

GUIDE

Slee Grt eee.

SOFTWARE

TECHNICAL

_ WRITING

CHRISTINE BROWNING

AINDDICLT CRIICTO LIPRDARY

Library of Congress Cataloging in Publication Data

Browning, Christine.

Guide to effective software technical writing.

Includes index.

1. Electronic data processing documentation.

2. Technical writing. I. Title.

QA76.9.D6B76 1984 808'.066001 84-6788

ISBN 0-13-369463-1

ISBN 0-13-369455-0 (pbk.)

Editorial/production supervision and interior design: Karen Skrable

Cover design: Jeannette Jacobs

Manufacturing buyer: Gordon Osbourne

© 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,

without permission in writing from the publisher.

Printed in the United States of America

LOR Oe Bele 16. Sha: S02 oe

ISBN O-13-3694b3-1
ISBN O-13-369455-0 {PBK} 01

PRENTICE-HALL INTERNATIONAL, INC., London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore

WHITEHALL BOOKS LIMITED, Wellington, New Zealand

el Le eee

BB5a- 209698
(i.

CONTENTS

PREFACE wii

1 WHAT ISA SOFTWARE MANUAL? 7

Who Writes the Manuals? 3

What Does a Software Manual Look Like? 4

The Appearance of the ManualIs Important 6

The Content of the ManualIs More Important 6

The Goal of the Software Manual 74

The Goal of the Software Technical Writer 75

2 THE IMPORTANCE OF ORGANIZATION 77

Organizing the Text 79
Organizing Reference Text 20

Organizing Tutorial Text 21

Organizing the Task 22

3 WRITING A SOFTWARE REFERENCE MANUAL 25

Knowing Your Readers 25
Who Are the Readers? 27

How Knowledgeable Are the Readers? 27

How Will the Readers Use the Manual? 28

Finding the Information for the Manual 28

Find the External Specifications 28

Look for Informal Programming Notes 29

Get the Program Listings 29

Ask Questions 30

Getting Organized 30

Begin with the Basic Concepts 30

Look for Catalogs 31

Organize Named Catalogs Alphabetically 32

Including Related Information 36

Generating Examples 36

Preparing the Outline 37

Preparing the Text 40

Selecting the Right Words 40

Producing Organized Text from Specifications 41

A Word about Schedules 42

4 WRITING A SOFTWARE USER MANUAL 49

Knowing Your Readers 57

Who Are the Readers? 51

How Knowledgeable Are the Readers? 51

How Will the Readers Use the Manual? 51

Finding the Information for the Manual 52

Use the Software Reference Manual 52

Talk to Customer Support Analysts 52

Talk to Programmers 58

Getting Organized 53

Begin with the Basic Concepts 53

Look for Features 54

Organize Logically 55

Including Related Information 57

Generating Examples 57

Preparing the Outline 58

Preparing the Text 67

Schedules Are Always Required 62

5 STRUCTURING TECHNIQUES 69

Establishing Structured Paragraph and Section Heads 69

Balancing Paragraph Heads 71

Avoiding Empty Heads 73

Writing in Parallel 73

Structuring Text 77

CONTENTS/iv

6 ENSURING READABILITY 79

Favor Active Voice 87

Never Say May 87

Unnecessary Hyphenation Is Old-fashioned 83

Pronouns Are Unpopular 83

The Indefinite Pronoun 84

Sexist Pronouns 84

The Neuter Pronoun 85

Bypass Programming Jargon 85

Quotation Marks Can Be ‘‘Dangerous” 86

That versus Which 87

Making References 88

In-Section References 88

Out-of-Section References 89

Out-of-Manual References 89

Directional References 90

Avoid Multiple Phrases and Clauses 97

Be Consistent 97

Remember Your Foreign Readers 92

Watch Out for Stilted Text 93

7 ARRANGING THE FRONT MATTER 95

Preparing a Revision Record 97

Writing an Effective Preface 97

Analyzing the Table of Contents 99

Establishing Syntax Conventions 707

8 PREPARING THE BACK MATTER 703

Planning Appendixes 705

Including Error Messages 105

Summarizing Program Syntax 109

Summarizing Data Entry Procedures 109

Establishing a Glossary 772

Indexing 774

Preparing the Standard Index 115

Preparing an Instant Index 119

9 PASSING THE TEST 727

GLOSSARY 747

INDEX 745

CONTENTS/v

a

ou wlistign sie dors ae
yt pe Paderenl Sincdaweiond RE

bey Ae feptaat Pas moaremy 5 ‘hep
fakae rage + hiite BF 28 pres riesvr gern

se 2 beng as AA
, 1 tstrO0 aciene' Sar

Gesu ; = “qeonwete® gable rand

cw. 2 ' Be br rertphcinaenp rt
vad-4 Se ¢
ee) Sh sonnsie@ Thane
ae 8 pert tot da a
HR peel tone sone et rigtluM BimwA =

ine es TR snendenas :
abe aF «plano woY rape -

yen ual} at By: ART OMI CR 1 easel 1 aos
a ee «tit hes ~ 3 oe

me , won? sHT cetcniends La
& IN eo ee a ee BE deaeh eoivel spabsget =

ip Moor Sapee (S& sostetl sviroeta ne grits "
» Seder) ¢ RG amaned to etdeT ery pnityienA ; o

Ar WOE feqntenane) xaroye pnidpiidered oa ra
aog ¢ ae Re Ptah 5 -

‘yc OS ie ShAM AQAS 3HT OIA AREA 8
: jist Matar gl TRS we bnengA gninns! asi 7

Vapce A, el OS. Heyer vor’ yaibbuloett y et .
" ‘> GOL xoyne® cote paisrgrinee:. i

BDA peisbane'l clink shall grishodeunyy?, ey
Otoper 2ZSNS yisatokd « gnitielideted

BIL. enixabal
SAL xobel brohuvet? edt gavage =

rion SBN xs Ne mnie hl a0 & a =n eh

— as Gk Wear anroviewss @ 9 a
j " —

ML YRABetIa

a

ae acu a
iad ony ; ie Son 24

PREFACE

Computers are one of our most dynamic and fastest-growing
modern industries. But how can you become a part of and even

play a key role in this environment without being a computer

programmer, mathematician, or engineer?
One part of the computer industry that is open to people

with a variety of backgrounds is documentation.

Manufacturers cannot sell computers, software (programs),

or accessories unless they provide manuals that tell the

customers how to use these products.

The manuals are not written by the computer designers

and programmers. Even if these technical experts had the time,

they would not necessarily have the literary expertise to do the

job.

If you

have good communication skills,

believe you can develop a sound writing craft,

are interested in computers,

Vii

are willing to learn about the software, and

enjoy helping people to learn,

consider software technical writing, one of the most profitable

and rewarding careers in the computer industry.

This book describes how to write good software manuals.

It does not assume a strong background in computer technology,

but it does assume a strong desire to learn. Writing any type of

software manual requires an understanding of the subject and

an ability to communicate effectively with the software expert

who supplies the information.

e If you are a software technical writer already, this book

can help you improve your skills.

e If you are a technical writer who is planning to move into

the field of software technical writing, this book can teach

you mechanics that minimize the writing effort.

e If you are interested in exploring the possibility of becom-

ing a software technical writer, this book will show you

the basic principles of manual writing. Many of these

principles also apply to writing computer-related material,

such as brochures, promotional literature, and magazine

articles.

Chapter 1 introduces software manual writing. It describes

why manuals are important, explains their functions, and

gives the criteria for writing them.

Chapter 2 describes how to organize the text, establish
the readership, and plan the writing task.

Chapter 3 gives a step-by-step approach to writing a soft-
ware reference manual.

Chapter 4 gives a step-by-step approach to writing a soft-
ware user manual.

Chapter 5 discusses techniques for structuring a manual to
increase its usability.

Chapter 6 presents a style guide. It explains how to ensure
readability and avoid common mistakes that detract from
the usability of a manual.

PREFACE /viii

Chapter 7 describes the front matter. This includes the

revision record, preface, table of contents, and syntax

conventions.

Chapter 8 describes the back matter. This includes the
appendixes, glossary, and index.

Chapter 9 is an example to test your comprehension.

The glossary provides definitions of computer industry

terminology.

Skilled technical writers can play a key role as interme-

diaries between users and technical experts. The computer will

never fulfill its potential unless people can learn to appreciate

it and use it effectively. The challenge of providing the required

teaching material is open to anyone who finds it exciting and

worthwhile.

ACKNOWLEDGMENT

Computer systems, with their text-editing facilities, disk and

tape units, and high-speed printers, simplify the writer’s task.

For making their special equipment available to me, I am deeply

grateful to Tandem Computers Incorporated, Cupertino, CA.

Christine Browning

PREFACE/ix

ete be seine Sate: J jeden tg ret OO TEA
sen i ime rey ores ; ut undcrdantlot ot fhe csitjoe

ieeten AR OT OIE atte aaa sneha hips?
ite Heth RE OFRES Feoinddse) bre evade mrecwted eh
beg i Fs ze ‘revel nao obgneq sesiqy latinahod: 2h fA ss ;

hep. anibiven to ognollads ofT -yisvizodta + seb “ oa
oe er ue onievagion! gt a atest ait 4

15 em ae eal Sentlery ete Se -shubenow: : f
hal c LO on ae ‘a leo end (ha) wig fe rave ake

Me. 7. ‘ ales if] <iheaees Lgiinizg CICK. i i hook cat te
=a — re a + Wg : i ~~ ~~, ehh ? MAHDGEIWORATA

7 oe iat ah tat rae) As caghorite he aS abiity of besiion=

sre Salt Ge a vn ious hisie seca naa, Wibey Dyer ree! 0 ae
aes Pooike despre he yet peeauinye dncqetigel bins fy ibgee
y .— Ri! Fant or Adglovetrntiqhhowtkinigenisittadicnnel,
oe: 2 eBags ertan tiie et eertlgiiod etobrte! oriaietete

3 <M ot alee ee
gi ea rhs nit abi oo ; - Ss at

-
| .

ae or ik > ust i oe ro 1c fal writing te Aescri kes | % 7

7

ong tan, OPA “} or Til Sums, ctl a
y *. 4 “i . UL

em ‘WO eee or WHEW Loon, ay,
7 ; aad , P :

i eibe) how (6 argadizn, The lent, cetabiialt

1)

iy ’ P ’ 4 e712 - : o, sd (= a ”

ke é : Pa . } a — _
7 2 ve # Sicp-bo tien atpmerh fy Wriike en” «

, i:
_ as

his wT “ins a jOTE

i wv”, eT | CA mar ke
ia .

iL Ny -~ = -s hep 7 - t r :
“- af wi ~ a . - — -

of : mW ahs Otniseere +.

rund aly: / us ; <tp sh 2) oe pet = =

weyg ibe yi>* . ny (+ — eo: Pe

a al eS)
Re ia ri

ir oe ‘ is 7" wey =f

ae ge Chee oan
Pn ‘ ni
- : nae A Nalin,

hs) ae am -

1/WHAT

__ISASOFTWARE __
MANUAL?

Organizations associated with the computer industry market a

variety of software products. Each of these products requires
at least one manual that describes its design and operation.

Airlines, for example, use software products that maintain

their flight reservation data. Suppose you are taking a trip.

The reservation agent books your flight

by using a computer terminal

—_—

to access computer software

—_——

designed and coded by analysts and programmers
—___—_——

who use software manuals

—_——

to do their jobs.

arated sotrerets ods tHthw ‘Gsiatoaioe wanetaal
epee “seston: quent To tiaat steuboig ptEWwitos to ty

cea Sao Gis speedy 23) sertirses® Sade teceeety « S80 FAny ne
Gate Pit atgubony stewiiee sas aig ix Ot 26NihA
Bat § sailed Sth Woy TRONqUS stab ei pvigaet iti 1

fifaiit ny edood t49R6 NOerise CHT

Aiea TSuemMOS 8 hie yo

—_ eres iron

’

tenho Istuamos esas of

A a gen, im,

>

gory bru aievingn ed bobos bine bongpeb
ra

eo

hae wihae set

What happens if the manuals are not complete and accurate?

The analysts and programmers make mistakes,

the computer software does not work the way it is sup-
posed to,

the computer terminal delivers incorrect information, and

you are booked on the wrong flight!

If this gives you some idea of how important software

manuals are, consider the manuals that describe software for air

traffic control. It is better for you to miss a flight than for the
pilot to miss a runway.

WHO WRITES THE MANUALS?

Software manuals are written by specialized writers called soft-

ware technical writers. These individuals have writing skills, a

general knowledge of computer hardware, and a good knowl-

edge of computer software. They take complicated subjects,
organize them into logical pieces of information, and produce
software manuals that serve as reference or learning tools.

The writers are often writing about new software or new

software features with which they are not necessarily familiar.
They are often writing the manuals at the same time the soft-

ware is being developed. How can they do this? By seeking out

information from the software designers and developers and by

drawing on past experience—similar products, similar concepts.

Software technical writers fall into one of three categories:

1. The junior writer adds update material to existing software
manuals, doing relatively little new or original writing.

2. The intermediate writer adds update material to existing
software manuals and incorporates a certain amount of

new and original writing.

3. The senior writer designs and writes new software manuals.

Each type of writer plays a critical role in the computer
industry. Each has a responsibility to write clearly, concisely,

accurately, and—always important—quickly.

WHO WRITES THE MANUALS?/3

The customer is eager to have the software, and the devel-

oper is eager to deliver it. But the software will not go anywhere

without a manual that explains it.

WHAT DOES A SOFTWARE MANUAL LOOK LIKE?

A software manual has its own special format. Formats vary

from company to company, but they generally look something

like the one shown in Figure 1-1.

e The manual is divided into sections.

e The section carries a running head that identifies the sub-

ject matter.

e The section is numbered.

e The section title identifies a major area.

e The first-order paragraph head identifies a major topic

within the area.

e The second-order paragraph head identifies a topic sub-
ordinate to the first-order paragraph head, and so forth.

e The manual is paginated by section. Pages can be added to

one section without forcing other sections to be repagi-

nated.

Breaking down information into these logical units serves sev-

eral important purposes:

1. Information parallels the structure of the software product

and helps readers to learn. A paragraph head Control
Statement Parameters would probably be followed by sub-

ordinate paragraph heads for each of the parameters. Read-

ers first learn that control statements have parameters, and
then they find out exactly what those parameters are.

2. The material can be easily maintained. A software manual

is usually updated rather than rewritten each time the
product changes. The paragraph heads provide logical

divisions for adding new or changing existing information.

If the product is changed to include three new control

statement parameters, the next writer already has a con-

venient place to put them.

WHAT IS A SOFTWARE MANUAL?/4

Running Head

Third Order Paragraph Head

SECTION 1

SECTION TITLE

FIGURE 1-1 Software Manual Format

3. Readers are alerted to subject matter and can skip over

the familiar or concentrate on the unfamiliar. The para-

graph head Control Statement Parameters and its sub-

ordinate information can be safely ignored by the reader

who is not planning to use control statements.

The Appearance of the Manual Is Important

A good novel that consists of page after page of unbroken text

holds the reader’s interest. The novel has an exciting plot.

A good software manual that consists of page after page of

unbroken text does not hold the reader’s interest. The manual

has no plot.

Good software manuals have text that is broken up in

several ways:

indented text

indented text preceded by bullets, as shown here

short paragraphs

programming examples, often printed in a different type

font

e tables

e numbered steps

e illustrations

Figure 1-2 shows the difference between unbroken and
broken text. If you had your choice of learning information

from one of these sample pages, which page would you select?

The Content of the Manual Is More Important

A manual must do more than look good. To be effective and

reflect professionalism, a manual should meet the following
criteria:

1. Material is well organized. The manual is organized to

serve the reader, not to satisfy the writer. A manual is

always rated by its usability rather than by its literary
style.

WHAT IS A SOFTWARE MANUAL?/6

The SCANNER and PROC routines perform polling and character processing
operations. SCANNER polls all lines in the network and upon detection of an
input character, performs a series of tests to determine the legality of the input
character. In addition, SCANNER calls a special-purpose routine to set pointers
to four core-resident buffers: Term Buffer, Verify Buffer; Format Buffer, and
Data Buffer. Term Buffer reflects terminal status; Verify Buffer maintains
current record processing parameters, Format Buffer holds the memory address
where the format is stored; and Data Buffer holds the input characters until
they comprise a full record and require transmission. The pointers are established
when the first input character is moved into the Data Buffer.

After the last input character has been verified, SCANNER calls the PROC

routine. PROC checks the input characters against the stored format, interprets
the operation to be performed, and then transfers control to the appropriate
processing routine.

When the polling cycle is complete control passes to the EXECUTIVE program.
If an input/output operation is required, the EXECUTIVE calls the appropriate
driver, sets the I/O request word to zero, and returns control to SCANNER to
continue the polling operations.

Term Buffer

The Term Buffer, which is allocated in ring 5, is a 2-word area that reflects
the status of the terminal. Bit positions in word | are set to provide specific
information regarding terminal activity. Bit 0 is set for input/output, bit 1 for
read, bit 2 for write, bit 3 for error recovery, and bit 5 for parity checking.
The remaining positions are reserved for future expansion.

Word 2 is the address of the diagnostic library. This word points to the message
that is displayed in case of error. If no error has occurred, word 2 is set to
77777 octal.

Verify Buffer

The Verify Buffer, which is allocated in ring 4, is a 3-word area that holds the
current record processing parameters. Each bit position indicates an operating
mode. Bit | is set for read, bit 2 for write, bit 3 for read/write, bit 4 for
read/lock, and bit 5 for recover mode.

The SCANNER and PROC routines perform polling and character processing

operations.

SCANNER performs the following functions:

polls all lines in the network and upon detection of an input character, performs
a series of tests to determine the legality of the input character

calls a special-purpose routine to set pointers to four core-resident buffers:

— Term Buffer reflects terminal status.

Verify Buffer maintains current record processing parameters.

Format buffer holds the memory address where the format is stored.

Data Buffer holds the input characters until they comprise a full record and
require transmission.

The pointers are established when the first input character is moved into the
Data Buffer. After the last input character has been verified, SCANNER calls
the PROC routine.

PROC performs the following functions:

* checks the input characters against the stored format

* interprets the operation to be performed

* transfers control to the appropriate processing routine.

When the polling cycle is complete, control passes to the EXECUTIVE program.
If an input/output operation is required, the EXECUTIVE performs the follow-
ing:

* calls the appropriate driver

* sets the I/O request word to zero

* returns control to SCANNER to continue the polling operations.

FIGURE 1-2 Unbroken and Broken Text

2. Text is straightforward. These sentences are not straight-

forward:

There is one major program in the application: MONI-

TOR.

No zeros to the right of the decimal point are suppressed.

But these sentences are:

MONITOR is the major program in the application.

Zeros to the right of the decimal point are not sup-

pressed.

3. Text is clear and concise. This sentence is not clear:

If the list option is selected, the last scanned line of

source text is listed.

But this sentence is:

If you select the list option, the last line of source text
scanned by the compiler is listed on the output device.

This sentence is probably clear:

From the programmer’s point of view, you should deter-

mine what routines are needed, what arrangement the

routines should be grouped in, and when it is necessary

to consider making procedure calls.

But this sentence is clear and concise:

Determine what routines are needed, how they should

be grouped, and when procedure calls should be made.

4. Text is precise. Precise text is complete text, leaving noth-

ing to the reader’s imagination. The description of a square

root routine, for example, would include operations for

negative as well as positive numbers.

This sentence is not precise:

The RESULT field should be larger than the X and Y
fields.

But this sentence is:

The RESULT field should be at least 4 character posi-

tions larger than the X and Y fields to prevent trunca-
tion of high-order digits.

5. Text provides only one interpretation. Each of these
sentences provides two interpretations:

The conversion routine may be called by the main
program.

WHAT IS A SOFTWARE MANUAL?/8

A key field may not be duplicated.

But each of these sentences provides only one interpre-
tation:

The conversion routine can be called by the main pro-
gram.

A key field must not be duplicated.

6. Illustration and table callouts are consistent. Callouts in a

manual can appear in sentence form or in abbreviated
form. These two callouts for Figure 9-1 illustrate callouts
in sentence form:

The XYZ routine performs conversion as shown in
Figure 9-1.

Figure 9-1 illustrates conversion performed by the XYZ
routine.

Intermixing these two types of callouts throughout the

manual adds variety but does not introduce inconsistency.

These five callouts for Figure 9-1 illustrate callouts in

abbreviated form:

The XYZ routine performs conversion (see Figure 9-1).

The XYZ routine performs conversion. See Figure 9-1.

The XYZ routine performs conversion (Figure 9-1).

The XYZ routine performs conversion (refer to Figure

9-1).

The XYZ routine performs conversion. Refer to Figure

9-1.

Intermixing these five types of callouts throughout the

manual introduces inconsistency.

Intermixing abbreviated callouts with sentence callouts

guarantees inconsistency.

7. Illustrations and tables are complete with explanatory
comments included in the illustration or table, not scat-
tered throughout surrounding text. If an illustration or

table appears on page 5, its important notes should not

appear on page 4, page 6, or worse, a combination of the

two.

8. Illustrations and tables are meaningful. Illustrations should

clarify concepts, not add variety to the format of the page.

Figure 1-3 contrasts a meaningless and a meaningful illus-

tration.

