

Internet of Things with Arduino
Cookbook

Over 60 recipes will help you build smart IoT solutions
and surprise yourself with captivating IoT projects you
thought only existed in Bond movies

Marco Schwartz

BIRMINGHAM - MUMBAI

Internet of Things with Arduino Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1280916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-658-2

www.packtpub.com

www.packtpub.com

Credits

Author
Marco Schwartz

Reviewer
Vasilis Tzivaras

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Trusha Shriyan

Technical Editor
Naveenkumar Jain

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N Zagade

Cover Work
Shantanu N Zagade

About the Author

Marco Schwartz is an electrical engineer, entrepreneur, and blogger. He has a
master's degree in electrical engineering and computer science from Supélec, France,
and a master's degree in micro engineering from the Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland.

He has more than five years of experience working in the domain of electrical
engineering. Marco's interests gravitate around electronics, home automation,
the Arduino and Raspberry Pi platforms, open source hardware projects,
and 3D printing.

He has several websites about Arduino, including the Open Home Automation
website, which is dedicated to building home automation systems using open
source hardware.

Marco has written another book on home automation and Arduino, called Home
Automation With Arduino: Automate Your Home Using Open-source Hardware. He has
also written a book on how to build Internet of Things projects with Arduino, called
Internet of Things with the Arduino Yun, by Packt Publishing.

About the Reviewer

Vasilis Tzivaras is a software developer and hardware engineer who lives in
Ioannina, Greece. He is currently an undergraduate student in the department of
computer science and engineering at Ioannina. Along with his studies, he is working
on many projects relevant to robotics, such as drones, home automation, and smart
home systems using Arduino and the Raspberry Pi. He is also enthusiastic about
clean energy solutions and cultural innovation ideas.

He has worked for the University Hospital of Ioannina as an assistant on various
computer issues and has been a part of the support team of his CSE department
for over a year. He has participated in IEEE UOI Student Branch and other big
organizations, such as FOSSCOMM, with personal presentations for website design,
programming, Linux systems, and drones.

He is the chair of IEEE University of Ioannina Student Branch and has proposed
many projects and solutions to automate homes and many other life problems by
reducing the time of everyday routines. In addition to this, he has come up with
ideas to entertain kids with funny and magical projects using Arduino-like hardware
and open source software. Many of the projects can be found on his GitHub account
under the name of BillyTziv.

Apart from Building Smart Homes with Raspberry Pi Zero and Internet of Things with
Arduino Cookbook, he has also published a book named Building a Quadcopter with
Arduino, by Packt Publishing. He has also worked on another book, Programming in
C, which is not yet published. In addition to this, he has written for blogs, forums,
guides, and small chapters of books, explaining and sharing his knowledge of
computers, networks, and programming.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

i

Table of Contents
Preface	 v
Chapter 1: Connecting an Arduino to the Web	 1

Introduction	 1
Setting up the Arduino development environment	 2
Options for Internet connectivity with Arduino	 5
Interacting with basic sensors	 8
Interacting with basic actuators	 10
 Configuring your Arduino board for the IoT	 12
Grabbing the content from a web page	 16
Sending data to the cloud	 19
Troubleshooting basic Arduino issues	 22

Chapter 2: Cloud Data Monitoring	 23
Introduction	 23
Internet of Things platforms for Arduino	 24
Connecting sensors to your Arduino board	 27
Posting the sensor data online	 31
Retrieving your online data	 34
Securing your online data	 36
Monitoring sensor data from a cloud dashboard	 38
Monitoring several Arduino boards at once	 41
Troubleshooting issues with cloud data monitoring	 44

ii

Table of Contents

Chapter 3: Interacting with Web Services	 45
Introduction	 45
Discovering the Temboo platform	 46
Tweeting from an Arduino board	 48
Posting updates on Facebook	 52
Automation with IFTTT	 55
Sending push notifications	 58
Sending text message notifications	 63
Storing data on Google Drive	 66
Troubleshooting issues with web services	 70

Chapter 4: Machine-to-Machine Interactions	 73
Introduction	 73
Types of IoT interaction	 74
Basic local M2M interactions	 74
Cloud M2M with IFTTT	 77
M2M alarm system	 81
Automated light controller	 86
Automated sprinkler controller	 91
Troubleshooting basic M2M issues	 96

Chapter 5: Home Automation Projects	 99
Introduction	 99
Controlling your coffee machine from the cloud	 100
Dim LEDs from anywhere in the world	 102
Remote controlled garage door	 106
Controlling the access to your door remotely	 109
Cloud smoke detector	 113
Smart cloud thermostat	 116
Home automation dashboard in the cloud	 121
Troubleshooting home automation project issues	 123

Chapter 6: Fun Internet of Things Projects	 125
Introduction	 125
Making a simple Arduino clock	 126
Building a digital candle	 129
A cloud-controlled digital candle	 131
Building a Bitcoin ticker with Arduino	 134
Assembling a GPS module	 137
Building a simple GPS tracker	 140
Troubleshooting fun IoT project issues	 145

iii

Table of Contents

Chapter 7: Mobile Robot Applications	 147
Introduction	 147
Choosing a robotic platform	 148
Building a mobile robot	 150
Configuring your mobile robot	 153
Basic robot control	 155
Using distance sensors	 159
Controlling your robot from anywhere	 163
Troubleshooting basic robotic issues	 165

Index	 167

v

Preface
Arduino is a small single-chip computer board that can be used for a wide variety of creative
hardware projects. The hardware consists of a simple microcontroller board, and chipset. It
comes with a Java-based IDE that allows creators to program the board. Arduino is the ideal
open hardware platform for experimenting with the world of the Internet of Things. This credit
card sized Arduino board can be used via the Internet to make useful and interactive Internet
of things projects.

Internet of Things, known as IoT, is changing the way we live and represents one of the biggest
challenges in the IT industry. Developers are creating low cost devices that collect huge
amounts of data, interact with each other, and take advantage of cloud services and cloud-
based storage. Makers all over the world are working on fascinating projects that transform
everyday objects into smart devices with sensors and actuators.

This book takes a recipe-based approach, giving you precise examples on how to build IoT
projects using the Arduino platform.By the end of this book, you will not only know how to build
these projects, but also have the skills necessary to build your own IoT projects in the future.

What this book covers
Chapter 1, Connecting an Arduino to the Web, focuses on getting you started by connecting
an Arduino board to the Web. It will lay foundation for the rest of the book.

Chapter 2, Cloud Data Monitoring, deals with one of the most important thing you can do with
an Internet of Things project, that is, send data online so that it can be stored, retrieved later,
and plotted inside a nice dashboard.

Chapter 3, Interacting with Web Services, tells us how to use existing web services to build
amazing Internet of Things projects with our Arduino board.

Preface

vi

Chapter 4, Machine-to-Machine Interactions, focuses on something different: making two
(or more) Arduino boards talk to each other and interact with each other, without any human
intervention. This is known as machine-to-machine communications, which is a very exciting
field of the IoT. Let's dive in!

Chapter 5, Home Automation Projects, tells us how to apply what we learned so far in this
book to the home automation field. We are going to use the Arduino board to build several
home automation projects that will be accessible from anywhere in the world & able to
communicate with cloud services.

Chapter 6, Fun Internet of Things Projects, deals with how to build a clock that gets the time
from the cloud, but also an actual GPS tracker that will display the position of your Arduino
project on Google Maps!

Chapter 7, Mobile Robot Applications, tells us how to create our own mobile robot based on
Arduino. Finally, to end this book about the Internet of Things, we are going to learn how to
control this robot from anywhere in the world.

What you need for this book
All the projects of this chapter and this book are using Arduino MKR1000 board. This is an
Arduino board released in 2016 that has an on-board WiFi connection. You can make all the
projects of the book with other Arduino boards, but you might have to change part of the code

Who this book is for
This book is primarily for tech enthusiasts and early IoT adopters who would like to make the
most of IoT and address the challenges encountered while developing IoT-based applications
with Arduino. This book is also good for developers with basic electronics knowledge who
need help to build successful Arduino projects.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

Preface

vii

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

if (millis() - lastConnectionTime > postingInterval) {

 // Measure light level
 int sensorData = analogRead(A0);

 // Send request
 httpRequest(sensorData);
 }

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

Preface

viii

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "To do that, open the
Arduino boards manager by going to Tools | Boards | Boards Manager."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Internet-of-Things-with-Arduino-Cookbook. We also
have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

https://github.com/PacktPublishing/Internet-of-Things-with-Arduino-Cookbook
https://github.com/PacktPublishing/Internet-of-Things-with-Arduino-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

Connecting an Arduino
to the Web

In this chapter, we will cover:

ff Setting up the Arduino development environment

ff Options for Internet connectivity with Arduino

ff Interacting with basic sensors

ff Interacting with basic actuators

ff Configuring your Arduino board for the IoT

ff Grabbing the content from a web page

ff Sending data to the cloud

ff Troubleshooting basic Arduino issues

Introduction
This first chapter of this book is focused on getting you started by connecting an Arduino
board to the Web. This chapter will really be the foundation of the rest of the book, so make
sure to carefully follow the instructions so you are ready to complete the exciting projects we'll
see in the rest of the book.

You will first learn how to set up the Arduino IDE development environment, and add Internet
connectivity to your Arduino board.

Connecting an Arduino to the Web

2

After that, we'll see how to connect a sensor and a relay to the Arduino board, for you to
understand the basics of the Arduino platform. Then, we are actually going to connect an
Arduino board to the Web, and use it to grab content from the Web and to store data online.

Note that all the projects in this chapter and this book use the Arduino
MKR1000 board. This is an Arduino board released in 2016 that has an on-
board Wi-Fi connection. You can make all the projects in the book with other
Arduino boards, but you might have to change parts of the code.

Setting up the Arduino development
environment

In this first recipe of the book, we are going to see how to completely set up the Arduino IDE
development environment, so that you can later use it to program your Arduino board and
build Internet of Things projects.

How to do it…
The first thing you need to do is to download the latest version of the Arduino IDE from the
following address:

https://www.arduino.cc/en/Main/Software

This is what you should see, and you should be able to select your operating system:

https://www.arduino.cc/en/Main/Software

Chapter 1

3

You can now install the Arduino IDE, and open it on your computer. The Arduino IDE will be
used through the whole book for several tasks. We will use it to write down all the code, but
also to configure the Arduino boards and to read debug information back from those boards
using the Arduino IDE Serial monitor.

What we need to install now is the board definition for the MKR1000 board that we are going
to use in this book. To do that, open the Arduino boards manager by going to Tools | Boards |
Boards Manager. In there, search for SAMD boards:

To install the board definition, just click on the little Install button next to the board definition.

You should now be able to select the Arduino/GenuinoMKR1000 board inside the
Arduino IDE:

Connecting an Arduino to the Web

4

You are now completely set to develop Arduino projects using the Arduino IDE and the
MKR1000 board. You can, for example, try to open an example sketch inside the IDE:

How it works...
The Arduino IDE is the best tool to program a wide range of boards, including the MKR1000
board that we are going to use in this book. We will see that it is a great tool to develop
Internet of Things projects with Arduino. As we saw in this recipe, the board manager
makes it really easy to use new boards inside the IDE.

See also
These are really the basics of the Arduino framework that we are going to use in the whole
book to develop IoT projects.

Chapter 1

5

Options for Internet connectivity with
Arduino

Most of the boards made by Arduino don't come with Internet connectivity, which is something
that we really need to build Internet of Things projects with Arduino. We are now going to
review all the options that are available to us with the Arduino platform, and see which one is
the best to build IoT projects.

How to do it…
The first option, which has been available since the advent of the Arduino platform, is to use a
shield. A shield is basically an extension board that can be placed on top of the Arduino board.
There are many shields available for Arduino. Inside the official collection of shields, you will
find motor shields, prototyping shields, audio shields, and so on.

Some shields will add Internet connectivity to the Arduino boards, for example, the Ethernet
shield or the Wi-Fi shield. This is an image of the Ethernet shield:

The other option is to use an external component, for example, a Wi-Fi chip mounted on a
breakout board, and then connect this shield to Arduino.

Connecting an Arduino to the Web

6

There are many Wi-Fi chips available on the market. For example, Texas Instruments has a
chip called the CC3000 that is	o connect to Arduino. This is an image of a
breakout board for the CC3000 Wi-Fi chip:

Finally, there is the possibility of using one of the few Arduino boards that has an onboard
Wi-Fi chip or Ethernet connectivity.

The first board of this type introduced by Arduino was the Arduino Yun board. It is a really
powerful board, with an onboard Linux machine. However, it is also a bit complex to use
compared to other Arduino boards.

Then, Arduino introduced the MKR1000 board, which is a board that integrates a powerful
ARM Cortex M0+ process and a Wi-Fi chip on the same board, all in the small form factor.

Chapter 1

7

Here is an image of this board:

What to choose?
All the solutions above would work to build powerful IoT projects using Arduino. However,
as we want to easily build those projects and possibly integrate them into projects that are
battery-powered, I chose to use the MKR1000 board for all the projects in this book.

This board is really simple to use, powerful, and doesn't require any connections to hook it up
with a Wi-Fi chip. Therefore, I believe this is the perfect board for IoT projects with Arduino.

There's more...
Of course, there are other options to connect Arduino boards to the Web. One option that's
becoming more and more popular is to use 3G or LTE to connect your Arduino projects to
the Web, again using either shields or breakout boards. This solution has the advantage of
not requiring an active Internet connection like a Wi-Fi router, and can be used anywhere, for
example, outdoors.

Connecting an Arduino to the Web

8

See also
Now that we have chosen a board that we will use in our IoT projects with Arduino, you can
move on to the next recipe to actually learn how to use it.

Interacting with basic sensors
In this recipe, we are going to see how to measure data coming from sensors connected to
the MKR1000 board. This will really teach us the very basics of the Arduino language. As an
example, we'll use a simple photocell to measure the ambient light level around the project.

Getting ready
For this project, you will need a few extra components in addition to the Arduino MKR1000
board and the usual breadboard and jumper wires:

ff Photocell (https://www.sparkfun.com/products/9088)

ff 10K Ohm resistor (https://www.sparkfun.com/products/8374)

We are now going to assemble the project. First, place the resistor in series with the photocell
on the breadboard, next to the MKR1000 board.

Now, connect the other end of the resistor to GND on the MKR1000 board, and the other end
of the photocell to the VCC pin of the Arduino board. Finally, connect the middle pin between
the resistor and the photocell to analog pin A0 of the MKR1000.

This is the final result:

https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8374

Chapter 1

9

How to do it...
1.	 We are now going to configure the board to read data coming from the photocell. The

sketch for this part will be really simple, as we will simply print the readings of analog
pin A0 on the serial port. This is the complete sketch for this part:
// Pins
int sensorPin = A0;

void setup() {

 // Serial
 Serial.begin(115200);
}

void loop() {
 // Reading
 int sensorValue = analogRead(sensorPin);
 // Display
 Serial.print("Sensor reading: ");
 Serial.println(sensorValue);
 // Wait
 delay(500);
}

You can now simply copy this sketch and paste it inside your
Arduino IDE. Make sure that you connected the board to your
computer via USB, and select the right board and Serial port
inside the Arduino IDE. Then, upload the sketch to the board.

2.	 Once you have finished uploading, open the Serial monitor. You should immediately
see the readings from the sensor:

Connecting an Arduino to the Web

10

3.	 Now, simply try to put your hand on top of the sensor. You should immediately see the
value measured by the sensor coming down, meaning the sensor is working correctly.

How it works...
This project was really simple, and illustrated how to read data from an analog pin on the
MKR1000 board. In this project, we simply read data on analog pin A0, and printed the
readings on the Serial monitor. As the photocell is acting as a variable resistor (depending
on the ambient light level), we are directly reading a signal that changes depending on the
ambient light level.

See also
You can now move on to the next recipe that will show you how to control outputs on the
board, or even to the recipes. After that, you will learn how to send measurement data on
the cloud.

Interacting with basic actuators
In this recipe, we are now going to see how to control the outputs of the Arduino board.
This will be very useful in the rest of the book, as we will control several output devices,
such as lamps.

Getting ready
To realize this recipe, we first need to have something to control. Here, I will just use a simple
relay, but you can of course use components, such as a single LED.

This is the relay I used for this recipe:

ff 5V relay (https://www.pololu.com/product/2480)

We are now going to assemble the project for this recipe. First, plug the MKR1000 board into
the breadboard. After that, connect the relay VCC pin to the VCC pin of the Arduino board, and
the GND pin to the ground of the MKR1000. Finally, connect the SIG pin of the relay to pin 5
of the Arduino board. This is the final result:

https://www.pololu.com/product/2480

Chapter 1

11

How to do it...
1.	 We are now going to configure the board to see how to control outputs, like this relay.

To illustrate this we are going to switch the relay on and off every second. This is the
complete sketch for this recipe:
// Pins
int relayPin = 5;
void setup() {

 // Set pin as output
 pinMode(relayPin, OUTPUT);
}
void loop() {

 // Set relay ON
 digitalWrite(relayPin, HIGH);

 // Wait
 delay(1000);

 // Set relay OFF
 digitalWrite(relayPin, LOW);

 // Wait
 delay(1000);
}

Connecting an Arduino to the Web

12

2.	 Now, copy this sketch into the Arduino IDE and upload it to the Arduino board. Once
that's done, you should immediately see (and hear) the relay switching on and off
every second.

How it works...
The sketch simply uses the digitalWrite() function of the Arduino language to control the
state of the pin to which the relay is connected, along with the delay() function, therefore
switching the relay on and off continuously.

There's more...
You can, of course, use what you learned in this project to control other output devices, such
as LEDs. We are going to see in other recipes, later in this book, how to control larger output
devices, such as lamps and other home appliances.

See also
You can now continue to the next set of recipes, where we are actually going to connect the
board to the Internet.

Configuring your Arduino board for the IoT
In this recipe, we are going to finally learn how to use the on-board Wi-Fi chip that is on the
MKR1000 board, and connect the board to your local Wi-Fi. This is a very important recipe,
are we are going to use this in nearly every recipe of this book to build IoT projects.

Getting ready
Before we can use the Wi-Fi chip that is on the board, we need an Arduino library to be able to
control it. The library for this chip is called the WiFi101 library and you can find it inside the
Arduino library manager.

To access the library manager, simply go to Sketch | Include Library | Manage Libraries
inside the Arduino IDE. Then, type wifi101 to find the library:

Chapter 1

13

To install the library from there, simply click on the Install button just next to the library
version.

