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Preface 

The three subjects of this book all began life in the provinces of applicable 

mathematics. Design theory originated in statistics (its name reflects its initial use, in 

experimental design); codes in information transmission; and graphs in the modelling 

of networks of a very general kind (in the first instance, the bridges of Konigsberg). 

All three have since become part of mainstream discrete mathematics. 

We have not tried to write a textbook on three individual topics. Instead, our 

goal is more limited: we want to explore some of the ways in which the three topics 

have interacted with each other, with results and methods from one area being applied 

in another. Indeed, we believe that discrete mathematics is better defined by its 

methods than by its subject-matter, and our approach reflects this. 

The book has its origins in the notes of two series of lectures given by the 

authors at Westfield College, London, at the invitation of Dan Hughes. The audience 

at those lectures consisted of design theorists, and our job was to show them that 

graphs and codes could be useful to them. The notes subsequently appeared in the 

London Mathematical Society Lecture Note Series in 1975, and in a considerably 

revised form in 1980. We tried then to make the notes accessible to a wider audience 

by adding an introductory chapter on design theory. 

In the intervening decade, we have become aware that a number of students used 

the book as a textbook. Their task was not made easier by the ‘research notes’ style 

in which many assertions are left without proof. Accordingly, when David Tranah 

approached us about a new revision, we decided to re-write the book completely, 

turning it into a textbook. We have expanded considerably the chapters on design 

theory, strongly regular graphs, and codes; we have, wherever possible, included 

proofs of our assertions, and avoided words like ‘clearly . .. ’; and we have added a 

number of exercises, with hints where appropriate. 

In addition, we have brought the material up-to-date, with a number of new 

topics (including graphs with least eigenvalue —2 and their connection with root 

systems, strongly regular graphs with strongly regular subconstituents, and expanded 

treatments of two-graphs, partial geometries, Preparata and Kerdock codes, two- 

weight projective codes, P- and Q-polynomial association schemes, etc.), as well as 
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smaller additions. 

We are grateful to large numbers of students and colleagues for bringing errors 

and difficulties in the previous version to our attention, or for commenting on draft 

chapters of this book. Especially, Rosemary Bailey, Frank De Clerck, Jon Hall, and 

Jef Thas have given us great help. 

We have used electronic mail to send the manuscript between one another, plain 

T^X for the typesetting, and the laser printer in the School of Mathematical Sciences 

at Queen Mary and Westfield College, London, to produce camera-ready copy. 

As we said, this is not a textbook on graphs, codes, or designs — our treatment 

of these is mostly limited to the particular interconnections we discuss — and our 

readers may require more extended treatments. We refer them to Hughes and Piper 

(1985) for designs, Beineke and Wilson (1978), (1983) for graphs, and van Lint (1982) 

for codes. Though we give many references, it is not compulsory to read all these! 

We assume a background of undergraduate algebra. The following list of results 

includes most of what is needed. These results can be found in any good algebra 

textbook. We give references to the two-volume Algebra, by P. M. Cohn (1974), 

(1977). 

• Finite fields have prime power order. For each q = pd (with p prime and d > 0), 

there is a unique field of order q, up to isomorphism (the Galois field). Its 

multiplicative group is cyclic of order q — 1, and its automorphism group is 

' cyclic of order d. (Cohn (1977), p. 195.) 

• For any real symmetric matrix A, there is an orthonormal basis of Rn consisting 

of eigenvectors of A. Equivalently, there is an orthogonal matrix P such that 

PAPT is diagonal. (Cohn (1974), p. 203.) 

• For any m x n integer matrix A, there are integer matrices P and Q with de¬ 

terminant 1 such that PAQ = (£°), where D = diag(di,... ,dr), the d{ being 

non-zero integers satisfying dx\d2\... |dr. (This is the Smith normal form of A; 

the numbers d{ are the elementary divisors of A.) (Cohn (1974), p. 279.) 

• The polynomial ring over a field, or any quotient of this ring, is a principal ideal 

domain. (Cohn (1974), pp. 134, 276.) 

• If A is a finite abelian group, then the group of characters of A (homomorphisms 

to the multiplicative group of non-zero complex numbers) is isomorphic to A. 

(Cohn (1974), p. 243; (1977), p. 163.) (In fact, we only use this for groups A 

which are given as direct sums of cyclic groups, so the ‘Fundamental Theorem 

of Abelian Groups’ is not required.) 

• We also assume familiarity with the concepts of a group and the action of a 

group on a set, and a few specific groups (Cohn (1974), p. 47.) 

On the other hand, we have made no assumptions about prerequisites in discrete 

mathematics. Usually, what we need is developed in the text; but we have included 

an account of the Principle of Inclusion and Exclusion as an appendix to Chapter 1. 

(See Hall (1986) for further discussion.) 



Notation and terminology 

Our terminology is mostly standard, with a few exceptions. In particular, we use 

the term ‘square 2-design’ for what is usually called ‘symmetric design’, ‘(0, k)-set’ for 

maximal Fare’, and ‘ball for ‘sphere’. Our reasons for these decisions are explained 

in the text. 

In many instances, the symbols commonly used for parameters of designs, graphs, 

geometries, etc. conflict with one another. There is no simple solution to this, and we 

have been deliberately inconsistent, in the interests of clarity. The reader’s attention 

is drawn to this whenever it occurs. 

We use F, to denote the Galois field with q elements, where q is a prime power. 

(This field is often called GF(<y).) Vectors, over a finite field or the real numbers, are 

written in bold face. 

If u and v are vectors in some vector space, then 

(u,v) denotes their dot product; 

[u,v] denotes the subspace they span; 

(u, v) denotes simply the ordered pair. 

The square brackets for span are also used for arbitrary sets of vectors. 

An n-tuple of scalars in round brackets denotes a row vector, in the usual way. 

Matrices are denoted by capital letters, and the transpose of A is written AT. This 

notation is also extended to denote "duals’ of other algebraic or combinatorial objects 

(for example, designs), as explained in the text. 





1. Design theory 

In this chapter, we describe some concepts and results from design theory, and con¬ 

struct some important designs. 

(1.1) DEFINITION. A t-design with parameters (v,k, A) (or a t-(v,k, A) design) is 

a pair T> = (AT, £>), where X is a set of ‘points’ of cardinality u, and B a collection 

of ^-element subsets of X called ‘blocks’, with the property that any t points are 

contained in precisely A blocks. 

Various conditions are usually appended to the definition to exclude degenerate 

cases. We assume that X and B are non-empty, and that v > k > t (so that A > 0). 

A t-design with A = 1 is called a Steiner system. (The notation S(t, k, v) is also used 

for Steiner systems, and is sometimes extended to Sx(t, k, v) for arbitrary designs.) 

Alternatively, a t-design can be defined to consist of a set X of points and a set 

B of blocks, with a relation of ‘incidence’ between points and blocks, satisfying the 

appropriate conditions, including the assertion that k distinct points are incident 

with at most one block. 

Sometimes a t-design is redefined so as to allow ‘repeated blocks’, that is, B is 

a family rather than a set of sets, and the same fc-element set of points may occur 

more than once as a block. (This is more natural if we adopt the ‘incidence relation’ 

definition; simply omit the condition that k points are incident with at most one 

block.) In this book, we normally do not allow repeated blocks; where they are 

permitted, we will say so. Following Hughes and Piper (1985), we often use the term 

t-structure to signify that repeated blocks are permitted. 

It is worth a short digression to explain the force of the ‘no repeated blocks’ 

assumption. 

The question of the existence of designs with specified parameters has very dif¬ 

ferent answers depending on whether we allow repeated blocks or not. If B is the set 

of all ^-subsets of X, then (A', B) is trivially a t-design for any t < k. If repeated 

blocks are permitted, we have the following easy result. 
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(1.2) Proposition. Suppose that t < k < v — t. Then there is a t-(v,k, A) 

structure for some A, in which not every k-set of points is incident with a block. 

Proof. Let M be the x («) matr ix whose rows and columns are indexed by 

the fc-subsets and t-subsets of X respectively, in which the entry indexed by (K,T) 

is 1 if T C K, 0 otherwise. By hypothesis, so the rows of M are linearly 

dependent over Q. So there is a vector v £ q(*) such that vM = 0. By multiplying 

by the least common multiple of the denominators of the entries of v, we may assume 

that these entries are integers. Let — m be the smallest entry of v. If 1 denotes the 

all-1 vector, then w = v + ml is a non-negative integer vector with at least one 

component 0; and 

wAf = (v + ml)M — mlM = m 1. 

The interpretation of this matrix equation is that, if 13 is the family of fc-subsets of X 

in which the set K is repeated wK times, then any f-set lies in A = members 

of B (counted with multiplicity). So (X,B) is the required structure. □ 

It is possible to place some conditions on the value of A as well: see Wilson 
(1973). 

The situation is quite different, however, if repeated blocks are forbidden. The 

f-design condition becomes stronger as t increases (see (1.5)). A couple of 5-designs 

have been known for most of this century; but, at the time the previous version of this 

book was written, no non-trivial 6-design was known. Since then, first Magliveras 

and Leavitt (1983), and later others, found some particular 6-designs; then Teirlinck 

(1987), (1989) spectacularly resolved the existence question by proving the following 
result. 

(1.3) Theorem. Given t, let 

k ~ II ^lcm{ Q j : n — 1, ...,*} • lcmjl, + 1}^ . 

Then, for any v = t (mod //). the set of all (t + 1)-subsets of a v-set X can be 

partitioned into t-(v, t + 1, p) designs. In particular, a non-trivial t-(v, t+ 1, A) design 

exists whenever v = t (mod g), A = 0 (mod p), and v > A + t. □ 

However, necessary and sufficient conditions for the existence of f-designs are 

far from being known, even asymptotically. In particular, there are still no known 

examples of Steiner systems with t > 6, and only finitely many with t > 4. There are 

‘classical’ 5-(24, 8, 1) and 5-(12, 6, 1) designs constructed by Skolem (1931), Witt 

(1938a,b); the other known Steiner systems with t = 5 can all be found in Denniston 

(1976) and Mills (1978). The existence of Steiner systems with large t is possibly the 

most important open problem in design theory. 
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An isomorphism from (X,B) to (A'', B') is a one-to-one map / from X to X' 

which carries each set in B to a set in £>', and such that each set in B' occurs as the 

image of a unique set in B. Isomorphic designs may be regarded as being structurally 

‘the same’. We will encounter some very nice situations in which a design V is ‘char¬ 

acterized’ by its parameters, in the sense that any design with the same parameters 

is isomorphic to V. 

(If repeated blocks are allowed, this definition of isomorphism would not suf¬ 

fice; we should have to define an isomorphism to be a pair of bijections, from X to 

X' and from B to S', preserving incidence and non-incidence. We will ignore this 

complication.). 

The set of automorphisms of a design (that is, isomorphisms from the design 

to itself) forms a group. Moreover, this automorphism group acts in a natural way 

as a permutation group on the points of the design, or on its blocks. Group theory 

provides very powerful tools for studying permutation groups (see Wielandt (1964), 

Cameron (1981), for example). For the most part, we will not consider these, except 

for occasionally using a group in one of our constructions. 

We now derive some simple necessary conditions for the existence of a design. 

(1.4) Proposition. Let X(S) be the number of blocks containing a given set S of 

s points in a t-(v,k,X) design, where 0 < s < t. Then 

PROOF. Count the number of choices of a block B containing S and t — s further 

points of B, to obtain the result. □ 

Note that A(S') depends only on the cardinality s of 5; so we will write it as As. 

It satisfies 

From these remarks, two corollaries follow: 

(1.6) Corollary. A t-design is also a s-design for 0 < s < t. 

(1.7) Corollary. If a t-(v,k, X) design exists, then 

divides 
v — s 

t — s 
A, 

□ 

for 5 = 0,..., t- 1. □ 
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It is virtually a universal convention in design theory to denote A0 (the total 

number of blocks) by b, and (if t > 1) to denote Ax (the number of blocks containing 

a point) by r. Since any 2-design for t > 1 can be regarded as a 1-design by (1.4), we 

can apply (1.5) to obtain: 

(1-8) bk = vr. 

A 2-design is often called a block design or simply a design. In the literature 

the term ‘balanced incomplete-block design’ is used, abbreviated to BIBD. (Balance 

refers to the 2-design condition, and incompleteness to the fact that k < v.) An 

alternative term is ‘pairwise balanced design’, though such designs need not have 

constant block size. In a 2-design, we have: 

(1-9) r(k — 1) = (t> — 1)A. 

(1.10) Definition. An incidence matrix of a design is a matrix M whose rows and 

columns are indexed by the blocks and points of the design respectively, the entry 

indexed by (B,p) being 1 if p e B, 0 otherwise. 

The incidence matrix depends on the ordering chosen for points and blocks. (The 

reader is warned that a different convention is often used, for example in the books 

by Dembowski (1968) and Hall (1986), with the result that our incidence matrices 

are the transposes of the ones appearing in those books. The present convention is 

adopted because we shall want to regard the characteristic functions of blocks, or 

rows of M, as row vectors, and consider the subspace they span.) 

The conditions that any block contains k points, any point lies in r blocks, and 

any paii of points lies in A blocks, can be expressed in terms of M: 

(1-11) MJ = kJ, 

JM = r J, 

MTM = (r- A)/ + AJ. 

(Here, as throughout this book, I is an identity matrix, and J a matrix with every 
entry 1, of the appropriate size.) 

(1.12) Lemma. If I and J are the identity and all-1 matrices of order n, then 

det (xl + yj) = (x + yn)xB_1. 

PROOF, xl + yJ is symmetric, and so has an orthonormal basis of eigenvectors; its 

determinant is the product of its eigenvalues. Now the all-1 vector 1 is an eigenvector 

with eigenvalue x + yn. Any other eigenvector v is orthogonal to 1, and so vJ = 0, 

and v(xl + yj) = xv. So x is an eigenvalue with multiplicity n — 1. □ 
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Suppose that A > 0 and k < v. By (1.9), A(u - k) = (r - A)(k - 1), and so 

r — A > 0. Now by (1.11) and (1.12), 

(1.13) det(MtM) = det ((r - A)/ + A J) = rk{r - A)”-1, 

and so MTM is non-singular. Fisher’s inequality follows: 

(1.14) Theorem. In a 2-design with k < v, we have b > v. □ 

Furthermore, if b — v, then r = A:, and so MJ = JM; thus M commutes with 

(r-X)I + A J, and so also with ((?’- A)/-f AJ)M_1 = MT. So MMT — (r- A)/ + AJ, 

from which it follows that any two blocks have exactly A points in common. 

(1.15) Theorem. In a 2-design with k < v, the following conditions are equivalent: 

(a) b = v; 

(b) r = k; 

(c) any two blocks have A common points; 

(d) any two blocks have a constant number of common points. 

PROOF. We have seen the implications (a) (b) and (b) (c), while (c) (d) is 

trivial. 

For the last step, we need the concept of the dual of a design V = (X,B). This 

is the design T>J = (XT, A3T), where XT = B, and BT — {(3^ : x 6 X}, where 

Px = {B E B : x e B}. 

(If we had used the ‘incidence relation’ definition of a design, we could simply say 

BT = X, and the incidence relation in T>T is the converse of that in T>.) 

The dual of a 1-design is a 1-design, and is a 2-design if and only if (1.15)(d) 

holds. Thus, if a 2-design satisfies (1.15)(d), then b > v (by (1.14)) and v > b 

(applying (1.14) to the dual design); so b = v. □ 

(1.16) REMARK. The notation VT is intended as an aide-memoire, since the inci¬ 

dence matrix of VT is the transpose of that of V. 

(1.17 DEFINITION. A 2-design is called square if it satisfies the equivalent conditions 

of (1.15). 

This terminology is not standard. Dembowski, in his influential book (1968), 

used the term ‘projective’, for reasons which will appear shortly. But the most 

common term is ‘symmetric’. This is unsatisfactory, since it suggests a stronger 

condition, viz. isomorphism of the design with its dual, which doesn’t hold in all 

square 2-designs. We now explore this concept. 
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(Note: The term ‘square’ has been applied to arbitrary designs or incidence 

structures which have equally many points and blocks.) 

(1.18) DEFINITION. A duality of a design V is an isomorphism from V to its dual. 

It can be described as a pair of bijections a : X —> B and r : B —► X such that 

x £ 13 if and only if 13T £ xa. 

The result of applying the duality twice is the pair of maps or : X —> X and 

tct : 13 —+ 13, which give an automorphism of the design. The duality is called a 

polarity if this automorphism is trivial, that is, r is the inverse of <r; in this case, the 

polarity is determined by the single map a, which satisfies 

x £ ya if and only if y £ xa. 

(1.19) Proposition. A design admits a polarity if and only if it has a symmetric 

incidence matrix (relative to some ordering of points and blocks). 

Proof. If o is a polarity, and X - {aq,..., x„}, then relative to this ordering of 

points and the ordering {x",...,a:"} for blocks, the incidence matrix is symmetric. 

The converse is similar. □ 

We return to polarities in the next chapter. 

(1.14) and (1.15) follow from a more general result, which we will need in Chap¬ 

ter 7. It also introduces a very useful technique, the ‘variance trick’. 

(1.20) Theorem. Let B be a. block of a 2-(v, k, A) design. Then the number of 

blocks not disjoint from B is at least k(r - 1 )2/((k - 1)(A - 1) + (r - 1)). Equality 

holds if and only if blocks which are not disjoint from B meet it in a constant number 

of points. If this occurs, then the constant number is 1 + (k — 1)(A — l)/(r — T). 

Proof. Let d be the number of blocks which are distinct from but not disjoint 

from B, suppose that n,- ol these blocks meet B in i points. Count in two ways the 

number of choices of j points in B and a block (different from B) containing them, 

for j — 0,1,2. We obtain the following equations, where the summation is over i 
running from 1 to k. 

Y2 n< = d, 

J2ini = Hr- 1), 

£)*(*“ !)»( = k(k - 1)(A - 1). 

So 

X^(2' ~ *c) ni ~ d? ~ 2k(r — 1 ).r -)- k((k — 1)(A — 1) + (r — 1)). 

This quadratic form in x must be positive semi-definite, proving the inequality. It 

vanishes only if d = k(r - l)2/((k — 1)(A — 1) + (r — 1)), in which case m = 0 for all 

* 7^ 1 + (& — 1)(A - l)/(r - 1). n 
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Now Fisher’s inequality follows from 6-1 > k{r — 1 )2/((k - 1)(A — 1) + (r - 1)), 

using (1.8) and (1.9) and a little calculation. (A hint for the calculation: express 

everything in terms of the parameters r,k, A; after clearing the denominator, the 

difference between these two expressions is (r - A)2(r — k)(k — 1).) Also, if b — v 
then r = k, and 1 + (k - 1)(A - l)/(r - 1) = k. 

The Bruck-Ryser-Chowla theorem gives a further necessary condition on the 

existence of a square 2-(u, k,\) design, beyond the equation k(k — 1) = (v — 1)A 

which follows from (1.9) and (1.15). 

(1.21) Theorem. Suppose that there exists a square 2-(v,k,\) design. Set 
n = k — A. Then 

(a) if v is even then k is a square; 

(b) if v is odd, then the diophantine equation 

z2 = nx2 + (_i)C«-1)/2AS/a 

has a solution in integers x, y,z, not all zero. 

PROOF, (a) is immediate from the fact that 

det(M)2 = det(MTM) = k2nv~\ 

see (1.9) and (1.11). We do not offer a proof of (b). Several different proofs are 

available, of which the most familiar relies on Lagrange’s results on sums of squares, 

and others use Hasse-Minkowski theory or coding theory. We refer to Hughes and 

Piper (1985). □ 

It is now known that the condition k(k — 1) = (v — 1)A and the Bruck-Ryser- 

Chowla theorem are not sufficient for the existence of a square 2-design. One single 

parameter set, viz. 2-(lll, 11. 1), is known which satisfies these conditions where 

no design exists. (We have more to say about this case later.) For any given value 

greater than 1 of A, only finitely many square 2-(v,k,X) designs are known to exist. 

We now look at a couple of special classes of square designs. 

A (finite) projective plane of ordern is a 2-(n2+ n +1, n +1,1) design. Projective 

planes are known to exist for all prime power orders, but no plane of non prime power 

order is known. The most familiar projective planes are the so-called Desarguesian 

planes. These are special cases of projective geometries, which we now define. 

(1.22) EXAMPLE. Let F = F9, and let V be a (n -f 1 )-dimensional vector space over 

F. The projective space or projective geometry PG(n, q) consists of the set of all vector 

subspaces of V. It can be regarded as a partially ordered set (where the ordering is 

set-theoretic inclusion — it is in fact a lattice with respect to this ordering), or as an 

‘incidence structure’ in which two subspaces are incident whenever one contains the 
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other. An i-flat is a subspace of vector space dimension i + 1; 0-flats, 1-flats, 2-flats 

and (n — l)-flats are called points, lines, planes, hyperplanes respectively. 

It is clear that two subspaces are equal if and only if they contain the same 

points. So we can regard the set of points as basic, and identify any flat with the 

set of points it contains. The design theorist’s interest in this procedure is that, 

for any fixed i with 1 < i < n — 1, the points and i-flats form a 2-design. In 

particular, the points and lines form a Steiner system (a 2-({qn+1 — 1 )/{q — 1), q-\-1,1) 

design); while the points and hyperplanes form a square 2-design (which is a 2- 

((qn+1 ~ 1 )/(<? — 1), (qn — l)/(<7 — 1), (qn_1 ~ !)/(<? — 1)) design). We sometimes use 

the notation PG(n,q) to denote the point-hyperplane design. 

The intersection of these two cases is the design of points and lines in PG(2,g), 

which is a 2-{q1 + <7 + 1,<7 + 1,1) design, that is, a projective plane of order q. 

We now give some characterizations of projective spaces as designs. For unde¬ 

fined terms such as ‘Desargues’ Theorem’, we refer to Hughes and Piper (1973). 

(1.23) Theorem. For a projective plane V, the following conditions are equivalent: 

(a) V is the point-line design of PG(2,g) for some prime power q; 

(b) T> satisfies Desargues’ Theorem; 

(c) V satisfies Pappus’ Theorem; 

(d) Aut(£>) is 2-transitive on the points ofV. □ 

(The last condition means that any two distinct points can be mapped to any 

other two distinct points by an automorphism of T>.) 

(1.24) Theorem. For a 2-(v,k,l) design V with v > k > 2, which is not a 

projective plane, the following conditions are equivalent: 

(a) T> is the point-line design of PG(??,, q) for some prime power q and some integer 
n > 3; 

(b) if a, b, c, d are four points such that the lines ab and cd are concurrent, then the 

lines ac and bd are concurrent. □ 

(The line ab here means the unique block containing a and b; two lines are 

concurrent if they meet in a point. This result is due to Veblen and Young (1916).) 

Point-hyperplane designs of projective geometries may be recognized by the 

Dembowski-Wagner theorem (1960). In any 2-clesign, the line joining two distinct 

points p, <7 is defined to be the intersection of all blocks containing p and q. It is 

straightforward to show that two points lie on a unique line. 

(1-25) Theorem. Let D be a square 2-design with A > 1. Then the following are 

equivalent: 

(a) V is a projective geometry; 
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(b) every line meets every block; 

(c) the number of blocks containing three non-collinear points is constant. □ 

The Bruck-Ryser-Chowla theorem shows that if a projective plane of order 

n = 1 or 2 (mod 4) exists, then n is the sum of two squares. (In this case, v = 

n2 + n + 1 = 3 (mod 4), and so the diophantine equation is y2 + z2 = nx2. Standard 

reduction arguments, as in Hardy and Wright (1981), p. 301, show that, if this 

equation has a non-zero solution, then it has one with x = 1.) Thus there is no 

projective plane of order 6. As noted above, this theorem does not preclude the 

existence of a projective plane of order 10. The non-existence of such a plane was 

shown by several massive computations by Lam et al. (1983), (1986), (1989), using 

a coding-theoretic approach due to MacWilliams, Sloane and Thompson (1972). In 

Chapter 13, we describe the method used. 

A subplane of a projective plane [X,B) of order n consists of a proper subset 

X' of the point set X, and a subset B' of the line set £, such that (X',B') is itself a 

projective plane (of order m, say). In this situation, n > m2 holds (see Exercise 16); 

equality holds if and only if every line in B contains a point of X' (and dually). In 

the situation of equality, (X', B') is called a. Baer subplane of (X,B); and X' is a set 

of m2 -f m + 1 points which intersects every line in 1 or m + 1 points. 

Another class of symmetric designs arises from Hadamard matrices, so-called 

because of their relationship to a theorem of Hadamard (1893). 

(1.26) Theorem. Let A be a n X n real matrix whose entries satisfy |ai:( | < 1 for 

all i,j. Then | det(A)| < n%. Equality holds if and only if all entries of A are ±1 and 

AAT = nl. 

PROOF. I det(A)| is the volume of the ?r-dimensional parallelepiped spanned by the 

rows of A. By assumption, each row vector has Euclidean length at most nK with 

equality if and only if all its entries are ±1. Also, the volume is at most the product 

of the edge lengths, with equality if and only if the edges are mutually perpendicular. 

□ 

(1.27) DEFINITION. A n xn real matrix H with entries ±1 satisfying HHT = nl is 

called a Hadamard, matrix (or H-matrix, for short) of order n.\ 

Apart from trivial examples of orders 1 and 2, any Hadamard matrix has order 

divisible by 4, as we will see. It is conjectured that Hadamard matrices exist for all 

orders divisible by 4. The smallest multiple of 4 for which no Hadamard matrix is 

known is currently 428. 

The defining property of a Hadamard matrix is unaltered if some rows or columns 

are multiplied by —1, or if rows or columns are permuted. We call two Hadamard 

matrices equivalent if one can be transformed into the other by such operations. 
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Any Hadamard matrix is equivalent (by sign changes alone!) to a normalized 

Hadamard matrix, in which the first row and column consist entirely of +ls. Let 

M be the (n - 1) x (n - 1) matrix obtained from a normalized Hadamard matrix 

by deleting the first row and column and replacing the —Is by Os. Then M is the 

incidence matrix of a square '2-(v, |(u — 1), — 3)) design, where v — n — 1. For 

any two rows of H agree in 1n positions, and so a row of M agrees with the all-1 

vector in \n - 1 = |(u - 1) positions, i.e. has |(u - 1) entries 1. Moreover, suppose 

that two rows of M have x common ones. Then there are |(u — 1) — x positions 

where the entries in the two rows are 1 and 0, and the same number where they are 

0 and 1; hence there are x + 1 where both have the entry 0, and we conclude that 

2x + 1 = l(u — 1), or x — l(u — 3). Similar remarks apply to columns. So M is the 

incidence matrix of a design, as claimed. Note that v = 3 (mod 4), so n is divisible 

by 4. 

Conversely, if M is the incidence matrix of a square 2-(4A + 3,2A + 1, A) design, 

then replacing the zeros in M by —Is and bordering M with a row and column of 

+ls gives a Hadamard matrix of order 4A -f 4. Hence: 

(1.28) Proposition. There exists a Hadamard matrix of order n > 2 if and only 

if there exists a square 2-design with parameters (n — l,^n — 1, — 1). □ 

A square 2-design with these parameters is called a Hadamard 2-design. 

(1.29) REMARK. Isomorphic Hadamard 2-designs come from equivalent H-matrices; 

but the converse is not true. 

(1.30) EXAMPLE. A class of examples is due to Paley (1933). Let q be a prime 

power congruent to 3 mod 4, and let F = F?, and Q the set of non-zero squares in F. 

Then (F, {Q + x : x £ F}) is a Hadamard 2-design. These designs are called Paley 

designs, and the Hadamard matrices obtained from them as in (1.24) are called Paley 

H-matrices. We reserve the term Paley matrix for a slightly different object, defined 

for any odd prime power q, namely the q X q matrix P — (pij), where 

I 0 if * = 
Pij = \ 1 if i — j is a square in F,, 

( — 1 otherwise, 

where the indices are taken to be elements of F,. If q = 3 (mod 4), the Paley H- 

matrix is obtained from P by putting —1 on the diagonal and bordering with a row 

and column of Is. 

(1.31) Example. The point-hyperplane design of PG(n,2) is a Hadamard 2-(2n+1 - 

1,2n — 1,2n_1 — 1) design.The corresponding Hadamard matrix is called a Sylvester H- 

matrix. Sylvester H-matrices have a number of remarkable properties. For example, 

the character table of an abelian group of exponent 2 is a Sylvester H-matrix. See 

also Exercise 2. 
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We turn to some simple constructions of new designs from old ones. 

(1.32) Definition. Let V = {X:,B) be a t-(v,k,X) design, and p a point. The 

derived design Vp has point set X \ {p} and block set {B \ {p} : B G B,p £ B}. 

It is a (t — l)-(u — 1,'fc — 1,A) design. Note that derived designs of X> with respect 

to different points need not be isomorphic.A design £ is called an extension of V if 

£ has a point p such that £p is isomorphic to T>; we call V extendable if it has an 

extension. 

Since an extension of a t-(v, k, A) design is a (t + l)-(u + 1, k + 1, A) design, (1.7) 

has the following consequence: 

(1.33) Proposition. If a t-(v,k, A) design has an extension, then k -f 1 divides 

b{v+l). □ 

(1.34) Proposition. The only extendable projective planes are those of orders 2 

and 4. 

PROOF. By (1.25), if a plane of order n is extendable, then n + 2 divides (n2 + n + 

2)(n2 + n + 1). By the Remainder Theorem, n ■f 2 divides 12, and so n = 2,4 or 10. 

(This much is due to Hughes (1961).) As we saw already, there is no plane of order 

10. But, in fact, a relatively small subset of the computation establishing this fact 

shows that no such plane is extendable. We return to this later. □ 

Cameron (1973a) considered the more general question: which square designs 

are extendable? 

(1.35) Theorem. If a square 2-(v,k,X) design T> is extendable, then one of the 

following holds: 

(a) T> is a Hadamard 2-design; 

(b) v={\ + 2)(A2 + 4A + 2), k = A2 + 3A + 1; 

(c) v = 495, k = 39. A = 3. 

PROOF. It is convenient to re-define the symbols so that £ is a 3-(i>, k,X) design 

which is an extension of a square design. First note that this condition is equivalent 

to the statement that any two blocks of £ intersect in 0 or A -f 1 points (this means 

that any two blocks of a derived design £p meet in A points). 

Let B be a block of £. If p, q £ B, then there are kX/(X + 1) blocks containing 

p and q and meeting B in A + 1 points; and so there are (k — X — 1)/(A + 1) blocks 

containing p and q and disjoint from B. This means that the incidence structure £°, 

whose points are the points outside B and whose blocks are the blocks disjoint from 

B, is a 2-(v — k, k, (k — A — 1)/(A + 1)) design. By (1.8) and (1.9), the number of 
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blocks of £° is 
(v — k)(v — k — l)(fc — A — 1) 

k(k — 1)(A + 1). 

£° may be degenerate, having just a single block; if this occurs, then v — 2k, 

k = 2(A + 1), and £ is an extension of a Hadamard 2-design. 

Otherwise, we can apply Fisher’s inequality (1.14) to £°, obtaining 

(v — k — 1 )(Jb - A - 1) > k(k - 1)(A + 1), 

{k — l)2 (A; — (A + 1)(A + 2)) > 0, 

(on putting (v — 2)A — (k — 1 )(k — 2)), and so k > (A + 1)(A + 2). 

However, 
b = v(v — 1 )/k 

— (k2 — 3 k + 2A -f- 2 )(k~ — 3 k + A + 2)/A;A2; 

so k divides 2(A + 1)(A + 2). The same expression shows that, if k = 2(A + 1)(A 4- 2), 

then A divides 3, so A = 1 or 3. If A = 1 then £ is a 3-(112, 12, 1) design, i.e. an 

extension of a projective plane of order 10, and as we have seen, such a design does 

not exist. If A = 3, then we obtain case (c) of the theorem. 

Otherwise, we have k = (A + 1)(A + 2), giving case (b) of the theorem. 

In the Hadamard case, we have the following result. 

(1.36) Proposition. Any Hadamard 2-design has a unique extension. 

PROOF. Let £ be an extension of a Hadamard 2-design. The argument in (1.26) 

shows that the complement of any block of £ is a block. So, if V = £p = (X, B), then 
£ has point set X U {p} and block set 

{Bu{p},X\B : B EB}, 

and £ is uniquely determined by V. In fact, this construction can be applied to any 

Hadamard 2-design, and produces a 3-design (see Exercise 5). H] 

An extension of a Hadamard 2-design, that is, a 3-(4A + 4,2A + 2, A) design, is 

called a Hadamard 3-design. If H is a Hadamard matrix, there is a simple description 

of an associated Hadamard 3-design, as follows. Normalize H so that all elements in 

the first row are +1. Then, in any row other than the first, there are |n entries +1 

and -n entries —1. In this way, a row determines two ^-subsets of {1,. .. ,n}. The 

sets defined in this way by all rows other than the first are the blocks of a Hadamard 

3-design. Any Hadamard 3-clesign arises in this manner. 

Apart from Hadamard designs, the only known extendable square 2-design is 

the projective plane of older 4. This is also the only square 2-design which can be 
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extended more than once, that is, for which an extension is itself extendable (see 

Exercise 6). We will construct its extensions at the end of this chapter. 

For the next case, the non-existence of a 3-(57, 12, 2) design has been shown by 

Bagchi (1988, 1991). 

If T> = (X, 13) is a t-(v,k, X) design, the residual Vp of V with respect to the 

point p G X has point set X \ {p} and block set {B G B : p £ B}. It is a (f — 1)- 

(v — 1, k, A(_! - A() design. 

Let T> — (X, 13) be a t-(v, k, A) design. The complementary design T> is obtained 

by replacing each block of V by its complement; that is, V — (X,B), where 

B = {X \ B : B E B}. 

If Xx,..., xt G X, then Aj blocks contain any given j of these points. The Principle 

of Inclusion and Exclusion (see (1.56)) enables us to count the number of blocks 

containing none of xlf..., xt. (Let be the set of blocks which contain Xj. With 

the notation of (1.56), |A(J)| = A;-.) We find that 

(1.37) A = £(-1)5Qa,. 

In particular, for t = 2, we have 

(1.38) A = 6 — 2r + A. 

So: 

(1.39) Proposition. The complement of a f-(w,A:,A) design is a t-(v,v — k, A) 

design, where A is given by (1.37). □ 

Note that the complement of a square design is square. 

When can we produce a design from T> by removing a block B? In order that all 

blocks of the resulting structure have the same cardinality, we require that |B DB'\ is 

constant for B‘ yf B, that is, that V is a square design. If so, and if V has parameters 

2-(u,fc,A), then set VB = (X \ B,{B' \ B : B' € B.B' ± B}). Then VB is called 

the residual of T> with respect to the block B. It is a 2-(v — k, k — A, A) design. The 

unqualified term ‘residual’ will always refer to such a ‘block-residual’ rather than the 

‘point-residual’ defined earlier. Different residuals of the same design need not be 

isomorphic! 

If we set vB — v — k, kB — k — A, and AB = A, then 

XBvB = kB{kB + XB -1). 
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It is possible that T>B has repeated blocks. But if this occurs, then necessarily 

k — A < A, whence v < 2k — 1; then residuals of the complement of V will have no 

repeated blocks. 

A 2-(w, k, A) design whose parameters satisfy Xv = k(k + A — 1) is called quasi¬ 

residual. Thus, as expected, any residual design is quasi-residual. We discuss the 

converse below. 

We consider first the case A = 1. An affine plane of order n is a 2-(n2,n, 1) 

design. Thus, any residual of a projective plane is an affine plane of the same order. 

Conversely, let (X, B) be an affine plane of order n. Call the blocks lines, and call 

two lines parallel if they are equal or disjoint. Then Playfair’s Axiom (a version of the 

Euclidean parallel postulate) holds: if L is a line and p a point, there is a unique line 

parallel to L which contains p. It follows that parallelism is an equivalence relation 

on the set of lines, and that the lines in any parallel class partition the set of points. 

Hence any parallel class has n lines, and there are b/n = n + 1 parallel classes. 

Let n be the set of parallel classes, and X* = lun. For each L 6 B, let 

L* — L U {7r}, where 7r £ n is the parallel class containing L. Set 

B* = {L* : L e B) U {n}. 

Then (X*, B*) is a projective plane of order n, whose residual with respect to the line 
n is 

This process, with its roots in the Renaissance theory of perspective, is called 

‘adjoining a line at infinity’. We summarize the conclusion in two forms. 

(1.40) Proposition, (a.) There exists a projective plane of order n if and only if 

there exists an affine plane of order n. 

(b) A quasi-residual 2-design with X = 1 is residual. 

Hall and Connor (1953) proved the statement analogous to (1.40)(b) with A = 2. 

We will give a proof of the Hall-Connor theorem in Chapter 6. 

Affine planes are closely connected with orthogonal Latin squares. A Latin 

square of order n is an n x n array with entries 1.n having the property that 

each element of {1,... , n} occurs exactly once in each row or column. Two Latin 

squares A, B of order 77. are orthogonal if, for any x,y 6 {l,...,n}, there exists a 

unique position (i,j) such that a{j = x and b{j = y. 

(1.41) Proposition. Let f(n) he the maximum number of mutually orthogonal 

Latin squares of order n. Then f(n) < n — 1, with equality if and only if there exists 
an affine plane of order n. 
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Proof. We construct a ‘geometry’ from a set Au ... ,Ar of mutually orthogonal 

Latin squares as follows. Take X = {1,..., n} x {1,..., n}. The lines are of three 
kinds: 

H{ — {(x,i) : 1 < x < n} for 1 < i < n; 

Vi — {(i, y) : 1 < y < n} for 1 < i < n; 

Lij = {{x,y) : {Aj)xy = i} for 1 < i < n, 1 < j < r. 

Each line has cardinality n. Any point of X lies on r + 2 lines (one Hi, one Vi, and 

one Lij for each value of j), and two points lie on at most one line. The lines through 

a given point contain (r + 2)(n - 1) further points, so (r + 2)(n - 1) < n2 - 1, or 

v < n — l. Equality holds if and only if any two points lie on a unique line, in which 

case the geometry is an affine plane. 

Conversely, suppose that an affine plane of order n exists. Select two parallel 

classes, and number their lines H, and V{ (1 < i < n). The unique point in the 

intersection of V{ and H, can be given ‘coordinates’ (i,j). Now, for each of the n — 1 

further parallel classes, number the lines from 1 to n, and define an array A = (ai;), 

where a{j = k if and only if the point (i,j) lies on the kth line of the class. These 

n — 1 square arrays are Latin squares, and are pairwise orthogonal. □ 

It is known that f{n) -> oo as n —► oo (Chowla, Erdos and Straus (I960)). For 

more on this function, see Wilson (1974a). The geometries constructed in the above 

proof are called nets, and are particular examples of partial geometries, which we 

discuss in Chapter 7. 

WThich affine planes are extendable? The necessary condition (1.33) for extend- 

ability is always satisfied. An extension of an affine plane, that is, a 3-(rc2 + l, n + 1,1) 

design, is called an inversive plane, or Mobius plane, of order n. 

(1.42) EXAMPLE. Inversive planes of all prime power orders are known. For the 

simplest examples, let X = {oo}UF92, and let B be the set of images of B = {oo}uF, 

under the linear fractional group 

az + b 1 
-- : a, b,c, a E F«,2, ad — be 0 > . 
cz + d ) 

There is a more geometric description. An ovoid in PG(3, q) is a set of q2 + 1 

points, no three collinear. It can be shown than any plane (that is, hyperplane) of 

PG(3, q) meets an ovoid O in either 1 or q + 1 points. Thus the plane sections of size 

q + 1 of O are the blocks of an inversive plane of order q. Any inversive plane arising 

in this way is called egglike. All known inversive planes are egglike. 

An example of an ovoid is the elliptic quadric, the set of zeros of the quadratic 

form 

PGL(2, q ) = {z^ 

xxx2 + f(x3,x 4) 
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where / is an irreducible quadratic form in two variables over Fr The resulting egglike 

inversive plane is the same as the one constructed above using PGL(2,<?2). (Note: 

When we refer to the set of points of projective space satisfying some equation, as 

here, we mean the set of 1-dimensional subspaces spanned by vectors satisfying the 

equation.) 

If q is an odd power of 2, further examples are known, the Suzuki-Tits ovoids, 

see Luneburg (1965). 

The following result, due to Barlotti (1955) and Dembowski (1964b), summarizes 

our knowledge. 

