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preface 

The purpose of this manual, is to introduce students and researchers in the 

human and social sciences to some mathematical domains of particular impor- 

tance because of their potential application in these sciences. 

This first volume is devoted to fundamental chapters in algebra and combi- 

natorics. It has been conceived as an introduction to the meaning and proper 

usage of certain key words which are encountered more and more frequently in 

the construction of models or in the presentation of mathematized theories in 

psychology, sociology, anthropology, linguistics or musical composition. The 

index of terms found at the end of this manual is thus of major importance: for 

each term, this index refers the reader to a definition and to the chapters in this 

text where the term has been used in various contexts. 

© These contexts... what are they? Those found in the most elementary 

‘structures’ which can be assigned a finite set or a set which can be. finitely 

constructed, structures of ordering, classifications, trees, Boolean algebras, 

monoids, groups, simplexes and measure scales. Moreover, these topics are 

now part of what is commonly taught in many universities, especially in French 

higher education, to students in the social sciences. 

The various articles in this manual have been written so that they can be read 

independently: that is, the order in which they can be read is of little impor- 

tance and is left to the discretion of the reader. Nevertheless, we have made 

every effort to show the interrelationships that unite the domains introduced in 

this volume by referring the reader to various other articles. In addition, the 

bibliography of each chapter furnishes references which will permit the reader to 

improve on this brief introduction to these mathematical domains, as well as 

acquainting him with the detailed applications of these topics in the human 

sciences. 

The reader is not supposed to have previous mathematical knowledge, other 
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than that normally acquired in high school. However, those readers who en- 

counter too much difficulty can refer to introductory texts such as those already 

published by certain authors of this manual’ . In these works the reader will find 

the elementary bases of combinatorics (subsets of a finite set and their simplicial 

organization) to which the articles here sometimes refer. The reader can also 

consult the symbol index placed at the beginning of this manual. 

M. Barbut 

1.M. Barbut, C. d’Adhémar, B. Leclerc and P. Jullien, Mathématiques élémentaires, 

applications à la statistique et aux sciences sociales, Paris, P.U.F., 1973; M. Barbut, 

Mathématiques des sciences de l'homme, Paris, P.U.F., 1968; G. Th. Guilbaud, Mathéma- 

tiques, Paris, P.U.F., 1966; P. Rosenstiehl and J. Mothes, Mathématiques de l'action, Paris, 

Dunod, 1965. 
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symbol index 

Symbols 

ie 

LE |, card. 
E 

= 

EXE = E° 

Use and meaning 

E = {2,0, b,*}: the set E and 

its element 

|E |= 4: the cardinal of E is 

four 

2 €E: 2 is an element of 

or belongs to the set £ 

(x, y): the ordered pair xy 

E cross E, or E to the second 

power 

X CY: the set X is included 

in the set Y 

Commentary (remarks) 

the set Æ and the list of its ele- 

ments: 2, 0, b, * 

Number of elements in Æ 

starting with a set £ we van con- 

struct a new unique product set 

which is the set of pairs (x, y) 

such that x EE and y EE. The 

notion of ordered pair has a priv- 

ileged meaning in set theory, but 

the number of components can 

be increased: triplet, quadrup- 

let, .. . n-uplet 

the cartesian product of the set 

E by itself is the set of pairs (x, 

y) where x €F andy EE 

X CY if, and only if, for every x 

we havex EC X>xEY 
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Symbols 

{x} 

RORCP Pe 
E-P, OP 

(PE) 

Use and meaning 

the set reduced to a single 

element x 

X = Y': the set X is equal to 

the set Y 

(Wx € X) (x = x): for every 

x © X we have x =x 

(4x € X) (x = y): there exists 

some x € X such that we have 

x=y 

x > y: x implies y 

x + y: x if, and only, if, y 

X U Y: X union Y 

the subset of the set £ that 

is the compliment of the 

subset P of E 

XM Y: X intersection Y 

the set of the subsets of the 

set £ 

Commentary (remarks) 

the equality of the two sets is 

not satisfied unless they contain 

the same elements 

the proper use of these two sym- 

bols, called logical quantifiers 

requires a formalism that ex- 

ceeds the scope of this work; 

they are only used here as abbre- 

viations in the context indicated 

here 

if x, then y 

X UY designates the set formed 

by both the elements of X and 

the elements of Y (and of X and 

Y simultaneously) 

P U PC =E; the union of P and 

its complementary subset recon- 

stitutes the set £ 

X N Y designates the set formed 

by the elements that belong to 

both X and Y 

if El=4,|D(E)1= 2*. Two spe- 

cial subsets are Æ itself (the 

whole set) and the empty subset, 

or ® 



Symbols 

® 

x Ry or 

(x, Y)ER 

xRy 

x#y 

ay 

IY 

ey 

(mod R) 

4630 eee a 

xo y 
orxery 

f(x)=y 

Use and meaning 

¢ € P(E): the empty set is an 

element of the set of the 

subsets of E 

xRy: the pair (x, y) belongs to 

or satisfies the (binary) relation R 

(x, y) does not satisfy the 

relation R 

x is different from y 

x is equivalent to y 

x is equivalent to y, or 

x is equivalent to y modulo R 

L)x;: union of the family 

‘<I of the sets X; 

the quotient set E modulo R = 

the partition induced by the 

equivalence relation R 

the mapping f of the set E 

into the set F 

y is the value (image) of x by the 

mapping (function) under 

consideration 

f of x equals y 

Symbol index 11 

Commentary (remarks) 

the empty set is the set which 

contains no elements. It is by 

definition an element of the set 

of the subsets of the set under 

consideration, / 

x is equivalent to y from the 

point of view of the relation R 

the union applies to a family of 

sets indexed by J 

the set of equivalence classes of 

the equivalence relation R is the 

same thing as the partition of F 

associated with the relation R 

the image of x by the mapping f 

is the element y 
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Symbols 

<and< 

V A or 

sup A 

AA or 

inf A 

Lx, y] 

|x, y] 

Aor0 

V orl 

Use and meaning 

x < y: x is strictly smaller than y 

x < y: xs less than or equal to y 

x < y: x is covered by y or y 

covers x 

x V y, x supremum y: the least 

upper bound of x and y 

supremum of A 

x A y: infimum of x and y 

infimum of A 

closed interval of xy 

the interval xy, open to the 

left and closed on the right 

transitive closure of the relation R 

the poles or distinct elements of 

a Boolean algebra 

A, ® A): the direct sum of the 

abelians A, and A, 

n!: n factorial 

Commentary (remarks) 

x < y and there is no element z 

such that x <z <y 

this element is the smallest of 

the upper bounds common to x 

and y 

the smallest of the upper bounds 

common to all the elements of A 

this element is the greatest of the 

lower bounds of x and y 

the greatest of the lower bounds 

common to all the elements of A 

it is the set of the elements z 

such that x <z <y 

it is the set of z such that x <z 

<y 

A AAC=AÀ 

AVAC=V 

the addition is defined on the set 

of the pairs by the rule: if x = 

(x1,x2),¥ = (1,72), then x +y 
= (x1 t)1, x2 t2) 

it is the product of the first n 

integers 



Symbols 

N 

| 1 Z 

h = fog 

Use and meaning 

the integers 

the relative integers 

the rational numbers 

the real numbers 

s(0): successor of zero 

h is equal to f circle g 

Symbol index 13 

_ Commentary (remarks) 

SOS ee tics eo 

= Ken «oy 2, =I, 0,1, 2, 

NN ek tet 

= irlr=73p,q,€Zandq 20" 

this is the compostion of map- 

pings: the mapping g followed 

by the mapping f fog is thus 

only defined if the initial set of f 

is identical to the final set of g 
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1. trees 

by P. Rosenstiehl and B. Leclerc 

Introduction 

A systematic study of trees is certainly an elementary subject. After the straight 

line, what can be studied? The tree. 

It is surprising that this subject still fails to occupy a proper place in mathemati- 

cal text books. Yet algebra and combinatorics, as well as the applications of 

these subjects to the human sciences, are rife with trees. Moreover, trees are an 

ideal mathematical object to illustrate the interconnections of combinatorics 

with algebra. 

Primarily, trees are a combinatorial subject. Everbody knows how to join n 

points with n—1 lines to form a tree; or to glue n—1 sticks end to end, creating a 

new node with each stick, giving thus n nodes. Such relations are spoken of in 

terms of injections. ‘ 

Soon algebraic subjects make their appearance. The free groups include the 

paths in a tree; the retracings back and forth. In coding, it is linguistics that 

quickly dominate the subject. The tree is translated into words and becomes 

again a line; this will be discussed in section 1. 

A tree can be rooted at any one of its points. It is organized then from this 

root point in a partial order: semi-lattice rooted trees. The evoluative approach, 

the hierarchical organization of the possibilities and the recurrence in the choices 

are the subject of section 2. 

Finally the trees form a skeleton for all networks, and most calculations on 

networks are based on that minimal part. Anything that can be formalized as a 

network or a graph, a sociogram or a flow chart is based, to a certain extent, on 

an understanding of the rooted tree skeleton. Boundary algebra the linear 

calculus of cycles, cocycles, flows and tensions are presented from this point of 

view in section 3. 
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In our chapter on trees we will give eleven definitions of trees, all dissimilar, 

some even surprising, although all logically equivalent. Sometimes the object is a 

word, sometimes a set, a mapping or a graph. Each new definition introduced is 

in some way related to the preceding ones. Our reasoning can be presented 

schematically by a tree, naturally. We have given some complimentary exercise 

material and, even more important, provided suggestions for further reading in 

the 25 references cited in the final bibliography, pp. 55—57. 

1 

Fig. 1. Successive definitions of trees 

1. Tree words 

How can a tree be expressed? This is the first question we shall consider. To 

express a tree is first to define it and also put it into a communicable form so 

that certain information contained in it can be analyzed. Thus, in the first 

section we will define a tree and its coding. 

Let us begin with a game. We put four points on a sheet of paper and try to 

find all the possible ways to join these points with lines to obtain a tree. It is 

immediately apparent that three lines are always required. With a little patience 

we can find the 16 trees obtained by joining the four given points in every 

possible way. 

The herborium is shown in Figure 2 and Figure 3 below. The first is a graphic 

representation, the second its coding. How were these trees obtained? We chose 

four letters a, b, c and d (just as we chose four points); these symbols, it should 
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be noted, have an alphabetic order. With these letters we shall write words 

composed of two letters, and the 16 words of length two thus obtained is the 

herborium — each word designating a tree. The bijective correspondence is not 

immediately obvious, but will be established in the following paragraphs, there- 

by giving the reader a better idea of what a tree is. In the second part of this 

section another code will reveal still other properties of trees. 

Fig. 3. Coding of the 16 possible trees generated by joining 4 points a, b, c, d 

1.1 Free word trees 

Henceforth, any word can designate a tree. Let us first define what we mean by 

a word. Given a finite set A called the alphabet: 

A= {d, a, b,c } for example, 

any sequence of the elements of A, such as 

badadaa 

is called a word written in the alphabet A. 

To concatenate a first word with a second means to place the second word 

1. Between two sets A and B having the same cardinality, a bijective correspondence (or 

bijection) is a correspondence that associates to each element of A a unique element of B so 

that each element of B is associated with a unique element of A. 
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after the first. By definition, the concatenation of two words is another word. 

badadaa is a word having seven occurrences of letters, with two occurrences 

of the letter d in the third and fifth location. It is also the concatenation of bada 

and daa. Single letters are words with a one letter occurrence. A word having k 

occurences is the concatenation (a noncommutative operation) of k words of 

one occurrence. 

If x is the concatenation of the two words a and 6 (o = af), a is called the left 

factor and 6 the right factor of o. If o is the concatenation of the three words a, 

B, y (o = ay), B is called factor of o. | 

1.1.1 First definition of trees 

Let A be an alphabet of n letters, totally ordered. We shall call a tree — or more 

specifically, a tree joining the points of A — any word having n—2 occurrences of 

the letters of A. 

As an example, let us consider the ordered alphabet: 

A: abcd 

the words: 

aa ba da cc 

are, by virtue of the above definition, trees joining the four points a, b, c and d. 

These words have a given numbers of occurrences but are otherwise unrestricted, 

without grammar; they are sometimes called free. 

How do we draw the tree da? Since the letter a is distinguished by the 

alphabetic order, we can agree that the desired tree is rooted at a. The first 

operation is to replace ‘da’ by ‘ada’ (put a first). 

Fig. 4. The principle of coding a tree by grafting its four branches 
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The tree is to be seen as a branch having grown from a, then another branch 

grafted onto the first, the next on to the preceding, etc. These branches are 

words which are grafted by their first letter which has already appeared in the 

preceding branch. It should be noted that each branch is a subword of the word 

under consideration but lengthened by one letter which is the first of the absent 

letters of this word not yet grafted. 

Let us trace ‘da’ written in the alphabet abcd. In ada, b and c are absent. 

The branches are: adb a d b 

ac men Orr 

and we graft: 

[es Fig. 5 

Let us consider another example: bafaf written in the alphabet abcdefg. In 

abafaf, cdeg are absent. 

The branches are: abc a b Cc 
O———c0c—————_O 

afd 

ae a 

Ig e 

and we graft: Se 

g 

a, the leading letter which has been written first is called the root. Any letter of 

the word already written in the word designates a graft point. That is, the 

1h 

1a Fig. 6 

beginning of a new branch. 

1.1.2 Algorithm for tracing a tree 

Let o be a word of n—2 occurrences written in a totally ordered alphabet A 

whose first letter is a. We trace the tree o by successive grafts of the branches 

defined by the following instructions: 

1. Let B, be the left factor of a o, that is maximal without repetition of a 

letter. Let z, be the first absent letter of ao. Biz is the first branch. 
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Zi Let 0; be the right factor of ao not yet used. Let B; be the left factor of 0j 

maximal without having any letter, other than the first, appear in a branch 

already traced. Let z; be the first letter of A which is absent from o and the 

branches already drawn: £2; is the i-th branch. 

3. If o has another right factor not yet used, return to (2), otherwise graft the 

branches in the order of their first letter. 

It is easy to show that: 

— every point of the graft of a branch belongs to a branch of inferior rank in the 

succession of branches; and 

— every letter of the alphabet other than the first appears once and once only in 

a branch without being a graft point. 

We thus have come to the current graphic conception of a tree. It seems quite 

natural to give trees a new definition in terms of set mappings: every letter, 

except a, can be seen as being grafted to another once and only once (that is the 

branch where this letter is not the first). 

1.1.3 Second definition of trees 

Let A be a finite set and a one of its elements. A tree rooted in a and joining all 

the elements of A is any orderable mapping » of A— {a} into A. By an 

orderable map we mean here a map to which we can associate a total ordering of 

A, beginning with a, and such that for every x, other than a, p(x) comes before x 

in this total order. 

a b e 
O0} 0 

Example: x€A |abcfdeg 

e 
p(x) abafaf ï 

(on the first line the elements x are written 

in the order of their total order) d g 

Fig. 7. Tree associated with abafaf 

Note: The order associated with y is that of the appearence of the letters in the 

branches of the word abafaf studied above. 
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The algorithm ‘to trace a tree’ defined above obviously generates such a 

function y because any letter x other than a must: 

— either appear in the word o and then appear by its first occurrence in a word 

B; in a rank superior to one in 0, or 

— not appear in o and in that case there must exist a branch i for which x =z; 

(each beginning of a branch is a repetition in the word o, from whence the 

necessity of the letter being absent from o and vice versa). 

In every case, to the letter x can be associated as the image y(x) the letter 

which precedes x in the branch where x is not the first letter. (x) is a letter that 

comes before x in the order of the first occurrence of the letters in the branches 

that follow. 

1.1.4 Algorithm for coding a tree 

Let us now procede to the coding of a tree. Consider a tree defined by 

definition 2. That is, let our object be a tree defined as an orderable mapping of 

the type defined above: A — {a} into A. 

1. In the order associated with y take the first letter z;, which is never an 

image, and take its image, the image of its image, etc. until a is reached. The 

sequence thus obtained is then written backwards, starting with a. This branch is 

called BZ. 

2. In the order associated with y, take the first letter.z; not yet chosen and 

which is not an image. Take its image, the image of its image, etc. until a letter is 

encountered that has already been written in a branch previously traced. Write 

the sequence so obtained in reverse, and call this branch B;z;. 

3. If there still exists another letter z; not yet taken, repeat step (2} 

otherwise write o = 8182 ...B, wherer is the number of branches obtained. 

The ‘round trip’ is now completed. Starting with a ‘word tree’ of n—2 letters 

we have given an algorithm to construct an ‘orderable mapped tree’ (which can 

be easily identified with the drawn representation of a tree), and conversely, 

beginning with the second construction, we have given another algorithm to 

obtain the first. 

Let us be explicit. The words of n—2 letters and the orderable mappings are 

in one-one correspondance. We are now in a position to consider the following 

theorem on trees. 

1.1.5 Cayley’s theorem 

There exists n’"? trees joining n given vertices. In fact, in an alphabet of n 



22 P. Rosenstiehl and B. Leclerc 

letters the number of words having n—2 letters is n-?. For each of these words 

there corresponds by the ‘tracing algorithm’, an orderable mapping y and for 

two distinct words there exists two distinct orderable mappings. 

Conversely, for every orderable mapping w there corresponds by the ‘coding 

algorithm’ a word of n—2 letters which generates y by the ‘tracing algorithm’. 

(In order to trace the corresponding tree, we take the alphabetic order associated 

with the orderable map used for coding). 

Another exercice: branches: 

Given A:ajmklbcdefghi ajmb | 

Xe jam, kid, D6 da een 
CRE 

o(x) ACT ktm mek ee Taree 

QT no nm — % À 0 + © AS 

c=jmmikklllk} 

6 

lig. 8 

1.2 Trees in Dyck words 

We shall now consider trees from a different point of view. We are given lines 

and ask how they can be assembled into trees. The given lines are designated by 

letters and to distinguish the two extremities of a line, each line is given a 
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direction (orientation). For n lines we have 2n extremities, some of which will 

be indistinguishable from one another, thus forming classes: exactly n+1 classes: 

the n+1 points of a tree having n lines. 

b b 

b 3 C C C a 

a a bi 

8 times 8 times 8 times 8 times 

Fig. 9. The herborium of 32 possible trees formed with 3 directed lines A, B, C. (‘8 times’ 

indicates that we can associate 2° trees to each of the trees drawn above by only modifying 

the directions of the lines) 

The essential idea to be developed here appears in Fig. 9 below where to code a 

tree we make a complete circuit, beginning from one of the points. 

We first start on line C, this is written c; 

Fig. 10. Tree cc’bb’a‘a 

we begin again in the opposite direction on line C, written cc’; 

we then follow line B, in both directions which gives us now cc’bb; and 

finally, we follow line A in both directions thus obtaining cc’bb’a’a. Beware 

of A: the direction (a) is taken after its opposite direction (a’). 

When there is nothing left to take, then every line has been traced once in 

each direction and we have come back to the starting point. What kind of word 

has been written in this manner? 

1.2.1 Dyck words 

Let c£= {a,a’,b,b’, ... } be a finite alphabet such that the letters are paired: a’ is 

called the inverse of a and conversely. The inverse of any letter e is written e’. 
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We define the empty word À as the word having zero occurrences of letters. 

For the words written in the alphabet of we will write the following equiva- 

lence relation: 

aa’ = a'a = /\ (the empty word) 

bb' = b'b ~ /\,...,etc. 

It should be understood that if a word is written: 

oaa'e 

we then have 

caa'e ~ op 

To recapitulate, this equivalence authorizes us to delete, to insert, or to con- 

catenate a pair of adjacent and inverse letters anywhere in a word. A Dyck word 

is a word written in the alphabetc{ and is equivalent to the empty word (that is, 

it reduces to the empty word by successive deletions of pairs of adjacent and 

inverse letters). If a Dyck word does not contain a repetition of occurrences of 

the same letter it is called simple. 

Example of simple Dyck words: 

aboac b' a 
HAS Lente Dent — & Fos 

o 

A, 

~ 
— 

i ss 
oS S LE 5 

— & = & 

> S io) oO 

Algorithm for simple Dyck words of a tree 

We are given a tree whose lines are arbitrarily directed. To each line A we assign 

two inverse letters, one a which corresponds to the direction of A in the 

direction of its orientation, the other a’ in the reverse sense. We arbitrarily 

choose a first letter. 

After the first chosen letter, write the adjacent letters of the tree for as long as 

possible following the rules: 

1. do not write the same letter twice; and 

2. at any point x in the algorithm, if possible, choose a letter whose inverse has 

not yet been written. | 
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Example: 

15’22'3'344'56788'7'6' 1’ 

Example of an application: We are asked to find the shortest word in the tree 

that begins with 3 and ends with 8. From the word above we extract the factor: 

3445678 

and simplify to 

35678 

Defining trees in terms of simple Dyck words turns out to be useful in certain 

applications. 

It is simple to show that the algorithm above generates a simple Dyck word 

such that: 

— jt contains all the letters of the tree: 

— two adjacent letters are adjacent in the tree; and 

— the last letter is adjacent to the first. 

To be more exact []((v(x)—1)!) words are possible given the freedom of 

xeX : 

choice that exists for every point x. The valence v(x) (or degree) of the point x is 

the number of lines containing x as an extrernity. 

Note for the proof: For each point x, except the starting point, there exists as 

many letters in the direction ‘away” from x as in the direction ‘towards’ x. The 

inverse of the first letter to appear in the first direction above will be the last 

letter in the second direction. 

1.2.2 Definition of a tree by Dyck words 

Consider the inverse of what we have just done with a simple Dyck word: it will 

correspond to a unique tree. Let us reconsider the four previous examples which 

we will now write as follows: 

J ! , ! 

abcc'b'a ab'bcc'a' ab'ba'c'c aa bb'cc 
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O D © 

a C a a a 

b ie b b 

Fig. 12. Trees reining to simple Dyck words 

Third definition of trees 

Given an alphabet of 2n letters where all the letters are paired and where two 

letters of the same pair are called inverses. We define a tree as any simple Dyck 

word written in this alphabet. That is, all words containing each letter at most 

once, that reduce to the empty word by successive deletions of letter pairs that 

are adjacent and inverse. 

This definition is equivalent to definition 2 given previously for trees, as we will 

now show. 

Consider a simple Dyck word o written in the alphabet previously given. Let 

two inverse letters of the alphabet correspond to a line (beginning in either 

direction) and suppose that each letter e, touches two points: /(e) its left point 

and r(e) its right. 

For two adjacent letters in the word o such as ef we can write: 

d(e) = g(f) 

and for two inverse letters e and e’: 

d(e) = g(e') and g(e) = dle’) 

It follows that the 2n letters of the word o define n+/ distinct points which are 

the left point of the first letter of the word (which is the root), and the right 

point of each letter written whose inverse has not yet been written. 

n lines; n+1 points and a root; we need only further observe that the mapping 

which associates for each letter e whose inverse has not yet been written, the 

right point r(e) with the left point /(e), a point it should be noted, whose image 

has already been found, is none other than the orderable mapping y in definition 
à 

We might ask what are all the simple Dyck words which correspond to the same 

tree. We need only agree to the following equivalence in o: 

AU © LA 
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where y and u are Dyck words and yu is a factor of 0. 

1.2.3 Three new definitions of a tree 

Given a tree, let U be its set of lines and X its set of points. The lines may be 

arbitrarily directed. We shall consider a mapping 

I:U + X, 

which associates each line to its initial extremity (relative to its orientation) and 

the mapping 

T:U —X, 

which associates each line to its terminal extremity (relative to its orientation). 

Consider a point r, a simple Dyck word of the tree rooted at r, and once again 

the sequence of letters for which the inverse has not yet been written. The 

mapping Ÿ which associates the line of a letter e of this sequence to the right of 

this letter is; 

1. a bijection of U on X — (ris | 

2. compatible with / and T in the sense that the image of a line is the extremity 

of that line; and 

3. an orderable mapping in the sense (very special) that the order extremity of 

the line has already been found. That is, it is either 7, or the image of a line 

previously considered in the sequence. 

These three properties are obviously properties of Dyck words. They lead to a 

new definition of trees. 

Fourth definition of trees 

Let X be a finite set of points and U a finite set of lines. Let 1: U> XandT:U 

+ X be two mappings such that the line u(u€ U) joins the point \(u) to the point 

. T(u), its two extremities.2 We let r be any arbitrarily chosen point. 

The quadruplet (X, U, 1, T) is a tree if there exists a mapping WV: U> X —{r} 

which is: 

1. bijective; 

2. such that W(u) is an extremity of u; and 

2. We have thus a quadruplet, that is, a list of our mathematice! objects in a predeter- 

mined order. The quadruplet (X, U, J, D which has just been defined is a graph. A precise 

definition of graphs can be found in section 3.1.1. 
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3. such that there exists an order in U, for which the extremity of u, other than 

W(u), is r, or the image of a line inferior to u. 

It is easy to show that this definition is equivalent to the three preceding ones. 

We can now deduce without difficulty, a fifth and sixth equivalent definition in 

terms of words. 

u A +8. CDi. Bates 

Y (u) Das ys Centon =x 

the other Mes ——— 
2 Palate Sue ss Soo its se 

extremity 

ofu 

Fig. 13-14. Mapping w characterising a tree 

Fifth definition of trees 

By a tree, we mean a quadruplet (X, U, 1, T) where X is a finite set (of points), U 

a finite set (of lines), and | and T are mappings from U into X such that from 

every point to every other there exists a unique minimal word. 

To define the words of a quadruplet (X, U, J, T) we associate with each line with 

extremities x and y two inverse letters a and a’, such that the left point of a and 

the right point of a’ is x, and the right point of a and the left point of a’ is y. We 

write the letter e immediatly followed by f if, and only if, the right point of e is 

equal to the left point of f as above for the Dyck words. 

Sixth definition of trees 

A quadruplet (x, 1, T), where U = |X|—1,? 1: U > Xand T: U>X and such 

that from one point to another there always exists a word, is called a tree. We 

shall also define a tree as a connected* quadruplet with one more line than 

points. 

3. The cardinal of a set A written IA | or sometimes card (A) is the number of elements in 

this set. 

4. A precise definition of connectivity will be found in 3.1.1 equivalent to the following: 

from one point to another there always exists a word. 
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1.2.4 The Hamiltonian tree theorem 

Hamilton’s famous problem is that of finding a circular permutation of given 

elements compatible with a certain relationship between objects defined in 

advance. 

Consider a tree (we already know six equivalent definitions). It has three sets 

of elements: ietters, lines and points. 

Now, for example, let us attempt to number the points of the tree in Fig. 14 by 

making jumps that are as short as possible. A jump of two points appears to be 

inevitable. Do trees exist for which jumps of three points are necessary? 

6 

= 

Fig. 15. Circular permutation of the points of a tree 4 

with jumps of no more than two points 

Hamilton’s theorem 

T1. For letters it is always possible to circularly number the letters of a tree in 

such a way that each letter and its successor in this enumeration will be 

adjacent (that is, that the right point of the first will be the left point of the 

second). 

T2. For lines: lines of a tree can always be circularly numbered in such a way 

that between each line and its successor there exists 0 or 1 line. 

T3. For points: the points of a tree can always be circularly numbered so that 

between any point and its successor there exists 0, 1 or 2 points. 

T1 is proved by the algorithm for the simple Dyck word of a tree given in 

section 1.2.1. T2 is proved by treating a Dyck word with the following algo- 

rithm. 

Algorithm for the Hamiltonian numbering of lines 

1. In a simple Dyck word of a tree, recopy the letters of odd rank. 
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2. Replace each remaining letter by the line to which it corresponds. 

We should first note that in a simple Dyck word, the inverse letters have parities 

of distinct rank. In the numbering obtained, all the lines are thus numbered, and 

two successively numbered lines are separated by at most one other, namely 

the line corresponding to the deleted letter, if it is not identified with either one 

of these two. 

Examples: We are given the tree below (Fig. 16). We construct a simple Dyck 

word, o, and apply the Hamiltonian algorithm numbering of the lines. 

Fig. 16 Fig. 17 

c=npbre cfd dee yaad. ai 

instruction l:acde' fb’ 

instruction 2: AC DEF B 

T3 is proved by treating the Dyck word of the tree with the following algorithm. 

Algorithm for the Hamiltonian numbering of points 

1. In a simple Dyck word o of a tree, recopy the letters of odd rank. 

2. To each recopied letter e associate its left point if e precedes e in 9, its right 

point if e precedes e’ in o. 

3. At the head of the list thus obtained, place the left point of the first letter of 

0. 
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Example: 

sasabhecad ef’ feba’ 

instruction 1: ARE COL et VOLS OB" 

fistructionas)- Siu Zz yp lex ft 

mustuctions: rs. uw os yporx ft 

Fig. 18 4 

The above algorithm leads to a numbering of all the points because it defines the 

ordered mapping Ÿ given in definition 4 for trees. As for the jumps from one 

point to its successor in the numbering, they were at most one for the line 

ordering and thus at most two for the extremities of these lines. 