How to do it...
Let's now connect the board to your Wi-Fi network. The sketch is quite long here, so I have
split it into three parts.

This is the main part of the sketch, which will actually connect your chip to your local Wi-Fi
network:

// Libraries
#include <SPI.h>
#include <WiFi101.h>

// Credentials
char ssid[] = "wifi-name"; // your network SSID (name)
char pass[] = "wifi-pass"; // your network password
int status = WL_IDLE_STATUS; // the Wifi radio's status

void setup() {

 // Serial
 Serial.begin(115200);

 // Attempt to connect to Wifi network:
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to WPA SSID: ");
 Serial.println(ssid);

 // Connect to WPA/WPA2 network:
 status = WiFi.begin(ssid, pass);

 // Wait 10 seconds for connection:
 delay(10000);
 }

 // you're connected now, so print out the data:
 Serial.print("You're connected to the network");
 printCurrentNet();
 printWifiData();

}

Connecting an Arduino to the Web

14

void loop() {

 // Check the network connection once every 10 seconds:
 delay(10000);
 printCurrentNet();
}

What you actually need to change here are the following lines:

char ssid[] = "wifi-name"; // your network SSID (name)
char pass[] = "wifi-pass"; // your network password

You need to change those lines to put your own Wi-Fi network's name and password. This is
something you will have to do in all the sketches for the rest of this book, as we are always
going to connect the Arduino board to the local Wi-Fi network.

Then, the following function will print data about your IP address:

void printWifiData() {
 // print your WiFi shield's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 Serial.println(ip);

 // print your MAC address:
 byte mac[6];
 WiFi.macAddress(mac);
 Serial.print("MAC address: ");
 Serial.print(mac[5], HEX);
 Serial.print(":");
 Serial.print(mac[4], HEX);
 Serial.print(":");
 Serial.print(mac[3], HEX);
 Serial.print(":");
 Serial.print(mac[2], HEX);
 Serial.print(":");
 Serial.print(mac[1], HEX);
 Serial.print(":");
 Serial.println(mac[0], HEX);

}

Chapter 1

15

And this function will print data about the current Wi-Fi network to which your Arduino board
is connected:

void printCurrentNet() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print the MAC address of the router you're attached to:
 byte bssid[6];
 WiFi.BSSID(bssid);
 Serial.print("BSSID: ");
 Serial.print(bssid[5], HEX);
 Serial.print(":");
 Serial.print(bssid[4], HEX);
 Serial.print(":");
 Serial.print(bssid[3], HEX);
 Serial.print(":");
 Serial.print(bssid[2], HEX);
 Serial.print(":");
 Serial.print(bssid[1], HEX);
 Serial.print(":");
 Serial.println(bssid[0], HEX);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.println(rssi);

 // print the encryption type:
 byte encryption = WiFi.encryptionType();
 Serial.print("Encryption Type:");
 Serial.println(encryption, HEX);
 Serial.println();
}

It's now time to finally test this sketch and connect your board to the Internet! You can get the
whole sketch from the GitHub repository of the following book:

https://github.com/marcoschwartz/iot-arduino-cookbook

https://github.com/marcoschwartz/iot-arduino-cookbook

Connecting an Arduino to the Web

16

Now, make sure to change your Wi-Fi name and password inside the sketch, and then upload
the sketch to the board. Immediately open the Serial monitor. This is what you should see:

If you can see something similar, congratulations, your board is now connected to your Wi-Fi
network and to the Internet (assuming your Wi-Fi router is connected to the Internet).

How it works...
The WiFi101 library makes it really easy to use the on-board Wi-Fi chip of the MKR1000
board, and to easily connect the board to the Internet. This is a very useful function that we
are going to use in the whole book.

See also
I now recommend checking the two remaining recipes in this chapter, to learn how to actually
use the Internet connection of the board to interact with web services.

Grabbing the content from a web page
To illustrate how the WiFi101 library is working on the MKR1000 board, we are now going to
use it to grab the content of a web page, and display the result inside the Serial monitor.

Chapter 1

17

Getting ready
You do not need any extra steps here, simply make sure that you have the WiFi101
library installed.

How to do it...
Let's now see the sketch for this recipe. As it is really similar to the sketch of the previous
recipe, I will only highlight the main pieces of code that were added here:

1.	 You first need to define which page we are going to grab. Here, I will just make the
board grab the www.example.com page:
char server[] = "www.example.com";

2.	 Then, we need to create an instance of a Wi-Fi client:
WiFiClient client;

3.	 Then, inside the setup() function of the sketch, we connect to the server we defined
earlier, and request the Web page:
// Connect to server
 if (client.connect(server, 80)) {
 Serial.println("connected to server");

 // Make a request:
 client.println("GET / HTTP/1.1");
 client.println("Host: www.example.com");
 client.println("Connection: close");
 client.println();
 }

4.	 Inside the loop() function of the sketch, we then read the data coming back from
the server, and print it inside the Serial port:
while (client.available()) {
 char c = client.read();
 Serial.write(c);
 }

Connecting an Arduino to the Web

18

5.	 We then stop the connection with the following piece of code:
// Stop the connection
 if (!client.connected()) {
 Serial.println();
 Serial.println("disconnecting from server.");
 client.stop();

 // do nothing forevermore:
 while (true);
 }

6.	 It's now time to try this sketch! First, grab the code from the GitHub repository of this
book, and then change your Wi-Fi credentials inside the code. Then, upload the code
to the board, and open the Serial monitor. This is what you should see:

If you can see that, it means that the board has successfully grabbed the content of the web
page and displayed it inside the Serial monitor.

How it works...
The sketch uses the Wi-Fi client of the WiFi101 library, which is a very powerful object that
we will use again in several chapters of this book.

Chapter 1

19

See also
I now recommend checking the next recipe, in which you will actually learn how to use the Wi-
Fi client library to send data to a cloud server.

Sending data to the cloud
In the last recipe of this chapter, we are actually going to use everything we learned so far in
this chapter and apply it to a simple project: sending data to a cloud server, so it can be stored
there. This is something that we are going to do many times in this book, but I wanted to give
you a short overview first.

Getting ready
For this recipe, you will need the same configuration that we used in the recipe Interacting
with basic sensors, but ? with a photocell connected to the Arduino board. Please refer to this
recipe to know how to assemble the hardware for the project.

How to do it...
Let's now see the sketch that we will use for this chapter. It is actually very similar to the code
for the previous chapter, so I will just highlight the important parts here.

As before, we define the server to which we want to connect the board. Here, we will use the
dweet.io service:

char server[] = "dweet.io";

We also define an interval on which we will send data to the dweet.io servers:

unsigned long lastConnectionTime = 0;
const unsigned long postingInterval = 10L * 1000L;

In the loop() function, we check if it is time to send data. If so, we measure the reading from
the sensor, and send this to a function that will send the data:

Connecting an Arduino to the Web

20

if (millis() - lastConnectionTime > postingInterval) {

 // Measure light level
 int sensorData = analogRead(A0);

 // Send request
 httpRequest(sensorData);
 }

Let's now see the details of this function:

void httpRequest(int sensorData) {

 // Close existing connection
 client.stop();

 // Connect & send request
 if (client.connect(server, 80)) {

 Serial.println("connecting...");

 // Send the HTTP PUT request:
 client.println("GET /dweet/for/myarduino?light=" +
String(sensorData) + " HTTP/1.1");
 client.println("Host: dweet.io");
 client.println("User-Agent: ArduinoWiFi/1.1");
 client.println("Connection: close");
 client.println();

 // Note the time that the connection was made:
 lastConnectionTime = millis();
 }
 else {
 // if you couldn't make a connection:
 Serial.println("connection failed");
 }
}

Chapter 1

21

As you can see, the function is very similar to what we did in the previous recipe.
The main difference is that we pass the measured data as an argument when calling
the dweet.io server.

You can now grab the code from the GitHub repository of this book, and upload it to the board.

Don't forget to change your Wi-Fi name and password here, otherwise it won't
work.

Then, open the Serial monitor, and this is what you should see:

If you can see the 'succeeded' message, it means that the data has been correctly stored on
the server.

To check that it was actually recorded, you can now go to the following URL:

https://dweet.io/get/latest/dweet/for/myarduino

You should see the answer in JSON format, meaning data was recorded from your board.

https://dweet.io/get/latest/dweet/for/myarduino

Connecting an Arduino to the Web

22

How it works...
The Dweet.io service is a very useful (and free) web service to store data coming from your IoT
project. We are going to use it extensively in the coming chapters of this book.

See also
I now recommend that you move on to the next chapter, so you can start using what you
learned in this introductory chapter to build actual IoT projects!

Troubleshooting basic Arduino issues
In this part of the chapter, we are going to see what can go wrong when configuring your board
and connecting it to the Internet. Indeed, some of the steps involved here are quite complex
and many things can go differently than expected.

The board is not visible from the Arduino IDE
The first thing that can happen is that the board is not visible from the Arduino IDE, even if you
have it connected to your computer via USB. Make sure that you are using a data USB cable:
many cables nowadays are just for charging and don't actually allow data transfers. If you are
using Windows, also make sure to refer to the Arduino website to install the required drivers.

The board doesn't connect to your Wi-Fi router
If you can't connect the board to your local Wi-Fi router, make sure that you correctly entered
your Wi-Fi name and password inside the sketch before uploading it to the board. The
sketches of this book are made for WPA Wi-Fi networks, which are most of the networks out
there. However, if you are still using a WEP network, make sure to check the Arduino WiFi101
example sketches to learn how to connect the board to a WEP network.

23

Cloud Data Monitoring

In this chapter, we will cover:

ff Internet of Things platforms for Arduino

ff Connecting sensors to your Arduino board

ff Posting the sensor data online

ff Retrieving your online data

ff Monitoring sensor data from a cloud dashboard

ff Monitoring several Arduino boards at once

ff Troubleshooting issues with cloud data monitoring

Introduction
One of the most important things you can do with an Internet of Things project is to send data
online, so it can be stored, retrieved later, and plotted inside a nice dashboard. Of course, it
needs to be accessible from any web browser or application in the world.

In this chapter, this is exactly what we are going to do with Arduino. We are going to use an
Arduino board to log sensor data online, and then we'll see how to exploit this data. We are
first going to get an overview of what options are available when you want to log data online
from an Arduino project. Then, we are going to connect sensors to the Arduino board, and
log this data online. Finally, we'll see how to access this data, plot it, and also visualize data
coming from several boards at once.

Cloud Data Monitoring

24

Internet of Things platforms for Arduino
In the first recipe of this chapter, we are going to see the different platforms that are available
for us, if we want to store data online from an Arduino project. We'll see what are the strengths
and the weaknesses of each platform, so we can make a choice for the rest of this chapter.

Available platforms
The first platform that I wanted to mention here is called Dweet.io. You can learn more about
it at:

https://dweet.io/

Dweet.io is basically a simple API that can be called from any web browser or application, and
it is so simple to use that even a human can use it without problems! It's really easy to store
data there from an Arduino project, and then to retrieve this data using other applications.

The next platform I wanted to mention here is Xively. This is the main page of Xively:

https://xively.com/

https://dweet.io/
https://xively.com/

Chapter 2

25

Xively is a complete IoT platform, which is more dedicated to the business world than Dweet.
io, for example. It includes more functions than just storage of data – for example, you can
plot data right on their platform as well.

The next platform is called Adafruit IO. You can access the platform by going to the
following URL:

https://io.adafruit.com/

Made by the manufacturer of the Adafruit open source hardware products, the platform was
made to be really easy to use with Adafruit products and libraries, for example, their ESP8266
breakout boards, and their FONA product line that connects to the Internet via GPRS or 3G. At
the time of writing, the service was still in open beta.

https://io.adafruit.com/

Cloud Data Monitoring

26

The last cloud service I want to mention in this recipe is the SparkFun data service,
accessible from:

https://data.sparkfun.com/

This service is relatively similar to Dweet.io, and allows the user to easily store data online.
You will also find a lot of tutorials showing you how to use this service with SparkFun products.
For this chapter, and most of this book, I decided to use Dweet.io to store data online, as it is
the easiest solution when using an Arduino board.

How it works...
All these services work in a similar fashion – you need to call the API of this service, with the
data that you want to store online. This will be done by the Arduino board in the recipes in this
chapter, where we will send sensor data to those services.

Then, we will be able to use this data from other services, for example, to plot the data
graphically inside online dashboards.

There's more...
There are, of course, other platforms that are available out there to store data online, and
that are also easy to use from Arduino boards. You are, of course, free to use the platform
that you wish, you will simply need to adapt the code that you will find in the different
recipes of this book.

https://data.sparkfun.com/

Chapter 2

27

See also
As this is the simplest cloud storage service of this recipe, we are mainly going to use the
Dweet.io website in the recipes in this chapter. Therefore, I recommend that you move to the
next recipe to see how to connect sensors to the Arduino board.

Connecting sensors to your Arduino board
In this recipe, we are going to build the project that we will use for the rest of this chapter.
We basically want to connect sensors to the Arduino MKR1000 board that will continuously
measure data. As an example here, we are going to connect a photocell (that we already used
in the first chapter of this book), as well as a DHT11 temperature and humidity sensor.

Getting ready
Let's first see what additional components we will need for this project:

ff Photocell (https://www.sparkfun.com/products/9088)

ff 10K Ohm resistor (https://www.sparkfun.com/products/8374)

ff DHT11 sensor (https://www.adafruit.com/products/386)

You will also need to install the Adafruit DHT library that you can find inside the Arduino
board manager.

We are now going to assemble the project. First, place the resistor in series with the photocell
on the breadboard, next to the MKR1000 board.

Now, connect the other end of the resistor to GND on the MKR1000 board, and the other end
of the photocell to the VCC pin of the Arduino board. Finally, connect the middle pin between
the resistor and the photocell to analog pin A0 of the MKR1000.

To connect the DHT11 sensor, place it on the board as well. Then, connect the first pin of
the sensor to VCC, the second pin to pin 5 of the Arduino board, and then the last pin of the
sensor to GND.

https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8374
https://www.adafruit.com/products/386

Cloud Data Monitoring

28

This is the final result:

This is the completely assembled project from another angle:

Chapter 2

29

How to do it...
We are now going to write some code to test the sensors. This will make sure that we have
connected everything correctly, before we move on to the next step that sends the data to a
cloud service:

1.	 First, we need to include the DHT library:
#include "DHT.h"

2.	 Then, we define the pins on which the sensors are connected, and we declare the
type of the DHT sensor:
int sensorPin = A0;
#define DHTPIN 5
#define DHTTYPE DHT11

3.	 We also need to create an instance of the DHT sensor:
DHT dht(DHTPIN, DHTTYPE, 15);

4.	 Inside the setup() function of the sketch, we initialize the DHT sensor:
dht.begin();

5.	 In the loop() function of the sketch, we first read data from the DHT sensor,
and print it inside the Serial monitor:
// Reading temperature and humidity
 float humidity = dht.readHumidity();
 // Read temperature as Celsius
 float temperature = dht.readTemperature();

 // Display
 Serial.print("Temperature: ");
 Serial.print(temperature);
 Serial.println(" C");

 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.println(" %");

Cloud Data Monitoring

30

6.	 We then do the same for the photocell:
// Reading from analog sensor
 int sensorValue = analogRead(sensorPin);
 float lightLevel = sensorValue/1024.*100;
 // Display
 Serial.print("Light level: ");
 Serial.print(lightLevel);
 Serial.println(" %");
 Serial.println();

7.	 It's now time to test the project! Grab all the code from the GitHub repository of the
project at: https://github.com/marcoschwartz/iot-arduino-cookbook.

8.	 Then, upload the code to the board, and open the Serial monitor. This is what you
should see:

Congratulations, if you can see that, you can now read data from sensors connected to your
MKR1000 board!

https://github.com/marcoschwartz/iot-arduino-cookbook.

Chapter 2

31

How it works...
In this recipe, we introduced a new kind of sensor with the DHT11: digital sensors. These
types of sensors usually work along with a dedicated library (for example, for Arduino), and
are quite easy to use. As you can see in this recipe, we were able to easily measure the
temperature and humidity within the code.

There's more...
You can, of course, connect other sensors to your Arduino board: the two sensors I used in
this project were just examples, to have some data to log to a cloud service. You could, for
example, use a barometric pressure sensor, an accelerometer, a gyroscope, and so on.

See also
To now see how to actually use this data and log it inside a cloud service, I recommend
following the next recipe of this chapter.

Posting the sensor data online
Using the Arduino MKR1000 board and the sensors that we connected to it, we are finally
going to log data online, using the Dweet.io service.

Getting ready
For this recipe, you simply need to have the previous recipe up and running, so make sure
you have all the sensors connected to your board, and that you have tested them with the
test sketch.

You should already have it by now, but make sure that you have the Arduino WiFi101 library
installed inside the Arduino IDE.

Cloud Data Monitoring

32

How to do it...
We are now going to configure the board so it sends the measurements from the sensor to
Dweet.io at regular intervals. As this sketch is quite similar to what we already saw in previous
chapters, I will only highlight the most important parts of the code here:

1.	 First, we need to define the libraries that we are going to use in this project:
#include <SPI.h>
#include <WiFi101.h>
#include "DHT.h"

2.	 Then, we need to define a name for our thing on Dweet.io, which is the name we will
use to retrieve the data later:
char * thingName = "mymkr1000";

3.	 Then, inside the loop() function of the sketch, we make measurements from the
sensors at regular intervals, and then we send this data to the server:
if (millis() - lastConnectionTime > postingInterval) {

 // Reading temperature and humidity
 float humidity = dht.readHumidity();

 // Read temperature as Celsius
 float temperature = dht.readTemperature();

 // Reading from analog sensor
 int sensorValue = analogRead(sensorPin);
 float lightLevel = sensorValue/1024.*100;

 // Send request
 httpRequest(temperature, humidity, lightLevel);
 }

4.	 We already saw the httpRequest() function in a previous recipe, so I will let you
discover it inside the code itself.

5.	 It's now time to finally test the project!

Chapter 2

33

Make sure to grab all the code from the GitHub repository of this book, and
modify your Wi-Fi name and password inside the code. Also make sure to
modify the name of your 'thing' as I used quite a generic name.

6.	 Then, upload the code to the board, and open the Serial monitor. It looks something
like this:

The important part of the output is the following:

Those numbers are our measurements, and if you can see them it means that your
measurements have been stored on the Dweet.io server!