(1.43) Theorem, (a) If q is odd, then any ovoid is projectively equivalent to the 

elliptic quadric; so there is a unique egglike inversive plane of order q. 

(b) If q is even, then any inversive plane of order q is egglike. □ 

Remark. Very recently, J. A. Thas (unpublished) has shown that, if q is odd and 

q ± 11,23 or 59, then an inversive plane having at least one derived design isomorphic 

to AG(2,q) is isomorphic to the ‘classical’ model obtained from the elliptic quadric. 

Thus, for such q, AG(2,q) has a unique extension. 

The property of parallelism in affine planes can be extended to a wider class of 

designs, the affine designs, as follows. 

A parallelism of a design T) (also called a resolution or 1-factorization) is a 

partition of the block set of T> into classes C1}... ,Cr with the property that any point 

of T> lies in a unique block of each class (so that the blocks in each class partition the 

point set). A design is called resolvable if it has a parallelism. A necessary condition 

for the existence of a parallelism is that k divides v. Kirkman’s celebrated ‘schoolgirls 

problem’ (1847), (1850) asked for a resolvable 2-(15, 3, 1) design. Unlike the case of 

affine planes, there is no intrinsic definition of the parallelism; it may fail to exist, or 
there may be more than one. 

The following result is due to Bose (1942). 

(1 -44) Theorem. A resolvable 2-design satisfies b > v -\- r — 1 (equivalently 

r > k + A). The bound is attained if and only if the cardinality of the intersection of 
two non-parallel blocks is constant. □ 

We remark that the proof is similar to that of Fisher’s inequality (1.14); indeed, 

there is a common proof of the two inequalities. 

A 2-design attaining the bound in Bose’s inequality is called an affine design, or 

affine resolvable design. In such a design, two blocks are parallel if and only if they 

are disjoint, so the parallelism has an intrinsic definition. 
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(1.45) Example. Examples of affine designs are given by the affine spaces. Let V 

be an n-dimensional vector space over F?. The objects of the n-dimensional affine 

space are the cosets of vector subspaces of V. A coset of an z-dimensional subspace 

is called an i-flat, and (as for projective spaces) 0-, 1-, 2- and (n — l)-flats are called 

points, lines, planes, hyperplanes respectively. Note that points, or cosets of the zero 

subspace, are singletons, and can be identified with the vectors of V. 

Now the points and hyperplanes of AG(n,q) form an affine 2-[qn, gn-1, 

design. (Blocks are parallel if and only if they are cosets of the same subspace. If 

B, B' are non-parallel blocks, then BOB' is a coset of an (n—2)-dimensional subspace, 

and so has cardinality qn~2.) This design is the ?r-dimensional affine space over F?, 

which we also denote by AG(n,q). 

Further examples are given by the Hadamard 3-designs, in which each parallel 

class consists of a block and its complement. AG(n,2) is the Hadamard 3-design 

arising from the Sylvester Hadamard matrix of order 2n. 

Dembowski (1964a) gave a common characterization of these two classes of affine 

designs, similar in spirit to the Dembowski-Wagner theorem (1960). There are also 

characterizations of the point-line designs of affine spaces, in the spirit of (1.23) and 

(1.24). 

Summarizing, there is a close analogy between Bose’s inequality, affine designs, 

and affine spaces on the one hand, and Fisher’s inequality, square 2-designs, and 

projective spaces on the other. It was this analogy which led Dembowski to propose 

the term ‘projective design’ for what we have called ‘square 2-design’. 

Note that any affine design is quasi-residual. AG(n, q) is the residual of PG(n, q). 

Our next topic in this chapter concerns ovals. Let V be a square 2-{v, k,X) 

design. An n-arc is a set of n points of P, no three of which are contained in a block. 

Given an n-arc S, a block B of P is called a secant, tangent or passant to 5 according 

as |5 fl B\ = 2,1 or 0. 

(1.46) Proposition. Any point of an n-arc in a square 2-{v, k, A) design lies on 

(n — 1)A secants and k — (n — 1)A tangents. In particular, n < 1 + k/X. 

PROOF. Let S be an n-arc, and p 6 5. Count pairs (q,B) where B is a secant 

containing p and q, for q £ S \ {p}. Cl 

An n-arc A is called an oval of type I if each point of A lies on a unique tangent 

(that is, if n = 1 + (k - 1 )/A), and an oval of type II if it has no tangents (that 

is, n = 1 + k/X). Note that ovals can only exist if A|(fc — 1) or X\k respectively. In 

particular, the two types cannot coexist in the same design if A > 1. Ovals of type 
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II meet every block in 0 or 2 points; they are sometimes called hyperovals, or sets of 

class {0, 2}. 

(1-47) Proposition. If a square 2-(v,k,X) design has an oval of type II, then 

k — A is even. 
» 

PROOF. Let S be the oval, and p a point outside S. The number of secants containing 

P is jnA = A(& + A). □ 

(1.48) Proposition. Let S be a Type I oval in a symmetric 2-(v, k. A) design with 

k — A even. Then any point of the design lies on either one or all tangents to S. 

PROOF. Observe that k, A and n are all odd, and so any point lies on at least one 

tangent to S. We apply a different version of the ‘variance trick’. Let Ui be the 

number of points which lie on i tangents. Then 

n*' = 

T. irii = nk, 

T. i(i — l)n.< = n(n — 1)A. 

Therefore 

XX* _ !)(* - »)«< = 0, 

whence every point lies on one or all the tangents. □ 

It follows from (1.48) that, in a projective plane of even order, all the tangents 

to a type I oval 5 pass through a point p, the nucleus or knot of S. Then f p) U 5 is 
a Type II oval. 

Let 5 be a type II oval in a 2-(o, k. A) design V. Then the structure whose points 

are the passants to S and whose blocks are the points outside 5, with incidence the 

dual of incidence in V, is a 2-((k - 2)(k - A)/2A,(k - A)/2, A) design. 

Ovals are important in connection with extensions of projective planes. If V is 

a 3-design for which T>p is a projective plane, and B is any block not containing p, 

then B is a Type II oval in T>p. (For, if q,r,s are collinear points of B, and L the 

line containing them, then these three points would lie on two blocks B and L U {p} 

of V.) In PG(2, 2), the Type II ovals are precisely the complements of lines, and all 

of them are blocks in the unique extension AG(3,2). We will see how ovals occur in 

Luneburg’s construction of the extension of PG(2,4). Also, the non-existence of a 

projective plane of order 10 containing an oval (and hence of an extendable plane of 

order 10) was shown by Lam et al. (1983) several years before they showed that no 
plane of order 10 exists. 

Examples of Type I ovals m PG(2,g) are provided by conics, the sets of zeros 

of non-singular quadratic forms. (We can take the quadratic form to be xz - y\ 
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where (x,y,z) are coordinates in the 3-dimensional vector space. Then the points of 

the conic are spanned by the vectors (1,M2) for t 6 F?, together with (0,0,1).) A 

celebrated theorem of finite geometry, Segre’s Theorem (Segre (1954)), asserts that 

there are no others if q is odd. 

(1.49) Theorem. For q an odd prime power, any (Type I) oval in PG(2,q) is a 

conic. □ 

The same conclusion holds for q = 2 or 4, but not for larger powers of 2. (A 

conic together with its nucleus is a. Type II oval; removing a point other than the 

nucleus gives a Type I oval which is not a conic for q > 8, see Exercise 9. Moreover, 

for q = 16 or q > 64, there exist Type II ovals not of the form ‘conic plus nucleus’.) 

We turn next to an extension of Fisher’s inequality for designs with larger values 

of t. This result is due to Ray-Chaudhuri and Wilson (1975); the case t = 4 had been 

proved earlier by Petrenjuk (1968). 

(1.50) Theorem. Let V be a t-(v,k,X) design, with t = 2s and k < v — s. Then 

PROOF. We use a modified incidence matrix M,, whose rows are indexed by blocks 

and columns by s-sets of points, with (B,S) entry 1 if S C B, 0 otherwise. Then Ms 

is a bx matrix, and it suffices to show that the rows of M, span r(3). Accordingly, 

let rB be the row of M, with label B, and let e5 be the vector with 1 in the position 

labelled 5 and 0 in all other positions (the unit basis vector corresponding to S). 

For 0 < i < s, set 

y.- = E tb 

\BnS\=i 

= E E E 
j-0 |5,n5|=y BDS' 

\Bns\=i 

j-0 V j/ \|SnS'|=; 

eS' 

where n denotes the number of blocks intersecting a given m-set M in a given n- 

subset N. (An argument using the Principle of Inclusion and Exclusion (1.56) shows 

that this number depends only on m and n if n < m < t.) 

Set 

X; = E e5'- 

|S'nS|=j 

Then we have a system of s + 1 linear equations for the x;- in terms of the y;. The 

coefficient matrix is triangular, and its diagonal entries ,, are non-zero (since 
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s < k < v — s). So the equations have a unique solution. In particular, xs = e5 is a 

linear combination of the y,-, and so is in the row space of Ms, proving the theorem. 

□ 

Ray-Chaudhuri and Wilson also proved a ‘dual’ result. 

(1.51) Theorem. Let s < k < v — s, and let B be a collection of k-subsets of the 

v-set X having the property that, for B, B' E B, B ± B\ the cardinality of B n B' 

takes one of only s distinct values. Then \B\ < (j). 

PROOF. Let M* be the incidence matrix of blocks and z-sets, for i < s, as in (1.50); 

also, let Nij be the incidence matrix of z-sets and j-sets, for j < i < s. Note that 

m-n- 

Let x0 = k,xi,...,x, be the cardinalities of block intersections. For 0 < i < s, let 

i be the matrix with rows and columns indexed by blocks, with (B,B') entry equal 

to 1 if \B fl B'\ = x,-, 0 otherwise. (So A0 = I.) The (B,B') entry of M{MJ is the 

number of z'-subsets of B (~l B'\ so we have 

M‘M‘=Ux;)Ai 
for i — 0,... ,5. In this system of equations for the A, in terms of the MiMj, the 

coefficient matrix has (i,j) entry where i and j run from 0 to s. Elementary 

operations convert this into the Vandermonde matrix with (z, j) entry (x^)', showing 

that it is invertible; so the equations can be solved for the Aj. 

Let v be a vector in the null space of M,. Because M,Nsi = it follows 

that v lies in the null space of all Mt-, and hence of all M{MJ, and hence of all Ar 

But A0 = I; so v = 0. Thus the null space of M, is zero, and b < as claimed. □ 

Remarkably, equality in these two results determines the same class of structures. 

(1.52) Theorem. Let B be a collection of k-subsets of the v-set X, where 

2s < k < v — s. Then any two of the following conditions imply the third: 
(a) (X,B) is a 2s-design; 

(b) the cardinality of the intersection of two distinct sets in B takes just s distinct 
values; 

(c) |S| = (;). □ 

(1.53) DEFINITION. A design attaining this bound is called a tight 2s-design. 

Obviously, any square 2-design is tight. Also, the trivial 2s-design whose blocks 

are all the sets of size k = v — s is tight. The combined efforts of Enomoto, Ito and 

Noda (1979) and Bremner (1979) have determined all tight 4-designs. 
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(1.54) Theorem. Let V be a tight 4-(u, k, A) design with s > 1 and k < v — s. 

Then T> is the unique 4-(23,7,l) design or its complement. □ 

There are some non-existence results for larger values of t as well. 

We will meet a further generalization of tight designs, in the concept of associa¬ 

tion schemes, in Chapter 17. It will turn out that there is a sense in which they are 

‘dual’ to perfect codes. 

The method of intersection triangles is useful for investigating t-designs, espe¬ 

cially Steiner systems. Let x1?..., x( be points in a design such that, for 0 < i < /, 

the number of blocks containing a given i points from this set depends only on i. 

The Principle of Inclusion and Exclusion shows that, for 0 < j < i < l, the number 

Uij of blocks intersecting a given i of these points precisely in a given subset of size j 

depends only on i and j. The numbers vi}j can most easily be calculated by writing 

the Pi = i on the right-hand border of a triangular array, and using the equation 

Ui,j = — Ui,j+1 

to calculate the others. Though we present this only in the context of designs, it can 

be applied in any situation in which the hypotheses of (1.57) hold. 

The method is particularly useful for Steiner systems: we may take l = k and 

{aq,..., xk} a block, so that 

_ f A,- for 0 < i < t, 
~~ \ 1 for t < i < k. 

We illustrate for the 5-(24, 8, 1) design (Table 1.1.) 

759 

506 253 

330 176 77 

210 120 56 21 

130 80 40 16 5 

78 52 28 12 4 1 

46 32 20 8 4 0 1 

30 16 16 4 4 0 0 1 

30 0 16 0 4 0 0 0 1 

Table 1.1. 

The triangle shows immediately that, in any design with these parameters, the 

intersection of any two blocks has even cardinality. In particular, any 4-(23, 7, 1) 

design is tight, in accordance with (1.42). 

Gross (1974) used the method to show the following result. 
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(1.55) Theorem. Let V be a t-(v,k, 1) design. Suppose that, for some s with 

0 < s < t, no two blocks meet in s points. Then one of the following holds: 

(a) s = t — 2, T> is a projective plane or an extension of one; 

(b) 5 = 0, k = t + 1, v — 2t + 3; 

(c) s = 1, k = t -\- 1, v = 2t + 2; 

(d) s = 0, t = 4, k = 7, v = 23; 

(e) s = 1, t = 5, k = 8, v = 24. □ 

The only known examples of designs under cases (b) and (c) are the 2-(7, 3, 1), 

3-(8, 4, 1), 4-(ll, 5, 1) and 5-( 12, 6, 1) designs. 

We now come to the final topic in this chapter, the construction of the 5-(12, 6, 

1) and 5-(24, 8, 1) designs which have come up so often. 

These designs are intimately related to their automorphism groups, the 5-fold 

transitive groups M12 and M24 discovered by Mathieu (1861), (1873). Witt (1938a,b) 

gave new constructions of the Mathieu groups, as transitive extensions of permutation 

groups of smaller degree (adding one point at a time), and used the groups to con¬ 

struct the designs. The procedure was reversed by Luneburg (1969), who constructed 

the designs (as three-times extensions of AG(2,3) and PG(2,4) respectively), and de¬ 

fined the Mathieu groups as their automorphism groups. Below, we give Luneburg’s 

construction. The easiest way to construct (and prove uniqueness of) these designs 

is via coding theory, using the ternary and binary Golay codes associated with them. 

This is described in Chapter 11. Many other constructions have been given. We 

mention some of these below, while another is explained in Chapter 6. 

Luneburg’s construction of the 5-(24, 8, 1) design is based on the following 

combinatorial properties of the unique projective plane of order 4, viz. PG(2,4). 

(1) PG(2, 4) contains exactly 168 (Type II) ovals (i.e. 6-sets meeting every line 

in 0 or 2 points). These fall into three classes 01, C92, 03 of size 56, with the property 

that two ovals belong to the same class if and only if their intersection has even size. 

(2) PG(2, 4) contains exactly 360 Baer subplanes; these are 7-sets meeting each 

line in 1 or 3 points (see p. 10). They fall into three classes SUS2,S3 of size 120, 

with the property that two Baer subplanes belong to the same class if and only if 

their intersection has odd size. 

(3) The numbering in (1) and (2) can be chosen so that, for O G O,, S G <S), 
\0 (~l 51 is even if and only if i — j. 

Now let (X,C) = PG(2, 4), and let oo1,oo2,oo3 be three new points. Construct 

a structure with point set X U {ocq, oo2, oo3}, with blocks of four types: 

(a) L U {oo1,oo2,oo3} for each L 6 C\ 

(b) O U {oo!,oo2,oo3} \ {ooi} for each 0 6 0^1= 1,2,3; 
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(c) S U {oo,} for each 5 6 <S;, i = 1,2,3; 

(d) LAL1 for L,L' G C, L V. 

(Here LAL1 is the symmetric difference of L and L'.) 

Each block has cardinality 8, and there are 

21 + 168 + 360 + 210 = 759 = 

blocks, so the average number of blocks containing a 5-set is 1. Some checking verifies 

that two blocks have at most 4 common points; so a 5-set lies in at most one block, 

and hence in exactly one. Thus, we have constructed a 5-(24, 8, 1) design. 

The uniqueness of the design can also be shown by this method. We already 

noted that two blocks of such a design T> meet in 0, 2 or 4 points. Let oo1,oo2,oo3 

be three points of V. Then the derived design 'D00l 00 2 003 is a projective plane of order 

4, necessarily isomorphic to PG(2,4). (See Chapter 6.) Using the above observation 

it can be checked that blocks containing 3, 2, 1 or none of 00^ oo2, oo3 correspond to 

lines, ovals, Baer subplanes, and symmetric differences of pairs of lines of PG(2,4), 

and that the partitions of ovals and Baer subplanes according to which points oo, are 

in the corresponding blocks is the one given. 

The partitions defined in (1) and (2) above have nice descriptions in both group- 

theoretic and coding-theoretic terms. From a group-theoretic viewpoint, consider 

the group PGL(3,4) of automorphisms of PG(2, 4) induced by non-singular linear 

transformations of the underlying vector space. This group acts transitively on the 

sets of ovals and Baer subplanes. It has a subgroup PSL(3, 4) of index 3, consisting of 

automorphisms induced by linear transformations of determinant 1. Both ovals and 

Baer subplanes fall into three orbits for this group, yielding the desired partitions. 

The coding-theoretic description will be given in Chapter 11. 

It is possible to construct the 5-(12, 6, 1) design similarly, by extending the 

affine plane AG(2,3) three times, identifying appropriate geometric objects in the 

plane. We have outlined this method in Exercise 13. An easier approach is to find 

this design inside the larger one. 

A unital in PG(2, 4) is a set of 9 points meeting any line in 1 or 3 points. It 

can be shown that PG(2,4) contains 280 unitals. Let U be one of these, and set 

Y — U U {ooi, oo2, oo3}. Then Y meets any block of the 5-(24, 8,1) design in an even 

number (at most 6) of points. So 

(Y, {B n U : B a block, \BnU\ = 6}) 

is a 5-(12, 6, 1) design. 
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A quick construction of this design runs as follows. There is (up to equivalence) 

a unique Hadamard matrix of order 12. (This follows from our remarks (1.28) about 

the relation between Hadamard matrices and Hadamard designs, and the uniqueness 

of the 2-(ll, 5, 2) design — see Exercise 8.) Let H denote this matrix. Any pair of 

rows of H agree in 6 positions and disagree in 6, the resulting pair of 6-sets being 

unaffected by row and column sign changes. If B is the collection of 2= 132 

6-sets which arise in this way, then ({1,..., 12}, B) is a 5-(12, 6, 1) design. 

The 2-( 11, 5, 2) design can also be used to construct the 3-(22, 6, 1) design: see 

Exercise 8. 

Many other papers describe the 5-(24, 8, 1) design. The ‘Miracle Octad Gener¬ 

ator’, or MOG (Conway (1976), Curtis (1976)) is a convenient computational device 

for finding the block containing any five points. Todd (1966) gives a list of all 759 

blocks of the design. See also Jonsson (1972), and the ATLAS of Finite Groups 

(Conway et al. (1985)). In Chapter 11, we will see (implicitly) many more construc¬ 

tions of the design (via its connection with the binary Golay code), as well as a short 

proof of its uniqueness. 

Appendix: The Principle of Inclusion and Exclusion 

Let Ai,.. ., An be subsets of a finite set X. The Principle of Inclusion and Exclusion 

asserts that the number of elements of X which lie in none of the sets A{ can be 

computed if we know, for each set J C {1,..., n}, how many elements lie in all the 

sets Aj for j 6 J (and perhaps others). For J C (1,,.. , n}, set 

a(j) = n A,, 
j£j 

with the convention that A(0) = X. 

(1.56) Theorem. The number of points of X lying in none of Ax,..., An is 

£ (-1)|J| • |A(J)|. 

PROOF. An element of X lying in none of the sets A, is counted once in the term 

with J = 0 in the sum. If x is any other element, and I< = {j : x 6 Aj}, \K\ = k > 0, 

then the contribution of x to the sum is 

E(-i>M = B-P(fc) = a - d* = o, 
JQK j=o \Jj , 

by the Binomial Theorem. r-i 
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(1.57) Corollary. With the above notation, suppose that |yl(J)| = Aj whenever 

| J| = j, for j = 0,..., n. Then the number of elements lying in no set A, is 

n 

B-1)' 

In fact, with the hypotheses of (1.56), the number of points lying in a prescribed 

collection of sets Aj and no others can be computed (see Exercise 17). This fact was 

used several times in the text. 

Exercises 

1. Let V be a vector space of dimension n + 1 over F = F?, where q is a prime 

power and n > 2. Choose an integer l with 1 < l < n, and let X and B be the sets 

of 1- and (Z + l)-dimensional subspaces of V, with incidence defined by inclusion. 

(These are the points and /-flats of the projective space PG(n, q).) Prove that (X, B) 

is a 2-design, and calculate its parameters. 

2. The Kronecker product or tensor product of matrices A = (ay) and B — (bkl) 

is the matrix A® B with ((*, k), (j, /)) entry ay&*,. Prove that the Kronecker product 

of Hadamard matrices of orders nx and n2 is a Hadamard matrix of order nin2. 

Prove also that the Kronecker product of a number of copies of the matrix () _\) is 

a Sylvester matrix. 

3. Suppose that H is a Hadamard matrix of order n with constant row and 

column sums d. Prove that n = </2, with d even. Prove also that, if the —Is 

in H are replaced by Os, the resulting matrix is the incidence matrix of a square 

2-(4u2, 2u2 + u, u2 -f u) design, where d = 2u. (Note: d may be positive or negative.) 

4. Let Pbea Hadamard 2-design. Prove that any line has two or three points. 

Suppose now that every line has three points. Show that the dual of V satisfies 

the following condition: 

(*) If Bi, B2 are blocks and p is a point not in B^ Ci?2, then a unique block contains 

Bi PI B2 and p. 

Let T>T = (X,B), where X = {xk,..., xv}. For each B G B, let v(B) be the 

vector in F1' (where F = F2), with 

v(5)t. 0 if Xi G 5, 
1 otherwise. 

Let W = {v(L?) : B G B] U {0}. Prove that W is a vector subspace of FL 

Deduce that T> is a projective geometry over F. 

5. Let V = (X,B) be a t-(v,k. A) design, and let aq,..., xt+i be points; let p. 

be the number of blocks containing x1,.. . ,xt+1. Use the Principle of Inclusion and 
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Exclusion to show that the number of blocks which contain none of xlt.. .,xt+1 is 

F + (—l)t+1^, where the number F depends only on the parameters of the design. 

Deduce that, if v = 2k + 1 and t is even, then 

£ = (X U {oo},{jBU {oo},X \ B : B 6 B}) 

is an extension of V. 

6. Prove that the only square 2-design which can be extended more than once 

is the projective plane of order 4. 

7. Use Dembowski’s Theorem (1.34)(b) to prove that an extendable inversive 

plane has order 2, 3, 4, 8 or 13. 

REMARK. An embedding theorem of Kantor (1974) shows that no inversive plane of 

even order greater than 2 is extendable. 

8. (a) Prove that there is a unique 2-(ll, 5, 2) design, up to isomorphism. 

(b) Let A^ be the set of points and blocks of the 2-(11, 5, 2) design. Let B 

consist of 6-sets of the following three types: 

• a point and the five blocks containing it; 

• a block and the five points contained in it; 

• an oval and its tangents. 

Prove that {X,B) is a 3-(22, 6, 1) design. 

(This construction is due to Assmus, Mezzaroba. and Salwach (1977).) 

9. Let 5 be a power of 2, and let S be the conic in PG(2,^) with equation 

xz = y2. Prove that the nucleus of S is p = [(0,1,0)] (this means, the 1-dimensional 

subspace spanned by the vector (0,1, 0)). Prove also that, if s is any point of S, then 

the Type I oval S U {p} \ {s} is a conic if and only if q = 2 or q = 4. 

(Hint: Any five points with no three collinear determine a unique conic.) 

10. Using the method of intersection triangles to prove that, if Y is a set of 5 

points of a 3-(10, 4, 1) design containing no block, then the complement of Y contains 

no block. 

11. Let B be a block of a f-design (A", B), and suppose that the cardinality of the 

intersection of B with the other blocks takes just s distinct values aq,... ,aq, where 

s < t. Prove that, for 1 < i < s, 

(X \B,{B'\B : B' e B, \B n B'\ = xj) 

is a (t + 1 — s)-design. 

What designs are obtained from the 4-(23, 7, 1) design by this procedure? 

12. Let H be a Hadamard matrix of order At. Let V be the structure with point 

set {1,.. ., At}, in which, for each pair of rows of iD, the set of coordinates where 
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these rows agree and the set where they disagree are both blocks, and these are all 

the blocks. 

(a) Show that I? is a 3-structure, and find its parameters. 

(b) Show that, if P is a 4-structure, then t = 3. 

(c) A block of V occurs with multiplicity at most 21. Prove that, if every block has 

multiplicity 2f, then H is a Sylvester matrix. 

13. Show that AG(2,3) contains exactly 54 (Type I) ovals. Show further that 

there is a unique way to partition these ovals into three classes Cfi, 02, 03 of 18 ovals 

each with the property that any three non-collinear points lie in a unique oval of each 

class. 

Let and C be the point and line sets of AG(2,3), and let oo1? oo2, oo3 be three 

new points. Define a structure T> with point set X U {ool5 oo2, oo3}, having blocks of 

four types: 

L U {ooi, oo2, oo3} and X \ L for all L G £; 

O U {ooi, co2, oo3} \ {oo,-} and (X \ O) U {oo,} for all O 6 i = 1,2, 3. 

Prove that V is a 5-(12, 6, 1) design. 

Show further that any 5-(12, 6, 1) design is isomorphic to T>. 

14. Prove that the only extendable affine designs are affine planes. 

15. (a) Show that, if 7r is any permutation of the point set of PG(d,2), d > 2, 

then there is a hyperplane H such that 7r(H) intersects every hyperplane. [Hint: Let 

L be a line; then |7r-1(L)| = 3 < d, so there is a hyperplane H containing tt~1(L). 

(b) In the Paley design P(q), where q = 3 (mod 4), for any block B, —B is 

disjoint from some block. 

(c) Deduce that PG(d, 2) and P(2d+1 — 1) are isomorphic only for d = 2. 

[This argument is due to A. Blokhuis.] 

16. Prove that, if a projective plane n of order n has a subplane n of order m, 

then either n = m2 or n > m(m + 1). Show further that n — m2 if and only if every 

line of n contains a point of 7r; and that n = m(m + 1) if and only if there is a line 

L of n containing no point of 7r, such that every point of L lies on a line of 7r. 

17. Assume the notation of the Principle of Inclusion and Exclusion (1.56). For 

J C {1,... , n}, let B(J) be the set of elements lying in the sets Aj for j G J and 

no others. Then (1.56) gives a formula for |5(0)|. Find a formula for \B(J)\ for 

arbitrary J. 

18. (a) How many functions f from {1,..., n} to {1,... , n} have the property 

that no member of a. subset J is contained in the range of /? Deduce that 

n! = D-iy(”)(n-i)n* 
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(b) How many permutations of {1,..., n} fix every point in the subset J? Deduce 

that the number of derangements of {1,... , n} (permutations without fixed points) 

is 

n.\J2 
i=0 

(~i y 
j- 

Show that this is the closest integer to n!/e. 



2. Strongly regulargraphs 

The theory of designs concerns itself with questions about subsets of a set (or relations 

between two sets) possessing a high degree of regularity (although this is no guarantee 

of high global symmetry). By contrast, the large and amorphous area called ‘graph 

theory’ is mainly concerned with questions about ‘general’ relations on a set. This 

generality usually means that either the questions asked are too particular, or the 

results obtained are not powerful enough, to have useful consequences for design 

theory. There are some places where the two theories have interacted fruitfully; in 

the next six chapters, several of these areas will be considered. The unifying theme 

is provided by a class of graphs, the ‘strongly regular graphs’, introduced by Bose 

(1963), whose definition reflects the symmetry inherent in t-designs. First, however, 

we give some general definitions from graph theory, and an elementary classification 

theorem which will recur like a motif in subsequent chapters. 

(2.1) DEFINITION. A graph consists of a finite set of vertices together with a set of 

edges, where an edge is a subset of the vertex set of cardinality 2. In the language of 

graph theory, our graphs are undirected (we do not allow edges to be ordered pairs), 

and without loops (we do not permit the two vertices comprising an edge to be equal) 

or multiple edges (a given pair of vertices can comprise at most one edge). 

As with designs, there is an alternative definition: a graph consists of a finite 

set of vertices and a set of edges, with an ‘incidence’ relation between vertices and 

edges, having the properties that any edge is incident with exactly two vertices, and 

any two vertices are incident with at most one edge. Still another definition: a graph 

consists of a finite set of vertices together with a symmetric irreflexive binary relation 

(called adjacency) on the vertex set. We take the first definition, but use freely the 

language associated with the others; we say that two vertices are adjacent, or an edge 

is incident with a vertex. 

A graph is called complete if eveiy pair of vertices are adjacent, and null if it 

has no edges at all. The complement of the graph T is the graph F whose edge set 

is the complement of the edge set of F (relative to the set of all 2-element subsets of 

the vertex set). This is, of course, quite a different notion from the complement of a 

design! In the graph F, we let F(x) denote the set of vertices adjacent to the vertex 

x. Given a subset S of the vertex set, T|5 denotes the graph with vertex set 5 whose 
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edges are the edges of T which are contained in 5. If the meaning is clear from the 

context, we sometimes call this graph simply S. 

For example, let n be a natural number, and V the set of all n x n Latin squares 

with entries {1, 2,..., n). Form a graph Fn with vertex set V by declaring that two 

Latin squares are adjacent whenever they are orthogonal. As we saw in (1.31), the 

existence of a projective or affine plane of order n is equivalent to that of n — 1 

mutually orthogonal Latin squares, that is, of a complete subgraph of Tn on n — 1 

vertices. Graph theory provides some general results about the size of complete 

subgraphs of a graph; not surprisingly, these are far too weak to force the existence 

of a plane of given order except in trivial cases. This simple approach seems unlikely 

to produce any useful results for the theory of finite planes. 

On the other hand, graphs, sometimes provide a simple construction for designs 

of various kinds. 

(2.2) EXAMPLE. Let r be the complete graph on five vertices, and let E be its edge 

set. Let B be the set of subgraphs of the three shapes shown in Fig. 2.1. Then (£, B) 

is a 3-(10, 4, 1) design. 

Fig. 2.1. A 3-design 

If x is a vertex of a graph T, the valency of x is the number of edges containing 

x, or equivalently, the number |T(x)| of vertices adjacent to x. If all vertices have 

the same valency, the graph is called regular, and the common valency is the valency 

of the graph. Thus, an arbitrary graph is a 0-design, with block size k — 2; and 

a regular graph is a 1-design. (The only graph which is a 2-design is the complete 

graph, which is sometimes referred to as the pair design.) 

We begin with the following result, which will prove to be much more significant 
than it looks. 

(2.3) Theorem. Let F be a graph with the following property: 

(*) Any edge {x, y} is contained in a triangle {x, y, z} having the property that any 

further vertex is joined to exactly one of x, y and z. 
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Then T is isomorphic to one of the following: 

(a) a null graph; 

(b) a ‘windmill’ (consisting of a number of triangles with a common vertex); 

(c) three special regular graphs, having 9, 15 and 27 vertices respectively. 

Proof. Let F be a graph satisfying (*). We may suppose that L has at least one 

edge, and that no vertex of T is adjacent to all others, since otherwise we are in case 
(a) or (b). 

Let x be any vertex of T. Then r|({x} U T(x)) is a windmill, so x has even 

valency, 2u say, with u > 2. Number the triangle containing x as Ti, T2,.. ., Tu, and 

{■£) Vifii 2/i,l}- 

Now let z be any vertex not equal or adjacent to x. By (*), z is joined to just one 

of y{ o and yi x, say yi it, for i = 1,..., u. We can use the function fz : {1,... , u} —> 

{0,1} defined by 

/.(*) = O, 
as a 'label’ for the vertex 2. By choice of the numbering of the neighbours of x, we 

can suppose that the all-zero function occurs as a label. 

Let A(x) = T(x) be the set of non-neighbours of x. We show next: 

(1) If z, z' £ A(x) are adjacent, then fz and fzi agree in exactly one position. 

(2) If z,z' £ A(x) are nonadjacent but have a common neighbour in A(x), then fz 

and fz/ agree in all but two positions. 

(3) If z, z' £ A(x) are non-adjacent and have no common neighbour in A(x), then 

- h>- 

Proof of (1): In this case, z and z' lie in a triangle whose third vertex is a 

neighbour of x, say yi<(; so fz(i) = fz’(i) = t. But z and z' have no more common 

neighbours, so fz and fz/ do not agree in any other position. 

Note that, for any z G A(x) and any z, there is a unique neighbour z' of z for 

which fz,(i) = fz(i). 

Proof of (2): If z" is a common neighbour, the result follows by applying (1) to 

the pairs {z,z"} and {z",z'j. 

Proof of (3): If t = fz(i) ^ then z" is joined to a vertex of the unique 

triangle {z, t/i e, z'} containing z and yiif, necessarily z'. 

Suppose that u > 3. Take z £ A(x) and let (z, z', z", z'") be a path of length 

3 in A(x) such that fz(i) = fz,(i), fz,(j) = fz„(j), fz„(k) = where i,j,k are 

three distinct coordinates. Then fz and /zm agree in just these three coordinates. 

But since (1)—(3) are exhaustive, it follows that either ti = 3orti-2 = 3. Thus 

u — 2, 3 or 5. 
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In each case, we have enough information to reconstruct the graph. For example, 

if u — 5, then each function which takes the value 1 an even number of times must 

occur exactly once as the label of a vertex in A (x); two vertices of A(x) are adjacent 

precisely when their labels agree in just one coordinate. The number of vertices is 

1 + 10 + 16 = 27. This graph is called the Schldfli graph. (However, this name was 

originally used by Seidel (1968) for the complement of the graph defined here.) 

For u = 2 and u — 3, there are simpler descriptions of T. For u — 2, the vertices 

are the 32 = 9 cells of a 3 X 3 array, two cells adjacent whenever they belong to the 

same row or to the same column. For u — 3, the vertices are the = 15 2-element 

subsets of a 6-element set, two vertices adjacent when they are disjoint. □ 

Let us look at graphs satisfying (*) another way. Such a graph has the property 

that non-adjacent vertices have the same valency. (For if x lies in u triangles, that 

is, has valency 2u, and z is non-adjacent to x, then z is joined to u neighbours of x, 

all in distinct triangles, and so 2 has valency at least 2u\ the same argument with x 

and 2 interchanged shows that the valencies are equal. Note incidentally that x and 

2 have u common neighbours.) Now suppose that neither (a) nor (b) of (2.3) holds. 

Let x and y be vertices whose valencies are unequal. Then x and y are adjacent; let 

2 be the third vertex of the triangle containing them. Then the valency of 2 differs 

from that of at least one of x and y, say x. Now any further vertex is adjacent to 

either x or y, and to either x or 2, but not to both y and 2; so every further vertex 

is adjacent to x, and the graph is a windmill, contrary to assumption. 

We conclude that T is regular, with valency 2u, say; two adjacent vertices have 

a unique common neighbour, while two non-adjacent vertices have u common neigh¬ 

bours. 

From these conditions, we abstract the definition of a strongly regular graph. 

(2.4) Definition. A strongly regular graph with parameters (n,k,\,y) is a graph 

r with n vertices, not complete or null, in which the number of common neighbours 

of x and y is k, A or y according as x and y are equal, adjacent or non-adjacent 

respectively. (The condition involving equality of x and y just says that the graph is 

regular with valency k.) 

The parameters (n, k, A, y) are in common use. However, this book is about the 

connections among graphs, codes and designs; in some of the situations we will meet, 

k, A and y have the same value in the design and in the graph, but in others they do 

not. (This problem is exacerbated by the fact that the parameter n is often called v.) 

In earlier editions of this book, we used (n, a,c, d) for the parameters of a strongly 

regular graph, and where necessary to avoid confusion, we adopt the same device 

here. 

Thus, graphs which satisfy conclusion (c) of (2.3) are strongly regular, with 
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parameters (6u — 3,2u, l,u), for u = 2,3,5 respectively. We can re-phrase (2.3) as 

follows: 

(2.5) Proposition. Let F be a strongly regular graph with parameters 

(6u — 3,2u, 1, u). Then u = 2,3 or 5, and there is a unique graph for each value 

of u. □ 

The parameters of a strongly regular graph are not independent: 

(2.6) Proposition. If a strongly regular graph has parameters (n, k, A, p), then 

k(k — A — 1) = (n — k — l)/t. 

PROOF. Count in two ways the edges {y,z}, where y £ L(x), z $ T(x). □ 

(2.7) Proposition. The complement of a strongly regular graph is strongly 

regular. 

PROOF. Let r be strongly regular, with parameters (?r, k, A, p). Clearly F is regular, 

with valency k — n — k — 1. If a: and y are adjacent in F, then they are non-adjacent 

in T; applying Inclusion-Exclusion (1.57) to their neighbours, we find that 

A = (n — 2) — 2k + p = (n — 2k + p — 2) 

vertices are adjacent to neither in T. Similarly, ~p = n — 2k + A. □ 

REMARK. We obtain our first, necessary conditions on the parameters of a strongly 

regular graph, namely n > 2k — p + 2 and n > 2k — A. 

We turn now to examples of strongly regular graphs. Only a few graphs are 

small enough to be drawn. In drawings such as Fig. 2.2, a small circle represents a 

vertex, and an arc an edge, but two arcs may ‘cross’ without requiring a vertex at the 

crossing-point. Five strongly regular graphs are displayed in Fig. 2.2. Larger graphs 

must be described in words. 

(2.8) EXAMPLE. The triangular graph T(m) (m > 4) has as vertices the 2-element 

subsets of a set of cardinality m; two distinct vertices are adjacent if and only if they 

are not disjoint. T(m) is strongly regular, with parameters 

n — \m{m — 1), k — 2(m — 2), A = m — 2, p = 4. 

The fifth graph in Fig. 2.2, which is called the Petersen graph, is the complement 

of T{5). The square lattice graph L2(m) has vertex set S X S, where 5 is a set 
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L2{3) Petersen graph 

Fig. 2.2. Some strongly regular graphs 

of cardinality to; two distinct vertices are adjacent if and only if they agree in one 

coordinate. L2(to) is strongly regular, with parameters 

n — m2, k = 2(m — 1), A = to — 2, p, = 2. 

The first and fourth graphs in Fig. 2.2 are F2(2) and L2(3). However, larger triangular 

and square lattice graphs are more conveniently drawn as in Fig. 2.3, where the 

convention is that any two vertices which lie on a line are adjacent. 

The first two graphs in the conclusion of (2.3) are L,(3) and the complement of 

T(6). 

(2.9) Example. The disjoint, union of r complete graphs each on to vertices (r, to > 

1) is strongly regular, with parameters 

n = rm, k = m — 1, A = to — 2, p = 0. 

This graph is denoted by r.I\m. Any strongly regular graph with /i = 0 is of this 

form. The graph r.I<2 is called a ladder graph. The complement of r.Km is called a 
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L,( 6) 

Fig. 2.3. Square lattice and triangular graphs 

complete multipartite graph, with block size m. The complement of a ladder graph is 

called a cocktail party graph CP(r); it models a cocktail party made up of r couples, 

at which each participant speaks to everybody except her/his partner. The first and 

third graphs in Fig. 2.2 are cocktail party graphs. 

(2.10) EXAMPLE. Let q be a. prime power with q = 1 mod 4. The Paley graph P(q) 

has as vertex set the finite field GF(q), with two vertices adjacent if and only if their 

difference is a non-zero square. (Since —1 is a square in GF(q), the joining rule is 

symmetric.) It is strongly regular, with parameters 

n = q, k - - 1), A = j(q - 5), y = ^(q - 1), 

and is isomorphic to its complement. The second and fourth graphs of Fig. 2.2 are 

P(5) and ,P(9). The adjacency matrix of the Paley graph is obtained from the Paley 

matrix defined in Chapter 1. by replacing the — Is by Os. 

(2.11) EXAMPLE. The Cleb.sch graph has as vertices all subsets of {1,2,3,4,5} of 

even cardinality; two vertices are adjacent whenever (as subsets) their symmetric 

difference has cardinality 4. It is strongly regular with parameters (16,5,0,2). The 

subgraph on the set of non-neighbours of a vertex is isomorphic to the Petersen graph. 