2. Rooted semi-lattices 

2.1 Rooted trees and partial order 

Définition: A rooted tree with the root r is a connected graph, A = (X, U, J, T) 

where T is an injection whose image set is X— {r}. The elements of U, called 

arcs by some authors, can be represented in this case by the ordered pairs (Ju, 

Tu) without ambiguity. 

Exercise: Every vertex is a descendant of the root. Said another way, for x GX, 

either (r, x) € X, or there exists a path (, Zu liste yas (Zp, x)each element 

of which is an element of U. 

Fig. 19 
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Note: Trees in ‘free words’ defined in 1.1 are, in fact, rooted trees, since they are 

planted on the vertex that initially served for their coding. Moreover, since there 

exists #17? trees planted on the root r, and n possible roots, there exists n/- 

rooted trees on 7 points. 

A rooted tree can be made to correspond to an order O4 on X (see chapter 2 

on ‘Ordering and classification’) that is, a certain set of ordered pairs O 4: (x, y) 

€ O4 is equivalent to saying that x <y. OA is defined as follows: 

1.UC Ox: every arc of A is an element of O4. 

2. For each x of X, (x, x) € O4; (O4 is reflexive). 

3. For every (x1, x2) € O4 and (x2, x3) € O4, (x1, X3) € O4 (O4 is 

transitive). 

4. The only elements of O4 are those deduced from (1), (2) and (3). 

We say that O4 is obtained by the reflexive and transitive closure of U. Thus, 

the rooted tree of Fig. 20 generates the relation for which the network is that of 

Fig. 21. 

Fig. 20 Fig. 21 

Therefore, O 4 is unique because (x, y) is an element of O4 if, and only if, y is 

descended from x. O4 is, by definition, a reflexive and transitive relation: it is a 

quasiordering. To show that O4 is really an order, we must show that O4 is also 

anti-symmetric. Were this not the case there would be two distinct elements x 

and y in X such that 

(x,y) € Os" yand © (y, x) 0: 

But in A there was a path from x to y and another from y to x which contradicts 

the injective character of J as well as the existence of a root for which all the 

vertices are decendants. Therefore, O4 is an order. The order O4 associated with 
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a rooted tree has the following properties: 

1. Each distinct element of the root ‘covers’ another unique element in the 

technical meaning of order because here: 

y covers x * (x, y) EU, 

or T is an injection. 

2. Given two elements x and y, the set of elements greater than x and y has a 

minimum. 

If one of these two elements is r, r is that minimum, otherwise x covers x, which 

covers X2,ifx, =, etc. Therefore there exist two sequences of covers: one from 

x tor, the other from y tor. As a consequence of (1), if the same letter appears 

in the two sequences, then the two sequences are identical to the right of this 

letter. The maximum subset (reduces at most to r) thus constitutes a set of 

elements greater than both x and y and the first letter common to the two 

sequences (r for example) is its minimum. 

Example: 

fdbr 

abr 

thus 

fiaz=b 

similarly 

fAc=r 
GAD = D 

ar=r 

OA is a semi-lattice. This type of semi-lattice is discussed in chapter II ‘Ordering 

and Classification’ under the name frees. 

2.2 Reorientation of the lines of a tree 

Let A be a tree (X, U, J, T). If ris a point of A, we can orientate (direct) or 

reorientate the arcs of U to obtain a rooted tree A, of root r. We will let U, 

stand for the set of arcs of A, 

This reorientation is obtained by applying two simple rules: 

1. If /(u) =r & Tu) =x, orif Tu)=r & I(u) = x, then (r, x) € Uy. 

2. If (x, y)EU,, andif I(u)=y & T(u) =z, or Tu) = y & I(u) =z, then (y, 

zyEU,. 
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Fig, 22 Tree A Rooted tree Ay 

We need only refer to the algorithm for the simple Dyck words of A (in 1.2.1) to 

see at once that A, is a rooted tree of root 7 and that the reorientation of A ina 

rooted tree of root r is unique. | 

This suggests a new definition of trees. 

Seventh definition of trees 

À tree is any graph identified with a rooted tree after a change in direction of 

one part of its arcs. 

The definition of rooted tree is given in section 2; it is easy to relate this seventh 

definition of trees with definition 4 above. 

2.3 Various uses of rooted trees 

A large number of configurations of situations can be represented by rooted 

trees. A few examples will be given below. 

2.3.1 Rooted trees and classification 

One of the usual ways of classifying the objects of a set is to define a series of 

partitions on the set which are made finer and finer (nesting partitions). Thus, in 

zoology, the set of all animals is divided into branches, classes, orders, families, 

down to the individuals themselves. 

An example of this type of organization is this book which is first divided 

into articles that are themselves subsequently subdivided into sections and 

subsections. The rooted tree of Fig. 23 illustrates the organization of this article. 
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2.3.2 Exponential trees, factorial trees 

The set of all words written in a finite alphabet F of cardinal n, can be 

represented by a rooted tree. It will be finite if we limit it to words that are less 

than equal to a finite k for example. This rooted tree is said to be exponential. 

Example: E = {a,b,c} n=3, k= 3 

Each vertex has three successors: there are three words of one letter, 3 X 3 = 3? 

words of two letters, 3° words of three letters, etc. In general, there are nk words 

of k letters in an alphabet of n letters. 

Another classic type of rooted tree is obtained by. only constructing the 

words in which the same letter does not appear twice. This rooted tree is said to 

be factorial. 

ab ac ba be ca cb 

abc acb bac bca cab cba Fig. 25 

Each vertex has one successor less than its predecessor. There are n(n— 

1) ...(n—k+1) words of length k without repeating the letters in an alphabet of 

n letters, and n! = n(n—1)...2.1 such words for k =n (thus six words for k =n 

= 3). This is in fact the number of permutations of n objects. 

Figures 24 and 25 have been drawn with one convention: an arc representing the 

adjunction of the letter a is further to the left than that of the letter b, which is 

itself further to the left than that of the letter c. We can therefore use the 

properties of the plane of the sheet of paper to define a particular word of the 

root tree constructed as follows: 

1. start with the root; 

2. never follow the same arc twice in the same direction; and 

3. at each vertex choose the arc that has not yet been traced and which is 

farthest to the left. 

This word is a particular case of the words obtained by the algorithm of section 



Trees 37 

1.2.1. The difference between the two is due to the restrictions that make the 

word defined above unique. 

Let us consider the order in which the vertices are encountered for the first 

time. For the tree in Fig. 24, this order is a, aa, aaa, aab, aac, ab, aba, ..., ccb, 

ccc. For the tree in Fig. 25 it is a, ab, abc, ..., cb, cba. In either case it is the 

Lexicographic order associated with the alphabetic order a, b, c. The lexico- 

graphic order is used in the quasitotality of dictionaries. 

2.3.3 Generative tree and parenthesization 

Many linguists perceive the structure of a sentence through the use of trees. The 

sentence is subdivided into nesting blocks. We shall borrow an example from 

Gross and Lentin® : The child picks an apricot. 

SE 
SE: sentence 

NG: nominal group 

VG: verbal group NG VG 

AR: article of, K 

NO: noun “fe se 

VE: verb Vas 

AR N( 
AR NO 

Fig. 26 The child picks an apricoi 

The rooted tree obtained, a generative tree, cannot be anything but unique. It 

corresponds to a system of parenthesization of the sentence: 

(the child) (picks (an apricot)). 

Another system of parentheses would generate another rooted tree. 

2.3.4 Optimization by recurrence on decision trees 

In many situations we are led to consider a set of linked states, or situations 

related to one another, in such a fashion that the set is easily described by a 

5. See bibliography. 
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rooted tree. This is a particular case of a large number of games and decision 

problems. 

Example 1. A traveller can reach a nonmaritime city by plane (A). He could also 

take a boat (B) and finish his trip by car (C) or railway (D). The set of these 

possibilities can be summarized by a rooted tree. 

H 
+ 

LIT/NTE HT/\HH 

THT THH HTT HTH 

Fig. 27 Fig. 28 

Example 2. Two players toss a coin, H for heads, T for tails. The game ends as 

soon as two heads or tails have been obtained, not necessarily consecutively. 

Example 3. Two players A and B play as follows. A chooses 1 or 2. B adds 1 or 2 

to the number chosen by A and so on. The game ends when one of the players 

reaches 5, the number that cannot be exceeded. Each player in turn is placed 

before a problem of choice. The set of outcomes of possible games can be 

represented by the set of descending pathways in the following rooted tree. 

Beginning 

ap 

eNOS : “ao 

pee] 5 5 

Fig. 29 
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In this sort of problem, the study of optimum choice is not made starting from 

the root, but rather from the vertices that have no successor and working back 

towards the root. Also, in example 1, of the traveller wishes to make his trip as 

economically as possible, he should first compare the cost of the car and the 

railway, and then add the /owest of these two alternatives to the cost of the boat 

in order to make his choice between the various conveyences and the plane. 

In example 3, suppose that the winning player is the one who gets 5 first. Put a 

box around the vertices having no successors and which represent a victory for 

A. The other five vertices represent a victory for B. By working back up the 

appropriate side of the tree (taking into account the name of the player whose 

turn it is) it is possible to partition all of the vertices of the rooted tree. That is, 

it is possible to partition all of the situations found in the game into a set of 

situations favourable to A (boxed) and a set of those favourable to B. The 

beginning having been boxed, A has the ability to win without fail if he does 

not make an error (by playing according to the stressed arcs). 

Such recurrent optimization reasoning had already appeared in Pascal’s 

treatise on ‘Triangle arithmetique’. It has been more recently given a name 

related to modern economics: dynamic programming. 

3. Modules on trees 

3.1 Trees of a graph 

3.1.1 Definition: A quadruplet (X, U, J, T) is called a graph G where 

X is a set of the vertices of G; 

U is a set of the arcs of G; 

I: U>X and J(u) is called the initial extremity of u; and 

T: U- X and T(u) is called the terminal extremity of u. 

If X and U are finite, we can write X1= # and IUl= m. 

We shall give an example of a graph that will be useful later. 

G = (X, U, I, T) where 

Xi fx sy) 2,1} n= 4 

U = {a, b,c, d, e, f, g, h} m= 8 
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I and T are given by the following diagram: 

u a b c d e i g h 

Ku) | x y y x Zz t x t 

T(u) iz; t x z y y x 2 

This graph is represented 

by the following figure: 

Fig. 30 

The partial graph G(A) of G where A C U is the graph G after all the arcs not in 

A have been erased. We shall call the boundary of an arc U the sum of the 

extreme vertices of u and write it du: 

Ou = I(u)+T(u) 

The addition to be discussed here acts on elements of the same set; also it is 

commutative, has a zero term and each element is its own inverse (x + x = 0). 

Such are our conventions. 

What then do we call the boundary of a sum of arcs? By definition the sum of 

their boundaries: 

O(u1+u2+...u,) = OU, +O0ue+ ... +Ou, 

Example: 

Oa = x+z 

Oc = x+y 

O(a+c) = x+x+y+z=0+y+z=y+z 

The notion of boundary brings us to a new definition of trees. 
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Eighth definition of trees 

A tree is a graph for which the equation of the boundary 0z = A has a unique 

solution in Z for all subsets of even cardinality of the vertices. 

This definition can be reduced without difficulty to definition 5 for trees. For 

this we need only observe that the boundary of the edges of a word is none 

other than the sum of the two extremities of this word. 

A graph G is said to be connected if each pair of vertices is the boundary of a 

sum of arcs. In the example we have: 

o(a+d) = 0 

O(c+d+e) = 0 

o(a+d+c+d+e) = 0 

Thus there exists sums without a boundary. 

We call a cycle of G all arc sums having a zero boundary. The sum of two 

cycles is another cycle. 

3.1.2 Ninth definition of trees 

À tree V of a graph G is any subset V of its set U of arcs (or sums of arcs) not 

including cycles other than O, and maximal with respect to this property. (Note: 

If V is a tree of G, G(V) is not necessarily connected.) A ‘tree graph’ is any 

connected graph (X, U, 1, T) for which U is a tree. 

The equivalence of definitions 8 and 9 can be shown in two steps: 

— the existence of a solution to the equation 5Z = A (for A of even cardinality) 

is equivalent to connectivity; and 

— the uniqueness of a solution is equivalent to the absence of all cycles other 

than zero. 

For this second point, in fact: 

[0z, =A & O22 = A] = O(z1+22) = At+A=0 

Let G be a connected graph and W a subset U such that G(W) is acyclic. If card 

W = n—1, Wis a tree. If card W<n—1, G(W) is not connected but there exists in 

G arcs that join the connected components of G(W), since G is connected. Let u 

be such an arc: G(W U {u }) is acyclic and card (WU {u }) = card (W)+ 1. 

This complementation could be extended until a tree G has been obtained; 
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from this we get two propositions: 

— every connected graph includes at least one tree as a partial graph; and 

— in a connected graph, every set of arcs without cycles is contained in at least 

one tree. 

3.1.3 Trees and linear independence 

Suppose G has no loop (in the graph in Fig. 31 arc g is a loop). Let £ be the 

family of subsets of U which do not contain a cycle. We have: 

l.wuc, {uye L 
2VELadWeVeWEL 

3. Y U’ CU, the maximal elements of in U’ all have the same cardinality. 

The maximal elements of -2 in U’, that is, the subsets without cycles of U’ 

that are not contained in any other subset are the trees of G(U’). Property (3) is 

thus proved. Property (2) expresses the fact that every subset of a set of acyclic 

arcs is itself acyclic. 

The families of subsets which satisfy the axioms (1), (2) and (3) have a 

number of properties. We say that the ordered pair (U,.£) is a matroid for which 

Lis the family of independent subsets. The independent subsets in a vector 

space also satisfy (1), (2) and (3). Bases in vector spaces (maximal independent 

subsets) correspond to trees (subsets without maximal cycles). It is for this 

reason that (1), (2) and (3) (or axioms equivalent to them) are sometimes said to 

be the axioms of linear independence. 

The relation between trees and linear independence will become apparent in 

the following paragraph. 

3.2 Flows and tensions 

3.2.1 Flows in a graph 

In many problems we are led to assign a number to each arc (respectively vertex) 

of a graph, which is then said to be valued. We are thus given a mapping from U 

(respectively from X) to a set of numbers. 

Thus if U= {a, b,c, d,e} 

and if v: U > Z is defined by: 

v (a) = 3; Ac) = —2; Ad) = 1; »(b) = ve) = 9, 

then the map can be represented in the usual way by a vector v = (3, 0, —2, 1, 0). 
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As usual let Z be the set of relative integers: 

D1. Wey ay le ee he 

We can also write: 

vy = 3a—2c+d 

This latter form is more convenient and we shall use it here. v is an element of 

ZU the set of maps of U into Z.° We represent a as the vector (1, 0, 0, 0, 0) and 

similarly with b, c and d, 

The elements of ZY, can be added. If u = 2a-—3b+2d, then 

v+u = (3a—2c+d)+(2a—3b+ 2d) 

= 5a—3b—2c+3d 

or they can be multiplied by an integer 

2v = 2(3a—2c+d) = 6a—4c+ 2d 

Division by an integer is not always possible, but we will not need this operation 

for our calculation. ZU is thus a non-divisible abelian group (see Chapter VI, 

‘Measure Scales’). Expressions such as 3a—2ctd can also be considered as 

elements of a commutative free group generated by U (see Chapter V, ‘Monoids 

and Groups’). 

With multiplication by integers, ZU is a module on Z. We have, in fact: 

(Z1+Zo)v = Ziv+ Zov 

Zi(vt+v’) = Ziv+Ziv 

Zi(Zov) = (Z1Z2)v = Zi Zev 

Vi Zo Gl tut VIN CCR 

In this paragraph, we will consider the elements of ZU. We could, however take 

another set of numbers other than Z with a structure weaker or stronger: the 

field of rational numbers, for example. QÀ et QU are vector spaces on Q. The 

properties of modules are satisfied, and further, the division by a rational 

number is always possible. One can also take a non numerical structure, an 

abelian, for example. (We shall seg such an example in section 3.3.2.) 

6. If A and B are two sets, we write AB as the set of mappings from B into A. Recall also 

that if A and B are both finite (here Z was not) we have the following equality: 

|A?| = |A|!?! 
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We shall now define the boundary du of an arc by 

du = T(u) — I(u), 

and for any element of ZU, the boundary map is a morphism of ZU into Z*: 

O(Ziu+Zov) = Zi Ou+ Ze Ov 

where Z1, Z2 © Z,v pe ZU. The boundary can be calculated from its trees. 

Take the graph in Figure 30: 

O(2a+e+b) = 20a+0e+0b 

= 2(2—x)+(y—2)+(t-— y) 
= —2x+z+t 

An element y of ZU is called a flow when 

op = 0 | 

Let ® be the set of all flows. We have: 

P1, P2 € D > O(91+ G2) = 091+ 092 = 0 = pitpe € D 

pED, neZ = Onp = n Op = 0 = np € D 

Thus © is closed under addition and multiplication by an integer and is itself a 

module on Z, a submodule of ZU. 

Flows can be defined in an equivalent fashion, but more graphically, by. 

saying that on each vertex of G the sum of the numbers on the “entering arcs’ is 

equal to the sum of the numbers on the ‘leaving arcs’. This is known as 

Kirchhoffs law for electric currents. 

Example of a flow: © = 4a+b+3c—d+2e+2f—h 

c( 3) 

b(1) 

h(-1) Fig. 32 

A flow is obtained by following a cycle in a determined directions and by 

assigning +1 to every arc in the given direction, —1 to each arc in the opposite 
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direction. yp; = c+d—h+f or y2 =a-d are such flows in the graph above. 

3.2.2 Tensions in a graph 

We will call a potential an element of ZX. The tension corresponding to the 

potential 7 is the element of ZU which assigns to each arc u the integer: 

rÎT(u)]- r{{(u)] 

Thus, the potential 2x—y gives the tension —2atb+4c—2d—e—f in our graph: 

Fig. 33 

As was the case for flows, tensions form a submodule of ZU which we designate 

by Q. 

— The sum of two tensions is a tension given by the sum of their potentials. 

— The tension w corresponding to the potential 7, multiplied by an integer n is 

the tension given by the potential n7. 

Let y be a subset of X. To this subset can be associated the potential that makes 

+1 correspond to every vertex Y, 0 to every other. The corresponding tension is 

written in the form of the sum of the arcs ‘entering Y’ less the sum of the arcs 

‘leaving Y’. 

Thus, to the potential 7 = x+z corresponds the tension w = c—eth in our 

example. 

3.2.3 Trees and modules 

The importance of trees in flows and tensions is the result of the following 

important theorem: 

1. The map which assigns to each tension w € Q its trace on the tree A is an 

isomorphism between (2 and ZA, 

2. The map which assigns to each flow y € ® its trace on the co-tree A’ is an 

isomorphism between ® and ZA’ 
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Example: Let us take the tree {c, e, h } in the graph of Fig. 32 and 33. The 

tension of Fig. 33 has as its trace on A the element 4c—e of ZA. While the flow 

in Fig. 32 has as its tree on A’ the element 4a+b—d+2f of ZA’ 

To define a tension (or alternatively a flow) is thus to list n—1 (or m—n+1 if 

it is a flow) numbers, and not m which is all we need when a specific tree has 

been chosen. The operations of modules (addition and multiplication by an 

integer) will be made on these reduced lists. 

Let us show by an example the exact role of a tree. In Fig. 34 below the arcs 

of the tree {c, e,h } =A are stressed. 

Fig. 34 

The arc a determines with a subset of the tree, the cycle { a, e, c} from which, 

as we have seen in 3.2.1 we obtain the flow 

Pa = a+e+c 

Similarly 

b+ 9, = b+e+h 

d+ p; = d+e+c 

fo =f-e-h 

These flows are independent. For example yg is the only one to assume a 

nonzero value on the arca: thus it cannot be a linear combination of the others. 

It follows from the theorem above that ,, op, #q; Ff all generate flows. In fact, 

let us take a flow y such that 

pa)=4 pb=1 pd=-1 PY) =2 

The theorem states that this flow is unique. Thus we have: 

p = APa+ pr — Pat 2Pr 
= 4a+b+3c—d+2e+2f—h 

This is the flow shown in Fig. 34. 
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The deletion of an edge of a tree destroys its connectivity. Thus the deletion 

of c divides the partial graph G(A) into two subgraphs, the set of vertices {x} : 

on the one hand, and {y, z, t}on the other. As we have already done to this 

partition of X, we can associate the tension 

we = c—a—d 

and 

e<+ We = e—a—b—dif 

h +> w, = h—b+f 

These tensions are independent and generate the whole of 2. Indeed, let us take 

as an example the tension w such that 

w(c) = 3 w(e) =—1 w(h) = 0 

The only tension that satisfies this relation is: 

@® = 30,—0, 

= —2a+b+3c—2d—e—f 

What we have just shown for a simple example is a general result. The modules ® 

and Q are furthermore othogonal. Therefore we have: 

ve € ®, yo €Q 

pean Behe) = 0 

This orthogonality is very easily demonstrated by first taking the simple flows 

and tensions, we have just considered, and generating all of the others. 

3.3 Cycles and cocycles 

3.3.1 Let us replace Z by the field 2 of ‘integers modulo 2’, derived from Z by 

setting 1+1 = 0, whence —1 = +1, giving us the mapping: 

n> Oifn is even; and 

n> 1 ifnis odd. 

The addition and multiplication tables of 2 are: 
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Gun 0 1 = 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 

Let p be an element of AU; p is a mapping of U into 2. If p(a) = p(d) = 1 and 

p(u) = 0, yu € {a, d}, we can write p = atd. We can make the subset {a, d} of 

U, correspond to p. This correspondance is a bijection and in what follows we 

will identify elements of 2U and subsets of U, which will premit us to use set 

symbols. 

2U is a vector space with addition defined by: 

wu € U, u+u = (1+1)u = 0 

This is the same sum given in section 3.1.1 on boundaries. We will, in fact, find 

this first type of boundary, thus completing iis study. Therefore, if 

p = a+d and g=a+b+h 

p+g = a+d+a+b+h=b+d+h 

which is the symmetric difference of sets. More generally if p1,..., Pp are 
r 

elements of 2U (subsets of U)p = Y Pp; is the sum of elements p; present an 

odd number of times. Sat! ; 

Scalar multiplication for this set is trivial (we can only multiply by 0 or 1). A 

peculiarity of vector spaces on 2 is that every subgroup for addition is a vector 

subspace. 

3.3.2 Cycles and cocycles 

In this section we shall return to some of our results about flows and tensions: a 

part of what has already been said thus remains valid for this discussion. We shall 

also consider certain notions already introduced. 

The boundary mapping du = T(u) — J(u) becomes with our rule —x = +x: 

Qu = T(u)+1(u) 

We thus ‘lose’ the orientation of the arcs since /(u) and T(u) play the same role. 
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à is a morphism of w into 24. We shall define a cycle as any set of arcs w 

such that dy = 0. 

Therefore, any vertex of a graph G is attached to an even number of arcs of w. 

The cycles form a subgroup of 2U: the sum of two cycles is a cycle. 

x Cc y 

2 h t Fig. 35 

gy=ctd+e p=eth+f pi+Pa=c+d+h+f 

The notion of tension given in section 3.2.2 corresponds here to that of a 

cocycle. The cocycle w(Y) is the sum of the arcs which have one extremity in Y 

and the other in X—Y. We thus have: 

w(Y) = o(X—Y) 

and 

o(Y)+0(¥’) = o(¥+Y’) 

where the + sign represents both types of addition defined above. In particular, 

we have for any cocycle: 

oY) = Yo) 
xeY 

The set, 2, of cocycles is a subgroup of 2U. As there are elementary cycles so 

there are elementary cocycles, those that do not include other cocycles. 

x Cc y x Cc 

FEAT 

Z v Z 
cycle c+d+e cocycle o(x)=a(y+z+t) 
O(c+d+e)=x+yt+x+t+y4+t=0 =a+d-+-c 

Fig. 36. Cycle and co-cycle 
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Example: In Fig. 35, the cocycle w1 =cteth is elementary (wi: = u(x+z)). The 

cocycle w2 = u(xtt) = atb+c+d+fth is not elementary. It is the sum of the 

disjoint elementary cocycles w(x) = atc+d and a(t) = btfth. 

These cycles and cocycles are the ‘base of oddness’ of flows and tensions: to 

any flows ¢ corresponds the cycle y, which is the sum of the arcs u, such that 

Qu) is odd. To every tension @ corresponds the cocycle ©, the sum of the arcs 

U such that @(U) is odd. 

Therefore the flow in Fig. 32 gives the cycle: 

c+d+h+b. 

The potential shown in Fig. 33 gives the cocycle: 

ay) = ctetftb. 

333 Let A be a tree of G, and A’ = U-A the corresponding cotree. The 

theorem of section 3.2.3 can be transformed as follows: 

— The map Q into 2A defined by w > w NA is an isomorphism. 

— The map ® into 2A’ defined by y > y NA’ is an isomorphism. 

There is a bijection between the cocycles and their intersection with A, and 

furthermore we have (wtw’) NA = (w N A) + (w’ N A). Similarly for the cycles 

and A’. 

This can be clarified by an example: the edges of the tree A = {c,e, h } are 

stressed. 
Cc 

h Fig. 37 

As in section 2.3.2: 

a—+pa—atc+e 

b — o = b+e+h 

d + o4 = d+c+e 

f > o =fteth 
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From A’, for example, b+d corresponds to a cycle: 

Pa + Ya = btctdth 

All of the cycles can be obtained in this manner. Therefore there are as many 

cycles as subsets of A’, that is 2m—n+1 including the ‘empty cycle’. 

Similarly 

e+ we = e+a+d+f+b 

h + wo, = h+b+f 

And there are as many cocycles as there are subsets of A, that is gn], including 

the ‘empty cocycles’, which is no other than «(¢) = w(X). From these results, 

two new definitions of trees can be obtained. 

Tenth definition of trees 

Let G bea graph. A tree of G is a subset of its set of arcs such that: 

1. it intersects every non-empty cocycle of G; and 

2. it is minimal with respect to this property. 

A graph-tree is a graph (X, U, 1, T) for which U is a tree. 

Eleventh definition of trees 

A tree is a connected graph such that every subset of its lines is a cocycle. 

3.4 The minimum tree of a graph: ‘minimax’ paths 

Suppose we are given edges of G, without loops, totally ordered and non- 

directed (orientated). Then there is a specific tree Ay of G called the minimal 

tree which can be constructed as follows: We have U= {t1,..., Un} and u, < 

Uz <...<Uy. Then ui € Ao, and uz E AG eu, + Ur ¢ ® the set of cycles of 

G. And in general u, € À, if, and only if, u, does not form a cycle with the 

edges already included in Ap. 

Finally, we obtain a set of edges without a maximal cycle, because any edge 

not included gives a cycle with A,, and hence 4, is a tree of G; Moreover, 4, 

has the following properties: 

1. the smallest edge of any cocycle is in A,; and 

2. the greatest edge of any cycle is in U-Ay = A”. 

A’, is the maximal cotree of the graph G. Let us take the alphabetic order for 
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the edges of the graph of Fig. 37: the minimal tree is À, = {a, b, c } the 

maximal cotree is A’, = {d,e,f,h}. 

An example of application. The vertices of G are the objects between which we 

have defined a distance index: the higher the index, the ‘farther’ the objects are 

apart. We wish to go from x to y by a path such that the greatest ‘distance’ on 

the path will be the smallest possible (we wish to minimize the greatest 

‘distance’): this is minimax. Thus we will take the path contained in the minimal 

tree of the graph (with the order of the edges furnished by the index). Another 

path determines, in fact, at least one cycle with this one, and the longest edge of 

this cycle is not in the minimal tree. 

3.5 The transport problem 

The transport problem is the following: we are given a set of sources or 

distributors S = {5,..., Sj. +» Sp }; a set of wells or clients T = {f1,..., 

tj... tg } a set of communications between the sources and the wells. ui EU 

_ connects the source s; to the well f;. Each source s; has available a quantity &; of 

material for which each well requires a quantity 7). 

Symbolically we have: 

Pp q 

pa t= is i 
i=1 j=1 

. The problem is to optimize the traffic, taking into account the limited capacities 

rij and the cost of transport cj; per item of material on the connection uj; 

We can express this with a graph, to which we can add one principal source sy 

and a principal well to, as well as a return arc up, as is shown in the following 

diagram: 
a Gp ty 

Fig. 38 
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The problem is thus to find the optimal flow on this graph. Another aspect of 

the role of trees is that in which the capacities r;; are infinite. Let us consider a 

simple example: 

4 ty 

Sy tb Fig. 39 

Let us suppose that the most economical cost of transport is #11: it would be 

advantageous to have the maximum amount of marchandize go by this arc. That 

is, all that r requires and all is furnished by s, will use that path. 

