 

things I would have changed, in hindsight. Most of the problems resulted from me 

making too many assumptions about the data, as I’ll discuss in the next sections.

Labels
A key goal of the visualization was to reveal the global structures among the sena-

tors, rather than to reveal details about particular individuals. Occasionally, though, it 

can be useful to know whom a particular node represents—for example, when a node 

appears as a central “bridge” or connector between the parties (like Olympia Snowe or 

Ben Nelson), or off by itself (like John McCain). I wanted it to be possible to quickly 

identify these “interesting” nodes, while still keeping the focus on the overall pattern. 

My solution was to assign each senator a label based on alphabetical order, and then 

use these labels on the corresponding nodes.

While this worked well for an individual session, it failed miserably to preserve any 

sense of continuity across the sessions. To see why, consider Table 8-1, which shows 

the senators who were assigned to the labels 1, 50, and 100 across the 11 sessions.
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Table 8-1.  Senators occupying the labels 1, 50, and 100 over the 11 sessions in the 
visualization

Session Label 1 Label 50 Label 100

101 Alan Cranston Pete Domenici Wyche Fowler

102 Alan Cranston Paul Simon Wyche Fowler

103 Alan Simpson Paul Wellstone William Roth

104 Alan Simpson Sam Nunn William Roth

105 Alfonse D’Amato Daniel Akaka William Roth

106 Ben Campbell Evan Bayh William Roth

107 Ben Campbell Evan Bayh Zell Miller

108 Ben Campbell Jeff Bingaman Zell Miller

109 Barack Obama John Ensign William Frist

110 Charles Hagel John Thune Wayne Allard

111 Kirsten Gillibrand Joseph Lieberman Tom Udall

Ideally, each senator should have the same label across all the graphs in which he or 

she appears. However, a quick look at the table shows just how poorly my method 

reflects this. For example, consider Joseph Lieberman, who has been Connecticut’s 

senator since 1988. Based on my simple alphabetical ordering process, he appeared as 

labels 50, 54, 59, 65, 66, 73, 76, and 77 across the 11 graphs. The story was the same 

for many of the other senators: with the exception of Barack Obama, most of them 

spent multiple terms in the Senate, but in my system the labels assigned to them were 

wildly inconsistent.

A better system would have been to create a single list that represented all the sena-

tors over the 11 sessions, and then to assign a unique label to each senator based on 

that list. The trade-off, of course, is that I would have had more than 100 labels, but 

this would seem to be an acceptable downside, especially if such a list were arranged 

chronologically based on the year of each senator’s first election rather than alphabeti-

cally. Another solution would have been to make a dynamic, interactive visualization 

where the user could (for example) hover over each node and see a pop-up window 

presenting additional metadata. However, as I designed the visualization for print, this 

wasn’t a viable option for me.
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Orientation
In addition to labeling the senators, I wanted my visualization oriented so that 

Democrats would appear on the left and Republicans on the right. As well as following 

the established conventions, the idea was that this consistent placement would create 

some continuity across the various charts. However, this strategy proved difficult to 

implement because of the nature of the Neato layout algorithm.

The force-directed process described earlier is a great way to reveal the complex struc-

tures hidden inside abstract graph data. However, because it depends on a certain 

amount of randomness, it doesn’t produce the same results every time: while the gen-

eral structure is the same, the orientation will vary considerably. For example, Figure 

8-11 shows three different, yet equally valid, layouts for a simple graph. 

A

B
C

B A

DC D A

B

C D

Figure 8-11.  Three equivalent force-directed layouts for the same graph

In the end, I resorted to opening the image files and rotating them manually. While 

this workaround achieved the desired orientation, it had the unfortunate side effect of 

rotating the label text as well, leaving the whole thing looking a bit odd. The schematic 

in Figure 8-12 illustrates why.

A

D

D R

Initial image Rotated image
Figure 8-12.  Rotating the raw image from the graph layout algorithm so that the Democrats 
were on the left and the Republicans were on the right had some unexpected side effects on 
the labels
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In retrospect, it would have been better to invest the time in fixing the orientation 

programmatically. For example, I could have added an intermediate step to calculate 

the centroids of the two clusters, and then calculated a rotational angle around the 

centroid of the entire graph that would produce the orientation I wanted. This extra 

step would have saved considerable effort in the long run, but it seemed like overkill 

at the time. 

Party Affiliation
The last major wart was the result of a foolish assumption: since senators change par-

ties so infrequently, it seemed safe to assume that each senator’s most recent party 

affiliation could be used for all the graphs. In my visualization, this mistake stood out 

like a sore thumb.

For instance, consider Joseph Lieberman (again!), who became an Independent in 

2006 after losing the Democratic primary to insurgent candidate Ned Lamont. Here’s a 

sample of his entry in the people.xml file:  

<person id='300067' lastname='Lieberman' firstname='Joseph' ... >
   <role startdate='1989-01-01' enddate='1994-12-31' party='Democrat' .../>
   <role startdate='1995-01-01' enddate='2000-12-31' party='Democrat' .../>
   <role startdate='2001-01-01' enddate='2006-12-31' party='Democrat' .../>                
   <role startdate='2007-01-01' enddate='2012-12-31' party='Independent' .../>
   ...
</person>

As you can see, Lieberman spent 18 years as a Democratic senator before changing 

his affiliation. However, the last entry in this file lists him as an Independent, so that’s 

the party I assigned him in my ETL (extract, transform, and load) process. As a result, 

he appears (incorrectly) as a consistent green dot in a sea of Democratic blue in the 

graphs visualizing the 102nd through 109th Congresses.

To avoid this problem, I should have designed my ETL process to check party affiliation 

based on the date ranges provided in the <role> element from GovTrack. As with the 

orientation issue, this didn’t seem worth the trouble at the time. In retrospect, it serves 

as a cautionary tale on making “simplifying assumptions” about unfamiliar data.



141chapter 8: visualizing the u.s. senate social graph (1991–2009)

Conclusion
I’ll end this piece with a few observations I made while working through this project 

that I hope you might find useful in your own work:

Be prepared to spend a lot of time data munging

When I discovered GovTrack, I thought it would make this project a snap. After 

all, the data was all right there, neatly packaged up in clear XML. However, actu-

ally getting this raw data into a form I was able to use for the project required a 

considerable amount of time. I’d estimate that 80% of the time I spent on this 

project was taken up by simply transforming the data—extracting the pieces I 

wanted, writing database loaders and schemas, and writing the scripts to calculate 

the affinity data all took much more time than creating the DOT templates. This 

is apparently a very common phenomenon, so if you find yourself struggling with 

the data portion of your project, don’t get frustrated. It just seems to be part of the 

territory.

Automate what you can

When you’re first getting a handle on the data, it’s tempting to bang out a quick 

and dirty solution. So you string together a series of shell scripts, SQL statements, 

and maybe some work in Excel to get the data how you want it. This is fine if 

you’re really, really, really only going to use your dataset one time. But chances 

are, if your work is at all successful or interesting, you’re going to want to go back 

and change it, reproduce it, or enhance it. And when that time comes, you’ll find 

yourself scratching your head and asking yourself, “Now, which script did I run 

to calculate that?” So, even if you may just think you’re slapping together a one-

time hack for a quick project, take the time to develop automated scripts and do 

some minimal documentation. Your future self will thank you.

Think carefully about how you’ll represent time

Because people are often interested in how things have changed from the past or 

what they may look like in the future, be sure to think about how you’ll repre-

sent time in your visualization. Sometimes time is revealed explicitly, as in the 

time series example in Figure 8-10. Sometimes, though, it’s in the background. 

For example, in my project, the sense of movement through time is conveyed cin-

ematically through a progression of images. In any case, just as it does in a movie, 

a clear sense of pacing and moving through time will help make your work more 

engaging.
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Decide when “good” is “good enough”

Although it’s important to spend some time up front working through your data 

so that you’re not bitten by embarrassing problems later, it’s also good to know 

when enough is enough. Unless you’re working on a system that truly requires 

complete accuracy (a heads-up display for a jet aircraft, for example), it’s often 

better to “release early, release often.” Show your work to people, get their reac-

tions, see if it’s generating the types of responses you’d hoped for, and then iterate.

Approach the problem like a journalist

A lot of other chapters in this book have made the point that a great visualiza-

tion should tell a story, and I generally agree. However, inherent in this framing is 

the idea that the people who create visualizations are storytellers. To me, this can 

have a ring of someone inventing a story, complete with characters and situations 

to fit a plot. Rather than “storyteller,” I think “journalist” is a more accurate meta-

phor. A journalist tells a story, but it’s (ideally) an objective story—the journalist’s 

goal is to uncover the facts piece by piece, untangle messy complexities, and try to 

weave them into a coherent picture. Ultimately, the fidelity of your visualization’s 

story to the underlying facts in the data is what will truly determine its beauty.
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C h a p t e r  Ni  n e

The Big Picture:  
Search and Discovery

Todd Holloway

Search and discovery are two styles of information retrieval. Search is 

a familiar modality, well exemplified by Google and other web search engines. While 

there is a discovery aspect to search engines, there are more straightforward examples 

of discovery systems, such as product recommendations on Amazon and movie recom-

mendations on Netflix. 

These two types of retrieval systems have in common that they can be incredibly com-

plex under the hood. The results they provide may depend not only on the content 

of the query and the items being retrieved, but also on the collective behavior of the 

system’s users. For example, how and what movies you rate on Netflix will influence 

what movies are recommended to other users, and on Amazon, reviewing a book, 

buying a book, or even adding a book to your cart but later removing it can affect the 

recommendations given to others. Similarly, with Google, when you click on a result—

or, for that matter, don’t click on a result—that behavior impacts future search results.

One consequence of this complexity is difficulty in explaining system behavior. We 

primarily rely on performance metrics to quantify the success or failure of retrieval 

results, or to tell us which variations of a system work better than others. Such metrics 

allow the system to be continuously improved upon.  

A supplementary approach to understanding the behavior of these systems is to use 

information visualization. With visualization, we can sometimes gain insights not 

available from metrics alone. In this chapter, I’ll show how one particular visualiza-

tion technique can provide large-scale views of certain system dynamics. The first sys-

tem we’ll look at is a search engine, YELLOWPAGES.COM. The goal will be to get a 
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big-picture view of user query activity on the site—activity that can in turn be used to 

improve the design of the system itself. The second system we will look at is a movie 

recommender built from the dataset of the Netflix Prize, a million-dollar predictive 

modeling competition that ended recently. That visualization can help us understand 

the issues inherent in a discovery model based on user preferences. 

The Visualization Technique
The technique described in this chapter is all about comparing items of the same 

type—queries in our first example, and movies in the second. The premise is simple: 

we will place items on the page so that similar items are close to one another and dissimilar items 

are far apart. This premise is rooted in the Gestalt principle of proximity, which claims 

that when items are placed close together, people tend to perceive them as belonging 

to a group.

The first step in creating these visualizations is therefore to define what makes items 

similar and dissimilar. This can be anything. In our Netflix Prize example, we’ll define 

the similarity of movies as being evidenced by like user ratings. There are very good 

reasons to use user ratings, but we could alternatively have used movie attributes like 

genre or actors to define similarity.

Once similarity is defined, an ordination process is needed to convert those similar-

ity values into either 2D or 3D coordinates. There are two main ways of doing ordina-

tion. The first is to use a formula that converts a higher-dimensional space into a lower 

2D or 3D one. The alternative approach is to view the items as being nodes in a graph, 

with similar nodes connected by an edge. Then, the ordination is an attempt to place 

connected nodes near one another and disconnected nodes far apart. In this chapter, 

we’ll use the latter graph-based approach, and we’ll discuss the specific tools and algo-

rithms required of it.

After the ordination—that is, after the items are given coordinates—representations of 

those items (simple circles in these two examples) are placed at those coordinates. The 

final steps required to create the visualizations include placing labels (which can be 

quite challenging) and overlaying any additional analytics.

YELLOWPAGES.COM
Until recently, it was quite common to use printed phone books to find people and 

services. The section for services was known as the Yellow Pages. Within those pages, 

businesses were grouped by category, and the categories were then sorted alphabeti-

cally. It was simple stuff.
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YELLOWPAGES.COM (Figure 9-1), a website owned by my employer, AT&T, is a 

modern local business search engine with the same basic goal as its print ancestor. 

Obviously, though, being online, it’s not limited to organizing its millions of businesses 

by category and alphabet in the same way the print version was.  

Figure 9-1.  YELLOWPAGES.COM: a local business search engine

Indeed, part of designing or refining such a search engine involves understanding 

how to organize the business listings given a query, and what features of businesses to 

involve in that organization. To that end, it can be helpful to take a look at the behav-

ior of users, because that behavior can either validate or undermine our intuitions.

Query Logs
YELLOWPAGES.COM keeps a log of every query executed on the site, so it can 

use that data to improve its service. Here are the top five queries from the log for 

December 2008: 

1.	 Restaurants

2.	 Movie theaters

3.	 Pizza

4.	 Walmart [sic]

5.	 Animal shelters
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The top five are a mix of “browse” queries, where people are browsing within catego-

ries (e.g., Restaurants), and “search” queries, where people are searching for specific 

businesses (e.g., Wal-Mart). We will use the log queries as the “items” in our visual-

ization, and we’ll ordinate them based on the similarity of the behavior of the users 

executing those queries. In that way, we can hope to get a big picture of query activity 

on the system.

The query logs for YELLOWPAGES.COM are currently the property of AT&T. If you 

would like to look at the contents of a major search engine’s query log, AOL has 

placed a log from 2006 in the public domain. Just Google “AOL query log” to find a 

current mirror from which to download the 500 MB file.

Categorical Similarity
As stated earlier, we would like our visualization to be based on actual user behav-

ior. For example, we might like two queries to appear near each other if, when a user 

enters one query, she is likely to click on the same set of businesses she would have 

if she had entered the other query. However, the data is too sparse to achieve this 

in practice—the overlapping sets of businesses are very small on average. To handle 

this sparsity, we’ll back off a little and say that two queries are similar if, when a user 

enters one query, she is likely to click on the same category of businesses as she would 

have if she had entered the other query. It is from this definition of similarity that we 

will do the ordination.

Visualization As a Substrate for Analytics
At AT&T Applied Research, we have built a number of tools for analyzing queries. One 

such tool is a predictive model that attempts to determine whether a query is intended 

to reference a specific business (e.g., Walgreens) or for browsing among a type of busi-

ness (e.g., drug stores). We can overlay these predictions on top of our visualization to 

get a big-picture sense of the breakdown between these “search” vs. “browse” queries.  

There are many visual encodings we could use to show which of these two classes a 

query belongs to. The most obvious one, and the approach we have adopted, is col-

oring the nodes: in our visualization the green nodes are queries that are predicted to be 

searches for a specific business, and other queries are left black. There may be some incorrect 

colorings, reflecting errors in this particular predictive model. 

Figure 9-2 shows the queries “Goodwill” and “Salvation Army” in green, meaning 

they have been (correctly) predicted to be queries for specific businesses.

Figure 9-2.  “Search” queries are colored green in our visualization

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>
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The Visualization
The final visualization is presented in Figure 9-3. It shows the top 4,600 queries from 

December 2008. When looking at this type of visualization, keep in mind that it has 

no axis. It’s all relative—similar queries are near one another, and dissimilar queries 

are far apart. Each circle represents a query. Some of these circles are labeled with the 

query terms. Both the size of the circle and the size of the label are based on the number of 

times the query occurs in the log. That way, frequent queries jump out at the viewer. 

Figure 9-3.  The Top 4,600 queries made on YELLOWPAGES.COM

Looking at Figure 9-3, it’s easy to identify the regions where the system is most often 

used. “Restaurants” stand out, as do retail stores such as “Walmart” and “Best Buy.” 

That queries for restaurants and retail stores are frequent may not be surprising, given 

that this is a business search engine. Perhaps less predictable is the large region toward 

the bottom containing community-related queries, including searches for “public 

schools,” “churches,” and “apartments.”
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This type of visualization is large. It doesn’t fit well onto a single printed page; the best 

way to display it is either to print it as a large poster or to display it as a zoomable ver-

sion on a computer screen. To make it zoomable, it can be loaded into an application 

such as Google Maps, Gigapan, or Microsoft’s Seadragon.

Since this visualization is being published in a book, we’ll examine it and the insights it 

offers by enlarging and discussing a few specific sections.

Figure 9-4 enlarges the cluster of queries that seem to reference community-related 

businesses. Seeing a depiction of actual user behavior such as this one might leave 

an impression on a search engineer, perhaps validating his beliefs about the system’s 

usage, or causing surprise and even inspiring design changes. 

Figure 9-4.  A closeup of one cluster in Figure 9-3

The cluster shown in Figure 9-5 seems fairly straightforward to characterize, but there 

are a couple of things worth pointing out. Notice the common but different spellings 

of GameStop; it is perhaps to be expected that users would behave the same way with 

the search results regardless of the spelling, so it should also be expected for those que-

ries to appear near one another in the visualization. Perhaps most interesting is the 

proximity of pawnshop-related queries to bookstore- and game store–related queries. 

What user querying and clicking behaviors might generate this pattern?



149chapter 9: the big picture: search and discovery 

Figure 9-5.  Cluster of largely hobby-related businesses

This visualization technique is powerful in that it’s not just proximity within a single 

cluster that provides insight, but also proximity of clusters to one another. In Figure 

9-6, there are two clusters, one dealing with pharmacies and one with liquor stores, 

that have been placed relatively close to each other. This indicates that users tend to 

click on similar business whether they are searching for pharmacies or liquor stores. 

Whereas in a printed phone book, these two classes of businesses would be found only 

under their separate categories, a search engine can consider these behavioral associa-

tions in producing search results.

Figure 9-6.  Two nearby clusters: drug and liquor stores

Advantages and Disadvantages of the Technique
Having looked at one of these “big-picture” visualizations, it’s worth discussing the 

advantages and disadvantages of this technique. 

The biggest benefit is that it’s scalable and totally algorithmic. The visualization 

in Figure 9-3 shows 4,600 items, but the algorithms can scale to handle millions. 

(Obviously, to usefully view millions of items, an interface that allows panning and 

zooming would be required.)

Another benefit of this technique is that it works nicely as a stable, global substrate on 

which to display other analytics. For example, we used green and black to differenti-

ate between search and browse queries. We could easily overlay any number of other 

analytics. Perhaps it would be interesting to show the average ages of the users making 
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specific queries, assuming we had such data, or a prediction of the likelihood of a user 

using the system again given the query entered. Overlaying such a prediction might 

give us a picture of where the system performs well and poorly. 

The biggest disadvantage (and criticism) of this technique is that it does not allow 

precise comparisons. It is difficult to quantify and explain the relationships between 

particular pairs of items in this visualization; other visualization techniques are more 

effective for such narrow analytics. This is more a technique to inspire new questions 

about the dataset, or to hint at what the answers to certain questions may be, rather 

than a source of specific answers.

Another obvious disadvantage is that people are not already educated as to how to 

interpret such views. Scatterplots, bar charts, pie charts—sure, but not large-scale 

graph drawings.

A technical issue, illustrated by the otherwise interesting clusters in Figure 9-7, is the 

difficulty of labeling so many items. The visualizations in this chapter all use automatic 

labeling algorithms that optimize the placement of the labels to minimize overlap. All 

the same, some overlap is inevitable. Perhaps as the technique continues to develop, 

creative new solutions will address this issue.

 
Figure 9-7.  A cluster with labels that are difficult to read
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One final issue with these visualizations is that, as mentioned earlier, they generally 

involve a reduction from a higher-dimensional dataset to a two- or three-dimensional 

dataset. Information can be lost in the reduction process, so it is difficult to be certain 

whether an interesting-looking grouping truly reflects something interesting about the 

dataset or is merely an artifact of that process.

The Netflix Prize
There have long been visions of enabling individuals to tailor their experience of the 

Web, and efforts to achieve that goal. Ideally, such personalization will enable services 

on the Web to understand your tastes well enough to help you discover restaurants, 

books, music, movies, and other things that will interest you. 

Netflix, a company that rents movies by mail and online, has a system that attempts 

to make appropriate recommendations to its customers. The recommendations are 

based on the movies that a customer has rated highly, as well as the movies that cus-

tomers with similar tastes have rated highly. In the fall of 2006, the company started 

a competition offering a prize of one million dollars to anyone who could improve its 

recommendation algorithm by 10 percent. As part of this competition, Netflix released 

a dataset containing 100 million user ratings for 17,700 movies. This dataset can be 

found online at the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/). 

The challenges of building a discovery system from this dataset include the fact that 

there is both too much data and too little data. There is too much data to use simple 

techniques to explain it all, or even to browse it. However, from the standpoint of 

making accurate recommendations, there is less data than we would like. The distri-

bution of ratings is far from uniform—many users have rated few movies, and many 

movies have few ratings. For those users and those movies, accurate predictions are 

difficult to make. 

Preference Similarity
A well-known measure of similarity used in many recommendation systems is cosine 

similarity. A practical introduction to this technique can be found in Linden, Smith, 

and York (2003).

In the case of movies, intuitively, the measure indicates that two movies are similar if 

users who rated one highly rated the other highly or, conversely, users who rated one 

poorly rated the other poorly. 

We’ll use this similarity measure to generate similarity data for all 17,700 movies in 

the Netflix Prize dataset, then generate coordinates based on that data. If we were 

interested in building an actual movie recommender system, we might do so sim-

ply by recommending the movies that were similar to those a user had rated highly. 

However, the goal here is just to gain insight into the dynamics of such a recom-

mender system.

http://archive.ics.uci.edu/ml/
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Labeling
The YELLOWPAGES.COM visualization was easier to label than this Netflix Prize visu-

alization for a number of reasons, including fewer nodes and shorter labels, but mostly 

because the nodes were more uniformly distributed. Although the Netflix Prize visu-

alization has a large number of clusters, most of the movies are contained in only a 

small number of those clusters. This disparity is even more apparent when we look at 

only the movies with the most ratings. 

Two different approaches to labeling were considered: 

•	 Label the top movies, and a random sample of other movies. This will reveal the 

clusters containing the most popular films, but because of the density of those 

clusters, it may be difficult to read the labels.

•	 Divide the page into a grid and label a small sample of nodes in each grid location. 

This ensures that all clusters will have some labels.  

For the visualization in Figure 9-8, the first strategy was used because it illustrates the 

highly nonuniform distribution both of movies in general and of movies with large 

numbers of ratings (indicated by larger circles). However, for the enlargements of the 

visualization in the subsequent figures, the second strategy was used for improved 

readability.

Figure 9-8.  Visualization of the 17,700 movies in the Netflix Prize dataset
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Closer Looks
Other than ratings, the only data in the Netflix Prize dataset is the titles and release 

dates for the movies. However, competitors in the Netflix Prize have found that latent 

attributes, such as the amount of violence in a movie or the gender of the user, are 

important predictors of preference. Not surprisingly, some of the clusters appear to 

be explainable by these attributes. Why other clusters emerge from user preferences, 

however, is more difficult to explain.

The first cluster of movies we’ll look at (Figure 9-9), containing titles such as Star Trek, 

X-Files, and Dune, seems to be largely characterized by a genre: science fiction. Galaxy 

Quest is also sci-fi, though satiric sci-fi. Monk, a detective comedy, would seem to be the 

odd member of this collection. However, this is a preference clustering, and preference 

is by no means defined only by genre. The other possible explanation for this anomaly 

is that there are very few ratings for Monk (note the small size of the node within the 

cluster), so its placement may be an error; that is, it may not reflect the actual prefer-

ences of Netflix users. This is a main source of difficulty not just in creating this visualiza-

tion, but for the Netflix Prize competition itself; predicting user preferences for movies 

with few existing ratings is tough.

Figure 9-9.  Cluster of sci-fi movies

Explaining other clusters can be much more challenging. Consider the example in 

Figure 9-10. It may make intuitive sense that films such as Margaret Cho, The Man 

Show, and The Rocky Horror Picture Show (all controversial comedies) would be liked by 

a certain group of users and reviled by others, and thus would appear as a cluster. But 

if that’s the case, why aren’t other movies with a similar type of humor in this clus-

ter? Why is the pull between these particular movies so strong that they form a cluster 

rather than being distributed amongst other clusters? 
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Figure 9-10.  Cluster of movies with similar humor

Figure 9-11 provides another example of a cluster that intuitively makes sense as a 

reflection of preference. If we could have access to additional attributes about these 

movies or the users who rated them highly, which of them might help explain the 

preferences revealed within this cluster?

Figure 9-11.  Cluster of “family-friendly” movies

An attempt at explaining the cluster in Figure 9-12 might focus on the fact that most 

of the films in this cluster are blockbuster action movies. Even if one considers The 

Devil’s Advocate something other than an action movie, the leading actor (Keanu 

Reeves) appears in many such films, so other movies he stars in may be expected to 

appeal to the same audience.
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Figure 9-12.  Cluster of action movies

The cluster in Figure 9-13 is larger and a bit more difficult to characterize, but user 

preference is well reflected. Most of these films have a certain “feel-good” appeal; the 

majority are love stories.

Figure 9-13.  Cluster of “feel-good” movies

An already-mentioned issue is that the movie recommendations might not be as good 

for users who haven’t already rated many movies, because the system doesn’t yet 

know those users’ preferences. We call this the cold start problem. In fact, we can still have 

this problem even for users who have rated a lot of movies, if those ratings were spread 

across a number of contexts. For example, say the user is a guy who doesn’t really 

like the kind of movies in the last cluster but has started renting them for date nights 

with his girlfriend, and rating the movies based on how well each date goes. If he then 

starts renting movies for himself, he may not have made enough ratings reflecting his 

own preferences to be able to discover movies that he will actually like. More broadly, 

we can describe this issue as context amplifying the issue of data sparsity.
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Creating Your Own
You may be interested in creating similar visualizations to the ones shown here for 

your favorite datasets. There are many tool stacks that can be used to accomplish this. 

We first used Perl to parse the data and compute the similarities (of course, another 

language could be substituted for Perl). These similarities were then passed to Shawn 

Martin’s freely available DrL software (http://www.cs.sandia.gov/~smartin/software.html). 

DrL converts the similarities into coordinates for each node using the graph method 

mentioned earlier. DrL’s strength is that it works recursively, so the coordinates reflect a 

higher-level organization. A good alternative to DrL is GraphViz (http://www.graphviz.org).

At this point, we returned to Perl to merge the coordinates with additional informa-

tion, such as the size, color, and labels of the nodes. Finally, the completed datasets were 

passed to the commercial graph-drawing library yFiles (http://www.yworks.com/en/index.

html), which applied a layout to the labels and rendered the whole visualization as a .png 

file. yFiles is an incredibly useful package, but you could bypass this step and, for exam-

ple, use Perl to directly create an EPS file at the expense of the labels not being laid out. 

Conclusion
The two examples shown in this chapter are pretty straightforward applications of 

this visualization technique. If you are interested in viewing more examples of this 

type, a number are included in the online Places & Spaces exhibit (http://www.scimaps.

org/maps/browse/), a collection of large-scale visualizations curated by Katy Borner of 

Indiana University.

It is worth mentioning that this type of visualization is still an active area of research. 

Recent developments have focused on expanding this technique to incorporate con-

straints. A use that would benefit from constraints occurs in the field of systems biol-

ogy, where one might want to display protein-protein interactions. The similarity 

measure might be based on the number of interactions between two proteins. The 

constraints needed might be for some proteins within the nucleus to be given coordi-

nates within a particular circular region and for proteins within the cytoplasm to be 

given coordinates within a larger circular region, not overlapping with the nucleus 

region. Likewise, proteins on the membrane might be constrained to be on a circular 

line, while still grouped by similarity. Like the search and discovery systems visualiza-

tions discussed in this chapter, this visualization could provide a big-picture view that 

helps inspire or validate current intuitions. Thinking up other domains where such 

visualizations might be useful is left as an exercise for the reader. 
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C h a p t e r  T e n

Finding Beautiful Insights in 
the Chaos of Social Network 

Visualizations
Adam Perer

My purpose throughout is to interpret the material by 

juxtaposing and assembling the notations into a unified, 

coherent whole.

—Mark Lombardi, 2000

Mark Lombardi was perhaps the perfect network layout algorithm. As an 

artist intent on communicating complex networks of financial and political scandals, he 

diligently drew networks where nodes never overlap, edges rarely cross, and the connec-

tions are smooth and curvy (Figure 10-1). This amount of grace and sensitivity is rarely 

present in the visualizations of social networks created by computational means. While 

advanced computational layout algorithms may be grounded in physical models of springs 

and forces, they rarely highlight patterns and trends like Lombardi’s drawings do. This 

chapter details my attempts to empower users to dig deeper into these chaotic social net-

work visualizations with interactive techniques that integrate visualization and statistics.

Visualizing Social Networks
The increasing amount of digital information in modern society has ushered in a 

golden age for data analysis. Ample data encourages users to conduct more frequent 

exploratory data analyses to explain scientific, social, cultural, and economic phenom-

ena. However, while access to data is important, it is ultimately insufficient unless 

we also have the ability to understand patterns, identify outliers, and discover gaps. 

Modern databases are simply too large to examine without computational tools that 

allow users to process and interact with the data. 
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Figure 10-1.  An example of the artist Mark Lombardi’s hand-drawn social networks: “World 
Finance Corporation, Miami, Florida, c. 1970-79 (6th Version)” (1999); image courtesy of 
PIEROGI Gallery, Brooklyn, NY.

Our most powerful sensory receptors—our eyes—have far more bandwidth and pro-

cessing power than our receptors for smell, sound, taste, or touch. Presenting data 

through information visualizations is therefore an effective way to take full advantage 

of the strong capabilities of our most powerful human perceptual system. However, 

choosing an effective presentation is challenging, as not all information visualizations 

are created equally. Not all information visualizations highlight the patterns, gaps, and 

outliers important to analysts’ tasks, and furthermore, not all information visualiza-

tions “force us to notice what we never expected to see” (Tukey 1977).
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A growing trend in data analysis is to make sense of linked data as networks. Rather 

than looking solely at attributes of data, network analysts also focus on the connec-

tions between data and the resulting structures. My research focuses on understand-

ing these networks because they are topical, emergent, and inherently challenging for 

analysts. Networks are difficult to visualize and navigate, and, most problematically, 

it is difficult to find task-relevant patterns. Despite all of these challenges, the network 

perspective remains appealing to sociologists, intelligence analysts, biologists, commu-

nication theorists, bibliometricians, food-web ecologists, and many other professionals. 

The growing popularity of social network analysis (SNA) can be seen in, and inspired 

by, popular bestselling books such as Malcolm Gladwell’s The Tipping Point (Back 

Bay Books), Albert-László Barabási’s Linked (Plume), and Duncan Watts’s Six Degrees 

(Norton). Countless analysts wish to analyze their network data, but there are few 

mature or widely used tools and techniques for doing so. 

Network analysts focus on relationships instead of just the individual elements that 

can explain social, cultural, or economic phenomena; how the elements are connected 

is just as important as the elements themselves. Prior to the social network analy-

sis perspective, many analysts focused largely on inherent individual attributes and 

neglected the social facet of behavior—i.e., how individuals interact and the influence 

they have on one another (Freeman 2004). Using newer techniques from the social 

network community, analysts can find patterns in the structures, witness the flow of 

resources or messages through a network, and learn how individuals are influenced by 

their surroundings.

In practice, social network visualizations can be chaotic, particularly when the net-

work is large. Visualizations are useful in leveraging the powerful perceptual abilities 

of humans, but cluttered presentations, overlapping edges, and illegible node labels 

often undermine the benefits of visual exploration. In these situations, interactive 

techniques are necessary to make sense of such complex static visualizations. Inherent 

attributes are the attributes that exist in the dataset, such as gender, race, salary, or 

education level. Interactions such as zooming, panning, or filtering by the inherent 

attributes of nodes and edges can simplify complex visualizations. Unfortunately, such 

techniques may only get users so far with complex networks and may not tell the whole 

story, particularly in small-world networks where dense connections will rarely untangle 

(van Ham 2004). Inherent attributes lack the structural, topological information critical 

to social network analysts. Our major contribution is to augment information visualiza-

tions with computed attributes that reflect the tasks of users. Computed attributes can 

be calculated from relevant statistical importance metrics (e.g., degree or betweenness 

centrality), clustering algorithms, or data mining strategies. 
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This approach of leveraging computed attributes is particularly valuable for social net-

work analysts, as they have also come to believe that inherent attributes do not tell the 

whole story. In fact, an approach taken by many social network analysts is to ignore 

inherent attributes during exploration to avoid bias, and to only focus on the data’s 

structural properties. For social network analysts, computed attributes can be calcu-

lated with a rich set of statistical techniques, from sociology to graph theory, that allow 

analysts to numerically uncover interesting features within their networks. Analysts 

might seek a tight-knit community of individuals, or the gatekeepers between them, 

or the most centrally powerful entities; there are a variety of sophisticated algorithms 

for finding these traits.

Most visualization tools aim to project complex data into comprehensible views. 

However, few tools assist users by providing computed attributes that highlight impor-

tant properties of their data. Users can switch back and forth between statistical and 

visualization packages, but this can result in an inefficient flow in the analysis process, 

which inhibits discovery. 

SocialAction is the software tool Ben Shneiderman and I created to explore these issues 

(http://www.cs.umd.edu/hcil/socialaction). It provides meaningful, computed attributes on 

the fly by integrating both statistics and visualizations to enable users to quickly derive 

the benefits of both. SocialAction embeds statistical algorithms to detect important 

individuals, relationships, and clusters. Instead of presenting statistical results in typi-

cal tabular fashion, the results are integrated in a network visualization that provides 

meaningful computed attributes of the nodes and edges. With computed attributes, 

users can easily and dynamically filter nodes and edges to find interesting data points. 

The visualizations simplify the statistical results, facilitating sensemaking and discov-

ery of features such as distributions, patterns, trends, gaps, and outliers. The statis-

tics simplify the comprehension of sometimes-chaotic visualizations, allowing users to 

focus on statistically significant nodes and edges. The presence of these rich interac-

tions within one consistent interface provides a fluid, efficient, visual analytic system 

that allows users to focus on insights and generating hypotheses rather than managing 

a medley of software packages. I’ll walk you through this rich interaction of statistics 

and visualization later, but let’s begin with the motivation for why this is necessary.

Who Wants to Visualize Social Networks?
My fieldwork with social network analysts, both in academia and industry, suggests 

that pure statistical analysis is the most commonly used technique when attempting 

to interpret social networks. Although network visualizations are common in research 

publications and reports, they are typically created for communicative purposes after 

the analysis is complete and not necessarily visualizations used during the exploratory 

analysis.

http://www.cs.umd.edu/hcil/socialaction
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A history of the use of visual images in social networks is described in “Visualizing 

Social Networks” (Freeman 2000), including one of the earliest known examples of 

a social network visualization by Jacob Moreno in 1934. In Figure 10-2, the triangle 

nodes are boys and the circle nodes are girls. Without knowing any details about who 

the individuals in this classroom are, one quickly learns from the visualization that 

1) boys are friends with boys, 2) girls are friends with girls, 3) one brave boy chose a 

girl as his friend (although this was not reciprocated), and 4) there is an isolated group 

of two girls. This visualization typifies how a legible and well-positioned network can 

explain the social structure of individuals.

Figure 10-2.  One of the earliest social network visualizations: Jacob Moreno’s Friendship 
Choices Among Fourth Graders (Moreno 1934).
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Social network data is extremely complex, as the dimensionality of the data increases 

with each relationship. Those familiar with network visualizations might sympathize 

with these statistically attuned practitioners, as it is very difficult to design a useful net-

work visualization when the number of nodes or edges is large. Large network visu-

alizations are typically a tangled set of nodes and edges, and rarely achieve “NetViz 

Nirvana” (a phrase coined by Ben Shneiderman to describe the ability to see each node 

and follow its edges to all other nodes). Network visualizations may offer evidence of 

clusters and outliers, but in general it is hard to gather deeper insights from these 

complex visualizations. 

My first argument is that it is hard to find patterns and trends using purely statistical 

methods. My second argument is that network visualizations usually offer little util-

ity beyond a small set of insights. So what should a social network researcher do? Use 

both—in a tightly integrated way—to arrive at beautiful visualizations. The design of 

SocialAction centers on this goal.

The Design of SocialAction
Structural analysts have proposed numerous measures for statistically assessing social 

networks. However, there is no systematic way to interpret such networks, as those 

measures can have different meanings in different networks. This is problematic, as 

analysts want to be certain they are not overlooking critical facets of the network. In 

order to make exploration easier, I interviewed social network analysts and reviewed 

social network journals to tabulate the most commonly used measurements. I then 

organized these measures into six user-centered tasks: Overview, Rank Nodes, Rank 

Edges, Plot Nodes, Find Communities, and Edge Types. In the following sections, I’ll 

describe each of these tasks and their associated features in detail. However, let’s first 

begin with an illustration of the main goals of the process.

Shneiderman’s Visual Information-Seeking Mantra—“Overview first, zoom and filter, 

then details on demand” (Shneiderman 1996)—serves as guidance for organizing the 

complex tasks of a social network analyst. Analysts begin with an overview of the net-

work, both statistically and visually; see Figure 10-3(a). Measurements of the entire 

network, such as the density, diameter, and number of components, are computed 

and presented alongside a force-directed layout of the network. The visualization gives 

users a sense of the structure, clusters, and depth of a network, while the statistics provide 

a way to both confirm and quantify the visual findings. If the network is small, or the 

analysts are interested purely in the topology of the network, this step may be enough. 
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A more capable analyst will wish to gain a deeper understanding of the individual 

elements of the network. Users can apply statistical importance metrics common in 

social network analysis to measure the nodes (also known as vertices) and edges (also 

known as links). For instance, analysts can rank the nodes by degree (the most con-

nected nodes), betweenness (the gatekeepers), closeness (nodes that are well posi-

tioned to receive information), or other metrics. After users select a metric, a table lists 

the nodes in rank order. SocialAction assigns each node a color, ranging from green 

(low ranking) to black (average ranking) to red (high ranking). This helps illustrate 

each node’s position among all ranked entities. The network visualization is updated 

simultaneously, painting each node with the corresponding color. Users now can scan 

the entire network to see where the important nodes reside; see Figure 10-3(a). 