WHAT DOES A SOFTWARE MANUAL LOOK LIKE?/9

Meaningless
illustration

<<

Three Routines Called by EXEC

Meaningful
illustration

Routine A Routine B Routine C

performs performs performs
character input/output error
conversion processing processing

Three Routines Called by EXEC

FIGURE 1-3 Keeping Illustrations Meaningful

Tables should serve as instant references, not complicated

groupings that are difficult to decipher. Figure 1-4 con-
trasts a meaningless and a meaningful table.

9. Illustrations and tables are uncluttered. Illustrations should

augment text, not add confusion. Figure 1-5 contrasts a

cluttered and an uncluttered illustration.

Tables should include specific and exclude extraneous in-
formation. Figure 1-6 contrasts a cluttered and an unclut-
tered table.

10. Writing style is consistent, especially when one writer
is updating another writer’s manual. Readers can easily
detect differences in writing style. They consciously or

WHAT IS A SOFTWARE MANUAL?/10

Name

Conversion

Size

Padding Meaningl gless
Move Rea oe table

Like

Exact

Skip

clause not allowed
legal
illegal
Size or Exact required
size = 30

Can Be Used Can Be Used

with an with an

Input Field Output Field

Conversion

Exact

Like

oe Meaningful

Name table

Padding

Size

Skip

Note® The field must be 30 characters long.

Note® A Size or Exact clause is also required.

FIGURE 1-4 Keeping Tables Meaningful

WHAT DOES A SOFTWARE MANUAL LOOK LIKE?/11

Local operations

!
Corporate data base pepe

Cluttered

illustration

Controller

Remote data base

Remote
operations

Controller

Controller Uncluttered

illustration
a

Remote

facility

FIGURE 1-5 Keeping Illustrations Uncluttered

WHAT IS A SOFTWARE MANUAL?/12

subconsciously realize the manual lacks quality. Figure 1-7
presents two paragraphs that were obviously written by

two different writers.

String Output String Can Be

Contains ca ke relics!

eal Snel ee
a [oa

Cluttered

Cacti cee tg
Sd Rae ae ee cane

If Input
String

Contains

Override Letter in

Output String Can Be

FIGURE 1-6 Keeping Tables Uncluttered

WHAT DOES A SOFTWARE MANUAL LOOK LIKE?/13

Writer 1

Columns | through 5 are reserved for optional statement numbers. Statement

numbers are not required, but if used, they cannot be duplicated within the

program. Statement numbers need not appear in ascending numeric sequence.
A maximum of 200 statement numbers can be used in one program. Statement

number positioning is shown in Figure 9-3.

Writer 2

The directive portion of a statement can appear in columns 6-65. If a statement
exceeds column 65, you can continue the statement in column 6 of the next
line. When you continue a directive, you must include an asterisk (*) in column
1 of the continued line (see Figure 9-4).

Writer 2 did not structure the first sentence to match the first sentence of

Writer |, even though the paragraphs were related.

Writer 2 used a different convention for indicating column ranges.

Writer 2 preferred to write in second person.

Writer 2 used a different callout convention for illustrations.

FIGURE 1-7 Different Writing Styles

THE GOAL OF THE SOFTWARE MANUAL

The goal of any software manual is to be a complete, clear,
and accurate description, presented in a manner suitable to the
intended audience. This definition is just as complicated as it
sounds.

Complete implies thoroughness.

Clear implies readability.

Accurate implies authority.

Manner implies organization.

Intended audience implies recognition of reader level.

WHAT IS A SOFTWARE MANUAL?/14

The good software manual includes every single one of
these listed characteristics.

The software technical writer who produces that manual
appears to face an enormous challenge.

THE GOAL OF THE SOFTWARE TECHNICAL WRITER

If a software manual is expected to meet the goal stated in the

preceding paragraph, we can assume the goal of the software

technical writer is to:

understand the subject to achieve thoroughness,

write well to achieve readability,

research the subject to achieve authority,

plan carefully to achieve organization, and

recognize the audience to achieve understandability.

This is not as complicated as it sounds. The secret is in

the approach, and that is what this book is all about.

THE GOAL OF THE SOFTWARE TECHNICAL WRITER/15

7s
j a OMY

se —" On ee
ihe re ae hgh re aerate

Babs Ae sii ae <a 5 7 — SS

eure “RT Keven Ja5T- saneenaaneie
eal (es 7 ae pha’ wt 1a:
Pl _ 7

Be St a ee bitoogxo 4] isuinnin wawiog
Pom tsi uit 4o jag Si) oniruese ato: ow oe poy vir boo q >

7) a ie ; . “ 201 BS)
Ded o 7 ; a a 7 ca e%

ge,“ Ratime Aman gis yiry) ome ON (ote ed

ee rrr ~Caieaat so wiajer OT flew “atrew =z =

2 — i oul) i, ar Sa cyt 9 lie: sf, d ae

bia waite Fowl ibs ees ee i
; _ his eure Uhre vouithoty i) 7 iusto ARN : Ea

yaliiishnaiatsiain svoulve od win rai buy bol ity Si NRQISs 7

7 ZA ie aq IGG a wes a cata eaten Ti} rongts 7

a at,
‘al tery ET cbuice Ai a Doig Iqmca: ye tor eb eatT ia

© suodr tis nt Pood allt iaitw a ‘Jadt bas she engqn ont
: —s

ae
re ware : tel : ume? “artable to Ghee

wih je By o, 0

Ap, wlared

- £ \ ry ‘ ler hyve!

2/THE

IMPORTANCE

_OF ORGANIZATION _

Organization is the most important ingredient in a software

manual. A poorly constructed sentence can be repaired by a

literary editor; a technically inaccurate statement can be cor-
rected by a technical editor; but a poorly organized manual is

beyond help.
Organization is the arrangement of text to serve a specific

purpose and a specific reader. The purpose of software text

falls into one of two general categories; the reader of the text

falls into one of several categories.
The organization of software reference text differs sharply

from the organization of tutorial text.

Reference text is well organized when readers are able to

locate specific information about the product and locate

that information quickly.

Tutorial text is well organized when information is pre-

sented in an orderly sequence ranging from basic to com-

plex. Readers can learn the operations and actually use the

product while they are reading the text.

a ee a el eee dee ee

_VOMASIA — cs

ie ni tisibe yt. Aadogen om ons a note ional a
“8 ‘tia gL ad ag sin Hive Bejouiteros ‘yhcoq A Amenegn

2303 90 ms Ineotoinie stein viteotndost 2 onbs wierait - “be
; si miaits 2 (AN gyTO vine ro) 8 Jud ponihe fasion sf s ye ‘bersse -

.Giost ‘baoyed 7 <
Pike Gt ixsi To an PAREN ws ol a nuitasihiggiO <9.

e Mr wetted ait rebest ltiege & big ONLY 72h = aes att te. toon +I c2sPeoustes igisheg owl te Stig ont ast | Ee : — zotiogsies teroven io a6 OM ziEy ©
itp earls sei des? sgoesios stewsloe te Hf ofan alt > on Ae 1 xat lerotut Yo noi sxttiggro of}. mort

bosineyy low 2t tx8t yannsteh . 5
tec) Dre toubevg ody Jods noltsupotat Hiboqe stavel

<{bbivg codsmolni te i;
Rg 2 Aeetotat adda votive [ew 2s tes} lacrorg ofa oOo OF steele pint wimist sonsupes, yitebic nea beatae =. aa oT oan ytlewzoe8 ben enottstagd odd iogel nee eee: xa

Fd sith Abb oot ori Yond shia fo mbeng

Oi sttt ob erohest sock

Text

Readers

Application analysts

Application programmers

Data administrators

Scientific programmers

System analysts

System programmers

Computer operators

Technical specialists

Marketing analysts

Students

The levels of technical expertise among readers will always

vary, but all readers can be regarded as specialists; they share

with one another a common knowledge of the basic principles
surrounding computer technology.

ORGANIZING THE TEXT

No two software products operate in exactly the same

manner.

No two software technical writers write in exactly the

same manner.

No two editors evaluate a software manual in exactly the

same manner.

ORGANIZING THE TEXT/19

No two readers use a software manual in exactly the same

manner.

No two publication departments function in exactly the

same manner.

The software industry is in a constant state of change.

Rigid standards that apply to all products on the market, suit

all possible situations, and satisfy all the people all the time

simply do not exist.

As a software technical writer, you can live with this prob-

lem by establishing some basic guidelines for organizing text.

You can modify these guidelines as you move from one assign-

ment to another in the industry.

Organizing Reference Text

Four principal rules can be applied to the organization of refer-

ence text.

1. Define entities when they are first referenced. For example:

Define an entity the first time it appears in text and make

the definition a major index entry.

2. Centralize related entities. For example: Describe a collec-
tion of related entities, such as programming statements,

in one section for easy lookup.

3. Arrange text in logical blocks ofinformation. For example:

Discuss special programming subjects, such as character

conversion, one time and in one place so they become

standard points of reference.

4. Include cross-references to related information. For

example: Direct the reader to the section describing a
specific operation if that operation applies to the subject

under discussion.

A beginning software technical writer was once assigned

the task of writing a reference manual for an extremely com-

plicated software product. The final draft consisted of only
two sections:

e Section 1 introduced the product. The section totaled 3
pages.

THE IMPORTANCE OF ORGANIZATION/20

e Section 2 presented the functional description of 10 inter-
related components with their 90 operational control
commands. The section totaled 160 pages.

Two weeks later this writer began training for a new

career. He simply did not understand how to organize reference
text.

Each component and its own operational control com-

mands should have appeared in a separate section. This would

have isolated the components for easy reference and allowed
the reader to concentrate on one subject at a time.

Organizing Tutorial Text

Five principal rules can be applied to the organization of
tutorial text.

1. Introduce subjects in a logical sequence. For example:

Explain how data is stored before discussing how data

is accessed.

2. Centralize by topic. For example: Decentralize related

entities, such as programming statements, and describe

them as they become appropriate to the operation under

discussion.

3. Arrange text in logical operational steps. For example:

Discuss special programming subjects, such as character

conversion, as they become appropriate to the operation

at hand.

4. Avoid unnecessary detail. For example: Limit discussions

to the essentials and isolate information that is highly
specialized.

5. Avoid cross-references whenever possible. For example:
Arrange information so the reader can build on knowl-

edge learned in previous sections and not have to flip

back and forth through the manual.

A software design analyst once said:

Software technical writers are doing it all wrong! They are

writing from the bottom up, starting with the smallest

component and working up to the complete product. They

ORGANIZING THE TEXT/21

should be writing from the top down, starting with the

highest-level operations and working down to the smallest

component. I will prove them wrong and write a tutorial

the way I know one should be written.

Six months and 100 pages later, this analyst discovered

his theory was wrong. The book had entered what is known as
an endless loop in programming; it had no beginning and no

end. He deposited his papers in the trash and went back to
doing what he did best. He simply did not understand how to

organize tutorial text.

Writing from the top down forces the reader to read the

entire book in order to learn what the product is all about.

Starting with the highest-level operations and working down to

the smallest component expects the reader to grasp sophisti-

cated concepts before learning the fundamentals. A successful

tutorial begins at the beginning, explains the various compo-

nents, and then teaches the reader how to use the product.

ORGANIZING THE TASK

Each computer company establishes its own standards for

writing, editing, and production. It is important to observe

these standards because they ensure consistency among the
various product manuals.

In general:

e Every writing task requires a publications plan with
scheduled completion dates for the writing, editing, re-
view, and production phases.

e Every writing task requires a detailed outline.

e Every completed outline moves through at least one
approval cycle.

e Every completed manual moves through at least two
approval cycles.

Each computer company establishes completion dates
for its software development. Almost without exception, the
manuals must be ready to ship along with the software. Com-
panies appear to operate in one of two ways.

THE IMPORTANCE OF ORGANIZATION/22

Company A establishes a cutoff date for the program

code, leaving writers with sufficient lead time to com-

plete the manuals.

Company B establishes no cutoff date for the program

code, leaving writers with insufficient lead time and al-

ways scrambling to make last-minute changes while the
programmer codes and the printer waits.

If you work for Company A, your manual must be well
organized from the very beginning because you are expected
to produce the highest quality work at all times.

If you work for Company B, your manual must be well

organized from the very beginning because you will run out of

time and never have a chance to go back and restructure or

rewrite.

ORGANIZING THE TASK/23

MIT COALEGE LIBRARY 209698

= Wi we (Po Se ae istics

_ | ee i fe cas aa ae
FA = ae i Aff. OF. 2a feo a

de Dene anche bes). tdi. Fawn exottrvn paiva a

, ‘el gh! W228 cir! ee } A " *fos es i. ru {et ices ote “a

ie lag oan sent p
A : Per, We = tay Yad “ Lepinnahg >

i ie Kee . ig’ Meets ph mt cin

oa, Masa he shi ure i, au, « reel bye:

le ttn) er eine Me Mare ae? alt coat
se 4 orate ey a Sige hoagie

= 5

— Meany ‘nel Deevtey besige treated ata ee 70), dap w
ecg bik cin vi: SpE, me Seca yt sot POLE 4

—@ Bea eis Nie BO St oh eb meets ane a7
Wee Sen path Kaas een someAtay. A ee

~*~ ‘ » 4 fit > — ie (:

Mapes ay TRS. 24) Saar A ode Vk phates me ts

“Haters tors
¥ ewes! ty obertee: |

iconcy amoneviie
at

= n
: iy

my ins 7 ; is ie ha a. peat Meals § Lipgt witiy.! 7

#ttiyt 2. itr

hw
é The t? NOE, Ot Later

4 wy Loon exer pales ‘hs

an ay al A vM> oth The slits, Cowes

2
i

a
FN A wv

3 /WRITING

Bete Se

REFERENCE

MANUAL

A software reference manual is a complete description of a soft-
ware product. This type of manual is required for almost every

product developed within the computer industry. The reference

manual is used constantly by the developing organization as

well as its customers.
As new features are designed and incorporated into a prod-

uct, the new features and their descriptions must be incorpo-

rated into the product reference manual. A well-organized and

well-written manual can be easily maintained and updated; a

poorly organized and poorly written manual is costly from the

standpoint of time, resources, and customer satisfaction.

Designing and writing a software reference manual is a

difficult task. But mechanics do exist. This chapter leads you

through the logically ordered steps that help mechanize the

design and preparation of a software reference manual.

KNOWING YOUR READERS

Before you start writing the manual, it is important to gain

some insight into the audience. By asking yourself a few simple

questions, you can analyze your readers and determine how

you can satisfy their requirements.

_ a

ee BEE
eetldentianinee-—e- peers TO ge ee ae

_JAUAM =“
ane Ee aneteet ——— a

ae & ca fests saab ab sob iv: einem sacred prewethoe J r
pvadediia zt hesepor i Inunbat to sqeiaat toghony §

— % Hensis s8T— yeertbar wu Cs sAt cadhiw be olyes6 tomb ne
a aed SuSgNe HE mpolorats ot ed “inet. Doet at deone
ie - a atest hae

3S

inns 4 cava oH anute nq ont} ae beter re
sig viats od ces fawrtem: wivrtivar Boy :

itw ghoog ben ssingg:- yhosg ue
Het2) Dns 2901 e321 aut te rion brat 7

suaice « snbirw. bee pings. ry
tes ob ofetsom 10. dae ahh: = :

z =! eye bare trio: ‘ylheigol 7 Maguey: =
She wi Ae fy te MOE TEQEE bate ‘sgieab.’ 7

- >

se a

“3

2R3GARA AUD ean es :
ti me :

Henk ir a2 i ,toeiinl. S-BAe ‘sides nae:
ges wrT, +]. rf Wesrt ddd : 4 (is ye 94 slice ont ont Iigieni suave
RO, BauETOT NB ts i piehinen

tiny of: tfintiey

tidy eae sip oy. ae :
> hareetbatis pet Sa A

Who Are the Readers?

You never know exactly who the readers are. They are not
necessarily identifiable by the subject matter of the manual.
For example:

Will your reference manual describe a commercial pro-
gramming language like COBOL? Your readers are prob-
ably application programmers.

Will it describe a scientific programming language like
FORTRAN? Your readers are probably scientific pro-
grammers.

Will it describe an operating system? Your readers can be

system programmers. They can also be application or

scientific programmers looking for operating system inter-
face information.

No matter what type of reference manual you are writing,
you are always faced with this possibility:

Your readers could be technicians or students trying to

learn from your manual because it is the only documenta-
tion available to them.

How Knowledgeable Are the Readers?

You will never find the answer to this question. You have no
way of knowing whether your readers are beginners or experts.

They could have anywhere from 6 months to 30 years of pro-
fessional experience. Programmers could be recent graduates,
or they could be experts from other companies that have soft-
ware entirely different from the software you are documenting.

Not knowing the readers’ level of technical expertise com-
plicates your task, and it is a reminder that you should never

make assumptions.

Never assume your readers are familiar with all of the
terms. Even common terms like record and file can differ

from one company to another.

Never assume your readers are familiar with all of the soft-

ware. The rules of a standard programming language, like

COBOL, can differ from one type of hardware to another.

KNOWING YOUR READERS/27

Never assume system programmers understand commercial

applications, application programmers understand scien-

tific programming, or scientific programmers understand

commercial data processing.

Should any assumptions ever be made? Yes.

Always assume your readers are intelligent—intelligent

enough to know when you are writing down to them.

How Will the Readers Use the Manual?

Now that you have a general idea of who your readers are and

understand that they cannot be categorized as beginners or

experts, it is important to think about how the readers will

use the manual.
As its name implies, a reference manual is a manual that

is used for reference. Readers are probably going to read out

of context. This means that your manual must be organized
so the material is easy to find. It does not matter who the

readers are or how much they know or do not know; the
value of your manual will depend on their being able to find
what they are looking for and find it quickly.

FINDING THE INFORMATION FOR THE MANUAL

Finding the information for a software reference manual is
almost as difficult as the writing itself. Information usually
does exist. Unless you are a real veteran in the software tech-
nical writing field, you will never be asked to write a reference
manual with only blank paper as a starting point.

You can gather information from four areas. We will dis-
cuss them in their order of importance.

Find the External Specifications

Unless the company opened its doors last month, external speci-
fications written at the design level do exist. The specifications
describe the product, its operation, and its use. They are written
by a high-level analyst who is stating objectives so the staff can

WRITING A SOFTWARE REFERENCE MANUAL/28

begin coding. These specifications have been known to reflect
some or all of the following characteristics:

They lack formal organization.

They have errors of omission.

They make assumptions.

They are subject to change.

Specifications are meaningful to the analyst who wrote
them, but they must be interpreted and organized so they are

meaningful to you. Color-coding them by subject matter is a
good way to start. If they have undefined terms, look them up
and write down the definitions. If they reference components

that are not familiar to you, find descriptions of these compo-
nents in other manuals and record the page numbers; you will

need to duplicate this type of information in your own manual.

Anything that is not familiar to you might not be familiar to

many of your readers.

The most important thing not to do is track down the

author and start asking questions. Write down your questions.

Look for Informal Programming Notes

Now that you have a copy of the specifications, you can be

sure programmers are working to develop product code. They

will be operating at an amazing rate of speed. Remember, they

also have deadlines to meet.
As long as programmers are coding, informal notes are

laying around. Find out who these programmers are and ask

for a copy of any notes they are maintaining. They will comply
with your request because they are busy and do not want you

hanging around.
These programming notes are critical. If they do not make

sense to you now, they will later.
The most important thing not to do is return and start

asking questions. Add these questions to your list.

Get the Program Listings

Program listings require notes. Companies cannot afford to have

undocumented listings because new hires would spend too

much time trying to interpret code. Get the listings. Maybe

FINDING THE INFORMATION FOR THE MANUAL/29

you will not understand them now, but you might later. Every

bit of documentation counts!

The most important thing not to do is walk around with

the listings and start asking questions. Add these questions to

your list.

Ask Questions

Up to now asking questions has been discouraged. This is be-

cause questions have a way of answering themselves as you

move through your sources of information.
By the time you reach this point, your list of questions

will be organized and you can ask them all at one time. You

will be surprised at how many questions you have crossed off

your list.
A typical question is:

What default values are supplied by the system when pa-

rameters are omitted?

Programmers frequently are so intent on listing optional
parameters that they forget to include default values.

In summary, ask questions only when you have all the

available information and have gained some knowledge of

your product.

GETTING ORGANIZED

The organization of a reference manual helps the readers to
learn the product because the organization is, or at least should
be, based on the organization of the product. Even though we

know readers will read out of context, they should be able
to open the manual to any section and pick up a thread of
continuity.

You have all the information you need to get started on
the outline. But where do you begin?

Begin with the Basic Concepts

Readers of your reference manual need the big picture and need
it right away in Section 1. Every software product is made up
of components that interact to form an operating unit. If any
section can be considered totally mechanized, it is Section 1.

WRITING A SOFTWARE REFERENCE MANUAL/30

Section 1 would present the basic concepts in this general
order:

1. an overview of the product

2. a brief description of each component that comprises the
product

3. a description of the interaction of the components

4. an illustration of the interaction

Should Section 1 be written first or last? Many writers

believe Section 1 should be written first because it gives them

a better understanding of the product and helps them to write
the other sections. Just as many writers believe Section 1 should

be written last because only then can they have a complete
understanding of the product.

You should do what is best for you.
Figure 3-1 shows a sample layout of a first section.

Look for Catalogs

Catalogs are series of logical groupings that can be found in any

software product. By finding these catalogs, you have found the

outline.
Are you writing a programming language reference manual?