In any case, one of the axes w12 OF U1 will remain empty. The transporta- 

tion will not be affected on cycles composed of the edges of the graphs but 

rather on those of a tree. This can be generalized to having any number of 

vertices. 

Exercise. Let G be a finite and connected graph, and X its set of vertices. The 

length of a word is defined as the number of letters of this word. The distance 

d(x, y) between two vertices x and y is the smallest length of the word 

connecting x and y (the length of the ‘shortest path’ between x and y). d(x, y) 

will be such that: 

1. for every x of X, d(x, x) = 0; 

2. for every pair of vertices (x, y), d(x, y) 2 0; and 

3. for every triplet of vertices (x, y, z), d(x, z) < d(x, y) + dO, z) (triangle 

inequality). 

These properties make d a distance in the mathematical sense of the term. A 

diameter 5 of the graph is the greatest of the distances between any two vertices 

of the graph. A diametrial path is a word of length 5 connecting two vertices x 

and y: d(x, y) = 5. A center of the graph is a vertex c such that its greatest 

distance to any other vertex is the smallest possible. This distance p is the radius 

of the graph. It corresponds to the notion of radial path of length p, connecting 

c to a vertex z such that d(c, z) =p. 

A finite graph always has at least one diametrical path, at least one radial path 

and at least one center. The following statement can be proven: 

Let A be a tree of diameter 5. If 5 is even, A has only one center c and its 

radius is p = 55. All the diametrical paths pass through c, and are the union of 

two radial paths. If 6 is odd, A has two centers, ©, and cz, and p = $(5+1). All 
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the diametrical paths go through c, and c; by a ‘central edge (C1, C2). They are 

the union of two radial paths one for each center. 

To prove this we begin by considering a diametrical path of the graph and on 

this path find the location of each central point. Throughout we make use of the 

fact that the elementary path joining two vertices of a tree is unique. 

Exercise: Let D be a straight line. The interval between two points a and b is the 

set of points located between a and b on D, a and b can be included or excluded. 

For every set {a, b, c } of three distinct points on the line there is a point 

common to all intervals that contain al least two of the three points a, b, c. 

There is a point b, for example, which is between the other two. Every interval 

containing a and c also contains b. We wish to show an analagous property for 

the words of a tree. We are given a tree. For any set { a, b, c } of three distinct 

points of the tree, there is within it a point through which pass all the words of 

the tree (in the sense of section 1.2) which pass through two of the three points 

a, b, c (by saying that a word passes through a point if this point is to the left or 

the right of at least one letter of the word). 

We can begin by considering the case, analagous to that of the straight line, 

where the shortest word joining the two others passes through one of the three 

points a, b, c. Alternatively, we could turn our attention to the shortest words 

between a and b, b and c, c and 4, and show the existence of a ‘crossroad’. The 

desired result is equivalent to the following. 

_ If each pair of words of a tree pass through a common point, there is a point 

of the tree common to all words. This is Helly’s property, for which the tree 

constitutes a generalization of line segments. 
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2. ordering and classification 

by B. Monjardet 

Classifications and hierarchies are common in society: individuals are classified 

at school, in the army and in civilian or professional life. The criteria of 

classification can be age, height, ‘average grade’, family situation, professional 

rank, income, etc. The individual himself has preferences when, for example, he 

establishes an ordering on the set of goods he will consume. At the collective 

level, an enterprise has multiple problems of choice: investments, commercial 

strategies, publicity methods . . . For decisions to be made, it is necessary to 

establish an ordering within the set of possible choices. On a more technical 

level, an entreprise, an administration, or even an individual has problems related 

to the classification of documentation. In short, a multitude of facts, social or 

individual, public or private, have a classification component. 

What are the characteristics common to all classification situations? We begin 

with a set of objects to order; the very operation of ordering introduces a 

relationship between these objects since two objects are either placed together, 

or one before the other. In both of these cases, if the object A is classed before 

(or with) object B, and if object B is placed before (or with) object C, object A 

has been classed before (or with) object C. In the language of mathematics, we 

say that the ordering relation is transitive. The mathematical study of ordering 

and classification is thus the study of transitive relations. These relations are 

called quasiordering relations if they satisfy, in addition, the property of transi- 

tivity and the property of reflexivity, which though minor in themselves, are 

useful from the point of view of mathematical technique. 

Section 1 of this chapter will be thus devoted to the study of the quasi- 

| ordering relations of a set. We have just emphasized the property that is common 

to ordering: transitivity, but there are also some important differences. If À is 

ordered with B, while B is ordered with À, then there is a symmetry in the 

relation ‘ordered with’. On the other hand, if A is ordered before B, while B is 
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not ordered before C, then we have the converse of symmetry, and we say that 

the relation ‘ordered before’ is antisymmetric. Thus, we shall distinguish be- 

tween symmetrical: quasiordering — also called equivalence relations — and 

antisymmetrical quasiordering also called ordering relations. The former will be 

studied in section 2 where we will show their equivalence with the ‘partitions’ of 

a set. The latter will be studied in section 3 where we shall define certain 

orderings of particular importance such as lattices and trees. What we learn from 

these two sections will permit us, in section 4, to return to the case of any 

quasiordering and show that they are always ‘decomposable’ into an equivalence 

and an ordering. Finally, in section 5 some applications of the notions already 

presented will be given. 

It should be pointed out that the mathematical concepts introduced in this 

article are neither numerous nor complicated. They essentially involve such 

relations as binary, quasiordering, equivalence, partitions, orderings, trees and 

lattices. Nevertheless, they suffice to formalize the non-negligible aspects of a 

host of daily situations. The mathematical model thus introduced is hardly 

onerous and is very useful. First, because while some of those properties that 

follow the model are intuitive and correspond to our experience, there are others 

that are contrary to ‘common sense’ and require the aid of a ‘calculus’. More- 

over, because the language of mathematics is precise it often leads to a clarifica- 

tion useful in the investigatory methods of the social sciences. As for the 

inherent limitation of mathematical models, the specialists in the social sciences 

will be even more conscious of them when he has a better understanding of the 

mathematics to which this article is to introduce him. 

1. Quasiorderings 

A quasiordering on a set E is a binary relation on the set E which is transitive 

and reflexive. 

We shall first make explicit the notions of binary relations of transivity and 

reflexivity. Then we shall give some examples of quasiordering, and finish with 

a typology of quasiorderings. 

1.1 Binary relation 

Let E be a set. Recall that the cartesian product of the set F on itself is the set of 

ordered pairs (x, y), where x € E and y € E. We shall write this set as EXE o1 | 
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E?. It can be represented by a two-way table, where each box represents a pair. 

For example, if E = { a, b, c,d}, E? can be represented as follows: 

Te b c d 

é (a, a) aad 

b DT LE 
@ (c, b) nd 
x pot isn 

A binary relation R on a set E is a subset of the cartesian product E 2. 

RCE? 

If the pair (x, y) belong to the relation R; (x, y) € R, and we say that x is in 

relation with y, which can also be written: x R y. 

We can consider all the elements with which a particular element x is in 

relation. Thus we obtain a subset of £, which may be empty, and write it R x. 

One of the ways in which we obtain a relation is precisely that of forming the 

subsets R x for all the elements of £, as in the following example. 

Example 1: We shall examine the forces of attraction or repulsion in the interior 

- of a group of eight students: Armelle, Bernard, Cornelia, Dominique, Evariste, 

Fougére, Gaspard and Helen. Among the possible experiments is the following: 

we ask each student to choose the friends with whom he would like to study. 

We thus obtain a table that defines a relation R in the set E = {a, b, c,d, e, f, 

g, h } of eight students: 

Ra = {b, d, g} 

or 

aRb,aRd andaRg 
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This relation can be represented graphically in several ways — by a cartesian 

graph, for example. On the two-way table representing the cartesian product E”, 

we can put a cross in the boxes representing the pairs of relations. Or, this 

relation can be represented by the network graph where each element of E is 

represented by a point, and the pair (x, y) belonging to the relation is repre- 

sented by a directed arc going from the point representing x to the point 

representing y. Thus, the preceding relation can be represented as follows: 

a x x x 

b| X à X 

À ISS Pee CME 
CELLES 

e x | X mn ÿ X | 

if x > pal x 

: Cn tron 

h aah x . 

Cartesien graph Network graph of R 

Fig. 1 

Note: We have defined a binary relation. We can define ternary, .. ., n-ary. In 

what is to follow, we shall restrict ourselves to binary relations which we will call 

simply, relations. 
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1.2 Transitive relation 

A relation (binary) R on a set E is said to be transitive if each time that x is in 

relation with y, and y is in relation with z, x is in relation with z. This can be 

written symbolically: 

VxcE, Vyé€E, VzeE, [xRy and yRz)=(xR2)] 

(V is read ‘for all’ and € is read ‘belongs to’; and we shall ‘decode’ with the 

conventions given in the above expression.) On the network of a relation, we 

recognize transitivity if we can obtain the configuration: 

y 

: les x Z Fig. 2a x Z Fig. 2b 

completed by an arc from x to z. The relation of this example is not transitive 

because we have b Ra anda R d without having b R d, for example. 

1.3 Reflexive relation 

A (binary) relation R on a set E is said to be reflexive if every element is in 

relation with itself, which is written: 

VENGE oc Rix 

This again means that all of the pairs (x, x) belong to the relation. Thus, in the 

cartesian graph of Figure 1, all of the boxes on the diagonal have a cross. In the 

graph of the network of R there is a loop at each vertex: 

x 

Fig. 3 

The relation of Example 1 is not reflexive, but it is easy to make it reflexive by 

changing the definition very slightly (how?); this illustrates that reflexivity is a 

minor property. 

1.4 Quasiorderings: examples 

Recall that a quasiordering R on a set E is a (binary) relation on E which is 

transitive and reflexive. If for three elements x, y and z of E we have: 
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LR Po RERO 

We say that these elements form a cycle of order 3. But according to the 

transitivity of quasiordering we have also: 

RE ZR Ye yER % 

In other words, in the network of quasiordering, a configuration of the type of 

cycle of order 3: 

y 

x Mi ST 2 Fig. 4a 

cannot exist unless it is contained in a configuration of the type: 

Fig. 4b 

We have the same result for a cycle of n-order. 

A set on which a quasiordering relation has been defined is called a quasi- 

ordered set. Such sets are common. For example, if E is a set of economic goods, 

the preference relation between these goods for an individual is a quasiordering 

relation. 

If E = P(x) is the set of the subsets of a set X, we define a quasiordering 

relation on £ by writing for A C X¥, BCX 

ARB =|A| = |B| 

(where |A lis the number of elements, or the cardinal of the subset 4). 

We will give other examples later on. 

Example 2: Let us return to the set E of students in example 1. In this set the 

relation ‘x is at most as old as y’ is a quasiordering relation. The ages of the 

students are as follows: 

AS D Oye Gi eo een 

1921 1920" 211618220071 
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and the quasiordering relation is represented by the following network: 

Fig. 5 

This is a complicated network and to simplify its graphic representation we can 

adopt certain conventions: 

1. A double directed arc is replaced by a single edge without an arrow: 

ac becomes qg@—ec 

Fig. 6 Fig. 7 

2. A transitivity arc (that is, an arc obtained as the consequence of two others by 

transitivity) is deleted: 

C 

f on d becomes PATATE d 

Fig. 8 Fig. 9 

3. A reflexive arc (loop) is deleted: 

ae becomes a. 

Fig. 10 
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Thus, the network previously given becomes: 

Fig. 11 

In general, the preceding conventions are used to represent the networks of 

quasiordering. 

Example 3: 

Fig. 12 

Example 4: f d 

a b C e Fig. 13 

Exercise 1: Before going any further, the reader should construct all of the 

quasiorderings on a set of first 2 and then 3 elements (there are 4 and 29 

respectively). For 4, 5, 6 and 7 elements there are respectively: 355; 6,942; 

209,527; and 9,535,241 distinct quasiorderings. 

1.5 Typology 

On a set FE, even one having few elements, we can define a large number of 

quasiorderings (see exercise 1). To see this more clearly we shall classify these 

quasiorderings according to supplementary properties that can or cannot be 
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satisfied. We shall consider three properties: 

Symmetry: For any x © R and foranyyEE,xRy#<yR x; 

Anti-symmetry: For any x € E and foranyy EE,xfyandxRy=yRx( 

(y not being in relation with x). 

Totality. For any x€E and foranyyEE,xfyandxRy=7YyR x. 

A symmetric quasiordering is called an equivalence. According to the conven- 

tions given above, the network representing an equivalence contains only edges 

without arrows. 

An anti-symmetric quasiordering is called an ordering. In a network of an 

ordering, two vertices are connected by at most one arc (never an edge). In the 

network of a total quasiordering, two vertices are connected by at least one arc. 

The properties of symmetry and antisymmetry are mutually exclusive unless 

there exists no pair (x, y) with x different from y in the relation. In such a case, 

the quasiordering reduces to D = {(x, x) x € E } and is said to be a diagonal 

quasiordering; it is the smallest quasiordering on &. If E = {x, y, z }, this 

quasiordering is represented as follows (with its reflexivity arcs) and is the union 

of loops: 0) 2 .) 

On the other hand, we can consider an antisymmetric, total quasiordering. We 

thus obtain what is called a total ordering. 

What can be said when a quasiordering is symmetric and total (i.e. when it is a 

total equivalence on a set £)? Since the quasiordering is total, any two elements 

are in relation; and since it is symmetric, they are in relation in both directions. 

Thus, any pair of elements of Æ is in the quasiordering and we obtain the 

universal relation U = E?. It is the greatest quasiordering on £; it is also called 

the universal clique. We have represented it below for a set F having respectively 

one, two, three, four, and five elements (the transivity edges are shown): 

Fig. 14 

Fig. 15 
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The different classes of quasiorders and their relations can be summarized in the 

following figure: 

antisymmetry + symmetry + totality 

binary relation 

quasiordering: transitive relation 

reflexive relation 

+antisymmetry symmetry 

ordering equivalence 

iorderin : 
beng ae total ordering 
diagonal D 

Exercise 2: In the 29 quasiorderings on a set of three elements, show that there 

are 13 total quasiorderings among which six are total orderings and five are 

equivalences. We note that in this case any quasiordering is an ordering, an 

equivalence, or a total quasiordering. Is this always the case (see Example 1)? 

+ totality 

total 
quasiordering Il 

Fig. 16 

quasiordering 

universal E? 

2. Equivalence relations 

2.1. Definitions and examples 

An equivalence relation on a set E is a symmetric quasiordering on F or a 

(binary) relation on F that is reflexive, transitive and symmetric. 

If x R y, where R is an equivalence, we say that x is equivalent to y 

(according to R). Instead of using the symbol R, an equivalence relation is 

often written as =. We write x = y (modulo R) or x = y (R) if (x, y) ER and x # 
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y (R) if (x, y) ER. In place of the sign = one sometimes sees the signs = or V. 

Examples of equivalence relations are numerous: the equality relation in a 

set, the relation ‘having the same parents’ or the relation ‘to be of the same sex’ 

in a population, the relation [4 | = |Bl in the set P(X) of the subsets of a set X, to 

cite a few. In a population the relation, ‘to be the brother of’, is not an 

equivalence (why?) but it can be easily transformed into an equivalence relation 

(how?). 

Example 5: Let us return to the set £ of the eight students of Examples 1 and 2. 

In this set the relation ‘to be of the same age’ is an equivalence relation that can 

be represented in the form of a table and a network as follows: 

tC be. he fi lds 2 

a RS Ss 

Ne log 

b i mes x y aqe———ec 4 

e X +X 

reat x |x | x 7 

f oat | X uy / à g 

d XX £ A 
x al er a 

Fig. 17. Table Fig. 18. Network 

In the table the equivalent elements have been regrouped and we thus obtain 

squares lying the diagonal. 

Exercise 3: Represent the equivalence relations on a set having respectively two, 

three and four elements by their networks. There will be respectively two, five 

and 15 networks (see Exercise 5). 

Equivalence relations are extremely important; they are used whenever one 

wishes to classify the elements of a set. The act of classification can be seen 

intuitively as an act of assigning objects to different categories. The corre- 

sponding mathematical concept is that of partition. We will first present this 

concept and then show how, given an equivalence relation, on a set we can, in 

fact, define a partition of the elements of this set — that is, to classify them. For 

this reason, an equivalence relation is sometimes called a classification relation. 
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Conversely, we shall show that an equivalence relation is associated to every 

partition, so that these two concepts can be shown to be equivalent. 

2.2 Partition 

A partition of a set E is a set of subsets of Æ such that every element of E 

belongs to one, and only one, of these subsets. 

The subsets constituting the partition is called the partition classes. 

Let 

te teen, 
= {Cikier 

FC 

be a set of subsets of £. a 

Fig. 19. The partition into five classes 

Il is a partition of F if, and only if: 

1) any two distinct subsets are disjoint: 

CnC= 0 Vic DEN ant 

2) the subsets cover the set E: 

Celtics Ui uke) hae 
ied 

Concrete examples are plentiful: the partition of a population according to age, 

nationality, profession; partition of the territory of a country according to 

administrative divisions. In France, for example, territories are partitioned into 

communes, cantons, departments and regions. Groups of individuals can also be 

partitioned according to their scores on an aptitude test, or according to their 

I.Q., etc. Nevertheless, it should be pointed out that in certain cases the 

partitions mentioned above are not partitions in the mathematical sense of the 

term; for example, in the case of nationality where the individual has a dual 

nationality, or none. In the mathematical formulation of concrete data, the 

concept of partition is thus not used unless it has been determined that the data 

satisfy properties | and 2 above. 

If a set E has n elements, the number p of classes of a partition of E is 
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between 1 and n. In particular, if p = 1, there is but one class which is thus the 

set E itself; this partition is sometimes called gross. Conversely, if p =n, there are 

n classes each containing a single element: the resulting partition is sometimes 

called trivial. A partition of E into two classes if of the form: { A, CA } (where 

CA is the complementary subset of the subset A). This type of partition is found 

every time we need to distinguish the individuals possessing a character and 

those who do not in a particular population. 

Example 6: E = {a, b, c, d, e, f, g, h } is the set of the eight students already 

encountered. 

l= {{a,c},{d,g}, {b, e, h}} is thus the partition of E into four classes. 

ee Fig. 20 

Exercise 4: Enumerate all the partitions of a set E having two, three or four 

elements. Compare the results with exercise 3. 

2.3 Partition associated with an equivalence relation: quotient set 

The partition of example 6, based on the equivalence relation ‘to be of the same 

age’ had already been obtained in example 5. It is thus a question of the age 

classés of a group of students. 

In general, to every equivalence relation R on a set E, is associated a partition 

on E: that for which the classes are equivalence classes. 

Let x € E, and we set Cy = {y EE: x=y (mod R) }. 

Cy is the set of elements equivalent to x and is called the class of equivalences of 

x. Let IIp= {Cy x€ E } then be the set of equivalence classes. Let us show that 

I is a partition of E. 

First, two equivalence classes are either disjoint or identical. Let C, and Cy 

be two equivalence classes. 

— If x =y (mod R), then we have Cy, = Cy. 

And indeed 

L'OCNS 7S" 

z=xandx =y>z=~y (by the property of transitivity of 

Ziv 4 2.6.C). equivalence) Il 
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Thus, Cy C Cy, We can show similarly that Cy C Cy, from whence C,. = Cy. 

— If, on the other hand, x #y (x and y nonequivalent mod R), then we have 

Cy VC, = 0. 

Suppose, in fact, thatzEC,N Cy, then 

Fie Cr 2 =x 
=> x = y (by the symmetrical and transitivity 

z€Cy>z=y 
properties) 

which contradicts our hypothesis. Thus, there can exist no.elements common to 

Cy and Cy. 

Secondly, the equivalence classes cover E. Indeed, any element of E is 

contained in its equivalence class Cy, because of the reflexivity of the equiva- 

lence relation. Thus, Uc, = E, giving us then the following result: 
x 

Proposition: Any equivalence relation on a set E defines a partition of E. 

Being given an equivalence relation R on a set E we will call it the quotient set of 

E mod R, and write E/R as the set of equivalence classes of R. The quotient set 

is thus not other than the partition associated with 

R:E/R=Tp 

Example: The set D(X)of the subsets of a set X having n elements and ordered 

by the inclusion between subsets is called the simplex S,. We can define the 

relation ‘to have the same number of elements’ which is an equivalence relation: 

A = B (mod R) & |A] = |B). 

The corresponding quotient set@(X)/Ris composed of the ‘levels’ of simplexes 

(the set of the subsets having the same cardinal). 

2.4 The equivalence relation associated with a partition 

We shall now give the proposition that is the reciprocal of the one given in the 
preceding section: 

Any partition on a set E defines an equivalence relation on E. 

This proposition is ‘evident’ intuitively when one is familiar with the notions of 
relation, equivalence and partition. The formal proof is given below and the 
reader should study it as an exercise. 
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Pets (Gy aes Cy,.4. «5 Ch} be a partition of E. We define a relation R, in 
E by writing: 

Rey edi LÆisp, with xEC; and yeC; 

In other words, two elements are in relation if they are in the same partition 

class. We shall show that R, is an equivalence relation: 

1. Rz is reflexive, 

XR7 x because 7 being a partition, x belongs to one of the subsets of C;. 

2. Ry is symmetric. 

xRqy > y R7x, which is evident from the definition of Ry. 

3. Ry is transitive. 

x Rry = x and y €C; | SRE 

yR:z=yandzec; 

But since 7 is a partition, C; = Cj. Thus we have x and z € C; > x Ry z. 

The results of this and the preceding sections show that the notions of 

partition and equivalence relation are logically equivalent. We have thus two 

distinct languages to use for the classification of objects. These two languages are 

frequently used in practice; the language of partitions is the one we use when we 

speak of arranging the objects in ‘boxes’ (corresponding to the cells of the 

partition); the relational language is that employed when we speak of grouping 

objects of the ‘same type’ (the relation ‘to be of the same type’ being clearly an 

equivalence relation). We make an accord between the two languages by saying 

that two objects are placed in the same box if, and only if, they are of the same 

type (two objects are in the same class if, and only if, they are equivalent). 

Exercise 5: Show that the number P,, of partitions on a set of n elements is given 

by the recurrence formula: 

Le a —1 er eae rage ee 
0 1 k 

ne ("~1) Pe 

n—|l 

n—] 
k is the number of subsets of k elements in the set of (n—1) elements. 

We set Po = 1. 

To obtain this formula, we consider a particular element x of EF, and 

succesively count the number of partitions where x is is found among 0, 1 ... 
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n—1 other elements of E. 

Calculate P, for n < 6 using the preceding formula thus obtaining the same 

results as in exercise 3. 

2.5 Mapping and equivalence relations 

We know that a mapping is defined by the following: 

1.E is the initial set. 

2. F is the final set. 

3. A correspondence exists associating to every element of x in E a unique 

element y of F, called the image of x, by the mapping f (> is written f (x)). 

Being given a mapping f of a set F into a set F, permits us to define an 

equivalence relation on E. Thus, let f : E > F define a binary relation Rr by 

setting: 

x Ryy = f(x) =f(y) 

Two elements of E are in relation if, and only if, they have the same image by 

the mapping f. Rf is, of course, reflexive and symmetric: 

Ra Dy of Ae a se SU IR et a 
eg our OM Eee proc. ve: 

Thus, RAF is transitive and is also an equivalence relation; we call it the equiva- 

lence induced by finto E, and the corresponding quotient set is written E/f. 

Example 7: To each student in our group 

of students let the correspondence be 

made with his age. We thus define a map- 

ping f, for which the associated equiva- 

lence is: ‘to have the same age’, and for 

which E/f is the set of age classes. 

Another example is that of certain so- 

called primitive societies where to each 

individual is associated a type of marriage 

determined by the rules of kinship. The 

society if thus divided into classes some- 

times called matrimonial classes (see 

chapter V, ‘Monoids and groups’). 
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To every mapping of E into F we associate an equivalence relation on £. 

Conversely, can an equivalence R on E be obtained from a mapping of F into 

another set? Yes. It is sufficient to consider the quotient set £/R and a mapping 

of E into E/R which, to every element of an equivalence class R, makes 

correspond an element of E/R. How many ways of proceding are there in the case 

of Example 7? Can you generalize? 

3. Orderings 

3.1 Definitions and examples 

An ordering on a set E is a quasiordering, antisymmetric on E - that is, a 

(binary) relation on E — which is reflexive, transitive and antisymmetric. 

An ordering R on a set £ is often noted <, read less than or equal to; we write x 

<y if (x,y) ER; x $y if &, y) € R. Instead of writing x <y we can also write 

y >x, which is read as: y is greater than or equal to x. Finally, x < y and x # y is 

written x <y ory > x. 

A set for which an ordering relation has been defined is called an ordered set 

and is denoted by (EF, <). 

Examples: 

1. The set V of natural numbers is a set ordered by the usual relation: 3 < 5. 

2. The set D(X)of the subsets of a set X is an ordered set for the inclusion 

relation A C B. We can give several examples. Thus, if X = E? is the cartesian 

product of £ on itself, E? is the set of binary relations on Æ. This set is thus 

ordered by the relation: all pairs in the relation R are in the relation S. 

RcSe[yxeByye bh wy € R = (y) € SI; 

in this case we can also say that the relation R is compatible with the relation S. 

3. The set of the letters of the alphabet is ordered by the alphabetic ordering: 

‘a before b’. 

4. The set of words in a dictionary is ordered by the lexicographic ordering: 

‘amorous before amuse’, for which the reader is to find the precise definition. 

Exercise 6: Show that contrary to any quasiordering relation, an ordering 

relation cannot have a cycle of the form: 

Se 2S 6 EX Xe Vel Xn with x1 = Xn 
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3.1.1 Networks and covering relations 

In the graphic representation of an ordering relation by its network, the arcs of 

reflexivity and transitivity are not drawn. We also replace the arcs by edges by 

agreeing to the convention by which, for example, the edges are orientated 

from bottom to the top of the diagram. Thus, for the set E={a,b,c,d,e}the 

ordering R, defined by 

a<b,a<c,a<d,a<e,b<c,b<d,b<e,d<e 

is represented by the following network: e 

In such a network, two vertices x and y are 

linked by an edge if we have x < y and if there d 

exists no element z such that x < z < y. We Cc 

then say that the element y covers the element 

x and that the element x is covered by the 

element y. This covering relation is denoted by 

<; it is antisymmetric but not transitive. VI ri not transitive NS a Fig. 22 

Exercise 7: Let N be the set of positive integers or zero. We define the binary 

relation: 

xR}y<® x divides y. 

Show that N is a set ordered by this relation. If a set is ordered, every subset of 

this set is also ordered by the ‘restriction’ of the ordering relation of this subset. 

Draw the network of the following subsets of N ordered by the relation of 

divisibility: 

{1, 2, 4,°8}—{I, 2,3, 6, 8}—{I, 223, 476,112} 

3.1.2 Ordering and strict ordering 

Let (E, <) be an ordered set. Consider the relation on £ defined by x Ry 

X = ; : F P 
= nee # This relation is never reflexive: x R x for all x. It is antireflexive, 

antisymmetric and transitive. Such a relation is called a strict ordering and it is 

written x < y. It should be noted that this is not an ordering in the sense we 

have just defined since it is not reflexive. 
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Example 8: In our group of eight students, the relation ‘to be younger than’ is a 

strict order relation for which the network is drawn below. 
o 

h Fig. 23 

To every ordering is thus associated a strict ordering. Conversely, to a strict 

ordering < we associate an ordering relation < by writing x <y # x < y, or x = 

y. There is thus a bijection between the set of orderings and the set of strict 

orderings on a set. 

Note: a strict ordering has been defined as an antireflexive relation, that is, one 

that is antisymmetric and transitive. The reader should show that one of these 

properties is the consequence of the other two and can thus be omitted from the 

definition. 

3.1.3 Duality 

Let (E, S) be an ordered set. We define on £ a relation < by writingx < y oy 

<x®xXx 2 y. 

It is easy to show that < is an ordering relation, called the dual ordering relation 

of <. ' 

For example, in@(E), the dual relation ‘to be included in’ (©) is ‘includes’ 

(>). In N, the dual relation of ‘x divides y’ is ‘y is a multiple of x’. On the 

network representing an ordering we obtain the dual ordering by reversing the 

direction of the arcs (or by inverting the network). 

Example: e 4 

d 

e 

Dual orderings on E = {a, b, c, d, e} Fig. 24 
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Example 8: Draw the network of all the ordering relations that can be defined 

on a set of two or three elements. 

We find respectively 3 and 19. For a set of 4, 5, 6 and 7 elements, there are 

respectively 219;4,231; 130,023; 6,129,859 distinct orderings. 