How it works...
The sketch simply sends all the measurements to the Dweet.io server via a CIT12 request.
The information is then stored there in JSON format, which is what we see inside the output.

Cloud Data Monitoring

34

See also
Storing data online is good, but what we really want to do is to reuse it later. This is why you
can now move on to the next couple of recipes in this chapter.

Retrieving your online data
Now that we have stored measurement data in the previous recipe, we are now going to learn
how to retrieve it and possibly use it inside applications.

Getting ready
For this recipe, you need to have some data stored on the Dweet.io server. For that, please
follow the previous recipe if that's not done yet.

How to do it...
Let's suppose that you have data stored for a device called "mymkr1000" on the Dweet.
io server. You can easily access the latest data that was stored on the server by typing the
following command inside any web browser:

https://dweet.io/get/latest/dweet/for/mymkr1000

This will be the result:

{
 "this":"succeeded",
 "by":"getting",
 "the":"dweets",
 "with":[
 {
 "thing":"mymkr1000",
 "created":"2016-05-06T09:35:31.110Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":71.97
 }
 }
]
}

https://dweet.io/get/latest/dweet/for/mymkr1000

Chapter 2

35

As you can see, the server returns the latest datapoint that was stored for this device, in
the form of a JSON document.

To get all the data that was stored for this device, you can type:

https://dweet.io/get/dweets/for/mymkr1000

You should get a result similar to this:

{
 "this":"succeeded",
 "by":"getting",
 "the":"dweets",
 "with":[
 {
 "thing":"mymkr1000",
 "created":"2016-05-06T09:50:19.635Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":79.1
 }
 },
 {
 "thing":"mymkr1000",
 "created":"2016-05-06T09:50:09.124Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":79.1
 }
 },
 {
 "thing":"mymkr1000",
 "created":"2016-05-06T09:49:59.473Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":78.91
 }
 },
 {

https://dweet.io/get/dweets/for/mymkr1000

Cloud Data Monitoring

36

 "thing":"mymkr1000",
 "created":"2016-05-06T09:49:48.089Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":79.39
 }
 },
 {
 "thing":"mymkr1000",
 "created":"2016-05-06T09:49:37.594Z",
 "content":{
 "temperature":26,
 "humidity":33,
 "light":79.59
 }
 }
]
}

Here, the result is returned as a JSON array, which contains the data stored by this 'thing' on
Dweet.io.

How it works...
The Dweet.io service can also be used to easily retrieve data that was stored on the device,
via a simple HTTP request. You can now use this data for your information only, or inside your
own web applications.

See also
If you now want to protect your stored data, you can have a look at the next recipe. Otherwise,
you can skip the next recipe and just go to the next one in which we'll learn how to plot the
data that is stored on Dweet.io.

Securing your online data
We are now going to learn how to protect the data that was stored by your devices. Indeed,
using the recipes we saw so far, anyone can log data to your devices and then retrieve this
data via a simple web request.

Chapter 2

37

Getting ready
The key to protecting your data stored on Dweet.io is to use locks. You can learn more about
locks at:

https://dweet.io/locks

Basically, you can buy a lock to protect your devices, and then to access them or log new data
you will need to always provide the key associated with this lock.

How to do it...
The first step is to lock the device, which is done by calling the URL, passing your thing name,
lock, and key:

https://dweet.io/lock/{thing_name}?lock={your_lock}&key={your_key}

To actually log data to a device protected by a lock, you need to provide the lock and the key
whenever you are calling the API from the Arduino board. For example:

https://dweet.io/dweet/for/{my_locked_thing}?key={my_
key}&hello=world&foo=bar

The same is then necessary to retrieve data from this device.

How it works...
Locks can be used to prevent anyone from accessing one of your 'things' on the Dweet.io
service – you then need a key to perform any operation on the device. This is particularly
useful if you have sensitive data that you don't want anybody else to access.

https://dweet.io/locks
https://dweet.io/lock/{thing_name}?lock={your_lock}&key={your_key}
https://dweet.io/dweet/for/{my_locked_thing}?key={my_key}&hello=world&foo=bar
https://dweet.io/dweet/for/{my_locked_thing}?key={my_key}&hello=world&foo=bar

Cloud Data Monitoring

38

See also
I now recommend checking the remaining recipes of this chapter, to learn how to plot the
stored data graphically inside a cloud dashboard.

Monitoring sensor data from a cloud
dashboard

So far in this chapter, we stored data on Dweet.io, and we also saw how to retrieve the data
back from the server. However, what would be even better is to learn how to plot this data
inside a dashboard that is also in the cloud. And that's exactly what we are going to do in
this recipe.

Getting ready
For this recipe, you will need to have an account with Freeboard.io, which is a very convenient
service that you can use to plot data graphically. To do so, just go to:

http://freeboard.io/

Now, inside the Freeboard.io interface, create a new dashboard:

You should also make sure that the project we used in previous recipes is still running, and
still logging data on Dweet.io.

How to do it...
Now, go to your newly created panel inside http://freeboard.io/. Next, click on
DATASOURCES to create a new source of data:

http://freeboard.io/
http://freeboard.io/

Chapter 2

39

Inside, you need to select Dweet.io as the type of the data source, and you also need to put
the name of your thing Dweet.io:

The newly created data source should now appear inside the dashboard:

Cloud Data Monitoring

40

Now that you have a data source inside the dashboard, it's time to actually plot the data in it.
For that, first create a new panel, and inside this panel add a new element.

To display our data here, we are going to add gauges. These are the parameters for the
temperature gauge:

You can now do the same for the humidity and the light level. At the end, you should have a
dashboard with three different gauges:

Chapter 2

41

How it works...
Freeboard.io allows you to easily plot the data stored on Dweet.io inside a dashboard.
Because the dashboard is also on a web server, your data is accessible from anywhere, and
you can even share your dashboards with your friends so they too can visualize the data
coming from your projects.

See also
In order to continue building cloud dashboards, I recommend checking the last recipe of this
chapter where we will actually integrate several boards inside the same dashboard.

Monitoring several Arduino boards at once
In the last recipe of this chapter, we are going to see how to integrate the data coming from
several Arduino boards at once inside the same dashboard, so you can monitor all your data
from a single place, wherever you are on the planet.

Getting ready
For this recipe, you will need to have already released22 the project from the previous recipe,
and have a project logging data on Dweet.io, and linked to Freeboard.io as well.

Then, you can build as many of those projects as you want, with the same components on
each project. For this recipe, I used three MKR1000 boards, each with the same sensors.

How to do it...
You can now program all of your boards. You can use the same code that we used earlier in
this chapter, but for each device you need to change the name of the 'thing' on Dweet.io.
For example:

char * thingName = "mymkr1000_two";

Freeboard.io

Cloud Data Monitoring

42

Next, inside http://Freeboard.io, you need to set a new data source for each board you
have in your project, with the respective 'thing' name:

You will now have several data sources in your dashboard:

Next, for each new data source, add new gauge widgets, by selecting the correct data source
inside the widget:

http://Freeboard.io

Chapter 2

43

If you do that for all measurements and for all boards (I had three when I tested the project),
you will end up with a dashboard similar to this one:

How it works...
Freeboard.io allows you to add several data sources inside the same dashboard, so it is
really easy to display the measurements coming from several Arduino boards inside the
same cloud dashboard.

Cloud Data Monitoring

44

There's more...
You can, of course, add many more than three boards inside your project! You can also,
for example, mix the sensors, by having some boards' measure only the temperature and
humidity, and other boards measuring other parameters.

See also
I now recommend checking the troubleshooting section in case you had any problems with
this chapter.

Troubleshooting issues with cloud data
monitoring

In this part of the chapter, we are going to see what can go wrong when logging data to a
cloud service, and displaying this data inside a dashboard:

ff The board can't connect to Dweet.io: The first thing that can happen is that the
board has no Internet connection. Enter the correct Wi-Fi name and password inside
the sketch. Also make sure that your router has an active Internet connection. Finally,
make sure that the sensors are correctly reading values in the sketch, as it could
corrupt the data sent to Dweet.io.

ff The results are not visible inside the: If the results are not showing up inside the
cloud dashboard, first make sure that your device is correctly logging data on Dweet.
io. Also make sure that you entered the correct name for your 'thing' on Freeboard.io.

45

Interacting with Web
Services

In this chapter, we will cover:

ff Discovering the Temboo platform

ff Tweeting from an Arduino board

ff Posting updates on Facebook

ff Storing data on Google Drive

ff Automation with IFTTT

ff Sending push notifications

ff Sending text message notifications

ff Troubleshooting usual issues with web services

Introduction
Having an Arduino board that can easily be connected to the Internet allows many exciting
applications, for example, by making the board communicate with existing web services.

In this chapter, we are going to learn how to use existing web services to really build amazing
Internet of Things projects with our Arduino board. We'll, for example, use it to post on
Facebook or Twitter, and to send automated notifications based on data measured by
the board.

Interacting with Web Services

46

Discovering the Temboo platform
To interact with web services from the Arduino MKR1000 board, the easiest thing to do is
to use a platform that will make the connection between the board and the web services
themselves.

The first platform of this kind that we are going to use in this chapter is the Temboo platform,
which was the platform recommended by Arduino when their first IoT product (the Arduino
Yun) came out. We'll see how easy it is to create an account there and how to use it to connect
to a lot of web services.

Getting ready
1.	 The first step is to create a Temboo account. To do so, simply visit

https://temboo.com/.

2.	 You should then be able to create an account and log in:

3.	 After that, you will be able to explore the Temboo libraries to interact with other web
services, which are called Choreos:

https://temboo.com/

Chapter 3

47

4.	 You can now click on a given Choreo to see what kinds of interactions are available.
For example, this is the Disqus Choreo:

5.	 For example, this is what you will see if you click on one possible interaction:

How it works...
Temboo works by making the link between your Arduino boards (or other boards/applications)
and web services such as Twitter, Facebook, Dropbox, and so on. It is then very easy to use all
those services from your own applications and projects.

Interacting with Web Services

48

There's more...
You can now already that time to explore the available Choreos, and see what you could use in
your projects involving the Arduino board.

See also
I now recommend moving on to the next recipe to learn how to use Temboo to tweet from your
Arduino board.

Tweeting from an Arduino board
In this recipe, we are going to learn how to use Temboo to tweet a message from your Arduino
board. We are going to create an app on Twitter, and then see how to configure your Arduino
board to send tweets from it.

Getting ready
1.	 The first step is to create a Twitter account if that's not done yet, and then log in with

this account at https://apps.twitter.com/.

2.	 You will then be able to create a Twitter application:

https://apps.twitter.com/

Chapter 3

49

3.	 What matters is to get the application API key and app secret:

4.	 You will also have to get the app access token and token secret:

How to do it...
Let's now see how to configure the Arduino board. You have two choices here: either do it from
the Temboo interface, or simply grab the sketch from the GitHub repository of the project.

As Temboo does not officially support the MKR1000 board at the time of writing, I recommend
getting the code from the GitHub repository of this book.

Interacting with Web Services

50

The Choreo we are going to use here is called statusesUpdate:

Let's now see how to configure the Arduino board. As the code is quite long, I will only highlight
the main parts here. It starts by including the required libraries and files:

#include <SPI.h>
#include <WiFi101.h>
#include <Temboo.h>
#include "TembooAccount.h" // Contains Temboo account information

Then we configure the Twitter Choreo with the message that we want to Tweet, along with the
API key and secret, and the token and token secret:

// Set Choreo inputs
 String StatusUpdateValue = "Hello from Arduino!";
 StatusesUpdateChoreo.addInput("StatusUpdate", StatusUpdateValue);
 String ConsumerKeyValue = "key";
 StatusesUpdateChoreo.addInput("ConsumerKey", ConsumerKeyValue);
 String AccessTokenValue = "token";
 StatusesUpdateChoreo.addInput("AccessToken", AccessTokenValue);
 String ConsumerSecretValue = "secret";

Chapter 3

51

 StatusesUpdateChoreo.addInput("ConsumerSecret",
ConsumerSecretValue);
 String AccessTokenSecretValue = "secretToken";
 StatusesUpdateChoreo.addInput("AccessTokenSecret",
AccessTokenSecretValue);

Finally, the Temboo.h file contains all the data relative to your Temboo account:

#define TEMBOO_ACCOUNT "account" // Your Temboo account name
#define TEMBOO_APP_KEY_NAME "app" // Your Temboo app key name
#define TEMBOO_APP_KEY "key" // Your Temboo app key

You can now grab the whole code from the GitHub repository of this book at https://
github.com/marcoschwartz/iot-arduino-cookbook.

Inside this sketch, you need to modify the Wi-Fi name and password, the Twitter credentials,
and also your Temboo credentials inside the .h file. Once that's done, you can upload the file
to the board.

Then, open your Twitter feed. You should shortly see the status update that you defined in the
code appear on your feed:

Congratulations, you can now tweet from your Arduino board!

How it works...
The project works by making the Arduino MKR1000 board talk with the Temboo servers.
Temboo then makes sure to authenticate with your Twitter application, which then posts on
your Twitter account.

See also
For a variation of this recipe, I recommend moving to the next one in which you will learn to
post updates via Facebook.

https://github.com/marcoschwartz/iot-arduino-cookbook
https://github.com/marcoschwartz/iot-arduino-cookbook

Interacting with Web Services

52

Posting updates on Facebook
In this recipe, we are going to learn how to use Temboo again, this time to post an update on
your Facebook feed.

Getting ready
1.	 The first step is to create a Facebook application. To do so, go to

https://developers.facebook.com/.

2.	 You will then be able to name your app:

3.	 Then you need to add the following line inside the settings of your app, replacing
account_name with the name of your Temboo account:

https://developers.facebook.com/

Chapter 3

53

4.	 Now we need to authorize the use of this application by the Temboo servers. To
do so, visit https://temboo.com/library/Library/Facebook/OAuth/
InitializeOAuth/.

5.	 Here you will need to insert the application ID, which can be found on the Facebook
app page:

6.	 Once that's done, you will need to visit a URL to authorize the app:

https://temboo.com/library/Library/Facebook/OAuth/InitializeOAuth/
https://temboo.com/library/Library/Facebook/OAuth/InitializeOAuth/

Interacting with Web Services

54

7.	 Finally, after following all the steps from the Temboo website, you will be given your
access token that will be used by the Arduino board to post on Facebook:

How to do it...
For the rest of this recipe, we'll use the Choreo at https://temboo.com/library/
Library/Facebook/Publishing/Post/.

This will allow the application to post on your Facebook profile feed. As the sketch is really
similar to the one of the previous, I will only highlight the main difference here, which is the
part of the sketch where you define the message to post on Facebook and the access token:

String MessageValue = "Hello from Arduino";
PostChoreo.addInput("Message", MessageValue);
String AccessTokenValue = "token";
PostChoreo.addInput("AccessToken", AccessTokenValue);

ff You can now grab the code from the GitHub repository of this book, and modify your
Wi-Fi credentials, add the Facebook access token you got from Temboo, and finally
also modify the Temboo.h file with your Temboo credentials.

ff Then, upload the code to the Arduino board. You should see that quickly after that,
you will see the message you defined in the code appear on your Facebook feed.

How it works...
Just like the previous recipe, this project uses the Temboo platform to make the link between
the Arduino board and the Facebook servers, to post automatically on Facebook using the
Arduino board.

https://temboo.com/library/Library/Facebook/Publishing/Post/
https://temboo.com/library/Library/Facebook/Publishing/Post/

Chapter 3

55

See also
I now recommend exploring the next recipes of this chapter, to learn how to use other
web services.

Automation with IFTTT
In the next few recipes of this book, we are going to use another website to interact with web
services: IFTTT. We'll see how IFTTT will allow you to quickly define powerful automation rules
and actions that can be triggered by the Arduino board.

Getting ready
The first step for all the remaining recipes of this chapter is to create an IFTTT account at
https://ifttt.com.

From there, you will be able to explore the first important part of IFTTT: channels. Channels
are all the web services or triggers that you can use within IFTTT, for example, Gmail, Twitter,
Pushover, and so on. You can quickly have an overview of the available channels:

https://ifttt.com

Interacting with Web Services

56

For example, if you type Weather, you can quickly add the weather channel, allowing you to
trigger actions depending on the weather:

The next important part of IFTTT is recipes. Recipes allow the user to create an action (on a
given channel) when a trigger is called (on another channel). This is really the core of IFTTT.
You can also quickly browse the already existing library of recipes on IFTTT:

However, for our projects, we are mostly going to create our own recipes. And for that, we need
to connect a very important channel to our account: the Maker channel. This will allow the
Arduino board to communicate with the IFTTT servers.

Chapter 3

57

To connect with this channel, search for Maker:

Once the channel is added, you will get a key that we will use in all the remaining projects of
this chapter:

Interacting with Web Services

58

There's more...
You can now take some time to explore all the channels that are available on IFTTT, and think
about how to use them in your Arduino IoT projects.

See also
I now recommend moving to the next recipe, in which we will use IFTTT to send push
notifications.

Sending push notifications
In this recipe, we are going to see how to send push notifications from your Arduino boards,
via IFTTT. As we are slowly discovering the IFTTT service, we are only going to build a simple
alert system here.

Getting ready
To start, you need to connect to the Pushover channel, which is a service to send notifications
to your mobile device. If you don't have a Pushover account yet, create one by downloading
the app on your mobile device.

Then, add the channel inside IFTTT:

Chapter 3

59

Next, we are going to need some sensors connected to your Arduino board. Please see
the previous chapter to see how to connect a photocell and the DHT11 sensor to your
Arduino board.

How to do it...
We are now going to create our first IFTTT recipe:

1.	 Create a new recipe, and select the Maker channel as the trigger:

2.	 Name the event alert:

Interacting with Web Services

60

3.	 Next, select Pushover as the action channel:

4.	 As for the notification, we'll simply name it Alert, and write the following message:

5.	 You can now create the recipe that will appear inside your IFTTT account:

Chapter 3

61

Let's now write the code for this recipe. As usual, I will only highlight the most important parts
of the code here:

1.	 It starts by including the required libraries:
#include <SPI.h>
#include <WiFi101.h>
#include "DHT.h"

2.	 After that, we set the alert that we also set on IFTTT, and also set the IFTTT key:
const char* host = "maker.ifttt.com";
const char* eventName = "alert";
const char* key = "key";

3.	 In the loop() function of the sketch, we set a trigger when the humidity reaches
more than 30 percent:
if (h > 30.00) {

4.	 If that's the case, we prepare a request with the trigger name we defined earlier,
along with the Maker channel key:
String url = "/trigger/";
 url += eventName;
 url += "/with/key/";
 url += key;

5.	 If that's the case, we send a request to the IFTTT server:
client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");

Interacting with Web Services

62

 int timeout = millis() + 5000;
 while (client.available() == 0) {
 if (timeout - millis() < 0) {
 Serial.println(">>> Client Timeout !");
 client.stop();
 return;
 }
 }

6.	 It's now time to test the project! Grab the code from the GitHub repository of this
book, and then make sure to modify it with your WiFi credentials, and IFTTT Maker
key. Then, upload the code to the board.

