

LIVERPOOL
JOHN MOORES UNIVERSITY

LIBRAPY SERVICE__

A0LWVI V ’ I J

t>b o Co

Cidvjw iv.uii

.So* obfoooiua

LIVERPOOL JOHN MOORES UNIVERSITY

MOUNT PLEASANT L ,RY

_TEL 051 231 3701/3G34

For Beverly, Again

\
V;

Contents

Preface viii

Acknowledgments ix

Part 1 Toward a Science of User Documentation 1

1. Terms: Users and User Documentation 3

1.1 What Is a User? What Is User

Documentation? 4

1.2 Why So Many Good People Write

Such Bad Documentation 6

1.3 The New Notion of a Document 8

1.4 An Instrumental Approach:

Documents as Devices 10

2. Needs: How User Documentation Fails or

Succeeds 13

2.1 The Four Functions of User

Documentation 14

2.2 The Main Goal of User

Documentation: Control 16

2.3 Four Criteria for Effective User

Documents 18

2.4 Three Classes of Error 20

3. Usability: Documentation as a System 23

3.1 From Idiot-Proof to Usable 24

3.2 The First Law of User

Documentation 26

3.3 Defining and Measuring the

Usability of Publications 28

3.4 Usable Manuals Are Task-

Oriented 30

3.5 Controversy: Usability versus

Economy 32

3.6 The Ultimate Test: Reliability 34

Part 2 A Structured Approach to User Documentation 37

4. “Cultures”: How Documentation Gets

Written 39

4.1 Two Ways to “Write” a

Document 40

4.2 What Documentors Can Learn from

the History of Programming 42

4.3 Goals for an Effective Process 44

5. Developing Documents: A Structured

Approach 47

5.1 What Structured Means 48

5.2 What Modular Means 50

5.3 Good Documentation Is

Modular 52

5.4 Overview I—A Data Flow Diagram

for Developing Documentation 54

5.5 Overview II—A Work Breakdown

for Developing Documentation 56

6. Analysis: Defining What Publications Are

Needed 59

6.1 Preparing for Analysis 60

6.2 User Manuals in a Support

Context 62

6.3 Using the “Universal Task

Architecture” 64

6.4 Listing Features and Topics 66

6.5 The Concept of a User-

Audience 68

6.6 Forming the User:Task Matrix 70

6.7 Interacting through the Matrix 72

6.8 Assembling the Plan 74

7. Developing a Modular Outline 77

7.1 Conventional Outlines: Functions

and Flaws 78

Contents V

7.2 Requirements for a Modular

Outline 80
7.3 Defining a Module of

Documentation 82

7.4 Alternative Forms of the Module, for

Special Needs 84

7.5 Writing Headlines for Modules 86

7.6 Demonstration: Headings into

Headlines 88

7.7 How Outlines Develop 90

7.8 Option: Reaching the Modular

Outline in One Step 92

7.9 Is It Possible to Predict the Number

of Modules? 94

8. Developing a Storyboard 97

8.1 The Value of Models in Solving

Documentation Problems 98

8.2 Writing a Specification for Each

Module 100
8.2.1 Does Every Module Need

an Exhibit? 102

8.2.2 What If the Material Won’t

Fit into One Module? 104

8.3 Modules Must Be Functionally

Cohesive 106

8.3.1 Designing a Module That

Motivates 108

8.3.2 Designing a Module That

Orients the Novice 110

8.3.3 Designing a Module That

Guides the Experienced

User 112
.1 Replacing Prose with

Structured Text 114

.2 Replacing Prose with

Decision Graphics 116

.3 Handling Troublesome

Procedures 118

8.3.4 Designing Reference

Modules That Work 120

8.4 Mounting the Storyboard 122

8.5 Modifying the Storyboard 124

8.6 Won’t There Be a Lot of

Redundancy? 126

8.7 Handling Branches and

Hierarchies 128

9. Assembly: Generating the Draft 131

9.1 The Advantages of a Frozen, GOTO-

less Design 132

9.2 Selecting and Managing

“Authors” 134
9.3 Using Project Management to

Assemble the First Draft 136

10. Editing: Revising for Readability and

Clarity 139

10.1 Assessing the Draft: Main

Issues 140

10.2 Editing for Word and Phrase

Bugs 142

10.3 Editing for Sentence Bugs 144

10.3.1 Nine Ways to Write an

Unclear Instruction 146

10.3.2 Increasing the Power of

Instructions 148

10.4 Making Text Easier to Read 150

10.5 Demonstration: Procedures Before

and After 152

10.6 Other Ways to Make a Document

More Accessible 154

10.7 Using Style-Checking

Software 156

11. Testing: Developing a Formal Usability

Test 159

11.1 Elements in a Well-Made Usability

Test 160

11.2 Shortcuts and Compromises for

Usability Tests 162

11.3 Stereotypes and Traps in Usability

Testing 164

12. Maintenance: Supporting and Updating

User Documentation 167

12.1 Maintaining Documents: Stimulus

and Response 168

12.2 Information Support for Document

Maintenance 170

12.3 The Maintenance Paradox: The

More the Messier 172

12.4 Can Old Manuals Be

“Modularized”? 174

Vi How to Write Usable User Documentation, 2nd Edition

Part 3 Online Documentation and Internal Support 177

13. User Documentation without Books 179

13.1 The Full Meaning of “User

Support” 180

13.2 Breaking the Grip of Manuals 182

13.3 Some Relevant Principles of Human

Factors 184

14. Strategies for Online Documentation 187

14.1 Online Documentation—Five

Fronts 188

14.2 Books on a Disk 190

14.3 Styles of Online Help 192

14.3.1 Attaching a Menu-Driven

Manual 194

14.3.2 Deducing the Problem with

Context-Sensitive

Help 196

14.3.3 Providing Continuous Help

and Prompt Zones 198

14.3.4 How Help Screens

Fail 200

14.3.5 Designing a ’90s Help

Screen 202

14.4 Computer-Based Training: Two

Approaches 204

14.4.1 CBT in a Straight

Line 206

14.4.2 CBT That Branches and

Interacts 208

14.5 Improved Support through Better

User Interfaces 210

14.5.1 Writing Better Menus 212

14.5.2 Reducing the Memory

Burden: Windows and

Icons 214

14.5.3 Reducing Keystrokes:

Mouse and

Pointers 216

14.6 Improved Support through

Hypertext 218

14.6.1 Using Hypertext as

Help 220

14.6.2 Using Hypermedia as

Help 222

15. Afterword: Into the Next Century 225

15.1 Improved Support Through the

Three/'s 226

15.2 Author Power: An Agenda for

Documentors 228

Appendixes 231

A. Excerpt from the User Support D. Illustrative 2-Page Modules 242

Plan 232 E. Glossary of Selected Terms Used in

B. Illustrative Modular Outlines for This Book 258

User Manuals 236 F. Books and Periodicals for

C. Illustrative Module Specs 240 Documentors 260

Index 263

Contents VII

Preface

The purpose of this book is to enhance the power and professionalism of everyone who

plans, designs, or writes user documentation.

It’s hard to believe that when the first edition of

this book was published (then titled How to Write

a Usable User Manual) the IBM PC had just

been invented. Today, technical writers and

documentors are expected to be “power users” of

their computers, facile with word processing,

publishing, graphics, communication. They are

also expected to be conversant with the human

factors literature on such topics as screen design

and typography.

The PC/workstation revolution has changed

the nature of user documentation. Today, nearly

every professional, technical, and clerical worker

uses a computer. And they all need support.

From this perspective, manuals are part of a

larger entity: the user support envelope. This is

an assemblage of publications, Help screens,

computer-based tutorials, training materials,

interactive videos. .. any information product or

service helpful in enhancing the comfort and

productivity of users. Typically, today’s technical

writer is (or should be) responsible for the whole

envelope.

This second edition has a new title and

several additional chapters aimed at manuals as

part of a larger user support context. These days,

manual writing (often called paper documenta¬

tion) is planned and developed along with online

documentation, Help facilities, training pro¬

grams. . .. Unlike earlier generations of writers,

today's writer must even ask whether manuals are

necessary. Indeed, we are now entering an era in

which the people who used to write manuals are

often redesigning systems so that they won't need

so much documentation!

The computer technology in use today is of

two general types: the old-fashioned, unfriendly

kind, which still demands a library of dense,

“comprehensive” publications; and the new-

fashioned, intuitive kind, which often needs no

more than a “minimalist” manual. Each kind

wants its own style of support envelope.

This split of product types poses two pro¬

found questions for writers.

• First, why are we still laboring to document

systems that, with the right menus and Help

screens (that is, a better user interface),

would need little paper documentation?

• Second, why are we still writing laborious

and detailed manuals for well-designed

online applications that do not really need

them?

Both questions raise issues of power and

professionalism. Documentors should be influen¬

tial members of every system planning team, not

just low-level technicians who clean up others’

work without asking provocative questions. And

documentors should be professionals—people

who challenge the approach, schedule, and

budgets of the tasks they are assigned.

Writing user documentation is now a profes¬

sion. It is a stimulating mixture of the writer’s

craft, the artist’s design sense, the human factors

psychologist’s understanding of vision and

memory, and the engineer’s talent for modeling

and testing. The method advanced in this book is

a discipline that integrates all these diverse skills.

Viii How to Write Usable User Documentation, 2nd Edition

Acknowledgments

Many people have helped to form the ideas in

this book, and many others have supported my

research.

I have learned much from my clients and

colleagues, including Nurel Beylerian and Mark

Ramm of Canada’s Institute for Advanced

Technology, and Sherry Dell of Digital Equip¬

ment Corporation. Much of the first edition of

this work was written while I was a consultant to

NCR Corporation; my thanks to Stephen Bean,

Kenneth Helms, Madeline Flynn, and Michael

Bartlett, who not only asked questions but also

provided several of the answers.

Thanks also to my son and collaborator, Ryan

Weiss, for his assistance with the production of

the text. And, finally, deep felt appreciation to

Sean Tape, Susan Cain, and Linda Archer of

Oryx Press, who tackled the special production

problems of this book with enthusiasm and

ingenuity and who are responsible for what

people in the software business call its “look and

feel.”
I share the book’s merits with all these and

others. Its faults are my own.

Edmond H. Weiss
May 1991

Small portions of this book appeared in

altered form in Data Training newspaper. These

are used with the permission of DATA TRAIN¬

ING, Warren/Weingarten, Inc.

For permission to reproduce copyrighted

excerpts from their user manuals in Appendix

D, I thank Brad Solomon, David Champion,

Navtel Canada, Falconbridge Ltd., and, again,

NCR Corporation.

For permission to reproduce captured

screens, I would like to thank the following

companies and individuals:

• Ashton-Tate® Corporation, 20101 Hamilton

Avenue, P.O. Box 2833, Torrance, CA 90509-

9972: Copyright © 1988, Ashton-Tate Corporation.

All rights reserved. Reprinted by permission.

APPLAUSE n® and SIGN-MASTER® are

trademarks of Ashton-Tate Corporation (Exhibits

14.3.1b, 14.5.1b).

• Borland International, 1800 Green Hills Road,

Scotts Valley, CA 95066: Quattro Pro screen
display courtesy of Borland International (Exhibits

13.3a, 14.3a).

• Brightbill-Roberts & Company, 120 E. Washington

St., Suite 421, Syracuse, NY 13202 (Exhibits 14.4.1a,

14.5.3).

• Michael J. Mefford, P.O. Box 351, Gleneden Beach,

OR 97388: DirMagic has been upgraded to work with

DOS 4 and 5. The upgrade is available to anyone by

sending the author a SASE diskette mailer, formatted

diskette, and $15 to above address (Exhibit 14.5a).

• Microsoft® Corporation, One Microsoft Way,
Redmond, WA 98052-6399: Screen shot(s) Microsoft®

Windows™ © 1985-1990 Microsoft Corporation.

Reprinted with permission from Microsoft

Corporation. Microsoft is a registered trademark and

Windows is a trademark of Microsoft Corporation

(Exhibits 14.2b, 14.5a, 14.5.2a, and 14.5.2b).

• Peter Norton Computing, 100 Wilshire Blvd 9th FI,

Santa Monica, CA 90401 (Exhibit 14.3.3b).

• Power Up Software Corporation, 2929 Campus Drive,

Suite 400, San Mateo, CA 94403 (Exhibits 14.3a,

14.3.4a).

• WordStar® International Incorporated, 201 Alameda

del Prado, P.O. Box 6113, Novato, CA 94948:

Portions of this book were reproduced with the

express written permission of WordStar® International

Incorporated (Exhibits 13.3b, 14.3b, and 14.3.3a).

Acknowledgments ix

..

PART 1

Toward a Science of User

Documentation

1. TERMS: USERS AND USER
DOCUMENTATION

1.1 What Is a User? What Is User Documentation?
1.2 Why So Many Good People Write Such Bad Documentation
1.3 The New Notion of a Document
1.4 An Instrumental Approach: Documents as Devices

1.1 What Is a User? What Is User
Documentation?

Users are people who must be satisfied. Organizations or individuals buy and develop

technology with some goals, in pursuit of particular advantages. Generally; the users are

the ones who must be convinced that the goals have been met and the advantages real¬

ized. User documentation is a collection of information products that help these users get

the fullest benefit possible from the technology.

Any definition of the word user is risky. Distinc¬

tions between operators and users are fuzzy; even

distinctions between users and programmers are

getting harder to sustain. With appropriate

caution, then, I shall define a user as a person

more concerned with the outcome of information

processing than with the output. In other words,

users are people who treat computers as means to

some other ends: business, professional, or

personal objectives.

If users are to be satisfied, they must believe

that their objectives have been met, with accept¬

able effort and cost. The end matters more than

the means; the outcome more than the output.

How the system works is less important than how

to work the system to the advantage of the users.

Surely, users can become interested in the

inner workings of computers. Indeed, nowadays

many users invent their own applications with

tools and high-level languages that allow “non¬

programmers” to succeed at “desktop program¬

ming.”

But this does not alter the basic idea: Users

are people who want something bigger than, and

outside of, the particular device they are using. If

they could find a cost-effective way to get what

they want without a computer, they might.

Why stress this point? Because so many of

the people who develop systems—and the associ¬

ated documentation—tend to view the technology

as an end in itself. And because the ensuing user

publications and screens are so often unusable

technical treatises about the product, rather than

tools to help the users get what they really want.

For bigger systems and products, the users

are often entire organizations, with specialized

interests and skills: corporate executives, inter¬

ested only in the reports; functional managers,

seeking administrative support; senior operators,

charged with keeping the system going; junior

operators and clerks, feeding the system data and

monitoring its performance reports; maintenance

technicians and programmers; auditors and

quality assurance specialists ...

What all these diverse groups have in com¬

mon is that they must be satisfied. For those who

sell computer products in the marketplace, the

users are customers. For those who develop

systems and applications within their own organi¬

zations, the users are the managers of the func¬

tional departments. In both cases, the users pay

the salaries of the developers.

In the 90s, user documentation is a set of

information products—manuals, training materi¬

als, keyboard templates, online files, and Help

screens—that help users (now audiences and

readers) get full benefit from the system. Tradi¬

tionally, user manuals compensate for the diffi¬

culty and unfriendliness in systems; they answer

such questions as: What do I do next? What does

this mean? What is it doing now? Why didn’t

that work?

In well-planned user documentation, the

information products meet the users’ changing

4 How to Write Usable User Documentation, Second Edition

needs over time. As Exhibit 1.1 shows, user

manuals should not only help the users get started

but also stay apace of their evolving interests,

ultimately reducing the users’ dependence on the

developers.

Indeed, among the main concerns for today’s

documentors is the ironic question: How can we

improve the system so as to reduce the need for

user documentation.

Exhibit 1.1: What Users Need from User Documentation

Get Rarely-

Used Facts

Get Often-Used Facts

Learn Procedures

Learn Terms

And Elements
Lose

Shyness

Over Time, Users Need to...

Terms: Users and User Documentation 5

1.2 Why So Many Good People Write Such Bad
Documentation

Many of the firms that should write user documentation write none. Most of the firms that

write user manuals do not write enough of them or keep them up to date. And many of the

manuals written—even by the most sophisticated firms—are ineffective: clumsy; inacces¬

sible, and inaccurate.

There is a growing group of firms that consis¬

tently produces high-quality, readable user

documentation. A few more firms produce it

much of the time. Together, though, they are still

a handful.

The more typical case is no user documenta¬

tion at all. Traveling North America, I am still

surprised at how many computer companies,

engineering firms, software consultants, banks,

and manufacturers have no user manuals or

operating instructions for their systems or prod¬

ucts. (Even more terrifying is how many have no

technical or system documentation either.)

Those that finally succumb to pressure and

try to write documentation are likely to produce

unsatisfactory results: books that run the gamut

from hastily-typed-and-unusable to expensively-

typeset-and-unusable.

Why? How is it that companies are smart

enough to design an automated teller or a CAD/

CAM system or a network that allows computers

to talk to copy machines, but these bright, re¬

sourceful organizations cannot manage to write

an intelligible user manual?

There are two main explanations: first, some

don’t care; second, some don’t know how.

Long before there were user manuals for

computers, there were instruction books and

assembly guides for equipment. And for as long

as there has been such literature, much of it has

been unreadable. Why? Because, traditionally,

engineers and manufacturers do not like to spend

time or money on these documents, often forcing

their publication managers to beg for funds.

Moreover, a good many engineers, scientists,

and systems analysts hate to write. And the

writing they hate the most is explaining compli¬

cated, technical ideas to people who know less

than they do.

That many firms are indifferent to user

documentation is apparent. They set aside almost

no time to get it written and often assign it to

people with other “more urgent” things to do. Or

they delegate it to a junior employee who has

never written a complicated publication before

and who lacks the authority and leverage to do it

well.

Ironically, the writing of online documenta¬

tion is often entrusted to the same programmers

who wrote the cryptic screens and messages that

send users to their manuals in desperation.

In those firms that do care, matters are a little

better. Still, though, the central problem affecting

the writers of user manuals—including profes¬

sional technical writers—is that they have not

received enough guidance and instruction on how

to write them. Most people about to write a

manual have never written one before; only a few

have a “good one” to refer to as a model.

Even though there is about 40 years’ worth of

research on techniques that make documents

more accessible and readable, most people,

including more than a few professional technical

writers, have read none of it. Good writing is still

regarded as an art, in the least favorable connota¬

tion of the word: a discipline dependent on

hunches, intuitions, and instincts. Too many

discussions about user manuals—especially about

6 How to Write Usable User Documentation, Second Edition

editing and refining them—devolve into disputes

about personal preference.

So, in the extreme, stereotypical cases, user

manuals are often written by technical experts,

who dislike the job, give it as little effort as

possible, and use no formal criteria to decide if

the job was done well. Or, at the other extreme,

they are written by artisan technical writers, who

bring all their intuitive and stylistic sense to the

project, but who lack the theories and formal

criteria needed to evaluate it or to justify its cost

to the skeptics.

Analysts and technical experts cannot, work¬

ing alone, produce usable user documentation.

Not because they write badly; they do not write

any worse than people in other learned profes¬

sions. Rather, because they know too much and,

with few exceptions, assume so much in their

documents that they cannot make themselves

clear to less knowledgeable readers.

And neither can most technical communica¬

tors, who, in the typical firm, must petition for

“input” from the developers, thereby dooming

their work to errors and omissions. Indeed, there

is an inherent weakness in any user publication

conceived and written entirely by one person.

Such a document is hard to test and nearly

unmaintainable.
The usability of documentation (that is, how

appropriate, accessible, and reliable it is) can be

defined and measured. And, furthermore, achiev¬

ing usability demands participation of both

technical and communication experts.

Terms: Users and User Documentation 7

1.3 The New Notion of a Document

In the 1990s, our notion of a “document” will be considerably revised. Not only will

many documents exist in some form other than paper. Even paper documents will be

different; writing and reading will become the creation and manipulation of electronic

files and “document databases. ” In effect, documents will be perpetually revised and

enhanced.

The lingering prejudice against documentation is

mainly a result of its painful difficulty: almost

everyone finds documentation irksome and

distracting to write; all but a few find it irksome

and unrewarding to read. (A large manual is an

easy joke on a television comedy.) But another

part of the problem is the inadequacy of the

documents themselves. Not only are they often

badly written—first drafts by hurried and reluc¬

tant authors. They are also often inaccurate and,

typically, out of date.

Documentation loses most of its value when

it is not current, but, unfortunately, systems

usually change faster than documentors can keep

up with them. Until recently, documentors could

not be blamed. In the paper epoch, a flow dia¬

gram was drawn with a pencil and a plastic

stencil, a decision table was composed on a

typewriter, a glossary of terms was compiled by

hand—and none of the resulting documents lent

itself to rapid change.

Any form of documentation that resists

revision, tends to remain unrevised. And unmain¬

tained documentation falls into disuse and

disrepute. If most of the bugs in a program are

caused by the latest changes, and if the latest

changes are not reflected in the user documenta¬

tion, what practical good is the documentation?

Many of these problems are obviated by

current technology. Today, a prototype screen

can be revised and redrawn in a minute. A data

dictionary facility reminds the user that some

new terms have come into use without official

definitions. A document can be revised a dozen

times in an afternoon, with a clean print of each

version and an automatic highlighting of all the

changes from version to version.

Nowadays a document, or a piece of a

document, is actually a paper view of a digitally

stored entity. And digitally encoded entities are

far easier to reproduce, revise, interconnect, and

otherwise manipulate than any traditional form of

communication.

None of this technology has, of course,

altered the basic requirements of user support.

Sentences still have to make sense; diagrams

must be intelligible; ideas must be logical and

coherent. But the change is, nevertheless, qualita¬

tive and profound.

Documenters who accept the idea that sys¬

tem-related documents are never finished (just as

systems are never finished) can shake off their

’50ish ideas about publications and their ’60ish

ideas about system development. The documenta¬

tion of a system is in a nearly continuous state of

becoming. The “manuals,” whatever their form,

may be revised until one second before shipping

or installation.

In the era of document databases, publica¬

tions will become “virtual”—resident in files and

utilities, updated module-by-module, with the

same kernel materials appearing in manuals,

training materials, and online panels.

8 How to Write Usable User Documentation, Second Edition

Exhibit 1.3: Virtual Documents Reside in Document Databases

Terms: Users and User Documentation

1.4 An Instrumental Approach: Documents as
Devices

If writers are thought of as artists and user documents as works of art, then neither pro¬

fessional writers nor analysts!engineers are likely to produce usable manuals. The key is

to think of documents as devices.

If manuals or other information products are

thought of as works of art, it will be extremely

difficult to change the methods people use to

develop them. If, instead, each publication,

videotape, or series of Help screens is thought of

as a device, with a set of functions, then usability

becomes attainable.

Notice the analogy between documents and

computer programs. Manuals affect readers the

way programs affect computer hardware—except

that readers are far more fallible and have far less

reliable memories. Manuals or screens pass

instructions and data to their readers, who then

operate the system correctly and productively.

Thinking of books as devices is a serious

change in perspective for many writers and

analysts. Doing so obliges them to rethink their

notions of user documentation, and to change a

whole cluster of related attitudes.

As Exhibit 1.4 shows, the first change re¬

quired is a new conception of the writing process.

If documentation is an art, then the creativity is

in the drafting, the composing of the words and

sentences; writers who think of themselves as

artists spend most of their time writing and

polishing the draft. In contrast, if a manual is a

device, then the creativity is in the engineering,

writing the specifications and building and

testing models—all of which precede the execu¬

tion of the design (the draft).

A new view of the reader also becomes

necessary. The artist views readers as independ¬

ent and active; the burden is on the reader to find

things and apply them correctly. If books are

devices, though, readers are less independent.

Instead, they rely on the design of the book; the

burden shifts to the documentor. In this view the

writer controls the attention of the reader, much

as software controls hardware—and for similar

reasons.

Different criteria should be used forjudging

publications regarded as devices. If a document is

art, then the basic criteria are style and “ap¬

peal”—a sense of correctness and craft, pecu¬

liarly understandable to the writer but difficult to

explain to others. If it is a device, the basic

criteria are whether it meets the specifications

and performs the job it was assigned.

For artists, a very good book is one that

meets the advanced criteria of beauty, elegance,

“class.” But if a book is a device, the advanced

criteria are taken from engineering: maintainabil¬

ity (how easy it is to update and enhance the

book) and reliability (how often the book “fails”

in use).

And finally, the cost justifications are entirely

different. The hardest task for the artist-docu¬

mentor is to justify the cost of user documenta¬

tion. Beyond convincing management that at

least some user documentation is an unavoidable

necessity, the artist is usually powerless to justify

expensive processes and products. “Class” and

“style” are not usually persuasive. In contrast, the

justification for books as devices is that they save

or make money: Each device (document) should

return more than it costs.

10 How to Write Usable User Documentation, Second Edition

Exhibit 1.4: Documents as Works of Art vs. Devices

"WORK OF ART" "DEVICE"

PROCESS Compose, polish the draft Spec, test, refine

VIEW OF READER Independent, resourceful Dependent, error-prone

BASIC CRITERIA Style, appeal, preference Meeting the specs, usability

ADVANCED CRITERIA Beauty, elegance, "class" Maintainability, reliability

COST JUSTIFICATION Unpleasant necessity Productivity, efficiency, return

Terms: Users and User Documentation

2. NEEDS: HOW USER DOCUMENTATION FAILS
OR SUCCEEDS

2.1 The Four Functions of User Documentation

2.2 The Main Goal of User Documentation: Control

2.3 Four Criteria for Effective User Documents

2.4 Three Classes of Error

2.1 The Four Functions of User Documentation

Traditionally; user documentation has been divided into two large categories: instruction and

reference. Now, user documentation should be divided into four categories—orientation,

guidance, motivation, and reference. Thus, instruction becomes orientation (tutorials aimed at

the novice) as well as guidance (demonstrations aimed at the more-experienced user), and a

new category is added: motivation—writing aimed at overcoming reluctance.

To say that a manual describes a system or gives

information about a procedure is not to define its

purpose. Very few readers want a “description”

or “general information.”

Rather, every user publication should perform

one or more specific, discernible functions. But

what are these functions? What does user docu¬

mentation do?

The overall purpose of user documentation is

to help users get full value from a system—to get

their money’s worth. Traditionally, user docu¬

mentation has been expected to help in two ways:

• instruction—teaching people how to run or

operate the system or product

• reference—giving people key definitions,

facts, and codes that they could not be

expected to memorize

This simple classification scheme worked well

during the era in which the typical user was a well-

educated engineer, mathematician, or computer

professional. Run-books (instruction) and lookup-

books (reference) were all that a resourceful user

or operator would be likely to need.

But instruction is too large to be considered

one category. Instead, I propose to break it into

orientation and guidance. Orientation contains

those tutorial materials intended to train neophyte

users; guidance includes demonstrations of

processes or activities directed to a competent or

experienced reader.

Orientation documentation is the newest form

of user documentation, and the form that gives the

most trouble both to traditional technical writers

and, especially, to the programmers and managers

who have been conscripted into the job of writing

it. Further complicating matters is the rising

prominence of a reader I think of as Reader X, a

person who is intimidated by books and has sel¬

dom been able to learn successfully from reading.

Guidance is teaching by demonstrating and

showing. Aimed at a person who knows gener¬

ally what to do with the system, it shows whole

procedures and transactions, from the top down.

In contrast, orientation documents ordinarily

begin from the bottom, with elemental definitions

and concepts.

Reference documentation—what some

programmers mistakenly equate with user docu¬

mentation—is a compressed presentation of facts

and information, typically organized alphabeti¬

cally, useful mainly to people who know what

they need to know. Highly experienced operators

and users need nothing else; new and intermedi¬

ate operators and users need much more.

The change in the community of users has

created the need for a fourth function: motiva¬

tion. Documentation written to provide motiva¬

tion is supposed to get people to do what they are

reluctant to do. In effect, motivation is the selling

of ideas and methods. And although not every

user manual needs it, far more need it than have

it. Put simply, many system problems can be

blamed on reluctance, not ignorance. Whether

from insecurity or laziness, many operators and

users simply will not use systems the way we

think they should. They must be “sold.”

14 How to Write Usable User Documentation, Second Edition

Exhibit 2.1: Functions of User Documentation

Needs: How User Documentation Fails or Succeeds 15

2.2 The Main Goal of User Documentation
Control

A paradox of effective writing: To communicate well, one must respect the independence

and intelligence of the readers, but must not rely on them. For user documentation, the

best strategy is to adapt to the weaknesses in typical readers and to assume control of the

communication.

If a user manual is regarded as nothing more than

a package of facts, a binderful of miscellaneous

information, then its usefulness depends prima¬

rily on the skill and resourcefulness of the reader.

In contrast, if a manual has been engineered to

suit the interests and ability of the reader, then to

some extent it controls the user, that is, prevents

the user from misusing the material.

Many object to this use of the term control.

Any talk of “controlling people” elicits sincere

objections. But this is not to suggest that writers

should coerce the behavior of readers. Rather, I

mean that anyone who wants to write effective

user documentation should regard the readers as

complicated information processing systems and

try to control for the sources of noise and error

in such systems.

Documents affect readers in much the way

that computer programs affect computers: they

control their operations. And just as underde¬

signed software will cause the system to balk or

shut down, or to consume too many expensive

resources, so will underdesigned documents

cause readers to get lost, make errors, even shut

down their work. Just as an undertested program

will throw off indecipherable bugs nearly every

time it is used, so will an undertested manual or

menu generate mistakes and inconsistencies.

The objective is control of the readers/

users . . . for their own advantage. The aim is to

help the readers gain benefit from the system.

And the safest, most reliable way to do that is to

devise documents that compel readers to find

what they need, in the most efficient sequence,

and with a level of effort that neither discourages

them nor lowers their productivity. (I do not

recommend this view for all writing, or even all

business writing. Literature depends on the

imagination, experience, and intellect of the

reader, often demanding close reading and study.

But user manuals that must be studied to be

understood are, in general, ineffective.)

Every user publication fits somewhere on the

continuum that appears in Exhibit 2.2. At the

highest level of control are those publications

meant to be read from the first word to the last,

without omissions, without skipping or skim¬

ming. Most notable in this group are installation

plans, assembly instructions, orientation materi¬

als, new product proposals, and specifications. In

this category is nearly every document that is

incremental (presenting an accumulation of

increasingly complicated facts), procedural

(presenting a set of steps or activities that con¬

strain each other), or argumentative (presenting

a logical chain of assertions).

At the other extreme are publications that no

one would ever read in sequence: dictionaries,

glossaries, inventories, and directories—alphabeti¬

cal or numerical listings of reference material. Yet,

even at this end of the continuum, there is still a

benefit in controlling the reader. A well-designed

reference directory allows the user to find informa¬

tion quickly, with “one pass,” to complete the

search without needing to skip and detour, and,

finally, to exit promptly with the needed informa¬

tion. Underdesigned documents increase the

document overhead: the ratio of the effort needed

to find information to the effort needed to use it.

16 How to Write Usable User Documentation, Second Edition

Exhibit 2.2: Continuum of Control

Needs: How User Documentation Foils or Succeeds

2.3 Four Criteria for Effective User Documents

Documents (or designs for documents) can be tested against formal criteria. If the orga¬

nization can agree on the criteria, it can then develop quality metrics. The most useful

criteria for judging publications, from the least to the most demanding, are availability,

suitability, accessibility, and readability.

There are at least four levels of documentation

quality, starting with availability (Is there any¬

thing at all?) and moving through readability (Is

it in clear, easy-to-understand English?).

Availability

There are still developers who provide no

user documentation (or nearly none). Typically,

these are organizations in which almost everyone

is a programmer. Such organizations simply are

not attuned to users—what they do, what they

know, how they work. And until the unit hires

someone with such an awareness, it will continue

to overlook user documentation.

Suitability

Today, most developers provide at least some

user documents. Sadly, though, they tend to

subscribe to the encyclopedic view of the user

manual: Put everything in one big volume and let

Exhibit 2.3: Quality Criteria for User Documentation

Readability

Accessibility

Suitability

Availability

18 How to Write Usable User Documentation, Second Edition

the users fend for themselves. What they ought to

do is analyze what documents are needed and

align particular publications with the tasks and

interests of particular readers. Until that happens,

their “comprehensive” documents will often be

unsuitable, unusable, and unreliable.

Accessibility

It is possible for a book to contain exactly

what the user needs, but still to be organized in a

useless tangle. As a result, readers have to skip,

branch, loop, and detour from page to page—

until they get lost. In software engineering terms,

the book, because of its excessive number of

GOTOs, is unreliable. Even a skillful reader will

probably get lost.
Only firms that design their books for acces¬

sibility (and test and debug the designs) produce

smooth-reading, GOTO-less user manuals. A

user manual that is both suitable and accessible is

likely to be called task-oriented. This means that

the developer of the manual has analyzed what

the users do, how they use the system and prod¬

uct, and what information they need.

Interestingly, the ’80s began with a cry for

“comprehensive” documentation and ended with

a fascination for “minimalist” documents.

Readability

Even when a book is suitable and accessible,

its ultimate quality resides in its readability—

how easily and accurately it can be understood by

its intended audience of users. Still, too many

regard matters of language and style as “frills”;

hundreds of manuals and instruction books are

published without so much as a cursory review

by a professional writer or editor. Only profes¬

sional editing can produce manuals of the highest

quality.

Note: Although every sentence in every
publication should be as readable as possible,

well-written sentences offer no real benefit to

usability if they are the wrong sentences or are in

an unworkable arrangement. You cannot make

old manuals usable merely by improving their

style.

Needs: How User Documentation Fails or Succeeds 19

2.4 Three Classes of Error

For user documents to score high on the four criteria of quality, they must be well de¬

signed. When documents score low on one or more of the criteria, the failure can be

blamed on one or more classes or errors: strategic, structural, or tactical.

A point rarely appreciated is that much of what is

wrong with user documentation is the result of

mistakes made before the draft was written. It is

equally true that the most serious flaws in user

publications are nearly impossible to correct

after the first complete version of the publication

is drafied. Astonishingly, in some firms, editors

don’t even see the manual until the programmers

and analysts consider it finished!

There are three broad classes of error that can

undermine user documentation—and only the last

of them can be corrected in the editing stage. The

first, strategic errors, includes failures of plan¬

ning and analysis: failure to define what docu¬

ments were needed to serve the likely audiences

in the completion of specific sets of tasks and

applications. The main strategic errors are

• overlooking the need to plan or analyze

documentation requirements

• allowing the product or system to shape the

documentation, instead of the users’

interests and tasks

• assuming that only one encyclopedic manual

is needed

• refusing to adapt to the vocabulary and

reading skills of the intended audience

Structural errors are failures of design and

modeling: insufficient outlining, lack of rigorous

review of the outlines, failure to test the plan of

the publication before writing a detailed draft.

Even if the planners have made no strategic

errors, structural errors can still lower the suita¬

bility of the manuals and, more relevant, so

reduce their accessibility as to make them unus¬

able. The most common structural errors are

• using little or no outlining or other

document specifications

• relying on superficial, “grade school”

outlining methods

• failing to submit outlines and specifications

to harsh reviews (walkthroughs)

• excluding the intended users and readers

from the design process

Tactical errors are failures of editing and

revision: inconsistent nomenclature, mechanical

errors of grammar and spelling, clumsy “first

draft” style, ambiguous sentences. Tactical errors

occur either when the organization lacks compe¬

tent editors or when it just does not allow enough

time for the editors to work.

Notice the paradox. On the one hand, it is a

serious mistake to publish a manual that has

never been reviewed by a competent wordsmith.

On the other hand, is even more dangerous to

believe that the skills of a wordsmith can com¬

pensate for having written the wrong publication.

In effect, then, a usable manual must pass

three tests:

• The strategic test proves that the manual is

well-defined, is aligned with a specific

audience and use, and is part of a coherent

set or list of information products.

20 How to Write Usable User Documentation, Second Edition

• The structural test ensures that the elements • The tactical test ensures that the sentences

in the publication are in the most accessible, and diagrams will be free from distracting

reliable sequence. errors and clumsy style.

Exhibit 2.4: Three Classes of Document Error

ERROR SOURCE

■ poor definition of audiences

STRATEGIC ■ poor definition of tasks

Failures of Planning/Analysis ■ lack of overall support plan

■ lack of substantive outlines

STRUCTURAL ■ poor tests of outlines

Failures of Design/Modeling ■ excluding users from the review

■ careless inconsistencies

TACTICAL ■ "first draft" style

Failures of Editing/Revision ■ substandard editing

Needs: How User Documentation Fails or Succeeds 21

3. USABILITY: DOCUMENTATION AS A SYSTEM

3.1 From Idiot-Proof to Usable

3.2 The First Law of User Documentation

3.3 Defining and Measuring the Usability of Publications

3.4 Usable Manuals Are Task-Oriented

3.5 Controversy: Usability versus Economy

3.6 The Ultimate Test: Reliability

3.1 From “Idiot-Proof” to “Usable”

When engineers and inventors devise truly new products or techniques, they frequently

worry least about whether the product is easy to use. Ever since the mid-1980s, though,

usability has become one of the main objectives for designers of computer and communi¬

cation products.

Today’s computer systems for the most part

perform the same tasks as the computers of the

1950s—but do them faster, cheaper, and with

less human effort. Since the advent of the data-

processing industry, then, there has been an

evolution of criteria; with each era, the ante has

been raised.

As Exhibit 3.1 shows, the prevailing criterion

of system quality in the 1950s was mere per¬

formance—whether the system worked at all.

Gradually, analysts and engineers shifted their

attention to the economies of efficiency—

throughput and cycle times, resources used, and

so forth.

As machines and memory dropped in price,

though, the emphasis on efficiency decreased in

many places. Nowadays, it often costs more in

personnel expenses to make a machine efficient

than could be saved in the efficiencies. Today,

the most important, most frequently discussed

technical criterion is maintainability, the ease

with which a system can be fixed, adjusted, or

enhanced.

In the 1980s, the theme changed somewhat.

Although many organizations had still not en¬

tered the 1970s—that is, they were still concoct¬

ing unmaintainable systems without benefit of

the new development methods—the latest chant

was “user friendliness.” The criterion became

usability—making the system easy to use.

Computer technology, then, has completed an

entire cycle of development: It still does mostly

the same things it did in the beginning—but in a

much friendlier manner. The typical operator of

today’s computer is not a mathematician or

programmer, but rather a clerk or business

person, or even a 10-year-old child. Engineers no

longer use such terms as “idiot-proof’ to describe

Exhibit 3.1: Evolution of System Quality Criteria

1950 1960 1970 1980 1990

24 How to Write Usable User Documentation. Second Edition

new systems, for to do so harks back to an earlier

epoch of computer technology, when the user

was presumed to be an expert.
Usability is an engineered constraint. That is,

the built-in characteristics of a device, system, or

program put an upper limit on how easy that

entity will be to use. A task that calls for 20

keystrokes usually will be more error-prone than

a task that calls for 2—no matter how well the

instructions are written. A cClear Display> key

right next to an <Insert> key is more likely to

produce an inadvertent clearing of the display

than a key several millimeters removed, despite a

warning in the manuals.

There are competing notions of usability, of

course. For example, making a system easier to

learn at first is not always consistent with making

it easy in long-term everyday use.
Usability is a consequence of how well the

system has been defined, specified, and tested. It

comes from doing the analysis and design well,

not from writing heroic user documentation after

the fact.
For documentors, moreover, the term usabil¬

ity has two important, related meanings. First, it

refers to the ease with which a system can be

operated; second, it refers to the ease with which

the documentation can be operated. Put another

way, if the user documentation is also regarded

as a system of communication devices, then it

follows that the usability of the documents re¬

stricts the usability of the computer system. When

the user documentation is extremely usable, then

the computer system will be no harder to use than

it must be. If the set of user manuals and other

information products is the best possible, of high

usability, then the system documented will be as

easy to use as its engineering permits.

Usability: Documentation as a System 25

3.2 The First Law of User Documentation

Each system or product has an inherent usability; each document associated with the

system has its own usability. But even the best documents cannot compensate effectively

for flaws in the system itself The first law is Clean Documentation Cannot Improve
Messy Systems.

Once a system is installed, there is little anyone

can do to change its overall usability. Although it

can be improved, the improvements are likely to

be superficial. One especially ineffective way to

increase the usability of an existing system is to

try cover its flaws with “especially good” user

documentation (in effect, leave the hole in the

road but post warning signs, and then mistakenly

believe that the hole is no longer a danger).

Drawing a map of a jungle will not turn it

into a garden. Nor will writing a slick operations

guide make an intimidating and complicated

procedure usable. Whenever user documentation

is planned after-the-fact (first you develop, then

you document), it cannot compensate for failures

of analysis, design, or coding.

Although it may be odd to say so in a book

about user documentation, it is wrong to expect

user manuals to do too much. They should not be

expected to ameliorate engineering and program¬
ming mistakes.

Clean documentation cannot improve messy

systems. Please remember that a simple proce¬

dure, explained well, is clearly simple. A difficult

procedure, explained well, is still difficult. A

dangerous and trouble-prone procedure, ex¬

plained well, is clearly dangerous and trouble-

prone. Just because bad writing makes proce¬

dures harder to follow, it does not then follow

that good writing will make them easier to
follow.

The best way for user documentation to

improve a system is for it to be created integrally

with the system, that is, for a “user support

envelope” of information products and services

to be planned as part of the system itself. Then

writers of user documents, as the “first users” of

the system, can discover ways to improve the

system that developers are unlikely to see. And if

they write clearly enough, before the system is

etched in disk, there may be time to. modify the

system.

As Exhibit 3.2 shows, if user documentation

is written (or at least designed) during the func¬

tional specification of the system, it can be used

as an engineering tool; developers can detect and

correct errors and unreliabilities in the human

part of the system—the so-called user interface.

Even during the design stage, there is still a

chance that the discovery of hard-to-explain

procedures can be reflected in improvements

within the modules of the system being docu¬

mented; it is still practical to make these changes.

At the trailing end of development, however, the

documentor is more or less stuck with the system
as it is.

Note the irony: Documentors who discover

flaws in the systems soon enough can eliminate

many pages of tortuous documentation.

26 How to Write Usable User Documentation, Second Edition

Exhibit 3.2: Effects of Documentation Phasing

IF DEVELOPED DURING... DOCUMENTATION CAN:

Functional Specification

■ Clarify procedures and policies

■ Identify unreliable elements

■ Increase chances for user satisfaction

Product Design/Coding

■ Expose bugs and errors

■ Suggest more efficient designs

■ Get designers to make early decisions

Distribution and Use

■ Help users adapt and accept

■ Warn against bugs in the system

■ Disclaim liability

Usability: Documentation as a System 27

3.3 Defining and Measuring the Usability of
Publications

If the objective is to design and engineer publications for usability, and if the process is to

be more than “artistic, ” then there must be formal testing—not only in the finished state

but also at intermediate stages. A proposed Index of Usability: The more often the in¬
tended reader must skip material or reverse directions while reading, the less usable
the publication.

Although the most usable publication in the

world cannot compensate for inadequacies in a

system, usable documentation is an essential

ingredient in successful implementation. Is it

possible to define a formal Index of Usability for

documentation, in such a way that it can be

applied before manuals are written, in time to

correct whatever flaws and bugs it discloses?

(Remember the essential point: The later in the

life of an information product, the more expen¬

sive changing it becomes and, therefore, the less

likely that it will be changed.)

I propose that the most predictive Index of

Usability is the number of times the intended

reader must skip material or reverse directions to

use the publication. Obviously, this is an inverse

predictor: the more skipping and looping, the less

usable the publication. Of the two, reversing

directions (looping) is the far more serious flaw.

Reading is both continuous and one-directional;

anything in a document that either breaks the

continuity or reverses the normal direction

reduces the efficacy of the reading process and

makes the book less reliable.

This Usability Index is not meant to suggest

that all user documentation should be written so

that every user reads straight through, from the

first word to the last. In fact, relatively few

publications will be like that. The point, rather, is

that any skip or loop in the document—intended

or not—exacts a cost and lowers usability.

Note also that the proposed Usability Index

includes the phrase “intended reader.” Clearly,

readers with different interests and backgrounds

would use the same publication differently.

Indeed, the same reader, after one or two one-

directional passes through a manual, would later

skip and glean. Clearly, the more diverse the

audience for a certain manual, the harder it is to

make it usable for everyone.

Interestingly, the skips and loops (branches,

detours, and GOTOs) can be grouped into three

classes, corresponding to the three main errors of

documentation:

Strategic errors (errors of boundary and

scope) cause the largest skips and spins.

Failure to align the books with the readers

will send the readers jumping from book to

book, until they finally find what they

need—or give up. If a user needs two books

to do one job, the selection and partitioning

of the books does not reflect the needs and

interests of that user. And if a user must

ignore 98 percent of a publication, it must

have been designed for someone else.

Structural errors cause medium-sized loops

and skips. Even though the publication has

the right content, it calls for frequent

jumping from front to back, especially when

the text refers to charts, tables, and exhibits

that are elsewhere. Among the greatest

barriers to the usability of a publication is

the separation of the text from the exhibits

28 How to Write Usable User Documentation, Second Edition

referred to in the text. Readers should be

able to see Exhibit 1 when the text says “See

Exhibit 1 ”

Tactical errors cause the smallest GOTOs,

usually within a paragraph or page. Because

the editing is poor, the reader must loop on

unclear sentences, inconsistent

nomenclature, distracting errors of

grammar, and so forth. Although these are

the smallest breaches of usability, they can

be powerful enough to undermine even the

right book with the right structure. (Defined

in this way, only tactical errors need await

completion of the draft before detection.)

Exhibit 3.3: Error Types and Their Associated Loops

ERROR-TYPE LOOP-TYPE

Strategic
■ searching several books
■ needing two books for one task
■ needing to ignore most pages

Structural
■ jumping from front to back
■ never reading pages in sequence
■ searching for exhibits, tables...

Tactical
■ stopping to notice mechanical errors
■ getting stuck on inconsistent terminology
■ rereading difficult passages

Usability: Documentation as a System 29

3.4 Usable Manuals Are Task-Oriented

Product-oriented manuals are usually horizontal; they describe everything that could be

done and are usually organized according to the characteristics of the product described.

Task-oriented manuals are vertical; they show how to do specific things and are orga¬

nized according to the procedures or tasks to be carried out by the reader.