Similarly, the subgraph of the Schlafli graph on the set of non-neighbours of a vertex 

is the Clebsch graph. The Clebsch and Schlafli graphs are related to configurations in 

classical algebraic geometry. As with the Schlafli graph, our definition of the Clebsch 

graph gives the complement of Seidel’s original definition. 

(2.12) EXAMPLE. The Gewirtz graph is a strongly regular graph with parameters 

(56,10, 0,2). The following construction is due to Sims. The vertex set is {oo}UiPuQ, 
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where V is the set of Sylow 3-subgroups of the alternating group A6, and Q the set 

of involutions in As. Join oo to all vertices in V\ join P £ V to q £ Q whenever 

q~1Pq = P; join qx,q2 £ Q whenever qxq2 has order 4. Combinatorially, we may 

identify P £ V with a pair of disjoint 3-subsets of {1,..., 6} (its orbits). Then 

typical edges of the second and third types join 

{{1,2,3},{4,5,6}} to (12)(45), 

and 

(12)(34) to (23)(56), 

respectively. 

Another construction of the Gewirtz graph uses as vertex set one of the three 

classes of ovals in PG(2, 4) (see the remarks on Liineburg’s construction in Chapter 1), 

two ovals joined whenever they are disjoint. We will see in Chapter 5 a general class 

of strongly regular graphs which includes this example. 

Let G be a group of permutations of the set V. We assume that G is transitive 

on V, that is, any point of V can be carried to any other by an element of G. There 

is a natural component-wise action of G on V x V, given by 

(x ,y)T = (x\yr) 

for 7r £ G. The rank of G is defined to be the number of orbits of G in this action. 
Note that the diagonal 

{(«,») : x £ V} 

is one orbit, so that G is doubly transitive if and only if it has rank 2. Suppose that G 

has rank 3, and let O, O be the two orbits other than the diagonal. Suppose further 

that G has even order. Then G contains an involution r. Some pair x,y of distinct 

points are interchanged by r. Suppose that (x,y) £ Ox. Then every pair in Ox is 

interchanged by an element of G. So we can take the set of unordered pairs {x, y} 

for which (x,t/) £ Ox as the edge set of a graph F on V. The fact that Ox and 02 

are orbits implies that the number of common neighbours of two adjacent vertices, 

or of two non-adjacent, vertices, is constant; and the transitivity of G shows that F 

is regular. So T is strongly regular. Such a graph is called a rank 3 graph. All the 

strongly regular graphs we have seen so far are actually rank 3 graphs. 

All finite permutation groups of rank 3 have been determined, as a result of 

work by Foulser (1969), Bannai (1972), Kantor and Liebler (1982), Liebeck and Saxl 

(1986), and Liebeck (1987), making use of the classification of finite simple groups. 

Thus, at least implicitly, all rank 3 graphs are known. But, as we shall see, most 

strongly regular graphs are not rank 3 graphs! 

Let F be a graph with vertex set {xj,..., x„}. The adjacency matrix A(T) of F 

is the n x n matrix with (i,j) entry 1 if x< and x} are adjacent, 0 otherwise. (Strictly 
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speaking, different orderings of the vertex set yield different, though similar, matrices. 

We always presuppose an ordering of the vertices; and we speak of the (x,y) entry 

of A(T), meaning the (i,j) entry, where x - Xi, y = Xj.) 

Let T be strongly regular, with parameters (n, k, A, p), and A = A(T). Then the 

{x,y) entry of A2 is the number of vertices adjacent to x and y. This number is k, A 

or according as x and y are equal, adjacent or nonadjacent. Thus: 

(2.13) A2 = kl + \A + p(J - I - A). 

Here, as usual, J is the all-1 matrix. Also, since T is regular: 

(2.14) AJ = JA = kJ. 

Conversely, a strongly regular graph can be defined as a graph (not complete or null) 

whose adjacency matrix satisfies (2.13) and (2.14). 

Now A and J are commuting real symmetric matrices, and so they can be simul¬ 

taneously diagonalized by an orthogonal matrix. The all-1 vector j is an eigenvector 

of both A and J, with eigenvalues k and n respectively. Applying (2.13) to this 

vector, we obtain 

k(k — A — 1) = (n — k — l)p, 

giving another proof of (2.6). Any vector orthogonal to j is an eigenvector of J with 

eigenvalue 0. So any further eigenvalue p of A satisfies: 

(2-15) p2 = (k-p) + (A — p)p. 

The roots of this quadratic equation are denoted by r and s, with the convention 

that r > s. Thus, 

r's = 2 (A - /* ± \/(A — p)2 + 4(k - /x)) . 

If r and s have multiplicities / and g respectively, then we have 

n - f + g + 1, 

0 = Trace(A) = k + fr + gs. 

These equations determine / and g, since k = A = p is not possible. Indeed, we find 

without difficulty: 

(2.16) Theorem. The numbers 

(n — l)(p — X) — 2k \ 

\J\p ~ A)2 + 4(& — p)) 

are non-negative integers. □ 
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This result is referred to as the integrality condition or rationality condition, and 

provides a powerful non-existence criterion for strongly regular graphs. 

(2.17) EXAMPLE. Let us reconsider the strongly regular graphs from (2.5), with 

n — 6u — 3, k = 2u, A = 1, y = u. We have 

/,J=H6«-4T 
(6 u — 4 )(u — 1) — 4 u 

3u - 2 + 

U — l)2 + 4u 

(3u — l)(u — 2) 

uTl 

Since these quantities are integers, u + 1 divides (3u — l)(u — 2). Since 

(3u- l)(u — 2) = (u + l)(3u- 10)+ 12, 

u + 1 divides 12, so that u = 2, 3, 5 or 11. (We exclude u = 1 since it corresponds to 

a triangle, which is not strongly regular according to our definition.) We will soon 

give a further necessary condition from which the non-existence of such a graph with 

u = 11 follows. 

Equations (2.13) and (2.14) show that the span (over the real numbers) of the 

three matrices /, J, A is closed under multiplication, and hence is a commutative 

associative algebra. If T is a rank 3 graph obtained from the permutation group G, 

then this algebra is the centralizer algebra of G, that is, the set of matrices which 

commute with all the permutation matrices in G. The multiplicities 1, /, g of the 

eigenvalues of A are the degrees of the irreducible constituents of the permutation 
character of G. 

To analyse the integrality conditions further, we distinguish two types of param¬ 

eter sets for which / and g are integers: 

Type /, with (n - l){y - A) = 2k. In this case, 

2k 
n = 1 +-- > 1 + k, 

h — A 

and so 0 < y — A < 2. So necessarily y — A = 1, and we find that A = y — 1, 

k - 2y, n = 4^ + 1. In this case, a further necessary condition, resembling the 

Bruck-Ryser-Chowla Theorem (1.16). was shown by Van Lint and Seidel (1966): 

(2.18) Theorem. If a Type I strongly regular graph on n vertices exists, then n 
is the sum of two integer squares. q 

Thus, for example, there is no Type I strongly regular graph on 21 vertices. On 

the other hand, the Paley graphs are of Type I, and so such graphs exist whenever 

n is a prime power congruent to 1 mod 4. Examples are known for other values too 
e.g. 45, 225: see Mathon (1975). 
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Type II, when (p — A)2 — 4(k — p) is the square of an integer u, u divides 

(n — 1 )(p — A) — 2k, and the quotient is congruent to n - 1 (mod 2). This is the 

‘general case’. Note that Type I graphs are also of Type II if, and only if, n is a 

square. The graph P(9) = L2(3) is an example of this. 

The above analysis can be turned into an algebraic characterization of strongly 

regular graphs. A graph is regular if and only if j is an eigenvector of A; the corre¬ 

sponding eigenvalue is the valency. If T is regular, then jx is A-invariant; and, if A 

is strongly regular, then A|jx has just two eigenvalues. Conversely, if this condition 

holds, then (A — rI)(A — si) is a multiple of J; this easily shows that F is strongly 

regular. Hence: 

(2.19) Proposition. The regular graph T with adjacency matrix A is strongly 

regular if and only if A|jx has just two eigenvalues. □ 

We have seen that the parameters of a strongly regular graph determine the 

eigenvalues of A and their multiplicities. What about the converse? The eigenval¬ 

ues do determine all the parameters. For r and s are the roots of the quadratic 

p1 — (k — p) + (A — p)p; so we have 

r T s — A — p, 

rs = —(k — p), 

whence A = k + r + s + rs, p = k + rs. It follows that the eigenvalues determine 

the multiplicities. Sometimes, it proves convenient to use these expressions for the 

parameters in terms of k,r,s. 

In general, knowledge of the multiplicities alone does not determine the parame¬ 

ters. Sometimes it may give strong partial information, as the following result, due to 

Wielandt (1964), Chapter 5. shows. (Wielandt’s argument is given for rank 3 graphs, 

but extends to arbitrary strongly regular graphs.) 

(2.20) Theorem. Suppose that F is a strongly regular graph on n = 2m vertices, 

whose eigenvalues have multiplicities 1, m — 1, m. Then either 

(a) T or its complement is a ladder graph; or 

(b) T or its complement has parameters n = 4s2 -f 4s + 2, k — s(2s + 1), A = s2 — 1, 

p = s2, for some positive integer s. 

PROOF. We may assume that k < m, by replacing the graph by its complement if 

necessary (since the complement has valency 2m—k — 1). The matrices A, A2, A3 have 

diagonal entries 0,A:,A'A respectively, and so their traces are 0,nk,nkX respectively. 

Thus, 
k + (m — l)r + ms = 0, 

k2 + (m — l)r2 + ms2 — 2mk, 

k3 + (m — l)r3 -f ms3 = 2mk\. 
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The Perron-Frobenius Theorem (see Gantmacher (1959)) asserts that, if A is a 

non-negative matrix, then A has an eigenvector with positive components, and if k 

is the eigenvalue associated with this eigenvector, then \p\ < k for all eigenvalues 

p. In our case, this gives |r| < k. (A weaker result, sufficient for our needs, is in 

Exercise 14.) 

The first equation above shows that k = r (modm). So either r = k, or 

r = k — m. In the first case, s = —k, 2mk2 = 2mk, so k = 1 and (a) holds. In the 

second case, we find k = m — 1 — s, r = — 1 — s; the second equation then yields 

m = 2s2 + 2s + 1, and the value of A follows from the third equation. □ 

The only graph having the parameters of (2.20)(b) with s = 1 is the Petersen 

graph. However, there is a family of examples, due to Delsarte and Goethals (1975) 

and to Turyn (1974), showing that examples exist whenever 2s + 1 is a prime power. 

The examples are related to the so-called symmetric conference matrices studied by 

Delsarte, Goethals and Seidel (1971). 

(2.21) Example. Let V be a, 2-dimensional vector space over Fs, where q is an odd 

prime power. There are q + 1 1-dimensional subspaces of V; partition these into two 

classes P and N, each of cardinality }^{q -f- 1), in any manner. Form the graph with 

vertex set F, in which x and y are joined whenever [x— y~\ £ P. This graph is strongly 

regular, with n = q\ k = \{q2 - 1), A = \(q2 - 5), p = \{q2 - 1). (These are the same 

parameters as the Paley graph P(q2)\ and indeed, the Paley graph is a special case.) 

Next, choose a member of IV, and select any \(q - 1) of its cosets; let X be the 

the set of \q(q - 1) vertices contained in these cosets. Delete each edge {x,y} with 

x e X, y 0 X, and add new edges {x,y} for all previously non-joined edges of this 

form- Finally, add a new vertex oo joined to every vertex in X. The resulting graph 

is strongly regular, and has the parameters of (2.20)(b), with q = 2a + 1. □ 

The above ‘switching’ construction will be considered further in Chapter 4. 

We now give some more necessary conditions on the parameters of strongly 

regular graphs. The first is due to Delsarte, Goethals and Seidel (1977). It uses an 

elementary lemma which will be very useful to us in the next chapter. 

(2.22) Lemma. Let A = (aif) be a positive definite symmetric real n x n 

matrix of rank d. Then there are vectors v1.vn £ Rd such that ai} = (vf, v; ) for 

hJ = 1,-n. 

PROOF. By the reduction of a quadratic form to a sum of squares’ (see, for example, 

Cohn (1974), p. 189), there is an invertible real matrix P such that 

PAPr Id O 
o o 
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Putting Q = P we have 

A = Q(o o)qt=QMl, 

where Qx is the n x d matrix consisting of the first d columns of Q. Now take 

v1?..., v„ to be the rows of Qi. □ 

A is called the Gram matrix of the set vt.vn of vectors. A set of vectors is 

uniquely determined, up to isometry of Rrf, by its Gram matrix. 

(2.23) Theorem. Let T be a strongly regular graph on n vertices, having the 

properties that T and F are both connected, and that the adjacency matrix ofT has 

an eigenvalue of multiplicity f (f > 1). Then n < |/(/ + 3). 

PROOF. The adjacency matrix A = A(T) has three distinct eigenspaces, and any 

matrix having these eigenspaces is a linear combination of I, A, and J — I — A. In 

particular, there is such a linear combination E having eigenvalue 1 on the given /- 

dimensional eigenspace and 0 on its complement. Then E is positive semidefinite, and 

so is the Gram matrix of a set 5 of vectors in RT Since E = al + /3A + ^f(J — I — A), 

any vector in 5 has length x/a, and two vectors in 5 make an angle cos~1(/3/a) or 

cos_1(7/o:). The vectors are all distinct, since neither T nor its complement is a 

disjoint union of complete graphs. We may normalize to assume that a = 1, that is, 

5 is a subset of the unit sphere 0. 

For v 6 5, let /v : ft —> R Ire the function defined by 

/v(x) 
((v, x) - ft)((v,x) - 7) 

(!-/?)(!-7) 

Now /v is a polynomial function of degree 2; and the functions /v, for v 6 S, are 

linearly independent, since 

/v(w) 
1 if v = w, 
0 if v / w. 

But these functions live in the space spanned by the / linear and |/(/ + 1) homoge¬ 

neous quadratic functions on ft. (Constants are not required, since 

2'j + ... + Xj — 1 

on ft.) Thus, 

n=|S|</ + i/(/+l) = £/(/ +3), 

as required. □ 

Note that the heart of this result is a bound for the number of vectors which 

make only two distinct angles with each other. Delsarte et al. call this the absolute 
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bound, to contrast it with other bounds which depend explicitly on the values of the 

angles. 

(2.24) EXAMPLE. The absolute bound excludes the possibility of a strongly regular 

graph with parameters (6u — 3,2u, 1,u), u = 11, left open in Example (2.17). 

The next bound is called the Krein condition: its first proof (for rank 3 graphs) 

by Scott (1977), used a result of Krein on locally finite groups. The present proof is 

more elementary, depending on the following fact. Let A and B be n x n matrices. 

Their Hadamard product A o B is the matrix with (i, j) entry ay&y. 

(2.25) Lemma. Let A and B be positive semi-definite real symmetric matrices. 

Then A o B is positive semi-definite. 

PROOF. The tensor or Kronecker product A ® B (see Exercise 2 of Chapter 1) of 

positive semi-definite matrices is positive semi-definite: its eigenvalues are all prod¬ 

ucts of an eigenvalue of A and an eigenvalue of B. Now A o A is a principal submatrix 

of A <g) A, and so represents the restriction of A ® A to a subspace. Thus A o A is 

positive semi-definite. □ 

Now we can state the Krein conditions: 

(2.26) Theorem. Let T be a strongly regular graph, such that T and T are 

connected. Let T have eigenvalues k,r, s. Then 

(a) (r + 1 )(k + r + 2rs) < (k + r)(s + l)2; 

(b) (.s + 1 )(k + s + 2rs) < (k + s)(r -f l)2. 

Proof. The idempotent matrix E of the proof of (2.23) is positive semi-definite, 

and so E o E is positive semi-definite. But 

E o E = a21 + 02A + 72(J - I - A), 

so its eigenvalues can be found. Some calculation gives the result. □ 

There are two classes of strongly regular graphs which bear a close relationship 

to square designs with special polarities (cf. (1.18)). 

Let V = (X,B) be a square 2-(v,k,X) design, with 2 < k < v — 2 (to avoid 

trivial cases). Let o be a polarity of V. A point x is absolute if x E xa. We form a 

graph r associated with cr on the vertex set X by joining x to y whenever x ^ y and 

y € xa. (The definition of a polarity implies that 

x £ ya 44 y El xf, 

so the joining rule is symmetric.) The graph T has the property that T(s) = x° \ {x} 

for all x. In general, T is not regular, since absolute points have valency k — 1 while 
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non-absolute points have valency k. However, if one or other type of point is absent, 

then T is strongly regular. Note that the adjacency matrix of the graph is equal to 

the symmetric incidence matrix given by (1.19), with all diagonal Is replaced by Os. 

(2.27) Proposition. (a) The graph T is associated with a polarity of a square 

design with no absolute points if and only if it is strongly regular with p = X. 

(b) T is associated with a polarity of a square 2-design with every point absolute if 

and only if it is strongly regular with p — X + 2. 

PROOF. If no point is absolute, then x° C\y° = F(r) nF(y) has cardinality A, whether 

or not x and y are adjacent. Conversely, if F is strongly regular with p — A, then 

(X, {T(x) : x 6 X}) is a square 2-design and <r : x r(r) a polarity without absolute 

points. 

The other case is proved similarly, or by applying (a) to the complementary 

design and graph. Note that a polarity of a projective plane must have non-absolute 

points. □ 

A strongly regular graph with parameters (v, k, A, A) is called a (v, k, A)-graph. 

(2.28) Proposition. For fixed A, there are only finitely many (u, k, A) graphs. 

Proof. Let T be such a graph. T must have Type II with respect to the integrality 

condition. From this, we conclude that k = A + u2 for some integer u which divides 

A. Hence u < A, whence k < A(A + 1), and v < A2(A + 2). □ 

The extremal case v — A2(A + 2), k — A(A + 1) occurs for all prime power- 

values of A. We will see examples in Chapter 7. Note that T2(4) is a (16, 6, 2) 

graph. In Chapter 4. we will see that there is just one further (16, 6, 2) graph (up to 

isomorphism), the Shrikhande graph. It turns out that these graphs are associated 

with different polarities of the same 2-(16, 6, 2) design (see Exercise 5 of Chapter 4). 

In the other case of strongly regular graphs associated with polarities, viz. those 

with p = A 4- 2, no such finiteness theorem is known, even for graphs with A = 0, 

p = 2. Three such graphs are known: 

(a) CP(2), with parameters (4, 2, 0, 2); 

(b) the Clebsch graph, with parameters (16, 5, 0, 2); 

(c) the Gewirtz graph, with parameters (56, 10, 0, 2). 

All these graphs are uniquely determined by their parameters. They are associated 

with polarities of the trivial 2-(4, 3, 2) design, a 2-(16, 6, 2) design (the same one 

we already saw), and a 2-(56, 11, 2) design. It is known that there are exactly three 

non-isomorphic 2-(16, 6, 2) designs, and at least four non-isomorphic 2-(56, 11, 2) 

designs; but the other designs with these parameters do not admit polarities with 

every point absolute. 
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We conclude this chapter by mentioning some developments of (2.3) which don’t 

fit in elsewhere. 

(2.29) EXAMPLE. Let V be a vector space over the field F = F2, and let Q be a 

quadratic form on V (a function from V to F which is homogeneous of degree 2 in 

the coordinates). We obtain a bilinear form by polarizing Q: 

/(x,y) = Q(x + y) - Q(x) - Q(y). 

Now Q is called non-singular if the only vector x satisfying Q(x) = 0 and /(x, y) = 0 

for all y 6 V is x = 0. 

From a non-singular quadratic form Q, we obtain a graph T, with vertex set 

{x 6 V : x ± 0, Q(x) = 0}, 

in which x and y are adjacent if and only if /(x, y) = 0. 

It can be shown that T is strongly regular. Furthermore, T has the triangle 

property, a generalization of (*) of (2.3): any edge {x,y} is contained in a triangle 

{x> y>z} having the property that any further vertex is joined to one or all of x, y, z. 

(If Q(x) = Q(y) = f(x, y) — 0, then <2(x+ y) = 0; x + y is the required third vertex 

of the triangle. The triangle property is a consequence of the equation 

/(x,w) + /(y,w) + /(x + y,w) = 0.) 

Shult (1972b) and Seidel (1973) proved the following converse. (Shult gave the 
result for regular graphs only.) 

(2.30) Theorem. A non-null graph with the triangle property, in which no vertex 

is joined to all others, is obtained as described above from a non-singular quadratic 
form over GF(2). q 

This result was further generalized by Buekenhout and Shult (1974), who re¬ 

placed triangles’ by ‘complete subgraphs of arbitrary size’. But it would take us too 
far afield even to state their result. 

Exercises 

1. Let T be one of the graphs of (2.3)(c), with vertex set V, and let oo be a 
point not in V. Set X = V U {oo}, and let 

B = {{oo} U T : T a triangle in T} 

U {TjAT2 : TuT2 triangles of F with a common vertex} . 

Prove that (X,B) is a 2-design. 
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2. Prove that there is no strongly regular graph with parameters (28,9,0,4). 

Can you do this by ‘elementary’ reasoning? 

3. Find the ‘feasible’ parameter sets of strongly regular graphs on at most 20 

vertices which satisfy the integrality condition. Are any of them excluded by the 

absolute bound or the Ivrein condition? For which can you construct a graph? 

4. (i) Prove that, if a strongly regular graph is isomorphic to its complement, 

then its parameters are of Type I. 

(ii) Prove that L2(3) is isomorphic to its complement. 

5. Construct examples of strongly regular graphs ri? T2 on the same number of 

vertices, whose eigenvalues have the same multiplicities, such that T2 is not isomorphic 

to Tj or its complement. 

6. Verify the assertions in Example (2.21). 

7. Prove that the three graphs of (2.3)(c) are obtained from the non-singular 

quadratic forms 

xxx2 + x3x4, 

£l£2 + £3X4 + £5, 

x 1 x2 + X3X4 + £5 + £5X6 4" Xg 

over F2 respectively, by the construction of Example (2.29). 

8. (The Friendship Theorem.) Let T be a graph in which any two vertices have 

a unique common neighbour. 

(i) Prove that either T is a windmill, or F is regular (and hence strongly regular). 

(ii) Use the integrality condition to show that there is no strongly regular graph 

satisfying the hypothesis. 

REMARK. This result is due to Erdos. Renyi and Sos (1966). 

9. The diameter of a connected graph T is the maximum distance between two 

vertices of T; the girth of T is the number of vertices in the shortest cycle in T. 

Let T be a regular graph with valency k > 1, diameter d, girth g, and n vertices. 

Let 

f(k,d) = 1 + k + k(k-l) + ... + k(k-l)d-\ 

Prove: 

(i) g < 2d + 1; 

(ii) n > f(k, d)] 

(iii) n < f(k, [\{g - 1)J); 

(iv) if one of these bounds is met, then all are met. 

(A graph meeting the bounds (i)-(iii) is called a Moore graph of diameter d.) 
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10. Prove that, if a Moore graph of diameter 2 has valency k, then k = 2,3, 7 or 

57. 

Remark. The unique examples with k = 2 and k = 3 are the pentagon and the 

Petersen graph respectively. In Chapter 6, we shall construct and prove the unique¬ 

ness of a Moore graph of valency 7, the Hoffman—Singleton graph. The existence of a 

Moore graph of valency 57 is undecided. Bannai and Ito (1973) and Damerell (1973) 

showed that the only Moore graph with diameter d > 2 is the cycle of length 2d + 1 

(with valency 2). We shall discuss the context of this result in Chapter 17. 

11. Let X be the edge set of the complete bipartite graph K7>11, and let B be 

the set of subsets of X which (as subgraphs) are isomorphic to the graph of Fig. 2.4. 

Prove that (X,B) is a 3-(77,20, A) design for some A. (This example is taken from 

Cameron and Praeger (to appear).) 

Fig. 2.4. A 3-design 

12. Let V be a biplane (a square 2-design with A = 2) and S the set of all 
polarities of T> with every point absolute. 

(a) Show that any a £ S is uniquely determined by a single pair (x,x°). 

(b) Show that any two elements of S commute, and their product is a fixed-point-free 
automorphism of order 2. 

(c) Show that the product of any three elements of S is a polarity with no absolute 

points. Deduce that, if |S| > 3, then Pisa 2-(4, 3, 2) or 2-(16, 6, 2) design, 
with |E| = 3 or 6 respectively. 

13. This alternative approach to (2.3) was suggested by J. I Hall Let T be a 

graph satisfying (*) of (2.3). Suppose that T contains an edge, and that no vertex of 
T is adjacent to all others. 

to F. For each x £ X, define fx £ V by 

v ohu ’r u i yx) — u i [y), then x = y. 

-* functions from the vertex set X 
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Prove that the map </> : X —> V given by 

4>{x) = fx 

is one-to-one, that its image does not contain the 0 vector, and that 

{x, y, z} is a triangle <f>(x) -f <f>(y) + <j>(z) = 0. 

As a consequence, we may assume that X itself is a subset of V. 

(3) Deduce that the intersection of X with any subspace of V carries a subgraph 

satisfying (*). In particular, T is ‘locally finite’; that is, any finite subset of X is 

contained in a finite subgraph which satisfies (*). So, to show that no infinite graphs 

can occur, it suffices to bound the size of finite graphs which can occur. 

(4) Show that a quadrilateral in F lies in a 9-vertex subgraph isomorphic to 

jL2(3). (If X1X2X3X4 is a quadrilateral, the other vertices are x* + x,-+1 (i = 1,. . .4; 

subscripts mod 4) and x4 + x2 + x3 + x4.) 

(5) Let Yx be such a 9-vertex subgraph. Show that, for x 0 ifi, Y1 U {x} lies in 

a 15-vertex subgraph isomorphic to the complement of T(6). 

(6) Let F2 be such a. 15-vertex subgraph. Show that, for x 0 K2, Y2 U {x} lies in 

a 27-vertex subgraph isomorphic to the Schlafli graph. 

(7) Let Y3 be such a 27-vertex subgraph. Show that there is no vertex outside 

Ys- 

14. Let A be a real symmetric matrix with non-negative entries, having row and 

column sums k, and let p be an eigenvalue of A. Show that |p| < k. [HINT: Let 

vA = pv, where v = (rq,..., vn); let |i>i| = max{|ui|,..., |v„|}, where v{ > 0 w.l.o.g. 

Show that (vA)j < kv{.] 





3. Graphs with least eigenvalue-2 

In this chapter, we will give a structure theorem, due originally to Hoffman (1977), for 

graphs whose adjacency matrix has least, eigenvalue —2 or greater. Our presentation 

follows Cameron, Goethals, Seidel and Shult (1976). 

We begin, tangentially, by considering a problem in Euclidean geometry. A line 

system will here denote a set S of lines through the origin in some Euclidean space 

Hd having the property that any two lines in S make an angle of 90° or 60° with each 

other. 

A star is a system of three lines in the plane R2, mutually at 60°. A line system 

S is star-closed if, whenever two lines of S make an angle of 60°, the third line of the 

star in their span also belongs to S. 

(3.1) Lemma. Any line system S is contained in a star-closed line system. 

PROOF. Choose a spanning vector of length \[2 for each line in S. These vectors 

x satisfy (x, x) = 2, (x, y) = —1,0 or 1 for x/y, Now suppose that (x, y) = —1, 

so that the third line of the star is spanned by x + y. Let [w] be another line of S. 

Then (w,x),(w,y) € {—1,0,1}. We claim that also (w,x + y) € { — 1,0,1}. If not 

then, without loss, (w, x + y) = 2; but then 

(w - x - y, w - x - y) =0, 

so w = x + y. 

So [x + y] makes an angle of 90° or 60° with all lines of 5, and it may be adjoined 

to S if it is not already in S. After finitely many steps, we reach a star-closed line 

system. D 

(3.2) Remark. S is star-closed if and only if the vectors of fixed length lying on 

the lines of S form a root system, as in the theory of simple Lie algebras over C. 

A line system S is indecomposable if its lines are not contained in the union of two 

non-zero perpendicular subspaces. We now give some examples of indecomposable 
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star-closed line systems. In what follows, {e,} denotes a set of mutually perpendicular 

unit vectors. 

(3.3) Example. 

An = {[e,- - e;] : 0 < i < j < nj. 

This system is contained in real n-space, because all the spanning vectors are orthog¬ 

onal to the vector e0 T .. . + en. 

(3.4) Example. 

Dn = {[ie* ± e,] : 1 < i < j < n}. 

(3.5) EXAMPLE. Es\ This system has several descriptions. 

(a) A8 U {[e< + ej + efc — |j] : {i,j, A’} C {0,...,8}}, 

where j = e0 + .. . + e8. 

(b) H8u{ [E-=o £.'ei] : e< = ±1, nL ei ~ l}- 

(c) {[e;] : 1 < i < 8} U {[|-(rbei ± e; ± ek ± e,)] : {i,j, k, 1} <E B}, 

where ({1,..., 8}, B) is the unique 3-(8, 4, 1) design (the 3-dimensional affine space 

over F2). 

(3.6) Example. E7 and E6 are the subsets of E8 orthogonal to a fixed line and a 

fixed star respectively. 

(3.7) Theorem. Any indecomposable star-closed system of lines at 90° and 60° is 

isomorphic to An (n > 1), Dn (n > 4), E8, Er or E6. 

Proof. We outline the proof of this theorem. Let S be such a system. Note that 

any line is orthogonal to one or all members of a star, by the proof of (3.1). Let 

{[x]> [y]> [z]} be a star, and let Ax, Ay, Az, B be the sets of fines orthogonal to only 

x) only y, only z, or all three. We may assume that x + y + z = 0, and we can 

choose spanning vectors for the other lines so that, for example, if [w] E Ax, then 

(w,y) = L (w,z) — —1. We always adopt this convention in what follows. 

Form a graph F with vertex set Ax, in which two lines are joined if and only if 

they are perpendicular. 

Claim 1. The spanning vectors of any two lines of Ax have non-negative inner 
product. 

Proof. If [u],[v] E Ax and (u,v) = —1, then [u + v] E S by star-closure; but 
(u + v, y) = 2, a contradiction. 

Claim 2. T satisfies the hypothesis (*) of (2.3). 

PROOF. Let [u] and [v] be adjacent. Then [y - u], [z + v] E S by star-closure, and 

(y - u,z + v) = 1; so w = y - z - u - v E 5. Checking inner products shows that 
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indeed [w] £ Ax. Now u + v + w = y-z, and so (t, u) + (t, v) + (t, w) = 2 for all 

[t] £ Ax. By Claim 1, exactly one of (t, u), (t,v), (t, w) is zero. So {[u], [v], [w]} is 

the required triangle. 

Claim 3. T determines S uniquely. 

PROOF. By Claim 1, the graph structure of T determines the Gram matrix, and so 

the embedding of {[x], [y], [z]} U Ax, up to isometry; and 5 is the ‘star-closure’ of this 

set, as in (3.1). 

Now it is readily checked that, for the line systems An, Dn, E6, E7, Es, the graph 

T is isomorphic respectively to a null graph, a windmill, or one of the three graphs 

of (2.3)(c). Thus, (2.3) and the above Claims complete the proof of the Theorem. □ 

Now let T be a graph whose adjacency matrix A — A(T) has smallest eigenvalue 

—2 or greater. Then A + 21 is positive semi-definite and symmetric. By (2.22), it is 

the Gram matrix of a set {xl5..., xn} of vectors in Euclidean space. These vectors 

satisfy (x{, x,) = 2, (x;, x;) = 0 or 1 for i / j, and so they span a system of lines with 

angles 90° or 60°. (Now, the relevance of line systems to the topic of this chapter is 

clear!) The decomposition of the system into minimal pairwise orthogonal subsystems 

corresponds to the decomposition of the graph T into connected components. So, if 

T is connected (as we will assume), then the system is indecomposable, and its star- 

closure S is one of those given by (3.7). We say that T is represented in the system 

5. 

So we can determine T by looking within the systems An, Dn and En, for sets 

of vectors with all inner products non-negative; adjacency in the graph corresponds 

to positive inner product (just the reverse of the situation in the proof of (3.7)!). In 

fact, since An C Dn+i and Ee C Er C Es, it suffices to consider Dn and E&\ but we 

will tackle the system An first as an illustration. 

Let T0 be a graph. The line graph T(ro) of To is defined to be the graph whose 

vertex set is the edge set of ro, two vertices of T(ro) being adjacent if and only if 

the corresponding edges of ro have a vertex in common. As a simple exercise, check 

that the graphs T(n) and L2[n) are the line graphs of the complete graph I\n on n 

vertices and the complete bipartite graph Kn n with two bipartite blocks of size n, 

respectively. 

Fact 1. T is represented in A„ if and only if it is the line graph of a bipartite 

graph on n + 1 vertices. 

Proof. The vertex set of F isaset 5 of vectors of the form e,-e;-, 0 < i,j < n, i / j. 

Since all inner products are non-negative, each basis vector e* has the same sign in 

every member of S containing it. So, if we let F0 have vertex set {0,.. ., n}, and join 
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i to j whenever ±(e< — e;-) £ 5, then Tn is bipartite (the bipartition corresponding to 

the signs associated with the basis vectors), and T = T(ro). □ 

The cocktail part}' graph CP[m) of order 2m is represented in Dm+1 by the 

vectors ej ± e; for i = 2,..., m -f 1. 

Let r0 be a graph with vertex set {vi,.. ., vr}, and let mi,..., mr be non-negative 

integers. The generalized line graph L(r0; mj,..., mr) is the disjoint union of T(ro) 

and cocktail party graphs CP(m,:), * = 1,... ,r, together with all edges between each 

vertex of L(T0) and the cocktail parties CP(mt) and CP(mJ). An example 

L(T0; 3,1,0, 2) is shown in Fig. 3.1. 

Fig. 3.1. A generalized line graph 

If n = ELi(l + rn<), then the generalized line graph T(r0; m1,...,mr) is 

represented in Dn, as follows. Number the basis vectors e,j, for i = l,...,r and 
j = 0,... , mp then take 

S = {ei 0 -)- ej 0 : {n,-, Vj} an edge of F0} 

U {e,- o ± eitj : j = 1,..., m<; i = 1,..., r}. 

Fact 2. A graph is represented in Dn if and only if it is a generalized line graph. 

Proof. We have seen the reverse implication. So let T be a graph represented in Dn. 

Let S0 be the set of basis vectors which always occur with the same sign in vertices 
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of T. Without loss, we can assume that this sign is positive. Then the vectors 

{e> + e7- £ 5 : e;, e; e 50} 

represent a line graph, say L(T0). Any basis vector e{ not in S0 occurs in conjunction 

with at most one other basis vector e;, necessarily in S0. (We cannot have vertices 

e< ± ej and —e, ± ek with j ^ k.) So we have a generalized line graph, in the 

representation just described. 

Fact 3. Only finitely many graphs are represented in E&. (Such graphs have at 

most 36 vertices; see Exercise 5.) 

Summarizing: 

(3.8) Theorem. With finitely many exceptions, any connected graph whose least 

eigenvalue is —2 or greater is a generalized line graph. The exceptions are represented 

in E8. □ 

When can a connected generalized line graph be regular? We claim that this 

happens only if it is either a line graph or a cocktail party graph. For let be 

an edge of ro, and let vt, vj have valencies kj respectively. Then, in the generalized 

line graph T = Z,(T0; ml5..., mr), the vertex {v,-, Vj} has valency (kt — 1) + (kj — 1) + 

2m* + 2mj, whereas a vertex in C'P(mi) has valency k{ + 2— 1). These numbers 

can never be equal; so either there are no cocktail parties (and T = T(T0)), or ro has 

no edges and a single vertex vx (and T — CP (mi)). We find the (unpublished) result 

of Hoffman and Ray-Chaudhuri: 

(3.9) Theorem. With finitely many exceptions, a connected regular graph with 

least eigenvlue —2 is either a line graph or a cocktail party graph. The exceptions 

are all represented in Eg. □ 

Bussemaker, Cvetkovic and Seidel (1978) determined all the exceptional graphs. 

There are 187 regular connected graphs represented in Eg which are not line graphs 

or cocktail party graphs, of which 68 are cospectral with line graphs. 

From (3.9), we can determine all but finitely many strongly regular graphs with 

least eigenvalue —2. 

(3.10) Theorem. With finitely many exceptions, a strongly regular graph with 

least eigenvalue —2 is isomorphic to L2(m), T(m), or CP(m) for some m. 

PROOF. We have to show that, if T(T0) is strongly regular, then T0 is Km, Km<m, 

or C5, since L(Km) = T(m) and L(Km m) = L2(rn), as we remarked earlier. (Note, 

incidentally, that L(C5) = C5 has least eigenvalue strictly greater than —2.) 

So suppose that Z/(T0) is strongly regular. 
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Step 1. Using the constancy of k, we see that either ro is regular, or ro is 

bipartite and semiregular (that is, the valencies of vertices in a bipartite block are 

constant). 

Step 2. Using the constancy of A, we see that either r0 is complete, or it contains 

no triangles; moreover, ro is regular (even if it is bipartite). We now assume that F0 

is not complete. 

Step 3. The number p is the (constant) number of edges joining two disjoint 

edges of F0. Under our assumption, /a < 2, with equality if and only if T0 is complete 

bipartite. It is an easy exercise to show that, if p ~ 1, then T0 = C5. □ 

In the next chapter, we will finish the analysis by determining the exceptions in 

(3.10) . 

Special cases of the theorem can be proved by elementary combinatorial argu¬ 

ment. Here is an example: 

(3.11) Theorem. A strongly regular graph V with the same parameters as T(m), 

viz. (|to(to — 1), 2(m — 2), m — 2, 4), with m > 8, is isomorphic to T(m). 

PROOF. For any vertex x of T, T(x) carries a regular graph A of valency m — 2 on 

2(m — 2) vertices. Let y,z G T(x) be non-adjacent, and let p vertices of T(x) be 

adjacent to both. Since p = 4, and x is adjacent to y and 2, we have p < 3. There 

are m - 2 - p vertices of T(x) adjacent to y but not 2, m - 2 - p adjacent to 2 but 

not y, and hence p - 2 adjacent to neither; so p > 2. If p - 3, let w be the unique 

vertex of T(x) adjacent to neither y nor 2. Then every vertex of T(x) adjacent to w 

is adjacent to either y or 2, whence to — 2 < 3 + 3, contrary to assumption. So p = 2. 

Consider the complementary graph A. Suppose that it contains a circuit of odd 

length; choose such a circuit C = (x0, xl5 ..., xk_u xk = x0) with k minimal. There 

are no edges {x,-, x; } of A with i — j ^ il (mod k)\ for such an edge would divide 

C into two smaller circuits, at least one of which would have odd length. From the 

preceding paragraph, k ^ 3. Also, x0 and xx are non-adjacent in A and have k — 4 

common neighbours x3,..., xj._2 there; so k < 6. We must have k = 5. There are 

to —5 vertices adjacent to xa in A (other than x1 and x4); these must be non-adjacent 

to both Xj and x4. Similarly, there are to. — 5 vertices non-adjacent to xx and x3. 

Since X\ is non-adjacent to m — 4 vertices outside C, there are at least to — 6 vertices 

outside C which are non-adjacent to both x3 and x4. By the preceding paragraph, 
to — 6 < 1, a contradiction. 

So A contains no odd circuits, and is bipartite. This means that A contains two 

disjoint cliques (complete subgraphs) of size m — 2. Equivalently, every vertex lies in 

two ‘grand cliques’ of size m - 1, and any edge in a unique ‘grand clique’. There are 

-m(m — 1) • 2/(m — 1) = m grand cliques, say Km. We can give the unique 
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vertex in K{ D K, the label {i,;}. It is easily checked that this labelling identifies F 

with T(m). □ 

Exercises 

1. Prove that a graph with least eigenvalue —1 is a disjoint union of complete 

graphs. (An easy version of the geometric argument in this Chapter gives the most 

straightforward solution.) 

2. Prove that the subsystem of Es consisting of lines orthogonal to two fixed 

perpendicular lines is isometric to D6. 

3. Prove that, if D3 is defined analogously to D„ for n > 4, then D3 is isometric 
to A3. 

4. Find a representation of the Petersen graph in E8. 

5. Use the argument in the proof of the absolute bound (2.23) to show that a 

graph which is represented in Es has at most 36 vertices. Construct such a graph 

with 36 vertices. 

6. In the spirit of (3.11), show that a strongly regular graph with parameters 

(m2, 2(m — 1), m — 2, 2), (m > 4), is isomorphic to Ln(m). 