If the humidity then crosses the threshold, you should quickly receive an alert on your phone:

How it works...
This recipe really showcased the power of IFTTT: by creating recipes on IFTTT, you can
easily trigger events from your Arduino board, and have IFTTT do a given action for you
as a response.

See also
In the next recipe, we are going to see how to send email notifications from IFTTT.

Chapter 3

63

Sending text message notifications
In this recipe, we'll continue using IFTTT, but this time we are going to see how to send data
along with the trigger coming from the board. This will allow us to actually send data via IFTTT.
To illustrate this, we'll send data right on your phone via text messages.

Getting ready
For this recipe, you will need to have your board connected to sensors just like in the previous
recipe. You will also need to connect the SMS channel to your IFTTT account:

1.	 Create a new recipe, and name the event text_data:

2.	 After that, select SMS as the action channel:

Interacting with Web Services

64

3.	 This time, we are actually going to send data with the request, and this data is
available as Value1, Value2, and so on. Therefore, this is the message we are going
to use:

4.	 This is how the final recipe should look like:

How to do it...
Now, let's see how to configure the Arduino board. As the code is very similar to the one from
the last recipe, I will only highlight the changes here.

Chapter 3

65

Same as before, you need to enter your IFTTT key:

const char* host = "maker.ifttt.com";
const char* eventName = "text_data";
const char* key = "key";

For the request, we actually need to pass the different measurements done by the board, so
the temperature, humidity, and light level:

String url = "/trigger/";
 url += eventName;
 url += "/with/key/";
 url += key;
 url += "?value1=";
 url += String(t);
 url += "&value2=";
 url += String(h);
 url += "&value3=";
 url += String(lightLevel);

You can now grab the code from the GitHub repository of this book, and make sure to modify
the code with your credentials. Then, upload the code to your board.

You should quickly receive an SMS similar to this:

Note that there is currently a 100 SMS per month limit for users in the US and Canada, and
10 per month outside. Make sure to tune your project accordingly so it doesn't reach this limit.

How it works...
In this recipe, we pushed things further with IFTTT and learned how to actually transmit data
via the Maker channel, so you can use it inside your IFTTT actions as well.

Interacting with Web Services

66

See also
I now advice you to follow the last recipe of this chapter to learn how to actually log this data
into an online spreadsheet.

Storing data on Google Drive
In this last recipe of this chapter, we are going to see how to use our Arduino board and
IFTTT to log measured data right on a Google Drive spreadsheet, so it can be accessed from
anywhere in the world.

Getting ready
Before building this recipe, we need to connect the Google Drive channel to your account:

1.	 You will simply need to log in to your Google account from IFTTT, authorize the app,
and then you'll be able to see the Google Drive channel inside your IFTTT account:

2.	 Now, create a new recipe, use the Maker channel as the trigger, and name the event
google_data:

Chapter 3

67

3.	 As the action channel, choose Google Drive, and then select the Add row to
spreadsheet action:

Interacting with Web Services

68

4.	 Next, leave it as it is for the row to be appended to the spreadsheet, as it already
contains all the data that we want to log:

5.	 Finally, create the recipe, and check that it is activated.

How to do it...
We are now going to configure our Arduino board for this project. Again, as it is really similar to
the last recipe we saw in this chapter, I will only highlight the main differences here.

Chapter 3

69

You need to set your IFTTT Maker key inside the code:

const char* host = "maker.ifttt.com";
const char* eventName = "google_data";
const char* key = "key";

The rest of the code is strictly the same as for the previous recipe, as we are transmitting the
same data.

Now, grab the code from the GitHub repository of this book, modify it with your own WiFi
network credentials and IFTTT Maker key, and upload the code to the board.

Then, go to your Google Drive account. You should quickly see that a new file was created,
called IFTTT_Maker_Events. Open this file and you should see that the first row was added
to the sheet:

After a while, more data will be logged inside the sheet:

Interacting with Web Services

70

You can now also use the plotting functions of Google Spreadsheets to plot the data as it
comes into the spreadsheet. For example, I plotted all the light level measurements into a
single graph:

How it works...
Just like the other recipes of this chapter, we interacted with Google Drive from your Arduino
board, using IFTTT as an intermediary. This allowed us to easily log measurement data inside
Google Drive.

See also
As this is the last recipe of this chapter, I now recommend checking the next section in case
you had any issues.

Troubleshooting issues with web services
In this part of the chapter, we are going to see what can go wrong when using your Arduino
board to interact with web services. Indeed, some of the steps involved here are quite complex
and many things can go differently than expected.

Chapter 3

71

Updates
The first thing that can happen is incorrectly entering your Twitter API keys or Facebook
access token inside the Arduino sketch. Also make sure that you correctly entered the
callback URL inside the Facebook app settings. Finally, make sure that you didn't reach
the calls limit on Temboo.

No notifications are triggered
If you don't receive any notifications from IFTTT, either via push notifications or text messages,
first check that you entered the correct Maker key for IFTTT inside the sketch, as well as the
correct event name. Also check that the recipe is still marked as active on IFTTT. Finally, make
sure that you are connected to the Internet with your Arduino board, and that the sensors
connected to the board are working correctly.

73

Machine-to-Machine
Interactions

In this chapter, we will cover:

ff Types of IoT interaction

ff Basic local M2M interactions

ff Cloud M2M with IFTTT

ff M2M alarm system

ff Automated light controller

ff Automated sprinkler controller

ff Troubleshooting basic M2M issues

Introduction
In the previous chapters of this book, we learned how to interact with the Arduino board via
the Web, either to visualize measurements made by the board, or to automatically interact
with web services.

In this chapter, we are actually going to focus on something different: making two (or
more) Arduino boards talk to each other and interact with each other, without any human
intervention. This is known as Machine-to-Machine communications, and is a very exciting
field of the IoT. Let's dive in!

Machine-to-Machine Interactions

74

Types of IoT interaction
There are many possible interactions between devices and users in the world of the Internet
of Things, and before we start this chapter I want to give you an overview of all the possible
scenarios.

The one we have already seen in this book is machine-human interaction, where we use
an IoT device to log data on a server, which is then used to display a graph that can be
understood and used by the final user.

The second type of interaction is human-machine interaction, where the user is triggering a
command to a remote device, for example, to activate a lamp remotely.

Finally, the last scenario is machine-to-machine interaction, where two or more devices
are directly talking to each other, without the intervention of any human. This is the type of
interaction that we are going to focus on in this chapter.

See also
I now recommend checking the next recipe in this chapter, to begin to have an understanding
of what a Machine-to-Machine (M2M) interaction looks like between Arduino devices.

Basic local M2M interactions
In the first project of this chapter, we are going to learn how to make a very simple case of
Machine-to-Machine interaction, by using two Arduino MKR1000 boards. To illustrate M2M
communications, we are just going to make them talk via the local Wi-Fi network.

Getting ready
This project will be composed of two Arduino boards. One board will be connected to a simple
push button, and the other one to a simple LED. The goal is that whenever the button is
pressed, the first board will send the signal to the other board to light up the LED.

These are the components that we will need for this recipe:

ff Arduino MKR1000 board x2 (https://www.adafruit.com/products/3156)

ff Push button (https://www.sparkfun.com/products/97)

ff 1K Ohmresistor (https://www.sparkfun.com/products/13760)

ff LED (https://www.sparkfun.com/products/9590)

ff 330Ohm resistor (https://www.sparkfun.com/products/8377)

https://www.adafruit.com/products/3156
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/13760
https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/8377

Chapter 4

75

Let's now see how to assemble the board with the push button. The first step is to place the
push button on the breadboard, along with the resistor, connected to one pin of the push
button. Then, also connect the pin of the push button to pin 6 of the Arduino board. Finally,
connect the other side of the push button to the VCC pin of the Arduino board.

This is the final result:

Let's now assemble the other board, with the LED. For this one, first place the LED in series
with the resistor on the board, with the longest pin of the LED connected to the resistor. Then,
connect the other pin of the resistor to pin 6 on the Arduino board, and the other part of the
LED to GND.

This is the final result:

Machine-to-Machine Interactions

76

On the software side, you will also need the REST library for Arduino that you can install from
the Arduino library manager.

How to do it...
We are now going to see how to configure the boards, starting with the board you assembled
last – the LED board. As usual, I will only highlight the most important parts of the code here,
and you will find the complete code on the GitHub repository of this book:

1.	 The sketch starts by importing the required libraries:
#include <SPI.h>
#include <WiFi101.h>
#include <aREST.h>

2.	 Then, we declare the aREST object, which we will use to receive commands from the
other Arduino board:
aREST rest = aREST();

3.	 We also declare the pin connected to the LED as the output:
pinMode(6, OUTPUT);

4.	 Now, grab the whole code for this project from the GitHub repository of this book from
https://github.com/marcoschwartz/iot-arduino-cookbook.

5.	 After that, modify the code with your Wi-Fi credentials, and upload the code to the
board. Then, open the Serial monitor. Check what the IP address of the board is – you
will need it soon.

6.	 Let's now configure the board with the push button. It also starts by importing the
right libraries:
#include <SPI.h>
#include <WiFi101.h>

7.	 Then, you need to enter the IP address of the LED board:
const char* host = "192.168.0.108";

8.	 Then, we constantly check if the button was pressed:
if (digitalRead(6)) {

9.	 If so, we call a function on the LED board that will toggle the state of the LED:
String url = "/toggle";

 Serial.print("Requesting URL: ");
 Serial.println(url);

https://github.com/marcoschwartz/iot-arduino-cookbook

Chapter 4

77

 // This will send the request to the server
 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");
 unsigned long timeout = millis();
 while (client.available() == 0) {
 if (millis() - timeout > 5000) {
 Serial.println(">>> Client Timeout !");
 client.stop();
 return;
 }
 }

10.	 You can now grab the code for this board from the GitHub repository of this book
again, and upload it to the board.

11.	 You can now finally test the project. Press the button on one board, and it should
immediately toggle the state of the LED on the other board.

How it works...
This recipe illustrated how two boards can communicate with each other, with the first board
sending a message to the other one when a given event is triggered (here, the press of
a button).

See also
I now suggest reading the next recipe, where you will learn how to do the exact same project,
but this time by having both boards communicate in the cloud.

Cloud M2M with IFTTT
In the previous recipe, we saw a good example of how to make two Arduino boards talk within
your own local Wi-Fi network. However, it was not convenient, for example, you had to enter
the IP address of one device in the sketch of the other device.

In this recipe, we are going to use IFTTT again (that we already used in the previous chapter)
to make the devices talk, but this time via the Internet. We'll see that it greatly simplifies
everything, and that it, of course, allows the devices to be anywhere in the world.

Getting ready
First, make sure that you have two boards assembled just as in the previous recipe. You will
also need an account at IFTTT, with the Maker channel connected.

Machine-to-Machine Interactions

78

You will also need to install the PubSubClient library that you can find inside the Arduino
library manager.

I'll now show you what you need to modify on each board to make the boards talk via IFTTT.
Of course, you will find the complete code inside the GitHub repository of this book.

In this recipe, the first board (with the push button) will actually send a trigger to IFTTT, which
in response will send a command to the aREST.io cloud server. This server will then relay
the command to the other board, toggling the state of the LED. I will, of course, show you how
to connect the second board to aREST.io, so it can be controlled from anywhere.

For the board connected to the push button, you need to add information about IFTTT,
including your Maker channel key:

const char* host = "maker.ifttt.com";
const char* eventName = "toggle";
const char* key = "key";

Then, the request needs to be modified with the correct trigger and the key:

String url = "/trigger/";
 url += eventName;
 url += "/with/key/";
 url += key;

For the other board, you need to include all the required libraries:

#include <SPI.h>
#include <WiFi101.h>
#include <PubSubClient.h>
#include <aREST.h>

Next, we define a WiFiClient and PubSubClient:

WiFiClient wifiClient;
PubSubClient client(wifiClient);

We then pass this client to the aREST instance:

aREST rest = aREST(client);

Next, we create a variable that will hold the current state of the LED:

bool ledState = false;

Just as in the previous recipe, we create a function to toggle the state of the LED:

int ledToggle(String command);

Chapter 4

79

Inside the setup() function, we set an ID to the board:

rest.set_id("305eyf");

You need to change this, as it will identify your device on the aREST cloud server.

We also expose this function to the aREST API, so it can be called remotely:

rest.function("toggle", ledToggle);

Finally, here is the detail of the function to toggle the state of the LED:

int ledToggle(String command) {

 ledState = !ledState;

 digitalWrite(6, ledState);
 return 1;
}

You can now grab both sketches from the GitHub repository of the book, modify them with
your own Wi-Fi and IFTTT credentials, and configure both boards.

How to do it...
We now still need to do the link between both boards, via IFTTT. Simply log into your IFTTT
account, and create a new recipe. As the trigger channel, choose the Maker channel:

Machine-to-Machine Interactions

80

Then, type toggle as the event, the same as inside the sketch:

As the action channel, again select the Maker channel:

http://www.kasetophono.com/2014/10/night.html

Now, enter the following command inside the action fields, of course by changing the ID of
your board to the one you set inside the sketch:

Chapter 4

81

Once the recipe is created, you can immediately try the sketch again. Whenever you press
the button, the LED should switch its state. Note that here there might be a 1-2 second delay,
because the information needs to go through the IFTTT servers first.

How it works...
This recipe achieves the exact same functionality as the last one. However, here, both boards
are truly communication via the cloud, using the IFTTT service. This way, they could actually be
anywhere in the world, and the project would still work just as well.

See also
I now recommend checking the next recipe that will teach you how to actually build a project
with M2M communications: a cloud alarm system.

M2M alarm system
In this recipe, we are going to apply what we have learned so far about M2M communications
to build a simple alarm system that will be completely based on cloud M2M interactions.
There will be one or many motion sensors that will send alarm triggers to a central station
composed of an LED and a small buzzer.

Machine-to-Machine Interactions

82

Getting ready
There are two parts in this project: the motion sensor module, and the central base module
with an LED and a sound buzzer.

This is the list of the required components for this recipe, not counting the Arduino MKR1000
boards and the breadboards and wires:

ff PIR motion sensor (https://www.sparkfun.com/products/13285)

ff LED (https://www.sparkfun.com/products/9590)

ff 330 Ohm resistor (https://www.sparkfun.com/products/8377)

ff Small buzzer (https://www.adafruit.com/products/160)

Let's now see how to assemble those modules. We are going to start with the motion sensor
module. Simply connect the VCC pin of the PIR motion to the VCC of the Arduino board, GND
to GND, and finally the OUT pin of the sensor to pin 6 of the Arduino board.

This is the final result:

Of course, you can use as many of those modules as you want in this project – they will also
work seamlessly with the software we'll set in place.

Let's now see how to assemble the central alarm station. First, place the LED in series with
the resistor on the breadboard, as well as the small sound buzzer.

https://www.sparkfun.com/products/13285
https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/8377
https://www.adafruit.com/products/160

Chapter 4

83

Then, connect the other end of the LED to GND, and the other end of the resistor to GND. For
the buzzer, connect one end of the buzzer (marked with a +) to Arduino pin 6, and the other
end to GND.

This is the final result:

How to do it...
We are now going to configure the boards we just assembled, starting with the one with
the motion sensor. This module will automatically send an alert to IFTTT in case motion
is detected.

Actually, it is very similar to the sketch for the board with the push button in the previous
recipe, you just need to change the event name:

const char* host = "maker.ifttt.com";
const char* eventName = "alarm";
const char* key = "key";

For the other module, we are still going to use the aREST framework to connect the board to
the cloud. We need to define a function called activateAlarm:

int activateAlarm(String command);

Here are the details of this function:

int activateAlarm(String command) {

Machine-to-Machine Interactions

84

 tone(7, 500);
 digitalWrite(6, HIGH);

 return 1;
}

It basically activates the buzzer, and also turns the LED on. We will call this function whenever
a motion sensor senses motion nearby.

You can now grab all the code for both modules from the GitHub repository of the book,
change the credentials inside the sketches, and upload the code to the boards.

Next, log into your IFTTT account, and create a new recipe. As the trigger channel, choose the
Maker channel, with the following event:

For the action channel, again choose the Maker channel, with the Make a web
request action:

Chapter 4

85

For the action itself, again enter the ID of the target device, along with the alarm function:

This will make sure that the aREST.io server is called whenever an alert is received from any
of the motion sensors.

You can now complete the creation of the recipe, and actually try the project. Try to pass your
hand in front of the motion sensor – you should nearly immediately see the LED of the base
station turning on, and you should also hear a loud sound coming from the buzzer!

How it works...
This alarm system works completely in the cloud, with boards talking to each other via IFTTT.
This is a great example of an M2M system, where several boards are exchanging information
with each other.

The nice thing here is that there is also no additional code to set to add more
motion sensors – just configure them with the same sketch, and they will all
immediately work within the recipe we created on IFTTT.

See also
I now suggest you check out the following two recipes, to discover more M2M projects with the
Arduino MKR1000 board.

Machine-to-Machine Interactions

86

Automated light controller
Inside this recipe, we are going to continue exploring M2M communications with the Arduino
MKR1000 board, this time by creating an automated light controller based on Arduino. A first
module will be in charge of detecting the ambient light level, and then sending alerts to a
second module, which will switch a light on or off, depending on the received alert.

Getting ready
To control a lamp in this project, we are going to use a very convenient component called the
PowerSwitch Tail:

These components allow us to easily control devices powered by the mains electricity from an
Arduino board, as you can just plug it into the mains electricity and then plug your device into
it as well.