Here are some typical catalogs:

Attributes Input/output processing

Coding conventions Interface to other languages

Compilation Language divisions

Data elements Sample programs

Error messages Statements

Functions Subroutine calls

Are you writing an operating system reference manual?

Here are some typical catalogs:

Control statements Hardware configuration

Device handlers Input operations

Disk organization Instructions

Error messages Interrupts

GETTING ORGANIZED/31

Libraries Software configuration

Loading Subroutines

Macros System recovery

Output operations Tape management

Program interface Utility programs

SAMPLE SECTION 1

MMMM
MMMM UMMM Introductory material /////////M/MMUMMMMMIMI
IMUM

THE FIRST COMPONENT

THN UMMA

TMM
MATA

Subheads would follow

THE NEXT COMPONENT

LLL

MUMMY

NUTT

Subheads would follow

THE LAST COMPONENT

TTT
MMA

MAMTA

Subheads would follow

THE PROCESSING ENVIRONMENT

IAT TTL
Ce EET LLL LLL LLL
ML

Illustration would follow

FIGURE 3-1 Sample Layout for Reference Manual Section 1

These logical groupings determine the organization and
form the basic structure of the reference manual. Each grouping
would break down into separate elements.

Figure 3-2 shows examples of catalog organization.

Organize Named Catalogs Alphabetically

A reference manual can be compared to an encyclopedia or a

dictionary—it is strictly reference material. We can assume,

then, that whenever possible the manual should reflect alpha-

betic order to make entries easy to locate. Catalogs that are
named, such as programming statements, functions, instruc-

tions, and attributes, should be alphabetized.

Can you imagine what it would be like to use the diction-
ary if it were not in alphabetic order? Suppose dictionary words

were grouped by logical categories such as verbs, adjectives,

adverbs, and prepositions. Having a dictionary in logical order

rather than alphabetic order would make the book difficult, if

not impossible, to use. One would need a complete understand-

ing of the language before being able to reference a single word.

A logically organized dictionary would obviously defeat its
very purpose.

Named catalogs appearing in logical order in a reference

manual would present the same problem. If a manual described

100 named functions and documented the functions within
their respective logical categories, each function would be
theoretically buried. Readers could not locate a particular

function without first knowing its category.

Acronyms present a special problem. Should you list the
System Library function alphabetically by its name or by its
acronym, SLY? These items can be listed by name with the

acronym in parentheses, or listed by acronym. The important

thing is to be consistent. If one function is listed by its acronym,

all functions should be listed that way.
Names beginning with special characters, which are charac-

ters other than digits or letters, present another problem. Sup-

pose you have two statements, one named END and another

named %END. Although company standards vary, the END

statement would usually be immediately followed by the ZEND

statement. Names that consist entirely of special characters are

usually positioned after alphabetic names and follow the order

prescribed by your company.

GETTING ORGANIZED/33

Programming Language Reference Manual

SECTION 2. DATA ELEMENTS + Acatalog concerning

the classification

Literal Constants and description of

Arithmetic Constant all data elements

Fixed Point Decimal Constant used by the product

Floating Point Decimal Constant

Fixed Point Binary Constant
Floating Point Binary Constant

Character String Constant

Variables
Computational Variable

Arithmetic Variable

String Variable
Noncomputational Variable

Entry Variable

Label Variable

Aggregates

Array

Structure

Operating System Reference Manual

SECTION 3. LOADING PROCEDURES ~«—— A catalog concerning
the classification

Tape Loader and description of
Standard Tape Load loading procedures
Selective Tape Load

Disk Loader

Standard Disk Load
Selective Disk Load

Loading Input Commands
Classification of Loading Input Commands
ABORT Command
ADD Command
DELETE Command
EDIT Command

INITIALIZE Command

LIST Command
MERGE Command
RESTART Command
SORT Command
WAIT Command

Summary of Loading Input Commands

FIGURE 3-2 Sample Reference Manual Catalog Listings

When a logical order is also important, it can be shown
along with the alphabetic order.

Suppose, for example, you have a section in your manual
that deals with nine programming statements and it is impor-
tant to let the readers know that three of them are control

statements, three are input statements, and three are output

statements. You could present them first in logical order, then

discuss them in alphabetic order. Figure 3-3 illustrates this
organization.

A paragraph head would introduce logical organization, and the text would
reference a table similar to the following:

Table 3-1. Classification of Programming Statements

Category Statement Name

Control Statement A IATA

Statement IIHT

Statement IMAL

Statement “ MILT

Statement ITT

Statement IMAL)

Statement TU

Statement I ITT

Statement H IMAL

The next paragraph head would introduce the statements. Subsequent paragraph

heads would introduce Statements A through I in alphabetic order.

FIGURE 3-3 Logical Organization

GETTING ORGANIZED/35

If your reviewers complain about the END statement being

described before the START statement, remind them of the

importance of alphabetic order. They will be the first to admit

they go flipping through the section on statements looking for

that E in END statement long before they methodically seek

it out through the index.

INCLUDING RELATED INFORMATION

How many times have you mastered a programming language

only to discover you could not run your program because the

reference manual forgot to tell you how to get it past the

operating system?
How many times have you worked with an operating sys-

tem and discovered the reference manual forgot to describe the

interface to the programming languages?

Did you end up going to another book to get this type of

information? If a reader needs to use more than one book to
gain an understanding of one product, something is wrong.

A product is usually influenced by various types of con-

trols. Programming languages are controlled by the operating

system. Operating systems are controlled by the hardware. A
reference manual is obligated to tell the reader how to manage

the equipment and operate successfully within this controlled
environment.

If a reference manual included all related information, the

book would be too heavy to carry. References to other manuals

are obviously necessary. However, a good rule to remember is:

Always make the reference manual as self-contained as
possible.

GENERATING EXAMPLES

Any reader will tell you a good example is worth three para-
graphs. Every reference manual needs one or two complete

sample executable programs. The examples should include the
major features of the product; ideally, they would include all
of the features. Readers frequently duplicate a sample program
and execute it as a learning process. Running sample programs
also provides a familiarity with the equipment.

WRITING A SOFTWARE REFERENCE MANUAL/36

But where do you get these examples? Designing and
checking out good sample programs takes a lot of time, and you

are working on a tight schedule. Besides, you are a writer and

not necessarily an experienced programmer.

You will be doing yourself and your readers a big favor if

you go to the experts for the examples. Programmers always

have sample programs because they use them to check out their

code. If their examples are dull statistical listings that neither

you nor your readers would be interested in, try the quality

assurance department. If you have no luck there, try the educa-

tion department.
When all else fails, look around your own department.

Good examples can always be found in your company’s exist-

ing manuals. Take them—they are free. If you make some minor

changes, they probably will never be recognized.
Programmers, by the way, are almost always willing to

help a writer with a sample program. Why should you spend

several days trying to debug a program that a programmer can
correct in a few minutes?

When preparing examples, remember these four important

rules:

1. Simple examples illustrate concepts; complex examples

bury them.

2. Program output is important. If the program prints 17

pages of memory maps, it obviously is not necessary to

include all of them. One or two partial pages, however,
give the programmer some idea of what to expect during

compilation or execution.

3. Program results are important. Sample programs should be

realistic so computation results or printed reports can be

included to show what actually happened.

4. Sample programs with errors are never going to execute.

Run the program yourself to make sure it works. Always

run it one last time from the final printed text to ensure

against program code changes and typographical errors.

PREPARING THE OUTLINE

By now you have gathered all the necessary information, made

valuable contacts, and have enough material to develop a com-

plete outline for your reference manual.

PREPARING THE OUTLINE/37

Let us assume you have been assigned the task of writing

a reference manual for a new programming language. The speci-

fications have provided descriptions of the following:

e three modules that comprise the product (source program,

operation control process, and object file)

e syntax and explanations of eight statements:

two statements that delimit the program (BEGIN and

END)

one statement that defines a table of constant values

(TABLE)

four statements that perform arithmetic operations

(ADD, SUBTRACT, MULTIPLY, and DIVIDE)

one statement that performs condition testing (IF)

e coding requirements

e suggestions for efficient programming

Figure 3-4 is a sample outline for this type of product.
Once you have generated the outline, you have completed

the most important part of your writing assignment.

The beginning of this chapter emphasized the importance

of organization to the reference manual. A novel is read, a news-

paper is scanned, a dissertation is studied, but a reference
manual is used.

Ask yourself these final questions about the outline:

Does it begin with the big picture?

Is every topic included?

Does every topic have a principal home?

Are topics organized so the reader will not have to switch

back and forth between sections?

5. Is the information broken down into logical units so the

next writer will be able to add update material?

2 Mah =

; If you can answer yes to each of these questions, the out-
line will probably be approved. You are ready to begin writing.

WRITING A SOFTWARE REFERENCE MANUAL/38

SECTION 1. INTRODUCTION TO OURLANGUAGE

OURLANGUAGE Components
Source Program
Operation Control Process The three modules
Object File

OURLANGUAGE Processing ——————— Module interaction

SECTION 2. LANGUAGE COMPONENTS

Data Reference

Data Class

Data Name

Constants

Numeric Constants

Character Constants

Figurative Constants
Relational Operators
Tables

Table Structure

Subscripting
Punctuation

Information derived from
various parts of the
specification

SECTION 3. OURLANGUAGE STATEMENTS

Statement Classification
Program Delimiters

Table Declaration Functional descriptions
Arithmetic Operations of the eight statements
Condition Testing

Statement Descriptions
ADD Statement
BEGIN Statement
DIVIDE Statement
END Statement Alphabetized descriptions
IF Statement of the eight statements

MULTIPLY Statement
SUBTRACT Statement
TABLE Statement

FIGURE 3-4 Sample Reference Manual Outline

PREPARING THE OUTLINE/39

SECTION 4. PROGRAM PREPARATION

OURLANGUAGE Coding

Sone is Specific breakdown for
Continuation Lines easy reference

Blank Lines

Program Structure

SECTION 5. PROGRAMMING EFFICIENCY

Conserving Storage
Maintaining Mode Consistency

Organizing Table Entries

Specific breakdown
for emphasis

SECTION 6. COMPILATION AND EXECUTION

Program Compilation
DEBUG Parameter Alphabetized breakdown
LIST Parameter for index and contents

SUPPRESS Parameter reference
Program Execution
Program Output

SECTION 7. SAMPLE PROGRAMS ——~ Programs would include
table subscripting, an
arithmetic operation,
and condition testing

FIGURE 3-4 (cont.)

PREPARING THE TEXT

Software technical writers, just like other technical writers, are

expected to have language skills. Being able to write—and to

write well—is the basic part of this discipline. The highly special-

ized part involves selecting the right words and producing or-
ganized text from specifications.

Selecting the Right Words

Ordinary words that once seemed to be the same can carry dif-
ferent connotations when applied to software. Use and usage

WRITING A SOFTWARE REFERENCE MANUAL/40

are not the same, nor are transmit and send. Simple words like
move, procedure, perform, function, signal, and item can mean
many things to many software products.

The word perform has a very special meaning in the
COBOL language. You would be taking an unnecessary
risk to say COBOL performs a variety of functions. The
generic term perform could be confused with the PER-
FORM verb in the COBOL language.

The word function has a very special meaning in the PL/I
language. You would not want to say PL/I performs a

variety of functions. The generic term functions could

be confused with the specialized builtin functions that
are an integral part of the PL/I language.

The word section has a special meaning in many languages.

If you told the reader to write a section of code to handle
some particular operation for one of these languages, it
would not be clear whether the word section was being

used as a generic or a technical term.

When selecting a word, make sure it does not conflict

with a term that is unique to the software.

Producing Organized Text from Specifications

The most difficult part of software technical writing is being

able to read a specification and to immediately establish a writ-

ing approach. After you have read 10 or 15 specifications and

produced successful reference manuals from them, the approach

becomes somewhat automatic. When you are reading the first

specification and producing the first reference manual, the
approach is not all that easy to find.

Figure 3-5 illustrates writing reference text from a specifi-

cation. The illustration is divided into four parts:

Part 1 is a small portion of an oversimplified specification
that describes four statements of a hypothetical compiler.

Part 2 isa sample outline for the text.

Part 3 is a list of obvious questions that would need to be

asked.

Part 4 is a sample write-up in reference manual format.

PREPARING THE TEXT/41

The write-up is a suggested approach. A good exercise

would be to read part 1, use the outline in part 2, make up

answers to part 3, and then do your own write-up. Be sure to

introduce and define terms and components before referencing

them, and arrange the text so information can be easily located.

A WORD ABOUT SCHEDULES

Schedules for software reference manuals are usually prepared

entirely by the writer—entirely, that is, except for something

called the release date. The release date is determined by some
higher authority and represents the date the software is being

shipped along with your printed manual.

You can schedule all the time you need for your reference

manual as long as it is printed and sitting on the shelf by the

release date. If you believe your manual should have a one-year

writing schedule and the release date is 6 months down the

road, you will be scheduling the writing time for around 4%
months. This will leave sufficient time for production, printing,
and distribution. Z

Software reference manual writers generally fall into one
of two categories:

Category 1 The optimist functions in a totally relaxed

environment during the first half of the schedule, frater-

nizing with co-workers and convinced the release date will

slip. During the last half of the schedule, this writer

discovers that the release date has not changed. Panic sets

in, and the reference manual is written at the speed of
light, ending up with little or no quality.

Category 2. The realist panics during the first half of the

schedule, convinced that the release date will not change

and might even be pushed forward. During the last half
of the schedule, this writer finds time to incorporate
quality.

If you are a category 1 writer, try to move up to category
2. If you are a category 2 writer, stay there. Software technical
writing is a pressurized business, and panic should be planned
for the beginning—never the end—of the schedule and its no-
torious release date.

WRITING A SOFTWARE REFERENCE MANUAL/42

Part 1. A Sample Specification

Statements

The ARRANGE compiler has two declarative statements (BEGIN and END)
and two imperative statements (MOVE and DISPLAY). The statements are
used in display modules. BEGIN and END act as delimiters, MOVE arranges
text, and DISPLAY displays the data on the terminal.

Syntax

BEGIN must be the first statement in the module. The BEGIN statement parame-

ter must match the END statement module-number.

BEGIN <module-number>

<module-number> = 1-37

END should be the last statement and must match the BEGIN parameter. If the
statement is omitted, the compiler supplies it and issues a warning.

END <module-number>

<module-number> = 1-37

MOVE takes data from memory and places it in proper positions in a buffer
for display. The first character of a <data-item> is positioned for display in

COLUMN <number>.

MOVE <data-item> TO COLUMN <number>

<data-item> = name of item defined in the Declarations area

<number> = 1-73

DISPLAY displays the item. The statement must follow at least one MOVE.

Only one DISPLAY statement is allowed in a module.

DISPLAY

Example

BEGIN 3
MOVE EMP-NO TO COLUMN 10

MOVE DEPT TO COLUMN 4C€

DISPLAY

END 3

FIGURE 3-5 Writing Reference Manual Text from a Sample Specification

Part 2. A Sample Outline

ARRANGE STATEMENTS

BEGIN Statement

DISPLAY Statement

END Statement

MOVE Statement

Sample Display Module

Part 3. Questions to Be Asked

What is the maximum number of MOVE statements that can be issued between

the delimiters?

Can module numbers be duplicated?

What happens if column numbers are duplicated or overlapped?

For multiple MOVE statements, do column numbers have to be specified in

ascending numeric order?

What warning message is issued when the END statement is omitted?

Where does data-item come from?

Part 4. A Sample Reference Manual Write-up from the
Specification

ARRANGE STATEMENTS

ARRANGE statements are used to build program modules that display data on

a terminal. A statement consists of the reserved words of the ARRANGE
language in combination with programmer-supplied elements.

ARRANGE statements are divided into two functional categories:

* declarative — statements that supply the compiler with information essential
to the compilation

* imperative — statements that specify unconditional actions to be performed
at execute time.

An ARRANGE module has two declarative statements; both are required:

BEGIN

END

FIGURE 3-5 (cont.)

An ARRANGE module has two imperative statements: both are required:

MOVE

DISPLAY

Each of these statements has a prescribed position in relation to each other.

* A BEGIN statement is the first statement in the module.

* One or more MOVE statements follow the BEGIN statement.

* One DISPLAY statement follows the last MOVE statement.

* An END statement is the last statement in the module.

For example:

BEGIN . ..
MOVE ss. 5
MOVIE.

DISPLAY
END, ©

BEGIN Statement

The BEGIN statement is the module entry point. BEGIN statement syntax is:

BEGIN module-number

where

module-number

is an integer from | through 37. Module numbers cannot be
duplicated within a program. Each program is limited to 37 mod-
ules.

Module-number must match the module-number specified on the
associated END statement.

The BEGIN statement must be the first statement in the module and must have
an END statement with a matching module number.

DISPLAY Statement

The DISPLAY statement takes the data that has been positioned in the buffer
by one or more MOVE statements and displays that data on one line of the
terminal screen. DISPLAY statement syntax is:

DISPLAY

FIGURE 3-5 (cont.)

The statement consists of the single word DISPLAY.

The DISPLAY statement must immediately follow the last MOVE statement.

You can include only one DISPLAY statement in a module.

END Statement

The END statement terminates the module. END statement syntax is:

END module-number

where

module-number

is an integer from | through 37. Module-number must match

the module-number specified on the associated BEGIN state-

ment.

The END statement must be the last statement in the module. If you omit this

statement, the compiler supplies the statement and issues the warning message

W-END STATEMENT MISSING.

MOVE Statement

The MOVE statement takes an item of data from memory and positions it in a

buffer for display by the DISPLAY statement. MOVE statement syntax is:

MOVE data-item TO COLUMN number

where

data-item

is the name of the invoice item that has been entered by the
terminal operator. The data item must be an item that you
have defined in the Declarations area of the program.

number

is an integer from | through 73. The number represents the
column number where the first character of data-item is to
be positioned.

Each MOVE statement establishes column positioning for one data item. The

length of the data item determines exactly how many column positions the data
item occupies. If you move a 10-character data item to column 20, for example,
the first character of the data item will appear in column 20 and the last character
will appear in column 29.

You can include any number of MOVE statements in a single module provided
characters do not extend beyond column 73. You cannot, for example, move

——

FIGURE 3-5 (cont.)

a 5-character data item to column 70 or a 30-character data item to column 50.

If you have multiple MOVE statements in a module, you must not overlap
column positions. If the first MOVE statement moves a 10-character data item
to column 20, a second MOVE statement cannot move a data item to column

27; the data items will overlap and produce an E-OVERLAP error message.

Multiple MOVE statements need not be coded so that column numbers appear
in ascending numeric order. The first MOVE statement can move a data item
to column 70, and the second MOVE statement can move a data item to column 1.

Spacing is an important consideration. Calculate the amount of space needed
between displayed items. If the first MOVE statement moves a 10-character
data item to column 20 and the second MOVE statement moves a data item to
column 30, the two items will be adjacent with no intervening space.

Sample Display Module

The following sample module positions three data items called ID, DEPART-
MENT, and LOCATION. ID has 4 characters, DEPARTMENT has 10 charac-

ters, and LOCATION has 3 characters.

BEGIN 14
MOVE ID TO COLUMN 5
MOVE DEPARTMENT TO COLUMN 11
MOVE LOCATION TO COLUMN 23
DISPLAY
END 14

If ID = 1234, DEPARTMENT = ACCOUNTING, and LOCATION = 498,
output from this program would appear as:

1234 ACCOUNTING 498

|
Column 23

Column 11

Column 5

FIGURE 3-5 (cont.)

ify y Otis ¢ ie

ra), ®) ier
i! adage ag an 2 Bhs ’ wy | J PY iy heli

Stetot? ¢ Mirbltr ito net eevee tee
: faith pando cert I0Mrea Io swvntate IVC NW le

at — ‘ne cheteneg 4u3 fie pe Ss edna +t

, : tem bcinbin urnaldls Gee att! 3 heel ie ‘fs ct eta *

il te ell '®, FNM gs! nai srentias atahy oad aT. Jabivs 3 teafi na : ibys

ie ae el Cabiaaaie an ey ea POM batioae ab oe re ah
ee ul ~ e
honk isn war itp. tis zaert ae stile Hi) ter pa ae ies reece’ pant xa}

Tet ea a) ara, fF thratey, SOM destt wT) ene boyeigelt ae d ‘|
San ites 4 Lienert eete | mre ~~ at eae: eas ?

ots “Sed ee es as AN Wea vi eed Cer ‘enenieriiiadtt ato

= a _ x : a sil “yi devake Eth

aa a Be nob Base need D os i alist aan ipo (PA:s sitvaa let hee 1)
wy tks PLS RAMACH recat werd Sian Tt MOM ADO.) Ong THI F

bit ate ; > c eat teal é cos | YON ADO bom 2167 (pores air hee i
ro ~~ VERS teres » 90 Deut rasa: OT 2) 440M in
oes 12 " ft: pyre Talat Leora RAL Lge) VOM «:

ES MMU OT MOTTAKEL VOM
fAITZIa

‘ hl ava

(294 TVA SATSG. BECt = GEV
A Pee Kiem maryosg gids rront tegbun.. 4

ari

err ea, ous:

ee mf 12 ain |

~

af

|

i

r 4

{

!
\.
t

ny e prihs | sie » @ haa

ot 1 fiatae bieks, | vel,

- i AA the god that: <

We
= wmulon , mx
@

bo »
: J ‘a ¢Satadia be mea" linall

t ‘ :
Oog HAS iat cs mye ;

tae pS >

4/\WRITING

ARE
USER MANUAL

A software user manual is tutorial. This type of manual is not a
comprehensive description of a software product; it is usually

a supplement to existing documentation.
A user manual serves three important functions:

e It provides practical information when formal classroom

instruction is not available.

e It helps the inexperienced to get started quickly.

e It helps the experienced to become productive quickly.