In the early days of computing, languages did

everything, while application programs did one

or two things; there were few user-defined

options. So the run-books for these programs

were straightforward, linear, easy to follow, and

task-oriented.

Today’s products, however, perform as many

applications as you can think of: high-level

languages; database management systems; pack¬

ages that do nearly any statistical analysis or

generate nearly any common business chart;

“front-end” packages that connect the packages.

There is a potentially significant strategic

problem in writing the user documentation for

these multipurpose systems. Many users are

unresponsive to the discussions of dozens of

generic skills and features. For example, a doctor

or warehouse manager may be uninterested in

“How to Write a Column Formula,” but exceed¬

ingly interested in how to define a particular

column in a particular spreadsheet.

Here is the paradox: Even the most versatile

software products—whether they are database

managers or spreadsheets, or “integrated multi¬

tasking programming environments”—are used

in applications. Although the people or company

who invented the product may be terribly proud

of its versatility, and even though some sophisti¬

cated users (mainly experienced computing

hands) can think of a hundred useful things to do

with the product, most users want to learn how to

do their projects, solve their problems, and

improve their performance.

Horizontal (product-oriented) publications

usually reveal themselves in their tables of

contents. The document is arranged alphabeti¬

cally (by program, command, transaction, or

feature), or sometimes by a logical grouping of

parts and components (for example, front panel,

back panel, keyboard, buffers) To find informa¬

tion in these documents, users must know what

they need to know.

In contrast, vertical (task-oriented) manuals

have tables of contents with language and opera¬

tions familiar to the readers. If the users know

what they have to do, the publication tells them

what they need to know about the system.

Consider the pair of outlines in Exhibit 3.4.

Do you notice that they cover many of the same

topics? Although there are some interesting

differences in style (to be discussed later), the

main difference is that Version A is horizontal

and Version B is vertical. To use Version A, one

must skip and loop incessantly, and this lack of

usability in the manual will detract from the

usability of the product. Version B is task-

oriented. In use, Version B will be much more

reliable.

30 How to Write Usable User Documentation. Second Edition

Exhibit 3.4: Horizontal vs. Vertical Organization

Version A (Horizontal) Version B (Vertical)

1. System Administration 1. Installing Your System

1.1 Defaulting Security Features 1.1 Backing-Up the Distribution Disks

1.2 Defining Configuration 1.2 Defining Your Company's Security Rules

1.3 Initializing Files 2. Creating Your Files

2. File Management 2.1 Setting-Up Your Chart of Accounts

2.1 Defining a File 2.2 Transferring Your Current Books

2.2 Reading Files 2.3 Choosing the Budget "Planning Factors"

2.3 Linking Files 3. Applications

2.4 Updating/Maintaining Files 3.1 Analyzing Profit and Loss by Cost Center

3. Input Preparation 3.2 Analyzing Year-to-Year Differentials

3.1 Worksheets 3.3 Forecasting Revenues and Costs

3.2 Data Entry 3.4 Simulating Alternative Budgets

3.3 Data Editing 3.5 Simulating Retum-On-Investment

4. Outputs 4. Presentations

4.1 Printing 4.1 Making TREND Charts

4.2 Graphics Printing/Plotting 4.2 Making SHARE Charts

4.3 Storage 4.3 Making COMPARE Charts

Appendix I Alternative Configurations 4.4 Making WORD Thbles

Appendix II Sample Outputs

Appendix III Error Messages

Usability: Documentation as a System 31

3.5 Controversy: Usability versus Economy

Many of the things that make a document more usable lead to repetition and duplication,

even what some would call waste. Often, the objectives of usability and economy are in

conflict, and the conflict must be resolved through policy and negotiation.

Many of the people who lead the user documen¬

tation activity in the their companies are publica¬

tions managers, whose top priority is often

production economy, keeping the above-the-line

costs for documentation as low as possible.

Sometimes, though, the downstream costs

and diseconomies associated with mediocre user

documentation overshadow the short-term sav¬

ings for paper, printing, and mailing. Production

economy, more often than not, is in conflict with

usability. Many of the practices that reduce the

production, distribution, and storage costs of

manuals also reduce their readability. For ex¬

ample: Have you ever met a reader who enjoyed

working from microfilm or reading fine print?

Do you know anyone who likes to flip back and

forth between two sections of a book, taking

comfort in the fact that the publisher was able to

avoid duplication?

Consider first the methods for reducing the

bulk of manuals. The combination of small print

and narrow margins is the easiest way to reduce

the number of pages—and the associated print¬

ing, mailing, and filing costs. The result is

densely packed, nearly unreadable documents.

Similarly, many editors and publishers object

to blank spaces and half-empty pages. But this

book advocates (and practices in its own format)

the policy of beginning each new section at the

beginning of the next page; the result is loosely

packed, more-readable documents.

The most controversial issue is redundancy—

a term that most of us have seen as a criticism of

our reports and essays in school. Yet, redundancy

is not always a term of criticism. In engineering,

redundancy refers to the existence of deliberate

backups, technology that allows the system to

keep working even when the primary device fails

or malfunctions. From the extra buttons sewn

into a good suit to the three or four extra sources

of power to drive the coolant pumps in a nuclear

power generator, the idea is the same. Redun¬

dancy means reliability.

In communication, redundancy compensates

for the noise and entropy in a channel. The safest

way to get an undistorted signal through a noisy

channel is to send it more than once. That’s why

pilots repeat themselves when they talk to the

flight controllers (“yes, affirmative”) and that’s

why electronic funds transfers are sent at least

twice, and then checked for parity.

In some ways, even large typefaces, wide

margins, and white spaces at the ends of sections

are also forms of typographic redundancy,

allowing the channel to be less cluttered with

information. More obvious is actual repetition,

deliberate use of the same text and exhibits in

more than one place—unthinkable to most

publication managers. And even more interesting

than the recurrence of the same text or exhibit is

a practice severely discouraged by nearly every

editor of technical journals: the use of art and

diagrams that restate what is already in the text;

saying in a graph what can be said equally well in

a sentence or paragraph.

To people who worry about the short-term

cost of publications, exhibits and illustrations

should never be used unless they are necessary,

unless they can show something that cannot be

expressed in conventional sentences. Yet, I

32 How to Write Usable User Documentation, Second Edition

propose that well-made user publications will

“back up” their sentences with pictures (and vice

versa). Why? Because there are word-readers and

diagram-readers, and if we want to adapt to the

audience and control the transaction, we have to

write for both.

Occasionally, there will be a fortunate case in

which economy and usability are compatible: for

example, the use of smaller text to let an entire

procedure fit on one page. Generally though,

most of what makes books more usable—includ¬

ing such items as durable, heavy paper stock and

color printing—may seem expensive and waste¬

ful at first.

In the longer view, though, the benefits in

efficiency and productivity can save thousands of

times what they cost. And in the broader view,

money spent for more-readable documentation

eliminates or contains the costs of field service,

training, troubleshooting, and a variety of other

expensive services. Hard-to-use documents create

a demand for technical assistance, and avoiding

that demand is the main cost justification for

easy-to-use documentation.

Good documentation should pay for itself in

enhanced productivity, improved sales, and

reduced support costs. But to appreciate the

economic advantage of usable documentation,

there must be a leader with a sense of the dis¬

economies of unproductive work and a grasp of

the total costs of user support, not just this quar¬

ter’s printing budget.

Usability: Documentation as a System 33

3.6 The Ultimate Test: Reliability

The Usability Index (the degree to which manuals are free from skips, branches, loops,

and detours) is not arbitrary and it is not just aesthetic. It bears directly on the cost of

implementing and supporting systems. Usable documents are more reliable, that is, less

likely to fail in use.

It is not enough that a system merely work. It

must work reliably—predictably and unfailingly.

(And it must be maintainable—easily serviced on

those occasions when it fails to perform.) Most of

the advances in system development methods, the

whole repertoire called “software engineering,”

pay for themselves by giving us more reliable

and maintainable software and technology.

Now that programmers have finally begun to

think this way, it is time to get the message to the

documentors, including the professional technical

writers. If documentation is a system, and if each

manual is a component or device in that system,

then each manual should be built for reliability

and maintainability as well.

But what is meant by “reliability of a man¬

ual”? In what sense does a manual fail? Can a

manual be appraised by tabulating its mean time

between failures (MTBF being the most popular

reliability metric in engineering)? Does a manual

really break down?

A manual may be said to have failed if the

user/operator is unable to work because of it—if

a mistake, malfunction, or interruption can be

blamed directly on the manual. Failures can

result, then, from omitted information, incorrect

information, or ambiguous or contradictory

information. Or failures can result from an

inaccessible arrangement of materials that raises

the effort needed to find information, leading to

false starts, frustrated efforts, or improvised

solutions to problems that cannot be handled with
the manual.

The first main justification, then, for the

Usability Index is that there is a direct connection

between the number and complexity of the skips

and loops in a book and the number of errors and

breakdowns likely to occur. The more paths there

are through a publication, the higher the chances

of taking a wrong path. The more discontinuous

movement through a document is, the higher the

chances for a wrong move. The more choices the

reader has to make, the higher the odds for a

wrong choice.

This prediction applies most directly to

readers with limited experience, and especially to

those with modest reading skills. But no one

should mistake this principle as applying only to

people who have trouble with complicated books.

Even though some users are accustomed to

tangled, unreliable books, no one likes them.

Reliability can be treated as a target. Docu¬

mentors who are trying to reach Reader X (the

person who has trouble learning from books) had

better set the target high. Those writing for

Reader Y (the person who is used to complicated

books and is not afraid of them) can set it some¬

what lower.

For example, should the manual for an

application duplicate and incorporate material

from the operating system manual, or should the

reader be directed to the other publication?

Should certain routines that occur repeatedly be

presented in full each time they occur, or should

they appear once in the text, with appropriate

page references elsewhere?

34 How to Write Usable User Documentation, Second Edition

solve these problems in computer programs can

be applied with little modification to the writing

of usable user documents.

Documents, then, suffer some of the same

problems as programs: complicated, tangled logic

leads to breakdowns and then slows the process

of repair. Fortunately, the techniques devised to

Exhibit 3.6: Measures of Reliability

^ Mean Time between Failures

Usability: Documentation as a System 35

.

PART 2

A Structured Approach to

User Documentation

4. “CULTURES”: HOW DOCUMENTATION GETS
WRITTEN

4.1 Two Ways to “Write” a Document

4.2 What Documentors Can Learn from the History of Programming

4.3 Goals for an Effective Process

4.1 Two Ways to “Write” a Document

There are two broadly different ways to write a document. The first is to compose it,

crafting the sentences and paragraphs while they are being written, as would a writer

working on a script. The second is to engineer it, preparing a series of increasingly finer
specifications until, at last, a document “drops out. ”

When people think of writers, the image that

usually comes to mind is a stereotype of a person

slaving over the sentences—few notes, no plans,

no models or mockups. There are just the blank

pages (or screens) and the writer’s mind.

There is a similar stereotype for computer

programmers: people who think with their hands

on the keyboard—trial and error, inspired

guesses, flashes of genius. In movies and on TV,

programmers never consult a dataflow diagram!

There are, in fact, such stereotyped program¬

mers and writers. They are usually either ama¬

teurs or professionals working on very small

projects. It is when they bring this approach to

expensive and complicated projects that the

trouble starts.

Programming and documenting, you see, are

two of the very few complicated projects that can

actually be carried off in this loose, unplanned,

artistic style. (The term artistic is not meant to

imply that all or most artists work this way;

rather, that is the popular conception of how they

work.) No one would manufacture a car that way

or build a bridge by trial and error. Indeed,

computer programmers and technical writers are

among the very few people I know who would,

without hesitation, invest six person-months of

effort on a nearly unspecified project and hope

for it to turn out well.

Putting the issue somewhat differently, there

are various attitudes and “cultures” that can

influence the writing of user documents. As

Exhibit 4.1 shows, the artist puts relatively little

effort into planning. The main push is in the

drafting stage—which is often interrupted for

lack of ideas and inspiration. Thereafter, the

biggest effort is applied to patching up the prob¬

lems in the manual, a task that trails off into
infinity.

Exhibit 4.1 also shows the distribution of

effort for the engineer. (The term engineer is not

meant to suggest that all engineers work this

way.) Here, most of the effort is in the plan¬

ning—definition, design, modeling. The draft is

merely the implementation of the design, not the

creation of the product. And because engineers

seek out problems early and solve them while it

is still cheap and easy to do so, relatively little

patching is needed.

A complementary distinction between the two

cultures concerns when other people get involved.

The artists do not want to show the work until it

is “ready.” Usually, no one but the artist gets to

review, test, or criticize the work of art until it is

virtually finished. In contrast, the engineered

product is discussed extensively—and criticized

and revised extensively—at several intermediate

stages, before the author’s ego is too deeply

invested in the work.

Again, the terms artist and engineer are not

supposed to suggest that all artists work without

planning or that all engineers are so perfectly

disciplined. In truth, many professional writers

prepare elaborate plans before they commit

themselves to a draft and many engineers solve

problems with casual trial and error—what

programmers are likely to call prototyping.

Rather, the purpose of the distinction is to em-

40 How to Write Usable User Documentation, Second Edition

phasize that certain professions can be practiced

with either “culture” and, moreover, that when

the projects get complicated and the stakes get

high, the artist should yield to the engineer.

Exhibit 4.1: Two Cultures of Technical Writing

"Cultures': How Documentation Gets Written 41

4.2 What Documentors Can Learn from the
History of Programming

Programming has evolved from an informal craft into a formal branch of engineering, its

emphasis shifting from coding to design. Fortunately, many of the tools developed to

improve programming can be adapted to writing user manuals.

In a 1979 issue of ComputerWorld Robert Perron

wrote that, “a comparison of programming in its

early days to technical documentation in its

present state yields some striking similarities.”

That is, people writing manuals in the 1980s and

1990s often resemble the people who wrote

programs in the 1960s. They are prone to the

same errors, they have the same foibles, and their

products (publications) have flaws similar to

those in the programs written by the earlier
group.

In the late ’50s and early ’60s, computer

programming was an exotic, if not eccentric,

profession. The people working in it were drawn

by aptitude and passion. They were not trained

by the schools and colleges and they were not

treated like ordinary white-collar employees.

Programmers worked alone, like artisans, often

without much supervision and sometimes without
budgets or deadlines to worry about.

Two factors, more than anything else,

changed the nature of the programmer’s job.

First, the typical program became too large for

one person working alone, ending the solitary

luxury of the programmer. Second, the major

expense of programming shifted from inventing

programs to maintaining them, and with that shift

came the realization that most programs were

disorderly, tangled, unmaintainable messes. Both

these important developments led to the inven¬

tion of software engineering methods and “struc¬

tured” techniques, and to a redefinition of the
programmer’s occupation.

In today’s organization, however, it is more

likely to be the writer who is treated with defer¬

ence, who works with little supervision and not

much budgetary constraint. Today, for example,

most companies have no idea what it costs to

write a page of user documentation.

But just as complexity, size, and maintenance

problems made the old way of programming

obsolete, so are they making the old way of

writing manuals obsolete. Today, writing must be

managed, budgeted, scheduled, and done by

teams of writers working in parallel. And if

documents have to keep pace with systems that

are revised every few months, the manuals have

to be modifiable. For the most part, then, the era

of the artist-documentor is over.

And what lessons have the programmers

learned that the documentors should also learn?

First, the single most important principle of

software engineering: the cost of detecting and

correcting a problem rises exponentially as a

function of how late in the development cycle the

problem occurs. That is, what costs a few min¬

utes or a few dollars to fix at an initial planning

session can cost hundreds during design, thou¬

sands during implementation, and tens of thou¬

sands during distribution and operation.

Programmers have also learned the psycho¬

logical implication of this principle: The more

costly and complicated a needed change, the less

likely it is to be made, or made properly. So the

essence of structured methods is to develop

products in a such a way that problems and flaws

appear as early as possible.

To become an engineer, then, either a pro¬

grammer or documentor must adopt an attitude

that may come hard at first: an eagerness to find

42 How to Write Usable User Documentation. Second Edition

errors. Usable and reliable technology is the

result of testing, and the function of testing is to

make things fail. Anyone who hopes that the test

will show no flaws, that the specification will

generate no arguments, that the outline will raise

no questions—that is, anyone who hopes that

errors will come up later (rather than sooner)—is

asking for expensive problems and poor quality.

In sum, what documentors must learn from

the history of programming is the craft of top-

down design and testing:

1. The sooner an error or problem is detected,

the cheaper and easier to correct it. Therefore,

privacy and informality in the early stages of

a manual are quite expensive.

2. The most serious problems in a complicated

product are usually in the connections and

interfaces, not in the units or modules. There¬

fore, the cost-effective way to develop a

manual is to build it top-down, to assure the

right mix of documents and the right content

and sequence within each document before

the draft.

3. Unless a project has been designed top-down,

it may take longer for several people to do the

job than for one person working alone.

Therefore, when documents must be prepared

on an accelerated schedule, they must be

written to a detailed, top-down model.

4. It usually costs much more to maintain and

support a complicated product or system than

to design it simply in the first place. There¬

fore, the claim that there is not enough time

and money to develop high-quality, maintain¬

able manuals is nearly always false.

“Cultures': How Documentation Gets Written 43

4.3 Goals for an Effective Process

What is needed is a documentation process that raises the level of debate and improves

the suitability and appropriateness of the available documents; reduces the skips, jumps,

and detours; enhances clarity, readability, and reliability; and makes the publications

easier to maintain.

Even those firms that have begun to conduct

formal, rigorous usability tests of their docu¬

ments will soon learn that errors in a complete

draft are far more recalcitrant than errors in an

outline. Consider the analogy with those firms

that do aggressive unit tests of their program

modules but just cannot seem to integrate the

tested modules later on. What these firms seem to

overlook is that program modules, like book

modules, must be integrated before they are

written, not after. And that the most agonizing

problems in writing or reading documents are in

the links and connections, the interfaces, not the

individual units or pages.

A documentation process that learns the

lessons of software engineering will achieve the

five goals listed below.

It will improve the “fit” between user

documents and the needs and convenience of

the users. The method must include a way of

aligning the material to be written—the informa¬

tion products—with the users of those products.

In other words, the process must be driven by the

particular characteristics of the users and opera¬

tors and their peculiar interests in the system,

rather than follow a one-size-fits-all standard for

user publications. More simply, the process must

recommend ways to define a logical mix of

information products and services, a user support

envelope. Furthermore, the proposed contents of

this mix must be testable as a proposal. That is,

it must be possible to review the plan and find

strategic errors in the making, well before the

plan is turned into manuals and disks.

It must reduce the skips, jumps, and

detours. Even though modern word technology

makes it easier to move blocks of text around, it

is still inescapable that once a document is

completely drafted, it develops an inertial resis¬

tance to structural change. To be effective, any

technique used for documentation will, necessar¬

ily, expose structural errors before the inertia of

the draft takes hold. An effective documentation

process will generate a series of increasingly

more detailed models of the product. And these

models—which appear between the outline and

the draft, the interval when the artistic writer

usually works alone—will be testable against

clear measures of usability.

It will allow writers to work in teams and

in parallel. The most common excuse for inade¬

quate documentation is the claim that preparing it

would delay the delivery or implementation of a

system by several weeks or months. But this

excuse is, rather, a clear indication of the need

for techniques that will allow user documentation

to be written by teams of people, working on

well-defined chunks of the publications, in

parallel.

Note that without the right method, having

writers work in teams can actually slow the

process; with the wrong approach, two writers

will take two or three times longer to write a

book than one writer! An effective documenta¬

tion process will organize the work into a set of

manageable parcels, capable of independent

execution, with costs and schedules that can be

predicted and controlled.

44 How to Write Usable User Documentation. Second Edition

More specifically, it will “decompose” the

large job of writing into a set of small jobs, tiny

documents, of easily estimated size and cost.

Indeed, in some methods, each tiny document is

of about the same size and cost. Furthermore, all

the links and interfaces between the tiny docu¬

ments have been defined, explicated, and tested

in the model. Thus, each of the small pieces can

be written independently, without consulting the

authors of the other pieces—so long as each

author has access to the model of the whole

publication.

It will enhance the clarity, readability, and

reliability. The flaws in the draft are, of course,

important, but the goal is to solve every strategic

problem and correct every structural flaw before

the draft is composed. In that way, what will

remain to be corrected in the draft are precisely

those problems that lend themselves to editorial

improvement: incorrect claims about the system,

minor technical changes, unclear sentences,

ambiguous paragraphs, cluttered or confusing

illustrations.

Furthermore, an effective documentation

process will include formal standards for editing

and will not rely on the artistic, intuitive, “stylis¬

tic” preferences of one person. For example, the

prompt “Press F(4) to continue” is a backwards,

unreliable sentence. A sound documentation

process will flag and correct this sentence,

whether or not the editor finds it personally

objectionable, and whether or not any reader has

trouble with it in a test.

It will generate publications and products

that are maintainable and modifiable. Well-

made documents will not have to be revised and

supplemented as often as ill-made documents.

But, when they do need revision, the process will

be more rational and manageable.

"Cultures': How Documentation Gets Written 45

5. DEVELOPING DOCUMENTS: A STRUCTURED
APPROACH

5.1 What Structured Means

5.2 What Modular Means

5.3 Good Documentation is Modular

5.4 Overview I—A Data Flow Diagram for Developing Documentation

5.5 Overview II—A Work Breakdown for Developing Documentation

5.1 What Structured Means

The term structured can be applied to user documentation in two main ways. First, the

process for developing user manuals is characterized as a “structured process. ” Second,

the publications themselves are often called “structured documents. ” Unfortunately, the

word structured is used so often and so casually these days that it is necessary to pause

and define what it means.

When I use the word structured, I am not refer¬

ring to its overworked conversational meaning, in

which it is a loose synonym for disciplined or

organized. Rather, its sense is the one it has when

used by computer scientists or software engineers

in such expressions as structured analysis, struc¬

tured design, and structured programming.

In all three uses, structured refers to a

certain process or method, well put in the follow¬

ing definition of structured analysis:

A formal, top-down decomposition of a problem or
process into a model that offers a complete, precise
description of what the problem is ...

— Sippl and Sippl, Computer Dictionary & Hand¬
book (Indianapolis: Sams & Co.), 1980, p. 529

First, structured analysis is formal, that is,

explicit, and rule-abiding. A process cannot be

considered structured if it is intuitive, private, or

conducted without rules or guides. (In practice,

formal methods compel us to generate evidence,

records that prove we have honored the rules.)

Next, it is top-down, which means that it

starts with the biggest picture possible, the whole

system, with all its interfaces, and adds overlays

of detail in its successive stages. And at each

consecutive level it is tested, using “stubs” or

dummies for the processes below that level.

Many people confuse top-down with the next

key term, decomposition (disaggregating big

things into smaller things). Although structured

analysis requires decomposition, it first requires a

representation of the entire system. In structured

technology, we know that the parts fit into the

whole before we define the insides of the parts.

The next key word is model. Put simply, in

structured methods we build models of a product

before we build the product itself. Why? Just

because it is much cheaper to build and change

models than to change the finished product.

After structured analysis comes structured

design:

The art of designing the components of a system and
the interrelationship between those components in the
best possible way. Or, the process of deciding which
components interconnected in which way will solve
some well-defined problem.

— Yourdon and Constantine, Structured Design
(Englewood Cliffs, NJ: Prentice-Hall), 1979, p. 8

Notice that a product designed this way has

only two things in it: components and the rela¬

tionships between them—modules and interfaces,

nodes and edges, units and links. And because

there are only these two kinds of entities, it is

usually possible to describe a structured product

or system with only a simple diagram containing

blocks or circles for the modules (nodes, compo¬

nents, units) and arrows or lines for the connec¬

tions (linkages, interfaces, edges).

The reason for making such diagrams—

especially in the planning of a complicated

document—is to find flaws and problems while it

is still cheap and easy to correct them. And the

48 How to Write Usable User Documentation, Second Edition

ultimate benefit of such a design is later, in the

maintenance phase, where all changes will

consist simply in replacing or adding one small

module or unit, and where the effects of making

that change will be predictable from a study of
the design.

The same structured methods used to make

programs and systems more cost effective and

maintainable can be applied directly to the job of

designing and writing user documentation, and

with similar benefits. Further, if the process is

structured, then the products—the publications—

will also be structured. They will consist of many

small components (modules) connected in a way

that makes the book as usable and maintainable
as possible.

Exhibit 5.1: Maxim from Structured Design

It is always easier

(and cheaper) to create

two small pieces to do the

same job as the single piece.

...Yourdon & Constantine

Developing Documents: A Structured Approach 49

5.2 What Modular Means

The most conventional definition of a module calls it a small, independent functional

entity, a component of some larger entity. Well-made modules are cohesive and predict¬

able; well-designed modular products are free from excessively complicated couplings

across modules.

Modularity is elusive: Designers and engineers

can “feel” modularity when they get close to it,

but are hard put to define it operationally. Con¬

sider the parts of the definition in reverse order.

Modules are functional. Modules are not

just parts of something larger; they are functional

parts. A module performs some task, it converts

data from one form to another, more usable form.

Moreover, well-made modules usually perform a

whole task, for example, sorting all the accounts

payable in a file according to their age. A well-

made module is also predictable: The same inputs

arriving under the same conditions will generate

the same output; there is no “internal memory” in

the module that would change the input/output

patterns.

Modules are independent. Because modules

are not dependent on their context, a module with

a particular function will perform that function in

more than one setting. Any module can become

part of a library of reusable modules; eventually,

designers can create systems or products from the

catalog of available modules.

Modules are small. The least precise part of

the definition refers to their size. To say that

modules perform only one function fails to limit

them precisely. Long arguments about whether

something is one module or more than one are

usually unproductive. Most people who work

with structured methods limit the maximum size

of a module. In data processing, the limit is

usually a certain number of code statements; in

publications, it is a certain number of pages.

Indeed, one of the interesting parts of devel¬

oping modular products is playing with the size

of the modules. As modules get larger, they get

less cohesive (have more than one function); as

they get smaller, though, the couplings and

connections become more complicated. In modu¬

lar publications, these couplings manifest them¬

selves as references to other pages in the book.

And a central argument of this book is that these

sorts of design decisions—such as trading-off

module cohesiveness for inter-module complex¬

ity—can be applied directly to the development

of more usable user documentation.

The first mature attempt to treat documenta¬

tion this way was the invention of a group of

publication engineers working for the Hughes

Aircraft Corporation. Their process, a form of

“storyboarding” adapted from the motion picture

industry, and their modules, two-page spreads,

are described in their seminal work on the sub¬

ject:

Tracey, J.R., Rugh, D.E., and Starkey, W.S. STOP:
Sequential Thematic Organization of Publica¬
tions. Hughes Aircraft Corporation: Ground
Systems Group, Fullerton, CA, January 1965

A more recent summary of Tracey’s reflections

has also been published:

Tracey, J.R. “The Theory and Lessons of STOP
Discourse,” IEEE Transactions on Professional
Communication. PC-26 (2) June 1983: 68-78

Modular manuals benefit not only the readers

of manuals but also the developers and writers.

Working from modular outlines, designers are

able to predict the size and cost of publications at

50 How to Write Usable User Documentation, Second Edition

the same time they are testing them for readabil¬

ity and accuracy. Furthermore, by breaking the

long, complicated process of writing into a set of

small, independent tasks, firms can apportion the

writing assignments to a great many people who

can work in parallel, independent of one another.

Modular manuals are also a boon to “au¬

thors”—all those people we usually call on for

raw input to the manuals. In the modular manual,

these people can be transformed into “first

drafters,” each knowing exactly how much to

write and exactly what points to cover.

Even writers working alone as “artists”

benefit from modularization. They can work in

short bursts, knowing that the little pieces will

ultimately fit together well.

The modular approach especially benefits

those who manage writing or supervise publica¬

tion. Planning, writing, editing, and producing by

module enhances the control of the person in
charge.

And perhaps most important, effectively

designed modular documents are the most read¬

able and “friendly” technical publications imag¬

inable. Indeed, the reactions of readers to modu¬

lar publications have done more to sell the

concept than all the arguments by consultants.

Although there are some technical writers who

dislike modular manuals, I have never yet met a

reader who does.

Developing Documents: A Structured Approach 51

5.3 Good Documentation Is Modular

A modular document, like a modular system, is made up of many small, functional, inde¬

pendent units, or modules. Given the right planning and design, a modular document is

far easier to write and maintain than a traditional, “monolithic” document. Most impor¬

tant, though, modular documents, because they are free of many of the flaws that make

publications unusable and unreliable, are much easier to read.

The book you are reading is a modular publica¬

tion, designed after the style invented by J.R.

Tracey and associates at the Hughes Aircraft

Corporation in the early 1960s. Put simply, such

a document is conceived, planned, and outlined

as a series of small self-contained units, each

containing all the words and exhibits needed to

grasp a single concept or theme.

The most apparent innovation in this tech¬

nique is the consistent use of two-page spreads as

the basis of organization. That is, with rare

exceptions, all the material in the book is pre-

Exhibit 5.3a: Shell for Hughes Module (STOP)

52 How to Write Usable User Documentation. Second Edition

sented within modules that contain two facing

pages. Every figure or table that needs to be seen

can be seen, without turning or riffling pages.

And any concept too big to embrace in one

module is “leveled” or “chunked” into a series or

hierarchy of modules.

Modular publications are planned top-down.

That is, before anyone writes a whole page of

draft, some designer or team of designers has

decided precisely what modules are needed, in

what sequence. Moreover, there is a “spec” for

each module, defining its scope and content.

Writing by module reduces the burden on

writers. If a document is broken into two-page

(or one-page) chunks, it can be written in short

bursts of time—which is how most people must

write. Moreover, the modules are reusable in

other publications.

In a modular book, it is far easier to know

whether the book is current. Maintaining a

modular book consists in replacing inaccurate

modules or adding new ones (whereas in a

traditional, monolithic publication, no one is

even sure where the errors are).

And, finally, modular books are easy on the

reader. If modules are limited to two facing

pages, or one page, or one screen (panel), the

most common problem in using technical publi¬

cations—searching for disjointed text and fig¬
ures—is solved.

Modular publication is one of those rare

practices that makes life easier for both writers

and readers.

Exhibit 5.3b: Spec for Two-Page Module

Module Specification Mod No: 1066

Heading: Setting the Plotter DIP Switches

Context:

Summary:

Exhibit(s):

Notes:

Sup: What is the
Communication Protocol?

Find your computer/port type in the protocol
table. Set the DIP switches on your plotter
in the pattern for your system.

RS232 SCSI Dizi

Show angle of vision/ left right orientation

Developing Documents: A Structured Approach 53

5.4 Overview I—A Dataflow Diagram for
Developing Documentation

Like a system, user documentation has a life cycle: analyze support needs, outline each

information product, storyboard each product, assemble text and draft, edit for correct¬

ness and readability, test with representative users, and maintain in the face of system

changes and revealed errors.

Documentation is never really finished. As the

application or product changes—as its “bugs”

manifest themselves—there is a need for more

explanation and teaching. Thus, the development

of documentation is cyclical. There are seven

main tasks:

Analyze—Convert product descriptions and F-

specs into a user support plan and its associ¬

ated list of information products and services

(the user support envelope).

Outline—For each information product, develop

a series of increasingly refined outlines (topi¬

cal, substantive, modular), rich enough for

review and testing.

Storyboard—For each entry in the modular

outline, prepare a module specification and

mount the specs in a “gallery” or storyboard,

which is reviewed and adjusted by all affected

people.

Assemble—Assign, collect, write, and reuse the

material called for in the storyboard, using

project management techniques that allow

writers to work in parallel.

Edit—Correct and improve the first drafts to

eliminate technical errors and also to improve

their readability and clarity.

Test—Conduct formal, controlled tests with

representative users and adjust the publication

as needed. .

Maintain—Immediately begin surveillance of

the documentation to search for strategic

misalignments of books and audiences, struc¬

tural or organizational problems, missing

explanations, lapses of style, and, of course,

any technical errors.

All seven phases are logically necessary.

Organizations that skip some, especially the first

two or three, may produce documents with all the

expensive flaws of underanalyzed computer

applications and carelessly engineered machines.

54 How to Write Usable User Documentation, Second Edition

Exhibit 5.4 Dataflow Diagram for User Documentation

Developing Documents: A Structured Approach 55

5.5 Overview II—A Work Breakdown for
Developing Documentation

The table below and on the facing page shows a breakdown of the tasks needed to de¬

velop usable user documentation and related information products.

Exhibit 5.5 lists tasks that must be completed in

high-quality user documentation. Although it

does not include every task (such as cost estimat¬

ing or printing), it does include every activity

needed to realize the structured method advo¬

cated in this book. That is, anyone wishing to

skip some of these tasks or perform them in

another sequence must have a persuasive justifi¬

cation for doing so.

Note also that the list does not address the

question of who should perform each task.

Because there is so much much variety in the

staffing and organization of firms and agencies

who write user documentation, it is impossible to

say who should do what. Rather, the next six

chapters discuss each of the tasks in some detail

and advise on the kinds of skills needed for each.

Exhibit 5.5: Work Breakdown for User Documentation

I. Analyze Support Needs

1.1 Form documentation/support team
1.2 Review the product description/specs
1.3 Prepare task-oriented topic list
1.4 Prepare hierarchical user list
1.5 Compile the User'.Task Matrix

1.6 Iterate the matrix until satisfied
1.7 Prepare preliminary pubs plan or support envelope
1.8 Review, test, and adjust

II. Outline a Document

2.1 Choose an information product
2.2 Assign design team
2.3 Extract topics from the matrix
2.4 Prepare topical outline
2.5 Prepare substantive outline (optional)
2.6 Prepare modular outline

56 How to Write Usable User Documentation, Second Edition

Exhibit 5.5: Work Breakdown for User Documentation (continued)

III. Storyboard the Document

3.1 Prepare a spec for each module
3.2 Schedule, set-up storyboard session
3.3 Mount the gallery of specs
3.4 Conduct reviews with likely contributors ("authors")
3.5 Conduct reviews with representative users
3.6 Incorporate necessary changes
3.7 Secure official approval and "freeze"

IV. Assemble the Draft

4.1 Assign "authors"
4.2 Retrieve archive materials
4.3 Coordinate, collect drafts

V. Edit the Text

5.1 Edit drafts for conformity with specs
5.2 Edit drafts for clarity and readability
5.3 Edit drafts for consistency and conventions
5.4 Edit drafts for technical accuracy/currency

VI. Test for Usability

6.1 Develop test protocols/data sets
6.2 Schedule test sessions
6.3 Select, brief subjects
6.4 Conduct entry interviews
6.5 Run test (observe unobtrusively)
6.6 Conduct exit interviews
6.7 Interpret results
6.8 Revise publications and retest until standard is met

VII. Maintain the Document

7.1 Assign responsible maintenance unit
7.2 Create maintenance files
7.3 Receive responses from users
7.4 Seek out responses from users
7.5 Conduct further tests
7.6 Modify publications

■ Strategic realignments
■ Structural reorganizations
■ Additional materials
■ Editorial improvements

Developing Documents: A Structured Approach 57

'

6. ANALYSIS: DEFINING WHAT PUBLICATIONS
ARE NEEDED

6.1 Preparing for Analysis

6.2 User Manuals in a Support Context

6.3 Using the “Universal Task Architecture”

6.4 Listing Features and Topics

6.5 The Concept of a User-Audience

6.6 Forming the User:Task Matrix

6.7 Interacting through the Matrix

6.8 Assembling the Plan

6.1 Preparing for Analysis

Analysis begins with the appointing of the members of the documentation team: first, an

expert on the technology, second, an expert on the uses of the technology, and, finally, a

coordinator to bring these two perspectives together.

Most firms get nowhere with their documentation

problems until they empanel a team whose

mission is to name and describe the documents to
be developed.

Deciding what documentation is needed is

too important a decision to be made casually or

by default. It is also too important to be made by

one person. Rather, defining what documents are

needed calls for at least three perspectives:

• the technology expert

• the application (or user) expert

• the documentation coordinator (user support
technologist)

The technology expert is the team member

who knows the most about the design and inner

workings of the system. Known variously as a

systems analyst, lead designer/developer, project

manager, or just engineer, the technology expert

must speak for the system. If the system has

already been developed, he or she must be most

knowledgeable about its features and characteris¬

tics. If it is about to be developed, he or she must

be in charge of the functional specification or
general design.

The application expert (often referred to

simply as the user) must know what the system is

for. Candidates for this position on the documen¬

tation team include users, end users, operators,

manufacturers, technicians, auditors, marketing

managers, trainers, and customer relations

people. The task of the application expert is to

remind the team members—as often as neces¬

sary—that the system will have to be used and

operated. And that the users and operators (and

supervisors, administrators, and even sales¬
people) usually want to know how to work the

system, not how the system works.

Often, these two perspectives will conflict—

just as users’ requests and analysts’ responses

often conflict. Thus, the third member of the

team, the coordinator, must manage the conflict

and forge a consensus. The coordinator (known

variously as documentor, business systems

analyst, liaison, quality assurance rep, technical

writer, support specialist, or even publications

engineer) must produce the actual plan. He or she

must listen to the others, follow some procedures

that will be discussed later, and produce the

information support plan.

Note that the person responsible for documen¬

tation planning is a manager/coordinator involved

early in the life cycle, rather than a copy editor

brought in to clean up untidy drafts. Note also that

the job of defining documentation needs cannot be

left either to the technical expert or to the applica¬

tion expert alone; in general, neither sufficiently

appreciates the other’s point of view. And in

practice, they often find it hard to communicate.

Ideally, there should be three members on the

team, one from each category. There may be

more if the system is complicated or has an

unusual mix of users. Be careful, however, that

the appropriate power prevails if there is more

than one technical expert.

Also beware of the two-person documenta¬

tion team, which, for the sake of “efficiency,”

suppresses legitimate conflict. And be especially

cautious if the support plan is the work of only
one person.

60 How to Write Usable User Documentation, Second Edition

Exhibit 6.1 Members of Support Planning Team

Perspective Candidates

■ Technology ■ Analyst/Programmer
■ Lead Designer
■ Project Manager
■ Hardware Engineer
■ Software Engineer

■ Application ■ User
■ Operator
■ Trainer
■ Technician

■ Auditor
■ Marketer
■ Supervisor
■ Consultant

■ Coordination ■ Editor/Writer/Documentor
■ Business/Functional Analyst
■ Liaison/Coordinator
■ Quality Assurance Rep
■ Publications Manager

LIVER ..iiolTY

MOUNT TLEAST .AT LIBRARY

TEL 051 231 3701/3534

Analysis: Defining What Publications Are Needed 61

6.2 User Manuals in a Support Context

There are certain fundamental questions about the content of a publication that cannot be

answered without defining the larger set of documents and information products of which

it is a part.

The proper way to begin user documentation is to

define a set of information products (books,

reference cards, videotapes) and then to define a

specific function and scope for each item in the

set. Why? Because to define what a thing is, you

must also define what it isn’t. The surest way to

clarify the purpose of a publication is to contrast

it with other adjacent publications.

The systems approach to a problem consists

in viewing it as part of a larger problem. Before

we can know what to put into a particular book,

we must know why there are any books at all,

what they do as a group, and what they do as

individuals.

Indeed, the most appropriate way to define a

set of user documents is to think of them as part

of a larger set of items called information prod¬

ucts, including not only publications but also

audiovisual products, online tutorials, and the

whole range of teaching and reference media.

Furthermore, the most appropriate way to

define the needed set of information products is

to view it as part of a still larger entity called user

support, which contains not only information

products but a full range of user services. (See

Exhibit 6.2.)

Notice also that there are even trade-offs

between the quality of information products

needed and the quantity of services needed; high-

quality information products can reduce the need

for training, consulting, and maintenance. In fact,

that is a main cost justification for investing in

user documentation.

Put simply, the time to decide the scope of a

particular publication is not during the writing of

the outline and certainly not during the writing of

the draft. The time for definition is before the

outlines are written. The time to argue about

whose information needs will be served is at the

beginning; the time to argue about whether two

publications will overlap is before either of them

has been outlined; and so forth.

Yet, as obvious as this principle may seem,

most writers of manuals ignore the issue. Like

programmers eager to produce some code, the

documentors are eager to produce some text.

And the consequences are the same. The

finished draft, like the coded program, develops

inertia; its author becomes its defender. What

users or customers need has far less influence

than what has already been written and paid for.

Right now, there are hundreds of skillful

writers struggling with undefined and miscon¬

ceived publications. Unfortunately, these writers

think that their problems are within the publica¬

tion. Actually, the problem is strategic: the lack

of an information support plan.

It avails us little to be competent writers if we

write the wrong manual. And the only way to be

sure of what a manual is, the only way to know

what to include and what to “include out,” is to

differentiate each product from the others in the

set.

62 How to Write Usable User Documentation, Second Edition

Exhibit 6.2 Manuals in a Support Context

Manuals

Supervision

Analysis: Defining What Publications Are Needed 63

6.3 Using the “Universal Task Architecture”

The consensus today among technical communicators is that good documentation is task-

oriented. That is, it helps readers perform specific tasks; it does not describe the product

in meticulous detail A useful framework for generating lists of tasks is IBM’s “universal

task architecture. ”

The aim of customer documentation has changed

dramatically in the past decade. In 1980, good

user documentation was called comprehensive; in

the 1990s it will often be called minimalist. In an

era when systems technology was unfriendly and

opaque to all but the most sophisticated users, the

aim of the user documentation was to describe
everything about the system.

Today, the emphasis in computer and commu¬

nications technology is on ease of learning and

use. Documentation is to help people do their

jobs. Most users do not want more information

than they need. Indeed, one of the most insistent

documentation problems is the inability of com¬

petent readers to find what they want in an unnec¬

essarily detailed publication.

Task analysis, then, has two purposes: first, to

reshape our notion of documentation away from

product description and toward task support; and,

second, to differentiate the support needed by

different audiences performing different tasks.

Although there are many possible frameworks

for developing a list of tasks, IBM’s “universal

task architecture” (IBM Publication ZC28-2525)

is a nonproprietary scheme enjoying wide popu¬

larity among writers of software documentation.

Briefly, the universe of tasks contains nine broad
(and overlapping) categories:

Evaluation—Considering information that will

influence the selection, acquisition, and pur¬

chase of systems; consulting documentation

that advertises benefits and guides choices

Planning—Carrying out activities that precede

the arrival of the product/system

Installation—Setting up and configuring the
product

Resource Definition—Making adjustments in

the environment or associated technology,

needed to accommodate the new product/
system

Operation—Starting and stopping and perform¬

ing the basic manipulations and transactions

of the product; input and interface conven¬
tions

Customization—Setting the defaults, or altering

those that are shipped with the product

Application Programming—Building chains of

transactions and operational elements into

programs and processes that do useful work;

creating macros; programming

Program Service—Assessing and solving

technical problems (for the customer); field

maintenance

End Use—Performing specific occupational

tasks and activities, peculiar to the customers’

profession or assignment

For most computer and communication

products, there will be a list of 100 to 200 sup¬

ported tasks, some of them requiring many pages,

others only a sentence or two. Note that the easier

a system is to install and operate, the less infor¬

mation support is needed. Indeed, when designed

for ease of use, some systems eliminate many of

64 How to Write Usable User Documentation, Second Edition

the error-prone tasks that users have to perform • Writing Patches to Alter Printer

and, thereby, reduce much of the documentation Characteristics

needed. Consider, for example, the very different • Starting the Printer Setup Program

documentation burdens for these two tasks:

Exhibit 6.3: The “Universal Task Architecture” (IBM)

■ Evaluation
■ Planning
■ Installation
■ Resource

Definition

■ Operation
■ Customization
■ Application

Programming
■ Program Service

End Use

|rr i i i iffFff Hi
n

Analysis: Defining What Publications Are Needed

6.4 Listing Features and Topics

The technology expert on the team analyzes the components and features—the topics—

that need to be written about. Although there are countless schemes for categorizing the

aspects of a system, and although a task-oriented system is best, the particular approach
is less important than the completeness and fineness of the analysis.

In analyzing the documentation needs for a

particular product, a critical task is to decide just

what the product is. Just what is worth knowing
about it.

The topic analysis (or sometimes functional

analysis) is the job of the system expert on the

documentation team. Although the breakdown

will inevitably be influenced by the other mem¬

bers of the team, it is still the system expert’s job

to describe the structure and morphology of the
system itself.

Systems can be described variously by talk¬

ing about their physical components, their design,

their technology, their operations, their applica¬
tions, or their benefits.

But since the 1980s, the talk in documenta¬

tion circles is of task-oriented manuals, which are

organized according to the tasks performed by

the intended reader. Task orientation—in contrast

to product orientation—is an application of what

the instructional technologist calls “skills analy¬

sis” and what some social scientists call “activity
accounting.”

As will become clear in a while, the best way

to eliminate loops and detours from a manual—to

raise its usability—is to make it task-oriented for

a well-defined audience. (Remember, though,

that even if this initial breakdown of topics is not

task-oriented, there are still opportunities later in

the documentation process to incorporate task
thinking into the design).

There are several orthogonal paths of attack

in defining features and topics. Although task

breakdowns are nearly always more useful for

documentation than physical breakdowns, any

scheme will do as long as the analysis is fine
enough.

How fine? The topics must be small enough

and clear enough so that team members can ask

the following general question: Is Topic T neces¬

sary or important for Reader R? Yes or No? If

the topics are defined too broadly or vaguely,

then the analysis must be refined.

66 How to Write Usable User Documentation, Second Edition

Exhibit 6.4 Tasks Generate the Topic List

1. Evaluation

1.1 ...
1.2 ...

2. Planning
2.1...
2.2...

3. Installation
3.1.. .
3.2.. .

4. Resource Definition
4.1.. .
4.2.. .

5. Operation

5 .2...
6. Customization

6.1.. .
6.2....
7. Application Programming

7.1.. .
7 2

8. Program Service

8.1.. .
8.2...

Analysis: Defining What Publications Are Needed 67

6.5 The Concept of a User-Audience

In this process, an audience is a cluster of people with a common information deficit. An

information deficit is defined as “what one needs to know; reduced by what one already

knows. ” Thus, people are differentiated not only according to the unique requirements of

their tasks or occupations (need), but also by their background and experience (current

knowledge). Additionally, some audiences are further divided by their attitudes toward

publications.