This is the list of the components that will be required for this recipe:

ff PowerSwitch Tail (https://www.adafruit.com/products/268)

ff Photocell (https://www.sparkfun.com/products/9088)

ff 10K Ohm resistor (https://www.sparkfun.com/products/8374)

Let's now assemble the hardware for this recipe. We are going to start with the module
connected to the lamp. Simply plug the GND and Vin- pins to the GND on the Arduino board,
and the Vin+ to pin 6 of the Arduino board.

https://www.adafruit.com/products/268
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8374

Chapter 4

87

This is the final result:

Also don't forget to plug a device into the PowerSwitch, and also connect it to the mains
electricity. In this example, I used a simple 30W desk lamp.

Let's now assemble the board that will be connected to the photocell. Simply place the
photocell in series with the resistor on the board, and then connect the common pin-to-pin
A0 of the board. Then, connect the other end of the resistor to GND, and the other end of the
photocell to VCC.

This is the final result:

Machine-to-Machine Interactions

88

How to do it...
Let's now see how to configure these boards. We are going to start with the board connected
to the photocell.

Inside the code, we need to define two thresholds: one when it's too dark, and one when it's
bright enough:

int light_threshold_low = 30;
int light_threshold_high = 50;

Of course, feel free to change these as you see fit. Then, in the loop() function of the sketch,
we need to measure the current value from the photocell, calculated in percent:

int sensorValue = analogRead(sensorPin);
float lightLevel = sensorValue/1024.*100;

We then test this value to see if it's above the high threshold:

if (lightLevel > light_threshold_high) {

If so, we send the following alert to IFTTT:

String url = "/trigger/light_high";
 url += "/with/key/";
 url += key;

We, of course, do a similar action if the light level is below the low level.

For the module connected to the lamp, things are easier. It's basically the exact same sketch
as we saw for the alarm base station in the previous recipe. Here, you just need to set pin 6
as an output:

pinMode(6, OUTPUT);

You can now grab all the code from the GitHub repository of the book, modify the sketches
with your own credentials, and upload the code to the boards.

Then, go to IFTTT, and start the creation of a first recipe. As the trigger channel, choose the
Maker channel with the light_low event:

Chapter 4

89

As for the action, again choose the Maker channel, sending the command to set pin 6 on a
high state:

Of course, you'll need to make sure to modify the ID of the device with the one
you set inside the sketch.

Machine-to-Machine Interactions

90

Then, create another recipe, with the same channels, but this time with the light_high
event:

For the action, it's the same as before, but this time we set pin 6 to a LOW state:

Once you have confirmed the creation of this recipe, you can test the project. Try, for
example, to hide the photocell with your hands: the lamp should automatically turn on
after a few seconds.

Chapter 4

91

How it works...
In this project, we again have two devices that communicate with each other via IFTTT.
Together, they form an autonomous lamp controller system, where no human intervention
is needed.

Note that as the devices are communicating via IFTTT, they would work perfectly in different
Wi-Fi networks.

See also
I now recommend checking the last recipe of the chapter, where you will learn how to build an
automated sprinkler controller.

Automated sprinkler controller
For the last recipe of the chapter, we are going to see how to make a cool project to automate
your garden: an automated sprinkler controller that also works via the cloud. We'll have two
Arduino boards communicating with each other: a first board to measure the soil moisture,
and a second one to control a pump to water the plants or anything else in your garden.

Getting ready
The project will be composed of two parts again. The first part will simply be an Arduino
MKR1000 board, along with a moisture sensor based on the SHT10 sensor. The second part
of the project will be a simple Arduino board as well, connected to a relay. The relay can then
be used to control a little pump or sprinkler that you already have.

This is the list of components that are required for this recipe:

ff Soil moisture sensor (https://www.adafruit.com/products/1298)

ff Relay (https://www.pololu.com/product/2480)

ff 10K Ohm resistor (https://www.sparkfun.com/products/8374)

Let's now assemble the project, starting with connecting the Arduino board to the sensor.
First, connect the sensor to the breadboard, and then place the 10K Ohm resistor between
the data and the VCC pins of the sensor (the blue and red wires).

https://www.adafruit.com/products/1298
https://www.pololu.com/product/2480
https://www.sparkfun.com/products/8374

Machine-to-Machine Interactions

92

Then, connect the black or green wire to GND, the red wire to VCC, the yellow cable to pin 6 of
the Arduino board, and the blue wire to pin 7.

This is the final result:

For the relay board, things are easier. Just connect the relay VCC pin to VCC, the GND pin to
GND, and finally the SIG pin to Arduino pin 6.

This is the final result:

Chapter 4

93

You will also need to install the SHT1x library that you can find at https://github.com/
practicalarduino/SHT1x.

Now, let's first test the board with the moisture sensor, to make sure the connections were
made correctly. It starts by including the sensor's library:

#include <SHT1x.h>

Next, define the pins to which the sensor is connected, and create an instance of the sensor:

#define dataPin 6
#define clockPin 7
SHT1x sht1x(dataPin, clockPin);

After that, inside the loop() function of the sketch, we perform the measurements on
the sensor:

float temp_c;
 float temp_f;
 float humidity;

 // Read values from the sensor
 temp_c = sht1x.readTemperatureC();
 temp_f = sht1x.readTemperatureF();
 humidity = sht1x.readHumidity();

Finally, we print these measurements and repeat the operation every two seconds:

Serial.print("Temperature: ");
 Serial.print(temp_c, DEC);
 Serial.print("C / ");
 Serial.print(temp_f, DEC);
 Serial.print("F. Humidity: ");
 Serial.print(humidity);
 Serial.println("%");

 delay(2000);

https://github.com/practicalarduino/SHT1x
https://github.com/practicalarduino/SHT1x

Machine-to-Machine Interactions

94

You can now grab the code from the GitHub repository of the book, and upload it to the board.
Then, open the Serial monitor. This is what you should see:

If you can see numbers that make sense, congratulations! Your soil moisture sensor is
correctly wired to the Arduino board.

How to do it...
We are now going to configure both boards, so they can communicate via IFTTT. Inside the
sketch for the board connected to the soil moisture sensor, you need to set two thresholds:

float humidity_threshold_low = 20;
float humidity_threshold_high = 40;

Basically, the lowest threshold is the one at which we'll start to water the plants. When the soil
moisture reaches the highest threshold, we'll stop the pump or sprinkler again.

Then, in the loop() function of the sketch, we will test to see if the humidity is high:

if (humidity > humidity_threshold_high) {

If so, we send the corresponding alert to IFTTT:

String url = "/trigger/humidity_high";
 url += "/with/key/";
 url += key;

We also check if the humidity is low:

if (humidity < humidity_threshold_low) {

Chapter 4

95

If so, we send the relevant trigger to IFTTT:

String url = "/trigger/humidity_low";
 url += "/with/key/";
 url += key;

The sketch for the board connected to the relay is strictly the same as the lamp controller in
the previous sketch. You will, of course, find it inside the GitHub repository of the book as well.

You can now grab the complete code from the GitHub repository of the book, modify the
sketches with your own credentials, and then upload the code to the boards.

Next, go to IFTTT again, and create a new recipe. For the trigger channel, again choose the
Maker channel, with the following event name:

For the action, choose the Maker channel, and enter the following URL (changing the device
ID to the one you set inside the sketch):

Machine-to-Machine Interactions

96

Indeed, if the humidity gets low, we want to activate the pump. Now, also create a similar
recipe to handle the case where the humidity gets too high and we want to stop the pump.

You can now test the project! If you want to test it in real conditions, you can, for example, use
a simple plant in a pot, and put the soil moisture sensor in it. This is how I tested the project:

If the humidity is too low, it should automatically activate the relay on the second board.
You can now connect the relay to the pump or sprinkler system of your choice.

How it works...
This projects works by making two boards communicate via IFTTT, this time to create a project
that you can actually use in your garden or your home for your plants.

See also
As this was the last recipe in the book, I suggest checking the last section of this chapter in
case you had issues with the recipes in this chapter.

Troubleshooting basic M2M issues
In this part of the chapter, we are going to see what can go wrong when building M2M projects
using Arduino.

Chapter 4

97

Pushing the button doesn't do anything
The first thing that can happen is that the button is not correctly wired to the Arduino board.
Make sure that you followed the wiring instructions. You can also check the lights on the
Arduino board when you press the button: a light should turn on whenever the board is
sending data, so this is what you should see when pressing the button.

The pump/sprinkler doesn't get activated
One simple reason for this problem is that the humidity doesn't get low enough for the board
to send an alert. What I recommend doing is checking the humidity level with the test sketch
of the sensor. If needed, adjust the thresholds inside the code to make the board send
correct alerts depending on the level of humidity you want for your plants http://www.
kasetophono.com/2014/10/night.html.

http://www.kasetophono.com/2014/10/night.html
http://www.kasetophono.com/2014/10/night.html

99

Home Automation Projects

In this chapter, we will cover:

ff Controlling your coffee machine from the cloud

ff Dim LEDs from anywhere in the world

ff Remote controlled garage door

ff Controlling the access to your door remotely

ff Cloud smoke detector

ff Smart cloud thermostat

ff Home automation dashboard in the cloud

ff Troubleshooting home automation project issues

Introduction
In this chapter, we are going to see how to apply what we have learned so far in this book
to the home automation field. We are going to use the Arduino board to build several home
automation projects that will all be accessible from anywhere in the world and communicating
with cloud services.

We are, for example, going to see how to control a coffee machine, how to open your garage
door remotely, and how to detect smoke in your home and be alerted immediately. At the end
of this chapter, we are going to see how to combine several of those projects, for example, to
build a cloud thermostat.

Home Automation Projects

100

Controlling your coffee machine from the
cloud

In this first recipe of this chapter, we are going to learn how to control a coffee machine from
anywhere in the world. Of course, it could be any other appliance, such as a lamp or an oven.
We are going to see how to connect the coffee machine to the Arduino MKR1000 board, and
then how to connect the board to a cloud dashboard so it can easily be controlled remotely.

Getting ready
Let's first see how to connect the Arduino board to the coffee machine, or to any home
appliance.

To do that, we are going to use a component called the PowerSwitch Tail, which can be used
to control any appliance with Arduino. You can get this component from http://www.
powerswitchtail.com/Pages/default.aspx.

You could, of course, also use a simple relay, but using the PowerSwitch Tail is much safer to
connect electrical devices.

To connect the PowerSwitch Tail to Arduino, simply start by connecting the Vin+ pin of the
PowerSwitch to Arduino pin 6, and then the two remaining pins to the GND pin of the
Arduino board.

Then, connect the appliance you want to control to the female plug on the PowerSwitch,
and then the male plug to the mains electricity.

This is an image of the final result:

http://www.powerswitchtail.com/Pages/default.aspx
http://www.powerswitchtail.com/Pages/default.aspx

Chapter 5

101

On the software side, and for the rest of this chapter, we are going to use two Arduino
libraries: the aREST library, and the PubSubClient library. This will allow us to control
our Arduino board from anywhere in the world. You can install them both from the Arduino
library manager.

How to do it...
Let's now see how to configure the board so it can be controlled remotely. As usual, I will only
highlight the main features of the code here, as this is similar to what we already saw in the
previous chapter. We first need to include the required libraries:

#include <SPI.h>
#include <WiFi101.h>
#include <PubSubClient.h>
#include <aREST.h>

Then, we also need to set the Wi-Fi name and password of the board:

const char* ssid = "wifi-name";
const char* password = "wifi-password";

Inside the setup() function, we give an ID and a name to the device:

rest.set_id("362c3s");
rest.set_name("coffee");

Finally, we also need to set pin number 6 as an output:

pinMode(6, OUTPUT);

Now, simply grab the whole code from the GitHub repository of this book, and make sure to
modify it with your own Wi-Fi credentials and device ID. Then, upload the code to the board.

The next step is to create an account at http://dashboard.arest.io/.

You will then be able to create a new dashboard:

http://dashboard.arest.io/

Home Automation Projects

102

Inside the dashboard, create a new element by entering the ID of the device, and also by
choosing a digital command on pin 6. This should be the result:

You can now try it already: just press the On button, and the appliance should turn on
immediately. Of course, you have to turn it On the appliance itself, for example, turn the
power switch to On on a Coffee machine.

How it works...
The project works by first connecting the Arduino board to the aREST.io cloud server,
and then by controlling the board (and therefore the appliance) using a cloud dashboard.
Therefore, the appliance is now available from anywhere in the world.

There's more...
You can also build other projects based on this one. For example, you could use IFTTT to
automatically turn on your coffee machine every morning at a given time, to lose no time
at breakfast.

See also
I now recommend checking the next project to learn more about how to build more cloud-
connected home automation projects with the Arduino MKR1000 board.

Dim LEDs from anywhere in the world
You have probably already seen those LED strips that you can control remotely. We are going
to do the same in this recipe (with three LEDs of different colors), but in this project you'll be
able to control those LEDs from anywhere in the world.

Getting ready
For this recipe, you are going to need three LEDs of different colors (I used a blue one, a red
one, and a green one). For each of those LEDs, you will also need a 330 Ohm resistor.

Chapter 5

103

To assemble the project, first place all the LEDs on the breadboard, with each one of them
connected in series with a resistor, the longest pin of each LED connected to the resistors.
Then, connect all the free pins of the LEDs to the GND pin of the Arduino board. Finally,
connect free pins of the resistors to Arduino pins 3, 4, and 5.

This is the final result:

How to do it...
We are now going to configure the board. As the sketch is nearly the same as the previous
recipe, I will only highlight the main differences here.

Inside the setup() function of the sketch, we need to set an ID for the device, as well as
a name:

rest.set_id("305eyf");
rest.set_name("led_dimmer");

Now, simply grab the whole code from the GitHub repository of this book, and make sure to
modify it with your own Wi-Fi credentials and device ID. Then, upload the code to the board.

Home Automation Projects

104

Again, go to the same aREST cloud dashboard website that we used in the previous recipe,
and create a new dashboard for our LEDs:

For each LED, create an element inside the dashboard with the following parameters:

Of course, you might have connected the LEDs to different pins than me, so make sure you
are correctly naming each element with the right color. This should be the final result:

You can now finally try the project! Try to change the value of the sliders by dragging
the cursor:

Chapter 5

105

You should immediately see the result on the project:

Congratulations, you can now dim and control LEDs from anywhere in the world!

How it works...
The project works again by connecting the board to a cloud server, which then receives
commands via a cloud dashboard. Moving the sliders on the dashboard has the same effect
as an analogWrite() function on the Arduino board, therefore allowing us to dim the LEDs
on command.

There's more...
Again, it would be easy to combine this project with IFTTT, for example, to automatically dim
the LEDs as the night falls. You could also use LED strips instead of individual LEDs, the
approach would be exactly the same.

See also
I now recommend checking the next recipes of this chapter for more home automation
projects!

Home Automation Projects

106

Remote controlled garage door
In this recipe, we are going to build a very useful project to automate your home: a garage
door controller. Not only will you be able to control the garage door remotely, but you will also
automatically receive alerts on your phone whenever the garage door is opened!

Getting ready
All garage doors around the world are different, so in this project I will actually simulate the
closing part of a garage door. Then it will be up to you to actually apply it to your own system
that you have in your home.

For this recipe, we are going to connect two components to the Arduino board: a relay, which
will simulate the garage door motor, and a proximity sensor, which will be used to detect if the
garage door is in the closed position.

This is the list of components that we are going to use in this project:

ff Magnetic contact switch (https://www.adafruit.com/products/375)

ff 5V Relay (https://www.pololu.com/product/2480)

This is the final result:

https://www.adafruit.com/products/375
https://www.pololu.com/product/2480

Chapter 5

107

Of course, from there, you will need to actually install the other part of the proximity sensor
to the garage door itself, to check that it is opened. However, for this project I'll simply keep it
around to simulate the action of having the garage door closed.

How to do it...
Let's now see how to configure this project. We are again going to use IFTTT to send alerts
to your phone, so this is something we are already familiar with. You can check the previous
chapter again if you need more information about how to use IFTTT:

1.	 The sketch starts by defining the IFTTT parameters:
const char* host = "maker.ifttt.com";
const char* eventName = "door_closed";
const char* key = "key";

2.	 We also set the ID of the device inside the setup() function of the sketch:
rest.set_id("305eyf");
rest.set_name("garage_door");

3.	 Then, in the loop() function of the sketch, we check if the switch has been
activated or not:
if (digitalRead(6)) {

4.	 If that's the case, it means the garage door is closed. Then send an alert to IFTTT:
String url = "/trigger/";
url += eventName;
url += "/with/key/";
url += key;

5.	 You can now grab the whole code from the GitHub repository of this book, and
configure the board with it. Make sure to modify the code to include your Wi-Fi
credentials, and also change the code to set your IFTTT Maker key.

6.	 Then the next step is to go to the dashboard website as in the previous recipes,
and create an element to control the relay simulating the garage door:

Home Automation Projects

108

7.	 After that, go over to IFTTT and create a new recipe. This recipe will automatically
send us an alert when the door is closed. At the trigger channel, choose the Maker
channel with the following event name:

8.	 As the action channel, choose SMS:

9.	 I wrote a simple message as the default message that will be sent when the condition
is met:

Chapter 5

109

10.	 It's finally time to test the project! Make sure the board is correctly configured, and
try to control the relay from the cloud dashboard. Also, place the other end of the
magnetic switch to the one connected to the Arduino board: you should quickly
receive a text message informing you that the door was closed:

How it works...
This project combined aREST (to control the garage door) and IFTTT (to send alerts),
showing how easy it is to combine several web services to create complex home automation
applications.

There's more...
You can, of course, take everything you learned in this recipe, and apply it to your own garage
door. This will require a lot of extra work, but the principles are exactly the same as we saw in
this recipe. In no time you'll have a garage door that you can completely control from the cloud
and that sends you alerts!

See also
I recommend checking the next recipes in this chapter for even more cloud-connected home
automation projects!

Controlling the access to your door remotely
In this recipe, we are going to learn how to open and close a door lock remotely, from
anywhere in the world. You will then also be able to share this access with other people, so
they too can gain access to this door lock.

Getting ready
For this project, we are going to use an actual electronic door lock that can be controlled from
the Arduino board to lock/unlock a door. The component uses 12V as the power supply, so
we are going to require an external power supply and some additional components to make
it work.