Designing and writing a software user manual is a task that

is generally reserved for the more experienced writer. The task

invites creativity, assumes a working knowledge of the product,

and demands objectivity. But mechanics do exist. This chapter

leads you through the logically ordered steps that help mecha-

nize the writing of a software user manual.

“ ung x Sime | Fat sion aaniide « 26 noitqiaeet) ey

; a)! 5
WOR*, Seal 8 2 Leto, 12s. SIRS TION A salthne Birk. qciibnalie My ag

<ahoemy isd teri} eqate~bewhac lesa ad? rigs oxsts. 30 shee» A

~= . y

é Son af icurie Ye neryt att. lehotod 7i leunsey we nuntion ae

j . etTetnomsrseb ee
: _ Lenaroa’, tnetie epee Gaeds aovTse nae ,

| Riis
= ~ —

concrmanls ye oot ‘tebe om meee Ieniteatg sabivorn. aie * xa ; 4 ” gidallaveios ef TET
co nup Dorada: tog oF Bea raivsquaetd of? eejiart a * = ,

fi ait 0a aT * ARON a) baeabeaie ok rane . \- a
_ 7
> a > i

bas
‘ a a3 *S _

haut orl Tl. sextivw wig Pittar ih wrony wi} aot bev isee7, pee ~ 5 Et
Seuborg aft to =\hslweed yalhow mesemazes ivileen aod =
tadysiic 2HfT .2z3 a ninchem fog \iiviteside ebadisil bere a

z [sere Te 1 SUWTGSE 19 Satay ae

)

KNOWING YOUR READERS

Before you start writing the user manual, it is important to gain
some insight into the audience. By asking yourself a few simple
questions, you can analyze your readers and determine how
you can satisfy their requirements.

Who Are the Readers?

You know exactly who the readers are. The readers are auto-
matically identified when the need for the user manual is recog-
nized by your organization.

Perhaps your organization has developed an extremely
complicated programming language and discovers customer
programming staff members are having trouble getting started.

Local and site analysts are constantly responding to customer
telephone calls for help.

Perhaps your organization has developed a sophisticated

data base management system and discovers customer design

analysts need specialized information that does not appear in

the various reference manuals.

When the need for a user manual arises and you get the

assignment, you know exactly who your readers are.

How Knowledgeable Are the Readers?

You know the answer to this question, too. With rare excep-
tions, tutorial text is directed toward one level of expertise.

If you are writing for experienced analysts and program-
mers, you would not define familiar terms unless the terms
were unique to the product or the operating environment; your
readers do not have time to read what they already know. If

you are writing for less experienced analysts and programmers,

you would go out of your way to define all terms.
When writing a user manual, you make many assumptions.

Remember to state these assumptions in the preface so readers

will know exactly where they stand.

How Will the Readers Use the Manual?

Now that you know exactly who your readers are and under-

stand that they fit into a particular category, it is important
to think about how the readers will use the manual.

KNOWING YOUR READERS/51

Initially readers are going to read in context, beginning on
page 1 and continuing through to the end. They will be operat-
ing in a lJearn-as-you-go mode. This means that your manual

must be organized so the material reflects continuity and a
definite hierarchy in its presentation. The value of your manual
will depend on how quickly the readers are able to grasp the
basic ideas and build up to the most sophisticated concepts.

FINDING THE INFORMATION FOR THE MANUAL

Finding information for a software user manual is not too dif-

ficult, but finding the right kind of information depends a great
deal on your own personal knowledge of the product. If you are

not familiar with the product, it is important for you to learn

it quickly and use it as you proceed through the writing phase.

You can gather information from three areas. We will dis-
cuss them in their order of importance.

Use the Software Reference Manual

We have determined that a user manual is written when the

need arises. This implies that some form of reference material
already exists.

If a reference manual does exist, all information is avail-

able, waiting to be reorganized and presented in tutorial
format.

If a reference manual does not exist, someone is probably

in the process of writing it and will make the material
available to you in stages.

The most important thing to do is ask questions about
anything that is not entirely clear to you. If you start writing
a user manual with misconceptions, you will carry them through-
out the book and end up doing extensive rewrites.

Talk to Customer Support Analysts

Software technical writers are not always fortunate enough to
be able to talk to customers. For that reason, it is important to
talk to individuals who do. These are the customer support

WRITING A SOFTWARE USER MANUAL/52

analysts who handle customer problems and understand their
needs.

Spend as much time as possible with these analysts. Make

definite appointments with them, ask their opinions, consider

their ideas, and ask them to read your manual section by sec-

tion. Their input is invaluable.

Talk to Programmers

By the time you start writing a user manual, programmers who

worked on the product are busy working on other projects. You

need to talk to them, so try not to let them get away. Quality

assurance programmers who tested the product before its re-

lease are very important contacts; find them while the product

is fresh in their minds. Teachers in the education department

are also excellent contacts because they usually have course

material they are willing to share; if you produce a good user

manual, they can spend less time teaching the basics and more

time teaching the extremely complex concepts.
Again, make definite appointments with these individuals,

ask their opinions, and consider their ideas. They probably will

not be receptive to reading your manual section by section, but

it never hurts to ask.

GETTING ORGANIZED

The organization of a user manual teaches the reader how to use
the product. Readers are going to start out reading from begin-

ning to end, so continuity is the key to success.
You have established all the contacts you need to get

started on the outline. But where do you begin?

Begin with the Basic Concepts

Readers of a user manual are no different from the readers of a

reference manual. They, too, need the big picture and need it

right away in Section 1. Hopefully, the existing or evolving

reference manual is a good one because it will make your task

easier.

Everything that appeared in Section 1 of the reference

manual can appear in Section 1 of your user manual, with two

important changes.

GETTING ORGANIZED/53

1. Remove extraneous detail. Tell readers only what they

need to know to get started.

2. Include product philosophy. Tell readers why the product

was developed, what it can do for them, and, if appropri-

ate, how the product compares to similar products they

might be using.

Figure 4-1 shows a sample layout of a first section.

Look for Features:

Features are the individual capabilities of the product. By find-

ing the features, you have found the outline.

Are you writing a programming language user manual?

Here are some typical features:

Describing files Writing subroutines

Creating files Compressing files

Modifying files Creating a data base

Linking files Establishing checkpoints

Are you writing an operating system user manual? Here
are some typical features:

Analyzing system activity Loading the initialize program

Monitoring interrupts Recovering the data base

Cataloging passwords Defining log operations

Using debugging tools Assigning devices

These features determine the organization and form the

basic structure of the user manual. Each feature would break
down into separate elements.

The features of a user manual correspond to the catalogs

of a reference manual. Although they differ slightly from each
other, they are used for similar purposes. Catalogs establish
the basic organization of a reference manual; features establish

the basic organization of a user manual.

Figure 4-2 shows examples of feature organization.

WRITING A SOFTWARE USER MANUAL/54

SAMPLE SECTION 1

MALL
MMMM MMMM Introductory material ////////////MM LLL
MTL

THE HARDWARE ENVIRONMENT

MULT
MMMM
MMMM MAMA

Subheads would follow

THE SOFTWARE ENVIRONMENT

MANUAL
MAUL
TMU

Subheads would follow

THE PROCESSING ENVIRONMENT

IMMA
TUM

TAMIL

Illustration would follow

THE OPERATING ENVIRONMENT

MAU TTL
MAMMA TT
MMMM MMT MMM

Subheads would follow

FIGURE 4-1 Sample Layout for User Manual Section 1

Organize Logically

Unlike a reference manual, a user manual is not organized alpha-

betically. People do not learn in alphabetic order; they learn in
logically ordered steps, beginning with the basics and building

GETTING ORGANIZED/55

up to the most complex procedures. If you are writing a pro-

gramming language user manual, for example, you would de-

scribe the various programming statements in logical order.

Programming Language User Manual

SECTION 2. DESIGNING THE DATA BASE «—— A feature dealing
exclusively with

Defining Data Base Structure data base design

File Organizations

Sequential Files
Relative Files
Indexed Files

Record Formats
Format A
Format W

Format D
Establishing Security

Assigning Passwords
Modifying Passwords

Deleting Passwords
Incorporating Validity Checks

Operating System User Manual

SECTION 3. LOADING PROCEDURES <«—— A feature dealing
exclusively with

Understanding the Equipment loading procedures
Writing the Tape Object Loader

A Standard Tape Load
A Selective Tape Load

Setting Program IDs
Reading Driver Code

Writing the Disk Object Loader
A Standard Disk Load
A Selective Disk Load

Using Control Records
Altering Switch Settings
Setting Table Pointers
Accessing the Control Directory

FIGURE 4-2 Sample User Manual Feature Listings

WRITING A SOFTWARE USER MANUAL/56

Even though the E in END statement is near the beginning of
the alphabet, you would not discuss the statement until after
you had discussed the START statement.

Each section of the manual is based on an understanding
of the preceding section. For example:

e If you are writing a programming language user manual,

you would discuss file organization before telling the
programmer how to build alternate key files.

e If you are writing an operating system user manual, you

would discuss disk organization before telling the analyst
how to best utilize disk storage.

INCLUDING RELATED INFORMATION

A user manual should be completely self-contained. It is impor-

tant to indicate where more detailed information can be lo-
cated, but the reader should never have to put the manual down
and go looking for other documents. Scattered references to

other books defeat the very purpose of a user manual. For

example:

e If you are writing a programming language user manual,
include necessary operating system information.

e If you are writing an operating system user manual, in-

clude necessary hardware information.

GENERATING EXAMPLES

Examples represent the most important aspect of a user manual.
Entering and executing examples while reading the manual are

comparable to on-the-job training. Partial examples can be

interspersed with the text, but a complete executable program
should be shown at the end of each feature being discussed.

Where do you get the examples? You should generate

them yourself, with any necessary guidance from your con-

tacts. If you create your own examples, you will be sure to

make mistakes, and this gives you an opportunity to point out

the pitfalls your readers will encounter.

GENERATING EXAMPLES/57

When preparing examples, remember these four important

rules:

1. Use examples that are meaningful and not too complex.

In some cases it is necessary to give the readers informa-

tion out of order about the topic at hand to allow them
to use material at the beginning. A typical example is

FORTRAN, where the complicated FORMAT statement
is too difficult to include early but too basic to be avoided.
Supply this type of information so that readers can copy it
for use until you reach a more suitable place for the

discussion.

2. Include appropriate input and output so that readers can

see what is happening.

3. Include any operating requirements.

If you are writing a programming language user manual,
be sure to include any necessary operating system com-

mands that are needed for successful execution.

If you are writing an operating system user manual, be

sure to include any hardware considerations that affect
the processing environment.

4. Make sure the programs are accurate and will execute
successfully.

The various techniques that can be used for preparing user
manual examples include color, contrasting type font, and

shading. Figure 4-3 gives an example of the shading technique.

Information to be entered by the reader is shaded to contrast
with system responses that are not.

PREPARING THE OUTLINE

Unlike writing a reference manual, gathering information is not
the most important part of your writing assignment. Before you
even begin an outline for a user manual, you should be using
the product. You are not describing now—you are teaching.

While you are using the product, it is a good idea to try
things you know are not only wrong but even ridiculous. If,
for example, the reference manual mildly cautions the program-
mer against performing a certain function during some phase

WRITING A SOFTWARE USER MANUAL/58

Respond to the operating system
prompt.

Call the OURSYSTEM program by
entering the letters OSY.

OURSYSTEM READY The system prints the OURS YSTEM
@ READY message. Respond to the

OURSYSTEM program prompt.

Request RECORD 1.

Display RECORD 1.

BUSINESS DECISIONS
1300 WEST MAIN STREET The program displays RECORD 1.

LOS ANGELES, CA 90045

Terminate the OURS YSTEM

program.

GOODBYE The OURSYSTEM program signs
off.

The operating system resumes
control.

FIGURE 4-3 Shading Technique

of the operation, try it—even if you bring down the entire
system.

Let us assume you have been assigned the task of writing
a user manual for the programming language that was outlined
in Figure 3-4 of Chapter 3. Figure 4-4 gives a sample outline

for the same product.

Ask yourself these final questions about the outline:

1. Does it begin with the big picture?

2. Are the major features included?

3. Are the features presented in an order that ranges from

basic to complex?

PREPARING THE OUTLINE/59

If you can answer yes to each of these questions, the out-

line will probably be approved. You are ready to begin writing.

Software user manual writers are notorious for uncovering
program bugs. These are the writers who are playing the role of
customer, doing the expected and the unexpected, and finding

SECTION 1. INTRODUCTION TO OURLANGUAGE

OURLANGUAGE Components
Designing the Source Program

Interfacing the Operation Control
Process

Storing the Object File
OURLANGUAGE Processing

The three modules

SECTION 2. PROGRAM STRUCTURE

Program Organization
Language Elements

Establishing Data Class Setting up the program
Declaring Program Constants structure, which will

Coding Conventions be used as an ongoing
Source Program Entries example and be continued
Continuation Lines throughout the manual
Comment Lines

Blank Lines

SECTION 3. ARITHMETIC OPERATIONS

Arithmetic Expressions
Arithmetic Operators

Simple Arithmetic Expressions
Complex Arithmetic Expressions
Evaluating Expressions

Arithmetic Statements
Addition of Items
Subtraction of Items
Multiplication of Items
Division of Items

Sample Arithmetic Programs

Illustrating the use of
all arithmetic statements

FIGURE 4-4 Sample User Manual Outline

WRITING A SOFTWARE USER MANUAL/60

SECTION 4. CONDITION OPERATIONS

Condition Expressions
Relation Testing

Comparing Numeric and
Character Data

Comparing Numeric Data Items

Items with Equal Lengths
Items with Unequal Lengths

Class Testing
Sample Condition Programs

Illustrating the use of
the condition IF statement

SECTION 5. TABLE HANDLING

Defining Tables
Storing Table Elements
Searching Tables Illustrating the use and

Using Subscripts manipulation of tables
Setting Value Ranges

Sample Table Handling Programs

SECTION 6. COMPILATION AND EXECUTION

Compiling the Source Program
LIST Parameter
DEBUG Parameter Compiling and executing
SUPPRESS Parameter a program that now

Compilation Output Listings includes all features
Executing the Source Program
Sample Input File Structures

FIGURE 4-4 (cont.)

out how the software really performs when it is at the mercy
of both the expert and the novice.

PREPARING THE TEXT

Before you can begin to write a software user manual, you are
faced with two prerequisites: learning the product and under-

standing how the reader is going to use the product.

PREPARING THE TEXT/61

If your assignment was to write a user manual on how to
drive a car, you would not want to begin the actual writing

until you had driven a car yourself. You could manage the
outline because you would be including such topics as starting
the car, operating the gear shift, and so forth. But you still

need to drive the car.
If your reader was going to use your manual for driving

a car in the Indianapolis 500, you could probably still man-
age the outline; but you are faced with an entirely different

situation.
Using the product several weeks before generating any

text is always a good idea. If you cannot learn how to use the
product by reading the existing reference material, you can be

sure the customers are in trouble. Turn to the customer support

analysts for help.
Figure 3-5 in Chapter 3 presented a sample specification

and included a write-up that would be appropriate for a refer-
ence manual. A good exercise would be to change that write-up

into one that would be appropriate for a user manual. Be sure

to introduce subjects in a logical sequence and arrange the text
so that it teaches the reader how to use the product.

Figure 4-5 is an example of one way to do this.

SCHEDULES ARE ALWAYS REQUIRED

Some organizations do not require software user manuals to be

shipped along with the software. If you happen to work for one
of those organizations, the user manual, unlike the reference
manual, will not have to be sitting on the shelf by the release
date for that software.

This only sounds like encouraging news.
Software user manuals are expected to be written within

a reasonable period of time. Once you have prepared the
schedule and it has been approved, you are tied to your own
personal release date.

So you face one of two possible situations:

You must meet a schedule that is tied to a software release
date. Your organization and its customers are depending
on it.

You must meet a schedule that is tied to your own per-
sonal release date. Your next raise is depending on it.

WRITING A SOFTWARE USER MANUAL/62

This write-up was generated from the sample

specification shown in Figure 3-5 of Chapter 3.

WRITING MODULES FOR DISPLAYING DATA

After you have defined all of the data items in the Declarations area of the

program, you can code modules to have data displayed on the terminal. Each
module displays data on one line of the terminal screen.

Display modules consist of four ARRANGE statements that appear in the fol-
lowing order:

BEGIN — establishes the module entry point.

MOVE — positions data for terminal display.

DISPLAY — displays the data.

END — terminates the module.

Delimiting the Modules

Begin each module with a BEGIN statement and supply a module number. The
module number must be an integer from | through 37 and must be unique
within all program modules.

BEGIN module-number

For example:

BEGIN |

End each module with an END statement and duplicate the module number
you assigned to the associated BEGIN statement.

END module-number

FIGURE 4-5 Writing User Manual Text from a Sample Specification

For example:

BEGIN 1

END 1

If you omit the END statement, the compiler supplies one and issues a warning
message W-END STATEMENT MISSING. For documentation purposes, it is

good programming practice to always include an END statement.

Positioning the Data for Display

Follow each BEGIN statement with one or more MOVE statements. These
statements take named items of data from memory and position them in a buffer
for subsequent display on a terminal screen.

MOVE data-item TO COLUMN number

Supply the name of a data item that you have defined in the Declarations area
of the program. Also supply a column number from | through 73; this number
is the column number where the first character of the data item is to be positioned.

For example:

BEGIN 1

MOVE EMPLOYEE-ID TO COLUMN 1~*— The first character of
EMPLOYEE-ID is positioned
for display in column 1.

If EMPLOYEE-ID is 4
characters long, the item

is positioned for display

in columns | through 4.

FIGURE 4-5 (cont.)

You can have multiple MOVE statements provided the characters do not extend
beyond column 73. For example:

BEGIN 1

MOVE EMPLOYEE-ID TO COLUMN 1

MOVE EMPLOYEE-NAME TO COLUMN 36

MOVE DEPARTMENT TO COLUMN 60 <— DEPARTMENT must not
exceed 14 characters
because it would then

; extend beyond column 73.
END 1

Avoid Column Overlap

If your MOVE statements cause two characters to occupy the same column

position, the compiler issues an E-OVERLAP error message. If data-item
EMPLOYEE-ID in the following example is a 4-character field, overlap occurs:

MOVE EMPLOYEE-ID TO COLUMN | ~<— Extends through column 4

MOVE EMPLOYEE-NAME TO COLUMN 4 ~— Overlaps column 4

Allow for Spacing Between Data Items

If your MOVE statements do not allow for spacing between data items, values
will be adjacent when displayed on the terminal screen. The following statements
will provide no spacing between the 4-character field EMPLOYEE-ID and

EMPLOYEE-NAME:

MOVE EMPLOYEE-ID TO COLUMN 1 + Extends through column 4

MOVE EMPLOYEE-NAME TO COLUMN 5~<— Begins in column 5

FIGURE 4-5 (cont.)

Displaying the Data

Include a DISPLAY statement after the last MOVE statement. The DISPLAY
statement causes the positioned data items to be displayed on the terminal
screen. The statement consists of the single word

DISPLAY

You can include only one DISPLAY statement in a module. For example:

BEGIN 1
MOVE EMPLOYEE-ID TO COLUMN 1
MOVE EMPLOYEE-NAME TO COLUMN 36
MOVE DEPARTMENT TO COLUMN 60
DISPLAY
END |

Sample Display Modules

The following example is an ARRANGE module for displaying two fields:

BEGIN 2

MOVE DEPARTMENT TO COLUMN 4
MOVE LOCATION TO COLUMN 16
DISPLAY
END 2

where

DEPARTMENT is a 10-character field and LOCATION is a 2-character
field.

The two fields would be displayed on one line of the terminal screen.

FIGURE 4-5 (cont.)

PURCHASING AK

Column 16

Column 4

The following example is an ARRANGE module for displaying three fields:

BEGIN 3
MOVE DEPARTMENT TO COLUMN 10
MOVE DEPT-CODE TO COLUMN 2
MOVE LOCATION TO COLUMN 22
DISPLAY
END 3

where

DEPARTMENT is a 10-character field, DEPT-CODE is a
3-character field, and LOCATION is a 2-character field.

The three fields would be displayed on one line of the terminal screen.

816 ACCOUNTING CA

Column 22

Column 10

Column 2

FIGURE 4-5 (cont.)