The analysis and listing of audience has three

steps:

Division by Occupation—Users/readers are

grouped according to their professions (e.g.,

accountants), job titles (e.g., director of

operations), or particular mission (e.g., field

installers). Sometimes this level of analysis is

sufficient.

Division by Experience—Within occupational

categories, there may be important differences

in the type or quantity of experience, back¬

ground, training, and so forth. These differ¬

ences often affect the documentation require¬

ment by altering what the users already know.

At this stage we want to assess, for example,

whether the accountant has experience with

PCs, or whether the PBX operator has used

PBXs before, or whether the technical writer

is already familiar with desktop publishing

terminology.

Division by Book Skill—Many people who are

presumed to be poor readers are, in fact,

adequate readers but poor users of books

(Reader X). That is, in any task demanding

the use of a complicated publication, they are

likely to have trouble. Thus, in planning some

document sets, it is important to further break

apart occupation/experience categories into

Reader X and Reader Y (persons skillful with

books). The former will not be well supported

with books, which may affect the support

plan.

The list of audiences consists of the “leaves”

on the audience tree. That is, if clerks have been
divided into experienced and inexperienced, they

become two audiences. And this expanded list is

transcribed to the horizontal axis of a matrix.

For most systems and products, the list

contains between 5 and 10 audiences. For widely

used consumer products, however, like tele¬

phones, there might be 15 or 20 user audiences

with important differences in their information

needs.

It is a serious strategic error to write docu¬

mentation as though it were one compendium of

material aimed at a universal audience. For now,

we want the “worst case”: the finest possible

breakdown of users and readers.

68 How to Write Usable User Documentation, Second Edition

Exhibit 6.5: Audience Analysis

Occupation

Analysis: Defining What Publications Are Needed 69

6.6 Forming the User:Task Matrix

With the two breakdowns completed, the document coordinator prepares the User .‘Task

Matrix. The team as a whole then analyzes the intersections of topic and audience, indi¬

cating the points at which particular topics affect particular audiences.

The team transfers the two breakdowns to the

UsenTask Matrix and decides which topics are of

interest to which users.

The decision is usually an easy consensus.

When there is disagreement, the safest solution is

to include the disputed topic. (In general, the best

way to resolve choices about documentation

needs is to provide more, rather than less, infor¬

mation.)
In Exhibit 6.6, the topics are refined enough

to allow simple yes/no choices. That is, each

topic is small enough so that a particular audi¬

ence needs to know all of it or none of it.

Interestingly, a matrix very much like this

one is often prepared in corporate training depart¬

ments. Sometimes it is called a skills matrix or

task matrix, used to define the training needs of

various audiences. Indeed, if manuals are devel¬

oped from this analysis, they often work as

training documents as well. Instead of the usual

practice—in which trainers extract thoughtfully

chosen segments from cumbersome manuals—

the manuals are themselves well designed for

training. How often have users preferred their

training materials to the company’s “real docu¬

mentation”!

The matrix—the process of building it and

arguing about its content—is not just another of

those time-consuming planning tasks that cause

programmers to grow impatient and long to get

back to their coding. The emerging pattern of

checkmarks suggests the shape of several docu¬

mentation products. Without it, there is a high

probability that documentors will write the

wrong books.

Furthermore, the matrix often shows that

people with presumably different interests have

remarkably similar information needs. (Data

center managers and data entry clerks often

receive similar checkmarks, for example.) Or,

more important, it demonstrates that certain

audiences have been neglected, or swamped with

irrelevant information, or lumped together with

readers whose needs are quite different.

Think of the long list of topics as the inven¬

tory of documentation materials; think of the list

of reader groups as the consumers of those

materials. The goal of this analysis, then, is to

decide how the materials should be “partitioned”

for the convenience and needs of the consumers.

70 How to Write Usable User Documentation. Second Edition

Exhibit 6.6 Excerpt from NCR Matrix

NCR Voice Mail
end customers

—OPERATION—

S
al

es
 p

er
so

n
n

el

C
u

st
o

m
er
 s

er
v
ic

es
 p

er
so

n
n

el

S
y
st

em
 i

n
te

g
ra

to
rs

j
A

p
p
li

ca
ti

o
n
 p

ro
g
ra

m
m

er
s

J-
C

u
st

o
m

er
 m

an
ag

em
en

t
)

P
ro

d
u

ct
 a

d
v
o
ca

te

S
y
st

em
 a

d
m

in
is

tr
at

o
r

P
B

X
 o

p
er

at
o

r

E
nd

 u
se

r
(s

u
b

sc
ri

b
er

)

E
nd

 u
se

r
(n

o
n
su

b
sc

ri
b
er

)

47. Basic operation of the Voicenter
hardware, (switch settings, flex
disk, streaming tape, peripherals)

• • •

48. How to start and stop the system and how
to start and stop voice-processing
applications.

• • •

49. How to add/delete/change subscriber mail boxes. • • •

50. How to add/delete/change public mail boxes. • • •

51. When to generate each of the statistical
. reports on system usage.

• • • •

52. How to generate the statistical reports. • • •

53. How to interpret the statistical reports. • • • • •

54. How to initialize streaming tapes and
format flexible disks.

• • •

55. When to back up the hard disk to
streaming tape or flexible disk.

• • • •

56. How to backup/restore the hard disk to/from
streaming tape or flexible disk.

• • •

57. How to route messages from the public
mail box to a subscriber s mail box.

• •

58. How to handle non-subscribers who
request operator assistance.

• •

59. How to recognize and recover from a
general error condition.

• • • •

60. How to recognize and recover from an
NCR Voice Mail error condition.

• • • •

61. How to generate a directory of mail boxes • • •

62. How to archive a message on disk to
streaming tape.

• • •

63. How to create/modify distribution lists. • • •

' Value-added resellers and sophisticated end customers

Analysis: Defining What Publications Are Needed 71

6.7 Interacting through the Matrix

Through the matrix, the team assesses who needs to know what. If the topics and audi¬

ences are defined precisely enough, the team can make binary choices: Does User U

need support on Topic T, Yes or No? Usually, the first analyses are not precise enough, so

there will probably be two or three passes.

The purpose of filling in the UsenTask Matrix is

to raise the level of debate about information

needs, thereby reducing the number of users and

customers who find their publications unsuitable

or inaccessible. In other words, it is the not the

matrix itself that is essential but the discussions

needed to fill it in.

As Exhibit 6.7 shows, the process of filling in

the matrix is diagnostic and iterative. The team

Exhibit 6.7: Iterations in Developing the Matrix

stays at it until the map of YESs corresponds to

the true information territory.

Is there a plethora of YESs? Is the matrix

nearly full of them? Possibly every audience’s

information needs are the same; more likely the

topics are too broad to differentiate. (Occasion¬

ally, the audiences are too broadly defined, but

this is rarer.) Typically, the first breakdown of

72 How to Write Usable User Documentation. Second Edition

topics will need one or two revisions until pat¬

terns of difference begin to emerge.

Caution: Resist the temptation to accept a

matrix that is nearly full of YESs. The central

aim of this task is to break the tradition in which

one compendious manual is presumed to serve

everyone (The User Manual). Although it is

certainly possible that, for some applications, the

audience will be composed of like-minded people

with identical backgrounds and interests, that

should not be the default. Rather, the goal is to

underscore differences in information needs and

disagreements about those needs.

Are there empty rows? Probably there is an

audience, or an audience subgroup, omitted from

the matrix. The team should search for the

missing audiences. If they find none, they may

conclude that certain tasks/topics are of interest

to no one. (Do we need to write about them,

then?)

Are there empty columns? Probably there are

omitted topics or subtopics. The team should

search for the additional topics. If they find none,

they may conclude that certain user audiences

have no information needs. (Do we need to

document for them anyway?)

Again, there is no magic in the matrix itself.

Rather, the benefit is in the search for topics

small enough that they enable adaptation to the

audiences. And the seriousness of the debate

determines the usefulness of the resulting analysis.

Analysis: Defining What Publications Are Needed 73

6.8 Assembling the Plan

The team studies the matrix of tasks and users for patterns or clusters that mark off indi¬

vidual documents. At one extreme, the planners may decide to prepare a single, encyclo¬

pedic reference manual—with the matrix as a guide for the reader. Or they may decide to

have separate volumes for each audience or each functional cluster of tasks. Somewhere

between these extremes lies the best solution, the result of trade-offs.

As in defining the boundaries of the systems,

there are many decisions and trade-offs—often

arbitrary rulings—involved in defining and

delimiting the documentation products.

Various factors are played off against one

another as the members of the team devise the

most cost-effective mix of books, online facili¬

ties, audiovisual materials, and other information

products. Of course, few organizations ever

produce more products than they planned, tend¬

ing to partition toward the encyclopedic end of

the continuum.

As Exhibit 6.8 shows, there is something to

be said for and against each strategy. Individual¬

ized documentation, up to the point of having

separate versions of the manuals for 10 or more

audiences, has many communication advantages.

It results in publications that are tailored pre¬

cisely to the interests of the readers, thereby

freeing them from searches and detours to other

publications. It generates shorter, more special¬

ized publications, which can even have prestige

attached to their ownership—something not

possible when everyone has the same version.

Short, individualized manuals also protect the

security and confidentiality of material by re¬

stricting the access of certain readers. Similarly,

they help to prevent certain operators and users

from trying procedures or features that they have

not been cleared (or taught) to use. Occasionally,

it is even cheaper to have several versions.

Sometimes we need hundreds or thousands of

copies of a short publication but only a few

copies of the longer one.

Usually, though, individualized documenta¬

tion is more expensive, and it can be extremely

difficult to maintain. Obviously, it’s hard enough

to keep one manual current, let alone several

versions of it.

Individualized versions can also sometimes

underestimate the abilities of audience members,

prevent them from learning skills that would

increase their value, or even force them to con¬

sult several documents.

Most documentors, of course, do not analyze

their documentation needs in this way. They

think of user documentation as one entity, one

file of literature and data. Sometimes this ency¬

clopedic manual is the right choice; for simple

systems with a homogeneous set of users, a

single manual may be best. But usually the single

manual is an expedient choice, a way of simplify¬

ing the documentor’s planning and production

and reducing short-term cost, without much

regard for its usefulness to the readers. Further¬

more, many of the firms that purvey encyclope¬

dic documents neglect to include an index. An

encyclopedia without an index and a system of

cross-references is nearly impossible for readers

to use. Yet, it still does not automatically follow

that the more manuals the better.

Interestingly, a good way to deliver a huge,

encyclopedic manual is as an online book, with a

utility for looking up key words and phrases.

74 How to Write Usable User Documentation, Second Edition

This way, the difficult search routines, the cross-

references and detours, are borne by the system

instead of the user.
The problem, of course, is that pages written

for paper—especially for an old-fashioned,

densely printed, paragraph-filled manual—look

terrible on the computer screen. Good online

manuals need to be written for the screen.

Exhibit 6.8 Trade-offs between Encyclopedic and Individualized Manuals

Advantage Individualized Encyclopedic

Analysis: Defining What Publications Are Needed 7 5

7. DEVELOPING A MODULAR OUTLINE

7.1 Conventional Outlines: Functions and Flaws

7.2 Requirements for a Modular Outline

7.3 Defining a Module of Documentation

7.4 Alternative Forms of the Module, for Special Needs

7.5 Writing Headlines for Modules

7.6 Demonstration: Headings into Headlines

7.7 How Outlines Develop

7.8 Option: Reaching the Modular Outline in One Step

7.9 Is it Possible to Predict the Number of Modules?

7.1 Conventional Outlines: Functions and Flaws

Conventional outlines give very little of the information needed in workplans; they do not

specify the length or scale of the sections or the document as a whole; they give no clue

to the production costs of the manual. As tables of contents, moreover, they fail to help
readers find what they need to know.

Conventional outlines organize the sequence and

hierarchy of a text. To do this, they use a tiered

scheme of numbers (or numbers and letters) to

show subordination and a set of topic headings to

show the content or meaning of each section in

the document. The typical heading contains only

nouns and modifiers.

These conventional outlines are the single

most common and useful tool in planning all

documents. But are they really powerful enough

to perform all the design functions needed in

developing structured, modular publications?

Their principal benefit is helping writers to

organize their own thoughts. They are the perfect

planning tool for the artist working alone!

But what about other functions? Can a con¬

ventional outline help the designer of a manual

estimate its length or the resources needed to

prepare it? Does a conventional outline provide

meaningful instructions to the several authors

who must write the text? Does it generate a

useful table of contents?

When a writer works alone on a relatively

small assignment, the conventional outline is

often an adequate plan. But when teams of

writers work on complicated manuals, the con¬

ventional outline is not enough. It does not tell

the individual authors and contributors how much

to write. Neither the numbering scheme nor the

typical way of writing headings (without verbs,

verbals, or thematic language) tells the writer

how long the sections should be or what they

must cover.

The manager or analyst responsible for the

publication gets very little data from a conven¬

tional outline. Nowhere mentioned are length or

the number and type of graphics—often the most

important predictors of cost and production

headaches.

Ultimately, this uncommunicative workplan

becomes an uncommunicative table of contents.

And, to the extent that the reader must perceive

the hierarchy in the outline, the two-dimensional

outline will be useless in guiding the reader

through what is really a one-dimensional prod¬
uct!

This last point, obviously, is a bit esoteric and

needs explanation. When I say that books are

one-dimensional, I am talking not about the way

they are conceived but the way they are proc¬

essed by readers. Although one paragraph may be

logically subordinated to another, in reality it is

read after the other. There is no actual hierarchy

in a book, or even in a series of screens to be

read; there is a sequence. Item 2 is not really

below, beside, or behind Item 1; it is after it.

Human readers most resemble computers in

that they read in sequence (not in parallel). But

human readers are far less adept in assembling a

sequence from a maze of loops, detours, and
GOTOs.

78 How to Write Usable User Documentation. Second Edition

Exhibit 7.1: Typical Outlines Cannot Answer Key Questions

Management Questions

How Long? What Cost?
How Many People? Days?

Writer’s Questions

How Much Writing?
What to Emphasize?

Reader’s Questions

Where to Read?
What Matters Most?

1. Introduction

2. Purpose and Objectives
3. Program Highlights

3.1 Account Code
3.1.1 Structure
3.1.2 Total Levels

3.1.3 Account Identifications
3.1.4 Account Description

3.2 Year-to-Year Transition

3.3 Subsystems Supported
3.3.1 Vendor Payment Subsystem

3.3.2 Budget Development Subsystem
3.3.3 Budget Control Subsystems

4. Advantages

5. User Requirements for Installation

Developing a Modular Outline 79

7.2 Requirements for a Modular Outline

Everyone who plans a document will start with a conventional outline, which is converted

in stages to a structured, modular outline in which each heading corresponds to one

module of standard size and layout, and in which the language of the heading is informa¬

tive and thematic—making it more a headline.

Most people do not have thoughts that fit into

standard-sized parcels. Thus, their outlines reflect

ideas that vary in length and complexity. There is

no reason to believe that item 2.1 in an outline

will define a section equal in length to that

defined by item 2.2. And there is no way to know

whether 2.2 is longer or shorter than 2.2.1.

The headings in the outline are little help.

Just knowing that item 2.1 is called Administra¬

tive Aids and 2.1.1 is called Access Subsystem

does not solve the problem.

For an outline to serve the design functions

needed in a structured approach to user documen¬

tation, it needs two things that most conventional

outlines lack:

• a style of language that specifies for the

writer, reviewer, and—eventually—the

reader what exactly is covered in each

section

• a standard that requires each entry in the

outline to correspond to a certain standard¬

sized “chunk” of material

Now, of these two requirements, the first is

far less exotic than the second. Many skillful

writers use headlines rather than traditional

headings—if not in their original outlines then in

their tables of contents. For decades, many

technical writers have avoided the traditional

“Account Code Assignment” (three nouns) in

favor of “Assigning the Account Codes” or “How

to Assign Account Codes” or “Six Rules for

Assigning Account Codes” or even “Why You

Won’t Need to Assign Account Codes.”

The other suggestion—that each entry in the

outline correspond to a standard-sized item of

material—is less familiar to most writers, unless

they are experienced with defense and aerospace

technical proposals, in which the technique is

commonplace. In fact, many analysts and techni¬

cal writers are astonished at the idea. How can it

be possible to arrange the ebb and flow of ideas

into units of uniform size? Is it feasible? Is it

worth the effort?
Every communication is necessarily organ¬

ized into standard-sized units already. Most

notably, manuals are already organized into

pages of uniform size; no matter how free-

flowing the ideas, they are packed in one-page

chunks. Most writers and editors, though, leave

this packaging up to chance. They rarely know

how many pages an idea will take; they cannot

predict the length of their discussions. In effect,

they let the people and machines that process

documents decide where pages will break.

In contrast, in the structured approach to

documentation, the goal is to design the actual

object the reader/user will see: the pages or

screens that will be read. If the book is naturally

organized by pages, why not plan and design it

page-by-page? If the idea of making every

section or unit the same size seems impossible,

then why not make them all about the same size,

with an upper limit that all must meet?

Why not convert the conventional outline to a

list of specifications for each of the modules in

the emerging manual or information product?

80 How to Write Usable User Documentation. Second Edition

Exhibit 7.2: Differences between Conventional and Modular Outlines

In Conventional Outlines In Modular Outlines

The entries are cryptic, clear only to

the author.

The entries correspond to no particular

length or size of document.

The conversion to a physical product is

left to editing and production of the

finished draft.

The scope and cost of the proposed

publication are NOT apparent from

the outline.

The entries are substantive and informative,

clear enough for review and testing.

Each entry corresponds to a standard

physical entity, of known length.

The format and layout of the physical

product is inherent in the outline

(provided the module has been defined).

The outline constitutes a workplan from

which costs and production requirements

can be estimated easily.

Developing a Modular Outline 81

7.3 Defining a Module of Documentation

Modules of documentation may take many forms, as long as each module is small, is

cohesive enough to be independent from the other modules, and addresses a single func¬

tion or theme. Each module should be synoptic, that is, show the entire content of the

module in a single array that will not force the user to turn pages. Modules, then, must be

on one standard page, or on one odd-sized page, or on one screen-panel, or on two fac¬

ing pages.

A modular publication is a series of small,

cohesive chunks of technical communication of

predictable size, content, and appearance. Once

the design—the exact sequence—of the modules

is frozen, it becomes possible to treat the one,

large, complicated manual as a set of small,

nearly independent manuals.

Each takes only an hour or two of effort to

write; each can be developed independently of

the others, in any sequence. With a modular plan,

it is even possible to number all the pages and

figures as they are written, even though they have

been written out of order!

Exhibit 7.3: Tracey s STOP Module

Headings

Control Info

Thesis Sentence

or

Summary

Paragraph

200-700 words 1 or more exhibits

(1000 maximum) (reinforcing text)

82 How to Write Usable User Documentation, Second Edition

The easiest notion of the module is one page.

But the one-page limit, although it is perfect for

some publications, is troublesome for most. It is

too short to present any but the simplest con¬

cepts, without crowding the page with tiny,

cluttered lettering.

The two-page module made up of two facing

pages (a spread) is harder to maintain than the

one-page module, but more versatile in use. The

best arrangement (developed, as already men¬

tioned, over 20 years ago by the Hughes Aircraft

Corporation) is like that shown in Exhibit 7.3.

• Headings contain the document number,

page, and other typical control data; the

name of the section; and the headline

(thematic or functional heading).

• The thesis passage (summary) lays out the

central idea of the module.

• The full text (usually 200 to 700 words)

expands the ideas in the headline and

summary.

• The exhibits—screens, diagrams, tables,

drawings—are on the right-hand page, or

intermingled with the text.

Note that a two-page spread is what people

see whenever they open a publication—whether

or not the writer intended it. This modular ap¬

proach merely unifies the logical document as

conceived with the physical document as re¬
ceived.

A module may fit on one page, even one 11"

by 15" piece of computer printout. Or the ar¬

rangement of the parts in the two-page module

may be changed: some documentors prefer

exhibits on the left; some like to shift from right

to left for the sake of variety.

Before describing some of these alternatives,

however, two ideas must be stressed:

• The definition of the module, though

standard and fixed, is really quite flexible,

allowing great variability in the number of

words or exhibits in the module; especially

in the two-page module, the actual “heft” or

bulk of the module can vary considerably

from one ostensibly same-sized module to

the next.

• The particular two-page format

recommended here has more than 20 years

of successful application in all aspects of

technical, industrial, government, and

business communications; it is easy to learn

and remarkably effective.

Developing a Modular Outline 83

7.4 Alternative Forms of the Module, for Special
Needs

The recommended two-page module is appropriate and useful for most user documenta¬

tion. It is synoptic (no page turning) and is large enough to give the advantages of modu¬

larity. There are, in addition, one-page alternatives, as well as a variety of specially sized

pages and job aids.

The basic module contains one page. Exhibit 7.4a

shows alternative arrangements of that one page.

Generally, one-page modules are best for orienta¬

tion/tutorial publications, where the scope of

each module is small. Although integrating text

and artwork on the same page (rather than facing

pages) demands a higher level of word process¬

ing or publishing software, for most firms this is

no constraint.

Even when the one-page module is techni¬

cally feasible, though, note that, as in software

engineering, the smaller the modules, the more

complicated the interfaces: the greater the num¬

ber of references, loops, skips, and detours. Very

small modules that do not allow space to repeat

material force you to send your reader to other

modules.

Starting with the presumption that a module

will be half text and half exhibits, you may then

discover that in many modules it makes sense to

change the mix. A module may contain mostly

text, although it is unwise to do that too often;

more often, it will contain almost entirely charts,

listings, or some other exhibit. You may also

shift the exhibits to the left, or even expand the

module with a foldout.

Exhibit 7.4b shows the possibilities of odd¬

sized pages: half-size pages, or smaller, for very

simple machines; 11" by 15" printout pages; 2' by

Exhibit 7.4a: One-Page Modules

Heading/Summary

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

84 How to Write Usable User Documentation. Second Edition

3' posters; fanfold reference cards; keyboard

accessories.

A module may be of any workable size or

shape, as long as it is big enough to communicate

a whole concept, small enough to be easily

specified in a plan, and synoptic.

Thus, the perfect module might be a single

screen—preferably one that could be read with¬

out scrolling. In that case, the size of the module

would be constrained by the limits of the video

display.

Exhibit 7.4b: Special-Purpose Modules

Fanfold Reference

Wide
Printout
Page

Developing a Modular Outline 85

7.5 Writing Headlines for Modules

Each module, regardless of its size and shape, is impelled by a headline. Headlines,

unlike traditional headings, contain themes, ideas, assertions, even arguments. In con¬

trast, traditional headings, even when they are detailed, usually contain only modifiers

and nouns.

The traditional heading used in outlines and

tables of contents contains only nouns (“Logon,”

“Logon Procedure,” “Power Redundancy”) or

nouns and modifiers (“Alternate Logon Proce¬

dure,” “Multiple Power Source Redundancy”).

These traditional headings give little clue to
the actual scope or intent of the section and

certainly no clue to its length. Neither the author

Exhibit 7.5a: Styles of Headlines

who must write the section nor the reader who is

searching the table of contents really knows what

the writer of the outline had in mind.

In contrast, headlines express ideas, themes,

emphases. Both the author and the reader know

why the section is written and what it is supposed
to do (Exhibit 7.5a).

STYLE EXAMPLE

VERBALS
■ Backing-Up the Mailing List
■ How to Import Text Files
■ Two Ways to Open an Account

CLAUSES
■ What Happens to Deleted Records
■ When You MUST Call the Help Desk
■ Why It Is Safest to Return to the Main Menu

APPOSITIONS
■ New Accounts: Who May Authorize One?
■ Security Fence: Which Terminals May Write
■ CGM: Adding Graphics to the Text

INJUNCTIONS/
THEMES

■ The Need to Save Frequently
■ The Importance of Updating Subscriber Lists
■ The Risks of Unverified Transfers

SENTENCES
■ This Demo Version Cannot Print
■ Memorize Your Password
■ Does Everyone Get the Monthly Statement?

86 How to Write Usable User Documentation, Second Edition

The real key to writing an effective headline

is knowing exactly what you want said in the

module. Note: Not “what you want to say” but

“what you want said.” Writing good headlines

may be the first step toward getting other people

to help you write the manuals you do not choose
to write alone.

Note also that the knack of writing headlines

is, in another sense, independent of the knack of

organizing a manual into standard-sized modules

Clearly, one can write headlines without any

regard for the heft or length of the material to be

covered under them. In fact, one way to develop

a modular outline is to go through the intermedi¬

ate stage of a substantive outline, one in which

traditional headings have been recast into head-

*

Exhibit 7.5b: Converted Headlines

line style without regard for module size. The

substantive outline is then refined (disaggregated)

into the structured outline.

Although it may seem somewhat confusing to
solve both problems at once—thematic language

and module-sized chunks—many writers find it

easier to plan this way. Knowing the size of the

module tends to refine the headline, making it
sharper and clearer.

Exhibit 7.5b shows some traditional headings

taken from my own library of user manuals and

also what their authors seem to have meant by

them. (I have left a few blank, just in case you

want to try your hand at a hypothetical headline
or two.)

Before After

Access Methods

Files

Executive Libraries

Program DEBUG

FDEBUG Example

Transparent Write

Tape Storage

Weekend Testing

Two Ways to Access Files: Sequential & Direct

How the System Validates File Requests

The System Includes a Library of Report Templates

How to Edit Programs with DEBUG

Debugging a FORTRAN Program with FDEBUG

Developing a Modular Outline 87

7.6 Demonstration: Headings into Headlines

When traditional outlines are converted to substantive outlines, they often look like lists

of headlines. The tone of the headlines may be either light and conversational (a kind of

“marketing” style) or, alternatively, straightforward and technical.

Exhibit 7.6a shows the outline for an installation

plan in both traditional and substantive forms.

The “before” version is typical of the style of

data processing departments, but the “after”

version is vastly more likely to communicate

clearly with the user departments and others

affected by the installation.

Exhibit 7.6b shows the outline for a typical

user guide to a typical accounting package. Note,

however, that there are two versions of the

revised outline: one showing the appropriate

language, scope, and sequence for an executive in

the financial department, the other showing a

financial clerk how to operate the system.

Exhibit 7.6a: Converting the Outline for an Installation Plan

Before:

1. Site Preparation
1.1 Electrical Requirements
1.2 Physical Requirements

2. Assembly
2.1 Attachments
2.2 Interfaces

3. Communications
3.1 Communication Protocols
3.2 Alternative Configurations

4. Testing
4.1 Communications Test
4.2 Mechanical Test
4.3 Software Test

After:
1. Installing the Necessary Electrical Fixtures
2. Ensuring the Right Temperature and Cleanliness
3. Attaching the Cover and Paper Feeder
4. Choosing and Attaching the Right Cables and Connectors
5. Connecting the Plotter to the Computer
6. Setting the DIP Switches
7. Running the Communications-Check Program
8. Diagnosing Start-Up Problems
9. Solving Communication Problems
10. Solving Mechanical Problems
11. Setting the Switches for Your Graphics Software
12. Testing the System with Your Software

88 How to Write Usable User Documentation, Second Edition

Notice also how traditional outlines do almost Those decisions are not made until the writer

nothing to help the writer anticipate the audi- begins the rough draft,

ences and functions of the publication.

Exhibit 7.6b: Two Outlines for a Business Product

Before:

1. Introduction
2. Accounting Highlights

2.1 Account Structures and Levels

2.2 IDs and Descriptions

3. Systems Supported
3.1 Vendor Payment

3.2 Budget Development

3.3 Budget Control
3.4 Financial Reporting

4. Appendix: Sample Outputs

After: Executive Version

1. Using a Financial Information System

2. Defining Accounting Codes to Meet

Legal Requirements

3. Defining Accounting Codes to Support

Planning and Analysis
4. Customizing Financial Reports
5. Analyzing Current Patterns of Expenditure

6. Simulating Alternative Budgets

7. Enforcing a Budget

After: Clerical Version

1. Entering Data
1.1 Entering a Receivable

1.2 Entering a Receipt

1.3 Entering a Payable

1.4 Entering a Payment

1.5 Entering a Budget
1.6 Editing a Mistake

2. Getting Reports
2.1 Running the Monthly Report
2.2 Running the Quarterly Report
2.3 Running the Year-End Report
2.4 Running the Annual P&L Statement

2.5 Running the Budget Comparisons

3. Appendix: How to Respond to Error Messages

Developing a Modular Outline 89

7.7 How Outlines Develop

Modules develop through successive approximations, each with added layers of detail

Instead of the traditional form of writing—from vague topical outline to first draft in one

move—we see a series of increasingly richer outlines: topical, substantive (rich in lan¬
guage), modular (one entry per module).

Typically, outlines contain mainly nouns, with a

few adjectives for refinement. These topical

maps are sufficient for small, uncomplicated

writing projects, especially if the writer works

quickly, before the encrypted meanings of such

entries as “Communication Protocols” escape.

For complicated documents though—those in

which there is a more than trivial risk of putting

the wrong material in the wrong sequence—the

traditional outline is an inadequate design tool.

Moreover, its opacity to everyone but its author

makes this kind of outline unuseful in any prior
review of the emerging document.

The first step involves titling, the craft of

labeling the sections of the document with sub¬

stantive headings. In this step, technical writers

are expected to apply the craft of journalists,

replacing headings with headlines. The headlines

should answer the question: What themes, ideas,

or practices will be addressed in “Communica¬

tion Protocols”? The answers must come from

the designers; only they know what they mean:

Exhibit 7.7a: Stages of Outlining

TlracfjtJOJiaJ Communication Protocols

Su bstan tj'vG Setting the DIP Switches

MoctuJai- How to Read DIP Switches

Setting AfOZJli’Af DIP Switches

Setting DIP Switches

Setting JdLOTTE'jR DIP Switches

90 How to Write Usable User Documentation, Second Edition

• How to Set DIP Switches

• Linking with the Mainframe

• Are Your Jumpers and Patches Installed

Correctly?

• A Fast Way to Overwrite Jumpers with
Software

• What Modem and Cable You Will Need

Again, only the designers know for sure.

Once each of the topical entries is translated

into a richer thematic, substantive entry (the

substantive outline), the next task is to “decom¬

pose,” or disaggregate, these entries into module¬

sized chunks.

As Exhibit 7.7b shows, the issue is whether

the matter defined in the substantive heading will

fit comfortably within the limits of one module
*

Exhibit 7.7b: The Process of Outlining

(however that has been defined). In some cases,

the answer is yes, and that headline slides

through unaltered into the modular outline. In

more cases, though, the original headline needs

several modules to develop its points. When this

is so, the expanded set of headlines (one per

module) is transcribed into the modular outline.

Note that a procedure which is too big for one

module usually needs a hierarchy of modules,

not just a series. If, for example, the original

substantive heading were “Printing a File,” then

the expanded, modular outline might be

1.0 Printing a File: The Three Stages

1.1 Retrieving and Verifying the File

1.2 Setting the Printer/Format Options

1.3 Distributing the Output

For Each. Substantive Heading...

Will the matter

fit into one, predefined

module?

YES NO

Pass beading

through to

modular outline.

Disaggregate into

module —sized

chunks.

Write heading

for each chunk.

Pass headings

through to

modular outline.

Developing a Modular Outline 91

7.8 Option: Reaching the Modular Outline in
One Step

Many authors, especially after they have designed two or three modular documents, elect

to go directly from the topical outline to the modular. That is, they translate the topical

entries directly into thematic headlines for module-sized chunks.

On the surface, it seems logical to reach the

modular outline by degrees. First, the strings of

nouns and adjectives are translated into the

thematic language of the substantive outline.

Then each entry in the substantive outline is

either carried through into the modular or, alter¬

natively, disaggregated into module-sized

chunks.

After a few writing projects, though, many

writers find it easier to go directly from the

topical outline to the modular. Once the size and

scope of the standard module become second

nature, to them, they are able to write substantive

headings that already fit the modular constraint.

Moreover, many writers discover that it

becomes easier to invent substantive headings

Exhibit 7.8a: Skipping the Intermediate Conversion

Conventional Outline Structured Outline

I. Introduction

1.1 Background.1. Problems in Batch Processing of Retail Transactions

1.2 Project History..2. A Three-Stage Conversion to TRANSACTIONS

II. Operating Highlights

2.1 Transparency..3. How the New System Simplifies Operation
*-4. Elimination of Batch Activities

2.2 Transaction-Based.5. Each Transaction Updates AH the Files
M). Data Are Typed Only Once

2.3 Security..7. Access Is Strictly Controlled

III. Functions

3.1 Retail.8. Recording Retail Transactions
L9. Opening Retail Accounts

3.2 Accounting.10. How the Retail Data Reach the Accounting Files

3.3 Inventory Control.11. How the Retail Data Reach the Inventory System

92 How to Write Usable User Documentation, Second Edition

when the scope of the material has been defined.

They find that they need a sense of scope when

trying to choose the most precise and evocative

headline for the substantive outline. For example,

if the original topical heading is “Envelopes,” it

is difficult to know the appropriate substantive

heading:

• Printing Envelopes
• Printing Envelopes on the Laser Printer

• Printing Envelopes on Laser Printers with a

Central Envelope Feeder

• Customizing the Envelope Printing Program

It is hard to say which one (or combination)

of these is appropriate—until one decides to

outline in module-sized chunks.

Exhibit 7.8a shows a direct conversion from

the topical to the modular outline (without the

intervening substantive step).

Exhibit 7.8b shows that, sometimes, the order

of the original outline needs adjustment. The

revised sequence is the planner’s design for a

more accessible version of the material implied

in the topical outline.

Exhibit 7.8b: Altering the Original Sequence

Original Sequence Revised Sequence

1. Problems in Batch Processing of Retail Transactions

2. A Three-Stage Conversion to TRANSACTIONS

3. How the New System Simplifies Operation

4. Elimination of Batch Activities

5. Each Transaction Updates All the Files

6. Data Are Typed Only Once

7. Access Is Strictly Controlled

8. Recording Retail Transactions

9. Opening Retail Accounts

10. How the Retail Data Reach the Accounting Files

11. How the Retail Data Reach the Inventory System

1. How the New System Simplifies... (3)

2. Data Are Typed Only Once (6)

3. Each Transaction Updates... (5)

4. Elimination of Batch Activities (4)

5. Opening Retail Accounts (9)

6. Recording Retail Transactions (8)

7. How the Retail...Accounting Files (10)

8. How the Retail...Inventory System (11)

9. Access Is Strictly Controlled (7)

10. Problems in Batch Processing... (1)

11. A Three-Stage Conversion... (2)

Developing a Modular Outline 93

7.9 Is It Possible to Predict the Number of
Modules?

People who do not write much are skeptical of the claim that, at this early stage, it is

possible to estimate the size of the modules, to be sure that what is defined as a module

will fit into the space provided. Actually, within a month most people to learn to estimate

the heft of the modules and, thus, the number.

Even professional technical writers, who often

make rough estimates of the length of a publica¬

tion by looking at the outline, are reluctant to

predict length precisely. Obviously, it is impos¬

sible to tell from a traditional outline the precise

length of any of its entries. Fortunately, though,

devising a structured outline does not require
such an estimate.

In this scheme, a module is an upper limit

(one or two pages, of any dimensions), not a

uniform size or length. It is far easier to make

sure that no module is too large than to make

sure that all modules are equally long.

Modules can vary considerably in length and

content, as long as they all fit into the same two-

page spreads. By adjustments of artwork and

typography, a module might have as few as 200

words, with or without an attendant increase in

the size or number of exhibits, or as many as
1000 words.

Furthermore, the modular outline is not the

last chance to estimate the size of the modules.

Later, when the outline is finished, the designers

will write a small spec for each module, at which

point they may decide that what they thought was

one module is, in fact, more than one. And, still

later, when all the specs are mounted in a story¬

board, there is one more chance to revise the
estimate.

Generally, it takes writers only a few weeks

to develop a sense of the module-sized chunk of

material. Amateur writers often learn the tech¬

nique quicker than professionals, who need a few

days to unlearn some of their old habits. Al¬

though the idea of setting a standard physical

limit on the size of a concept or procedure seems

harsh and restrictive at first, in a short time it

reveals itself to be a useful discipline that encour¬

ages intellectual creativity.

After a few years of writing in this modular

style—and of encouraging others to learn it—

many writers may discover that what seemed

Procrustean and inhibiting at first is actually

liberating and exhilarating. Designing modular

publications, like structured methods in general,

converts overwhelming assignments into man¬

ageable projects. And the discipline of disaggre¬

gating complex ideas into module-sized chunks

converts overwhelming concepts into manageable

bits of comprehensible information.

The two-page spread is, of course, arbitrary.

(Someone has said that a standard is an arbitrary

solution to a recurring problem.) Or is it arbi¬

trary? Is it not possible that, since books naturally

present themselves in two-page spreads, that

educated people learn to apprehend intellectual

material in just such chunks? Even if there is

nothing biological or metaphysical about the two-

page spread, cannot we argue that it is a key

element in Western culture? Why is it that when

people begin to design publications this way they

often speak of being “converted” to the method?

Even publications managers, who start out

skeptical, are usually won over—unless they are

preoccupied with conserving paper.

The only change in publication policy needed

to implement modular publications successfully

is a willingness to allow some white space in

94 How to Write Usable User Documentation. Second Edition

manuals—the consequence of occasional short

modules. For some, though, the sight of blank

white paper is anathema. They see expense and

waste; they do not see the increased readability

and maintainability of the publication—which

sometimes save thousands of times as much

money as the “less wasteful” printing could have

saved. To the question “Won’t there be a lot of

blank space in a modular publication?” the
answer is “Probably.”

Developing a Modular Outline 95

.*

8. DEVELOPING A STORYBOARD

8.1 The Value of Models in Solving Documentation Problems

8.2 Writing a Specification for Each Module

8.2.1 Does Every Module Need an Exhibit?

8.2.2 What If the Material Won't Fit into One Module?

8.3 Modules Must Be Functionally Cohesive

8.3.1 Designing a Module that Motivates

8.3.2 Designing a Module that Orients the Novice

8.3.3 Designing a Module that Guides the Experienced User

8.3.3.1 Replacing Prose with Structured Text

8.3.3.2 Replacing Prose with Decision Graphics

8.3.3.3 Handling Troublesome Procedures

8.3.4 Designing Reference Modules that Work

8.4 Mounting the Storyboard

8.5 Modifying the Storyboard

8.6 Won't There Be a Lot of Redundancy?

8.7 Handling Branches and Hierarchies

8.1 The Value of Models in Solving
Documentation Problems

Models save money and effort. They allow you to experiment and innovate with smaller

risk and slight expense. Without models, you are unlikely to test documents as hard as

you should.

Exhibit 8.1 depicts one of the most important

functions in the world of work: the relationship

between the cost of correcting an error and the

time at which the correction is made. The func¬

tion is exponential; that is, the curve not only

accelerates, it accelerates at an ever faster rate.

The more complicated the project, or the

more unfamiliar and risky the technology, the

faster the curve accelerates.

A model is a representation of one thing by

another. Models are made either from different

materials (clay instead of steel, paper instead of

switches) or on a different scale (a miniature of a

building, an oversized model of an atom). The

materials and scale of the model make it easier to

build and, more important, easier to change.

Models are relevant to writers of user docu¬

mentation in two important ways. First, user

documents can he models themselves. In the most

sophisticated development groups, the design

team will write an operations guide as a way of

specifying and testing the user interface. In other

Exhibit 8.1: Costs of Change over Time

Planning Analysis Design Implementation Distribution

98 How to Write Usable User Documentation. Second Edition

words, the developers, by writing a before-the-

fact user publication, guide the subsequent design
of the system or program. And if that model

publication has been written by an expert on

efficient, friendly operations, the resultant prod¬

uct will also have those characteristics.

(User documentation written at the beginning

of the life cycle is still exceptional, but clearly—

as many have discovered—is the best way to

work. Among other benefits, writing early user

documents forces developers to think about the

thing they usually leave for last: what the people
will do with the system.)

The second relevance of models is in the

development of the documents themselves.

Publications also need models. And the models

they need are much more ambitious than a

traditional topical outline. Even the substantive

and structured outlines described earlier, al¬

though they are a vast improvement on tradi¬

tional designs, are not enough.

Rather, before writing and drawing a draft of

any publication longer than a few pages, docu¬

mentors should devise a model of the publication

that makes clear what will happen within each

module and also that shows all the links and

couplings across modules. In effect, it should be

possible to evaluate the accuracy of the technical

content in each module, and predict the number

of loops and branches across modules. As in

software engineering, the greater the number of

possible paths through the document, the less

reliable and more error-prone the process of
reading it.

Models are for testing. And the purpose of

testing is to find flaws, mistakes, and bugs.

Models and tests encourage you to change your

mind, raise or lower your sights. Models and

tests make misunderstandings vivid, focus

disagreements, underscore schedule and cost

problems, and prove that you cannot have

everything you want—or cannot have it in

time. In short, models force you to recognize

your errors and redo your work.

And that is why few writers, and nearly as

few programmers, want to use them. Most of

the clients I meet do not want to know what is

wrong with their work. They do not want to be

reviewed, tested, inspected, verified, validated,

evaluated, or “walked through.”

Obviously, no one likes criticism. But the

longer people work on a manual or system, the

less receptive they are to critical opinions. An

added benefit of working with models is that

they enable people to see the flaws in their

plans early—before they have fallen in love

with them!

Developing a Storyboard 99

8.2 Writing a Specification for Each Module

For each module defined in the modular outline, the designers prepare a module spec, a

brief but informative description of the content of the module. The main elements in this

spec are a thesis passage (summary) and a sketch of the exhibits that are to appear in the

module.

Given an approved modular outline, the design¬

ers write a specification for each proposed

module. The module spec contains

1. The heading—transcribed from the modular

outline

2. Context (optional), the location of the

particular module in some larger hierarchy.

In the example below, for instance, the

module “How to Add a Node” is part of a

hierarchy:

Changing the Configuration (sup)

How to Add A Node

Updating the Security Profile (sub)

Updating the Reports Route (sub)

This part of the spec may be eliminated

for any module that truly stands alone, that

is, one unconnected to any other module.

The best document database would be a

collection of such unencumbered files.

3. The summary or thesis passage—a precis

with one-to-four sentences that distill the

main information in the module. Note: The

summary is informative, that is, it contains

the same information as the module in

shortened form; it does not merely promise

what will be discussed.

4. Exhibits—sketches or clear specifications for

the nonprose part of the module. Although

not every module will have exhibits, all are

presumed to need at least one.

5. Notes—as needed. Just in case the headline,

summary, and exhibit are not clear enough—

although they usually are—the designers may

also add a few notes describing what the

module will contain. Just enough so that

someone who had reviewed the spec would

not be surprised by the finished module.

These module specs will be mounted in a

gallery for review and revision. Included in the

review are those people who will be asked to

write the missing part of the modules (and who,

therefore, are consulted on the overall design of

the publication), as well as potential users/readers

of the publication.

After a brief “learning curve” (2 or 3 hours),

most people find that they can write a module

spec in 10 to 15 minutes. And in some publica¬

tions, in which a series of modules falls into the

same pattern, the repetitive module specs can be

prepared in only about 5 minutes each.

100 How to Write Usable User Documentation, Second Edition

Exhibit 8.2: Filled-in Module Spec

Module Specification Mod No: 6SJ7

Heading: How to Add a Node

Context: Sup: Changing the Configuration

Sub: Updating the Security Profile

Updating the Reports Route

Summary:
Tb add a node. Press <F5>: CONFIG MENU.

Select ADD A NODE; answer the prompts.

Tb select a "generic node," press <ESC> at

NEW ATTRIBUTES> prompt.

Notes: <

Developing a Storyboard 101

8.2 Writing a Specification for Each Module

8.2.1 Does Every Module Need an Exhibit?

Nearly every module in a user manual can benefit from an exhibit—a diagram, a screen

or two, a drawing, a word chart. In a well-designed module the exhibit is redundant with

the text, not supplemental to it.

Presume that every module will have an exhibit.

That is, plan on having at least one exhibit in

each module, but be prepared to abandon the idea

if, after hard thought, you cannot think of one. Or

if there is not enough space.

The material communicated in the exhibit

overlaps with and reinforces—in some cases

duplicates—the material in the text. In fact, in the

best module there is double repetition; the head¬

line and summary state the content, which is

echoed in the exhibit, which is further echoed

and enhanced in the detailed text. Does not all

this redundancy violate some principle of con¬

cise, technical communication?

No. Redundancy violates a principle of

economy, redundancy raises the short-term costs.

Indeed, leaving out the graphics altogether also

reduces short-term costs. Remember that redun¬

dancy is absolutely necessary to ensure effective

communication. And redundancy of pictures and

text is the shrewdest way to communicate techni¬

cal information to audiences with different
learning styles.

Most of the exhibits will fall into these main

categories:

• Displays and screens—duplications,

reproductions, or renderings of what

actually appears on the video display or

other input/output device; one or more

screens per module is the most typical

method of documenting online systems.

• Flow and process diagrams—abstract

symbols that represent either the physical

movement of events and material or the

logical movement of data and ideas. There

are also diagrams that clarify procedures.

• Drawings and representations—any

attempt by art or photography to depict

actual objects or, occasionally, people;

technical drawings are usually the preferred

method because they are easier to reproduce,

but photographs are used when the emphasis

is on credibility.

• Verbal graphics—exhibits made up mainly

of words, with some simple embellishments

such as boxes and arrows; although rare in

technical or user manuals, verbal graphics

can be especially useful in plans, briefings,

and training materials. (The module you are

reading now has a verbal graphic.)

• Playscript/dialogue—techniques that show

operators, users, and equipment as though

they were following stage directions;

playscript, a set of techniques developed

originally for manual systems and

procedures, is extremely adaptable for data
entry.

• Mathematical and statistical exhibits—

equations, formulas, graphs, statistical

tables, and the full range of exhibits

associated with science and engineering.

Can the same exhibit appear in more than one

module? Of course. Although many technical

editors and publications managers will resist the

suggestion, I urge you to repeat an exhibit rather

than commit that most serious error: referring to

an exhibit that cannot be seen.

102 How to Write Usable User Documentation, Second Edition

In practice, however, most documentors

discover that each of the several references to the

“same” exhibit are, in fact, references to different

fields on the screen, different cells in the table.