Home Automation Projects

110

This is the list of required components for this project:

ff Electronic door lock (https://www.adafruit.com/products/1512)

ff 1K Ohm resistor (https://www.sparkfun.com/products/8980)

ff Rectifier diode (https://www.sparkfun.com/products/8589)

ff N-Channel MOSFET (https://www.sparkfun.com/products/10213)

ff DC jack breadboard connector (https://www.sparkfun.com/products/10811)

ff 12V power supply (https://www.sparkfun.com/products/9442)

Let's now see how to assemble the project. As the process is quite complex here, I have
created a schematic for you:

Make sure to follow the schematic to connect the door lock to the MKR1000
board, via the MOSFET transistor.

https://www.adafruit.com/products/1512
https://www.sparkfun.com/products/8980
https://www.sparkfun.com/products/8589
https://www.sparkfun.com/products/10213
https://www.sparkfun.com/products/10811
https://www.sparkfun.com/products/9442

Chapter 5

111

This is the final result:

This is a close-up image of the Arduino board:

Home Automation Projects

112

How to do it...
Let's now see how to configure the board so we can control the door lock remotely. As
the sketch is really similar to what we saw earlier in this chapter, I will only highlight the
differences here.

You basically just need to assign a unique ID into the code:

rest.set_id("305eyf");
rest.set_name("door_lock");

Again, go to http://dashboard.arest.io/.

You can now create a new dashboard:

Next, create a new element inside the dashboard, to control the door lock that is connected to
Arduino pin 6:

You can now try the project: whenever you click on a button, you should see the door lock
reacting instantly, locking or unlocking a door if you mounted the lock on an actual door.

Note that you can also share the door lock with someone by sharing the access to your cloud
dashboard, so your friends can use it as well.

How it works...
The project works by connecting the Arduino board to a cloud server. On the board itself, the
project uses a power MOSFET to control the door lock that is powered by a 12V power supply.

http://dashboard.arest.io/

Chapter 5

113

See also
I now recommend checking the next recipes of this chapter for more exciting home
automation projects.

Cloud smoke detector
In several countries around the world, it is not mandatory to install a smoke detector inside
your home. In this recipe, we are going to build our own smoke detector that will automatically
send you alerts when smoke is detected in your home.

Getting ready
For this recipe, you are going to need a smoke detector, based on the MQ-2 gas sensor. This is
the component that I used for this project:

ff MQ2 smoke sensor (http://robotbase.en.alibaba.com/
product/1267894712-211851693/MQ2_alcohol_ethanol_gas_sensors.
html)

Let's now see how to assemble this project. First, place the Arduino board on the breadboard.
Then, connect the + pin of the sensor to Arduino VCC, the – pin of the sensor to GND, and
finally the remaining sensor pin to A0. This is the final result:

http://robotbase.en.alibaba.com/product/1267894712-211851693/MQ2_alcohol_ethanol_gas_sensors.html
http://robotbase.en.alibaba.com/product/1267894712-211851693/MQ2_alcohol_ethanol_gas_sensors.html
http://robotbase.en.alibaba.com/product/1267894712-211851693/MQ2_alcohol_ethanol_gas_sensors.html

Home Automation Projects

114

We can now test the sensor. Indeed, we need to calibrate it so we know what is the output
of the sensor when no smoke is detected. For that, I simply used the default sketch
AnalogReadSerial given with the Arduino IDE. Upload this sketch to the board, and
open the Serial monitor. Youshould now see the output of the sensor:

Once this is done, wait for about 20 minutes. Indeed, this is the time the sensor needs to
warm up and return a usable signal. After that time, adjust the potentiometer on the sensor's
board so the readout value is below 500 (this is the threshold we'll use to detect smoke).

How to do it...
Let's now see how to configure the project so it sends automated alerts to us when smoke is
detected. Once again, we are going to use IFTTT to do that, so this is a sketch we have already
seen many times in this book. First, we need to set your IFTTT key inside the code, along with
the smoke_detected event:

const char* host = "maker.ifttt.com";
const char* eventName = "smoke_detected";
const char* key = "key";

We also set a trigger to send an event to IFTTT, in case smoke is detected in your home:

if (analogRead(A0) > 500) {

Chapter 5

115

You can now take the whole code from the GitHub repository of this book, and configure the
board with it. Don't forget to enter your Wi-Fi credentials and your IFTTT key inside the code.

Then, go over to IFTTT, and create a new recipe. As the trigger channel, again choose the
Maker channel, and enter the same event name as in the code:

As the action channel, I chose the SMS channel:

I used a simple alert message:

Home Automation Projects

116

You can now create the recipe and test it. As for the smoke, I simply placed the sensor in my
kitchen when cooking. You can adjust the threshold inside the code or also by playing with the
potentiometer, to change the level of smoke detection at which you want to send an alert to
your phone.

How it works...
The project is again based on IFTTT, which we use here to send an alert to our phone once a
given smoke level is detected by the sensor connected to the Arduino board.

See also
I now recommend checking the last two recipes of this chapter to learn more about how to
build more complex home automation systems.

Smart cloud thermostat
In this recipe, we are going to combine several things we have already seen in this chapter,
to create a simple thermostat that is completely based on cloud interactions between two
Arduino boards.

Getting ready
This project will be based of two different boards: one will measure the temperature and
send events to IFTTT, and the other one will be connected to a relay that will simulate an
electrical heater.

Let's first see how to assemble the first board. First, place the DHT11 sensor on the
breadboard. Then, connect the first pin of the sensor to VCC on the Arduino board, and the
last pin of the sensor to the GND pin of the Arduino board. Finally, connect the second pin of
the sensor to Arduino pin 6. This is the final result:

Chapter 5

117

For the relay board, simply connect the VCC pin of the relay to Arduino VCC, GND to GND,
and finally the SIG pin of the relay to Arduino pin 6. This is the final result:

How to do it...
Let's now configure the boards, starting with the one connected to the relay. This sketch is
again based on the aREST framework, so it is a sketch that we have already seen several
times inside this book.

Home Automation Projects

118

Inside the sketch, you need to give a unique ID to the relay:

rest.set_id("305eyf");
rest.set_name("relay");

Then, we also set pin 6 as an output:

pinMode(6, OUTPUT);

For the other board, the sketch will simply send events to IFTTT, so this will be a sketch that is
familiar as well. It starts by including the required libraries:

#include <SPI.h>
#include <WiFi101.h>
#include "DHT.h"

Then, we define the pin on which the DHT sensor is connected to:

#define DHTPIN 6
#define DHTTYPE DHT11

We also create an instance of the DHT sensor:

DHT dht(DHTPIN, DHTTYPE, 15);

Then, we set a target temperature, which is the value that the thermostat will always try
to reach:

float temperature_target = 25;

Inside the loop() function of the sketch, we constantly measure the temperature, and check
if we are going above or below the threshold. For example, this line tests if we are above the
threshold by one degree:

if (temperature > temperature_target + 1) {

If that's the case, we send the corresponding event to IFTTT:

String url = "/trigger/temperature_high";
url += "/with/key/";
url += key;

We of course do exactly the same if the temperature gets too low.

You can now grab the whole code from the GitHub repository of this book, modify the code
with your credentials (Wi-Fi and IFTTT), and upload the code to the respective boards.

Then, go over to IFTTT, and create a new recipe with the following event as the trigger in the
Maker channel:

Chapter 5

119

As a result of the temperature being too low, we need to turn on the heater, here the relay.
For that, we send the following command to the other board via the aREST.io cloud server:

Of course, make sure to modify this command with the ID that you entered in the code.
Then, do the same with the temperature_high event:

Home Automation Projects

120

When this trigger is received, we need to turn the heater off again, which is done by
this command:

You can now create those two recipes, and observe the project in action. If the temperature
gets too low, for example, you should see the relay being activated automatically. You can,
of course, connect the project to an actual heater instead of a relay, for example, using the
PowerSwitch Tail component.

How it works...
This project works by using IFTTT to make the link between the two boards, therefore building
a simple thermostat system in which the components are communicating via the cloud.

Note that we had to define a margin of 1 degree around the target
temperature inside the code. Without this system of two effective thresholds,
the system will constantly send alerts once the temperature is around the
target temperature.

See also
I now recommend checking the final recipe of this chapter, to learn how to control several
home automation projects from a single dashboard.

Chapter 5

121

Home automation dashboard in the cloud
In the last recipe of this chapter, we are going to integrate several projects we saw in this
chapter, and see how to monitor them all within a single cloud dashboard. You will then have a
complete home automation that can be monitored from anywhere using a single interface.

Getting ready
For this recipe, we are going to use previous projects from this chapter, so I will ask you to
refer to the respective recipes of this chapter to build the different projects. We are first going
to use a project with a DHT11 sensor, to measure the temperature and humidity in your home.
Then, we'll add a smoke sensor into our home automation system.

Finally, we are also going to use the PowerSwitch Tail again to control a lamp remotely:

How to do it...
Once all the three projects are assembled, make sure to configure them all with their
respective sketches that you will find inside the GitHub repository of this book at https://
github.com/marcoschwartz/iot-arduino-cookbook.

Of course, make sure to modify each of the sketches with your own Wi-Fi credentials, and also
modify the ID of each board. Then, go over to http://dashboard.arest.io/.

https://github.com/marcoschwartz/iot-arduino-cookbook
https://github.com/marcoschwartz/iot-arduino-cookbook
http://dashboard.arest.io/

Home Automation Projects

122

You can now create a new dashboard:

Let's start by adding the reading from the Gas Sensor:

Then, you can add a digital On/Off control on pin 6 to control the lamp or any device attached
to the PowerSwitch Tail:

Finally, add the element for the temperature readout:

Chapter 5

123

You can complete the dashboard by adding an element for the humidity:

Congratulations, you now have all the elements of your basic home automation system in a
single cloud dashboard!

How it works...
The project is based on the same aREST framework that we used a lot in this chapter.
Here, we saw how to integrate several Arduino boards into the same cloud dashboard.

You can, of course, now add more boards into the same dashboard, to have a larger home
automation system that can be monitored and controlled from anywhere.

See also
As this was the last recipe of this chapter, I now recommend checking the next section in case
you had any issues when building the projects of this book.

Troubleshooting home automation project
issues

In this part of the chapter, we are going to see what can go wrong when building home
automation systems in the cloud using the Arduino MKR1000 board. Indeed, some of the
steps involved here are quite complex and many things can go differently than expected.

Home Automation Projects

124

The smoke detector constantly sends alerts
If the smoke detector is constantly sending you alerts but no smoke is present, go back to the
calibration stage and adjust the potentiometer to the desired value. Then, make sure that you
place a threshold above this value inside the code, so it will only send you alerts when smoke
is actually present.

Dashboard
If you correctly configured your boards but can't see them as online inside the dashboard,
there are many things you can check. First, check that you changed the ID inside the code,
and that you also entered the exact same ID in the dashboard. Also open the Serial monitor
and make sure you can see that the board is indeed connected to the cloud server.

125

Fun Internet of Things
Projects

In this chapter, we will cover:

ff Making a simple Arduino clock

ff Building a digital candle

ff A cloud-controlled digital candle

ff Building a Bitcoin ticker with Arduino

ff Assembling a GPS module

ff Building a simple GPS tracker

ff Troubleshooting fun IoT project issues

Introduction
In this chapter, we are going to have some fun, and apply all that we saw so far in the book to
simple, entertaining, but also useful IoT projects that use Arduino. In these examples, we are
going to build a clock that gets the time from the cloud, and also an actual GPS tracker that
will display the position of your Arduino project on Google Maps!

Fun Internet of Things Projects

126

Making a simple Arduino clock
As the first project of this chapter, we are going to build a simple clock that gets the time from
a cloud server, using Arduino. The time itself will actually be displayed on an OLED screen,
also controlled by the Arduino board.

Getting ready
For this project, you will need an OLED screen to display the time that can be controlled
via Arduino. I recommend using the 128x64 OLED screen from Adafruit (https://www.
adafruit.com/products/938).

We can now assemble the project, which basically consists of simply connecting the Arduino
board to the OLED screen. First, place both boards on a breadboard. Then, connect the VIN
pin of the OLED board to the VCC of the Arduino board, and GND to GND. After that, connect
the data and clock pins: data goes to the SDA of the Arduino board, and CLK goes to the
SCL of the Arduino board. Finally, connect the RST pin of the OLED screen to pin 4 of the
Arduino board.

This is the final result:

On the software side, you will need to download the Adafruit_SSD1306 library and the
RTCZero library. You can easily get them by using the Arduino libraries manager.

https://www.adafruit.com/products/938
https://www.adafruit.com/products/938

Chapter 6

127

How to do it...
Let's now see how to configure the project. As usual, you will find the complete code inside the
GitHub repository of the book, as it's too complex and long to be inserted here.

It starts by including the required libraries:

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_SSD1306.h>
#include <WiFi101.h>
#include <WiFiUdp.h>
#include <RTCZero.h>

Next, you need to define your Wi-Fi network name and password:

char ssid[] = "wifi-name'; // your network SSID (name)
char pass[] = "wifi-pass'; // your network password

We also create an instance of the RTC library that we will use to access the real-time clock of
the Arduino board:

RTCZero rtc;

Right after that, we set up the required parameters for the OLED screen:

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);
#define LOGO16_GLCD_HEIGHT 16
#define LOGO16_GLCD_WIDTH 16

#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!');
#endif

We also initialize the RTC with some values:

rtc.begin();
rtc.setTime(hours, minutes, seconds);
rtc.setDate(day, month, year);

Those don't really matter, as we will only display the time and the time will be grabbed from a
remote server.

Fun Internet of Things Projects

128

The most important part is displaying the time inside the loop() function of the sketch. First,
we have to define the size, color, and position of the text:

display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(16,24);

Then, we display the time, using the RTC that was updated from the data from the time server:

display.clearDisplay();
 if (rtc.getHours() < 10) {
 display.print('0');
 }
 display.print(rtc.getHours());
 display.print(":');
 if (rtc.getMinutes() < 10) {
 display.print('0');
 }
 display.print(rtc.getMinutes());
 display.print(":');
 if (rtc.getSeconds() < 10) {
 display.print('0');
 }
 display.print(rtc.getSeconds());
 display.display();

It's now time to test the sketch! Grab all the code from the GitHub repository of the book,
and make sure to modify the Wi-Fi parameters inside the code. Then, upload the code to
the board. You should quickly see the time being displayed on the OLED screen:

Chapter 6

129

Congratulations, you have just built a cloud-synchronized clock using Arduino!

How it works...
The project works by grabbing the current time from a time server using the Wi-Fi connectivity
of the Arduino MKR1000 board. Then, this time is stored inside the real-time clock of the
Arduino board, and is then displayed on the OLED screen.

See also
I now recommend checking more recipes in this chapter to learn how to build more fun and
exciting IoT projects!

Building a digital candle
In this recipe, we are going to learn how to make a digital version of a candle using Arduino.
We'll see how to control a multicolor LED to emulate the behavior of a real candle. It's just the
perfect project for Valentine's Day, Christmas, and other celebrations.

Getting ready
For this project, the only thing you will need is an Adafruit NeoPixel, which is a smart RGB LED
that can be easily controlled via Arduino.

I also used some alligator clips to connect the Arduino board to the NeoPixel.

Assembling the project is really easy – you just need to connect the NeoPixel input pin to
Arduino pin 5, GND to GND, and VCC to VCC of the Arduino board.

This is the final result:

Fun Internet of Things Projects

130

On the software side, the only thing you need is to install the Adafruit_NeoPixel library,
which you can install from the Arduino library manager.

How to do it...
Let's now see how to configure the project. The first step is to include the required library,
and declare that the NeoPixel is connected to pin 5:

#include <Adafruit_NeoPixel.h>
#define PIN 5

Then, we define three variables that will set the yellowish color of the flame:

int redPx = 255;
int grnHigh = 135;
int bluePx = 15;

After that, we create an instance of the NeoPixel:

Adafruit_NeoPixel strip = Adafruit_NeoPixel(1, PIN, NEO_GRB + NEO_
KHZ800);

In the setup() function, we initialize the NeoPixel, and also start it:

strip.begin();
strip.show();

Inside the loop() function, we call a series of functions that will emulate the behavior of
the flame:

burn(10);
flicker(5);
burn(8);
flutter(6);
burn(3);
on(10);
burn(10);
flicker(10);

You can read the description of each of those functions inside the sketch, and actually
create your own candle behavior by playing with the order of those functions and also
with the timings.

It's finally time to test our digital candle! You can just grab the code from the GitHub repository
of the book and upload it to the board. You should immediately see the NeoPixel start to
flicker and behave like a flame.

Chapter 6

131

To make it look much better, I actually placed it inside a glass container, with some thin
transparent paper around. This gave it a really nice appearance as the light diffused through
the paper:

How it works...
This project works by emulating the behavior of an actual flame by using an RGB LED and a
set of functions inside the Arduino sketch. By doing so, and by placing our Arduino project
inside a glass container along with transparent paper, we can build a completely configurable
digital candle.

See also
I now recommend checking the next recipe to learn how to control the candle from the cloud.

A cloud-controlled digital candle
In the previous recipe, we learned how to build a digital candle using Arduino. But what about
the IoT aspect of the project? Well, this is what we are going to deal with in this recipe. We are
going to connect the project from the previous recipe to the cloud, and learn how to control it
from anywhere. This could, for example, be a candle that you send to loved ones that are far
away, and that you suddenly switch on to show you are thinking about them.

Getting ready
For this project, first you need to follow the previous recipe to build the candle. Then, you can
configure the candle with some new code to control it from the cloud.

Fun Internet of Things Projects

132

You will need to install the PubSubClient and aREST libraries, which you can easily do by
using the Arduino library manager.

The sketch starts as always with the required libraries:

#include <SPI.h>
#include <WiFi101.h>
#include <PubSubClient.h>
#include <aREST.h>
#include <Adafruit_NeoPixel.h>
#define PIN 5

Then, you can set your Wi-Fi name and password:

const char* ssid = "wifi-name';
const char* password = "wifi-pass';

We also set a unique ID for the device:

rest.set_id("01e48c');
rest.set_name("candle');

We also define a mechanism to turn the candle on and off from the cloud. For that, we'll use a
simple variable:

if (candleState == true) {
 burn(10);
 flicker(5);
 burn(8);
 flutter(6);
 burn(3);
 on(10);
 burn(10);
 flicker(10);
 }
 else {
 strip.setPixelColor(0, 1, 1, 1);
 strip.show();
 }

We also define a function called candleControl that will switch the state of the variable
that controls the candle:

Chapter 6

133

int candleControl(String command) {

 candleState = !candleState;
 return 1;
}

You can now grab the code from GitHub, modify it with your own Wi-Fi credentials, and then
upload it to the board. You should see that for now, the candle is off. We'll now see how to
activate it from the cloud.