3.2 Total and partial orderings 

Orderings are particular quasiorderings. Among them we can distinguish quasi- 

orderings that are total and those that are not. In the first case we obtain the 

total orderings that satisfy the additional property: 

VX Cy Py er eN Sei Vien 

In the second case we obtain partial orderings for which we have the property: 

q(x, y)€E2 with xf#y and y£x 

We then say that x and y are two incomparable elements of the ordered set (E, 

<). The relation of incomparability is sometimes written xlly. But beware! By 

definition, the notation x < y is equivalent to the notation y > x; but the 

notation x < y is not equivalent to the notation y < x except for the total 

orders. A set on which a total ordering relation is defined is said to be totally 

ordered. If the relation is partial, the set is said to be partially ordered. In the 

latter case we sometimes call it an ‘ordered set’ without further distinction. 

Instead of saying that a set is totally ordered, we also refer to it as a chain or 

scale, particularly in the social sciences. For example, the set of whole numbers 

is partially ordered by the relation of divisibility, as the set D(X) of the subsets 

of a set X is also partially ordered by the relation of inclusion. 

The network of a totally ordered set can be represented by aligned points as 

follows: 

a 

b 

C Fig. 25. Representation of the total order c < b < a 

We see from this that for a set of three elements there are six orderings possible, 

obtained by permutating in all possible ways the elements in the network. In 

general, if Ë has n elements, there are as many total orderings on F as there are 

permutations on the set £, that is: n! = n(n—1) (n—2).. . 3.2.1. 
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There exist several characterizations of finite total orderings. Thus we will 

show that: 

a strict total ordering # a total acyclic relation. 

A relation R is total if for every pair x, y of elements of EF, x Ry or y Rx. A 

cycle for the relation R is a sequence of pairs: 

(a1, a2), CEE (a, Gs+1)> e009 (0,2 a,) with 

(1) a; R de, dz Ras, ..., 4; Rj,1, ...,4,_3 Ra, and 

Qu =— 4, 

Fig. 26 

If the cycle has n elements, it is said to be of order n. A strict ordering is an 

acyclic relation. Indeed, it follows from (1) by transivity that: 4, R dy_; 

whereasa,,_1 Ra, and a; = 4, imply that a, and ay_ 1 are connected in the two 

directions, which contradicts the antisymmetry of the ordering relation. 

Similarly, an acyclic relation is, in particular, antisymmetric (not a cycle of 

order 2) and antireflexive (not a cycle of order 1). Let us now show that if an 

acyclic relation is total as well, then it is also transitive. 

Let x, y and z with x Ry andy R z. Since R is total, we also have z R x or x 

R z. Ifz R x, then we would have a cycle of order three, which is impossible; 

thus, we have x R z and the relation is transitive. 

Exercise 9: Show that a strict (finite) total ordering is characterized as a total 

relation without cycle of order <3. 

In the case of a finite set E, all of the total orderings which we can define on 

E have the same structure (they are ‘isomorphic’). Such is not the case for an 

infinite set. Thus, we are obliged, to distinguish between two types of orderings 

(see chapter VI, ‘Measure scales’, section 1). 

Exercise 10: From the results of exercise 8 and the last example, deduce the 

number of partial orderings on a set of 2, 3, 4, 5, 6 and 7 elements. 

This exercise shows that even for a set having few elements, there exist many 
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partial orderings. We shall distinguish between the classes of partial orderings, 

and to do so we can use the definitions and results of the paragraphs to follow. 

3.3 Particular elements of an ordered set 

Let (E, <) be an ordered set, and let A be a subset of E. 

Upper bound: m, an element of E, is an upper bound of A if Vx € A, x <m. If 

A has at least one upper bound, A is said to be bounded above. 

The greatest element (or maximum): m, an element of E is the greatest element 

of A if: 

1. m is an upper bound of A, 

2.mEA. 

If there exists a greatest element of A, it is unique (as follows from the property 

of the antisymmetry of order). 

The maximal element: a, an element of E, is a maximal element of À if: 

1)YxE€E À ATX, 

2) a € À. 

A subset À can contain zero, one, or many maximal elements; but if this subset 

contains a maximum then it is the only maximal element. 

Universal upper bound: u, an element of E, is a universal upper bound if it is the 

greatest element of £. For example, in((D(E),C), E is the universal upper bound. 

On the other hand, (W, <) does not contain a universal upper bound. 

Copoint (or coatome): Let E be an ordered set for which there exists a universal 

upper bound wu. Then, x € E is a copoint if w covers x: x <u. What are the 

copoints of (D(E), <)? 

In a similar fashion we define the notions of lower bound, of least element 

(or minimum), of universal lower bound (or null element), and of point (or 

atom). For example, the element m is the lower bound of the subset A if m is 

less than, or equal to, any other element of A. A point (atom) is an element that 

covers the universal lower bound (if it exists). What are the atoms of @(E), 

ordered by inclusion; of NV ordered by divisibility? A subset that is bounded 

above and bounded below is said to be bounded. 
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We will now define the least upper bound (or supremum or join) of a subset 

A. Let us consider M4 = {upper bounds of A }. If there exists in My a least 

element, this element is called the least upper bound of A. In other words, the 

least upper bound s of A is the least of the upper bounds of A and thus satisfies 

the two conditions: 

1. for any x of A, s >x; and 

2. [for any x of A, m2>x]>m2s. 

It is clear that if the least upper bound exists, it is unique, and moreover, if A 

contains a greatest element m, it is the least upper bound. 

Similarly, we define the greatest lower bound i (or infimum, or meet) of a 

subset A as the greatest of the lower bounds of A: for all x of A, i >x, and [for 

all x of A, m <x]= m <i 

In the case where the subset À contains but two elements, À = {x, y }, the 

least upper bound, if it exists, is often written x V y, and sometimes as sup a 

y}). The least upper bound (often abbreviated as L.u.b.) of any subset, if it 

exists, is often written V A or sup A. The same applies to the greatest lower 

bound (g.1.b.), if it exists, which is often written symbolically as a Ay, or AaAor 

inf À. 

f 

Example: 

d © Fig 27 

b V c = d,b À cdoes not exist 

d =f,d\e=c € Ve=f, 

b 
f 

d e 

D c 

a 

bvf=f, bAf=b 

Fig. 28 

b V c does not exist 

Die =a 

inf ({b, c, d, e}) =a 
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3.4 Semilattices, lattices and trees 

A join-semilattice E is an ordered set such that every pair of the elements of E 

has a least upper bound. 

Thus, in a join-semilattice, for any pair a and b of elements there exists an 

element s, written (a V b) for which the following holds: 

l)(aVb)=a : (a V b)= b, 

2)m=a x m=b=m= (a \ b). 

For example, the ordered set below is a join-semilattice: 

Fig. 29 

Let A = {x, y, z } be a subset of three elements of a join-semilattice E. Does A 

contain a least upper bound, sup A? We can calculate the l.u.b. of the elements 

two by two: x V y, x V z, y V z; and then the l.u.b. of the elements obtained 

with the third element: 

(x VYÈV 2 af VAMP VERY x 

The reader should show that these three elements equal the L.u.b. of the subset 

A; this Lu.b. is then written x V y V z (see exercise 11). 

More generally, any (finite) subset A contained in F has a L.u.b., written x; 

Va Mix VS VX. OE V Xi (to be proved by induction). We note also that 
i=1 

in £, we have the equivalence: 

x2zyexvy=x (Why?) 

Furthermore, we note that in a join-semilattice, the ‘relational’ property: one 

element is inferior to another, can be translated by an algebraic property: an 

equation. This makes it possible to develop, by algebraic means, the study of 

semilattices and explains their importance. It has been further shown that it is 

possible to define a semilattice uniquely by algebraic properties (see exercise 

11). Moreover, the equational form which these relations assume make calcula- 
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tions easier (see for example, Boolean algebra, in chapter 3, ‘Boolean algebras 

and Boolean rings’). 

Exercise 11: Given a join-semilattice, show that the operation which associates 

to two elements their l.u.b. is an associative, commutative and idempotent 

operation. Show conversely that in a set with an operation satisfying the three 

preceding properties, it is possible to define an ordering relation that generates a 

semilattice (use relation [1]). 

Similarly, we define a meet-semilattice as an ordered set in which every pair 

of elements has a g.l.b. The dual of a join-semilattice is obviously a meet- 

semilattice, and conversely. 

Finally, we define a lattice as a set being both join and meet-semilattices. 

A lattice is an ordered set such that every pair x,y of elements contains a Lu.b. 

x V yand ag.lb. x Ay. 

For example, P(X) ordered by inclusion is a lattice; the L.u.b. of A and B is 

AUB, and the gb. is À NB. The set N of positive integers, ordered by 

divisibility, is a lattice where x V y = least common multiple (x,y) and x À y = 

greatest common divisor (x,y). Every total ordering is obviously a lattice. 

Example 12: From among the ordered sets of exercise 7 find the lattices and the 

semilattices. 

Exercise 13: Show that every finite subset A of a lattice has a l.u.b., sup A and a 

g.Lb., inf A. 

The lattices are particular semilattices; other semilattices of special interest 

are trees. 

A tree is a join-semilattice for which every element, except the universal 

element, is covered by a single element. 

Similarly, it is possible to define a tree as a meet-semilattice for which every 

element, except the null element, covers only one element. For example, the 

ordered set below is a tree: 

Fig. 30 
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In an ordered set we define a chain as a subset that is totally ordered. If x <y, 

we call an interval, [x,y] the set of elements such that x <z <y. These 

definitions allow another charaterization of trees: a tree is an ordered set such 

that for every pair x, y, where x < y, the interval [x, y] is a chain. In particular, a 

totally ordered set is a tree. 

Exercise 14: Show that an ordered set that is both a tree and a lattice is totally 

ordered. We can thus represent the relations between semilattices, lattices, trees 

and total orderings as: 

Total orderings 
Fig. 31 

A detailed study of trees is the subject of chapter 1, Trees! (see page 15) 

4. Quasiorderings revisited 

In the preceding sections we have studied two particular classes of quasi- 

orderings: the symmetric quasiorderings or equivalences, and the antisymmetric 

quasiorderings or orderings. We shall now show that any quasiorder reduces to 

the combination of an equivalence and an ordering. 

Let (Z, R) be a quasiordered set. Let us write: y 

xSy=[xRy and yRx] CS 

Fig. 32 x 

Lemma 1: S is an equivalence relation on E. 

The reflexivity and the symmetry of the relation are evident at once, and 

1. In this article a rooted tree or arborescence is what we call here a tree. 
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furthermore 

PA VN? =X RE 
x Sy and ne: = XZ 

ZR YR -V ROSH ZR x 

Thus, S is transitive and is an equivalence relation on E. Let us now consider the 

quotient set E/S composed of the equivalence classes: 

(CET Cy 

In the set E/S we define a relation < by writing: 

[Cues Cl hixeCr ere Cyne with, x Ry] 

Lemma 2. The relation < is an ordering relation on £/S. 

The reflexivity and transitivity of < is easily prooved. Let us now show the 

following result: 

IC; = C,) > {yee Ci, woOEC;, aRb] 

(Cx Cl=faxEeCiryec; avec XRyl; 

Let a€C; and bEC;; then we have a R x and y R b, and finallyaRx,x Ry, yRb 

> a R b by the transitivity of R. 

Cj Cj Fig. 33 

The antisymmetry of < remains to be shown. Let C; and CG; be two distinct 

classes with CG; < C;, G <G. Let x € G and y € C;. From the preceding result 

we can deduce x R y and y R x, thus that x S y, which is impossible since we 

had supposed that x and y were in two distinct equivalence classes. Thus 

we have that E/S is ordered by < The relation < defined on the quotient set E/S 

is called the quotient ordering of the quasiordering R (by the equivalence S) and 

we write it R/S. 

Lemmas 1 and 2 lead to the following result: 

Theorem: Any quasiordering on a set is defined by the following: 
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1. an equivalence on the set; and 

2. an ordering on the quotient set of classes defined by this equivalence. 

Thus, we see that any quasiordered set can be partitioned into equivalence 

classes, these classes themselves being ordered. The notion of quasiordering thus 

formalizes the usual notion of classification; we begin by putting the set of 

equivalent objects together according to chosen criteria, and then we order these 

classes according to these criteria. 

In the particular case where the quasiordering is symmetric, the ordering 

obtained is trivial (no class is comparable with any other). If the quasiordering is 

antisymmetric, the equivalence obtained is again trivial (each class is made up of 

a single element). If the quasiordering is total, the quotient ordering on the 

classes is total. 

\ aes Ÿ | TS \ ok AR 
Oe ae ae 

Aaa nr \ PK a 

CE CAES nM 

Fig. 34 Fig. 35 

Quasiordering of nine elements on a set Quotient ordering 

of 21 elements 

Example 9: If we return to examples 2,5 and 8 of the group of students, we see 

that we have successively considered the quasiordering: “to be of the same age”, 

and the strict ordering, “to be younger than”. On the set of the age classes, the 

quasiordering induced a quotient ordering for which we give the following 

network: 

ol, 
18 19 20 21 Fig. 36 

This is a total ordering because the quasiordering is total. 
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Exercise 10: From the quasiordering of Example 3 we obtain the following 

quotient ordering: it is a lattice. 

Fig. 37 

5. Some applications 

5.1 The transitive closure of a relation 

In general, any relation R is not transitive. There exists, therefore triplets x, y, z 

with x R y, y R z and x À z. Can we add pairs to the relation R to make it 

transitive? To add the pairs x Rz for all of the preceding triplets does not 

suffice (find a counter example); but we also wish to add as few pairs as possible. 

The solution exists and it is unique. It consists in constructing a relation R, the 

transitive closure of the relation R. 

R is defined on the basis of the paths of R. A path for the relation R is a 

sequence of pairs (x1, X2), . . ., &pXj+1 rte: Operas rit 

em ee 5 ei ot ig Mant 4 On 

PRET eae 
Such a path has the origin x, and the extremity 

Xy- Thus we can write: 
: ae x ® 

x Ry @ there exists a path of origin x ye 74 y 

and extremity y. pe ee eo 

R is called the transitive closure or the R Fig. 38 

relation R. 

Obviously we have R C R (x R y xR y). Moreover, R is transitive (why?). 

We will now show that R is the smallest transitive relation containing R (why?). 

In particular, if R is transitive then R = R, and conversely. 

If R is a reflexive relation, R is a quasiordering which we can thus decompose 



88 B. Monjardet 

into an equivalence and a quotient ordering. The two elements are in the same 

equivalence class if, and only if, they belong to the same cycle (the equivalence 

classes are sometimes called the strongly connected components of R). If, in 

addition, R is total, then R is a total quasiordering. 

Example 11: Let us consider the relation R of Example 1 assumed to be 

reflexive. The transitive closure of R is a quasiordering for which the network is 

given below: g 

Fig. 39 
e 

To construct the transitive closure of a relation permits us, in general, to analyze 

it better as we saw in the example of the preceding sociogram. Thus, when 

presented with any relation, it is advisable to look for the transitive closure. 

5.2 Other examples 

The following examples present some situations where the notions of the 

preceding section will be used to construct mathematical models. We can thus 

use mathematical techniques and prove certain results. These techniques or 

results exceed the limits placed on this introductory material. For each subject, 

therefore we will limit ourselves to bibliographic references. It should be pointed 

out that the reader will find a general review of the mathematical methods in 

Barbut and Monjardet [2]. 

The first subject to be outlined here is that of the collective decision, or more 

precisely, voting procedures. We have n voters who must class p candidates. We 

presume that each voter expresses his individual preferences by a total ordering 

on the set of candidates. Thus, we obtain n total orderings, and the problem is to 

define a procedure for ‘clustering’ these total ordering in such a way as to define 

the collective preference of the voters. 
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A problem that is formally identical to the previous one is that of the ‘choice 

with multiple criteria’. Here an individual must choose between several decisions 

for which the possible consequences are evaluated according to different criteria. 

For each criterion, we can totally order the consequences; we have thus several 

total orderings on the set of the consequences, and we must fuse them into a 

single total ordering. For these two problems consult Arrow [1]; Guilbaud [6]; 

and La Décision [10]. 

Ordering relations also apply to the analysis of questionaires. Thus, in 

hierarchic analysis we attempt to totally order the set of subjects having 

responded to a questionnaire, and the set of questions as well, in order to obtain 

the “Guttman scales’ see Matalon [8]. The study and generalization of the 

techniques used in the hierarchic analysis makes use of the properties of 

“ordering lattices’. The same properties are useful for the development of certain 

problems raised in textual analysis (see Barbut and Monjardet [2], Degenne [4], 

and Frey [5]). 

A strategy fundamental to all of science consists in classifying all of the data 

obtained. The archaeologist, for example, attempts to classify the hundreds of 

pot sherds he has found at a single site. A nuclear physicist attempts to classify 

the elementary particles, new examples of which are being constantly dis- 

covered. The problem common to all of these pursuits is to find a partition of 

the objects to be classified, or more generally, a sequence of partitions corres- 

ponding to finer and finer classifications. Thus, we are led to work with the 

‘partition lattice’ of a set (see Barbut and Monjardet [2]). On the other hand, the 

desired classifications are established according to ‘indicators of resemblance’ 

between the objects in question. The indicators lead to the establishment of 

certain quasiorderings on the set of pairs of objects (see Lerman [7]). 

In conclusion, it should be pointed out that many concrete problems can be 

formalized as follows: let F be a set, and R a binary relation on F (we sometimes 

say that the pair G = (E, R) is a graph); find a partition of the set Æ for which 

the classes fulfill certain conditions with respect to the relation R. For example, 

the classes are the ‘independant’ subsets, that is: subsets for which any two 

elements of a class are not in relation. In addition, we often wish to find a 

partition satisfying the conditions imposed and for which the number of classes 

is maximum (or minimum). An example of such a probl:m is that of the 

colouring of a map using the minimum number of colours; the condition 

imposed is that two contiguous contries must not have the same colour. All of 

these problems are classic in the theory of graphs, but certain of them have not 

yet been solved (see Berge [3], and Matalon [8]). 
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3. boolean algebras, boolean rings 

by G. Th. Guilbaud 

1. The present status of Boolean algebras 

1.1 The Boolean algebras (it is better to use the plural) are in style. So much the 

better, but this is not without danger; the most mediocre popularizations have 

invaded the market, and since they sell, anything is printed. One of the reasons 

for this vogue is perfectly clear: the electronic techniques appled to networks, to 

computers, and more generally the organization techniques (operational 

research) need to augment the ‘classical’ mathematical tools with diverse alge- 

braic structures that were not previously taught in ‘class’, and among these are 

the Boolean algebras. 

Historical and social phenomena of this sort should be attentively examined. 

Mathematical instruction is sometimes very conservative, and the professional 

can, in retrospect, criticize his professors for having taught him mathematics for 

which he has little or no use, and for having neglected those disciplines that he 

needs today. But, paradoxically, it is not by persuing present trends that 

mathematical teaching will be most efficient: it is by presenting good mathe- 

matics, with neither blocks nor prejudices. This is one of the lessons of Boole. 

More than a century ago George Boole in The mathematical analysis of logic 

(1847) said: ‘They who are acquainted with the present state of the theory of 

Symbolical Algebra, are aware, that the validity of the processes of analysis does 

not depend upon the interpretation of the symbols which are employed, but 

solely upon the laws of their combination. Every system of interpretation . . . is 

equally admissible, and it is thus that the same process may, under one scheme 

of interpretation, present the solution of a question on the properties of 

numbers, under another, that of a geometrical problem, and under a third, that 

of a problem of dynamics or optics’. Boole also denounced another prejudice: 

that mathematics is but the science of magnitude, the science of the measure- 
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able! He pleaded for liberty in creative mathematics (cf. Nicolas Bourbaki, 

Eléments histoire des mathématiques [Paris, Hermann, 1969, 2nd. ed.], pp. 18 

and 32.) 

1.2 To apply these algebraic methods to the analysis of reasoning was not, even a 

century ago, an entirely new idea. Without going back to the middle ages and 

the combinatorics of Ramon Lull, one need only recall the works of Leibniz. A 

very simple example, will illustrate our trend of thought. In the Generales 

Inquisitiones de Analysi Notionum et Veritatum, which can be dated to 1686, 

we find the following effort: 

Let us represent the traditional forms of syllogism by a calculation. If I say 

that all men are mortal, I affirm that ‘man is mortal’ is redundant, and that 

the designation ‘Man’ suffices, because there are no other men but mortal 

ones. 

Let us try to write it 

HM =M (1) 
(where H means man (homo) and M means mortal). 

The same applies to a category of man, the Greeks if you wish; they are al 

men. Let us write it as 

GH=G (2) 
(The class G is that of ‘Greeks’). 

From these two equations, and by applying certain algebraic rules, I am able 

to ‘deduce’; 

— by associativity: (GH)M = G(HM); 

— by substituting (1) and (2) in the preceding equation we have: GM = GH. 

— finally, by the transitivity of the equality, since GH = G and GM = GH we 

have: 

GM=G 
which can be interpreted in words as: ‘all Greeks are mortal’. 

Thus, here is an example of reasoning which can be represented by a manipula- 

tion of the algebraic type obeying certain precise rules. 

1.3 As we have seen, this is not quite the algebra of our school children. In the 

algebra presented above, we must never ‘simplify’. But how many professors 

think to put their students on guard against using the ‘automaticisms’ acquired 

in one algebra that are not necessarily valid for another? 
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There are some old jokes on this subject, but they bear retelling here. If 

dx/dy is a derivative, don’t simplify by cancelling d. In the quotient sin x/cos x, 

don’t simplify by cancelling x, etc. 

1.4 It is said that we are the age of our arteries. I would say rather: ‘We are the 

age of our algebras’; and it is the plural that counts. To go from one algebra to 

another is an excellent mental gymnastic. We sometimes complain of the bias 

seen in people due to an abuse of mathematics. The remedy is to learn more, and 

to diversify to know how to calculate for a group, a monoid, a ring, a field, or in 

a linear space, etc. and not to mix up the various operations. “There are many 

who listen to the sermon in the same way as they listen to the Vespers’, said 

Pascal, who had good training. 

Perhaps one of the principal uses of the Boolean algebras is that they 

force us to break away from old habits, to limber our calculation reflexes. For 

this the Boolean algebras are particularly appropriate because they have a great | 

simplicity and an aesthetic purity that is rather exceptionel. 

1.5 However, we must not lose sight of the fact that these algebras are useful 

today in diverse professions. The two extensive domains (which in any case 

overlap) are computer science and formal logic. 

It began with logic — first with Leibniz — but the important developments 

took place in the middle of the last century with Boole, De Morgan, Schroder, 

and others. Very early, the algebra necessary for logicians had become an object 

of study for mathematicians. In 1905 Couturat wrote: “The fundamental laws of 

the algebra of logic had been invented to express the principles of reasoning the 

laws of thought, but one can consider these calculations from the purely formal 

point of view which is that of mathematics, as an algebra based on a few 

arbitrarily chosen principles (...) we demonstrate them not as logic but as 

algebra.” 

Couturat’s book Algèbre de la logique has been translated into several 

languages, among them, Russian, in 1910. P.S. Ehrenfest, in presenting this 

translation called the reader’s attention to its possible applications. He pointed 

out that logical complexity is found in the construction of automatic telephone 

centrals and that the functioning of such a mechanism must be analyzed first 

from the qualitative point of view (all or nothing) and finally that the analysis of 

networks justified the use of such an algebra. This appeal took some time to be 

heard. Apart from a few isolated attempts, it was only from 1938 that electronic 

engineers began to use the Boolean algebras. The impetus to do so was apparent- 
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ly furnished by C. Shannon (U.S.A.), V.L Chestakoff (U.R.S.S.) and 

A. Nakasima (Japan). 

1.6 However, the use of Boolean algebras should not be restricted to logic, on 

the one hand, and electronics, on the other. We should understand that Boolean 

calculations have their place in numerous chapters of mathematics. A good part 

of what is called the algebra of sets is of Boolean form. The theory of measure 

and the theory of probability cannot do without Boolean algebra. When it comes 

to the teaching of Boolean calculations, the number of-illustrations are over- 

whelming. But to begin, it would be better to present abstract examples. To 

speak of logic or electrical circuits, or even of probabilities would be perilous. 

On the other hand, today everybody knows what is meant by union, inter- 

section, and complement, and this is a good way to introduce Boolean construc- 

tions. 

Thus, we shall begin by taking a set U which will later serve as the universal 

set (the universe of the discourse, as the old logicians called it) which means that 

we will remain in this set. We know then that for any subset P of U (including 

the empty set and the whole set U) what is understood by the complement @P 

or PC of the subset P. For subsets P and Q we know how to define P U Q and P 

N Q. And finally, we know what an equality is. Thus, we can begin to write 

equations such as: 

(PQ) U (PSM Q) = (PFU OY MN (PU 9). 

We can propose a systematic study ot such equations after having taken note 

of the fact that all of the inclusion relations between subsets of the same set can 

be written in the form of equations since: 

PITO=P 

just as 

Promo 
signifies that P is a part of Q. 

To systematize this study, and to treat the significance of sets separately is to 

perform Boolean algebra. 

We would do well to begin with a finite universal set (simplex) because when 

we consider infinite sets, a new phenomenon appears: we can conceive a system 

of subsets of U within which the three operations of union, intersection and. 

complement are possible without leaving the system, even though the system 
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does not contain all of the subsets of U. Let us consider, for example, the real 

line (that is to say, the set, ordered by <, of all the real numbers): starting from 

open intervals to the right and closed to the left: 

a=xi—'b 

and form all of the (finite) unions and intersections. We obtain those objects 

which form a Boolean algebra. 

1.7 Thus, we will start with a finite universe. We know that the organization by 

inclusion of the subsets of a finite set is usually called a simplex. It is thus a 

question, more or less, of translating the ordered structure of a simplex into the 

form of an equation. What we obtain can be called a Boolean algebra. 

Recall that if U possesses n elements, there are 2” subsets, among which is the 

empty set 0. We begin with small values of the whole numbers and set up tables 

for the three operations: complement, union and intersection. The case where n 

= 1 is very easy. Let us therefore write the results for n = 2 by the following: 

U = {a, b}; A = {a}; B = {b}; R = nothing, or the empty set. 

Union UA: Bi ER Intersection eA BYR 

U UU CU U UA’ BR 
A Ch AP rr A A A A R R 
B OU SB B B B R B R 
R ERA MB R R Resende werd ask 

Lisa Bot R 

Complement RD AC) 

It is left to the reader to construct the tables for n = 3. 

For each value of the integer n we can thus construct an algebra containing 

three operations and 2” elements. Two algebras having the same cardinal are 

isomorphic. On the other hand, all algebras contain others (subalgebras) that are 

smaller, Thus, the preceding tables are still valid if we represent them (or 

interpret them) as: 

U = {a, b, c, d};A = {a, b} ;B = {c, d, e} ;R = nothing. 
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Therefore, we can deduce, in a certain measure, that the algebraic properties are 

independant of the interpretation that we give them. 

But the objects manipulated by such algebras can be interpreted in still 

another and totally different fashion. For example, we can represent A and B as 

propositions: to remain in the mathematical domain, A will represent the phrase 

written in abbreviated form: ‘x < y’; while B will be written ‘y < x’. The 

universe U will be ‘A or B’, and its complement R will be ‘A and B’. We note 

further that the use of the traditional logical conjunctions, ‘and’ and ‘or’, and 

the negation provides us with a satisfactory interpretation. 

We are now ina position to study the algebraic aspect by temporarily making 

an abstraction of all interpretation. 

2. Description of a Boolean algebra 

A Boolean algebra contains objects and operations. These objects comprise a set 

which is given an algebraic structure by three operations. 

2.1 We are thus given a set: all the elements of this set will be matched paired 

and we shall usually say that the two elements thus associated are the ‘comple- 

ment’ of each other. If one of these elements is written A, its complement will 

be written A°, for example.’ 
We note that if A° = B (if the object designated by the symbol B is the 

complement of the one designated by A), then: B© = A. We call this an 

involutive correspondance (or a duality). 

2.2 We now define two operations, both being commutative and associative, and 

mutually distributive. 

Here again, it is recommended that matched paired symbols be chosen. Rather 

than imitate Boole who used the two crosses (+ and x) borrowed from tradi- 

tional arithmetic, we can use parts of usual signs, half rounds, for example: 

WY and M, or half crosses such as: À and V, or T and L. In this article we will use 

the symbols which seem to be the most convenient in terms of manuscript: A 

and V. These symbols can be read as inferior or superior (inf and sup) but it is 

still easier to use the interpretation from formal classical logic: the two conjunc- 

tions ‘or’ and ‘and’. 

1. Here the diversity of usage is very great; some authors write A, others A' or A* or 

even —A 14, A, etc. 
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We can thus write the following axioms: 

1) A and B being any two elements, there exists an element C such that 

C= A AB, and an element D = À VB. 

24N\B=B/\A 
AB = BA. A (commutativity) 

iach By) C=A AN BAC) 
(associativity) 

(AV BVC=AV (BVO) 

N(ANB)VC=(AVOA(BVOC) (distributivity) 
AVB NCE AAC VE AC) 

Naturally, it would be easy to extend the preceding properties to the case where 

the expressions contain more terms. Thus, A À BA CAD designated an element 

independent of the order in which the expression is written as well as the way in 

which the operations are grouped. Similarly, there would be no difficulty in 

developing such forms as: (A À B) V (C À D À E) by repeated applications of, 

distributivity. 