Although the usual practice is to produce the

exhibit once and refer to it from several places in

the text, the smarter policy is to create separate

exhibits for each instance, or, in some cases, the

“same” exhibit with different parts emphasized or
highlighted.

Exhibit 8.2.1: Types of Exhibits

DISPLAYS
■ Screens/Panels/Windows
■ Worksheets/Forms
■ Messages/Boxes

DIAGRAMS
■ Flowcharts
■ Networks
■ Data Flow Diagrams
■ Structure Charts

■ Illustrations
PICTURES ■ Photographs

■ Design Graphics (Drawings)

■ Word Tables
VERBALS ■ Pseudocode or "Structured English"

■ Decision Tables/Trees
■ "Information Maps"
■ Listings, Programs
■ Playscripts

■ Statistical Plots
MATHEMATICS ■ Pie/Bar/Line/Surface Charts

■ Equations, Models

Developing a Storyboard 103

8.2 Writing a Specification for Each Module

8.2.2 What If the Material Won’t Fit Into One
Module?

If the material under one headline is really too big for one module, then it must be ex¬

ploded or disaggregated. Generally, if an idea or procedure is too big for one module, it

needs at least three.

When documentors first try to write in standard¬

sized modules, one of their concerns is the

problem of the module that is just a little too big

to fit in the one- or two-page limit. Obviously, if

the concept or content is much too large it will

need to be treated as several modules. But what

of the item that is only slightly overweight?

For those modules that are bursting at the

seams, there are numerous remedies. Artwork

can be shrunk; even text can be reduced some¬

what, although most publication professionals

prefer not to change type sizes from page to

page.
There are also many ways to expand the

capacity of a module without producing clutter

and without making it harder to read. Text

presented in columns usually allows the writer to

fit 10 to 20 percent more material into a space

without deleterious effects. Text typed with

proportional printing or kerning yields a

similar benefit.
There is even the option of removing some

material from the fat module, provided one is

sure that this loss will not interfere with the

clarity and effectiveness of the module.
But what of the case that resists these simple

adjustments? What of the module that really is

too big?
As it turns out, the discovery that a process or

concept is too large for one module of documen¬

tation is a powerful piece of test data. In almost

every case, it means that the process or concept is

too big to be regarded as one entity. Especially

when the module is the spacious expanse of the

two-page spread of 8Vi" by 11" pages, an entity

that will not fit the module is probably best

regarded not as one thing but as a small collec¬

tion of things. For that reason, the most common

way of redesigning the big module is not to break

it into two modules, but, rather, into at least

three!
As Exhibit 8.2.2 shows, merely breaking a

long idea into Phase 1 and Phase 2 is less coher¬

ent and intelligible than beginning with an

executive view that explains how the process has

two phases—and then offering a module for each

phase. Thus, a process with two phases needs

three modules, with three phases four, and so

forth.
In some outlines, the headlines are so broad

that it takes a three-level hierarchy to present

what was first thought of as only one module.

Note, therefore, the advantage of this method of

design: Even if the designers have underesti¬

mated badly the space needed for many of the

modules, the modeling activity will correct the

problem.
After a few months of writing in the modular

way, writers realize that the failure of an idea to

fit into one module is evidence of the difficulty

of the idea. Procedures that can be apprehended

and presented within a single module are more

easily learned and followed than those needing

hierarchies and branches. Often, then, the wisest

thing for a documentor to do—having discovered

an especially fat module—is to persuade the

developer to change the procedure itself, making

it more usable and reliable.

104 How to Write Usable User Documentation, Second Edition

Exhibit 8.2.2: Disaggregating a “Fat Module”

Module Module No hierarchy

2-0 (Undesirable)

2-Tiered hierarchy

Module 3-Tiered hierarchy

Developing a Storyboard 105

8.3 Modules Must Be Functionally Cohesive

A well-made module addresses a single theme and performs a single function. It moti¬

vates the reluctant, orients the novice, guides the competent, or gives reference to the

skilled. Each module should limit itself to only one of these functions.

It is not enough to know the subject of a module;

one must also know its function.

To say that a module “explains the icon

menu” is not enough. The question still to be

answered is “What function or service will it

provide for the people who read it.”

Nearly every piece of a user document—

nearly every Help screen—addresses some

combination of four functions. For the brand

new, reluctant user, it motivates, offers induce¬

ments to try things that are strange—even threat¬

ening. Once the initial shyness has passed, user

documentation orients the newcomer, giving

elemental definitions and instructions. Eventu¬

ally, user documentation guides the experienced

user, demonstrating how to string together the

elements into tasks and meaningful work. And,

finally, documentation gives the skilled user

reference, quick reminders of facts that have

been forgotten (or never memorized in the first

place).

A well-made module or Help screen will

address only one of these four functions. Each of

these functions calls for very different communi¬

cation styles and formats; it is unlikely that a

single page can both teach and motivate, and it is

even more unlikely that a Help screen which tries

to teach procedures and offer quick reference at

the same time will be judged helpful.

Even though one publication may address

many audiences and purposes, a good module is

still functionally cohesive. It addresses not only

one topic but one function. Attempting two or

more functions in a single module produces a

confusing mess of information. More important,

though, is the fact that readers typically need only

one of the four functions whenever they read a

particular page. (At this writing, confusion of

function seems to be the second greatest flaw in

amateur Help screens, the first being unreadable

prose.)

Although this issue may seem somewhat

theoretical, in fact it explains many of the practi¬

cal failures in user documentation. Three prob¬

lems are common:

• Technically oriented writers often ignore the

issue of function and, instead, write dull and

irrelevant “explanations” or “descriptions”

of system features and components.

• Expert writers often provide reference alone

(what they as experts use) and overlook the

other functions.

• To save space and time, well-intentioned

writers cram all four types of support into

compact spaces, and then are disappointed

when users do not read their manuals.

Again, each function needs a different style

of writing and different classes of exhibits. Each

communicates to a different reader expectation.

106 How to Write Usable User Documentation. Second Edition

Exhibit 8.3: Four Functions of Modules

Motivation
■ Inducing reluctant users to try
■ Converting features into benefits
■ Comparing the new with the old

Orientation
■ Preparing the neophyte
■ Teaching elementals
■ Explaining one thing at a time

Guidance
■ Stringing elements together
■ Demonstrating whole processes
■ Promoting productivity

Reference
■ Extending the user's memory
■ Answering frequently asked questions
■ Enhancing the user's efficiency

Developing a Storyboard 107

8.3 Modules Must Be Functionally Cohesive

8.3.1 Designing a Module That Motivates

A motivational module is one whose purpose is to get the readers to do something they do

not want to do. It must convince the readers that they will benefit from the process or

technique recommended in the module, that they will gain more from doing what is pro¬

posed than from not doing it.

Even though documentors may think of them¬

selves as “technical people,” they nevertheless

must sell ideas and methods to their readers.

Operator manuals and user manuals almost

always contain some motivational material. That

is, modules that convert the features of the

system into benefits for the reader.

Every system replaces some other system; the

differences between the former and the latter are

the features to be described.

Most features fit into relatively few catego¬

ries:

• Physical aspects—components, size,

weight, temperature, location, quantities,

general appearance, sound

• Operating aspects—speed, cycle rate,

number of steps, “capabilities” (what it will

or will not do), compatibility with other

things

• Accessibility—quantities on hand, learning

time, delivery time, service time, acquisition

costs, operating costs

• Performance features—elegance, rigor,

accuracy, precision, reliability, versatility,

expandability

To repeat, any system or procedure you

recommend must differ in some of these charac¬

teristics from the one you wish to supplant or

replace. And the problem is to map one or more

of these features onto one or more of the benefits.

The most common mistake is the features

trap. Many writers think there are a great many

people who find several of the features above

inherently desirable and worthwhile. There are

fewer of these people, however, than engineers

and analysts believe.

As Exhibit 8.3.1 shows, features are con¬

verted into benefits, like those proposed in the

work of sociologist Harold Lasswell.

Power, for example, is attractive to the

executive who wants more control over his or her

organization; but it is also attractive to the clerk

who wants “free time.”

Wealth is the most direct business motivator:

the promise that the plan or the product will earn

or save money. (One of the hardest sells, of

course, is to convince people that high short-term

costs will be repaid with higher long-term sav¬

ings.)

Motivational documents may also appeal to

the readers’ desire for superiority (respect) or for

a state-of-the-art challenge (skill). Some users

are attracted to ease-of-use and reduced stress

(well-being), while others want to do what is

popular with their group (affection).

Less often used in business and government

is the appeal to rectitude: doing something

because it is right, or just, or ennobling. And still

less often the appeal to act in a way that enhances

knowledge and wisdom (enlightenment). In

some specialized institutions (like universities or

religious organizations) and even in some entire

cultures, these appeals persuade people to try

new activities as eagerly as most people in our

society are drawn to the “better bottom line.”

108 How to Write Usable User Documentation. Second Edition

The point to be stressed is that none of these

benefits is obvious in the features. Even the cost

features of a new system may need extensive

explanation and justification to prove that they

provide a material benefit to the reader.

The documentor must analyze what the

readers/users want and must show explicitly—in

the summary paragraph of the module—how the

recommended action can get it for them. And the

exhibit should, in most cases, show the compara¬

tive advantages of the two approaches side-by-

side.

Exhibit 8.3.1: Converting Features into Benefits

1 Physical

Operating
Accessibility

\ Performance

Features

K

Power (control)
Wealth (money)

Respect (prestige)
Skill (challenge)

■ Well-Being (comfort)
Affection (popularity)
Rectitude (justice)
Enlightenment

Benefits

Developing a Storyboard 109

8.3 Modules Must Be Functionally Cohesive

8.3.2 Designing a Module That Orients the
Novice

An orientation module teaches a single concept or task and then tests the reader to see if

the concept or task has been learned. Documentors define the aim of the module in terms

of a particular item to be mastered and then require the reader to prove mastery: by

answering a question, completing a simple operation, or advancing along a progression
of tutorial instructions.

An orientation module contains one new thing.

Before writers can design such a module,

they must be able to say exactly what they want

the reader to learn from it. And the most useful

way to describe that objective is to think of some

task or test, keyed exactly to the concept or idea

being taught. In effect, if the reader can answer a

certain question, make a certain choice, finish a

certain process, or otherwise prove mastery of the

concept, then the module will have been effec¬

tive. In more-sophisticated teaching materials,

one may even specify other limiting conditions,

such as how much time is allowed for the task, or

how many wrong attempts are permitted among

the right answers.

Exhibit 8.3.2a: Basic Question

The sample in Exhibit 8.3.2a might look

painfully obvious to an experienced operator, but

it frequently is just the right way to communicate

with a novice. (Note: Orientation modules fre¬

quently take very little room; it is not uncommon

to present them in one page, or even in pages that

are smaller than the conventional 8V£" by 11".)

The sample in Exhibit 8.3.2b is more typical

of operators’materials. Naturally, since the task is

to generate the “solution screen,” the manual

must be used at a live terminal or PC. (It is

difficult to imagine a way to present a series of

such modules without having the reader at a

working system. Especially for the inexperienced

reader, it is nearly impossible to learn basic tasks

without actually doing them.)

no How to Write Usable User Documentation. Second Edition

Exhibit 8.3.2b: Simple Task

Using the INSERT and CURSOR keys

Change Screen 1 to Screen 2...

WORKSHEET

Exhibit 8.3.2c: Multiple-Choice Question

The sample multiple-choice question in

Exhibit 8.3.2c could appear either in a book

(probably a programmed textbook) or, better, as

part of a computer-assisted series of instructional

screens. Interestingly, although a programmed

textbook is probably the most effective way to

teach a novice user, the best programmed texts

are designed to force the reader to skip, jump,

branch, and detour! The problem is that insecure

or inexperienced readers who get lost in a pro¬

grammed text may never find their way back.

The solution is the online tutorial, a pro¬

grammed text with branches invisible to the user.

Obviously, more-complicated training materi¬

als call for the skills of a specialist, an instruc¬

tional technologist.

Developing a Storyboard

8.3 Modules Must Be Functionally Cohesive

8.3.3 Designing a Module That Guides the
Experienced User

Unlike the orientation module, which teaches one small item of information to a novice

reader, the guidance module teaches one whole function, task, or activity. It must be

simple and clear—and above all accurate.

As long as they are clearly written and unclut¬

tered, guidance modules can present substantial

chunks of information: complete procedures or

transactions, whole programs or modules of

programs.

The reader of such a module expects it to be

accurate. That is, if the procedure in the module

is imitated, the result should be as promised. If

that is not so, the reader blames the writer of the

documentation and the developer of the system.

(This contrasts with novice users, who tend to

blame themselves.)

As Exhibit 8.3.3 shows, the first task in

planning a demonstration module, or a hierarchi¬

cal series of them, is to be sure the intended

reader is an experienced, confident learner, free

from the special needs discussed earlier in

connection with orientation modules.

The next task is for the designer of the

module to write a summary of the process to be

described—usually how the person is supposed

to do something. This summary should be terse:

a list of instructions and conditional actions,

which is then tested for accuracy.

In writing up a procedure that already exists,

the test is straightforward: We get someone to

follow the instructions (and only the instruc¬

tions) to see whether the program or device

performs as expected. If the system is still under

development, however, the summary of the

process must be tested by having the reviewer

verify its correctness—a procedure not as good as

a live test, but the best possible in the circum¬

stances.

The most interesting document design prob¬

lem, at this point, is to decide whether the proc¬

ess or transaction is a one-level or multi-level

procedure. In simple terms: to decide whether or

not it will fit into one module.

If it is at one level, if everything that needs to

be said about the procedure can be handled in the

one-page or two-page module, then the designer

writes the thesis passage, sketches the simple

procedural diagram, and considers the module

specified.

But what if the whole transaction calls for

more than one module, as many do?

If a process is too big for one guidance

module, then it will need a hierarchy of them.

That is, it will need an overview module, fol¬

lowed by a series of modules for each main

component of the process (a two-level hierarchy);

in other cases it may call for a three- or four-level

hierarchy.

Defining the hierarchy or components of the

process calls for ingenuity; there are always

several ways to break a complicated thing into its

components. The best way is the one that lets the

manual score highest on the Usability Index, that

is, the one that reduces the amount of skipping,

branching, and looping.

112 How to Write Usable User Documentation. Second Edition

Exhibit 8.3.3: Designing a Guidance Module

Developing a Storyboard 113

8.3 Modules Must Be Functionally Cohesive
8.3.3 Designing a Module That Guides the Experienced User

8.3.3.1 Replacing Prose with Structured Text

Writers of guides and instructions should favor forms other than the prose paragraph;

even educated readers have trouble following directives hidden inside paragraphs. In¬

stead, prose should be replaced with lists, word-tables, scripts, and other structured

formats.

Procedure writers should be suspicious of any

instructions couched in paragraph form. Even

though there are many readers who do read

paragraphs, there are many more who cannot—

and still more who will not. Business and govern¬

ment readers are skimmers, not studiers; many go

weeks at a time without reading a paragraph all

the way through.
But even if this were not so, paragraphs

would still be suspect. As the Internal Revenue

Service knows especially well, even the clearest

instructions embedded in paragraph form pro¬

duce a high incidence of errors and frustrations.

Whenever possible, multi-step procedures

should appear in itemized lists or word-tables.

Consider the following actual specimen:

Before

The number of days of sick leave which may be
credited to an employee, other than a part-time
employee, shall be determined by multiplying
the total months of service by two and subtract¬
ing therefrom the number of days of sick leave
previously taken.

After

To compute the number of sick days credited to
a full-time employee:

1. Count total number of months of service.
2. Multiply by 2.
3. Subtract the number of days already taken.

OR

Sick leave for full-time employees =

[(# of months service) X 2] - (days already taken)

Although there are some math-phobes who

could not handle the second version, everyone

would find the first revision preferable to the

original paragraph, especially with its nineteenth-

century prose style.
Consider also the following typical example:

Before

Persons with two 360K floppy disks should
make backup copies of the distribution disks and
use the backup of the program disk in Drive A
and the backup of the files disk in Drive B.
Persons with a hard disk should insert the
program disk in Drive A, type install and follow
the instructions. (To install on one high density,
5.25" floppy, insert the program disk in Drive A
and type instaI15; to install on either a 720K or
1.4Meg 3.5" floppy, type insta!13.)

114 How to Write Usable User Documentation. Second Edition

After Before

SYSTEM PROCEDURE

2 360K floppy 1. Copy distribution

drives disks.

2. Insert copy of program

disk in Drive A

3. Insert copy of files disk in

Drive B

hard (fixed) disk 1. Insert program disk in

Drive A

2. Type install

3. Follow Instructions on

screen

1.2M5.25" 1. Insert program disk in

floppy Drive A

2. Type instaI15

3. Follow Instructions on

screen

760K 3.25" 1. Insert program disk in

floppy Drive A

2. Type instaII3

3. Follow Instructions on

screen

1.4M 3.25" 1. Insert program disk in

floppy Drive A

2. Type install3

3. Follow Instructions on

screen

Even in these simple procedures, the tabular

form is conspicuously easier to follow than the

paragraph. And the benefits are even greater

when the instructions are aimed at two or more

users. When a procedure passes from person to

person, the clearest way to present it is with the

technique known as playscript:

To get access to the files of another user on the

LAN, you must get the owner of the files to

grant written permission, specifying your read/

write privileges on Form MIS89-10. This form

must be sent to the LAN Administrator who,

after receiving the form, has 5 days to create the

software links necessary, consistent with the

read/write privileges. (For read-only links, the

LAN Administrator must respond within 3

days.) Upon receipt of an e-mail bulletin from

the Administrator, you may access the desig¬

nated files.

After

Actor Action

Applicant

Owner

LAN

Administrator

Applicant

1. Tells file owner of access

request

2. Completes form MIS89-

10

2a. If denied, advises

applicant

3. Creates necessary

software link

3a. If read/write, within 5

days

3b. If read-only, within 3

days

4. Sends e-mail bulletin to

applicant

5. Accesses the file, as

needed

Developing a Storyboard 1 15

8.3 Modules Must Be Functionally Cohesive
8.3.3 Designing a Module That Guides the Experienced User

8.3.3.2 Replacing Prose with Decision Graphics

Whenever a procedure involves decision-making or branching, words should be enhanced

with arrows or other logical markers. The best plan is to use tree diagrams and other

decision graphics.

Even clearly written instructions become diffi¬

cult when readers are asked to follow a compli¬

cated path. Although techniques like playscript

allow for “sidetracks” and other branching

operations, it is not an exaggeration to say that

the more often the reader must read something

other than the next line, the less suitable is

ordinary prose.

Countless procedures could be improved by

converting prose to special combined forms,

decision trees, or decision tables.

The first example uses a Nassi-Shneiderman

Chart, a technique developed for structured

design of computer programs but also well-suited

for “manual” procedures:

Before:

To delete a terminal from the access list, first
bring up the list using <PF17>. If the terminal is
not currently on the list, do nothing. If it is,
press <PF10> (modify list), select the terminal
to remove, and press <Enter>. Repeat for each
terminal to be removed.

After: (Exhibit 8.3.3.2a)

Exhibit 8.3.3.2a: Converting Prose to Nassi-Shneiderman Chart

For Each Terminal to be Deleted from Access List

Press <PF17>

Target Terminal on List? s'

Yes ~-_____ y' \No

Press <PF10>

Press <ESC>
Select Terminal to Delete

Press < Enter >

116 How to Write Usable User Documentation, Second Edition

In the next illustration, the text is converted

to a decision tree:

Before:

If you receive the “Illegal Access Attempt”
message, determine whether you have mistyped
the name of the file. (If you have, retype and
continue.) If the file name has been typed

correctly, review your access privileges by
pressing <PF18> (or <ALT-F8> if you are using
a PC terminal). If you are denied access, you
must contact the DB Administrator to get your
privileges changed. If you are not denied access,
call the Help Desk for consultation.

After: (Exhibit 8.3.3.2b)

Exhibit 8.3.3.2b: Converting Prose to a Decision Tree

PC_ <ALT-F8>

Denied

Not -
Denied

Typed Denied
Correctly \ Termina, _ <pFlg> /

\ Not —
Denied

Call
DB Admin

.Call
Help Desk

Call
DB Admin

Call
Help Desk

Typed -—-Retype
Incorrectly

Notice how the passage below is converted to

a decision table:

Before:

Users may revise their passwords at any logon.
After the first six months of employment, those
with write privileges for the ATON database

must revise their passwords at least once a
week. Those with read-only privileges must
revise their passwords at least once a month.

After: (Exhibit 8.3.3.2c)

Exhibit 8.3.3.2c: Converting Prose to a Decision Table

More than 6 months employment Y Y N N

ATON Write privileges Y N Y N

Change Passwords at will • •

Change Passwords at least once/week •

Change Passwords at least once/month •

Developing a Storyboard 11 7

8.3 Modules Must Be Functionally Cohesive
8.3.3 Designing a Module That Guides the Experienced User

8.3.3.3 Handling Troublesome Procedures

If a procedure resists explanation by a competent writer, it is probably an error-prone

procedure. Whether the procedure will get changed depends on the relationship between

writer and developer.

Documentors who discover that they are trying to

explain a very difficult (or nearly unexplainable)

procedure have an interesting choice: either to

proceed with the writing or to attempt to change

the recalcitrant procedure. The better course is

almost always the latter; the most productive

changes include chunking the process into man¬

ageable pieces and improving the harmony

between the physical and logical elements of the

task.

What are the signs of an “unexplainable”

procedure? Not only will it not fit into one

module, it seems to want three or four levels of

hierarchy in its explanation. Furthermore, when it

comes time to partition the procedure into com¬

ponents or subprocesses, no logical or apparent

pattern suggests itself. Or, worse, the competing

patterns (such as segment-of-the-screen versus

order-of-data-entry) are independent, unaligned.

Put simply, most procedures that resist a

linear presentation—a simple sequence or hierar¬

chy, with little skipping or looping—will resist

being used. And valorous writers who take this

complexity as a challenge to their writing skills

are missing the point: Usability is everything. It

is the better part of valor.

The form of communication between the

developer of the procedure and the writer of the

module (the documentor) depends on their

working relationship. There are four common

possibilities, and a fifth, uniquely effective

arrangement.

Case I—The documentor is the developer.

Although one would expect this to be the easiest

case—the case most likely to result in a revision

of the clumsy procedure—in fact it is one of the

hardest. When the documentor is the developer, it

usually means that a programmer has been

conscripted into the documentor’s role. Often,

this person will be blind to the faults in the

suspect procedure.

Case II—The documentor and developer are

in the same group, under the same manager. This

is one of the best arrangements; it presumes that

both people are on the development team, com¬

mitted to the most usable product possible. And

unless the manager is one of those who value

swift implementation ahead of quality, the bad

procedure is likely to be changed. (Implement in

haste; reprogram at leisure.)

Case III—The documentor and the developer

work in two independent units of the same

company or organization. (That is, the documen¬

tor’s unit is not run by the developer’s unit.) This

is also a hopeful arrangement because it brings

into play the inter-unit rivalries that frequently

inspire innovations and explicit confrontations

about quality. In the best case, the top manage¬

ment of the company becomes involved; pre¬

sumably the conflict will be resolved in the way

that best serves the organization.

Case IV—The documentor is writing up a

procedure developed by another company. Here,

again, little can be done to change the procedure

in question. Indeed, I suspect that one reason so

many firms sell software with so little how-to

documentation is that they fear what would

happen if the customer actually saw how awk¬

ward and difficult the program is.

118 How to Write Usable User Documentation. Second Edition

Case V (the most productive arrangement, in

most instances)—As in Case II, the documentor

and developer are working together as a unit on

the system, but the unit is a task force or ad hoc

team invented to speed and improve the installa¬

tion of the product. These teams usually have a

greater sense of urgency about the project and are

more willing to do the hard work needed to

improve quality.
Whatever arrangement you choose, know that

the documentor who is isolated from the techni¬

cal developers almost always fails—and usually

gets the blame for clumsy systems!

Exhibit 8.3.3.3: Five Paradigms for Documentors

Case Arrangement Effect

I Documentor IS Developer Deceptive; Too many blind spots

II Documentor and Developer in same group Productive; Common objectives

III Two Units of the same company Productive; Inter-unit rivalries

IV Documentor writes-up 3rd party product Frustrating; Hard to change the product

V Thsk force, ad hoc team Best; Focus on quality

Developing a Storyboard 119

8.3 Modules Must Be Functionally Cohesive

8.3.4 Designing Reference Modules That Work

I he type of documentation that benefits least from the modular format is reference mate¬

rial: lists, inventories, and compendiums to be "looked up” as needed. The sole criterion

for deciding whether to break a reference section into modules is whether this would

make the material easier to find and use. If chunking the material does not aid the refer¬

ence function, do not do it.

Reference modules give reference—not teaching,

motivation, or guidance. The reference function

is to extend the memory of the user: to provide

an accessible location for long lists of items that

no one ever bothers to memorize, or a convenient

access to items that were learned earlier but since
forgotten.

As Exhibit 8.3.4 shows, the first task in

designing a reference module or series of them is

to assess the suitability of the “standard” presen¬

tation, that is, the typical method of presenting

long lists and inventories.

Should the list be allowed to “wrap around,”

as the word processing literature puts it, or

should it be modularized? For example, is there

any advantage in recasting the most familiar

reference material—a telephone directory—into
two-page modules?

In many cases there is no advantage. I have

seen “logical groupings” of reference lists that

worked against the convenience of the reader.

For example, one system with coded error mes¬

sages divided the reference materials into “errors

caused by the operator” and “errors caused by

system malfunctions.” Unfortunately, though, the

operator could not recognize the class of the error

from what appeared on the screen and often had
to look in both places!

Well-designed reference modules do not try

to teach. One of the earmarks of such a module is

that it calls for a very short headline, a very short

summary, and, often, no other text besides the

summary. A typical reference module, when

finished, will contain nearly two pages of exhib¬

its (charts, tables, lists)

A manual full of reference materials—

modular or otherwise—is probably not an effec¬

tive user manual. Reference is what users need

after they know how to work the system or prod¬

uct. Until then, reference material is often un¬

friendly or intimidating.

The most serious violation of this principle is

the attempt to teach in a glossary. When a manual

has been written for particular users, they should

not have to consult the glossary (which is proba¬

bly at the front or back) each time a new term is

introduced. Glossaries are to help people remem¬

ber what they have been taught in orientation or

guidance modules. Sending readers to a glossary,

or assuming that they will go there frequently, is

a way of telling them that this manual was

designed for someone else.

Reference modules alone cannot teach. Nor

should they be embedded inside of teaching

materials. It is inconvenient in the extreme for

the experienced user to search an instructional

section in pursuit of a frequently used table.

Rather, reference modules should always be

easy to find. They should be at the beginning or

end of the manual, even on the covers or the

binder. They can be in the form of posters or

pull-outs or pages that can be folded pocket-size
for easy reference.

120 How to Write Usable User Documentation. Second Edition

Operators often create their own reference

materials and keep them in a tiny notebook or

even taped to the underside of keyboards. If your

users and operators are making their own refer¬

ence documentation—and if you want it to be
accurate and maintainable—you had better find

out what they need and give it to them.

Exhibit 8.3.4: Designing a Reference Module

Review, Simulate "Look-Up" Conditions

Will Modularity Help? ^
Yes ^ No

Break Reference Matter

Into Module-Sized Chunks
* Keep Standard,

"Wraparound"

Page Format

Write a Spec for

Each Module/Chunk

LIVERPOOL JOHN •...CORES UNIVERSITY

MOUNT PLEASANT LIBRARY

TEL 051 231 3701/3634

Developing a Storyboard 121

8.4 Mounting the Storyboard

The module specs are in a pile—an unworkable form for people who want to test and

manipulate them. The next step, then, is to post them on a wall. In this form they can be

reviewed and revised by the people who wrote them, the “authors ” who will complete

them, and the groups who will use the finished document.

The individual module specs are converted to a

“gallery” by posting them in the intended se¬

quence on the walls of a room. This process,

converting the outline of a book to a visual

display, is usually called “storyboarding,” a term

borrowed from the motion picture industry.

(Interestingly, a technique suitable for planning

movies is especially suitable for forcing docu¬

mentors to think of their publications as se¬

quences of information rather than hierarchical
collections.)

In this form, the people who wrote the specs

can really see them for the first time. They “walk

through” the gallery, asking each other questions,

challenging the emphasis, the scope, and the

sequence of the several modules.

Then the “authors”—all the people who will

contribute the missing details to the text and

exhibits in the modules—are invited to review

the storyboard and make further corrections or
suggestions.

Once the planners and authors are satisfied, it

is time for actual users to review the storyboard.

The designers of the document should be present

when the users or operators (or their representa¬

tives) review the storybord. The questions asked

will reveal flaws in the design and may also

correct misimpressions about what the intended

readers actually know or do. A storyboard ver¬

sion of a user manual, if prepared early enough in

the system development cycle, can actually point

out ways to improve the design of the system!

The documentors should also watch the users

and other readers as they review the plan. Often

designers of the book can spot problems merely

by observing the physical movements of the

reviewers. Many of the design flaws of the

book—loops and detours—will be evident as the

users follow the logic of the manual, while there

is still time to redesign.

For the full benefits of storyboarding to be

realized, there should be one storyboard, posted in

one place. In most organizations that is not a

problem, but in some larger organizations, the

various reviewers interested in the emerging

document are at several scattered sites.

Though sympathetic to these problems, I still

believe that there should be one storyboard, in

one location. Innovations in networking and

“groupware” notwithstanding, I recommend

against having more than one review copy of any

technical publication, and also against reviews

carried on through the mails. The only thorough

technical reviews I have seen were done with all

parties present, with lots of questions and discus¬

sion, and with all the necessary people and data

close at hand.

Eventually, when the designers are satisfied

that all the valuable changes have been incorpo¬

rated, they sign-off the design and invite an

official (or official committee) of the organization

to review the storyboard. If the design is ap¬

proved, it is then frozen. That is, any proposed

changes that will affect more than one module,

must send you back to the storyboard.

122 How to Write Usable User Documentation. Second Edition

Exhibit 8.4: The Gallery of Module Specs

Developing a Storyboard 123

8.5 Modifying the Storyboard

As in structured design, and as in motion picture planning, one of the main benefits of the

storyboard is the ease with which it can be changed. The irony is that the full spectrum of

technical and communication flaws found in outlines can be addressed with relatively few

“design moves. ”

A central purpose of the storyboard review is to

control the number of loops and detours in the

manual—GOTOs, in a figurative sense. Some¬

times, we need nothing more than such an infor¬

mal notion or constraint. In an informal review,

the goal is to please the reviewers, rather than to
meet formal standards.

In a formal review, though, there must be

explicit criteria—especially when there is some

dispute about the best design or sequence. As a

central criterion, consider the following defini¬
tion:

In a GOTO-lesspublication or manual, a

reader who begins to read a module will

finish reading it. If the reader needs or

wants more information, he or she will

move to the beginning of a new

module...and finish that one. Moreover, in

the most typical case, the second module

will immediately follow the first.

In short, this constraint prevents documentors

and writers from allowing or compelling readers

to leave a module in the middle or to enter a

module in its middle. It especially prohibits

documentors from sending a reader from the

middle of one module into the middle of another
and back to the exit point in the first one.

Of course, the more diverse the audience for

a particular manual or book, the harder it is to

predict the ways in which its diverse readers will

use it. Consequently, it is impossible in principle

to develop a book that meets these criteria for all

readers. And the greater the diversity of readers,
the harder the task.

When possible, however, designers of the

manual should recast and rearrange the module

specs in such a way that the emerging document

comes as close as possible to this standard. Every

time the book forces a reader to exit or enter a

module at the wrong place, you must try to

change the design. (Once the first draft is written,
it will be too late.)

And, surprisingly, even the most complicated

changes can be handled with just a few “moves”:

• “DECOMPOSE” (disaggregate)—Convert

one module into two or more, in sequence or

in hierarchy, with a new spec for each

• CONSOLIDATE—Collapse two or more

modules into one, when they are part of the
same theme or concept

• INSERT—Add one or more modules

needed to bridge a gap

• DELETE—Change the sequence of two

modules, from “logical” to “readable”

• RELOCATE—Move a module or group of

modules from one place in the book to
another

These moves account for most of the possible

changes. (There are also changes within modules,

which can be effected just by changing the

contents of the module spec slightly, or by

adding notes of emphasis.)

124 How to Write Usable User Documentation. Second Edition

The storyboard technique was invented to

ease the process of change and revision. A

storyboard plan, unlike a text draft, can be

revised radically a dozen times in a day. Even

though modern document processors make it

easier than ever to revise a “finished” draft, a full

first draft will probably be only patched and

plugged, never really redesigned to eliminate its

flaws.

Exhibit 8.5: Storyboard Logic

BEFORE PROCESS AFTER

E DECOMPOSE Al ' A2 -Ha-31

G CONSOLIDATE 1
G [KlI INSERT EHZH3

0-EHH DELETE [ZHU
EHII-HZ] RELOCATE EHZHZI

Developing a Storyboard 125

8.6 Won’t There Be a Lot of Redundancy?

Ironically, one of the surest signs of success in writing a modular publication is that

readers notice—or even complain about—the redundancy in the manual. Redundancy

across modules reduces the need to branch, loop, or detour. Redundancy within the mod¬

ules compensates for noise and careless reading. Redundancy simplifies and reinforces.

To sugarcoat the pill somewhat, I could have

used some word other than redundancy: some¬

thing like repetition, or amplification, or rein¬

forcement, or restatement. Except for engineers,

almost no one uses the term redundancy as a term

of praise.

But redundancy is what it is: using more than

is necessary, spending more than is necessary,

writing equivalent information three or four or
five times.

The redundancy in a usable user manual is of

two kinds: across modules and within modules.

Exhibit 8.6 demonstrates a simple kind of cross¬

module redundancy. There is a certain procedure

that is at the beginning of several other proce¬

dures. In a nonredundant publication, the readers

would be sent to the initial procedure again and

again. (Before learning how to complete Task B,

they would be told to read Task A; and the same

for Tasks C, D, and E.)

But in a redundant publication, each later

procedure would include an embedded explana¬

tion of the startup procedure, repeated identically

each time. This practice is familiar, for example,

in the manuals for calculators, which usually

begin each procedure with a reminder to turn the

calculator on and clear its registers.

This issue is complicated and controversial.

What is especially interesting is that it suggests a

breakdown in the analogy between modular

computer programs and modular publications. In

certain views, it is the essence of a structured

program that it is not redundant, that whenever a

particular task or function occurs it is called from

the one place in the program where it resides.

On closer examination, though, the analogy

holds up. The real issue is whether the manual

presented to the users has all the “calls” per¬

formed for them, or whether the reader is ex¬

pected to search for the appropriate modules and

run them at the appropriate times. And the factors

affecting the decision are analogous as well. If

the recurring material is rather large, it is unde¬

sirable to repeat it within each module. (In fact, it

might take up all the available space.) If it is

going to be invoked or referred to repeatedly, it

would add too much complexity and difficulty to

the reading process, in much the way that fre¬

quent calls add overhead to a computer program.

Redundancy, although it complicates mainte¬

nance and seems inefficient and wasteful, reduces

the number of skips, jumps, branches, and loops

in a publication. For readers with limited book

skills, redundancy may be the difference between

a usable and unusable book. And it follows, then,

that developers of user manuals may feel safer

putting less redundancy into those books in¬

tended for sophisticated users who handle com¬

plicated publications well. (Too much redun¬

dancy can irritate; excessively repeated directions

sound preachy, especially when they review the

basics.)

Redundancy across modules should use

identical repetition. If a procedure or message or

explanation is repeated, it should be repeated

identically. Repeated paragraphs should be

126 How to Write Usable User Documentation. Second Edition

indexed in the document database, so that they

can be copied exactly and so that when they are

changed in one place they will be changed in

every place they appear.

Redundancy within the module compensates

for noise (and inattentiveness): the headline is

redundant with the summary, the exhibits illus¬

trate the summary, and the text amplifies them

all.

Exhibit 8.6: Redundant Modules vs. Called Modules

Redundant Modules

Called Modules

Developing a Storyboard 127

8.7 Handling Branches and Hierarchies

Is it logical to design a document as a series of independent modules, when so many tasks

and processes have branches and paths? How does such a publication manage hierarchi¬
cal procedures?

The suggestion that modular publications are an

inadequate way to explain branching or hierarchi¬

cal processes is ironic. Remember that all tradi¬

tional manuals are a series of two-page spreads,

except that the break of the pages is largely

accidental. All traditional user manuals, despite
what some hypertext enthusiasts say, are hierar¬

chical messages—networks of text nodes—that

happen to be distributed as a series of two-page
spreads.

In short, the modular publication can present

any logic that a traditional book can present. And

probably better. Although the most usable man¬

ual will contain its branching procedures within

one module, processes that cannot be so con¬

tained can simply branch to other modules. (It

follows, then, that well-designed modules of

documentation will end at the branching point.)

Sometimes, the writer wants the book to be

read in a straight line (as in a proposal or tuto¬

rial); in those instances, the table of contents is

presented without subordination, thereby discour¬

aging users from reading it out of order. This

device may even be judged a stratagem that

prevents readers from ignoring the author’s

intended sequence. Consider this “straight-
through” design:

Sequential fOne-Tier) Outline:

Copying the Distribution Disks

Telling the System Your Configuration

Choosing Options and Alternatives

Setting Up A Mailing List

Entering Data into the Mailing List

Revising Data in the Mailing List

Forming a New List with Parts of Other

Lists

Printing the Entire List

Printing Selected Parts of the List

Printing Envelopes

Printing Labels

Troubleshooting Chart

Alternatively, indentation and numbering

schemes can be used to help readers find sections

within the document.

Two-Tiered Hierarchical Outline:

Four Steps to Get Started

Copying the Distribution Disks

Telling the System Your Configuration

Choosing Options and Alternatives

Setting Up A Mailing List

Three Ways to Enter an Address

Entering First Data into the Mailing List

Revising Old Data in the Mailing List

Forming a New List with Parts of Other

Lists

Printing the List

Selecting the Addresses to Be Printed

Printing Envelopes

Printing Labels

Troubleshooting Chart

128 How to Write Usable User Documentation. Second Edition

Three-Tiered Hierarchical Outline

1. Four Steps to Get Started

1.1 Copying the Distribution Disks

1.2 Customizing and Defaulting the

System

1.2.1 Telling the System Your Con¬

figuration

1.2.2 Choosing Options and Alterna¬

tives

1.2.3 Setting Up a Mailing List

2. Several Ways to Create a Mailing List

2.1 Entering Data from the Keyboard

2.1.1 Entering First Data into the

Mailing List

2.1.2 Revising Old Data in the Mailing

List

2.2 Using Data from Existing Files

2.2.1 Forming a New List with Parts of

Earlier Lists
2.2.2 Using Lists from Other Data

Bases

3. Printing the List
3.1 Selecting the Addresses to Be Printed

3.2 Printing Envelopes

3.3 Printing Labels
Appendix: Troubleshooting Chart

Note also that, as in this book, the headings at

the top of a module reconstruct the “information

stack” above the module. This device makes

modular publications even more accessible than

traditional ones; the hierarchy of the modular

document is actually easier to see.

Developing a Storyboard 129

9. ASSEMBLY: GENERATING THE DRAFT

9.1 The Advantages of a Frozen, GOTO-less Design

9.2 Selecting and Managing “Authors”

9.3 Using Project Management to Assemble the First Draft

9.1 The Advantages of a Frozen, GOTO-less
Design

The main beneficiaries of a GOTO-less publication are the readers. Additionally, though,

the people who manage and write publications benefit as well. A GOTO-less design

ensures the independence of the modules from one another, allowing them to be written in

any sequence, by any arrangement of “authors and also allowing them to be reviewed

and tested as they come in, without regard for sequence or for the links between the

modules.

“Freezing a design,” as explained earlier, does

not mean that the design of the manual will never

change. Rather, it means that the design is offi¬

cial and cannot be revised without an official

routine. No one may make that small change

which wrecks the GOTO-less design and, in the

process, undermines the independence of the
modules.

The GOTO-less manual is a collection of

modules in which all the possible connections

between modules—all the references and cou¬

plings—can be seen in the design. Everything

that writer A needs to know about writer B ’s

module is already in the storyboard, in the

module spec.

Again, this functional independence among

the modules can be lost in an instant if someone

departs from, or adds to, the original design

without also reworking the storyboard. (Changes

that fit entirely within one module and do not

affect any of the others are, of course, permitted.

Generally, any version of the module that does

not call for a new headline or summary para¬

graph is permitted at the discretion of the writer.)

An author—anyone assigned to write the

body of one or more modules—can write the

modules assigned to him or her in any sequence

that is comfortable. A missing item usually

cannot delay more than one module; the rest can

be written independently.

And, as useful as the GOTO-less design is to

the writing of the first draft, it is even more

useful in the reviewing and editing of those

modules. Put simply, once we know what is in

the storyboard, we know enough to review and

edit any one of the drafted modules. And if we do

not anticipate any changes in the design, we can

even assign page numbers and figure numbers to

the modules, no matter the order in which they

arrive. Instead of producing a long, tangled series

of interwoven paragraphs, the writers produce a

series of small self-contained publications, each

of which has already been reviewed for its

technical content, and each of which fits not only

into the logic of the book but into the physical

form of the book. So, the writers are implement¬

ing, not creating.

Developing documentation in this structured

style reduces the interest of the first draft. Instead

of being the most complicated, demanding, and

fascinating part of documentation, writing the

draft becomes the least interesting part. (Remem¬

ber, most of the art and intellect has been shifted

to the design phase.) Be warned, then, that even

though books written by one person still benefit

from the structured method, a professional writer
will find it boring to carry out his or her own

design and may be tempted to wander off onto

artistic sidetracks.

The best plan is for two people, a technical

expert and a documentor/editor, to design the

publication and then to assign others the job of

carrying out the plan.

132 How to Write Usable User Documentation. Second Edition

Exhibit 9.1: Monolithic Documents vs. Modular

Assembly: Generating the Draft 133

9.2 Selecting and Managing “Authors”

In the structured approach to user documentation, the first draft is merely the elaboration

of the storyboard design. In the traditional approach to publication, however, the first

draft is the first true attempt to organize and present the content. This difference changes

the traditional conception of what “authors ” do.

The similarity of programming to documenting is

both inescapable and instructive. The program¬

mer who works without structured analysis and

design goes directly from a vague or intuitive

notion to the program code. And most

documentors—even professional technical

writers—make the same mistake.

In the traditional, unstructured approach to

manuals and publications, the first draft is one

whole piece. At best, it is a few large pieces.

Therefore, it is usually considered the large

assignment of a single writer or, at best, the

collaboration of very few writers. Because there

is so little real specification in the conventional

outline, logic demands that the many intricate

connections among the parts of the publication be

realized by a single person. Lacking external

controls, the manual needs the internal control of

a single author’s mind to assure that all the parts

hang together.

Unless the publication is divided into very

large chunks (almost separate manuals), it is

nearly impossible to do the work as a group.

When the work is divided finely, however, the

small parts rarely fit together. The problem is

analogous to the problem of incompatible coding

styles that plagued programming before the ego¬

less era of structured design.

In contrast, when the publication is fully

specified in a set of module specifications, with

each module small and independent, and each

spec containing all important matters of technical

substance, then writing the first draft is an en¬

tirely different task. Furthermore, when the

sequence of the modules is restricted by a

GOTO-less logic, and when the design of the

book is frozen, then the writing of the first draft

is hardly like what is ordinarily thought of as

“writing” at all.

The draft of the emerging manual is produced

by having several authors supply the missing

details in the text and exhibits—one module at a

time. In principle, there can be as many authors

as modules, each working independently. With

this approach, the first draft of a very long

manual could be completed by a team of authors

within two or three hours of finishing the story¬

board!

Even when there are only one or two authors,

though, the benefits of the modular design are

still impressive. The publication can be prepared

in small installments, out of sequence, without

worrying about the connections (the interfaces)

across the modules.

Modular design also encourages full partici¬

pation in the writing, even by those who are

usually the most reluctant to write. In this

scheme, the author is asked to provide correct

details, within a prescribed space, for material

that has already been designed (and reviewed and

approved). Anyone who will not write under

these circumstances—especially when told that

grammar doesn’t count—probably would not

write under any conditions.

Using these unlikely authors not only allows

for the rapid completion of the draft, but also

improves the technical accuracy of the draft. If

the writing is by the most knowledgeable person,

134 How to Write Usable User Documentation, Second Edition

the result, though awkward in style, is likely to writers to do what they do best: correct, clarify,

be accurate. And it also liberates the professional and improve the writing of the drafts.

Exhibit 9.2: Managing Authors

Mod # Apprv'd
Assigned

Author
Draft

Complete
Style

Review
Tech

Review
Final

Approval

1 8/25/90 Gillis / /

2 7/5/90 Gillis / / /

3
7/5/90 Krebs /

3.1 12/8/90 Osborne / / / /

3.2 12/8/90 Gilroy / / / /

3.2.1 12/8/90 Gilroy / /

3.2.1.1 10/1/90 Krebs

4 10/1/90 Gillis / / /

5 8/25/90 Menninger

Assembly: Generating the Draft 135

9.3 Using Project Management to Assemble
the First Draft

The benefits of modular documentation escalate rapidly as the size of the project grows

or as the number of participants increases. Also, the management of writing is improved,

first, by leveling the effort throughout the drafting stage, and, second, by allowing the

documentor to use a full range of project management techniques.

Structured user documentation transforms the

nature of assembling a first draft and, in the

process, turns documentors into managers.

On any document big enough for two writers,

someone must be in charge of the project. But in

most organizations that produce documentation,

there is very little real management. Working

from conventional outlines, the documentors

have no control over the time and cost of produc¬

tion—and limited control over the quality.

Exhibit 9.3a contrasts the traditional method

with the structured method. In the traditional

Exhibit 9.3a: Comparative Distribution of Writing/Editing Effort

Level of

Activity
.. Structured

*
*

*
----- Traditional ' *

*
i

i

t

i
i

i
i

i

i

i

\ •
% i

%

Plan Outline Draft Deadline

136 How to Write Usable User Documentation. Second Edition

approach, there is a short period of outlining and

planning, followed by a long trough of inactivity.