To gain further insights, SocialAction allows users to continue on to step 2 of the 

Visual Information Seeking Mantra (“filter and zoom”). This is where most other social 

network analysis packages strand users. Panning and zooming naïvely is not enough 

to empower users: zooming into sections of the network forces users to lose the global 

structure, and dense networks may never untangle. SocialAction allows user-controlled 

statistics to drive the navigation. Users can dismiss portions of the network that do not 

meet their criteria by using range sliders. Filtering by attributes or importance metrics 

allows users to focus on the types of nodes they care about, while simultaneously sim-

plifying the visualization; see Figure 10-3(b). 

After analysts can make sense of global trends through statistical measurements and 

visual presentations, but their analyses often are incomplete without an understanding 

of what the individual nodes represent. Contrary to most other network visualizations, 

labels are always present in SocialAction. The controls for font size and length allow 

the analysts to decide their emphasis. In line with step 3 of the Visual Information 

Seeking Mantra (“details on demand”), users can select a node to see all of its attri-

butes. Hovering over a node also highlights each node’s edges and neighbors, achiev-

ing NetViz Nirvana for the node of interest; see Figure 10-3(c).
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Figure 10-3.  (a) The Statistics side of the interface allows users to choose statistical algorithms 
to find important nodes, detect clusters, and more. The Visualization side is integrated with the 
statistics. Nodes are colored according to their ranking, with red nodes being the most statisti-
cally important. (b) The gatekeepers are found using a statistical algorithm. Users filter out the 
unimportant nodes using a dynamic slider that simplifies the visualization while maintaining the 
node positions and structure of the network. (c) Labels are always given priority so users can 
understand what the data represents. When a user selects a node, neighbors are highlighted 
and details appear on the left.
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For another, albeit more lighthearted, example, let’s take a look at my personal social 

network on Facebook. If I visualize the connections using a standard network layout 

algorithm, I get a Jackson Pollack–like mess; there is something intriguing about the 

mess, but it certainly lacks the grace of a Lombardi piece. However, if I make use of 

some statistics (in this case, a clustering algorithm designed to detect communities), I 

get a much more sensible output. What used to be a bunch of tangled nodes and edges 

is now my social network grouped into meaningful categories. I can see clusters of 

my high school friends, my college friends, my graduate school friends, my Microsoft 

colleagues, and so on (Figure 10-4). An image devoid of meaning becomes beautiful, 

thanks to our dear algorithmic friends.

Figure 10-4.  A visualization of my Facebook social network. By running a clustering algorithm 
on top of the network, seven meaningful communities of friends were found representing differ-
ent facets of my life. Without clustering, the network was too tangled to provide any meaning.

In summary, bringing together statistics and visualizations yields an elegant solution 

for exploratory data analysis. The visualizations simplify the statistical results, improv-

ing the comprehension of patterns and global trends. The statistics, in turn, simplify 

the comprehension of the sometimes-chaotic visualizations, allowing users to focus on 

statistically significant nodes and edges.
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Case Studies: From Chaos to Beauty
Ultimately, what makes network visualization beautiful? An 18th-century Scottish 

philosopher, David Hume (1742), wrote: 

Beauty is no quality in things themselves. It exists merely in the mind which contem-
plates them; and each mind perceives a different beauty.

However, Hume’s view of beauty was contested. A Scottish associate, Henry Home 

(Lord Kames), believed that beauty could be broken down to a rational system of 

rules.

When it comes to visualizations based on underlying data, I side with Lord Kames. 

Insights offered are the measure of success for a beautiful visualization. Analysts may 

be seeking to confirm their intuitions, detect anomalies or outliers, or uncover under-

lying patterns. Chris North, a professor at Virginia Tech, characterizes insights as 

complex, deep, qualitative, unexpected, and relevant findings. While a helpful char-

acterization, the impression is that measuring insights is perhaps as complicated as 

measuring beauty. Traditional laboratory-based controlled experiments have proven 

to be effective for many scientific tests, but do they work for insights? For instance, if I 

invented new display or input widgets, controlled experiments could compare two or 

more treatments by measuring learning times, task performance times, or error rates. 

Typical experiments would involve 20–60 participants each given 10–30 minutes of 

training, followed by all participants doing the same 2–20 tasks during a 1–3-hour ses-

sion. Statistical methods such as t-tests and ANOVA would then be applied to check for 

significant differences in mean values. These summary statistics are effective, especially 

if there is small variance across users. 

However, how does someone break insights into a set of measurable tasks? The first 

challenge is that analysts often work for days or weeks to carry out exploratory data 

analyses on substantial problems, and their work processes would be nearly impos-

sible to reconstruct in a laboratory-based controlled experiment (even if large numbers 

of professionals could be obtained for the requisite time periods). A second difficulty 

is that exploratory tasks are by their nature poorly defined, so telling the users which 

tasks to carry out would be incompatible with discovery. Third, each user has unique 

skills and experience, leading to wide variations in performance that would undermine 

the utility of the summary statistics. In controlled studies, exceptional performance 

is seen as an unfortunate outlier, but in case studies, these special events are fruitful 

critical incidents that provide insight into how discovery happens. Fourth, I wanted 

more than quantitative analyses of the tool; I also wished to hear about the problems 

and frustrations users encountered, as well as their thrilling tales of success. For such 

reasons, I turned to structured and replicated case study research methods to decide if 

SocialAction could generate beautiful visualizations.
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The following sections summarize a few of my case studies of real analysts using 

SocialAction to visualize their own data. In homage to Mark Lombardi, I have chosen 

here to report on the covert networks of politicians and terrorists. 

The Social Network of Senatorial Voting
Congressional analysts are interested in partisan unity in the United States Senate. 

For instance, Congressional Quarterly calculates such unity by identifying every vote in 

which a majority of Democrats voted opposite a majority of Republicans, and then 

counts, for each senator, the percentage of those votes in which that senator voted 

with his or her party. This metric can be useful for tracking an individual senator’s 

party loyalty from year to year, but it does not reveal much about the overall patterns 

in the body. 

Chris Wilson, then an associate editor for the US News & World Report, became inter-

ested in voting patterns among United States senators in 2007. Wilson set out to 

uncover senatorial patterns such as strategic, bipartisan, or geographic alliances in the 

dataset. He spent significant effort mining voting data from public databases, but was 

unable to find any distinct patterns through his normal methods of analysis. 

Wilson believed social network analysis could yield the answers he sought. His data 

included voting results for each senator during the first six months of 2007, beginning 

when the Democratic Party assumed control of the chamber with a one-seat majority. 

A social network can be inferred from co-occurrences of votes. 

Wilson constructed the network such that, when a senator votes with another sena-

tor on a resolution, an edge connects them. The strength of each edge is based on 

how often they vote with each other (e.g., Barack Obama and Hillary Clinton voted 

together 203 times, whereas Obama and Sam Brownback voted together only 59 

times). This led to a very dense network, because there were certain uncontroversial 

resolutions that all senators voted for (e.g., Resolution RC-20, a bill commending the 

actions of “the Subway Hero” Wesley Autrey). All the senators were connected, result-

ing in a visualization resembling a huge, tangled web. 

SocialAction allows users to rank edges according to importance metrics. Wilson used 

this feature to compare network visualizations by dynamically filtering out relation-

ships with low importance rankings. For instance, the 180-vote threshold (about 60 

percent voting coincidence) is shown in Figure 10-5. Partisanship is strong even at this 

fairly low threshold, and the Republican senators who were most likely to vote with 

Democrats (Collins, Snowe, Specter, and Smith) are evident. This visualization sug-

gests that in this particular Senate, although both parties were partisan, Republicans 

were less so than Democrats. 
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Figure 10-5.  This visualization shows the voting patterns of U. S. senators during 2007. The red 
Republicans are on the right and the blue Democrats are on the left, with two Independents. 
Links indicate the similarity of voting records, revealing that Democrats had stronger party 
loyalty during 2007. Four Republican senators from Northeastern states often voted with 
Democrats. McCain and Brownback were campaigning for the presidency and did not vote often 
enough to be connected.

Another unexpected revelation was that the Democrats appeared to stay more tightly 

unified than the Republicans as the threshold increased, as evidenced by the much 

denser and darker connections on the Democrat side. Each edge is slightly trans-

parent, but the constant overlapping of Democrats yields a dark mass, whereas the 

Republican side is much sparser. Wilson believed this interaction beautifully illustrated 

the Democratic caucus’s success in keeping members in line, an important fact when 

reviewing legislative tactics. The integration of statistics and visualization made this 

discovery possible.

To determine the voting patterns of individual politicians, Wilson used SocialAction’s 

statistical importance metrics. The capability to rank all nodes, visualize the outcome 

of the ranking, and filter out the unimportant nodes led to many discoveries. Wilson 

stated, for instance, that the betweenness centrality statistic turned out to be “a wonder-

ful way to quantitatively measure the centers of gravity in the Senate.” SocialAction 

made it evident that only a few senators centrally link their colleagues to one another. 

Wilson was also able to use the interactive clustering algorithms of SocialAction to 

“uncover geographic alliances among Democrats.” These findings are just a sample of 

the sorts of insights that had eluded Wilson prior to his analysis with SocialAction.

Wilson was impressed with the discoveries that SocialAction helped reveal. The tight inte-

gration of statistics and visualization allowed him to uncover findings and communicate 

them to his peers both at the US News & World Report and on Capitol Hill. SocialAction 

received so much attention internally that the magazine hopes to replicate some of its 

functionality for its online readers. Since completing the case study Wilson has moved to 

Slate magazine, but he still uses SocialAction for investigative reporting. Analysis using 
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SocialAction has already led to an interactive feature analyzing the social networks of 

steroids users in Major League Baseball (http://www.slate.com/id/2180392), and more sto-

ries are planned for the future.

The Social Network of Terrorists
The National Consortium for the Study of Terrorism and Responses to Terror (START) 

is a U.S. Department of Homeland Security Center of Excellence. START has a world-

wide research team that “aims to provide timely guidance on how to disrupt terrorist 

networks, reduce the incidence of terrorism, and enhance the resilience of U.S. society 

in the face of the terrorist threat.” One member of this team is James Hendrickson, 

a criminologist PhD candidate who is interested in analyzing the social networks of 

“Global Jihad.”

Previous research has pointed to the importance of radicalization informing and sus-

taining terrorist organizations. While the radicalization process has been well described 

from a psychological standpoint, Hendrickson believes theories regarding the group 

dynamics of terrorism have largely failed to properly measure the size, scope, and 

other dynamics of group relations. He proposes to systematically compare the density 

and type of relationships held by members of Global Jihad to evaluate their predictive 

ability in determining involvement in terrorist attacks. Marc Sageman, a visiting fellow 

at START, assembled a database of over 350 terrorists involved in jihad when research-

ing his bestselling book, Understanding Terror Networks (University of Pennsylvania 

Press). Hendrickson plans to update and formally apply social network analysis to this 

data as a part of his PhD dissertation.

The Sageman database has over 30 variables for each suspected terrorist. Among these 

variables are different types of relationships, including friends, family members, and 

educational ties. Hendrickson hypothesized that the types of relationships connect-

ing two individuals will hugely affect their participation in terrorist attacks. He began 

his analysis using UCINET and was able to analyze some of his hypotheses. However, 

he believed UCINET did not facilitate exploring and generating new hypotheses. 

Hendrickson initially was skeptical of using visualizations for his analysis. He pre-

ferred being able to prove statistical significance quantitatively rather than relying on 

a human’s judgment of an image. However, he says the quick access to the statistical 

counterparts of SocialAction’s visualizations eased his concerns. 

In particular, SocialAction’s multiplexity feature aided Hendrickson’s exploration. 

SocialAction allows users to analyze different relationship types without forcing users 

to load new datasets. The visualization shows the selected relationship edges, but 

keeps node positions stable in order to aid comprehension. The statistical results are 

also automatically recomputed based on the newly selected structure. For instance, 

only the “Friend” relationships among jihadists are selected in Figure 10-6(a). 

(Compare this to the denser Figure 10-3(a), which shows all relationship types.) The 

nodes here are ranked by degree, so red nodes have the most friends. Jihadists Osama 

http://www.slate.com/id/2180392
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Bin Laden and Mohamed Atta (known for his role in the 9/11 attacks) are ranked the 

highest. However, when the religious ties are invoked, a different set of key jihadists 

emerges; see Figure 10-6(b).

A

B

Figure 10-6.  The multiplexity of the “Global Jihad” social network is demonstrated. The upper 
visualization (a) shows the Friendship network, with bin Laden the most popular individual. 
The bottom network (b), showing religious ties, offers a much different view of the terrorist 
organization.
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After analyzing the statistical attributes of nodes, Hendrickson became interested in 

understanding the individuals’ attributes. For example, he was interested in answer-

ing questions like, “Does an individual’s socioeconomic status or education level 

impact his position in the terrorist network?” Of course, social network data does 

not allow users to infer causation, but it may show correlation. Like statistical rank-

ings in SocialAction, users can rank and filter based upon attributes. Hendrickson fil-

tered out individuals without college degrees, religious backgrounds, or engineering 

expertise, and analyzed the results. The combination of nodal attributes with statisti-

cal filtering and plotting streamlined his accustomed workflow, and he commented 

that he might not have been as free in his thinking if it weren’t for the ease of explo-

ration in SocialAction. This analysis inspired Hendrickson to think of new, not-yet-

coded attributes to test additional hypotheses. He is currently augmenting Sageman’s 

database with new attributes so he can look for patterns in SocialAction, visually and 

statistically. 

Hendrickson’s experience with SocialAction has led to new inspiration for his disserta-

tion thesis. Although he had access to the dataset long before the case study began and 

had conducted analyses with other SNA software, the integration of statistics and visu-

alization in SocialAction allowed exploration in new, interesting ways. As a result, the 

START center is interested in making SocialAction the default network analysis tool for 

internal and external users who wish to access its databases. 

One other use of SocialAction by the START center was to look at networks that 

evolve over time. In their global terrorism network, nodes can be connected based on 

whether two people committed a terrorist attack in the same area, or used the same 

weapons, or came from the same region. Edges can also have temporal characteristics; 

for example, an edge could represent an attack in a certain year. The types of edges 

used depend on what types of questions the analyst is trying to answer. In tandem 

with a network diagram, users can see a stacked histogram, as in Figure 10-7. Each 

node is represented as a line and each column represents an edge type. The node’s 

thickness in each column represents the node’s ranking in the network of that edge 

type. The color is based on the node’s overall ranking across all edge types.  

In Figure 10-7, two stacked histograms are shown that demonstrate the evolution of a 

terrorist network over time. This particular network had two types of nodes: terrorist 

groups and the countries in which they had committed attacks. The country nodes are 

alphabetized and stacked in Figure 10-7(a), whereas all the terrorist groups appear in 

Figure 10-7(b). The thickness of the node at each year is based on the node’s degree in 

the network. Nodes are colored based on their degree (red implies high degree, green 

implies low degree) and are labeled in their peak years (there is a clear peak of attacks 

in 1992). Various trends can be interpreted from this image, such as that Italy had 

many different groups attacking in the earlier years, whereas India had peak activity in 

the later years.
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Since there are many more terrorist groups than countries, Figure 10-7(b) is a bit more 

difficult to interpret. However, these visualizations are interactive, and users can filter 

them according to name. So, if an analyst typed the word “Armenia,” only the nodes 

with terrorist groups whose names contain the word Armenia (such as the Armenian 

Secret Army for the Liberation of Armenia, and Justice Commandos for the Armenian 

Genocide) would be shown.

A

B

Figure 10-7.  Stacked histograms highlight the temporal trends of two evolving networks. The 
upper visualization (a) displays the evolution of the country nodes, whereas (b) displays the 
evolution of the terrorist group nodes.
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In 2007, the temporal visualizations shown in Figure 10-7 were on display at the New 

York Hall of Science as a part of the Competition on Visualizing Network Dynamics 

(http://vw.indiana.edu/07netsci/). I’ll end this chapter with a quote by one of the judges 

that emphasizes some of the goals of SocialAction and perhaps the essence of creating 

beautiful visualizations:

Networks are best read if they are not only “technically accurate” and visually attrac-
tive but when they employ a type of rendering that creates a landscape. That creates a 
bridge for the uninitiated audience to cross into the field of expertise. Dataland travels 
have now become so enjoyable, they may soon appear as special fare destinations at 
a travel agency near you. Perer’s visuals make that trip into the land of terror networks 
absurdly attractive. Having intellectual entertainment and visual pleasure with terrorism 
analysis is perhaps one way to diffuse the very essence of terror—by analyzing it with-
out being terrified. And in the end it leads to a hopefully more rational dealing with it, 
which is the opposite of what terrorism is trying to instill.

—Ingo Günther, 

Tokyo National University for Fine Arts & Music, Japan
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C h a p t e r  El  e v e n

Beautiful History: 
Visualizing Wikipedia

Martin Wattenberg and Fernanda Viégas

In the early years of Wikipedia, �we created several visualizations to illuminate 

the workings of the online encyclopedia. This chapter will take you through our pro-

cess, from initial sketches to working programs to scientific papers. The messages to 

take away are the importance of working with real data at all steps; the benefits of 

starting with rough, preliminary visualizations; and finally, that visualization is just 

one piece of a larger analysis. The story also illustrates the intuitions that can guide a 

successful visualization project, from sensing when an area could benefit from visual-

ization to determining when a visualization might be “done.”

Depicting Group Editing
Our story begins in 2003. The two of us were working at IBM’s Collaborative User 

Experience Research Lab, which studies how people work together online. We saw 

that new forms of collaboration were taking place on the Internet and wanted to 

investigate them. There were many to choose from—this was the time that “Web 2.0” 

was just beginning to take off—but Wikipedia particularly fascinated us.

In 2003, just two years after the online encyclopedia’s birth, the site was still not well 

known, and among those aware of it there was serious skepticism about its open 

authorship model. We felt some of this skepticism ourselves, yet many of the articles 

were interesting and helpful. What was going on? How was such a haphazard pro-

cess yielding a quality product? Aside from raw curiosity, such a feeling of puzzle-

ment is often a sign of a fertile research area. We decided to investigate. How did the 
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articles on Wikipedia achieve such a high level of quality? Why didn’t we see the 

level of craziness, silliness, and juvenile behavior that touched so many other online 

communities? 

The Data
To answer these questions, we needed to know more. The first step (as in any of our 

visualization projects) was to find raw data. In the case of Wikipedia, the data wasn’t a 

table of numbers in a database, but a set of document versions and edit histories. One 

of the initial brilliant decisions by Wikipedia’s founders was to keep a full version his-

tory of every page available to the public. As we eventually learned, this has critical 

implications for the resilience of Wikipedia—but as we started the investigation, our 

main feeling was delight that the data was available.

That feeling of delight soon was mingled with a slight dizziness. Sifting through so 

much data by hand became confusing. Our database contained an embarrassment of 

riches, so it was time to bring in visualization technology. 

To a casual reader, Wikipedia is just a big collection of articles, much like a traditional 

encyclopedia. But under the surface, the structure is complex. As most people now 

know, on each page is a link that lets readers edit the article. Less widely appreciated 

are two other links labeled discussion and history. The former goes to a talk page where 

readers and editors can discuss an article. These pages, which hold everything from 

arguments about page content to requests for homework help, represent the “non-

content” pages of Wikipedia. Of immediate interest to us, however, was the link to a 

page’s edit history.

The edit history (see Figure 11-1) contains a list of links to the full edit text of all pre-

vious versions, along with data on the edit’s author, the time at which it was made, 

and a comment. The comment is optional—a chance for the author to explain the pur-

pose of the edit—but the time and author are automatically logged. When an editor is 

not signed into the system, that user’s IP address is recorded in place of a username. 

The edit histories were large in 2003 and are vast today. Of course, different numbers 

of edits were made in different articles. When we did our initial scrape, the article on 

“Microsoft” had 198 versions (for a total of 6.3 megabytes of text) while the article on 

“Cat” had only 54 versions. We began by writing a program to download the histories 

directly from the site. However, we soon realized this was poor etiquette since it puts a 

strain on the Wikipedia servers, and instead used a single large file kindly provided by 

Wikipedia for free. If you’d like to play with visualizing any of this data, the best way 

is to download the latest version of this snapshot yourself.*

*	See http://en.wikipedia.org/wiki/Wikipedia:Snapshots.

http://en.wikipedia.org/wiki/Wikipedia:Snapshots
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Figure 11-1.  Discussion page for “Chocolate” on Wikipedia: the page lists every change made 
to the article, including who made the edit, when it was done, etc. 

History Flow: Visualizing Edit Histories
Wikipedia can display diffs between pairs of versions, highlighting added and deleted 

words, but we wanted to be able to see an overview of all the article edits that had 

been made over time. To this end, we set out to create a new visualization technique 

that we called history flow. 

Even with our data in hand, we couldn’t jump to writing graphics code. We needed to 

be able to compute the diffs between successive articles ourselves. Determining where 

and how two files differ seems like a routine operation, used in consumer programs 

like Microsoft Word as well as in developer tools such as version control software. Yet 

it is subtler than it appears, and despite (or perhaps because of) the fact that this prob-

lem has been studied for so long, it turns out there is no single best way to do this. 

The challenge is that there is not a unique way to describe the differences between 

texts. For instance, consider the following two sentences:

•	 The quick brown fox jumped over the big post. 

•	 The big brown fox jumped over the clay pots.

Most algorithms will tell you that the word “quick” has been deleted and the word 

“clay” has been inserted. But what about “big”? Was it inserted in one place and 

deleted in another, or simply moved from the end to the beginning? Similarly, was the 

word “post” removed and replaced by “pots,” or were the letters in “post” rearranged 

to make “pots”? 
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The different interpretations are all logically consistent, so the goal is to choose an 

algorithm that makes sense in a particular context. In our case, we decided that edi-

tors might well shift chunks of text—moving a word or sentence from one part of an 

article to another—but were unlikely to shift letters to anagram individual words. So, 

we chose an algorithm written by Paul Heckel that would let us track the movement 

of large passages, but that operated on word-size tokens as atomic units.* The output of 

the algorithm was a set of correspondences between two sequences, of the form “word 

#5 in File A corresponds to word #127 in File B.”

Heckel’s algorithm is straightforward to implement, and we soon had everything in 

place to begin our analysis. For every article, we had the text of each version, along 

with a set of “correspondences” between the versions. But how to display this? To start 

with, since this is time-based data, it made sense to use the x-axis for the sequence, 

with the first version on the left, the second to its right, and so on. This fit with the 

way we viewed the history of an article, as a “river” with different “currents” for each 

section of the document. Initially we used the x-axis for sequence information alone, 

with an identical number of pixels between each version’s position; later we added an 

option to space the versions by date of edit, so that versions that occurred close in time 

were also close in space. Both ways of viewing the data turned out to be important 

later.

Next, we needed to encode the document positions and correspondences between pas-

sages. We decided to draw versions as vertical lines whose lengths corresponded to the 

lengths of each version. In effect, the y-axis encoded the document position within 

each version. Once we made this decision, it was easy to see how to depict correspon-

dences by drawing lines directly from one version to the next to show matches, much 

as in Figure 11-2 (an example of the kind of hand-drawn sketch we made on a white-

board before starting to code).

Our first computed version looked roughly like Figure 11-3, which shows the page for 

“Abortion” as of 2003. It’s crude and a little confusing, but there is a clear structure 

and even some features that made us wonder if there was a bug in our code. You’ll 

notice a striking gap at version 4, for instance. We checked the data by hand, and this 

was not an error: we were looking at a version where a malicious user had erased 

most of the article. Aha! The visualization had already drawn our attention to a critical 

episode in the article’s history. 

*	For the technically minded, the algorithm works by first finding unambiguous matches between 
tokens found only once in each sequence, and then extending those matches to larger contiguous 
chunks.
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Figure 11-2.  Schematic of history flow’s visualization mechanism

Figure 11-3.  An early version of history flow, with simple lines connecting pieces of text that 
survive intact over consecutive versions
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Because going back to the original source by hand had been cumbersome, we quickly 

added the ability to see the original text of each version in a panel at the right. This is 

typical in visualization development: after getting a prototype visual overview in place, 

it’s often a good idea to make a way to see details. Not only is this a feature that users 

always want, but it provides an essential way to check the correctness of the overview.

The skeletal visualization was still difficult to read, so we decided to “fill in” the 

correspondences—i.e., to fill in the interior of each pair of parallel lines. Figure 11-4 

shows the result. 

Figure 11-4.  History flow diagram showing text age on the “Chocolate” article in Wikipedia: 
darker patches represent older passages

The resulting pictures were easier to read and seemed less complex. In fact, we now 

felt that we had a natural way to show another variable, through the color of the poly-

gons connecting corresponding passages. 
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Age of Edit
We were curious whether edits that remained on the site for a long time were of bet-

ter quality than edits with a short history, or whether they could be distinguished in 

any other way. Age is a simple numeric variable, and it made sense to portray it using 

grayscale, as in Figure 11-4. This was the first coloration effect we added, and it had 

two benefits: not only did it convey the dimension of age, but the varying shades of 

gray actually made the overall shape of the diagram more legible. This is a counter-

intuitive but common phenomenon in visualizations: adding extra information can 

actually help clarify the reading of a complex diagram. 

Authorship
Our real goal, however, was to see the human dynamics behind group editing. For 

this, we needed to portray authorship. We had the necessary data, since each edit 

came with authorship information (a username for logged-in editors, or an IP address 

for anonymous contributors). How should we assign colors to individual editors? We 

wanted a wide range of colors, so that different contributors would be distinguishable, 

and we wanted any given contributor to have the same color across different pages. At 

the same time, we wanted to distinguish anonymous from logged-in contributors.* 

We settled on an unusual choice of encoding in which our software chose random 

bright, saturated colors for each user. These weren’t genuinely random, but were 

based on the Java “hashcode” of an author’s name. This technique ensured that the 

colors were consistent across diagrams, and that there was the widest possible range of 

variation. For anonymous editors, we chose a light shade of gray.

The overall effect was visually dramatic (see Figure 11-5). At a quick glance, a viewer 

could tell immediately the difference between a page with many anonymous editors (a 

sea of gray) and a page edited entirely or primarily by logged-in users (fully in color). 

It was also easy to see when a few editors had dominated the writing of an article. To 

link author names to their colors, we added a legend at the left of the screen.

*	Assigning anonymous users distinct colors based on their IP addresses seemed possibly deceptive, 
since there is no clear correlation between addresses and actual users. Different people logging in 
through a corporate network at different times may have the same IP address; conversely, it’s not 
uncommon for the same person to edit from different IP addresses.
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Figure 11-5.  History flow in color: each color represents text from a given author

Individual Authors
Next, we wanted to make it easier to see just the contributions of individual authors. 

To this end, we made the author legend clickable: selecting an author recolored the 

diagram so that the selected author’s contributions were highlighted in a bright cream 

color, while the other areas of the diagram became much darker (see Figure 11-6). We 

tried several variations before settling on this scheme. The alternative of keeping the 

selected author’s color bright and simply fading the other authors didn’t always make 

the selection stand out, while using white for the selected author became confusing 

since shades of gray represent anonymous editors in the main view.



183chapter 11: beautiful history: visualizing wikipedia

Figure 11-6.  Diagram showing, in cream, the contributions from a single author over time

We added a few other small features and encodings after this, but the truth is that 

development slowed because our program had become fun to play with.* In fact, it was 

possibly too much fun! Instead of coding, we both spent time looking at article after 

article, fascinated by the variety of patterns. This is a always a good sign in visualiza-

tion development, and it was reinforced by the fact that people passing by our desks 

ended up stopping for long conversations, drawn in by the pictures on our screens.

Our visualization allowed us to quickly get a sense of the group of editors involved in 

each article, the kinds of changes each person made, and even the eventual disagree-

ments on how to proceed. Rather than fight the urge to visualize an endless number 

of articles, we decided that the visualization technique was, at least for the moment, 

done. Clearly, it satisfied our initial goal of pointing to patterns of collaboration that 

seemed to warrant investigation. Next, we turned our attention to using it to obtain 

scientific results.

*	There still were plenty of alternatives we had not explored. We saw a glimpse of one such parallel 
visualization universe when Ben Fry independently created a version history diagram, revisionist, 
to show the evolution of the Processing environment. Instead of adding color and interactivity, he 
worked with the overall shape, using elegant curves and varying the placement of documents on 
the y-axis to make it easy to follow changes over time. 
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History Flow in Action
As we examined articles, we began in exploratory mode. As we looked at diagram 

after diagram, we slowly began to get a sense of what was normal and what was 

strange. We also began to see several distinct classes of behavior, such as “edit wars” in 

which authors repeatedly reverted one another’s changes, showing up in the visualiza-

tion as striking zigzags. More importantly, we began to follow up on some of the leads 

that the pictures showed us. 

A good example of how we pursued a visual lead and moved from qualitative to quan-

titative research was our investigation of often-vandalized articles such as “Abortion.” 

It became clear from the pictures that the vandalism often remained on the site for 

only a few minutes. When we looked at a history flow diagram in which the versions 

were equally spaced (Figure 11-7), we saw characteristic black gashes indicating mali-

cious deletions; when we spaced the versions by date of edit, these often disappeared 

(Figure 11-8).

Figure 11-7.  Editing history for “Abortion” showing versions equally spaced—black gutters 
represent “mass deletions,” an act of vandalism whereby a user deletes all content in a given 
article
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Figure 11-8.  Editing history for “Abortion” showing versions spaced by time

Even seeing this pattern many times, however, did not constitute scientific evidence. 

Perhaps the articles that came to mind happened to be particularly controversial or 

well policed. To show that vandalism and its quick repair were truly widespread, we 

would need to take into account many more pages. To do so, we performed a scan of 

the entire database of Wikipedia edits. With the help of our colleague Kushal Dave, we 

created a set of criteria that identified particularly egregious vandalism* and wrote a 

program to examine all the edits that met these criteria. It turned out that the major-

ity of these edits were reverted within minutes, indicating that Wikipedia editors were 

monitoring the changes closely. 

*	We looked for cases where article length dropped dramatically, as well as for the presence of ob-
scenities on the page. This certainly did not identify all vandalism, but the edits it picked out were 
indeed largely malicious.
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Communicating the Results
The statistical confirmation of our subjective impressions was the final piece of the 

puzzle, and provided a satisfying resolution to our initial question about Wikipedia. 

The reason we didn’t see evidence of destructive behavior wasn’t that this behavior 

didn’t exist, but that it tended to be erased quickly from public view. We wrote up our 

results and submitted a scientific paper, but we did not stop there.

In addition to helping the scientific case for our argument, there was something about 

having a few specific numbers that made it easy to explain our results. The visualiza-

tions, in turn, gave the numbers credibility by adding depth and detail. We found that 

there was a great deal of interest in our results outside the academic world. Those 

unfamiliar with the inner workings of Wikipedia were quickly drawn to the magic and 

drama of editing an online, public encyclopedia. Scholars, on the other hand, cogni-

zant of the open source style of editing, marveled at the clarity of the images and the 

wealth of information being presented at once. History flow proved the value of visu-

alizing online communities for both cultural curiosity and scientific research.

Chromogram: Visualizing One Person at a Time
In 2006, we revisited Wikipedia. The encyclopedia was thriving, and we wanted to 

find out more about the people involved—especially the small core of active users who 

contributed many edits. What were their strategies for allocating time and energy? We 

were particularly interested in whether the data matched Yochai Benkler’s model of 

“peer production,” which unified activities ranging from Wikipedia to the creation of 

Linux.

Working with a talented intern, Kate Hollenbach, we decided to analyze the edit histo-

ries of the site administrators (“admins”), superusers with special privileges such as the 

ability to block other users and delete pages. Admins typically have long edit histories 

on the site and represent a committed core of the Wikipedia community. 

Our first attempts to understand this data led to the creation of a series of charts and 

graphs showing activity levels over time. Creating charts of activity in itself is straight-

forward. The standard way to display this data is a line chart with time on the x-axis 

and number of edits on the y-axis. We worked with a series of such charts that were 

clear but, we felt, uninformative. Unlike the history flow diagrams, we did not see 

unexpected patterns or obvious leads for future investigation. 

One problem seemed to be that simple graphs summarized too much of the data; by 

compressing tens of thousands of edits into a single numeric time series, we ended up 

removing important information. We were facing a classic decision in a visualization 

project: as we traveled through the data, how close to the ground should we fly? There 

was no way to know a priori whether there were interesting small-scale patterns. But 

since we were not seeing anything of use from 30,000 feet in the air, our only choice 

was to look more closely.
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Showing All the Data
To get closer to the “ground,” we decided to look at the individual pages each editor 

touched. Editing Wikipedia is a repetitive, complex business, and we felt our visualiza-

tion needed to reflect that. The challenge was that some admins had contributed more 

than 100,000 edits! (The most active user performed an average of one edit every 10 

minutes over the course of two years.) Few visualization techniques can display that 

number of data points as an understandable picture.

One technique, however, excels at rendering vast datasets. A family of methods 

known in the academic literature as pixel-filling visualizations represent each data point 

as either a single pixel or, at most, a very small rectangle. Pixel-filling visualizations 

pack information on the screen to its maximum capacity, and their very density can 

often lead to an ethereal beauty. Indeed, artist Jason Salavon’s beautiful work on dis-

playing an entire movie as a set of pixels is what inspired us to explore them further.*

We applied this technique by representing each edit in an admin’s history as a small 

rectangle on the screen. We arranged these rectangles in a block, reading from left 

to right and top to bottom over time. Then, since spatial position showed sequence 

information, we had only one variable left to play with: color. This is true, essentially by 

definition, for all pixel-filling visualizations. Usually, color is defined by a gradient that 

represents a numeric dimension. Our challenge was that the most important variables—

article titles and editor comments—were raw text.

To convert these pieces of text to color, it seemed natural to try the same hashcode 

technique we had used in history flow. When we applied it, we did begin to see pat-

terns: histories in which an editor tackled the same page many times in a row showed 

up as long bars of color, while in other cases we could see no repetition at all, indicat-

ing editors who tended to float between pages, applying a single change to each and 

leaving for good.Although we were now seeing more detail than before, we con-

tinued to feel that useful information was hidden. For one thing, the names of the 

articles had structure not captured by the hashcode trick. Often, related articles began 

with the same phrase (e.g., “List of” or “USS”). We realized that this structure would 

be preserved by an alphabetical color scheme in which the first letters of each string 

determined the color. Figure 11-9 provides an explanation of the color scheme, while 

Figure 11-10 shows how a diagram is constructed.

*	In 2000, Salavon portrayed the movie Titanic as a print named “The Top Grossing Film of All Time, 
1 × 1.” Each frame of the movie was shown as a single dot, whose color was the average of all 
colors in the frame.
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Figure 11-9.  Example colors given to typical words found in Wikipedia edit comments

Figure 11-10.  Construction of a Chromogram visualizing user comments per edit

What We Saw
Once we applied this new color scheme, the pictures snapped into focus. Although 

the edit histories remained complex and required some squinting, we saw many more 

types of patterns. The next few images give a sense of what we were looking at.

Figure 11-11 shows an article-title edit history made up of two main colors. These turn 

out to correspond to the words “births” and “deaths.” A typical title is “Births in 1893.” 

What this editor is doing is adding information about the births and deaths of notable 

people to different year pages.
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Figure 11-11.  Edits to “birth” and “death” articles

Some editors found a subject they liked and stuck to it. Figure 11-12 is a sea of purple, 

a color corresponding to the prefix “USS,” or “United States Ship.” This editor was 

working on pages describing specific vessels in the United States Navy.

Figure 11-12.  More than 1,000 edits, mostly to articles whose titles begin with “USS”

After looking through several of these diagrams, we had become accustomed to dense 

and random-seeming arrays of colors, occasionally interrupted by runs of identical 

hues. So we were taken aback when we saw Figure 11-13, with several regions where 

the colors form a kind of rainbow. 

Figure 11-13.  Rainbows

This visually striking pattern represents sequences of article titles arranged in alphabet-

ical order. While a short alphabetical run could occur by chance, we saw many, some 

quite long. This was a perfect example of a lead worth investigating. Why did it hap-

pen, and what were the effects on Wikipedia?
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Some rainbows were subtle. Others were like Figure 11-14. Who could perform such a 

methodical series of edits? When we checked the user page, we realized that this was 

the work of a “bot”: a software program that was designed to execute automated edits. 

In this case, the edits included a massive set of routine categorizations of articles on 

geographic locations. 

Figure 11-14.  A “bot”

Analyzing the Data
As with history flow, we decided to verify some of our visual impressions through 

statistics—for example, the issue of the rainbows representing alphabetically 

sequenced edits. First, we wrote a program that identified these sequences and cal-

culated their probability of occurring by chance, verifying that this was no random 

accident. We then went a step further. If many users edit in alphabetical order, might 

that mean that articles whose titles begin with a letter occurring early in the alphabet 

receive more attention? It seemed likely that some editors would optimistically begin 

long projects of editing many pages, only to give up halfway through. After collecting 

the data to test this hypothesis, we found an inverse correlation between alphabeti-

cal position of article title and number of edits, confirming our intuition that articles 

whose titles start with “a” are edited more frequently than those whose titles start 

with “z.” The relationship wasn’t perfect—for instance, the letter L had the most article 

edits, due to the number of lists it included—but it was strong enough to count as sta-

tistically significant.