How to do it...
We are now going to see how to control the candle from a cloud dashboard. If you haven't
done so already, create an account at http://dashboard.arest.io/.

You can then create a new dashboard for the candle:

Then, create a new element for the candle, by indicating the ID of your project, and by
selecting the candle function:

You should then see that your device is online:

You can now try it. A simple press on the button should almost immediately switch the candle
on. Another click will shut it off again. You can now control your digital candle from anywhere
in the world!

http://dashboard.arest.io/

Fun Internet of Things Projects

134

How it works...
This project makes use of the aREST cloud platform to control the candle remotely,
and activate it from a cloud dashboard.

See also
I now recommend checking the rest of this chapter for more fun IoT projects with Arduino!

Building a Bitcoin ticker with Arduino
Bitcoin is currently the most used cryptocurrency in the world. There are a lot of Bitcoin tickers
(plugins or websites that indicate the current price of Bitcoin) out there, but wouldn't it be cool
if you could have your own little Bitcoin ticker on your desk? This is exactly what we are going
to do in this recipe.

Getting ready
For the hardware, you can refer to the very first recipe of this chapter, as it uses exactly
the same hardware that we use in this project: an OLED screen connected to the Arduino
MKR1000 board.

Let's now see how to configure the project. As the sketch is quite long, I will only highlight the
most important parts here. First, we define the Wi-Fi credentials, and we also define the API
that we'll use to grab the current price of Bitcoin:

// WiFi settings
const char* ssid = "Jarex_5A';
const char* password = "connect1337';

// API server
const char* host = "api.coindesk.com';

Then, in the loop() function of the sketch, we create a Wi-Fi client and connect to
the API server:

WiFiClient client;
 const int httpPort = 80;
 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed');
 return;
 }

Chapter 6

135

hen, we create the request to get the current price of Bitcoin, and send it to the server:

// We now create a URI for the request
 String url = "/v1/bpi/currentprice.json';

 Serial.print("Requesting URL: ");
 Serial.println(url);

 // This will send the request to the server
 client.print(String("GET ") + url + " HTTP/1.1\r\n' +
 "Host: " + host + "\r\n' +
 "Connection: close\r\n\r\n');
 delay(100);

After that, we read the answer from the server:

String answer;
 while(client.available()){
 String line = client.readStringUntil('\r');
 answer += line;
 }

After a lot of formatting of the answer that I won't detail here, we print the price of Bitcoin on
the OLED screen:

// Print price
 Serial.println();
 Serial.println("Bitcoin price: ");
 Serial.println(price);

 // Display on OLED
 display.setTextSize(3);
 display.setTextColor(WHITE);
 display.setCursor(10,24);

 display.clearDisplay();
 display.print(priceString);
 display.display();

Fun Internet of Things Projects

136

How to do it...
You can now grab the code from the GitHub repository of the book, modify it with your own Wi-
Fi credentials, and then upload the code to the board. You should then quickly see the current
price of Bitcoin appearing on your OLED screen:

How it works...
The project uses the Wi-Fi connection of the Arduino MKR1000 board to connect to a server
that serves the Bitcoin price via an API, and then displays this price on the OLED screen.

See also
I recommend checking the next two recipes to build another cool project: making a GPS
module with Arduino.

Chapter 6

137

Assembling a GPS module
In this recipe, we are going to learn how to completely assemble a GPS module with Arduino,
and make sure that it is working. The goal is to build a GPS tracking module with Arduino,
which is what we will see in the next recipe.

Getting ready
For this project, we will have to use an Arduino Uno board, instead of the usual MKR1000
board, as at the time of writing, the GPS/GSM module I used was not compatible with the
MKR1000 board. This is the list of all the components that you will need for this recipe:

ff Arduino Uno (https://www.sparkfun.com/products/11021)

ff Adafruit Fona 808 breakout (http://www.adafruit.com/product/2542)

ff GSM uFL antenna (http://www.adafruit.com/products/1991)

ff GSM SIM card with GPRS data available

ff 3.7V LiPo battery (http://www.adafruit.com/products/328)

ff LiPo battery charger (http://www.adafruit.com/products/1904)

ff Passive GPS antenna (https://www.adafruit.com/product/2461)

ff Breadboard (https://www.sparkfun.com/products/12002)

ff Jumper wires (https://www.sparkfun.com/products/8431)

Let's now assemble all those components. First, insert the SIM card inside the slot on the
GSM/GPS shield:

https://www.sparkfun.com/products/11021
http://www.adafruit.com/product/2542
http://www.adafruit.com/products/1991
http://www.adafruit.com/products/328
http://www.adafruit.com/products/1904
https://www.adafruit.com/product/2461
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/8431

Fun Internet of Things Projects

138

Next, you need to make the following connections between the Arduino board and the GSM/
GPS module:

ff Vio connects to 5V of the Arduino board

ff GND connects to GND

ff Key connects to GND as well

ff RX connects to digital 2 of the Arduino board

ff TX connects to digital 3 of the Arduino board

ff RST connects to digital pin 4 of the Arduino board

Also connect the GPS and GSM antennas to the module. This is the final result:

Just before using the project, also connect the battery to the GSM/GPS module via the
JST connector.

You will also need the Adafruit_FONA library, which you can get using the Arduino
library manager.

How to do it...
Let's now quickly test this project to see if it works correctly. First, we need to import the
required libraries:

#include "Adafruit_FONA.h'
#include <SoftwareSerial.h>

Chapter 6

139

Then, we create the different instances required for the GPS module:

// Instances
SoftwareSerial fonaSS = SoftwareSerial(FONA_TX, FONA_RX);
SoftwareSerial *fonaSerial = &fonaSS;

// Fona instance
Adafruit_FONA fona = Adafruit_FONA(FONA_RST);

Inside the loop() function of the sketch, we query the data from the GPS module:

char gpsdata[120];
 fona.getGPS(0, gpsdata, 120);
 if (type == FONA808_V1)
 Serial.println(F("Reply in format: mode,longitude,latitude,altitud
e,utctime(yyyymmddHHMMSS),ttff,satellites,speed,course'));
 else
 Serial.println(F("Reply in format: mode,fixstatus,utctime(yyyymmd
dHHMMSS),latitude,longitude,altitude,speed,course,fixmode,reserved1,
HDOP,PDOP,VDOP,reserved2,view_satellites,used_satellites,reserved3,C/
N0max,HPA,VPA'));
 Serial.println(gpsdata);

We then convert this data to numeric coordinates, which can be used to locate the project on
Google Maps, and we print this information on the Serial port:

String latitude = getLatitudeGPS(gpsdata);
 String longitude = getLongitudeGPS(gpsdata);

 float latitudeNumeric = convertDegMinToDecDeg(latitude.toFloat());
 float longitudeNumeric = convertDegMinToDecDeg(longitude.toFloat());

 Serial.print("Latitude, longitude: ");
 Serial.print(latitudeNumeric, 4);
 Serial.print(",');
 Serial.println(longitudeNumeric, 4);

Finally, grab the code from the GitHub repository of the book, and upload it to the board.
Also make sure that the battery is connected to the module, and that you also place the GPS
antenna in a place with a direct line of sight with the sky (it usually won't work indoors unless
you are close to a window).

Fun Internet of Things Projects

140

Then, open the Serial monitor. You should see the following output:

You can now actually copy the result, and paste it into Google Maps: you should immediately
see your own current location on the map!

How it works...
This project works by using the GPS module to find the current location of the project, and
printing it on the Serial monitor. This test was simply to make sure that the GPS was working
correctly, before building a GPS tracker.

See also
I now really recommend checking the next recipe to transform this project into a GPS tracker.

Building a simple GPS tracker
In the last recipe of this chapter, we are going to build a simple GPS tracker using the
hardware we built in the previous recipe. We will send the current GPS location of the project
to a cloud server, and then use this to display the position of the project in real time on a
Google Maps widget.

Chapter 6

141

Getting ready
You will, of course, need to have built the hardware in the previous recipe, and make sure that
the GPS is working correctly. If that's not done yet, please refer to the previous recipe.

Let's now see how to configure the project so that it sends data to Dweet.io, which is a cloud
server we already used in this book. As the code is quite long, I will only highlight the most
important parts here.

First, let's define a new thing called gps_tracker:

String dweetThing = "gps_tracker';

Inside the loop() function of the sketch, we create a new request to Dweet.io, by including
the latitude, longitude, and battery level inside the request:

uint16_t statuscode;
 int16_t length;
 char url[80];
 String request = "www.dweet.io/dweet/for/';
 request += dweetThing;
 request += "?latitude=' + String(latitudeNumeric);
 request += "&longitude=' + String(longitudeNumeric);
 request += "&battery=' + String(vbat);
 request.toCharArray(url, request.length());

We then send this request to Dweet.io using the GPRS data connection of the module:

if (!fona.HTTP_GET_start(url, &statuscode, (uint16_t *)&length)) {
 Serial.println("Failed!');
 }
 while (length > 0) {
 while (fona.available()) {
 char c = fona.read();

 // Serial.write is too slow, we'll write directly to Serial
register!

Fun Internet of Things Projects

142

 #if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__)
 loop_until_bit_is_set(UCSR0A, UDRE0); /* Wait until data
register empty. */
 UDR0 = c;
 #else
 Serial.write(c);
 #endif
 length--;
 }
 }
 fona.HTTP_GET_end();

How to do it...
You can, of course, grab the complete code for this project on the GitHub repository of the
book. Then, upload the code to the board, making sure to enter your own setting for your
GPRS data provider inside the sketch (username and password if you need one).

Then, open the Serial monitor. You should see a similar message to the following:

If you can see that, it means that the data has been successfully transmitted to Dweet.io,
and stored on the cloud.

Then, we are going to set a dashboard so you can follow the location of the tracker on Google
Maps. If you haven't done so yet, create an account at http://freeboard.io/.

There, create a new dashboard, and a new data source inside this dashboard with the
following parameters:

http://freeboard.io/

Chapter 6

143

Then, add a new pane, and create a new Google Map widget inside the pane, linking it to the
data source you created before:

Fun Internet of Things Projects

144

You should immediately see your own location on the map:

Of course, this location is refreshed regularly, making it a real GPS tracker using Arduino!

How it works...
This project works by using all the functionalities of the GSM/GPS shield: it uses the GPRS
connection of the shield to send the location that is acquired via the GPS module in real time.
Then, we used a cloud dashboard to display the location of the project on a map.

See also
As this was the last recipe in this chapter, I now recommend checking the next section in case
you had issues with the recipes in this chapter.

Chapter 6

145

Troubleshooting fun IoT project issues
In this part of the chapter, we are going to see what can go wrong when configuring your board
and connecting it to the Internet. Indeed, some of the steps involved here are quite complex
and many things can go differently than expected.

Nothing is displayed on the OLED screen
The first thing that can happen is that the OLED module has not been correctly connected to
the Arduino board. For example, you could have mixed the SCL and SDA pins. Also make sure
that you have correctly connected the reset pin. Then, make sure that the Wi-Fi credentials
have been correctly entered in the sketch.

I can't get my location using the GPS module
The GPS module that I used in this chapter really needs to have a clear line of sight with the
sky to work correctly, unlike the more advanced modules that you have in your phone, for
example. So if the project doesn't work, make sure the module is close to a window or even
slightly outside. Also make sure that you have connected a fully-charged battery to the project.

147

Mobile Robot
Applications

In this chapter, we will cover:

ff Choosing a robotic platform

ff Building a mobile robot

ff Configuring your mobile robot

ff Basic robot control

ff Using distance sensors

ff Controlling your robot from anywhere

ff Troubleshooting basic robotic issues

Introduction
Building mobile robots is one of the most entertaining things you can do with the Arduino
platform. Because the platform is so easy to use, you will be able to create mobile robots
in no time, and also control them from the Internet.

In this last chapter of the book, we are going to see how to create your own mobile robot
based on Arduino. We'll see how to choose a nice robotic platform, and how to assemble your
first mobile robot. Then, we are going to see how to control this robot locally from your web
browser, and we'll also mount an ultrasonic distance sensor on the robot so it can detect
obstacles. Finally, to end this book about the Internet of Things, we are going to learn how to
control this robot from anywhere in the world.

Mobile Robot Applications

148

Choosing a robotic platform
The first step that you need to take in order to build a nice mobile robot is to choose the
correct platform. There are many choices available that are compatible with the Arduino
MKR1000 board. We are going to review these options, and also choose a platform for the
rest of the chapter.

Choosing a platform
The first kind of robots that are available are two-wheeled robots, such as this chassis
from Emgreat:

These platforms usually come with two motors already mounted on the robot, along with two
wheels and a flywheel in front of the robot. They are easy to use, and you can usually mount
an Arduino board on them.

You also have four-wheeled robots, such as this other product from Emgreat:

Chapter 7

149

These are more stable than the two-wheeled platforms, but they are also more complex to
control as you need to control four independent DC motors in the code of the Arduino board.

Finally, you have Rover platforms, which are basically like the four-wheeled robots, but with
continuous tracks instead of wheels:

The advantage of these platforms is that you can actually control them with only two motors,

Mobile Robot Applications

150

while keeping a good stability of the platform because of the continuous tracks. This is the
kind of platform that I will be using for the rest of this chapter.

There's more...
There are, of course, several other platforms out there that would be just as compatible
with Arduino so I invite you to look on the Web to find the platform that's best suited for
your projects!

See also
I now recommend checking the next recipe to learn how to build your mobile robot!

Building a mobile robot
In this recipe, we are going to see which components we need to build a mobile robot based
on Arduino, and of course how to build the robot itself. At the end of the recipe, you will have a
fully-functional mobile robot that is ready to be programmed.

Getting ready
As we saw in the previous recipe, we are going to use a rover-like robot platform for this
chapter. The one I selected comes with the chassis, but also with two DC motors already
built-in. Of course, you can use the platform of your choice, but you will need to adapt the
different recipes of this book for any other platform.

This is the list of components that you will need for the whole chapter, excluding the Arduino
MKR1000 board:

ff Rover robot chassis with two motors (http://www.dfrobot.com/index.
php?route=product/product&product_id=390)

ff L293D motor driver (https://www.adafruit.com/products/807)

ff 4xAA battery pack (https://www.sparkfun.com/products/9835)

ff 3.7V LiPo battery (https://www.sparkfun.com/products/8483)

ff URM37 ultrasonic sensor (http://www.tinyosshop.com/index.
php?route=product/product&product_id=104)

ff Breadboard (https://www.sparkfun.com/products/12002)

ff Jumper wires (https://www.sparkfun.com/products/9194)

On the software side, you will need the aREST and PubSub libraries for Arduino that we
already installed in previous chapters.

http://www.dfrobot.com/index.php?route=product/product&product_id=390
http://www.dfrobot.com/index.php?route=product/product&product_id=390
https://www.adafruit.com/products/807
https://www.sparkfun.com/products/9835
https://www.sparkfun.com/products/8483
http://www.tinyosshop.com/index.php?route=product/product&product_id=104
http://www.tinyosshop.com/index.php?route=product/product&product_id=104
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9194

Chapter 7

151

How to do it...
Let's now see how to assemble the robot, and integrate the Arduino MKR1000 board on it.
First, we are going to connect the Arduino MKR1000 board to the motors and to the battery
pack. As the process is a bit complicated, I created a schematic that you can simply follow to
make the correct connections:

This is the final result, not showing the motors and the battery pack:

Mobile Robot Applications

152

This is a view of the mobile robot platform, just after I bought it:

This is the battery pack that I will be using for this project, along with four 1.2V
rechargeable batteries:

Finally, just put everything inside the robot chassis, you can always make things prettier after
testing the robot.

Chapter 7

153

This is the final result:

How it works...
In this recipe, we assembled all the components to make a basic mobile robot around the
Arduino MKR1000 board. The Arduino board will be able to control the robot using the L293D
motor driver, which is a chip dedicated to controlling DC motors.

See also
Now that we have a fully assembled mobile robot, I recommend checking the next recipe to
learn how to configure it and make sure it works correctly.

Configuring your mobile robot
In this recipe, we are simply going to make sure that the robot we assembled is working
correctly, by testing the motors of the robot. This will allow us to be sure that everything is
working later when it comes to writing more complex sketches to control the robot.

Getting ready
Here, you simply need to make sure that you followed the previous recipe to assemble the
robot. Also make sure that the batteries are fully charged, and that the robot's wheels or
tracks are not touching the ground, as we simply want to test the motors here.

Mobile Robot Applications

154

How to do it...
We are now going to build a sketch to test the motors of the robot. As a test, we'll make the
robot go forward, and then stop, and repeat the process.

First, we define which pins the L293D chip is connected to on the Arduino board:

// Define motor pins
int motorOnePlus = 6;
int motorOneMinus = 7;
int motorOneEnable = 5;

int motorTwoPlus = 8;
int motorTwoMinus = 9;
int motorTwoEnable = 4;

After that, in the setup() function of the sketch, we set all those pins as outputs:

 Serial.begin(1152000);

 // Set pins
 pinMode(motorOnePlus, OUTPUT);
 pinMode(motorOneMinus, OUTPUT);
 pinMode(motorOneEnable, OUTPUT);

 pinMode(motorTwoPlus, OUTPUT);
 pinMode(motorTwoMinus, OUTPUT);
 pinMode(motorTwoEnable, OUTPUT);

}

Then, in the loop() function of the sketch, we first make both motors rotate in one direction
at about half the maximum speed, and then we stop them again:

 // Accelerate forward
 setMotorOne(true, 500);
 setMotorTwo(true, 500);

 // Delay
 delay(5000);
 // Stop
 setMotorOne(true, 0);
 setMotorTwo(true, 0);

 // Delay
 delay(5000);

Chapter 7

155

Let's now have a look at the functions that we use to control the motors:
// Function to control the motor
void setMotorOne(boolean forward, int motor_speed){
 digitalWrite(motorOnePlus, forward);
 digitalWrite(motorOneMinus, !forward);
 analogWrite(motorOneEnable, motor_speed);
}
// Function to control the motor
void setMotorTwo(boolean forward, int motor_speed){
 digitalWrite(motorTwoPlus, forward);
 digitalWrite(motorTwoMinus, !forward);
 analogWrite(motorTwoEnable, motor_speed);
}

Basically, we always need to apply opposite signals on the direction pins, and then we use an
analogWrite() function to set the speed of the motors.