During this interval, programmers and writers,

who have usually been given writing assignments

of undefined scope and size, stall and procrasti¬

nate until the deadline—or beyond. Meanwhile,

the person in charge hopes ardently to get back

some drafts, often without result.

Naturally, the person in charge ends up doing

much of the writing alone, usually on a crash

schedule, with little opportunity to edit and

revise.

In contrast, a structured document takes

longer to plan and design. But within only a few

hours of finishing the outline, the first draft

versions of the modules must come back to those

in charge. There is a nearly level effort through¬

out the process, and time to edit, test, and revise.

Moreover, if a particular author fails to

respond in the time allotted for writing a module,

the documentor can investigate at once—perhaps

with the result that the module is assigned to

another author, while there is still plenty of time.
This shifting of the production paths demon¬

strates another advantage of structured documen¬

tation: each module is a well-defined parcel of

work and can be placed in a project network.

(See Exhibit 9.3b.) Each module is a task of

defined size, with a person in charge, an esti¬

mated duration, and, in some cases, a budget for

artwork and production. The manager can esti¬

mate the costs beforehand and, by manipulating

the assignment of modules, can predict and adjust

the completion date. In the best case, all the

modules are independent, so that the only con¬

straint in the network is the result of having one

author write more than one module.

The more thoroughly enforced the modular

design, the greater the opportunities to employ

project management tools, honor budgets, and

shorten the “critical path” of the production.

Exhibit 9.3b: Allocating the Modules

Assembly: Generating the Draft 137

10. EDITING: REVISING FOR READABILITY
AND CLARITY

10.1 Assessing the Draft: Main Issues

10.2 Editing for Word and Phrase Bugs

10.3 Editing for Sentence Bugs
10.3.1 Nine Ways to Write an Unclear Instruction

10.3.2 Increasing the Power of Instructions

10.4 Making Text Easier to Read
10.5 Demonstration: Procedures Before and After

10.6 Other Ways to Make a Document More Accessible

10.7 Using Style-Checking Software

10.1 Assessing the Draft: Main Issues

The purpose of assessing the draft is to correct the tactical errors. The goal is to rework

as many as possible of the awkward and incorrect passages that cause readers to make

mistakes or to reread the difficult or ambiguous sentences.

A monolithic first draft, written from a tradi¬

tional outline or specification, is usually so

difficult to read, and so filled with new technical

material, that it is in urgent need of technical

review. If time permits, there will be a style

review and another quick technical review. A

structured manual, however, can be reviewed

module-by-module. Because the technical con¬

tent of the module has already been reviewed, it

is possible to clean up the language and presenta¬

tion first, and then later do a light technical

review to catch the matters of detail.

The traditional first draft of a document is

mostly new—material that no responsible person

has reviewed or tested before. Under these

conditions, the logical thing to do is to begin with

a meticulous review of the technical accuracy of

the draft—a process made difficult by the uned¬

ited, first-draft prose. There is virtually no

opportunity to make the language or artwork

clearer, more readable, or more effective.

In contrast, each module of a structured

manual is a self-contained micro-manual. The

technical content and logical connections have

been have been specified by a technical expert

and reviewed by other experts. Because there are

no big technical surprises in the module, and

because the review is not delayed to the last

moment, it is wise to begin with a language and

art review. It is easier to find technical errors in

a clearly written (that is, edited) text than in a

first draft.

The purpose of this language review is to

assure that the document is clear, free from

ambiguity and misleading information, and

readable. It should be no harder to read than it

must be, and certainly not too hard for the in¬

tended reader. In general, the more resources

spent on editing a draft, the clearer and more

readable it becomes.

The editorial improvements are usually in

five categories:

• Mechanics—correction of errors of usage,

grammar, spelling, and punctuation

• Appropriateness of language—

replacement of words and phrases that are

unfamiliar to the reader, unnecessarily

difficult, wrong in tone

• Clarity—replacement of words, phrases,

constructions, or graphics that have several

possible meanings, or that mislead the

reader

• Accessibility—elimination of awkward,

show-off, wordy constructions and difficult

artwork; elimination of the first-draft

commonplaces, such as backward sentences

• Urgency—revision to make the writing

more interesting and engaging, through

careful diction, close editing, variations in

sentence length and style, and prose skill

If someone in the organization complains

about the time spent on editing, explain that

unclear sentences mask technical errors and

invite trouble. For example, the sentence

Managers are required to sign off on Form A51
to approve continuation of a project.

is a horrible mess. And the worst thing about it is

that it seems to oblige managers to sign a particu-

140 How to Write Usable User Documentation. Second Edition

lar form—which is not intended. Applying

principles explained later, you may convert the

sentence to

If managers want to continue the project, they
must sign Form A51.

Exhibit 10.1: Alternative Ways to Edit a Draft

IF THE DRAFT IS MONOLITHIC... IF THE DRAFT IS MODULAR...

Then, for the Whole First Draft Then, for Each Module

Initial Technical Review Initial Language Review

■ first reading of complicated text ■ revision of raw draft language
■ discovery of major errors ■ clarification of ambiguous content
■ attempt to separate technical ■ identification of gaps and inconsistencies

errors from ambiguous language

Quick Language Review First Technical Review

■ hasty review of mechanics ■ verification of technical content
■ minor editorial cleanup NOT already tested in storyboard
■ writing specs for production ■ incorporation of late technical changes

Final Technical Review Final Language Review

■ rushed, perfunctory double-check ■ refining language/art for usability
■ clumsy updating (errata pages) ■ careful production and proofing

Editing: Revising for Readability and Clarity 141

10.2 Editing for Word and Phrase Bugs

The easiest improvement to make is removing or revising certain common word and

phrase bugs. Notable among these are showing off with long or fashionable words, using

too many words, using too few words, and putting words and phrases in the wrong

places.

Certain recurring errors of style have the double

effect of, first, masking the technical errors and

omissions in the text, and, second, increasing the

chances that the reader will reread or misread

your explanations.

Showing off consists in using long words

where short, familiar words would have been just

as effective. For instance, utilize for use, facili¬

tate for help, initiation for start, even depress for

press.

Do not misunderstand. There is no reason to

write in one-syllable words, and there is no

advantage in replacing a technically correct word

with a shorter, incorrect word. But there is no

gain in using indicate for show, or disseminate

for spread, or effectuate for cause.

Another common form of showing off is the

use of vogue words (buzzwords), like capability

for ability, or prioritize for rank. The word

environment appears so often that I have seen it

used with opposite meanings in the same publica¬

tion. Also beware of transparent which means

“invisible” to computer people and “obvious” to

speakers of business English.

Using too many words is a technique young¬

sters learn as a way of stretching a 300-word idea

into a 1000-word composition. A few examples

will demonstrate:

• should it prove to be the case that = if

• by means of the utilization of = with

• at that earlier point in time = then

• conduct an inspection of = inspect

• perform the calculation of the projections =

project

Wordiness is nearly inevitable in first drafts.

The most frequent offenders are the “smothered

verb” (make a distinction for distinguish, accom¬

plish linkage between for link); the phrase used

where a single word would do (in order to for to,

with regard to the subject of for about); and,

occasionally, clauses for phrases:

Before: After we had approved the test plan,

we began the...

After: Having approved the test plan, we

began the...

Using too few words is found often in the

writing of engineers and computer programmers.

Driven by a desire to be concise, some writers

produce phrases and sentences that are com¬

pressed to the point of incomprehensibility. What

does it mean, for example, to say that a certain

system has an “English-like report generating

capability”? What are “contiguous sector refer¬

ence designators”?

No one but the author is sure what is meant

by “operational planning materials format design

criteria” or “management responsibility assign¬

ment history file.” Most people cannot under¬

stand strings of nouns, or what the programmer

would call “noun strings.” And adding a few

modifiers does not help.

People who avoid prepositions and who cram

words together in this cryptic way also tend to

eliminate other “useless” words like the and a. If

142 How to Write Usable User Documentation. Second Edition

a that is optional, they remove it. Indeed, they

tend to leave out all the optional commas as well.

The trouble with these zealous choppers and

cutters is that they destroy the flow of the lan¬

guage and produce sentences that, though they

may be shorter, probably take longer to read.

Misplacing words and phrases can also

throw your readers off the track. In English,

modifiers should be next to the words they

modify—usually before. But in most first drafts,

many of the modifiers tend to be misplaced,

notably only, nearly, almost, already, even, and

just. In the instruction

Only enter the hourly rate for exempt employ¬
ees.

there are various ways to interpret the only.

(Only the hourly rate; the hourly rate and nothing

else; or the hourly rate only for exempt employ¬

ees.) Be careful of these modifiers. Do not write

The system nearly prints everyone’s checks,

when you mean

The system prints nearly everyone’s checks.

Similarly, descriptive phrases should be near

the word or phrase they describe. What does this
instruction mean?

Report every unauthorized access in keeping
with company policy?

Does this mean that if the unauthorized

access is not in keeping with company policy that

you should not report it?

Editing: Revising for Readability and Clarity 143

10.3 Editing for Sentence Bugs

Although there are scores of things that can go wrong with a sentence, the five flaws most

likely to stop or distract a reader are backwards construction; meaningless predicates;

tangled passives, dangling introductory phrases; and marathons.

The secret of the readable sentence is that the

“payload” of the sentence—the material that the

author would have underscored (if something had

to be underscored)—is at the end. If a sentence is

long, it is read and processed in stages; the last

read part is the best remembered part.

Any writer can learn the drill: review the first

draft of the sentence; see if the material to be

emphasized is at the end; if not, rework the

sentence to move it to the end—unless there is

some technical reason for not doing so. So, we

convert

Reduced cost is the main advantage of this new
procedure.

to

The main advantage of this new procedure is
reduced cost.

Similarly, when we edit instructions, we put

the key material last. And if it is a conditional

instruction (if-then), we make sure the then

clause is last.

No: DFIL is typed.

Yes: Type DFIL.

No: Type DFIL to see what file names have
been assigned.

Yes: To see what file names have been
assigned, type DFIL.

If the payload of a sentence is at the end, then

it follows that the “action” in the sentence is

usually in the predicate, not the subject. Yet, not

only do many writers put their main material at

the beginning, they sometimes say everything

interesting before they even get to the verb,

leaving a meaningless predicate.

Consider: “The possibility of underpricing by

the Japanese exists.” The entire predicate of the

sentence is the word exists. But to revise the

sentence we have to know what the writer wants

us to understand. Is it (1) “The Japanese may

underprice us.” or (2) “We may be underpriced

by the Japanese”? Both sentences are grammati¬

cally correct. Sentence 1 emphasizes us; sentence

2 emphasizes Japanese.

English is filled with devices that allow the

editor to move phrases from front to back.

Among the most useful is the passive form of the

verb. Converting (1) “ZAKO Industries acquired

an XTRON.” to (2) “An XTRON was acquired

by ZAKO Industries.” changes the verb from

active to passive and changes the emphasized

word!

Most editors and teachers of writing warn

against the passive form—with just cause.

Tangled passives can ruin an otherwise under¬

standable passage. Consider these pairs:

Passive: Insufficient flexibility is exhibited
by the system.

Active: The system is too inflexible.

Passive: Cheap collating and binding are
accomplished by this device.

Active: This device collates and binds
cheaply.

Passive constructions are typically wordy and

difficult. But they can, when used carefully, help

you to propel the payload of a sentence to the

most effective position: the end.

144 How to Write Usable User Documentation. Second Edition

Still another way to push the main stuff to the

end is to use introductory phrases. (Nearly all

conditional instructions have introductory

phrases.) The danger in these is the dangling

introductory phrase, a string of words discon¬

nected from the body of the sentence.

Again, the drill is simple. The introductory

phrase must be tied to the grammatical subject,

which should appear right after the comma.

No: With your simple payroll requirements,
PAAY is the system for you.

Yes: With your simple payroll requirements,
you should use the PAAY system.

No: To locate definitions quickly, glossaries
are posted at each work station.

Yes: To locate definitions quickly, operators
can use the glossaries posted at each
work station.

No: When coldstarting the system, the
operating system tape is loaded.

Yes: When coldstarting the system, (you)

load the operating system tape.

There are also some strange danglers at the

ends of sentences. Beware of such absurdities as:

“Do not service the printers while smoking.”

Finally, someone must be sure that the sen¬

tences simply do not run on too long. The prob¬

lem is with long sentences in general, especially
with several in a row. No one can handle the

marathon sentence below:

In addition to solid, dashed, phantom, center-
line, and invisible line fonts, numerous
linestring fonts are available that provide
generation about a centerline with variable
spacing (width), layer of insertion options, and
left, right, and center justifications.

Editing: Revising for Readability and Clarity 145

10.3 Editing for Sentence Bugs

10.3.1 Nine Ways to Write an Unclear Instruction

Any word, phrase, or sentence bug can hurt clarity and usability. And the consequences

of unclear instructions can be expensive.

1. Long, vogue words.

Before: In the Information Center
environment, the manager

should utilize a prioritization

ranking to facilitate equitable

scheduling.

After: In the Information Center, the

manager ranks each job to yield

a fair schedule.

Before: If your configuration has

sufficient RAM capacity, you

may utilize the system’s

windowing capability.

After: If your computer has enough

memory, you can use the

window feature.

2. Too many words.

Before: In the event that you have a

lack of knowledge regarding

which files you have permission

to write in, make use of the

PRIFIL command.

After: If you do not know which files

you may write in, type PRIFIL.

Before: Should it prove to be the case

that you have some reservations

regarding the forecasts, you

have the option of using alter¬

nate discount rates.

After: If you doubt the forecasts, try

other discount rates.

3. Too few words.

Before: Column heading revision

permission may be obtained by

HCOL entry.

After: To get permission to change the

headings of the columns, enter

HCOL.

Before: Early manual design yields

procedural usability benefits.

After: Writing manuals early makes

the procedures easier to use.

4. Misplaced words/phrases.

Before: Only write corrections, not

changes, on the worksheet.

After: On the worksheet, write only

corrections, not changes.

Before: The slide-maker only can be

used by systems with 512K

memory and hard disks.

After: The slide-maker can be used

only by systems with 512K

memory and hard disks.

5. Backwards construction.

Before: Press the <Clear Rest> key if
you want to erase everything

after the cursor.

After: If you want to erase everything

after the cursor, press the

<Clear Rest> key.

Before: Type PINSTALL to change the

printing options.

After: To change the printing options,

type PINSTALL.

146 How to Write Usable User Documentation. Second Edition

6. Meaningless predicate.

Before: The efficiency of spot-checking

the data sheets before com¬

mencing entry is worthy of

mention.

After: It is efficient to spot-check the

data sheets before you enter the

data.

Before: The urgent need to save data at

least every ten minutes is called

to your attention.

After: You must save the data at least

every ten minutes.

7. Tangled passive.

Before: Care must be exercised in

sending sensitive data.

After: Send sensitive data carefully.

Before: File linkage can be accom¬

plished by key specification.

After: To link the files, specify the

keys.

8. Danglers.

Before: When reconciling the account,

the encumbrance file must be

frozen.

After: When reconciling the account,

(you must) freeze the encum¬

brance file.

Before: To call the Calculator, <alt>

and <c> must be pressed.

After: To call the Calculator, (you)

press <alt> and <c>.

9. The unnecessary third person.

Before: The operator then enters his or

her security status.

After: Enter your security status.
Before: The clerk should then type the

number of the desired file.

After: Type the number of the file you

want.

Editing: Revising for Readability and Clarity 147

10.3 Editing for Sentence Bugs

10.3.2 Increasing the Power of Instructions

A common problem in writing instructions for users and operators is the overreliance on

such words as responsibility or requirement in place of the far clearer auxiliary verbs:

should, must, and shall.

User documentation is—or should be—filled

with direct instructions, directives. Yet, certain

long-winded and evasive habits of style under¬

mine many such sentences. The following pairs

of words deserve suspicion:

• requirement/required

• responsibility/responsible

• necessity/ necessary

• obligation/obligated

• mandatory/mandated

These words are “suspect”—not wrong or

substandard. When they appear, there are likely

to be two serious problems in the sentence. First,

it is almost certainly wordy and unnecessarily

hard to read. Second, the author’s intention is

ambiguous.
These suspect words (and others like them)

are usually stuffy substitutes for the more power¬

ful auxiliary verbs should, ought to, must, has to,

or shall.
As Exhibit 10.3.2 shows, most directives

have one of three levels of intensity. A recom¬

mendation is an urging; the writer wants readers

to follow the instruction but does not insist. A

procedure is more compelling; the writer wants

readers to understand that not following the

instruction constitutes an error. A policy (or

contractual provision) is the most compelling;

failure to follow means that there will be sanc¬

tions, penalties, or withheld payments.

Exhibit 10.3.2: Selecting Auxiliary Verbs for Procedures

Intention

Recommendation

Procedure

Policy, contract

Auxiliary

Should, Ought To

Must, Has to

Shall

148 How to Write Usable User Documentation. Second Edition

Consider the following:

It is a requirement that operators receive 40
hours of instruction before they enter any real
data.

Not only is the sentence garrulous and un¬

readable; it is, more important, unclear. What

happens if operators do not receive 40 hours of

instruction? Will the infraction be winked at (a

recommendation ignored)? Will the training

director be criticized for failure to follow the

SOP? Will a payment be withheld (contract

violation)?

The ambiguity is resolved by choosing one of

the following:

Operators should receive 40 hours of in¬

struction ...
*

Operators must receive 40 hours of instruc¬

tion ...

Operators shall receive 40 hours of instruc¬

tion ...

Similarly, the sentence

It is the responsibility of the arriving operator to
read the trouble report from the latest shift.

becomes

The arriving operator ought to read the

trouble report from the latest shift, or

The arriving operator has to read the trouble

report from the latest shift, or

The arriving operator shall read the trouble

report from the latest shift.

Why do so many writers resist these clearer,

simpler alternatives? In many cases the impulse

to show off is coupled with the desire to be

evasive; that is, not only do they want to use

impressive bureaucratic terms (like mandated).

but they also, ironically, do not want to assert

their claim with power or authority. There are

whole organizations reluctant to tell people,

unmistakably, what to do, especially when the

readers are professionals. (One Canadian official

told me that putting unambiguous procedural

language in a policy manual would reduce the

ministers to obedient clerks.)

Another complication is the near absence of

the term shall in the writing of North Americans.

Outside of the legal profession, few writers know

the correct occasion for the word. (They just

know that it sounds more ceremonial.)

In the second and third person (you shall,

they shall), shall has the force of law. The pon¬

derous

Users are obliged by law to read the copyright
disclaimer.

becomes

Users shall read the copyright disclaimer.

Thus, depending on what is meant, the

expression

Analysts are responsible for validating the
spreadsheet formulas.

becomes

Analysts should validate the spreadsheet

formulas, or

Analysts must validate the spreadsheet

formulas, or

Analysts shall validate the spreadsheet

formulas.

Note: When a document contains only proce¬

dures, you may dispense with the auxiliary

verbs. The last example becomes “Analysts

validate the spreadsheet formulas.”

Editing: Revising for Readability and Clarity 149

10.4 Making Text Easier to Read

The term readability refers to the difficulty of a particular text. The word difficulty here

refers to the sheer effort needed to read a passage. The most popular of many indexes of

readability are Robert Gunning's Fog Index, a simple technique for approximating the

“grade level of difficulty" of a passage, and the Flesch-Kincaid Readability Index.

All readability scales are imprecise, and many

scholars question their validity; probably any one

of them can be faked. Everyone has seen inge¬

niously composed passages that scored “easy” on

the readability scales but were, obviously, nearly

impossible to read. The purpose of these metrics

is to extract some “objective” assessment of how

hard a passage is for the reader to process. The

most popular scales usually contrive to have the

score equal the “grade level” of difficulty, that is,

the number of years of schooling needed to read

the passage with ease.

The best known, Robert Gunning’s Fog

Index, adds the average number of words in a

sentence to the percentage of “hard” words and

multiplies by a constant (.4) to yield the Fog

Index. (In Gunning’s scheme, a “hard word” is

any word with three or more syllables, except for

proper names, compounds of simple words, and

three-syllable words in which the third syllable is

ed or es.)
Another popular measure,the Flesch-Kincaid

Readability Index, is used by, among others, the

U.S. military in testing the reading difficulty of

its manuals. This favored military scale is a

revision of the Rudolph Flesch READ scale,

calibrated so that it, too, reports grade level.

(Note: Most style-checking software programs

compute one or both of these readability in¬

dexes.)

To test the readability scales, consider this

passage, published by one of the world’s largest

manufacturers of hardware and software:

Today’s advancements in educational manage¬
ment combined with the rapid growth in student
enrollment in schools has emphasized the need
for data processors to be used in establishing
and maintaining a student records data base,
required for providing attendance and academic
mark reporting data to satisfy several disci¬
plines. The purpose of this program product is
to provide a systematic procedure for recording,
retrieving, manipulating, and reporting signifi¬
cant student data, such as attendance and
academic mark information. One of the objec¬
tives of this program is to provide effective data
on individual students as well as aggregate,
statistical reports needed for sound analytical
decisions by educators and administrators.

This passage has 105 words, 3 sentences, and

34 “hard” words, according to the Gunning

criteria. Its Fog Index is .4(35 + 32) = .4(67) =

26.8. The Flesch-Kincaid Index rates it 21.6.

There is no person on Earth who can read this

passage without difficulty! And this is especially

unfortunate when you realize that the passage

says very little indeed, and could easily have

been revised to the 10 or 11 level.

Of course, merely lowering the readability

score of a passage does not solve all its problems.

A text with a score of 6 or 7 can still be unintelli¬

gible. Whatever quarrel one might have with

these particular indexes—or even with the entire

concept of simple readability measurement—

there is no denying that excessive difficulty

assures that most readers will be unable to make

sense of their manuals. Even if the documents are

150 How to Write Usable User Documentation, Second Edition

clear, correct, and well designed to eliminate technical publication, the more people there are

GOTOs, they may still prove unreadable. who can read it.

Even when the audience is presumed to be

sophisticated and well educated, the simpler a

Exhibit 10.4: Two Readability Formulas

The Fog Index (Gunning)

Grade Level of Difficulty =

.4[average words/sentence 4- percentage of hard* words]

* Hard Words =

all words with 3 or more syllables, except
*

■ proper names
■ compounds of small words
■ 3-syllable words in which the third syllable is ed or es,

which would otherwise have had only 2 syllables

The Fiesch-Kincaid Index

Grade Level of Difficulty =

[.39(average words/sentence) +
11.8(average syllables/word)] - 15.59

Editing: Revising for Readability and Clarity 151

10.5 Demonstration: Procedures Before and
After

“Before” and “after” versions of two actual passages from user documents illustrate the

effects of editing the draft. After several editorial improvements, each passage shows a

dramatic reduction in reading difficulty, as measured by the Fog Index.

The passage below comes from a real manual,

the project development guidelines for a large

financial institution.

Before:

Following identification of needs and appropri¬
ate preliminary approval for all major system
development project proposals, the Information
Systems Department will prepare an analysis
and recommendation for action. The more
routine requests will be approved by concur¬
rence of the Information Systems Department
and of the financial area management without
further review. Those requiring a change in
policy, exceeding the approved budgets or
crossing organizational lines, will require review
and approval by the Steering Committee as well.

The Information Systems Department will
evaluate the capability of the user or regional
technical staff to implement a proposed system.
Based on this evaluation, the responsibilities
and authorities of the Information Systems
Department, regional technical staff, and the
user will be outlined in a system development
proposal submitted to the Steering Committee.

Words: 127 Sentences: 5 “Hard” words: 37

Fog Index: 21.6

With a bit of editing, an exceedingly difficult

(though typical) bit of administrative procedure

becomes easy enough for any business profes¬

sional to follow.

After:

First, needs are identified and major develop¬
ment proposals get preliminary approval. Then,
the Information Systems Department analyzes
each request and recommends an action.

For small, routine requests the Information
Systems Department and the manager of the
functional area may approve the project without
further review. (A project is “routine” if it does
not call for a change in policy, exceed current
budgets, or cross organization lines.)

For major requests, though, the Steering Com¬
mittee must also approve. To advise them, the
Information Systems Department submits its
own evaluation, which proposes schedules and
tasks for all its participants.

Words: 97 Sentences: 6 “Hard” words: 12

Fog Index: 11.4

152 How to Write Usable User Documentation, Second Edition

In the next case, the “before” comes from the

FORTRAN programmer’s guide published by a
service company.

Before:

It is critical that variables used as subscripts in
FORTRAN programs always be consistent with
information declared in the DIMENSION
statements. Unless checking is specifically
requested, subscript ranges are not checked for
validity when programs are run. This checking
is omitted in order to maximize running-time
efficiency. However, if invalid values are used
for subscript variables, such as a value less than
one or greater than the maximum subscript as
specified in the DIMENSION statement, errors
can occur. Often such errors either go unde¬
tected or cause apparently unrelated failures and
diagnostics.

When invoking the FORTRAN compiler, the
user can inform the compiler that subscripts are
checked for range validity by supplying the
SUBCHK option.

Words: 115 Sentences: 6 “Hard” words: 21

Fog Index: 14.8

In the “before” form, this passage is under¬

standable to a good reader after two or three

attempts. The programmers who get it on one

reading are those who already know what it

means. The “after” version, however, without

“talking down” to anyone, brings the material

into the range of most of the English-speaking

adults who might choose to read this passage.

After:

Variables used as subscripts in FORTRAN
programs must stay within the range of those in
the DIMENSION statements. (That is, the value
of the variable must not be less than 1 or greater
than the highest subscript in the DIMENSION
statement.) If they are out of range, invalid, the
mistake is often overlooked. Worse, these errors
often cause “unrelated” failures or odd diagnos¬
tic messages.

To save running time, this system does not
check the range of the variables unless told to.
To be safe, when you invoke the FORTRAN
compiler, tell it to validate the values with the
SUBCHK option.

Words: 100 Sentences: 6 “Hard” words: 8

Fog Index: 9.8

Editing: Revising for Readability and Clarity 153

10.6 Other Ways to Make a Document More
Accessible

To make a manual more accessible, documentors should eliminate as many distractions

as possible, present the material in a package that communicates confidence, and lay out

the pages effectively.

Each document should be freed from distractions,

especially mechanical and production errors:

mistakes in spelling, punctuation, or grammar;

inconsistent conventions and terminology; acro¬

nyms and abbreviations that are not spelled out

often enough; awkward layouts; text lines more

than 5 inches wide, poor photography or color

separation. Each occurrence of these bugs,

though not likely to do much harm in itself, can

distract and confuse just enough to undermine an

instruction or break a reader’s concentration.

Moreover, a recurring pattern of such bugs can

imply an attitude of carelessness or sloppiness.

And that is simply the worst possible message.

We should do everything possible to commu¬

nicate confidence to the reader. Careful editing

for small bugs will help. So will high-quality

printing, copying, and binding. Expensive paper

may be the hardest aspect of documentation to

justify, but it does, unquestionably, create a

better response in users and customers than cheap

paper.

If documents are printed on two sides, be sure

that the paper is heavy enough so that the charac¬

ters and graphics do not “bleed through” the

back. If your copy machine is a “bargain,” be

sure your pages do not look like a “bargain.”

Be warned that anything that looks cheap or

chintzy may undermine the effectiveness of a

document. Usually, it is just a matter of taking

away the reader’s respect: The user does not take

seriously what the documentor did not take

seriously. Often, though, the cheapness produces

material that is nearly inaccessible. For example,

the practice of cramming as many words as

possible onto a page—the refusal to use large,

good fonts, highlighting, or any other form of

more sophisticated desktop publishing—produces

manuals that are torture.

Further, documentors must be wary of any

manager whose principal objective seems to be to

saving space. There is no communication benefit

in conserving paper. Wide margins and big print

are better for readers—all readers. An uncluttered

page is a page less likely to produce fatigue, and,

therefore, less likely to encourage errors. Thick

paper, good binders, tabs between the sections,

better typography, color—none is essential, but

all can help a system realize its full usability.

Documentors must also be wary of the brand

of editor whose objective seems to be to save

paper by the reckless elimination of words and

the incessant use of abbreviations and other

compressed forms. There is a profound distinc¬

tion between clear, concise writing, on the one

hand, and compressed, impenetrable writing on

the other. (An editor who would cut on the one

hand...on the other from the last sentence does

not understand this point.)

Ultimately, firms and organizations that

produce lots of publications must acquire compe¬

tent, professional editors. Programmers can be

taught to write a little better; “style-checkers” can

catch some mechanical errors and compute a Fog

Index. But there is still a need for someone who

knows that good communication demands pa-

154 How to Write Usable User Documentation, Second Edition

tience and rewriting, someone who knows the someone who knows that the word “prioritiza-

difference between conciseness and denseness, tion” is just plain ugly,
between compactness and clutter. And, perhaps,

Exhibit 10.6: Saving Paper vs. Readability

CONSERVES PAPER HELPS THE READER

Narrow Margins Wide Margins

Small Type, Dense Layout Larger, Varied Type Sizes

Few Illustrations and Exhibits Frequent, Large Charts, Art...

Run-On, Wraparound Printing New Page for Each New Section

Austerity, Slim Explanation Redundancy, Accessibility Tools

"Typewriter" Headings Typography/ Desktop Publishing

Compressed Graphics Large, Full-Sized Graphics

Editing: Revising for Readability and Clarity 155

10.7 Using Style-Checking Software

A relatively new tool for writers is style-checking software, programs that scan drafts for

lapses of grammar and, more important, for common excesses and affectations of style.

Though far from perfect, these programs are a great aid in proofreading.

“Style-checkers” are an ambitious extension of

the “spell-checker.” Instead of looking just for

unfamiliar strings of characters (what spelling

checkers really do), they also look for grammati¬

cally incorrect sequences (“He don’t”), incom¬

plete patterns (like unclosed parentheses), impos¬

sible punctuation (sentences without initial

capitals), and similar problems that can be ex¬

pressed as algorithms.

Where style-checkers are most interesting and

controversial is in their application of “rules” of

good writing, an area in which most amateur

writers are reluctant to take instruction. Popular

style-checkers will flag jargon and neologisms

(like prioritize or impact), warn writers about

commonly misused terms (presently or effect),

scold them for sexism, hector them about long

sentences, chide their colloquialisms, and suggest

succinct replacements for verbose constructions.

The most popular products will tag nearly every

passive form of the verb—a boon for most

technically oriented amateur writers.

Style-checkers also perform statistical ap¬

praisals of writing style. They calculate Fog or

Flesch-Kincaid readability formulas, as well as

numerous other indexes and distributions. (One

program complains if nearly all the sentences

start with the same part of speech.)

Style-checkers also make mistakes. They

misidentify the beginnings and ends of sentences

with some frequency. They often miss glaring

errors of grammar, and, even more frustrating,

they often call something wrong that is just fine.

Most of these lapses are programming problems,

errors in parsing sentences. But some are sub¬

stantive errors: superstitions and misconceptions

reminiscent of the false “rules” imposed by

grade-school teachers—for instance, nervousness

about starting sentences with conjunctions or

ending them with prepositions. One popular

program believes there is a rule against putting a

single word in quotation marks; another thinks

that paragraphs must have at least two sentences.

Moreover, most style-checkers ignore or misin¬

terpret elliptical material, like headings and

captions.

Most of the professional writers I know are

cynical toward these inexpensive software edi¬

tors. Indeed, most good, careful writers learn

little from using them and resent the shallow

advice they receive.

But that misses the point. Style-checkers are

not for good, careful writers; they are for careless

and mediocre writers. Which is to say they are

for most of the people who create corporate and

government publications and screen messages.

Style-checkers provide low-level editing for

people who otherwise would receive none. And

they provide moderately good writing instruction

for people who have had almost none.

Exhibit 10.7 shows the comments inserted

into a sample document by the program

RightWriter.

A second sweep of the document with the

program Grammatik additionally tagged the need

to replace “one of the” with a shorter form, to

substitute that for which in “which are listed,”

and to replace “determine” with a simpler form.

156 How to Write Usable User Documentation, Second Edition

Neither program catches the hideous error of

agreement in the last sentence (“operator ...

they ... their”), or the lack of helpful punctua¬

tion in that generally painful sentence. Moreover,

neither program suggests that this procedure

would be more readable in a three- or four-step

itemized procedure, rather than in paragraph
form.

In sum, even if all the advice from both

programs were followed, there would still be

serious problems. But even so, the reader would

be much better off than with the unaltered origi¬
nal.

Exhibit 10.7: An Assessment by RightWriter

Sample

Prior to inserting a graphic into the document, it is required that the file format
be determined. If the format is determined to be one of the bit-mapped types
which are listed in Table A, then "Import" should be selected from the File
Menu. If it is found to be one of the types in Table B, "Open" should be
selected. The operator who can not determine the file type should contact their
System Administrator who will either apprise them of the file type or
alternatively make a recommendation that some graphics conversion program
must be utilized.

RightWriter Analysis

Prior to inserting a graphic into the document, it is required that the file format
< < # U12. WORDY. REPLACE Prior to BY before * > > “

< < * SI. PASSIVE VOICE: is required * > > “
be determined. If the format is determined to be one of the bit-mapped types

“ < < * SI. PASSIVE VOICE: be determined * > >
< < # SI. PASSIVE VOICE: is determined #> > “

which are listed in Table A, then "Import" should be selected from the File
* < < # SI. PASSIVE VOICE: are listed # > >

< < * SI. PASSIVE VOICE: be selected # > > “
Menu. If it is found to be one of the types in Table B, "Open" should be

“ < < # G3. SPLIT INTO 2 SENTENCES? # > >
" < < * S3. LONG SENTENCE: 28 WORDS * > >

‘ < < * SI. PASSIVE VOICE: is found * > >
selected. The operator who can not determine the file type should contact their

“ < < # SI. PASSIVE VOICE: be selected # > >
System Administrator who will either apprise them of the file type or

< < * SI3. REPLACE apprise them BY SIMPLER let them know? * > >
alternatively make a recommendation that some graphics conversion program
< < * SI 5. IS THIS AMBIGUOUS? some graphics conversion program * > > “
must be utilized.

* < < * SI. PASSIVE VOICE: be utilized * > >
< < * S13. REPLACE utilized BY FORM OF SIMPLER use? *> >

“ < < # G3. SPLIT INTO 2 SENTENCES? * > >
“ < < # S3. LONG SENTENCE: 36 WORDS * > >

READABILITY INDEX (Flesch-Kincaid): 11.91

Readers need a 12th grade level of education.

SENTENCE STRUCTURE RECOMMENDATIONS:
1. Most sentences contain multiple clauses.

Try to use more simple sentences.
3. Most sentences start with nouns.

Try varying the sentence starts.

Editing: Revising for Readability and Clarity 157

„

11. TESTING: DEVELOPING A FORMAL
USABILITY TEST

11.1 Elements in a Well-Made Usability Test
11.2 Shortcuts and Compromises for Usability Tests

11.3 Stereotypes and Traps in Usability Testing

11.1 Elements in a Well-Made Usability Test

A usability test is any systematic, formal project whose aim is to gather reliable, general-

izable data about the uses and usefulness of a product or publication. The methods cur¬

rently in use range from formal laboratory experiments to anthropology-like field studies.

Nearly all professional technical writers agree:

You cannot be sure that any procedural document

is clear until it has been tested with appropriate
readers.

Originally, the usability testing movement

was meant to be an alternative to the informal

judgments of writers and reviewers. Not surpris¬

ingly, then, its earliest advocates proposed an

especially rigorous laboratory model. Today,

though, usability testing employs all the tools of

social and educational research, including con¬

textual and longitudinal studies.

Exhibit 11.1: Sample Test Objectives

The variety of method is impressive. In the

traditional approach, the investigators are unob¬

trusive; in context studies, they interact with the

observed. In lab tests, the developers are ex¬

cluded; in “wizard of oz” tests, the developers are

manipulating the material seen on the test screen.

Usability research, apparently, is in the

domain nowadays called evaluative research:

methods somewhere on the spectrum between

formal science and responsible journalism. Even

under what the scientist would consider sloppy

conditions, usability researchers gain insights that

Antecedent: Given a menu of available printer drivers

Task: The operator will be able to install a
supported printer

Precision: Within 2 minutes from the opening menu

Reliability: 80% of the time

Antecedent: Given a list of incorrect addresses

Task: The operator will be able to update
the mailing list correctly

Precision: At a rate of 40 addresses/hour

Reliability: 80% of the time

Antecedent: Given the data for the table of organization

Task: The user will be able to generate a
camera-ready organization chart

Precision: In under 30 minutes

Reliability: 90% of the time

160 How to Write Usable User Documentation, Second Edition

could not have been obtained in the era when

evaluation of manuals consisted in reading any
feedback cards that may have been received.

Clearly, if the objectives are thoughtful, and

the methods are sensible, a usability test adds

information that is helpful to the developers. It is

also clear, though, that done carelessly, a usabil¬

ity test can be manipulated to give apparent

approval to mediocre or unusable material.

For a rigorous test, we need the following:

• Unambiguous test objectives, stated so that

it is clear whether the materials worked as

intended. (See Exhibit 11.1.) In some ways,

the objectives are the heart of the test,

because they make the “tasks” operational,

testable. As Exhibit 11.1 shows, well-made

objectives can be assessed by an

independent third party.

• A test protocol, that is, a research design

identifying the subjects to be used, the data

to be collected before, during, and after the

test, the information products to be tested,

and the criteria for acceptance. Typically,

the protocol will include interview

questions, and, in more sophisticated cases,

statistical rules of inference, such as the

number of subjects who must complete the

test tasks before the material is judged

usable.

• Test materials, including printed

instructions for subjects and any other

“handout” material needed for the study.

Typically, usability tests of software also

require test datasets, hypothetical files that

are to be manipulated by the subject.

(Usability tests of hardware documents, of

course, require that an appropriate version

of the hardware be available as well.)

• A subject sampling plan, that is, a scheme

to ensure that the subjects used in the study

are representative of the intended users of

the documents. “Accidental” samples are not

random samples, and the quality of the

inferences drawn from the test is a function

of the representativeness of the sampling
plan.

• An unobtrusive test setting, in which the

subjects are free from the influence of the

testers. Ideally, the subjects should be alone

with the test materials, but, at the same time,

the testers should be able to observe them

through two-way mirrors or video cameras.

It is essential to know that the subjects

actually looked at and used the tested

documents!

Most of the firms who want rigorous, lab-like

usability tests assign the task to a group with

appropriate skills, such as human factors psy¬

chologists or quality assurance engineers. In¬

creasingly, though, the less formal methods are

learned as part of the professional training of a

technical writer.

Testing: Developing a Formal Usability Test 161

11.2 Shortcuts and Compromises for Usability
Tests

Whether laboratory methods or field research is used, high-quality usability research

proves expensive. Many firms that start out with ambitious plans decide to compromise

on the type or number of subjects and observations. Or even to “fold” the usability study

in with other system tests.

Usability testing is expensive. It is possible for a

full-scale usability test, with its changes in the

product tested, to equal the cost spent on docu¬

mentation up to that point. Such testing is justi¬

fied only where the potential risk or benefit is

great enough: manuals with huge readerships;

systems that perform highly sensitive work; users

whose ease and satisfaction are critical to the

success of the product.

Perhaps the greatest cost of usability testing

stems from its demand for skilled people that

many firms do not have on staff: psychologists,

psychometricians, social researchers, survey

designers. And sometimes it also requires dedi¬

cated facilities: labs, video, extra terminals or
PCs.

For various reasons, many firms decide that

they cannot afford to do usability testing with full

science and control. So they cut some comers

and make compromises with formal rigor:

Type of Subjects—The subjects in a usability

test should be representative users, not people

involved in the development of the product or

publications. But, for reasons of cost or

confidentiality, some firms use employees or

members of the group as subjects. They try, of

course, to pick people who are appropriately

naive, not possessing outside knowledge that

would corrupt the test results. But often this

selection is too casual, rather like the 1960s

tradition of showing drafts to secretaries to be
sure they were understandable.

Number of Subjects—Measurement specialists

want to be sure that the successes or failures

in a usability test are not attributable to mere

chance. In practice, many firms wanting to

save time and money try the material with

only two or three subjects. Some even confine

their research to one exhaustively studied

subject: a case study. But small samples and

case studies, though they sometimes reveal

startling truths, are usually unreliable. They

give anecdotal insights, but not unambiguous

results. Their greatest benefit is that they

suggest research questions that need to be

addressed more formally.

Design—A maxim of testing is that we must test

one thing at a time. For example, if we are

testing the manual, the application should be

stable, “constant.” But many firms, feeling the

pressure of time, elect to test their publica¬

tions as part of the “beta test” of the new

product or system. In effect they fold the two

tests together. The problem, of course, is that

it is often difficult to know where a problem
lies.

Any compromise in the plan of a usability

test, no matter how worthy the economic motive,

has the potential to undermine the integrity of the

test. Put bluntly, with the wrong subjects or

protocol, the results of the test may be meaning¬

less.

This is more than an academic or theoretical

complaint. A large part of the documentation

profession has come to equate the term usable

162 How to Write Usable User Documentation. Second Edition

with successfully tested in a usability test. This
definition, far more narrow than the view es¬

poused in this book, means that a poorly de¬

signed usability test can lead to a misplaced

confidence. Fundamental flaws in the documents,

such as confusions of audience and function, can

be camouflaged by pseudoscientific results.

(Consider the many cases of misleading quality-

assurance testing as a similar example.)

Of course, there is another view that holds

that this preoccupation with scientific rigor is

old-fashioned and overdone. In this view the

people conducting these shortcut tests are aware

of the flaws and have sufficient common sense to

temper their conclusions. From this perspective,

usability testing is a kind of technical journalism,

investigation of a problem augmented with a bit

of science. Given resourceful investigators, aware

of their biases, we will nearly always be better

informed than if we had done no test at all.

Again, much is riding on the choices you

make in conducting usability tests, not the least

being an unwarranted sense of confidence in a

publication that is quite flawed. Before you or

your organization embarks on such a project, be

sure you can answer these questiions:

• Does anyone on this project have any formal

training in social research or tests and

measurement?

• Are the people conducting this test

sufficiently independent of the developers?

Can they be objective and evenhanded? Is it

really wise—as is increasingly the practice

these days—to entrust the testing to the

creator of the object being tested? This has

never worked well in programming.

• Is the timing of this test such that there is

irresistible pressure for the document in

question to pass? Is there time to make

important changes if they are needed?

If the answers are unsatisfactory, you might

want to reconsider your schedule. Or you might

want to engage an independent contractor to do

the study for you. This is usually the most eco¬

nomical—and persuasive—approach to usability

testing.

Testing: Developing a Formal Usability Test 163

11.3 Stereotypes and Traps in Usability Testing

Every sentence and diagram in a manual can be clear and correct—while the book as a

whole remains unusable. That is, the manual could contain the wrong sentences, proce¬

dures, and diagrams for the intended audience. Or needed information could be hard to

find (though clear once you locate it). Or the manual could be suitable only for its first

reading, but inappropriate for later reference.

With few exceptions, after-the-fact, “one-off’

usability tests do not address problems of analy¬

sis and design. Nor do they deal with such prob¬

lems as the interaction between information

products (like manuals) and information services

(like training).

Usability Testing and Document
Overhead

For many readers, the big problem is less one

of understanding the instructions than of finding

the right instructions to read. The issue is docu¬

ment overhead: the effort expended by the

reader in, first, locating the right starting point

and, then, jumping to the consecutive positions in

the book. The overhead in a book is directly

related to the frequency with which the reader

must read something other than the next word or

turn to something other than the next page.

Any usability test that tackles one component

of the manual at a time—the “unit test fallacy”—

will probably overlook the overhead problem. A

complete draft has so much structural inertia—

and so strong a commitment from its authors—

that it makes little sense to raise organizational

questions after the fact. When authors find

structural flaws in a “finished” draft, they tend to

act like programmers who find structural flaws in

a finished program: They patch and plug until the

problem appears to go away.

Usability after the Neophyte Stage

Certain parts of a manual are read once or

twice; others are consulted repeatedly. Although

the initial reaction of a reader to a manual may be

an important predictor of its subsequent usability,

it is hardly the whole story.

Usability tests, in the main, record first

impressions. Typically, the subjects are exposed

to a text and a task/problem for the first time.

Usability is measured mainly in how well this

first experience goes. (A small amount of exces¬

sive overhead, for example, will scarcely affect

the novice, who often expects the first trial to be

difficult.) But often material that serves well on

the first instructional passes becomes clumsy and

unresponsive when the more experienced reader

consults it for reference. The danger is that

usability can degenerate into a cliche, like “user-

friendliness,” with its unmistakable bias toward

ease-of-learning rather than ease-of-extended-

use.

Usability testing needs a longitudinal compo¬

nent as well.

Usability versus Maintainability

The most problematical trade-off in develop¬

ing documents is choosing between usability and

maintainability. A usable manual has conven¬

tional page numbers; many firms use section

numbers instead (for example, DP0019, 3 of 31),

knowing that their publications will be updated

164 How to Write Usable User Documentation, Second Edition

so often that page numbering would be a night¬
mare.

A usable publication repeats certain instruc¬

tions, and even some figures, as a way of reduc¬

ing the amount of page-flipping and overhead;

many firms will brook no repetition, arguing that

the problems of maintaining text and exhibits

increase exponentially with the repeated appear¬

ances of the items. A usable set of manuals

includes some overlap, so that the user will rarely

need to consult two books to perform one task;

many firms will not allow any overlap, fearful

that the common material will be updated in one

volume but not the other.

Most usability testing, though, completely

ignores the issue of document maintainability. Is

there anything in a typical usability test that tells

the developer whether the book tested will be

easy to revise, reuse, or cannibalize for later

publications?

Usable Books versus Unusable
Systems

Some organizations test an early chapter or

chunk of a book—“prototyping,” they call it. In

contrast, by the time most draft documents reach

a usability test, the system documented will be

virtually beyond change. (That is, the politics and

economics of the organization will resist any

attempt to change the system itself.)

How can a usability test discriminate between

certain difficulties attributable to the book and

those in the product the book explains? If the
manual shows clearly, for example, that a certain

transaction is error-prone, who will have the

patience and discipline to revise the transaction?

And there are even thornier issues. Is the

document usable enough, given the extant delays

in implementing or shipping the product? Is the

manual usable enough, given the priority of a

particular product or audience? What are the

opportunity costs of continuing to increase the

usability of the publication? Would it be smarter

to improve the user interface than to improve the

user manuals?