2.3 Boole’s law (also called tautology or absorption) 

1. Repetitions are of no importance; we can write AVA=A /\A=AÀ for any À 

(idempotence). 

2. It follows that if we have À / B = C, for example, we can also write À À C= 

Cand that BAC=C. 

3. We can add that À V C= A and that B V C=B, and naturally, analogous rules 

in the opposite sense: (A V B) À À =A and (A V B) | B=B for any À and B. 

4. Here again are easy generalizations such as: (AVBVCVD)VASAVBYV 

CVDand(A VBVCVD)AA=A. 

2.4 Morgan’s law (or the duality law) 

If we have any equality, A À B =H, for example, we obtain another equality by 

taking the complements of all of the elements, and reversing the operation 

symbol: 

AS VV Be = H° 

We can also write this law in the form: 
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(AA BY S ASV B 

(A By SAV hw 

Naturally, this rule holds for more complicated expressions as well. 

2.5 Distinguished elements 

Among the elements of a set, two of them (forming a complementary pair) are 

distinguished. We can call them the two poles of Boolean algebra. Some people 

noted them as did Boole himself, by the numbers 0 and 1. But it can be useful to 

use special signs; following the suggestion of Peano, a number of authors today 

choose /\ and\/.We shall then first write: 

A=V md Ve=A 
Each of these two poles is neutral for an operation (it is for this reason that 

Boole used 0 and 1 with + and X): 

AVA=A and VAA=A 

But each of these is absorbant for another operation: 

AAs Ntand Veh VV 

Finally, we have for any element A: 

AN\ A =f, and AV A= V 

An advantage of these notations is that they underline the relationship between 

the two operations (/ and V) and the two poles (A and \/). To summarize the 

preceding description we can set up the following table: 

(commut.) 41B=B/A AVB=BYA 

(ass.) (AAB)AC = AA(BAC) (Ay B)VC = AV(BVC) 

(dis.) (AAB)VC=(AVC)A(BVC) (AVB)AC = 

= (AAC)V(BAC) 

(taut.) ANA=A AVA=A 

(Boole) (A\B)VA=A (AVB)\A=A 

(Morgan) (AA B) = A°V B° (AV BY = A AB 

(poles) Nav W=AN 
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(neu.) A\\V=A AV J\ =" 4 

(abs.) AA\=A AvW=V 
(compl.) Hi Aue JN. Vi AY 

2.6 Axiomatics 

The propositions we have just been given are not independent. One can attempt 

to choose from the preceding list the smallest possible number of properties that 

make it possible to deduce the others; that is, a system of axioms. 

This can be done in many ways, and since Huntington (1904) some twenty 

systems have been proposed. Here, for example, is a system which has the 

advantage of not concealing the duality; 

1. Two operations, that is to say: the existence and uniqueness of the element 

written A À B and of the element written as A V B, for any elements A and 

B. 

2. Distributivities: 

AAGBVC)=(A4AB)V (AAC) 

A V (B A C) = (4 V B) À (4 V C) 

(4 V BAC =(4 À C) V (B AC) 

(AA BVC=(AVOEABVC) 

3. The existence of neutrals: for any A we have: 

AAV=VAA=A 

AVA =AVA=A4 

4. The existence of a complement: for any A there exists an element X that is a 

solution of the system: 

ANX=/ 
and 

AN) 

From these postulates we can demonstrate the following theorems (and it is an 

excellent exercise): 

1. If B is the complement of A, and if C is the complement of B, then C is 

non other than A. 

2. Thus, the complement of A is unique. 
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3. The relations of tautology and absorption hold. 

4. The operations are commutative. 

5. The operations are associative. 

It is possible to construct, without too much difficulty, as many Boolean 

algebras as we wish. But if our understanding is to be on a more profound level, 

it is advisable to use methods stronger than the simple combinatorial manipula- 

tions. We should not content ourselves either with simply the relations between 

the elements of an algebra, but should rather consider the algebras themselves as 

objects, and study the relations between the algebras. Without going as far as 

that (which would in itself merit the label of modern algebra), let me indicate 

some important perspectives. 

Let us consider a Boolean algebra. To make our notions more concrete, we 

will use the algebra of two or four elements. Let us take the latter case:( KN: 

A, B). Let us now take any set £ and study the mappings of E into our algebra — 

that is, to consider the different ways of ‘sticking’ Boolean tags on all of the 

elements of E. Thus, if we choose FE to be the set {1, 2, 3, 4, 5} there will be 

four to the fifth power, or 1,024, possible mappings. Each of them could be 

designated by the list of Boolean values: thus, 

f=(A, 4, 4,V, 8) 

stands for the function (or mapping) which takes the value À in 1, the value V in 

4, the value A in 2 and 3, and the value B in 5. If we have another function 

g=(4 A, \V,8,8) 
we can easily define the Boolean operations f À g and f V g by calculating each 

component separately (as with vectors). Thus: 

fig=(A: A.A, 8 B) 

fV g= (4, 4, V, V,B) 

and similarly: 

fe = (V, B, B, A, 4) 

Thus, it is easy to demonstrate that the mappings f, g, etc. constitute the 

elements of a new Boolean algebra. Therefore, we have a method for construc- 

ting Boolean algebras, in particular an infinite one. (Take, for example, E to be 

the set of natural numbers.) 

If we start with a minimum algebra(/\,\/),a mapping of E into this algebra 
will be a partition of Æ into two parts, and we could find the algebra of the 
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subsets of the set Æ without difficulty (the union and intersection being 

represented by V and A). 

3. Boolean rings 

3.1 Recalling that a set becomes an abelian group (or just abelian for the 

initiated) as soon as we are provided witn an associative and commutative 

operation (most often noted by the ‘+’ of addition) such that in every equation, 

a = b +c, knowing the value of two elements always determines the third. By 

considering the equation, a + z = a, we can show that its unique solution z, is a 

neutral element of the system, that is: a + z = a implies b +z = b. We customarily 

call this neutral element ‘zero’. Finally, the consideration of the equation a + y = 

zero leads to the definition of the symmetry operation (often denoted, as in 

elementary arithmetic, by the ‘minus’ sign). 

32 To obtain a ring, we must first have an abelian, to which we will assign a 

second operation, most often called multiplication, which is associative (but not 

always commutative), and is, in any case, distributive, that is: 

a-(b+c) = (a-b)+(a-c) 

as is its left analogue. If we apply the distributive rule: a(b + zero) we can prove 

without difficulty that for any a, we can write: 

a-ZerO = TRIO 

We say that zero (neutral for addition) is absorptive for multiplication. 

3.3 For a ring to be Boolean, we must have a commutative and tautological 

multiplication. This latter constraint (we say that multiplication must be idem- 

potent) signifies that, for any element x, we have: x:x = x. Along with most 

other authors, we shall require the existence of what is currently called a unity. 

That is, an element which will be neutral with respect to multiplication. 

3.4 In any Boolean ring, in the meaning that has just been defined, there are thus 

two distinguishable elements which we can call 0 and 1, and which satisfy, for 

any p, the conditions: 

O+p =p+0=p 

0O-p=p:-0= 0 

bap l= ip 
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from whence, in particular, come the fragments of the addition and multiplica- 

tion tables for any Boolean ring: 

+ | 0 1 -|0O 1 

0/0 1 010 0 
di 14804 

and these can be completed by the following remark: by the axiom of tautology 

(or idempotence) we have: 

(i+p)-U+p) = 1+p 

which by distributivity gives us: 

l-l+p-l+1-ptp-p = 1+p 

that is (1 is neutral for multiplication): 

1+p+p+p-p = 1+p 

And finally, by the tautology and associativity: 

(1+p)+(p+p) = (+p) 

which proves, finally that for any p: 

p+p =0 

and in particular: 1 +1=0. 

Thus, we have: 

+ |0 1 - 10 

010 
ei a | 

1 

1 Wool 6 Aaa 8 
0 iy i gto | 

We have found that there exists a Boolean ring of two elements (it is the 

minimum possible); and we can quickly learn to calculate in this system since 

when using zero and one, the only thing that is new, different from the 

arithmetic of our childhood, is that we must say: ‘one plus one equals zero’. 

3.5 For certain applications this tiny Boolean ring suffices, from whence comes 

the illusion maintained by some non rigorous books and that Boolean calculation 

is non other than binary calculation. 
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But it is illuminating to examine the way in which Boolean rings of more than 

two elements are constructed, and to learn to calculate within them. The first 

thing to note is that we have no need of the ‘minus’ sign, which is necessary in 

most of the other rings. 

Indeed, there is always for any p: p +p = 0, which comes to the same thing as 

saying that ‘plus p’ is equal to ‘minus p’, thus making ‘to change sides’ — the first 

gesture in abelian calculation — an easy step. Therefore, to solve a + x = b, we 

write: 

@+x+x =b+x 

that is: 

a=b+x 

Or better yet, if we are given: a + b = c, we can write a + b + c = zero, and so 

forth. 

3.6 Suppose that a Boolean ring contains, in addition to O and 1, another 

element. One might be tempted to choose 2. But the properties of this element 

are too different from the number two of the ring of ordinary integers for us to 

be unconcerned about the confusion that might result from its use (indeed, for 

some people, the use of O and | in Boolean calculation can be a source of 

confusion). Let us call the third element B (in Boole’s honour). First we have: 

4-0 lB 0 1 B 

ONU EL" BR Orr Oy OF 70 

Pea Oe? TROUPES 

B|B ? B|0 B B 

We have yet to discover what is meant by: 1 +B. 

This is easy: it can be neither 0 nor 1, nor B not at least if B is different from 

0 and 1. It can be easily proved (by recalling the abelian characteristic: in an 

equation such as: x + y = ¢, each element is uniquely determined by the two 

others). 

Therefore, there is no Boolean ring having three elements, The existence of B 

makes the existence of a fourth element obligatory; this one can be designated as 

B', the companion of B, which satisfies: 1 + B= B', or further: 1 + B +B’ = zero, 

and B = 1 +B. 
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Therefore, we can set up the two tables: 

AMIS MS Er sn EA Soll FEROS Howes 

0:10 ot lies Rt ABE 0 0,10 1040 
Litt Fe Bee 1 nl SR 
BAB Boh B U0 ob au 
BAND Wee Bot HAUTE 

Memorandum: We should note that for addition, 0 is neutral, as for the other 

members 1, B, B': the sum of two different elements equals the third, and the 

sum of two identical elements is 0. 

We should note that for multiplication, 0 is absorbing, 1 is neutral, the square 

of an element is equal to itself, and the product of two ‘companions’, i.e. B and 

B', is equal to zero. 

We have thus constructed a Boolean ring of four elements. (We will show in 

passing that all of the Boolean rings having four elements are isomorphic and 

only differ by the names given to the objects of which they are composed.) 

3.7 Continuing to construct richer and richer Boolean rings in this manner is not 

impossible, but it is rather tedious. It can be proven that there exist rings of 8, 

16,..., 2”,... elements; that two Boolean rings having the same number of 

elements are isomorphic; that in any Boolean ring, the elements are paired; and 

that the companions are defined by: 

1+B+B’ = zero, 1+B= B' and 1+B’=B. 

But if one wishes to have a more profound understanding of Boolean algebras it 

would be useful to use more powerful methods than the simple combinatoric 

calculations used in the preceding little examples. It would be necessary to turn 

to the general theory of rings (for which the relationships between the rings 

themselves are the objects of study, and not the relations between elements of 

the same ring). Without venturing too far in this direction (which in itself merits 

the name ‘modern algebra’) let us consider a few perspectives. 

3.8 Let us consider a Boolean ring A — to be specific, we can take either a ring 

of two elements, or better yet, the ring 27, which we have just constructed — 

and any set £. Let us examine the mappings of E into A (that is, the different 

ways of assigning Boolean labels to the elements of £). 
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For example, if we choose F as the set of five elements { a, e, i, o, u }and 

choose the ring of four elements {0, 1, B, B’ }as A, there are four to the power 

of five, that is, 1 024 possible mappings. Each one can be designated by the list 

of the values in A. 

Thus: 

f = (i, 0, 0, B, 0) 

stands for the function (or mapping) which takes the value 1 in a; the value 0 in 

e, i and uw; and the value B ino. 

If we are given another function: 

£ = (0, 1 B”, 1; B) 

we can easily define the Boolean operations (by calculating them term by term): 

f+g = (1+0, 0+1, 0+ B’, B+1,0+B) 
= (11,8, BY, B) 

f-g = (0,0, 0, B, 0) 

and prove that these definitions constitute a Boolean ring: the set of mappings 

EA. 

It is then easy to construct as many Boolean rings as one desires, and in 

particular, infinite rings. hus, we can take the set of natural numbers as the 

set E. 

3.9 As soon as we have a Boolean ring, we have as many as we wish by 

considering the mappings of any set into the ring in question, and by supple- 

menting the given set of these mappings with the necessary operation, as we have 

just seen for the preceding example. 

If we start with the minimum ring, to map a set F into such a ring consists 

simply in assigning to each element of £ the mark zero or the mark one, that is, 

to designate one subset of £ marked 1, the rest being marked 0. There is thus a 

natural correspondence between the mappings of F into (0,1) and the subsets of 

E (this is the technique known as the characteristic function). 

It is then simple indeed to relate the operations of a Boolean ring to the 

traditional operations of the algebra of subsets of a set. 

It is easily proved that: f-g is the image of the intersection, and that f +g is 

_ the operation that consists of selecting the elements which are contained in only 

one of the two subsets (symmetrical difference). It is thus that we have found 

Boolean algebras, but it is important not to confuse the two structures. 
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4, simplicial objects 

by G. Th. Guilbaud 

1. The first model: simple complex or simplex 

1.1 Outline of an algorithmic description 

1.1.1 Alphabet. Words. Elementary operations on Words. 

1. Recopying without changes (orthographia). 

2. Recopying and doubling a letter (dittographia). 

3. Recopying and ommiting a letter (haplographia). 

These operations are combined in every possible way starting with a source 

word. 

1.1.2 Example 

Diagrams are more readable when the resulting words are situated on different 

levels according to their lengths: 

HS mp rss 

Wee 1 oes it ae 

pad dore à Fig. | 

Exercise: For the above diagram, draw all of the possible arrows. 

1.1.3 The drawing above (Fig 1) illustrates only a fragment of what can be 

obtained by applying the elementary operations beginning with the source word, 
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‘man’. The totality of words that can be generated in this fashion is designated 

by the notation: 

A [man], 

and it is called a simplex. 

The delta (A) evokes the triangle, the archetype of the simplex. If we limit 

ourselves to simplifying operations d (descending arrows) we obtain the classic 

diagram for the word man 

man 

ee A 

< a 

Le Fig. 2 

1.2 Organization of the simplex 

Premiminary remark: if all the letters of the source word are distinct, the 

structure depends only on the length of the word; from whence we have the 

abbreviated notation: A(3), A(4), etc. and A(w) for the cardinal w. 

1.2.1 We start with a set of words which is partitioned into: 

A!  aset of words of one letter, 

A?  aset of words of two letters, 

and so on to A”. To these we add A®, the set that contains but one element: 

the empty word. 

1.2.2 The classes of mappings: 

A" > An-1 written as d” and called faces, 

An > Ant! written s! and called degenerations, 

AN = An written o” and called an identity 

1.2.3 Diagram: 

Arrows d: A june ALI A? A. 

Arrows 0: { t t 

Arrows S: Ate tee. Ares 
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Complete indexing 

d; = deletion of the jth letter in a word of n letters, 
s; = doubling of the jth letter in a word of n letters, 
0" = recopying of a word of n letters, 

(these indices can ultimately be abridged to dj, Sj, sold rs), 

1.2.4 Composition is associative. An operation d” can be followed by 07 

109 

1 

an- 1, or sn-l. sl can be followed by ont] qntl ntl. an o! can be 

followed by 0”, d”, s!. 

1.2.5 There are five types of fundamental relations that are true regardless of the 

length of the source word, and from which all of the others can be deduced. 

1. The o are neutral, from whence the first types of equations such that: 

od = d and do = d. etc. 

2. The second type of form: sd = o when a letter is doubled to be sub- 

sequently deleted. 

Examples: si dt? = 0", sid2 = 0, Sd, = 0. 

3. A composition of the form dgn-! can be written in two ways depending 

on the order in which two letters are deleted. 

Examples: dsd3 = dsdi djd,=ddj_, (ifi <j). 

4. The fourth type is analogous to the preceding: ss = ss. 

5. The fifth type is sd = ds. When the repeated letter is different from the 

deleted letter it is possible to choose the order of the two operations 

because there is no interference. 

Example: S1d3 = d451. 

(See below 3.1.3 for the complete table of the relations. ) 

12.6 Note: When writing ds, dd, sd, etc. we adopt the convention that the 

operation written to the left of the equal sign is performed before the other. 
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1.2.7 Cannonical form of a composite operation 

Any program of elisions and repetitions can be written with d, o, and s in several 

ways. But we can adopt the convention that we shall begin by first writing all of 

the d’s, and then s’s (or the contrary). We can also decide that the d’s will be 

placed according to the decreasing inferior indices (or increasing, according to 

one’s preference), and similarly for the successions of the s’s. 

Example: 

dsdad:51555658 = do ds dz ds Sa Sa S1 

= $1 57 Sg 510 di3 ds da 

= S7 56 56 S1 da ds diy 

(an operation that transforms the word ‘lucrative’ into ‘Ilurttiiv’). 

1.3 Traditional combinatorics 

To study simplicial structures in detail according to the well-known dictum 

‘enumeration, numbering, organization’ leads us to the classical rudiment: letter 

combinations, the arithmetic triangle of Pascal, and so forth. I will give here but 

a few exercises. 

1.3.1 The sets A” can be assigned a partial order generated by the order of the 

letters in the word source. 

Example: We are given the word PAUL; the corresponding diagram of A? PAUL 

is given below with its ‘natural’ partial order. 

PPP 
a 

PRA 

PRU PAA 
Pes Os SR Evan 

PPL” PAU ONES 

ee ale 
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Note: If the set of the four letters in the word ‘PAUL’ is designated by EF, the 

diagram above is a subset of the cartesian product EXEXE or E° (tetrahedron: a 

sixth of the cube). 

The number of words: (cardinal) card A”(m) is found in the Pascalian triangle 

(we used tc say: it is the number of combinations, complete or with repetitions). 

In the drawing (Fig 3), in any case, we see the number in question is the 

triangular sum (Pascal called it pyramidal): 

10+6+3+1= 20, 

and by another formula: 

card. A? (4) = (4.5.6)/(3.2.1) = 20. 

card. A"(m) = {m(m+ 1) (m+2)...}/{n(n—1) (n—2)...} 

(where there are as many whole consecutive factors in the numerator as in the 

denominator). 

Another exercise is to draw A* (PAUL) which contains: 

4.5.6.7 
Dee nf 1 ts. 1234 35 elements 

1.3.2 Let us now enumerate, name and organize the set of the mappings A* > 

A: not only the four simplifications noted d{,d3,d3. but also all of the 

mappings obtained by combining the d’s and the s’s in all possible ways. We can 

use the results of (1.2.7), by choosing one of the cannonical forms. The possible 

forms for a mapping A* > A? are: 

dt, dtd&s, d* dd’ s' s*; 

and it only remains to choose the inferior indicies (decreasing for d, indreasing 

for s). 

It is an easy exercise to show that there are 20 possibilities. But it is easier 

still to simply observe that the organization of the set of words A* (4) can serve 

as well for the set of mappings A* > A. 
Therefore, let f be a mapping, f: A* > A®. 

This mapping is distinguishable by the effect that it has on an element of At 

provided that we take the precaution of choosing a word in which all of the 

letters are distinct. 

That is, we will consider f (PAUL), a word of three letters chosen from Ae 

(PAUL). ; 

The correspondence between A°(4) and A* > A? is thus defined and 

‘obviously bijective. 
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1.3.3 Another useful similarity: a word can be identified with the mapping of a 

totally ordered set in an alphabet. Thus, we can have a word of m letters: a 

mapping of (1 <2<3<...<m) in an alphabet. 

We are thus led to the study of the monotonic mappings (increasing, gener- 

ally) of (1 < 2 <...< m) in (1 <2 <...< n) to which correspond the 

mappings A” > A’” (note the reversal of the arrow). 

2. Some other models 

2.1 Let us consider a monoid, and to avoid complications, the simplest subset of 

all: the monoid of the integers, the school child’s addition tables and take only a 

small part of it: 

3 +4 7. 

As an illustration of associativity, a fundamental characteristic here, we 

explain that: 1 +2 +4 can ‘give’ either 3 + 4 or 1 + 6; and that finally, the result 

is the same. We can illustrate this with a diagram: 

1+2 +4 

pa 
3 +4 

ANS. 
# NH Fig. 4 

This result can be generalized; below is the case of the sum of four terms: 

1+2+4+5 

TF abi 
344 +5 1+64+5 1+2+9 \/ 

11 \ | 
1 

ppooees 
ee 

Fig. 5 

Thus, we have found the well-known simplex diagram. 
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2.2 Let M be a monoid. The operation will be noted as the ‘+ for the whole 

numbers (but we do not assume that this operation is commutative, only 

associative). Let x = (x1,X2,...,x;,..., X,) be a list of the elements of M. Since 

_ each xj isa member of M, x; is a member of the cartesian product M". Let us 

now introduce the mappings d; : M > M"—! which transform (x) into (y) by: 

Yi = X1, Vo = Xa, ..., Vi = Xi + Xi4is Vit = Nite --- 

It is easy now to give the rule for the composition of two operations (d). 

2.2.1 First case: Two additions of two pairs of neighbouring terms, but the two 

operations are distant enough so that they do not interfere. 

This transformation can be obtained in two different ways because the order 

in which the two additions are effected can, obviously, be different. 

Thus, let: 

CRs soe 2 )ibecomeant (x EX hs Ayes bats 

which can be obtained either by: 

first d;, and then d;_ 7 

or 

first d; and then dj. 

2.2.2 Second case: 

CT ee.) becomes  (..., Xi+ X41 +-Xi4-2) ++ +)s 

which can be decomposed into d; followed by d;, or into dj+7 followed by qj. 

Here again we find the rules already seen in paragraph (1.2.5.3) above, and 

we should note the relation between these rules and the associative law. 

2.2.3 When the monoid in which we are working is a group, we may use a 

well-known procedure of the statisticians and the probabilitalists, which consists 

of replacing the given list x = (x1, X2,..., Xn) by that of a ‘cumulative’ list X = 

(X,, X2,.-.-,Xp) defined by: 

Xi = x, Xe = Xi+X2, X3 = xi+x2+ Xs, ete. 

and also: 

= À x2 = Xo+ Xi, X3 = X3+ Xo, etc. 

(X is the opposite of X : X +X=0). 
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We thus have bijections between the x’s and the X°s. 

The operation d; transforms x into y: 

= Xn Sih <i, yy = Xi +41. Vj = Xj+1 CHROME 

resulting in a transformation of X into Y: 

Y, = Xn Yi = Xin1,_ Vp = Xjsi- 

Which means, finally that: 

(LR AIT es AT Ae cee 

The operation d; in the X space is non other than the deletion of a coordinante 

(projection) as in the first model. This leads to the idea of defining the operation 

s; first on the cumulatives X: (X1,..., Xn) > (ina, Ap D XX ET eee 

repetition of X;. 

Moreover, we can deduce the definition of s; for the x’s: 

S$; (x1, ones Xn) ai (x1, sey Xis 0, Nits +. Xn) 

by writing 0 for the neutral element of the group. 

2.3 Let us return to the monoid. The operations d: M"! > mr-1 having been 

defined, it only remains to define the s’s. We wish first (see 1.2.5.2 above) that 

sd; will be identical to the transformation s;_ 7d;. 

The results of (2.2.3) suggest a solution: the operation s; consists in inter- 

digitating a neutral element (recall that every monoid must have a neutral). We 

can then show all of the relations in (1.2.5) without difficulty. 

Example: The integers: 

3+0+0+4 RP aie 1+0+0+4 

hee oA REZ tae OTe 6 

3 + 4 1 + Le 

NC 
Fig. 6 
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have the same form as the simplex: 

aao aab abb bbb 

Seid #4 \/ 

VA A 

\ À Fig. 7 

2.4 But it is not even necessary to insist on a monoid because all that was needed 

for the preceding construction was: 1. associativity; and 2. the existence of 

neutrals. 

Thus, we need only begin with a category, that is, an associative algebraic 

structure, but whose composition is not everywhere defined. 

For the moment, let us be satisfied with the usual intuitive images and their 

graphic representations. 

Let us consider three arrows, or three paths, end to end: 

a b c 
—>> Ss ss, — 

We can combine a and b, as well as b and c, and write: 

ab = p, = be =q 

Similarly, 

pc=aq=t 

As for the interdigitated neutrals, they are the ‘nul’ paths, here depicted as 

intermediate ‘stations’: 

a g b h re = 

and we can write: 

ag=a gb=b bh=b hce=c 

gq=q ph=p 

Finally, all the algebraic tools can be described by the operations (d) and (s) 
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performed on the ‘words’ and which can be summarized on the same sort of 

diagram: 
phhc abhc agbc aggq 

See 
Ae. 

aq 

t Fig. 8 

2.4.1 It, may seem surprising that only intermediate neutrals have been intro- 

duced, and that the extremities have been neglected: 

eek Fr ae di 

It is true that nothing prevents us from defining, for the word ‘abc’, not two but 

four operations s which are respectively: 

abc fabc, agbc, abhc, abci 

But if we wish to scrupulously conserve the simplicial form, it will be 

necessary in addition to define four simplifying operations of the class d. 

Naturally, all of the formal properties must be conserved as well. 

This is not difficult. We will show this as an exercise for which the following 

is a good solution: 

d,(abc) = bc, d{abc) = pc, d3(abc) = aq, d(abc) = ab 

Or, expressed in words, the operations d; consist in comparing two neighbouring 

letters of the given word, except at the two extremities where the operations are 

the deletion of the first and the last letter respectively. 

Below we have the resulting variation on our old model of the addition of 

two integers. The three operations d° are: 

/\\ 
2 1 Fig. 9 

+ 

3 

And for the three s?: 

Os te 2 of Pe ayn 2 1+2+0 

Te à 
1; 24 2 Fig. 10 
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These are the diagrams that correspond in the general case of any category to: 

(ab) =b d(ab)=p (ab) = a. 

But now another little problem arises: how is the d? to be defined?We could 

have d? and d3 operate on words of only one letter. To do so would be to 
accept simplicial diagrams ‘truncated’ at the bottom. This is admissable, but we 

can do better. We need only give names to the unnamed elements of the diagram 

of Figure 11. Nor shall we find ourselves at 2 loss for an intuitive interpretation. 

(This will give us the opportunity to reflect on those popular complexes called 

‘graphs. ) 

Q 

Ley 
a 

© 

Be Fig. 11 

On the diagram we read: 

db) = di(a). 

That is, the arrival (d;) is identical to the departure (d2) of b. And similarly, the 

arrival of b = the arrival of p: db =dp. 

But what can be said about f, g and h?They are the nul paths and not points. 

It is here that formal algebra joins our intuition and spontaneous spatial 

language. Indeed, it is an easy exercise, and we shall show what is to be written 

(as a result of the equations of 1.2.5): 

si(di(a)) = g 
5i(d2(a)) = f. 

The operation thus shows the object ‘point’ (arrival or departure) at the level 

‘path’. But it is a nul path. 

To have these notations conform to those customarily used in classical 

geometry (which were for a long time used in simplicial literature), we can 

rewrite the figure as follows: 

Hp Cer: LT SEE AE 
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and we write 

f:= AA a:= AB, g: = BB andsoon. 

Thus our drawing becomes: 

ER Fig. 12 

good old simplex! 

Exercise: What plays the role of ‘points’ in the addition of integers, since the 

integers are considered to be ‘paths’? 

3. Simplicial categorys (abstract complex ) 

When dealing with models which are clearly isomorphic, it is natural, in order to 

bring out their structure, to adopt a formal point of view and also adopt an 

abstract definition of what is common to all of the simplexes. We will no longer 

worry about what the letters d, 0, and s mean, no longer ask ‘what is it’?, but 

rather ‘how does it work’? 

3.1 Formal grammar 

3.1.1 The constituents are: 

the 0’s 0 o! 0? À. 0! . 

the d’s di d; &.. . 

dj dj... dy 
a ae 

nee Ss se 

, n 

the s’s CRT POS s? 

SS... 8 
SB... SB 
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3.1.2 Rules of associative composition: 

any d” can be followed by: oM—1 og dl or sn! 

any s” can be followed by: o?*/ or d'#1 or st] 
any o” can be followed by: o” or @” or s/! 