7. Let S be one of the systems An, Dn, En, and let T be the set of lines making 

angles 0° or 45° with every line in 5, and lying in the space spanned by S. Prove 

that 

(a) if S — An or S = En, then T is empty; 

(b) if S = Dn (n > 4), then T consists of the lines spanned by the unit basis vectors 

e, (i = 1,..., n); 

(c) if S = D4, then T is isometric to 5. 

8. Use the result of Exercise 7 to show the following: 

If generalized line graphs L(T: rrq.mr) and L(A; plt... ,p,) are isomorphic, 

and 52<_o(]. + m,) > 4, then r = s and there is an isomorphism 0 : T —» A such that, 

if 0(vi) = Wj, then m, = pj. 

(Hint: Suppose that either not all ???.,■ are zero, or T is not bipartite. Show that 

the isomorphism induces an isometry of line systems. Now, by Exercise 7, the line 

system determines the unit basis uniquely up to sign change. Now reconstruct T and 

the integers as in the proof of (3.8). For the line graph of a bipartite graph, a 

separate argument is required.) 

REMARKS. 1. The result of this exercise is due to Cameron (1980b); it extends a 

theorem of Whitney (1932) on line graphs. 
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2. The theorem is false when EEoU + m<) = 4; can you give a counterexample? 



4. Regular two-graphs 

A regular graph can be regarded as a design whose points and blocks are its vertices 

and edges. It is a l-(n,2,k) design if it has n vertices and its valency is k. Which 

regular graphs can be extended to 2-(n +1,3, k) designs? 

We will not discuss the problem in such generality. Instead, we introduce the 

simplifying assumption that the graph uniquely determines its extension. In other 

words, the blocks (or triples) not containing the added point oo are determined by 

those containing oo. 

The simplest way in which this can be done is to assume that the number of 

3-subsets of a 4-set which are blocks of the design is restricted to lie in a subset S 

of {0,... ,4}. If any two members of S differ by at least 2, then membership in B of 

three 3-subsets of a 4-set determines membership of the fourth. 

In detail, we have the following result. 

(4.1) Proposition. Let B be a collection of 3-subsets of X, where |A'| > 4, not 

empty and not containing all 3-sets. Suppose that there is a subset S of {0,. .., 4} 

such that 

(i) for any 4-subset Y of X. the number of members of B contained in Y belongs 

to S; 

(ii) for i,j E .S’, i ^ j. we have |?' — j\ > 2. 

Then one of the following holds: 

(a) S = {0,3}, and B consists of all 3-subsets containing a fixed point of X; 

(b) complement of (a); 

(c) S C {0,2,4}. 

PROOF. S is contained in a maximal set satisfying (ii), necessarily {1,3}, {0,3}, 

{1,4}, or {0, 2, 4}. We have to show that the first is impossible while the second and 

third give conclusions (a) and (b) respectively. 

A parity argument shows the impossibility of {1,3}. Let Z be a 5-set, and count 

pairs (T, Y) with T C Y C Z, T E B, |Y| = 4. For each T, there are two choices of 
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y, so the number of choices is even; but, for each of the 5 possible Y, the number of 

T is odd, so the total is odd. 

Suppose that S = {0,3}. Let Y C X be maximal with respect to containing no 

member of B. We can assume that |F| >3. If x $ Y, then {a, b, x} G B for some 

a, 6 G y. If c G y, consideration of {a, 6, c, x} shows that also {a, c, x}, {b, c, x} G B; 

then, by connectedness, {d, e,x} G B for all d, e G Y. Suppose that there is another 

point u outside Y. Then for any a, b G Y, exactly one of {a, a;, u}, {6, x, u} belongs to 

B. Considering three points a, 6, c G y, we reach a contradiction. So x is the unique 

point outside Y, and B consists of all triples containing x. 

The case S = {1,4} is obviously complementary to this case. □ 

We are left with one interesting case. 

(4.2) DEFINITION. A two-graph is a collection B of 3-subsets of a set X, with the 

property that, for any 4-subset Y of X, an even number of members of B belong to 

y. 

The concept was introduced by G. Higman to study a 2-transitive action of the 

sporadic simple group Co3; in the hands of Seidel, Taylor, and others, it has been 

used in connection with equiangular line systems, coverings of graphs, presentations 

of groups, and infinite homogeneous structures. 

(4.3) DEFINITION. A two-graph is regular if it is a 2-design (with parameters 2- 

(n, 3,A) for some A). The complete two-graph (where B consists of all 3-subsets) 

and the null two-graph (where B is empty) are regular. We call these the trivial 

two-graphs, and usually exclude them from the discussion. 

The motivation for the term "two-graph’ comes from topology, where a 3-set or 

triangle is a 2-dimensional object. It should not be confused with the term ‘k-graph’, 

used in hypergraph theory to mean a ^-uniform hypergraph, or set of fc-subsets of a 

set. To keep the distinction clear, we write the word "two m full instead of using the 

numeral. 

Given any graph T with vertex set X, let B be the set of 3-subsets of X which 

contain an odd number of edges of T. Then (X, B) is a two-graph. (The proof of this 

is a parity argument similar to the one used in the proof of (4.1).) We say that T 

yields the two-graph (X, B). 

Every two-graph arises from this construction. For let (X,B) be a two-graph, 

and x a point of X. Form a graph T on A’ by joining y to z whenever {x, y, z} G B. 

(Note that x is an isolated vertex.) Clearly the construction gives the correct triples 
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Fig. 4.1. Switching 

containing x. For any 3-subset {y, z, re} of X \ {x}, 

{y,z,w} e 13 O an odd number of {x,y,z},{x,y,w},{x,z,w} 6 B 

44 an odd number of {y, z},{y,w}, {z, w} are edges of T, 

so the rule works for these triples also. 

In design terminology, every graph F can be uniquely extended to a two-graph, 

by adding an isolated vertex and applying the above construction. Where there is no 

ambiguity, we refer to this two-graph as the extension of T. 

Different graphs on X can yield the same two-graph. We now investigate this. 

(4.4) DEFINITION. The operation of switching a graph T with respect to a set Y 

of vertices replaces T by the graph T' such that {x, y} is an edge of V if and only if 

both or neither of the following statements hold: 

(a) |{x, y] H Y\ = 0 or 2; 

(b) {x, y} is an edge of T. 

In other words, switching replaces all edges between Y and its complement with 

non-edges and vice versa, leaving edges within Y and outside Y unaltered. Note 

that switching with respect to 1' and X \ Y are the same operation. Furthermore, 

switching successively with respect to Yx and Y2 is the same as switching with respect 

to the symmetric difference y,AI2. Thus the set of all graphs on the vertex set X 

falls into equivalence classes, called switching classes, each containing 2n_1 graphs 

(where n = |A^|). 

We saw an application of switching in Example (2.21). For a simple example, 

see Fig. 4.1: the second graph in that figure may be obtained from the first by 

switching with respect to the set {5}. It can be verified that the switching class of 

these graphs contains six graphs isomorphic to the first graph in Fig. 4.1, six copies 

of its complement, ten copies of the second graph, and ten of its complement: 32 in 

all, as expected. 
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(4.5) Theorem. Graphs I\ and T2 on the vertex set X yield the same two-graph 

if and only ifT1 can be switched into T2. In other words, there is a natural bijection 

between two-graphs and switching classes of graphs on X. 

Proof. The fact that switching-equivalent graphs yield the same two-graph is a 

consequence of the observation that switching does not change the parity of the 

number of edges within a 3-set. 

Conversely, suppose that Fx and T2 have the property that the parity of the 

number of edges within any triple is the same in each. Set x = y if either x = y or 

the character of {x, y} (edge or non-edge) is the same in each graph. By hypothesis, 

this is an equivalence relation; and it cannot have more than two equivalence classes, 

since if three vertices x, y, z lie in different classes then the triple {x, y, z} has different 

parity in the two graphs. Now switching with respect to an equivalence class of = 

transforms Ti into T2. Cl 

Some new strongly regular graphs can be obtained by switching. We saw an 

example of this in (2.21). 

(4.6) EXAMPLE. The Shrikhande graph (Shrikhande (1959)). This graph is ob¬ 

tained from L2(4) by switching with respect to the diagonal set of vertices, viz. 

{(1,1), (2,2), (3,3), (4,4)}. It is strongly regular with the same parameters as 

L2{4), viz. (16, 6, 2, 2). It has another nice representation as a graph drawn on 

a torus, as shown in Fig. 4.2, where opposite sides are identified according to the 

arrows. 

Fig. 4.2. The Shrikhande graph 

(4.7) Example. The Chang graphs (Chang (I960)). The vertex set of T(8) is the set 

of 2-subsets of {1,... ,8}. So a. subset of the vertex set can be regarded as the edge 
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set of a graph with 8 vertices. The three Chang graphs are obtained by switching 

T(8) with respect to 

(1) four disjoint edges; 

(2) an octagon; 

(3) the disjoint union of a pentagon and a triangle. 

Each is strongly regular, with the same parameters as T(8), viz. (28, 12, 6, 4). 

(4.8) Remark. Switching T(8) with respect to the disjoint union of two I<4s pro¬ 

duces a graph isomorphic to T{8). Similarly, switching L2(4) with respect to the 
8-set 

{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)} 

gives a graph isomorphic to L2(4). 

In connection with switching, it is convenient to use a slightly modified adjacency 

matrix for a graph T. Let B be the n x n matrix whose (i, j) entry is 

[0 if i = j, 
bij = < — 1 if {.Xj,x;} is an edge, 

[ +1 if {xi,Xj} is a non-edge, 

where X = {xl5..., xn}. If T yields the two-graph (X, B), then {x,-, Xj, xk) £ B if 

and only if bijbjkbki — —1. Also, if T' is obtained by switching T with respect to Y, 

then T' has adjacency matrix B' — DBD, where D — (d,j) is a diagonal matrix with 

d a 
— 1 if Xi £ Y, 
-1-1 if Xi £ Y. 

Thus B and B' are similar matrices, and have the same spectrum. So the spectrum 

is an invariant of the switching class, and so (by (4.5)) of the two-graph. We speak 

of the eigenvalues of a two-graph in this sense. 

(4.9) Theorem. A two-graph is regular if and only if it has just two distinct 

eigenvalues. 

PROOF. Let T be a graph yielding (X, 13), and B its adjacency matrix. Since B is 

symmetric and has n — 1 entries ±1 and one entry 0 in each row, we see that B2 

has constant diagonal n — 1. Now 5 has two eigenvalues if and only if it satistfies a 

quadratic equation, whoch must be of the form B2 = aB + (n — 1)1 for some integer 

a; this holds if and only if, for i ^ j, the (i,j) entry (B‘2)ij of B2 is equal to abij. 

Now (B2)ij = Y,kti,jbikbkj\ and bikbkj is equal to -b{j if {x^x^x*} £ B, or b{j 

otherwise. So, if x,- and Xj are contained in members of B, then 

(B2)ij — —Xijbij -f (n — 2 — Ay)6y — (n — 2 — 2Aij)6,;-. 

Thus, B has two eigenvalues if and only if Ai;- is constant. □ 
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(4.10) Example. There is a. unique 2-(6, 3, 2) design V (Exercise 1). It has the 

property that exactly one of each complementary pair of 3-sets is a block. Hence, 

given a 4-set Y, two blocks contain the complement of Y, and so two blocks are 

contained in Y. Thus V is a regular two-graph. 

The corresponding switching class contains the graphs of Fig. 4.1. The adjacency 

matrix B of one of these graphs satisfies B2 = 57, and so has eigenvalues rt\/5, each 

with multiplicity 3. 

There is another characterization of regular two-graphs. Let T* denote the 

unique graph in a given switching class for which x is an isolated vertex (i.e. for 

which the two-graph is the extension obtained by adjoining x). For the regular two- 

graph of (4.10), is the pentagon (for any vertex x). 

(4.11) Theorem. For a non-trivial two-graph (X, B), the following are equivalent: 

(a) (X,B) is regular; 

(b) for all x £ X, Tx is strongly regular with k = 2p; 

(c) for some x £ X, Tx is strongly regular with k = 2p. 

PROOF. Let ky be the valency of y, and 7yz the number of common neighbours of 

y and z, in the graph Fj.. Then the number of triples containing x and y is ky, 

and the number containing y and 2 is ky + ky — 2yyz if y and z are non-adjacent, or 

n — ky — kz + 2')yi if y and 2 are non-adjacent. So (X, B) is regular if and only if T* 

is strongly regular with parameters satisfying 

k = 2(k — p) = n — 2 (k — A). 

Now the equation 

k(k — A — 1) = (n — 2 — k)p 

shows that, if k = then n — 2(k — A) = k\ so the second inequality is a consequence 

of the first. □ 

(4.12) Corollary. A non-trivial regular two-graph has an even number of points. 

PROOF, n = 3k — 2A, and k = 2p is even. □ 

There is another link between strongly regular graphs and regular two-graphs. 

(4.13) Theorem. Let T be a regular graph which yields the two-graph (X,B). 

Then (X, B) is a regular two-graph if and only if F is strongly regular with eigenvalues 

k, r,s satisfying n = 2(k — r) or n — 2(k — s). 

PROOF. If A is the usual adjacency matrix of T, then the modified (0, =Fl) adjacency 

matrix B is given by B = J — 7 — 2A. Because T is regular, A commutes with J, and 

so A and B have the same eigenvectors. 
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If the two-graph is strongly regular, then B has only two distinct eigenvalues, 

and so Alj1- has only two distinct eigenvalues; so F is strongly regular, by (2.19). 

Conversely, if F is strongly regular, then j is an eigenvector of B with eigenvalue 

n — 1 — 2k, and the other eigenvalues of B are —1 — 2r and —1 — 2s. So by (4.11), 

(A^, B) is regular if and only if either n — 1 — 2k — — 1 — 2r or n — 1 — 2k = —1 — 2s.□ 

We now have all the machinery necessary to give Seidel’s proof of the classifi¬ 

cation of strongly regular graphs with least eigenvalue —2. See Shrikhande (1959), 

Hoffman (1960), Chang (1959, 1960), Seidel (1967, 1968, 1974) for the development 

of this theorem. 

(4.14) Theorem. A strongly regular graph with least eigenvalue —2 is one of the 

following: 

(a) T(m), m > 5; 

(b) L2(m), m > 3; 

(c) CP(m), m > 2; 

(d) the Petersen graph; 

(e) the complement of the Clebsch graph; 

(f) the complement of the Schlafli graph; 

(g) the Shrikhande graph; 

(h) the three Chang graphs. 

PROOF. By (3.10), either we have (a)-(c), or our graph T is represented in Ea. In the 

latter case, A + 21 has rank at most 8, and so the eigenvalue r of A has multiplicity 

at most 7. By (2.23), T has at most 35 vertices. Now it is straightforward to list all 

the possible parameters satisfying the integrality and Krein conditions and in which 

s = —2 and r has multiplicity 5, 6 or 7. (One parameter set, viz. (28, 9, 0, 4), 

requires the Krein condition, or the result of Exercise 2 of Chapter 2.) The resulting 

list consists of the parameters of (d)-(g) in the theorem and of T(6). 

For the parameter sets (15, 8, 4, 4) and (27, 16, 10, 8), the complementary 

graph has parameters (15, 6. 1, 3) or (27, 10, 1, 5) respectively. Thus our ‘recurring 

theme’ reappears; by (2.4), these are T(6) and the complement of the Schlafli graph 

respectively. 

In the remaining cases, with 10, 16 or 28 vertices, it happens that all possible 

parameter sets satisfy the conditions of (4.13), and so the unknown graph yields 

a regular two-graph (X,B). By (4.11). the derived graph is strongly regular with 

parameters (9, 4, 1, 2), (15. 6, 1, 3), or (27, 10, 1, 5) respectively. Again, by (2.4), 

we know these graphs! We conclude that, for each of the three numbers of vertices, 

the unknown strongly regular graphs fall into a single switching class, and thus are 

obtained from known ones b}^ switching. We have to investigate how this switching 

can be done. We give the argument for n = 28; the other cases are considerably 

simpler. 
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Our problem, then, is to find all switching sets Y of vertices which switch T(8) 

into a regular graph with valency 12. As in (4.7), the switching set is the edge set 

of a graph A on 8 vertices, and a short argument shows that this graph is regular. 

Moreover, we can assume that Y is smaller than its complement, from which it follows 

that A has valency at most 3. 

Before proceeding further, we elaborate on (4.7), where we observed that the 

graph obtained by switching T( 8) with respect to the edge set of 2I<4 (the disjoint 

union of two K4s) is isomorphic to T{8). If the vertex sets of the I<4s are {1,..., 4} 

and {5,. .., 8}, then an isomorphism between the unswitched and switched graphs is 

given by the following permutation: 

• for each {i,j} C {l,.. . ,4}, interchange {*, j} with {1,... ,4} \ {z, j}; 

• for each {i,j} C {5,.. . ,8}, interchange {z, j} with {5,... ,8} \ {i,j}] 

• fix all other 2-sets. 

We will call this process reflection. 

The upshot is that, if A and A' are regular graphs on {1,.. .,8}, and if A' is 

obtained from A by taking the symmetric difference of its edge set with 21\4 followed 

by reflection, then the graphs obtained by switching T(8) with respect to A and 

A' are isomorphic. We call this the SDR (= ‘symmetric difference plus reflection’) 
process. 

In particular, 2I<4 is equivalent to the null graph under SDR. Also, 2C4 (two 

disjoint 4-cycles) is equivalent to 41<2 (four disjoint edges). Fig. 4.3 shows a less 

trivial instance of SDR, where the complete graphs have vertex sets {1,2, 5,8} and 
{3,4, 6,7} respectively. 

Fig. 4.3. Symmetric difference and reflection 

Now we examine regular graphs of valency m on 8 vertices, for m= 1, 2, 3. 

Case m — 1: The only graph of valency 1 is 4/i2, which gives rise to Chang (1). 
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Case m = 2: The three graphs are C8, C5 + U3, and 2C4. The first two give us 

Chang (2) and Chang (3); the third gives Chang (1) again, by SDR. 

Case m = 3: There are six graphs of valency 3 on 8 vertices. Use of SDR shows 

that no new strongly regular graphs arise. (We have seen this in two cases. The 

reader is encouraged to try the others.) 

Finally, note that the Chang graphs are not isomorphic to T(8) (since none 

contains a 7-clique), nor to one another (they contain, respectively, 8, 0 and 3 6- 

cliques). □ 

(4.15) EXAMPLE. Next we give a construction of Higman’s regular two-graph on 

276 points. Let (Y,B) be the unique 4-(23, 7, 1) design, with 253 blocks. Recall that 

any two blocks of this design meet in either 1 or 3 points. Take X = Y U B, and let 

I be the graph with vertex set X defined by the following rules. 

(a) any two vertices in Y are adjacent; 

(b) a vertex in Y and a vertex in B are adjacent if and only if they are incident; 

(c) two vertices in B are adjacent if and only if their intersection has cardinality 3. 

Then T yields the required two-graph. 

Next, we discuss a theorem of Neumaier (1982a), which has a strong design- 

theoretic flavour. A clique in a two-graph (X,B) is a subset Y of X, all of whose 

3-subsets belong to B. There is an easy upper bound for the size of a clique in terms 

of the spectrum. 

(4.16) Proposition. Let Y be a clique in a two-graph with smallest eigenvalue p. 

Then |F| < 1 — p. 

PROOF. There is a graph in the switching class for which Y is a clique (in the 

graph-theoretic sense). Let B be its adjacency matrix. Then B — pi is positive semi- 

definite, and so is its principal sub-matrix B' — pi corresponding to the subgraph Y. 

But B' — —J + /; so —J + (1 — p)I is positive semi-definite, whence \Y\ <1 — p. □ 

(4.17) Definition. A two-graph (X,B) is called t-regular if, for 2 < i < t, the 

number a,- of (i + l)-cliques containing a given z-clique depends only on i. (Note 

that ‘2-regula,r’ is the same as ‘regular’, as defined earlier, and (4.11) shows that any 

2-regular two-graph is 3-regula.r: the numbers a2 and a3 are the parameters k and 

A of the derived strongly regular graph.) A two-graph is completely regular if it is 

f-regular for t = —p, where p is the smallest eigenvalue. (By (4.16), this is the largest 

value we need consider.) 

(4.18) Theorem. Let (X,B) be a completely regular two-graph on n vertices, 

with eigenvalues pi and p2- Then (n,/q, p2) one °f following: 

(a) (10, 3,-3); 

(b) (16,5,-3); 
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(c) (28, 9,-3); 

(d) (36,7,-5); 

(e) (276,55,-5); 

(f) (1128,161,-7); 

(g) (3160,351,-9). 

The two-graphs in cases (a)-(e) are unique; existence is unknown in the remaining 

cases. □ 

REMARK. Neumaier also included possible examples with n = 96, (pi, p2) = (19, —5), 

and with n = 288, (px, p2) — (41,-7). These were subsequently eliminated by 

Blokhuis and Brouwer (1984) and Blokhuis and Wilbrink (1989). 

Note that cases (a)-(c) are the extensions of the three graphs of (2.3)(c). Case 

(e) is the complement of Higman’s two-graph (4.14). Case (d) is the extension of 

the graph whose vertices are the 3-subsets of a 7-set, two vertices being adjacent if 

they intersect in an even number of points. (This graph has several descriptions. For 

example, it arises from a quadratic form over F2 by the construction of (2.29).) 

Returning to the general theme of extensions of graphs, a number of interesting 

questions can be formulated. We mention just one. 

Let V = (X, B) be a biplane (a square 2-(v, k, 2) design, with v = l-(k2 — k + 2)). 

Let B' be the set of all triples which are contained in a block of V. Then V = (X, B') 

is a 2-(u, 3,2(k - 2)) design, having the property that all its derived designs are 

isomorphic to T(k). For, given x, if Bx,..., Bk are the blocks containing x, then any 

further point y is in just two of these blocks, say and Bp the map y >-> {f, j} is a 

bijection, which induces an isomorphism to T(k). 

Problem. Does every 2-(u,3,2(k - 2)) design, all of whose derived designs are 

isomorphic to T(k), arise from a biplane in this way? 

Exercises 

1. Show that there is a unique 2-(6, 3, 2) design, up to isomorphism. Show that 

it has the property that, out of each complementary pair of 3-sets, exactly one is a 

block. Deduce that the design is a. regular two-graph. 

2. Find a set of vertices which switches T(5) into the Petersen graph. 

3. Piove directly that the two-graph yielded by the regular graph T is itself 

regular if and only if F is strongly regular with parameters (n,k,\,p) which satisfy 
n = 2(2k - X - n). 

4. Prove that the Shrikhande and Chang graphs are strongly regular. 
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5. Prove that Higman’s two-graph is regular, with A = 162. Deduce the existence 

of a strongly regular graph with parameters (275, 162, 105, 81). (The complement of 

this graph is McLaughlin’s graph, constructed by McLaughlin (1969).) 

6. Let T be strongly regular, with parameters (275, 162, 105, 81), and A its 

adjacency matrix. Let be the induced subgraph on T(x), for some vertex x, and 

its adjacency matrix (a principal submatrix of A). 

(a) Prove that A -f 3/ — |J has rank 22. Observing that j is an eigenvector 

of Ax + 31 — |J with non-zero eigenvalue, prove that Ax has eigenvalue —3 with 

multiplicity at least 140. 

(b) Let 105, oq,..., a2i be the other eigenvalues of A\. By computing the traces 

of Ax and A?x, and using the variance trick, prove that aq = ... = a2i = 15. 

(c) Deduce that T, is strongly regular, with parameters (162, 105, 72, 45). 

7. For this exercise, you may use without proof the uniqueness of the 4-(23,7,1) 

design, and the fact that its automorphism group is transitive both on points and on 

blocks, as well as the result of Exercise 6. 

Let (A, B) be Higman’s two-graph. Let Z be a set of 23 points, all of whose 

3-subsets belong to B. (The set Y in the construction has this property.) 

For each point x ^ Z, define a relation = on Z by = z2 if and only if 

{x,Zx,z2} € B. Prove that = is an equivalence relation, with two equivalence classes 

of sizes 7 and 16. [Hint: if 23 — n,- are the sizes of the equivalence classes for 

i = 1,..., 253, calculate Yl(ni ~ 7)2(n,- — 16)2. In fact it is enough to show that the 

value of this sum can be calculated, since it is clearly zero in the case where Z — Y.} 

Prove that, if C is the set of classes of size 7, for each x Z, then (Z, C) is 

a 4-(23, 7, 1) design, and that the two-graph constructed from (Z, C) by Higman’s 

construction is precisely (ALB) (if we identify points outside Z with blocks of the 

design). 

By finding a set Z different from Y, deduce that Higman’s two-graph admits a 

transitive automorphism group. 

(This group is the sporadic simple group Co3 of Conway (1969).) 

8. Prove the assertion in the text that a set Y which switches T(8) into a regular 

graph of the same valency must be the edge set of a regular graph on 8 vertices. 

9. Show that L2(4), the Shrikhande graph, and the Clebsch graph are associated 

with different polarities of the same 2-( 16, 6, 2) design. 
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5. Quasi-symmetric designs 

Recall that a square or ‘symmetric’ design has the property that any two blocks 

intersect in a constant number of points. 

(5.1) DEFINITION. A 2-design is called quasi-symmetric if the number of points in 

the intersection of two blocks takes only two values. 

In particular, any affine design is quasi-symmetric. 

In this chapter we consider such designs. We prove a theorem of Goethals and 

Seidel, showing that quasi-symmetric designs are very closely connected with strongly 

regular graphs. In the remainder of the chapter, we give some examples and some 

characterizations, and look at a few results on a related class of designs (square 

designs in which the number of blocks containing three points takes only two values). 

Throughout this section, there will be designs whose parameters k and A are very 

different from the parameters with the same name of the strongly regular graphs 

associated with them. To avoid confusion, we use the symbols (n,a,c,d) for the 

parameters of a strongly regular graph. 

In a 2-(v,k, 1) design which is not a projective plane, two blocks intersect in 0 

or 1 point. The line graph of the design is the graph whose vertices are the blocks 

(or Tines’), two vertices being adjacent precisely Avhen they intersect in a point. This 

generalizes the triangular graph T(n) (the case k — 2,v = n). The line graphs of 2- 

designs with A = 1 were studied by Bose (1963), who made the following observation. 

(5.2) Proposition. The line graph of a 2-(v,k,l) design with b > v is strongly 

regular. 

Indeed, easy counting arguments give us the parameters: 

= b 

a — k(r — 1) = 

v( v — 1) 

k(k-iy 

k(v — k) 

(*-l) ’ 
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c — (r — 2) + (k — 1)" — —j— j-f (k — l)2, 

d = k2. 

The graph is not the complete graph, since b > v, and is not the null graph, since 

r > 1. □ 

Perhaps not surprisingly, the integrality condition gives us no non-existence cri¬ 

teria for such designs beyond the fact that the parameters b and r are integers. We 

will soon see the real reason for this, in a more general setting. 

Let x and y, where x < y, be the two cardinalities of block intersections in the 

quasi-symmetric design V. The block graph of V has as vertices the blocks of P, two 

vertices adjacent if they intersect in y points. For example, the block graph of an 

affine design is complete multipartite. (The converse is false; see Exercise 6.) Note 

that P and its complement have the same block graph. 

Goethals and Seidel (1970) generalized Bose’s observation as follows. 

(5.3) Theorem. The block graph of a. quasi-symmetric 2-design is strongly regular. 

Proof. We prove this by matrix methods resembling those used for Fisher’s inequal¬ 

ity (1.12). Let M be the incidence matrix of the design. Then MTM = (r — A)/ + A J 

has eigenvalues r — A + \v = rk with multiplicity 1 (corresponding to the all-1 
eigenvector) and r A with multiplicity v — 1. Now MMT has the same non-zero 

eigenvalues as MTM with the same multiplicities (and in particular, the eigenvector 

for the eigenvalue rk is also j), but has in addition the eigenvalue 0 with multiplicity 
b — v. 

On the other hand, we have 

MMT = kI + yA + x(J-I- A) 

~ (k - x)I -f (y - x)A + xJ, 

where A is the adjacency matrix of the block graph. So. on the space jx, the matrix 

A has just the two eigenvalues (r - A -k + x)/(y - x) with multiplicity v - 1, and 

~{k — x)/(y — x) with multiplicity b — v. By (2,19), the block graph is strongly 
regular. [—| 

Remark. The valency a of the strongly regular graph can be found by applying the 
above equation to j, giving 

rk — (k — x) + (y — x)a A xb, 

or a = ((r — l)k — xb — y)/(y — x). The other parameters can be calculated from the 

eigenvalues by the formulae following (2.19). 
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(5.4) Corollary. In a quasi-symmetric 2-design, y — x divides k — x and r — A.D 

A proof of (5.3) by elementary counting was suggested to the authors by C. W. 

Norman, and is outlined in Exercise 1. 

In their paper, Goethals and Seidel went on to examine various familiar strongly 

regular graphs, to see which could occur as block graphs of quasi-symmetric 2-designs. 

We summarize their results. 

(5.5) Theorem. Let T> be a quasi-symmetric 2-design with block graph T. 

(a) T cannot be a ladder graph (but, if repeated blocks are allowed, then if T is a 

ladder graph then V is a square design with each block repeated twice). 

(b) IfT is a cocktail party graph, then T> is a Hadamard 3-design. 

(c) r is never a square lattice graph Lo{n) or the complement of one. D 

We will give a proof of (b) later. We turn next to some extremal results for 

quasi-symmetric designs. 

(5.6) Proposition. Let V be a quasi-symmetric 2-design with block intersection 

numbers x and y. 

(a) b < v(v — l)/2, with equality if and only if V is a 4-design. 

(b) If x — 0, then b < v(v — 1 )/k, with equality if and only if V is a 3-design. 

Proof. Part (a) is a special case of (1.41). 

For (b), suppose that x = 0, and let £ = Vj, the design whose points and blocks 

are the blocks of T> containing p and the points of T> different from p respectively, 

where p is a point of V. By assumption, £ is a 2-{r,X,y — 1) design, having v — 1 

blocks. By Fisher’s inequality, v — 1 > r (or equivalently, b < v(v — 1 )/k), with 

equality if and only if L2p is a 2-design, that is, D is a 3-design. (Note that, if the 

bound is met, then V is an extension of a square 2-design, and (1.28) applies.) □ 

There can exist no (non-trivial) square 3-design or quasi-symmetric 5-design, in 

consequence of the following result. 

(5.7) Proposition. A tight 2s-design with k < v - s cannot be a 2s + 1 -design. 

PROOF. If T> is such a. design, then Vv is also tight; so b = (j), r = ( , )■ The 

equation vr = bk then shows that k = i> — s. ^ 

In addition, (1.43) shows that, up to complementation, there is a unique quasi- 

symmetric 4-design, the 4-(23, 7, 1) design V. Its derived and point-residual designs 

are quasi-symmetric 3-designs, and their derived and point-residual designs are quasi- 

symmetric 2-designs (except for the second derived design of V, which is square, being 

the projective plane of order 4). 
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These designs have strongly regular block graphs, most of which have not ap¬ 

peared yet in the earlier chapters. The parameters of the graphs are given in Table 5.1. 

Design n CL c d r s 

V 253 112 36 60 2 -26 

vP 77 16 0 4 2 -6 
Vp 176 70 18 34 2 -18 

Vq 56 10 0 2 2 -4 

Vpq 120 42 8 18 2 -12 

Table 5.1. 

REMARKS. (1) We have tabulated the parameters of the complements of the block 

graphs, since these are smaller (and the graphs are more familiar). 

(2) The blocks of Vq, resp. Vpq, form a class of ovals, resp. Baer subplanes, in 

PG(2,4), as in Luneburg’s construction described in Chapter 1. 

(3) The block graph of V, and the graph T(23), have the same multiplicities of 

eigenvalues, and yet their parameters are different. 

(4) The design T>p attains the bound of (5.6)(b), since it is an extension of a 
square design. 

(5) The complement of the block graph of Vqp is the Gewirtz graph. 

We now give a result which implies (5.5)(b). 

(5.8) Theorem. A quasi-symmetric design with h = 2v - 2 is either a Hadamard 
design or the unique 2-(6, 3, 2) design. 

(The eigenvalues of the cocktail party graph CP(n) have multiplicities 1, n, 

n — 1; so, if it is the block graph of V. then we have u = n + 1, 6 — v — n — 1 whence 
b = 2v- 2.) 

PROOF. Fiom the hypothesis, we draw two conclusions: 

(a) Since bk = vr, we must have v = 2k, b = 4k — 2. 

(b) The eigenvalues of the block graph have multiplicities 1, v — 1, b — v = v — 2; so 
Wielandt’s theorem (2.20) applies. 

Given a block, count the number of choices of a point in that block and another 
block through that point: 

ay + (4k - 3 - a)x = 2k(k - 1). 



5. Quasi-symmetric designs 73 

If the graph or its complement is a ladder graph, then we can assume (possibly 

exchanging x and y) that a — n — 2 = 4(k — 1), and so 

4 (k — 1 )y + x = 2 k(k — 1). 

Thus, 2(k — 1) divides x. Since x < k, we have x = 0, y = k/2. By (5.5)(b), V is a 

3-design which is an extension of a square 2-design, and so it is a Hadamard 3-design. 

In the other case in Wielandt’s Theorem, we have v — 1 = 2s2 + 2s + 1, k = 

s2 + s + 1, a = s(2s + 1), and so 

s(2s + 1 )y + (s + l)(2s + l)x = 2s(s + l)(s2 + s -f 1). 

Thus 2s -f 1 divides 2s(s + l)(s2 + s + 1), which implies that s = 1. Then V is a 2-(6, 

3, 2) design, which is unique (Exercise 1 of Chapter 4). □ 

A situation in which knowledge of the block graph of a design is useful is the 

Hall-Connor theorem, promised after (1.40): 

(5.9) Theorem. A quasi-residual design with X = 2 is residual. 

Proof. Recall that V is quasi-residual if v\ = k(k + A — 1), or (in our case) 

v — \k{k + 1). Let B be a block of V, and let n,: denote the number of blocks which 

intersect B in i points (z > 0). As in (1.15), we find by counting choices of a block 

B' 7^ B and j points in B n B\ j = 0,1, 2: 

Y. ni — 2 + 3), 

Y + 1)’ 

£z-(z - 1)”» = - 1). 

Thus 

“ !)(* “ 2)u»- = 0, 

whence = 0 unless i — 1 or 2. So V is quasi-symmetric, with x = 1, y - 2. 

Let r be the complement of the block graph of T>\ that is, blocks are adjacent if 

and only if they intersect in 1 point. A short calculation establishes that the strongly 

regular graph T has the same parameters as T(k + 2). 

Suppose first that k # 6. By (3.11). T Si T(k + 2). Thus, there is a one-to- 

one correspondence between blocks ol D and 2-subsets of a [k + 2)-set C, so that 

blocks meet in 1 or 2 points according as the corresponding 2-sets meet in 1 or 0 

points. Thus, if we adjoin the elements of C to the point set, adding to each block 

the corresponding pair of elements of C, and let C be a new block (‘at infinity ), we 

obtain a square 2-(v -f- k + 2, k 4- 2,2) design £, such that £c = T). 

In the case k — 6, the square design of which dX would be the residual would 

be a 2-(29, 8, 2) design, which does not exist (by the Bruck-Ryser-Chowla theorem 
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(1.16)). So we have to show that no 2-(21, 6, 2) design exists either. As before, we 

know that the design is quasi-symmetric; if the complement of its block graph is T{8), 

then the same argument as before applies. So we may assume that the complement 

of the block graph is a Chang graph. Ad hoc arguments complete the proof. □ 

Using an elaboration of these ideas, Bose, Shrikhande and Singhi (1977) proved 

the following result. 

(5.10) Theorem. There is a function g defined on the natural numbers with the 

property that a quasi-residual design with k > g(A) is residual. □ 

The function they gave was 

(76 for A = 3, 
<7(A) = < — l)(^4 ~ 2A2 + A + 2 for 4 < A < 9, 

[ |(A - 1 )(M + y/M2 + 4(A - 1)) - (A - 1) for A >10, 

where M = (A — 1)(A2 — 3A -f 3). 

Not every quasi-residual design is residual. The first counterexample was given 

by Bhattacharya (1944). It is a 2-(16, 6, 3) design (potentially the residual of a 2-(25, 

9, 3)) having two blocks which intersect in 4 points. (Of course, this cannot happen 

in a residual design!) For further examples, see Van Lint (1978). 

After a lull, interest in quasi-symmetric designs was re-awakened by Neumaier 

(1982), who published a list of feasible parameter sets for small quasi-symmetric 

designs. His tables contained a number of question marks, whose resolution provided 

a challenge. This led to applications of methods of coding theory (to be discussed 

in Chapter 13) by Tonchev (1986) and Calderbank (1987), (1988a), (1988b). The 

results are fairly technical, and we refer the interested reader to the original papers. 

Quasi-symmetric designs with x = 0 have received the most attention. We state 

without proof two results describing opposite extremes. The first is due to Baartmans 

and Shrikhande (1982), the second to Cameron (to appear). 

(5.11) Theorem. Let T> be a quasi-symmetric 2-design with x = 0, having no 

three pairwise disjoint blocks. Then 2y < k < y(y + 1); the lower bound holds if 

and only if V is a Hadamard 3-design, and the upper bound if and only if V is an 

extension of a square 2-design with the parameters given in (1.35)(b). □ 

Note that the hypothesis implies that the complement of the block graph contains 

no triangles. We will discuss such strongly regular graphs further in Chapter 8. 

Baartmans and Shrikande give further numerical information too. 
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(5.12) Theorem. Let T> be a quasi-symmetric 2-design with x — 0, having a 

family of v/k pairwise disjoint blocks. Then one of the following occurs: 

(a) X = 1; 

(b) T> is affine; 

(c) v = y(2y + l)(2y + 3), k = y(2y + 1), A = y(2y - 1). □ 

Of course, v/k is the maximum possible number of pairwise disjoint blocks. A 

resolvable quasi-symmetric design satisfies the hypothesis. Any affine design is resolv¬ 

able, and many resolvable designs with A = 1 are known, beginning with Kirkman’s 

schoolgirls. But no example of (c) is known with y > 1. 

By (1.43), the quasi-symmetric 4-designs are known; but the problem of deter¬ 

mining the quasi-symmetric 3-designs is still open. It is conjectured that the only 

such designs with x > 0 and k < \v are the 4-(23, 7, 1) design and its derived and 

point-residual designs. We mention a recent result of R. M. Pawale, related to (5.11), 

concerning the designs in the conclusions of (1.35) and (5.6)(b). 

(5.13) Theorem. A qua si-symmetric 3-design, whose block graph contains no 

triangles, is an extension of a square 2-design (but not a 3-(496, 40,3) design) or the 

complement of one. D 

For further information, we refer to the forthcoming monograph by Sane and 

Shrikhande. 

(5.14) DEFINITION. As we remarked before (5.6), a square design cannot be a 3- 

design. We say that a square design is quasi-3 if the number of blocks containing 

three points takes just two distinct values x* and y*, where x* < y* 

Clearly these parameters satisfy x* > 0 and y* < A. We first examine the 

extremal cases in these two inequalities. In the case where y* — A, three points lying 

in y* blocks are collinear, so the Dembowski-Wagner Theorem (1.24) applies: 

(5.15) Proposition. A square quasi-3 design with y* = A is a projective geometry. 

□ 

Now let V be a quasi-3 design. Let £ = Vj be the dual of a derived design of 

T>. Then £ is a quasi-symmetric 2-(k,X,y* — 1) design, in which two blocks intersect 

in x* or y* points. If y* < A (as we may assume, in view of (5.15)), then £ has 

no repeated blocks. This enables us to use results about quasi-symmetric designs to 

study quasi-3 designs. 

In particular, consider the case where x* = 0. Then £ attains the bound of 

(5.6)(b), and so it is a 3-design. This means that three blocks of V intersect in 

0 or y* points, that is, the dual of V is also a quasi-3 design. (It is not known 
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whether the dual of any square quasi-3 design is necessarily a quasi-3 design, though 

no counterexamples are known.) 

In one particular case, we can obtain a characterization: 

(5.16) Theorem. A quasi-3 Hadamard 2-design is either a projective geometry 

over F2 or the unique 2-( 11,5,2) design. 

PROOF. Replace T> by its complement, and construct the quasi-symmetric design £ 

as above. This design satisfies the hypotheses of (5.8), and so it is either a Hadamard 

3-design or the unique 2-(6, 3, 2) design. 