The rainbows led us to look more closely at how editors used lists to organize their 

own work as well as the work of others. This phenomenon fit well with Benkler’s 

model of peer production, in which work is divided into small units and people allo-

cate their own time. The visualization had led us to a satisfying resolution of our initial 

research question. 
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Conclusion
As our story shows, creating a visualization can entail a path of false starts and dead 

ends. But while the path is winding, it’s not a random walk. Both of our examples 

follow a consistent process, which we’ve refined through dozens of past visualiza-

tions. Here are three maxims we have found to be essential in all of our visualization 

projects:

Work with real data

Getting good data is often difficult and annoying. Whether you’re negotiating 

a legal contract for access to a database or writing a program to scrape informa-

tion from the Web, acquiring the raw material for visualizations is hard. Perhaps 

for that reason, many people try to multitask, designing visualizations even while 

they are still working on acquiring data. In our experience, that’s almost always 

a mistake. In the Chromogram project, for instance, it was only after looking at 

sets of related article titles that we realized an alphabetical coloring scheme might 

make sense. 

Visualize early and often—but know when to say when

As with other types of software development, working iteratively is impor-

tant. Each of our projects began with a series of sketches. For history flow, these 

sketches eventually grew to become the final visualizations. For Chromogram, we 

threw the sketches away and took a look at the data from a different perspective. 

In each case, we adjusted the level of detail (i.e., the amount of “granularity”). 

With history flow, adding author colors and edit-age indications snapped our dia-

grams into focus. For Chromogram, we saw nothing useful until we showed the 

data at the finest level possible. The iteration did not last forever, though, because 

we paid attention to signs that we were done. Both history flow and Chromogram 

could have been polished much further, but each reached a stage where we felt 

like we were seeing what we had come to see.

Be aware of the larger process

Visualization is just one step in a larger chain of analysis. The chain begins with a 

question (why does Wikipedia work?) or a vague area of inquiry (how do those 

Wikipedia editors do it?) and ends with analysis, documentation, and presentation 

of results. A good visualization respects the links in the chain, encoding the right 

information to drive the initial inquiry and maintaining the right perspective to 

help lead later analysis and communicate the results.
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Turning a Table into a Tree: 
Growing Parallel Sets into a 

Purposeful Project
Robert Kosara

Academic software projects tend to grow organically �from an initial idea 

into something complex and unwieldy that is novel enough to publish a paper about. 

Features often get added at the last minute so they can be included in the paper, with-

out much thought about how to integrate them well or how to adapt the program’s 

underlying architecture to make them fit.

The result is that many of these programs are hacked together, buggy, and frankly 

embarrassing. Consequently, they do not get released together with the paper, which 

leads to a fundamental problem in visualization: reproducibility is possible in theory, 

but in practice rarely happens. Many programs and new techniques are also built from 

scratch rather than based on existing ones.

The optimal model would be to release the software right away, then come back to it 

later to refine and rearchitect it so that it reflects the overall design goals of the project. 

This is seldom done, though, because there is no academic value in a reimplementa-

tion (or thorough refactoring). Instead, people move on to the next project.

The original prototype implementation of Parallel Sets (http://eagereyes.org/parallel-sets) 

was no different, but we decided that in order to get the idea out of academia into actual 

use, we would need a working program. So we set out to rethink and redesign it, based 

on a better understanding of the necessary internal structures that we had gained over 

time. In the process, we not only re-engineered the program, but also revised its gen-

erated visualization to clarify its underlying idea.

http://eagereyes.org/parallel-sets
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Categorical Data
Hundreds of visualization techniques are described in the literature (with more added 

every year), but only a few specifically work with categorical data. Such data consists 

of only a few values that have special meanings (as opposed to continuous numerical 

data, where the numbers stand for themselves). Examples include typical census data, 

like values for sex (male or female), ethnicity, type of building, heating fuel used, etc. 

In fact, categorical data is crucial for many real-world analysis tasks. The data we origi-

nally designed our technique for was a massive customer survey consisting of 99 multi-

ple-choice questions with almost 100,000 respondents. People were asked questions 

about consumer goods, like detergents and other household items, as well as demo-

graphic questions about household income, number of kids, ages of kids, etc. Even in 

cases where it would have been possible to gather precise information (like age), the 

survey combined the values into groups that would be useful for later analysis. That 

made all the dimensions strictly categorical, and almost impossible to visualize using 

traditional means.

The dataset we will use to illustrate Parallel Sets in this chapter describes the people on 

board the Titanic. As shown in Table 12-1, we know each passenger’s travel class (first, 

second, or third passenger class, or crew), sex, age (adult or child), and whether they 

survived or not.

Table 12-1.  The Titanic dataset

Dimension Values

Class First, Second, Third, Crew

Sex Female, Male

Age Child, Adult

Survived Yes, No

There are really only three visualization techniques that work particularly well for cat-

egorical data: treemaps (Shneiderman 2001), mosaic plots (Theus 2002), and Parallel 

Sets. The reason for this is that there is a mismatch between the discrete domain of 

the data and the continuous domain of most visual variables (position, length, etc.). 

Treating categorical data as if it were numerical is acceptable when all but a few 

dimensions are continuous, but becomes entirely useless when all of them are categorical 

(Figure 12-1). While the natural distribution of data in most numerical datasets makes it 

possible to glean the rough distribution of at least the number of values, this becomes 

entirely impossible when there are only a few different values that are exactly the 

same between data points.
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Figure 12-1.  Using classical visualization techniques for categorical data: Scatterplot (left) and 
Parallel Coordinates (right) lead to massive overplotting and do not provide much information 
even when tricks (such as jittering the data points) are used

Parallel Sets
Parallel Sets, or ParSets (Bendix 2005, Kosara 2006), is a visualization technique that 

was designed specifically for interpreting categorical data. When talking to the experts 

analyzing the customer survey data, we realized that most of the questions they were 

asking were not based on individual survey responses, but on classes of answers, or 

sets and set intersections. How many people with more than three children under five 

years of age buy brand-name detergent? Or, put differently, how many members of 

Set A are also in Set B? How many first-class passengers on the Titanic survived (i.e., 

how many were in category first class on the class dimension, and in the yes category on 

survived)? How many of them were women (i.e., how many also had the value female 

in the sex dimension)? 

This approach means that instead of plotting thousands of individual points, we only 

need to show the possible sets and subsets that exist in the data, as well as their sizes. 

If the numbers and relative sizes of those sets stayed the same, we reasoned, we could 

even show that the technique was independent of the actual dataset size.

In addition to the idea of showing the data as sets, ParSets was heavily influenced 

by Parallel Coordinates (Inselberg 2009), a popular visualization technique for high-

dimensional numerical data. The parallel layout of axes makes them easier to read 

and compare than the nested structures of treemaps and mosaic plots, especially as the 

number of dimensions increases. It is also easier to design effective interactions for this 

kind of layout. 

The first version of Parallel Sets (see Figure 12-2) was based on the categories first, 

then on the intersections. For each axis, we showed each category as a box, with its 

size corresponding to the fraction of all the data points that each category represented. 

In terms of statistics, this is called the marginal distribution (or marginal probability). 

Each axis is essentially a bar chart, with the bars tipped over rather than standing next 

to each other.
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Figure 12-2.  The original Parallel Sets design

Reading just the bars in Figure 12-2, it is easy to see that the crew was the largest class 

of people on the Titanic, with the third class close behind. The first class was much 

smaller than the third class, but was actually larger than the second class. It is also 

quite obvious that there was a majority of men (almost 80%) on the ship, and that 

only roughly one-third of all people on board survived.

Ribbons connect categories that occur together, showing how often, for example, first class 

and female intersect, thus making it possible to tell what proportion of the passengers in 

first class were women. The ribbons are what makes Parallel Sets more than a bunch of 

bar charts: being able to see distributions on several axes at the same time allows the user 

to identify and compare patterns that would otherwise be difficult to spot.

In the case of the Titanic, there was clearly an uneven distribution of women among 

the different classes. While the first class was close to 50% female, the second and third 

classes had progressively larger majorities of men. The crew consisted of over 95% men.

While the ribbons are clearly useful, they also pose some challenges. They must be 

sorted and the wider ones drawn first, so that the smaller ones end up on top and are 

not hidden. Also, when there are many categories there tend to be a lot of ribbons, 

resulting in a very busy display that is difficult to read and interact with.

Interaction is an important aspect of ParSets. The user can mouse over the display to 

see actual numbers, and can reorder categories and dimensions and add dimensions to 
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(and remove them from) the display. There are also means of sorting categories on an 

axis by their size, as well as combining categories into larger ones (e.g., to add up all 

the passenger classes to better compare them with the crew).

Visual Redesign
One aspect of ParSets that required us to experiment quite a bit was the question of 

how to order the ribbons going from one axis to the next. We came up with two differ-

ent orderings that seemed to make good sense, which we called standard and bundled. 

Standard mode ordered ribbons only by the category on top, which led to a branching 

structure but resulted in a rather visually busy display when large numbers of dimen-

sions and categories were included. Bundled mode kept ribbons as parallel as possible 

by grouping them by both the top and bottom categories, which meant detaching parts 

of the ribbons from one another vertically.

It was only when we started to reimplement the technique a while later and were look-

ing for a good representation of the visual structures that we realized that we had been 

looking at a tree structure all along (and that standard mode was the way to go). The 

entire set of data points is the root node of the tree, and each axis subdivides it into the 

categories on that axis (Figure 12-3). The ribbons display the tree; the nodes just look 

different than expected because we collect them on each axis to form the bars.

Figure 12-3.  The tree structure in Parallel Sets: nodes on each level are collected into bars, and 
the ribbons are the connections between the nodes

We went ahead with our reimplementation without making any major changes to the 

visual display, but the idea of the tree stuck in my head. So one day, I asked myself: 

what if we reduced the bars and focused on the ribbons? And lo and behold, I was 

looking at a much clearer tree structure (Figure 12-4).
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Figure 12-4.  The new Parallel Sets design, showing the tree structure much more clearly

A simple change had shifted the focus from the category boxes to the ribbon tree. In 

the new design, the boxes still appear when the user mouses over the lines (to suggest 

to the user that she can interact with them), but they are only a means to an end. The 

key information we are interested in is really the decomposition into subsets.

In addition to improved structural clarity, the new design also makes much better use 

of typography to communicate the hierarchy of dimension and category labels and is 

much more pleasant to look at.

Looking at data in terms of aggregation and sets is not a new idea. Polaris (Stolte, Tang, 

and Hanrahan 2002) and, by extension, Tableau* were built on a similar idea: aggrega-

tion of individual values and decomposition into subsets. The use of treemaps for non-

hierarchical data (which is what treemaps are mostly used for today) is based on the 

same transformation. Creating a tree of subsets from the data enables one to use any 

hierarchy visualization to show that data. The treemap, with its emphasis on node size 

rather than tree structure, is a natural choice for this.

The initial design change required only a few small changes in the program, but it was 

clear from this point on (and from the rather lackluster performance of our reimple-

mentation) that the perceived need for a visual change had just been a symptom of a 

fundamental design issue with the program’s data model.

*	See http://www.tableausoftware.com.

http://www.tableausoftware.com
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A New Data Model
In the original program, the data had been stored the way it came in: as one big table. 

We later added the ability to create additional dimensions from the data, but the prin-

ciple did not change. With every change to the display, the program had to work its 

way through the entire dataset and count the combinations of categories. With larger 

datasets, this became quite slow and required a lot of memory.

The big advantage of looking at data in terms of sets is that the individual data points 

are really of no interest; what counts are the subsets. So, the natural next step was to 

look at all possible aggregations of the data into sets, which could then be used to com-

pute any subsets the user was interested in.

In statistics, this is called a cross-tabulation or pivot table. In the case of two dimensions, 

the result is a table with the categories of one dimension becoming the columns, and 

the other becoming the rows (Figure 12-5).

Figure 12-5.   A cross-tabulation of the class and sex dimensions of the Titanic dataset

There are two kinds of numbers in this table: counts and percentages. Each cell contains 

the count of people for its combination of criteria at the top left, and the percentage 

that number is of the entire dataset at the lower right. That latter percentage is called 

the a priori percentage (or probability). What is generally of more interest, though, are 

the conditional percentages (or probabilities), which tell us the composition of the differ-

ent classes. In the top-right corner of each cell is the chance of finding the column’s 

criterion given that we know the row (e.g., how many of the passengers in first class 

were women); at the lower left is the percentage likelihood of finding the row crite-

rion given the column (e.g., what percent of women were in first class).
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Because the data is purely categorical, the cross-tabulation contains all the information 

about it and is all we need to store. If we wanted to recreate the original data from it, 

we could do that by simply generating as many rows with each combination of catego-

ries as are given by the cell. The only case where additional data is needed is when the 

dataset also contains numerical columns.

A cross-tabulation for more than two dimensions is a bit more involved, but follows 

basically the same principle. A high-dimensional array is constructed that has as many 

dimensions as the dataset, with each cell in the array holding the count of how often 

that combination of values occurred.

Unfortunately, the number of possible combinations gets rather large quite quickly, and 

is actually much larger than the number of rows in most datasets. In the case of the cen-

sus data, for example, taking only the dimensions owned or rented, building size, building 

type, year built, year moved in, number of rooms, heating fuel, property value, household/family 

type, and household language (out of over 100 dimensions) would result in 462,000,000 

combinations, while the 1% microdata census sample has only 1,236,883 values for 

the entire U.S.!

The key here is that in the high-dimensional case, most combinations never actually 

occur in the data. So, it makes sense to only count those that do and store only their 

information. This is done in our current implementation by simply using an array of 

integers to hold all the values for each row, and using that as the key for a hash table. 

In almost all cases, that hash table takes up less space than the original data.

The Database Model
The database is essentially a direct mapping of the hash table that contains the counts 

for each combination of categories. Each dataset is stored in a separate table, with a 

column for each dimension in the dataset. Each row contains the values for the cat-

egories that describe the cell in the cross-tabulation, as well as the count of how often 

that combination occurs. There is an additional field, called the key, which is unique 

for each row and is used for joining the table when looking at numerical data.

Aggregating the data is done with a SQL query that simply selects the dimensions the 

user is interested in plus the total counts, and groups the results by those same dimen-

sions (Table 12-2):

select class, sex, survived, sum(count) from titanic_dims
group by class, sex, survived;

The database thus aggregates the counts and returns a lower-dimensional cross-tabulation 

containing only the values needed for the visualization.
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Table 12-2.  The result of querying the Titanic dataset to include only the dimensions class, sex, 
and survived

Class Sex Survived Count

First Male Yes 62

First Male No 118

First Female Yes 141

First Female No 4

Second Male Yes 25

Second Male No 154

Second Female Yes 93

Second Female No 13

Third Male Yes 88

Third Male No 422

Third Female Yes 90

Third Female No 106

Crew Male Yes 192

Crew Male No 670

Crew Female Yes 20

Crew Female No 3

This model is very similar in principle to data warehousing and Online Analytical 

Processing (OLAP). Most databases have a special cube or rollup keyword to create an 

aggregation from a regular table. This has the advantage that no special processing 

is needed beforehand, but the disadvantage of being slower and requiring more disk 

space to store all the original values. Structuring the data specifically for fast read and 

aggregation performance (as is done in data warehouses and our database schema) 

considerably speeds up the most common operation at the expense of more processing 

being required when new data is added.

While the ParSets program does not currently show numerical dimensions, it does 

store them in the database. They are stored in a separate table, containing the key of 

the row the values correspond to and one column per numerical dimension. Instead 

of using the count, a simple join query can therefore be used to aggregate any numeri-

cal dimension by the cross-tabulation cells. Any standard SQL aggregation (sum, avg, 

min, max) can be used for this purpose. Eventually, the program will allow the user to 

select a numerical dimension to use to scale the bars and ribbons, and to also select the 

aggregation used.

The current version of Parallel Sets stores its data in a local SQLite database. SQLite is a 

very interesting open source database that operates on a single file. It is used in many 

embedded applications and is extremely resilient against data corruption (such devices 
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have to expect power failure at any moment). While it does not have all the features 

of commercial databases, it is small, fast, and does not require any setup. This makes it 

a perfect data store that has a query language as an added benefit.

Growing the Tree
The cross-tabulation that the database stores and that can be retrieved is only a part of 

the story, though. To show the user the Parallel Sets display, we need a tree. Whenever 

the user changes the dimensions or reorders them, the program queries the database 

to retrieve the new cross-tabulation. It then walks through the resulting data to build 

the tree. If you look closely, you can actually already see it in Table 12-2. Whenever 

the same value appears several times in the same column, we’re looking at the same 

node of the tree, and only the nodes to the right of it change, as shown in Table 12-3.

Table 12-3.  The tree structure inherent in the query result in Table 12-2

Class Sex Survived Count

First Male Yes 62

No 118

Female Yes 141

No 4

Second Male Yes 25

No 154

Female Yes 93

No 13

Third Male Yes 88

No 422

Female Yes 90

No 106

Crew Male Yes 192

No 670

Female Yes 20

No 3

All the program needs to do is go through the result set line by line and build the tree 

by following the existing nodes from left to right until it encounters a node that does 

not exist yet. That node is added and its count is taken from the database row.
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The database contains only the counts for the tree’s leaves, though, not its internal 

nodes (other databases, such as Oracle, have queries that also return internal nodes 

when performing cube queries). However, it is easy enough to calculate those by sim-

ply summing the values of each node’s child nodes recursively, from the leaves to the 

root node.

The counts themselves are also only the raw material of the fractions, which are cal-

culated in the same step once all counts for a node are known. To actually display 

the bars and ribbons, percentages are used: the a priori percentage of each category 

becomes the length of the bar, by using it as the fraction of the total width, and the 

conditional percentages (the lower category on a ribbon given the upper category) 

are used to determine the width of the ribbon as a fraction of the category bar length 

(Figure 12-6).

40.2%

21.4% 78.6%

97.4% of crew bar width
39.1% of total width

27.8% of third class bar width
8.9% of total width

14.8%
Marginal probabilities

Conditional probabilities

Marginal probabilities

12.9% 32.1%

Figure 12-6.  The width of each ribbon represents its marginal probability (proportional fraction) 
of the total data set, and also its conditional probability within each category

Parallel Sets in the Real World
Since the program was released in June 2009, it has been downloaded over 750 times 

(as of January 2010). We have heard from many users who have had success using 

it with their own data. We even won a prize at VisWeek 2010’s Discovery Exhibition 

(http://discoveryexhibition.org) for our entry talking about three case studies using the 

program. This was written together with Joe Mako (Mako Metrics), Jonathan Miles 

(Gloucestershire City Council, UK), and Kam Tin Seong (Singapore Management 

University).

http://discoveryexhibition.org
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Joe Mako’s use of the program was especially interesting, because he used it to show a 

kind of data flow through many processing stages. Putting the last stage on top meant 

that the ribbons were colored by final result, which let him easily see where prob-

lems occurred. There actually is a visualization technique that is visually (though not 

conceptually) similar to Parallel Sets that is used for flows, called a Sankey diagram. 

ParSets can emulate these diagrams for flows that move strictly in one direction and 

only split up (but never merge). Jonathan Miles and Kam Tin Seong’s uses were closer 

to the original aim of the program, providing interesting insights into survey results 

and bank customers, respectively. 

Conclusion
Academia values novelty, but there is clearly a case to be made for letting ideas 

develop over time, so they become clearer and more refined. The result is not just a 

better understanding of the issues and techniques, but better tools that are easier to 

understand and provide more insights to the user.

Redesigning Parallel Sets illustrated how visual representation and data representation 

(as well as database design) go hand in hand. Understanding the underlying model of 

our own technique led to a better visual design, which in turn led to a much-improved 

database and program model.
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The Design of “X by Y”
An Information-Aesthetic Exploration of the Ars Electronica Archives

Moritz Stefaner

This chapter presents the project “X by Y,” �a visualization of all entries to the 

Prix Ars Electronica, a well-known media art award, from 1987 to 2009. The final ver-

sion of the visualization consists of a series of large-scale prints, splitting up the sub-

missions according to different criteria. This chapter describes the process leading up to 

the final piece, and the rationale for specific design decisions. 

Briefing and Conceptual Directions
The Ludwig Boltzmann Institute for media.art.research contacted me in spring 2009 

to work on the submission databases for the Prix Ars Electronica. The media art fes-

tival Ars Electronica had its 30th anniversary that year, and together, we decided to 

take on the challenge of trying to visually analyze all the submissions to the Prix over 

its 22-year history. The databases containing the submission information had never 

before been analyzed in their entirety.

In the kickoff meeting for the project, we discussed our objectives. The creative lead of 

the whole visualization project, Dietmar Offenhuber, explained that different visual-

izations were to be developed in order to study three different angles on the festival’s 

history:

Quantitative analysis

What can we say about the festival by looking at the submissions over the years? 

How do the various categories differ, where do the submissions come from, and 

how do the values change over time?
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Social networks

Who were the jury members throughout the years? How are they—as well as the 

awarded artists—connected to one another?

Art historical context

What impact have the awarded projects had? Where have they been referenced, 

and how have they influenced the field of media arts?

The project I was to work on would belong to the first category. Specifically, I was to 

investigate what hypotheses and insights we could generate by looking into the sub-

mission data, and whether we could find an appropriate visual to convey the charac-

teristics of the “ars world” to visitors of the exhibition.

Together with the art historians working on the Ars Electronica archives, I tried to 

define some first directions of interest, reflected in the matrix in Figure 13-1. Without 

looking at the databases in detail, it was assumed that we should be able to work on 

basic dimensions like the submission’s author, country, year, prize category, and key-

words, as well as whether it received a prize. The matrix reflects the a priori interest 

in certain combinations of these factors—i.e., where the experts expected interesting 

findings to emerge. For instance, it was assumed that we might want to split winners 

by country (and compare this data to the overall submission statistics) and look at the 

relationships between authors and categories.

Author

Author

Country

Country

Year

Year

Category

Category

Keywords

Keywords

Winner?

Winner?

Figure 13-1.  Matrix of initial interest in attribute combinations
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Understanding the Data Situation
Next, I began to look into the available data, together with Sandor Herramhof. Over 

the years, a number of database schemas with different conventions and varying 

degrees of modeling detail had been used, which made it very difficult to get an early 

overview of the existing data. For instance, one database featured additional informa-

tion stored in an XML format inside a text field, but only for some of the submissions. 

In order to facilitate the process of acquiring an overview of the data, I developed 

dbcounter,* a small nodebox script that would enable us to quickly get an overview of 

large sets of categorical data. dbcounter walks over a CSV file, determines all the unique 

value attributes, counts how often they occur, and plots the output as an area chart. 

The gray areas (see Figure 13-2) indicate missing or NULL values. Overall, the tool 

proved useful for understanding the contents of our databases, especially in finding 

missing values and getting an idea of the data diversity.

Figure 13-2.  First overview of the database contents with dbcounter, a custom nodebox script

From these plots, some facts about the databases quickly became clear: 

•	 There were a number of apparently redundant fields, such as “Land” (German 

for “country”) and “sYear,” caused by the merging of database schemas over the 

years.

•	 Names, years, and categories were present fairly completely.

•	 Much less country, company, and web address information was present than 

expected.

*	See http://well-formed-data.net/archives/306/dbcounter-quick-visual-database-stats.

http://well-formed-data.net/archives/306/dbcounter-quick-visual-database-stats


208 Beautiful Visualization

On the one hand, this quick first analysis allowed us to understand what types of attri-

bute combinations could be expected to be meaningful and to cover at least a large 

part of the data. As the database migration was an ongoing process, it also provided us 

with a useful overview of the areas in which we should seek to improve the data, and 

which fields could be combined or filled up more completely. For instance, the team 

working on the databases containing the representation country field was in fact try-

ing to complete as much of the information as possible (“It seems like really interesting 

information, and we are already almost there”).

Exploring the Data
After the first quantitative analysis of the individual fields, the next step was to slice 

and dice a preliminary subset of the data, to investigate correlations and get some hints 

about the reasons for some of the gaps in the data. For this step we used the com-

mercial software Tableau,* which allowed us to explore the data in the spreadsheets 

we imported and the databases we connected to using interactive charts in a flexible 

and expressive workspace. For instance, we used Tableau to characterize the submis-

sions missing country information by year and category (see Figure 13-3), in order to 

identify the biggest gaps and facilitate the search for the missing information in other 

media, such as catalog texts. Questions like “How does the number of submissions 

relate to the submission categories?” and “Has this changed over the years?” can also 

be answered quite easily in a graphical user interface.

Other explorations included a characterization of companies in terms of the categories 

in which they had submitted entries. The chart in Figure 13-4, for instance, revealed 

the potential for some interesting stories. However, it also quickly became clear that a 

large amount of manual work would be required to clean up all the variations in the 

spellings of the company names in the different databases if we wanted to be able to 

make accurate statements.

We also used Tableau to produce an initial world map of the submissions (see Figure 

13-5), with the pie charts for each country indicating the category distributions. This 

early map reveals the European/U.S.-centric nature of the festival. It soon became 

clear that this simplistic approach to producing a cartogram would be inefficient for 

this skewed data distribution, motivating the more elaborate approach presented later.

*	See http://www.tableausoftware.com.

http://www.tableausoftware.com
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Figure 13-3.  A plot of submissions with missing country information, split up by year and 
category

Figure 13-4.  Submissions by company or institution, colored by categories
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Figure 13-5.  World map with submissions per country, split up by category

I also explored some of the data in Microsoft Excel, as it seemed superior at produc-

ing stacked charts we could use for investigating trends over the years or comparing 

attribute distributions in subsets of the data. For instance, Figure 13-6 shows the rela-

tive proportion of submissions and the different types of prizes won by each country. 

From this chart, it appeared as if the U.S. were responsible for about 30% of all sub-

missions but won over 60% of all Golden Nicas (the highest prize awarded). However, 

this trend turned out to be much less pronounced in the full and verified set of data 

analyzed later. We were also aware that the relation of countries to prizes won is a 

complex and sensitive matter that can only be fully understood by considering vari-

ous other aspects of the data, such as the number of submissions in each category 

(for instance, the computer graphics categories in the 1980s had staggering numbers 

of submissions compared to other categories). So, while there was potential for some 

interesting insights, we decided that we would present this story only if we were able 

to provide some context and explanation.
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Figure 13-6.  Prizes won by different countries

First Visual Drafts
The analytic process delivered some initial insights into the data, and gave my collabo-

rators enough opportunities—maybe more than they desired—to correct, clean, and 

complete the databases. On that basis, borrowing terminology from Tom Armitage’s 

BERG blog post “Toiling in the data-mines: What data exploration feels like,”* I had a 

good sense of what was available, significant, and interesting, and of the scale of the data. 

The next step was to work on the visualization principles. 

To quickly prototype some different visual options, I switched to Flash ActionScript 

3 using the flare library,† an advanced general-purpose framework for producing 

interactive visualizations, and I explored more of the stacked charting options using 

the Excel charts I started with. One insight I gleaned from these charts was that we 

should try harder to emphasize the individual data points (e.g., the individual years on 

the vertical axis in Figure 13-7), rather than producing continuous stacked area charts. 

In the Ars Electronica case, submissions are made on an annual basis only, so a visual 

interpolation between years would have been misleading and a distortion of reality. 

*	See http://berglondon.com/blog/2009/10/23/toiling-in-the-data-mines-what-data-exploration-feels-like/.

†	See http://flare.prefuse.org.

http://berglondon.com/blog/2009/10/23/toiling-in-the-data-mines-what-data-exploration-feels-like/
http://flare.prefuse.org
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These considerations led to the development of more fragile charts, with the inter-

polation areas toned down to support the notion of them being only connectors 

between more “solid” yearly events.

Figure 13-7.  A first attempt at displaying categories by country

Exploring stacked area charts for categories over the years revealed some addi-

tional issues to tackle from a conceptual point of view. The category structure of 

Ars Electronica underwent a continuous evolution over the years. For instance, the 

“Computer Music” category was not present in 1991, yet it was in the years before 

and after. Then, in 1999, it was discontinued and a new category, “Digital Musics,” 

was added. How best to treat this situation is a tricky conceptual question: on the one 

hand, these are clearly related categories, but on the other hand, it might be too sim-

plistic to unify them and treat them as the same category with a different label. For 

decisions like these, expert opinions and the designer’s view have to be taken into 

account to formulate an accurate, yet pragmatic and understandable, approach. After 

some discussions, we resolved the issue by treating these as independent categories but 

giving them identical colors in the different visualizations (Figure 13-8).
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Figure 13-8.  Categories over the years

I also became more interested in the evocative, implicit communication aspects of the 

visualization as I explored the existing charts. I felt uncomfortable with their charac-

ter; from a visual point of view the Flare charts looked appealing, yet a bit too fragile. 

However, there was also a much bigger concern: while it is interesting to approach a 

cultural phenomenon like a media art prize in purely quantitative terms, we felt as 

though we were losing a sense of the scale and diversity of the data and characterizing 

it in strokes that were too broad. Effective visualization has a strong relation to sum-

marization and prioritization; however, simply creating some rather abstract charts 

would not have done the topic itself justice. Might not there be a way to display the 

totals, fractions, and interrelationships without neglecting or even hiding the individ-

ual submissions? 

The Visual Principle
This motivation led me first to explore dense pixel mosaic displays (Keim 2000), fol-

lowing the idea that I would like to see one visual marker for each individual submis-

sion. To get a sense of how many points I could fit on a standard screen, I did some 

quick tests using random data (see Figure 13-9).
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Figure 13-9.  Experimenting with dense pixel displays

I found the results quite encouraging and decided to investigate further by looking at 

QR codes.* Could we actually build QR codes with meaningful URLs that also worked as 

area- or pixel-based data graphics? Another idea was to do something along the lines 

of Wattenberg’s (2005) colored segments of space-filling curves to produce diagrams 

similar to treemaps (so-called “jigsaw maps”).

The real eureka moment, however, came when I remembered a placement algorithm 

I had used in an earlier project. Computed on the basis of the golden angle (the angle 

corresponding to a “golden section” of a full circle, or 137.5 degrees), it imitates the 

arrangement of sunflower seeds—the most efficient and visually mesmerizing way of 

packing small elements into a large circle. Figure 13-10 shows a first try I produced 

in a few hours, wherein rings of alternating darkness would indicate years (remind-

ing the viewer of annual age rings in tree trunk cross-sections) and the omitted points 

would indicate the submissions that were awarded prizes.   

*	See http://en.wikipedia.org/wiki/QR_Code.

http://en.wikipedia.org/wiki/QR_Code
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>
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Figure 13-10.  Submissions as dots, packed like sunflower seeds

Despite its visual complexity, the underlying procedure for creating these types of 

arrangements can be described by simple rules: for placing the nth point, choose a 

radius of the square root of n, multiplied by a constant scaling factor. The angle at 

which the point is placed is the angle of the preceding point, incremented by the 

golden angle (2*pi/phi = ca. 137.5 degrees). 

To distribute the points in a homogenous and uniform manner, it is very important 

to use precisely this number: if we used, say, 137.4 degrees, the characteristic double 

spiral would be replaced by spirals in only one direction and the point distances would 

begin to vary. Using the golden angle, we can add points indefinitely, and each point 

will be a uniform distance from its neighbors. Why is this the case? Each rational num-

ber we pick for dissecting the circle will result in a repetition of angles sooner or later. 

In the simplest case, if we always move a half-circle ahead, we will only end up with 

two different angles. It can be shown that for any rational fraction, there will be a rep-

etition and thus a limited set of angles used. Accordingly, if we want to optimize the 

filling and the distribution of points, we have to use an irrational number—ideally, the 

most irrational number there is (that is, the one that is the least well approximated by 

a fraction). This number is phi, the number representing the golden section.
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The Final Product
Having found a guiding visual principle, many of the open questions and possible 

combinations were now naturally reduced to what worked within the self-imposed 

constraints—for instance, the principle dictates circular shapes for all groups of items. 

As the category distributions were of importance in all the perspectives we discussed, 

we decided to color-code the categories across all the visualizations to be displayed, 

with identical colors used for groups of categories that could reasonably be treated as 

“families” (for instance, the categories in the field of computer animation and film are 

all shown as orange). In addition, I introduced a shape encoding to indicate whether a 

submission had received a prize or not (circles for nonwinners, diamonds for winners). 

As discussed earlier, on a conceptual level, I became interested in the relation of the 

totals and sums to the individual submissions. Consequently, I looked for a way to 

incorporate this information into the final visualization. After some unsuccessful 

experiments with putting additional labels for the total counts around the circles and 

overlaying the count numbers on top of the circles, which led to quite cluttered dis-

plays, I found a much more satisfying alternative: the numbers could actually be cre-

ated by the dot pattern itself! As the decision to color-code the categories ruled out all 

modifications to the points themselves, I decided to skip all positions in the sequence 

that would occlude the number, if it were overlaid on the circle (see Figure 13-11). 

That dot would simply go in the next available precalculated position, so the total 

number of dots would remain the same but the circle size would increase marginally. 

Obviously, this principle only works for circles with enough dots to create the num-

ber; accordingly, the number is only displayed for circles containing a minimum of 100 

items.

Figure 13-11.  Numbers created by skipping points in the placement sequence
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All Submissions
Figure 13-12 shows all submissions to the Prix Ars Electronica over the last 22 years. 

Resembling a tree trunk cross-section, the oldest submissions are located at the cen-

ter, surrounded by the more recent ones. This constitutes the starting point for all 

the other graphics, each of which is a split-up version of this one, with data analyzed 

according to different criteria.

Figure 13-12.  All 37,432 submissions, colored by category and arranged from inside (least 
recent) to outside (most recent) by submission year
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By Prize
The diagram shown in Figure 13-13 is enough to motivate the whole project: splitting 

the submissions by the prize received (or not) reveals that only 4% of all submissions 

have received an honorary mention, a distinction, or a Golden Nica. The remaining 96% 

of submissions remained invisible—up to now. For this, and all the following, more 

analytical views, I decided to show the category distribution within the groups of data 

in a pie chart fashion, in order to avoid the perceptual distortions introduced by the 

concentric rings in the overview graphic. 

Figure 13-13.  Submissions by prize

By Category
Figure 13-14 shows a quantitative analysis of the submissions by category. At the 

same time, it provides a sense of the fraction of awarded projects per category in a 

fainter section of the pie, composed of diamond shapes in the right part of each circle. 

It shows, for instance, that the computer graphics category has the highest number of 

submissions (per single category), but that a low number of prizes has been awarded 

per submission (a result of the fact that the category has been around for only seven 

years). Following Wang et al. (2006), the layout of the circles was calculated using 

Flare’s CirclePackingLayout algorithm.
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Figure 13-14.  Submissions by category

By Country
Figure 13-15 shows a map of the submitters’ countries of origin. Inspired by the New 

York Times’s map of Olympic medals,* the layout is calculated with a physical rigid body 

model and attempts to approximate the exact locations, while avoiding circle overlap 

(see Figure 13-16 for snapshots of the iterative optimization process). 

*	See http://www.nytimes.com/interactive/2008/08/04/sports/olympics/20080804_MEDALCOUNT_MAP.html.

http://www.nytimes.com/interactive/2008/08/04/sports/olympics/20080804_MEDALCOUNT_MAP.html


220 Beautiful Visualization

Figure 13-15.  Submissions by country

Figure 13-16.  �Snapshots of the iterative map optimization



221chapter 13: the design of “x by y”

To get coordinates for the country names I used the online application mapspread,* 

which allows users to batch-query tabular data for geocoordinates. However, some 

manual correction was required, as some of the country names could not be resolved 

(the Eastern European political landscape, in particular, has changed quite a bit over 

the last few decades), and others were ambiguous: in fact, even in the final version, 

the label “Georgia” was mistakenly placed next to the United States instead of over the 

Eastern European country located between Russia and Turkey.

Inspecting the map in detail reveals the European/U.S.-centric nature of media art, 

with very few contributions from South America, Africa, Russia, or Asia (with the 

exception of Japan). Historically, a large number of submissions from France and Spain 

have been made in the field of computer animation and film (orange). Italy, Sweden, 

and the UK show a tendency toward music categories (purple), while Japan seems 

more into interactive art (blue). In contrast, Germany and the U.S. leaned toward 

computer graphics (red), at least in the early years of the festival. Almost two-thirds of 

Austria’s submissions have been in the (Austrian-only) U19 categories.

By Year
The sequence of pie charts in Figure 13-17 shows a clear division of the prize history 

in three eras. In 1995 there was a sudden decrease in submissions, coinciding with the 

discontinuation of the computer graphics category and the introduction of the World 

Wide Web category. One possible explanation for this drop is that it was more common 

to submit multiple pieces per year in the computer graphics category. The years after 

2004 show a stronger diversification in categories and a sudden increase in submis-

sions, largely due to the introduction of the U19 categories for Austrian artists under 

19 years of age.

Figure 13-17.  �Submissions by year

By Year and Category
Figure 13-18 shows a matrix version of the timeline, to allow inspection of the devel-

opment of individual groups of categories. In both color-coding and row selection, 

we decided to group corresponding categories even if their titles were changed over 

the years. (Conversely, it should be noted that some categories whose names did not 

change had different orientations in different years.) Compared to the single-year 

chart, this version makes it easier to see how animation/film, music, and later interac-

tive art have become the long-term backbones of the Prix.

*	See http://mapspread.com.

http://mapspread.com
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Figure 13-18.  Submissions by category and year

Exhibition
“Mapping the Archive” was located at the history lounge exhibition in the 

Brucknerhaus, and featured six different data visualization perspectives created by 

Dietmar Offenhuber, Evelyn Münster, Jaume Nualart, Gerhard Dirmoser, and me 

(Figure 13-19).*

Figure 13-19.  The poster in the exhibition

To facilitate the discovery of individual stories in the data, we added little annotation 

arrows to highlight interesting facts (Figure 13-20). Visitors were also encouraged to 

add their own annotations, resulting in a couple of interesting questions and remarks. 

*	All visualizations are documented online at http://vis.mediaartresearch.at.

http://vis.mediaartresearch.at
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Figure 13-20.  Sticky arrow notes with handwritten annotations

Conclusion
The visualizations presented here were developed over the summer of 2009, through 

a continuous exchange of ideas and information not only with the technical staff in 

charge of the archive databases, but also with media art experts commenting on the 

semantic perspective of the represented information.