3.1.3 Transformation rules: 

1) o"d' = d", 

djo"~* = dj, 

2) sidj** = 0", 
San = ids} 

4) C'CrERE a Sa 

5) sdj** = dis; 
dis = Sift 

0"! ase Il si, oo" = 0" 

Nom de. s; 

5} dt th = 0° 
a RE | 

NT ET 

ibn Ir) 

ti) 

(with the usual rules of the = sign, that is, transitivity and substitutability). 

The structure formed is a category (abstract). We can say: simplicial category, 

but more commonly ‘complexes’. 

4. Simplicial sets (set complexes) 

119 

4.1 The category we have just described (the d, 9, s and their grammar) can be 

‘represented’ by replacing the d, 0, and s with determined mathematical objects 

(themselves having an internal structure). For example, set mappings, as was the 

case for the models presented above (1 and 2). In this case we say that we have a 

simplicial set (a term that can be considered an abbreviation of: the set model of 

simplicial category) or set complex. 

Such a model is composed of: 1. the sets Ko RK, Kee... KOS pean eine 

mappings: 

He KO eae Re Ke as 

0: t { étc: 

Ss: Ki —-—--44kAa 

with the five types of relations given above in (1.2.5) and in (3.1.3). 
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4.2 The following is another example of a simplex set. Let us choose any set A 

and form the products AXA, AXAXA, etc. which will be noted, as usual, A”, 

A?, etc. : 

There exists, as we know, two mappings 

AXA > À 

called projections which will be noted d; and d:. 

To the mapping S;: A > AXA, we will associate the diagonal mapping of A 

which makes, correspondingly a diagonal element (a, a) of A: 

It is easy to continue in this manner and define three projections, di, d2, d3 

of AXAXA on AXA. And two injections which can again be called the diagonals 

of A? and A? those to which (a, b), an element of A* correspond to (a, a, b) and 

(a, b, b), elements of A, and so on. 

It is easy to see that the d and s defined in this manner obey the necessary 

conditions. 

Let us now return to the example given above in (1.3.1), the complex A? as 

a subset of the cube {P A U L}*. 

4.3 Complexes and simplexes (‘hat’ operation) 

The set K, which is often called a complex (without epithet, as an abbreviation) 

is composed of the sets K” and of the mappings: 

d: K" + K"—1 and the mappings s: K” > Kn+1 

satisfying the conditions given above (five types of equations). 

In the case of a simplex (first model) the elements of the sets were generated 

from a unique source word. 

In the general case, we choose any element p e K’™. To this element we 

associate a word of m letters, all distinct, call it M. (This is simplicial nomen- 

clature; in the old tradition of classical geometry we would say: ‘Given the 

triangle ABC’) 

We will now construct a mapping: 

Ch: A[M] = K 

of the complex type A, or a simplex in any complex K. This will be a morphism 

of the simplicial structure. For this we will write: 

Ch(M) = p, 
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then 

Ch(d;M) = dip, Ch(s;M) = s;p 

and so forth. 

In this manner we obtain a ‘simplicial’ nomenclature for a subset of K. That 

is, the image of A by the mapping written Ch. 

Thus, in every complex K and for every element p, we can construct an image of 

A: it is the singular simplex attached to p, and which we will write as p (hat) 

Actually it is not, strictly speaking, only the image (subset of K) that is 

important but the image which has been given the labels that are the words of 

A (). Rather, we define the mapping itself as the ‘singular simplex’; here 

provisionally noted ‘Ch’. Finally, we shall write it as: 

p:A[M] > K 

P(p) = M. 

This explains why we can call those elements of a complex K ‘simplexes’ (in the 

set sense), and this is a linguistic simplification that is both classic and useful. We 

can this represent a complex as an architectural element or structure for which 

the materials are the simplexes (certain authors use the tilde ~ instead of the 

mat’. ) 

5. Products of simplexes 

We shall show that every cartesian product of simplexes can be organized as a 

complex, and this will give.us the first process for constructing these complexes. 

5.1 In anticipation of what will later be called the (affine) geometrical con- 

struction of a complex, I will point out that elementary geometry has used 

simplex structures for centuries, without making them explicit, employing them 

in the most common affine architectures: points, line segments, triangles, etc. 

For example, if I speak of ‘the line segment AB’, I am interested, among 

other things, in the relation that the points A and B have with the segment in 

question: 

AB 

x 
A B 
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And as I have already pointed out (in 2.4.1 in fine) we may have need of ‘nul 

segments’ AA and BB. 

Therefore, to every segment we will associate a simplex of the type A(2). Let 

us now consider the cartesian product of two segments; if we adopt the set 

definition, it will be the set of pairs of points. We say, quite naturally, that the 

cartesian square of the segment (0 <x < 1) is a square (in fact, it will most often 

be a parallelogram because we are working in affine geometry, which has no 

right angle). 

Below is the traditional image (we say, cartesian), of the product of two 

segments. 

MIS LUE TE. eel 

C D Fig. 13 

But the combinatorial architecture of the parallelogram (or the square) is not 

simplicial: it has four vertices, four sides. 

We shall see that this is only apparently so. 

5.2 For the moment, let us abandon geometrical images and fix our attention on 

combinatorial structures. That is, we will consider two simplexes: A[AB] and 

A[CD}. 

As we have seen, the first is composed of the sets: 

Kaci As B 

Ky: AA AB BB 

K3: AAA, AAB, ABB, BBB 

and so on with, in addition, the mappings d and s previously defined. 

The second is the same (an isomorph), call it L: 

Ly: GS D 

Wa; CO, CD, DD 

LEstCGG: CCD, CDD, DDD, etc. 
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The definition of the product of such structures is obviously: 

1. form the products XXL; for i = 1, 2, 3,...; and 

2. define the mappings d and s: 

The natural way would be: 

if x € K; and y € L;, then (x,y) € K;XL;, 

and d(s,y) = (dx,dy), s(x,y) = (sx,sy), by definition. 

The complex product M = KXL in our example, will thus be defined by: 

Mis (Age), (AD), °(8,C), 2°, D) 

M2: (AA,CC), (AA, CD), (44, DD), (AB, CC), ..., (BB, DD) 

M3: ...,(AAB,CCD), (44B, CDD), ..., (ABB, DDD) 

and so on. 

We can easily show that the d and the s obey the necessary rules: 

d\(AAB, CCD) = (AB, CD) 

d.(AAB, CDD) = (AB, CD). 

(The reader should try to draw the appropriate diagram here.) 

5.3 The simplex K can be called monogenous in the sense that it is ‘generated’ 

by the single word ‘AB’, to which we will apply in all possible ways the 

operations d and s. It is the same for L. 

However, this is not quite the same thing for M = KXL. For example, the 

element (AB, CD) does not suffice to generate M; by using the operation d we 

only obtain (A, C) and (B, D). No successive applications of d permit us for 

example, to obtain the element: 

(AAB, CDD). 

We can thus ask ourselves how the generator of the elements can be found. I will 

only give the answer here and the reader should establish for himself that if we 

begin with: 

(AAB,CDD) and (ABB, CCD) 

every other element of the M product can be obtained by a sequence of 

operations of s and d appropriately chosen. That is, all the elements of M can be 

found in the two simplexes: 

A[(AAB, CDD)] and A[(ABB, CCD)] 

either in one or the other, or both. 
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5.4 Let us now return to the geometric interpretation. What corresponds to 

(44B, CDD) for example? 

Performing first all of the d operations, we obtain: 

(AAB,CDD) 

(AB, DD) ne fa 

which illustrates the architecture of the triangle for which the three vertices are: 

(B, D), (A, D) and (A, C). 
The figure can accordingly be drawn: 

(AC) (AD) 
pS sm mm — 

i Eprctet d26 de A sum rutin 3 

(BC)! '(B,D) 

: 1 
! ! 
! [ 
' 1 

le D. Fig. 15 

and the parallelogram is simplicially structured, that is, decomposed into 

triangles. 

5.5 To familiarize ourselves with the mechanism, we can examine two other 

examples. 

5.5.1 The product of a triangle by a segment gives the volume of a triangular 

prism. We shall examine the complex A[AB]XA[CDE] and see that it can be 

generated by the simplexes: 

A[(AAAB, CDEE)] 
A[(AABB, CDDE)] 

and 

A[(4BBB, CCDE)] 
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from whence a decomposition of the prism into three tetrahedrons: 

six vertices: 

(4 C), (4, D), (4E), (B,C), (B,D), (BE): 

twelve edges: 

(AA, CD), (AA,CE), (AA, DE), 
(AB,CC), (AB, DD), (AB, EE), 
(AB,CD), (AB,CE), (AB, DE), 
(BB,CD,) (BB,CE), (BB, DE). 

5.5.2 The product of three segments is a cube. The complex A[AB], A[CD], 

A[EF] can be generated from six word-products: 

(AAAB, CCDD, EFFF) 
(AAAB, CDDD, EEFF) 
(AABB, CDDD, EEEF) 
(AABB, CCCD, EFFF) 
(ABBB, CCDD, EEEF) 
(ABBB, CCCD, EEFF) 

which decomposes the cube into six tetrahedra. 
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5. monoids and groups 

by C. d’Adhémar 

Introduction 

We will define two types of algebraic structures which are frequently encoun- 

tered: monoids and groups. These structures have been shown to be useful in 

various domains such as the monoids in formal linguistics (N. Chomsky and 

M. Schutzenberger) and groups in diverse branches of the human sciences where 

they have been used to represent filiation systems, and in particular the rules of 

kinship and marriage (mathematic research by A. Weil and Ph. Courrege on the 

work of C. Lévi-Strauss and H. White) and in genetic psychology (J. Piaget). 

Geomancy, a process of devination, also lends itself to the use of group structure 

(the Gara studied in the Sara country by R. Jaulin). These mathematical struc- 

tures are also used in the decorative arts to show symmetries and repetition of 

‘motifs (H. Weyl) as well as in the musical domain where the notion of groups 

-can be applied to frequencies (P. Barbaud) and to musical composition (Nomos 

alpha by I. Xenakis, analyzed by F. Vandenbogaerde). 

The general theory of these structures will not be presented here, but rather 

some examples will be given as exercises. The principles used to construct these 

algebraic structures to be adopted here is as follows: starting with a finite 

alphabet, we shall write the lexicon of words of finite strings of letters in this 

alphabet. Then either allowing all words or imposing spelling rules will give us 

systems that vary, according to the set of rules adopted. Thus, we will be dealing 

with sets of words to which we will associate compositional laws which confer 

on them the desired algebraic structures. 

We have arbitrarily chosen to begin with an alphabet of two letters, but any 

finite alphabet could have been used. These structures, built on a finite number 

of letters, and having a finite or infinite number of elements, are said to be of 

finite type. 
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1. Monoids 

1.1 Free monoids 

1.1.1 Construction of a lexicon 

Given two letters A = {a, b }let us construct a ‘lexicon’: the set of all words 

(including the word containing no letter, or the empty word, denoted here by 1) 

finite in number and without parentheses that can be written with the letters a, 

b. We shall call this lexicon F. Another way of defining F is: 

F=l + A+ ‘AXA + ' AXAKA $i. + AKL XA Tee 

Let us now consider a simple procedure: the construction of a lexicon as a 

tree. For each word m of (n—1) letters, construct as many branches as there are 

words of n letters, beginning by m (two branches: adding either a or b to m). 

There are thus twice as many words of n letters as there are words of (n—1) 

letters. This tree, all of whose branches double, is the exponential tree to the 

base 2, otherwise known as a dichotomic tree. 

I 

deg ace
 te (01 

the empty word 

a in 2 words of 1 letter 

pre ab ba bb 

S PA FAN rose 

aaa 

2? words of 2 letters 

b. 2° words 3 letters 

Fig. 1 21 words of n letters 

Exercise: Write all of the words of five letters. 

1.1.2 Composition law on the words of the lexicon 

The law of internal composition, or binary operation! is defined in the lexicon 

F. It is noted here by the symbol *, an operation by which we obtain the 

1. A binary operation T on a set E is a mapping of EXE into E. In other words, for any 

ordered pair (x, y) of elements of E there exists one and only one element z of £ such that 

xy =z. 
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product of two words m1 and mz by writing the letters of m2 after those of m1. 

For example we have: 

m, = abaa mz = b m,* mz = abaab 

This operation, called a concatenation, is associative. If m,, mz and m3 are 

words in F, then (m,#m2)*m3 = m,*(m2*m3), since in both cases it is a 

question of forming a word by writing the letters of m,, m2 and m3 one after 

the other, respecting their order. On the other hand, for any word m of F, Ixm = 

mx/ = m. J is called the neutral element for the operation x. 

A monoid is an algebraic structure consisting of: 

1. a set M; and 

2. an associative,binary operation defined for any pair of elements of M for 

which there exists a neutral element in M. 

If T. is the binary operation in M, the monoid is written (M, T), or simply M 

where there is no risk of ambiguity (note that the monoid structure (M, T) is not 

to be confused with its subadjacent set M). 

The lexicon F of finite words constructed from the alphabet {a, b},. having 

the operation + is a monoid (F, x) with the neutral element Z. No limitation is 

imposed on the construction of the lexicon; there is no spelling. We shall call 

such a construction free. Thus (F, x) is the free monoid generated by {a, b}, a 

and b are the generaters of (F, +). In a similar fashion we can construct the free 

monoid generated by n elements (an alphabet of n letters) with the aid of the 

exponential tree to the base n, where from each word grow n branches. 

1.2 Quotient monoids 

We shall now impose spelling rules on the words of F by which we identify 

words of F that are written differently: certain elements of F are considered as 

equal. In this manner we obtain a new set F’ for which each element is a class of 

words equal among themselves. This set F’, which is given an associative law of 

composition, derived from * is , like F, a monoid. A few simple examples will 

serve to illustrate the procedure. 

1.2.1 The idempotence rule 

- This rule can be expressed by: m*m = m, for any word m of F. Ifa word is 
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repeated after itself, it is the same as writing it only once. In particular; 

aa=axa=a bb = bxb=b 

If one word can be derived from another by iterated applications of this rule, 

then the two words are considered to be identical. When the number of letters in 

a word cannot be reduced by applying the idempotence rule we say that it isa 

reduced word. In the case of an alphabet consisting of two letters, it is easy to 

show that there are seven reduced words. They are: 

I 

a b 

ab ba 

aba bab 

Every word is equal to at least one reduced word. In all the examples given here 

we have chosen rules such that any word will be equal to only one reduced 

word. In other words, regardless of the method chosen to reduce a word, we 

always obtain the same result. If m = abaaba is the given word, it can be reduced 

in several ways. For example: 

1) m = ab(aa) ba = (ab) (ab) a = aba; 

2) m = (aba) (aba) = aba. 

But this is not a general result. There exist algebraic structures for which the 

classes can have several words of minimum length. 

The idempotence rule divides the free monoid F into seven disjoint classes (or 

partitions F into seven classes) each containing a reduced word to which all the 

words in each class are equal. In particular, / here is the only member of its class. 

For example the class ab contains abab, abaab, etc. ... 

We must now give this set of classes F’ an operation * which will transform it 

into a monoid. 

If C; and © are classes, C; *C2 is the class of reduced words which is equal 

to the product of any two elements of C; and C2. This procedure is possible 

because the product by * of two elements depends only on the reduced elements 

to which they are equal (that is, of their classes). For example: 

i: 

m, belongs to the class of the reduced word aba, and | 

mz belongs to the class of the reduced word ab, 

then, bi 

m 1% Mz = aba ab = ab. 
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It is easy to show that this operation is associative. Thus, we have obtained a 

monoid F’, called the quotient monoid of F (that is, we have obtained a set of 

classes of a partition of F) having a composition law derived from that of F’. 

This procedure of partitioning a set in such a fashion allows us to give the 

quotient an operation, derived from the first and having the same properties; this 

is the general process of constructing quotient structures. 

Instead of considering the set of classes, it is also possible to consider the set 

L of reduced words having the operation +’: the product by *’ of two reduced 

words is the reduced word equal to the product obtained from the operation * 

of these two words. For example: 

aba *' ba = aba 

The monoid L composed of these seven words is called Kuratowski’s monoid. 

Sometimes there is no distinction made between L and F'; they are iso- 

morphic (see section 3). Nevertheless, in order to be truly rigorous it is desirable 

to make the distinction between seven elements and seven classes. 

The Pythagorean table of the * operation for Kuratowski’s monoid can be 

constructed in the same way as the addition tables or the multiplication tables 

with which we are familiar. The table can also be used as a table for (F’*). Each 

reduced word serves as a label or representative of its class. 

7 a b ab ba aba bab 
Se O_o 

I I a b ab ba aba bab 

a a a ab ab aba aba ab 

b b ba b bab ba ba bab 

ab ab aba ab ab aba aba ab 

ba ba ba bab bab ba ba bab 

aba aba aba ab ab aba aba ab 

bab bab ba bab bab ba ba bab 

We have thus constructed a monoid having seven elements (of order seven”) 

from a monoid having an infinite number of elements (of infinite order?). 

2. For the case where we have a finite number of generators and rules, we do not always 

know how to determine if the set constructed has an infinite number of elements, or none. 

This is an old problem, known as Burnside’s problem. 

3. The order of a monoid is the number of its elements (as is the case for any algebraic 

structure). 
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1.2.2 Commutative rule 

The order in which the words are written is not significant: mm, *M2 = M2*Mi 

for any words m, and m2 in F. In particular, ab = ba, and the word is not 

changed by changing the order of the letters. As a result, two words are equal if, 

and only if, they have the same number of a and the same number of b. We 

reduce a word, for example, by putting it in the form a”b4 if it contains n times 

the letter a and q times the letter b: 

b 

ba b | 

b 

bb 

a 

aa D 

De pal ab? ab* alt 

a à 

yan 

\ 
\ 

[ 

ab 

I 

\ | 
aa Sy a een 

Fig. 2 

alb ab  alb 
b 

I 

From the tree (Fig 4) we can construct the network which can be represented 

by the network N° of whole pairs: 

(0, q) ee jab Aes DE UN) 

ot} dp @Ln Gln 

(0,0) (1,0) (2,0) (n, 0) 

As was the case for the idempotence rule, the commutative rule divides F into 

disjoint classes containing a reduced word and the words equal to it. 
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This set F” of classes (or the set L’ of reduced words) can be assigned an 

associative operation ¥ derived from *: 

a'b’ x ‘abot = ant y bItd — grt" patd 

F’ and L' are quotient monoids having an infinity of elements (see figure): there 

are (7+1) reduced words of n letters for any integer n. In Figure 3, the words of 

n letters are located on the nth diagonal. 

‘hie ee Sed Fig. 3 

1.2.3 Idempotence and commutativity 

We have succesively imposed idempotence and commutativity. What happens 

when we require both? For L (idempotent) we have: 

aba = aab = ab; bab = abb = ab and ba = ab. 

Wu 
rep 

| Thus, L is divided into four classes: {7}, {a}, {b}, {ab, aba, bab, ba}. The 

quotient monoid L” can be derived from the Pythagorean table as follows: 

Fig. 4 

1|alblba ab aba bab I a b ab 

Pare? ae ENT ee El fone a NUE IR 

pty Co NN ET a a a ab ab 

hr ro PEHMBPAl ab |b |” ab 

5 ab ab ab ab ab 

ab ab I 
ab ae ene 

aba 
a D 

bab | he 

ab Fig. 5 
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The elements of L” correspond to the four subsets of {a, b}. Indeed, two words 

are distinct only if they do not contain the same letters; the order of the letters 

is immaterial (commutativity), as is the number of identical letters in the word 

(commutativity and idempotence). More generally, with an alphabet of n letters 

we will again have a bijection between the reduced words and the subsets of the 

alphabet. We find here the simplexes S, (subsets of a set of n elements and the 

inclusion relation). (See chapter 4, ‘Simplical objects’, and chapter 2, ‘Ordering 

and classification’.) 

Exercise: Show that L” the quotient of L (Kuratowski monoid having seven 

elements) can also be considered to be a quotient of F a free monoid generated 

by {a, b} and of L’ (commutative monoid). 

1.2.4. Commutativity and a? = b? =I 

We shall see in 2.2 that we have a group: Klein’s group. We obtain the same 

letters as above, but the table is different. 

ab ab b a I 

2. Groups 

We have just seen an example (1.2.4) where for any element m there exists one, 

and only one, element which we will write as m~—', such that m—'m =J (as can 

be seen from the preceding table). Similarly for (1.2.4): 

a = 0 Dep (ab)~1 = ab 

and for any word m: Im = ml = m. 

I is thus called the neutral element, and m—! the inverse of m for the binary 

operation. Such a set is a group. To be more precise: 
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A group is an algebraic structure composed of: 

A set E; 

a binary operation O defined for every ordered pair of elements of E; and: 

the operation O is associative, 

E contains a neutral element for the operation. 

every element of E has an inverse. 

A group will be written (£, O) or simply as £ where there is no risk of ambiguity 

(but to be rigorous, E is only the subjacent set of (E, O). A group can also be 

defined as a monoid for which every element has an inverse or an invertible 

monoid. 

Klein’s group (1.2.4) is a well-known group. It is a group of four elements 

characterized by the following: each element is its own inverse; and the product 

of two elements different from the neutral element is equal to the third. 

2.1 Free groups 

As is the case for the monoids, we can construct the free group G generated by 

{a, b}. To do so, we add the ‘letters’ a! and b—!, the inverses of a and b, and 

we can construct the free monoid generated by {a, b, a~', b—1} to which we 

assign the spelling rules: 

qrtasjaat=b1b=bb 1 =1 

The set of words that have been reduced by successive deletions of two inverse 

letter written side by side constitutes the free group generated by {a, b} . For 

this to hold, it is necessary that every word in the set be equal to one, and only 

one, reduced word and nothing else. For a detailed proof see Marshall Hall 

(1959, chapter 7). 

Each reduced word m has one, and only one, inverse m~ 

reversing the order of the letters and the sign of the power: 

' obtained by 

m=abab'b mss baba lb ta"? 

mm-) = a(b(a(b-1(bb-)b)a bat =] 

To construct the tree of this group it is sufficient to prune the tree of the 

monoid generated by {a, b, a—', b—'} of the branches which add the inverse 

letter of the last letter of the word: each word will thus give rise to only three 

branches, except for the empty word. 



136 C d’Adhémar 

1 b? ‘ ab? 
ba a aba-! 

aba a“!b ab 
b 

a”2 an! : a a? 

aly! b-1 ab”! 

b'la 
b°2 

( 4 words of one letter 

4x 3 words of two letters 

Fig. 6 4x 3? words of three letters 

b-> Sa ate ai tht os axa ee oe 

4x 3/71 words of n letters 

2.2 Quotient groups 

We shall now add rules which allow us to obtain disjoint classes and an 

associative Operation on these classes, derived from * (thus showing that the 

quotient set is indeed a group for which the neutral element is the class of the 

neutral element of G, and such that the inverse of a class f is the class of the 

inverse of any element of f). 

Idempotence: Any idempotent group can be reduced to the neutral element. 

Indeed, if x= xx, Lx x7 (xx) =x. 

Commutativity: The quotient is a commutative group, or abelian, (see chapter 6, 
‘Measure scales’). Each class can be represented by its unique reduced word 
of the form a? bY, where p and q are positive or negative integers. 
Commutativity and a? =b? =/: 
We find the Klein group already encountered in 1.2.4. 

Commutativity and a? = b? =]: 
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The reduced words: I 

a b 
a 

ab 

ab 

form a group G’ of six elements (group of order six) for which the table is: 

Let us examine this example. We note that in this table, each element of G’ 

appears once, and only once, on each line and in each column. In other woras, 

the equation ax = B has but one solution in x when a and B are given. That is: 

x = a—'£, and similarly, the equation ya = B has only one solution: y = Ba’. 

This holds for every group. 

On the other hand, the set {/,a,a°} (top left entry of the above table) is itself 

a group generated by a single element (which we call a monogenous group) and 

is such that a° = J is a cyclic group. 

a2 

Fig. 7 
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Here the cyclic group is of order three which can be represented by interpreting 

a as a third turn rotation (do not confuse rotations with image points. Here, 

for example, the rotation 27/3 La ae the image point / into a, the image 

point a into a*, and the image point a’ into J). 

A subset of G which is itself a group for the composition law of G is called a 

subgroup of G.* {J, a, a7} is thus a subgroup of G’. 

If we partition G’ into two classes indicated by the thick lines of the table: 

class A is composed of the elements of the cyclic group {I, a, a°}, and class B 

is composed of the words written with b (B = bA). We note that these two 

classes form a group G””, quotient of G’, of neutral element A: 

ee ame ee 
Atala. 

B B A 

To every subgroup of a commutative group can be associated a quotient group 

whose neutral element is the class constituted by this subgroup (called a kernel), 

every other class (Lagrange classes) being formed by the products of an element 

of the group by this subgroup (all of those classes having the same number of 

elements). Here, this kernel subgroup, the neutral element of the quotient group, 

is made of words considered to be equal to the empty word according to the 

rules imposed. Show that they do constitute a subgroup. 

| | 
I bla ab | a? a°b 

a ab | a? a*b A. aha 

ab a | ab a 

A’ A’ A” AT? 

a? a?b I b A” All All AG 

a’b a? b I AT Are A’ 47 

I b|\a ab 

b I | ab a 

4. Generally speaking, if S is an algebraic structure, we will call a substructure of Sa 

subset of the basic set of S, which, having been given the laws and relations of S, has the 

same structure as S. 
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By forming the quotient of G’ and the subgroup A = {/, aa*} we obtain the 

cyclic group of order two (G’’). 

It is also possible to form the quotient of G’ by the subgroup A’ = {J, b} 

which is cyclic of order two. The quotient is thus a cyclic group of order three 

{A', 4", A’ }. The classes are: A’, aA’ = A”, a*A' =A". 

_ Inverse exercise: It is possible to obtain G’ by forming the ‘direct product’ from 

a cyclic group of order two and a cyclic group of order three: 

let G, be the cyclic group = {J/, b} 

G) be the cyclic group = {J, a, a? }. 

From these two groups we can construct a third, the direct product group 

G,XG, obtained by assigning to the product set (the set of ordered pairs (x, y) 

where x € G; and y € G;) the operation: 

(x1, 1) + (X2, ye) = (x1 X2, Y1 V2) 

where x, x2 is the product in G, of the elements x; and x2; and 

Y1 V2 is the product in G2 of the elements y, and y2. 

We thus do obtain the group G’ if we agree to simplify the pair (a, b) by writing 

ab. For example: 

(a, b) - (a2, 1) = (aa?, b I) = (a, b) = (1, b) > b 

| Thus, G’ has been obtained as the direct product of G, and G2. Similarly, the 

. direct product of two cyclic groups of order two, {/, a} and {/, b} is the 

_ Klein group seen earlier. 

3. Homomorphisms 

The structure of a quotient group is derived from that of the group which was 

used to construct it. This can be expressed by the presence of homomorphism, or 

mapping, that preserves these structures. 

A homomorphism of a group H into a group H’ is the mapping f of H into H’ 

such that {(x-y) = f(x)T f(y) where - is the binary operation of Hand T that of H’. 

Let f be the mapping which to each element of the group G' of the preceding 

example associates its class A or B: 
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GC’ f Ge Fig. 8 

This mapping is a homomorphism of the group G’ into the group G” because the 

product of the images is equal to the image of the products. 

Example: f(a) = A f(@b)=B 

f {a(a*b)] = f[b] = B = AB = f(a) f(a*b) 

A group and a quotient group of this group are always homomorphic. Conver- 

sely, we can construct a quotient group of G from any homomorphism f of a 

group G into a group G’ by taking as the nul element of the quotient the set V 

of the elements of G which have for their images by f the nul element of G’. N is 

the kernel of f (Show that we are really dealing with a subgroup of G.) In the 
case we saw above, where, starting with a free group G, we constructed a 

quotient group G’ by adjunction of rules for which the classes contained one, 
and only one, reduced word we saw that these reduced words also formed a 
group G”. The mapping which associates its only reduced word to one class is a 
bijective homomorphism of G’ into G’’. We use the term isomorphism for this 
mapping. 

Similarly, we can define an endomorphism as a homomorphism of a group into 
itself. For example, if G is the free group generated by {a, b}, the mapping of 
G into G, which to each word makes correspond the word obtained by deleting 

all the b and b— 1, is an endomorphism of G: 

Vlaba-*ab) = Gaia a 

The endomorphism of G, defined by the exchange of the letters a and b: g(a) 

= b, g(b) = a (so that g(a? ba~3b?) = b? ab—3q? ), is an isomorphism of G into 

itself; in other words, an automorphism of G. 
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To introduce groups it would have been possible to begin with the general 

definition and then give the classical examples of sets satisfying the properties of 

groups (the set Z of integers with the addition operation; the set R of reals with 

the operations of addition or multiplication). The reason for introducing groups 

from the point of view of free groups is that there exists a theorem (not given 

here) that shows that every group is isomorphic to the quotient of a free group. 

In other words, any group can be obtained to within an isomorphism by 

constructing a free group which has been given the appropriate rules. We have 

seen futher a procedure for the construction of new groups from given groups by 

forming their direct product groups. Using finite groups of order p and q, it is 

thus possible to construct a group of order pq. 