Usability tests rarely address essential ques¬

tions of policy and profit.

Testing: Developing a Formal Usability Test 165

12. MAINTENANCE: SUPPORTING AND
UPDATING USER DOCUMENTATION

12.1 Maintaining Documents: Stimulus and Response

12.2 Information Support for Document Maintenance

12.3 The Maintenance Paradox: The More the Messier
12.4 Can Old Manuals Be “Modularized”?

12.1 Maintaining Documents: Stimulus and
Response

All documents need changes; from the day they are published. Each impulse to change or

revise a document is a stimulus; and the rule governing the correct response is the main¬
tenance standard or policy.

To assure that a manual or set of documents is

maintained, you must assign someone to the task.

For every document, someone must see that it is

distributed correctly and that updates and supple¬

ments are sent to the right people at the right

time.

All manuals will need to be changed. As

Exhibit 12.1 shows, no matter how carefully they

are reviewed, your manuals will respond to such
stimuli as

• technical errors—incorrect or incomplete

technical information about the system or

product

• technical changes—minor modifications in

the system, made while you were preparing

the documentation, with or without your

knowledge

• communication errors—ambiguous,

unclear, or misleading text and diagrams in

your manual; errors of grammar or

mechanics

• system enhancements—major changes and

new features added to the product or system,

scheduled or “ad hoc”

• policy changes—new rules on what must or

may be done, by whom

Although someone must feel responsible for

keeping track of these problems, that responsibil¬

ity need not result in an endless stream of up-to-

the-minute bulletins, warnings, and releases.

Despite the documentors’ understandable

wish to have all manuals current and correct, all

manuals are out of date anyway. The question is

not “How can the manuals be instantly updated

or corrected?” The question is “Which changes

can be held for a while—batched—and which

must be communicated at once?” Of those that

are batched, which can be held for only a few

days or weeks? Which for several months?

In fact, there are four main ways to respond

to a stimulus:

• Internal change is a correction in the

master version of the document, that is, the

material kept in the files of the person

responsible for maintenance; this file

contains modifications in the documents,

areas that need modification, and release

schedules. Everything in this internal file is

urgent and should be kept as current as

possible.

• Immediate update is sending a hot bulletin

to every user or document owner; obviously,

it is a tactic that should be reserved for

important messages. A flurry of emergency

bulletins creates confusion and gives the

impression either that your system is in

chaos, or that you “cry wolf.”

• Batch update is the collection of several

changes in one set, published by the

calendar (once-per-month or once-per-

quarter) or when the quantity of the material

exceeds a certain threshold.

• New edition is the ultimate batch update;

the documentor incorporates all the

modifications since the last edition into a

new edition, removing what is obsolete and

replacing what has been modified. Then the

168 How to Write Usable User Documentation, Second Edition

users get a new version—ideally, only after

they have handed back the old one.

(Contrary to what you might expect, a new

edition is often more cost-effective than
supplements, provided one considers the

true costs of inaccurate and incomplete

documentation.)

There are, then, several ways to respond and

several different levels of urgency (as in all

engineering problems). The fact remains,

though, that many zealous documentors are too

eager and often create more confusion than

clarity with their incessant updates.

Exhibit 12.1: The Mediating Role of Maintenance Policies

Internal

Update

Flash

Bulletin

Batch

Update

New

Version

Maintenance: Supporting and Updating User Documentation 169

12.2 Information Support for Document
Maintenance

For manuals and documents to be maintainable and modifiable, they must have been

designed that way. Modular publications, tested when they are still models, not only

reduce the need for subsequent changes, they simplify the process of making and control¬

ling whatever changes must be made.

Programs are made maintainable in the early

stages of their design; after a program has been

coded, it can be maintained, but not made more

maintainable. Maintainability is an aggregate

measure of the ease and speed with which bugs,

flaws, and other inadequacies in a system can be

located, defined, and corrected: often the best

predictor of its cost-effectiveness.

Similarly, the documents and other informa¬

tion products that accompany systems also must

be maintained and modified. The systems

change or develop bugs, and the accompanying

user documentation must be changed. Or the

documents themselves can manifest weaknesses

Exhibit 12.2a: Module Profile

that are independent of the systems they accom¬

pany. In time, you will realize that maintaining

and modifying publications costs more than

writing them—and that publications which resist

maintenance are likely to fail, substantially

reducing the usability of the systems they sup¬
port.

The most straightforward way to maintain a

user manual is to, first, find the modules that

need to be changed and, second, repair or replace

them. For modifications, this may also entail

finding the right place to add a module and, then,

inserting it.

Module Name: Adding a Record Module File No.:B-008

First 60 Characters:
To add a record, type the name of the file in the GOTO win

Superior Modules: B-002 Using the Four File Transactions

Subordinate Modules: B-028 Trying to Add a Record That Already Exists
B-029 Trying To Add a Record With Key Data Missing

Descriptors:

Program/System: DB-3, Real-Estate Manager, Loan-Manager
User Tasks: file creation, file update, new account, new record
Audience: end user, realtor, loan officer
Site/Installation: ABCO Finance, Goldschmidt & Wong Real Estate
OtherPublications/Products in Which the Module Appears:

G-3, G-4, G-5; F-l, F-2, F-7; R-l, R-5

170 How to Write Usable User Documentation, Second Edition

When user documentation is modular and

structured, you can maintain a directory of all the

modules, coded so as to define the systems,

topics, applications, installations, or other de¬

scriptions that are relevant. Such a scheme

allows you to search the file for all the modules

affected by a particular system change. And also

allows you to generate new documents from old

modules.

If you view documents as unique sets of

modules, you can maintain a directory like that

illustrated in Exhibit 12.2a. Because it is likely
that a module will appear in more than one place,

such a directory tells you all the publications that

are affected by a particular change in the system.

In large and sophisticated organizations there

may be alternative versions of the same technical

content expressed in equivalent modules; the

directory illustrated in Exhibit 12.2b allows the

Exhibit 12.2b: Directory of Modules

documentor to map all the consequences of a
technical change onto the various publications

that need to be changed.
There are other, simpler anticipatory design

choices that can make your documents more

maintainable. For example, manuals in loose-

leaf binders, obviously, are more agreeable to

change than bound books. One-page modules,

printed on one side of the paper, are the easiest to

add, remove, and insert. And they are probably

the best form of module for documents that need

to be changed continuously. On the other hand,
though, they tend to make many manuals choppy

and filled with complicated references and loops.

The maintenance advantages of the one-page

module—with text and exhibits on the same

page—may have to be traded-off for the usability

advantages of the two-page module.

Module Equivalent Modules Publications/Products

B-008 R-006, D-120 G-3 , G- 4, G- 5, F
F-2, F-7, R-l, R-5

B-028 R-061, D-121 G-3 , G-4 , G-5, F-7
B-029 R-062 , D-122 G-3, G-4 , G-5, F-7
C-110 G—2 , G-3, G-4, G-5
C-115 R-090 G—4 , G-5, R-5
C-240 D-600 G-3, G-4, G-5, F-7

R-4, R-5

Maintenance: Supporting and Updating User Documentation 171

12.3 The Maintenance Paradox: The More the
Messier

Without a thoughtful policy for the maintenance of documents, there tends to be a random

or haphazard distribution of supplements, bulletins, releases, and updates. What many

do not realize is that each supplement to a manual can actually double the number of

alternative versions in circulation. And only one of these versions is correct.

Again, it is a truism that all manuals are out of

date and that they contain at least a few errors.

This is no more remarkable or deniable than the

claim that all complicated programs or devices

have bugs—including some that have not yet

been recognized.

It is also a truism that all user lists, distribu¬

tion lists, and route lists contain errors. And the

longer the list, the more inaccurate and out of

date it is. That is, any attempt to communicate

bulletins and changes to all the people who are

using a certain document—or a certain system—

will be frustrated by the inaccuracy of that list.

These first two truisms—that all documents

contain errors and that all distribution lists are

inaccurate—are almost natural laws of technical

communication. If we add another law, the

Second Law of Thermodynamics (the entropy

principle), it becomes more understandable why

attempts to update and revise publications so

often fail.

Not only is there a continuing struggle to

recognize and write up the needed changes; not

only is there an eternally frustrating attempt to

identify all the people and places that should

receive the supplements and updates; there is also

a vast set of random and perverse forces that

conspire to misdirect and distort the effort. Mail

systems, private or public, make errors—even if

they are electronic or fax systems. Also, the

recipients tend to misplace, misapply, misread,

and otherwise abuse the bulletins. In how many

manuals, for example, are all the supplements

still wrapped in clear plastic, waiting to be
incorporated?

The net effect is that every supplement to a

manual—even though its purpose is to produce

current, consistent documentation—may double

the number of versions in circulation. (Some

people receive the supplements; some don’t.)

When the original manual appears, there is only

one version in circulation. (Not counting, of

course, the unofficial versions extracted and

created by industrious users.) With each added

supplement, the number of alternatives doubles.

Thus, two supplements yield four versions,

and four supplements yield 16. After 10 supple¬

ments there could be IK versions: 1024!

This discussion is not intended to be humor¬

ous. Anyone who has tried to distribute correc¬

tions and updates to a large set of operators or

customers knows that every possible misuse,

misplacement, and mismanagement of the docu¬

ments will, in fact, occur. Incorrectly addressed

materials disappear; correctly addressed materials

are nevertheless mislaid. Materials that super¬

sede older versions are stored in a desk, while the

obsolete pages remain in force at the terminal.

Often, one cannot find two identical versions of

an important publication.

Although nothing can prevent completely this

proliferation of misinformation, several measures

can ameliorate it:

• Limiting the number of supplements und

releases, keeping them in large batches, will

reduce the noise in the documentation

172 How to Write Usable User Documentation, Second Edition

channel. Releasing these batches on a

regular schedule solves another serious

problem as well; it lets the users be

confident that they have received all the

supplements. When books are updated
irregularly, the user is never sure.

• Putting as much documentation as

possible into the system itself—thereby

reducing the quantity of obsolete “hard

copy”—will contain the problem.

• Limiting the updates to a single,

authorized source will reduce confusion

and resolve conflicts.

• Requiring technical specialists to review

and approve the documentation before it

is sent will reduce the quantity of updates

and corrections, especially the corrections of

the corrections.

If you consider the true costs of misinforma¬

tion, you will realize that responding to problems

caused by the incorrect instructions costs much

more than writing and publishing better docu¬

ments. Lost work, inexact work, operators’

downtime, emergency visits to troubled sites,

additional consulting, training, travel, re-entry of

data, revising of documents—all these can

conspire to make the issuing of a whole new

edition less “expensive” than a two-page supple¬

ment.

Maintenance: Supporting and Updating User Documentation 173

12.4 Can Old Manuals Be “Modularized”?

Few documents start from scratch; usually there is an old tome to be incorporated or

updated. On occasion, an old book can be recast into a structured format, but the change

may be a little more than cosmetic, not really providing the benefits of a brand new,

tested, modular manual

Often, the assignment for newly hired documen¬

tors is to finish, update, upgrade, revise, or

otherwise resuscitate some unacceptable publica¬

tions. They are asked to begin long after the time

when most of the document design decisions

should have been made.

What about these existing documents? Can

documentors charged with the task of editing or

revising old manuals make use of the structured

approach? Can an inaccessible, unreliable

manual be made more usable?

Perhaps. The editors at Hughes Aircraft,

when they first publicized their method of modu¬

lar publication—the STOP (Sequential Thematic

Organization of Publications) technique—

reported that they were able to recast old docu¬

ments into the new two-page format. Partly,

their success was due to the nature of the publica¬

tions they were working with, many of which

were already equal mixes of text and exhibits.

Given the right publication, the process can

be almost fun. All the pages of the existing

document are laid end-to-end, and the team of

designers goes through the text and pictures

marking off module-sized chunks of material,

writing new headings or headlines, occasion¬

ally—but rarely—even rearranging the sections,

or moving an exhibit from the appendix to the

text.

Whether this is a good idea depends on

several factors. As already mentioned, some

publications, which are closer to the structured

Exhibit 12.4: Retrofitting the Unstructured Text

174 How to Write Usable User Documentation, Second Edition

format than others, call for less complicated

reworking. Some manuals, because they are

filled with good writing and pictures, are espe¬

cially worth saving, and they justify the effort.

But many documents (like many old programs)

are obsolete and clumsy. Trying to save these is

little more than yielding to the too common myth

that it saves time and money to reuse existing

material instead of creating new things.

Again, some old manuals lend themselves

quite easily to “modularization.” I have seen

people “back out” a storyboard from an existing

manual that never had one in the first place. In

many cases, though, the effort to recast and

retrofit an old publication is greater than the

effort to generate a brand new one.

But, even when an old book lends itself to

recasting in the more readable modular format,

please remember that modularity is not just an

attractive way of presenting material. It is not

just cosmetic.

Modular design, whatever its aesthetic bene¬

fits, is also a way of assuring that the documents

are maintainable and modifiable. A modular

format imposed after the fact may improve

appearance, but it might not significantly im¬

prove the maintainability and reliability of the

book that has been revised.

I agree with Yourdon and Constantine in their

discussion of recasting old computer programs:

It is all but impossible to simplify significantly
the structure of an existing program or system
through after the fact modularization. Once
reduced to code, the structural complexity of a
system is essentially fixed. It is thus clear that
simple structures must be designed that way
from the beginning.

—Structured Design
(Englewood Cliffs, NJ: Prentice-Hall), 1979, p. 35

Recast and retrofit old manuals if you like.

But do not miss the opportunity to engineer a

publication from its inception.

Maintenance: Supporting and Updating User Documentation 175

PART 3

Online
Documentation and

Internal Support

13. USER DOCUMENTATION WITHOUT BOOKS

13.1 The Full Meaning of “User Support”

13.2 Breaking the Grip of Manuals

13.3 Some Relevant Principles of Human Factors

13.1 The Full Meaning of “User Support”

Into the early 1980s, most developers believed it natural and inevitable that customers,

users, and field installers and service people would need support. Moreover, the natural

way of providing it was through publications, typically large, difficult, and demanding.

The newer view, though, is that support may be a euphemism: that what traditional

manuals try to do is ameliorate the defects in the system.

Virtually all users of computer and communica¬

tion products presume that these products will

come with documentation. They expect main¬

frames and giant telephone products to come

with libraries. Indeed, for sophisticated PC

software, they not only expect the product to

come with immense publications, they also

expect to find hefty third-party treatises at the

local bookstore.

For any complicated product there are sup¬

port needs: initial setup, orientation, and training;

responding to bugs and anomalies as they inevita¬

bly appear; customizing and adapting the product

to fit the peculiar circumstances and equipment

of the customer; getting out of user-created

messes; recovering from crashes, power spikes,

and other acts of God; resolving jurisdictional

disputes when one program wars for RAM with

another.

The issue is whether this litany of painfully

familiar “support” cases is necessary. Granted,

there will always be unanticipated problems

caused by variations from machine-to-machine.

Still, is it possible to develop technology, espe-

Exhibit 13.1: Mismatch between User and System Mentalities

Mismatch

180 How to Write Usable User Documentation, Second Edition

dally business technology, that doesn ’t need so

much support?

With the right interface and introductory

training, could we not eliminate much of the

elaborate procedural discourse from our manuals

and encourage users to explore the system in¬

stead? That is, for a comprehensive manual

substitute John Carroll’s minimal manual (The

Numberg Funnel, Chapter 6).

An uncharitable view of user support—the

way it is seen by many human factors consult¬

ants, for example—is as a set of materials and

procedures that compensate for the inadequacies

of design, especially in the user interface. In

large manufacturing firms, for example, we often

see a clash between the engineers/programmers,

who think it natural for new products to be

complicated and esoteric, and human factors

psychologists, who are not so persuaded.

Whether or not systems must be hard to learn

and error-prone, it is unmistakably true that most

of the writers and trainers at work right now are,

in fact, filling in the gaps between the profile of

the system and the profile of the user. It has been

the natural role of such people, since the 1960s,

to teach arcane vocabularies, demonstrate tricky

procedures, and generally enable users and

customers to adapt their natural ways of thinking

and working to the demands of the machine.

Indeed, a few large firms have built their success

on a reputation for support, just as more than a

few vendors have made profits from teaching

customers, for a fee, to use the products they

already paid for.

Even though it may be impossible to elimi¬

nate all external support from sophisticated

systems, the current view is that most systems

need far more support than they should. That is,

users are driven to hotlines by a poor installation

routine; they are shunted to manuals by need¬

lessly cryptic screen messages or obtuse com¬

mand syntax; they are compelled to use Help

screens by free-form procedures and indecipher¬

able menu choices. Or, put another way, a well-

made system needs a relatively small support

envelope, while a poorly made system will need

to be bundled with a complicated entourage of

information goods and service, including, in

some cases, ponderous libraries that nearly

everyone loathes.

The problem is partly in the tradition. To

solve it, we need some new attitudes:

1. The time of the user is more valuable than

the memory resources of the system; Users

should rarely have to decode messages that

could have been stored, English-like, in the

system.

2. Systems have no right to scold users for

making mistakes. In fact, the mistake is

really the system’s failure to understand the

user. Moreover, blame is irrelevant; recovery

is what we need.

3. Messages that appear on the screen—

especially those containing instructions—

should be written and edited by people

who can write well. Most coders do not meet

that requirement.

User Documentation without Books 181

13.2 Breaking the Grip of Manuals

There are six problems that increase our grudging dependence on user manuals: free¬

form procedures, cryptic menus, undecipherable prompts/labels, unintelligible system/

error messages, error-prone data entry, and unhelpful Help screens.

Free-form Procedures and Routines

The most fundamental, continuing problem is the

procedure that places its entire burden on the

user. In its most extreme form it is the familiar

blank-screen-with-blinking-cursor or solitary

DOS prompt. In its milder form it’s any com¬

mand-driven system that requires users to re¬

member names, definitions, syntax, limits, and so

on.

The most dramatic way to weaken the grip of

manuals is to use pointing and recognizing in

place of recalling and typing. It is the essence of

what has come to be called “friendliness,” and it

is also the main weapon in breaking our depend¬

ence on publications.

Cryptic and Ambiguous Menus and
Options

Ironically, although menu-driven choices are

the principal way of eliminating our dependence

on documents, bad menus are almost as serious a

problem.

The greatest weakness in much online infor¬

mation is plain old bad writing. Why should a

menu say “Execute a Format” when it means

“Make a Chart”? Which of two options should I

select: “Store Chart” or “Store Composed

Chart”? (And what if I told you that the wrong

choice could undo hours or days of work?)

Why do some menu writers believe that

menus should contain only one-word entries?

And how do they expect me to choose between

“Copy” and “Replicate”? If I want to change the

size of a font, why do I have to choose “De¬

faults” from the menu?

Undecipherable Prompts/Field Names

Because many programmers learned their

craft in an era when machine resources were dear

(and good programmers didn’t waste them), our

screens are still filled with compressed and

abbreviated words, starting with “usrid” and

getting worse.

Even worse than the single-word prompts are

the unreadable clauses and sentences, often (it

appears) written by people with only a passing

familiarity with English. What is a normal person

to make of “Hitting the Space Bar Unselects

Your Selection”? How can users tolerate “Press

Enter to Exit”?
Generally, it is unproductive and uncaring to

expect people to read messages they cannot

unpuzzle. Especially when rudimentary copy¬

editing would fix most of the trouble.

Unintelligible System/Error Messages

Every so often, a system seems unable to do

what the user wants. In these cases, the system

tries to communicate its difficulties to the users.

If the problem is in the system, it sends a system

message; if the problem is with the user’s ac¬

tions, it sends an error message.

The trouble with thes? messages is their

tradition. Traditionally, error messages were

coded or encrypted. It was reasonable to tell the

user “Error Code 11-11 has occurred at Line

15050.”
Also part of the tradition is the attitude that

any failure of the system to understand the user

should be regarded as the user’s error—as though

182 How to Write Usable User Documentation, Second Edition

it was the user’s fault that the system is so com¬

pulsive about spelling and syntax.

System and error messages (and, by the way,

it’s probably time to retire the phrase “error

message”) have only one purpose: to get the user

to the next step of processing. What is a speaker

of normal English to make of

No application is installed for this type of
document. To run a particular application
whenever you open this type of document, select
the application and install it.

Error-Prone Data Entry Mechanisms

One way to mediate the effect of poor error

messages is to eliminate errors. Wherever pos¬

sible, users should be able to select what they

want from a menu, and activate that choice with

only a keystroke or two. (Those who want to type

should have the option.)
Moreover, the user interface should work as

consistently as possible. “Modes,” which change

the functions of keys, can also drive people to

their manuals. When the same operating system

wants the <BREAK> key in one mode and the

<RETURN> key in another—when both seem to

be doing the same job—the manual writer had

better prepare.

Unhelpful Help Screens

Help screens are an attractive alternative to

reference manuals. With few exceptions, users do

prefer to look up codes and jog their memories

by pressing a “hot key” that activates a germane

Help screen.

But Help screens must be designed for reada¬

bility. Fewer than half the cells in the grid should

have characters in them; a screen full of prose

paragraphs is even harder to read than a page full

of the same.
And, finally, Help screens must also be well

written. If anything, given the difficulty of

reading messages from a video screen, they must

be better written and edited than traditional

publications. Under no circumstances should they

by written by people who can scarcely write.

User Documentation without Books 183

13.3 Some Relevant Principles of Human
Factors

Designing a user interface is a “human factors” problem. (Not just a programming prob¬

lem; not just a writing problem.) The 1980s proved that three principles are paramount:

Pointing is better than typing; recognizing is better than recalling; selecting is better than

reproducing.

A high proportion of the errors made by users are

nothing more than typing errors. A simple trans¬

position will provoke the system to such irksome

responses as “file not found.” With some excep¬

tions, the longer the string of characters to be

typed, the greater the opportunity for error.

(Unless the longer string is more English-like

and, thus, easier to remember.) Wherever pos¬

sible, the user should be enabled to point (using

Exhibit 13.3a: Pointing vs. Typing

20

Eli
SHEET1

j-jMmimiiiujiMiijuimijyiiimuiuiiiUHimunimiJUiii
UQl 111 MENU

184 How to Write Usable User Documentation. Second Edition

the cursor keys, a mouse, or some other pointing

device) at the choice on a list or menu.

Generally, the fewer keystrokes demanded of

the user, the fewer problems and mistakes.

Whenever possible, users should select (by

“pointing and shooting,” as they say) from the

list of options. They should not be asked to

reproduce a word or string of characters on the

prompt line. Indeed, they should not even be

asked to type the letters and numbers of the

choices on the menu.

To a large extent, the use of selectable op¬

tions—menu-driven and prompt-driven pro¬

grams—has become a working definition for

user-friendliness or usability. And although

there are times when it is inappropriate, it is still

the best way to build an interface and reduce the

need for user documentation.

Similarly, users should not be asked to

remember things, or to look up things in ponder¬

ous manuals, when it is so much easier to recog¬

nize things from a list. When users want to know

their options, the table of allowable entries

should be ever-present on the screen or immedi¬

ately available through pull-down/pop-up menus,

or through a traditional Help facility.

Even the presumably simple task of typing a

letter or number to select a menu item is less

reliable—more error-prone—than allowing the

users to point at and select their choices.

Exhibit 13.3b: Pull-Down Menus as Recall Aids

►=H

pa

.lh
<tih

ABTo

ABFr

ABRe

I pr

=Edit=K!o to==Windou=Layout==Style Other5

!-!-R
=ED I T= =E DIT=

Save file, resume editing

Save and name file

Save file, go to Opening screen

Save file, exit UardStar

Abandon changes

Print a file...

flerge print a file...

Print from keyboard...

Change drive/directory...

Copy a

Delete

Rename

file...

a file,

a file.

KT

AKD

AKX

AKQ

'KPP

kph

'KPK

AKL

AK0
AKJ
AKE

II190»

► ►

mon
► ►

July 30-31k>

Aug l-3k ►

Oct

Oct

22-23»

24-26»

1 for writing programs in

Writing Procedures^

Technical Uriti ng»

Writing Procedures^

Technical Writing^

$4,000

$5,500

$4,000

$5,500

1
<

<

<

<

<

<

<

<

1990-9*n

<

<

<

<

<

<

<

<

<

<

1
<

<

<

<

<

<

<

<

1990-9♦
<

<

<

<

<

<

<

<

<

<

User Documentation without Books 185

14. STRATEGIES FOR ONLINE
DOCUMENTATION

14.1 Online Documentation—Five Fronts

14.2 Books on a Disk

14.3 Styles of Online Help
14.3.1 Attaching a Menu-Driven Manual

14.3.2 Deducing the Problem with Context-Sensitive Help

14.3.3 Providing Continuous Help and Prompt Zones

14.3.4 How Help Screens Fail

14.3.5 Designing a ’90s Help Screen

14.4 Computer-Based Training: Two Approaches

14.4.1 CBT in a Straight Line

14.4.2 CBT That Branches and Interacts

14.5 Improved Support through Better User Interfaces

14.5.1 Writing Better Menus
14.5.2 Reducing the Memory Burden: Windows and Icons

14.5.3 Reducing Keystrokes: Mouse and Pointers

14.6 Improved Support through Hypertext

14.6.1 Using Hypertext as Help

14.6.2 Using Hypermedia as Help

14.1 Online Documentation—Five Fronts

In its weakest form, online documentation is merely reading traditional user documents

on a screen or other display. In its strongest form, it is incorporating teaching and refer¬

ence material into the system itself, as seamlessly as possible. There are five ways to

approach online documentation: books on a disk, Help screens, computer-based training,

improved user interfaces, and hypertext.

Like other fashionable expressions from com¬

puter technology, “online documentation” has

many meanings. It covers a range of support

options, everything from shipping old-fashioned

documentation on floppy disks, to redesigning a

system so that it needs less paper documentation.

For some people, online documentation means

reducing a computer to a kind of expensive

microfilm reader, with page after page of dense

text (often without graphics).

All forms of online documentation, from the

least to the most ambitious, are legitimate and

helpful. And, even though there are some forms

of support that do not lend themselves to online

format, every system can benefit from having

more or better online support than it has now.

There are five fronts for approaching online

documentation, which can exist in any combina¬

tion:

Books on a Disk are traditional publications that

have been read into an electronic file so that

the pages can be read on the computer screen.

In the simplest form, the table of contents and

index act as menus, from which users select

the passages they need to read. In more

complex approaches, the document file has a

retrieval utility—a “lookup engine”—that

permits users to search by keywords and

phrases.

Online Help is the practice of creating screens

that instruct or answer questions and attaching

them to particular elements in the master or

application system. In its simplest form, the

call for Help takes the user to the menu of a

book on a disk; in more sophisticated ap¬

proaches, the system senses the context of

request—the particular screen or field that

caused the impasse—and presents one or more

screens aimed at that special need.

Computer-based training uses the power of the

computer to present, manage, or evaluate

instruction. The more sophisticated the CBT

program, the more interaction it demands of

the user: asking questions, assigning tasks,

branching as a function of the user’s re¬

sponses.

Better user interfaces means eliminating the

several factors that drive people to manuals

(and Help screens) by simplifying and clarify¬

ing the way systems communicate to users

and, thereby, reducing the chance that users

will commit “errors.” It entails everything

from replacing command-driven programs

with menu-driven ones, to rewriting menu

language for clarity, to creating “shells” or

“environments” that allow easy manipulation

between screens, or even across applications.

188 How to Write Usable User Documentation, Second Edition

Hypertext is a relatively new programming

approach that can be used to implement any of

the four fronts above, or to supersede them.

Hypertext, the linking of screens/files so that

readers can navigate through a web of topics

(according to their unique interests) not only

Exhibit 14.1: Table of Online Fronts

allows people who used to be writers to create

tutorials, Help screens, or interactive books

without the aid of programmers, but also

permits nonprogrammers to link these ele¬

ments into new applications of their own.

Strategies for Online Documentation 189

14.2 Books on a Disk

The easiest way to create online documentation is to convert the hook or library to an

electronic file and allow it to be read on a screen. In its least ambitious form, the table of

contents or alphabetical index becomes a menu. In more ambitious forms, the stored book

is accompanied by a “lookup engine, ” a utility that searches by keyword or phrase.

Although such systems may yield nearly unreadable screens, they are still an important

advance on the traditional document library.

The term online documentation has changed

meanings with the changes in technology. As

recently as the 1970s, writers who claimed to

have “put their documentation on line” some¬

times meant merely that their entire manual (but

not the graphics) was done on a word processor.

In earlier days some firms even referred to the

practice of shipping their publications on disk—

to be printed by the customer—as online docu¬

mentation.

Even today, though, there are sophisticated

firms to whom online documentation does not

refer to better menus and Help screens but to the

process of converting an entire library of techni¬

cal publications to electronic form. In effect,

this electronic publication is separate from the

application system, meant to be read separately,

in much the way that a technician will “stop

working” and consult a manual. Particularly

companies that manufacture computers and

Exhibit 14.2a: A Cluttered Screen

it PgDn PgUp End Home F =Find Esc=Exit ? =He1p |
program to keep logs of time spent on client projects, calculate the

amounts to be charged based on hourly rates you specify, and print

monthly records of time spent on the projects.
515 AS-EASY-AS u3.01 - AS-EASY-AS is as close as your going to get to

Lotus spreadsheets. A well made spreadsheet program that rates and
compares to the expensive spreadsheets. Some of the options that are

avaible to you are 2048 rows by 256 columns, POPUP or PANEL menus (You)
decide which is best for you), powerful graphics that will let you

create BAR, STACKED BAR, LINE, XY ,PIE, HILO, SENI-LOG and LOG-LOG
graphs on your Epson compatible printer , over 50 (NACRO> programming
commands, over 43 0FUNCTIONS for math, statistics and finance, 3D-

SINULATION, you can reallocate spreadsheet memory upto 100 planes. HELP
screens , built right into the program , ouer 50 pages, and if that
wasn’t enough AS-EASY-AS is highly Lotus compatible. UPDATE

518 PIU0T ul.01 - AS-EASY-AS one of the better spreadsheet programs just
got better. How you can control your printer setup more easily with

Piuiot. P1U0T! allows you to print your AS-EASY-AS worksheets in either
portrait or landscape orientation and in the font of your choice. (Two

intenral fonts currently available). The GCHAR (Graphics CHARacters)
program, distributed as part of this package, is used to develop your

own fonts, which can be accesed by the PIU0T! program. All in all, the

two programs form a powerful combination which is an invaluable
companion to AS-EASY-AS and other compatible spreadsheets. Requires

190 How to Write Usable User Documentation. Second Edition

telephone equipment are inclined to reduce the

several thousands of pages associated with a

mature machine or a huge switch to a miracu¬

lously small compact disk that can be read
through a PC.

Such conversions are often artless, consisting

in the straightforward reduction of dense, unus¬

able texts into what ultimately become denser

and equally unusable screens. (This process

converts the computer to a glorified microfilm

reader.) Everything that was wrong with the

pages—from substance to layout—is now worse.

(See Exhibit 14.2a.)

The usability research is clear on this subject:

computer screens need even more “white space”

than paper. Paragraphs that are nearly unreadable

on paper become entirely unreadable on the

screen. Such practices as justifying monospace

characters on a character-based screen produce

panels that even the most intrepid user cannot

abide.

But even the crudest book on a disk can be a

significant improvement in user support, espe¬

cially for those situations where there is usually

only one set of user documents. PC users, who

typically have all their own manuals, forget that

mainframe and mini users typically work in

settings where the firm owns only one library of

manuals. And this library, moreover, is often at

another location! In contrast with this tradition,

having one’s own library nearby (even in a car or

at a remote location) is an important advance,

even if the screens do not meet the standards for

modem design.

Today, moreover, not all books on a disk are

crude and artless. Increasingly, the pages are

redesigned as suitable screen panels; by the end

of the century, better computer screens will

permit more readable characters and screen

“typography.” And, most important, many

modern examples come with “lookup engines,”

simple search utilities that allow the reader to

request particular topics or to type keywords;

depending on the product, the system will either

jump to a passage containing the keyword or,

more often, list a menu of articles or sections

addressing the requested topic.

Exhibit 14.2b: Lookup Engine that Searches for Topics

Using Windows Help - WINHELP.HLP
File

i-

Indei : Search Foi

lnd<

If you j

Usin ■
H

H

H

H

H

To c

Mous

topics Search

shrinking
solid underline
tasks
titles

kill mil
I under I underlined topics

Cancel

2 Topics Found

Usina Lists of Topics to Find Information

Go To

Duse button
hand icon

Keyboard Press Tab to move the highlight to the underlined topic you want to view, and then press
Enter

To exit Help:

Mouse 1 Point to the File menu and click the mouse button

2 Click the Exit command

Strategies for Online Documentation 191

14.3 Styles of Online Help

Every day, developers think of new ways to provide online Help. The main styles are
menu-driven manuals, in which the table of contents becomes a menu; context-sensitive,

in which the system guesses the user's problem by noting the location of the cursor; and

continuous, in which certain zones of the screen are automatically filled with Help infor¬

mation.

Nowadays, almost every sophisticated applica- But the decision to incorporate online Help

tion has some form of online Help. It is hard to does not, in itself, define the scope or approach,

imagine a user support envelope with no plan for Traditionally, there are at least three very differ-

this essential component.

Exhibit 14.3a: Table-of-Contents Menu

[j=Quattro Help Topics

Jlelpl How to use help. » Functions ^Function connands.

» Basics A guide to Quattro. » Hacros Help with macros.

» Keys Description of special » Henu Commands Descriptions of

keys in Quattro. nenu connands.

» 1-2-3 Quattro for » File Hanager Using the File

1-2-3 users. Hanager.

» House How to use a nouse » Error Hessages Descriptions of

in Quattro. error messages.

Use arrow keys to noue around this screen, HJ1 to select topic.

SHEET1.UQ1 111

192 How to Write Usable User Documentation, Second Edition

ent ways to design a Help facility, each with

different costs and effectiveness.

The least demanding approach is the online

manual, a manual attached to the system as an

electronic file, rather than as a paper document.

The important difference is that the table of

contents functions as a menu, through which the

user reaches appropriate topics or sections.

This sort of Help component is “unintelli¬

gent”; it does not deduce the user’s problem. The

burden is still upon the user to locate the material

in the online “book.” Although unsophisticated, it

still has certain advantages. First, for those

systems with huge documentation libraries, the

online book solves the problem of the single

Exhibit 14.3b: Context-Sensitive Help

copy. In effect, all users have their own copy of

the documentation and do not have to leave their

terminals to visit a library. Second, for those

users intimidated by large books, the online

manual is less of a barrier, especially for those

who tend to get lost in complicated tomes.

Most users, though, prefer the second style:

context-sensitive Help, in which the system

deduces what the user was doing at the moment

of impasse and answers with suitable reference or

procedural information.
In the ’90s, most Help screens will be tied to

particular fields, or panels, or transactions,

activated by a “hot button” (usually <F1>).

WordStar
D 0 C U

File ISI .AUG
ISI.AUG

Press FI for help.

DIRECTORY of Driue C:\US6sLETTERS 12M f
S

ORLAND 1.0k
EC.LEU .6k
HUEL.LST .9k

IATBILL9 .9k
EUI.BAK .5k
AZDAZ .5k
RYX3 .9k
IZZAZZ l.Zk
OCHEZ .6k

SECURITY.BEU .6k
SKF.X .3k

ALDEh 1.3k
COOPER .8k
DEC91 2.3k
IATBIL10 .9k
ISI.AUG .8k
LEUI.SK .5k
HERCKZ .8k
0RYX4 .9k
PIZZAZZ.BAK l.Zk
RORER.BIL .8k
SECURITY.ED 2.8k
TRAYMOR .5k

II8IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Type the name of a file to open or
use the arrow keys to select a name
fron the directory. Filenames can
be 1 to 8 characters long, with an
optional period and 1 to 3 charac¬
ter extension. (FILENAHE.EXT)

To open a file on a different
driue or directory, include its
pathname. (C:\DIRsFILE.EXT)

4-* next screen Esc leaue help

0RYX5
RIZZO
R0RER.0RL
SEDER.90

.5k

.5k

.8k
1.5k

PAINE
ROCHE.LTR
RYBOND
SHANTU

.8k

.8k
1.7k
1.0k

Strategies for Online Documentation 193

14.3 Styles of Online Help

14.3.1 Attaching a Menu-Driven Manual

A fast way to implement online Help is to copy a book of reference materials to a file and

arrange to have the Help “hot button” bring up the table of contents for that file. Typi¬

cally; all calls for Help will result in the same menu, no matter what task the user was

performing at the time. As with the book on a disk, the burden is on the user to pick the

appropriate chapter or page to study.

The book on a disk is a separate program, run

independently from the application. If the same

book is accessible from within the application—

by pushing a “hot button”—then the style may be

better described as a menu-driven Help utility.

In this mode, typically, any request for Help

results in the same screen: a table of contents.

(See Exhibit 14.3.1a.) If you know what you

need, you will be able to find the appropriate

“page.”

Other examples are more curious. Exhibit

14.3.1b, for example, is a table of contents with

one entry per page. But note the absurd choices

(“Options, continued”).

Most menu-driven Help utilities use this

table-of-contents approach; the menu is organ¬

ized logically and chronologically. In other

examples, though, the topics are arranged alpha¬

betically, like an index. (This approach assumes

you have a keyword or phrase in mind.)

Exhibit 14.3.1a: Table of Contents for Help

CALENDAR CREATOR PLUS 4.0
Table of Contents

A. Introduction . 1

B. Hain Nenu . 2

C. Create/Edit Event List . 5

D. Copy/flerge Event Lists . 18

E. Printing . IS

F. Printer Defaults . 28

G. Defaults . 33

H. Converting Old Versions . 35

Enter desired page nunber and press Enter.

ijEUfl Next Page i^| Index 2i2 Return

194 How to Write Usable User Documentation. Second Edition

There are, of course, many variations on the

menu-driven manual. Some applications incorpo¬

rate a bit of context sensitivity and show only a

portion of the table of contents—a deduction

based on the activity of the user just before Help

was asked for.

Still other systems hide much of the book and

its table of contents. The user asks for Help on

the prompt line, specifying a topic (for example,

? ASCII). The Help utility either presents a short

menu of likely options or goes directly to the

“ASCII” section of the manual.

Exhibit 14.3.1b: Unusual Use of Table of Contents

Hi HELP 8 IfISTRUCTlONS fl E N U ►►►

panmm

2 Entry, continued

3 Options

A Options, continued

5 Text Sizes

6 Insert 8 Delete

7 Tables

8 Tables, continued

3 Return to Haster flenu or Entry

t l Roue through choices Select

Exhibit 14.3.1c: Alphabetical Index of Help Topics

RRM HELP Index

Accelerator Keys

Cost Forecasting

Demand Forecasting

Direct Data Entry

Graphic Outputs

Imported Input

Menus
Models, Create/Edit

Population Forecasting

Printers, Select/Change

Reports, Custom

Reports, Standard

Saving Forecasts

ENT=Select

PeDti=More

ESC=Cancel

Strategies for Online Documentation 195

14.3 Styles of Online Help

14.3.2 Deducing the Problem with Context-
Sensitive Help

The most preferred form of Help is context-sensitive. In this approach the particular Help

screen or file is tied to the specific point at which the user pressed the “hot button. ” In its

most sophisticated form, there is a unique Help screen keyed to each application field on

the screen, or even to each coordinate on the application screen.

Today’s users expect their Help facilities to be

somewhat intelligent. That is, the system should

be able to guess what problem caused the user to

ask for Help.

Context-sensitive Help refers to utilities in

which the software contains an elaborate table

linking particular Help panels to particular fields,

screens, or screen coordinates. In the most typical

case, the user is unable to fill in the required

answer to a prompt or the acceptable data for a

field, asks for Help, and receives either a small

table of allowable values (and their meanings) or

a brief procedure for responding. Exhibit 14.3.2

shows the most commonplace form of context-

sensitive Help.

The context may be broad or narrow. In some

systems, there is one Help panel for a whole

transaction or series of screens; in others, each

application screen has a unique Help screen. But

the most likely approach, these days, is to have a

Help screen for each application field or user

response.

Some applications limit users to one Help

screen per request. That is, there is only one Help

panel associated with the particular field. This

burdens the developer, who must make sure that

the Help screen is the right one for all users. In

other systems, though, users may ask for more

Help. If the first panel does not resolve their

problem, they may ask for a second, or even a

third. Ordinarily, the first panel is reference, the

second panel is procedural, and the third is more

discursive, providing general information and

background about the system. (Generally, people

who need the second and third Help panel are

undertrained.)

The main key to success in writing context-

sensitive Help screens is to know what the typical

user will want for each screen, and to provide

only that. Help screens that are cluttered with

irrelevant discourse can often, ironically, drive

users to their manuals.

196 How to Write Usable User Documentation, Second Edition

Exhibit 14.3.2: Field Tied to Table of Acceptable Values

Strategies for Online Documentation

14.3 Styles of Online Help

14.3.3 Providing Continuous Help and Prompt
Zones

Most Help is voluntary; users ask for it. Some Help is compulsory. Either it continuously

fills some part of the screen. Or it pops up in “prompt boxes” tied to particular fields or

elements in the screen. In both cases, such Help can occupy a large portion of the screen,

reducing the area left for the application.

In some applications, a form of involuntary Help

screen is available at all times. That is, a portion

of each screen is allocated to a screen- or field-

sensitive Help panel.

Example 14.3.3a, for instance, shows how

WordStar can be configured to allocate about

half of its application screen to a Help table

containing a list of the main editing commands.

The advantage of this approach is clear: The

inexperienced user—or the user accustomed to

some other word processor—does not have to

search for the basic skills needed to operate the

Exhibit 14.3.3a: Half-Screenful of Continuous Help

C:PIZZAZZ PI L31 Cl .00" Insert Align

CURSOR
'E up AW
'X doun AZ
'S left AR

'D right AC
'A word left
T word right

——- EDIT H E N U ■
SCROLL DELETE OTHER
up AG char AJ help
doun aT word AI tab
screen up AY line AU turn insert off

screen Del char AB align paragraph
doun AU undo AN split the line

AL find/replace again

MENUS
A0 onscreen format
AK block d saue
AP print controls

AQ quick functions
Esc shorthand

I bought the upgrade, and even paid $10 for suift delivery,

Hm ■■■■ rsihh ■■ ■mm MBsmn
L- — f— --1-1 — — t — —»— — — t—. —R ..i

Imagine my disappointment to learn that the advertised previeu feature uas not
available on my 286/UGA system; nothing in the brochure indicated that this neu«
feature uas limited to PS/2 machines. (And, one must ask, Why?) <

<

I called technical assistance and they could do no more than tell me to print t*
color equivalence charts. <

<

Again, I am disappointed. Is there some trick or "uorkaround" that uill solve ♦
problem. <

Display Center ChkRest ChkUord Del Blk HideBlk floveBlk CopyB1 k Beg BlklEnd Blk
lHelp ZUndo 3Undr1in4Bold 5DelLine6DelUord7Align BRuler 9End-LinODone

198 How to Write Usable User Documentation, Second Edition

program, nor even ask for Help. The disadvan¬

tage is also clear: Much of the usable application

screen has been sacrificed to the Help materials.

Thus, with such approaches, users must be

allowed to change the configuration and elimi¬

nate the continuous Help when they no longer

need it.

Another widely known example of involun¬

tary Help can be seen in the Norton Utilities.

When users choose the various utilities from the

interface the functions and switches for each

option appear automatically in a kind of “prompt

zone” (or “split screen” or “window”) attached to

the option. As the cursor moves through the list

Exhibit 14.3.3b: Split-Screen Help

of choices, the prompt zone information changes

automatically, providing information that might

usually be part of a Help screen.

(Another way of classifying the “prompt

zone” is to consider it a secondary menu, that is,

a window that amplifies the meaning of each

menu option.)

Clearly, the use of prompt zones is less an

example of “external” support than of designing

a user interface that needs less support. The

prompt zone (like the secondary menu) so re¬

duces the memory burden on the user that most

traditional and online documentation becomes

irrelevant.

LP LP filespec tuhere-to-printi Csuitches]
Print text files uith a variety of
formatting options.

LP help.txt help.prn /H /\A
Prints the file help.txt to the file help.prn,
numbers each line (/H), and sets a four-
character left margin (/L4).

BE Batch Enhancer
D1 Disk Information
DS Directory Sort
DT Disk Test
FA File Attributes
FD File Date/Time
FF File Find
FI File Info
FR Format Recover
FS File Size
LD List Directories
LP Line Print
MCC Control Center
HCD Horton CD
HDD Disk Doctor
HU Horton Utility
QU Quick UnErase
SD Speed Disk
SF Safe Format
SI System Information

more...

LP

The Horton Integrator e

Switch Default

/H Line numbers off
/In Top margin 3
/Bn Bottom margin 5
/Ln Left margin 5
/Rn Right margin 5
/Hn page Height 66 lines
/Un page Width 85 cols

Switch Default

/Pn Page start It 1
/Sn line Spacing 1
/80 80-col print on
/13Z Condensed mode off
/US WordStar files off
/HEADERn Level 1
/EBCDIC Code option off

/SET:filespec File of Lotus-style setup strings

Press FI for Help

Strategies for Online Documentation 199

14.3 Styles of Online Help

14.3.4 How Help Screens Fail

The two main requirements for a well-made Help screen are, first, functional cohesive¬

ness and, second, austere, unambiguous writing. The most common flaws in Help

screens, then, are functional confusion (attempting to serve several functions at once) and

murky, prosaic messages.

An effective Help screen anticipates the user; it

knows what caused the impasse, and what infor¬

mation will release the jam. Not only is it con¬

text-sensitive, but it is also alert to the kind of

information most appropriate.

Exhibit 14.3.4a: Prosey Help Panel

COMUERSIOM - Page 35

Calendar Creator Plus 4.0 should be installed in a separate directory. Copy any
.CAL files fron older versions into that directory. Calendar Creator Plus uill
autonatically convert these old version files to the new version. Uhen the
progran detects old version files upon initial startup, changing default event
list path, or running Copy/Herge, it uill ask if you uant to continue the
conversion process. Press F10 to continue, or Esc to continue without
converting the old files.