I see the work as part of a young tradition of information aesthetics.* The scientific disci-

pline of information visualization is usually concerned with characterizing methods of 

visual mapping in general, and optimizing the readability and understandability of the 

resulting visualizations. Information aesthetics builds on results from that area; how-

ever, being a design discipline, it strives to find a sensory representation of informa-

tion based on a specific dataset that not only is useable and readable on the explicit 

data-representation level but, in addition, increases the “propositional density”† of the 

design piece—in short, the evocative character of a visualization and what can be read 

“between the lines.” This approach places the discipline between the traditional fields 

of information visualization, user interface design, and art. 

I hope this chapter demonstrates some key features of the discipline. First, it is impor-

tant to look at the process of creating information aesthetic works. In my experience, 

it is crucial to work with realistic data, already even in the early stages of the design. In 

principle, many visualization ideas developed by theory early on could work well on 

*	 A term first coined by Lev Manovich and explicated in detail in Lau and Vande Moere (2007). 

†	 As defined by William Lidwell (2009).
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real-life data structures, but whether they deliver interesting information and are use-

ful for answering the questions in mind—or for provoking new questions—can only 

be determined when working with the actual data. Developing visualizations has to 

be a bootstrapping process: you must use them early on to understand which visual-

izations and data treatments to pursue further.  In our case, early visualization experi-

ments with standard tools put us in a position to understand which data fields to use 

and which combinations of data “smelled” interesting, and provided a good basis for 

discussing the design features of the future visualization with reference to concrete, 

realistic examples. If the designer does not allow his own visual explorations to change 

his mind on the way to the final product, chances are high that the result will only 

state the obvious, without provoking new questions or revealing interesting stories.

Moreover, it is crucial to be aware of the semantic context of the information dis-

played, and the semiotic character of the final piece. To give an analogy, in linguis-

tics, the field of semantics is concerned with the study of sentence meaning as it can 

be constructed from its constituents and their combination. However, it is widely 

acknowledged that language can only be fully understood by also looking at prag-

matics: the study of how language is actually used in a social context. What is the 

connotation of a word or expression? What associations does it evoke? And what is 

expressed by not saying anything? What form of expression is expected in a given con-

text, and what goes against the norms? 

Much effort has been invested in understanding the syntax and semantics of visual lan-

guage for information presentation, and now information aesthetics is opening the door 

for an investigation of the pragmatics of visual language. In the work presented here, 

for instance, the chosen visual principle was born out of the inherent tension induced 

by approaching a complex social phenomenon from a purely quantitative angle. What 

statement were we making in breaking down a tremendously rich and varied dataset, 

representing 22 years of media art history, in all its facets, into “a couple of numbers”? 

The form of the visualization tries to capture this tension and resolve parts of it.

Given these considerations, the notion of “aesthetics” in visualization is about much 

more than “pretty pictures.” Surely, joy of use is an important and long-underestimated 

factor—on many occasions, research on the user experience has shown the impor-

tance of interacting in pleasant, stimulating environments. But, as Steve Jobs famously 

remarked, “Design is not how it looks and feels, but how it works.” A truly aesthetic 

visualization, in addition to being beautiful, “works” by expressing inexplicit features 

of the phenomenon at hand, and inviting the user/viewer to explore a rich and multi-

faceted world. 
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As a final remark, looking at the meaning and context of the information presented in 

a visualization, one point is often neglected (even in the work presented here): how 

can we characterize that information in the larger scheme of things? Could we find 

explanations for some of the patterns observed by connecting to external databases? In 

the Ars Electronica example, it might have been informative to compare, for instance, 

submission statistics per country with more information about each country. Is the 

number of submissions correlated to economic power? Or digital literacy? Or other, 

less obvious factors? As more and more open data sources for these types of informa-

tion become available, it is increasingly important to provide the proper context and 

baselines for actually understanding the significance of patterns arising in the datasets 

we analyze and present.
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Revealing Matrices
Maximilian Schich

This chapter uncovers some nonintuitive structures �in curated data-

bases arising from local activity by the curators as well as from the heterogeneity of 

the source data. Our example is taken from the fields of art history and archaeology, as 

these are my trained areas of expertise. However, the findings I present here—namely, 

that it is possible to visualize the complex structures of databases—can also be demon-

strated for many other structured data collections, including biological research data-

bases and massive collaborative efforts such as DBpedia, Freebase, or the Semantic 

Web. All these data collections share a number of properties, which are not straight-

forward but are important if we want to make use of the recorded data or if we have 

to decide where and how our energies and funds should be spent in improving them.

Curated databases in art history and archaeology come in a number of flavors, such 

as library catalogs and bibliographies, image archives, museum inventories, and more 

general research databases. All of them can be built on extremely complicated data 

models, and given enough data, even the most boring examples—however simple 

they may appear on the surface—can be confusingly complex in any single link rela-

tion. The thematic coverage potentially includes all man-made objects: the Library of 

Congress Classification System, for example, deals with everything from artists and 

cookbooks to treatises in physics.

As our example, I have picked a dataset that is large enough to be complex, but 

small enough to examine efficiently. We are going to visualize the so-called Census 

of Antique Works of Art and Architecture Known in the Renaissance (http://www.

census.de), which was initiated in 1947 by Richard Krautheimer, Fritz Saxl, and Karl 

http://www.census.de
http://www.census.de
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Lehmann-Hartleben. The CENSUS collects information about ancient monuments—

such as Roman sculptures and architecture—appearing in Western Renaissance docu-

ments such as sketchbooks, drawings, and guidebooks. We will look at the state of 

the database at the point just before it was transferred from a graph-based database 

system (CENSUS 2005) to a more traditional relational database format (CENSUS 

BBAW) in 2006, allowing for comparison of the historic state with current and future 

achievements.

The More, the Better?
Having worked with art research databases for over a decade, one of the most intrigu-

ing questions for me has always been how to measure the quality of these projects. 

Databases in the humanities are rarely cited like scholarly articles, so the usual evalua-

tion criteria for publications do not apply. Instead, evaluations mostly focus on a num-

ber of superficial criteria such as the adherence to standards, quality of user interfaces, 

fancy project titles, and use of recent buzzwords in the project description. Regarding 

content, evaluators are often satisfied with a few basic measures such as looking at the 

number of records in the database and asking a few questions concerning the subtle-

ties of a handful of particular entries.

The problem with standard definitions such as the CIDOC Conceptual Reference 

Model (CIDOC-CRM) for data models or the Open Archives Initiative Protocol for 

Metadata Harvesting (OAI-PMH) for data exchange is that they are usually applied a 

priori, providing no information about the quality of the data collected and processed 

within their frameworks. The same is true of the user interfaces, which give as much 

indication of the quality of the content as does the aspect ratio of a printed sheet of 

paper. Furthermore, both data standards and user interfaces change over time, which 

makes their significance as evaluation criteria even more difficult to judge. As any 

programmer knows, an algorithm written in the old Fortran language can be just as 

elegant as and even faster than a modern Python script. As a consequence, we should 

avoid any form of system patriotism in project evaluation—that is, the users of a par-

ticular standard should not have to be afraid of being evaluated by the fans of another.

Even the application of standards we all consider desirable, such as Open Access, is of 

questionable value: while Open Access provides a positive spin to many current proj-

ects, its meaning within the realm of curated databases is not entirely clear. Should we 

really be satisfied with a complicated but free user interface (cf. Bartsch 2008, fig. 10), 

or should we prefer a sophisticated API and periodical dumps of the full database (cf. 

Freebase), which would allow for serious analysis and more advanced scholarly reuse 

of the data? And if there is Open Access, who is going to pay the salary of a private 

enterprise data curator?

Ultimately, we must look at the actual content of any given project. As this chapter 

will demonstrate, when evaluating a database it makes only limited sense to focus on 

the subtleties of a few particular entries, as usually there is no average information 
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against which to measure any particular database entry. The omnipresent phenom-

enon of long tails (Anderson 2006; Newman 2005; Schich et al. 2009, note 5), which 

we will encounter in almost all the figures in this chapter, suggests that it would be 

unwise to extrapolate from a few data-rich entries to the whole database—i.e., in the 

CENSUS, we cannot make inferences about all the other ancient monuments based 

solely on the Pantheon. 

The most neutral of the commonly applied measures remaining for evaluation is the 

number of records in the database. It is given in almost all project specifications: ency-

clopedias list the number of articles they contain (cf. Wikipedia); biomedical databases 

publish the number of compounds, genes, or proteins they contain (cf. Phosphosite 

2003–2007 or Flybase 2008); and even search engines traditionally (but ever more 

reluctantly) provide the number of pages in their indexes (Sullivan 2005). It is there-

fore no wonder that the CENSUS project also provides some numbers: 

More than 200.000 entries contain pictorial and written documents, locations, per-
sons, concepts of times and styles, events, research literature and illustrations. The 
monuments registered amount to about 6.500, the entries of monuments to about 
12.000 and the entries of documents to 28.000.* 

Although these numbers are surely impressive from the point of view of art history, 

where large exhibition catalogs usually contain a couple of hundred entries, it is easy 

to disprove the significance of the number of records as a good measure of database 

quality, if taken in isolation. Just as search engines struggle with near duplicates (cf. 

Chakrabarti 2003, p. 71), research databases such as the CENSUS aim to normalize 

data by eliminating apparent redundancies arising from uncertainties in the raw data 

and the ever-present multiplicity of opinion. Figure 14-1 gives a striking example of 

this phenomenon. Note that the total number of links remains stable before and after 

the normalization, pointing to a more meaningful first approximation of quality, using 

the ratio of the number of links relative to the number of entries: 3/6 vs. 3/4 in this 

example.

drawing A              hercules 1 drawing A
drawing B              hercules 2 drawing B              Hercules Farnese
drawing C              hercules 3 drawing C

Napoli, Museo Archeologico Nazionale, inv. 6001

Figure 14-1.  Growing dataset quality by shrinking number of records  

Clearly, more sophisticated measures are required in order to evaluate the quality of 

a given database. If we really want to know the value of a dataset, we have to look at 

the global emerging structure, which the commonly used indicators do not reveal. The 

only thing we can expect in any dataset is that the global structure can be character-

ized as a nontrivial, complex system. The complexity emerges from local activity (Chua 

2005), as the availability of and attention to the source data are highly hetereogeneous 

*	From http://www.census.de, retrieved 9/14/2009.

http://www.census.de


230 Beautiful Visualization

by nature. Furthermore, every curator has a different idea about the a priori data 

model definitions. As the resulting structural complexity is difficult to predict, we have 

to measure and visualize it in a meaningful way.

Databases As Networks
Structured data in the fields of art history and archaeology, as in any other field, comes 

in a variety of formats, such as relational or object-oriented databases, spreadsheets, 

XML documents, and RDF graphs; semistructured data is found in wikis, PDFs, HTML 

pages, and (perhaps more than in other fields) on traditional paper. Disregarding the 

subtleties of all these representational forms, the underlying technical structure usu-

ally involves three areas: 

•	 A data model convention, ranging from simple index card separators in a wooden 

box to complicated ontologies in your favorite representational language

•	 Data-formatting rules, including display templates such as lenses (Pietriga et al. 

2006) or predefined query instructions

•	 Data-processing rules that act according to the data-formatting instructions

Here, we are interested first and foremost in how the chosen data model convention 

interrelates with the available data.

As Toby Segaran (2009) pointed out in Beautiful Data, there are two ends of the spec-

trum regarding data model conventions. On one end, the database is amended with 

new tables, new fields in existing tables, new indices, and new connections between 

tables each time a new kind of information is taken into consideration, complicating 

the database model ever further. On the other end, one can build a very basic schema 

(as shown in Figure 14-2) that can support any type of data, essentially representing 

the data as a graph instead of a set of tables.

Nodeset
NodeID
NodeLabelname
NodeType

edgeset
SourceNodeID
TargetNodeID
LinkType

Figure 14-2.  Databases can be mapped to a basic schema of nodes and edges

Represented in this form, every database can be considered a network. Database 

entries form the nodes of the network, and database relations figure as the connec-

tions between the nodes (the so-called edges or links). If we consider art research 

databases as networks, a large number of possible node types emerge: the nodes can 

be the entries representing physical objects such as Monuments and Documents, as 

well as Persons, Locations, Dates, or Events (cf. Saxl 1947). Any relation between two 
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nodes—such as “Drawing A was created by Person B”—is a link or edge. Thus, there 

are a large number of possible link types, based on the relations between the various 

node types.

A priori definitions of node and link types in the network correspond to traditional data 

model conventions, allowing for the collection of a large amount of data by a large 

number of curators. In addition, the network representation enables the direct applica-

tion of computational analytic methods taken from the science of complex networks, 

allowing for a holistic overview encompassing all available data. As a consequence, we 

can uncover hidden structures that go far beyond the state of knowledge at the point 

of time when the database was conceptualized and that are undiscoverable by regular 

local queries. This in turn enables us to reach beyond the common measures of quality 

in our evaluations: we can check how well the data actually fits the data model con-

vention, whether the applied standards are appropriate, and whether it makes sense to 

connect the database with other sources of data.

Data Model Definition Plus Emergence
To get an idea of the basic structure, the first thing we want to see in a database evalu-

ation is the data model—if possible, including some indicators of how the actual data 

is distributed within the model. If we’re starting from a graph representation of the 

database, as defined in Figure 14-2, this is a simple task. All we need is a nodeset and 

an edgeset, which can be easily produced from a relational set of tables; it might even 

come for free if the database is available in the form of an RDF dump (Freebase 2009) 

or as Linked Data (Bizer, Heath, and Berners-Lee 2009). From there, we can easily pro-

duce a node-link diagram using a graph drawing program such as Cytoscape (Shannon 

et al. 2003)—an open source application that has its roots in the biological networks 

scientific community. The resulting diagram, shown in Figure 14-3, depicts the given 

data model in a similar way as a regular Entity-Relationship (E-R) data structure dia-

gram (Chen 1976), enriched with some quantitative information about the actual 

data.

The CENSUS data model shown in Figure 14-3 is a metanetwork extracted from the 

graph database schema according to Figure 14-2: every node type is depicted as a 

metanode, and every link type is depicted as a metalink connecting two metanodes. 

The metanode size reflects the number of actual nodes and the metalink line width 

corresponds to the number of actual links, effectively giving us a first idea about the 

distribution of data within the database model. Note that both node sizes and link line 

widths are highly heterogeneous across types, spanning four to five orders of magni-

tude in our example. Frequent node and link types occur way more often in reality 

than the majority of less frequent types—a fact that is usually not reflected in tradi-

tional E-R data structure diagrams, often leading to lengthy discussions about almost 

irrelevant areas of particular database models.
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Figure 14-3.  The CENSUS data model as a weighted node-link diagram

The heterogeneity of node and link type frequency evidenced in Figure 14-3 is not 

restricted to our example. It is observable in many datasets, including research data-

bases (Schich and Ebert-Schifferer 2009), large bibliographies (Schich et al. 2009), 

Freebase, and the Linked Data cloud, regardless of whether the number of types is 

predefined or expandable by the curators. In all cases that I have seen so far, both the 

number of nodes per node type and the number of links per link type exhibit right-

skewed diminishing distributions, which are widely known as long tails (Anderson 

2006, Newman 2005), and lack a shared average as found in a normal Gaussian dis-

tribution. The comparable long-tail structure of hyperlinks in web pages—i.e., of a 

single link type in only one node type—has been well known for over a decade (Science 

2009). Figure 14-3 makes clear that the observed heterogeneity is also present at the 

level of node and link types within more structured data graphs.
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Figure 14-4.  The CENSUS data model as a weighted adjacency matrix

Network Dimensionality
Looking more closely at Figure 14-3, we can see the central dimensions of the 

CENSUS database, Monuments and Documents, surrounded by an armature of 

additional information. Both Monuments and Documents are physical objects, but 

they differ insofar as the former are the targets and the latter are the sources of 

the central documentation links. Whereas in general any physical object can func-

tion as a Monument or as a Document, the CENSUS divides them into discrete 

node types because both groups belong to different periods (Classical Antiquity and 

Western Renaissance): ancient Roman sculptures and architecture as documented by 

Renaissance drawings, sketchbooks, text, etc. 
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In addition to these central dimensions, there is another node type representing physi-

cal objects called Replica, used for later-known replica Monuments that were discov-

ered only after the defined Renaissance time frame. If the CENSUS is to be generalized 

to encompass the entire time frame from Antiquity until today, it would make sense 

to combine Monuments, Documents, and Replicas into a single physical object node 

type, as all functions are defined by the presence of certain links pointing into or out of 

a particular node. In the early 1980s, when the data model was initially conceived, its 

design was influenced by certain functionality constraints regarding relational data-

bases. These constraints no longer apply, so such a change is now possible.

Distributed around the physical objects in Figure 14-3, we find Persons, Locations, and 

time ranges (such as Date and Style). Relations between all these dimensions are mostly 

modeled using direct links. For example, each Person is connected directly to a place of 

birth and a date of birth, making it impossible to disambiguate two alleged Birth Events 

(such as Venice 1573 and Bologna 1568) in a single Person without further comment. 

Other example shortcuts include the document artist attribution and the 1st 

Renaissance state documentation. Again disambiguation is impossible without fur-

ther comment. Regarding artist attribution, the CENSUS curators are guided to make 

a decision instead of recording multiple opinions. In the case of 1st Renaissance state 

documentation, there is only a single instance by definition. Further states are docu-

mented as Preservation Events—an obvious opportunity to simplify the data model.

Preservation and Provenance Events are a notable exception to the aforementioned 

shortcuts. They state that a particular Monument was altered by a Person or present at 

a particular Location, at a particular Date, as documented by a particular Document. 

Both Preservation and Provenance Events allow for easy disambiguation. 

Differing opinions across Documents can be reflected by multiple Events, gluing 

together the respective Monuments, Persons, Locations, and Dates. As with physical 

objects, the nature of the Events is defined by the presence of certain links. As a conse-

quence, the data model could be generalized further, as was done in projects inspired 

by the CENSUS such as the Winckelmann Corpus (2000). In general, Events boil down 

to so-called star motifs (cf. Milo et al. 2002) with a particular combination of link 

types. Today, Event-like constructions are a standard feature of many database models, 

such as Freebase, where they are called compound value types. In principle, we could also 

look for such Events in other networks with typed links, where they are not consciously 

explicit but rather inherent as emergent star motifs (as in the Linked Data graph).

The CENSUS becomes an authoritative—i.e., citable—source of information by provid-

ing a variety of metadimensions, such as the (modern) Bibliography. The Bibliography 

is subdivided into Citations, which are in turn represented as a separate node type. 

Another source dimension is the Image node type, which contains photographs taken 

from major photo libraries. Again, both the Bibliography and the Images represent 

functions of physical objects, which are defined by their adjacent links. 
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The remaining node types include the Record History, where curators log their actions 

on other nodes, and the Main Entry dimension, which was probably dissolved during 

the conversion of the CENSUS to a relational database. In the former graph-based sys-

tem, due to the lack of tables the Main Entries figured as database chapters, facilitating 

navigation by bundling together all Persons, Locations, etc.

The Matrix Macroscope
The node-link diagram in Figure 14-3 is only one possibility for depicting the CENSUS 

data model. As with any network consisting of nodes and links, we can also depict it 

in the form of a so-called adjacency matrix (cf. Garner 1963; Bertin 1981; Bertin 2001; 

Henry 2008), as shown in Figure 14-4. Here, the node types are represented as the 

vertical columns and horizontal rows of a table, with link information appearing in 

the cells. Regarding the place of birth, for example, you can imagine the link pointing 

from the Person row into the Location column across the respective cell. 

As in the node-link diagram, it is also possible to depict the total number of links 

occurring between two node types in the adjacency matrix; in place of the line width 

in Figure 14-3, now the explicit number appears in the relevant cell. This highlights 

the main difference in switching the representation to a matrix: our attention now 

focuses on the links, rather than on the nodes. It is striking that the matrix in Figure 

14-4 not only shows the connections between node types, but also makes immedi-

ately clear which node types are not directly connected. In other words, the matrix 

indicates positive as well as negative correlation. One example of this is the absence 

of links from the Bibliography node type to authors, publication locations, and publi-

cation dates; though the CENSUS provides this information, it is only implicit in the 

node description text and node label abbreviations (e.g., “Nesselrath 1993”). Of course, 

we can also spot this absence of information in the node-link diagram, but the matrix 

makes it way more obvious.

Going beyond the total number of links between two node types, we can put a variety 

of other useful information into the matrix cells. In Figure 14-5, for example, we see 

a node-link diagram of all the nodes and links occurring between two node types in a 

cell. We generate such a diagram using a layout algorithm (such as the yFiles organic 

layout algorithm, part of the Cytoscape application), which is relatively inexpensive 

from a computational point of view. As a consequence, all of the explicit node-link 

data in the database appears in the data model matrix.
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Looking at the result in Figure 14-5, we can learn a lot about the database. At first 

glance, we can see that there are a few cells in which the structure looks more com-

plex, whereas in the majority of cells we find a rather boring collection of stars and 

some dyads connecting two nodes exclusively. Another thing we can see is that all of 

the cells contain disconnected networks, in the sense that they are split into discrete 

components (i.e., groups of connected nodes). It is intriguing that here again we do 

not find a widespread average for component size. Wherever we look, we see a long 

tail. A prominent example is the Document-Location cell, wherein we see a clearly 

diminishing sequence of stars, connecting ever fewer Documents to single Locations; 

but even in the flattest cases, such as in the Document-Image cell, we find a few larger 

connected groups, followed by a huge amount of dyads.  

A more diluted form of long tail is found in the Location-Location cell. It contains 

a hierarchy of geographical places rooted in a node representing the world, sub-

divided into countries, regions, and towns, down to individual collections. The 

number of subdivisions per Location is again distributed in a heterogeneous way. The 

majority of subdivisions are found within the country of Italy, almost eclipsing the rest 

of the world. The most prominent Location is unsurprisingly the city of Rome, which 

is subdivided into numerous collections. Its prominence reminds me of the over-

sized space dedicated to the hands in the sensomotory homunculus of the human brain 

(Penfield and Rasmussen 1950; Dawkins 2005, pp. 243–244)—the CENSUS seems to 

have a romunculus. Just as an overly large area of our brain’s motor cortex is dedicated 

to hand–eye coordination and the sense of touch in our hands, the CENSUS Location 

hierarchy seems to be biased toward sculpture collections in Rome. Like a master pia-

nist, whose centers for dexterity and manual control occupy even more space in the 

cortex than they would in a regular person, the CENSUS seems to be defined by spe-

cialization—such as the addition of Ulisse Aldroandi’s famous books (1556 and 1562), 

which list thousands of sculptures in Roman collections (cf. Schich 2009, pp. 124–125).

Another interesting feature of Figure 14-5 is the disproportionally large stars found in 

a number of cells. Some of the stars are natural properties of the data, as in the case of 

the 11,927 Document nodes linked to the Bibliographic node Bartsch 1854–1870, or 

the 1,146 Persons born in Italy or Rome. However, most of the giant stars are artifacts 

related to unknown entries, such as an unidentified Monument, unknown Person, 

untraced Location, unknown Date, or unknown Style; all of these single nodes con-

nect confirmed gaps of information in order to facilitate their further curation. There 

are 1,350 unidentified Monuments, 5,992 Monuments with unknown creators, 5,531 
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Monuments with untraced Locations, 2,752 Monuments with unknown Dates, 2,465 

Monuments with unknown Styles, 483 Preservation Events with unknown actors, 

and 559 Provenance Events with untraced Locations in our dataset. To be sure, the 

presence of all these unknown entries is not an error; the attribution of an unknown 

Date could, for example, refute an incorrect Renaissance date attribution. However, 

the numbers provide a feeling of how incomplete our knowledge is. Another consid-

eration is that, if we want to analyze the network structure of each cell, we have to 

break (or denormalize) the unknown nodes; otherwise, the untraced Location shortcut 

node would, for example, connect many unrelated nodes located at many different 

unknown places.

Reducing for Complexity
If we look back at Figure 14-3 for a moment, we can see that there are 31,197 

Document records in the CENSUS database, of which only 3,087 are connected to 

the document authority under Main Entry. This points to an important fact: large 

Documents in the database are represented as trees of nodes. There are in fact only 

3,087 Documents, including 28,110 subordinate nodes representing pages, figures, and 

quadrants within those figures or paragraphs of text—a fact until now rarely com-

municated about this database. The same is true for Monuments: here again, a small 

percentage of the records—in particular, the Architecture category—is subdivided into 

trees of nodes including building parts, rooms, and even tiny individual features of 

architectural decoration. A third example is the Bibliography, which is subdivided into 

Citations, such as paragraphs of text in modern scholarly books.

The consequence of all these subdivisions in Figure 14-5 is that particular links point from 

and to particular subnodes: from Monument parts to Document parts instead of from 

entire Monuments to entire Documents, or from a feature of a decorated column base 

to a particular quadrant in a sketchbook figure. The function of all these subdivisions is 

to enable data storage without a significant loss of information. However, the ques-

tions we can resolve in this configuration are often too specific. In order to uncover 

more interesting global properties of the data and answer questions such as how many 

sketchbooks a group of Monuments appears in (not how many figures there are in 

general), or how often they are cited in books (not how many citations there are in 

general), we have to refine the matrix. A solution for this problem is to collapse the 

subdivided Documents, Monuments, and Bibliographic Citation nodes as shown in 

Figure 14-6 and redraw the entire matrix as in Figure 14-7(a).
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Figure 14-6.  Collapsing subdivided entries in the raw data uncovers interesting complex features
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Figure 14-7.  The refined CENSUS data model matrix, enriched with node-link diagrams (a), 
and in the basic weighted form (b)
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The location node for Rome, 
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Figure 14-8.  The refined CENSUS data model matrix, enriched with degree distribution plots
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Quasi 1:n relation: 
less than 0.1% of all 
provenance events have 
more than one date.

The tails of many IN and OUT degree 
distribution pairs are asymmetric: 
On one side we find something between 
a power law and a log-linear distribution
vs. a steep drop on the other.

1:n relation indicates star 
or tree network structure. 
Here: only one birth date 
per person, i.e. stars of 
persons around single 
dates.

Steep probability drops 
from 1 to 2 links are often  
due to the many unknown 
or untraced nodes, such as 
unknown styles.

Only 15% of all images 
are linked to monuments; 
40% are linked to documents. 
45% of the images scanned in 1994 
are not linked at all.
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Collapsing the Documents, Monuments, and Bibliographic Citation trees to single 

nodes works as follows (cf. Schich 2009, p. 28–37). In Figure 14-6(a), we see a raw 

Document tree: a book, with pages, which in turn are subdivided into figures. Single 

links point to multiple Monuments or Monument parts. In order to collapse the tree, 

we represent the book as a single node and combine all the links adjacent to the 

subdivisions, as shown in Figure 14-6(a‘). To preserve as much information as pos-

sible, we assign a weight to the new node reflecting the number of collapsed subdi-

visions and another weight to the links, signifying the number of occurrences in the 

book. Graphically, our weights now correspond to the node size and the line width: 

the larger the node of a book is, the more subnodes it contains in its collapsed tree; 

the broader a line is, the more links it represents. Exemplified in real data, every 

Document tree in the Document-Document cell of the raw matrix will be reduced to 

a single node, as shown in Figures 14-6(b)/(b‘). Matrix cells that look boring or simple 

in the raw state become more complex and interesting after the collapse, as in the case 

of the Document-Monument cell enlarged in Figures 14-6(c)/(c‘).

The most striking feature of the refined cell in Figure 14-6(c‘) is the emergence of 

a so-called Giant Connected Component (GCC), which connects almost 90% of all 

Monuments and Documents in the CENSUS—a phase transition phenomenon known 

from many other complex networks and bearing many important implications regard-

ing the propagation of information (Newman, Barabási, and Watts 2006, pp. 415–

417; Schich 2009, pp. 171–172). In the core of the GCC, we can see a cluster of large 

architectural Monuments, which are connected to large overview Documents, such as 

guidebooks, sketchbooks, and city maps. A surprising feature in the periphery of the 

GCC is the dominance of brushlike structures connected to large Document nodes: 

obviously a large percentage of all Monuments in the CENSUS are connected to only 

one single Document, either because the Documents lack sufficient information or 

because (for whatever reason) the curators did not identify and normalize them.

As the Document, Monument, and Bibliography trees are collapsed, the conse-

quences affect the whole matrix. Effectively, the diagonal Document-Document and 

Monument-Monument cells are thinned out, leaving only a few interesting links, such 

as archetype citation and parallel copy relations. The Citation-Bibliography cell col-

lapses completely.

Further Matrix Operations
Beyond breaking unknown nodes and collapsing the trees of subdivisions, we can do 

a number of other operations on the raw matrix in Figure 14-5. As with any adja-

cency matrix, we can sort (or permutate) the columns and lines along the horizon-

tal and vertical axes, without losing any information (Bertin 1981; Bertin 2001). We 

can also transpose cells such as Monument-Event to Event-Monument, or even the 

whole Bibliography column to a Bibliography line, effectively reversing the direc-

tion of the links. Finally, we can merge equivalent node types—such as Provenance 
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and Preservation Events, Monuments and Replicas, or Bibliography and Citation—by 

creating node supertypes, such as Event, Monument, and Bibliography. The merge 

reduces the number of columns and lines in the matrix and allows each cell to occupy 

more space in the visualization. Beyond that, the literature on matrix visualization 

contains many more possible operations (cf. Henry 2008). 

The Refined Matrix
Figures 14-7(a) and (b) show the final result of all refining operations discussed so far. 

The whole matrix is now more concise, clear, and informative. We can easily see how 

the CENSUS data is distributed within the data model: Monument- and Document-

Bibliography obviously behave like Monument-Documentation, exhibiting a wealth 

of data. For Document-Document and Monument-Monument dependency rela-

tions (such as citations), on the other hand, there is hardly any data, even though the 

respective links are explicit in the data model. Apparently the data curation workflow 

was not set up in the right way to collect this kind of information systematically. 

As in the raw matrix, we find a long tail of component sizes in every refined cell. 

Some of the cells still contain mostly stars, as is true for the number of Events per 

Monument, Images per Document/Monument, Inscriptions per Document, or Events 

per Location. An interesting case involves the Document-Location cell, where we can 

see that large Documents are spread throughout all sizes of collections, from the Uffizi 

in Florence to individual private collections owning a single sketchbook.

Other cells show more overlapping structures, as is the case with overlapping Dates 

(or time ranges) across Documents and Monuments, or Styles across a few eclectic 

Monuments such as the Arch of Constantine, which brings together reliefs from differ-

ent periods of the Roman Empire. Unsurprisingly, Monument-Documentation and the 

related Bibliography contain the most complex overlap, as this is the central focus of 

the CENSUS project.

Scaling Up
Readers involved in the network field may point out that the use of node-link dia-

grams in the matrix, as seen in Figure 14-7(a), is not feasible for datasets an order of 

magnitude larger than the CENSUS, let alone as large as the entire Semantic Web. 

Indeed this is a problem, so the question is how to scale the presented approach to 

really large databases. One solution is to use degree distribution plots or even more 

sophisticated numerical network measures to get an idea about the actual data within 

the data model.

In Figure 14-8, we plot a cumulative IN- and OUT-degree distribution (Broder et al. 

2000; Newman 2005) for every link type occurring in a matrix cell. As every link 

points OUT of the source node type and IN to a target node type, there are two distri-

butions for every link type in each cell. The x-axis of each plot indicates the number of 



248 Beautiful Visualization

links, k; the y-axis provides the cumulative probability, P(k), that a node has at least k 

links. Note that the distributions are plotted on a log-log scale, meaning that the tick 

marks indicate a rapid decay from 100% to 0.01% on the y-axis and a rapid increase 

from 1 to 3,000 on the x-axis. (In a regular linear projection, the slope of each distri-

bution would be so steep that we would not see anything interesting.) It is striking 

that there is not a single Gaussian bell curve in the plots, as we would expect for, say, 

the average heights of people. Instead, we find a whole zoology of long tails ranging 

from beautiful power-laws to log-linear curves, with less clean, bumpier distributions 

in between. 

Nearly all IN and OUT distribution pairs appear to be asymmetric. Birth Dates, for 

example, are connected to Persons in a 1:n manner, where n is highly heterogeneous. 

This is no surprise, as this area of information is not subject to the multiplicity of opin-

ion, as we would expect in a prosopographic database, which would focus on people 

instead of objects. Other areas, such as the occurrence of Locations in Provenance 

Events, exhibit a quasi 1:n constraint, as it is highly improbable but not impossible for 

an event to involve more than one location. The most interesting asymmetry is found 

in true n:n relations, such as the central Monument-Documentation link, where we 

find distributions with different slopes on both sides of the link. Right now, it is not 

entirely clear how this asymmetry can be fully explained; however, by comparing a 

number of data sources, it becomes apparent that the different shapes of these distri-

butions are caused by a variety of factors, such as physical restrictions and accessibil-

ity of the source data, as well as attention and other cognitive limits on the side of the 

curators.

The only symmetric link relationship in the CENSUS can be found in the parallel copy 

and parallel replica links in the Document-Document and Monument-Monument 

cells, respectively. Ideally, the IN- and OUT-degree distributions should be identical, as 

the relevant nodes are fully connected to so-called “cliques.” In reality, both link types 

become more asymmetric the further down we go into the tail of the distributions, as 

large cliques are hard to maintain. As I recommended to the CENSUS project in 2003, 

it makes more sense to connect to an unknown archetype Document with n links than 

to manually connect n parallel copies with n * (n–1) links amongst each other.

Similarly, the behavior of certain relationships that we spotted in Figure 14-7, such 

as the equivalence of Monument-Bibliography and Monument-Documentation, is 

confirmed in Figure 14-8 (cf. Schich and Barabási 2009). Not only is there an obvious 

similarity between these cells, but the same functional equivalence is found in dif-

ferent link types in a single cell. A convincing example are the almost parallel distri-

bution slopes of general documentation and 1st Renaissance documentation in the 

Document-Monument cell; the same is true for provenance and preservation docu-

mentation in the Event-Documentation cell. The Location IN degree scales in a very 

similar way across all relevant cells in the Location column. Two exceptions to this 
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observed regularity are the steep drop of probability from one to two Monuments 

per Location (due to the many untraced Monuments) and the accelerating tail in the 

Location-Location cell (caused by the romunculus phenomenon).

One last thing we can observe in all the plots is the fraction of nodes per node type, 

which are inherent in the individual networks constituted by each individual link 

type. Looking at the value where the respective curve crosses the y-axis shows us, for 

example, that less than 15% of all Images are connected to Monuments, and less than 

40% to Documents. Inversely, we can conclude that at least 45% of the 24,000 images 

scanned by the CENSUS project’s publishing partner in 1994 were still not linked in 

the database in 2005.

Further Applications
The visualizations presented here can serve as a starting point for a variety of activities. 

Besides the evaluation of particular project goals by funders and project leaders, fur-

ther areas of study include the identification of interesting research topics: every single 

cell in the matrix could be the subject of an extensive investigation, as illustrated in 

my PhD dissertation, which deals with monument documentation and visual docu-

ment citation (Schich 2009). Multiple cells that promise an interesting interplay could 

also be combined within such a study—for example, in order to build trajectories of 

objects and persons involved in a variety of events across time and space (cf. González, 

Hidalgo, and Barabási 2008), or to study the effects of network interaction (Leicht and 

D’Souza 2009). Finally, a number of equivalent visualizations could be used to com-

pare entire databases that already use similar data models, such as the Winckelmann 

Corpus and the CENSUS, or databases that can be mapped to the same standard, such 

as the CIDOC CRM.

Instead of dissecting the databases in the way discussed here, it might also be inter-

esting to combine separate networks in a similar visualization. Candidates for such a 

combination can easily be found in the multipartite universe of conceivable networks 

(for example, citation, coauthorship, and image-tagging databases in the social sci-

ences, or gene-transcription, protein-protein interaction, and gene-disease databases in 

biology).

The coarse graining we obtained by collapsing the Document, Monument, and 

Bibliography trees can also be achieved in many other ways; for example, by con-

centrating on particular subtrees, or with more sophisticated methods such as block-

modelling (cf. Wassermann and Faust 1999, pp. 394–424) or community finding (cf. 

Lancichinetti and Fortunato 2009; Ahn, Bagrow, and Lehmann 2009), practically 

addressing the question of how nodes and links in a network are actually defined (cf. 

Butts 2009). 



250 Beautiful Visualization

Finally, the presented combination of matrix and node-link diagrams can be expanded; 

for example, by placing node-link/matrix combinations (Henry, Fekete, and McGuffin 

2007) or scalable image matrices (Schich, Lehmann, and Park 2008) in relevant cells 

of the data model matrix.

Conclusion
As this chapter has illustrated, enriched and refined data model matrices are very use-

ful for database project evaluation, exposing many nonintuitive data properties that 

are hard to uncover by simply using the database or looking at the commonly used 

indicators of quality. As data becomes more accessible in the form of Linked Data, RDF 

graphs, or open dumps of relational tables, the presented methods can be applied by 

funders or the projects themselves, within a very short time frame in a mostly auto-

mated process.

The visualizations shown here present the first comprehensive big picture of the entire 

CENSUS database, where we can see the initial data model definition as well as the 

emerging complex structure in the collected data. By looking at the visualizations, 

we found out that many of the numbers given in the project description were incom-

plete or even misleading. Some of the new numbers may be smaller than the initially 

presented ones, but as we have learned from our analysis, sometimes a little less is 

more—and more is different (Anderson 1972).
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C h a p t e r  F if  t e e n

This Was 1994:  
Data Exploration with the 

NYTimes Article Search API
Jer Thorp

In February of last year, �the New York Times announced that it was giving away the 

keys to 28 years of data—news stories, movie reviews, obituaries, and political statistics, 

all for free. Staring at such a huge pile of information—about 2.6 million articles—

we’re faced with three important questions. How do we get the data we need? What 

can we do with that data? And, perhaps most importantly, why should we bother 

in the first place? In this chapter, I’ll try to answer those questions. We’ll see how to 

access information from the NYTimes Article Search API (http://developer.nytimes.com/

docs/article_search_api), look at some practical visualization examples, and discuss how 

the new era of open data is opening doors for artists, entrepreneurs, designers, and 

social scientists.