Fe P ty:
ne ie epee ta i —

p RSEGEI bt fbr PAT et skye giiwol it
—— fits e

ees
(THAT 2VOM " b

LIOD OF 300D- TIG-SVOR
mea _ AR? Roe i ee

: ’

+ Sante ve ian oi vim 110 oT THAN

oe res ; Viv
, MGITASI VOM.

| € “at
* * , 2“

, Lo ‘ : : s : 7 : $.) ; an > ET? CY Linlhl 4 _s
.} aes 4 } , : ; _ uy

ee eee vai 4: ruse
. Se " 8) x : -

ach 3 ROOST .bisk asiamady-G! 9 ai Thawriieao se
Tae bina Pow intheS & ed MONT A, 7.) ite: bist Tabaraiok, :

ibis Lettie co?
oo |

i] ore eee omen,

ott Tey cull cay nee Herentqut dd bhdow ahh song sat 7
lt li ae Ati den) SUS ttl fi a7 |

' AD DMITVICRGA. “an
- i pa open! 4 oi

__5/STRUCTURING _
TECHNIQUES

What is structure?
The dictionary defines structure as something arranged in

a definite pattern of organization. We already know how.impor-

tant organization is to software manuals. The underlying struc-

ture of the text itself is just as important.
This chapter discusses techniques that help to structure

your software manuals for usability.

ESTABLISHING STRUCTURED PARAGRAPH

AND SECTION HEADS

Paragraph and section heads are titles that precede and identify

subsequent blocks of text. These heads clearly define the orga-

nizational breakdown of the manual.

The positioning and content of heads can affect the struc-

ture of a software manual. The next two heads in this chapter

introduce the techniques for establishing paragraph and section

heads.

- Pea fsruroiite of 10d
it} Pageants gnislts-nue #6 Tinustiz eenlsh pekewoth sit

ae pe: wrt ve ores ¥ BESTS 5 all MOL cet eE VO 6 mgiieg oriniist B,
| ah = D232 wu! bogies bet. 18S FR STE ew ited O29 a rol mittee
oe ~. —-, “eeneqie ze seth ab ise peat ae es
ia SeNRTe of Ghat Jett ztpicross vonmumaib: reiqnds stk 7 vf Rigre | ottfittess Yor eleeteat Sra wiioy way

. WARD AMAT ODA fOVATS DMNA A TSS
i 20ATH WOITII2 QUA

(Upreis brie hace vy tert well) ig: ahetel erokiose koe siepstgete nS
— wm oii saiieh. yliests ghesil = es yet Te saocld Jagupsedye

levriwe orf do nwobssert fexpieee
S72 bi). 91 id Bonet 30 Sie ago yaiioi leq sit +
Wass 2! 7 wbosi-sa) Wan of RUT RAT suitor & To sud ee
pivot bag dqewmeu deihdg Be + a1 asuplaties atid, boron 7

b

nels a, 7

Balancing Paragraph Heads

Balancing paragraph heads is nothing more than accurately
dividing information into topics. If you think back to grade
school, you will remember how you used to make outlines.
They went something like this:

1 Main topic

2 Subtopic

2 Subtopic

3 Subtopic

3 Subtopic

3 Subtopic

4 Subtopic

4 Subtopic

2 Subtopic

Every topic appears

at least twice.

1 Main topic

These simple little outlines still apply, but how many times

have you seen an unbalanced paragraph head in a software

manual? Figure 5-1 is a typical example.

SUBROUTINE CALLS

CALL Statement

RETURN Statement

SORT OPERATIONS

Ascending SORT Statement

Descending SORT Statement

CONDITION EXPRESSIONS

IF Statement ~<—————————_ Unbalanced paragraph head

FIGURE 5-1 An Unbalanced Paragraph Head

ESTABLISHING STRUCTURED PARAGRAPH AND SECTION HEADS/71

This sample outline is saying the topic Subroutine calls is

divided into two parts, the topic Sort operations is divided
into two parts, and the topic Condition expressions is divided
into one part. Logically, nothing can be divided into one part.

The sample outline with its unbalanced paragraph head
reflects clear organization and complete information, but it

does not reflect good structure.

The outline with the unbalanced paragraph head can be
easily repaired. Figure 5-2 offers two ways to correct it.

Example |

SUBROUTINE CALLS

CALL Statement

RETURN Statement

SORT OPERATIONS

Ascending SORT Statement

Descending SORT Statement

CONDITION EXPRESSIONS

Example 2

SUBROUTINE CALLS (CALL, RETURN)

CALL Statement

RETURN Statement

SORT OPERATIONS (SORT)

Ascending SORT Statement

Descending SORT Statement

CONDITION EXPRESSIONS (IF)

FIGURE 5-2 Balanced Paragraph Heads

5 STRUCTURING TECHNIQUES/72

Looking at example 1, many writers will argue that it is
more important for the IF statement to appear than to have

balanced paragraph heads. They will also be concerned be-
cause the IF statement will not appear in the table of contents.
Example 2 is one way out of this situation.

Avoiding Empty Heads

A section head immediately followed by a paragraph head with
no intervening text is an empty section head.

A paragraph head immediately followed by another para-
graph head with no intervening text is an empty paragraph

head.

Figure 5-3 shows a page of text with an empty section
and paragraph head.

The empty section head is announcing the beginning of

a completely new section about which the writer has nothing

of interest to tell the readers.
The empty paragraph head indicates that the writer

wanted to divide the two types of sort operations into two

separate paragraph heads (ascending sort and descending sort)
and collect them under the single paragraph head Sort opera-

tions (SORT). But notice that the paragraph head Sort opera-
tions (SORT) introduces nothing but empty space.

If section and paragraph heads are important enough to
appear, they are important enough to carry introductory text.

This introductory text serves two purposes:

1. It summarizes the subsequent information for the reader.

2. It provides an area for highlighting update information.

Figure 5-4 shows the same page without the empty heads.

WRITING IN PARALLEL

Writing in parallel is writing in a consistent style. Consistency

includes the following:

e using the same voice, either all active or all passive

e using the same construction, either all complete sentences

or all sentence fragments.

WRITING IN PARALLEL/ 73

SECTION 5

OURSYSTEM STATEMENTS

<——_———— Enpty section head

SUBROUTINE CALLS

Subroutine calls transfer control to a subroutine and effect a return to the main

logic path of the XYZ program

CALL Statement

The CALL statement unconditionally transfers control to the subroutine. The

statement consists of the CALL

RETURN Statement

The RETURN statement provides the linkage back to the main path of the XYZ
program. The statement consists

SORT OPERATIONS (SORT)
<———— Enppty paragraph head

Ascending SORT Statement

The ascending SORT statement arranges information in ascending order accord-
ing to the internal code of the

Descending SORT Statement

The descending SORT statement arranges information in descending order ac-
cording to the internal code of the

FIGURE 5-3 An Empty Section and Paragraph Head

The most obvious deviation from parallel structure appears
in lists. Figure 5-5 shows a list that lacks parallel structure.

Deviation from parallel structure can also appear in text, as
shown in Figure 5-6.

STRUCTURING TECHNIQUES/74

SECTION 5

OURSYSTEM STATEMENTS

OURSYSTEM statements establish program names, program characteristics,
and operations to be performed at

SUBROUTINE CALLS

Subroutine calls transfer control to a subroutine and effect a return to the main
logic path of the XYZ program

CALL Statement

The CALL statement unconditionally transfers control to the subroutine. The
statement consists of the CALL

RETURN Statement

The RETURN statement provides the linkage back to the main path of the XYZ
program. The statement consists

SORT OPERATIONS (SORT)

The SORT statement causes input records to be sorted in alphabetic order. You
can designate an ascending or a descending sort sequence by including special
parameters. The two types of SORT statements are described in the following
paragraphs.

Ascending SORT Statement

The ascending SORT statement arranges information in ascending order accord-
ing to the internal code of the

Descending SORT Statement

The descending SORT statement arranges information in descending order ac-
cording to the internal code of the

FIGURE 5-4 Filled Section and Paragraph Head

WRITING IN PARALLEL/75

Each word in the control header is defined as follows:

Word! a numeric code associated with the program
Word2__ the head/track location for storing the program
Word3 the starting address for loading the program
Word4 this word is set to 7777 if an error occurs during read mode

rae Not parallel

The explanation for Word 4 is not consistent with the explanations for Words
1, 2, and 3. The list is clear, but would have been parallel and would have

reflected quality structure if Word 4 had read:

Word4 a flag that is set to 7777 on read mode error

FIGURE 5-5 Writing Parallel Lists

Routines A, B, and C are utility routines that can be called by the EXECUTIVE
program to perform specific functions. They are stored in the

Not parallel

The lead-in text for Routine C is not consistent with the preceding paragraphs.
The text is clear, but would have been parallel and would have reflected quality
structure if the lead-in text for Routine C had read:

Routine C associates hardware devices

FIGURE 5-6 Writing Parallel Text

STRUCTURING TECHNIQUES/76

STRUCTURING TEXT

Structured text is information that can be seen at a glance. Here
is a sentence with unstructured text:

When a CHECKSUM clause is included in the WRITE
statement, the appropriate routine is called before the
data is moved into the output buffer, before conver-
sion is attempted, and after standard system checks are
completed.

Here is the same sentence with structured text:

When a CHECKSUM clause is included in the WRITE

statement, the appropriate routine is called as follows:

before the data is moved into the output buffer

before conversion is attempted

after standard system checks are completed.

Whenever you structure text, you are highlighting impor-

tant issues, making information easier to retain, and increasing

the usability of the manual. In other words, whenever you

structure text, you are:

highlighting important issues

making information easier to retain

increasing the usability of the manual.

STRUCTURING TEXT/77

A abate ei omtsedn «te
sat getline: gtaicoryan “oil

ai a fiehie aff} ofat heen

we + bnobinns #1 iy bee Sabet

ih ei Seg 6. nade ger aniviggE §
% nevow ak lab 2° wha

i néderearas syoisd ~

rote fiir tle =

1.2 4 ‘ 5 4 4 g

s f sy Hy +5

: ee oa) > + Siero! vf

> OT rss oats noted aitideres. 26 waite ter

a onan ott ovgelligeny ots z
"eis Gory Bee essa, & et

I

sirec| Inesqee Baitiyileye
*

INSFGs OF TOS FH inset oth i RAE
<*

bei Silt Lo Vii kes! TM grieesyo tl

(Bae Wie

>

vw ihe (he freoodin 5 anes dy,
tet rng iif actif

*

6 /ENSURING

READABILITY

What is readability?

Readability is the absence of jargon and slang.

Readability is never having to read twice.

Readability is consistent terminology.

Readability is short paragraphs.

Readability is short sentences.

Readability is continuity.

Readability is clarity.

Writing straightforward text about a complicated subject

and writing it quickly requires talent, training, and experience.

Even if you possess these qualifications, you could be clinging

to old habits that undermine the quality of your writing.

This chapter offers simple guidelines that help to instill

readability into software manuals.

-

~gfigis bug néyisi to sonseds ariret yaleteieese .
seint han.oi gedved overt 2b tithe

* golonlintet insteno’y ei -yMiidebass |
weil. “aelquergeneg Putte #i yiidshesh

sooreine Toes 2 gilidabsse)
* ~ gtlurdtoied mt Yrdiviebae —~ *"*

“ _viitats gf Giliishes®

Poplar Sasi 0 tvode bral foewiotyigiie gai
wousinage> hiv! aaa’ inolkt setup (bielip ii ga
> ed Lhe vey wroliesiilenp seedy meamog dey Pe ;

gtitinw gooy to eilleup yds smiarieting ro adaa et =
Ninett: a) sor tad! Ss itseasy nigntte 2181iG tathads anit ia

; Aiounem sinw Hes Otel

FAVOR ACTIVE VOICE

Use active voice whenever possible. The words whenever pos-
sible are important words to remember. Not every sentence can
be changed from passive to active voice. For example:

The number of data blocks in an output file is computed

by the TRANSFER program. (Passive voice)

The TRANSFER program computes the number of data
blocks in an output file. (Improved by the change to
active voice)

If the condition is satisfied, the SEARCH statement is

executed. (This sentence cannot be changed to active

voice. We do not know what will satisfy the condition or
what portion of the software will trigger execution of the
SEARCH statement.)

NEVER SAY MAY*

How many times have you seen a sentence like this in a soft-

ware manual?

You may initialize the equipment by pressing switch 1.

Did you know exactly what it was saying? If so, which of

the following interpretations did you select?

iF

2.

3.

You have the capability to initialize the equipment by

pressing switch 1.

You have the manufacturer’s permission to initialize the

equipment by pressing switch 1.

It is possible that you are going to initialize the equipment

by pressing switch 1.

*Material in this section has been adapted from C. Browning, “Technical Com-

munication,” Journal of the Society for Technical Communication Correspondence,

28, 3, Third Quarter 1981, 61-62.

NEVER SAY MAY/81

If you selected sentence 1, you insulted the writer. Accord-

ing to Webster’s New Collegiate Dictionary, the word may is
archaic when used as a synonym for can. The word may

appears in many documents associated with unchanging or
legalistic disciplines. Wills, insurance policies, and government

publications use the word may extensively, leaving the precise

meaning to be interpreted by individuals or perhaps arbitration.

Look at your IRS forms and instructions!

If you selected sentence 2, you implied that the writer
insulted the customer. It is presumptuous for a writer to assume

that a manufacturer can grant or deny permission to use equip-
ment that sells for thousands, maybe millions of dollars. Cus-
tomers will initialize the equipment by pressing switch 1 any
time they please. For all the writer knows, customers will press

_ switch 2 if they can get away with it.

If you-selected sentence 3, you understood a grammati-
cally correct sentence that conveyed absolutely no information.

The problem can be resolved by never using the word may.

Do you know exactly what the following sentence is
saying?

You can initialize the equipment by pressing switch 1.

It would be difficult to provide more than one interpreta-
tion.

This brings up an interesting question: What should I

do when I really want to infer possibility? What about this
sentence?

An error may occur...

The sentence can be rewritten. For example:

Under certain circumstances an error occurs...

An error could occur...

An error might occur...

Programmers cannot afford to guess at the precise mean-
ing of any word. The words can for capability and might for

ENSURING READABILITY /82

possibility guarantee readability. The word may guarantees
ambiguity.

UNNECESSARY HYPHENATION IS OLD-FASHIONED

Hyphenation is spelled c-l-u-t-t-e-r. Software manuals with
their sample programs have many special characters, and un-
necessary hyphens only represent additional distraction for the
reader.

Hyphens have been dying for years. Check the dictionary
and you will find many single words that were hyphenated
when you attended school. How often have you seen these
words hyphenated?

reentry uppercase lowercase multiphase ~

nonresident reinsert shutdown

The dictionary devotes an entire page to words that begin

with the prefix non but do not use the hyphen. Whenever you
are tempted to hyphenate a word, try checking the dictionary
to see if it changed since you last used it.

Hyphens are real troublemakers in an automated text
processing environment. Whenever you hyphenate unneces-

sarily, you are causing extra work for the typesetter. Machines
and their operators have enough trouble handling hyphenation
at the end of the line without having to contend with extrane-

ous hyphens running through the text.

PRONOUNS ARE UNPOPULAR

Three types of pronouns enjoy very little status in software

manuals. The indefinite pronoun is usually burdensome, sexist

pronouns are always irritating, and the neuter pronoun has been

known to destroy the meaning of a sentence.

The next three paragraphs discuss why these pronouns

should either be eliminated from a software manual or at least

used sparingly.

PRONOUNS ARE UNPOPULAR/83

The Indefinite Pronoun

The indefinite pronoun there lengthens sentences and rarely

adds readability. Sometimes the word is useful, but whenever

possible, throw it away. For example:

There are five I/O routines that can be called by Program

A.

should be changed to read:

Five I/O routines can be called by Program A.

and then be changed to active voice:

Program A calls five I/O routines.

The sentence has been reduced from 12 words to 6.
When you are looking for unnecessary hyphens, look for

unnecessary indefinite pronouns.

Sexist Pronouns

The sexist pronouns he, him, his, she, and her are gradually

disappearing from technical documentation. You have prob-

ably seen sentences like these:

1. After the operator has set appropriate flags, he can enter
debug mode.

2. After the operator has set appropriate flags, he/she can
enter debug mode.

3. After operators have set appropriate flags, they can enter
debug mode.

Sentence 1 is annoying to some readers. Sentence 2 is
cumbersome. Sentence 3 is implying multiple operators.

All sexist pronouns can be eliminated by exercising a little
thought. Here are several alternatives.

ENSURING READABILITY /84

After you have set appropriate flags, you can enter debug
mode.

After setting appropriate flags, the operator can enter
debug mode.

The operator must set appropriate flags before entering
debug mode.

The Neuter Pronoun

The neuter pronoun it is famous for chipping away at read-
ability.

How many times have you read the word it and won-
dered what it really was? Look at this sentence:

The EXTEND directive alters execution of the SEARCH

statement; it can appear anywhere within the job stream.

What can appear anywhere within the job stream? The
EXTEND directive or the SEARCH statement?

How about this sentence?

After it updates the record, the REVISE routine unlocks

the file.

If this sentence is read out of context, we cannot be sure

who really updated the record. The pronoun it could be refer-

ring to the REVISE routine or to an antecedent in a preceding

sentence. The reader would prefer redundancy to the vague

pronoun it.
When you are looking for unnecessary indefinite pronouns,

keep an eye out for neuter pronouns.

BYPASS PROGRAMMING JARGON

Programmers sometimes know their subjects too well. The re-

sult is jargon.
What is wrong with this sentence?

BYPASS PROGRAMMING JARGON/85

The new item is a group beginning with name-l (if it is an
elementary item) or the first elementary item in name-l

(if it is a group item).

Everything!

1. Two important thoughts are squeezed into one sentence.

2. The meaning of the sentence depends on the correct
placement of the parenthetical phrases. (Parenthetical

phrases in software manual text, by the way, detract from

readability.)

3. The vague pronoun it adds to the confusion.

Here is the translation:

e If name-l1 is an elementary item, the new item is a group

that begins with name-1.

e If name-l is a group item, the new item is a group that
begins with the first elementary item in name-1.

You rarely get away with passing along programming jar-

gon that creeps into specifications. Someone always manages
to find it and ask you for an explanation.

QUOTATION MARKS CAN BE “DANGEROUS”

A terminal once issued this statement to an operator:

TYPE “EXIT”

The operator typed

“EXIT”

and received a terse error message that said:

QUOTATION MARKS ARE ILLEGAL

ENSURING READABILITY /86

Quotation marks are common input characters in the
computer industry. Programming language literals, for example,
usually require quotation marks. Unless quotation marks are

actual computer entry characters, they should never appear.
Some writers use quotation marks to indicate slang, which

certainly does not belong in a professional technical document.
Some writers use quotation marks for emphasis. Emphasis

can be handled by italics. If your production department does
not have an italics font, you could approach staff members and
remind them it is better to buy italics capability than to have
customers wasting time trying to read around hordes of quota-
tion marks. If staff members are not impressed, you can simply
stop worrying about emphasis and restructure your sentences.

Any sentence can be rewritten to avoid quotation marks.
These characters have no place in software manuals unless they
represent valid input characters for a computer program.

THAT VERSUS WHICH

Remember the nonrestrictive clause? The nonrestrictive clause
is not vital to the meaning of a sentence, is always introduced

by the word which, and is always surrounded by commas. For

example:

The I/O routine, which is called by EXEC, performs the
—<$<$$_§_,—_———’__ processing.

Nonrestrictive clause—the commas are present.

This sentence implies that the program has only one I/O

routine; the fact that the routine is called by EXEC is incidental.

Remember the restrictive clause? The restrictive clause is

vital to the meaning of a sentence, can be introduced by the

word which, and must not be surrounded by commas. For

example:

The I/O routine which is called by EXEC performs the

U—_____,—__—__——Y __ processing.

Restrictive clause—the commas are missing.

THAT VERSUS WHICH/87

This sentence implies that the program has more than one
I/O routine; the fact that this I/O routine is the one called by

EXEC is critical.
The two sentences are entirely different.
The meaning of sentences should never have to depend on

the presence or absence of commas. Commas can be inadver-

tently inserted or deleted during review, editing, and produc-
tion. Commas have been known to drop out during printing.

To ensure readability, the word which should never be
used in restrictive clauses. The word that should be used
instead.

If the sentence with the restrictive clause had been written

The I/O routine that is called by EXEC performs the

ny erie

Restrictive clause.

everyone would have left it alone, and the meaning would have
remained intact.

MAKING REFERENCES

Occasional references direct the reader to important additional
information; extraneous references interrupt the reader’s train
of thought.

References are divided into four categories:

@ in-section references

e out-of-section references

e out-of-manual references

e directional references

In-Section References

In-section references are rarely necessary. They usually appear
because the text is improperly organized.

This is an in-section reference:

ENSURING READABILITY /88

You can move the new records to the record buffer. The
record buffer is described later in this section.

This in-section reference to the record buffer could be
avoided in one of the following ways:

1. Provide an immediate definition of the record buffer and
let the reader reach the description when it becomes
appropriate.

2. Delay any mention of the record buffer until you are
ready to provide the description.

Out-of-Section References

Out-of-section references are occasionally necessary, particu-
larly in reference manuals. Sometimes, however, they appear
because undefined terms are introduced.

This is an unnecessary out-of-section reference:

The program verifies the password and displays the screen
selected by the operator. Refer to the main menu in Sec-
tion 2.

Here the writer could not wait to send the reader away to

look at the main menu. This out-of-section reference could be

eliminated by the following sentence:

The program verifies the password and displays a main
menu screen from which the operator makes selections.

Out-of-Manual References

Out-of-manual references are frequently necessary, but too

many references to other manuals can be discouraging to

the reader.

This is an out-of-manual reference:

You can conserve disk space by calling the PACK routine.

MAKING REFERENCES/89

Refer to the System Reference Manual for a description
of the PACK routine.