At the Text Style pronpt, use ♦/- to select the default text style to be
applied to all events in ALL event lists converted. You can always use the F2
Change Style option on the View Year screen to change the text style of all
events in a file to a new text style. The event list name uill be shortened
fron 28 characters to 27 characters but otherwise the new file uill be exactly
the sane.

In other words, the Help screen not only

knows the prompt or field or transaction that

caused the user to press the hot button, it also

knows whether the user needs instruction (pro¬

cedures, directives) or reference (tables of

SED Next Page HQ Prev Page Hone Table of Contents 3^] Index Return

200 How to Write Usable User Documentation, Second Edition

allowable values, definitions of cryptic terms,

menus of options). Well-made Help screens

perform one of these two functions. Usually, they

do not provide general teaching or orientation

(because that’s rarely what the user wants); they

do not mix instruction with reference.

What most often causes the failure of a Help

screen is the attempt to do everything in one

panel. Exhibit 14.3.4a, for example, crammed as

it is with potentially useful information, will

probably frustrate the person asking for help.

If the developers have limited the support

plan to one-Help-screen-per-context, then a

central problem is deciding which single, precise

function the screen should perform:

• Long procedure—rare and usually

inappropriate

• Short procedure—in a few terse

statements, checklist style, how to complete

the transaction causing the impasse

• Full table of permitted values—an

extended table, sometimes needing more

than one panel, with an alphabetical or

numerical list of terms, definitions, options,

and so forth

• Short table—a quick reference with a short

menu of allowable entries or responses to

the field or prompt

To repeat, when users ask for Help, they need

one of these. If the needed form of support is

lacking, or if it is embedded in a screenful of

collateral information, the Help screen may fail.

The current feeling among human factors

psychologists and screen designers is that Help

screens should contain few, if any, paragraphs.

That is, unless there is a compelling reason, the

information in a Help screen should be austere,

factual. Even simple procedures can be rendered

unusable by the paragraph format.

Exhibit 14.3.4b: Paragraph Help vs. Procedural Help

Before After

To copy objects: To copy objects:

Select the object(s) to be copied, then 1. Select the object(s) to be copied.

use Rearrange Copy. When the box appears 2. Choose Rearrange Copy.

around the object(s), move the box to 3. When box surrounds the object(s),

the new location. Switch pages if neces- move the box to new location.

sary. Press < ENTER >. 4. (Switch pages if necessary.)

5. Press <ENTER>.

Strategies for Online Documentation 201

14.3 Styles of Online Help

14.3.5 Designing a ’90s Help Screen

Today’s users, many of whom work at PCs or (< workstations, ” expect much more from

Help screens than their mainframe- and terminal-using predecessors. In the ’90s, Help

must be context-sensitive; it should not obscure the application when invoked; and it

should interact with the main application.

In earlier days of computing, even before most

people worked at a video display, a Help facility

was little more than a long file (book) stored

adjacent to the program it supported. Typically,

users at an impasse would ask for help and

receive a table of contents (the first menu), from

which they would choose pages to read. After¬

ward, they would return to their application,

armed with the missing knowledge, and resume

working. In theory.

This traditional notion of Help, which is still

everywhere, flies in the face of the relevant

human factors. Often, users don’t know what

they need to know; often, if they are lucky

enough to find it, they forget en route to the

original screen that created the problem.

Today the demands are higher. A Help screen

should be context- or field-sensitive. That is, the

system should know the likely problem that

caused the impasse. (If the system guesses

wrong, then the Help screen should provide a

mechanism to explore other possibilities.) When

calling for Help produces a menu, it should be

short and relevant.

Moreover, invoking Help should not blank

out or hide the original screen. With today’s

graphics adapters and operating systems, it

should be possible for the Help panel to appear

in a part of the screen that does not overlap the

original field or prompt. (It is no longer accept¬

able to have the original screen disappear and a

new one replace it.)

Finally, the Help screen should be more than

a document. When it contains a list of allowable

values or options—as many do—users should

be able to select them from the Help panel

itself. In other words, it should interact with the

application.

Exhibit 14.3.5a: Field Tied to Help Screen

Video Adapter

HER
CGA
MCGA
EGA
VGA

202 How to Write Usable User Documentation, Second Edition

Exhibit 14.3.5b: Field Tied to Short Help Menu

HELP MENU

> File Conventions
Read/Write Privileges
Editing Rules

Exhibit 14.3.5c: Popup Help Screen with Interaction

Credit Rating:

Address: Credit Classes

1 =$25,000 limit
2=$50,000 limit
3=Approval reqd
4=No credit

Strategies for Online Documentation 203

14.4 Computer-Based Training: Two
Approaches

Computer-based training is a form of instruction in which either the presentation of

materials, the sequence of instruction, or the management of the students is handled by a

computer. Sometimes called “tutorials, ” such programs appear in two main forms: linear

and interactive.

Generally, a Help screen is the wrong place to

offer orientation to neophyte users. Rather, the

appropriate form of online support for the brand

new user is the tutorial, or computer-based
training (CBT) program.

CBT is also known as computer-based educa¬

tion (CBE) or computer-aided instruction (CAI),

and by a few other names. Moreover, various

users of the terms may have rather different

notions of their meaning. Generally, CBT is a

form of teaching in which some or all of the

following are handled by (mediated by) a com¬
puter:

• Presentation—Part or all of the instruction

appears on the computer display. (This was

not always so; in the early days of CAI the

pictorial part of lessons was often in

workbooks or on microfiche readers.)

• Sequence—The order in which the teaching

materials and associated questions are

presented is determined by a computer

program. This program is either a unique

linear sequence or, in more sophisticated

examples, a program that branches

according to the user’s responses. Some

programs also remember the user’s last

session and start the instruction from an
appropriate point.

• Management—CBT can also manage the

progress of students. It can assess amount

and quality of learning and feed this

information either to the student or to the

student’s superiors. It can document (prove)

the training received by students, thereby

satisfying quality assurance or security
demands.

CBT programs fit into two broad categories.

Linear programs have a fixed sequence. All

students move through the lessons in the same

order; their only options are to move forward or

to quit. In contrast, branching programs follow

the paths of the users’ interests, or of their com¬

petence. Users either choose what they want to

learn or the computer, which periodically tests

the users, chooses paths that fit their instructional
deficits.

The software used to develop CBT programs

is usually called authoring software. (Nowadays,

it is also possible to create training programs with

Hypertext and Demo software.) The skills needed

to develop effective CBT are those of an instruc¬

tional designer (or educational media specialist).

The average programmer or technical writer is

ill-prepared—and lacks the necessary patience—

to build a frame-by-frame curriculum. As with

orientation support in general, the pace of in¬

struction in CBT is usually so slow that it makes

the average writer uncomfortable. (“What!”

exclaims the writer. “A whole screen just to
explain F keys!”)

A further problem is the extensive testing that

even a simple CBT program must have. As

arduous as it is to test manuals, testing tutorials is

harder and more expensive. If a program

branches, for example, one should really test all

204 How to Write Usable User Documentation, Second Edition

of the branches. (And if there are too many to

test, we need a testing specialist to select a

reliable sample of paths.)

Even though new software has made CBT

easier to implement, it is still expensive—espe¬

cially when it is tested thoroughly. When, then, is

it a good documentation choice?

CBT replaces classroom orientation for

neophyte users. (It is less effective, of course,

because it does not deal as well with the anxieties

of the new user.) It is most economical when

• there are large numbers of such users

• there is so much employee turnover that it

becomes impractical to schedule training

sessions

• the content of the orientation material does

not need to be changed frequently

CBT, then, is a somewhat inferior alternative

to stand-up training. It is, however, a superior

alternative to most paper publications.

Organizations cannot expect large classes of

clerical and subprofessional employees to learn

the rudiments of systems from books. The user

earlier called Reader X (a person who lacks the

skills to learn from complicated books and, as a

result, has lost the confidence to try) much

prefers CBT to paper publications. Indeed, CBT

lets people previously believed to be poor readers

reveal themselves to be just as literate as their

Reader Y associates. In this way CBT has the

potential to liberate large groups of employees

from the limited opportunities imposed on them

by their discomfort with books.

Strategies for Online Documentation 205

14.4 Computer-Based Training: Two Approaches

14.4.1 CBT in a Straight Line

Computer-based training in the linear mode is a one-path program. To move forward,

users must get the right answers. If they fail, they may either try again or give up (quit).

The simplest form of linear CBT is usually called

a demo, a kind of slide presentation in which the

users do little more than tap a key to say when

they are ready for the next slide. (Some demos do

not offer even that option; they are programmed

to show a series of slides at predetermined

intervals. Such programs are more likely to be

used for presentations at meetings than for
training.)

By asking for the next screen, users in effect

report that they have learned the content of the

current screen and are ready for more. (Some

developers call these training programs “tours” or

“guided tours.”) Exhibit 14.4.1a is an example.

Exhibit 14.4.1a: Demo with Options to Go Ahead or Quit

Press lighlight a button, then press ENTER

206 How to Write Usable User Documentation, Second Edition

Although it is possible to provide orientation

with a slide show, most instructional designers

believe that there must be some more active test

of the user’s understanding. In a linear training

program, the user must get the right answer to

move ahead. Consider the example in Exhibit

14.4.1b. The options are few: Provide the right

answer or else. (Note how the program gives

users three chances and keeps track of their

progress.)

Of course, the flaw in one-path training

programs is that, eventually, the curriculum

moves to the next topic, even though the user

might not have ever guessed the right answer.

And a reader who does not like to ask for assis¬

tance (like Reader X) may get deeper and deeper

into the program without learning.

The alternative is a program that usually will

not move forward until the users prove they

understand.

Exhibit 14.4.1b: DOS Tutorial with Limited Number of Trials/Answer

Pathnames

Assume the shoun subdirectory
Root Level 1 Level 2 structure (only directories are
Dir Subdir Subdir shoun, not files).

BOOK This series of subdirectories uas
W0RDPR0C -

nEnos
setup to categorize various files
developed by a uord processor.

LETTERS Let's move around in the structure

A test — What is the pathname from the root to:

Subdirectory LETTERS _

Please type an ansuer...You are on try 1 of 3

Strategies for Online Documentation 207

14.4 Computer-Based Training: Two Approaches

14.4.2 CBT That Branches and Interacts

In some CBT programs, there are many paths, depending on the user’s responses or

interests. In classic computer-aided instruction, each multiple choice answer determines

a different “next” screen. In modern interactive instruction, the learner drives the se¬

quence of presentation.

Many CBT programs are multi-path, modeled

after the “programmed texts” of the ’50s and the

CAI of the ’60s.

As in the programmed text, only one answer

or behavior will advance the user to the logically

“next” item of instruction. But, unlike the single

path program, multi-path programs contain

special frames of instruction keyed to the precise

error of the student. In Exhibits 14.4.2b and

14.4.2c, for example, Option 2 (<F2> Choose

Quit...) is the correct answer. But if the user

selects Option 3 (<F3> Turn off...), there is a

remedial panel aimed at that particular confusion

of terms.

Exhibit 14.4.2a: Flow Logic for Branching CBT

/

208 How to Write Usable User Documentation, Second Edition

Even this complex branching program,

though, may seem simple in comparison with

today’s interactive training programs. Nowadays

it is not uncommon for the CBT program to be

linked to a fully operational word processor or

spreadsheet, so that the users’ responses can

include a full range of data transactions, not just

selections from a multiple choice menu.

Also, with improvements in computer video,

CBT can now be linked to video and sound

Exhibit 14.4.2b: Multiple Choice Screen

materials, so that the users’ actions can drive the

sequence of scenes in an instructional movie.

CBT, in fact, is converging on the most

sophisticated form of computer-aided instruction:

flight simulation training. Eventually, with the

right video and sufficient memory and speed,

users in training will be able to “fly” systems in a

simulation mode.

To end a session, you should

<F1 > Type "End" on the prompt line

<F2> Choose QUIT from the File Menu

<F3> Turn off the power to the computer

< F4> .

<F5> .

Exhibit 14.4.2c: Remedial Screen

SORRY. If you turn off the power while working on
a file, you will lose the contents of that file.

To end a session, you should

<F1 > Type "End" on the prompt line

<F2> Choose QUIT from the File Menu

<F3> Turn off the power to the computer

< F4> .

<F5> .

Strategies for Online Documentation 209

14.5 Improved Support through Better User
Interfaces

Documentation, even online documentation, is external to the system or product. The best

support, however, is internal: interfaces that eliminate the need not only for manuals but

Help screens as well. The easiest improvement is better menus. More ambitious improve¬

ments involve what is called WIMP: Windows, Icons, Mouse, Pointer.

The traditional role of the documentor is to

support, enhance, supplement. In some cases, the

manual writer’s job is to compensate for, or

ameliorate, the flaws in an underdesigned, un¬

dertested system. Writers of manuals can nearly

always see ways to improve the system; writers

of Help screens can nearly always see ways to
reduce the need for the Help screen.

Inevitably, documentors are tempted to

improve the design of the system itself, espe¬

cially the user interface. Unlike many program¬

mers, who consider the user interface or “front

Exhibit 14.5a: A DOS Shell

end” an afterthought, documentors see it as

essential to the reliability of the system.

The two main fronts for attacking the prob¬

lem are, first, reducing the memory burden on the

users and, second, reducing the number of key¬
strokes per transaction.

The attack on memory burden consists in

substituting recognition for recall, so that users

do not have to remember command syntax or

program and file names.

The screen in Exhibit 14.5a illustrates the

ease with which the most often used DOS trans-

Directories of driue C:

9IRNAGIC
-DOS

-HPADZ

‘—EXTERN

-KEYNOTES

—APSTYLE
—SECYHB

•—UFITERS
-HAIL
—HENU
-HOUSE
-NORTON

-PRODIGY
—PZP

—QPRO

•-FONTS
—QUICKEH3
—STYLE

I—GK1

•-RIGHT

—SUPERLOK.300

65 directories

PC COHPUTING — DH
(C) 1588 ZD

Hichael J. Hefford

FI ChDir (or <-*)
FZ Renane
F3 HkDir
Ti RnDir
F5 Hide/Unhide
F6 Do/Undo R-0
F7 Set/Reset Arc
F8 Reread
F5 File count
F10 DR
Esc to Exit

Use: T l PgUp PgDn

"PgUp "PgDn Hone End

210 How to Write Usable User Documentation. Second Edition

actions can be activated by selecting from a

menu.
Not only do such “shell” programs spare the

user the need to remember command syntax, they

also reduce the need to type. Depending on the

action, the user can start a process either by

pressing a single F-key or by moving a cursor bar

and pressing the <Enter> key (or by clicking a

mouse).
While these innovations seem ordinary and

unremarkable to today’s users, they are in fact an

important benefit of the PC revolution of the

’80s. (Note that users of large computers learned

these techniques from developers of PC soft¬

ware.) Indeed, nearly every innovation in user

interfaces has come from the PC industry, only to

be adopted later by the allegedly more sophisti¬

cated computer systems.

The PC’s most visible contribution is the

graphical user interface (GUI), in which symbols

and pictures (icons) are substituted for words.

One argument supporting GUIs is that these

graphic entities are “intuitive”—at best under¬

standable without training, at worst easy to

remember. Indeed, graphic interfaces are usually

discussed as part of a constellation of related

techniques:

• Windows—the conceptualization of data

processing as a scheme of screens or panels

that can be overlapped, tiled, moved, sized,

and otherwise manipulated by users as they

move from file to file or task to task

• Icons—pictures that represent actions and

entities in the system, so that by selecting

the right picture one activates the desired

process

• Mouse—one of many devices that can move

a cursor bar or selection arrow to any of the

fields or icons or coordinates of the screen

• Pointer—an arrow, hand, or other symbol

that marks the user’s selection on the screen

Taken together, this cluster of ideas (called

WIMP and usually attributed to the inventive

genius of Alan Kay [see “Computer Software,”

Scientific American, September 1984]) has

become a de facto standard for interface design in

the ’90s.

Exhibit 14.5b: Graphical User Interface (GUI)

hi Program Manager
File Options Window Help

Main

Prinl Manage! Clipboard DOS Prompt Windows Setup File Manager Control Panel

ooo
OOP

Games

Strategies for Online Documentation 21

14.5 Improved Support through Better User Interfaces

14.5.1 Writing Better Menus

Effective menus are written clearly in the user's vocabulary. They do not limit themselves

to single-word entries, and they distinguish between application options and navigation

options. In sophisticated systems, menus need “secondary menus ” to elaborate or ex¬

plain their meaning.

The most cost-effective way to enhance the

usability of a system is to convert freeform

procedures and command syntax to menu-driven

options. (That was the main finding of the early

1980s.) The next most cost-effective project is to

rewrite all the menus to make them more intelli¬
gible.

And the most straightforward task of all is to

examine the language of the menus themselves.

What appears on a computer screen should be

clear, business language, wherever possible in the

vocabulary of the users. What should not appear

is programming terminology (unless, of course,

the application is for programmers).

One does not write execute for choose or

abort for withdraw request. (And one does not

start numbered lists with 0 either.) Indeed,

consider the absurdity of the most commonly

seen menu:

Abort, Retry, Ignore, Fail

Not only is it a monstrous insensitivity to

include a word like “abort” on a business display,

it is also just plain bad writing. What does each

of these options mean? What will happen if I

choose Ignore, for example? (How many long¬

term DOS users have no idea?)

Menus should be free from words that irri¬

tate. And they should also be free from words

that have different meanings in the users’ vo¬

cabularies, like default.

There are all sorts of myths about menus.

Some writers think that menus should contain

one-word options. Unfortunately, limiting menu

choices to one word makes it nearly impossible

to communicate the complicated meanings of
these choices.

For example, what’s the difference between

copy and replicate on a certain widely used

graphics menu? (Answer: copy makes one copy

of a shape; replicate makes as many copies as the

user wants.) Not only is replicate a poor name

for the option {reproduce or duplicate would

have been clearer), the very idea of making this

distinction in one-word labels is absurd. What is

wrong with one copy and many copies'?

How many pull-down menus give us the

choice between open and import. How many new

users know the difference? And even among the

experienced, how many know intuitively which

files need to be imported?

The one-word myth is a cousin of the “magic

number” myth. The world is filled with technical

writers who have read George Miller’s classic

paper on memory, “The Magic Number Seven,

Plus or Minus Two” {Psychological Review, 63

(2), 1956). On the basis of this reading (or more

likely a 200-word summary), they conclude that

all lists on screens should be limited to seven

items. Thus, they turn one menu into three or

four. But no such conclusion can be derived from

Miller’s paper, or anyone else’s either.

Menus should also distinguish between

application options and navigation options. In

the early days of menus, such choices as “Exit

the System” were included on the menu of

options. The newer convention is to separate the

navigational choices (exiting, moving forward or

212 How to Write Usable User Documentation, Second Edition

backward, invoking Help) to a separate zone of

the screen, where they can be activated by F-keys

or “buttons” selected with a mouse.
Finally, with complicated options and alterna¬

tives, the best plan may be a secondary menu:

an additional phrase, line of text, or further menu

that clarifies what no writer could pack into a

well-chosen word or two.

Exhibit 14.5.1a: Menu Separating Application Options from Navigation

Exhibit 14.5.1b: Secondary Menu with Explanation

Redraw Drau:Untitled* APPLAUSE II 1.0
I °Ptio" 1

Arrange

Color

Line

Freeforn File Edit Uindou Uieu

Arrange shapes in picture

Explanation of Menu Option

/////// f! m I I \ \\\\\\SSS$?^

Strategies for Online Documentation 213

14.5 Improved Support through Better User Interfaces

14.5.2 Reducing the Memory Burden: Windows
and Icons

The less users must memorize, the better. Nearly every improvement in interface design

reduces the memory burden for the user. By substituting windows and icons—or other

graphic devices—for command syntax, systems reduce the number of memory-related

errors and, thereby, the need for manuals and Help screens.

The window is a key element in the contempo¬

rary approach to interface design. Its advocates

claim that it is a more realistic analogy to the

way people actually think and work than the

traditional computer screen.

In a window-based system, all the operating

software and applications on a computer are

Exhibit 14.5.2a: Multiple Windows

assigned a hierarchical stack of panels, screens,

or windows. Running a program becomes “bring¬

ing up a window for that program”; examining a

file becomes “opening a window” for that file.

Furthermore, because users often want to look at

several files at once, or run one program while

not shutting off another, windows technology

214 How to Write Usable User Documentation, Second Edition

allows several windows or panels to be visible at

once. Moreover, the users may move and size the

windows to fit them workably on a single screen.

Windows technology eliminates a large

memory burden for many users. Once they learn

to manipulate the windows themselves, there is

no longer any need to write commands that

change directories or start programs. In many

cases, there is no longer a need to convert file

formats. Most routine data transactions—copy¬

ing, moving, saving, listing, printing—are

handled with the same relatively simple point-

and-shoot manipulations. And the more multi¬

tasking (running several applications at once and

exchanging data across them) one does, the

greater the advantage.
Used frequently in conjunction with windows

are icons. Icons are more than representations:

they do what they depict. An icon of a trash can,

for example, deletes files, while an icon of a slide

projector runs a screen demo.
Again, the intuitiveness of icons—the notion

that users will know what they are without being

told—is supposed to reduce the memory burden.

With little or no orientation users should recog-

Exhibit 14.5.2b: Are Icons Intuitive?

nize the icons for application programs and be

able to distinguish them from the icons for files.

But there are a few problems with this notion.

(I, for one, would be unable to interpret most

icons if they did not have text labels.) Even on

bit-mapped screens, many icons communicate no

clear picture at all. The “tool” icons on most

painting and publishing programs mean nothing

to users until they read about what the icons do.

Moreover, the sequencing and rules for the use of

these icons are not intuitive.
Icons are often obscure to the average user.

Imagine their value to visually impaired users,

who generally prefer interfaces that depend on

large letter characters, touch typing, or speech

synthesis. (Note: Systems that help the visually

impaired need ASCII text; usually they cannot

interpret bit-mapped documents.)

The combination of well-drawn icons with

word labels is a powerful memory aid. But the

“intuitiveness” of most icons is something of a

myth. And there are many applications in which

the system overhead needed to support the WIMP

interface is hard to defend.

Strategies for Online Documentation 215

14.5 Improved Support through Better User Interfaces

14.5.3 Reducing Keystrokes: Mouse and
Pointers

Usually; the fewer the keystrokes, the fewer the errors, the fewer the error messages, the

less the need for external support. With few exceptions, pointing beats typing, so that the

use of the mouse/pointer combination can eliminate much of the need for external sup¬
port.

In the early 1980s, much of the computer-based

office technology was designed for touch typists.

Astonishingly, early menus were often labeled

with letters of the alphabet, so that a user might

be expected to find and press the letter C, for

example.

Today’s user is rarely a touch typist. In fact, a

good proportion of the people who spend their

days typing into a computer have no typing skills

at all. It follows, then, that the longer the string

of characters to be typed correctly, the greater the

chance of an error. (The error rate seems to rise

exponentially with the length of the string.)

Again, menus eliminate much of the prob¬

lem—especially when they are augmented with

pointers or “cursor bars.” Most users find it

Exhibit 14.5.3: Pull-down Menu with Alternate Accelerator Keys

File Edit Database
' Pads BIIIIIIBIIlIIi

Go Uorkspace
a Pad

Desktop P|

Aoi-iv

Daily Planner a

18188818888888888881

Utilities

ifJGEG

Press TAB to highlight a button, then press ENTER.

216 How to Write Usable User Documentation, Second Edition

easier to point-and-shoot than to type even one

character. {Note: A large minority of users prefer

“accelerator keys” to the cursor bar; they believe

them to be faster and no more error-prone.

Moreover, there is a case to be made against

mouse-driven pointers: namely, that users may

overshoot the mark, often clicking on an unin¬

tended choice.)
The mouse/pointer interface carries menu

logic still further. In effect, every raster-point on

the screen becomes a selectable option. One can

put the “cursor” anywhere, and mouse movement

is very nearly intuitive (after a few minutes of

experimentation).

The mouse is one of a class of devices that

move the pointer continuously over a fine grid,

or, alternatively, across all the fields on the

screen. Tracballs, light pens, and joysticks trans¬

form a series of keystrokes (even if they are only

tabs and spacebars) into a rapid, fluid, movement

of the hand. (There are also helmet-mounted

cursor aiming devices, foot-pedal cursors, and

even marvelous inventions that allow paralyzed

people to move a cursor by puffing on a tube.)

The obvious application for such analog

motions is drawing, but this is hardly the most

popular application. Smoothly moving pointers

can switch quickly among choosing an item from

a traditional menu, “dragging” a window into a

new position, or freehand sketching with the

mouse as stylus. To enable this variety of uses,

most systems have more than one pointer to

indicate the mode of the mouse. Just as most

word processors change the cursor to differenti¬

ate “insert” mode from “overstrike” mode, most

WIMP systems mix arrows, hands, blinking

cursors, and a variety of drawing/painting imple¬

ments to indicate what the mouse is doing.

Strategies for Online Documentation 217

14.6 Improved Support through Hypertext

Hypertext is a form of communication in which messages are stored at the nodes of a

network; readers move from node to node according to their interests (rather than in a

fixed sequence imposed by the author). Hypertext is emerging as a preferred form of

internal support for resourceful and scholarly users.

The usability of a paper document is largely

determined by how much branching, skipping,

and detouring is asked of the reader; the more

overhead (the effort needed to assemble the right

sequence of words and pictures), the less usable

the document. But because using technical texts

nearly always entails a good bit of this branching,

one could argue that being skilled with books

means, simply, being able to use easily books

that would ordinarily be considered unusable.

Hypertext is mainly a form of reading in

which, thanks to computer technology, the reader

experiences none of this overhead. That is, in a

hypertext document, the reader exerts no more

effort in jumping to a page far away than in

reading the next page. (In effect, all the pages in

a hypertext document are equally close and

equally easy to reach.)

The more visionary advocates for hypertext

(for example, Ted Nelson in Literary Machines)

extend its reach to include not only the various

pages of a single document, but all the pages in

any or all documents. From this point of view,

anyone with a computer or terminal can be linked

with all the world’s information stores and

navigate through them with only the slightest
exertion.

Hypertext as a notion has been with us for as

long as electronic computers. Hypertext as a fact

of user support has been with us for as long as

Apple has been bundling HyperCard software

with its Macintosh products. Since this develop¬

ment, most hypertext software has been built on a

simple but powerful model. The material in the

hyperdocument is organized into modules or

chunks, known variously as cards, pages, panels,

or pads. When users view one of these entities on

the screen, the screen contains both buttons

(icons that activate certain navigational moves)

and highlighted terms (words or phrases in an

alternate color or font). Users may move to the

next screen either by selecting one of the buttons

or by selecting one of the highlighted terms.

To repeat, hypertext is a way of reading.

Instead of the linear organization inherent to

books, the organization of the hypertext docu¬

ment is a kind of network in which, to put it

simply, there is sometimes no predetermined

“next page.” Unless programmed otherwise, any

node (page) can be linked to any other, so that

the effort of moving between them is identical,

and so that the ability to retrace one’s steps is
assured.

Hypertext is not a form of Help, nor even a

form of user documentation (although it can be

adapted to both purposes). It is, in effect, an

alternative to traditional user interfaces and

support methods. It is the emerging preference of

resourceful and scholarly users, a model for

research in the twenty-first century. In conjunc¬

tion with high-volume storage media, like CD-

ROM, it is a natural and exciting improvement

on the traditional unabridged dictionary or

encyclopedia; and it is increasingly beloved of

Bible and Shakespeare students.

But where does hypertext fit into the problem

of user documentation? The answers are not yet

clear. Any large document that is put online—

218 How to Write Usable User Documentation, Second Edition

such as the library of publications for a computer

family—will be far more usable and accessible if

conceived of as a hypertext network. With

hypertext, for example, the technical assistance

personnel who answer phones for the major

hardware and software companies can search

their company’s entire technical library in pursuit

of answers to users’ questions.

Hypertext is also a programming utility that

can be used to attach Help screens, or other

support, to existing programs. For hypertext

refers not only to the documents but to the

usually simple programming languages that we

use to create hypertext products. With such

programs, documenters can invent and install

their own Help screens, even for applications

purchased from a third party.

Exhibit 14.6: Hypertext Screen

BECAUSE-Phobia

There is not now, nor has there ever been, any rule against starting an
English sentence with the word because. The widespread mis¬
conception probably stems from the difficulty of defining a sentence in a way

that children can understand.

"I want a bicycle." is a complete sentence. But "Because I want a bicycle." is
somehow incomplete. (To know why it is not a complete sentence we must
recognize it as a subordinate clause.)

Fear of because sends insecure writers to "since" or "as" or the
extremely unfortunate due to.

HELP

Strategies for Online Documentation 219

14.6 Improved Support through Hypertext

14.6.1 Using Hypertext as Help

With a hypertext programming tool, it becomes easy to attach Help screens to particular

fields or elements in the application. In more ambitious uses, ordinary Help screens are

supplemented with the ability to let users explore any other file that might be helpful—
including material from other systems and applications.

Hypertext is both a kind of online document and

a tool for creating such documents. In its latter

sense, as a desktop programming resource,

hypertext products can be used to create Help

screens and then tie them to specific application

screens. This may seem unremarkable, merely

substituting a Help button for the now traditional
<F1>.

But the difference is less in the result than in

the method. Using a hypertext development tool,

the writer can create and implement the Help

screens without much assistance from the pro¬

grammer. This may help overcome the con¬

straints imposed on user support technologists by

programmers, who are sometimes impatient with

the creation of Help utilities. In other words,

writers willing to invest the week of work needed

to learn one of the hypertext scripting languages

are free to create the best Help utility they can

invent and then attach it (also with hypertext) to

the application. This method can even be used to

add Help to purchased software products.

Beyond this important change of method,

though, there are also changes in the notion of

Help itself. Using the hypertext conventions,

users can link a Help screen to any of the high¬

lighted terms on the application screen. More¬

over, the Help screens themselves may contain

highlighted fields and buttons, so that the user

can explore a topic or theme until it is exhausted.

A warning: Most users and operators of

computers, communication products, and other

programmable technology, do not really want

elaborate “hyperhelp.” What most people need

when they press <F1> is a quick reference solu¬

tion to the problem that has stopped their prog¬

ress. Ordinarily, they neither want nor need long

lessons filled with fascinating tributaries of

information.

Unfortunately, the problem of the simple

Help screen—field-sensitive Help for a routine

business screen—has been long solved by profes¬

sional writers. Writing the Help screens for an

order-entry system, for example, is only slightly

less boring to an experienced professional writer

than writing copy for a parts catalog. As a result,

writers tend to be more and more attracted to the

exotic possibilities of hypertext approaches to

Help. Presentations on hypertext dominate

today’s meetings of technical writers the way

desktop publishing dominated a few years ago.

To put it a bit too simply: Hypertext is for

users with curiosity and sense of adventure about

the material on the screen. These users are only a

minority of the people in need of user support.

220 How to Write Usable User Documentation. Second Edition

Exhibit 14.6.1: Flow for Hyperhelp

dfghjklzxcv bnm 1234567890=-][

qwertyuiopas dfghjklzxcv bnm 1234567890 = -][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

|^^^uiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-X

qwert yuiopas dfghjklzxcv bnm 1234567890 = -][

Igbjklzxcv bnm 1234567890-•)(

qwert yutopet dfghjklzxcv bnm 1234567890-•)(

qwert yutopet dfghjklzxcv bnm 1234567890--][

qwert yutopet dfghjklzxcv bnm 1234567890--](

qwert yutopet dfghjklzxcv bnm 1

qwert yutopet dfghjklzxcv bnm 1234567890--)[

qwert yutopet dfghjklzxcv bnm 1234567890--)(

m^p^iiopet dfghjklzxcv bnm 1234567890--)(

j qwert yutopet dfghjklzxcv bnm 1234567890-•)(

qwert yutopet dfghjklzxcv bnm 1234567890--)(

[=□ □ CZ3

hOHLl234567890 — •]

qwert yutopet dfghjklzxcv bnm 1234567890-•)[

qwert yutopet dfghjklzxcv bnm 1234567890--](

qwert yutopet dfghjklzxcv bnm 1234567890—-Jl

qwert yutopet dfghjklzxcv bnm I

qwert yutopet dfghjklzxcv bnm 1234567890 — - J(

qwert yutopet dfghjklzxcv bnm 1234567890--)(

m^^uiopet dfghjklzxcv bnm 1234567890—-J(

qwert yutopet dfghjkixxcvbom 1234567890--)(

qwert yutopet dfghjklzxcv bnm 123456

□ □ □

__
ifghjklzxcv bnm 1234567890-•](

qwert yutopet dfghjklzxcv bnm 1234567890--][

qwert yutopet dfghjklzxcv bnm 1234567890--)(

qwert yutopet dfghjklzxcv bnm 1234567890-■](

qwert yutopet dfghjklzxcv bnm

qwert yutopet dfghjklzxcv bnm 1234567890-•)(

qwert yutopet dfghjklzxcv bnm 1234567890--|

ggES^uiopet dfghjklzxcv bnm 1234567890--)[

qwcrfyytopet dfghjklzxcv bnm 1234567890--J

qwert yutopet dfghjklzxcv bom 1234567890-•](

□ CX] I 1

Strategies for Online Documentation 221

14.6 Improved Support through Hypertext

14.6.2 Using Hypermedia as Help

Usually, the material at each node of a hypertext network is, as you would expect, text.

When something other than text is used—graphics, animation, video, sound—we call the

technology hypermedia.

Hypertext programs can be written for nearly any

computer with any level of sophistication. Some

use text characters exclusively and can run,

therefore, on the earliest generations of comput¬

ers or the “dumbest” of terminals. Most, how¬

ever, are written for computers with bit-mapped

screens—HyperCard for the Macintosh being the

best-known example—and make inventive use of

graphics.

The most apparent incorporation of graphics

into hypertext is the use of icons (pictorial repre¬

sentations of processes). But more interesting is

the use of graphics as the materials themselves so

that, for example, “clicking on” the name of a

city brings up not only a page full of text about

that city but a set of maps.

The most interesting hypertext demonstra¬

tions at gatherings of technical writers usually

involve high-resolution pictures to supplement

courses in anatomy or physiology. These prod¬

ucts generally use video technology that is a

generation or two more advanced than what is

currently affordable in business. (Indeed, surveys

suggest that the speed with which screens “re¬

fresh” themselves—a measure of sheer comput¬

ing power—is the best predictor of participant

interest.)

When something other than text is at the

nodes, the network is often called hypermedia.

Obviously, pictures may be either still or ani¬

mated, using computer animation. Thus, certain

forms of Help can be provided in moving pic¬

tures, such as demonstrations of physical proc¬

esses (like installing a device).

Certain computer systems, moreover, have

video technology that allows conventional analog

video to be shown on the same monitor. So a user

asking for Help could even see a high-resolution

training video.

Hypermedia can also make use of audio—

either analog or digital. There can be spoken

Help screens or, in rare cases, specific sounds

that might be relevant. Computers that talk will

be with us much sooner than computers that

listen, and they have tremendous implications not

only for those who do not read well but also for

thousands of visually impaired persons. (Please

remember that WIMP and GUI technology are

not friendly to the visually impaired.)

In principle, anything that can be digitized—

including things we can scarcely imagine to¬

day—can be stored at the node of a hypermedia

network and activated with a key or mouse or

even a sound. As fanciful as it may seem to

predict the linking of all the world’s text re¬

sources, hypermedia enthusiasts anticipate the

eventual linking of all information resources, in
all media.

Again, this kind of adventuresome thinking

goes way beyond the needs of supporting ordi¬

nary business or government users in the 1990s.

But certain innovations—like audio Help and

animated demonstrations—might be feasible in

the near term.

222 How to Write Usable User Documentation, Second Edition

Exhibit 14.6.2: Hypermedia Schematic

jdfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwcrtyuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

qwert yuiopas dfghjklzxcv bnm 1234567890=-][

liopas dfghjklzxcv bnm 1234567890=-][

qwert yui<

qwert yuiopas dfghjklzxcv bnm 1234567890^

Strategies for Online Documentation

15. AFTERWORD: INTO THE NEXT CENTURY

15.1 Improved Support Through the Three rs

15.2 Author Power: An Agenda for Documentors

15.1 Improved Support through the Three /'$

In the next century, much of the need for user documentation and other external support

will be eliminated through intelligibility (clear, unambiguous screens and messages),

insurance (protection from errors and bad paths), and insight (applications that forgive

individual differences among users).

We are already well on the road to systems that

support themselves without the need for an

elaborate support envelope. Indeed, were it not

for the software industry’s current policy of

making every product as feature-rich as possible,

we might have already seen the demise of the
user manual.

There are three broad strategies for eliminat¬

ing manuals, Help screens, training programs,

and other external information products: intelligi¬
bility, insurance, and insight.

Exhibit 15.1: Three Is

Intelligibility means that screens and mes¬

sages contain clear, unambiguous, grammatically

correct statements written in a vocabulary the

user understands. They have been tested for

understandability (and have passed!) and they

have been converted from their scolding tone to a

helpful one. “Invalid number of parameters”

becomes, for example, “There is an unneeded
space after the drive letter.”

There is no more easily attainable and effec¬

tive improvement than this one. Every menu

226 How to Write Usable User Documentation, Second Edition

label, every prompt, every “dialog box,” every

system and error message—everything, including

those absurd legal disclaimers and impenetrable

“readme” screens—should be written, or at least

edited, by someone who knows the difference

between a well-made and an ill-made sentence.

Moreover, all of them should be tested with

representative readers.

A well-designed user interface also gives the

user insurance: the liberating feeling that trial

and error will not lead to serious errors and

consequences. The beauty of the pull-down

menu, for example, is not just that recognizing

replaces remembering and pointing replaces

typing. It also cordons off forbidden and inappro¬

priate moves: the “fuzzy” options that cannot be

selected.

There are milder forms of insurance as well:

questions and warnings before you start a routine

that will erase data; rehearsal options that allow

you to preview the consequences of your choice

before you commit to it.

But there is nothing like a closed door, a

blocked path, to give readers the expansive

assurance that as long as they choose from the

active options, they cannot break, erase, or

destroy anything. John Carroll describes a project

in which, during the learning stage, the system

interrupts users before they can complete risky

transactions; this temporary measure is called an

interface with “training wheels” (The Numberg

Funnel, Chapter 7).

Safe trial and error is, for most users in most

applications, a faster way to solve problems than

consulting a manual.

Intelligibility and insurance are clearly within

the scope of current technology. Only insight

will demand some programming improvements.

An insightful program is one that knows what

you mean, even when you have not used the

precise names and syntax the system expects. Just

as a spelling-checker will usually guess what was

meant, insightful software will form a hypothesis

about your intention, ask you (Do you

mean ? ..), and make the change. Over time,

moreover, it will keep track of your individual

proclivities and compensate for them without

asking.

In short, insightful software will be at least as

resourceful as young typists used to be. Surely,

that is not asking too much of artificial intelli¬

gence.

Afterword: Into the Next Century 227

15.2 Author Power: An Agenda for
Documentors

Documentors have all the tools and technology they need to produce outstanding work.

What they often lack, however, is will and assertiveness. In the '90s, documentors should
insist on certain standards of corporate conduct.

Although technical writers are better trained and

equipped than ever, they are too often victimized

by old-fashioned notions of documentation and

out-dated models for their work. They must

assert their rights and insist on proper treatment

for themselves and their projects.

Here is an agenda for the ’90s:

1. Campaign for the assignment of competent

writers. Even today, sophisticated firms are

still assigning too many writing projects to

people without training, skills, or experience.

Many companies use the technical writing

slot for employees whose “real” jobs have

been eliminated. Still others think that manu¬

als can be written by secretaries and clerks.

Moreover, programmers usually cannot

write usable user documentation. And they

probably cannot write understandable system

messages and Help screens either.

Professional writers should protest this

practice whenever they encounter it; they

should make clear to their employers that

manual-writing is a mature craft and that it is

therefore wasteful to assign inept and un¬

qualified people to the job. The work invari¬

ably takes longer (if it is ever finished) and
the quality is usually poor.

2. Do not tolerate substandard writing—on

page or screen. Punctuation, spelling, gram¬
mar, usage, idiom, economy of style—all

these matter a great deal in user documenta¬

tion. Resist and challenge anyone who says

otherwise. Also, tell everyone that all the

requirements for a well-made page are exag¬

gerated on the screen, especially the need for

“white space.” Beware of people who want to

conserve screen space; they are more danger¬

ous than those who want to conserve paper.

3. Insist on written specifications for docu¬

ments. Never begin to write a document until

there is a written, official description of the

scope of the piece. (Spoken, informal under¬

standings are nearly useless.) Assure espe¬

cially that the audiences are named and that

relevant assumptions about their previous

knowledge and training are spelled out. When

possible, the specification should be complete

enough to be the basis for a usability/accepta¬
bility test.

4. Resist unrealistic deadlines. When you are

given a deadline for a project, be sure that it

is based on an assessment of the work to be

done—not a capricious date determined by

other factors, and not pulled out of a hat. Do

not accept impossible timetables; negotiate,

resist, refuse. Distance yourself from any

manager who values deadlines ahead of
quality.

5. Insist that all documents be tested. An

untested publication is full of bugs at every

“level of edit,” from misspellings to inconsis¬

tencies to confusions of purpose. No deadline

justifies the distribution of an error-filled,

misleading, sloppy, embarrassing publication.

Remember that all most users “see” of sys¬

tems are the user interface and the user

documentation; their first impression should
not be disheartening.

228 How to Write Usable User Documentation, Second Edition

6. Reduce the need for documentation,

wherever you can. Ironically, a central goal

for a ’90s documentor is to reduce the need

for manuals. (Later in this decade, there will

be a similar campaign to reduce the need for

Help screens.)
Usually, people who write user documen¬

tation become experts on what makes systems

hard to use. (The harder a procedure is to

perform, the harder to write the instructions.)

Therefore, instead of patiently documenting

everything that comes along, they should

attack what they believe are bad systems, bad

procedures, and bad screens.
Before explaining a quirky or error-prone

task, the documentor should learn why it is

that way. And absent a suitable explanation,

the documentor should demand an improve¬

ment. (In the mid-’90s, desktop programming

will enable documentors to fix the problems

themselves.)

7. Apply the Golden Rule of User Documenta¬

tion. The Golden Rule for documentors is

Do not do unto your readers what

you have hated when it was done

unto you.

Because writers use so much diverse

software these days, they gain an added

insight into user support. Namely, they have

been victimized by several poor manuals.

Most writers would do better work if they

merely remembered their own frustrations

with poor manuals and vowed never to inflict

similar pain on their readers. Even when their

employers—with excuses of time and tradi¬

tion—seem to be asking them to.
Ultimately, consideration for readers is

the central, ethical issue for writers. Good

writing, you see, involves sacrifice. As a

writer, you must exert yourself more so that

your readers can exert themselves less. Write

clearly, simply, and honestly—because it is

the right thing to do.

Afterword: Into the Next Century 229

APPENDIXES

Appendix A:
Excerpt from User Support Plan

The material below is an excerpt from a hypothetical user support plan.

MEMO

TO: Resource Requirements Forecaster Project Team

FROM: Executive Committee

RE: Support Policy

University RRF product is meant for the planning and budget¬

ing officials of a medium- to large-sized university. It will

be used by a small cadre of people—usually fewer than 20 indi¬

viduals, all of whom are presumed to have experience with

spreadsheets running on PCs.

As a condition of sale, we shall provide a one-day training

program to any group of 20 identified by the customer. Most

users, therefore, will receive their orientation from a con¬

sultant, rather than a manual.

In a typical customer university, the RRF will be used 3-5

times a week during a 3-4 month planning/budgeting activity.

During that peak activity, we hope that users will not need to

consult their manuals. We expect, though, that after a long

hiatus, users may need their manuals to jog their memories.

(Our marketing people are thinking of offering an annual semi-

nar, partly as a way of encouraging the sale of upgrades and

add-ons.)

We think that any manuals should be in the large (8.5 x 11)

format and that the spine should display the product name

prominently.

232 How to Write Usable User Documentation, Second Edition

RRF TOPIC LIST

(Partial)

Hardware requirements for PC-based RRF

Mainframe version of RRF

Installing RRF on PC systems

Memory Options/Limitations

Getting technical assistance

Technical assistance policies

The nature of resource requirements forecasting

Planning errors associated with "manual" forecasting

Key terms associated with direct expense

Key terms associated with indirect expense

Benefits of the RRF as a stand-alone product

Benefits of the RRF when linked with other forecast¬

ing modules

The nature of forecasting

The differences between forecasting and simulation

How spreadsheets work

How linked spreadsheets work

Setup: Setting up student/teaching staff factors

Setting up student/other staff factors

Setting up student/other service factors

Setting up noninstructional activity factors

Prorating indirect costs and subventions

Setting up the State Aid module

Setting up the tuition module

Setting up the financial aid module

Setting up the portfolio module

Editing the setup screens

Creating multiple versions of setup for simulation

Using the opening menu

Using the Enrollment Demand Screen

Linking with the Enrollment Forecaster

Using the Service Demand Screen

Using the State Aid screen

Using the Portfolio Forecaster Screen

The Standard Reports:Text

The Standard Reports: Graphical

Customized reports for selected programs and periods

Simulations of multiple economic assumptions

Sensitivity checks for variables

"Spec Mode": Anchored (targeted) projections

Appendix A: Excerpt from User Support Plan 233

RRF Audience List

i University Presidents/Vice Presidents—

Prospective Clients

1 University Presidents/Vice Presidents-Actual

Clients

1 University I/S Managers

l Institutional Research Specialists

i Information Officers

i Labor Negotiators

i Mid-level Administrators without spreadsheet

experience*

i RRF Trainers **

* We believe that there is still a small group of

prospective users without spreadsheet experi¬

ence—and that they should be supported.

** If we are successful, we'll need to engage

several new trainers, who will need support as
well.

234 How to Write Usable User Documentation, Second Edition

RRF User Support Plan

The RRF Project Team has come up with the following plan

for information products in support of the University

Resource Requirements Forecaster.