Getting Data: The Article Search API
“API” is one of those three-letter acronyms that means very little as a collection of 

three letters, and even less once you find out what it stands for: application program-

ming interface. While this rather generic term can be applied to all kinds of things 

within the world of software development, an API typically exists to allow one piece 

of software to talk to another. If we imagine a database as a physical warehouse that 

stores information, an API is the shipping and receiving department, and it’s open to 

the public.

In general, interaction with an API is fairly straightforward. We send the API a request 

(which can be quite simple or very complex), and the API sends us back a formatted set 

of information. The syntax that we use to communicate with an API and the format 

http://developer.nytimes.com/docs/article_search_api
http://developer.nytimes.com/docs/article_search_api
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the API uses to hand the requested information back to us varies from API to API. 

Some APIs are quite limited, whereas others unlock all kinds of useful functions. 

Luckily for us, the NYTimes Article Search API is one of the most robust and well-

constructed APIs around.

So what can we ask it? With a few simple requests, the API can answer any of the fol-

lowing questions, and a nearly infinite number more:

•	 How many articles were published in 1982? 

•	 What organization is mentioned most in articles about fraud? 

•	 How many times was the word “hypercolor” used in fashion articles in 1991?  

Let’s start with an easy question: how many articles in 1994 mentioned O.J. Simpson?

There are a few different ways to send our question to the API, but all of them involve 

sending an HTTP request to a specific URL, with some parameters added to the mix. 

Here’s the simplest request:

http://api.nytimes.com/svc/search/v1/article?query=O.J.+Simpson

This request will give us all of the articles in the database (articles are stored from 1981 

to the present) that contain the string “O.J. Simpson”. To restrict it to 1994, we can 

add a couple of “extras” to the query:

http://api.nytimes.com/svc/search/v1/article?query=O.J.+Simpson&beg

in_date=19940101&end_date=19950101

Finally, the API needs to keep track of who is accessing the information and to ensure 

that no users are overrunning the published limits. Consequently, every time we 

access the API we must pass along our API key, a string of characters assigned by the 

NYTimes that is unique to each individual user:*

http://api.nytimes.com/svc/search/v1/article?query=O.J.+Simps

on&begin_date=19940101&end_date=19950101&api-key=1af

81d#######################:##:########

If you go ahead and paste this request into your browser’s address bar (inserting your 

own API key in place of the # signs), you’ll get some results; view the source to see the 

actual data returned by the API. The data is returned to us packaged in a format called 

JSON, which we will discuss in more detail later in this chapter.

At the bottom of this chunk of data, we can find the answer to our question: 2,218.

*	Log into your nytimes.com account, go to http://developer.nytimes.com, and click “Request an API key” 
under the “Getting Started” heading.

http://developer.nytimes.com
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We’re going to wrap all of this up in some fancy packaging, but these requests are the 

root of everything we’re going to do in this chapter. Any request to the Article Search 

API is constructed the same general way (see Figure 15-1): 

URL Base + Query + Facets + Extras + API Key

URL Base Query API KeyFacets

des_facet
geo_facet
per_facet
org_facet
…

begin_date
end_date
offset
rank
…

+ + +

begin_date

Extras +

Figure 15-1.  Requests to the New York Times Article Search API are always structured from 
the same key parts

Some of these elements are required (Query, API Key), and some are optional (Extras, 

Facets). However, the basic structure never changes, and neither does the basic 

approach: ask the API a question, and get an answer. What we really want to do, 

though, is ask the API lots of questions and get lots of answers. To do that, we need to 

have a better system than copying and pasting into a web browser.

Managing Data: Using Processing
In the 1990s, American artist Mark Lombardi created a series of hugely complex draw-

ings (which he called narrative structures) exposing connections between people and 

corporations involved in political and financial frauds. Lombardi would meticulously 

comb through newspaper articles and magazines, recording his findings by hand. He 

had neither an API to pose his questions to, nor any kind of database or software to 

store his answers in. Instead, Lombardi amassed a collection of more than 14,000 

index cards, on which all of his questions and answers were written and from which 

he drew his historical diagrams (see Figure 10-1 in Chapter 10).

Unless you happen to have a few thousand index cards and a few weeks of spare time 

handy, we’re going to need to think of a faster way to manage all of our questions and 

answers. There are a number of different ways we could approach this on a computer, 

and a variety of different software tools and programming languages that would be up 

to the task. I use a language called Processing to work with data, so that’s what we’ll 

be using in our examples. Processing is a free download, and it’s relatively easy to use. 

I’m going to assume in this chapter that you have already downloaded and installed 

Processing (if you need help with this, visit http://www.processing.org).

http://www.processing.org
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In the last section I showed how we can make requests to the Article Search API 

and get answers back in JSON format. We’re going to use Processing to manage our 

requests, parse and store our answers, and display the results onscreen. The most com-

plicated part of this process involves dealing with the JSON return. Rather than dedi-

cating a few thousand words to showing you how to build your own engine to handle 

this, we’ll use some Processing code that I’ve written to make the process a lot easier. 

I’ve wrapped up a lot of the key functionality that we’ll need to deal with the Article 

Search API into a library, which you can download from http://www.blprnt.com/libraries/

nytimes.

Installing libraries in Processing is straightforward—simply drag the unzipped folder 

into the libraries directory in your sketchbook (again, if you need help with this, check 

out http://www.processing.org). If you are interested in the guts of these libraries, the 

project is open source—a bit of Googling will point you in the right direction. For now, 

though, all you need to know is that you can take advantage of their functionality 

to do some useful things. To get started, let’s take a look at how we can ask our O.J. 

question using the new libraries.

First, we import the NYTArticleSearch libraries from the Sketch®Import Library 

drop-down menu. Then we set the size of our stage and give it a nice clean white 

background:

import blprnt.nytimes.*;
size(800,350);
background(255);

Now we’re ready to initialize the libraries with our API key:

TimesEngine.init(this, "YOUR-API-KEY-GOES-HERE");

Next, we’ll create a TimesArticleSearch object to manage our questions (queries) and 

answers (responses):

TimesArticleSearch mySearch = new TimesArticleSearch();

This simple little object allows us to do pretty much anything we need to do with the 

Article Search API. Let’s get a response for a similar query to our 1994 example, this 

time asking for results from both 1994 and 1995:

mySearch.addQueries("O.J.+Simpson");
mySearch.addExtra("begin_date","19940101");
mySearch.addExtra("end_date","19960101");

TimesArticleSearchResult r = mySearch.doSearch();
println("RESULTS ABOUT O.J.:" + r.total);

http://www.blprnt.com/libraries/nytimes
http://www.blprnt.com/libraries/nytimes
http://www.processing.org
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This may seem more complex than our first example, in which we sent a single http 

request, but here we don’t have to deal with the JSON, and we also have a lot of free-

dom in how we can customize our search. The Article Search API gives us a wealth 

of options for structuring search requests, allowing us to make both very specific and 

very general requests.

Let’s consider our search for a moment. We are asking the API to find any articles pub-

lished in 1994 and 1995 that contain the string of characters “O.J. Simpson”. What 

about articles that talk about Orenthal James Simpson? Or just O.J.? Or “The Juice”? 

One of the most powerful things about the Article Search API is that it ties into the 

editorial structure of the New York Times. When an article is published by the Times, it 

is indexed with a set of editorial information. This information, added by humans and 

standardized, is available to the API and makes searching a lot more effective. In our 

case, rather than looking for the phrase “O.J. Simpson”, we can instead look for arti-

cles labeled with the proper person facet for O.J. Simpson (which is “SIMPSON, O J”). 

The editorial staff will have added this facet to any article that mentions or references 

O.J., no matter what name is used in the article body. Our search, then, looks like this:

import blprnt.nytimes.*;
size(800,350);
background(255); 

TimesEngine.init(this, "YOUR-API-KEY-GOES-HERE");

TimesArticleSearch mySearch = new TimesArticleSearch("YOUR-API-KEY-GOES-HERE"); 

mySearch.addFacetQueries("per_facet","SIMPSON, O J");
mySearch.addExtra("begin_date","19940101");
mySearch.addExtra("end_date","19960101");

TimesArticleSearchResult r = mySearch.doSearch();
println("RESULTS ABOUT O.J.:" + r.total);

The only tricky part in using facets is finding out which facets are available and what 

their standard “names” are. An easy way to access this information is to use the 

NYTimes API Request Tool, located at http://prototype.nytimes.com/gst/apitool/index.html. 

This tool lets you test out search queries and see the results, all without any fussy 

code or the need for an API key. To get the proper per_facet for O.J., we can enter 

“O.J Simpson” into the Search Query field and “per_facet” in the Facet Query field, as 

shown in Figure 15-2.

http://prototype.nytimes.com/gst/apitool/index.html
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Figure 15-2.  The API Request Tool can be used to find official Times facets for people, topics, 
and places

Of course, there was more going on in 1994 and 1995 than white Ford Broncos 

and ill-fitting gloves. Using the API Tool, we can gather the correct facets for some 

other events in that time period, like the end of apartheid in South Africa (geo_
facet=SOUTH AFRICA) and the genocide in Rwanda (geo_facet=RWANDA). We can 

construct a new TimesArticleSearch object for each of those searches, or reuse the 

same one by clearing the facet queries each time. This second option makes the most 

sense, so let’s give it a try:

import blprnt.nytimes.*;
size(800,350);
background(255); 
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TimesEngine.init(this, "YOUR-API-KEY-GOES-HERE");
TimesArticleSearch mySearch = new TimesArticleSearch(); 

// OJ search
mySearch.addFacetQuery("per_facet","SIMPSON, O J");
mySearch.addExtra("begin_date","19940101");
mySearch.addExtra("end_date","19960101");
TimesArticleSearchResult r1 = mySearch.doSearch();
println("OJ:" + r1.total

// South Africa search
mySearch.clearFacetQueries();
mySearch.addFacetQuery("geo_facet","SOUTH  AFRICA");
TimesArticleSearchResult r2 = mySearch.doSearch();

println("South Africa:" + r2.total);

// Rwanda search
mySearch.clearFacetQueries();
mySearch.addFacetQuery("geo_facet","RWANDA");
TimesArticleSearchResult r3 = mySearch.doSearch();
println("Rwanda:" + r3.total);

This leaves us with three TimesArticleSearchResult objects, which contain the total 

number of articles returned for each result (we’ll see later that these objects can also 

hold other useful information). It seems like the right time to do some (very) simple 

visualization with this data. Bar graph, anyone? (See Figure 15-3.)

// O.J. bar
fill(255,0,0);
rect(0,50,r1.total,50);

// South Africa bar
fill(0,255,0);
rect(0,150,r2.total,50);

// Rwanda bar  
fill(0,0,255);
rect(0,250,r3.total,50);
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Figure 15-3.  Simple graph comparing the frequency of mentions of  O.J. (in red), South Africa 
(in green), and Rwanda (blue) in the New York Times in 1994 and 1995

OK. I’ll admit it. This isn’t the most exciting visualization ever. However, it embodies 

almost all of the concepts that we’ll need to learn to start making visual exploration 

forays into the huge and treasure-filled NYTimes Article Search database. It also pro-

vides a very, very simple model for the three-step process that I follow when making 

even the most complex data visualizations.

Three Easy Steps
Let’s take a short break from tutorializing and think about the basic process involved 

in a visualization project:

1.	 Get some data.

2.	 Convert the data into useful structures.

3.	 Visualize the data.

Often, this simple procedure is repeated twice during a project: once during discov-

ery and once during production. In the research phase, where the challenge is to dig 

through a set of data and find something useful or interesting, the “getting data” stage 

might be repeated many times, while the visualization stage might be kept as simple as 

possible. In contrast, a production cycle typically occurs once the data has been identi-

fied. This means we spend very little time getting data (since we already have it) and 

much more time in the visualization stage.

Shared in both research and production cycles is step 2: converting the data into useful 

structures. What are these structures? What makes them useful? For me, this process 

usually means packaging up individual pieces of data into objects (programming struc-

tures that let me store related information together). It also typically involves filing 

these objects into some kind of collection—i.e., a list or a grouping that makes sorting 

and retrieving the data easy. 



263chapter 15: this was 1994: data exploration with the nytimes article search api 

In our O.J. example, a lot of this process was handled by the NYTimes Processing 

libraries that we imported at the very beginning of our sketch. We can see objects 

being created every time we perform a search. We make a TimesArticleSearch object 

to manage the request to the API:

TimesArticleSearch mySearch = new TimesArticleSearch();

and a TimesArticleSearchResult object to store the response from the API:

TimesArticleSearchResult r1 = mySearch.doSearch();

These unassuming TimesArticleSearchResult (TASR) objects hold a pile of related 

information about each search result. So far all we’ve done is to access the total num-

ber of results received, a property stored in each result object as an integer called 

total:

println("RESULTS ABOUT O.J.:" + r.total);

The TASR object holds much more than that, though! Indeed, for each of the 713 

articles marked with the O.J. facet published by the New York Times in 1994/1995, we 

can access the headlines, authors, URLs, excerpts, and more—all from our little TASR. 

These individual pieces of data are stored inside each TASR as TimesArticleObjects, 

neatly lined up in an array called articles. By default, the TASR holds the first 10 

search results. If we wanted to get the author of the first article in the list, we could do 

this:

println("FIRST HEADLINE:" + r.articles[0].title);

Or, to get the web URL for the 10th article:

println("100th ARTICLE URL:" + r.articles[9].url);

Or for a list of headlines for each article:

for (int i = 0; i < r.articles.length; i++) {
    println("AUTHOR #" + i + ": " + r.articles[i].author);
};

Here, we are starting to see the tip of the data iceberg that the Article Search API puts 

at our fingertips. So far, we’ve done three fairly rudimentary searches and ended up 

with about 2,000 article results, packaged in a few handy TASRs. Now that we know 

how to access (at least part of) the results of a search, let’s look at some ways to make 

the searches and results a bit smarter.

Faceted Searching
In our examples so far, we’ve seen how we can search with facets to make sure that 

we are getting the results we want. What I haven’t mentioned up to now is that facets 

can also be included in the results of our searches. With facet results, we can find out 

much more from individual searches, and we can also uncover relationships between 

facets (people, countries, topics) that are contained within the article database.
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Let’s start with a simple but very useful example of how we can use facet results to 

optimize our searching. We found out in an earlier example that there were 488 article 

results labeled with the Rwanda geo_facet in 1994 and 1995. What if we wanted to 

break this down further and find out how many articles were published in each indi-

vidual month of 1994? It would be possible, using the same method that we have 

already demonstrated, to do 12 individual searches: one for each month. For each of 

these searches, we could use different values for our begin_date and end_date extras to 

make sure they return the results for the appropriate months. But that seems like a lot 

of work, doesn’t it?

As you may have suspected by now, a better version of this search can be executed 

using facet results. In fact, we can do just one search and get the results we want. We 

start by building the search in the same way we did in our previous example:

TimesArticleSearch mySearch = new TimesArticleSearch(); 
mySearch.addFacetQuery("geo_facet","RWANDA");

Rather than using the begin/end_date extras to constrain the search to 1994, though, 

this time we’ll use the publication_year facet:

mySearch.addFacetQuery("publication_year","1994");

And now, the magic bit. Along with the usual search return (a giant list of articles), 

we’ll ask the API to return us some facets—in this case, publication_year facets:

mySearch.addFacets("publication_month");

When we run our search, the facet results will be packaged up along with all of our 

other data into our TASR:

TimesArticleSearchResult r = mySearch.doSearch();

To access the publication_month results from the TASR, we ask it for an array of 

TimesFacetObjects related to the particular facet we’re interested in (TASRs can con-

tain any number of different facet results):

TimesFacetObject[] months = r.getFacetList("publication_month");

Now we can find out how many results were from, say, January (1994):

println("January results: " + months[0].count);

We can also graph the whole year’s worth of results (Figure 15-4):

for (int i = 0; i < 12; i++) {
    fill(random(150,255),0,0);
    float w = width/12;
    rect(i * w, height, w, -months[i].count * 3);
  };
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Figure 15-4.  Monthly frequency of mentions of Rwanda in the New York Times in 1994

On the face of it, we have a really simple program to find mentions of Rwanda dur-

ing a single year. But this little sketch is actually far more expandable than that. It can 

graph mentions of any faceted term in any year from 1981 to the present. It wouldn’t 

be much of a stretch to make a more robust graphing tool from this simple code. While 

I’d love to go over this process in detail here, I’ve saved us all a bit of time and a lot 

of pages by building the sketch for you. You can find a link to download the NYTimes 

GraphMaker at http://www.blprnt.com/examples/nytimes. 

As useful as this kind of exploration can be, we have so far limited ourselves to dis-

crete searches within the article database. Things get even more interesting when we 

start to use the API to explore connections among people, places, and subjects.

Making Connections
When we make any search request to the Article Search API, we can ask it to return 

us a list of facets that were mentioned alongside our search term in the articles that the 

API has found. For example, we could find out which countries were mentioned along-

side Rwanda, or which people were talked about in articles about O.J., or which topics 

were most often associated with writing about the end of apartheid in South Africa.

We can also make more general requests. By omitting a search term altogether but 

specifying a time frame, we can request all articles for that time period. If we ask for 

lists of facets along with these articles, we can find out what the top facets were for a 

given month, year, or decade. For example, let’s find out who were the top personali-

ties mentioned in 1994. First, we’ll create a search object and give it an empty query 

(we use a + sign in place of an empty space):

TimesArticleSearch mySearch = new TimesArticleSearch();
mySearch.addQueries("+");

Now, let’s restrict the search to 1994 and ask the search object to include the per_facet 

in its results:

mySearch.addFacetQuery("publication_year", "1994");
mySearch.addFacets("per_facet");

and perform the search:

TimesArticleSearchResult r = mySearch.doSearch();

http://www.blprnt.com/examples/nytimes
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If we wanted to list the top personalities mentioned in 1994, we could now do it like 

this:

TimesFacetObject[] stars = r.getFacetList("per_facet"); 
for (int i = 0; i < stars.length; i++) {
    println(stars[i].term);
};

which outputs this rather mixed group of names:

CLINTON, BILL
GIULIANI, RUDOLPH W
CUOMO, MARIO M
CLINTON, HILLARY RODHAM
PATAKI, GEORGE E
SIMPSON, O J
SIMPSON, NICOLE BROWN
KERRIGAN, NANCY
GINGRICH, NEWT
RABIN, YITZHAK
CORTINES, RAMON C
ARAFAT, YASIR
RENO, JANET
WHITMAN, CHRISTINE TODD
BERLUSCONI, SILVIO

This list reminds us of something about the New York Times: it is at the same time a city 

paper, a national paper, and an international paper. With this in mind, it may be less 

strange that we see then–Prime Minister of Israel Yitzhak Rabin (who won the Nobel 

Peace Prize in 1994) mentioned just slightly more often than Ramon Cortines, the 

Schools Chancellor of New York City. While we may be happy with this broad reach, 

we might also want to restrict our searches to a certain “version” of the paper. We can 

do this by again using a facet—this time we’ll ask for articles only published from the 

Foreign Desk by using the desk_facet:

mySearch.addQueries("+");
mySearch.addFacetQuery("publication_year", "1994");
mySearch.addFacetQuery("desk_facet","Foreign  Desk");
mySearch.addFacets("per_facet");
TimesArticleSearchResult r = mySearch.doSearch();
  
TimesFacetObject[] stars = r.getFacetList("per_facet");
  
for (int i = 0; i < stars.length; i++) {
    println(stars[i].term);
};

This query results in a more worldly cohort:

CLINTON, BILL
ARISTIDE, JEAN-BERTRAND
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YELTSIN, BORIS N
ARAFAT, YASIR
RABIN, YITZHAK
CHRISTOPHER, WARREN M
BERLUSCONI, SILVIO
MANDELA, NELSON
GOLDSTEIN, BARUCH
BOUTROS-GHALI, BOUTROS
CEDRAS, RAOUL
CARTER, JIMMY
POPE
KIM IL SUNG
MAJOR, JOHN

This list was generated by a query without a specific keyword or facet search; we could 

take any or each of these names and ask for a list of the top personalities related to that 

personality. Here, we’ll ask for a list of the personalities connected in 1994 to Yitzhak 

Rabin:

mySearch.addQueries("+");
  
mySearch.addFacetQuery("per_facet","RABIN, YITZHAK");
mySearch.addFacetQuery("publication_year", "1994");
mySearch.addFacetQuery("desk_facet","Foreign Desk");
mySearch.addFacets("per_facet");
TimesArticleSearchResult r = mySearch.doSearch();

TimesFacetObject[] stars = r.getFacetList("per_facet");
  
for (int i = 0; i < stars.length; i++) {
    println(stars[i].term);
};

This query gives us this list:

ARAFAT, YASIR
HUSSEIN I
CLINTON, BILL
PERES, SHIMON
GOLDSTEIN, BARUCH
ASSAD, HAFEZ AL-
CHRISTOPHER, WARREN M
CHRISTOPHER, WARREN
WAXMAN, NAHSHON
MUBARAK, HOSNI
SHARON, ARIEL
ABDELSHAFI, HAIDAR
BHUTTO, BENAZIR
BOUTROS-GHALI, BOUTROS
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We are starting now to get not just simple results with our searches, but also connec-

tions between the results. If we were to repeat the process that we used for Rabin with 

the remaining personalities in our first list, we’d end up with 225 personalities in our 

“super list.” This super list, though, would have repeats: as we can see in the Rabin 

list, some of the personalities have already appeared, in our first list (Arafat, Clinton, 

Goldstein, and Boutros-Ghali). 

These relationships are a fascinating part of the data that is available to us from the 

NYTimes database. By examining them, we can uncover both obvious and hidden 

relationships among people, places, and topics. In Figure 15-5, the same list of 255 

names that we mentioned previously is illustrated as a network diagram, with lines 

showing connections between the personalities mentioned.

Figure 15-5.  A network diagram showing the most newsworthy personalities of 1994
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This image distills a huge amount of news information into a single graphic. With a 

typical data retrieval system, this kind of diagram would be extremely time-consuming 

to produce. As we’ve seen, the NYTimes Article Search API makes this process consid-

erably easier for us. 

Let’s take the preceding example and make it a little bit more interesting by combining 

both personalities and organizations. With just 31 queries to the API, we can create a 

single image showing how hundreds of people, corporations, and nations were inter-

related in the 1994 news year (full source code for this example is available at http://

www.blprnt.com/examples/nytimes). The result is shown in Figure 15-6.

Figure 15-6.  This graphic shows the most frequently mentioned people and organizations in the 
New York Times in 1994

http://www.blprnt.com/examples/nytimes
http://www.blprnt.com/examples/nytimes
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Conclusion
The NYTimes APIs present a wealth of information for researchers of any stripe. The 

database is at the same time a historical record and a live feed—new content is being 

created every minute of every day. And of course, however vast the NYTimes database 

might be, it is but a small part of the huge catalog of open data that is available—a cat-

alog that is growing by leaps and bounds with every passing week. Indeed, it seems 

that we may be sweeping past the first problem of open data—how to make data 

available—and right into a second, bigger problem: how can we possibly utilize such 

mammoth amounts of information?

Part of the solution to this problem, in my mind, lies in enabling as many people as 

possible to access and explore the available data. Many large-scale open data initiatives 

have concentrated on serving the already data-literate: software developers, computer 

scientists, and trained information professionals. Much of the focus has been on mak-

ing this data useful on corporate scales. However, as we’ve seen in this tutorial, we can 

explore at least some of these datasets by using simple tools to ask simple questions. 

This skill, put in the hands of journalists, sociologists, historians, artists, and scientists, 

will be essential if we want to make really valuable discoveries in this new territory of 

open data.

What I’m asking of you, then, is to explore. Dig into the Article Search database, ask 

some questions of your own, and share the answers. And that’s just the start. Many 

other APIs can be explored using the skills you’ve learned in this chapter, and there 

are millions of answers to be found. Good luck!
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A Day in the Life of the 
New York Times

Michael Young and Nick Bilton

Have you ever wondered �who the readers of the New York Times website are? We 

have. We also wonder what time of day they tend to visit the site, what devices they use 

to consume our content, and where they come from. New York, Paris, Boise? We think 

about all of these questions, from the who and the when to the how and the why.

In the New York Times Research and Development Labs, a simple lunchtime conversa-

tion on this very topic led to the development of the research visualization described 

in this chapter. As you’ll see, we started with a very simple collection of location-based 

data and quickly became engrossed by the amount of data and the potential for visu-

alizations. We eventually created a visualization showing a day’s worth of traffic to 

nytimes.com and mobile.nytimes.com on a world and a U.S. map.

The first phase of our exploration began with data collection. The New York Times 

website can garner hundreds of millions of page views a month, with the number of 

unique visitors fluctuating between 17 and 21 million. Plus, there are a number of 

other gateways to our content, including the mobile website, the Times Reader AIR 

application, the iPhone application, APIs, and much more.

For this particular experiment, we chose to stick with the standard nytimes.com and the 

mobile version of the website (mobile.nytimes.com). We chose to use two sources for 

simplicity’s sake, but even limiting ourselves to these two datasets, there was a vast 

amount of information for us to sift through and visualize.

The second phase of our exploration led to the creation of a map-based visualization. 

The visualization showed the traffic patterns and fluctuations of the readers on our 

web and mobile sites over a 24-hour period.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>
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As we moved through the stages of the visualization, we were not only surprised by 

the vast numbers of readers coming to the site, but also by the times of day at which 

they arrived. As you can see from the videos at http://bit.ly/nytdayinlife, the nytimes.com 

site is relatively active throughout the evening and has a constant heartbeat of users 

from around midnight to 5 a.m. As the site’s readers begin to wake on the East Coast 

of the U.S., traffic balloons and the visualization expands; a similar swell takes place 

around lunchtime as people presumably take a break at work to check in on the daily 

news. It’s fascinating to look at the number of readers accessing the mobile site versus 

the website (nytimes.com); as later visualizations revealed, at different times of the day, 

there tends to be more mobile than web traffic, and vice versa.

As we gain more opportunities to look at this data, there are some interesting next 

steps we’d like to take. As time permits, we’d like to automate the process to render 

the videos on a daily basis, or even at the moments at which traffic spikes, possibly sig-

naling breaking news events. There’s also plenty of optimization to be done to the data 

collection and visualization code (as always). And finally, we’ve talked about visual-

izing more specific data: for example, showing a day’s worth of traffic coming from a 

single device such as the iPhone, or taking the users in California and geocoding the 

stories they are reading to see if they are reading about New York or tend to focus on 

locations closer to themselves. Other possibilities include looking for patterns in big 

news days or important stories to try to understand how news spreads throughout the 

Web, social networks, and geospecific locations.

The opportunities are endless. We believe that although a single picture can tell a 

thousand words, a single dataset can tell a thousand stories.

Collecting Some Data
Before jumping into the visualization itself, let’s first discuss the data behind it. To 

visualize 24 hours of traffic to nytimes.com and mobile.nytimes.com, we had to come up 

with a process to extract and “massage” the data that we needed from the nytimes 

access logs. Since we knew we wanted to create a geographically based visualization 

showing visits to the site over the period of a day, the data we needed was:

•	 The timestamp of each visit to the web and mobile sites, for a 24-hour period

•	 The latitude and longitude of each user/visit

The raw access logs contain a lot of useful information about people visiting the web 

and mobile sites (such as which browser each visitor is using); however, there is a lot 

of information unnecessary for our purposes that needs to be filtered out from the 

logs. Also, the logs don’t contain the latitude and longitude for each user/visit, so this 

was something we needed to add as part of the “massaging” process.



273chapter 16: a day in the life of the new york times

The New York Times website, a top-five news site in terms of traffic (according to 

Nielsen*), has roughly 20 million monthly unique visitors. For any single day, that 

amounts to many millions of page views (or hits) on both the web and mobile sites; 

this is the data that we are looking to collect for our visualization. 

Let’s Clean ’Em First
The first step in processing the raw access logs is to “clean” them up. This a common 

process for anyone dealing with web logs of any type. For the visualization, and for 

other analyses we may do on the log data, we are only interested in hits to the web 

and mobile sites from humans—not from spiders, bots, or scrapers. To remove the 

irrelevant data, we run some Java code that identifies nonhuman visitors and strips 

their hits out of the logs. The original raw access log data for a day amounts to roughly 

500–700 MB (compressed) for the website and 80–100 MB (compressed) for the 

mobile site. While the data is being cleaned, we also do an IP-to-latitude/longitude con-

version so we can get the exact location of each user visit. The raw access logs con-

tain the users’ IP addresses, which we convert using a commercial database. There are 

many companies that provide GeoIP databases that enable this sort of translation—

MaxMind, for example, provides a commercial database, as well as a free version with 

a variety of client libraries that can access the database.

Once the data was cleaned and properly geocoded, we had to do one last round of pro-

cessing on the data. Because of the way the raw access logs were gathered, stored, and 

then cleaned, the newly cleaned data was located in multiple files and needed to be 

sorted into a single file containing the day’s worth of data that we needed for the visu-

alization. One day’s worth of “cleaned” nytimes.com log data is stored in 360 files, each 

of which is approximately 30–40 MB (compressed). The “cleaned” logfiles are larger 

than the original files due to additional fields in each line, such as GeoIP information. 

For the mobile site, since the dataset is much smaller, the cleaned data is stored in a 

single file, which is about 70 MB (compressed). We needed to comb through each of 

the cleaned logfiles for the day and create a single file (one for the website and one 

for the mobile site) that contained a time-sorted list of each hit to the web and mobile 

sites and the latitude and longitude of each visitor. The resulting file would look some-

thing like this (line by line):

00:00:00,-18.006,-070.248
00:00:00,-22.917,-047.080
00:00:00,-33.983,0151.100
00:00:00,014.567,0121.033
...

*	See http://blog.nielsen.com/nielsenwire/online_mobile/msnbc-and-cnn-top-global-news-sites-in-march/.

http://blog.nielsen.com/nielsenwire/online_mobile/msnbc-and-cnn-top-global-news-sites-in-march/
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Python, Map/Reduce, and Hadoop
For this final step, we created a simple map/reduce script in Python that filtered out 

all of the unneeded data from the cleaned logfiles, output the data we wanted to keep 

in a comma-delimited format, and then sorted the data for us. (In the R&D group, we 

typically use Python for our data collection, processing, and parsing. When visualiz-

ing large datasets, we do all of the heavy lifting in Python and create files that are easy 

to read and parse within the visualization apps.) We ran the map/reduce code using 

Amazon’s Elastic MapReduce web service, which allowed us to run a Python map/

reduce job across multiple EC2 instances using Hadoop. Amazon EC2 instances come 

in different “sizes” (such as small, medium, and large) that offer differing amounts of 

RAM, CPU cores, and memory, so we experimented with running the map/reduce 

code on a variety of EC2 instances to find the “sweet spot” of processing time versus 

cost. The processing took roughly 10–20 minutes (and cost a few dollars), depending 

on the number of machines (we tried anywhere from 4 to 10) and the size of the EC2 

instance (we tried both small and medium).

The resulting output from the map/reduce (Hadoop) job came in multiple, sorted files 

that were saved to Amazon S3 buckets. To get the data into a single file for use in the 

visualization (again, one file for web and one for mobile), we downloaded the output 

files from S3 to a local machine and did a good old-fashioned sort -m on the files to 

merge them. Now that we had our data in the form we wanted, we were ready to dive 

into producing the visualization.

The First Pass at the Visualization
Again, the goal of the project was to visualize a day’s worth of traffic to nytimes.com 

and mobile.nytimes.com, to see how the visits to our sites played out over the day. We 

wanted to see if there were any interesting patterns occurring in specific geographic 

regions, or even across the globe. Where and when did mobile traffic spike in the U.S. 

during the day? Would we see more access to our mobile site in countries like China 

and India, where mobile penetration is higher than in places like the U.S.? How did 

visits to our web and mobile sites look during certain parts of the day, like early morn-

ing, commuting time, the lunch hour, and the commute home? Some of these ques-

tions can be answered with basic site traffic reports, but we wanted to put a new visual 

spin on the usual reports and allow people to see how the site traffic looked geographi-

cally over the course of a day. 

In our first stab at the visualization, we created a simple global map and plotted a small 

yellow circle for each hit to nytimes.com and a small blue circle for each visit to mobile.

nytimes.com as they were happening, second-by-second, throughout the day. Besides 

the global view, though, we also wanted to create a view that was focused on (or 

zoomed in on) the U.S. 
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The first build of our visualization, as we’ll describe in gory detail, was a major learn-

ing experience for us—there were plenty of challenges involved in trying to visualize 

and make sense of such a large dataset, and we found this out firsthand. We reworked 

the code a few times before we settled on the current version, and we are still refining 

the data gathering and visualization processes as we have time.

Processing
Processing (a design-oriented and open source programming language and IDE) 

was the visualization tool of choice, for a couple of reasons. First, a few of us in the 

NYTimes R&D group already had experience using Processing for small data visual-

ization projects, and to explore using devices with sensors as data collection devices. 

Additionally, we are big fans of the work Ben Fry and Casey Reas (the creators of 

Processing) and Aaron Koblin have done with this tool, so we thought it would be 

perfect for visualizing our large datasets.

The first thing we needed for our visualization was some code that would allow us to 

map the latitude/longitude pairs representing the users who visited our sites onto the 

2D map visualization in Processing. Aaron Koblin was kind enough to provide us with 

some code he has used in a previous project to do this—a nice, compact Java class that 

converts latitude/longitude pairs to x, y coordinates. All we had to do was pass the lat/

long pairs in our data files in to the library, and it would give us the x, y coordinates. 

We could then feed those through Processing’s drawing APIs to draw the points on the 

map indicating the locations of each nytimes.com and mobile.nytimes.com visitor.

The Underlay Map
Creating the underlay map—just drawing the world map—took more time than you 

might expect. First we had to find accurate representations of the U.S. and the world. 

After numerous data explorations, we ended up using a dataset from UCLA’s CENS 

group that plots the lat/long coordinates of every city throughout the world.

The initial experiments with this dataset rendered it directly in Processing when the 

application started up, but this took more time than we wanted just for the underlay; 

since we knew this data wouldn’t change, we eventually created a JPEG of the maps 

and loaded a very small file into the background (see Figures 16-1 and 16-2). This 

saved us minutes of rendering time (which can add up when parsing large datasets) 

and processing power, and became the background of all the subsequent data outputs 

and videos.
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Figure 16-1.  U.S. population map

Figure 16-2.  World population map
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Now, Where’s That Data We Just Processed?
Now that we had our latitude/longitude projection code and our map outlines, we 

were ready to start plotting the traffic data onto the map. For the first try at the visu-

alization, we used data from a random day (February 15, 2009) that had no particu-

lar breaking news element. The day had average traffic/visits across both the web and 

mobile sites.

Remember our cleaned up, sorted, and geocoded data files, containing a timestamp 

and latitude/longitude pair for every view/hit on the web and mobile sites for a given 

day? The idea now was to create a Processing application that would rip through both 

the web and mobile logfiles and, for each view/hit, draw a point on the map indicating 

where the user was based during that visit. 

Scene 1, Take 1
Processing apps, for the most part, are made up of two parts: the setup and the draw 

loop. In the setup() function in your Processing app, you can do any type of setup 

work that your app will need, like initializing variables, opening input files, loading 

fonts, etc. The draw loop is where the meat of the Processing code lives. The draw() 

function in a Processing app is typically called 30 to 60 times per second (this is the 

frame rate).

Our first attempt looked like this (illustrated in rough pseudocode):

void setup()
      - open up both the mobile and web log files
      - load the data for the world map
void draw()
      - draw the world map
      - read a second's worth of log data from the web and mobile log files
      - draw a yellow point for each visit/hit to nytimes mobile site (during that 
second in the log file) 
      - draw a blue point for each visit/hit to nytimes.com website (during that 
second in the log file) 

The code, while it had its problems, gave us something to look at on the screen. We 

were able to run the app and view the points drawn on the map over time, as the 

day’s web and mobile site traffic played out. It was incredible to watch the traffic pat-

terns emerge over time—the map looked like it had come alive, with blinking lights 

scattered across the globe (Figure 16-3).
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Figure 16-3.  Original visualization showing traffic from around the world to nytimes.com and 
mobile.nytimes.com—the yellow circles represent traffic to the website, while the blue circles 
represent traffic to the mobile site

This was a great first step, but we had some things to fix both in our code and our 

approach. The following sections describe the three major areas we needed to work on.

No Scale
First, the visualization didn’t display any sense of scale for the volume of web and 

mobile site traffic originating at each user location. At any one time during the day, 

there might be multiple users coming to the web and mobile sites from the same loca-

tion (New York, for example, sees very high traffic flows). At times, thousands of 

people might be on our website, all coming from the same location. Again, think New 

York!

In the initial version of the app, we were drawing the same size point on the map for 

each location (lat/long pair) found in the input logfile. To give some indication of scale, 

we needed to adjust the visual representations of the traffic coming from each location 

(our blue and yellow points on the map) based on the number of users connecting 

from that location.

Second, since the yellow (web) and blue (mobile) points were the same size and we 

drew the web points before the mobile points (in the draw loop), when both types of hit 

came from the same location, the blue mobile points obscured the yellow web points.

Not good for a visualization.
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No Sense of Time
In our first pass at the visualization, we weren’t taking into consideration how much 

time people spent on the web or mobile site for each visit or page view; we simply 

drew a point on the map for each site visit and left it there for the entire duration of 

the visualization. Now, no one would have noticed this for some of the larger cities in 

the world where we have a continuous stream of traffic, but for some small, remote 

locations, where we get only a few views a day, this gave the impression that we had 

traffic from those spots throughout the day.