Suppose that £ is a Hadamard 3-design for any point p of T>. Translating the 

condition ‘the complement of a block of £ is a block’ back to V, we find that, given 

any two points p and q, there is a third point r such that every block containing p and 

q also contains r; that is, lines in D have size 3. But then the Dembowski-Wagner 

Theorem (1.24) applies. (See also Exercise 4 of Chapter 1.) 

If £ is a 2-(6, 3, 2) design, then V is a 2-( 11, 5, 2) design. There is a unique 

design with these parameters (see Exercise 8(a) of Chapter 1). □ 

We conclude the chapter with a family of square quasi-3 designs. These also give 

interesting quasi-symmetric designs, by the procedure above. Our treatment follows 

Cameron and Seidel (1973). 

(5.17) EXAMPLE. Let V be a. vector space over a field F, of dimension n. We 

already met quadratic forms, defined in terms of coordinates; but there is an abstract 

definition, as follows. A function Q : V —*• F is a quadratic form if the following 
conditions are satisfied: 

(a) Q(ax) = a2Q(x) for all a € F, x € V; 

(b) the function 5:VxV-»F defined by 

#(x,y) = Q(x + y) - Q(x) - Q(y) 

is bilinear. 

Remark. If F = F2, then (a) can be replaced by the simpler statement Q(0) = 0. 

Over a field of odd characteristic (or characteristic zero), the symmetric bilinear 

form B determines Q, by the rule Q(x) = |£(x,x). But this fails in characteristic 

2. Instead, the form B is alternating, that is, 5(x, x) = 0. 

A bilinear form is non-degenerate if its radical is zero, that is, Z?(x, y) = 0 for 

all y G R implies x = 0. A non-degenerate alternating bilinear form can only exist 
on a vector space of even dimension. 
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We now specialize to the case where F = F2 and the dimension n of V is even, 

say n = 2m. For a quadratic form Q, let BQ be the alternating bilinear form obtained 

by polarizing Q (as in (b) of the definition). The map Q *—> BQ is a linear surjection 

from the vector space of quadratic forms to the space of alternating bilinear forms. 

Its kernel is the set of functions L satisfying L(x + y) = L(x) + L{y); that is, the 

linear functions on V. If 

Qb — {Q '■ Bq = B}, 

for an alternating bilinear form 73, then Q0 is the dual space V* of V, and QB is a 

coset of V*. 

We need the fact that, if B is non-degenerate, then QB contains 22m_1 + e2m~1 

forms with 22m_1 + t2m~1 zeros in V, for e = ±1 (see Exercise 4, or (12.8), (12.9)). 

The number e is the type of the quadratic form; it is essentially the same as the Arf 

invariant. We denote the type of Q by e(Q). 

At last we can define the designs. Choose a non-degenerate bilinear form B. 

The point set of the design V[m) is V. For each Q e QB, we associate a block 

Y(Q) = {x G y : (-1)Q« = e(<3)}. 

Each block has cardinality 22m_1 + 2m_1. Let Qi,Q2 G QB. Then Q1 + Q2 — L 

is a non-zero hnear form, and 

Y{Qi)AY(Q2) = {X e y : (-1)L(X) = -e(Q1)e(Q2)}, 

which has cardinality 22m_1; so the intersection of the blocks Y(Qi) and Y(Q2) has 

cardinality 

i ^22m-1 1 ^22m_i q- 9'71-1 j_92m-1) _ 22m-2 _|_ 2m_1 

It follows (for example, by (1.42)) that T>(m) is a square 2-(22m, 22m_1 + 2m 1,2‘m " + 

2m_1) design. 

Moreover, V{m) has the following symmetric difference property, due to Kantor 

(1975): 
(A) The symmetric difference of any three blocks is either a block or the complement 

of one. 

This follows because the sum of three quadratic forms in QB is another quadratic form 

in Qb. In consequence, the cardinality of the symmetric difference of three blocks 

takes just two values. From this, it follows that the same is true of the cardinality of 

the intersection of three blocks; that is, the dual of V(m) is a quasi-3 design. 

In fact, D(m) is self-dual, and so is itself a quasi-3 design. This can be seen from 

the following alternative description. 

The non-degenerate bilinear form can be used to set up an isomorphism between 

y and its dual space y* = Q0, where the vector v <E V maps to the linear form 

Lv ; x 1—► B(x, v). So we can take Q0 as point set instead of V. 
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Note that (Q -f Tv)(x) = Q(x) + B(x, v) = Q(x + v) + Q(v). Hence 

e(Q + L ) - ( e(<5) ifQ(v) = 0, 
W + vj_l-e(Q) if Q(v) = 1; 

in other words, e(Q + Lv) = ( —l)<?(v)e(Q). So 

{v : (_i)Q(v) = e(Q)} = {v . £(Q + Lv) = +1}) 

which translates into the set {L : e(Q + L) = +1} under the bijection. 

Thus V(m) can be taken to have point set Q0 and block set QB; the rule for 

incidence is that L £ Q0 and Q £ QB are incident if and only if e(Q + L) — 1. 

From this definition, it follows that adding a fixed form Q £ Qb interchanges 

the sets Q0 and QB and induces a polarity of the design. If e(Q) = +1, then every 

point is absolute for this polarity; otherwise, no point is absolute. In the latter case, 

we have a polarity of the complementary design V(m) with every point absolute. 

Thus, the graph of the appropriate null polarity (see (2.27)) is strongly regular, with 
parameters 

(22m 22m—1 + £(Q)2m-1 - + t(Q)2"1"1 - 2,22m-2 + e(Q)2^). 

We denote the graph by Te(m) if e(Q) = e. 

The veitex set of these graphs can be ‘translated back’ to V using the inverse 

of the above bijection. We find that two vertices v,w of Te(m) are adjacent if and 

only if Q(v + w) = 0, where Q is a fixed form of type e. In the case m = 2, these 

graphs are the complement of L2{4) and the Clebsch graph, respectively. In general, 

they have the property (which will be studied further in Chapter 8) that the induced 

subgraphs on both the neighbours and the non-neighbours of a vertex are strongly 
regular. 

Using the translated’ definition, we can also see a large group of automorphisms 

of the design: translation by any linear form, or any linear transformation of V 
preserving the form B, is an automorphism. 

This definition also allows more flexibility. Instead of 0 and 5, we can use any 

two alternating bilinear forms and Bn whose sum is non-degenerate to determine 

the point and block sets. We obtain the same design, but the added flexibility will 

be used in Chapter 12 to construct a so-called system of linked square designs. We 

also give a re-interpretation of this construction in coding-theoretic terms. 

Exercises 

1. This exercise outlines a counting proof, due to C. Norman, of the fact that 

the block graph of a quasi-symmetric design is strongly regular. 
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Let Bl and B2 be blocks of a 2-(t>, fc,A) design, whose intersection has size 2. 

(The case Bx = B2, z — k, is allowed.) Let a0- be the number of blocks B satisfying 

|B fl Bx| = i, \B fl B2\ — J- By counting triples p,q,B with p £ Bi, q £ B2, and 

p,q E B (where p = q is permitted), prove that 

zr + (k2 - z)A = YlJaij■ 
hj 

In addition, we have 

H = b■ 

i,j 
Now let T> be quasi-symmetric. Show that these equations contain enough infor¬ 

mation to determine the numbers ay, first in the case Bi = B2, and then in general, 

in terms of 2. 

2. Let V be the 3-(22, 6, 1) design. Define a graph F as follows. The vertices 

are the pairs of points of V. Two vertices are adjacent whenever they are disjoint 

but contained in a block of T>. 

Prove that T is strongly regular, with parameters (231, 30, 9, 3). 

3. Let B be a non-degenerate alternating bilinear form on a non-zero vector 

space V. 

Prove that V has a 2-dimensiona.l subspace U such that V = U © t/-1, and the 

restrictions of B to U and UL are both non-degenerate. 

[Hint: Let U be spanned by Uj and u2 where B(ux,u2) = 1.] 

Deduce that 

(a) the dimension of V is even; 

(b) B is unique up to invertible linear transformation of V. 

Now suppose that the field is F2, and let dirn(H) = 2m. Using the above de¬ 

composition, and induction, show that a quadratic form which polarizes to B has 

22m-i _|_ e2m_1 zeros, and that there are 22m~1 + e2m_1 such forms, where e = ±1. 

4. Let Hi and H2 be matrices with constant row and column sums. Prove that 

the Kronecker product Hi®H2 has constant row and column sums. (It is a Hadamard 

matrix: see Exercise 2 of Chapter 1.) 
Recall the connection between Hadamard matrices with constant row and column 

sums and square 2-(4u2,2u~ -p it, u1 + it) designs (Exercise 3 of Chapter 1). Let H\ be 

the 4x4 matrix J — I. Identify the design associated with the Kronecker product of 

m copies of Hi with T>{m). 
[Hint: Use the decomposition of the preceding question.] 

5. Show that, for n > 2, the points and (n — 2)-flats of PG(n,g) form a quasi- 

symmetric design, whose block graph is isomorphic to the line giaph of the point-line 

design of PG(n, q). 

6. Let V = (X,B) be an affine design with m blocks in each parallel class, and 

V = a square design with m points. Take a bijection 4>c from X' to each 
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parallel class C of D, and define 

'D" = ( X, < [J (f>c(x) : B G 13', C a parallel class of V 
\ largB 

Show that V" is a quasi-symmetric 2-design, and that its block graph is complete 
multipartite. 



6. A property of the number six 

In this chapter, we explore a remarkable property of the number 6. There are six 

objects constructed in a canonical way on a set of 6 points (in fact, 1-factorizations 

of the pair design). Six is the onl}7 number for which this is possible. We use this 

fact to give constructions and uniqueness proofs for the projective plane of older 4, 

the Moore graph of valency 7, and the 5-(12, 6, 1) Steiner system. This material is 

loosely based on lectures by G. Higman. 

Let A — {a, 6, c, d, e, /} be a set of size 6. We regard A as the point set of the 

2-(6, 2, 1) pair design, that is, the edge set of the complete graph I<6. We call the 

2-subsets of A edges. A 1-factor is a. set of three pairwise disjoint edges; for brevity 

we call this & factor. (Other terminology is used; for example, Sylvester (1844) called 

edges and factors ‘duads’ and ‘synthemes’.) 

A 1-factorization (for short, factorization) is a partition of the Q) = 15 edges 

into five factors. 

(6.1) Theorem. There are six different factorizations, any two isomorphic. Two 

disjoint 1-factors are contained in a unique factorization. 

PROOF. Two disjoint factors together form a union of cycles of even lengths, neces¬ 

sarily a single 6-cycle. A factor disjoint from these two either consists of the three 

long diagonals of the hexagon, or one long diagonal and the two perpendicular shoit 

ones (Fig. 6.1). Since there are three long and six short diagonals, the remaining 

factors in a factorization are the three of the second type. This proves the unique¬ 

ness of the factorization up to isomorphism. Now there are 15 • 8 = 120 choices of 

two disjoint factors; any factorization contains 5 • 4 = 20 such pairs, so there are 6 

factorizations. 

Now we characterize this situation. 

(6.2) Theorem. Six is the only natural number n for which there is a construction 

of n isomorphic objects on an n-set A, invariant under all permutations of A, but not 

naturally in one-to-one correspondence with the points of A. 
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Fig. 6.1. Triples of 1-factors 

Proof. In the course of the proof, the fact that the objects are factorizations will 

emerge naturally. 

Let G be the symmetric group on A, and let H be the automorphism group of 

one of the n objects. Then H is a subgroup of index n in G, which is not the stabilizer 
of a point of A. 

Suppose first that H fixes a proper subset of A, of size k, where 0 < k < n. 

(Such a group is intransitive.) Then, since G permutes A'-sets transitively, the index 

°f H in G is divisible by the number (^) of Assets. This is only possible if k = 1 or 

n - 1 and H is a point stabilizer, contrary to assumption. 

Suppose next that H fixes a partition of A into parts of size r, where r divides n, 

1 < r < n- (Such a group is imprimitive.) Then, as before, n is divisible by the 

number u!/((r!)n(?r/r)!) of such partitions, which is impossible. 

Suppose next that H contains a. 3-cycle. For a, b G A, write a ~ b if either a = b 

°r a — b for some 3-cycle r. This relation is reflexive and symmetric, and is also 

transitive, since two 3-cycles which move a common point generate the alternating 

group of degree 4 or 5. This argument also shows that, if a ~ b ~ c, then the 3- 

cycle (a b c) is m H. By the preceding paragraph, ~ is the universal relation, and 

H contains all 3-cycles. But the 3-cycles generate the alternating group, which has 

index 2 in G; and, for n = 2, the alternating group fixes a point. 

A similar but easier argument shows that H contains no transposition. 

Now consider the (”) transpositions in the symmetric group. These are dis¬ 

tributed among the n - 1 proper cosets of H. If two transpositions moving a common 

point, say (a b) and (a c), lie in the same coset of H, then (a b)(a c)-1 = (a b c) £ H, 

which is impossible. So each coset must contain n/2 pairwise disjoint transpositions 

defining a factor, and we obtain a factorization of A preserved by H. 
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Now the stabilizer of a. factor has index at most n — 1 in H, and so index at most 

n(n - 1) in G. But there are (n - 1)!! = (n - 1 )(n - 3) • • • 3 • 1 factors, permuted 

transitively by G. So n(n — 1) > [n - 1)!!, which implies that n < 6. Since n = 4 is 

easily excluded, we are left with n = 6. tZI 

This result can be expressed in various ways. In group-theoretic language, the 

symmetric group of degree n has an outer automorphism if and only if n = 6. (This 

is true for infinite cardinals n as well; see Schreier and Ulam (1937) for the countably 

infinite case.) In category-theoretic language, the category whose objects are the n- 

element sets and whose morphisms are the bijections between them has a non-trivial 

functor to itself if and only if n — 6. Similar ideas relate to the Axiom of Choice for 

families of n-element sets; see Mostowski (1945) and Exercise 9. 

It follows abstractly from (6.2) that, if X denotes the set of factorizations of 

the 6-set A, then the set of factorizations of X is naturally in one-to-one correspon¬ 

dence with A. Let us see how this works. Any factor is contained in exactly two 

factorizations. This can be seen by observing that there are 8 ways to add a second 

factor to form a hexagon, and each factorization contains four of these.) Conversely, 

two factorizations share a unique factor. So the factors can be identified with the 

pairs of factorizations, that is, the edges of X. Now any edge is contained in three 

factors, and clearly no two of these can be contained in the same factorization, so 

edges correspond to factors of X. Finally, a point of A lies in five edges, no two of 

which are in a common factor; so points of A correspond to factorizations of A. 

We call the 6-sets A and X dual if they stand in this relation, that is, each is 

bijective with the set of factorizations of the other. 

We now use (6.1) to construct a projective plane of order 4. Let A be a 6-set. 

Define a structure whose points are the elements of A and the factors, and whose 

lines are the edges and the factorizations. The incidence relation holds between a 

point and an edge containing it, between an edge and a factor containing it, and 

between a factor and a factorization containing it. Now, for example, two edges 

either intersect in a unique point or lie together in a unique factor. A small amount 

of further checking shows that the structure defined is indeed a projective plane of 

order 4. The set A is a Type II oval in this plane. 

By pushing the argument a little further, we can show the following. 

(6.3) Theorem. There is, up to isomorphism, a. unique projective plane of order 

4. It has the property that any four points, no three collinear, are contained in a 

unique oval and a unique Baer subplane. 

(The term ‘oval1 is used here to mean a Type II oval, that is, a set of 6 points 

meeting every line in 0 or 2 points. Recall that a Baer subplane is a set of 7 points 

meeting every line in 1 or 3 points.) 
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PROOF. Any projective plane contains a set of 4 points with no three collinear. 

Let {pi, ■ • • iPi} be such a set in a projective plane of order 4. Let qi,q2,q3 be 

the intersection points of the lines p\p2 and p3p4, P1P3 and p2p4, and P\Pi and P2P3 

respectively. 

We claim that qi,q2,q3 are collinear. Suppose not. Then pxp2 contains Pi,p2,qi 

and two further points. The line q1q2 contains qi,q2, a point on pip4, a point on p2p3, 

and one further point not previously mentioned. This gives us4 + 3 + 6- 2 + 3 = 22 

distinct points, which is impossible in a 21-point structure. 

Thus, {pi, P2, p3, Pi, qi, <?2i <73} is the unique Baer subplane containing the original 

four points. Also, the line qiq2q3 contains two further points rx and r2; now we have 

accounted for 4 + 3 + 6- 2 + 2 = 21 points, that is, the whole plane. The only points 

not lying on a line with two of the p, are ?’! and r2\ and the line contains no p,-. 

S° {Pi)P2,P3,P4, Fi, r2} is the unique oval containing the original set. 

To complete the argument, we have to show that the structure of a projective 

plane of order 4 containing an oval A is uniquely determined. There are © = I* 

lines meeting A m two points; they can be labelled with the edges of A. Now a point 

outside A lies on three lines meeting A; the corresponding edges form a factor, which 

can be used as a label for the point. Finally, let L be a line disjoint from A. For any 

edge {a, 6}, the line ab meets L in a unique point; so the labels of the 5 points of 

L form a factorization, which can be used to label L. Thus, we have recovered our 

original construction. □ 

(6.4) Remark. Consider the graph T whose vertices are the points of a projective 

plane of order 4 outside an oval A, two vertices adjacent if the line joining them meets 

A. This graph is the 15-vertex graph in (2.3)(c). (To see that condition (*) of (2.3) 

holds, observe that the triangles are the triples of points on lines meeting A; and, if 

{xi,x2,x3} is a triangle and y another point, then three of the lines through y meet 

A, two at points of the line x,x2x3, so y is adjacent to a unique point of the triangle.) 

Next, we turn to Moore graphs. Recall from Exercises 9, 10 of Chapter 2 that a 

Moore graph of diameter 2 is a regular graph of diameter 2 and girth 5 (equivalently, 

a strongly regular graph with A = 2, p = 1), and that such a graph must have valency 

2, 3, 7 or 57. For k — 2,3, the unique graphs are the pentagon and the Petersen 
graph. 

Let {oo,0} be an edge in the Moore graph T of diameter 2 and valency k, and 

let A — r(oo) \ {0}, A = r(0) \ {00}. Any further vertex has a unique neighbour in 

each of the sets A and A, and so can be labelled with the pair (a, x) £ A x X. Every 

pair in A x A labels a unique vertex. So the vertex set is {00,0} U A U X U (A x AA). 

We know all edges except for those within Ax X. 

Furthermore, given aua2 e A and aq 6 X, there is a unique common neighbour 
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of the non-adjacent points (cti,Xi) and a2, that is, a unique x2 G X such that (cti,Xi) 

is joined to (a2, x2). 

From this, we can see the uniqueness of the Petersen graph; for, if A = {a, b} 

and X = {x,?/}, then we must have edges {(a, x), (b, y)} and {(a, y), (6,x)}. 

We can also see, in an elementary way, the non-existence of a Moore graph of 

valency 4. For let A = {a, b, c} and X = {x,y,zj. If (a,x) is joined to (b, y), then 

both of these vertices must be joined to (c, z), creating a triangle. 

We now give the construction of the Hoffman-Singleton graph (1960), the unique 

Moore graph of valency 7. Let A and X be dual 6-sets. Note that edges of A 

correspond to factors of X and dually. Take the vertex set {oo, 0} U A U X U (A X AT), 

with the edges already specified. In addition, join (a,x) to (6, y) if and only if {a, b] 

is an edge of the factor corresponding to {x,y} (or dually). We obtain a graph of 

valency 7 on 50 vertices. To show that it is a Moore graph, it suffices to show that 

the girth is 5. We see easily that any cycle of length less than 5 must be contained 

in A X X. The non-existence of triangles follows from our remarks on triples and 

partitions; the non-existence of quadrangles, by a similar argument. 

Once again, we can prove uniqueness as well. This depends on the following 

lemma. We let M(k) denote a Moore graph with diameter 2 and valency k. 

(6.5) Lemma. M(7) does not contain an induced subgraph isomorphic to M(3) 

with an edge deleted. 

We have indicated a proof of this fact in Exercise 3. □ 

(6.6) Theorem. There is, up to isomorphism, a unique Moore graph of diameter 

2 and valency 7. 

PROOF. Let r be such a graph, and (as above) write the vertex set as {oo,0} U A U 

X U (A X X), where \A\ = |Af| = 6. 

Suppose that there is an edge {(a, x), (b, y)}. Then the set 

{oo, 0, a, 6, x, y, (a,x), (a, y), (6,x), (6, y)} 

contains all but one of the edges of A/(3). By (6.5), the remaining edge, {(a,y),(6,x)}, 

must also be present. We write {a, 6} ~ {x, y} if this occurs. Now, for any x, y G A, 

there are three disjoint pairs of elements a,b G A for which {a,b} ~ {x,?/}, forming 

a factor on A. The five factors corresponding to pairs {x, yj with x fixed are easily 

seen to form a factorization. So A and X are dual sets, and we recover our previous 

construction. 
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For our final application, we produce a 5-( 12, 6, 1) design, and prove its unique¬ 

ness. First, we make one further observation. Given two disjoint factors (forming a 

hexagon), we observed tha.t there is a unique factor disjoint from both but not in the 

factorization containing them — it consists of the three long diagonals of the hexagon. 

The three factors correspond to three pairs from the dual set X which pairwise in¬ 

tersect but do not have a common element; these must have the form {x, y}, {x,z}, 

and {y, zj, for some x, y, z £ X. Also, the complementary graph of the hexagon plus 

long diagonals consists of two triangles. In this way, we have a bijection between 

partitions of A and X into disjoint 3-sets. The dually-defined bijection is just the 

inverse of this one. 

A permutation which acts as a transposition on A acts as a product of three 

disjoint transpositions on X, their cycles defining the factor corresponding to the 

edge on A defined by the original transposition; and dually. Thus, the combinatorial 

relation is reflected by the structure of the permutations. Similarly, a 3-cycle on 

A acts as a product of two 3-cycles on AT and dually; corresponding partitions are 

orbits of the same Sylow 3-subgroup of S6. 

Now we construct 5(5,6,12). Let A and X be dual 6-sets. Write {a, b} ~ 

{x,y} if {a, b} is an edge in the factor corresponding to {x, y}, and dually. Also, 

write {a,b,c} ~ {x,y,z} if these 3-sets are parts in corresponding partitions. (Both 

relations are symmetric.) 

Now take point set A U A, and b the set of blocks of the following types- 

(a) A, X; 

(b) A \ {a, b} U {x, y}, X \ {x, y} U {a, b} whenever {a, b} ~ {x, y}; 

(c) {a, b,c,x,y,z} whenever {a,b,c} ~ {x,y,z}. 

We claim that (A U A, b) is a 5-(12, 6, 1) design. To show this, we observe first 
that there are 

blocks; so the average number of blocks containing a 5-set is one, and it suffices to 

show that no two blocks meet in 5 points. If \Bl n B3\ > 5, then we could assume by 

duality that at least three points of the intersection lie in A; then a small amount of 

case checking shows that this is not possible. 

(6.7) Theorem. There exists a unique 5-(12,6,1) design, up to isomorphism. 

Proof. The intersection triangle for this design is given in Table 6.1. 

We see that the complement of a block is again a block. Furthermore, the third 

derived design is an affine plane of order 3. So, if the point set is A U B U C U D 

where |A| = \B\ = \C\ = \D\ = 3 and AU5 and A U C are blocks, then A U D is 

a block. Combining these observations, B U C is also a. block. That is, if two blocks 

meet in 3 points, then their symmetric difference is a block. 
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4 

1 
0 

132 

66 66 

30 36 30 

12 18 18 

8 10 8 

3 5 5 

2 3 2 

Table 6.1. 

12 

4 

3 1 

0 1 

Select a complementary pair of blocks, and call them A and X. For a, b € A, the 

4-set A\ {a, b} lies in three blocks other than A; these have the form A\{a, b} U {x, y}, 

where the three pairs {x,y} form a factor of X. The complement of each of these is 

again a block. It is now straightforward to check that this bijection between edges of 

A and factors of X arises from a duality between A and X. 

Now let B be a block with B f) A = {a, 6, c}, B n X = {x,y,z}. Then none of 

the three factors of A corresponding to pairs in {x,y,z} can have an edge in {a, 6, c}, 

or else some block would meet BAX in five points. So we must have the design just 

constructed. D 

It is possible to continue the process one step further. There is a notion of a 

‘dual pair’ of 5-(12, 6, 1) designs. This can be seen most easily from our construction 

of the 5-(12, 6, 1) design from the Hadamard matrix H of order 12 in Chapter 1. Let 

R and C be the sets of rows and columns of H. Recall that any pair of rows of H 

defines a partition of C into two 6-sets, and the 2 • = 132 6-sets arising in this 

way are the blocks of a 5-(12, 6. 1) design on C. Dually, pairs of columns define a 

design on R. We call these a dual pair of Steiner systems. 

The duality can be seen intrinsically. Let (i?,£>) be a 5-(12, 6, 1) design. We 

saw that the 132 blocks come in 66 disjoint pairs, there are two possible relationships 

between two disjoint pairs: their blocks can intersect in 3, 3, 3 and 3 points, or in 4, 

2, 2 and 4. Form a graph whose vertices are the disjoint pairs of blocks, adjacency 

corresponding to the first relation. This graph is strongly regular, with the parameters 

of jT(12) (see Exercise 6). So, by (3.11), it is isomorphic to T(12). So disjoint pairs 

of blocks correspond bijectively to 2-subsets from another 12-set C. 

Take two points rlf?’2 £ R. The blocks containing ?’i and r2 form a 3-( 10, 4, 

1) design or inversive plane on the remaining 10 points. The inversive plane has the 

property that its 30 blocks can be split into two families of 15 so that blocks from 

different families intersect in an even number of points. (See Exercise 7.) So the 

corresponding 30 pairs of elements of C are the edges of a graph with two connected 

components, each having 15 edges. The components must be complete graphs on 6 

vertices. Thus, a pair of elements of R corresponds to a partition of C into two 6-sets. 

The 132 6-sets arising in this way form the dual Steiner system on C. 
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Now take a 4-subset R' of R. The four blocks containing R' correspond to four 

disjoint edges in C, whose complement is a 4-set C'. Write R' ~ C' if this holds. 

Now construct a design with point set RL> C. The blocks are of two types: 

(a) the union of two points of R and a corresponding block of C, or dually; 

(b) R' U C', where R' ~ C'. 

These 2 • 2 • + (42) = 759 8-sets are the blocks of a 5-(24, 8, 1) design. 

It is possible to show the uniqueness of the 5-(24, 8, 1) design in this way. First, 

show that there must exist a dodecacl, a 12-set meeting every block in an even number 

(at most 6) of points. Then show that a dodecad and its complement carry a dual 

pair of 5-(12, 6, 1) Steiner systems, and the entire 5-(24, 8, 1) design is reconstructed 

in the manner given. 

Unfortunately, the process does not continue; there is no dual pair of 5-(24, 8, 

1) designs! 

Exercises 

1. Let q be an odd prime power. Let F = F?. Define a 1-factorization of the 

pair design on the projective line {oo} U F, with 1-fa.ctors indexed by F: the factor 

indexed by a £ F is 

{{oo, a}} U {{^,7} : 0 + 7 = 2a}. 

Prove that this factorization admits the linear fractional group PGL(2,g) if and only 
if q < 5. 

(Hint: PGL(2, q) is generated by the maps 2 h czjd (c,d E F, c / 0) and 
z 1 /z.) 

In the case q — 5, by calculating the order of PGL(2,5), show that there are six 

factorizations isomorphic to the given one. 

2. Give an elementary proof of the non-existence of a Moore graph of diameter 
2 and valency 5. 

3. In this exercise, we show that a Moore graph Al( 7) of valency 7 has no induced 

subgraph isomorphic to M(3) with an edge deleted. 

Suppose that 1 is a subset of the vertex set of M{ 7) of cardinality n; let the 

valencies of its points (in the induced subgraph) be rq,..., rn. 

(1) Prove that £ - 2) < ??- - 117??, 4- 100. 

[There are n(n 1) pairs of distinct vertices in Y; of these, £ ?q are joined 

by edges, and £ci(?’j — 1) by paths ol length 2 in Y; the remaining pairs have 

unique common neighbours outside Y. So, if the number of points outside Y with j 
neighbours in Y is Zj, then 

zj = 50 - ??, 

Yizj = 7n-2>,, 
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Xi(i - 1)zi = n(n -1) - X)r.2• 

Now use the fact that J2(j ~ 1 ){j — 2)zj is non-negative.] 

(2) Now let Yj be a set of 10 vertices containing 14 edges of M{3). Prove that 

there are five points outside Yj having two neighbours in Yj. If Y consists of Yj 

together with these five points, calculate low'er bounds for the valencies of the points 

in Y, and deduce that (1) is violated. 

4. Let T be a Moore graph of valency k. 

There are three possible relationships between two distinct edges of P: 

(a) they meet at a vertex; 

(b) not (a), but some edge meets both; 

(c) neither of the above. 

(Note that, if k = 2, then type (c) does not occur.) 

Let A be the graph whose vertex set is the edge set of T, two vertices adjacent 

if their relation is of type (b). 

Prove that the number of common neighbours of two vertices is (k — l)2, 4(k — 2), 

or 4(2k — 5) according as the relation of the two points is (a), (b) or (c). 

Deduce that A is strongly regular if and only if /c = 2,3 or 7. 

5. Let A be the strongly regular graph on 175 vertices constructed as in Ex¬ 

ercise 4 from the Hoffman-Singleton graph. Show that the parameters of A satisfy 

k = 2[i. Deduce the existence of a regular two-graph on 176 vertices. 

6. Let r be the graph whose vertices are the complementary pairs of blocks of 

a 5-(12, 6, 1) design, two vertices adjacent if the blocks intersect in 3 points. Prove 

that r is strongly regular, with the same parameters as T(12). 

7. In Chapter 2, Exercise 1, we constructed a 2-(10, 4, 2) design from the graph 

L2(3). (The blocks of this design are just the cliques in the regular two-graph which 

extends the graph — see Chapter 4.) LTsing the fact that L2(3) is isomorphic to 

its complement, find another 2-( 10. 4, 2) design on the same point set, with blocks 

disjoint from those of the first design. Prove that 

(a) the union of the two block sets forms the unique 3-( 10, 4, 1) design (the inversive 

plane of order 3); 

(b) a block of the first design meets a block of the second in 0 or 2 points. 

8. Prove that there are 30 different ways of imposing the structure of a projective 

plane of order 2 on a given set A' of seven points, falling into two orbits of 15 under 

the alternating group Ar. 
Let U be one of these orbits of 15 planes. Prove that a 3-set is a line in exactly 

three planes in [/, no two having any further line in common. Deduce that any two 

planes in U share exactly one line. Can you identify the 2-( 15, 3, 1) design formed 

by these planes and 3-sets? 

Let V be the set of 3-subsets of X. Form a graph T with vertex set U U Y, 

having edges of two types, as follows: 
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u G U and v G V are adjacent whenever the 3-set v is a line of the plane it; 

vuv2 G V are adjacent whenever they are disjoint. 

Prove that P is the Hoffman-Singleton graph. 

9. If four people play all three possible doubles matches, then either one (unique) 

person wins all matches, or one (unique) person loses all matches. From this, it follows 

that, if a choice function is assumed to exist for the class of all 2-element sets in the 

universe, then a choice function exists for the class of all 4-element sets. 

(This observation is due to Tarski: see Mostowski (1945).) 
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Let 5, f, a be positive integers. 

(7.1) DEFINITION. A partial geometry with parameters s,t,a is an incidence struc¬ 

ture (whose elements are called points and lines) having the following properties: 

(a) any line is incident with s + 1 points, and any point with t + 1 lines; 

(b) two lines are incident with at most one point (and two points with at most one 

line); 

(c) if p is a point not incident with a line L, then there are exactly a incident 

point-line pairs (q,M) such that p is incident with M and L with q. 

We have stated the definition in an over-elaborate way to emphasize its duality. 

The second, ‘dual’ part of (b) (in parentheses) follows from the first part. Also, (c) 

can be stated more briefly: if p and L are not incident, then exactly a points of L are 

collinear with p (or, exactly a lines on p are concurrent with L). We see that the dual 

of a partial geometry with parameters s,f,a is a partial geometry with parameters 

i, s, a. 

Remark. Clearly we have a < s + 1 and a < t + 1. 

We have already met some partial geometries, intimately connected with strongly 

regular graphs. The first examples occurred back in (2.3), where the three graphs in 

part (c) of that theorem give rise to partial geometries with parameters s = 2, t = u, 

a — 1, for u — 1,2,4 (we take the lines of the geometry to be the triangles in the 

graph). Indeed, (2.3) shows that a partial geometry with s — 2 and a — 1 necessarily 

has t = 1,2 or 4. The edges and factors of a set of six points, discussed in Chapter 6, 

form a partial geometry with parameters 2, 2, 1. 

Partial geometries were introduced by Bose (1963) in order to provide a setting 

and generalization for known characterization theorems for strongly regular graphs. 

We will describe his results, and Neumaier’s (1979) extensions of them, in this chapter. 

In addition, we give some properties and examples of partial geometries, and some 

extensions of them (in the sense of design theory). 

REMARK. Bose used 7’, k, t for what we have called t + 1, s + 1, a. Bose’s r and k are 
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the usual 1-design parameters. 

(7.2) DEFINITION. The point graph of a partial geometry is the graph whose ver¬ 

tices are the points of the geometry, two vertices being adjacent whenever they are 

collinear. Simple counting arguments show the following result. 

(7.3) Proposition. The point graph of a partial geometry with parameters s, t, a 

is strongly regular, with parameters 

(7.4) ((s + 1 )(st + a)/a, (t + l)s, s - 1 + t(a - 1), (t + l)a). 

□ 

Remark. The lines of a partial geometry are (s + l)-cliques in its point graph. They 

are cliques of maximal size (see Exercise 1), but there may be other cliques of the 

same size. 

Dually, the line graph is the graph whose vertices are the lines, adjacent if con¬ 

current; it is just the point graph of the dual geometry, and so is also strongly regular. 

A strongly regular graph is called geometric if it is the point graph of a partial 

geometry. It is pseudo-geometric (s, t, a) if its parameters are given by (7.4). Clearly, 

a geometric graph is pseudo-geometric. Bose (1963) showed that, if s is sufficiently 

large compared to t and a, the converse holds: 

(7.5) Theorem. Assume that 

s> i(t + 2)((<-l) + Q(t2 + l)). 

Then a pseudo-geometric (s,t,a) graph is geometric. □ 

We do not give a proof of Bose’s Theorem. The method of proof is illustrated 

by the argument we gave for (3.11). The most difficult part is to show that any edge 

lies in a unique grand clique of size s + 1. Then it is not too hard to show that the 

points and ‘grand cliques’ form the required partial geometry (see Exercise 1). 

We now describe some of the consequences of Bose’s Theorem. 

It is readily checked that a strongly regular graph with the same parameters 

as T[n) is pseudo-geometric (n - 2,1.2). By (7.5), if n > 8, then such a graph is 

geometric. But the only partial geometry with parameters (n - 2,1,2) is the dual 

of the pair design on n points. In this way, we obtain Theorem (3.11). In the same 

way, Shiikhande s theorem characterizing L2(n) by its parameters for n > 4 is a 
consequence of (7.5). 

(7.6) Definition. A partial geometry with a = t is called a net of order n = s + 1 
and degree r — t + 1. 
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If p is a point not on the line L of a net, then there is a unique line through p 

not meeting L. Just as for affine planes, it follows that the lines fall into r parallel 

classes of n lines each, any parallel class partitioning the n2 points. In Chapter 1, we 

discussed the connection between affine planes, nets, and mutually orthogonal Latin 

squares. In particular, for r > 2. any r parallel classes of lines of an affine plane form 

a net. Such a net is called embeddable. Brack (1963) proved the following result, 

where the deficiency of a net is the number d = n + 1 — r by which the net falls short 

of being an affine plane. 

(7.7) Theorem. Suppose that 

n > \{d — l)(c/3 - d2 + cl + 2). 

Then a net of order n and deficiency d is embeddable. 

PROOF. The point graph T of the given net Af is strongly regular, and so its comple¬ 

ment is also. We find that the complement of T is pseudo-geometric (n—1, d— 1, d— 1). 

By (7.5), if the inequality of (7.7) holds, then F is geometric, that is, it is the point 

graph of a net Af1 of order n and degree d. Now any pair of points lie in a unique 

line of either Af or Af\ according as the points are adjacent in T or not. So the point 

set, together with the union of the line sets of A/* and Af\ is an affine plane. □ 

(7.8) EXAMPLE. There are two ‘essentially different’ Latin squares of order 4 (the 

addition tables of the two abelian groups of order 4). The complements of the 

point graphs of the corresponding nets are L2(4) (for the Klein group V4) and the 

Shrikhande graph (for the cyclic group C4). So the first, but not the second, net is 

embeddable. 

Now we examine more closely the structure of partial geometries. Recall that 

1 < a < min(s,i) + 1. 

(7.9) Proposition. A partial geometry with a = s + 1 is a 2-design with A = 1. 

PROOF. Given points p and q. there is a line L containing p. If q L then, since 

a = s + 1, every point of L (in particular, p) is collinear with q. □ 

REMARK. This class includes the pair design [s — l,a = 2), whose line graph is 

T(t + 2). 

Dually, of course, a partial geometry with a = t. + 1 is a dual 2-design. 

(7.10) DEFINITION. A complete transversal t-design consists of a set X of kn points 

partitioned into k classes of size n (sometimes called ‘groups’, but not groups in the 

mathematical sense), and a set B of blocks, each block a transversal for the set of 

‘groups’, with the property that any t points from different ‘groups’ lie in exactly A 

blocks. 
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(7.11) Proposition, (a) A partial geometry with a = s is a complete transversal 

2-design with A = 1. 

(b) A partial geometry with a = t is a net. 

PROOF. We already saw (b); (a) is proved by dualizing, or directly. □ 

REMARK. As we saw in Chapter 1, nets with t > 1 are equivalent to sets of mutually 

orthogonal Latin squares. A net with t = 1 is simply a square grid, with point graph 

L2(n). Dually, the point graph of a partial geometry with a = s = 1 is a complete 

bipartite graph, whose edges are the lines. 

An important improvement of Bose’s Theorem was proved by Neumaier (1979). 

(7.12) Theorem. Let T be a strongly regular graph with parameters n,k,\,g, 

whose adjacency matrix has eigenvalues k,r and s. Suppose that s is an integer less 

than —1, and that 

r< |s(a + l)(/i + l) — 1. 

Then T is the point graph of a partial geometry whose parameters satisfy a = t + 1 

or a = t, in other words, a. dual design or a net. □ 

Neumaier’s Theorem improves on Bose’s in two respects. First, it is not as¬ 

sumed that the graph is pseudo-geometric. (In the case of a pseudo-geometric graph, 

Neumaier’s inequality reduces to Bose’s.) This means that the theorem includes a 

non-existence result: strongly regular graphs whose parameters satisfy the inequality 

but are not pseudo-geometric do not exist. Secondly, Neumaier shows that the only 

partial geometries whose parameters satisfy Bose’s inequality are the dual 2-designs 

and the nets (dual complete transversal 2-designs). 

In Chapter 3, we saw that a strongly regular graph with least eigenvalue —2 is 

complete multipartite, or geometric, or one of finitely many exceptions. Using his 

result, Neumaier was able to generalize this result as follows. 

(7.13) Theorem. Let m be an integer greater than 1. Then, with finitely many 

exceptions, a strongly regular graph with least eigenvalue —m is complete multipartite 

with block size m, or the line graph of a 2-design or a complete transversal 2-design 
with block size m. |—I 

In particular, all but finitely many strongly regular graphs with least eigenvalue 

—3 are complete multipartite with block size 3, Latin square graphs, or line graphs of 

Steiner triple systems. There are large numbers of non-isomorphic graphs of this type 

(see Wilson (1974b) for results on the number of Steiner triple systems, for example). 

(7.14) Definition. A partial geometry with a = 1 is called a generalized quadrangle 
of order (s, t). 
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The parameters of a generalized quadrangle with s > 1 satisfy t < s2\ this is a 

consequence of the Krein bound (2.26), and can also be proved directly (see Exercise 3 

of Chapter 8). 

The commonest types of partial geometries are 2-designs, complete transversal 2- 

designs, and their duals. Generalized quadrangles are also fairly common, and have 

an extensive literature of their own (for an account of them, see Payne and Thas 

(1984)). We now give some examples of generalized quadrangles and of ‘exceptional’ 

partial geometries (not of any of these types). 