Publications

1. The RRF Brochure-a 20-30 page marketing piece intended

to sell the benefits of RR simulations (glossy, 6x9 for¬

mat; signature bound)

2. The RRF Setup and Installation Guide-a 50-75 page tech¬

nical manual aimed at the single person on each site

responsible for installing the product and entering the

university's defaults (loose-leaf, 8.5x11, updated by

page supplements; one-per-site)

3. Using the Resource Requirements Forecaster—a 30-40 page

manual for all those users NOT responsible for estab¬

lishing or altering the university's factors (but per¬

mitting simulation of alternative factors); mainly a

series of screens with associated instructions (loose-

leaf, 6x9 format, 2 colors [data in a second color]; all

exhibit screens filled in with representative data)

NOTE: 2 & 3 are combined in an RRF Instructor's Guide

4. Spreadsheets: An Introduction-a 10-12 page brochure for

users unfamiliar with spreadsheets, in which all the

illustrations are from RRF, usable as an advertisement

for our product

5. RRF Template-a laminated keyboard template containing

the definitions for the shifted and unshifted function

keys (12x2) and also other key quick-reference material

for the system

Online

1. 2-Tiered Help Facility-context sensitive Help in which

the first screen shows allowable values for the field

and the second gives a procedural plan for the whole

screen (about 250 screens)

2. RRF Tutorial Disk—an orientation demo that runs pas¬

sively for first-time users and in a branching,

hypertext mode for experienced users needing a refresher

Appendix A: Excerpt from User Support Plan 235

Appendix B:
Illustrative Modular Outlines for User Manuals

The following exhibits contain Tables of Contents that grew from modular outlines. That

is, each heading corresponds to one two-page module. (In some cases, there are no mod¬

ules for Chapter or Section names.)

/. Outline for a University Resource Requirements Forecaster

1. How the RRF Works

1.1 How Activities Consume Direct Resources

1.2 How Indirect Resources are Attributed to the Direct

2. How to Work the RRF

2.1 Entering Enrollment Demand

2.2 Entering Service Demand

2.3 Stipulating the Scope of the Analysis
2.4 Generating the Report

3. Using the RRF as a Simulator

3.1 Setting-Up “What If’ Forecasts

3.2 Prediction Mode: Adjusting the Factors

3.2.1 Adjusting Staff/Student Ratios

3.2.2 Adjusting Other Service Ratios

3.2.3 Adjusting Inflation and Economic Factors

3.3 Target Mode: Finding Factors that Meet Specs

3.4 Testing the Sensitivity of the Factors

4. Linking the RRF with Other Modules

4.1 Linking with the Enrollment Forecaster

4.2 Linking with the State-Aid Analyzer

4.3 Linking with the Economic Forecaster

5. Presenting the Results

5.1 Generating Text/Statistical Reports

5.2 Generating Graphical Versions of the Forecasts

236 How to Write Usable User Documentation, Second Edition

2. Outline for a Supervisor’s Guide to Documentation Center

1. Lines of Authorization in the Doc Center

1.1 Authority: Who May Approve a Job

1.2 How to Assign Job Priorities

1.3 Table of Organization

1.4 Table of Duties and Responsibilities

1.5 Eight Preconditions for the Use of WP Facilities

2. How to Configure the Doc Center System

2.1 Selecting the Software/Application

2.2 Selecting Printers or Plotters

2.3 Selecting Scanners

3. Level I Jobs: Basic Correspondence

3.1 Defining a Document File

3.2 Entering Text

3.3 Printing a Review Copy

3.4 Editing the Text
3.4.1 The Twenty Most Common First-Draft Errors

3.4.2 The Three Most Difficult Revisions

3.5 Printing the Finished Copy
3.6 Sending the Finished Copy Through the Electronic Mail

4. Level II Jobs: Advanced or Technical Documents

4.1 Assembling Documents from Older Documents

4.2 Merging Document Variables

4.3 Performing Arithmetic within the Software

4.4 Generating a Mailing/Distribution File

4.5 Interpreting Ambiguous Input (Default Rules)

5. Policy: Logging and Storing of All Documents

6. Policy: Protecting the Confidentiality of Our Clients

7. Policy: Resisting Pressure from Originators and Managers

Appendix B: Illustrative Modular Outlines for User Manuals 237

3. Outline for a Manual for Creating a Special Purpose
Phone Network (Excerpt)

Chapter 3. Building and Verifying a TERRITORY-MAP

3.1 Each TERRITORY-SET is a Telephone Database

3.2 How to Start a New TERRITORY-SET

3.3 How to Enter the Data for One Sector’s TERRITORY-SET

3.4 How to Transfer Set Data from the AZ-60 to the AZ-190

3.5 How to Create an Auxiliary Database Called INTERIM

3.6 How to LOAD Data from INTERIM to TERRITORY-SET

3.7 How to Get Access to GRAF-MAP

3.8 Five Requirements for All Maps

3.10 How to “Introduce” a Map to the System

3.11 The Most Efficient Way to Enter Map Data

3.12 How to Use the ZOOM Feature of GRAF-MAP

3.13 How to Manipulate a Map

. 1 Adding Buildings and Nodes

.2 Changing Buildings and Nodes

.3 Adding Terminal Data

.4 Changing a Terminal Profile

.5 Modifying the Terminal/Site Matrix

.6 Adding a Segment Between Two Nodes

3.14 How to Validate Entered Data

3.15 Review: The TERRITORY-SET Checklist

238 How to Write Usable User Documentation, Second Edition

4. Outline for a Guide for the E-POST Electronic Mailing
System

1. Conventions Used in This Manual

2. Three Reasons to Use E-POST Instead of Ordinary Mail

3. Knowing When You have Received an E-POST Message

4. Getting Access to E-POST

5. Getting Help from E-POST

6. Using the E-POST: An Overview

7. Using the E-POST Index

7.1 Getting Access to the Index

7.2 Searching for U-Names by Last Name

7.3 Searching for U-Names by Account Number or ID

7.4 Locating U-Names on Other OGR Computers

8. Using Distribution Lists: Overview

8.1 Setting Up a Distribution List

8.2 Changing a Distribution List

8.3 Directing E-POST Messages through a Distribution List

9. Printing E-POST Messages: Three Methods

9.1 Printing the Screen

9.2 Printing with the STORE Facility

9.2.1 Saving an E-POST Message as a STORE

9.2.2 Printing the STORE File

9.3 Printing with the Word Processing Facility

9.3.1 Saving the E-POST Message as a Document

9.3.2 Sending the Document to SCRIBE-15

9.3.3 Printing the Message by its SCRIBE-15 Document ID

10. How to Send an Existing File as an E-Post Message

11. How to File E-POST Messages in Secondary Indexes

12. E-POST Commands: A Glossary

Appendix B: Illustrative Modular Outlines for User Manuals 239

Appendix C:
Illustrative Module Specs

The exhibits below show various examples of a module specifications.

HEADLINE: Importing Text Saves Time

SUMMARY: Although it is possible to enter text directly into
the PageDesign layout screen, it is usually easier and
faster to import it from one of the supported word
processors or from an ASCII text file. This way you
can use existing documents, scanned text, or
downloaded files without needing to retype or re-enter
data.

EXHIBITS:

DIRECT ENTRY IMPORTED

• Headings ■ WP, WS, Word, PFS files
■ Editorial adjustments ■ ASCII (text) files

■ PCQ, TRX, GOF, CCC graphics
■ Network downloads
■ Scanned input

NOTES: Stress the number of popular word proceesors
supported. Do not explain the procedure, but emphasize
how much time can be saved and how much flexibility is
provided.

HEADLINE: Converting an "Unrecognized*' Graphic Format

SUMMARY: PageDesign recognizes the 5 most common graphics file

formats. In addition, it includes a utility, GRAFFIX,

that will capture the screens from other graphics

formats and convert them to the PageDesign (.PDS)

format. To use this feature, load GRAFFIX as a

resident program; display the graphic from the other

program; hit <Alt>-C; follow the instructions on the

screen.

EXHIBITS:

PD Utility Menu Oraphic Screen GRAFFIX Screen

NOTES: Mention compatibility problems with Windows. Suggest

Windows Clipboard as alternative process.

240 How to Write Usable User Documentation. Second Edition

HEADLINE: IMPORT: Incorporating Another File

SUMMARY: Importing is the process of incorporating a text or

graphic file into your page layout, without typing in

the text or drawing the graphic. By choosing Import
from the file menu, files made with programs other

than Page Design can be included in your layout.

EXHIBITS:

File Menu Import Menu

Texr
Pcq> a

Utf cj C7
'jOSW’CI (ft'p a
Ulcril ccc a

oWszrsrCJ

—--

NOTES: Mention that non-PageDesign files cannot be reached by

choosing the "open" option from the file menu.

HEADLINE:

SUMMARY:

Appendix D: Importable Graphics Files

The table below lists the graphics files that can be
imported directly into Page Design and the popular

programs that use those formats.

EXHIBITS:

TABLE: Listing importable graphics formats—

■ PCQ (Hotpaints, Draw This, Yale-Draw....)
• TRX (Quality-Draw, CheapCad, Sketchpad...)

■ GOF (Pixelpot, PrintSlave, ClipWorld...)

■ CCC (VectorLine, Tracer, Fractal Fun...)

NOTES: Mention GRAFFIX for unsupported formats.

Appendix C: Illustrative Module Specs 241

Appendix D:
Illustrative 2-Page Modules

NOTE: The eight examples here were written by my clients and students. They are repro¬

duced as they appeared, showing a variety of styles and printing technologies.

1.

1. INTRODUCTION TO THIS GUIDE 1.4 HOW TO USE THIS GUIDE

1.4.2 EXPLANATION OF FORMAT USED
IN TEXT AND DISPLAY

This guide has been formatted on the basis of a two-page spread in which

written text has been positioned on the left and examples or displays
positioned on the right

Throughout the text, stars (*), BOLDING. small capital letters, and italics
identify specific data elements as follows:

- the asterisk (*) has been used in sample screen displays to indicate
cursor position.

- italics has been used to show data which has been keyed into the input

fields1 by the user.

- bolding with LARGE CAPITALS has been used to indicate that the
text is refering to a specific key on the keyboard.

- small capital letters has been used to indicate the actual field name used
in the screen display.

See Figure 1.4.2 which shows the conventions used in the text to
differentiate between data being input by the user, names of keys, and
screen prompts.

1. Some of the displays you use will allow you to enter information in
certain areas of the display. These areas are called input fields.

KCTH.S -USER SERVICES SI/GL: 1.42-1

242 How to Write Usable User Documentation, Second Edition

1. INTRODUCTION 1.4 HOW TO USE THIS GUIDE
1.42 EXPLANATION OF FORMAT USED

IN TEXT AND DISPLAYS

Figure 1 4?

Content of Text: meaning of small caps, bolding, italics, asterisks.

N.

OPTION CODE. AL

** OPTION CODES **

AL - CURRENT AND LAST YEAR ACTUALS

BR - CURRENT AND REVISED BUDGETS

AB - OPTIONS AL AND BR COMBINED

EA - CURRENT, LAST YEAR, AND FIRST EXTRA ACTUALS

FB - CURRENT, REVISED, FIRST, AND SECOND EXTRA BUDGETS

PRESS ENTER TO CONTINUE, OR CMD KEY 7 TO RETURN TO THE MENU
./

Instructions: /V .
1. Enter account n)x4ber as illustrated in example above

2. Press FIELD EXIT key to move cursor to next data entry
position

A: Asterisk (*) shows cursor position.
B: /te//irsindicates data which has been input or keyed in by user.
C: small capital letters used to indicate field name shown on screen.
D: BOLDING WITH LARGE CAPITAL LETTERS used to refer to a key on

the keyboard.

kcm-i.s.-user services SI/GL: 1.42-2

Appendix D: Illustrative 2-Page Modules 243

2.

18. Three Ways to Store TABLES Commands

You may choose one of three ways to store TABLES commands.

A TABLE MEMBER is a set of TABLES commands stored as a
member of a partitioned TABLE FILE. You
may store only DEFINE, IDENTIFY LIST,
and ADD TRANSFORMATION commands
in a TABLE MEMBER.

A BINARY TABLE is a set of TABLES commands similar to a
TABLE MEMBER, but encoded in a
compact, binary format for quicker and
more efficient storage and retrieval. A
BINARY TABLE may contain only DEFINE,
IDENTIFY LIST, and ADD TRANSFOR¬
MATION commands. You cannot alter or
edit a BINARY TABLE.

A COMMANDS DATA SET is a set of TABLES commands, stored as
card-images, but not as part of a TABLE
FILE. A COMMANDS DATA SET may
contain any TABLES commands. You may
edit or alter a COMMANDS DATA SET.

To create a Table Member or a Commands Data Set, use a text editing
program such as UNI-COLL's QED or IBM's EDIT. To create a Table File in
which to store Table Members, use BUILD TABLE FILE. To create a
Binary Table, use WRITE BINARY TABLE.

To recall a Table Member, use READ TABLE, after you have SELECTed
the Table File to which the member belongs with SELECT TABLE FILE. To
recall a Commands Data Set, use READ COMMANDS DATA SET. To
recall a Binary Table, use READ BINARY TABLE.

244 How to Write Usable User Documentation, Second Edition

Three Ways to Store TABLES Cormands

DEFINE

DEFINE

DEFINE
IDENTIFY LIST

IDENTIFY OBSERVATION

IDENTIFY OBSERVATION
ADD TRANSFORMATION

ADD TRANSFORMATION

ADD TRANSFORMATION

IDENTIFY LIST
IDENTIFY LIST

A TABLE MEMBER belongs

to a partitioned TABLE

FILE. It may contain

only DEFINE, IDENTIFY,

and ADD TRANSFORMATION

commands.

TABLE FILE
(Partitioned Data Set)

A BINARY TABLE is a

Table Member stored as

a compact, binary file

for quicker and more

efficient storage and

retrieval.

TABLE

I 1
TABLE

IV

EJEJiiNE; JJtENTIEY

AND ADD

TR ATJ S£0_RMAXI_QN

COMMANDS, ENCODED

IN A BINARY

FORMAT

SELECT DATA PERIOD, 1970,1973
SELECT FUNCTION LAG MULTIPLIERS
SELECT BANK,BANK='WEFATS.WEFA.QTR'

SELECT LAG CONVERSION,YES

SELECT TABLE FILE,MYTABS

READ TABLE,TABS

EXECUTE TABLE
CLOSE BANK,'WEFATS.WEFA.QTR'

COMMANDS DATA SET

BINARY TABLE

A COMMANDS DATA SET may

contain any TABLES com¬

mands. It is stored as

a set of card images

not in a Table File.

Appendix D: Illustrative 2-Page Modules

3. BASIC GUIDE TO REGIS

2.2 Vector Command - Drawing Straight Lines

The Vector command draws lines and dots. There are four basic
options available to specify how the vector command can be used.

The Vector command draws straight lines from the current
cursor position to a specified end point. This end point
can be specified as an absolute or relative position.

With the Pixel Vector (PV) system and the Write Command
Multiplier option, you can draw a line in a specified
direction for a specified distance.

Drawing a Dot

If no co-ordinates are supplied, the V command draws a dot
at the current cursor position:

V[]

Drawing a Straight Line

If you supply coordinates, the V command draws a straight
line from the current location to a specified position. The
general form of this command is the same as for the position
command. The format is

V[x,y]

You can use absolute, relative, or mixed addresses, as in
the Position command. For example, if you wish to draw a
line to an X value of 200, and 100 pixels lower than the
current Y value, use this command:

V[200,+100]

ReGIS User's Manual January, 1987

246 How to Write Usable User Documentation. Second Edition

BASIC GUIDE TO REGIS

Vector Command - Drawing Straight Lines 2.2

Drawing by Direction Using the Pixel Vector (PV) Option

You can also use the offset directions, in the format

Vn

For example,

V4

Once again, you must repeat the direction many times to
produce a visible line, or use a multiplier value. A
multiplier value can be set either as a temporary write
control,, or as an option of the Write Control command. It
sets the number of pixels written in a given direction. For
example, a multiplier of 10 produces a vector 10 pixels long
for a single command. For example:

W(M10)V4

Drawing a Closed Figure

You can use the Vector command for drawing closed pictures.
V(B) establishes your initial position and (E) returns you
to that position. So if you use V(B) and then specify some
vectors, (E) closes the figure. For example,

V(B) (+60][,+60][-100](E)

draws a rectangle.

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

(

p[100,100]
- R

-/

P[100,100]

(B)

Vl+300]

[+300]

[-300]

(E)

January, 1987
ReGIS User's Manual

Appendix D: Illustrative 2-Page Modules 24 7

4. NETCENTER* Operator Guide

6.2.2 Opening Configuration Views from Another View or from a
Command Response Window

| You can open a configuration view from any other view by selecting the Icon

| and then choosing Open Configuration View... from the Functions menu. If the

i selected icon represents more than one component, you select a specific com-

I ponent from the list in the SELECT NETWORK COMPONENT dialog. You can

open a configuration view from a command response window by selecting the

text line for a particular component and then choosing Open Configuration View
\ from the Functions menu.

From Another View

With a network, component, or configuration view on screen, you can open a
component view by identifying the component you want to be the subject of
the view:

1. Select a component icon. (To select a link, click on the circle at the link
midpoint.)

Note: Do not select more than one component. Configuration views can
only be opened one at a time.

2. Choose Open Configuration View... from the Functions menu. (Or press
<Ctrl-F3>.)

If the selected icon represents only one component, the view will appear.

If the icon represents more than one component, the SELECT NETWORK COM¬
PONENTS dialog appears so that you can select a single component from the
group. Each component represented by the icon is listed in the dialog's scroll¬
able box. Each row in the list corresponds to one component, showing the net¬
work ID, domain ID. component ID, and status.

To select a component from the SELECT NETWORK COMPONENT dialog:

Double-click on the line that identifies the component you want as the
subject of your view.

You can also select the line and then click OK. (Or press <Enter>.)

The dialog closes and the configuration view appears.

From a Command Response Window

When you issue a command from the Display. Changes, or Test menu. Net
Manager displays a command response window. These windows display text
lines identifying the command's subject component and the result of the com¬
mand. These text lines can be selected just as icons can in views.

6-8 ©1988 U S WEST Network Systems. Inc All Rights Reserved

248 How to Write Usable User Documentation, Second Edition

Monitoring with Configuration Views

SELECT METWORK COMPONENT

lietwork Components Status

NSDUTflMI MCCF1 L9PU DQWH
A

NSDUTflMI NCCF1 L009PU DOUM

MSDUTAM1 MCCF1 L9 DOWM

HSDUTflMI MCCF1 L009 HORMflL

▼

MOTE: The object you have selected repre¬
sents multiple network components.
Please select the component(s) you
want for your request.

OK

Cancel

Figure 6.5 The SELECT NETWORK COMPONENT Dialog

H Display Status Command Response ♦

9 NSDUTflMI NCCF1 NSINCPB 04/06/88 14:04:59 ▲

HE*r ID Type Status Information

NSINCPB FEP/HOST Normal

LoadDump PROCESS Down

030-L CHANNEL Unavailable I/O operation* = 10083

L000 LINK Down Never na* peen activated

L011 LINK NotConfig Control owner*nip no* chanjed

L005 LINK NotConfig Control ownership no* chonjed

L006 LINK Normal

L009 LINK Normal Activated by operator

L010 LINK Down Never ho* been activated

L007 LINK Normal

L000 LINK Normal ▼

liL 11 >

Figure 6.6 Selecting a Text Line to Display a Configuration View

To open a configuration view from a command response window:

1. Select the line containing the component.

Note: Do not select more than one component.

2. Choose Open Configuration View... from the Functions menu. (Or press

<Ctrl-F3>.)

The configuration view appears.

6-9
©1988 U S WEST Network Systems, Inc. All Rights Reserved

Appendix D: Illustrative 2-Page Modules 249

5. XP
MASTER CROSS REFERENCE LIST BY PART NUMBER, MFG

CODE

PURPOSE:

The XP TRANSACTION is designed for use by:

Inventory Management personnel

Cataloging personnel

Any Kuwait Air Force/Air Defence personnel interested in looking for a NUN to go
with a Part Number and Mfr. Code.

The XP TRANSACTION should be used to:

Find a NUN for a Part Number and Mfr. Code.

DATA BASE USED:

MCRDB — Master Cross Reference Data Base

TRANSACTION MODES ALLOWED:

6 —RETRIEVE

TRANSACTION KEY REQUIRED:

Part Number-(32 CHARACTERS)

Manufacturer's Code-(5 CHARACTERS)

NOTE:

If the Part Number/Mfr. Code that you enter has more than one NUN,

You will get a SECONDARY KEY SELECTION SCREEN that lists all of the
NIINs that have the Part Number/Mfr. Code you entered.

ERROR MESSAGES:

1000 — NO PART NUMBERS FOUND FOR NUN ENTERED
1001 — NUN ENTERED NOT FOUND

1002 — PART NUMBER/MFG. CODE ENTERED NOT FOUND — USE XP TRANSACTION
TO CHECK

1003 — PART NUMBER/MFG. CODE AND/OR NUN MUST BE ENTERED
1004 — MULTIPLE NIINS EXIST FOR PART NUMBER/MFG. CODE ENTERED — USE XP

TRANSACTION TO DETERMINE NUN DESIRED — RE-ENTER TRANSACTION
WITH NUN

1005 — UNKNOWN PART NUMBER CAN NOT BE ENTERED

250 How to Write Usable User Documentation, Second Edition

XP
SCREENS

Appendix D: Illustrative 2-Page Modules 251

10 Preparation: Before You Start

1.5 What the connectors on the back of the rbert

are

The RBERT installed in the top of middle rack ‘C’ has several1
connectors on its back. The picture here explains each. The
only power connection (E) is to a standard 120VAC supply.
The other connectors are for data.

Exhibit 1.5 Back panel of RBERT.

issued: 12/15/88

252 How to Write Usable User Documentation, Second Edition

DPN—15 Remote Test System 11

E AC Line Cord Connector: The line cord supplied with
Datatest Remote is a standard three conductor appliance-type
AC connector. The ground lead on the cord must be con¬
nected to the power ground at the power outlet.

F AC Fuse Receptacle: This holds two 2 AMP, 250 volt,

slow blow fuses. Ensure the line cord is removed from the
AC supply before changing these fuses.

G Power ON/OFF Switch: This rocker switch turns the

AC power to Datatest Remote ON or OFF.

H Command Port: This is a DB 25 female connector that
emulates a DTE. Any ASCII terminal connected to this port

lets you control Datatest Remote locally. If you connect this
port to a dataset, you can control the RBERT through

DataPac.

I AUX Port: This is a DB 25 female connector that emulates
a DCE. The Aux port connects to RAP Al. Step-by-step in¬

structions for doing this follow.

J Test Port: This is an RS-232C interface. This port is the

interface which receives the test data.

issued: 12/15/88

Appendix D: Illustrative 2-Page Modules 253

7. Operating the Fvmch Nibfrkr Conveyor

2.6 Manually Selecting Pallet Destinations in Standalone Mode

When you are working in Standalone mode, you must use the Standalone screen to
select the next workstation for a pallet.

When you are operating in automatic mode, the MHSC automatically chooses the pallet’s
next destination when you press [F6J. If you are operating in manual mode, you must
choose the destination.

In standalone mode, the destination screen is displayed when you press the LOAD
RELEASE [F61 key on the operations screen. The destination screen is shown in Figure 2.

To choose the destination in manual mode:

1. Release the load by pressing [F6J on the operations screen. A destination
screen will be displayed.

2. Select the destination from the choices displayed across the bottom of the
screen: [F1J -[F8]-

3. Confirm the choice by pressing [F21], SEND STANDALONE MOVE REQUEST.
The pallet will be sent on its way and the operations screen will be displayed
again. When the pallet clears Lift Table #2, both lift tables are automatically
raised to the level of the punch nibbler table.

4. As before, manually move the empty pallet on Lift Table #1 to Lift Table #2.

You have now finished one complete loading and unloading cycle and are ready for the next
aluminum sheet.

2-12 Champion & Associates

254 How to Write Usable User Documentation, Second Edition

Punch Nibbler Operator Guide

Figure 1. When you press [F6] to release a load in standalone mode, the destination
screen shown in Figure 2 is displayed.

flHSC: FACTORY
Pic: STANDALONE

PUNCH NIBBLER »1 (N148)
STANDALONE SCREEN «l

LOAD READY

MACHINE LOAD

MACHINE READY

MACHINE UNLOAD

MAIN
MENU

10/12/90 12:30:54 pm

fTF

EN | F18

NEXT |-
SCREEN | F19

PAUSE |-
GWTRY | F20

LOAD
ADVANCE

GANTRY VACUUM
LEVEL

LOU HIGH
MACHINE MACHINE LOAD

LOAD UNLOAD RELEASE
TRANSFER TRANSFER
PALLET COMPLETE

FI F2 F3 F4 FS F6 F7 F8

Figure 2. The destination screen lets you choose where to send a pallet. When you
press a destination key, the pallet is sent and you are returned to the operations

screen.

MHSC: FACTORY
PLC: STANDALONE

PUNCH NIBBLER Ml (NU3)
STANDALONE SCREEN «*2

SS
ROUTER

«1

SS STACK
ROUTERRY ROUTER

M2 Ml
(M182) (N173)

STACK
ROUTER

m2
(M177)

STACK
ROUTER

m3
(M183)

10/12/90 12:30:54 PM

MAIN
MENU

ALARM
SCREEN

PRIOR

DE-NEST
AREA

[K
F18

rMUR I

SCREEN | F19

STANDALONE
REQUEST

SCRAP
P/D

F21

AGO
REMOTE

P/D

FI F2 F3 FA F5 F6 F7 F8

2-13
Champion A Associates

Appendix D: Illustrative 2-Page Modules 255

8. 2.2 FORMAT DETAILS FOR THE CREATE PROGRAM INPUT FILE

The INPUT file to CREATE consists of a sequence of individual curves.
Each curve is specified by three ordered sections: name and attri¬
butes section, independent parameter section, and dependent parameter
section.

Curves are specified on the INPUT file one right after another.
The curve name card for a new curve begins right after the last
card defining the previous curve. An end-of-record (i.e., 7/8/9
card) causes CREATE to stop reading input. A maximum of 250
curves may be specified.

Each curve is specified by the following three ordered sections:

Curve Name and Attributes Section

The following information is specified on these cards:

(1) Curve Name.

(2) Format flags for reading the tables of independent and
dependent values. Since these formats are specified
for each curve, they may vary for individual curves.

(3) Comments to store on the curve file. These comments
are optional and are printed by the AUDIT and PRINT
programs.

(4) Number of independent and dependent parameters.

(5) Interpolation and extrapolation codes.

Independent Parameters Section

These cards are used to specify the independent parameter
names, units, and values.

Dependent Parameter Section

These cards are used to specify the dependent parameter
names, units, and values.

The format details for each of these three curve format sections
are discussed in the next three sections of this document. Two
examples immediately follow the details and you should refer to
them when needed to help your understanding of the formats^

12

256 How to Write Usable User Documentation. Second Edition

INPUT FILE

TO CREATE

CURVE

1

CURVE
2

•

•

* /

CURVE

I
\

CURVE

N

CMAX. N - 250)

/
/

\
\

/
/

/

\

/

\

NAME

&

ATTRIBUTES

INDEPENDENT

PARAMETERS

DEPENDENT

PARAMETERS

13

Appendix D: Illustrative 2-Page Modules

Appendix E:
Glossary of Selected Terms Used in This Book

The glossary below defines terms invented for this book, or terms that are used here with

special or stipulative meanings.

Term Definition

accessibility

artistic stereotype

audience

availability

engineer stereotype

GOTO

guidance module

headline

help screen

hypertext

information support plan

maintainability

model

modular outline

module

module specification

motivational module

online documentation

the ease with which information can be found or extracted

a method of writing in which most of the effort is in the draft and rela¬
tively little in analysis and design

a group of readers with common interests (similar tasks) and common
background

the presence or absence of a document

a method of writing in which most of the effort is in analysis and design
and relatively little in the first draft

an unconditional branch; in manuals, entering or exiting a module in the
middle

part of a manual that teaches an entire process to an experienced reader

a thematic or substantive heading, associated with one module of docu¬
mentation

a panel of information that helps users get through an error or impasse OR

an access port to a larger file of online technical information

an approach to reading, in which information is stored in a network of

nodes, which the reader may reach through many paths

a plan defining all the user manuals and other information products or
services associated with a system

the ease with which systems or manuals can be debugged, repaired, and
modified

representation of a system or product, used to facilitate testing

a list of headlines naming each module in a planned manual

small, functional, independent entity in a system or document

a sketch defining the contents—text and exhibits—for a given module

a part of a manual that gets readers to perform a task they are reluctant to
perform

any method in which procedural or reference information is delivered

through the computer’s display, rather than in paper documents

258 How to Write Usable User Documentation, Second Edition

orientation module

readability

redundancy

reference module

reliability

storyboard

strategic errors

structural errors

structured

structured documentation

suitability

tactical errors

task-oriented

usability

usability index

user documentation

user support technology

usentask matrix

part of a manual that teaches one new task or idea to a neophyte reader

the ease with which a passage can be read, often expressed in grade level

of difficulty

deliberate repetition and duplication, meant to reduce the burden for the

reader and offset the effects of noise and distraction

a part of manual that serves as auxiliary memory for the user to “look up”

absence of interruptions and failures

a working display showing the specs for each module in a manual, a

model for the emerging document

failure to develop the right mix of information products and services

failure to organize the contents of a document into the most usable

sequence

of a process, developed through top-down analysis and modeling; of a

product, organized into modules and the links that couple them

the method whereby principles of structured analysis and design are

applied to the writing of publications, especially computer documentation

the degree to which a manual fits the interests and supports the tasks of

the user

failure to edit drafts for clarity and readability

of documentation, defined so as to support users in precisely what they do

the ease with which a system, product, or manual can be used

the more often the intended reader must skip, branch, or detour, the less

usable the book

all the information products devised to help users adapt to their computers

the profession of assembling information goods and services in a way that

contributes to productive, reliable work by users

an array of topics to be documented and users/readers to be supported;

used in defining the mix of documents

Appendix E: Glossary of Selected Terms Used in This Book 259

Appendix F:
Books and Periodicals for Documentors

Since about 1982, there has been a steady stream of books about user documentation—

manuals and online. The titles below are a short list of works that all documentors

should know.

Books About User Documentation

Brockmann, R. John Writing Better Computer User

Documentation Version 2 (Wiley 1990)
This single book contains the most exhaustive

review of recent research on user documentation,
as well as the most comprehensive bibliography.

Carroll, John M. The Nurnberg Funnel (MIT Press,
1990)

A provocative work that lays out the theory of
“minimalist” instruction and documentation,
certain to be one of the main topics in the 90s.

James, Geoffrey Document Data Bases (Van Nos¬
trand Reinhold, 1985)

A much-discussed work that shows how the
largest and most advanced computer systems can
be harnessed to the tasks of maintaining and
distributing documentation.

Sandra Pakin & Associates Documentation Develop¬

ment Methodology (Prentice-Hall, 1984)
Just the thing to get a novice writer started.

And, indeed, companies without publication
standards can even adopt the contents of this book
as a Standards and Procedures manual for the
organization.

Simpson, Henry, and Steven Casey Developing

Effective User Documentation (McGraw Hill
1988)

An excellent review of the PC-based tools for
managing and producing user documentation.

There are also three exceptionally enlighten¬

ing anthologies, all of them published by MIT

Press:

Barret, Edward (ed) Text, Context, and Hypertext:

Writing with and for the Computer 1988

Barret, Edward (ed) The Society of Text: Hypertext,

Hypermedia, and the Social Construction of

Information 1989

Doheny-Farina, Stephen (ed) Effective Documenta¬

tion: What We Have Learned from Research 1988

Books About Online Documentation

For anyone interested in online documenta¬

tion, the essential work is

Horton, William Designing and Writing Online

Documentation (Wiley 1990)

Also strongly recommended are

Galitz, William Handbook of Screen Format Design

3/e (QED Info Sciences 1989)

Rubenstein, R and Hersh The Human Factor: Design¬

ing Computer Systems for People (Digital Press
1984)

Shneiderman, Ben Designing the Human Interface

(Addison-Wesley) 1987

For those especially interested in hypertext, I

recommend

Shneiderman, Ben, and Greg Kearsley Hypertext

Hands-On (Addison-Wesley 1989)

And, of course, no study of hypertext could

be complete without the incomparable Literary

Machines, self-published by its author, Ted

Nelson.

Books About Clear Writing

Many of the people assigned to work on user

documentation are new to the ranks of technical

and professional writing. The titles below are

260 How to Write Usable User Documentation, Second Edition

among the best general works on how to write

clearly, especially about technical and scientific

subjects.

Brogan, John Clear Technical Writing (McGraw-
Hill, 1973)

Strunk, W., and White, E.B. The Elements of Style

(3le) (Macmillan, 1979)

Tichy, H. J. Effective Writing for Engineers, Manag¬

ers, Scientists 2/e Wiley 1988

Weiss, Edmond H. One Hundred Writing Remedies

(Oryx Press, 1990)

Periodicals for Documentors

Articles about user documentation may turn

up anywhere, but these are the most reliable

places:

Journal of Documentation Project Management,

published by Pakin & Associates in Chicago

* The Journal of Computer Documentation, Special
Interest Group on Documentation of the Associa¬
tion for Computing Machinery (ACM SIGDOC)

Technical Communication, the Journal of the Society
for Technical Communication, Washington D.C.

IEEE Transactions on Professional Communication

I also recommend the annual conference

proceedings of STC, ACM-SIGDOC, and IEEE-

PC. These anthologies, available through the

respective professional societies, are among the
most provocative and useful books on technical

communication in general and user documenta¬

tion in particular. And not the least of their
virtues is that most of the papers are written by

professional writers. Reading so many pages of

clear, well-edited technical writing is often

inspiring.

Appendix F: Books and Periodicals for Documentors 261

Index

by Linda Webster

Accelerator keys, 216-17
Accessibility

as goal of editing, 154-55
and user documentation, 18,19

Across-modules redundancy, 126

Analysis
and concept of user-audience, 68-69
in dataflow diagram for developing

documentation, 54-55
encyclopedic vs. individualized manuals, 74-75
listing of features and topics, 66-67
members of support planning team, 60-61
preparation for, 60-61
and “universal task architecture,” 64-65
User:Task Matrix, 70-73
user manuals in a support context, 62-63

Assembly
advantages of frozen, GOTO-less design, 132-

33
dataflow diagram for developing documentation,

54-55
selecting and managing “authors,” 134-35
use of project management to assemble first

draft, 136-37
Authoring software, 204
Availability and user documentation, 18

Books on a disk, 188,190-91
Books on user documentation, 260
Branches, 128-29
Branching computer-based training, 204, 208-09

Buzzwords, 142, 146

Carroll, John, 227
CBT. See Computer-based training
Cohesiveness of modules, 106-21
Columns, 104
Computer systems

creation of documentation integrally with, 26,

27

criteria for, 24-25
usable manual versus unusable systems, 165

Computer-based training, 188, 204-09
Context-sensitive Help, 193,196-97
Continuous Help and prompt zones, 198-99
Control and user documentation, 16,17
Conventional outlines, 78-79, 81
Criteria

for computer systems, 24-25
for user documentation, 18-19

Dangling introductory phrase, 145,147
Decision graphics, 116-17
Decision table, 117
Decision tree, 117
Decomposition, 48
Diagram of user documentation, 54-55
Disaggregation of “fat module,” 104-05
Document overhead, 16,164
Documentation. See Online documentation; User

documentation
Documents

as devices, 10,11
new notion of, 8, 9
two ways to write, 40-41
virtual documents residing in document

databases, 8, 9
DOS shell, 210-11

Editing
for accessibility, 154-55
assessing the draft, 140-41
“before” and “after” versions of passage, 152-53
categories of editorial improvements, 140
dataflow diagram for developing documentation,

54-55
examples of, 152-53
increasing the power of instructions, 148-49
readability and, 150-51, 154-55, 156
for sentence bugs, 144-49

Index 263

Editing (continued)

with style-checking software, 156-57

of unclear instructions, 146-47

for word and phrase bugs, 142-43

Editions, 168-69

Efficiency as system criteria, 24

Equivalent modules, 171

Errors in user documentation, 20-21, 28-29, 168

Evaluative research, 160-61

Exhibits for modules, 102-03

Flesch-Kincaid Readability Index, 150-51, 156
Fog Index, 150-51, 156

Functions of user documentation, 14, 15, 106-07

Goal of user documentation, 16, 17

GOTO-less manual, 132-33
Grammatik, 156

Graphical user interface (GUI), 211

Graphics

hypermedia, 222-23

replacing prose with decision graphics, 116-17

GUI. See Graphical user interface (GUI)

Guidance as function of user documentation, 14-15,
106-07

Guidance module, design of, 112-13

Gunning Fog Index, 150-51, 156

Has to, 148-49

Headlines, 86-89

Help screens. See Online Help

Hierarchies, 128-29

Human factors and online documentation, 184-85
HyperCard, 218

Hypertext, 189, 218-23

IBM “universal task architecture,” 64-65
Icons, 211,215

Information support for document maintenance, 170-
71

Insight, 226, 227

Instructions

increasing the power of, 148-49

levels of intensity in, 148-49

types of unclear instructions, 146-47

Insurance, 226, 227

Intelligibility, 226-27

Kay, Alan, 211

Kerning, 104

Linear computer-based training, 204, 206-07

Maintainability as system criteria, 24, 164-65

Maintenance

dataflow diagram for user documentation, 54-55

and directory of modules, 171

because of errors and changes, 168

information support for, 170-71

“modularization” of old manuals, 174-75

policies for, 168-69, 172-73

stimulus and response, 168-69

versus usability, 164-65

Marathon sentence, 145

Menu-driven manuals, 192, 194-95
Menus

application vs. navigation options, 212-13

cryptic and ambiguous menus, 182

improvements for, 211, 212-13

pull-down menu with accelerator keys, 216-17

pull-down menus as recall aids, 185
secondary' menus, 213

table-of-contcnts menu, 192, 194-95
Miller, George, 212

Model, 48, 98-99

Modular outline

alternative forms of the module for special
needs, 84-85

compared with conventional outlines, 81

defining module of documentation, 82-83

development of, 90-93

examples of, 236-39

and examples of two-page modules, 242-57

predicting the number of modules, 94-95

reaching modular outline in one step, 92-93

requirements for, 80-81

writing headlines for modules, 86-89

Modular process for user documentation, 50-53

“Modularization” of old manuals, 174-75
Module specs, 100-01, 241

Motivation as function of user documentation, 14-15,
106-07

Motivational module, design of, 108-09
Mouse, 211, 217

Must, 148-49

Nassi-Shneidcrman Chart, 116

Nelson, Ted, 218

Online documentation. See also User documentation

approaches to, 188-89

better user interfaces, 210-17

books on, 260

books on a disk, 188, 190-91

breaking the grip of manuals, 182-83

264 How to Write Usable User Documentation, Second Edition

Online documentation (continued)

computer-based training, 188

full meaning of “user support,” 180-81

hypertext, 189, 218-23

online Help, 188,192-203

pointing vs. typing, 184-85

and principles of human factors, 184-85

problems with, 182-83

pull-down menus as recall aids, 185

user interfaces, 188

Online Help
as approach to online documentation, 188

context-sensitive Help, 193, 196-97

continuous Help and prompt zones, 198-99

design of, 202-03
menu-driven manual and, 192,194-95

online manual and, 193

paragraph Help vs. procedural Help, 201

problems with, 183

prosey Help Panel, 200

requirements for, 200-01

styles of, 192-93

use of hypermedia as, 222-23

use of hypertext as, 220-21

Online manual, 193
Orientation as function of user documentation, 14-15,

106-07
Orientation module, design of, 110-11

Ought to, 148-49

Outline
alternative forms of the module for special

needs, 84-85
conventional outlines, 78-79, 81

in dataflow diagram for developing

documentation, 54-55

defining module of documentation, 82-83

development of, 90-93
differences between conventional and modular

outlines, 81
examples of modular outlines for manuals, 236-

39
examples of two-page modules, 242-57

modular outlines, 80-95

predicting the number of modules, 94-95

reaching modular outline in one step, 92-93

requirements for modular outline, 80-81

writing headlines for modules, 86-89

Passive form, 144, 147
Performance as system criteria, 24

Periodicals on user documentation, 260

Perron, Robert, 42

Phrase bugs, 142-43, 146-47

Pointer, 211, 217

Pointing vs. typing, 184-85

Policy, 148-49
Predicate, meaningless, 144, 147

Procedure, 148-49

Production economy, 32

Programming, 42-43

Prompt zones, 198-99

Proportional printing, 104

Prose
replacement with decision graphics, 116-17

replacement with structured text, 114-15

Prosey Help Panel, 200

Prototyping, 165
Pull-down menus as recall aids, 185

Readability
formulas for, 150-51, 156

as goal of editing, 150-51, 154-55

and user documentation, 18,19

versus saving paper, 154-55

Recommendation, 148-49

Redundancy

across modules, 126

definition of, 32

in modules, 126
redundant modules vs. called modules, 127

in storyboards, 126-27

Reference as function of user documentation, 14-15,

106-07
Reference modules, design of, 120-21

Reliability of user documentation, 34-35

RightWriter, 156-57

Secondary menus, 213

Sentence bugs, 144-49

Shall, 148-49

Should, 148-49

Software
authoring software, 204

for editing, 156-57
style-checking software, 156-57

Storyboard
and cohesiveness of modules, 106-21

in dataflow diagram for developing

documentation, 54-55
design of guidance modules, 112-13

design of motivational module, 108-09

design of orientation module, 110-11

design of reference modules, 120-21

Index 265

Storyboard (continued)

disaggregation of “fat module,” 104-05

exhibit for each module, 102-03

handling branches and hierarchies, 128-29

handling troublesome procedures, 118-19

modification of, 124-25

mounting, 122-23

redundancy in, 126-27

replacing prose with decision graphics, 116-17

replacing prose with structured text, 114-15

value of models in solving documentation
problems, 98-99

writing a module spec, 100-01

Strategic errors, 20, 21, 28, 29

Structural errors, 20, 21, 28-29

Structured process for user documentation, 48-49
Structured text, 114-15

Style-checking software, 156-57

Suitability and user documentation, 18-19

Supplements, 172-73

Support. See headings beginning with User support

Table-of-contents menu, 192,194-95
Tactical errors, 20, 21, 29

Task-oriented user documentation, 19, 30, 31, 64-67,
70-73

Testing

dataflow diagram for user documentation, 54-55

document overhead and, 164

elements in well-made usability test, 160-61
after neophyte stage, 164

shortcuts and compromises for, 162-63

stereotypes and traps in, 164-65

usable book versus unusable systems, 165

versus maintainability, 164-65

Third person construction, 147

Top-down process, 43, 48

Troublesome procedures, 118-19

Typing vs. pointing, 184-85

“Universal task architecture,” 64-65
Updates

batch update, 168-69

immediate update, 168-69

policies for, 172-73

supplements, 172-73
Usability

and creation of documentation integrally with
the system, 26, 27

defining and measuring, 28-29,185

from “idiot-proof’ to “usable,” 24-25

reliability and, 34-35

as system criteria, 24-25

and task-oriented user documentation, 30, 31
versus economy, 32-33

Usability testing. See Testing

User:Task Matrix, 70-73

User documentation. See also Online documentation
accessibility of, 19

analysis and, 54-55, 60-75

assembly for, 54-55, 132-37

availability of, 18

batch update of, 168-69

books on, 260

control as main goal of, 16, 17

creation of integrally with the system, 26, 27

criteria for effectiveness of, 18-19

dataflow diagram for, 54-55

defining and measuring usability of, 28-29

definition of, 4-5

editing for, 54-55, 140-57

encyclopedic vs. individualized manuals, 74-75
errors in, 20-21, 28-29, 168

examples of two-page modules, 242-57

functions of, 14, 15,106-07

future of, 226-29

glossary of, 258-59

goals for effective writing process, 44-45

horizontal vs. vertical organization of, 30, 31

from “idiot-proof’ to “usable,” 24-25

immediate update of, 168-69

internal change in, 168-69

list of features and topics for, 66-67

maintenance for, 54-55,168-75

methods for updating, 168-69

modular outline for, 80-95

modular process for, 50-53

“modularization” of old manuals, 174-75

new edition of, 168-69

outline of, 54-55, 78-95

periodicals on, 261

and programming, 42-43

readability of, 19

reasons for writing bad documentation, 6-7
reliability of, 34-35

rights of documentors, 228-29

storyboard for, 54-55, 98-129

structured process for, 48-49

suitability of, 18-19

supplements for, 172-73

in support context, 62-63

task-oriented user documentation, 19, 30, 31,
64-67, 70-73

266 How to Write Usable User Documentation, Second Edition

User documentation (continued)

testing for, 54-55,160-65

two ways to write, 40-41

“universal task architecture,” for, 64-65

usability of, 7

usability versus economy in, 32-33

users’ needs and, 5

work breakdown for, 56-57

User interfaces. See also Menus

DOS shell, 210-11

icons, 211, 215

improvements for, 210-17

improvements in, 188

mouse, 211, 217

pointer, 211, 217

WIMP, 210-11

windows, 211, 214-15

writing better menus, 211, 212-13

User support, 180-81, 226-28

User support plan, excerpt from, 232-35

User support planning team, 60-61

User-friendliness, 185

Users
analysis of, 68-69

definition of, 4

needs of, 5

Vogue words, 142, 146

WIMP, 210-11
Windows, 211, 214-15

Within-modules redundancy, 126

Word bugs, 142-43,146
Work breakdown for user documentation, 56-57

Writing, books on, 260-61

LIVERPOOL JOHN MOORES UNIVERSITY
a -~*-v «> it* r:i ' c r ?.it 9 “ cv
UlVjU< • i if W—■ —i #*>*« < LuLi'f 1/ il »l

TEL 051 231 3701/3634

Index 267

EDMOND H. WEISS, Ph.D.

Edmond H. Weiss, Ph.D., is an independent consultant and lecturer on technical writing,

management communication, and documentation. He is also the author of The Writing

System for Engineers and Scientists (Prentice-Hall, 1982) and 100 Writing Remedies:

Practical Exercises for Technical Writing (Oryx Press, 1990).

Usually, Weiss is traveling North America teaching seminars and consulting for major

corporations. At other times, though, he lives in Cherry Hill, New Jersey with his actress

wife and writerly daughter.

Liverpool jo; ;r. ; . :fsuniversity

MOUNT PLEA3AN t' LIBRARY

__TEL 051 231 3701/3634