We needed to fix this, in combination with the scale problem—that is, we needed to 

come up with a way to accurately portray how many people were visiting the site 

from any one location, and how long they were staying on a specific article, or the site 

as a whole.

Most importantly, this had to be done for every second of the day!

Time-Lapse
Finally, we wanted to create a time-lapse video for the entire day’s traffic, allowing us 

to easily share the visualization around the New York Times Company. To solve this 

problem, we decided to use a built-in video library for Processing that saves frames 

from the draw loop to a video file and creates a clean output movie.

Scene 1, Take 2
Working off the code from the first version of our project, we added the ability to cap-

ture the visualization to a file via the Processing MovieMaker library.

We also added support to the app so that each hit to the web or mobile site was prop-

erly represented in terms of the lifespan of the visit to the site. On average, a visit to 

either site lasts three to four minutes. So in this iteration, instead of drawing a point 

on the map and leaving it there for the entire 24-hour period, we tried slowly fading 

each point away over the course of three minutes. Of course, not every hit to the web 

or mobile site is from a unique user making a three-minute visit—many of the hits in 

our logfiles are from repeat users or users who are browsing multiple pages of the site 

over a longer period of time. But to keep the initial version of the visualization from 

getting too complex, we made the blanket statement that each hit would be a “three-

minute visit” to the site. 

For this slightly simplified representation, we needed to keep track of every view/hit 

over the course of a day and fade each one out over the course of three minutes. This 

meant storing a lot of objects in memory. For each hit to the web and mobile site that 

occurred every second, we created an object in our Processing app whose task was to 
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keep track of that hit’s “lifetime”—i.e., how long the point should be on the screen 

(three minutes)—and we used these objects to help fade the points out over the course 

of this lifespan.

So, back to our Processing draw loop. We still read in each second of data from the 

web and mobile logfiles, but now for each hit that occurred we created a Hit object 

with an initial lifetime value of three minutes and an initial opacity of 100% (these 

values decreased over every draw loop iteration). After reading in the log data, we 

iterated through the collection of Hit objects in memory. For each Hit, we redrew the 

point for the hit with an opacity based on the lifetime left for the hit, fading it out over 

the course of the three-minute lifetime. As each Hit reached the end of its lifespan, we 

removed it from memory and removed the corresponding point from the map (i.e., did 

not redraw it).

Since we were visualizing roughly 400–500 hits/second, this approach meant storing 

a lot of objects in memory at any moment in time to keep track of all of the hits (or 

users). We knew this would be problematic and we had some optimization ideas, but 

we wanted to take baby steps and decided to first see if this approach would work.

Let’s Run This Thing and See What Happens!
Adding the support for fading each hit out over the three-minute period got us closer 

to visually representing the traffic to the site, but more work was needed. For one 

thing, at this point we still didn’t have any sense of scale for the traffic originating 

from each location worked into the visualization. Speed was another issue—running 

this version, we were able to produce only about 45 seconds of time-lapse video in 25 

minutes! A memory and processor hog, this baby was slow to run and to render. We 

tried running it on a few different machines in the lab (Mac Minis with 1 GB of RAM, 

MacBook Pros with 4 GB of RAM, and a Mac Pro), but the app was slow to render on 

each machine. The visualization was one step closer to what we were looking for, but 

it needed a new round of optimizations—we needed to produce a day’s worth of time-

lapse video, and at this point the best we had was about an hour’s worth!

The first version of the visualization can be viewed at http://nytlabs.com/dataviz.

The Second Pass at the Visualization
Now that we had a taste for the visualization, we needed to get it fully working. 

Besides adding support to give a sense of scale for the amount of traffic coming from 

each location, we needed to optimize the app, which required rethinking how we col-

lected the data.

http://nytlabs.com/dataviz


281chapter 16: a day in the life of the new york times

Back to That Scale Problem
Showing each hit per second didn’t work without any sense of scale. In the first ver-

sion of the app, a handful of hits coming from rural Canada had the same visual 

weight as the thousands coming from New York. Also, showing every hit per second 

was too expensive in terms of the memory and processing power needed to render the 

visualization.

After thinking this through, we decided the answer was to visualize the number of hits 

from each location per minute, instead of per second. For every minute of data in the 

access logfiles, we’d add up the total number of hits per location. This would give us a 

sense of the scale of traffic for each location, and would greatly reduce the amount of 

raw data input to the Processing app. However, this approach meant a change to our 

data processing and map/reduce jobs.

Massaging the Data Some More
Our Python map/reduce scripts, which originally parsed out the data we needed from 

the raw access logs and then sorted the data based on time, needed some updates. 

Now, the script needed to count each hit per location (latitude/longitude pair) per 

minute and then output that data, sorted by the access time. 

If you aren’t familiar with how map/reduce works, we recommend doing some basic 

reading through some of the tutorials available online. Basically, map/reduce is a pro-

gramming model that allows you to process large amounts of data. The processing is 

split up into two tasks: mapping and reducing. The Mapper typically takes some input 

(logfiles in our case), does some minor processing on the data, and then outputs the 

data in key/value pairs. The Reducer’s job is to take the data output from the Mapper 

and merge or reduce the data into what is usually a smaller dataset.

Our Mapper script read the raw access logfiles and, for each line, output a key/value 

pair in the following format:

Timestamp of the access (in HH:MM format),latitude,longitude      1

In this case, the “key” was a comma-delimited string containing the timestamp and lati-

tude and longitude for each hit in the logfile, and the “value” was 1 (a single hit count). 

Our Reducer then read in each line from the Mapper and kept track of the number of 

hits per location per minute. To do this, it stored each “key” output from the Mapper 

in a Python dictionary and incremented a counter each time it saw the same “key” in 

the Mapper output. Here’s an example of what the Python dictionary looked like:

{
      "12:00,40.7308,-73.9970": 128,
      "12:00,37.7791,-122.4200": 33,
      "12:00,32.7781, -96.7954": 17,
      # cut off for brevity...
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      "12:01,40.7308,-73.9970": 119,
      "12:01,37.7791,-122.4200": 45,
      "12:01,32.7781, -96.7954": 27,
      # ...
}

Once our Reducer had collected all of the input data from the Mapper, it sorted the 

data (based on the key) and output it in sorted order. 

The code for our early versions of the Mapper and Reducer is reproduced here:

Mapper
#!/usr/bin/env python
 
import sys
 
# input comes from STDIN (standard input)
for line in sys.stdin:
      # remove leading and trailing whitespace
      line = line.strip()
      # split the line into words
      words = line.split('\t')
 
      try:
            # output the following:
            # time(HH:MM),latitude,longitude        1
            time = words[1]
            hours,mins,secs = time.split(":")
            t = hours+":"+mins
 
            print '%s,%s,%s\t%s' % (t, words[44], words[45], 1)
      except Exception:
            pass
 
 
Reducer
 
#!/usr/bin/env python
 
from operator import itemgetter

import sys
 
locations = {}
 
# input comes from STDIN
for line in sys.stdin:
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      # remove leading and trailing whitespace
      line = line.strip()
 
      # parse the input we got from mapper.py
      key, count = line.split('\t')
 
      try:
            # update the count for each location (lat/lng pair)
            # per minute of the day
            count = int(count)
            locations[key] = locations.get(key, 0) + count
  
      except Exception:
            # count was not a number or some other error,
            # so silently ignore/discard this line
            pass
 
# sort the data and then output
sorted_locations = sorted(locations.items(), key=itemgetter(0))
for key, count in sorted_locations:
      try:
            time,lat,lng = key.split(',')
            print '%s,%s,%s,%s'% (time, lat, lng, count)
      except Exception:
            pass

The New Data Format
After running our new map/reduce scripts on raw access data, we had a more pre-

cise dataset to work with. Not only did this process reduce the overall data (from 

roughly 30 million lines to 3 million lines for the web access data), but it also gave us 

a hit count for each location.  Now we had the scale factor we were looking for. Here 

is a small sample of the new data—notice the timestamp, latitude, longitude, and hit 

counts (per minute):

12:00,039.948,-074.905,128     
12:00,039.949,-082.057,1       
12:00,039.951,-105.045,3       
12:00,039.952,-074.995,1       
12:00,039.952,-075.164,398     
12:00,039.960,-075.270,1       
12:00,039.963,-076.728,4        
12:00,039.970,-075.832,2       
12:00,039.970,-086.160,4       
12:00,039.975,-075.048,23
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Visual Scale and Other Visualization Optimizations
With the data in its new form, instead of plotting a small point for each hit per second, 

we could now plot a circle for each location per minute and use the hit count as a basis 

for the size of the circle. This would provide the desired sense of scale, enabling view-

ers of the visualization to easily tell the difference between the amount of traffic com-

ing from rural Canada and from New York. 

This approach also greatly reduced the amount of memory needed by the app. We 

still needed to keep track of all hits to the web and mobile sites in memory (so that 

we could fade out the hits over a three-minute period), but now that we were keep-

ing track of locations per minute, the number of Hit objects we needed to store was 

greatly reduced. For any given minute, we typically have traffic coming from roughly 

2,000 to 3,500 different locations around the world. Hit objects for each location must 

be stored in memory; each persists for three minutes, so at any given time there may 

be between 6,000 and 12,000 objects in memory—still a lot, but nowhere near the 

number we had in the previous version.

At this point, the Processing app logic needed to be updated to keep track of the num-

ber of hits per location for any point in time, and to scale the size of the circle given 

the number of hits. Let’s look at a quick example to explain this.

Let’s assume we are talking about access to our website from a specific latitude/longitude 

in New York (there are many in the dataset). Looking at a small period during a day, 

suppose we have the following number of hits beginning at each given time:

12:00 – 100 hits
12:01 – 110 hits
12:02 – 90 hits
12:03 – 80 hits
12:04 – 100 hits

When we draw the circle on the map for this location, we want the size of the circle 

to reflect the hit count, which gives us the sense of scale. However, we cannot sim-

ply base the size on the number of hits/views initiated during the current one-minute 

period. Why not? Remember that a typical visit to the site results in a three-minute 

stay, so we decided to keep track of the number of hits per location for three minutes 

and drop them from the count only after the three-minute period has passed.

Using the hit counts above, our total hit count per minute would therefore be:

12:00 – 100 hits (assuming no previous hits)
12:01 – 210 hits (100 + 110)
12:02 – 300 hits (100 + 110 + 90)
12:03 – 280 hits (110 + 90  + 80)
12:04 – 270 hits (90  + 80  + 100)

Notice how, for any given minute, we keep track of new hits during that minute plus 

the previous two minutes’ hit counts. 
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Updating the Processing app with code to handle keeping track of total hits per loca-

tion per minute produced the result in Figure 16-4. This new version allowed us to 

show the scale of hits from different locations on the map at any given minute, as 

well as showing how that scale expanded and contracted over the day based on the 

increase or decrease of traffic from each location.

Figure 16-4.   The updated visualization showing traffic from around the U.S. to nytimes.com 
and mobile.nytimes.com on June 25, 2009—the yellow circles represent traffic to the website, 
while the red circles represent traffic to the mobile site

Getting the Time Lapse Working
After updating the Processing app to handle the new data input format and method, 

we created a full 24-hour time-lapse video. We had been able to run our new code 

for a few hours at a time without the memory and overall machine latency problems 

that we were seeing before, but now it was time to generate the full time-lapse video. 

Instead of trying to render both the web and mobile data on the map for the first 

attempt at our 24-hour time lapse, we used the mobile data only (which is about 10% 

the size of the web data); this way, we’d see results, or possibly problems, sooner than 

if we tried to render both the web and mobile data.

Not knowing how far we should shrink the 24-hour time lapse (should we show the 

full 24 hours in a 1-minute video, a 10-minute video, or somewhere in between?), 

we settled on 10 minutes as a test. One of the most exciting moments of the project 

was pushing Processing’s “Run” button when we first attempted to render 24 hours 

of mobile data. Rendering this data into a 10-minute time-lapse video took about two 

hours on a MacBook Pro. We had results! 
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After a few fist bumps and congratulations were thrown around, we watched the 

video. About two minutes in, we realized it was much too long—the video felt too 

slow! Time to reload and create something closer to a 1.5-minute time-lapse video.

After a few more attempts and some tweaking to the code and frame rates, we had our 

video. Once we had the app working for rendering the smaller mobile dataset, we cut 

it loose on the combined web and mobile data. Being a much larger dataset, it took 

much longer to render—instead of 2 hours, this one took between 24 and 36 hours, 

depending on the machine it was running on.

Semiautomating
Ultimately, we want to automate the entire process so that we can easily render the 

time lapse for any day on command. The process is semiautomated now, and we can 

fairly easily render multiple time-lapse videos for the same day. For example, we can 

render any of the following:

•	 Web and mobile data on a global map

•	 Web and mobile data on a U.S. map

•	 Web-only data on global and U.S. maps

•	 Mobile-only data on global and U.S. maps

How long does it take to render each? Well, it depends on the date and if it was a big 

news day (i.e., if there was a lot of traffic). For an average day, here is the approximate 

amount of input data for our visualization and how long it takes to render:

Mobile only

      Data file is approximately 7 MB and 300,000 lines

      Rendering takes roughly 2 hours

Web only

      Data file is approximately 70 MB and 3 million lines

      Rendering takes roughly 1 to 2 days

Web + mobile

      Data file is approximately 77 MB and 3.3 million lines

      Rendering takes roughly 1 to 2 days

Math for Rendering Time-Lapse Video
Within our Processing app, we captured video at 15 frames per second. For each 

frame, we drew one minute’s worth of log data on the screen and then captured it 

to file. For 24 hours’ worth of data, we are capturing 1,440 minutes of data. With 15 

minutes’ worth of data rendered every second, rendering 1,440 minutes gives us 96 

seconds of video (roughly a minute and a half).



287chapter 16: a day in the life of the new york times

So, What Do We Do with This Thing?
As this book is going to press, we have just finishing rendering videos for a few days’ 

worth of data. Outside our offices on the 28th floor of the New York Times Building, 

we have 10 monitors in the hallway where we display some of our visualizations, 

including these traffic maps. On six of the monitors, we autoplay the time-lapse vid-

eos; on the remaining screens, we display four static screenshots of the overall traf-

fic for the day for our web and mobile sites (in the U.S. and globally). We are starting 

to share the videos around the company and are exploring more visualizations to see 

what kinds of patterns we can observe throughout the day. We are also looking at the 

differences in usage patterns between days that have large breaking news stories and 

“average” news days.

Conclusion
We’ve seen a few interesting patterns from the visualizations we have created so far, 

most of which are illustrated in Figures 16-5 through 16-8. 

Figure 16-5.  Traffic to mobile.nytimes.com for the entire day of June 25, 2009* 

*	The two large circles are over Dallas, Texas, and Waterloo, Ontario. Both of these cities are mobile 
hubs (e.g., Waterloo is BlackBerry/RIM headquarters) and a lot of mobile traffic is proxied through 
Dallas and Waterloo before arriving at our servers.
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Figure 16-6.  Traffic to mobile.nytimes.com for the entire day of June 25, 2009

Figure 16-7.  Traffic to nytimes.com for the entire day of June 25, 2009
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Figure 16-8.  Traffic to nytimes.com for the entire day of June 25, 2009

First, the mobile site traffic bursts first thing in the morning in the U.S., at around 5:00 

or 6:00 a.m., when people are waking up and commuting to work (especially on the 

East Coast). It continues to hold strong until people get into the office at around 8:30 

or 9:00 a.m.; at this time, the traffic on the website surges for the first time in the day. 

The web traffic, which is strong throughout the day (especially around lunchtime), 

dips slightly during the afternoon, probably around commuting hours, when the 

mobile traffic pops up again. This was the behavior that we expected before beginning 

our research, but the visualization helped confirm our hypothesis.

Another interesting pattern to look at is the strong international traffic to both the web 

and mobile sites, as well as the mobile traffic coming from parts of Africa, China, India, 

and Japan.

We think there will be other interesting observations to make from the international 

and U.S. traffic patterns, and we’ll explore them as we’re able to render more videos 

from our traffic data. We invite you to watch for yourself and let us know what you 

see! You can view samples of the visualizations at http://nytlabs.com/dataviz/.

http://nytlabs.com/dataviz/


290 Beautiful Visualization

Acknowledgments
Noriaki Okada (an intern at the NYTimes R&D Lab) contributed a large part of the 

visualization code and research for this chapter. His work can be found at http://okada.

imrf.or.jp. We would also like to thank Michael Kramer, Ted “Chevy’s” Roden, and Dick 

Lipton for their unwavering support on this project.

http://okada.imrf.or.jp
http://okada.imrf.or.jp


291

C h a p t e r  S e v e n t e e n

Immersed in Unfolding 
Complex Systems

Lance Putnam, Graham Wakefield, Haru Ji, Basak Alper, Dennis Adderton, 
and Professor JoAnn Kuchera-Morin

Media Arts and Technology,  

University of California, Santa Barbara

Our Multimodal Arena
What would it be like to walk into a real-life “Holodeck” or “Cerebro” and experience 

a stunning new world unlike anything seen before? Beyond this, what if we were 

able to experience hitherto unobservable aspects of nature, as environments into 

which the body cannot actually venture? In fact, these questions are on the minds 

of scientists and artists working together, right now, in the AlloSphere located in the 

California NanoSystems Institute at the University of California, Santa Barbara. We 

have in our hands an instrument that allows us to explore and interact with com-

plex, high-dimensional data and systems—whether they be subatomic particles, the 

human brain, or entire synthetic ecosystems—as if they were fully immersive worlds.

The AlloSphere is one of the largest scientific/artistic instruments/laboratories in the 

world for immersive visualization, sonification, and multimodal data manipulation. 

It is a three-story sphere finely tuned for perceptual experiences with a 360-degree, 

super-black, nonreflective screen surrounded by a multichannel loudspeaker array, 

all housed in an echo-free chamber (see Figure 17-1). Multiple users standing on the 

central bridge (Figure 17-2) can interact through myriad multimodal devices as they 

experience stereographic projections and spatial audio.
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Figure 17-1.  A virtual real-scale model of the AlloSphere

Figure 17-2.  A full-scale photo of the AlloSphere
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The AlloSphere was conceived by composer JoAnn Kuchera-Morin as a general-

purpose eye- and ear-limiting multimedia instrument for both new modes of artistic 

expression and scientific discovery. Her intention was to provide a common meeting 

ground where diverse researchers can share insights and pursue similar fundamental 

questions about symmetry, beauty, pattern formation, and emergence. Our attitude to 

this unique opportunity is to establish a frontier of research that is grounded in both 

art and science, but not constrained to either one. This has required a holistic rethink-

ing of the fundamental aspects of our creative medium: computation, data, process, 

perception, interaction, immersion, and evaluation.

With artists, scientists, and engineers working together in the AlloSphere to uncover 

new worlds through unique and compelling simulations and visualizations, we are 

implementing our concept of beauty as truth. We help researchers find this truth 

through the visualization and sonification of intriguing equations. These visualizations 

offer elegant solutions in their unfolding, allowing us to discover symmetry—and bro-

ken symmetry—as it unfolds in these equations. 

Our Roadmap to Creative Thinking
The AlloSphere indeed provides a compelling interactive, multimodal environment for 

a new type of interdisciplinary research that, from the start, tightly integrates quan-

titative and qualitative approaches to problem solving and discovery. It also offers a 

unique opportunity for experiencing—using all of our senses—how complex systems 

unfold over time. We have begun to uncover common themes in how these systems 

are described in terms of computational constructs and how they can be represented 

in terms of beauty and symmetry. Our challenge and opportunity in composing beau-

tiful visualizations is thus to strike a balance of both mathematical truth and percep-

tual expression, and to introduce a new form of art and research as epistemological 

experiment.

Beauty and Symmetry
Beauty no doubt plays a central role in our perceptual engagement, as it is closely 

related to symmetry. In fact, beauty and symmetry have shared an intimate relation-

ship since the time of the ancient Pythagoreans, who stated that the key to beauty 

lies in the proportions of parts and their interrelationships, and that symmetry and 

harmony are the interrelationships in the domains of sight and hearing, respectively 

(Tatarkiewicz 1972). This theory has been one of the most enduring throughout our 

cultural history.

Indeed, symmetry—and its more formal definition as “invariance to transformation” 

(Weyl 1952)—is the basis of some of the most profound scientific theories of nature, 

including special relativity, the laws of conservation, and string theory. Symmetry has 

also played a less acknowledged but vital role in computational simulation. In ancient 

times, we could observe only the patterns in nature around us; today, through the 
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control over proportion afforded by computation, we can compose systems that gener-

ate complex natural patterns with precision and autonomy. At the heart of these com-

plex patterns, we do indeed find symmetries.  In fact, symmetry often helps guide our 

search for significant patterns in the data.

The Computational Medium
Computation and mathematics provide an alluring common language between scientific 

models and aesthetic practice. Computation is a vital tool for scientific simulation and also 

an open-ended material for art. By designing and instantiating complex autonomous sys-

tems, we open the door to a new kind of knowledge based on synthesis of parts.* 

Regardless of the questions we want to ask, computation necessitates a formal and dis-

crete description of the basic components of the data and a consideration of the limits 

of real-time processing. We have found, particularly for physically based models, that 

the data we work with consists primarily of values associated with positions in space 

and/or time. Values represent particular internal intensities, such as velocity, flux, fre-

quency, or complex phase, and are typically correlated to positions in space and/or time. 

Many of the visualization techniques we apply involve filtering out values at a certain 

position (such as a cross-section) or positions at a certain value (such as a contour line).

How the values and positions are instantiated during a program’s execution varies. The 

values can be explicit (given at regular sampling points or as position/value pairs) or 

implicit (computed on the fly using an equation or algorithm). Likewise, the positions 

can be explicit (as position/value pairs) or implicit (determined from the dimensions of 

a regular lattice).

In working with various computational models, we have observed three general para-

digms in how data is represented for storage and processing: 

•	 As a regular lattice of sampled values

•	 As a collection of position/value pairs 

•	 As a function of position  

The difference between the first two is the same as the two general ways images can 

be represented on a computer: raster-based (as a matrix of pixels) or vector-based (as a 

set of points connected with curves). The third paradigm is more like a black box that 

takes in a position and outputs a corresponding value.

With each paradigm, there are specific trade-offs. A lattice permits models consist-

ing of unexpected signals and local interactions, but it requires sampling, leading to 

aliasing and the need for potentially large amounts of memory to model systems at 

*	The field of Artificial Life, for example, attempts to better understand life by attempting to recon-
struct its processes in digito, but has brought with it a fascinating discussion of creativity itself.
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an appropriate level of resolution. In contrast, the position/value and function para-

digms allow fine or arbitrary spatial resolution, but make it computationally difficult to 

model interactions between entities.

A conceptual division that follows naturally from these paradigms is between spatiotem-

poral fields and sets of free agents. Fields are a type of regular lattice in space (possibly 

time-varying) and serve as the substrata of complex systems. They provide the under-

lying architecture of structure and dynamics within a system. Fields represent things 

like density distributions, fluids, and waves. The concept of a field exists in many dis-

ciplines: developmental biology has the morphogenetic field and epigenetic landscape, 

evolutionary biology has the fitness landscape, and physics has quantum fields and 

wavefunctions. Agents are collections of position/value pairs and serve as the super-

strata of complex systems. Agents represent actual discrete entities, possibly mobile, in 

continuous space. They allow us to observe fields more clearly by focusing finely on 

parts of the entire system and filtering it to see its patterns of invariance. In addition, 

agents often interact with one another by reading and writing values in a field.

Interpretation As a Filter
Our work involves not only the design and instantiation of complex systems, but 

also—and just as importantly—the composition of a filter that reduces the overwhelm-

ing vastness of the computational/mathematical spaces into forms that we can per-

ceive and draw meaning from. In other words, visualization and sonification involve 

both the organization of materials (composition) and the presentation of the patterns 

we are trying to reveal (interpretation). 

We often ask ourselves the question “what are we looking for in the data or system?” 

To begin answering this question, we can say that we are looking for the interesting 

patterns that reveal essential aspects of the system as it unfolds. Furthermore, we find 

that utilizing symmetry helps guide our search for significant patterns. The visualiza-

tion techniques we commonly apply, such as isosurfaces, contours, streamlines, and 

particle flows, show aspects of a system where its values (or a derived quantity of 

them) are equivalent or invariant. These “pockets of symmetry” show the similarities 

in the system and tend to provide a good starting point for more deeply understand-

ing its behaviors and patterns. We know that too much symmetry reduces signifi-

cance, while too little symmetry is overwhelming; the filter must fall between these 

extremes of order and disorder. This also applies to time: patterns of interest must 

maintain identity long enough to be recognized, but also change sufficiently to capture 

attention.

Composing a filter is an adaptive process that occurs within a modality just as much as 

across modalities. We find that multimodal representation is important for revealing 

otherwise hidden or nonobvious symmetries and asymmetries in data. Sometimes, the 

most natural sensory modality of a dataset or process will not fully depict important 

aspects of its structure. For example, we find that symmetries of waveforms are better 
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seen and that slightly broken symmetries in spatial data are better heard. We use the 

transformational capacities of computation to map amongst and between modalities, 

searching for a balance that will give a more complete mental picture of the phenom-

ena at hand. In fact, there is evidence that the brain’s memory system consists of an 

“episodic buffer” that integrates visual and aural sensory information into a multi-

dimensional code that interfaces with long-term memory and can subsequently affect 

long-term learning (Baddeley 2000).

The agent-based model has played a dominant role in our filtering and presentation 

of data and systems. Agents are appealing from both a visual and an aural sense since 

they can have smoother and more continuous movements, versus being restricted to 

moving on a discrete lattice. In return, they allow us to observe dominant patterns in 

systems through coherent structures, thus reducing noise. One example is using agents 

to show flux across a coarsely sampled field using smooth and continuous curves.

Project Discussion
In this section, six research projects will be discussed that span areas ranging from 

artistic/scientific mathematical abstraction to precise multimodal representation of 

computational models based on real scientific data and theories. We’ll move from real 

biological data through bio-inspired evolutionary developmental algorithms, to the 

world of atoms; then, moving from the atomic level down to the electron level in one 

single hydrogen atom, we will finally arrive at a project that represents the coherent 

precession of an electron spin.

Allobrain
By Graham Wakefield, John Thompson, Lance Putnam, Wesley Smith, and Charlie Roberts 

(Media Arts and Technology)

Faculty Directors: Professor JoAnn Kuchera-Morin and Professor Marcos Novak (Media Arts and 

Technology)

In the Allobrain, we fly through the cortex of the human brain (Figure 17-3). 

Structural components of functional magnetic resonance imaging (fMRI) data are used 

to create a space that can be experienced as a “world” through which we can navi-

gate. The raw data maps density values of cerebral metabolic activity across a lattice 

of spatial coordinates throughout the brain; the visualization contains two isosurfaces 

through this dataset, selected by the intensity of brain tissue response to the fMRI 

scan. (An isosurface is a 3D contour representing points of a constant value.) Inside this 

world are “search agents” that navigate autonomously to mine the data, indicating 

their presence spatially and visually, clustering in regions of interest and reporting back 

to us through musical sound.  “Wanderer agents,” color-coded to specific brain regions, 

take a random walk through the data looking for high blood-density levels. They alert 

large packs of “cluster agents” to do finer-detailed analysis and visualization in these 
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regions of interest. The wanderer agents can also be commanded to report back to the 

center of the screen and sing blood-density levels, where higher pitches correlate to 

higher levels.

Figure 17-3.  Inside the Allobrain

One can imagine applications not only for medical diagnostics but also for psychologi-

cal studies in cognition and perception: by revealing many dimensions of information 

in a single viewing, Allobrain facilitates early discovery of cellular disorder and under-

standing of how the brain functions. In fact, visual artist and trans-architect Marcos 

Novak—the creator of this world, and whose brain it is—conceived the project to 

engage with the neurological bases of aesthetic appreciation. He describes his work as 

follows:

When we say that something is “beautiful,” what parts of the brain are involved in that 
assessment, and how? Since there is such great variation among people in aesthetic 
matters, a better approach to the question of beauty may be to study one or few 
instances as closed systems, learn as much as possible about them, and then [deter-
mine] if what has been learned can be generalized to others.  

In particular, this work aims to construct a situation in which most of the elements 
that pertain to the making of something beautiful are accessible to investigation. 
Specifically:  

•	 the work to be appraised as beautiful or not 

•	 the method and mechanism of its generation 

•	 the creator, appraiser, and investigator of the work 
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Furthermore, the aim (scientifically and artistically) is to create a feedback loop in 
which the art affects the brain and the brain generates new data that creates new art, 
that in turn affects the brain, that generates new data, and so on.   

To seed the process, I wrote a generative algorithm that produced stimuli that I could not 
anticipate in detail, and that triggered in me the reaction of beauty (in terms of visual and 
spatial composition). The stimuli consisted of either a) an interactive/generative moving/
changing image, [or] b) video recordings of this so that they could be used in the fMRI 
machine. While in the fMRI machine, I was presented with this video (which I had not 
seen previously). Whenever I felt that the visual compositions were beautiful to me, 
I pressed a button. The pressing of the button was timed, so that it could be corre-
lated with the activity of the brain at that instant. The fMRI data was converted into an 
immersive environment, or “world.” This step allows two parallel possibilities: from a 
scientific viewpoint, it permits the structural and functional data to be perceived from 
within in ways that conventional visualization techniques do not allow. From an artistic 
viewpoint, it proposes a novel art form in which the brain (and subsequent mind) pro-
duces the world, and the world alters the mind, which in turn produces another world, 
and so on. In both cases, a feedback loop can be constructed in which the user’s 
response itself helps generate the stimuli that trigger that response, thus amplifying 
the effect.

Presently, the Allobrain reveals one static snapshot of a thought. As we move the proj-

ect forward, real-time interactive fMRI data will allow researchers to be immersed in 

their own thoughts and watch them transform and change, as in Novak’s description. 

The brain will perceive the world and then transform the world through its perception.

Artificial Nature
By Haru Ji and Graham Wakefield (Media Arts and Technology)

http://artificialnature.mat.ucsb.edu

We move now from raw biological data to the processes and systems at the roots of 

life. Artificial Nature is a transdisciplinary research project and bio-inspired immer-

sive art installation based on generative models drawn from systems biology, artifi-

cial life, and complexity sciences rather than empirical data. The computational world 

of Artificial Nature is an ecosystem consisting of populations of organisms interacting 

within a dynamic environment, with which spectators interact. 

The environment is a spatial field based upon equations of fluid dynamics. Simple 

particles flowing within it represent different nutrient types (hue) and energy lev-

els (brightness), and interact kinetically with one another. These particles provide the 

metabolic fuel for the organisms, which are modeled as autonomous agents. Both 

ingestion of nutrients and disposal of waste products are necessary for organisms to 

survive and reproduce.

http://artificialnature.mat.ucsb.edu
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The appearance and autonomous activity of organisms is determined through the 

interpretation of their genetic descriptions according to local (spatial and historical) 

conditions. For example, sufficient accumulation of energy triggers some organisms to 

generate children by asexual reproduction, with small chances of mutation. The shape 

of these organisms is based upon the Boy surface equation (Boy 1901) and is gradually 

varied over their lifetimes to indicate gradual growth and development, while health is 

represented by opacity. 

Activities such as ingestion, reproduction, and detection of neighbors are accompanied 

by different varieties of chirp-like songs, which are fully spatialized in the AlloSphere. 

These sounds are bright, transient-rich, and tightly clustered, making them easier to 

distinguish from one another, localize, and connect to visual events.

Spectators can explore this world freely and endlessly using a six-degrees-of-free-

dom navigator device and can influence it indirectly, creating turbulence just as they 

might have by playing in a stream or sandpit in their childhood. Sensory data collected 

through a camera-eye and microphone-ear, and sometimes through touch, become 

the environmental conditions to which the organisms must adapt. The turbulence of 

the fluid also feeds back to influence the navigation of the spectators. The entire eco-

system, including the spectators themselves, generates continuous patterns of emer-

gent beauty (Figures 17-4 and 17-5).

Figure 17-4.  Artificial nutrients being produced and dispersed in the fluid fields of Artificial 
Nature (version 1: Infinite Game)



300 Beautiful Visualization

Figure 17-5.  Artificial organisms growing and interacting in Artificial Nature (version 2: Fluid 
Space)

We asked what form of art could evolve in the space of the AlloSphere. Artificial 

Nature responds consciously to this challenge as an immersive artwork, a new kind of 

experience within an alternative environment—an infinitely unfolding possible world. 

The open-ended nature of Artificial Nature is grounded in the embodiment of complex 

adaptive systems drawn from artificial life. These agent-based techniques lend them-

selves to real-time simulations, and multimodal interaction embeds spectators into the 

ecosystemic network. 

Artificial Nature is itself a project within a larger evolution. As we embed more dimen-

sions and relations into it, new potentials for pattern, structure, meaning, and beauty 

emerge.

Hydrogen Bond
By Basak Alper, Wesley Smith, Lance Putnam, and Charlie Roberts (Media Arts and Technology), 

and Anderson Janotti (Materials Research Laboratory)

Faculty Directors: Professor JoAnn Kuchera-Morin (Media Arts and Technology) and Professor 

Chris G. Van de Walle (Materials Research Laboratory)
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As we move from the biological and macroscopic world, we enter the world of atoms 

and a new materials compound for clean technology, the multicenter hydrogen bond. 

This is a very important step for the fabrication of transparent solar cells and low-cost 

display devices. Normally, hydrogen forms a covalent bond with other elements (mean-

ing that it bonds by sharing a pair of electrons—since hydrogen has only one elec-

tron, it can form only one covalent bond at a time), but in a zinc-oxide lattice it bonds 

anomalously to four zinc atoms, forming a tetrahedral bond structure.

Our materials science colleagues in the Solid State Lighting and Energy Center at 

UCSB discovered this unique type of bond structure and requested that we represent 

their simulation data visually and sonically in ways that their existing tools would not 

permit. The data we received was a three-dimensional lattice of electrostatic charge 

density at the site of the hydrogen bond. Visualizing this kind of volumetric data poses 

a significant challenge as there is no natural way to see inside a solid shape.

A common way of visualizing volumetric data is to draw isosurfaces to reveal inter-

nal curvature. By applying isosurfaces to the charge density, we made the shape of the 

bond structure more clearly visible in a way similar to how contour lines are used on a 

map to reveal changes in height. Locating local maxima/minima in the data field was 

also an important goal for the scientists, as it would help them identify critical regions 

in the bond. We solved this problem by interpreting the gradient as a volumetric data 

field. Initially we couldn’t get any results, because the sampling distance of the data 

was much larger than the regions we were looking for. We explained how the visual-

ization algorithm worked and convinced the scientists to generate higher-resolution 

data. Once we got the high-resolution data, drawing zero-value isosurfaces in the gra-

dient field successfully showed the local maxima/minima regions. 

To reveal more of the field’s shape, we used a visualization technique called streamlines 

that produces curves that run along the flow of a vector field. We started the stream-

lines near the center of the hydrogen atom and allowed them to flow outward “down” 

the gradient, where hue indicated fast (red) and slow (green) movement. Although 

our science partners initially regarded the streamlines as strange, they proved them-

selves effective by converging upon critical locations in the bond structure.

We extended the standard visualization tools by adding the ability to choose between 

different visualization modes and overlay selected visualizations in a single view (see 

Figure 17-6). Conveying different layers of information in one view requires drawing 

a picture where clutter and ambiguity is minimized. To this end, we utilized a custom 

lighting algorithm that is less diffused and therefore highlights the curvature of the iso-

surfaces. We composited both transparent and wireframe renderings to ease perception 

of multiple transparent surfaces. We found that streamlines and isosurfaces were natu-

ral visual complements as they had the ability to show information in perpendicular 

directions. Showing streamlines and isosurfaces together was not perceived as being as 

problematic as showing multiple layers of isosurfaces, since they were easier to visually 

differentiate.
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Figure 17-6.  Closeup view of hydrogen in a tetrahedral bond with four zinc atoms (blue)

In addition to visuals, we used spatial audio for localizing the bond location and the 

user’s position in the lattice (Figure 17-7). In order to give a sonic identity to the 

atoms, we sonified the emission spectra (the relative electromagnetic radiation) of 

hydrogen, zinc, and oxygen by pitch-shifting their respective emission frequencies 

down 10 octaves to the audible range. 

Figure 17-7.  Researchers immersed in the hydrogen bond

Given the time-invariant and three-dimensional nature of the data, deciding how to 

sonify it was a challenge. One solution we came up with was to scan through the den-

sity field along a parametric curve. We used a Lissajous curve, since it exhibits a high 
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degree of spatial symmetry and smoothness, minimizing sonic distortion. While this 

technique had no visual complement, it produced characteristic sounds and helped 

localize the bond, producing a more complete multimodal experience.

Hydrogen Atom
By Lance Putnam and Charlie Roberts (Media Arts and Technology)

Faculty Directors: Professor Luca Peliti (Kavli Institute of Theoretical Physics) and Professor 

JoAnn Kuchera-Morin (Media Arts and Technology)

We now move from a lattice of atoms down to the electron cloud of a single hydrogen 

atom. Much is known about the shapes of single hydrogen atom orbitals, and physi-

cists have little trouble picturing them in their minds. However, when two or more 

time-varying orbitals are mixed together in superposition, the resulting electron cloud 

is complex and not readily apparent from the individual equations. Furthermore, 

mathematical equations and static images do not capture the dynamics of its complex 

temporal evolution.

Our aim with this work was to create a multimodal experience of a “hydrogen-like” 

atom through interactive visualization and sonification of its electron wavefunction. 