(7.15) EXAMPLE. The ‘classical’ generalized quadrangles are defined as follows. Let 

V be a vector space over F = F,, and B a non-degenerate form in two variables on V. 

We assume that B is either bilinear and alternating (that is, B(x, x) = 0 for all x G 

V), or Hermitian (that is, B is linear in its first argument, and B(y, x) = f?(x, y)CT, 

where a is a field automorphism of order 2 — note that the existence of a requires q 

to be a square). A third situation is where V carries a non-singular quadratic form 

Q (see (5.16) for definition). 

We make the further assumption that the index of the form B or Q (the largest 

dimension of a subspace of V on which the form vanishes identically) is equal to 2. 

Now we define an incidence structure whose points are the 1- and 2-dimensional 

subspaces on which the form vanishes, incidence being defined by inclusion. 

It is clear that every line contains q + 1 points, that is, s = q. The constancy 

of t (and its value) requires further analysis, case-by-case. We show that a = 1. Let 

p be a point not on the line L. If p — [v], consider the function / : L —> F defined 

by /(x) = 5(x, v). (In the case of a geometry defined by a quadratic form Q, B 

is obtained by polarizing Q.) Then / is linear, and is non-zero (since otherwise the 

form vanishes identically on the 3-dimensional space [L,p]). So ker(/) is a point, the 

unique point of L collinear with p. 

The classical generalized quadrangles are called symplectic, unitary or orthogonal 

respectively in the three cases, borrowing the names given to the associated classical 

groups. Table 7.1 gives their parameters. 

Type dim(U) s t 

Symplectic 4 <7 q 

Unitary 4 q q1'2 

Unitary 5 q 
qm 

Orthogonal 4 q l 

Orthogonal 5 q q 

Orthogonal 6 q q2 

Table 7.1. 
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The symplectic quadrangles in dimension 4 and the orthogonal quadrangles in 

dimension 5 (which have the same parameters) are dual to each other in general, and 

are isomorphic (and self-dual) if <7 is a power of 2. Also, the unitary quadrangles in 

dimension 4 are dual to the orthogonal quadrangles in dimension 6. 

(7.16) EXAMPLE. The only known generalized quadrangles with s and t greater 

than 1 and not both powers of the same prime, have s = q — 1, f = g -f- 1, where q 

is a prime power (or dually). The first examples were found by Ahrens and Szekeres 

(1969); those with q even were found independently by Hall (1971). For q even, 

there is a simple construction, which we present in a more general form below. See 

Exercise 2 for a general construction which works for both odd and even q. 

Let /C be a non-empty set of points in the projective space PG(n — 1, q), regarded 

as the hyperplane at infinity of the affine space AG(n,q). We construct an incidence 

structure T*(fC) as follows. The points of T*(K) are the points of AG(n,g); the 

blocks are those lines of AG(n, q) which meet the hyperplane at infinity in a point 

of JC. Clearly, there are qn points; any line contains q points; any point lies on \K\ 

lines; and any two points lie on at most one line. 

Now suppose that K, is a set of class (0, ml5 m2,...) with respect to lines; in other 

words, any line meets 1C in 0 or ??q or m2 or . .. points. (For brevity, we call such a 

set a (0, m1, m2,.. ,)-set; this terminology is not standard.) Take a line L of T*{K), 

and a point p not on L. Then [L, p] is a plane, meeting the hyperplane at infinity in 

a line M containing at least one point of /C, viz. L D 1C. Let p' be any other point 

of M n K. Then the line pp' is a line of T*(K) meeting L (since it lies in the plane 

[-^oP])- Every line meeting L arises thus. So the number of lines of T*(/C) containing 

p and intersecting L is m, — 1 or m2 — 1 or .... 

Now, if /C is a Type II oval (a (0,2)-set in PG(2,g), in the above terminology), 

then the argument shows that T*(K) is a generalized quadrangle of order (g-1, q +1). 

(7.17) Remark. The line graph of a generalized quadrangle with order (q - 1, g + 1) 

is a (v,k. A) graph (in the terminology introduced in Chapter 1; that is, a strongly 

legular giaph with p A, or the graph of a polarity of a square 2-design with no 

absolute points.) Moreover, it has t> = A2(A + 2), k = A(A + 1); so it is extremal with 
respect to the inequality proved in (2.28). 

(7.18) Example. More generally, a (O.fc)-set K in PG(2,g) (with k > 1) gives rise 

to a partial geometry having parameters ,s = q — 1, t = (^ -|- 1)(A;_1), a = k — 1 

(The numbei of points in such a set is 1 + (q + 1 )(k — 1), since each of the q -f 1 lines 

through a point of 1C contains k - 1 further points of K.) 

( 1.19) Example. Another class of partial geometries is obtained from (0,ifc)-sets in 

projective planes. Let K be such a set, in a plane of order q. Define the incidence 

structure T{K) whose points are the points outside Xi, and whose lines are the secants 
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of K, (the lines meeting K. in k points). Then T(fC) is a partial geometry with s = q—k, 

t = q~ (g/*0, a = q-k- (q/k) + 1. 

In the case where q = 4, k — 2, the partial geometry is a generalized quadrangle 

of order (2,2). We saw this embedding in Chapter 6. 

A (0, k)-set in a projective plane is sometimes called a maximal k-arc. We do not 

use this term, since such a set is not an arc unless k = 2, and even in that case there 

are many arcs which are maximal but are not Type II ovals! A necessary condition 

for the existence of a (0, k)-set fC in a projective plane of order q, with k < q + 1, 

is that k divides q. (For we saw above that \TC\ — qk — q + k; and K, is partitioned 

by the secants through an exterior point, so there are q — q/k + 1 such secants. This 

calculation, incidentally, verifies the value of t in the partial geometry T(K).) 

Denniston (1969) showed that, if q is a power of 2, then PG(2,g) contains a 

(0, fc)-set for every proper divisor k of q (see Exercise 4). On the other hand, Thas 

(1975) showed that, if q is a power of 3 and q > 3, then PG(2, q) contains no (0, 3)-set 

(and hence no (0, (<?/3))-set either, see Exercise 3). It is conjectured that, for odd q, 

PG(2,g) contains no (0,fc)-set with 1 < k < q. 

(7.20) EXAMPLE. Let V be a. 6-climensional vector space over F= F3, and Z the 

subspace spanned by the all-1 vector. The linear map / from V to F defined by 

f(xi,.. .,x6) = xx + ... + x6 

has the property that Z < ker(/), so it induces a map / from V/Z to F. For each 

a e F, let Xa be the set of cosets Z + v with f(Z + v) = /(v) = a. Now, for a ^ 6, 

we define an incidence structure with point set Xa and line set Xb, a point x and line 

y being incident if there are coset representatives of x and y which agree in all but 

one coordinate. 

This a partial geometry with s — t = 5, a = 2. (The values of s and t are 

clear. To check the condition involving a requires a small amount of case analysis. 

We can suppose that a = 0, b — 1, and that x is the coset containing the zero vector; 

so the six lines incident with x are the cosets containing the unit basis vectors. 

There are two types of line not incident with a’, typical coset representatives being 

( — 1, —1, 0, 0, 0, 0) and (1, 1. —1. 0, 0, 0); points on the first collinear with x are 

(1, —1, 0, 0, 0, 0) and (—1, 1, 0, 0, 0, 0), and on the second (0, 1, —1, 0, 0, 0) 

and (1, 0, —1, 0, 0, 0). 

REMARK. We have two different partial geometries with the same point set X0, with 

line sets Xx and X_1 respectively, having the same point graph. Lines of the ‘positive’ 

and ‘negative’ partial geometries intersect in at most 2 points; they intersect in one 

point if and only if they are incident in the partial geometry (Xx, X_i). This ‘linking’ 

resembles a similar phenomenon for square designs, to be discussed in Chapter 12. 
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This geometry was discovered by Van Lint and Schrijver (1981); the description 

given here was found by the present authors (1982). 

The strongly regular graph on 175 vertices, constructed in Exercise 2 of Chapter 6 

(with parameters (175,72,20,36)) is pseudo-geometric (4,17,2). Haemers (1981) 

proved that it is geometric, by finding a family of cliques with the right properties. 

We outline the background to the construction in Exercises 9 and 10. 

One more infinite class of partial geometries will be constructed in Chapter 12. 

We mention that the axioms for partial geometries have been generalized in 

various ways; see Feit and Higman (1964), Debroey and Thas (1978), for example. 

Our final topic in this chapter concerns extensions. Any partial geometry is 

a 1-design; which partial geometries can be extended to 2-designs? The answer 

is not known in general. Thas (1986) considered extensions of known generalized 

quadrangles (or, more generally, those having the same orders as known examples). 

He proved the following result. 

(7.21) Proposition. Let q denote a prime power. Let V be a 2-design all of whose 

derived designs are generalized quadrangles of order (s,t). Then 

(a) s / 1; 

(b) if t = 1 then s — 2; 

(c) if s = t — q, then q = 2 or q — 8; 

(d) if s = q, t = q2, then q — 2 or q = 8; 

(e) if s = q2, t = q, then q = 2; 

(f) if s = q2, t = q3, then q = 2 or q = 4; 

(g) if s = q3, t = q2, then q = 2; 

(h) ifs = q — 1, t = q-\- then q is odd: 

(i) if s = q -f 1, t — q — 1, then q — 3, 5 or 9. 

Proof, (a) If s — 1, then Vx is a complete bipartite graph for any point x. Now 

the sets {x} U Y, where Y is a block of the bipartition of Vx, are the blocks of a 

2-(2n + l,n + 1,1) design, where n - t + 1. Such a design has 2(2n + l)/(n + 1) 

blocks; but this number is never an integer for n > 1. 

(b) Putting n = s + 1, we find by (1.33) that n + 1 divides 2n{n2 + 1), or n + 1 

divides 4. Thus n = 3, s = 2. 

The other statements are similar applications of (1.33). See Exercise 5. Note 

that this theorem contains no assertion about existence. □ 

We will use the term extended generalized quadrangle (EGQ for short) for a 2- 

design all of whose derived designs are generalized quadrangles. If the quadrangles 

all have order {s,t), we speak of an EGQ(s, t). (WARNING: the term ‘extended 



7. Partial geometries 99 

generalized quadrangle’ is used by Cameron et al/ (1990) in a sense which properly 

includes the one used here. Since this is a book about designs, and since an EGQ in 

the general sense which is a 2-design must be one of the structures considered here, 

there should be no confusion.) 

(7.22) Proposition. If an EGQ(2,t) exists, then t = 1,2 or 4; there is a unique 

design for each value of t. 

Proof. Let V be an EGQ(2, t), and let BX,B2 be blocks of V meeting in two points; 

say Bx = {a,b,c,d}, B2 = {a,b,e,f}. In T>c, there is a unique line containing e and 

meeting the line {a.b, d}\ this line cannot contain a or b (else there is a triangle in 

Va or Vh). So the triple {c,d,e} is contained in a block. Similarly, {c, d,f} and 

{c, e, /} are contained in blocks. These blocks must all coincide, or else {d, e,f} is a 

triangle in Vc. So {c, d, e, /} = Bx A£2 is a block. Given Va for one point a, this rule 

determines all the blocks of 27. It is also easily checked that the structure obtained in 

this way from any generalized quadrangle with s = 2 is a 2-design, and all its derived 

designs are generalized quadrangles. Now the result follows from (2.3). HU 

(7.23) Example. Without having defined the Ahrens-Szekeres quadrangles, we will 

sketch Thas’ proof that they are extendable! In fact, the extensions were constructed 

as 2-designs by Holz (1981), and Thas (1986) recognized them as extensions of the 

Ahrens-Szekeres quadrangles. 

Let q be an odd prime power. Let V7 be a 3-dimensional vector space over F?2, 

and B a non-degenerate Hermitean form of index 1 on V (compare (7.15)). The point 

set U of the design will be the united defined by B in PG(2,^"), that is, the set of 

1-dimensional subspaces on which B vanishes. Then \U\ — q3 + 1. Any two points of 

U lie on a unique line of PG(2,c/2), which contains q + 1 points of U. These sets will 

be some of the blocks of the design. 

Counting arguments now show that any line meets U in either 1 or q + 1 points, 

and each point p of U lies on a unique ‘tangent p1 with p C\U — {p}- 

A Baer subplane in PG(2,^2) is obtained from a coordinatization of the plane 

by taking only those points and lines whose coordinates lie in F?. Like a unital, a 

Baer subplane meets any line in 1 or q + 1 points. 

We call a Baer subplane II special if the (unique) tangent to U at each point of 

n n U is a line of LL The remaining blocks of the design are the sets II D U for all 

special Baer subplanes II. 

It will be convenient to have two reformulations of the concept ol a special Baei 

subplane. First, note that the points of II D U form a conic in II, so no three are 

collinear. Any four of them form a frame, which defines a coordinatization of the 

plane, and hence a unique Baer subplane, namely II. Dually, II is determined by any 
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four of the tangent lines at points ol IInl7. Thus, II is invariant under the polarity _L 

defined by the form B. Conversely, any Baer subplane invariant under _L is special. 

In terms of the form 5, the characterization reads as follows: three points 

[xi]) [x2] 5 [x3] °f U lie in a special Baer subplane if and only if 

B(xux2)B{x2,x3)B(x3,x1) G F,. 

(Note that B(y,x) = B(x, y)?, and xq+1 G F, for all x G F?2. It follows that the 

condition above is invariant under permutations of the three points, or multiplication 

of any generator x, by a non-zero scalar.). 

If the condition holds, then the special subplane II is unique, and the remain¬ 

ing points of n n U are those points [x] G U for which B{x, x1)5(x1, x2)£(x2, x), 

x2)B(x2, x3)B(x3, x) and B{x, x3)B(x3, xx )B(x1, x) all belong to F?. In fact, 

if any two of these three quantities belong to F,, then the third does also: for the 

product of these three quantities and the conjugate of B(xux2)B(x2,x3)B(x3,x1) 

can be rearranged as the product of six quantities of the form B(x, y)B(y, x), each 

of which lies on F? by the definition of a Hermitean form. This means that, if the 

triples abc,abd,acd of points all lie in special Baer subplanes, then these subplanes 
coincide. 

We show next that two points a, b of U lie in exactly q + 1 blocks of the second 

kind. There are q2 — 1 points on the line ax other than a and (a&)x. If x is one of these, 

then a Baer subplane containing a, b and x and invariant under the polarity must 

also contain the point (&.r)x on the line 6X. No three of a,6,z,(&x)x are collinear, 

so these four points lie in a unique Baer subplane, which is special. But a Baer 

subplane containing a and b contains q - 1 points of ax \ {a, (a6)x}. So there are 

(9 — !)/(<? ~ 1) = <7 + 1 special Baer subplanes containing a and b. 

This completes the construction of D, and shows that it is a 2-(g3 +1, q-\-1, q-\-2) 
design. 

We claim next that, in order to prove that the derived designs of V are general¬ 
ized quadrangles of order (q - 1, q + 1), it suffices to show 

(a) three points lie in at most one block; 

(b) there do not exist distinct points a,6,c,d and blocks B,C,D with a b c G D 
a,b,d G C, a,c, d G B. 

For (a) guarantees that, in a derived design Va, two points lie on at most one line 

while (b) precludes triangles. For p and L in Va with p £ L, the average number of 
points of L collinear with p is 

cl3 ' (<? + 2)(q + l)(g - 1 )/q2(q -f 2) • (q3 - q) = 1. 

But this number can never exceed 1, so it is always 1. 
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Proof of (a). Two points lie on a unique line (that is, a block of the first kind), 

and no three points of a block of the second kind are collinear (since these blocks are 

conics in Baer subplanes). Moreover, our discussion of special Baer subplanes shows 

that three non-collinear points lie in at most one block of the second kind. 

Proof of (b). Suppose that a configuration as described in (b) exists. At most 

one of the three blocks is of the first kind. If none is, then the comments about 

special Baer subplanes yield a contradiction. Suppose that a, 6, c are collinear. Then 

the Baer subplanes containing B and C share the four points a,d, {ad)1- and (6c)x, 

with no three collinear; hence they coincide, a contradiction. 

Exercises 

1. (a) Use the variance trick to show that a clique C in a pseudo-geometric 

(s, t, a) graph has size at most a + 1, with equality if and only if every vertex outside 

C has exactly a neighbours in C. 

(b) Hence show that a pseudo-geometric graph is geometric if every edge is 

contained in a unique clique of size s + 1. 

2. (a) Let V be a 4-dimensional vector space over F, carrying a non-degenerate 

alternating bilinear form B. Show that the points of PG(3,g) and the lines which 

are totally isotropic with respect to B form a. GQ with s = t — q. 

(b) Now let p be a. point, and consider the geometry whose points are the 

points of PG(3,q) not perpendicular to p, with lines of two types: 

the totally isotropic lines not containing p; 

the non-isotropic lines containing p. 

Prove that this geometry is a GQ with s = q — 1, t = q + l- 

3. Show that, if K is a (0, k)-set in a. projective plane n of order q, with k < q +1, 

then the set /CT of lines disjoint from K is a (0, (q/k))-set in the dual plane nT. 

Moreover, the partial geometry T(KT) (see Example (7.19)) is the dual of T(K-). 

4. This exercise outlines Denniston’s construction of (0,fc)-sets in PG(2,<?), 

where q is even and k divides q. 

(a) Let A be the additive group of Fv, where q is a power of 2. Show that the 

map x i—i ax2 + bx (a, 6 ^ 0) is a homomorphism of A with kernel {0,6/a}; so the 

image of this map is a subgroup A0 ol .4 with index 2 in A. Deduce that the image 

of the map x i—> ax2 + bx -f- c is a. coset of Aq, each value taken twice. 

(b) Now let Q(x,y) be an irreducible quadratic form over F?, and K a subgroup 

of A of order k, where k divides q. Prove that the set 

S = {(x,y) : Q[x,y) G K) 

meets every line of AG(2,<^) in 0 or k points. [The restriction of Q to a line through 

the origin is one-to-one. For a. line not containing the ongin, we have the situation m 
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(a); either A0 D K, in which case the proper coset consisting of values of Q is disjoint 

from iP, or else |A0 PI K\ = \(A \ A0) fl K\ = and each value is taken twice.] 

(c) Add a line at infinity to obtain a (0,&)-set in PG(2,g). 

5. (a) Let T> be an EGQ(s, t). If the point p is not in the block B, show that B 

is partitioned by the blocks through p which meet it in two points. Deduce that s is 

even. 

(b) Using this fact, complete the proof of (7.20). 

6. Let U be a unital in PG(2,g2), with q odd, as in Example (7.22). Let B be 

the set of triples {[xx], [x2], [x3]} of points of U for which B(x.u x2)5(x2, x3)5(x3, xx) 

is a square in Fq2. Prove that 

(a) the defining condition for B is invariant under permutations of the three points, 

or replacement of a generator x{ with a scalar multiple crx,-; 

(b) (X, B) is a regular two-graph. 

(These examples are due to Taylor (1977).) 

7. Let Q - (JA, B) be the (unique) generalized quadrangle of order (4, 2). Then Q 

is a l-(45, 5, 3) design. The following construction, due to Cameron (1991), produces 

2-designs V with T>r = Q for one point x. 

Construct two types of auxiliary structure as follows: 

• L-structures. One of these is a partition of the ten 2-subsets of a 5-set into five 

pairs, each pair consisting of two disjoint 2-sets. Show that 

(a) each point of the 5-set is not covered by exactly one of the five pairs- 

(b) there are exactly six different ways of imposing an L-structure on a set of 

five points. (These can be obtained from the six factorizations of the pair 

design on six points discussed in Chapter 6, by deleting a single point.) 

• P-structures. One of these is the dual of an affine plane of order 2. The points 

are partitioned into three sets of size 2 (corresponding to the parallel classes of 

lines in the affine plane), and each block is a transversal to these three classes. 

Prove that, given a set of six points which is already partitioned into three 2-sets, 

there are exactly two ways of imposing a P-structure with the given partition. 

Now take the geometry Q. For each line L of Q, impose an L-structure C{L) on 

L. Now consider a point p of Q. There are three lines LUL2,L3 containing p. In 

£(£,-), there is a unique pair of 2-sets not covering p; let P,u Pl2 be these pairs. Now 

consider the 6-set {Pi} ; i = 1,2,3; j = 1,2}), partitioned into three 2-sets by the 

lines Li (i — 1,2,3). Impose a P-structure V(p) on this set so as to induce the given 
partition. 

Now, let co be a point not in A, and let S be the incidence structure with point 

set X U {oo}, having blocks of two types: 

(a) all sets L U {oo} for L £ B\ 

(b) all unions of three 2-sets forming a block in some V{p). 

Prove that £ is a 2-(46, 6, 3) design and that £x = Q. 
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Show further that the 627.245 ways of assigning the structures give rise to at least 

627 • 245/46 • |Aut(£?)| > 1028 

non-isomorphic designs. 

Finally, show that a similar construction produces an 2-design extending any 

generalized quadrangle of order (2t,t), provided that the auxiliary structures exist. 

(Such quadrangles are known only for t = 1,2,4. For t = 1, there is a unique 

extension, which we have met in several guises. You may like to estimate the number 

of non-isomorphic 2-(298, 10, 5) designs which can be produced by this construction.) 

8. A strongly regular graph with parameters (28, 15, 6, 10) is pseudo-geometric 

(3, 4, 2). By (4.15), we know all the strongly regular graphs with these parameters; 

they are the complements of T(8) and the three Chang graphs. Which of these graphs 

are geometric? (See De Clerck (1979).) 

9. Define a distance function on the edge set E of the Petersen graph by setting 

0 if ex = e2; 
1 if ex and e2 have a common vertex; 
2 if an edge meets both ex and e2; 
3 if none of the above hold. 

(This is just the usual distance in the line graph of the Petersen graph.) 

Show that the five edges of a 1-factor are mutually at distance 2. Hence show 

that there are exactly six 1-factors, an}' edge in two, and any two edges at distance 

two in exactly one. Deduce that two 1-factors share a common edge. 

Does the Petersen graph have a 1-factorization? 

10. Suppose that V is a collection of Petersen subgraphs of the Hoffman- 

Singleton graph T with the property that any pentagon is contained in a unique 

member of V. (Such a set would contain one-fifth of all the Petersen subgraphs of P.) 

Prove that the incidence structure whose points are the edges of T, and whose lines 

are the 1-factors in all members of V. is a partial geometry (4,17,2), whose point 

graph is the graph of Chapter 6, Exercise 2 (with k = 7). 

REMARK. A set V with the required properties was found by Haemers (1981). 
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Strongly regular graphs with A = 0, p = 1 are Moore graphs of diameter 2. As 

we have seen, there are only finitely many of them. What about graphs satisfying 

one of these conditions? Retaining the condition p — 1 leads to the so-called Moore 

geometries, studied by Kantor (1977) and others. In this chapter, we follow the 

other direction, and consider graphs with A = 0, p > 1. These graphs are intimately 

connected with certain kinds of 2-designs. One of the principal results is an inequality 

for the parameters of such a graph, with the property that, if the bound is attained, 

then the 2-design is a 3-design. We conclude the chapter by pointing out that there 

is a generalization of this inequality to all strongly regular graphs; it is just the 

Krein bound, which we met in Chapter 2. Equality in the Krein bound has a similar 

interpretation in general. This leads to a natural strengthening of the condition of 

strong regularity. 

As in Chapter 5, we will have to deal with 2-designs whose parameters k and A 

have nothing to do with those of the graphs; so, temporarily, we use (n, a, c, d) for the 

parameters of a strongly regular graph. (Since these graphs will have no triangles, 

we will have c = 0.) 

Let T be a strongly regular graph with parameters (n, a, 0, d). We have d = a 

if and only if T is complete bipartite; this case is trivial and will not be considered 

further. Also, if d - 1 then L is a Moore graph, and its valency is a = 2,3,7 or 

possibly 57. We regard this case as being fairly well understood, and ignore it as 

well. Thus, we assume that 1 < d < a. 

Let x be any vertex of F. Let 2?(r,ai) denote the structure with point set r(a:) 

and block set T(x), incidence being defined by adjacency in T. 

(8.1) Proposition. V(T. x) is a 2-structure with parameters v = a, k = d, 

\ — d — 1, r = a — 1. h = ci(a — 1 )/d. possibly with repeated blocks. Two vertices of 

F(x) which are adjacent correspond to disjoint blocks. 

PROOF. All this is immediate from the definition and the fact that there are no 

triangles; for example, any two vertices of F(.r) are non-adjac^nt, and so have d 

common neighbours, of which one is x and the remainder lie in T(x). The existence 
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of two adjacent blocks with a common point would also create a triangle. □ 

In view of this, we will now use the design parameters v and k in place of a and 

d. Note that A = k — 1. 

Let us apply the integrality conditions. Type I can only occur if the graph is the 

pentagon, which we have excluded from consideration. Assuming Type II, we find 

that k2 — 4k + 4v is a perfect square. Since it is greater than k2 and of the same 

parity, we can put k2 — 4k + 4v — (k + 2s)2 for some positive integer s. Then we 

obtain: 

(8.2) Proposition, v — (s + 1 )k + s2, and 

1 /((s + l)£ + s2)((s + 2)fr + s2 —1) ((s + l)fc + s2)((s + 2)fc + s2-3)^ 

2 V k k + 2s ) 

are non-negative integers. □ 

In particular, the two terms inside the brackets are both integers. From this, 

we conclude that k divides s2(s2 - 1) and k + 2s divides s(s + l)(s + 2)(s + 3). The 

second condition implies that k + 2s divides k(k - 2)(k -4)(k — 6); so, if k ± 2, 4,6, 

then s is bounded by a function of A’, and there are only finitely many graphs with 

given k. (This observation is due to Biggs (1971).) For k = 2,4 or 6, however, the 

integrality condition permits infinitely many values of s. For example, if k = 2, then 

we have v = (s + l)2 + 1, and s + 1 is not divisible by 4. 

Having chosen a potential 2-(v, k. k - 1) design V = (A, B) for P(T, x), we can 

begin constructing the graph: the vertex set is {oojllA UB, where oo is a new object; 

oo is joined to every vertex in A; a vertex in A and one in B are joined precisely 

when they are incident. Only the edges within B remain to be determined; and we 

have the restrictions that only disjoint pairs of blocks can be adjacent, and each block 

must be adjacent to v — k others. 

Only four graphs satisfying our conditions are known. We now examine each of 

these graphs from our present perspective. 

(8.3) Example. The Clebsch graph. Here V is the 2-(5, 2, 1) pair design on 5 

points. Since only three pairs are disjoint from a given one, the structure of the 
graph is determined! 

(8.4) Example. The Gewirtz graph. V is the pair design on 10 points. These 10 

points can be regarded as forming the projective line over F9, and the joining rule for 

disjoint pair can be expressed in terms of cross ratio, as follows: {a, b) and {c, d) are 
joined whenever 

(a — c)(b — d) 

(a — d)(b — c.) 
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is a primitive fourth root of unity in F9. 

(8.5) EXAMPLE. The complement of the block graph of the 3-(22, 6, 1) design (see 

Table 5.1). T> is a 2-(16, 4, 3) design, defined as follows. Let V be a 4-dimensional 

vector space carrying a non-degenerate alternating bilinear form B. The points of the 

design are the vectors of V; the blocks are all cosets of 2-dimensional subspaces of V 

on which the form B is identically zero. Two blocks are adjacent if they are disjoint 

but not parallel. (Two blocks are parallel of they are cosets of the same subspace.) 

(8.6) EXAMPLE. The Higman-Sims graph (Higman Sz Sims (1968)). In this case, 

T> is the unique 3-(22, 6, 1) design (which, by (1.4), is also a 2-(22, 6, 5) design). 

According to Table 1.1, there are exactly 16 blocks disjoint from any block. Since 

r(x) has valency 22 — 6 = 16, the entire graph is again determined! We will examine 

this remarkable situation further (and prove that the Higman-Sims graph is strongly 

regular) below. 

In (1.20), we proved a. lower bound for the number of blocks not disjoint from a 

given block in a 2-design. Using this, we obtain the following result. 

(8.7) Theorem. If a strongly regular graph with parameters (n,v,0,k) exists, 

then 

v > \ (3fc + 1 + (k - 1 )Vik + l) . 

If v = [s + l)k + s2 (as in (8.2)), then k < s(s + 1). 

Proof. The number of blocks of V{T, x) is v(v — 1 )/k. So, by (1.20), 

k2 — 3 k + v 

So 

k(k2 - 3 k + t>) < (v - k)(v -k- 1), 

which gives the result. □ 

This result excludes such values of (t>, k) as (9, 4) and (256, 48), which satisfy 

the integrality condition. 

We now turn to the case of equality in (8.7). We saw in Chapter 5 that, of the 

three statements about a 2-clesign T> with 2 < k < v — 1, 

(a) V is a 3-design, 

(b) V is quasi-symmetric with x = 0, 

(c) b = v(v - 1 )/k, 
any two together imply the third. For our designs V(T,x), (c) holds, and so (a) and 

(b) are equivalent. 
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(8.8) Theorem. Let T be strongly regular with parameters (n, v, 0, k), where 

2 < k < v. Then the following are equivalent: 

(a) T>(T,x) is a 3-design; 

(b) V(T,x) is quasi-symmetric: 

(c) r|I» is strongly regular: 

(d) v = j (3k -f- 1 + (k — l )\/4k -L 1 

(8.9) REMARK. The Gewirtz graph satisfies (b) but none of the other conditions; so 

the hypothesis that k > 2 is essential. 

Proof. The remarks before the theorem show that (a) and (b) are equivalent. If 

either holds, then V(T,x) is an extension of a square 2-design, and (1.35) gives the 

following possibilities for the parameters: 

(a) v = \y, k = 2y; 

(b) v = y{y2 + 3y + 1), k = y(y + 1); 

(c) v = 496, k = 40, y = 4. 

Of these, (a) is excluded by (8.7), and (c) fails the rationality condition (8.2). (The 

possibility v = 112, k = 12, y = 2 also fails the rationality condition; the computation 

of Lam et al. (1983) is not required.) In case (b), the equality (d) of the theorem is 
easily verified. So (a) implies (d). 

If (d) holds, then the bound in (8.6) is attained. We conclude that 

(a) V(T,x) is quasi-symmetric (by (1.20)); 

(b) vertices in r(a:) are adjacent if and only if (as blocks) they are disjoint. 

So F|r(;r) is the complement of the block graph of T>{T, x), and hence strongly regular, 

by (5.3). So (d) implies all the other conditions in the Theorem. 

Finally, suppose that (c) holds. Let P|r(.T) have parameters (6, v — k,0, g). Then 

two non-adjacent blocks are adjacent to k further vertices of T, of which g are blocks; 

so they intersect m k — g points. Adjacent blocks are disjoint, because there are no 

triangles. So 22(r,x) is quasi-symmetric. Thus (c) implies (b). q 

There is a partial converse, generalizing the Higman-Sims construction. 

(8.10) Theorem. Let V = (A'.S) he » 3-(y(f + 3y + 1), + 1), y - 1) design, 

tor some y > 1 (that is, an extension oi a square 2-design in case (b) of (1 35) ) Let 

T be the graph with vertex set {oo} U A' U B, in which oo is joined to all vertices in 

A, a vertex m X and a vertex in B are joined if they are incident, and two vertices 

m B are joined if they are disjoint. Then T is strongly regular. 

Proof. Straightforward counting. ^ 

This construction has a curious consequence concerning extendablity of square 

2‘, :'?”?■■ W« °bserved Cha-P‘“ 1 ‘‘rat any Hadamard 2-design is uniquely extend¬ 
able. What about the second case, the 2-((A + 2)( A3 +4A + 2), A5 +3A + 1, A) designs? 
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For A = 1, there is a unique such design, the projective plane of order 4, and it has 

three different (though isomorphic) extensions, corresponding to its three classes of 

ovals. For A = 2, there are four known 2-(56, 11, 2) designs. (The first has a polarity 

whose associated graph is the Gewirtz graph (see also Hall et al. (1970)); the others, 

one self-dual and one dual pair, are due to Assmus, Mezzaroba and Salwach (1977) 

and Denniston (1979).) However Bagchi (1988, 1991) proved that no 2-(56, 11, 2) 

design can be extendable. Concerning larger values of A, we have the following result. 

(8.11) Corollary. If a 2-((A + 2)(A2 + 4A + 2), A2 + 3A + 1, A) design is extendable, 

then so is its dual. 

PROOF. Let V be the extension, with added point p. Perform the construction of 

(8.10) to obtain a strongly regular graph F. By (8.8), T>(T,p) is a 3-design; and it is 

easily seen to be an extension of the dual of Vp. □ 

Within a strongly regular graph with the parameters of (8.8), further graphs and 

designs can be found. If p and q are adjacent vertices, the, T(p) and T(p) C\T(q) carry 

strongly regular graphs with parameters ((y2 + 3y + 1 )(y2 + 2y — 1), y2(y + 2), 0, y2)) 

and (y(y + 2)(y2 + 2y - 1), y(y2 + y - 1), 0, y(y - 1)) respectively (the complements of 

the block graphs of V and its point residual Vq respectively). In this way, we find the 

77- and 56-point graphs as subgraphs of the 100-point Higman-Sims graph. Also, if 

p and r are non-adjacent, then (T(p) \ F(r),r(?’) \ T(p)) (with incidence defined by 

adjacency) is a square 2-{y2(y + 2), y(y + 1), y) design. (This is the design 8° in the 

proof of (1.35).) 

We summarize in Table 8.1 the parameters of the known strongly regular graphs 

with no triangles, including Moore graphs but excluding complete bipartite graphs. 

For ease of reference, we revert to the convential notation for the parameters n, k, A, p; 

also, k,r,s are the eigenvalues. The 77-graph is the complement of the block graph 

of the 3-(22, 6, 1) design. 

Graph ?? k A /' 
r 5 

Pentagon 5 2 0 1 kUb-l) H-v'5 -1) 
Petersen 10 3 0 1 1 _2 

Clebsch 16 5 0 2 1 -3 

Hoffman-Singleton 50 7 0 1 2 -3 

Gewirtz 56 10 0 2 2 -4 

77-graph 77 16 0 4 2 -6 

Higman-Sims 100 22 0 6 2 -8 

Table 8.1. 

We turn now to a wide generalization of (8.7), to arbitrary strongly regular 

graphs. The starting point of this generalization is the following observation, whose 

proof involves nothing but algebraic manipulation: 
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(8.12) Proposition. For strongly regular graphs with no triangles, the inequality 

(8.7) is equivalent to the Klein bound (2.26)(b). □ 

Of course, the Krein bound has an algebraic proof; the elementary counting ar¬ 

gument yielding (8.7) is not available in general. Most of the results in the remainder 

of this chapter have algebraic proofs, which we will not give. 

The subconstituents of a strongly regular graph T are defined to be the regular 

graphs T|r(x) and r|r(x), for all vertices x. By (8.8), equality in (8.7) is characterized 

by the fact that the subconstituents r|r(x) are strongly regular (and, of course, the 

other subconstituents are null). If we temporarily extend the definition of strongly 

regular graphs to include complete and null graphs, we could ask: Which strongly 

regular graphs have all subconstituents strong^ regular; in particular, is this condi¬ 

tion equivalent to equality in the Krein bound? (Note that both of these hypotheses 

are preserved if the graph is replaced by its complement.) 

(8.13) Example. The question in the second form given above has a negative 

answer. The graphs L2{n), for n > 2, have strongly regular subconstituents, but do 

not meet the Krein bound. The same is true of the graphs Tf(m) of (5.17), for m > 2 

(except for the Clebsch graph, which does attain the bound). 

This question was considered by Cameron, Goethals and Seidel (1978a). To 
state their results, we need some further definitions. 

A pseudo-Latin square graph is a pseudo-geometric graph (s, t, a) with a = t (see 

Chapter 7). In other words, it is a strongly regular graph whose eigenvalues k,r,s 

satisfy k — s(r — s — 1). It we put r — s = m and s = — d, then the parameters are 

(m ,d(m - l),d2 - 3d + m,d(d - 1)). Such a graph is denoted by PLd(m). If it is 

geometric, then it is the point graph of a net of order m and degree d, and is called a 

Latin square graph, denoted Ld(m). (Thus, the Shrikhande graph is a PL2(4) graph.) 

Mesner (1965) observed that, if we replace m and d by their negatives in the 

formulae giving the parameters for PLd(m), we obtain a set of parameters satisfying 

the Integrality Condition, viz. (m2, d(rn + 1), d? + 3d - m, d(d + 1)). (Note that we 

must have m < d? + 3d, since A is non-negative.) A graph with these parameters is 

said to be of negative Latin square type, and denoted NLd{m). 

A conference graph is one satisfying Case I of the Integrality Condition, that is 

with parameters (4^ + 1,2y, y - 1, y). Note that, if the number of vertices is a square! 

then a conference graph is simultaneously of pseudo- and negative Latin square types- 

conversely, a graph which is of both of these types is a conference graph. 

(8;14) Proposition. A strongly regular graph, whose valency is equal to the 

multiplicity of a non-principal eigenvalue, is of pseudo- or negative Latin square type 
or a conference graph. 
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A Smith graph is a strongly regular graph with parameters 

2(r — s)2((2r + l)(r — s) — 3r(r + 1)) 

n~ (r_5)2_r2(r+1)2 

_ -g((2r -f l)(r - s) - r(r + 1)) 

(r — s) + r(r + 1) 

^ _ ~r{s + l)((r - s) - r(r + 3)) 

(r-s) + r(r + l) 

_ -(r + 1 )s((r - s) - r(r + 1)) 

^ (r — s) + r{r + 1) 

or the complement of one. (The name refers to the work of Margaret Smith (1975), 

who considered rank 3 graphs with these parameters.) Note that the non-negativity 

of A and g shows that necessarily —s > r(r + 2). 

Finally, an imprimitive graph is either a disjoint union of complete graphs, or 

the complement of one (a complete multipartite graph). Any other strongly regular 

graph is called primitive. 

Now, the main results of Cameron, Goethals and Seidel are summarized in the 

following two theorems. 

(8.15) Theorem, (a) A primitive strongly regular graph attains the Krein bound 

if and only if it is the pentagon or a Smith graph. 

(b) The subconstituents of a Smith graph are strongly regular. □ 

(8.16) Theorem. Let T be a strongly regular graph, and suppose that its 

subconstituents T|T(x) and r|T(x) are both strongly regular, for some vertex x. 

Then T is the pentagon, a pseudo- or negative Latin square graph, or a Smith graph. 

□ 

(8.17) Remark. The graphs in Example (8.13) are pseudo- or negative Latin square 

graphs. But not all such graphs have strongly regular subconstituents (see Exercise 7). 

The problem of finding the ones which do is open. 

As we said, we do not give proofs of these theorems. (To get an idea of the 

flavour of the proofs, see Exercise 6 of Chapter 4.) But one feature of the proof is 

worth noting. There is a concept of ‘spherical f-design for finite sets of points on the 

Euclidean unit sphere, developed by Delsarte. Goethals and Seidel (1977). Let S be 

a subset of the unit sphere, with the property that the pairs of points in S make only 

two angular distances a and Id. We can form a graph T by joining pairs of points 

at distance a. then it can be shown that S is a spherical 2-design if and only if F 

is strongly regular, and S is a. spherical 3-design if and only if T attains the Kiein 

bound. This gives a nice analogue of (8.8)! See also Cameron, Goethals and Seidel 

(1978a, b). 
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We now give two applications of these results. The first concerns generalized 

quadrangles. 

For pseudo-geometric (s,t, 1) with a > 1, the Krein bound is equivalent to the 

assertion that t < s2 (compare Exercise 3). Now Cameron, Goethals and Seidel 

(1978a) showed the following: 

(8.18) Proposition. A pseudo-geometric (s,s2,l) graph is geometric. 

PROOF. Since the Krein bound is attained, (8.15) shows that the subconstituents 

are strongly regular. The first subconstituent r|T(x) has s(s2 + 1) vertices and has 

valency s - 1. So, if it is strongly regular, then (2.5) shows that it has ‘/i = O’, and 

so it is a disjoint union of s7 + 1 complete graphs of size s. Thus, every edge of T lies 

in a clique of size s + 1, and T is geometric. □ 

It is notable that, apart from the point graphs of generalized quadrangles with 

t = a2, there are (up to complementation) only four known Smith graphs: the Clebsch 

graph, the Higman-Sims graph, the McLaughlin graph, and the 162-vertex subcon¬ 

stituent of the McLaughlin graph. In their paper, Cameron, Goethals and Seidel 

prove that each of these, as well as the pseudo-geometric (s, s2,1) graphs for s = 2, 3 

(the Schlafh graph and the other subconstituent of McLaughlin’s graph) are charac¬ 

terized by their parameters. Table 8.2 gives these parameters. 