Out-of-manual references can be avoided when the infor-
mation being referenced is not too long or too detailed. If the
description of the PACK routine in the System Reference
Manual is only a short paragraph, you can duplicate the text

rather than reference the manual. When you repeat small blocks

of text from other manuals, the reader does not have to keep

looking elsewhere for needed information. But remember,

information is always subject to change. If that duplicated
block of text changes in the original manual, you have one

more update to handle; this is a serious consideration if both
manuals are not updated at the same time.

When making a decision, always weigh the alternatives.

Directional References

Directional references are not always what they seem to be.
This is a directional reference:

The I/O routine is described below.

This type of reference is always interesting when below
turns out to be two pages downstream. What if the manual is
printed in two columns? Below could be in the next column
and really be above.

Here is another directional reference:

The I/O routine described above is called by the EXECU-
TIVE program.

This type of reference has been known to send the reader
around the corner and back one or more pages. Like the below
direction in the two-column manual, above could end up being
below.

When you are tempted to use a directional reference, think
about how update material can move text. When you include a
directional reference, consider what will happen if the update
writer inserts five pages of text above or below your reference.

ENSURING READABILITY /90

AVOID MULTIPLE PHRASES AND CLAUSES

Multiple phrases + multiple clauses = long sentences, and long
sentences = poor readability.

This sentence has too many phrases and clauses:

When the PROC routine reads a record with a control

field that does not contain an X, Y, or Z, or in which

the control word does not indicate the expected file
type, the routine returns an error 300 to the main pro-

gram, which in turn displays the message text and aborts
the job.

Sentences like this one can be divided into small segments
for readability.

The PROC routine returns an error 300 to the main pro-

gram under either of the following conditions:

1. The record control field does not contain an X, Y, or Z.

2. The control word does not indicate the expected file

type.

The main program in turn displays the error 300 message

and aborts the job.

BE CONSISTENT

What is wrong with these two sentences?

The TERMCOLUMNS field specifies the number of col-

umns available on the terminal screen.

The TERMROWS field indicates the number of rows

available on the terminal screen.

Nothing really, except specifies and indicates are syn-

onyms in these two sentences. Synonyms are popular in creative

BE CONSISTENT/91

writing, but they can cause confusion in software manuals.

When synonyms are adjacent in text, as in the two sample

sentences, readers will automatically pause and wonder if they

should detect some shade of difference in the meaning. Readers

prefer redundancy to synonyms.

Consistent terminology adds quality.

Does the program write records on disk or to disk?

Is disk spelled disk or disc?

Does the operator press, hit, depress, or even strike ter-

minal keys?

Do programs deliver, give, output, or display error mes-

sages?

Consistent names eliminate confusion.

Is the TRANSFER program referred to as the Transfer

program, the TRANSFER program, TRANSFER, or

even XFER?

Consistent conventions add clarity.

Can the value be 1-100, 1 to 100, or 1 through 100?

REMEMBER YOUR FOREIGN READERS

Any software manual today is subject to international audi-
ences. When you are writing in English, the international lan-

guage, it is important to remember these readers.

They have several major complaints:

1. They dislike synonyms, whether or not they are adjacent.
They must first determine if words really are synonyms
and then translate accordingly. They wish writers would

select a word and stay with it.

2. They are often mystified by American slang. They are not

familiar with words like cop-out and pretty good.

ENSURING READABILITY /92

3. They can be confused by Americanized examples that
deal with unfamiliar subjects like Social Security numbers
and baseball scores.

4. They don’t (make that do not) like contractions. While

you are trying to make your writing user-friendly, you

might be alienating someone whose native language is not

English.

WATCH OUT FOR STILTED TEXT

Readers, be they experts or beginners, desire software manuals

that may be effectively utilized.
You have just read stilted text that was trying to say

Experts as well as beginners want software manuals that

are easy to use.

Ensure readability.

WATCH OUT FOR STILTED TEXT/93

ea ‘anc aalene lisw 4s eer

ae B the PRANS Ell “eae
ae peagency: ote TR RAS SPER

gears NPR?

“SriSteRk COTO Nore WEY Ciseity

veil

x 220 Oo) STB
reienad Va a ths Truster 7

eree"pieadtedy sian |

a> a init di@sz itm - =z

cal wade: qo oe - es)

rele, i oarsriat igzal ar

Vers cates

pala:

Jer <@ oth thew Oe abinoent
if woe aD ial syeeipaee
ye. ‘They wid wring Pa

? zt | } - ’ al

tes Toe

: Scoflinl

win 4t;

- 1
2 . RIE ie | ATH Ca eae The y- mirc

ind arerhe RP UE, *

-_

__7/ ARRANGING
THE

__FRONTMATIER

Software technical writers eventually find themselves at the end

of a hazardous writing trail only to be confronted by a menace
called front matter. Some writers consider front matter boring

work that should be sloughed off on an unsuspecting produc-

tion editor. Most readers consider front matter important

reference material. All technical publications managers expect

to see it on the first review cycle.
Front matter generally consists of four types of material:

revision record

preface

table of contents

syntax conventions

Generating front matter is a fairly automatic process. How-

ever, these mundane items that comprise front matter do have

an important effect on your software manuals, and this chapter

explains why.

a ere + 21Sthacr anobteoddyey fsingyer LA Jenoties goneteiy

ee —

_ WaT AM TNOS

Tuy Sai ieee eanren? Bail xt Nasve maihw leona ‘erewtto’

SORMOIT & “a baracriaos ode) ying lee? paliriw avois waar o Yo.

pahod teftan: jut iohienas mating sétroR et a monk tulle
ober spbbisvsepetriciy Me & ne-Tic beiguole sd bi tee ded) de =

| JAshiogmi ~;wHem jJsatl wbitnes zsbes 126M “libs “noid |

; sigyo wives Sevit 4 i) ro bee oF
i 29qy) well Je wraanos yileisn 53 19M tt noTty :

,

biovat noiatve:

salony
2ingliros 16 stat

AROUND HET

- ¢

*

7 : ’ Ley ora

* OH zreonnt rolup yitiet = al todfem Inet Alien i
avett Gb totiain Incrtedeyeites 261) zn éeabrn anit} ev)

reteyesty » y 5) Ulam SIUWiiee WiCy fo mn Jnanogr: rts

ph
=

- ete eetinkyas ay us

PREPARING A REVISION RECORD

Software documentation is constantly changing, which is a good

thing. If documentation for a specific product stops changing, it

means research and development for that product has stopped.

If all documentation suddenly becomes static, you can be sure
the company has either designed perfect products to accommo-

date the next ten generations or is going bankrupt.
The revision record is a history of product development.

This sheet of paper merely lists the publication of each revision

and indicates what new features have been incorporated. Ob-
viously, any organized publications department would keep

records of this type, so why should it appear in the front

matter?

Because it can never get lost as long as it is a permanent

part of a printed manual.

All revision levels of software reference manuals and user

manuals look a great deal alike on the outside. You can usu-
ally tell one revision level from another by looking in a cor-
ner of the cover to find a meaningless string of characters.

CO692479B00, for example, could be one of these strings.

Perhaps the CO stands for COBOL, 692479 an identifying

number for the publication, and BOO the second revision. Not

having time to decipher these codes, the reader goes directly to

the revision record to see what is happening.
A typical revision record is shown in Figure 7-1. You will

agree that it is more meaningful than CO692479B00. The

reader who is using a system that is not upgraded to include the

features listed for revision D will want to stay with revision C.

WRITING AN EFFECTIVE PREFACE

You have heard the comment, ‘‘Nobody ever reads the preface.”

And it is probably true. If nobody ever reads the preface, why

should it appear in the front matter?

PREPARING A REVISION RECORD/97

REVISION RECORD FOR PUBLICATION 692479

REVISION DESCRIPTION

A Original manual for OURSYSTEM release level AO1.

08/12/82

B This revision includes the RENEW Facility that enables the

03/22/83 system operator to restore a partially damaged data base.

Release level BOO.

C This revision includes three new condition test statements:

09/04/83 IF NOT, IF AND, IF OR. Release level C03.

D This revision includes the REWRITE Facility for the

01/26/84 OURSYSTEM file handler. Release level DO1.

FIGURE 7-1 Sample Revision Record

Because it establishes the intent of the manual.

The preface identifies the audience. If, for example, you
have written a user manual for a system analyst and pointed

this out very carefully in the preface, you are protected against

comments from customers who tried giving it to their data

entry Operators.

The preface aids the reader by supplying references to re-

lated and prerequisite material. This is especially important

for reference manuals, which can never be completely self-
contained. The preface also aids the writer. If, for example,

you have written an application programming reference manual

and listed the operating system manual as required reading, you

have recourse against the programmer who does not believe in
reading prefaces.

A sample preface is shown in Figure 7-2. Notice that the
product is designed for data entry operators, but the manual is
written for application programmers.

It is important to remember that prefaces cannot be com-
pletely standardized. No two are ever exactly alike.

ARRANGING THE FRONT MATTER/98

PREFACE

This manual describes ULTIMATE as implemented for the OURSYSTEM
Operating System.

ULTIMATE is an online report generator designed specifically for individuals
inexperienced in the field of data processing. The ULTIMATE language consists
of simple directives that allow data entry operators to access a corporation data
base, select specific fields of information, and print formatted reports.

The manual is designed for programmers who are writing applications for the
ULTIMATE product. Section 1 identifies the components that comprise the
ULTIMATE product; Section 2 describes the ULTIMATE commands and as-
sociated options; and Section 3 describes the conventions established for com-
piler language interface.

Prerequisite material is contained in the following publication:

Introduction to ULTIMATE

Related material is contained in the following publications:

OURSYSTEM Operating System Reference Manual
OURSYSTEM Operating System User Manual

FIGURE 7-2 Sample Preface

ANALYZING THE TABLE OF CONTENTS

You have heard the comment, “Everybody reads the table of

contents.’ And it is probably not true. Readers scan the table

of contents once and then promptly forget it exists, turning to

more important things like the index. Even if the table of con-
tents is the least read part of your software manual, it is an

important part of the front matter.

The table of contents is responsible for several things long

before it reaches final form for printing:

e It assures the writer that all information is included.

e It assures the writer that information is properly orga-

nized; unbalanced paragraph heads show up very clearly.

ANALYZING THE TABLE OF CONTENTS/99

e It assures production personnel that all information is

accounted for and properly referenced.

e It indicates whether or not the manual has usability.

This last item might come as a surprise, but the table of

contents is an indication of how good or how bad the software

manual really is.
Figure 7-3 shows part of a poor table of contents. Read it

and you will discover you have no idea what Section 7 is all
about. Several things are wrong with it. Here are a few out-

standing problems:

1. The section title Directory is meaningless.

2. The word Overview is trite.

3. The word Considerations is almost an industry standard

for material that is left over and needs some place to go.

Figure 7-4 shows the same table of contents with more

meaningful titles. Read it and you will discover you have some

CONTENTS

SECTION 7.

Overview

Controls

Interface

Considerations

Errors

Functions

Add

Considerations

Examples
Messages

FIGURE 7-3 Vague Table of Contents

ARRANGING THE FRONT MATTER/100

CONTENTS

SECTION 7. OURSYSTEM FILE DIRECTORY
Directory Layout
Implementing Controls
Establishing Program Interface

Program Interface Syntax
Interface Error Handling Procedures

Functions for Manipulating the Directory
Add Function
Modify Function
Delete Function
Pack Function
Unpack Function
Directory Function Examples

Directory Messages

FIGURE 7-4 Clear Table of Contents

idea what Section 7 is all about. Notice that the Considera-

tions entries are gone. Presumably a home was found for the

information.
A table of contents usually proclaims the usability of the

software manual. Maybe nobody will read it, but it is a bell-
wether for the pages that follow.

ESTABLISHING SYNTAX CONVENTIONS

Syntax is the orderly arrangement of language elements.

English syntax looks like this:

If your checkbook balance is less than $100, deposit
money in the bank; otherwise, go shopping.

The same sentence in programming language syntax might

look something like this:

ESTABLISHING SYNTAX CONVENTIONS/101

IF bank-book-balance(n) [IS] en We integer

<

PERFORM routine-1

ELSE PERFORM routine-2.

The brackets, braces, uppercase letters, lowercase letters,
and punctuation in programming language syntax are meaning-

ful.
When these conventions are used throughout a manual,

they need to be explained only once. They appear in the front

matter and are usually positioned immediately after the table

of contents.
A sample syntax conventions page is shown in Figure 7-5.

SYNTAX CONVENTIONS

Syntax is presented throughout the manual to illustrate elements used in the

ULTIMATE language. The following list summarizes the characters and sym-
bols used in the syntax notation.

UPPERCASE LETTERS Uppercase letters are preassigned keywords and must
be entered exactly as shown.

lowercase letters Lowercase letters represent variable items to be
supplied by the programmer; the words shown indi-
cate the characteristics of the information they repre-
sent.

Brackets [] Brackets enclose optional elements that can be in-
cluded or omitted.

Braces { } Braces enclose required elements; only one element
can be selected.

Punctuation Punctuation characters are essential where shown and
must be included; other punctuation characters can
be used as specified in the manual.

FIGURE 7-5 Sample Syntax Conventions Page

ARRANGING THE FRONT MATTER/ 102

__8/PREPARING
THE

__BACKMATIER

The term back matter could be a misnomer when applied to

software manuals. In ordinary books, back matter is supple-

mentary reference material that is casually ignored by most

readers. In software manuals, back matter is a collection of

dog-eared pages with penciled notations, coffee stains, and

fingerprints.
Back matter in both reference manuals and user manuals

generally consists of three types of material:

@ appendixes

e glossary

e index

Generating back matter is a very time-consuming process,

but mechanics exist and can be applied in this very important

area.

BHT ks p. Ringiaaye * ‘

“\ae >t ta ae

on 7 te ei eens’ : : J Sy ae ae 7 ou ? : a
fi *, ~~ .

‘ Sevete py en eS a ne atone Nii,|
Aes i. ag 1." vere 5 EPS 3 Die ee . z

Ld sf ik a

ry ay od ti 4) Te , ot ras) ts ilistreate t “71s mye

ie PAA Vai Whos Marizecth re Or Ties gad a jes
aad ; =e

i if é
:

- hy Ate teryewd $11, ; — p 4) mt. 4 yes } on a L'PPORate IRIS Are pre “G00 Tv e-orcs ary rum
6

y - o iitered exxcik :

a Balleqe'n isdw somonnm & 46 Sides nie Soe8 Gest SAT ; ¢ Se 1tain Joad vi ‘eta , rT ree) : pins as rM- = rt peri emogs Rhy ti RED Abe AFR TES bh he
; Bane DEON + Vi ie ont ite] shin Baz Beye Mar tata Sagi

a ta nei Shes kM VAM) Pole ea ene bet 1A nfo MBAR. ‘i
brie \enitte Sstic® .eeaitebon belies oa “itive * aF hewogeb wits | | ninepiogat

> adv. 62) Ste: chabrwtrepery len wi hadi 4 ey) : ake “an be in- 2 <i Vyeecn teempe) grids 70 etarnds vlinotigg |

|
FT ;

: ip / cleriemaine « mt + ehetnent:—
Me das a ee eC1 te reartitonss *. Pn OO 49%

A
bigiatie 7 an Micetl Aras ee et tore: eS it ‘

. I ce ud lta rn ven 1 ah aie in fins. Sarmipghe © rs |
P L A oe

i

Sve) tet three ahha Sasa
imeHoqil Ys7, sist mishellane. Se B67 bre. Re: Sbcedpsir ind oe

— oalnemeeter-ataurittt: stocewtioey

ets _
ou

PLANNING APPENDIXES

Software manual back matter usually includes a number of
appendixes. Error messages, for example, almost always appear
in back matter. What is important information like error mes-
sages doing in a place like this? Error messages, like several
other types of material, belong to a category that is more suit-
able to an appendix than to the main text.

Information that is usually relegated to an appendix falls
into one of two categories:

1. Information that encompasses the entire product, such as:

error messages

character sets

character conversion tables

mathematics tables

reserved words

language syntax summaries

data entry procedure summaries

2. Information that is highly specialized, directed toward a

small percentage of readers, or used infrequently, such as:

system recovery procedures

file conversion

peripheral device selection :

version upward/downward compatibility

configuration guidelines

The two most common appendixes are error messages and

summaries of programming language syntax or data entry pro-

cedures. The following paragraphs discuss efficient ways to

prepare them.

Including Error Messages

The only thing worse than getting an error in your program is

discovering the manual neglected to tell you what to do about

it.

PLANNING APPENDIXES/ 105

Error messages are frequently numbered and maintained

in diagnostic libraries, in which case you can get a listing of

these libraries to verify the wording of the messages. If error

messages are not maintained in diagnostic libraries, you must

rely on the programmer to supply them. This, of course, is the

easy part. Now you have to provide the explanations.

Providing adequate explanations for error messages re-

quires a familiarity with the internal software. Even if you

had time in your writing schedule to trace the course of error

messages through program listings, you could not do a thorough

job.

The shortest route to adequate explanations is a straight
line to the responsible programmer. Having the programmer
write down all but the obvious explanations produces the fol-

lowing results:

e Explanations are sufficiently detailed.

e Explanations are correct.

e Your time is saved.

@ The programmer’s time is saved; extensive review will

not be necessary.

e The reader’s biggest problem is resolved.

Error messages must be arranged so that readers can find
them as quickly as possible. Readers are not interested in
reading the message itself because they are already looking at

it on their terminal screen or program listing. They are inter-

ested in the explanation so they can make corrections and get
on with their work.

You can position error messages in tables to help readers
find the explanations quickly. Be sure to put

numbered error messages in numeric order

and

unnumbered error messages in alphabetic order.

An example of a partial error message appendix is shown
in Figure 8-1.

PREPARING THE BACK MATTER/ 106

APPENDIX A

OURCOMPILER ERROR MESSAGES

Error messages relating to source statements are divided into two categories:
fatal and warning, indicated by the error code F or W.

A fatal error inhibits execution of the OURCOMPILER compiler. A
maximum of 40 fatal errors can be recorded; when this number is exceeded,

compilation terminates.

A warning error does not inhibit execution, but indicates a deviation from
the usual coding; errors could occur at execute time. A maximum of 40
warning errors can be recorded; when this number is exceeded, compilation
continues and warning messages are suppressed.

Error messages appear in sentence form and immediately follow the statement
in error on the source program listing. When one or more fatal errors are
encountered, the message COMPILATION UNSUCCESSFUL is displayed on
the terminal at the end of compilation and on printer output when applicable.

Compiler error messages are listed in Table A-1. The Error Code column
indicates whether the message is fatal (F) or warning (W).

Table A-1. Compiler. Error Messages

Error Error on
Nomar miG@ade Message Definition

200 F TABLE TOO LARGE The directory table exceeds
480 bytes. Increase the extent

of the table or reduce the
number of entries.

201 F INVALID STATEMENT The statement number is not

NUMBER within the | through 86408
range.

FIGURE 8-1 Sample Error Message Appendix

PLANNING APPENDIXES/ 107

OURCOMPILER Error Messages

aes ae Message Definition

202 WwW MISSING END The compiler encountered
STATEMENT source input limit but did not

encounter an END statement.
An END statement has been
inserted and the program has
terminated normally.

INVALID OPERAND An operation was attempted
COMBINATION on operands that were not both

decimal or both binary.
Change the description of one
operand in the Describe
Section of the program.

UNEQUAL OPERAND _ The lengths of the operands
LENGTHS are unequal and this could

result in truncation of low-

order digits. To avoid
truncation, increase the size

of the result field.

TOO MANY TABLES More than 50 tables have
been defined.

STATEMENT NUMBER A statement number appeared
ON TABLE ona table definition

statement. Table definition

statements must not have

statement numbers.

FIGURE 8-1 (cont.)

PREPARING THE BACK MATTER/108

Summarizing Program Syntax

Programming languages and operating systems always have
syntax. This syntax, which is scattered throughout the manual,
must be summarized in an appendix for quick reference. Read-
ers might remember most statements or instructions, but they
cannot be expected to memorize long lists of parameters.

The organization of the product determines how syntax
should be summarized.

e Syntax for languages that have natural divisions would be
summarized within the divisions and would be summarized
alphabetically or by position, depending on the product.

Organizing by division reminds the reader that program

order is just as important as correct syntax. The COBOL
language is a typical example of a language with divisions.

e Languages that do not have natural divisions would be
summarized alphabetically or by position, depending on
the product.

Figure 8-2 shows a partial sample syntax summary for a
language that has divisions. Figure 8-3 shows a partial sample

syntax summary for a language that does not have divisions.

Notice that these two illustrations include page numbers.
Page numbers represent a small amount of extra work for you

but a lot of help for the reader. When you include page num-

bers, make sure the numbers reference to the beginning of
explanatory text for the syntax, not merely to the same illus-

trated syntax.

Summarizing Data Entry Procedures

Data entry systems frequently have syntax that is similar to, but

certainly not as complicated as, the syntax in programming lan-

guages and operating systems. Software manuals that describe

data entry systems need procedure summaries for instant

reference.
Figure 8-4 shows a partial procedure summary for a data

entry system. This summary is not quite the same as the syntax

summaries for a programming language. Application program-

PLANNING APPENDIXES/ 109

APPENDIX B

OURCOMPILER SYNTAX SUMMARY

OURCOMPILER syntax is summarized in this appendix. Detailed information
for each command is referenced by page number.