We modeled the atomic orbitals as solutions to the time-dependent Schrödinger equa-

tion with a spherically symmetric potential given by Coulomb’s law of electrostatic 

force. In this model, the relationship between the nucleus and electron is akin to a 

bowl (the nucleus) filled with liquid (the electron), with the difference that the liquid 

can have many different resting shapes and extend outside of the bowl. For computa-

tion, the time-invariant structures of the single orbitals were precomputed and stored 

in a 3D lattice; then, during the simulation, they evolved individually and were mixed 

together spatially. We programmed several preset orbital superpositions to observe 

dynamic behaviors such as photon emission and absorption. 

The first visualization technique we tried was to render the electron cloud as a 3D vol-

ume. This made it easy to see the global, outer shape of the wavefunction, but it was 

difficult to see its inner and more local structure. To address this, we superimposed 

collections of agents on the volume rendering that moved along different flows in the 

wavefunction. This way, we could simultaneously get a sense of the global and local 

structure of the cloud. We found that using colored lines provided a reasonable com-

promise among number of mapping dimensions, visual complexity, and computational 

efficiency (Figure 17-8). Colored line agents gave us three internal dimensions of color 

and four spatial dimensions of orientation and length that we could use for mapping 

purposes. We used hue to distinguish different types of flow and orientation to show 

direction. In addition, the brightness and length of the lines were varied to smoothly 

fade agents into and out of the scene.
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Figure 17-8.  Light emitting configuration of a hydrogen atom

We also wanted to use sound as a way of notifying us of certain types of events—such 

as the emergence or dissipation of certain types of shapes—occurring within the cloud. 

To do this, we used a slight variation on a synthesis technique called scanned synthesis. 

We scanned along the agents like a read head on an audio tape loop and listened to 

the wavefunction amplitude at their locations. By changing the scan rate, we could 

change the pitch of the sound. Lower pitches worked best at revealing the local varia-

tions in shape, while higher pitches worked best at indicating global characteristics. 

We also found it effective to assign different pitch classes (pitches a whole number of 

octaves apart) to the different types of agents so that they could be sonically distin-

guished from one another. This scanning method was successful in alerting us when 

and where a cluster of agents formed at a singularity or attractor basin, but did not 

work so well at informing us about the particular shape formed. Our solution to repre-

senting the system more holistically was not to augment single modalities, but to take 

a multimodal approach, leaving overall shape to visuals and emergence of local struc-

tures over time to sound.

An unexpected outcome of doing this representation was seeing a drastic change in 

the complexity and richness of the wavefunction patterns going from single orbitals to 

mixtures (Figure 17-9). The composite patterns that emerged had no obvious relation 

to the parts and were not at all evident from the mathematical equations. We found 

that interference of waves, a simple and well-known physical mechanism, can serve as 

a powerful construct when thinking about the creation of complex patterns and emer-

gent behavior.
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Figure 17-9.  Higher-order orbital mixture of a hydrogen atom

Hydrogen Atom with Spin
By Lance Putnam (Media Arts and Technology)

Faculty Directors: Professor Luca Peliti (Kavli Institute of Theoretical Physics) and Professor 

JoAnn Kuchera-Morin (Media Arts and Technology)

With this project, we desired to expand on the previous hydrogen atom project by 

using a more complete physical model that included the spin quantum number. We 

also wanted to move away from the regular sampling in space of the wavefunction 

toward something with finer spatial resolution. We decided it would be best to not 

precompute and store the orbitals ahead of time, but instead to compute everything on 

the fly so that we could get the exact values of the wavefunction at all points in space. 

In this sense, the computational representation of the wavefunction changed from a 

lattice of values to a function of position. This new approach also gave us a new per-

spective on agents as a general-purpose visualization and sonification tool. The agents 

could not only show the derived flows of the wavefunction through their individual 

movements, but also represent something about its state, such as its oscillation phases. 

Furthermore, the agents could be programmed to act in an ensemble-like manner to 

create smoother and more connected shapes.

We started by positioning the line agents on a grid and then modifying their orienta-

tion and length based on the underlying wavefunction amplitude. While this gave us a 

good sense of global characteristics, we found the spatial artifacts (Moiré patterns), due 

to their regular positioning in space, to be visually disturbing and misleading. To avoid 
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these artifacts, we next tried to randomly position the agents within a cube. This suc-

ceeded in eliminating the artifacts, but uncovered two more serious and fundamental 

problems. First of all, we found it difficult to visually fuse all the individual agents into 

a coherent form from their individual line shapes. Second, we found that distributing 

the agents uniformly in 3D space does not lend itself to a natural method of sonifi-

cation. While we could use separate spatial structures for visualization and sonifica-

tion, we had found in previous projects—namely, the hydrogen bond project—that an 

underlying connectedness between aural and visual representation is important for 

comprehending the scene.

Our solution to these connectivity problems was to arrange the line agents into a loop 

and keep the agents connected to one another by putting springs between them. This 

gave us an elastic ribbon that would remain smooth and connected, but still have 

enough freedom to move through the space and show local properties of the mea-

sured field. The width of the loop was mapped to the probability density so that sharp 

spikes would indicate a high probability of finding the electron at that position (Figure 

17-10). The loop also worked well for showing wavefunction states that were more 

distributed throughout space (Figure 17-11).

Figure 17-10.  Constructive interference between orbitals of a hydrogen atom with spin
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Figure 17-11.   Outer shell mixture of a hydrogen atom with spin

The loop, being smooth, also permitted a desirable shape for scanning through the 

agents for sonification, as was done with the spinless atom. Visually, the loop provided 

a good compromise between transparency, coherency of shape, and depiction of global 

and local attributes.

Coherent Precession of Electron Spin
By Dennis Adderton and Lance Putnam (Media Arts and Technology), and Jesse Berezovsky 

(Center for Spintronics and Quantum Computing)

Faculty Directors: Professor JoAnn Kuchera-Morin (Media Arts and Technology) and Professor 

David Awschalom (Center for Spintronics and Quantum Computing)

The goal of this project was to represent the coherent precession, or change in rotation, 

of an electron spin within a quantum dot. Seeking out the most capable apparatus for 

measuring the result of quantum coherence in just such a nanoscale device, we vis-

ited the spintronics lab in the UCSB Physics department to learn about Kerr rotation 

microscopy. This is an optical experiment wherein a very fast laser pulse is focused 

onto a semiconductor quantum device. The polarization of the pulse induces coherent 

precession of a single electron spin in the quantum dot. A subsequent pulse measures 

the rotating polarization of the quantum dot to capture a picture of the precessing 

spin. From this measurement, it is possible to quantify a characteristic decay time for 

quantum coherence in the device. Decoherence of the quantum state marks the tran-

sition from the quantum to the classical world.
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To represent the phenomena of the experiment through sonification, we slowed it 

down one million times. This allowed us to hear the tone of the electron and the buzz 

of the pulsing laser. To visualize the phenomena of spin precession, we plotted phase 

angle on the Bloch sphere, a standard graphical tool for physicists. At this point, we 

relied on a simple equation from a published experiment (Berezovsky 2008) to give 

the three-dimensional dynamics (Figure 17-12).

Figure 17-12.  Multiple perspectives on Bloch sphere showing spin precession

This rudimentary test stimulated our senses but immediately revealed an overly simple 

aspect of the model that was not obvious from the outset. Although the precession 

made interesting spherical patterns visually, its temporal components were predomi-

nantly sinusoidal and quickly became boring to listen to. It became clear that a more 

complex system was required to immerse us in a quantum reality. 

To engage our senses, we require a more complete quantum mechanical model of 

nature, rather than a simplified model of the experiment. Representing a theoretical 

model requires interpretation. Aural and visual analogies are made. As an artist, there 

is a need to construct an artifact so that something tangible can be discussed. The art-

work becomes a philosophical apparatus in the discourse of truth—a truth connected 

directly to the mathematics that is being visualized and sonified. 

These works serve as a basis for our philosophical premise that beautiful visualization 

is connected to the visualization and sonification of complex mathematical systems 

that make and break symmetry.
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Conclusion
In the AlloSphere, visualization transforms into beautiful immersive multimodal 

representation, transformation, and creation, resulting in the evolution of a unique 

field. This new field merges the different criteria and metrics of art and science—art 

as speculation, generation, and transformation, and science as model/theory building 

and validation. As we move forward with our research, a new, yet “classical,” style of 

thought is unfolding that integrates science and art into a new environment: a place 

where new art and new technology emerge in mutual adaptation. As this emerg-

ing field and its computation-driven medium develop, the distinction among artists, 

scientists, and engineers begins to disappear and we realize that we are all engineers, 

scientists, and artists—we all design, analyze, and create.
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Postmortem Visualization:  
The Real Gold Standard 

Anders Persson

This chapter’s topic is extremely important �to those who work in the field of 

medical information visualization. Emerging technologies are enabling visual repre-

sentations and interaction techniques that take advantage of the human eye’s broad-

bandwidth pathway into the mind, allowing users to see, explore, understand, and 

validate large amounts of complex information at once. 

A striking feature of both clinical routine and medical research today is the over-

whelming amount of information—particularly, information represented as images. 

Practitioners are dealing with ever-larger numbers of images (hundreds or thousands 

rather than dozens) and more complex, higher-dimensional information (vectors or 

tensors rather than scalar values, arranged in image volumes directly corresponding 

to the anatomy rather than flat images). However, they typically still use simple two-

dimensional devices such as conventional monitors to review this overflow of images, 

one by one. As the bottleneck is no longer the acquisition of data, future progress will 

depend on the development of appropriate methods for handling and analyzing the 

information, as well as making it comprehensible to users. One of the most important 

issues for the future is the workflow. The entire chain from the acquisition of data 

until the point at which the clinician receives the diagnostic information must be 

optimized, and new methods must be validated.

Normally, performing this validation process on living patients has its limitations. It 

can in some cases be impossible to know if the acquired diagnostic information is cor-

rect as long as the patient is alive; the real gold standard is missing. Postmortem imag-

ing has the potential to solve this problem.
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The methodology of autopsy has not undergone any major transformation since its 

introduction in the middle of the 19th century. However, new radiological digital 

imaging methods, such as multidetector computed tomography (MDCT) and magnetic 

resonance imaging (MRI), have the potential to become the main diagnostic tools in 

clinical and forensic pathology in the future. Postmortem visualization may prove to 

be a crucial tool in shaping tomorrow’s healthcare, by validating new imaging technol-

ogy and for quality assurance issues.  

Background
The importance of autopsy procedures leading to the establishment of the cause of 

death is well known. In forensic cases, the autopsy can provide key information and 

guide the criminal investigation. The decreasing trend in the frequency of autopsies 

over the past years has become a serious issue. 

A recent addition to the autopsy workflow is the possibility of conducting postmortem 

imaging—in its 3D version, also called virtual autopsy (VA)—using MDCT or MRI data 

from scans of cadavers and with direct volume rendering (DVR) 3D techniques. At the 

foundation of the VA development are the modern imaging modalities that can generate 

large, high-quality datasets with submillimeter precision. Interactive visualization of these 

3D datasets can provide valuable insight into the corpses and enables noninvasive diag-

nostic procedures. Efficient handling and analysis of the datasets is, however, problem-

atic. For instance, in postmortem CT imaging, not being limited by a certain radiation 

dose per patient means the datasets can be generated with such a high resolution that 

they become difficult to handle in today’s archive retrieval and interactive visualiza-

tion systems, specifically in the case of full body scans. 

Several studies have shown the great potential of virtual autopsy in forensic investiga-

tions. This chapter will investigate several of the reasons for the rising interest in VA. 

Impact on Forensic Work
The main questions to be assessed in examinations of the deceased are the cause 

and manner of death and the severity of injuries suffered, as well as the possibility 

of forensic reconstructions based on the obtained findings. Forensic documentation 

of postmortem findings is predominantly based on the same autopsy techniques and 

protocols that have been used for centuries. The main tools used are scalpels, verbal 

descriptions, and photographs. A major disadvantage of this approach is that the docu-

mentation happens in a haphazard, subjective, and observer-dependent manner. Any 

findings that have not been documented are irreparably destroyed when the cadaver 

is sent to the crematory. Modern cross-sectional imaging techniques can overcome 

these shortcomings, as they provide datasets of cadavers that contain the findings in 
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real dimensions and are storable for the future (Figures 18-1 and 18-2). The digitally 

acquired data can be referred to at any time as new questions arise, or may be sent to 

additional experts for a second opinion.

Figure 18-1.  Metal objects can easily be located in the body with computed tomography. In this 
murder case, there is a knife that penetrates the face, but CT proved that this was not the cause 
of death.

Figure 18-2.  This image shows the cause of death in another case, where the victim was 
stabbed through the heart with a kitchen knife.  
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Some findings that are difficult to visualize in a conventional autopsy can easily be seen 

in a full body CT, such as air distribution within the body—e.g., in the pneumothorax, 

pneumopericardium, bloodstream (air embolism), and wound channels (Figure 18-3). 

A CT can also be invaluable for locating foreign objects such as metal fragments and 

bullets, which are of great importance for the forensic pathologist (Figure 18-4).

Figure 18-3.  The acquired CT data can be visualized interactively with different parameter 
settings: in this case, soft tissue to the left and air distribution in the body to the right.

Figure 18-4.  Tiny lead fragments from a shotgun can easily be visualized with postmortem CT. 
In a conventional autopsy, these fragments can be difficult or even impossible to find.
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The Virtual Autopsy Procedure
The Center for Medical Image Science and Visualization (CMIV) at Linköping 

University Hospital in Sweden, in collaboration with the Swedish National Board of 

Forensic Medicine, has developed a procedure for virtual autopsy that is now used 

routinely for forensic work. This method has been in use since 2003 and has been 

applied to over 300 cases so far (mostly homicides). Our experience with VA has 

shown that full-body, high-resolution DVR visualizations are of great value in crimi-

nal investigations and for the validation of new technologies on living patients. Our 

work has focused on the total workflow for postmortem MDCT and on developing a 

new type of software that can visualize full-body datasets that could previously only be 

viewed in separate parts and with limited interactivity (Figures 18-5 to 18-7). 

Figure 18-5.  After a conventional autopsy, it is impossible to go back. Findings that have not 
been documented are irreparably destroyed when the cadaver is sent to the crematory. 

Figure 18-6.  With CT and/or MRI added to the pipeline, it is always possible to go back and 
redo the virtual autopsy. The digitally acquired data can be referred to at any time when new 
questions arise, and may be sent to experts for a second opinion.
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Figure 18-7.  There is a turf battle between the CSI guys and the police regarding keeping 
the body in the cold storage room. The police are keen on having the autopsy done as soon 
as possible. The CSI guys try to close the crime scene investigation before the autopsy takes 
place. Postmortem imaging solves this problem. A preliminary report from the postmortem CT 
examination makes it possible to preserve the body in the cold storage room.

Data Acquisition 
The traditional physical autopsy at CMIV is extended by adding the CT and MRI as VA 

activities. In most cases, the forensic pathologist comes to the crime scene and oversees 

the handling of the human cadaver, which is placed in a sealed body bag before being 

transported to the forensic department and put in cold storage. The following morning, 

a full-body dual source CT (DSCT) scan is performed at CMIV with a state-of-the-art 

SOMATOM Definition Flash scanner (from Siemens Medical Solutions in Germany). 

Currently, both single- and dual-energy modes are used for virtual autopsy cases; see 

Figure 18-8(a) and (b). In selected cases, an MRI examination is also performed (using 

an Achieva 1.5T scanner, from Philips Medical Systems in The Netherlands). All chil-

dren are routinely examined with MRI, because it offers superior visualization of the 

brain compared to DSCT (Figure 18-9). The cadaver remains in the body bag through-

out the virtual autopsy procedure to ensure the security of technical evidence of foren-

sic value, such as fibers and body fluids, and to avoid contamination. 
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A

  

B

Figure 18-8.  (a) A state-of-the-art dual source computed tomography scanner with dual energy 
possibilities. (b) A magnetic resonance scanner. Both scanners are used for virtual autopsies at 
CMIV. 

Figure 18-9.  Dual energy CT of a small child who has been shot. Note the excellent visualiza-
tion of the bullet and the bullet track. Easy to present in the courtroom.



318 Beautiful Visualization

Computed tomography: Use of dual energy CT
Dual energy CT (DECT) with two x-ray sources running simultaneously at different 

energies can acquire two datasets showing different attenuation levels. DECT allows 

additional information about the elementary chemical composition of CT-scanned 

material to be obtained. Compton scattering can be determined by using two different 

average photo energies, which correspond to two different tube voltages (80 and 140 

kV). In other words, x-ray absorption is energy-dependent—e.g., scanning an object 

with 80 kV results in a different attenuation than scanning it with 140 kV. This physics 

phenomenon can help to discriminate between materials with similar atomic numbers, 

such as calcium and iodine contrast. Colors can then be assigned according to changes 

in the CT numbers between the two energy settings, and the resulting color-mapped, 

dual-energy image can differentiate between calcifications and iodine contrast. 

This technique can also be used to better visualize postmortem blood clots in ves-

sels, and possibly bleeding in soft tissue. The material-specific difference in attenua-

tion shown in the resulting image could facilitate classifications of different tissue types 

such as blood, soft tissue, tendons, and cartilage (Figure 18-10).  

Figure 18-10.  Tendons examined with dual energy CT. Tendons and small vessels can be 
visualized without IV contrast. Ligaments between the carpal bones are visualized.
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DECT has the potential to be an important diagnostic tool in the healthcare of tomor-

row. However, further research needs to be done to explore this new technique. VA 

can speed up this research.

MRI: Use of synthetic magnetic resonance imaging
It is difficult to generate good contrast MRI images on dead, cold bodies—body temper-

ature influences the MR relaxation times of all tissues, and hence clinically established 

protocols need to be adjusted for optimal image quality at any given temperature. This 

problem can be solved by measurement of the absolute MR tissue parameters for tis-

sue characterization, T1, T2, and proton density (PD). 

Since this can be difficult to implement on a clinical MRI scanner, a new approach has 

been invented at CMIV called synthetic MRI. In this approach, the three absolute param-

eters are translated into ordinary MR contrast images (Figures 18-11 and 18-12). A 

color scale can be used such that each tissue acquires a specific color composition 

depending on its MR tissue parameters, independent of body temperature. Since the 

MR parameters are absolute, an identical color transformation will lead to a specific 

color-to-tissue relation, and a visual segmentation of tissue. Especially for postmortem 

imaging, this is important, since the image contrast may vary dramatically with tem-

perature (Figure 18-12). 

Figure 18-11.  Example of synthetic MRI on a living patient: the upper row are conventional 
images and the lower row are the synthetic counterpart based on a single dataset.
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Figure 18-12.  Full-body synthetic MRI scan. The contrast can be synthesized, the tissue can be 
segmented, and based on the MR parameters even temperature can be established.

Postmortem examinations do not suffer from motion artifacts, and high-resolution 

images can be obtained with a long scan time. An example is shown in Figure 18-13, 

which shows a head shot wound in 1.2 mm isotropic resolution. Since synthetic MRI 

is based on absolute values, it can be used to render 3D images with CT postprocessing 

software, resulting in the volume renderings displayed in Figures 18-13 and 18-14.

Figure 18-13.  Postmortem synthetic MRI examination of a gunshot wound in high isotropic 
resolution. Red color in the lefthand image represents blood.

Figure 18-14.  Automatic segmentation of cerebrospinal fluid (19.8 ml for this slice) and 
pathology (1.9 ml for this slice) with synthetic MRI.
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Visualization: Image Analysis
In preparation for the physical autopsy, the pathologist and the radiologist conduct a 

collaborative DVR session. They can obtain a clear survey of the entire body quickly, 

and localize fractures and air pockets. The full-body procedure permits fast localization 

of foreign objects such as metal fragments or bullets. Another important aspect is the 

high resolution of the data, which, in a seamless visualization, allows details such as 

dental information to be extracted for identification purposes (Figure 18-15). This can 

provide essential information in the early part of a police investigation. After scanning, 

the forensic personnel leave CMIV and start the conventional autopsy. Data from the 

collaborative DVR session is transferred to the forensic institute for them to use, and if 

more information is needed later, new contact with the radiologist is made.

Figure 18-15.  With volume rendering 3D, it is possible to interactively change settings so that 
the body can be visualized seamlessly, from skin to skeleton. 

Objective Documentation
An important added value of the virtual autopsy procedure is that the captured DSCT 

data is stored, which enables the procedure to be iterated. Often, findings during the 

physical autopsy lead to new questions that the VA can answer. The pathologist and 

the crime investigators can also—at any point during the investigation—re-examine 

the cadaver and search for additional information (Figure 18-16). Moreover, in crime 

scene investigations, new findings may require other hypotheses to be scrutinized by 

postmortal imaging. 
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Figure 18-16.  Dual energy CT of the heart and the coronary arteries. More plaque components 
can be visualized with dual energy compared to conventional single energy images (red circle).

VA is currently used as a complement to the autopsy procedure. It should, however, 

be noted that the workflow overhead introduced is minimal, as the time needed for 

the DSCT scan and visualization session is short in comparison to the physical autopsy, 

and that it can make the autopsy more efficient because the pathologist will have prior 

knowledge of the case before beginning the autopsy. That the cadaver remains in a 

sealed body bag throughout the VA procedure also secures technical evidence, such as 

fibers and body fluids, which in forensic cases may be of great importance.

Advantages and Disadvantages of Virtual Autopsy 
Let’s take a look at the advantages of VA compared with conventional autopsies:

•	 It is time-saving. The VA can be a complement to standard autopsies, enabling 

broad, systematic examinations of the whole body that are normally difficult and 

time consuming; for example, an examination of the entire bone structure or 

searching for the presence of air in the body (Figures 18-3 and 18-4).

•	 It is noninvasive. Once an invasive traditional autopsy has taken place, the body 

cannot be reassembled in its original state, thus precluding other forensic patholo-

gists from conducting a fresh analysis on the same body (Figures 18-5 through 

18-7). 
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•	 A traditional autopsy may be rejected by family members, perhaps due to reli-

gious beliefs that prohibit the desecration of the remains of a deceased person. For 

example, Orthodox Judaism prohibits disturbing dead bodies except when such 

action may save others, and decrees that practices such as organ removal should 

be avoided. Islam is likewise opposed to desecrating or even exposing the body of 

a deceased believer.

•	 Autopsy protocols and photographs used as evidence in criminal cases can be dif-

ficult for jurors to understand. VA visualizations are typically clearer (Figures 18-4 

and 18-9). 

•	 Storage of VA data poses few problems, whereas autopsy records such as tissue 

sections are difficult to store indefinitely (Figure 18-16).

•	 With potential global pandemics such as bird flu (avian influenza A) and swine flu 

(the H1N1 virus) posing an increasing threat, the practice of eviscerating the vic-

tims can pose serious health risks to coroners, pathologists, and medical examin-

ers. With a VA, these risks are minimized.

However, virtual autopsies also have several shortcomings:

•	 For MDCT, soft tissue discrimination is low. Energy-resolved CT (DECT) has the 

potential to resolve this problem (Figure 18-10). 

•	 The large amount of data produced is a problem to analyze, but better and faster 

postprocessing programs should solve this.

•	 MRI is a time-consuming investigation and not optimal on a cold body. Synthetic 

MRI is a promising alternative (Figure 18-14).

•	 Postmortem imaging with MDCT and MRI does not give any color documentation 

of the body. It may be possible to solve this issue with new volume-rendering 3D 

methods and body surface scanning (Figure 18-15).

•	 Macro morphology is absent (no histology and chemistry). This can be solved to 

a certain extent with MDCT guided biopsies or magnetic resonance spectroscopy 

(Figure 18-16).

•	 Circulation and possible bleeding points are difficult to visualize, although promis-

ing results have been achieved with postmortem angiography. As has been shown, 

postmortem CT angiography can be a feasible way to obtain more information 

from the VA (Figure 18-17).

•	 Postmortal gas can be difficult to distinguish from other types of gas (bowel gas, 

gas in wound channels, etc.). Therefore, it is important to execute the postmortem 

imaging examination soon after death has occurred (Figure 18-18).
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Figure 18-17.  Contrast injected in arteries postmortem with good results in horse and antelope. 
Data has been acquired with dual energy CT.
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Figure 18-18.  With conventional autopsies, different kinds of body gases are difficult to 
examine.

The Future for Virtual Autopsies
Both MDCT and MRI can be used for postmortem imaging. In principle, it is easy to 

visualize bone, gas, and metal with MDCT. However, it is important to be aware of not 

only the capabilities, but also the limitations of these technologies.

Visualization research in the future must include the overall aim of implementing a 

virtual autopsy workstation that includes everything needed to perform state-of-the-

art virtual autopsies. Visualization tools to increase the quality and efficiency of virtual 

autopsy procedures need to be developed. Research and development efforts focusing 

on novel rendering and classification techniques are also needed to improve usability 

and to specifically address forensic questions. Another important goal is to establish 

designated protocols for the main forensic case categories.

The data analysis research includes the implementation of computer-aided diagnostic 

tools that can, once applied to the postmortem data, help search for and characterize 

relevant forensic findings. These tools can also deliver general information about the 

deceased individual such as height, body weight, sex, major injuries, foreign bodies 

(e.g., projectiles), and likely causes of death in an automatically generated preliminary, 

written virtual autopsy protocol.   

When all of these tasks have been successfully addressed, the technology involved 

within all processes of a virtual autopsy can be improved to enable automation of the 

entire workflow. This will allow for virtual autopsies to be performed in large numbers 

within a reasonable time frame. This would be invaluable in handling incidents with 

significant numbers of victims such as those created by the tsunami catastrophe in Asia 

in 2004, where no autopsies were performed at all.
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As terrorists improve their applied technologies day by day, it is unthinkable that 

forensic pathologists should not also be able to make use of emerging technologies in 

order to gather as much information as possible from their victims (Figure 18-19). In 

times where no one can really feel safe, we should not only focus on the prevention 

of catastrophe, but also prepare ourselves to handle disasters adequately when they do 

occur. 

Figure 18-19.  Postmortem CT of a burned person. Metal in the body makes it impossible to use 
MRI. Before the CT examination, there was no suspicion of murder, but several fractures that 
could not be explained pointed the investigators in the right direction—murder!
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For a new era of digital autopsies to truly emerge, several forces must work in unison. 

Medical professionals and legal authorities must determine standard protocols for 

scanning and storing data. Legal systems around the world must accept the admissibil-

ity of imaging evidence in determining the cause and manner of death. Also, specialists 

in new fields such as postmortem radiology will need to be trained. Radiologists are 

typically trained to interpret images of living patients, but the dead often look differ-

ent; severe trauma or the effects of decomposition can displace organs. Understanding 

these differences will require knowledge and expertise that does not exist on a wide-

spread basis today. 

Invasive autopsies will likely remain the norm for at least the next few years. 

However, in some cases, we may begin to see traditional autopsies being replaced by 

noninvasive virtual autopsies, with minimally invasive, image-guided tissue sampling 

conducted when necessary. Postmortem VA has the potential to gain high acceptance 

in the population compared with the traditional autopsy, making it possible to main-

tain high levels of quality control in forensic and traditional medicine.

Conclusion
The virtual autopsy is a newly developed procedure that will enhance the classic 

autopsy, giving it the capacity to achieve more reliable results.  In some cases, the vir-

tual autopsy could also replace the normal autopsy. Research on the unique aspects of 

postmortem radiology must, however, be undertaken to identify cases in which its use 

is most beneficial and to validate the new procedures. Clearly, the introduction of this 

new autopsy method is likely to have a major impact on forensic medicine, the judicial 

system, the police, and general medicine in the future.
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Animation for Visualization: 
Opportunities and Drawbacks

Danyel Fisher

Does animation help� build richer, �more vivid, and more understandable visualiza-

tions, or simply confuse things?

The use of Java, Flash, Silverlight, and JavaScript on the Web has made it easier to 

distribute animated, interactive visualizations. Many visualizers are beginning to think 

about how to make their visualizations more compelling with animation. There are 

many good guides on how to make static visualizations more effective, and many 

applications support interactivity well. But animated visualization is still a new area; 

there is little consensus on what makes for a good animation. 

The intuition behind animation seems clear enough: if a two-dimensional image is 

good, then a moving image should be better. Movement is familiar: we are accus-

tomed to both moving through the real world and seeing things in it move smoothly. 

All around us, items move, grow, and change color in ways that we understand deeply 

and richly. 

In a visualization, animation might help a viewer work through the logic behind an 

idea by showing the intermediate steps and transitions, or show how data collected 

over time changes. A moving image might offer a fresh perspective, or invite users 

to look deeper into the data presented. An animation might also smooth the change 

between two views, even if there is no temporal component to the data. 

As an example, let’s take a look at Jonathan Harris and Sep Kamvar’s We Feel Fine 

animated visualization (http://wefeelfine.org). In this visualization, blog entries men-

tioning feelings are represented as bubbles. As users move between views, the bubbles 

http://wefeelfine.org
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are reorganized into histograms and other patterns. For example, one screen shows 

the relative distribution of blog entries from men and women, while another shows 

the relative distribution of moods in the blog entries. While the bubbles fly around the 

screen freely, there are always a constant number on the screen. This constancy helps 

reinforce the idea of a sample population being organized in different ways. Animation 

is also used to evoke emotion: the bubbles quiver with energy, with those that represent 

“happy” moving differently than bubbles that represent “sad.”

Not all animations are successful, though. Far too many applications simply borrow 

the worst of PowerPoint, flying data points across the screen with no clear purpose; 

elements sweep and grow and rotate through meaningless spaces, and generally only 

cause confusion. 

I have had several occasions to build animated visualizations. In 2000, I worked with 

fellow grad students building GnuTellaVision, which visualized the growing Gnutella 

peer-to-peer network. Since then, I have been involved in a variety of projects that 

have shed light on animated visualization: for example, I worked on a project that 

explored animated scatterplots, and I was a close bystander on the DynaVis project, 

which looked at transitions between different visualizations. In this chapter, I will talk 

through some of these experiences and to try to develop some principles for animating 

visualizations.

Animation can be a powerful technique when used appropriately, but it can be very 

bad when used poorly. Some animations can enhance the visual appeal of the visu-

alization being presented, but may make exploration of the dataset more difficult; 

other animated visualizations facilitate exploration. This chapter attempts to work out 

a framework for designing effective animated visualizations. We’ll begin by looking 

at some background material, and then move on to a discussion of one of the most 

well-known animated visualizations, Hans Rosling’s GapMinder. One of the projects I 

worked on explored animated scatterplots like GapMinder; this makes a fine launch-

ing point to discuss both successes and failures with animation. As we’ll see, successful 

animations can display a variety of types of transformations. The DynaVis project helps 

illustrate how some of these transitions and transformations can work out. The chap-

ter concludes by laying out a number of design principles for visualizations. 

Principles of Animation
At its core, any animation entails showing a viewer a series of images in rapid suc-

cession. The viewer assembles these images, trying to build a coherent idea of what 

occurred between them. The perceptual system notes the changes between frames, so 

an animation can be understood as a series of visual changes between frames. When 

there are a small number of changes, it is quite simple to understand what has hap-

pened, and the viewer can trace the changes easily. When there are a large number of 

changes, it gets more complex.
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The Gestalt perceptual principle of common fate states that viewers will group large 

numbers of objects together, labeling them all as a group, if they are traveling in the 

same direction and at the same speed. Individual objects that take their own trajecto-

ries will be seen as isolates, and will visually stand out. If all the items move in differ-

ent directions, however, observers have far more difficulty following them. Perception 

researchers have shown that viewers have difficulty tracking more than four or five 

objects independently—the eye gives up, tracking only a few objects and labeling other 

movement as noise (Cavanagh and Alvarez 2005). 

Animation in Scientific Visualization
Attendees at the annual IEEE VisWeek conference—the research summit for visual-

ization—are divided into two groups: information visualizers and scientific visualizers. 

The two groups give different talks, sit in different rooms, and sometimes sit at differ-

ent tables at meals. Watching the talks, one quickly notices that roughly half of the 

papers in the scientific visualization room feature animation, while almost no papers 

in the information visualization room do. You could say that the difference between 

the groups is that scientific visualizers are people who understand what the x-, y-, and 

z-axes actually mean: they are very good at picturing the dimensions of an image and 

understand the meaning of depths and distances. The dynamic processes they often 

represent—wind blowing over an airplane wing, hurricanes sweeping across maps, 

blood flowing through veins—also involve an additional dimension: that of time. As it 

would be difficult to squeeze its representation into any of the other three dimensions, 

animating is an attractive method for displaying such processes. 

In contrast, data visualization is less straightforward. Information visualizers usually 

work with abstract data spaces, where the axes do not correspond to the real world 

(if they mean anything at all). Viewers need to get acclimated to the dimensions they 

can see, and learn how to interpret them. Consequently, there are comparatively few 

examples of animation published in the information visualization community. (We 

will discuss some of these later.)

Learning from Cartooning
Animation, of course, appears popularly in places outside of visualizations. Movies and 

cartoons depend on some of the same physical principles as computer animation, so 

several people have asked whether cartooning techniques might bring useful insights 

to the creation of animated visualizations. As early as 1946, the Belgian psycholo-

gist Albert Michotte noted the “perception of causality” (Michotte 1963). It is easy 

to believe that the movement in an animation shows intent: that this point is chasing 

another across the screen (rather than moving in an equivalent trajectory one second 

behind it), that this ball hit another (rather than “this dot stopped at point A, and this 

other dot moved from A to B”), and so on. Thus, we can ascribe agency and causality 

where none really exists.
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In cartoons, of course, we wish to communicate causality. Traditional cartoonists have 

described how they endow drawn shapes with the “illusion of life” (Johnston and 

Thomas 1987) in order to convey emotion, and several rounds of research papers 

(Lasseter 1987; Chang and Ungar 1993) have tried to see how to distill those ideas for 

computer animation and visualization. 

Traditional cartoonists use a barrage of techniques that are not completely true to 

life. Squash and stretch, for instance, distorts objects during movement to draw the eye 

toward the direction of motion: objects might stretch when they fly at their fastest, and 

squashing them conveys a notion of stopping, gathering energy, or changing direc-

tion. Moving items along arcs implies a more natural motion; motion along a straight 

line seems to have intent. Before objects begin moving, they anticipate their upcom-

ing motion; they conclude with a follow-through. Ease-in, ease-out is a technique of tim-

ing animations: animations start slowly to emphasize direction, accelerate through the 

middle, and slow down again at the end. Complex acts are staged to draw attention to 

individual parts one at a time.

Visualization researchers have adapted these techniques with differing degrees of 

enthusiasm and success—for example, the Information Visualizer framework (Card, 

Robertson, and Mackinlay 1991), an early 3D animated framework, integrated sev-

eral of these principles, including anticipation, arcs, and follow-through. On the other 

hand, some elements of this list seem distinctly inappropriate. For instance, squash-

ing or stretching a data point distorts it, changing the nature of the visualization; thus, 

we can no longer describe the visualization as maintaining the consistent rule “height 

maps to this, width maps to that” at each frame of the animation. In their research on 

slideshows, Zongker and Salesin (2003) warn that many animation techniques can be 

distracting or deceptive, suggesting causality where none might exist. Also, they are 

often meant to give an illusion of emotion, which may be quite inappropriate for data 

visualization. (An exception would be We Feel Fine, in which the motion is supposed 

to convey emotion and uses these techniques effectively to do so.)

The Downsides of Animation
Animation has been less successful for data visualization than for scientific visualiza-

tion. Two metastudies have looked at different types of animations—process anima-

tions and algorithm visualizations—and found that both classes have spotty track 

records when it comes to helping students learn more about complex processes. 

The psychologist Barbara Tversky found, somewhat to her dismay, that animation 

did not seem to be helpful for process visualization (i.e., visualizations that show how 

to use a tool or how a technique works). Her article, “Animation: Can It Facilitate?” 

(Tversky, Morrison, and Bétrancourt 2002), reviews nearly 100 studies of animation 

and visualization. In no study was animation found to outperform rich static diagrams. 

It did beat out textual representations, though, and simple representations that simply 

showed start and end state without transitions. 
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Algorithm animation is in many ways similar to process visualization: an algorithm 

can be illustrated by showing the steps that it takes. Some sort algorithms, for exam-

ple, are very amenable to animation: an array of values can be drawn as a sequence of 

bars, so the sort operations move bars around. These animations can easily show the 

differences between, say, a bubble sort and an insertion sort. Christopher Hundhausen, 

Sarah Douglas, and John Stasko (2002) tried to understand the effectiveness of algo-

rithm visualization in the classroom, but half of the controlled studies they examined 

found that animation did not help students understand algorithms. Interestingly, the 

strongest factor predicting success was the theory behind the animation. Visualization 

was most helpful when accompanied by constructivist theories—that is, when stu-

dents manipulated code or algorithms and watched a visualization that illustrated their 

own work, or when students were asked questions and tried to use the visualization to 

answer them. In contrast, animations were ineffective at transferring knowledge; pas-

sively watching an animation was not more effective than other forms of teaching.

GapMinder and Animated Scatterplots
One recent example of successful animated visualization comes from Hans Rosling’s 

GapMinder (http://www.gapminder.org). Rosling is a professor of Global Health from 

Sweden, and his talk at the February 2006 Technology, Entertainment, Design (TED) 

conference* riveted first a live audience, then many more online. He collected public 

health statistics from international sources and, in his brief talk, plotted them on a 

scatterplot. In the visualization, individual points represent countries, with x and y val-

ues representing statistics such as life expectancy and average number of children and 

each point’s area being proportionate to the population of the country it represents. 

Rosling first shows single frames—the statistics of the countries in a single year—

before starting to trace their progress through time, animating between the images 

with yearly steps in between. 

Figure 19-1 shows three frames of a GapMinder-like animation. On the x-axis is the 

life expectancy at birth; on the y-axis is the infant mortality rate. The size of bubbles is 

proportionate to the population. Color-coding is per continent; the largest two dots are 

China and India.

Rosling’s animations are compelling: he narrates the dots’ movement, describing their 

relative progress. China puts public health programs in place and its dot floats upward, 

followed by other countries trying the same strategy. Another country’s economy 

booms, and its dot starts to move rapidly rightward. Rosling uses this animation to 

make powerful points about both our preconceptions about public health problems 

and the differences between the first and third world, and the animation helps viewers 

follow the points he is making.