Graph n k A b r s 
Clebsch 16 5 0 2 i -3 
Schlafli 27 10 1 5 i -5 

Higman-Sims 100 22 0 6 2 -8 
1st subconst, of McL 112 30 2 10 2 -10 
2nd subconst, of McL 162 56 10 24 2 -16 

McLaughlin 275 112 30 56 2 -28 

Table 8.2. 

The second application concerns "higher regularity conditions’ for graphs, which 

have a design-like flavour. Let t Ire a positive integer. The graph T is said to be t-tuple 

regular if, for any set S of vertices with |5| < t, the number of common neighbours 

of S depends only on the isomorphism type of the induced subgraph on S. It follows 

immediately from the definition that a graph is 1-tuple regular if and only if it is 

regular and is 2-tuple regular if and only if it is strongly regular (possibly complete 

or null). Moreover, an inclusion-exclusion argument shows that the complement of a 

t-tuple regular graph is also t-tuple regular (Exercise 11). 

(8.19) Proposition. A graph is 3-tuple regular if and only if it is strongly regular 
with strongly regular subconstituents. 
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PROOF. The constancy of A and p for the subconstituent r|T(x) follows from the 

definition of 3-tuple regularity in the cases where 5 is a triangle or a path of length 

2 respectively. The same argument applied to F handles the other subconstituent.□ 

Thus, (8.16) describes 3-tuple regular graphs. 

The absolute bound (2.23) for strongly regular graphs shows that the eigenvalues 

of a Smith graph satisfy — s < r2(2r + 3). We define an extremal Smith graph to be 

a Smith graph in which — s = r2(2?’ + 3), or the complement of such a graph. More 

generally, the following result holds: 

(8.20) Proposition. A primitive strongly regular graph attains the absolute 

bound if and only if it is the pentagon or an extremal Smith graph. □ 

Now the following theorem is due to Buczak (1980) and Cameron (1980a): 

(8.21) Theorem, (a) A graph is 4-tuple regular if and only if it is a regular disjoint 

union of complete graphs, a regular complete multipartite graph, the pentagon, L2(3), 

or an extremal Smith graph. 

(b) A graph is 5-tuple regular if and only if it is a regular disjoint union of 

complete graphs, a regular complete multipartite graph, the pentagon, or L2(3). All 

these graphs are t-tuple regular for every t. 

The proof of this theorem involves solving a jigsaw puzzle. By (8.16), the graph 

and its subconstituents are imprimitive, pseudo- or negative Latin square type, the 

pentagon, or Smith graphs; it is necessary to check how the parameters can be fitted 

together. A simpler puzzle of the same kind is given as Exercise 12 below. □ 

Exercises 

1. Let (AT B) be the 3-(22, 6, 1) design, and T the Higman-Sims graph with 

vertex set {oo} U X U B. Let Ao be a. 7-subset of A forming a block in a 1-point 

extension (that is, meeting every block in 1 or 3 points), and t30 the set of blocks 

meeting X0 in one point. 

(a) Prove that the induced subgraph of T on {oo} U X0 U B0 is the Hoffman- 

Singleton graph. 
(b) Show that any induced Hoffman—Singleton subgraph of T containing oo arises 

in this way. 

2. Let T be the Higman-Sims graph, and ro an induced Hoffman-Singleton 

subgraph, with vertex sets V and VQ respectively; let V, = V \ V0. 

(a) Use the variance trick to prove that the induced subgraph Ti on Vx has 

valency 7. [Let x, be the number of vertices in Vx with i neighbours in U0 • • • ] 

(b) Prove that Tx has girth 5. [Choose p € Vi, and let y{ be the number of 

vertices q E Vu not adjacent to p, such that p and q have i common neighbours in V0 
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(c) Deduce that I\ is also isomorphic to the Hoffman-Singleton graph. 

3. Let T be a strongly regular graph containing no induced subgraph isomorphic 

t° <J> 
(a) Prove that r|r(x) is a disjoint union of complete graphs of size A + 1. 

(b) Define a structure T>*{Tx), whose points are the cliques in T(x) and whose 

blocks are the vertices in T(x), incidence being defined by adjacency. Show that it is 

a 2-structure. 

(c) Derive an inequality similar to (8.7) by the same technique. [Hint: if p and 

q are non-adjacent vertices, let xf be the number of vertices r, non-adjacent to p and 

q, for which p, q and r have exactly i common neighbours; apply the variance trick.] 

(d) Show that the point graph of a generalized quadrangle satisfies the hypoth¬ 

esis, and deduce that a generalized quadrangle of order {s,t) satisfies t < s'2 if ,s > 1. 

4. Let a: be a vertex of the strongly regular graph T with parameters (n,a,c,d), 

where c > 0 and d > 0. Let V(T,x) have point set P(x) and block set T(x), with 

incidence defined by adjacency. Prove that T>(T, x) is a 2-structure if and only if 

r|r(x) is strongly regular with parameters (a, c,c - d + C-^P- 

5. The preceding exercise gives the possibility of a strongly regular graph with 

parameters (26, 10, 3, 4), in which r|r(x) is the Petersen graph, and T>(T,x) is a 
2-(10, 4, 2) design. 

Let T0 be the Petersen graph, with vertex set X. Let B be the set of 4-subsets 

of X for which the induced subgraph is the disjoint union of two edges. Prove that 

V = (X, B) is a quasi-symmetric 2-( 10, 4, 2) design. (We have seen this design several 

times before in different guises; do j'ou recognize it?) 

It remains to find a joining rule for blocks, so that each block is joined to six 

others. The block graph of T> has valenc}^ 6. Prove that this graph does not work. 
Can you find one that does? 

(Paulus (1973) found six different examples of strongly regular graphs with pa¬ 

rameters (26, 10, 3, 4) having this propel^.) 

6. Prove that the condition m < d(d + 3) for NLd(m) graphs is equivalent to 
the Krein bound. 

7. Prove that, if a, pseudo-Latin square graph PL3(m) has strongly regular 
subconstituents, then m < 4. 

8. Show that the graph Te(m) of (5.17) is of pseudo-Latin square type PLt+1(2t) 

if e = +1, and of negative Latin square type NLt_x{2t) if e = — 1, where t = 2m~1. 

9. The strongly regular graph on 231 vertices constructed in Exercise 2 of Chap¬ 

ter 5 is pseudo-geometric (10, 2, 1). Prove that it is not geometric. 
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10. Find an infinite family of 3-tuple but not 4-tuple regular graphs whose 

subconstituents are all 3-tuple regular. 

11. Use the Principle of Inclusion and Exclusion (1.57) to show that, if a graph 

is t-tuple regular, then so is its complement. 

12. (a) If T is f-tuple regular (with t > 1), then its subconstituents are (t — 1)- 

tuple regular. 

(b) Hence prove, by induction, that a graph which is Ttuple regular for all t 

is a disjoint union of complete graphs, a complete multipartite graph, the pentagon, 

or L2(3). 

(This result is due to Gardiner (1976), though it is stated there with stronger hy¬ 

potheses, viz. that any isomorphism between induced subgraphs of T can be extended 

to an automorphism of T. This group-theoretic condition bears the same relation to 

the hypothesis of (8.16)(b) or this exercise as ‘rank 3 graph’ does to ‘strongly regular 

graph’. This is a rare case where global symmetry is forced by a purely combinatorial 

regularity assumption.) 





9. Codes 

In this chapter we introduce Coding Theory. This topic, also known as the theory 

of error-correcting codes, has its origin in communication theory. Applications are 

concerned with several situations in which ‘coded’ messages are transmitted over a 

so-called noisy channel that has the effect that symbols in ‘words’ of the message are 

sometimes changed to other symbols of the ‘alphabet’. The system is designed in 

such a way that the most likely error-patterns (at the receiver end) can be recognized 

and corrected. In this book these practical applications are of no concern. During 

the development of the discipline of coding theory it turned out that several results 

from design theory could be used to construct ‘good’ codes. Later, theorems from 

coding theory contributed considerably to design theory. These connections are what 

interests us here and therefore the subject will be introduced as an (abstract) area of 

mathematics. 

In coding theory one considers a. set F of q distinct symbols which is called the 

alphabet. In practice q is generally 2 and F = F2. In most of the theory one takes 

q = pr (p prime) and F = F?. The code is called a <y-ary code (binary for q — 2, 

ternary for q = 3). 

Using the symbols of F. one forms all n-tuples, that is, Fn, and calls these n- 

tuples words and n the word length. If F = F,, we shall denote the set of all words 

by F" and interpret this as n-dimensional vector space over the field F. Sometimes 

we omit the index and speak of the space Fn. 

In Fn we introduce a. distance function d (called Hamming distance) which is the 

natural distance function to use when one is interested in the number of errors in a 

word that is spelt incorrectly. 

(9.1) Definition. For x e F" and y £ Fn we denote by d(x,y) the number of 

coordinate places in which x and y differ, that is, 

d(x,y) = |{* : 1 < * < n; x{ ± j/J|. 

The following two definitions are directly connected with d and the language of 

metric spaces. 
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(9.2) DEFINITION. For x e F" we define the weight w(x) of x by w(x) := d(x, 0). 

(As usual 0 denotes the zero vector in Fn.) 

(9.3) DEFINITION. For p > 0 and x G F" we define the ball of radius p with centre 

at x by 

B{x,p) ■■= {y G Fn : d(x,y) < p). 

REMARK. Balls are commonly referred to as ‘spheres’ in the literature; for example, 

the result of Exercise 1 is the sphere-packing bound. We have preferred the mathe¬ 

maticians’ usage. 

Consider a subset C of Fn with the property that any two distinct words of C 

have distance at least 2e + 1. If we take any x in C and change t coordinates, where 

t < e (that is, we make t errors), then the resulting word still resembles the original 

word more than it resembles any of the others (that is, it has a smaller distance to x 

than to other words of C). Therefore, if we know C, we can correct the t errors. In 

coding theory such a set C is called an e-error-correcting code. Formally we define: 

(9.4) Definition. An e-error-correcting code C is a subset of F" with the property 

VxGcVyec [x/y4 r/(x, y) > 2e + 1]. 

This definition implies that balls of radius e around distinct codewords are dis¬ 

joint. If these balls also have the property that they cover the space (a rare but very 

interesting property), then the code is called perfect. 

(9.5) Definition. An e-error-correcting code C in Fn is called perfect if 

U B(x,e) = Fn. 
xec 

Many of the codes that we shall stuclyr have the property that as a subset of the 
space of words they are linear: 

(9.6) Definition. A ^-dimensional linear subspace C of F" is called a linear code 
or [n, k] code over the field F^. 

If it is not known whether C is linear, but we do know that |C| = M, then we 

use the notation (n, M) code. If d is known we write [n, k,d] code or (n,M,d) code. 

The erroi-coirecting capacity ol a code is determined by the minimum distance 

between all pairs of distinct codewords. 
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(9.7) Proposition. The minimum distance of a linear code is equal to the 

minimum weight among all nonzero codewords. 

PROOF. If x E C, y E C, then x — y E C and d(x, y) = d(x — y, 0) = w(x — y). □ 

We shall now look at two ways of describing a linear code C. The first is given 

by a generator matrix G, which is a matrix for which the rows are a set of basis 

vectors of the linear subspace C. This means that C = {aG : a E F*1}. (Again k is 

the dimension of the code.) We shall call two codes equivalent if one is obtained from 

the other by applying a fixed permutation to the positions for all codewords (e.g. 

reversing the order of the coordinates in all codewords). One of the properties that 

interest us most, namely the minimum distance of a code, does not change under 

such a permutation. It is now clear that for any linear code there is an equivalent 

code that has a generator matrix G of the form 

(9.8) G = (7, P), 

where Ik is the k by 7 identity matrix and P is a k by n — k matrix. This is called 

the standard form for the generator matrix. 

(9.9) REMARK. Sometimes the definition of equivalence is extended by also allowing 

a fixed permutation acting on the alphabet, or even possibly different permutations 

acting on the alphabet symbols in each coordinate position. (This most general group 

of equivalences is referred to as the wreath product of the permutation groups on al¬ 

phabet symbols and on positions.) Such transformations preserve the cardinality and 

minimum distance of the code; but, in general, linearity may be lost. However, if 

the permutations of the alphabet which are permitted are restricted to be multiplica¬ 

tions by non-zero field elements, then a code is transformed into an equivalent code 

by acting on it with a monomial matrix (a. matrix with exactly one non-zero entry in 

each row or column) instead of a permutation matrix, and so a code equivalent (in 

this sense) to a linear code is linear. This form of equivalence, which we shall refer 

to as ‘monomial equivalence1, is sometimes important (see Exercise 12). 

A code G is called systematic if there is a 7-subset, of the coordinate places such 

that to each possible 7-tuple of entries in these places there corresponds exactly one 

codeword. By (9.8) a linear code is systematic. 

We now come to the second description of a. linear code C. 

(9.10) DEFINITION. If G is a. linear code of dimension 7, then 

Gx := {x E F” : Vy€C[(x, y) = 0]}, 

where (x, y) denotes the usual inner product or dot product in Fn, is called the dual 

code of G. 
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The code C1 is an [n, n — k} code. If H is a generator matrix for the dual code 

C1, then H is called a parity check matrix for C. In general the term ‘parity check’ 

is used for any word 0 that is orthogonal to all the words of the code. (The term 

comes from considering the binary case; a word belongs to C if and only if it has an 

even number of Is in those positions where the Is occur in any parity check for C.) 

We shall call any matrix H for which the rows generate Cx a parity check matrix 

(that is, we will allow H to have dependent rows in some cases). Such a parity check 

matrix H then defines the code C by 

(9.11) C = {xgF“ : xHT = 0}. 

The reader is warned that often two codes C and C* are called duals when actually 

C* is equivalent to the dual of C. Although this has some advantages it also causes 

confusion! 

A code is called self-dual if C = Cx. If C C Cx, then the code C is called 

self-orthogonal. 

Let us consider an important example of linear codes. Consider the lines through 

the origin in AG(m, q). Along each of these lines choose a vector x; (i — 1,2,..., n 

(qm ~ !)/(<? — !))• So we have a representation of the points of PG(m — 1 ,q). Form 

the matrix H (m rows, n columns) with the vectors x,- as column vectors. Since no 

two columns of H are linearly dependent, we see that H is a parity check matrix for 

a code C in which every nonzero word x has weight at least 3. In fact the minimum 

weight of C is clearly 3. The code C has dimension n — m. The code is called the 

[n,n — m, 3] Hamming code over F?. 

(9.12) Theorem. Hamming codes are perfect codes. 

Proof. Let C be a [n,n — m] Hamming code over Fg. Then the balls of radius 1 

around codewords are disjoint. Each such ball contains 1 + n(q - 1) = qm words of 

F"- The number of codewords is qn~m. So, together the balls of radius 1 around 

codewords cover the whole space. □ 

Let C be any code. To every word (c,,c2.cn) of C we adjoin an extra letter 

co (say in front) such that c0 + c, + . .. + cn = 0. In earlier terminology we could 

say that we require the all-one vector 1 to be a parity check. The symbol c0 is called 

an overall parity check (symbol). In this way we obtain a code C which is called the 

extended code corresponding to C. If C is linear and H is a parity check matrix for 
C, then 

(l 1 0 
1\ 

0 
Vo 

H 
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is a parity check matrix for C. Of course if C already has 1 as a parity check vector, 

then the extension is trivial because c0 = 0 for all words of C. However, if C is a 

binary code with odd minimum distance d, then obviously the minimum distance of 

C is d + 1. 

For our first connection to the theory of designs we consider as an example the 

extended [8,4] binary Hamming code. We have seen above that 

(1 l 1 1 1 1 1 i\ 
0 0 0 0 1 1 1 i 
0 0 1 1 0 0 1 i 

Vo 1 0 1 0 1 0 i) 

is a parity check matrix for this code. It is easily seen that the code is equivalent to 

a code with generator G = (I4 J4 — /4). If we make a list of the sixteen words of this 

code, we find 0, 1, and fourteen words of weight 4. Now, since two words of weight 4 

have distance at least 4, they have at most two Is in common. It follows that no word 

of weight 3 is a ‘subword’ of more than one codeword. There are = 56 words of 

weight 3 and each codeword of weight 4 has four subwords of weight 3. So all words 

of weight 3 are covered once. 

(9.13) Proposition. The fourteen words of weight 4 in the extended [8,4] 

Hamming code form a 3-(8, 4,1) design. □ 

Besides as an example, the discussion above has served a second purpose, namely 

to show that it can be useful to know how many words of some fixed weight i are 

contained in a code C. A simple way to describe such information is given in the 

following definition. 

(9.14) DEFINITION. Let C be a code of length n and let A, (i = 0,1,..., n) denote 

the number of codewords of weight i. Then 

A(^V):^J2AiC 
i=0 

is called the weight enumerator of C. 

The weight enumerators of a code C and its dual C1 are related. The relation 

is due to F. J. MacWilliams (1963). 

(9.15) Theorem. Let A(£,q) he the weight enumerator of an [n, k] code over F? 

and let Ax(£, q) be the weight enumerator of the dual code. Then 

AJL{£,r)) = q kA(ri-Z,ri + {q- 1)£). 
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Proof. Let x be any nontrivial character of (F?, +) (that is, a homomorphism from 

the additive group of F„ to the multiplicative group of non-zero complex numbers). 

We will use the easily verified property that 

Y y(c) = 0. 
ceF, 

We denote F?n by TZ. We define /(v) := £u,(vV w{v\ Furthermore, we define 

9{u) := Y X((u, v))/(v). 

Then we have 

YaH = Y /(v) Y x((u,v)). 
uGC vG TZ u GC’ 

Here the inner sum is |C| if v E Cx. On the other hand, if v ^ C'x, then as u runs 

through C the inner product in the inner sum takes on every value in F3 the same 

number of times. So then the inner sum is 0. This proves that 

:C<7(u) = |C|-Ax(£,7;). 
uGC 

For a 6 F, we write w(a) 1 if a ^ 0 and ic(0) := 0. Then we have 

<7(ii)= ]T ... Y, r(t,l)+ +(1-w(“^Y(u1n1 + ... + unun) 
^l€F, tin6F, 

= n \Y 
t=i (ueF, 

ILV 

Since the inner sum is rj + {q — l)f if u{ = 0 and it is 

£ Y x(«0 = v - £ 

if Ui / 0, we find 

g(u) = (r?-rul(i? + (?-l)(r”(u). 

Therefore we are done. □ 

In Chapter 13 we shall show how this equation played an essential role in the 

proof of the nonexistence of the projective plane of order 10. 

For the sake of completeness we mention that generalizations of (9.14) to non¬ 

linear codes are known (cf. Mac Williams, Sloane, and Goethals (1972) and Delsarte 

(1973)). 

We give one example of a nonlinear code constructed by using design theory. It is 

not difficult to show (see Exercise 6) that a binary code of length 10 with minimum 

distance 5 can have at most twelve codewords. To construct a code meeting this 
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bound we take the rows of the incidence matrix of the 2-( 11,5,2) Paley design and 

adjoin the all-one word 1 to this set. These twelve binary words then clearly have 

mutual distance 6. By deleting a coordinate we obtain a code with the required 

properties. 

The reader interested in nonlinear codes is referred to MacWilliams and Sloane 

(1977). 

Exercises 

1. Prove that if a binary (n, M, 2e + 1) code exists, then 

2. Show that the parameter set (6,9,3) satisfies the conditions of Exercise 1 but 

that a binary code with these parameters does not exist. 

3. Let C be an [n, k] code over F, that is systematic on any k coordinate positions. 

Show that d — n — k + 1. Such a code is called a maximum distance separable code 

(MDS code). Prove that if C is MDS, then Cx is also MDS. 

4. Let C be an [?z, k, d] binary code. Consider a generator matrix G of the form 

fl 1 ... 1 1 0 0 ... 0 0\ 

V A B )’ 

where the first row has weight w < 2d, A has size k — 1 by w, and B has size k — 1 by 

n — w. The matrix B generates a binary code C'. Show that C' is a \n — w, k — 1, d'\ 

code with d' > d — jw. If w = d the code C' is called a residual of C. 

Show that a binary [n, n — 7,5] code does not exist if n > 12. (Note that the 

condition of Exercise 1 is satisfied for n < 15.) 

It is also possible but more tricky to show that a [12,5,5] code does not exist (but 

in Chapter 11 we shall construct a (12,32,5) binary code). To do this one shows that 

B is essentially determined and that it is not possible to find a matrix A satisfying 

the requirements. 

5. Let the matrix A be the M by n matrix with all the codewords of an (n, M, d) 

code C over F9 as its rows. Estimate in two ways the sum of the distances of all pairs 

of codewords (or rows). Use this to show that 

M < 
d 

d — 7i(l — f/_1 ) 

6. Show that a binary (10, M, 5) code has M < 12. 

7. Let C be the dual of an [??., n - 3] Hamming code over Fp, where n = p- +p+1. 

Show that any two words of C have distance p~. Compare this result with Exercise 5. 

Determine the weight enumerator of the corresponding Hamming code. 
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8. Let C be a binary perfect e-error-correcting code of length n with 0 £ C. 

Consider the words of weight 2e + 1 in C as characteristic functions of subsets of the 

set {1, 2,.. ., n). Prove that this is a Steiner system (e + l)-(n, 2e + 1,1). 

9. Let C be a perfect e-error-correcting code over F? with 0 £ C. Prove that 

the weight enumerator of C is uniquely determined. 

10. Show that an [8,4] self-dual code over Fp exists. 

11. Use Theorem (9.14) to prove that a ternary self-dual code of length 10 does 

not exist. 

12. This exercise generalizes the coirstruction of the Hamming codes in (9.12), 

and also introduces an important correspondence principle. 

Let S = {pi,...,pn} be a set of n distinct points in PG(k — 1, q), which lie in no 

proper subspace. Take vx.v„ to be vectors spanning the subspaces p1,. .., pn; let 

H be the matrix with columns vlt..., v„; and let C be the code with parity check 

matrix H. 

(a) Show that C is an [n, n — fc, > 3] code. 

(b) Show that multiplying H on the left by an invertible matrix does not 

change C, and has the effect of applying an element of the group PGL(&, q) of linear 

collineations to S. 

(c) Show that multiplying H on the right by a monomial matrix replaces C by a 

‘monomial equivalent’ linear code (as defined in Remark (9.9)), and does not affect S. 

Remark. Thus, we have a bijection between 1-error-correcting linear codes (up to 

monomial equivalence), and spanning sets of points in projective space (up to linear 

collineations). The Hamming codes arise in the case when 5 consists of all the points 

of PG(fc- l,g). 

(d) Show that supports of words of weight 3 in C correspond to collinear triples 

in 5, while zero sets of words in C'x correspond to hyperplane sections of S. 

(e) Choose a familiar configuration of points in projective space. What properties 

does the corresponding code have? 
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Many of the most interesting codes that we shall study are cyclic. We define these 

as follows. 

(10.1) Definition. An [n,k] code C over F, is called cyclic if 

^(c0 <C1. .Cn—1 )€C [(^n — 11 Coi Ci, . . . , Cn_2 ) E C]. 

From now on we make the restriction (n,<y) = 1. (Much of the theory goes 

through without this restriction, but one gains very little by dropping it.) Let R := 

Fjx] be the ring of all polynomials with coefficients in F, and let 5 be the ideal 

generated by (xn — 1). Clearly the residue class ring R/S (considered as an additive 

group) is isomorphic to F". An isomorphism is given by 

(ao, Cil, • •., cin-i) ao + a\x + • • • + Gn-iTn 

since it is obvious that the polynomials of degree less than n form a set of represen¬ 

tatives for R/S. From on we do not distinguish between words and polynomials of 

degree < n (mod (xn — 1)). Note that multiplication by x in R/S amounts to the 

cyclic shift (a0, 04,..., an_x) —► (a„_i, a0, ax,..., a„_2). 

From this it follows that a. cyclic code C corresponds to an ideal (which we also 

denote by C) in R/S. Since this ring is a principal ideal ring, every cyclic code in F?n 

is a principal ideal generated by some polynomial g(x) that divides xn — 1. We shall 

call g(x) the generator (-polynomial) of the cyclic code. 

Let g(x) = g0 + gxx + ... + gn-kxn~k be the generator of a cyclic code C and 

let h{x) := (xn - l)/g(x) = h0 + lip.x + ...hkxk. The words g(x), xg(x),. .., xk~lg(x) 

form a basis of the code C, that is. 

^ 9o 9i g n — k 0 
0 go 9i 9n-k 

10 0 0 9o 

0 \ 
0 

Pn — k ) 

(10.2) G := 
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is a generator matrix for C. Since g(x)h{x) — 0 in the ring R/S, we see that 

/ 0 0 • ■ 0 K ••• K h0\ 
0 • hk h i h0 0 

v K ■ K K o ... o o ) 

is a parity check matrix for C. This gives a translation into the terminology of 

Chapter 9. We call h(x) the check polynomial of the cyclic code C. Note that the 

dimension of the cyclic code is equal to the degree of the check polynomial. The 

code generated by h(x) is obtained from the dual of C by reversing the order of the 

symbols. It is often considered as the dual code (see the remark following 9.10). 

Very often cyclic codes are described, not by giving the generator g(x), but 

by prescribing certain zeros of all codewords (in a suitable extension field of F?). 

Clearly this is an equivalent description because the requirement that all codewords 

are multiples of g(x) means that they are 0 in the zeros of g(x). To show how simple 

this description can be we give an example. 

Let q = 2, n = 2m — 1 and let a be a primitive element of F2m. Let m1(x) = 

(x — a)(x — a2)... (x — a2 ) be the minimal polynomial of a. We wish to con¬ 

sider the cyclic code generated by m1(x). Every element of F2m can be expressed 

uniquely as e,a' where e,; E F2. The nonzero elements of F2m are the pow¬ 

ers aJ (j = 0,1,-2m - 2). Construct a matrix H for which the j-th column is 

(e0,ei,...,em-i)T if cP - ^ (J = 0,1,... , 2m - 2). If a := (a0, alt.. ., a^), 

a(x) := a0 + <»! + ... an_1xn~1, then the vector aHT corresponds to the field element 

a(a). Therefore aHT = 0 means the same thing as mx(x)|a(x). Since the columns of 

H are a permutation of the binary representations of 1, 2,..., 2m — 1, we have proved 

the following theorem. 

(10.4) Theorem. The binary cyclic code of length n = 2m — 1 for which the 

generator is the minimal polynomial of a primitive element of F2m is equivalent to 

the [n, n — m) binary Hamming code. 

EXAMPLE. Take q = 2, n = 7, g(x) = 1 + x + x3. In this case, the cyclic code 

C generated by g(x) has dimension 4. It is equivalent to the [7,4] Hamming code 

which corresponds to our example following (9.11). We remark that the seven cyclic 

shifts of the first row of (10.2) for this example form the incidence matrix of PG(2, 2). 

The code consists of 0, 1, these seven words, and their complements. This code is 

linked to an interesting question linking design theory with coding theory. Suppose a 

Steiner triple system 5 (like PG(2,2) in our example) is given. Is there a linear code 

C over some field F? such that for every word of weight 3 its nonzero positions form 

a block of S and all blocks of 5 are of this form? We refer to Assmus and Mattson 
(1971). 

One easily sees that the binary flamming codes as defined in Chapter 9 have the 

property that the words of weight 3 represent a Steiner triple system on 2m — 1 points 



10. Cyclic codes 127 

(Chapter 9, Exercise 8). In fact if a Steiner triple system on n points corresponds to 

the set of words of weight 3 of a binary linear code C, then n = 2m — 1 and C is the 

Hamming code and the Steiner system is PG(m — 1,2). 

For the Steiner triple systems on nine, respectively thirteen points, the problem 

has been solved (cf. Driessen et al. (1976)). Let q = 1 (mod 3) and let a be a 

primitive cube root of unity in F?. Define 

/ 0 0 0 — 1 —Q' -cr 11 1 \ 
H :«= 1 1 1 0 0 0 -1 -a -a2 . 

\-l —a —a2 1 1 1 0 0 0 / 

Then H is the parity check matrix of a [9,6] linear code over F? such that the nonzero 

positions of codewords of weight 3 represent AG(2,3). 

There is a geometric way of viewing this construction. The nine columns of 

the matrix H span nine points in PG(2,g) which form the inflection points of a 

non-singular cubic curve (whose equation is xf + x\ + xl — 3cx!x2x3 = 0, for any c 

with c3 7^ 1). Any line containing two of these inflection points contains the third 

also. Classically, these nine points are known as the Hessian configuration. In the 

special case q = 4, when x2 = x, we can choose c = 0, and the equation becomes 

Xix7+x2xJ+z3xJ = 0; the nine points form a unital in PG(2, 4) (see Chapter 1). The 

code is associated with the Hessian configuration by the correspondence principle of 

Chapter 9, Exercise 12. 

We refer to Driessen et al. (1976) for a proof that the two nonisomorphic Steiner 

triple systems on thirteen points do not arise from linear codes in this way. See also 

Doyen et al. (1978). 

In our derivation of Theorem (10.4) we have demonstrated that the requirement 

that all the codewords have a as a zero corresponds to prescribing the parity check ma¬ 

trix H := (1 a a2 ... a-’1-1), where we have to interpret a; as (e0, ei,..., em-i)T 

if aj = GoC 

A second useful example is obtained by taking g(x) := (x — l)mi(x). Clearly the 

new code is a subcode of the Hamming code. The requirement that 1 is a zero of all 

the codewords means that they all have even weight. So we now have an [n, n — m — 1 ] 

code consisting of all the words of even weight in the [n, n — m) Hamming code. In 

terms of parity check matrices we can say that 1 has been added as a parity check. 

We now introduce a very important class of codes known as BCH codes. They 

were discovered by R. C. Bose, D. K. Ray-Chaudhuri, and A. Hocquenghem (and 

therefore should actually be called BR-CH codes). 

(10.5) Definition. A cyclic code of length n over Fq is called a BCH code of 

designed distance 8 if its generator g(x) is the least common multiple of the minimal 
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polynomials of 0\ 0I+1,..., 0I+6-'- for some /, where 0 is a primitive n-th root of unity 

in some extension field of Fg. Usually we take / = 1 (so-called narrow sense BCH 

codes). If n = qm — 1, that is, 0 is a primitive element of F,m, then the BCH code is 

called primitive. 

Note that Hamming codes are primitive BCH codes with designed distance 3. 

The terminology “designed distance” is explained by the following theorem. 

(Without loss of generality we give the proof for narrow sense BCH codes.) 

(10.6) Theorem. The minimum distance of a BCH code with designed distance 

8 is at least 8. 

PROOF. We use the abbreviated notation introduced above and define the m(8 — 1) 

by n matrix H over F, by 

\ (X 6 p2 ■ 0n~l 

H := 
1 02 0A ■ 02n—2 

u 06~l 

A word c is in the BCH code iff cHT =0. If c had weight < 8, then there would 

be 8 — 1 columns of H that are linearly dependent over F?. The determinant of the 

submatrix of H obtained by taking these columns would have the form 

6 
6 

C6- 1 

6 
6 

><5-1 £6—1 cl 
SI S2 * * * S6-1 

6-1 

ts-1 

— 66 • • • 6-111(6 — 6) 7^ 0- 
i>j 

This contradiction shows that all codewords c / 0 indeed have weight at least 8. □ 

Let us now take a look at BCH codes from the point of view of the group theorist. 

We consider a primitive BCH code of length n = qm - 1 over F, with prescribed zeros 

a, a2,..., ad-1, where a is a primitive element in Fgm. We now denote the positions 

in codewords by the nonzero field elements X( := a-‘ (i = 0,1,. .., n — 1). We extend 

the code by adjoining an overall parity check. The additional position is denoted by 

the zero of the field (also as X^ by some authors). We shall show that the extended 

BCH code is invariant under the permutations of the affine permutation group on F?m 

acting on the positions of codewords. This group, which we denote by AGL(l,gm), 

consists of the permutations 

JV„(A) := uX + v (u, v 6 F?m, u ^ 0). 

This is a doubly transitive group. 

We first observe that Pafi is the cyclic shift acting on the positions of the BCH 

code and that it leaves the parity check fixed. Therefore Pa 0 transforms the extended 
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BCH code into itself. Let (c0,ci,...,be any codeword in the extended BCLI 

code and apply Pu v to the positions to obtain the word (c'0, c(,..., c^). To show that 

we again have a codeword in the extended code we must prove that for 1 < k < d— 1 

we have XXJq1 cia>k = 0- This sum is 

n — 1 

Ci(ua’ + v)k + c^u* 
*=0 i=0 1=0 \ / 

n— 1 h / 7,\ 

t=0 /=i W 

t(%V-,n£cdc,Y = 0 
(=1 W i=0 

because the inner sum is 0 for / = 1,2,..., d — 1. 

We have proved the following theorem. 

(10.7) Theorem. Every extended primitive BCH code of length n + 1 = qm over 

F, is invariant under the affine permutation group acting on Fqm. □ 

(10.8) Corollary. The minimum weight of a primitive binary BCH code is odd. 

PROOF. Let C be such a code. We have shown that the automorphism group of 

the extended code C is transitive on the positions. The same therefore holds for the 

subset of words of minimum weight. Hence C has a word c of minimum weight with 

Coo = 1. Since all weights in C are even, this proves the assertion. □ 

The argument shows that any binary code, for which the extended code is in¬ 

variant under a transitive permutation group, has odd minimum weight. 

A special example of BCH codes are the BCH codes with n = q — 1. These codes 

are called Reed Solomon codes (RS codes). In the narrow sense case we then have 

(/{*) = h(* “ a’)’ 
i= 1 

where a is a primitive element of the alphabet F,. By Theorem (10.6), the code has 

distance d > n - k + 1, and k is the dimension. By the Singleton bound (Chapter 9, 

Exercise 3), d cannot be larger. So these codes are MDS codes! 

Exercises 

1. Let n := (qm - l)/(q - 1). Suppose that (m, q - 1) = 1. Show that the 

[n, n — m] Hamming code over F, is cyclic. 

2. Let C be a ternary [9,3] code with the property 

V(c0,Ci.C8)ec[( —c8i Co, . . . , c7) F C]- 
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Determine a generator matrix for C. 

3. Consider a binary cyclic code of length 23 with dimension k, where 1 < k < 22. 

Prove that k = 11, or k = 12. 

4. Let C be a binary code of length 21 with generator 

g(x) — m0(x)m1(x)m3(x)m7(x). 

Determine the dimension of C. Show that C is selforthogonal. Show that C has 

minimum distance at least 6. 

5. Let xH + x'2 + ... + xlk be a codeword in the code of the previous exercise. 

Then k is even. Show that if d(x) = z21-<1 + ... + x21~ik, then c(x)d(x) = 0 in 

f2[x\l{x21 - 1). Now prove that C has minimum distance 8. (Hint: prove that 

k(k — 1) = 0 (mod 4).) 

6. Let C be an RS code over F?. Prove that the extended code is also an MDS 

code. 

7. Let C be an [n,k,d] RS code (n = q - 1, d = n - k + 1). Define the code C' 

of length q by adjoining -c(ad) as an extra symbol. Show that C' is an MDS code. 

Now show that from the RS code C we can construct an [n + 2, jfc, d + 2] MDS code. 

8. Let C be the [8,4,5] extended RS code over Fs. Show that C is selfdual. Let 

a be a primitive element of Fs with a3 + a + 1 = 0. The normal basis {a, a2, a4} has 

the property that Tr(ajO:; ) = for any two basis elements a,- and otj. Map F8 to F23 

using the representation over this basis. Show that the resulting code Q is a [24,12] 

selfdual code. By inspection one can check that the basis vectors of Q have weight 

8. Now show that Q has minimum distance 8. (This construction of the extended 

binary Golay code, the topic of the next chapter, is due to Pasquier (1980).) 

9. Consider an [n, 3] Reed Solomon code over F, (n = q — 1). Show that the set 

of points of PG(2, q) associated with it as in Chapter 9, Exercise 12 (spanned by the 

columns of the generator matrix) is an ??,-arc (that is, no three collinear). 
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In this chapter we treat two remarkable codes that were discovered by M. J. E. Golay 

(1949). Both codes are perfect, both have many relations to design theory, and also 

both have a remarkable automorphism group. We start with the binary Golay code 

C'23- We shall mention several constructions for this code. The fact that the code 

is unique will follow from the uniqueness proof for the extended code <?24 and the 

transitivity of the automorphism group of <?24. 

The binary Golay code is a [23,12,7] code. Since these parameters imply equality 

in the sphere-packing bound (Chapter 9, Exercise 1), this code is perfect. (It is in 

fact the only nontrivial perfect e-error-correcting code with e > 2.) In the extended 

code all weights are divisible by 4; we call such a code doubly even. (Note that if the 

basis vectors of a selfdual code all have weight divisible by 4, then the code is doubly 

even: this follows, by an easy induction, from the fact that the sum of two orthogonal 

vectors each with weight divisible by 4 has weight divisible by 4.) We now establish 

the uniqueness of this extended code and in the proof also provide a construction. 

(11.1) Theorem. Let. C he a binary code of length 24 with minimum distance 

8, and suppose that 0 G C and |C| = 212. Then C is determined up to equivalence. 

The code is called Q2A. (So: the extended binary Golay code is unique). 

PROOF, (a) Puncturing on any position leads to a (23,21', 7) code. Since such a 

code is perfect, its weight enumerator is determined (cf. Chapter 9, Exercise 9). In 

fact A0 = A23 = 1, A7 = Al6 = 253, As = A1S = 506, Au = A12 = 1288. This 

immediately implies that the code C only has words of weight 0,8,12,16, and 24. 

However, the same is true for the code C + c for any c G C. Therefore not only all 

the weights in C are divisible by 4 but also all the distances between codewords are 

divisible by 4. This implies that (c.c') = 0 for any two codewords c, c'm C. So, the 

words of C span a (doubly even) self-orthogonal code. Such a code has dimension at 

most 12 and thus we see that the code C was already linear! 

(b) Take any codeword c of weight 12 as a basis vector for C. The residual code 

must have dimension 11 and it has only even weights. So, the residual code is the 
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(12.11.2) even-weight code. Therefore C has a generator matrix G of the form 

(*) G = (I12 P), where P = ^ j , 

(so A is of size 11 by 11). 

(c) Since C has minimum distance 8, every row of A has at least six Is. From 

the top row of G we see that every row of A therefore must have exactly six l’s. 

Clearly, any two rows of A have at most three l’s in common. Using the top row of 

P we then see that any two rows of A have exactly three l’s in common. This forces 

A to be the incidence matrix of a 2-(ll,6,3) design. The uniqueness of that design is 

well known (easily proved by hand — see Exercise 8(a) of Chapter 1). □ 

It is easily checked (Exercise 1) that if we indeed take A to be the incidence 

matrix of a 2-(ll,6,3) design in (*), then G does generate a [24,12,8] code. 

From the words of weight 8 of Q24 one finds a 5-(24,8,l) design, that is, a Steiner 

system. We shall also show that only one such design exists. (This existence and 

uniqueness proof is the one we promised in Chapter 1, and is a good deal shorter 

than the proofs we outlined there!) 

(11.2) Theorem. The words of weight 8 in are the characteristic functions of 
the blocks of a 5-(24, 8,1) design. 

Proof. Since £24 has distance 8, two words of weight 8 cannot have five l’s in 

common. Hence the 759 words of weight 8 cover 759 • (f) = f24) distinct 5-tuoles 

from {1,2,..., 24). W D 

(11.3) Theorem. The 5-(24, 8,1) Steiner system is unique. 

PROOF, (a) Let S be such a. system. We saw in Chapter 1 (using intersection 

triangles) that two blocks of 5 meet in 0, 2 or 4 points. Thus, the code C spanned 

by the blocks of 5 is self-orthogonal and doubly even. To see that C has minimum 

distance 8, observe that Cx must have minimum distance at least 6. This follows 

from the fact that the blocks of ,5 assume all possible 0-1 configurations on a given 

5-set of points (cf. Chapter 1). 