Page

IDENT DIVISION

IDENT DIVISION. 3-1

PROGRAM-NAME. program-name. 3-2

SECURITY. [comments] 3-3

TABLE DIVISION

TABLE DIVISION. 4-1

TABLE table-name : constant [, constant...]. 4-3

PROCEDURE DIVISION

PROCEDURE DIVISION. 5-1

ADD canal TO data-name ! 5-4
constant constant

DIVIDE ea INTO data-name 5-7
constant constant

END . 5-8

MOVE fe set TO data-name 5-9
constant constant

MULTIPLY ase, BY eeaetya 5-11
constant constant

SUBTRACT paca FROM eters ! 5-13
constant constant

FIGURE 8-2 Sample Syntax Summary for Language with Divisions

APPENDIX C

OURCOMPILER SYNTAX SUMMARY

OURCOMPILER syntax is summarized in this appendix. Detailed information
for each command is referenced by page number.

Page

ADD ee TO oe 4-4
constant constant

CALL statement-number .

DIVIDE ee INTO ee
constant constant

END

MOVE data-name TO foe ie ’
constant constant

MULTIPLY data-name BY gerne
constant constant

SUBTRACT data-name FROM } data-name i
constant constant

TABLE table-name N constant [, constant...].

A

FIGURE 8-3 Sample Syntax Summary for Language without Divisions

mers need detailed information in these summaries. They will

be referencing your manual when they develop additional pro-

cedures for the product.
Sometimes data entry systems need other types of in-

formation centralized in an appendix. A typical example is

information related to system operation. Figure 8-5 shows a

partial operating procedure summary for a data entry system.

PLANNING APPENDIXES/111

APPENDIX D

SUMMARY OF OURREPORTER DIRECTIVES

OURREPORTER directive formats are summarized in this appendix. Detailed

information for each format is referenced by page number.
Page

DELETE record-name Delete a record from the 3-2

data base.

DISPLAY field-name Display all data base 3-6

[field-name] .. . information stored in one
or more fields.

END End the OURREPORTER
procedure.

HELP message-number Ask for the explanation of
an error message number.

INSERT record-name Insert a new record in the

data base.

PREPARE report-name Prepare a report.
FROM report-file-name

REWIND file-name Rewind a file to the

beginning of information.

TITLE IS title Supply a report title with an
[CENTERED] option to have it centered on

the page.

FIGURE 8-4 Sample Summary for Data Entry Procedures

ESTABLISHING A GLOSSARY

A glossary is to an analyst and a programmer what a dictionary
is to a writer. No one can be expected to remember all the

words and their meanings all the time. Analysts and program-

PREPARING THE BACK MATTER/112

APPENDIX E

SUMMARY OF OURSYSTEM OPERATIONS

OURREPORTER directives can only be issued after some dialog exchange
takes place between you and the OURSYSTEM Operating System. Follow the
steps in the order shown.

Type LOGON your-name, password The system signs on and
prints ENTER COMMAND

Type OURREPORTER The system prints

OURREPORTER IS READY
2

Enter OURREPORTER directives

Type END The system prints

OURREPORTER SIGNING OFF
ENTER COMMAND

Type LOGOUT The system signs off.

FIGURE 8-5 Sample Summary for Data Entry Operations

mers have the additional task of contending with myriad ac-
ronyms and mnemonics.

A glossary is an important part of a software manual, even
when terms are carefully defined the first time they appear.
For example:

An excellent definition of a term in Section 2 is of little

value to the reader who is reading out of context and dis-

covers the term for the first time in Section 17.

An excellent definition of a term in Section 2 is of little

value to the reader who is reading in context but reaches

Section 17 and forgets the definition along with the Sec-

tion 2 page number where it appeared.

ESTABLISHING A GLOSSARY/113

Readers need glossaries. They need them whether they are

reading in or out of context.

Developing organizations also need glossaries. They need

them to help maintain consistency among products. If glossary

terms are not standardized, organizations could end up with

interfacing software products that carry entirely different

meanings for the same term.

Remember to include acronyms and mnemonics. If the

product is named A GENeral Translator but is called AGENT,

be sure to include both entries. If the product has a TRANS-

FER program that is named XFER in the program call, include

them both also.
Terms should be defined the first time they appear in a

software manual. If you define each term twice, once in your
draft and once on another piece of paper, you will not have to

prepare a glossary. It will be finished whenever you are.

INDEXING

A software manual without an index is comparable to a library
without a catalog system. Everything is there, but just try to

find it!
Because software reference manuals concentrate on mak-

ing information easy to locate, the index is a natural adjunct.

No matter how carefully you have organized the manual, you

still need the index.

Because software user manuals concentrate on presenting

information in logical order, the index is the key to locating

particular subjects.

Readers will put up with just about anything but a bad
index. Give them an index that is nothing more than an in-

verted table of contents and they will probably write to your

organization and complain. Leave out the index and they will

insist they received a manual with pages missing.

Knowing how readers feel about indexes, you can go one

step further and create what is frequently called an instant

index. This is sure to increase the popularity of your manual.

If you are convinced that one index is all you can handle, read

on and discover how easily you can generate both types of
indexes.

PREPARING THE BACK MATTER/114

Preparing the Standard Index

Great strides are being made toward the development of com-
pletely automated index generators. Many organizations in the
meantime have developed programs that automate the entry,
positioning, and permutation of index items.

This is good news, but the fact remains that almost all
writers still must decide exactly what items go into an index.

And this is even better news. A simple procedure can be
used to prepare a standard index, and it involves only a few
steps.

1. Make a complete copy of the manual.

2. Starting on page 1, highlight each important word or
phrase with a highlighter pen.

3. When you have finished highlighting the last page, return

to page 1 and begin making entries, organizing them into

main and subordinate entries as appropriate. For example,
you would make the term ADD statement a main entry

under the A listings, the word Statement a main entry

under the S listings, and the word ADD a subordinate

entry under the word Statement. Be sure to include not

only words that actually appear in the text but also

other related words or synonyms that might be significant

to your readers.

Figure 8-6 illustrates this procedure. The left-hand page of

the illustration shows a sample page of text with appropriate
words and phrases highlighted. The right-hand page shows the

building of the standard index for that page. You probably
would never have this many entries for a single page, and if you

did, you would be merging or dropping many of the items in

the final pass.
Just like the table of contents, the standard index reflects

the usability of the manual. By glancing through the finished

index, you can determine the organization of the manual. In-

dexes with entries that reference more than four or five page

numbers indicate one of two things:

1. The organization of the manual is poor. If a specific index

entry references too many page numbers and the numbers

INDEXING/115

SIGNAL CONTROL

0 indicate (2G)

the occurrence or nonoccurrence of predefined conditions. Control

is performed by the | which can reference record G)

signals and system signals.

Signals identified by numbers | through 37 are reserved for pro-
grammer use and are referred Is. These signals
serve as program flags for | processing. After a record
is processed and stored on disk, the record is no longer available
for testing or referencing. Relevant information can be preserved
from one record to another through the record signals.

The syntax for

SET RECSIGNAL n
n-n

where n is an integer from | through 37.

Signal capniinied by numbers 40 through 60 are referred to as
system ne These signals are set by the program when
‘ i under program control.

The syntax for

SET SYSSIGNAL { n
n-n

where n is an integer from 40 through 60.

SUBROUTINE CALLS

; e enable the programmer to transfer control to a
subroutine to perform additional processing. Subroutine calls are
performed by the CALL and RETURN statements.

CALL nconditionally transfers control to the sub-
routine. Th provides linkage back to the main
program.

FIGURE 8-6 Creating a Standard Index

PREPARING THE BACK MATTER/116

Building Index Entries for the Sample Page

a) Signal Control

(2) Program flags

G3) System flags

(4) SET statement

() Record signals

(6) Interrecord processing

@) Setting record signals

System signals

(9) Execution errors

Testing system signals

(i) Setting system signals

(12) Subroutine calls

(13) CALL statement

(14) RETURN statement

Control
signals

Flags

program
system

Statement

Signals
record

setting
system
testing

Processing
interrecord

Errors

execution

Calling subroutines

FIGURE 8-6 (cont.)

INDEXING/117

Alphabetizing the Index Entries

CALL statement
Calling subroutines
Control

signals
Errors

execution
Execution errors

Flags
program
system

Interrecord processing
Processing

interrecord
Program flags
Record signals
RETURN statement
SET statement
Setting record signals
Setting system signals
Signal control
Signals

record
setting
system
testing

Statement
CALL
RETURN
SET

Subroutine calls
System flags
System signals
Testing system signals

FIGURE 8-6 (cont.)

reflect various sections of the manual, information is
scattered.

2. The index itself is poor. You have made one or both of
the following mistakes:

PREPARING THE BACK MATTER/118

You have included subsequent page numbers. If infor-
mation for an item begins on page 4, for example, and
continues onto page 5, only page 4 needs to be refer-
enced. The one important exception to this rule occurs
when you want to force the reader to page 5 because
some critical piece of information is there and should
not be overlooked.

You have found a common term, like procedure or com-
pilation, that runs throughout the manual and you chose
to reference it every time it appeared in the text.

Preparing an Instant Index

Back in Chapter 3 we discussed logical groupings called cata-
logs. Very large programming languages, like PL/I for example,
frequently have extensive catalogs. Even though these catalogs
become entry items in the standard index, they can be dupli-
cated in another part of the manual to make life easier for
the reader.

Where would they go? In the most convenient spot, which

would be inside the back cover. If you needed more room, you

could put some inside the front cover. Figure 8-7 shows a
sample instant index.

STATEMENTS

MULTIPLY ... 6-20

FIGURE 8-7 Creating an Instant Index

INDEXING/119

oreo psi re ye Wes
aay eitnarotes te. oiq) maile

ali a ' _ Bstootaw i

a: 7 ruleset, gil sirergt noimmes & bawot ‘ove fo:
Gore ats iuinoured? ruodguonty ants ted 1 a

‘tiocal® aa im att oo i meni. cv fanaa a co
i Fi | a i

WT ae + zs 7 bvesbes Ns atari! Insts ne ge iN ent re |
OW hy

frigeepenns . Yaley. sth NGuOTg ts3igol Lanawesih ont ‘walget ts song
J _s mf IT adit eoquogud Sulaunediny omit: uaa. aye
MSG Tetods nov Speke syleaste9 sad ¢itmdupet ay

a 5 bad a ‘3
: ARES Sher Oulbtente ot ot amolt. eins smog

TO) wepiaes eld oda ‘of lnunem sit to - willona a bate
5) SRP sesienants =a sheer of

habeas ran agate, ek ont ml fog. ved hivew amd ey
aa ; Oo nnge nen: bebeae voy iT s9v02 aoe edd eben od bluow.
_ 2 Wipale | eer a9ves Thon? oft shizni saxve tug. Dla} -

=) viene ; abhi Inetent olga
wl Ga PON yA CUI SaEE de pig as

; iyetiag: _— a i al

So syetene Maer ae eT TELS co

Sina yi RAI oe a ta

-

eS See)) ae VOM @o-..., WIA
| Mek VUuRSY 6) - YUSITIUM fa. ao ls aati

, oe neato : : ba A nea W sha - CAMA OO .. 2 . 25 T
yy fist 3 i . me = Sand 5 : :

PAT UHIAITA — ® -

Me OS TT Vaca je bie Reick.
‘ . ote CCOKP ee:

a: oo in See ee es neues — _
i. 4d. ——— “Bate mY OD i oaie f ei or os ee

: Ste ASEM an galten €8 aba aaa : a ; “a
p My

ae =e ae

‘ay Rens Whee ud
abe eed

< if r 7"
is o eT _ 7

“REP Fite ere oir SONETED rm

9 /PASSING

GltesFES I

A software manual can appear to be a well-written and com-

pletely accurate document, yet fail the test of usability.
The following write-up organized in reference-text format

represents this type of software manual. The text ignores many

of the guidelines discussed in this book and, as a result, fails

to meet the goal of a software manual. See if you can find 22

errors for a perfect score.

Errors and the line numbers on which they appeared fol-

low the sample text.

An improved write-up follows the error explanations.

ee

’ =

“er?

tsi tiv? ew & o¢ Of taeda fisy-iitinan? 91 atone 3 da

i tau Toten! add iigt Joy Qasmedob shehow @oitig
ae aeeisios at hesinegta quasi gniwolot OAT — ¥:
1a iforx odT labaam siewitor to sqyl er re ea

fie iaes ag Rah bite dood sist at bousaih. eonilobligs vil to
“$s bail Sse uey bi ied Sarum ma ow & ty ieee ari} ison ot.

= : ae : noose tashieq x tol none
—et be ineqqe “cent Ghaaiw. wo 2 oclecuss: Sriti eebicxecns mor)

eee : heer Siqnree At wot
aM _ probe nciqgke ties sf! awolfot go-stnw beporgni 2A i

SECTION 9/
FILE

MANAGEMENT

File management is handled by the File Executive routine

that communicates with the operating system. It performs

several functions that usually are under program control:

transmits data to and from storage, controls equipment

assignment, maintains file security, and performs error

recovery. |
The capabilities of File Executive are available to the

user through the declaration of file structures and use of
system macros. By selecting appropriate file structures,
you can maximize utilization of processing time. By using

system macros, you can access the operating system in-

structions which are called from the main program. System

macros are described in Section 10.

FILE TYPES

You may declare file type by entering the appropriate

value in the FILE parameter of the STRUCTURE state-

ment. The STRUCTURE statement is always the first

OnNOaRWHNH =

i loging ‘eng bye .yirusse oil safeiriam .

2S 7 Sai vO ron

~°
Reel ms

3S oc 2ee7 2 =

1 “| - —p “4 —_—

vw

Snitsoy Wino OFF edi ‘a Seite bg
Perit at tteteg: anttneqe sift utiteoreia
Jovines fumgeny iebey 9 fleas aed! angi
iiteniqinns dorian esol cio line oF adsl

> a}

sit! of seibinten gr vititoy24 sit ‘hey wottiltidenes ott
lo sz Ste swipes shit lo nobermbol air divendy
eeu GT, Gakigonqe gnitsetes, Ye ‘genoa
gritos: WE ong ‘gryvaesoorg ia raitenitin: aitininefe ne

ie 1 ftareya witerege oii wso9e iy Gey POTEET :

| sbeZE aang ety off mong halle gin Gobel on
ai OF nolwes? ai pais ag vn

: > ie

2

SIATMIOVGQR 5 Y Hg s9 va ii | ™! olf naiasly. art

state SAUTOONTS allt 20 reisenerae ae 4 ath ai
reid al nh ef Inanatese ak it! a

ba fh e

‘

statement in the program. STRUCTURE statement syntax
is:

STRUCTURE, FILE=file-type

There are three file types. Each type is described
below.

Basic Files (BA)

You declare basic files by entering the characters BA as a
FILE parameter. For example:

STRUCTURE, FILE=BA

Basic files do not have a formal structure. Data in
this type of file is referenced by standard internal address-
ing methods rather than by logical record position. After
basic files are created, they can be accessed only by File
Executive. They can’t be manipulated by the program.

Sequential Record Files (SR)

You declare sequential record files by entering the charac-

ters SR as a FILE parameter. For example:

STRUCTURE, FILE=SR

Sequential record files have a logical record structure.

Logical record structure is a structure in which each rec-
ord within the file has a logical predecessor and successor.
A record is referenced by this logical record position.

File Executive calculates logical record position and

passes this information to the program during processing.

The operating system may add special control information

when storing a record that is removed when the record

is transmitted.

Structured Subfiles (SS)

You declare structured subfiles by entering the characters

SS as a FILE parameter. For example:

FILE TYPES/125

29
23
24
25
26
27
28
29
30
31
39
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

STRUCTURE, FILE=SS

Structured subfiles are files that hold temporary
information; information in these subfiles can be passed

back to sequential record files. Subfiles are frequently
used to hold intermediate results during arithmetic pro-

cessing.

You can define any number of subfiles in your
program, but you must not access more than 10 subfiles

simultaneously. If you attempt to access more than 10
subfiles at any one time, program data in the most recently
accessed subfile will be undefined.

Structured subfile storage. File Executive assigns and

controls storage for a subfile. When processing on a sub-
file terminates, the space occupied by the subfile becomes

available to other subfiles. This convention provides an
efficient operating environment.

FILE IDENTIFICATION

Files are identified to File Executive by system IDs. Three
system IDs are used:

e PHYSID—physical ID

e LBLID—label ID

e INTID—internal ID

PHYSID (Physical ID)

PHYSID is assigned by the computer operator as he initial-
izes the devices. The ID is a 28-character identifier that
begins with a letter followed by 6 digits. This ID appears
in all messages issued by the operator.

LBLID (Label ID)

LBLID is assigned by the program when a tape file is
labeled. The ID is an 80-character identifier that consists
of the file name, user name, and program name. Each

FILE MANAGEMENT/ 126

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

oF

98

99

100

101

102

103

104

105

106

107

108

109

110

111

name is required and each is limited to 8 alphanumeric
characters. Optional documentary text can follow the
program name. This text is limited to 56 characters and

can consist of “‘boilerplate’’ information that is copied

from a user library.

INTID (Internal ID)

INTID is assigned by File Executive. The ID is a 6-charac-
ter identifier that provides the means for the operating

system to identify individual program requests, and during

error recovery, assuming error recovery has been specified
on your program RUN control command, provides the

means to trace program activity.

FILE ALLOCATION

The total space dedicated to resident and non-resident

files is determined at run time. File allocation can be

dynamic, fixed, or segmented.

e Dynamic Allocation. Dynamic allocation is allocation

of space in increments as required to perform read

and write requests during program execution. The

maximum amount of space that can be allocated at

a given time is declared by an installation parameter.

e Fixed Allocation. Fixed allocation is allocation

of space in a fixed number of words for program

execution. Fixed allocation is declared by the

ALLOC parameter of your program RUN control

command. A fixed allocation of at least ALLOC = 74

is recommended.

e Segmented Allocation. Segmented allocation consists

of a fixed number of contiguous blocks for program

execution. Segmented allocation is declared by the

SEG parameter of your program RUN command. Seg-

mented allocation is recommended for structured

subfiles. A segmented allocation of SEG = 2 is usu-

ally sufficient for one subfile.

FILE ALLOCATION/ 127

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Errors Made in the Sample Text

Line 2

It performs several functions that usually are under

program control.

The closest antecedent to the pronoun it is operating

system. The section is discussing file management, which is

handled by File Executive; therefore, it must refer to File

Executive. The text is not clear and concise.

Line 3

. . program control: transmits data to and from

storage...

This is the beginning of a list that should be struc-
tured for emphasis and easy viewing by the reader. The

four items following the colon should be listed, indented,

and possibly preceded by bullets.

Line 7

The capabilities of File Executive are available to the
WSer...

This sentence is not straightforward. Unlike the two

sentences that immediately follow, the text appears in

passive voice and refers to a user rather than you, the
reader.

Line 10

... Maximize utilization of processing time.

This is stilted text.

FILE MANAGEMENT/128

Line 1]

- + you can access the operating system instructions
which are called from the main program. -

The phrase which are called is restrictive and depends
on the absence of the comma. The word that rather than
which should have been used.

Line 19

You may declare file type by entering the appro-
priate...

The word may could be interpreted as possibility or
permission. The text is subject to two interpretations,

neither of which is correct; the writer really meant capa-
bility. The word can should have been used.

Line 27

There are three file types.

The indefinite pronoun there interferes with read-
ability. Indefinite pronouns should be avoided.

Line 27

Each type is described below.

The word below is a directional reference. Direc-
tional references should never be used. If update material
is added, the information below could be far away.

Line 39

. . referenced by standard internal addressing meth-

ods rather than by logical record position.

FILE ALLOCATION/129

Logical record position is an undefined term. Terms

should be introduced and defined before they are refer-

enced. Since the term is not even appropriate here, it

should not have appeared.

Line 42

They can’t be manipulated by the program.

Software manuals are subject to international audi-

ences. Foreign readers dislike contractions. The word

can’t should have appeared as cannot.

Line 58

The operating system may add special control infor-

mation...

Here is the word may again. This time the writer

apparently meant possibility and should have avoided

ambiguity by using the word might.

Line 59

. . . when storing a record that is removed when the

record is transmitted.

The function word that is introducing a subordinate

clause that appears to be referring to record but is actu-

ally referring to control information. The clause is mis-

placed, and the sentence is grammatically incorrect.

Line 76

If you attempt to access more than 10 subfiles at

any one time, program data in the most recently

accessed subfile will be undefined.

FILE MANAGEMENT/ 130

If you caught this, add 5 points to your score. Soft-
ware manual text should be structured for emphasis,
particularly when the text is pointing out that data can
be destroyed. The sentence not only should have been
indented for emphasis, it should have been preceded by
a warning!

Line 80

Structured Subfile Storage

Here is an unbalanced paragraph head. The head was
not even needed and should not have appeared.

Line 90

Three system IDs are used:

The system IDs are members of a named catalog. The

listed system IDs and the subsequent paragraph heads
describing them should have been alphabetized by system
ID name.

Line 101

PHYSID is assigned by the computer operator as he
initializes the devices.

Here is the sexist pronoun he. This is the most diffi-

cult type of correction you will ever have to make in soft-

ware technical writing. The sample improved version at the

end of this chapter offers one solution—perhaps you can

find another.

Line 115

. can consist of “‘boilerplate”’ information that is

copied from a user library.