We shall now tum our attention to a way of representing any group: by 

permutations. 

4. Permutations 

A permutation on a set E is a bijective mapping of £ into £. If E = {a, b,c}, 

then the mapping f defined by f(a) = b, f(b) = a, f(c) = c is a permutation and we 

represent it as: 

or by the diagram ae eb Cc @ ; 
b ac Se Fig. 9 

_ or by simply abridging the notation by writing the order b a c. This last notation 

is a consequence of the fact that there are as many permutations as there are 

ways of arranging the elements of E (but be careful not to confuse arrangements 

and the permutations that correspond to them). 

For a set having two elements F = {a, b}, there are two permutations. 

(Indeed, we can take as the first element of the order either a or b and the 

choice of the first dictatus the second.) 

ab 

1st element 

ba 
a 

2nd element Fig. 10 
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For E = {a, b, c}, there are three choices possible for the first element, and 

having made the first choice, there are two choices left, then one. 

arrangements permutations 

ese abc ————— | (identicalpermutatian 

_{abc 
Se C2 1e (286) 

------ ba ¢ ———— 

Fig. 11 

3.5% Plate nié = 6 permutations 

By definition n! (n factorial) is the number 1X2X3X ... Xn. If we write Ph as 

the set of the permutations of a set of n elements, P,, has n! elements. We have 

written P; = {1, fi, fo, fs, fa,fs} as the set of the six permutations on ES 

which associates each element to itself, is the identity mapping. P3 can as usual 

be assigned the usual operation of composition mapping” : 

AE FA CD At 7 pe) 

is the mapping obtained by performing fj and then: 

ff 0 GO) = K(f) )- 

It is easy to show that the results of two permutations is a permutation and that 

the operation o is associative. 

On the other hand, fj0 / =/ 0 f; = fj for any fj © P3. 

In P3 each element f has an inverse f—! obtained by taking as the image by 

f—? of an element, the element for which it is the image. Or, alternatively, we 

can obtain f—' by reversing the direction of the arrows of f: 

EON Se ei I Pane ae 
Le a C ¢-) 

Fig. 12 

5. Let f be a mapping of a set A into a set B, and g a mapping of B into a set C. The 

composition g o f is the mapping of A into C defined by go f (x) = g(f(x) for every element 

x of A. [go f(x) is the image by g of the image by fof x] 
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P; is thus a group. 

The reader is advised to construct the Pythagorean table; he can thus verify 

that in particular this group is not commutative, contrary to all the previous 

examples. For example (by referring to the diagram); 

frofe= (tn) =f feof = (fn) =f 

pal ed es tg 

Fig. 13 

For any integer n, P,, is a group called the symmetric group of degree n. The 

importance of these groups of permutations is due to the fact that any group G, 

finite or not, is isomorphic with a subgroup of the group of permutations of the 

set of the elements of G. 

To each element a of G we can associate a mapping £, of G into G, called the 

left translation of G; to any x € G we associate t,(x) = ax. This translation is a 

permutation: every element y in G is the image of a— ', and is the image of only 

» this element. Indeed, if z is two times the image, that is, if ax, ax: = z, then 

a~'ax, =a~' ax and x; =x. 

This set TG of translations the subset of the set of permutations is, when, 

assigned o, a subgroup of Pc. Indeed, by virtue of the associativity in G we have: 

tgO th = Lab 

since 
(t, 0 t,)(x) = t,(t,(x)) = t,(bx) = a(bx) = (ab)x = 1,,(x). 

The identity mapping is the translation £,, if e is the neutral element 

(identity) of G, and similarly CP es eee 

In this manner the mapping f of G into Tg, defined for any a € G, is indeed 

an isomorphism of the group G into the group TG. 

From this follows the well-known Cayley theorem: 

Every group is isomorphic to a subgroup of the group of permutations on the set 

of its elements. 
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Thus, we can represent any group as à subgroup of the group of permutations 

on a set. 

Example: the Klein group already given (the notations are not the same as those 

used above): 

e LT Xe Ve 

e e Ky ll Me Nes 

Ar xine Xe | Xs 

Le Xe exe X1 

e |* X3 | X2 x1 

can be interpreted as a subgroup of the permutations of the set of its four 

elements (e, X1, X2, X3): 

e Le x") x52) x) i: = Pe: 

| 1! 
TRS fu DS t F 

x x X4X e X Xo X3 r {! 
X4 PARLE TN UF Ka re. XD 

te rea PRE oN 
X —> X5X e Xo X4 X3 TT 

x 
2 Sa msi tite dust 

LES LS Fais < 
Ci rime 0 VAS e X3 x4 Ra. - Qe +t, 

Fig. 14 

e x 

e € X 

X x e 
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which can be interpreted as the group of permutations on the set of its two 

elements: 

| SP as TAN ° 

( ye sober e 

e 19 

ge Steen Sey Fig. 15 

To recapitulate: we have presented a few monoids and groups which are but a 

small sample of these structures for which we will now give the catalogue: 

— a free monoid having an infinite number of elements, 

PONT HVS Dy, El Alec Sia sl eee eae (Figure 1, p.128) 

— a quotient monoid having an infinite number of 

D Cae a ee dat mn owes so à (Figure 2, p.132) 

a monoidofseven elements "LH. S245 a5. (Table, p-131) 

= Hamonoidotfourélements Mineur. ee on a (Figure 5, p.133) 

— a free group having an infinite number of elements, 

Bemcratea OF" (iG DY nd tales seule D ER ANSE (Figure 6, p.136) 

— a quotient group having an infinite number of elements . (Section 2.2, p.136) 

ÉArDupolsDelements 0,2. 3. kw wee ee (Table, p.137) 
=sagroupofiourelements "77. . . M2. +. US (Table, p.134) 

= agroup of twoelements . : 4: .. LR Tue (Table, p.138) 
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6. measure scales 

totally ordered abelian groups 

by M. Barbut 

Introduction 

The elementary teaching of the methods of observation of facts and the analysis 

of observed data in the social sciences are dependent on measure scales, the 

classic gradation in nominal scales, ordinal or qualitative scales, and numeric or 

quantitative scales. This distinction is necessary, in fact, since from one class to 

another the combinatoric and algebraic possibilities, hence the calculations are 

increasingly expanding. i 

A nominal scale is a set having no structure, either in the form of relation- 

ships, or in the form of operations between its elements. In this respect, it is 

useful to point out that in the expression ‘nominal scale’ the adjective ‘nominal’ 

is very well chosen. (From a certain point of view, to form a finite collection 

into a set, in the mathematical sense of the term, is to be able to name each of 

its elements.) However, the term ‘scale’ is less satisfactory; ‘scale’ evokes the 

notion of arranging the objects in a certain order: into that of ranks. This implies 

an order structure. We shall not discuss nominal scales here because this topic 

comes under the heading of sets and classification (partitions) treated elsewhere 

in this publication (see chapter 2 ‘Ordering and classification’). 

Ordinal scales (the term ‘ordinal’ is preferable because it is more precise than 

‘qualitative’) are those that permit the comparison from the largest to the 

smallest, from the best to the worst, and in general, from the most to the least. 

With respect to applications, the fields covered by ordinal scales are those of the 

scales of sensation, of attitudes, of preference, or utility, etc. They are sets that 

have been given an order relation, in the sense that has been defined elsewhere 

(see chapter 2) and even a total order since two ‘ranks’ or ‘degrees’ of a scale are 

always comparable: one comes before the other. Nevertheless, the last word has 

not been said on the subject of ordinal scales; their class includes a large variety 
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of types as can be seen immediately by the difference in the nature of categories. | 

On the one hand there are finite scales, that is, those that contain a finite 

number of ranks, from the first (the smallest) to the last (the largest) as do all 

the instruments of measurement. On the other hand, there is the concept of 

‘continuum’ so often used in the social sciences. When we use this word we 

generally think of an order (the points on a straight line, for example) such that 

it contains an infinity of elements, and furthermore such that between any two 

elements we can always insert a third, so that the notion of a scale — in which 

each degree is preceded and followed by another — makes no sense. We shall 

have to go further into this typology of ordinal scales (see section 1). 

As for numerical scales, (here too, ‘numerical’ seems preferable to ‘quant- 

itative’) that is, those scales whose elements are numbers, they permit not only 

the comparison but also the combination between their elements through the 

use of operations: addition and subtraction, which go together; multiplication 

and division, etc. The numbers serve to compare and to calculate. A numerical 

scale has a double structure: it is totally orderable (comparable) and additive 

(calculable), if we choose to restrict ourselves to addition as the operation. 

Moreover, these two structures agree well with each other (in the sense that will 

be made precise later (section 3), in that the numerical scales can first be classed 

according to the type of their order. But this classification is insufficient: for the 

same type of order there can be different possibilities of calculation. It should be 

understood that one can always perform additions and subtractions on the 

elements of the scale, but there are cases where one can divide the elements in 

such a way that we have an arbitrary number of equal parts of each of them, and 

there are cases where we cannot. We know that this possibility of division plays a 

fundamental role in questions of measure, and more precisely in commen- 

surability. A typology of algebraic structures characterized by an operation with 

the properties common to all additive operation, that is a typology of abelian 

groups, must be outlined, therefore, before we will be in a position to see how 

such operations can be put in accord with an order structure. This will permit us 

to more easily analyse what, in the properties of numerical scales, is relevant to 

the rules to calculus; and how these two components — order and calculation — 

can later be combined. 

It is true that the methodologies of the social sciences generally class the 

numerical scales from an entirely different point of view and refer to additive 

scales, multiplicative scales, logarithmic scales, interval scales, etc. This point of 

view is much less significant, and without doubt, less profound than that which 

is traditional in mathematics, which we shall use here. As we shall see (see 



Measure scales 149 

sections 4 and 5) it is only a question of presenting objects of the same and only 

class of mathematical objects: totally ordered, Archimedean, abelian groups. 

In the outline to follow of the typology of order and of the additive calculus, 

we shall retain (because of space limitations) only that which is essential to our 

subject: the measure scales. The works cited in the bibliography will introduce 

the reader to more advanced study. 

1. Elements of the typology of ordinal scales (types of order) 

An ordinal scale (we shall simply call it a ‘scale’) is a total ordering, that is, a set 

(or domain of the scale) to which has been assigned a binary relation, noted 2, 

between any two elements. The relation > must have the following four 

properties: for any elements a, b and c of the set E, 

La>borb>a (totality of >) 

2.ifa>bandb>c,thena>c (transitivity of >) 

3.ifa>bandb>a,thena=b (antisymmetry of >) 

4.a>a (reflexivity of >). 

In the current use of the comparative, which the total ordering formalizes, 

reflexivity is not generally used. A length, for example, is not greater than itself. 

Also, this axiomatic property of total order is secondary and we will speak here 

of a strict order if the relation (total, transitive and antisymmetric) is not 

_ defined except between distinct elements of the scale: thus, it will be noted >. 

Among the various types of scales, we shall first consider the finite scales: 

those which have only a finite number of degrees: 

inde 31d <<. v.95. 12th; 

if there are 12 degrees. These are the only scales that are ‘natural’, concrete: 

every instrument of measurement is a finite scale. But the finite scales imme- 

diately lead to infinite scales in which the succession of degrees is unlimited, so 

that every finite scale, however large the number of degrees it may have, is 

nevertheless a subset of an infinite scale. The prototype is the unlimited 

succession of ordinal integers: 

ise 2nd < id, —nth <<... 

_G. Cantor, the principal author of the typology of order during the years 1880 

to 1900, named this type w (omega). It is a type characterized by the fact that 
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there is a first (and smallest) element of the scale, but not a last (greatest) 

element, that every element has one, and only one, successor — distinct from 

itself and from all of the preceding — and all, except the first, has one, and only 

one, predecessor; and above all by the fact that between any two elements the 

number of intermediaries is always finite. A finite number of degrees separate 

them, and we go from one element to the other in a finite number of steps. 

Finally, a very similar type is the scale of integers ‘positive and negative’, 

unlimited in both directions: a scale of the type ¢ (zeta); 

...<2 before < 1 before < zero < 1 after < 2 after <..., 

for which the characteristics are the same as for the w type except that there is 

neither a greatest element nor a smallest. 

The finite scales, and the w and ¢ scales are discrete scales: their common 

property is that there is always a finite number of intermediaries between two 

elements, this number being itself nul between an element and its successor. 

What distinguishes them is the use of the superlative. On the finite scales, there is 

a greatest element (a maximum) and a least element (a minimum), and every 

subset has a maximum and a minimum: the absolute superlative is always 

possible, but the relative superlative is not. A very large collection cannot always 

be. ordered: ‘still larger’ does not always have a meaning. On the w scale, a 

collection, however large, can be ordered. But if every subset has a minimum, 

certain of the subsets, and the whole scale, have no maximum: it does not always 

allow the absolute superlative. Finally, on the ¢ scale, there is neither a 

maximum nor a minimum. We observe, furthermore, that on this scale the 

positioning of the cut between the numbers ‘before’ and the numbers ‘after’ is . 

arbitrary. 

The antinomy just pointed out as existing between the two superlatives is 

inescapable, in any case. It can be shown (we shall use it without proof) that a 

scale for which each subset possesses a maximum and a minimum is necessarily 

finite. No scale can thus have both the absolute superlative and the relative 

superlative for any of its subsets. 

As opposed to discrete scales, we shall introduce dense (without gaps) scales, 

that is, scales such that between any two elements there is always at least one 

intermediary thus an infinity of intermediaries, since we can take the inter- 

mediaries of the intermediaries, ad infinitum. That the creation of dense scales 

was necessarily imposed on the intellect with respect to measurement scales is 

obvious. We can measure lengths, for example, only to within a centimetre. This 

means that we can compare lengths on a finite scale graded in centimetres. But 
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we can subsequently increase the sensitivity of measurement if we have a scale 

graded in millimetres at our disposal. The accuracy of measurement will be 

further improved if we interdigitate gradations in tenths of millimetres, etc. ... 

But however sensitive the comparisons that have made technical progress 

possible may be, the material scales of measure must always be finite. Never- 

theless, it is useful, if not necessary, to have at our disposal a vocabulary, a 

lexicon, which permits us to designate, to name, all of the possible inter- 

digitations, however fine they may be. 

Among these vocabularies of ‘infinitesimal smallness’, one at least is familiar: 

the writing of numbers in decimais (considered here only from the point of view 

of order). Two ‘words’ written with the 12 sign alphabet composed of the 10 

‘letters’, 0, 1, 2, 3,...9, in their usual order, and the signs ‘.” and ‘“—’ can be 

compared at once on first reading. If I read “—4.212’, I know that it precedes 

*1.314’, which itself precedes ‘1.315’. It is sufficient to consider the alphabetic 

order (with special rules of ‘—’, ‘” and 0) of these words as we would a 

dictionary or a telephone book. Moreover, if I wish to insert a word between 

“1-314 and ‘1-315’, I need only write ‘1-3141’, for example. 

The scale of decimal numbers is thus dense and countable. This latter term 

means that each of the elements can be designated by a word made up of a finite 

number of letters, taken from a finite alphabet. Similarly for the binary 

numbers: the conventions for writing them are the same as those of the decimal 

numbers, except that there are only two digits (letters) written as 0 and 1. The 

same is true of the scale of the rational numbers (irreducible fractions such as 

12/5, 7/9, etc.); it is a countable scale. The alphabet here again has 12 signs; it is 

dense, since between any two fractions it is always possible to insert their half 

sums, for example. 

The countable, dense scales, having neither maximum nor minimum con- 

stitute the type n (eta) of Cantor. In fact, he showed that between two such 

scales — that is, between two ordered lexicons that permit an infinite inter- 

calation — it is always possible to define a bijection respecting the order of their 

elements, which was not at all obvious. 

If the dense, enumerable scales give us a very good idea of what is generally 

meant by a ‘continuum’ in the social sciences, they are not, however, sufficient 

for locating all of the comparable magnitudes. They do permit us only to locate 

them with an ever increasing sensitivity through the use of successive approxi- 

mations. For example, let us consider the series of approximations on the 

decimal scale of a number x, situated between 3 and 4: 
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(3) Lex test Ay 4 00302 x NO ARMES ANNE 

MOTS Er, 2 072 re Wrete: 

We could continue indefinitely by writing longer and longer ‘words’, that is 

successive approximations. To what do these approximations converge? were we 

to follow such a process indefinitely? We certainly would not tend to an element 

of the decimal scale, since, by definition, we require a ‘word’ of infinite length, 

and the scale only includes words of finite length. The decimal scale, though 

often qualified as being ‘without gaps’ does present us with discontinuities. We 

can see at once that every series of approximations does not converge to an 

element of the scale, and such a series does no localize anything on this scale. 

We are thus led to complete the dense and ennumerable scale by a set of 

‘words’ of infinite length: a scale thus complemented is said to be continous (not 

to be confused with continuum), and its type is noted as À (lambda), if it has 

neither a maximum nor a minimum. It is called 6 (theta) if it does have a 

maximum and a minimum. The scale of points on a line segment, insofar as it is 

represented in Euclidean geometry, is of the type 8 ; the scale of all real numbers, 

rational and irrational, is of the type A. For these scales we do not even have a 

lexicon that allows us to designate all of the elements. We can, in general, only 

name their approximations, because the elements being approached are them- 

selves ‘inexpressible’ since the words designating them are of infinite length. 

There are indeed other types of orders (see for example, Huntington, 1955), 

in the Bibliography), but with discrete orders, the dense, enumerable orders, 

and the continuous orders, we have essentially all the orders that have been 

actually used in the theory of measurements in the social sciences. 

2. The additive calculus (abelian groups) 

In the preceding paragraph we were reminded that there are many kinds of 

numbers: 

1. the integers, whose set is written Z(Z= {...—2,-1, 0,1, 2,...}), 

2. the rationals whose set is noted Q, (Q = {p/q;p and q being integers, q À 

0}, 
3. the decimals, whose set is noted D, 

4. the binaries, whose set is noted B, 

5. the reals (rational and irrational) whose set is noted R. 
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There are still others: for example, our system of writing numbers with ten 
letters leads to decimals; with two letters it leads to the binaries. But it is 
possible to apply the same procedure with an alphabet having any number (but 
at least 2) of letters. There are as many scales of numbers as there are integers; 
they are all of the same order type (type n). 

These sets, Z, Q, D, B, and R, are not all of the same order type, and as we 
have seen the operations possible are not all the same. If in all of the sets we can 
always perform additions and subtractions (on the condition that we always 
consider positive and negative numbers) divisions are not always possible: the 
quotient of two numbers taken from Q or from R is always a number of the 

same set, which is not the case for Z, D or B. Similarly, in R we can always 

‘calculate’ the square root of a positive number, but not in the other sets 

mentioned above. 

What is common to all of these sets of numbers is that addition (and 

subtraction) is always possible. This is also true of multiplication, but this is a 

consequence of being able to perform addition. The rules of calculus by addition 

' are: 

1. The calculus is associative: (x + y) + z = x + (y +z). The parentheses are 

| unnecessary when the expression contains no more than three terms. 

2. The number 0 is neutral: x +0 =O+x =x. 

3. Each number x has an opposite: (—x): x + (—x) = 0. 

4. The calculus is commutative: x + y = y + x; the order of the terms in an 

expression is irrelevant. 

_We have seen elsewhere (chapter 5: ‘Monoids and groups’) that the first three 

rules characterize the structure of a group. Moreover, the second and third of 

these rules (neutral and opposite) can be replaced by the condition: if a and b 

are given, there is a unique solution to the equation a + x = b; we write x = b — 

a, so that the subtraction can be performed. As there is an additional rule here, 

that of commutativity, we say that we have commutative groups, or (a 

synonym) abelian groups. In what is to follow, we shall simply use the term 

‘abelian’. 

An abelian is thus a set A, with an associative, internal, binary operation, 

written +, for which there exists a neutral element, written 0; an opposite, 

written —x, for each element x, and which is commutative. 

There are many examples of abelians, that is, sets of objects which can be 

combined among themselves according to a binary operation having the same 

- rules given above for the addition of numbers. Let us consider one of the most 

familiar. 
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There are the positive rationals (strictly greater than zero) with respect to 

multiplication. This multiplication is certainly an associative and commutative 

operation, written X when the addition of the rationals is also being used. The 

neutral element is 1, and the ‘opposite’ of an element x is its ‘inverse’, 1/x. We 

shall have occasion to return to this example (sections 4 and 5), but it should 

have already served to show that the difference between the ‘additive’ scale and 

the ‘multiplicative’ scale is not great; only the symbols and their sense are 

different; the rules of their calculus are the same. 

The points of a ‘pointed’ plane or space constitute an abelian with respect to 

vectorial addition. We choose a point, the ‘origin’ 0, and to each pair of points A 

and B we make their ‘sum’ A + B correspond by the parallelogram rule shown in 

Fig. 1. It is easy to show that the set of points in this space, with the previously 

defined addition, is indeed an abelian. The four rules of the abelians are satisfied. 

In particular, the origin point 0 is the neutral element, and the opposite (-M) of a 

point M is its symmetric point with respect to the origin. 

A A+B 

O B Fig. 1 

The other example of an abelian is the set of number tables with the same 

number of rows and columns for which we will now define an ‘addition’. 

Consider for example, the automobile production, for some country in numbers 

of vehicles constructed during five successive years, numbered: 1, 2, 3, 4, and 5. 

These data are usually given in table form: 

Years 1 2 3 4 5 

Production | x, | Xe | Xa | Xa | Xs 

In this table, x, stands for the number of vehicules produced in year number 1, 

xX, in year 2, etc. All the ‘information’ contained in the table has been 

summarized by the list of successive productions: we can write this list as x 

where: 

x= (x1, X2, X3, X4, Xs) 
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If we now consider the automobile production of a second country for the same 

years; we have a second list Y: 

Y = (1, Ve, Va, ya, Ys) 

It is the usual practice in accountancy or in statistical economies to calculate the 

production for both countries together per year: it is a total which can be noted 

X + Y, for which the table can be obtained by adding the numbers entered in the 

column cells corresponding to the same year. This operation generates the list: 

x+y = (x14+)1, X2+ Va, X3+Y3, Xa+ Ys, Xs+Y5) 

Similarly, the difference in the yearly production is often calculated: it is given 

by the list: 

X—Y = (X1—Y1, Xa—Yo, ..., X5—Js). 

The set of five integers in the column cells, with addition (and substraction) thus 

defined is an abelian. In particular, the neutral element is the list: 

0 = 10, 0,0, 0; 0) 

and the opposite —x of a table X is: 

—x = (—X1, —Xe, ..., —X5). 

Instead of integers, the x; can be decimals or rationals, etc. This method of 

adding tables can be generalized to any number of columns and entries. In order 

that two tables of numbers be summable, it is necessary and sufficient that the 

number of entries be the same, and that the numbers written in the corres- 

ponding cells having the same index also have the same significance. We don’t 

add cauliflowers and carrots, but the significances can be distinct for each of the 

cells having distinct indices: a number of dollars in the first, a number of 

kilowatt hours in the second, a number of inhabitants in the third, etc. It is a 

method of calculation very common in accountancy, in economies in descriptive 

statistics, etc. The reader can easily find from his own experience many 

examples where he has made similar calculations. 

This example provides us with the opportunity of defining a very useful 

concept: the direct sum of several abelians. Being given two abelians A, and A2, 

we consider the set of pairs x = (x1, X2) where x, is any element of A,, and x2 

is any element of A2. We then define the addition of two pairs: x = (x1, x2) and 

y =(1, 2) by the rule: 

xty = (X1+Y1 X2+ Yo) 
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In the parentheses, the first addition is that of the abelian Ay and the second is 

that of the abelian A>. It is easy to show that the set of pairs, with this addition, 

is an abelian for which the neutral element is the pair (0;, 02), where 0, is the 

neutral of A, and 02 is the neutral of A2. This abelian is the direct sum of A, 

and A>, and is often written A; ® A2. 

The direct sum of three, four, etc. abelians is defined similarly. The set of the 

lists of five integers which we used for an earlier example is the direct sum of 

five abelians, all identical with the abelian (Z, +). (The notation (Z, +) represents 

the set Z of integers with its addition.) 

There are still other examples of abelians. When we wish to count the hours. 

numbered from 0 to 11 as they are pictured on the face of a clock or watch, we 

can add the time periods (in hours). In this addition we have: 3 + 2 = 5, but 7 + 

6 = 1 because thirteen o’clock is read as 1 on the face of the watch similarly for 

7+5=0(12=0), and -3 = 9 (because 9 + 3 = 12 = 0). This is addition modulo 

12’ on the integers. We are again dealing with an abelian, but it is finite, having 

12 elements: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; and we can set up the 

Pythagorean table of its addition. Moreover, this abelian is a cyclic group of 

order 12,' which can again be represented by the rotations of a turn by angles 

that are multiples of a twelfth around a point in the plane. The clock dial is a 

concrete example of this last representation. 

The cyclic groups have been introduced in chapter 5, ‘Monoids and groups’. 

They are finite abelians, and for certain orders they correspond to very 

familiar modes of calculation, particularly with respect to time measures (nor is 

this by chance). Such are the order 2 (the half turns, the affirmation and 

negation in logic, etc.) the order 4 (the seasons), the order 7 (days of the week), 

the order 12 (hours and months), the order 24 (hours), and the order 60 

(minutes and seconds). 

However, there are finite abelians that are not cyclic; the smallest of these is 

the famous Klein group (see chapter 5). 

If all of the finite abelians are not cyclic, all of them are, in fact, quasiabelian. 

A fundamental ‘structure theorem’ indeed asserts that every finite abelian (that 

is, those having only a finite number of elements) is the direct sum of cyclic 

abelians. For example, the Klein group is the direct sum of two cyclic groups of 

order 2 (see chapter 5). 

In a finite abelian, as in any finite group, every element a is of finite order n: 

a added to itself successively n times equals 0 and generates the cyclic group of 

1. The order of a group is the number of its elements. 
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order n. But an abelian can be infinite (have an infinite number of elements) and 

have elements of finite order, as is demonstrated by the example of the group of 

all the rotations of a plane around a point 0. The rotations of a rational fraction 

of a turn are of finite order. For example, the rotation of two-fifths of a rotation 

is of order 5; repeated five times consecutively it makes two complete rotations 

and returns to its initial position. It is equivalent to the nul rotation with the 

understanding that the rotations are counted ‘modulo one rotation’. But the 

rotations of an angle, which is an irrational part of a complete turn, are of 

infinite order. 

On the other hand, if we consider only those rotations for which the ratio to 

one rotation is rational, they constitute an abelian (the sum of two of these is a 

tational), which is a subgroup of the preceding. This abelian is infinite, but all of 

its elements are of finite order; such an abelian is sometimes said to be a torsion 

group, or to be periodic. These examples illustrate that one important principle 

of the classification of abelians is whether elements of finite order exist or not. 

An abelian is said to be torsion free if all of its elements (except 0) are of infinite 

order, as is the case for (Z, +), (Q, +), (D, +), the points on a plane as described 

on page 154, or the number lists on page 155. Each elements x, distinct from 0, 

added to itself an arbitrary number of times generates elements, each distinct, 

and consequently a group isomorphic to (Z, +) and composed of: 

{..., —x—x, —x, 0, x, x+x, x+x+x, ...} 

which is convenient to write as: 

Le ox, x, OF XP 2x, 3X) 2.) 

On the other hand, the finite abelians and the rotational abelians are abelians 

with torsion: certain elements, possibly all, are of finite order. 

But if to be with torsion or torsion free is one of the first classifications of the 

abelians, there is another classification which crosses the first, and it is directly 

related to the question of numeric scales. In any group G, we can define 

multiples of any x we choose, and write them according to the convention 

below: 

x+x = 2x xtx+...4+x = nx 
—_—_———— 

n times 

—x = (—1)x —x—x——2x, etc. 

By associativity we have for the + operation: (n + mx = nx + mx. The addition 
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of the second member is in G; that of the first member is performed according 

to the ordinary rules for the addition of the integers in (Z, +), if x is of infinite 

order. If x is of finite order k, then it is of ‘modulo k’ as we have seen in other 

examples. 

If it is always possible to define multiples thus, such is not the case for 

division by an integer. By definition, an element x of an abelian À is divisible by 

a positive integer q if there exists an element y of this abelian such that: 

apte ytyt...t+y = x. 
—$ 

q times 

For example, in the Klein group (see its table, p. 134), no element except J is 

divisible by 2 because for every element x: x + x = /. But each element is 

divisible by 3, because for any x: 

3x = x4tx4x=)]4x=*%x 

In (Z, +), 12 is divisible by 12, 6, 4, 3, and 2; and in general, each number 

element of (Z, +) is divisible by its ‘divisors’ in the ordinary sense of the term. In 

the torsion free abelian (D, +) (the decimal numbers) each decimal number is 

equal to a fraction whose denominator is a power of 10. For example, 2.513 = 

2513/10°. All of its elements are divisible by all the powers of 2,5, and then 

10; these powers are the only numbers that divide all of the elements of (D, +). 