*	Available online at http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html. 
Rosling presented similar discussions at TED 2007 and TED 2009.

http://www.gapminder.org
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
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Figure 19-1.  A GapMinder-like visualization showing information about a set of 75 countries 
in 1975, 1985, 1995, and 2000; this chart plots life expectancy (x axis) against infant mortal-
ity (y axis)—countries at the top-left have a high infant mortality and a short life expectancy

Too many dots?
The perceptual psychology research mentioned earlier showed that people have 

trouble tracking more than four moving points at a time. In his presentation, Rosling 

is able to guide the audience, showing them where to look, and his narration helps 

them see which points to focus on. He describes the progress that a nation is making 

with the assistance of a long pointer stick; it is quite clear where to look. This reduces 

confusion. 

It also helps that many of the two-dimensional scatterplots he uses have unambigu-

ously “good” and “bad” directions: it is good for a country to move toward a higher 

GDP and a longer life expectancy (i.e., to go up and to the right), and bad to move in 

the opposite direction (down and to the left).  

With Rosling’s sure hand guiding the watcher’s gaze, the visualization is very effective.  

But if a temporal scatterplot were incorporated into a standard spreadsheet, would it 

be useful for people who were trying to learn about the data?
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Testing Animated Scatterplots
At Microsoft Research, we became curious about whether these techniques 

could work for people who were not familiar with the data. We reimplemented a 

GapMinder-like animation as a base case, plotting points at appropriate (x, y) locations 

and interpolating them smoothly by year. We then considered three alternative static 

visualizations that contained the same amount of information as the animation. First, 

of course, we could simply take individual frames (as in Figure 19-1). Even in our ear-

liest sketches, however, we realized this was a bad idea: it was too difficult to trace the 

movement of points between frames. The ability to follow the general trajectories of 

the various countries and to compare them is a critical part of GapMinder; we wanted 

users to have a notion of continuity, of points moving from one place to another, and 

the individual frames simply were not helpful.

We therefore implemented two additional views, using the same set of countries and 

the same axes as Figure 19-1, for the years 1975–2000. The first is a tracks view, which 

shows all the paths overlaid on one another (Figure 19-2). The second is a small mul-

tiples view, which draws each path independently on separate axes (Figure 19-3). In 

the tracks view, we cue time with translucency; in the small multiples view, we instead 

show time by changing the sizes of the dots.

Figure 19-2.  Tracks view in which each country is represented as a series of dots that become 
more opaque over time; years are connected with faded streaks
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Figure 19-3.  Small multiples view in which each country is in its own tiny coordinate system: 
dots grow larger to indicate the progression of time

We wanted to understand how well users performed with the animation, as com-

pared with these static representations. Users can set up their own scatterplots at the 

GapMinder website, but would they be able to learn anything new from their data? 

We chose 30 different combinations of (x, y) values based on public health and demo-

graphic data from the United Nations, and presented users with fairly simple questions 

such as “In this scatterplot, which country rises the most in GDP?” and “In this scatter-

plot, which continent has the most countries with diminishing marriage rates?” We 

recruited users who were familiar with scatterplots, and who dealt with data in their 

daily work. Some subjects got to “explore” the data, and sat in front of a computer 

answering questions on their own. Others got a “presentation,” in which a narrator 

showed them the visualization or played the animation. We measured both time and 

accuracy as they then answered the questions.

The study’s numerical results are detailed in Robertson et al. (2008). The major con-

clusions, however, can be stated quite simply: animation is both slower and less accu-

rate at conveying the information than the other modalities. 

Exploration with animation is slower
We found that when users explored the data on their own, they would often play 

through the animation dozens of times, checking to see which country would be the 

correct answer to the question. In contrast, those who viewed a presentation and 
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could not control the animation on their own answered far more rapidly: they were 

forced to choose an answer and go with it. Thus, animation in exploration was the 

slowest of the conditions, while animation in presentation was the fastest.

Interestingly, this might shed light on why the process animations by Tversky et al. 

found so little success. In our tests, users clearly wanted to be able to move both for-

ward and backward through time; perhaps this is true of process animations, too. 

More effort may be required to get the same information from an animation as 

opposed to a series of static images, because you have to replay the entire thing rather 

than just jumping directly to the parts you want to see.

Animation is less accurate
Despite the extra time the users spent with the animation, the users who were shown 

the static visualizations were always more accurate at answering the questions. That is, 

the animation appeared to detract from the users’ ability to correctly answer questions. 

Their accuracy was not correlated with speed: the extra time they spent in exploration 

did not seem to drive better outcomes. 

This seems like bad news for animation: it was slower and less accurate at communi-

cating the information. On the other hand, we found the animation to be more engag-

ing and emotionally powerful: one pilot subject saw life expectancy in a war-torn 

country plummet by 30 years and gasped audibly. Generally, users preferred to work 

with the animation, finding it more enjoyable and exciting than the other modes. They 

also found it more frustrating, though: “Where did that dot go?” asked one angrily, as 

a data point that had been steadily rising suddenly dropped.

These findings suggest that Rosling’s talk is doing something different from what 

our users experienced. Critically, Rosling knows what the answer is: he has worked 

through the data, knows the rhetorical point he wishes to make, and is bringing the 

viewers along. He runs much of his presentation on the same set of axes, so the view-

ers don’t get disoriented. His data is reasonably simple: few of the countries he high-

lights make major reversals in their trends, and when he animates many countries at 

once, they stay in a fairly close pack, traveling in the same direction. He chooses his 

axes so the countries move in consistent directions, allowing users to track origins and 

goals easily. He takes advantage of the Gestalt principle of common fate to group them, 

and he narrates their transitions for maximum clarity. 

In contrast, our users had to contend with short sessions, had to track countries that 

suffered abrupt reversals, and did not have a narrator to explain what they were about 

to see; rather than learning the answer from the narrator, they had to discover it 

themselves. This suggests to us that what we were asking our users to do was very dif-

ferent from what Rosling is doing—so different, in fact, that it deserves its own section.
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Presentation Is Not Exploration
An analyst sitting before a spreadsheet does not know what the data will show, and 

needs to play with it from a couple of different angles, looking for correlations, connec-

tions, and ideas that might be concealed in the data. The process is one of foraging—it 

rewards rapidly reviewing a given chart or view to see whether there is something 

interesting to investigate, followed by moving on with a new filter or a different image.

In contrast, presenters are experts in their own data. They have already cleaned errors 

from the dataset, perhaps removing a couple of outliers or highlighting data points that 

support the core ideas they want to communicate. They have picked axes and a time 

range that illustrate their point well, and they can guide the viewers’ perception of the 

data. Most importantly, they are less likely to need to scrub back and forth, as we saw 

users doing with our animation, in order to check whether they have overlooked a 

previous point. In these conditions, animation makes a lot of sense: it allows the pre-

senter to explain a point vividly and dramatically.

The experience of exploration is different from the experience of presentation. It is 

easy to forget this, because many of our tools mix the two together. That is, many 

packages offer ways to make a chart look glossy and ready for presentation, and those 

tools are not clearly separated from the tools for making the chart legible and ready 

for analysis. In Microsoft Excel, for example, the same menu that controls whether my 

axis has a log scale also helps me decide whether to finish my bar chart with a glossy 

color. The former of these choices is critical to exploration; the latter is primarily use-

ful for presentation. After I finish analyzing data in Excel, I can copy the chart directly 

into PowerPoint and show the result. As a result of this seamlessness, few people who 

use this popular software have seriously discussed the important distinctions between 

presentation and exploration. 

Table 19-1 summarizes major differences between the needs of exploration and 

presentation.

Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Characteristics Data is surprising. 

Data may have outliers.

Data is likely to move unpredictably.

Viewer controls interaction.

Data is well known to the 
presenter.

Data has been cleaned.

Viewer is passive.
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Table 19-1.  Differentiating exploration from presentation

Exploration Presentation

Goals/procedures Analyze multiple dimensions at 
once.

Change mappings many times.

Look for trends and holes.

Present fewer dimensions 
to make a point. 

Walk through dimensions 
clearly.

Highlight critical points.

Group points together to 
show trends and motion.

These two perspectives are not completely disjoint, of course. Many interactive web 

applications allow users to explore a few dimensions, while still not exposing raw data. 

The tension between presentation and exploration suggests that designers need to con-

sider the purpose of their visualizations. There are design trade-offs, not only for ani-

mation, but more generally. 

Types of Animation
Some forms of animation are most suited to presentation, while others work well for 

exploration. In this section, we’ll discuss a hierarchy of different types of transfor-

mations, ranging from changing the view on a visualization to changing the axes on 

which the visualization is plotted to changing the data of the visualization. Let’s begin 

with an example of a system that needs to manage two different types of changes.

Dynamic Data, Animated Recentering
In 2001, peer-to-peer file sharing was becoming an exciting topic. The Gnutella sys-

tem was one of the first large-scale networks, and I was in a group of students who 

thought it would make a good subject of study. Gnutella was a little different from 

other peer-to-peer systems. The earlier Napster had kept a detailed index of everything 

on the network; BitTorrent would later skip indexing entirely. Gnutella passed search 

requests between peers, bouncing around the questions and waiting for replies. When 

I used a peer-to-peer search to track down a song, how many machines were really 

getting checked? How large a network could my own client see? 

We instrumented a Gnutella client for visualization, and then started representing the 

network. We rapidly realized a couple of things: first, that new nodes were constantly 

appearing on the network; and second, that knowing where they were located was 

really interesting. The appearance of new nodes meant that we wanted to be able to 

change the visualization stably. There would always be new data pouring into the sys-

tem, and it was important that users not be disoriented by changes taking place in the 



340 Beautiful Visualization

visualization as new data came in. On the other hand, we did not want to pause, add 

data, and redraw: we wanted a system where new data would simply add itself to the 

diagram unobtrusively.

Because the Gnutella network used a peer-to-peer discovery protocol, it was often 

interesting to focus on a single node and its neighbors. Is this node connected to a cen-

tral “supernode”? Is it conveying many requests? We wanted to be able to focus on 

any single node and its neighbors, and to be able to easily estimate the number of hops 

between nodes. This called for changing the viewpoint without changing the remainder 

of the layout. 

Our tool was entitled GnuTellaVision, or GTV (Yee et al. 2001). We addressed these 

two needs with two different animation techniques. We based the visualization on a 

radial layout, both to reflect the way that data was changing—growing outward as we 

discovered more connections—and in order to facilitate estimation of the number of 

hops between the central node and others. A radial layout has the virtues of a well-

defined center point and a series of layers that grow outward. As we discovered new 

nodes, we added them to rings corresponding to the number of hops from the starting 

node. When a new node arrived, we would simply move its neighbors over by a small 

amount (most nodes in the visualization do not move much). As the visualization ran, 

it updated with new data, animating constantly (Figure 19-4).

Figure 19-4.  GTV before (left) and after (right) several new nodes are discovered on the 
network—as nodes yield more information, their size and color can also change

When a user wanted to examine a node, GTV recentered on the selection. In our first 

design, it did so in the most straightforward way possible: we computed a new radial 

layout and then moved nodes linearly from their previous locations to the new ones. 

This was very confusing, because nodes would cross trajectories getting from their old 

locations to the new ones. The first fix was to have nodes travel along polar coordinate 
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paths, and always clockwise. Thus, the nodes remained in the same space as the 

visualization was drawn, and moved smoothly to their new locations (Figure 19-5). 

Because GTV is oriented toward examining nodes that may be new to the user, and is 

constantly discovering novel information, it was important that this animation facili-

tate exploration by helping users track the node paths.

Figure 19-5.  Interpolation in rectangular coordinates (top) causes nodes to cross through each 
others’ paths; interpolation in polar coordinates (bottom) makes for smooth motion

A radial layout has several degrees of freedom: nodes can appear in any order around 

the radius, and any node can be at the top. When we did not constrain these degrees 

of freedom, nodes would sometimes travel from the bottom of the screen to the top. 

We wanted to ensure that nodes moved as little as possible, so we added a pair of con-

straints: nodes maintained, as much as they could, both the same relative orientation 

and order. Maintaining relative orientation means that the relative position of the edge 

from the old center to the new center is maintained. Maintaining relative order means 

that nodes’ neighbors will remain in the same order around the rings. Both of these 

are illustrated in Figure 19-6.
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Figure 19-6.  Animated recentering: the purple highlighted node becomes the center, and other 
sets of nodes maintain their relative positions and orders (the large blue node stays below, and 
the set of small yellow nodes spreads along an outer ring)

Last, we adapted the ease-in, ease-out motion from cartooning in order to help users see 

how the motion was about to happen.

This section demonstrated some useful principles that are worth articulating: 

Compatibility 

Choose a visualization that is compatible with animation. In GTV, the radial lay-

out can be modified easily; new nodes can be located on the graph to minimize 

changes, and—like many tree representations—it is possible to recenter on differ-

ent nodes. 
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Coordinate motion 

Motion should occur in a meaningful coordinate space of the visualization. We 

want to help the users stay oriented within the visualization during the anima-

tion, so they can better predict and follow motion. In GTV, for instance, transform-

ing through rectangular coordinates would be unpredictable and confusing; the 

radial coordinates, in contrast, mean that users can track the transition and the 

visualization retains its meaning.  

Meaningful motion 

Although animation is about moving items, unnecessary motion can be very con-

fusing. In general, it is better to have fewer things move than more in a given 

transition. Constraining the degrees of freedom of the GTV animation allows the 

visualization to change as little as possible by keeping things in roughly the same 

position.

A Taxonomy of Animations
There are many sorts of change that might occur within a visualization. In the discus-

sion of GapMinder, we talked about changes to data; in the example of GTV, we exam-

ined changes to both the data and the view. There are more types of transitions that 

one might wish to make in a visualization, though. The following is a list adapted from 

one assembled by Heer and Robertson (2007). Each type of transition is independent; 

it should be possible to change just the one element without changing any of the oth-

ers. Many of these are applicable to both presentation and exploration of data:

Change the view

Pan over or zoom in on a fixed image, such as a map or a large data space.

Change the charting surface

On a plot, change the axes (e.g., change from linear to log scale). On a map, 

change from, for example, a Mercator projection to a globe.

Filter the data

Remove data points from the current view following a particular selection 

criterion. 

Reorder the data

Change the order of points (e.g., alphabetize a series of columns).

Change the representation

Change from a bar chart to a pie chart; change the layout of a graph; change the 

colors of nodes.
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Change the data

Move data forward through a time step, modify the data, or change the values 

portrayed (e.g., a bar chart might change from Profits to Losses). As discussed ear-

lier, moving data through a time step is likely to be more useful for presentations.

These six types of transitions can describe most animations that might be made with 

data visualizations. Process visualizations would have a somewhat different taxonomy, 

as would scientific visualizations that convey flow (such as air over wings). Next, given 

this set of transitions, we will discuss some examples of how these animations might 

be managed.

Staging Animations with DynaVis
Two people exploring a dataset together on a single computer have a fundamental 

problem: only one of them gets the mouse. While it is perfectly intuitive for one of 

them to click “filter,” the other user might not be able to track what has just hap-

pened. This sits at an interesting place between exploration and presentation: one of 

the major goals of the animation is to enable the second user to follow the leader by 

knowing what change the leader has just invoked; however, the leader may not know 

specifically what point he is about to make. Animation is plausibly a way to transition 

between multiple visualizations, allowing a second person—or an audience—to keep 

up. For the last several years, we have been experimenting with ways to show transi-

tions of data and representations of well-known charts, such as scatterplots, bar charts, 

and even pie charts. 

DynaVis, a framework for animated visualization, was our starting point. A summer 

internship visit by Jeff Heer, now a professor at Stanford, gave us a chance to work 

through a long list of possibilities. This discussion is outlined in more detail in his 

paper (Heer and Robertson 2007). 

In DynaVis, each bar, dot, or line is represented as an object in 3D space, so we can 

move smoothly through all the transitions described in the preceding section. Many 

transformations are fairly clear: to filter a point from a scatterplot, for instance, the 

point just needs to fade away. There are several cases that are much more interesting 

to work through, though: those in which the type of representation needs to change, 

and those in which more than one change needs to happen at a time. When the repre-

sentation is being changed, we try to follow several basic principles. Here are the first 

two:

Do one thing at a time

Ensure that the visualization does not entail making multiple simultaneous 

changes. This might mean staging the visualization, to ensure that each successive 

step is completed before the next one is started. 
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Preserve valid mappings

At any given time during a step, ensure that the visualization is a meaningful 

one that represents a mapping from data to visualization. It would be invalid, for 

example, to rename the bars of a bar chart: the fundamental mapping is that each 

bar represents one x-axis value.

Figure 19-7 shows a first attempt at a transition from bar chart to pie chart. There are 

some positive aspects to the transition. For example, the bars do not move all at once, 

so the eye can follow movement fairly easily, and the bars maintain their identities and 

their values across the animation. While there are some issues with occlusion as the 

bars fly past each other, they move through a smooth trajectory so that it is reasonable 

to predict where they will end up. Finally, the animation is well staged: all the wedges 

are placed before they grow together into a full pie.

This visualization has a critical flaw, though. The length of the bar becomes the length 

of the pie wedge, so longer bars became longer wedges. However, longer bars will ulti-

mately have to become fatter wedges in the final pie chart. That means that bars are 

becoming both fat and long, or both skinny and short. This, in turn, means that the 

visualization does not employ a constant rule (such as “number of pixels is proportion-

ate to data value”).

That leads us to the next principle:

Maintain the invariant

While the previous rule referred to the relationship between data elements and 

the marks on the display, this rule refers to the relationship of the data values to 

the visualization. If the data values are not changing, the system should maintain 

those invariant values throughout the visualization. For example, if each bar’s 

height is proportionate to the respective data point’s value, the bars should remain 

the same height during the animation. 

Figure 19-8 illustrates both of these principles in a more successful bar chart to pie 

chart animation. This chart shows a 1:1 correspondence between the drawn entity—

the bar, the curved line, or the pie slice—and the underlying data. This assignment 

never changes: the bar furthest on the left (“A”) becomes the leftmost pie slice (also 

“A”). The invariant is maintained by the lengths of the bars, which remain proportion-

ate to the data values. While we do not illustrate it here, we follow similar principles 

in changing a bar chart into a line chart: the top-left corner of the bar represents the 

value, so as the bar shrinks into a line, that data point will remain rooted at the top-

left corner of the bar.



346 Beautiful Visualization

Figure 19-7.  Less successful bar chart to pie chart animation: long bars become long, fat 
wedges on the pie; short bars become short, skinny wedges; then all wedges grow to full length
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Figure 19-8.  Better bar chart to pie chart animation: the lengths of the bars are maintained as 
they are brought into the ring; the ring then fills to become a pie
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Another interesting case brings back the cartoon notion of staging. In GnuTellaVision 

we were able to recenter in a single motion, but in DynaVis it often makes more sense 

to break a transformation into two steps. For instance, in each of these examples, we 

ensure that we change only one thing at a time:

•	 To filter a dataset in a bar chart, we first remove bars we will not use, and then 

close ranks around them. To unfilter, we open space for the bars that will be 

added, and then grow the bars up.

•	 To grow or shrink a bar, such as when data changes, we may need to change the 

axes. Imagine growing a bar chart from the values (1,2,3,4,5) to (1,2,10,4,5)—

the y-axis should certainly grow to accommodate the new value. If we grow the 

bar first, it will extend off the screen; therefore, we must change the axis before 

changing the bar. 

•	 When sorting a selection of bars, sorting them at once could cause all bars to pass 

through the center at once. This is confusing: it is hard to figure out which bar is 

which. By staggering the bars slightly, so that they start moving a small amount of 

time apart, we found that the sort operation was much clearer.

Staging is not always appropriate, though. In Heer and Robertson’s report on the proj-

ect (2007), they found that some staged animations are more challenging to follow. In 

particular, when resizing segments of a donut or pie chart, it was difficult to monitor 

the changes as the pie turned to accommodate the new sizes. DynaVis attempted to 

stage this transition by extracting segments to either an external or an internal ring, 

adjusting their sizes, and then collapsing them back into place. While this made the 

changes much more visible, it also added a layer of potentially confusing action.

Heer and Robertson collected both qualitative results—how much users liked the 

animations—and quantitative ones—finding out which animations allowed users to 

answer questions most accurately. They found that users were able to answer ques-

tions about changes in values over time more easily with the animations than with-

out; furthermore, the animations that were staged but required only one transition did 

substantially better than the animations that required many transitions.

Even with these caveats, though, it is clear that these sorts of dynamics could poten-

tially help users understand transitions much more easily: compared to a presenter 

flipping through a series of charts, forcing the audience to reorient after each slide, 

a DynaVis-like framework might allow users to remain oriented thoughout the 

presentation.

Principles of Animation
There have been several attempts to formulate principles for animation. Tversky, 

Morrison, and Bétrancourt (2002) offer two general guidelines at the end of their 

article: that visualizations should maintain congruence and apprehension. The former 
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suggests that the marks on the screen must relate to the underlying data at all times. 

The latter suggests that the visualization should be easy to understand. The principles 

we have articulated fit into these categories. (Other, related guidelines have been sug-

gested in Heer and Robertson’s [2007] discussion of the DynaVis research, by Zongker 

and Salesin [2003] in their discussion of animation for slideshow presentations, and, 

with regard to graph drawing, by Freidrich and Eades [2002].)

The principles that we have discussed in this chapter are:

Staging

It is disorienting to have too many things happen at once. If it is possible to 

change just one thing, do so. On the other hand, sometimes multiple changes 

need to happen at once; if so, they can be staged. 

Compatibility

A visualization that will be disrupted by animation will be difficult for users to 

track. For example, it is not disruptive to add another bar to a bar chart (the 

whole set can slide over), and it may not be disruptive to add another series to 

a bar chart. However, a squarified treemap is laid out greedily by size; growing a 

single rectangle will require every rectangle to move to a new location and will 

look confusing. 

Necessary motion

In particular, avoid unnecessary motion. This implies that we want to ensure that 

motion is significant—i.e., we should animate only what changes. In general, the 

image should always be understandable. As the DynaVis user tests showed, excess 

motion—even significant motion—can be confusing.

Meaningful motion

The coordinate spaces and types of motion should remain meaningful. This 

also entails two points discussed earlier: preserve valid mappings and maintain the 

invariant.

Verifying that you’ve adhered to these principles can help you figure out whether an 

animation is headed in the right direction. 

Conclusion: Animate or Not?
In this chapter, we have discussed the difference between presentation and explora-

tion of data. We have also discussed the various layers of a visualization that might be 

altered, and some principles for making a visualization-safe animation.  

So now you’re staring at a visualization you’re working on, and trying to decide 

whether to animate it or not. The question that this chapter has repeatedly asked is: 

what function does the animation serve? If it is meant to allow a user to smoothly 
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transition between views, then it is likely to be helpful.  On the other hand, if the user 

is meant to compare the “before” to the “after,” the animation is less likely to be of 

use.

Users want to understand why a change is happening, and what is changing. If every-

thing on the screen is going to move around, perhaps it would be better to simply 

switch atomically to a new image; this might spare the user the difficulty of trying to 

track the differences. Finally, animations mean that it can be more difficult to print out 

visualizations. Individual frames should be meaningful, so that users can capture and 

share those images. Animation imposes a burden of complexity on the user, and that 

complexity should pay off.  

Further Reading
Here are a few animated data visualization projects that have some relevance to this 

discussion, which you may want to explore further: 

•	 Many researchers begin playing with zooming and panning as basic operations in 

a visualization with Pad++, a zoomable architecture for laying out data in large 

spaces (Bederson and Hollan 1994).  

•	 Scatterdice (Elmqvist, Dragicevic, and Fekete 2008) explores a way to transition 

between scatterplots by rotating through the third dimension.

•	 Visualizations of tree data structures include ConeTrees (Card, Robertson, and 

Mackinlay 1991), CandidTree (Lee et al. 2007), and Polyarchy (Robertson et al. 

2002). Researchers have explored animation with treemaps by zooming (dis-

torting) the treemap (Blanch and Lecolinet 2007) and moving through 3D space 

(Bladh, Carr, and Kljun 2005).

•	 Graph layout is often animated as the layout progresses; in the last 10 years, the 

graph-drawing community has turned to considering ways to update graphs in 

response to underlying data. In addition to the work cited earlier (Friedrich and 

Eades 2002), we note GraphAEL (Erten et al. 2003).
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C h a p t e r  T w e n t y

Visualization: Indexed.
Jessica Hagy

Visualization: It’s an Elephant. 
Visualization. To one person, it’s charts and graphs and ROI. To another, it’s illus-

tration and colorful metaphor and gallery openings. To a third, it’s that wonderfully 

redundant compound word: infographics. Visualization. It’s a term that’s been pulled 

and yanked like so much conceptual taffy. It’s like that old tale of three blindfolded 

men who are asked to describe an elephant. One touches the elephant’s tail and says, 

“An elephant is like a rope.” Another touches the elephant’s leg and says, “An ele-

phant is like a tree trunk.” The third man touches the elephant’s trunk and says, “An 

elephant is like a snake.” None of them is completely wrong, but none is completely 

right, because none of them can see the entire animal (Figure 20-1). 

Visualization is only something (and everything) you can see. It’s both the entire 

mosaic and a single, sparkling tessera. It’s not just graphs. It’s not just visual meta-

phors. It’s not just graphic design in service instead of bullet points. It’s not just sketch-

ing out ideas. It’s not just data analysis. Those are just slivers of the larger concept. 

Really good, beautiful, powerful visualization—visualization that touches both the 

mind and the heart—isn’t just about an image, a snapshot, or a glance through a 

windowpane (Figure 20-2). Powerful visualization passes the elephant test: it’s prac-

tically impossible to describe, but instantly recognizable. This chapter will describe 

various aspects of that elephant. Together, they’ll help to paint a clear picture of what 

visualization really is, from tusk to toe. 
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Figure 20-1.  There’s always more to it

Figure 20-2.  Knowing and doing go hand in hand
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Visualization: It’s Art. 
There’s an image, a message in it. People stare at it and debate it. Framers are 

employed for another day because of it. Quality can be subjective, and aesthetics are 

always debatable—but the intrinsic artistry is evident. Like pornography, art is some-

thing you know when you see it, and no sooner (Figure 20-3). And visualization is 

widely perceived to be an art. 

Figure 20-3.  Visualizing aha moments

Visualization practitioners often have an air of creativity about them: they draw or 

paint or wear glasses with thick, black frames. Of course, as soon as something is 

branded as an artistic endeavor, the barriers to entry rise up around it. Those who 

believe they can’t draw and those who would never assign themselves the label of 

“creative” shy away from visualization for this reason. And that’s too bad—because 

you don’t have to be a Rembrandt to have an idea that can be understood by scrawling 

a stick figure or two. 

The beauty inherent in visualization (it can be argued) is the idea behind the image: 

the concept conveyed by the lines and shapes that your rods and cones observe. Just 

as anyone with a lump of clay can technically sculpt, anyone with an idea that can be 

conveyed visually can technically create a visualization (Figure 20-4). The quality of 

the sketch or the visualization will always be debatable. The quality of any piece of art, 

and of any image, will always be debatable. 

Visualization, eye of the beholder—you get the idea. 
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Figure 20-4.  Don’t outgrow your skills

Visualization: It’s Business. 
There’s this little program out there—you may have heard about it. It’s cheap, it’s 

pretty much universal, and it has turned the idea of the visual aid into a tool of khaki-

loving middle managers. It’s called PowerPoint, and it, single-handedly, has trans-

ported visualization into the land of business (Figure 20-5). 

Figure 20-5.  Power point = an oxymoronic phrase
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There’s no denying it: visuals are compelling. Want someone to ignore your prose? 

Make sure to include a lot of pictures, or graphs if you took math in college. When 

making a presentation to a board of directors, a prospective client, or for a midterm 

grade in an MBA class, going without PowerPoint is seen as quaint at best and ill-

prepared at worst (Figure 20-6). Why? Because visualization is an excellent tool of 

persuasion. And persuasion is just another word for sales. 

Figure 20-6.  Ideas can work for you

Mergers. Acquisitions. Negotiations. Advertising. Propaganda. Business communica-

tion is being conveyed visually every day. Here’s the back of my napkin. Here’s my 

whiteboard. Here’s the doodle of my exit strategy that I drew in that last four-hour 

meeting. 

Seeing is believing. And believing—well, when people believe in something, they 

buy into it. How do you think corporate headquarters, political dynasties, and mega-

churches get built? 

Visualization: It’s Timeless. 
Those famous cave paintings in France weren’t to-do lists, sentences, words, or even 

letter forms. They were images. Thousands of years ago, hieroglyphics held images in 

each character. Written Chinese does the same today. We understand smiles before we 

understand words. As powerful as language is, it’s not as instinctive or primal as visu-

alization (Figure 20-7). 
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Figure 20-7.  Same old story, different authors

When we see a photograph or a painting, or the map on the weatherman’s green 

screen, we learn a lot more a lot faster than we would if such an image were described 

in words. We can listen to an hour-long description of abject poverty, or we can look 

at an image of a vulture hovering near an emaciated child for a fraction of a second. 

No matter how compelling the verbal argument is, the image shares its story faster. 

While we may have advanced as societies to employ complex vocabularies and lan-

guages packed with idioms and metaphors and grammars that vicious nuns teach us as 

children, we are still able to communicate without our languages—with only images 

(Figure 20-8).

Figure 20-8.  To see is to know

Just imagine: cave paintings and shapes scratched in ancient dirt. Before punditry. 

Before poetry. Before PowerPoint. 
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Visualization: It’s Right Now. 
What says more: a name or a logo? How do people recognize you: your avatar or your 

resume? What’s the more precious piece of real estate: a famous URL or a lot in a 

famous zip code? Today, logos tell epic stories. Screen names equal human identities. 

Web addresses fund mansion renovations and the purchase of ranches, islands, and 

city blocks. 

More than ever, we are swimming in information. We are pickling in data. More infor-

mation than any human world has ever seen before or could ever hope to compre-

hend is generated every day (Figure 20-9). And so we turn to visualization as a means 

to collect, condense, and convey this information. 

Figure 20-9.  Water, water, everywhere

Visuals crunch data. They take reams of chunky, unwieldy, black and white spread-

sheets and compact them into sleek, colorful charts. Visuals reveal patterns in vast 

amounts of data; they take complex and difficult-to-understand theories and elegantly 

explain them (Figure 20-10). Imagine data points as molecules of ice. Visualizations 

are the resulting snowflakes: gorgeous and organic arrangements of many smaller 

pieces of information. 

When we want to make sense of the sea of information around us, we make visualiza-

tions. It’s the age of information. And thus, one could argue that it’s the age of visual-

ization, too. 
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Figure 20-10.  Use either to get what you need

Visualization: It’s Coded.
Letters represent sounds. Words represent ideas. We combine and weave our sen-

tences to tell stories. The hood ornament on your car represents your tax bracket. 

Your wrinkles speak to your age. We communicate in codes—aural, visual, tactile, and 

social. Even our DNA is a code—we are built from the ground up to communicate 

with representational bits of data (Figure 20-11). Visualization is just another form of 

coded communication, with the axes of graphs as shorthand for correlation, and with 

characters in editorial cartoons standing in for ideologies. Photographs and paintings 

represent history. 

Figure 20-11.  Wink wink, nudge nudge
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As visualization becomes a larger area of inquiry—in ivory towers, in art studios, and 

on message boards—the idea of semiotics will be raised more frequently. As we look 

closer at signs and symbols, we’ll see that we communicate with visualizations almost 

as much as we speak in words. From a single finger raised to the driver who just ran 

that red light to hearts drawn on love notes to the use of increasingly trite emoticons, 

we use symbols to express ourselves. 

Metaphors. Idioms. Inside jokes (or literary allusions, if you’re an English major). Our 

communications involve many layers of symbolism, many codes that we interpret in 

every conversation. Visualizations are another way to represent ideas; another not-so-

secret code. The clearer the visualization is, the more people there are who can crack 

that code. 

Gang tattoos, Rorschach tests, pieces of art with multiple interpretations—these are 

just a few of the many visualizations that hold hidden (and sometimes, profound) 

meanings (Figure 20-12). 

Figure 20-12.  Secrets and/or societies

Visualization: It’s Clear. 
One of the beauties often attributed to visualization is simplicity. Pure clarity! 

Marvelous obviousness! Splendid simplicity! An image can set the tone for a presen-

tation, a feature article, an annual report. We look. We see. We understand. Between 

first glance and “Oh, I get it,” just a fraction of a second passes.
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We don’t always have time to dissect meanings or read a 10-page summary. We want 

to look at a chart, see year-over-year results, and move on. Images are incredibly 

good at conveying information quickly. Clarity allows us to understand and carry on. 

Ambiguity takes time to ponder—time that we just don’t have. 

We learn more about a person in the first 10 seconds of meeting him than hours of 

Google-stalking could have ever told us. We judge books by covers and real estate by 

curb appeal. We see a picture of the Statue of Liberty with a noose around her neck 

and we understand that injustice is occurring. We see devil horns drawn on a poster 

of the jock running for class president and we understand that someone dislikes him. 

It’s clear what visuals convey (Figure 20-13). But just because the message is clear, it 

might not always be true. 

Figure 20-13.  It’s all context

We don’t trust news from biased sources. When an offer sounds amazing, we know 

that the fine print will be dense and long and written against us. Truth in advertising is 

a myth. Remember this when gazing upon a beautiful visual. Its message may be clear 

and obvious, but the motivations behind it may take more time to see (Figure 20-14).
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Figure 20-14.  Ask why you are seeing what’s in front of you

Visualization: It’s Learnable. 
The display of information, in any and all forms, is open to everyone to both create 

and consume. From the way you wear your hair to the color of your coat, you are 

sending visual signals and conveying visual information. Anyone can pick up a pen 

and draw a line on the wall or a sheet of paper. Pixels can likewise be rearranged to 

express the thoughts of anyone with access to a computer. 

You don’t have to speak Italian to appreciate the art of Michelangelo. Anyone can visit 

the Louvre and leave inspired. Likewise, an infant can recognize human faces and 

expressions without knowing so much as a word. 

And just like learning to read and to communicate with words, it’s possible through 

practice to become a skilled visual communicator. Drawing is the ability to translate 

scenes onto paper—making a direct translation. Visualization is the ability to put ideas 

onto paper—taking data and distilling it into a concept. Don’t confuse the two. The 

thinking process is different, even if a pen and paper unite the two skills. Ideas (con-

cepts, theories, equations, opinions, processes) behave differently than a still life paint-

ing of a bowl of fruit (Figure 20-15). 
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Figure 20-15.  Know more, do more

Sketching symbols and metaphors can be done in a sloppy, messy fashion, and still be 

powerful and clear. Remember that the next time you trace a heart in the steam on a 

windowpane (Figure 20-16).

Figure 20-16.  You are what you do 
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Visualization: It’s a Buzzword. 
So, is this a meme (Figure 20-17)? Is visualization merely the latest turn of phrase 

that’s sweeping the feature pages of business magazines, RFPs, and course syllabi? Is it 

another word that marketers are batting around to sound smart? Or is it less of a fad, 

and more of a response to our current data-saturated environment? 

Figure 20-17.  Welcome to the Internet

Visualization is getting a lot of attention: it helps us cope with information overload, 

saves us time, and reaches us on an innate level. Well-crafted visualizations are com-

pelling and beautiful to look at and to intellectually enjoy. And with software at the 

disposal of so many, there has never been an easier time to turn ideas into images. 

And so it seems that the popularity of visualization is a function of necessity: the more 

data we have to sift through, the easier it is to convert that data to images, the easier 

it is to juxtapose images with text, the more we want to persuade others and promote 

ourselves, the more visualizations we’ll see all around us. 

The word is popular. The idea is popular. The applications are popular. Visualization 

helps us communicate. It enables and fosters connections. And as long as those last 

two statements are true, we can but hope that visualization is popular like the Beatles, 

and not the Monkees (Figure 20-18).
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Figure 20-18.  Are you joining a revolution or a fad? 

Visualization: It’s an Opportunity.
If you want to connect, compel, and communicate, you need to use visuals. You can 

combine art and business. You can reach people quickly, powerfully, and emotionally 

with visuals. Even if you don’t think of yourself as creative, or as an artist, you can be 

a visualizer (Figure 20-19). 

Figure 20-19.  Your excuses aren’t valid
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Just as writers read to sculpt their skill, visualizers look. They stare with intensity and 

peer into places others would rather ignore. They look not only at images, but also at 

events. They gawk at causes and effects and motives and means. And sometimes, they 

close their eyes and wonder how to illustrate the universe in a Word document, or 

the depth of their feelings in an email, or the scope of their business in a single slide 

(Figure 20-20). 

Figure 20-20.  Look closer and go further

Observation is the first step toward visualization, and you are doing it at this very min-

ute. If you can think it, you can visualize it. If you can visualize it, you can share it. 

And if you can share it, you can change the world. 

But first: look around you. You’re looking at opportunity.
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takeoffs and landings, 98
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Wikipedia, 189
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reordering, 343
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sorting, 26–28

technical version, 28–29

database model, 200–202
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network representation, 231

possible node types, 230
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criminal investigations, 312
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CSI guys, 316

CT scans, 316
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child who has been shot, 317

DSCT (dual source CT), 316

dual energy CT (DECT), 318–319

full-body dual source CT (DSCT) scan, 
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lead fragments from a shotgun, 314
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(see also search and discovery)
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dual source computed tomography 

scanner, 317

Dune, 153

Dunne, Gabriel, 102

dynamic data, 339–343
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different models of aircraft, 96

flights on Boeing 737 jets, 97
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high-dimensional case, 200

history flow, 179

diagram, 180

in color, 182

Hollenbach, Kate, 186

Holloway, Todd, 370

The Big Picture: Search and Discovery, 

143–156

Holodeck, 291
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Lehmann-Hartleben, Karl, 227
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