FILE ALLOCATION/131

Quotation marks should never appear unless they are

actual computer entry characters. Here the writer was

trying to indicate a coined word. Even if an italics font had

been available, the word boilerplate borders on slang and

is rarely necessary.

Line 121

The ID is a 6-character identifier that provides the

means for the operating system to...

This long sentence with its multiple phrases and

clauses completely loses the reader. The sentence lacks

readability and should be rewritten.

Line 132

... resident and non-resident files...

Unnecessary hyphens add clutter to software manuals

and increase the workload of the production staff. The

word nonresident, like most words using the prefix non,

is not a hyphenated word.

Line 140

The maximum amount of space that can be allo-

cated at a given time is declared by an installation

parameter.

Dropping hints about anything so important as an
installation parameter is unfair. The reader who needs to
know about this parameter deserves some kind of explana-

tion. The text is not precise.

Line 150

Segmented allocation consists of a fixed number of

contiguous blocks for program execution.

FILE MANAGEMENT/ 132

The text for this third member of the bulleted list is
not parallel. The sentence should have read:

Segmented allocation is allocation of space in a fixed
number of contiguous blocks for program execution.

Line 152

Segmented allocation is declared by the SEG parame-
ter of your program RUN command.

You might have missed this one, but not very many

readers would. The program RUN command was called
program RUN control command in every other instance.

Terminology should always be consistent.
The following write-up is an improved version of the

File Management write-up that appeared at the beginning

of this chapter. This text corrects the errors in the previous

version by following the guidelines for effective software

technical writing.

FILE ALLOCATION/133

| saeGsy regppe ak . yotqado ality } Satan avitasts rat epaltebing of aniwollot ye pore
= u aN seh : ‘ems actid ‘stubter to Srtt c ere
a ——_ ae t pertined of, the oroduttion stgth, Fine : wi Ape ratoet is a _— words ust Bnet x depbtesied “ * usng the prefix —_

.

i# ne Jae ; ;
=

ho Tae Ampocat ef space That can. ba wiles
J 2 Sen (i~ detiasd a> 35 imutallatiog: «

iis +4 Pa a
: pe en

Prose Ste ¥ > = ke >

fiend Thakdls ea ee pd : ‘qrageseaant a. Sai)= HST) “a A Paranete fh . Tie, ruta whe nenlg £4 Wee”
6 yf te tis PA Heles ae Yeu So ak t bad > ar tory nt sce Baa. OF splat «t cea.

214

Srntal: Aocstina (iSiatS.ot-3 So aria - a itiw Sele vg raerare ahaa:

SECTION 9/
FILE

MANAGEMENT

IMPROVED

File management is handled by the File Executive routine

that communicates with the operating system. File Execu-

tive performs several functions that usually are under
program control:

e transmits data to and from storage

e controls equipment assignment

© maintains file security

e performs error recovery

You can take advantage of these File Executive capa-

bilities by declaring file structures and using system macros.

By selecting appropriate file structures, you can reduce

processing time. By using system macros, you can access

the operating system instructions that are called from the

main program. System macros are described in Section 10.

pea SvitiraR oft att vd belbnad at a4
ter Sd all yaveteue gai tian ei) Mtiw aotecinumines
wher St ilaatew tu) annitsaut lexsvor nmatteg

oe
=

; = ,

‘Tawint: mont bas o} xieb Mimenstt « “
Instivigiees Inomigigps aatthiy « S

virmoos otf anieiniwm .« .
= Mavoost Ire sanolmeq w=”

‘eho Wiluss3 oT edt To sninnvbk wile mad Ot -
PONT rrsdee pith ai Line eaiton vie of snitch esta is
pubay A259 Noy Pursuiia elit wshyorggs anijosise ya ks wood he HOW amen more aaley Ya" semis pve fll

sit mont bolfss "srs tet? enolioitend ansieye eso tafe OF poles? ai hadimeel wig 261: ari? | bac oe

Peel

FILE TYPES

You can declare file type by entering the appropriate value
in the FILE parameter of the STRUCTURE statement.
The STRUCTURE statement is always the first statement
in the program. STRUCTURE statement syntax is:

STRUCTURE, FILE=file-type

Three file types are available:

e@ basic

@ sequential record

e structured subfiles

Basic Files (BA)

You declare basic files by entering the characters BA as a
FILE parameter. For example:

STRUCTURE, FILE=BA

Basic files do not have a formal structure. Data in this
type of file is referenced by standard internal addressing
methods. After basic files are created, they can be accessed
only by File Executive. They cannot be manipulated by

the program.

Sequential Record Files (SR)

You declare sequential record files by entering the charac-
ters SR as a FILE parameter. For example:

STRUCTURE, FILE=SR

Sequential record files have a logical record structure.

Logical record structure is a structure in which each record

within the file has a logical predecessor and successor. A
record is referenced by this logical record position.

File Executive calculates logical record position and

passes this information to the program during processing.

FILE TYPES/137

The operating system might add special control informa-
tion to a record when the record is stored; this information

is removed when the record is transmitted.

Structured Subfiles (SS)

You declare structured subfiles by entering the characters
SS as a FILE parameter. For example:

STRUCTURE, FILE=SS

Structured subfiles are files that hold temporary in-
formation; information in these subfiles can be passed

back to sequential record files. Subfiles are frequently

used to hold intermediate results during arithmetic pro-

cessing.
You can define any number of subfiles in your pro-

gram, but you must not access more than 10 subfiles

simultaneously.
WARNING: If you attempt to access more than 10

subfiles at any one time, program data in the most recently
accessed subfile will be undefined.

File Executive assigns and controls storage for a sub-

file. When processing on a subfile terminates, the space

occupied by the subfile becomes available to other sub-

files. This convention provides an efficient operating
environment.

FILE IDENTIFICATION

Files are identified to File Executive by system IDs. Three
system IDs are used:

e INTID—internal ID

e LBLID—label ID

e PHYSID—physical ID

INTID (Internal 1D)

INTID is assigned by File Executive. The ID is a 6-charac-
ter identifier that allows the operating system to:

FILE MANAGEMENT IMPROVED/138

e identify individual program requests
® trace program activity when error recovery is speci-

fied on your program RUN control command.

LBLID (Label !D)

LBLID is assigned by the program when a tape file is
labeled. The ID is an 80-character identifier that consists
of the file name, user name, and program name. Each
name is required and each is limited to 8 alphanumeric
characters. Optional documentary text can follow the
program name. This text is limited to 56 characters and
can consist of standard information that is copied from a
user library.

PHYSID (Physical ID)

PHYSID is assigned by the computer operator at device
initialize time. The ID is a 28-character identifier that
begins with a letter followed by 6 digits. This ID appears
in all messages issued by the operator.

FILE ALLOCATION

The total space dedicated to resident and nonresident

files is determined at run time. File allocation can be
dynamic, fixed, or segmented.

e Dynamic Allocation. Dynamic allocation is allocation

of space in increments as required to perform read

and write requests during program execution. The

maximum amount of space that can be allocated

at a given time is declared by the OPTIONS installa-
tion parameter; the setting of this parameter is deter-

mined by the data administrator.

e Fixed Allocation. Fixed allocation is allocation of

space in a fixed number of words for program execu-

tion. Fixed allocation is declared by the ALLOC
parameter of your program RUN control command.

FILE ALLOCATION/139

A fixed allocation of at least ALLOC = 74 is recom-

mended.

Segmented Allocation. Segmented allocation is

allocation of space in a fixed number of contiguous
blocks for program execution. Segmented allocation
is declared by the SEG parameter of your program
RUN control command. Segmented allocation is

recommended for structured subfiles. A segmented
allocation of SEG = 2 is usually sufficient for one
subfile.

FILE MANAGEMENT IMPROVED/140

GLOSSARY

This glossary lists terms that appeared in the text. The defini-
tions for these terms apply only to the manner in which the

terms were used in this book.

ABBREVIATED CALLOUT A callout that appears as a

stand-alone or parenthesized phrase.

BACK MATTER Material that appears in the back of a

manual; usually consists of appendixes, glossary, and standard

index.

BALANCED PARAGRAPH HEADS At least two para-
graph heads appearing on the same topic level.

CALLOUT A reference to a numbered illustration or

table.

CATALOG A series of logical groupings.

CROSS-REFERENCE A reference to another part of

the same manual or to another manual.

DATA ENTRY PROCEDURE SUMMARY A centralized

listing of all data entry procedures that appear throughout a

manual.

a
* Satteb eal Test oat ai bewsaues ‘ate li oie
ai) wholsiw: at f torus sitio vino Miqgs airng3. pi

& as musty desid follies: KY rere Reet a
- - — wed Dasieattirsssg 10 gngle

rs *s bud shh fu i eates teri} lsteetetd RATA WAR tuba bas sriazolg eoxibrsyge 30. 2alanos “alleen rite.
Sea

—iyaRg-ow! deeol JA 2K WIARO AMES. REVAL SS isval siqo! Sage oct it sahieage abhsst qn, 7 .
“3S aebleiiaull her: ndinun 8 Ob somites A PSLART ,

. aru 73 Jeotgo) Io ebizge ONS. a | io ste GF: oF sons7sis A SOWA 2A 25 iether willing O96 learecn aione seft ee bsrileuins A YARRA BAe ,ORA VTA | PNY Sa — S WIGS UOUT totes adi aouibaatag ere — ‘Rg Yo gnitell

ae w >

< beh Reg aarroves (eg 2: ae 7

DIRECTIONAL REFERENCE A reference to informa-
tion that is positioned above or below text.

EMPTY PARAGRAPH HEAD A paragraph head immedi-
ately followed by another paragraph head with no intervening
text.

EMPTY SECTION HEAD A section head immediately
followed by a paragraph head with no intervening text.

EXTERNAL SPECIFICATION — See Specification.

FEATURE A capability of a software product.

FRONT MATTER Material that appears in the front of
a manual; usually consists of a revision record, preface, table
of contents, and syntax conventions.

IN-SECTION REFERENCE A reference to another part
of the same section.

INSTANT INDEX An abbreviated index of common en-
tities that appear throughout a manual.

NAMED CATALOG A series of logical groupings in which
each member of the group has a specific name.

NONRESTRICTIVE CLAUSE A clause that is not vital
to the meaning of a sentence.

OUT-OF-MANUAL REFERENCE A reference to an-
other manual.

OUT-OF-SECTION REFERENCE A reference to an-
other section of the same manual.

PARAGRAPH HEAD An identifying title for subsequent

tex

PARALLEL TEXT ‘Text that is consistent in style and in
construction.

PREFACE Information that identifies the subject matter

and audience of a manual.

RELEASE DATE The date on which an organization

plans to deliver software to its customers.

RESTRICTIVE CLAUSE A clause that is vital to the

meaning of a sentence.

REVISION RECORD A history of the development of
and supporting documentation for a software product.

RUNNING HEAD An identifying line of information

that appears on each page of a section, usually beginning on

the second page.

GLOSSARY /143

SECTION HEAD An identifying title for a section of a

manual.

SENTENCE CALLOUT A callout that appears as a com-

plete sentence.

SHADING A technique in which specific information
appears shaded to differentiate between what is entered by an
individual and what is supplied by the computer system.

SOFTWARE REFERENCE MANUAL A complete de-
scription of a software product.

SOFTWARE TECHNICAL WRITER A technical writer
who specializes in writing about computer software.

SOFTWARE USER MANUAL A manual that explains
how to use a software product.

SPECIAL CHARACTERS Characters other than digits

or letters.

SPECIFICATION A description of a software product

written by a high-level analyst, stating objectives for the pro-

gramming staff.

STANDARD INDEX The standard alphabetized listing

of subjects and their page numbers in a software manual.

STRUCTURED TEXT ‘Text that is arranged for empha-
sis and easy reading.

SYNTAX CONVENTIONS A centralized listing that
explains how programming syntax is represented in a manual.

SYNTAX SUMMARY A centralized listing of all syntax
that appears throughout a manual.

UNBALANCED PARAGRAPH HEAD A single para-
graph head appearing on a topic level.

UPDATE MATERIAL New information or changes to

existing information in a software manual.

GLOSSARY /144

INDEX

Abbreviated callouts, 9

Acronyms:

in glossaries, 114

in named catalogs, 33

Active voice, 81

Alphabetic order:

in reference manuals, 33

in user manuals, 55-57

Appendixes:

data entry operations summary,

113

data entry procedure summary,

109, 112

error messages, 105-6

syntax summaries, 109-11

what to include, 105

Approval cycles, 22

Audience (See Readers)

Back matter:

appendixes, 105

glossary, 112-14

indexes, 114

instant index, 119

standard index, 115-19

what to include, 103

Balanced paragraph heads, 71-72

Basic concepts:

in reference manuals, 30-31

in user manuals, 53-54

Callouts, 9

Can versus may, 81-82

Catalogs, 31-34

Clarity, 8

Clauses:

multiple, 91

nonrestrictive, 87

restrictive, 87-88

Code cutoff, 23

Conciseness, 8

Consistency:

conventions, 92

names, 92

terminology, 91-92

writing style, 10, 14

Contents, table of, 99-100

Contractions, 93

Cross-references:

in reference text, 20

in tutorial text, 21

Cutoff code, 23

145

Data entry operations summary, 113

Data entry procedure summary, 109,

112

Debugging sample programs, 37

Defining terms, 113-14

Diagnostic libraries, 106

Directional references, 90

Empty paragraph heads, 73-74

Empty section heads, 73-74

Error messages, 105-8

Examples:

in reference manuals, 36-37

in user manuals, 57-58

External specifications

(See Specifications)

Features, 54, 56

Filled paragraph heads, 75

Filled section heads, 75

Foreign readers, 92-93

Formatting software manuals, 4-6

Front matter:

preface, 97-98

revision record, 97-98

syntax conventions, 101-2

table of contents, 99-100

what to include, 95

Glossaries, preparing, 112-14

Glossary, 141

Heads:

balanced paragraph, 71-72

empty, 73-74

filled, 75

paragraph, 4-6, 69

purpose, 4, 6, 73

running, 4-5

section, 4-5, 69

structured, 69

unbalanced paragraph, 71-72

Hyphenation, 83

Illustrations:

callouts, 9

cluttered, 12

complete, 9

meaningful, 9-10

uncluttered, 10, 12

Indefinite pronouns, 84

Indexing, 114

instant index, 119

standard index, 115-19

Information, finding:

for reference manuals, 28

for user manuals, 52

Information, including related:

in reference manuals, 36

in user manuals, 57

In-section references, 88-89

Instant index, 119

Intermediate writer, 3

Interpreting specifications, 29

It, 85

Italics, 87

Jargon, 85-86

Junior writer, 3

Listings:

error message, 106-7

program, 29-30

Logical order:

in reference manuals, 35

in user manuals, 55-57

May, 81-82

Might, 82

Mnemonics, 114

Multiple clauses, 91

Multiple phrases, 91

Named catalogs, 33

Neuter pronouns, 85

Nonrestrictive clause, 87

Organization, 17

reference manual, 30

reference text, 17, 20

text, 19-20

tutorial text, 17, 21

user manual, 53

writing task, 22-23

Outline:

reference manual, 37-40

user manual, 58-61

Out-of-manual references, 89-90

Out-of-section references, 89

Pagination, 4-5

Paragraph heads:

balanced, 71-72

empty, 73-74

filled, 75

purpose, 4, 6, 73

structured, 69

unbalanced, 71-72

INDEX/146

Parallelism, 73, 76

Parenthetical phrases, 86

Passive voice, 81

Phrases:

multiple, 91

parenthetical, 86

Preciseness, 8

Preface, 97-98

Program:

code cutoff, 23

listings, 29-30

syntax, 109

Programming:

jargon, 85-86

notes, 29

Pronouns:

indefinite, 84

neuter, 85

sexist, 84-85

types, 83

Quotation marks, 86-87

Readability:

breaking up text, 6-7

defined, 79

Readers:

foreign, 92-93

reference manual, 27

types, 19

user manual, 51

Reference text:

organization, 17

organization rules, 20

References:

directional, 90

in-section, 88-89

out-of-manual, 89-90

out-of-section, 89

types, 88

Release date:

reference manual, 42

user manual, 62

Restrictive clause, 87-88

Revision record, 97-98

Rules:

examples:

reference manual, 37

user manual, 58

organizing:

reference text, 20

tutorial text, 21

summarizing syntax, 109

Running heads, 4-5

Schedules:

reference manual, 42

user manual, 62

Section heads:

empty, 73-74

filled, 75

purpose, 4, 6, 73

structured, 69

Section 1:

reference manual, 30-32

user manual, 53-55

Senior writer, 3

Sentence callouts, 9

Sexist pronouns, 84-85

Shading technique, 58-59

Slang, 87, 92

Software manuals:

appearance, 6-7

appendixes, 105

approval cycles, 22

back matter, 103

characteristics, 14

consistency, 10, 14, 91-92

content, 6

cross-references, 20-21

error messages, 105-8

format, 4-6

front matter, 95

glossaries, 112-14

goal, 14

indexes, 114-19

organization, 17

pagination, 4

preface, 97-98

rating, 6

readability, 79

readers, 19

reference text, 17, 20

requirements:

of writer, 3

of writing task, 22

revision record, 97-98

running heads, 4-5

standards, 20, 22

structure, 69

syntax:

conventions, 101-2

summaries, 109-13

table of contents, 99-100

tutorial text, 17, 21

Software reference manual:

acronyms, 33

alphabetic order, 33

INDEX /147

Software reference manual (cont.) from reference manual, 52

catalogs, 31-34 related, 57
characteristics, 25 logical order, 55-57
cross-references, 20 organization, 53
examples: outline:

preparing, 36-37 preparing, 58-60
rules, 37 sample, 60

functions, 25 questions, asking, 52

information: readers, 51

basic concepts, 30-31 release date, 62
finding, 28 schedules, 62

from program listings, 29-30 Section 1, 53-55
from programming notes, 29 shading technique, 58-59

related, 36 specifications:

logical order, 35 outlining from, 59

named catalogs, 33 writing from, 62-67

organization, 30 use of, 51-52

outline: writing prerequisites, 61-62

preparing, 37-40 Special characters, 33

sample, 39 Specifications:

questions, asking, 30 characteristics, 28-29

readers, 27 interpretation, 29

release date, 42 outlining reference manual from, 38

schedules, 42 outlining user manual from, 59

Section 1, 30-32 writing reference manual from, 41-47

special characters, 33 writing user manual from, 62-67

specifications: Standard index, 115-19

characteristics, 28-29 Standards:

outlining from, 38 company, 22

writing from, 41-47 industry, 20

use of, 28 Stilted text, 93

word selection, 40-41 Straightforward text, 8
Software technical writer: Structure, 69

background, 3 Structured text, 77

goal, 15 Summarizing:

intermediate, 3 data entry operations, 113

junior, 3 data entry procedures, 109, 112

responsibilities, 3 syntax, 109-11

senior, 3 Synonyms, 91-92

Software user manual: Syntax:

cross-references, 21 conventions, 101-2

examples: data entry operations, 113

preparing, 57-58 data entry procedures, 109, 112

rules, 58 languages, 109

shading technique, 59 with divisions, 110

features, 54, 56 without divisions, 111

functions, 49 summaries, 109

information:

basic concepts, 53-54 Table of contents, 99-100

from customer support analysts, Tables:

$2-53 callouts, 9

finding, 52 cluttered, 13

from programmers, 53 complete, 9

INDEX/148

meaningful, 10-11 That versus which, 87

uncluttered, 10, 13 There, 84

Test, 121 Tutorial text:

Mex: organization, 17

clear, 8 organization rules, 21

concise, 8

ee cont nen Unbalanced paragraph heads, 71-72

parallel, 73, 76

precise, 8 Which, 87

reference, 17, 20 Words:

slang, 87, 92 choice of, 40-41

stilted, 93 disliked by foreign readers, 92-93

straightforward, 8 mnemonics, 114

structured, 77 prefixed by non, 83

tutorial, 17, 21 synonyms, 91-92

INDEX /149

DATE DUE

808.066 209698

B885¢g
Browning, Christine

AUTHOR

Guide to effective soft-

TITLE

ware technical writing

ooo

DATE DUE BORROWER'S NAME

Browning 209698

5385601 153856

eu a cal®
808.066 B885

SOm (a
Gah Se
VAN EEN G

GaN Nae KOVUNING
WHAT IS A SOFTWARE MANUAL?

WHO WRITES THE MANUAL?

WHO ARE THE READERS?

HOW WILL THE READERS USE THE MANUAL?

Christine Browning answers these and many other questions as you
develop your skills as a software technical writer. With this book the author
will help you to play a key role in the computer Tato UIs} (nV oh")co)"/(ellare mel(st-1 4
IVTol{o Far lato ole-(oqitor-\Mant-lal0l-\icm elm UIS =) ice

hollowingranlimpontantintioductionito software manial Winiting =the
AW nyolrs

~ describes the importance of manuals and their functions and gives
criteria for writing them

shows you how to organize and plan the writing task and pinpoint your
readers

© approaches the writing of the reference manual and the user manual in a
step-by-step method

discusses techniques for increasing a manual’s useability
explains how to ensure readability and avoid common mistakes
includes a self-testing example

fofo] alt Uatow- We l(oy-t-t- lave) mere)an) el] (214 TaToIUES) (aVA cYanaltare) (olen

*
S|

o
>
08)
7
on
fo)
N

+
PRENTICE-HALL, INC.

Englewood Cliffs, N.J. 07632