Similarly, in the abelian of the binary numbers (B, +), the only divisors of all of 

the elements are the powers of 2. 

On the other hand, certain abelians are such that every element y is divisible 

by any integer, as is the case for (Q, +) which is torsion free. Every rational p/q 

is divisible by any integer n, and the quotient is p/nq. Such is also the case for 

the group with torsion of the rotations around the point in a plane; a rotation of 

the angle @ is divisible by any integer n. The quotient is the rotation of the angle 

6/n. 

An abelian is said to be divisible if each of its elements is, as we have seen in 

the last two examples, divisible by every positive integer. Otherwise it is said to 

be not divisible. We have also seen that an abelian can be divisible with or 

without torsion, and non divisible with or without torsion. 

The cross table below summarizes this typology. In each box we have 

indicated some, but not all, of the examples of the abelians satisfying the 

corresponding conditions: 
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With torsion Torsion free 

Divisible rotation groups (Q, +) (R, +) 

Non divisible | Finite abelians (Z, +) (D, +) 

The two classifications that we have just defined for the abelians: with and 

without torsion, divisible or not, are very far from constituting a complete 

typology, which in any case, remains to be completed. However, they are of 

major importance for our subject: the absence of torsion is, in effect, the 

necessary and sufficient condition for an abelian to be totally ordered (thus to 

constitute a scale). As to divisibility, it is related — when an abelian is ordered — 

to the density of the order. 

3. Additive numerical scales (totally ordered abelians) 

After our brief excursion into the diversity of order types and of the additive 

calculus types, it is now time to ‘put the pieces together’ since once the 

numerical scales have been given both a total order and an addition they are 

_ compatible with each other in the sense that to add a third element z to any 

other two elements x and y does not modify their order. Symbolically: 

xy > xX+2 = y+z, for any z. 

In mathematics, the numerical scales are called totally ordered abelians that is, 

those abelians (additive) that have just been assigned an order compatible with 

addition in the sense that has just been defined. 

A totally ordered abelian can obviously always be partitioned into two 

classes: the class P of elements superior or equal to 0 (0 included), or the 

positive elements, and the class V of those elements inferior to 0, the negatives. 

In fact, the order being total, every element is comparable to 0 and is either 

superior or inferior to it. The fact that order and addition are compatible has 

. immediate consequences such as: 

x=y=>(x-y)=yt+(-y) Le. x—y=0 
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and conversely: 

x-y=0=>(x-y)+y =0+7y Le. x=y 

In other words, x is superior to y if, and only if, the difference x — y is positive. 

On the other hand, if an element is positive, its opposite is negative and 

conversely since: 

x>O0=>x+(—-x) =—-x ie. O>-x 

The abelians with which we are already familiar, the integers (Z, +), the decimals 

(D, +), the binaries (B, +), the rationals (Q, +), the (strictly) positive rationals — 

with respect to multiplication (Q*, X), and the reals (R, +), all ordered in the 

usual way, are totally ordered abelians. 

We note that all are torsion free. Indeed, every ordered abelian is necessarily 

torsion free, for, if x is any element and if, for example, x > 0, this inequality 

implies: 

x+x >x+0 16. Qe oe 

This itself implies: 

2x+x > x+x lé, 3x =2%et0 

Thus, the succession ot multiples of a positive element x constitutes an order of 

type ¢: 

DER IR SX 

As we have seen, —x is thus negative. An analogous argument shows finally that 

the multiples of x and —x are all distinct and constitute an order: 

Mn BO ae ee ee ICE 

We can then ask under what conditions can an additive calculus be given an 

order (total or even partial) compatible with itself, and consequently, be made 

into a numerical scale. Which abelians are ‘orderable’? 

It is clear from the preceding that for an abelian (not ordered) to be orderable it 

is necessary that it be torsion free. We can show (and will use it here without 

proof) that this condition is also sufficient: any torsion-free abelian can be 

assigned an order compatible with addition. The reasoning that proves that any 

ordered abelian is torsion free also shows that any ordered abelian contains at 

least one subgroup isomorphic to the group (Z, +) of integers, which is also, so 

to speak, the ‘smallest’ of these abelians (the smallest numerical scale). 



Measure scales 161 

But we also note that among the examples of numerical scales only one is of 

the discrete type with respect to order, (Z, +), and only one is of the continuous 

type, (R, +), while several are of the dense and countable type: (Q, +), (D, +) 

and (B, +). 

That we have encountered but one example of numerical scales of the 

discrete type is not by chance; there are no others. The uniqueness (to within an 

isomorphism) of the totally ordered abelians of the discrete type is easily 

demonstrated. Thus, let (A, +, >) be an abelian with a discrete order. It is 

necessarily of the type £ because its type can be neither finite (it is ordered and 

thus torsion free), nor of the type w since to each element x > 0 corresponds —x 

<0; it cannot therefore have a minimum in A. Furthermore, let us designate in 

the order of A by s(x), the unique successor of each element x, and by p(x) its 

unique predecessor. Thus, with respect to 0, the neutral element of addition, the 

elements of A are in the order: 

. < p(p(0)) = p(0) < 0 = s(0) < s(s(0)) < ... 

Whereas, for each x we have: 

s(x) = x+s(0) 

And indeed: 

s(0) > 0 

Thus, the order being compatible with addition: 

s(0)+x >O0+x=x ie s(0)+x > x 

And, as s(x) is the smallest element superior to x: 

s(0)+x = s(x) 

But suppose that there were an intermediate y between s(x) and s(0) + x: 

s(0)+x = y > S(x) 

Then we would have: 

s(0) > y—x > s(x)—x > 0 

Thus, y — x would be intermediate between 0 and its successor s(0), which 

contradicts the definition of successor. By setting s(0)= 1, we see that s(x) = x + 1. 

Consequently, the order of the elements 0, s(0), s(s(0)), etc. is expressed in 

terms of addition by: 
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0,1,1+1, (1+1)+1, ..… 

and these are the positive integers. An equally simple argument shows that 

pO) =—1 
since 

0 = s(p(0)) = p(0)+1 

which completes the proof. 

The multiplicity of dense, countable orders can be easily appreciated if we see 

that every ordered group that is divisible by a given integer is, for whatever the 

value of that integer, assigned a dense order. Suppose that a totally ordered 

abelian A is, for example, divisible by 2: for every element x of A there exists an 

element y such that y + y = 2y =x. 

First of all, this element is unique, for if z is also such that z + z = x, and if we 

have z < y, for example (the order being total, z is comparable to y), then: 

x=2z+z<z+y<yty=x ie. x < x(strictly) 

This is contradictory. The unique element y can be written x/2. 

Then, if x is positive we have: 

O = x/2 < x 

Indeed, y = x/2 cannot be negative (since the sum of two negative elements is 

negative), neither is it nul, or we would have: 

x=y+y =0+0=0; 

thus contradicting x > 0. 

' Finally, if y > x then x = y + y > x + y. But sincey >0,x ty >x +0=x, 

leading again to the contradiction that x > x. Similarly, when x is negative we 

have: x < x/2 <0. 

It follows that we can always insert an element between 0 and any element x 

of A: x/2, in fact. But if a and b are any two elements of A, and if b > a, for 

example, we then have b — a > 0. Between b — a and 0 we can insert (b — a)/2 

b—a > (b—a)/2 => 0. 

But then, a + (b — a)/2 is between a and b, since: 

b = (b—a)+a > (b—a)/(2)+a>O0+a=a 
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This proves the density of the order of A. Furthermore, each element x of A can 

be divided by any power of 2. Indeed, x/2 can in turn allow an element ¢ such 

that: t + t = x/2. But according to the associativity of addition: 

t+t+t+t = x/2+x/2=x 

Therefore 4f = x, and x is divisible by 4. We can set t = x/4 = x/2?. But then 

x/2? is in turn divisible by 2, etc... . Thus to each element x of A corresponds a 

succession of quotients by the powers of 2: x/2, x/2?,... x/2”,... And an 

analogous argument can show that if x > 0, this series is decreasing: 

Di ee XD SE XI eee. = X/ 2h x. 

Thus it follows that any ordered abelian divisible by 2 contains a subgroup 

isomorphic to that of the binary numbers, since it contains with each element x 

all of the elements of the form ‘nx plus a sum of terms of the form x/2.’ (B, +) 

is thus ‘the smallest’ of the totally ordered abelians which are divisible by 2. 

| The demonstration of the uniqueness, to within an isomorphism, of the 

totally ordered abelians having an order of the continuous type requires more 

mathematical technique, and we will omit it here. But this uniqueness should be 

borne in mind since it has some important consequences for us in section 4. 

Observing that in the concept of numeric scale there was that of addition, 

hence an abelian group, and that of comparison, hence that of total order, we 

have been led to study the totally ordered abelian groups: every numeric scale is 

one. But the converse is not true; the concept of totally ordered abelians does 

not exhaust our usual idea of a numerical scale. We need a least one additional 

condition, as our next example illustrates. 

Let us consider the direct sum Z + Z, the abelian being assigned its natural 

order, and to simplify the exposé, let us represent the pairs of integers (x1, x2) 

by the points having integer coordinates on a plane of two axes. Let us give Z + 

Z the total order defined by: 

(x1, X2) = (v1, Y2) => (X1 > Yi Or Gi = 1 et x2 2 y2)) 

In other words, to compare (x1, x2) and (v1, 2), we first compare their first 

components and arrange them in the order of these components. If these 

components are equal, we put the pairs in the order of their second components. 

It is easy to verify that this relation does indeed have the desired properties for 

an order. (In fact, it is one of the lexicographic orders often referred to in 

section 1; here it is the order of ‘words’ of two letters with the set of integers as 
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an ‘alphabet’.?) Moreover, this order, by definition total, is indeed compatible 

with the addition of the pairs: 

(x1, X2) > 01, ¥2)) = [1 +21, X2+22) = (y1+21, Y2+22)] 

for any pair (z1, Z2). 

Fig. 2 

On the lattice of Fig. 2, the points of the plane are thus ordered in such a 

fashion that all those on the same vertical succeed each other according to an 

order of type £, but come before those of the vertical which lies immediately to 

the right. For example, the point (0,1) precedes its multiples: 

20,1) = (0,2); 30,1) = (0, 3)etc. 

but all of these multiples are themselves below the point (1,0). 

This totally ordered abelian, which hardly resembles the usual numerical 

scales, is such that for certain pairs of its elements, let us say a and b, where 0 < 

a <b, for example, all of the multiples na of a are less than b. On the numerical 

scales, on the other hand, the succession of multiples of an element is not only 

unlimited, but unbounded as well; there are multiples greater than any given 

number b, however large. Symbolically: 

If 0 <a <b, there is at least one positive integer n such that na > b. 

Or, if for any positive integer n 0 < na < b, then a = 0. 

2. This is also the order that we adopt in the practical problems of choice in multiple 

criteria when these criteria are placed in a hierarchy. The example given here thus corres- 

ponds to a manner of ordering which is found in many applications: lexicons, theory of 

choice, etc. 
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These scales thus satisfy the condition called Archimedean; they are the abelians, 

totally ordered and Archimedean. It is remarkable that now all of the conditions 

have been given: that is, totally ordered, Archimedean abelians are necessarily 

subgroups of the additive group (R, +) of the real numbers. This is true even of 

every totally ordered Archimedean group (such a group is consequently commu- 

tative). We can thus consider that the equivalent mathematics of numeric 

measurement scales is constituted by the class of totally ordered groups for 

which the order is Archimedean. The abelian group of real numbers contains all 

of these groups as subgroups. They are Archimedean subgroups. Among them 

are those we know well: (Z, +), (D, +), (B, +) (and those which can be 

constructed is a fashion analogous to (B, +)), (Q, +) and (R, +) itself, the most 

fundamental. In a sense, they are the materials from which all the others are 

constructed (by direct sum, in particular). 

4. The additive and multiplicative scales 

One important question is to know all of the ways of transforming a number 

scale into another; by transform we mean the way in which the order and the 

addition of the first scale map on the order and the addition in the second scale. 

The interesting transformations are thus the homomorphisms of one scale to 

another. 

In light of what has just been said, we will have such transformations if 

we know how to map the ordered abelians (R, +, >) of reals into itself by means 

of a mapping f: R > R, having the properties of monotony (conservation of 

order) and of linearity (conservation of addition): 

Monotony: x >y + fx > fy, 

Linearity: f(x ty) = fx + fy. 

The construction of all of these homomorphisms of (R, +, >) into itself, or 

endomorphisms of (R, +, >), is easy. We first observe that the image of 0 is: 

f(0) = 0 
because 

f(x) =f+0) =f/@)+/O) 
Let us choose for the image of 1 an arbitrary positive real because of the 

monotony: 

1>0>a=f(1)>f0)=0 
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Then we have: j 

f@) = fA+1) = f()+f() = a+a = 2.4 

Generalizing this calculus, we have for every positive integer: 

f(n) = a+a+...+a= na 

And since: 

0 = f(0) = f(1)+f(—1) = f(1+(—1)) = a+f(—1) 
f(—1) = -a 

and for every negative: 

f(—n) = -na 

We have thus the images of all of the integers. Now for the rational 1/2, its image 

f(1/2) is such that: 

a = f(1) = f(1/2+1/2) = f0/2)+f (1/2) 

thus that f(1/2) = a/2 

and in general: 

fUi/n) = a/n. 

Finally, for any rational p/q =(1/q + 1/q +... .+ 1/q): 
eee 

p times 

f(p/q) = plalq) = (plg)a 

We thus have the images of all of the rationals. Now let x be irrational. Let us 

suppose that its image f(x) is different from xa, greater, for example. As there 

are approximations as close as we wish. to x by the rationals, we can procede in 

such a way that for some rational r, greater than x, f(r) = ra will lie between xa 

and f(x). We have then that r > x and f(r) < f(x) which violates the monotony 

condition. Moreover, the only endomorphisms of the abelian (R, +, >) are the 

mappings of the form: x / xa (where a > 0). Each of these endomorphisms are 

entirely determined by the image a of 1. The fact that this image is arbitrary 

signifies that the unit is equally arbitrary on a numerical additive scale. 
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f (x) xa 

ra 

O x vr Fig. 3 

There are four comments on this result: 

1. To take the coefficient of a negative does not modify much; this simply 

amounts inverting the sense of the order. 

2. The image of any x is the product xa in the multiplication of x by a. This 

product is possible because, as we all know, the numbers can be multiplied 

among themselves. But we could have supposed that the multiplication of the 

real numbers were not defined a priori, and written as a definition of multiplica- 

tion that the product of two reals x and y, ‘xy’, is the image of x in the 

endomorphism of (R, +, >), for which the image of 1 is y. 

On the basis of this definition we can find all of the properties of multiplication. 

3. The preceding constructions show that if we look for the endomorphisms 

of (Z, +), (D, +) or (Q, +) it suffices to suppose that they are endomorphisms for 

the only addition in order that they assume the form: x xa. The hypotheses of 

monotony does not become fundamental until we wish to determine the images 

of the irrationals. 

4. The transformation just found is bijective in (R, +, >), and even in (Q, +t, 

>). If y = xa is the image of x, then x = y/a is the image of y in the inverse 

transformation. But this is true neither in Z nor in D nor in the analogous 

abelians. If, for example, in Z we choose a as the image of the integer 5, the 

_ image of Z is composed only of the multiples 5x of the integer 5. This is only a 

proper subset of Z and not the whole of Z. 

We mentioned earlier that with respect to the only multiplication, the set R* of 

the strictly positive rationals is an abelian, and it is even an ordered abelian 

since: 

Vea pes xe = yz (since z > 0) 

This is also the case for the set R* of positive reals. With respect to multiplica- 

tion and the usual order, it is an ordered abelian (R*, +, >), whose order is 
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continuous as is the whole of R. But we had also noted that all the totally 

ordered continuous abelians are isomorphic. From this point of view, to describe 

a continuous numerical scale in terms of addition or multiplication is only a 

question of language and not of ‘structure’, for they are strictly the same. The 

additive and multiplicative language(s) here are absolutely equivalent with 

respect to the rules of comparison and of the calculus. 

This is an important acquisition and it can obviate numerous sterile dis- 

cussions on the nature of scales that we find in applications. 

However, it is also necessary to know the good ‘dictionaries’ which allow us 

to go from one language to another. That is, the functions f of the additive 

abelian (R, +, >) in the multiplicative abelian (R*, x, >) that transform the 

order of the former into that of the latter, and addition into multiplication: 

x=py=fx>f}y 

f(xty) =fC)XfY) 

These functions, called exponential functions, are constructed mutatis mutandis 

as the supra linear functions. This time, the image of 0, the neutral element of 

the first abelian is 1; the neutral of the second: AO) = 1. The image of 1 is an 

arbitrary positive real b, but superior to 1 (monotony): 

Sie =. leaf {0) 

The image of 2 is then: 

f(2) = fA+D = fx) = bxb = & 

And in general 

f(n) = bn = bXbx... Xd 
—, 

m times 

Similarly : 

f(—n) = 1/b". 

(By analogy with the notation b” we can write: 

1/b" = b-" (f(—n)) 

We also note that in this notation: b° = f{0)= 1. For the rationals: f(1/2) = Vb 

(square rootof b); in exponential notation becomes: 

Fa /2) = pie 
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and more generally, for a rational p/q, and for any real x, we can write: 

f(p/q) = brla, = f(x) = b* 

Here again each function is determined by the only image b of 1; b is called the 

base of the exponential. We should note further that in the exponential 

notation, the fundamental relation defining the exponential: 

f(x+y) =f) xf) 

is written: 

ee a DD 

which is the first rule of the exponential calculus. 

The ‘dictionaries’ which transform the additive language to the multiplicative 

language are thus exponential functions. Conversely, we construct the dictio- 

* naries from the multiplicative language, to the additive language; they are the 

inverse functions of the exponentials, the logarithmic functions. By definition, 

the logarithm to the base b of a positive real x is the real, positive or negative y, 

for which x is the exponential to the base b, written: 

logy x = => b= x 

According to the definition of the logarithmic functions we have the usual rules 

of logarithmic calculus such as: 

logs 1 =0 (b° = 1), logs 1/x =—log,x (b-” = 1/b>) 

and above all we have: 

log, (x Xy) = log, x+ log, y 
which expresses the definition: the transformation of products into sums. 

(R, +, =) ——"——_-R, +, =) 

tog po 

(R*, X, =) (R*, X, =) Fig. 4 

It remains for us to find the transformations of the multiplicative abelian (R*, x, 

>) in the positive reals which conserves its structure, and in particular transforms 
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multiplication into multiplication. This transformation can be effected through 

the use of addition as indicated in the accompanying diagram (Fig. 4). Each of 

these three successive transformations preserves the order, and their resultant as 

well. Moreover, multiplication is transformed into addition by the logarithm. 

Addition in turn remains addition by the linear function, and is finally trans- 

formed into multiplication by the exponential. What is the form of this com- 

posite transformation? A positive real x is first transformed into logpx = y: 

x + logs x = y 

y is in turn transformed into ya = 2: 

y + ya = z = ay = alog, x = logs x* 

Finally, z is transformed into b?: 

Zi bz oS bog, x4) 

But according to the definition of logarithim to the base b: 

büog;0) = 

Finally, we have z = x“ and the transformation sought is a power function: 

MIE 

According to the definition of this function, we have in particular for every pair 

of real positives x and y: 

(xXy)* = x*xy". 

The four functions: linear (xa), exponential (b*), logarithim (log,,x), and power 

(x) are the fundamental numerical functions, and they are intrinsically related 

to the numerical scales. It is by these functions that the scales remain invariant, 

or correspond to each other, depending on whether we use the additive language 

or the multiplicative language. This is summarized by the following diagrams: 

au 

(R, aia =) a LCV 5 oe ures " (R, ¥ =) a lin. < 

| | Es exp. x 

OF | loge ob | log 

| | x AE + 

| | x power K 

R?, : SS —————— = Se ee * 
( X =) Ola (Re Xs =) Fig. 5 
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5. Interval scales. Affine scales 

‘Numerical scale’ is synonymous for us with abelian, totally ordered and 

Archimedean scale. But it sometimes happens in applications that a numerical 

scale is not presented directly in this form, and that we are confronted with 

another presentation of ordered abelians. 

One of the most usual presentations in the social sciences is that which we 

sometimes call ‘interval scales’. We compare objects (sensations, for example) 

between themselves, and we have first a total order, noted here as >, of 

comparison. But on the other hand, we establish a relation between pairs which 

can be written: 

aie cd 

which is to be read: 

ais to b more than c is tod 

or: a differs from b more than c differs from d 

or: a surpasses b more than c surpasses d 

etc. 

The relation is assumed to be a total quasiordering (see chapter 2: ‘Ordering and 

classification’) on the pairs; this quasiordering being compatible with the order 

of comparison > between objects in the sence that: 

@a=xXx=yroyiarxia 

In this quasiordering, we have equivalence classes and we can write: 

a:b=c:d 

the equivalence of the pairs (a, b) and (c, d) which is read: ‘a is to b as c is tod’, 

and we can call this an analogy. 

We then make certain hypotheses concerning this equivalence. Here, for 

example, is a set of possible hypotheses: 

1. a:b =c:x determines a unique element x ifa, b and c are given. 

2 ga:b=c:d#a:c=b :d(theso called ‘bisymmetric law’). 

Pag pec sd oe dib=c ia (exchange of extremes). 

Hypotheses (1) signifies (taking into account hypotheses 2 and 3) that in an 

analogy, three given terms determine the fourth. It has in particular the 

consequence that :a:a=b:c® b =c. Indeed, according to (2), this analogy is 
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the same as: a : b = a : c;cis thus the unique solution of;a : b =a : x, and this 

solution is obviously b since the relation written ‘= is an equivalence (it is. 

reflexive). 

As for hypotheses (2) and (3), they can be formulated by saying that the 

analogy is invariant by the transformations of the Klein four-group, which we 

saw in an earlier table (chapter 5: ‘Monoids and groups’). Let us now consider 

the following transformation M on a quadruplet abcd (bisymmetric law): 

abcd —“*~ acbd 

and then of the transformation, F (exchange of extremes): 

abcd —2—- dbca 

It is easy to see that: 

E followed by E = M followed by M=/ 

where J means ‘change nothing’ (identical transformation). Similarly: 

M followed by E = E followed by M 

Let us call this last transformation S; its effect on the quadruplet is to reverse 

the order: 

abcd —_* + dcba 

Thus, the set {Z, E, M, S} with its operation of composition (a transformation 

followed by another) is the Klein four-group as the reader can verify without 

difficulty by constructing the table. 

Using this system of hypotheses, if we choose once and for all an arbitrary 

element 0, and if we choose any two elementsa and b of the scale, the analogy: 

‘0 : a = b : x’ determines a unique element x. We can write: x = a ®b, and we 

can then easily show that with respect to the operation © so defined, the scale is 

a totally ordered abelian group, for which the element 0 is the neutral element, 

and by means of the subtraction in this abelian, the analogy can be written: 

a:b=c:d = a-—b = c-d 

Just to give an idea of the proof, let us demonstrate, for example the commu- 

tativity. 

Let x =a ® b, and y = b ®a, we have thus by definition: 

O:a=b:x and O:b=a:y 
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But according to the bisymmetric law, the first of these analogies is equivalent 

to: 

0:b=a:x 

Thus ‘= begin an equivalence (transitive): 

d:x=4 "y. 

which as we have seen implies: x = y. 

The proof of the other properties of ® (associativity, existence of a neutral; 0, 

and an inverse) is analogous and is left to the reader. | 

We have spoken here of interval scales (scales constructed by the comparison 

of intervals) because we had chosen to speak the ‘additive’ language, If we 

choose to speak in ‘multiplicative’ we have the same axiomatics, or axiomatics 

which lead to the same results for the analogies and it will sometimes be called 

the axiomatic of a ratio scale. Again, the difference is in the words, not the 

structure. What is essential is the result: using proper hypotheses, a given interval 

ratio scale is the same as that of an additive (or multiplicative) numerical scale. 

We also noted that a totally ordered abelian which is equivalent to an interval 

scale satisfying an appropriate axiomatic is only determined by the choice of the 

neutral element 0. The origin of the equivalent additive scale with respect to an 

interval scale is arbitrary (or ‘multiplicative’: the unity of a multiplicative scale is 

arbitrary). The transformations leaving an interval scale invariant are not the 

same as those which leave the additive numerical scales invariant (that, is the 

linear functions). What then are these transformations? 

We must determine all the mappings f of an abelian that is totally ordered 

into itself and which: 

1. conserves the order: x > y = f(x) > f(y); and 

2. conserves the analogies (equality of intervals): 

xp =z-t=>f(x)-S() =f@-SfO 

For condition 2, if we take the neutral element 0 of the abelian as the fourth 

term, the above expression can be written: 

2’) x—y = 2 =f(x-f0) =f@-fO). 

If we now write for every x: g(x) = f(x) — (0), the function g, which differs 

from f by the constant f{0), is monotonic. Making use of this function 2’ can be 

written: 

2") x-y=2z= gx) 807) = gz) 
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that is, 

x = yt+z = g(x) = ay) +80) 

Hence: g (y +z) = g(y) + 2(z). g is thus a linear function, and we therefore have: 

g(x) = ax 

and setting f(0) = b, we finally obtain: 

TOR UE. 

Those functions, represented by straight lines in cartesian graphs, are called 

affine functions, just as we call affine space those structures defined by the 

equality of the differences on an abelian. The ‘interval scales’ are, in the last 

analysis, affine numerical scales. They are defined up to the choice of the origin 

and of the unity of measure. 

I should like to say a few words abouth another presentation which also is 

tending to become classic. The idea is that of the ‘mean’ of two elements of a 

totally ordered set, a scale. Given two elements x and y, we can compare them, 

and we have, for example x < y. We then ask ourselves which is the element on 

the scale that can represent the ‘mean’, or the ‘central value’ or the ‘median’ of x 

and y. We require that to every pair of elements x and y there will correspond a 

‘mean’ situated between them, 

XXI PEN Ye 

Consequently, it is clear that a scale permitting an operation of ‘mean’ must be 

dense. As for the axiomatic properties demanded by such an operation, we will 

look for them among the classical properties such as the usual operations of 

mean, ‘the weighted mean’. For example: 

x.y =px+(l—py (0<p<1) 

A possible set of axioms is, for example: 

X°Z =< y°z 

1. Compatibility with the order: x = y = and for all z 

Zx< zy 

2. Idempotence: x-x = x 

3. Bisymmetric law: (x-y)-(z:t) = (x-z)+(y-f) 

4. In the equality x.y = z, two given terms determine the third. 
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1 and 2 imply, in any case, that x.y is an intermediary of x and y. The result is 

that a scale permitting an operation of mean satisfying these conditions can be 

constructed as a totally ordered abelian (here too, the choice of 0 is arbitrary, 

and we are dealing with an affine space). Furthermore, by using the operation hi 

of this abelian we have: 

x-y = f(x) +80) 

where f and g are two automorphisms of the abelian such that for every x: 

f(x) +8@) = x: 

Finally, if we assume the condition of Archimedes, the only endomorphisms for 

the Archimedean abelians are linear functions; we have thus: 

X \> ax, 

and we, find the usual ‘weighted means’. 

Other presentations are possible, such as the one based on the axiomatic of 

the ternary ‘betweeness’ relation’: ‘x is between y and z’ where the notion of an 

interval is also in use. The principal interest in applying these variants is to 

furnish the practitioner with a whole collection of criteria permitting him to 

recognize, in a particular situation where he thinks he is able to construct a set 

of observable phenomena in terms of scales, whether it can be done and which 

scale should be used. | 

The questions which should be asked are in fact the following: first (natural- 

ly) whether these phenomena can be compared with each other, and whether the 

relation of comparison really has the desired properties: that is transitivity, 

totality (since, in general the ex-aequo of equivalences are not on the scale but 

among the observations, the question of symmetry or of antisymmetry is not 

relevant). If the answer is yes, the practitioner is dealing with a total quasi- 

ordering for which the classes are totally ordered (constituting a scale). 

Secondly, he must then ask himself: what is the type of this order? In 

particular, is it discrete or dense? 

Thirdly, he must determine whether there is a significant way of combining 

these phenomena with each other in such a fashion that a well determined third 

corresponds to any two given ones. Then he must look for combinatoric 

properties or algebraic properties of this combination from among those which 

lead to numeric structures: associative, or not: commutative, or not: bisym- 

metric, or not, etc. If the practitioner is capable of answering all of these 

questions, the construction of the corresponding scales and knowing whether it 
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is or is not a usual numeric scale, or some other object, is but a routine 

mathematical affair: 

In this article I have indicated what the response to these questions is in some 

cases; but in many others they are probably known or easy to determine. The 

difficulty lies in having a theory and knowledge of the observed facts so that the 

mathematician can be furnished with the ‘prerequisite conditions’, but this is not 

a mathematical problem. 
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