You can now upload the sketch to the Arduino board. You should see that the robot is first
accelerating forward, and then stopping. If this is happening, congratulations, you can control
a mobile robot using the Arduino MKR1000 board!

How it works...
This sketch is using the L293D circuit connected to the Arduino board to control the robot.
We have basically created functions that allow us to control the motors from the Arduino
boards, and we'll be using the same functions in the upcoming recipes of this chapter.

See also
You can now move on to the next recipe to learn how to actually make the robot move around.

Basic robot control
In this recipe, we are finally going to dive into the core of this chapter: making our robot move
around! We'll learn how to configure it so it can receive commands via Wi-Fi, and then we'll
learn how to control it using a simple interface running inside your browser.

Getting ready
For this recipe, just make sure that you followed all the recipes so far in the chapter. Also, it is
recommended to leave the robot in a position where the wheels or track are not touching the
ground, at least till you are sure it is working correctly.

Mobile Robot Applications

156

How to do it...
We are now going to program the robot so it accepts commands via Wi-Fi. For that, we'll use
the aREST framework that we have already used several times in this book.

The sketch starts by including the required libraries:

#include <SPI.h>
#include <WiFi101.h>
#include <aREST.h>

Then, you need to define your Wi-Fi network name and password:

char ssid[] = "wifi-name';
char password[] = "wifi-pass';

After that, we declare several functions that we will use to control the robot:

int stop(String command);
int forward(String command);
int left(String command);
int right(String command);
int backward(String command);

Inside the setup() function of the sketch, we expose these functions to the aREST API:

rest.function("forward', forward);
rest.function("stop', stop);
rest.function("right', right);
rest.function("left', left);
rest.function("backward', backward);

In the loop() function, we listen for incoming connections, and process them using aREST:

// Handle REST calls
 WiFiClient client = server.available();
 if (!client) {
 return;
 }
 while(!client.available()){
 delay(1);
 }
 rest.handle(client);

Let's now have a look at one of those functions to control the robot:

int forward(String command) {

 setMotorOne(true, 1000);
 setMotorTwo(true, 1000);

}

Chapter 7

157

As we can see, it uses the functions we used in the previous recipe to test the robot.
For example, the forward function makes both motors go in the same direction at nearly
maximum speed.

You can now grab the code from the GitHub repository of the book, and configure the Arduino
board with it. Don't forget to modify the Wi-Fi credentials in the sketch. For now, just open the
Serial monitor after uploading the code to get the IP address of the board, we'll need it in
a moment.

We are now going to create an interface to control the robot via push buttons. I'll only describe
the main parts of the code here, but you can find all the code from the GitHub repository of
the book.

The code is based on one HTML file (for the interface) and one JavaScript file (for sending the
commands to the robot).

Inside the HTML file, we define several buttons to control the robot, for example, to make it
move forward:

<div class='row'>

 <div class='col-md-5'></div>
 <div class='col-md-2'>
 <button id='forward' class='btn btn-primary btn-block'
type='button'>Forward</button>
 </div>
 <div class='col-md-5'></div>

</div>

The JavaScript file is making use of aREST.js, a very convenient library made to control
aREST projects via JavaScript. You can find out more about it at https://github.com/
marcoschwartz/aREST.js.

Inside the JavaScript file, we need to set the IP of the board:

var address = "192.168.0.104';
var device = new Device(address);

Then, we link each of the buttons to an action, for example, the forward button:

$('#forward').mousedown(function() {
 device.callFunction("forward');
});
$('#forward').mouseup(function() {
 device.callFunction("stop');
});

https://github.com/marcoschwartz/aREST.js
https://github.com/marcoschwartz/aREST.js

Mobile Robot Applications

158

Note that in order to obtain a push-button behavior, we always call the stop() function on
the robot whenever a button is released.

You can now simply get the interface files from the GitHub repository of the book, and modify
the IP address in the code. Then, open the HTML file with your favorite web browser:

You can now try it: just press the forward button, for example, and the robot should go forward.
Whenever you release the button, the robot should immediately stop. You can, of course, play
with the other buttons to control the robot.

At this point, the robot should still be linked to your computer via USB. To solve this issue,
simply power the Arduino board using the 3.7V LiPo battery, and get a completely wireless
mobile robot!

How it works...
This whole recipe is based on the aREST library, which we used to send commands to the
robot via Wi-Fi. Using a simple web interface, we can then easily control the robot from a
web browser.

Chapter 7

159

See also
In the next recipe in the chapter, we are going to add a distance sensor to the robot to know if
there is any obstacle in front of it.

Using distance sensors
For now, we are able to control our mobile robot, but except if we directly look at it, we have no
way of knowing if there is an obstacle in front of it.

This is where ultrasonic sensors come into play: they are an easy, inexpensive way to know
precisely if there is something in front of the mobile robot, and at what distance. In this recipe,
we'll add an ultrasonic sensor to our robot and integrate it into the interface.

Getting ready
The first thing you need is, of course, an ultrasonic sensor. For this project, I used an URM37
ultrasonic sensor from DFRobot:

Mobile Robot Applications

160

This is the back of the sensor, showing all the pins:

You can now mount the sensor on the robot's chassis, putting the sensor in front of the robot.

Then, you can refer to the documentation at http://www.dfrobot.com/wiki/index.
php?title=URM37_V4.0_Ultrasonic_Sensor_(SKU:SEN0001) to find the pins of
the sensor.

Basically, you need to connect the VCC pin to the VCC pin of the Arduino board, GND to GND,
and pin number 4 of the sensor (ECHO) to Arduino pin A0.

This is the final result:

http://www.dfrobot.com/wiki/index.php?title=URM37_V4.0_Ultrasonic_Sensor_(SKU:SEN0001)
http://www.dfrobot.com/wiki/index.php?title=URM37_V4.0_Ultrasonic_Sensor_(SKU:SEN0001)

Chapter 7

161

How to do it...
Let's now see how to integrate the sensor into the code. First, we expose a function called
measureDistance to the aREST API:

rest.function("distance', measureDistance);

This is the details of this function that returns the distance in front of the robot in centimeters:

int measureDistance(String command) {

 // Measure distance
 unsigned int Distance = 0;
 unsigned long DistanceMeasured = pulseIn(distanceSensorPin, LOW);

 // Compute distance
 if (DistanceMeasured == 50000) {
 Serial.print("Invalid');
 }

Mobile Robot Applications

162

 else {
 Distance = DistanceMeasured/50;
 }

 return Distance;

}

We also modify the code of the interface to integrate this information, and we perform a
measurement on the robot two times every second. You can check the updated code of the
interface from the GitHub repository of the book.

Now, upload the new code to the robot, and then open the modified interface. Make sure that
you have the correct IP address set in the code.

This is what you should see:

You can still control the robot, but you now also have the distance in front of the robot
displayed in the same interface!

How it works...
This project uses an ultrasonic sensor to know the distance in front of the robot. The interface
basically calls the function to measure the distance every 500ms, so the information
displayed is always up to date as the robot moves around.

Chapter 7

163

There is more...
You can now use this measurement from the ultrasonic sensor in the code, for example, to
also make the robot automatically stop when something is detected in front of it.

See also
I now recommend checking the final recipe of the chapter, in which we'll learn how to control
the robot from anywhere!

Controlling your robot from anywhere
To end this chapter and this book, we are going to integrate our mobile robot into the Internet
of Things, and learn how to control it from anywhere in the world. We'll learn how to call the
function we defined earlier from anywhere in the world, and then how to control the robot
using a cloud dashboard.

Getting ready
For this final recipe, you just need to have followed all the previous recipes in the chapter.

How to do it...
As the code for this recipe is really similar to the code from previous recipes, I will only
highlight the main differences here. You can, of course, refer to the GitHub repository of
the book for more details.

You need to include the following libraries:

#include <SPI.h>
#include <WiFi101.h>
#include <PubSubClient.h>
#include <aREST.h>

Then, an important point here is to define a unique ID for the robot:

char* device_id = "40ep12';

This will basically identify your robot on the aREST cloud. Then, inside the loop() function of
the sketch, we simply handle incoming requests with the following:

rest.handle(client);

You can now grab the code from the GitHub repository of the book, and make sure to modify
the Wi-Fi credentials and device ID inside the code. Then, configure the board with this code.

Mobile Robot Applications

164

You can now actually test the robot, for example, by calling the forward function with
the following:

Of course, you need to put the correct device ID inside this URL.

Now, we are going to create a simple dashboard to call the essential functions of the robot.
For that, refer to http://dashboard.arest.io/.

Create an account if you haven't already, and then create a new dashboard:

Inside this newly created dashboard, create a new element to control the forward function:

Then, repeat the same operation for all the functions of the robot that you want to control:

You can now try to control the robot via this cloud dashboard: the robot should answer
immediately. You can now control your mobile robot from anywhere in the world!

How it works...
This whole project is based on the aREST framework, which we use here to control our robot
using the aREST cloud. Combined with a cloud dashboard, this allows us to control our mobile
robot from anywhere in the world.

http://dashboard.arest.io/

Chapter 7

165

See also
As this was the last recipe in the chapter, I now recommend checking the next section in case
you had trouble in this chapter.

Troubleshooting basic robotic issues
In this part of the chapter, we are going to see what can go wrong when building a mobile
robot based on Arduino and controlling it remotely. Indeed, some of the steps involved here
are quite complex and many things can go differently than expected.

The motors of the robot don't react to any command
The first thing that can happen is that the motors, or the L293D motor driver haven't been
connected correctly to the Arduino board. Make sure that everything is connected correctly
according to the schematics found in the relevant recipe. Also make sure that the batteries
are fully loaded, or the motors might not have enough power to work correctly.

The interface doesn't work
First make sure that the robot is responding to direct commands via Wi-Fi. For that, you can
simply type the IP address of the robot in any browser, followed by the name of the command
you want to execute. Also make sure you entered the correct IP address inside the interface
JavaScript file.

The ultrasonic sensor returns incorrect readings
First, make sure that the sensor is correctly wired to the Arduino board. Indeed, there are
many pins on the URM37 sensor that we used for this task, and it can be easy to make a
mistake. Also make sure that the sensor is correctly mounted on the robot chassis, and that it
is really measuring distance straight in front of the robot.

The robot can't be accessed from the cloud dashboard
If you can't access the robot from the cloud dashboard, first make sure that you can access it
via a web browser, as we saw in the relevant recipe. Then, make sure you entered the correct
device ID inside the dashboard.

167

Index
Symbols
3.7V LiPo battery

references 137
4xAA battery pack

URL 150
5V relay

reference link 10
10K Ohm resistor

references 8

A
Adafruit

URL 126
Adafruit Fona 808

URL 137
Adafruit.io

reference link 25
AnalogReadSerial 114
Arduino

Bitcoin ticker, building with 134-136
development environment, setting up 2
Internet of Things platforms 24
options, for internet connectivity 5-7

Arduino board
configuring, for IoT 13-16
references 15
sensors, connecting 27-31
tweeting from 48-51

Arduino clock 126-131
Arduino development environment

setting up 3, 4
Arduino IDE

version download link 2
Arduino Uno

URL 137

Arduino Yun board 6
aREST

reference link 101, 112, 121
aREST.js

reference link 157
automated light controller

creating 86-90
automated sprinkler controller

creating 91-96

B
basic actuators

interacting with 10-12
basic Arduino issues, troubleshooting

about 22
board, invisible from Arduino IDE 22
board, not connecting to Wi-Fi router 22

basic local M2M interactions
about 74-76
code, reference link 76
components 74
working 77

basic M2M issues
troubleshooting 96

basic M2M issues, troubleshooting
button, pushing 97
pump/sprinkler, not working 97

basic sensors
interacting with 8-10

Bitcoin ticker
building, with Arduino 134-136

Breadboard
references 137

168

C
Choreo

reference link 54
cloud

data, sending 21
cloud dashboard

reference link 133
sensor data, monitoring 38-41

Cloud M2M
using, with IFTTT 77-81

cloud smoke detector
building 113-116

coffee machine
controlling, from cloud 100-102

content
grabbing, from website 16-18

D
data

recording, reference link 21
sending, to cloud 21
storing, on Google Drive 66-70

development environment, Arduino
setting up 2-4

DHT11 sensor 59
reference link 27

digital candle
building 129-131
cloud-controlled 131-134

distance sensors
using 159-163

door
remote access, controlling 109-112

Dweet.io service
about 22, 141
reference link 24, 37

F
Facebook

updates, posting 52-54
Facebook application

reference link 52
Facebook . OAuth . InitializeOAuth

reference link 53

Freeboard.io
reference link 38

G
Google Drive

data, storing 66-70
Google Maps

URL 142
GPS module

assembling 137-140
GPS tracker

building 141-144
GSM uFL antenna

URL 137

H
home automation dashboard

monitoring 121-123
reference link 121

home automation project issues
troubleshooting 123

home automation project issues,
troubleshooting

alerts, sending by smoke detector 124
board connectivity 124

I
IFTTT

account, reference link 55
used, for automation 55-58
using, with Cloud M2M 77-81

internet connectivity
with Arduino, options 5, 6
with Arduino, option selections 7

Internet of Things platforms, for Arduino
about 24
available platforms 24, 25
working 26

IoT
Arduino board, configuring 13-16

IoT interactions
types 74

IoT project issues
troubleshooting 145

169

IoT project issues, troubleshooting
GPS module, used for location issue 145
OLED screen, display issue 145

issues, with cloud data monitoring
troubleshooting 44

issues, with web services
no notifications are triggered 71
troubleshooting 70, 71
tweet/Facebook updates, unable to post 71

J
Jumper wires

URL 137, 150

L
L293D motor driver

URL 150
LEDs

controlling, from anywhere
in the world 102-105

LiPo battery charger
URL 137

M
M2M alarm system

using 81-85
working 85

Maker channel 56
mobile robot

building 150-153
configuring 153-155
controlling 155-158, 163-165

mymkr1000
reference link 34, 35

O
online data

reference link 37
retrieving 36
securing 36-38

P
Passive GPS antenna

URL 137
Photocell

reference link 8, 27
PowerSwitch Tail 86

reference link 100
prerequisites, automated light controller

10K Ohm resistor, reference link 86
Photocell, reference link 86
PowerSwitch Tail, reference link 86

prerequisites, automated sprinkler controller
10K Ohm resistor, reference link 91
relay, reference link 91
soil moisture sensor, reference link 91

prerequisites, basic local M2M interactions
1K Ohm resistor, reference link 74
330 Ohm resistor, reference link 74
Arduino MKR1000 board x2,

reference link 74
LED, reference link 74
push button, reference link 74

prerequisites, cloud smoke detector
MQ2 smoke sensor, reference link 113

prerequisites, for remote door access
1K Ohm resistor, reference link 110
12V power supply, reference link 110
DC jack breadboard connector,

reference link 110
electronic door lock, reference link 110
N-Channel MOSFET, reference link 110
rectifier diode, reference link 110

prerequisites, M2M alarm system
330 Ohm resistor, reference link 82
LED, reference link 82
PIR motion sensor, reference link 82
small buzzer, reference link 82

prerequisites, remote controlled garage door
5V Relay, reference link 106
magnetic contact switch, reference link 106

PubSubClient library 77
push notifications

sending 58-62

170

R
remote controlled garage door

building 106-109
robot, functions

reference link 164
robotic platform

selecting 148, 149
robotics issues

troubleshooting 165
robotics issues, troubleshooting

cloud dashboard, mobile robot accessibility
165

interface, not working 165
mobile robot, motors not working 165
ultrasonic sensor, incorrect readings 165

Rover robot chassis
URL 150

S
SAMD boards 3
sensor

URL, for documentation 160
sensor data

monitoring, from cloud dashboard 38-41
posting online 31-34

sensors
connecting, to Arduino board 27, 29

several Arduino boards
monitoring, at once 41-44

SHT1x library
reference link 93

smart cloud thermostat
creating 116-120

working 120
SparkFun

reference link 26

T
Temboo account

reference link 46
Temboo platform

discovering 46, 47
text message notifications

sending 63-65
Twitter account

reference link 48

U
updates

posting, on Facebook 52-54
URM37 ultrasonic sensor

URL 150

W
web page

content, grabbing 16-19
web services

issues, troubleshooting 70

X
Xively

reference link 24

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Connecting an Arduino to the Web
	Introduction
	Setting up the Arduino development environment
	Options for Internet connectivity with Arduino
	Interacting with basic sensors
	Interacting with basic actuators
	 Configuring your Arduino board for the IoT
	Grabbing the content from a web page
	Sending data to the cloud
	Troubleshooting basic Arduino issues

	Chapter 2: Cloud Data Monitoring
	Introduction
	Internet of Things platforms for Arduino
	Connecting sensors to your Arduino board
	Posting the sensor data online
	Retrieving your online data
	Securing your online data
	Monitoring sensor data from a cloud dashboard
	Monitoring several Arduino boards at once
	Troubleshooting issues with cloud data monitoring

	Chapter 3: Interacting with Web Services
	Introduction
	Discovering the Temboo platform
	Tweeting from an Arduino board
	Posting updates on Facebook
	Automation with IFTTT
	Sending push notifications
	Sending text message notifications
	Storing data on Google Drive
	Troubleshooting issues with web services

	Chapter 4: Machine-to-Machine Interactions
	Types of IoT interaction
	Basic local M2M interactions
	Cloud M2M with IFTTT
	M2M alarm system
	Automated light controller
	Automated sprinkler controller
	Troubleshooting basic M2M issues

	Chapter 5: Home Automation Projects
	Introduction
	Controlling your coffee machine from the cloud
	Dim LEDs from anywhere in the world
	Remote controlled garage door
	Controlling the access to your door remotely
	Cloud smoke detector
	Smart cloud thermostat
	Home automation dashboard in the cloud
	Troubleshooting home automation project issues

	Chapter 6: Fun Internet of Things Projects
	Introduction
	Making a simple Arduino clock
	Building a digital candle
	A cloud-controlled digital candle
	Building a Bitcoin ticker with Arduino
	Assembling a GPS module
	Building a simple GPS tracker
	Troubleshooting fun IoT project issues

	Chapter 7: Mobile Robot Applications
	Introduction
	Choosing a robotic platform
	Building a mobile robot
	Configuring your mobile robot
	Basic robot control
	Using distance sensors
	Controlling your robot from anywhere
	Troubleshooting basic robotic issues

	Index