(b) Fix three points. The derived design with respect to these points is a 2- 

(21,5,1) design, that is, the plane PG'(2.4). In Chapter 13 we shall see that the rows 

of the incidence matrix of PG(2,4) span a code of dimension 10. This implies that 

C has dimension 12 and by Theorem (11.1) we are done. □ 

As observed above, Theorem (11.1) provides one construction of £24. Note that 

from the construction of Paley matrices in Chapter 1 we see that the 2-(l 1,6,3) design 

(and hence also £24) has an automorphism of order 11. 
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(11.4) Proposition. Let N be the 12 by 12 adjacency matrix of the graph formed 

by the vertices and edges of the icosahedron. Then 

G (712 J - N) 

is the generator matrix of Q-14- 

PROOF. Two antipodal vertices of the icosahedron have no common neighbour. 

Any two other vertices have two common neighbours. This already implies that G 

generates a [24,12] selfdual doubly even code C. Since J — N is symmetric, the matrix 

(J — N /12) also generates C (because C = CL). So, if there were a word of weight 4, 

then there would have to be two rows of G whose sum has weight 4, which is clearly 

false. By Theorem (11.1) we are done. □ 

The argument of the proof shows that Q2A has an automorphism which inter¬ 

changes the first twelve coordinates with the second twelve. This, and the fact that 

the automorphism group of the icosahedron is transitive on the twelve vertices, shows 

that the automorphism group of Q24 is transitive. So if we puncture on any position, 

we always find the same code (up to equivalence). This shows that £723 is unique. 

We present a construction of the Golay code due to R. J. Turyn. We consider 

the [7,4] Hamming code in the representation of the example following (10.4). Call 

this code TL. Let TL’ be the code obtained by reversing the order of the symbols in 

TL. By inspection we see that the codes H and TL* are [8,4] selfdual codes with the 

property TL fl TL* = {0,1}. 

(11.5) Proposition. Let C be the [24,12] binary code defined by 

C := {(a + x; b + x; a + b + x) : a G TL, b G TL, x 6 TL*}. 

Then C is Q24. 

Proof. Clearly the words (a: 0: a), (0: b: b), and (x;x; x) where a and b run through 

a basis of TL and x runs through a basis of TL*, form a basis of C. So C is indeed a 

[24,12] code. Since TL and TL* are selfdual, any two basis vectors have inner product 

0. So C is selfdual. Since all basis vectors have weight = 0 (mod 4), we conclude 

that C is doubly even. Clearly the three subwords of length 8 in a codeword have 

even weight. Suppose a codeword c has weight < 4. Then one of the subwords is 0 

and this implies that x is 0 or 1. Since a. b, and a + b all have weight 0, 4, or 8, we 

conclude that c = 0. So C is a [24,12,8] code, that is, Q24. ^ 

In Chapter 14 we shall see that the (essentially unique) [23,12] binary cyclic code 

(cf. Chapter 10, Exercise 3) is <?23. 

A remarkably easy construction (that has a rather complicated proof that it 

works) is obtained as follows. Start with 0 G F,24 and make a code of length 24 by 
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successively taking the lexicographically least word that has not been used and that 

has distance > 8 to the already chosen set; (so (0, 0,.. ., 0,1,1,..., 1) of weight 8 is 

the second word). This yields Q2A after 212 choices. 

In Chapter 10, Exercise 8 we saw a construction of Q24 from a RS code over F8. 

The next construction is probably the nicest. It is due to J. H. Conway. We first 

define a code TLq over the field F4, known as the hexacode. The alphabet is represented 

as {0,1, w,iu}, where U — u> + 1 = ur. 

(11.6) DEFINITION. The code 'Hr, is the [6,3] code over F4 generated by the matrix 

/I 0 0 1 w u>\ 

G := I 0 1 0 1 u> to). 
\ 0 0 1 1 1 1 / 

We first observe that this code can also be defined by 

H := {(a, 6,c,/(l), /(cu),/(ru))|/(a;) := ax2 + bx + c, (a, 6,c) 6 F43}. 

Note that if two of {a, 6, c} are 0, then the codeword has weight 4; if one of them is 

0, then f (x) 0 for exactly one x ^ 0; and if all of them are ^ 0, then f has two 

such zeros or none. So a code word in has weight 0, 4, or 6. 

REMARK. This can also be seen as follows. The 1-dimensional subspaces of F3 

spanned by the columns of G are the points of a conic in PG(2,4) together with 

its nucleus (see Chapter 1 — the conic has equation xxx3 = x\, and its nucleus is 

[0,1,0]). These points form a (Type II) oval in PG(2,4), meeting every line in 0 or 

2 points. Thus the assertion follows from Chapter 9, Exercise 12. 

(11.7) Definition. We define a binary code C as follows. The words are represented 

by 4 by 6 binary matrices M (with rows m0. m4, m2, m3). A matrix M represents a 

codeword if and only if 

(1) every column of M has the same parity as m0; 

(2) lrq + tum2 + turn3 £ H6. 

(11.8) Theorem. The code C defined in (11.7) is Q24. 

PROOF, (a) Conditions (1) and (2) are clearly linear. We can choose the parity in 

two ways and a codeword c £ in 43 ways. Every coordinate c,- of c corresponds to 

two (complementary) possible columns of M. So. for the first five columns we have 

a total of 25 choices and then the condition on the parity of the first row uniquely 

determines the sixth column. Therefore |C| = 2 • 43 • 25 = 212, that is, C is a [24 12] 

code. 

(b)_If the chosen parity is even and c ^ 0, then there are at least four columns 

in M with weight >2. So the matrix has weight at least 8. If the parity is even and 
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c = 0 but the matrix is not all-zero, then at least two columns of M have four l’s. 

Again the weight is at least 8. 

(c) If the chosen parity is odd, then to show that the weight is again at least 8, 

we only have to show that it is impossible that every column of M has exactly one 

1. If this were so, then the fact that c has even weight would force m0 to have even 

weight, a contradiction. 

We have shown that C is a [24,12,8] code and hence we are done. □ 

We now come to the ternary Golay code Qu and its extension £/12. The code Qn 

is a ternary [11,6,5] code. Again, these parameters imply that the code is perfect. It 

has been shown that if the alphabet is a field, then there is no other nontrivial perfect 

2-error-correcting code. It has also been shown that any (11,36, 5) code is equivalent 

to QX1 (but this is much more difficult than in the case of G2a)- 

In Chapter 14 we shall see a construction of the ternary Golay code as a quadratic 

residue code. Here we give a few combinatorial constructions. Let S5 be the Paley 

matrix of size 5 as defined in Chapter 1, that is, 

£5 

( 0 + - - +\ 
+ 0 + — — 

-+0 + - 

- - + 0 + 
\+ - - + 0/ 

where + indicates 1 and — indicates —1. Consider the [11,6] ternary code C defined by 

the generator matrix G := (/« P), where P is the matrix S5 bordered on top by 1 of 

length 5. The fact that S5 satisfies S5SJ = 57 — J immediately shows that C is a [12,6] 

selfdual code. Therefore all the words of C have weight divisible by 3. The generator 

G of the extended code is obtained by adjoining the column (0, -1, —1, -1, —1, —1)T 

to G. Every row of G has weight 6 and since a linear combination of two rows has 

weight at least 2 + 2. it has weight 6. Therefore such a combination has exactly two 

zeros among the last six coordinates and this forces a linear combination of three 

rows to have weight at least 3 + 1, and hence again at least 6. This shows that C 

has minimum distance 6. We take this as definition of Ql2. If we use the uniqueness 

result mentioned above we have the following proposition. 

(11.9) Proposition. The code C defined above is Qn. □ 

In the next construction we use the [4,2] ternary Hamming code. Let H be a 2 

by 4 parity check matrix of this code. The matrices I and J used below, have size 4 

by 4. 

(11.10) Proposition. The matrix G given by 

G := 
J + I I 

O H -H 
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generates a [12,6,6] selfdual code (and by uniqueness this is Q12). 

PROOF. Let C be the code generated by G. Since J + / has rank 4, C has dimension 

6. Since the ternary Hamming code is selfdual, C is also selfdual. It suffices to show 

that weight 3 cannot occur. A linear combination of the first four rows obviously has 

weight > 4 and a linear combination of the last two has weight 6 by definition. The 

reader should now convince himself that a linear combination involving both kinds 

of rows cannot have weight 3 (again because J + I has full rank). □ 

In the following construction we start with a code C over F9. Let a be a primitive 

element of F9, i := a2. Then r = a4 = — 1. We define £ := £3 for (eF9 and write 

elements of this field as a + bi with a and b in F3. Then a + bi = a — bi. We extend the 

notation to codewords c by defining c = (of,..., cj) if c = (c1?..., c„). We call the 

code C conjugate dual if c —► c maps C to C1. We “project” C to a code of length 

2n by a + bi —> (a, b). Since (a + bi)(c — di) = (ac + bd) + (be — ad)i, the projection 

of a conjugate dual code of length n over F9 is a selfdual code of length 2n over F3. 

(11.11) Proposition. Let C be the [6,3] code over F9 defined by the generator 

matrix G := (I ocA), where A I + i.J. Then the projection of C is a [12,6,6] 

ternary code (and therefore Q12). 

PROOF, (a) From AA = I we find GG = O, that is, C is conjugate dual. 

(b) This implies that both G and (~aA I) generate C. This shows that C has 
minimum distance 4. 

(c) Since the projection of C is selfdual, it must have minimum distance at least 
6 and we are done. q 

(This proof is due to J. I. Hall; a similar construction was given by D Y Goldberg 
(1986).) 

To show a connection with a previous topic, we now describe a construction of 

a strongly regular graph using Qu. We partition the space Fj1 into 35 cosets of the 

ternary Golay code. A coset is represented by its word of minimum weight, so by 0, 

one of the 22 words of weight 1, or one of the 220 words of weight 2. The weight of 

this so-called coset leader is called the weight of the coset. 

(11.12) Proposition. There exists a, strongly regular graph with parameters 
(243,22,1,2). 

Proof. Take the cosets of Qn as vertices and join two vertices by an edge iff the 

difference of the corresponding cosets is a coset of weight 1. The valency is clearly 

22. We claim the every edge is in a unique triangle and every nonedge is in a unique 

quadrangle. To prove this we may assume (by linearity) that one of the vertices has 
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weight 0. An adjacent vertex corresponds to a coset with a leader a of weight 1 and 

the only vertex joined to both of them has 2a as leader because Q1X has minimum 

distance 5. For the same reason a coset adjacent to 0 and the vertex represented by 

(a, b, 0,..., 0) must be represented by (a, 0,.. ., 0) or by (0, 6, 0,.. ., 0). □ 

Exercises 

1. Show that if in (*) in the proof of Theorem (11.1) we take A to be the 

incidence matrix of a 2-( 11,6,3) design, then G indeed generates a [24,12,8] code. 

2. From (11.5) we see that Q24 has a subcode with 32 words that have a 0 in 

the first eight positions. Show that the same is true if we require that c8 = 1 and 

exactly one of c1?..., c7 is 1. Prove that if we take the union of these eight subcodes 

and then delete the first eight symbols of the words, we find a (16, 256, 6) code. This 

code is known as the Nordstrom-Robinson code. It is known that a (16, M, 6) code 

must have M < 256. 

3. Show that a (12,32,5) code exists (see Chapter 9, Exercise 4). 

4. In (11.7), consider all codewords of the form (A A A), where A is a 4 by 2 

matrix. Show that the corresponding matrices A form the [8,4] extended Hamming 

code. 

5. Consider the set P of all words in G24 for which the representation of (11.7) 

has the form M = (B A), where B is 4 by 2 with first column (*111)T, the * and 

the second column of B arbitrary. We index the rows and columns of A with F4 as 

follows: row number 0, 1, 2, 3 corresponds to x = 0, 1, uj, ZJ respectively; and similarly 

for the columns and the coordinate y. We consider A as AG(2, 4). Show that a word 

of weight 8 in P has five l’s or one 1 in the remaining five positions of B. Show 

that a word in P with four l’s in the first column of B is described by y = constant. 

Show that a word in P that has one 1 in the second column of B, corresponding to 

x = £, is described by x = £y 4- 77. This shows that these coordinates describe these 

words as the lines of PG(2,4), the word with eight 1 s in B being the line at infinity. 

This should not be surprising since (by (11.2)) we are looking at a derived design of 

5(5,8,24) which is a 2-(21,5,1) design; this design is unique, namely PG{2,4). 

6. (a) Show that the cyclic permutation (m1,m2,m3) of M in (11.7) leaves G2A 

invariant. 
(b) Show that interchanging the last two rows and the last two columns of M 

leaves G2A invariant (consider u> <->■ uJ). 

(c) The permutation (12)(34) leaves Be invariant. Prove this, and find the 

corresponding permutation of Q2A. 

7. Find all binary perfect 3-error-correcting codes. 
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8. Let C be a ternary selfdual [12,6,6] code. Using only this assumption, prove 

that up to a monomial transformation C — f?12- 

9. Let C = Qfi, and define a graph with vertex set C by declaring two codewords 

to be adjacent if their distance is 6. Prove that the graph is strongly regular, with 

parameters (243, 132, 81, 60). 

10. (a) Show that, if two blocks of the 5-(24, 8, 1) design meet in four points, 

then their symmetric difference is a block. 

(b) Now let V — (X,B) be a (t + l)-(u, 2f, 1) design, for some t, with v > 21, 

which has the property 

(*) if two blocks of V meet in t points, then their symmetric difference is a block. 

Choose a point oo £ X, and let Y = X \ {oo}. Let ft be the set of all subsets of Y 

of cardinality at most t — 1, and define a graph on ft, whose edges are labelled with 

elements of Y, as follows: 

(a) for each set A C Y with \A\ < t - 1 and y £ A, join A to A \ {y} by an edge 

labelled y; 

(b) for each pair Au A2 of (t - l)-subsets of Y such that A1UA2U {oo, y} £ B, join 

Ax to A2 by an edge labelled y. 

Prove that each vertex lies on a unique edge with any given label. 

Now take F = F2, and let V = F"-1, with its basis labelled by elements of Y. 

Define a map 4> : V —> ft as follows: given v £ V, take the path starting at 0 £ ft 

and following those edges whose labels index non-zero coordinates of v; then <j>(v) is 

the other end of this path. Prove that d> is well-defined (that is, the endpoint does 

not depend on the order in which the labels are used). Show further that 

{v £ V : <f>(v) = 0} 

is a linear perfect (t — l)-error-correcting code. 

Deduce that V is either a 3-(2",4,1) design whose blocks are the planes in 

AG(n,2), or the unique 5-(24, 8, 1) design. 

11. Let T be a graph in which every edge lies in a unique triangle, and every 
non-edge in a unique quadrangle. 

(a) Prove that T is regular, with valency k (say) — thus T is strongly regular 
(or complete). 

(b) Show that k = 2, 4, 14, 22, 112 or 994. 

(For k = 2,4 the graph is a triangle or L2(3) respectively; we saw an example 

with k = 22 in (11.12). The other cases are undecided.) 

(c) Now let C be any ternary linear perfect 2-error-correcting code. Show that 

the construction of (11.12), applied to G, gives a strongly regular graph with A = 1 

and fi = 2. Deduce that any such code must have length 11. 

(d) Can you extend this argument to other finite fields? 
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In this chapter, we discuss a class of binary codes with close connections to finite 

geometries. These codes were first treated by D. F. Muller (1954) and I. S. Reed 

(1954). The codes are called Reed-Muller codes. There are several ways to describe 

the codes. In one of them, the codewords are linear combinations of characteristic 

functions of certain affine subspaces in 'AG(?7?., 2). We introduce the codes using 

another description. 

We consider Boolean functions in m variables .Tj,...,xm. Such a function is 

a polynomial m these variables and each term has the foim Xi1Xi2 • • ■ Xjk with k T 

m. We let the variables correspond to the coordinates of points in F2 (a model of 

AG(m,2)). Since we need the notation later, we number the points in this space 

as P0 to Pn-i, where n = 2m and P, has coordinates if * = 

Using this numbering of the points in F2>n, we identify a Boolean function with its 

list of values, and interpret this list of values as a word in the space F2. For example, 

the Boolean function xx of degree 1 takes the value 1 in all points P, of F2m for which 

= 1, that is, the points with an odd index. So this function corresponds to the 

word (0,1,0,1,. .., 0, 1) of length 2m. 

(12.1) DEFINITION. The r-th order Reed-Muller code of length n = 2m, denoted by 

P.(r, m), has as codewords (the lists of values of) all the Boolean-functions of degiee 

at most r. 

From now on we call these codes RM codes. 

(12.2) Theorem. 72.(7',7?r) has minimum distance 2m r. 

Proof. The proof is by induction on m. For m = r, the code is the whole space 

F2m, and obviously has minimum distance 1. Now consider the step from m to m+ 1. 

Take an arbitrary function w ± 0 and write it as w = u' + v', where u' and v' are 

sums of monomials not involving, resp. involving, the variable xm+l. Then we have 

u' = (u, u) and v' = (0, v), where u £ 7Z[r.ni) and v £ 7Z(r — l,m). If v = 0 then 

w = (wu) has weight at least 2 • 2”-’\ by the induction hypothesis. If u = v, then 

u £ 7Z(r- 1, m), and so w = (u,0) has weight at least 2m"(r-1h Otherwise, u and 

u + v each have weight at least 2"' ’. ^ 
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We observe that the polynomial 

II(1 + + xj) 
j=i 

is 0 everywhere except in the point Pf. This shows that the n monomials in x1 to 

xm form a basis for the space of Boolean functions on Fnm. The following theorem is 

now also easy. 

(12.3) Theorem. The dual of 7v( r, m) is 7Z(m — r — 1, m). 

Proof From the previous observation we see that the two codes have dimension 

^ (i/ d“***T (r)’ respectively 1 + + •■• + and the sum of these 

dimensions equals the word length. Each of the codes has monomials as basis vectors 

and the product of two such monomials has degree at most m— 1, that is, it does not 

involve all the variables. This implies that the product of the two monomials is 1 in 

an even number of points, in other words the two basis vectors have inner product 0. 

□ 

(12.4) Corollary. The (m - 2)-nd order RM code of length n = 2m is the 
[n,n — m — 1] extended Hamming code. 

We reformulate the definition in terms of the geometry AG(m, 2). Note that the 

list of values of the function x, is the characteristic function of the (m-l)-dimensional 
affine subspace (an (m — l)-fla.t) 

Ai := {x G Fom : x,: = 1}. 

The vector 1 is the characteristic function of the whole space and hence the function 

1+Xj represents the the hyperplane parallel to that is, {x G F2m : x{ = 0}. Clearly 

the first order RM code TZ{1 ,m) consists of 0, 1. and the characteristic functions of 

the 2m+1 - 2 affine subspaces of dimension m - 1 in the space. Since the intersection 

of two such subspaces is empty or *. flat of dimension m - 2, the distance of any 

two codewords is n or \n. Before taking a closer look at the geometry we give an 
example. 

Below we list the vectors corresponding to all monomials for the case m = 4 

that is, n = 16 (including the function 1). Note that independence is obvious from 

the positions of the first coordinate equal to 1. Also (obvious and used in a proof 

above) every vector has even weight, except the last one which is the characteristic 
function of the set {Pi5}. 
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z0 = (111111 11 1 1 1 1 111 1) 

*! = (0101010101010101) 

®a = (0 01100110011001 1) 

x3 = (00 001 1 1 100001 1 11) 

x4 = (ooooooooii mm) 
Xlx2 = (0 00100010001000 1) 

Xlx3 = (0 000010100000101) 

®!®4 =(0 00000000101010 1) 

X2X3 = (0 000001 10000001 1) 

x2x4 = (0 000000000 1 1001 1) 

®3®4 =(0 0000000 0 000111 1) 

xxx2x3 = (0 00000010000000 1) 

xxx2x4 = (0 00000000001 0001) 

Xlx3x4 = (0 00000000000010 1) 

x2x3x4 = (00 000 0 0 00 000 001 1) . 

xxx2x3x4 = (0 000000000000001) 

Note (for example) that the function Xlx3 represents the flat Ax n A3, consisting 

of the points P5, P7, PX3, and Px3. 

(12.5) Theorem. Let C = 1Z(iv — Lin) and let A be an /-Hat in AG(?n,2). Then 

the characteristic function of A is in C. 

Proof. Let f € F2m be the characteristic function of A, that is, fj = 1 iff Pj E A. 

Clearly f corresponds to a linear combination of the functions xh ■ ■ ■ xik (since these 

form a basis of all Boolean functions). We must show that in fact f is a linear 

combination of products of at most m — I factors. Let a be the coefficient of the 

product 2,', ■ • • xik in the expansion of f and assume that k > m — l. Let h be the 

product of the remaining factors. Then a = (f, h). Since h is the characteristic 

function of a flat of dimension > in — LA meets this flat in an even number of points 

and hence a = 0. This proves our assertion. ^ 

This theorem and the definition show that a. word is in TZ(r,m) iff it is the sum 

of characteristic functions of affine subspaces of AG(7?z. 2) of dimension > m — r. 

We now consider the automorphism group of these codes, that is, the permuta¬ 

tions of the positions that map a. RM code to itself. 

(12.6) Theorem. AGL(?n,2) < Aut(7£(r,m)). 

Proof. Since AGL(m,2) maps Anflats to fc-flats (for all k), this follows from the 
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remark following Theorem (12.5). □ 

We now combine Theorem (12.3) and Theorem (12.5). Let C = 7Z(r,m). We 

now know that every (r + l)-flat in AG(m, 2) provides us with a parity check equation 

for C. These (r + l)-flats form a 3-(t), k, A) design with 

v = n = 2m, k or+i 
(2m_2 — 1) • ■ • (2m_r — 1) 

(2—2 — 1)... (2 — 1) 

Consider any r-flat H inAG(m,2). There are 2m~r -1 distinct (r + l)-flats containing 

H. Every point outside H is in exactly one of these (r + l)-flats. 

We describe a decoding algorithm based on these facts. Let c be a codeword 

that contains the term x := xix ■ ■ ■ xir and assume that a word y is received with 

^ ^ 2 errors (see Theorem (12.2)). Now let H be the r-flat corresponding to 

the product of the factois xt; that do not occur in x, and let li be the corresponding 

word. Again we have (c, h) = 1. Each of the 2m-r - 1 distinct (r + l)-flats containing 

H also contains an r-flat parallel to H. If h' corresponds to such an r-flat, then also 

(c, h') = 1. The receiver calculates (y, h) and (y, IT) for all the parallel flats (a total 

of 2m~r inner products). Since we have used a partitioning of the points of the space, 

the t errors in y clearly can be responsible for at most 2m~T - t of the inner products 

being 0. Hence the majority of the inner products is 1 (despite the errors in y). So, 

a majority vote decides that x was a. term in c. Once this has been done for all terms 

with r factors, the problem can be reduced to a RM code of order r — 1 and we 

proceed in the same way. This is an example of so-called (multistep) majority logic 

decoding (easy to implement in hardware). See also Massey (1963). 

Let AG(m,2) be considered as a representation of the additive structure of F2m 

and let a be a primitive element of this field. The mapping x ^ a* is a linear 

mapping of AG(m,2). It has order 2’" - L By Theorem (12.5) this mapping fixes a 

RM code. The fact that the mapping has one orbit of length 2m — 1 shows that a 

RM code is (equivalent to) an extended cyclic codel 

,A cycllc defimtlon can be §iven as follows, using the notation w(j) for the number 
of l’s in the binary representation of j. 

(12.7) Proposition Let a he a primitive element in F2m. Let g(x) := f[*(x — aj) 

where the product ranges over all integers j in (0, 2m - 2] with w(j) <m-r If C is 

the cyclic code of length 2"* - 1 generated by g(x), then C is equivalent to 77 (r,m). 

We leave the proof as an exercise. |—I 

We shall now introduce a class of codes that are somewhere “between” first and 

second order Reed-Muller codes. These codes, called Kerdock codes (see Kerdock 

(1972)), are of great combinatorial interest. We have seen that 77(2, m) (of dimension 
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1 + m + corresponds to the Boolean functions of degree < 2 on F2m. So 7Z(2, m) 

is a union of cosets of 71(1, m), each coset. corresponding to some quadratic form 

Q(x) := ■ 
1<*< j <m 

Corresponding to Q we have the alternating bilinear form 

£(x,y) := Q(x+ y) - Q(x) - Q{y) = x5yT, 

where B is a symplectic matrix (zero diagonal and B = —BT). Note that Q can be 

described by the part of B above the diagonal. 

By Dickson’s theorem (cf. Dickson (1958)) Q can be transformed by an affine 

transformation into the form 

h 

T. %2i-lx2i + L(x), 
i= 1 

where L is linear and 2h is the rank of B. It is easily seen that a further affine 

transformation changes this representation to 

h. 

y x2i-ix2i + l\ 
i= 1 

where L' = 0, 1, or x2h+i- 

(12.8) Lemma. The number of points (xj,.. ., x2h) G F2“h for which Z)i=1 X2i-ix2i 

II is 22'-1 + 2h~1. 

Proof. If xx = x3 = ... = X2h_, = 0. then there are 2h choices for (x2,x4,... ,x2h), 

and if not all of them are 0, then there are 2h~1 choices. So the number of zeros is 

2h + (2h — 1)2A_1. D 

The following lemma, is a. direct consequence of the representation of a quadratic 

form given above and Lemma 12.8. 

(12.9) Lemma. Let rn be even. If O(x) is a quadratic form corresponding to a 

symplectic form B of rank m. then the coset of 7Z( 1, m) determined by Q(x) has 2 

words of weight 2m~1 - 2m,2~l and 2m words of weight 2m_1 + 2m/2_1. □ 

Quadratic forms of smaller rank would lead to smaller weights. For suppose 

that a symplectic form B has even rank r < to, and let W be the radical of B (of 

dimension m — r), and U a complement for W. Then there is a quadratic form Q 

polarizing to B which has weight 2’-1 - 2r/2"1 on U and vanishes identically on W; 

then Q has weight \W\ • (2r~1 - 2r'2~1) = 2™-1 - 2m-r/2"1 overall. 

We now wish to form a code C by taking the union of cosets of 7L(1, in) coi- 

responding to certain quadratic forms Qi,Qs(or the associated symplectic 
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forms Bi, B2,..., Bt). So 1Z(1 ,m) C C C 7Z(2,m). Since we are interested in the 

minimum distance of C, we must consider the minimum weights of the cosets defined 

by the forms Q, — Qj (i ^ j). Of course the best thing that we can achieve is that 

each difference — Qj corresponds to a symplectic form of maximal rank, that is, 

a nonsingular symplectic form. How large can / be? Since the symplectic forms cor¬ 

respond to skew-symmetric matrices with zero diagonal, we have / < 2m_1 (no two 

matrices may have the same first row). 

(12.10) DEFINITION. Let m be even. A set of 2m_1 symplectic matrices of size m 

such that the difference of any two distinct elements is nonsingular is called a Kerdock 

set. 

We shall show that it is indeed possible to construct Kerdock sets. Therefore 

the following definition makes sense. 

(12.11) Definition. Let, m be even (m > 4). Let / = 2m_1 and let QU...,Q, be a 

Kerdock set. The nonlinear code K.(m) of length n = 2m consisting of the cosets of 

TZ(l,m) corresponding to the forms Q{ (1 < i < l) is called a Kerdock code. 

Observe that \fC(m)\ = l\7Z(l, m)| = 22m and that by Lemma 12.9 the minimum 

distance of /C(m) is 2 2 l~ 1. As we saw above, a subcode of 7?.(2, m) containing 

7^.(1, m) cannot have a larger minimum distance and with this distance it cannot have 
more words than JC(m). 

Remark that in the case m = 4 we find a code of length 16 with 28 words 

and d = 6. This is the (unique) Nordstrom-Robinson code treated in Chapter 11, 
Exercise 2. 

For a nonlinear code C there is an analog of the weight enumerator, the so-called 

distance enumerator with coefficients A{, where 

A; \C\ 1|{(x,y) : x £ C,y E C, c/(x, y) = z}|. 

From Lemma 12.9 we find the distance enumerator of AZ(m). We have 

A-o 1, A-oni—1 ±2m/2 —1 = 9’ ,(2m-1 - 1), ,42m-i = 2m+1 - 2, A2m = 1. 

If we substitute the distance enumerator in Mac Williams’ relation (Theorem (9.14)) 

we actually find a polynomial with integer coefficients Bt (for A1-). This is in fact 

the distance enumerator of an extended Preparata code (see Chapter 16). There is 
no explanation for this strange fact! 

The facts that B1 - ... = B5 = 0 and that A(z) has only four coefficients A, 

with t > 0, Ai ± 0 have the following interesting consequence. This depends on a 

theorem of Delsarte (1973); we defer the proof until Chapter 14 (see (14.26)). 
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(12.12) Proposition. The words of any fixed weight in K{m) form a 3-design. □ 

Constructions of Kerdock sets. 

We sketch a construction of Kerdock sets due to Dillon (1974), Dye (1977), and 

Kantor (1983). We shall describe the easiest construction of a Kerdock set, working 

out the case of four by four matrices in detail. 

We consider a vector space V of dimension 4n over F2 with the quadratic form 

2 n 

Q(x) := Y2XiXln+i- 
i=1 

This is called a space of type D+(4n,2). The set of singular vectors x (that is, those 

with Q(x) = 0) is a quadric which we denote by Q. A subspace of V is called totally 

isotropic if (x, y) = 0 for any two points x, y in the subspace. If Q(x) = 0 for 

every x in a subspace, then we call the subspace totally singular. Clearly a totally 

singular subspace is also totally isotropic, but not conversely. The quadric contains 

2n-dimensional subspaces (maximal totally singular subspaces of V). These can be 

divided into two families (types). Two totally singular subspaces are of the same 

type if their intersection has even dimension. Each totally singular 2n — 1-space is 

contained in exactly two totally singular 2n-spaces, one of each type (see Fig. 12.1). 

The symplectic form £?(x, y) associated with Q is now denoted by (x,y). If x is any 

vector, then xx is the hyperplane {y : (x,y) = 0}. It contains x. 

Consider a vector x not on Q. Then we have a natural map from xx to the 

symplectic (4n-2)-dimensional space W := xx/x. Note that xx meets Q in (several) 

subspaces of dimension 2n — 1 (see Fig. 12.1). 

Fig. 12.1. A quadric 

We now introduce two types of objects, both called spieads. 

(12.13) DEFINITION. A spread on Q (an orthogonal spread) is a set S ol 2' + 1 
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totally singular 2n-spaces such that each nonzero vector of Q is in exactly one of 

them. 

(12.14) DEFINITION. A spread on a symplectic space W of dimension 4n — 2 (a 

symplectic spread) is a set S' of 22n_1 + 1 totally isotropic subspaces of dimension 

2n — 1 such that each nonzero vector of W is in exactly one of them. 

The map from x1 to W bijectively maps totally singular subspaces to totally 

isotropic subspaces. A spread S on Q leads to a spread S' on W. Conversely, given 

a space W and a spread S', we identify W with xx/x and then from S' we find S by 

requiring that all elements of S are of type I. 

Example. Take V := n+(8, 2), Q(x) := xtxB + x2x6 + x3x7 + x4x8. Here 

(xi y) = (*iys + xsPi ) + ••• + (x4y8 + xsy4). 

As we saw in Lemma 12.8, there are 135 nonzero singular vectors. A spread on Q 

consists of nine totally singular 4-spaces (135 = 9 • 15). For the point x <£ Q we take 

(1,0,0,0,1,0,0,0). Then x1 = (y £ V : yx = y5} and the space W = x±/x is the set of 

vectors (x2, x3, x4, x6, x7, x8) with as associated form x2x6 + x3x7 + x4x8. 

We consider a spread S on Q containing the two spaces 

E := {{x1,x2,x3,x4,0,0,0,0) : x{ £ F2} 

F := {(0, 0, 0, 0, a:5, x6, x7, xs) : x{ £ F2}. 

The mapping from S to S' produces the spread with 

E := {(x2, x3, x4, 0, 0, 0)} and F' := {(0, 0, 0, x6, x7, x8)} 

and seven other 3-spaces on W. □ 

We use the example to illustrate our main point. We claim that it is easy to 

construct the spread S' directly. Consider Fs with a. primitive element a satisfying 
c*3 + 01 + 1 =0. For this choice we have 

Tr(£ + i/Q + Co-'2) = T 

where Ti is the trace function : F* >-> F2. [jet Hr0 be the 2-dimensional space over F8 

with the symplectic form /(x, y) := xllh + x2yx. We describe a point of W0 by 

(12.14) (X2 + x3a + x4a~,Xfi -f xsa + a;7Q'2). 

We find the symplectic form Tr / on the space W = Sp{6,2), obtained by considering 

W0 as a space over F2. We have chosen coordinates in such a way that Tr / corresponds 

to the quadratic form x2x6 + x3x7 + x4xs. From now on we write the vectors of W 

as (•, x2i x3, t4, ., x6, ,t7, x8) to make the identification of W and x^/x more clear. A 

spread S' is obtained by simply taking all 1-subspaces of W0, that is, the sets 

{A(1,0) : A e Fs}, {A(£, 1) : WFs},((gF8), 
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and considering them over F2, producing nine totally isotropic subspaces of W which 

contain every nonzero point once. 

The identification of W with x±/x produces two totally singular subspaces on 

Q (one of each type) for each element of S'. We give a few examples (here we list 

the elements of the sets in S', respectively S; each x( runs through F2): 

(1) A(l,0) (., x2, X3, .T4,., 0, 0,0) 6 
El, *2, *3, ®4> 0,0, 0,0 

0, x2, £3, x4, £5,0,0,0 

(2) A(0,1) (., 0,0,0,., x6, x7, xs) e V' 
0,0, 0, 0, x5, x6, x7, xs) 
x1,0,0,0,0,x6, x7, x8) 

where in each case the upper subspace is of type I, the lower of type II. At this point 

we have reproduced the elements E and F of S. We leave the image of the line A(l, 1) 

as an exercise (Exercise 8). 

Now we shall show how to obtain Kerdock sets from spreads. We have chosen 

E and F such that E © F = V and such that their basis vectors correspond to our 

representation of Q. On V we consider linear transformations 

xh"x(m /)■ 

By straightforward substitution we see that these transformations preserve Q (that is, 

they fix Q as a set) iff MT = -M and M has zero diagonal, that is, M is a symplectic 

matrix of size 4. Clearly the mapping M t-> M* := (/f 7) is an isomorphism of the 

group P of symplectic matrices to the group P" of matrices (M 7) fixing Q. 

We claim that there is a 1-1 correspondence between Kerdock sets in P and 

spreads in Q. Given a Kerdock set K, in P, consider the corresponding set K* in P* 

and form 
S(/C):= {E}U{F° -.gelC*}. 

! i g1 = °j) , g2 = (m °r)' then F31 nF92 = iff Mx- M2 is nonsingular. Hence 

S(fC) is a spread on Q. Conversely, consider a spread E containing E and F (as in 

our example). Define 

K(S) := {M eP : FM* € S\{£}} • 

Since any two members of S intersect only in 0 and |A(S)| = 22”"1, we see that 

K(E) is a Kerdock set. 

EXAMPLE. We continue the example started above. Consider the element . 

{(a,6,c,d,6,a,d,c) : a,6,c,d 6 F2} of the spread S. We solve F ['M°) = F1 and 

(0 1 0 °\ 
1 0 0 0 
0 0 0 1 

\0 0 1 oj 

M = 
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Therefore we have to take the form XiX2 + x3x4 as an element of KL = iL(E). □ 

Much more on this construction, etc. can be found in Kantor (1983), including a 

relation between spreads, Kerdock sets, and translation planes. One of the interesting 

consequences of Kantor’s work is that there are extremely many inequivalent Kerdock 

codes of a given length. In Kantor (1984) the following is proved. 

(12.15) Proposition. If m — 1 is odd and composite, then there are more than 

2^v'?" pairwise inequivalent Kerdock codes JC(m) of length 2m. 

Kerdock sets have been used for the construction of various combinatorial ob¬ 
jects. We discuss two of these. 

(12.16) Example. The first examples form a class of proper partial geometries. 

Let E be a spread on the quadric Q+ of type Q(4n, 2). Now we define an incidence 

structure Q(n) as follows: the points are the non-singular vectors x (those not on the 

quadric); the lines are the (2n - 1 )-spaces which are contained in a member of £; and 
the point x and line H are incident if H C x±. 

Let H be a line. Then HL has dimension 2n+l and contains H\ so it contains 

three 2n-spaces containing H. But H lies in two 2n-spaces on the quadric Q+, and 

so m just one more 2rc-space I<. Then the points of the incidence structure incident 

with H are just the 22"-1 non-singular vectors of I< \ H. Moreover, we see that, if 

two points x, y are incident with a line H, then x + y is a singular vector; every line 

incident with x and y contains this vector, from which we see that there is only one 
such line. 

We also see from this argument that two points are collinear if and only if their 

sum is m Q+. This collinearity relation defines a strongly regular graph on the points 

outside Q and the lines form a family of cliques in this graph, with the property 

that each edge lies m a unique clique. It follows that the incidence structure is a 
partial geometry. Its parameters are 

s = 22n~1 - 1, t = 22n~1, Q = 22n~\ 

( .17) Example. Next we turn to systems of linked square designs, a generalization 

of square designs considered by Cameron and Seidel (1973). A system of linked square 

designs is a structure consisting of sets A'j.X„ with an incidence relation I 

between ^ and A. for each * and j, such that the following conditions hold: 

(a) for each pair i,j, (X{, is a non-trivial square 2-design; 

(b) for each triple ij, k and each choice of x 6 Xt and y G Xj, the number of 

elements of A, which are incident with both x and y depends only on i,j, k and 
whether or not x and y are incident. 

These structures were introduced to study doubly transitive permutation groups It 

is not known whether the parameters of the square designs in a linked system must 
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necessarily all be the same or complementary. The only known examples arise from 

the following construction. 

As we saw in Chapter 5. to each alternating bilinear form B on V(2n, 2), there 

is a set Q(B) of 22n quadratic forms Q associated with B\ that is, such that 

<?(x + y) = Q(x) + Q(y) + B(x,y). 

These are all the functions with zero constant term lying in a coset of 71(1,2n) in 

7Z(2,2n). Recall that a non-singular quadratic form has type e if it has 22n_1 + e2n~1 

zeros, for e = ±. If Bx and B2 are alternating bilinear forms for which Bx - B2 
is non-singular, we can define an incidence relation between the sets Q(Bi) and 

Q(B2), by declaring and Q2 incident if Qx - Q2 has type +; this gives a square 

2-(22ri, 22n_1 + 2n_1,22n_2 + 2n_1) design. Now it is possible to show the following: 

(12.18) Proposition. Let B{ (i = 1,2,3) be alternating bilinear forms on V(2n, 2) 

such that the difference of any pair is non-singular. Let Q, E Q(B,) for i = 1,2. Then 

the number of forms Q3 E Q(B3) such that Q, - Q3 and Q2 - Q3 both have type +, 

is either 2n"2(2" + 3) or 2n~2(2n + 1), depending on whether Ql - Q2 has type + or 
□ 

Now let B1,.. .,B, be alternating bilinear forms, all of whose differences are non¬ 

singular. If X, = Q(Bi) for i = 1,_/, then the incidence relations defined above 

give (Xi,..., X,) the structure of a system of linked square designs. 

In particular, we get the largest possible system from this construction (viz. 

I — 22n~1) by using a Kerdock set. Noda (1974) has shown that, for systems where 

all square designs have the parameters (22n,22n-' + 2n-\22n-2 + 2n-x), the number l 

of sets Xi cannot exceed 22n_1. 

The RM codes are examples of a larger class of codes known as Euclidean Ge¬ 

ometry Codes (see e.g. J.-M. Goethals (1973)). 

Closely related to these codes are the Projective Geometry Codes. We give only 

one example. 

(12.19) DEFINITION. Let p be a prime, q = p°, and let A be the incidence matrix 

of points and hyperplanes of PG(m.q). The rows of A generate a code C over the 

alphabet Fp. The dual code C is called a projective geometry code. 

It can be shown (see Goethals (1973)) that Gx has dimension 1 + (^j1) ■ An 

example connected to the topic of our next chapter is the case p oc m 2. In 

this case A is the incidence matrix of PG(2,4). The code CL has dimension 10. By 

straightforward calculation one can show that C1 has exactly 21 words of weight 5. 

This implies that a codeword has weight 5 iff it is a line of PG(2,4). So A can be 
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retrieved from its linear span. This is another example of a code for which the vectors 

of minimum weight (/ 0) form a 2-design. 

We give one more example linking RM codes to combinatorial theory. Consider 

the first order RM code of length n = 2m. We have already observed that the 

codewords come in pairs (parallel hyperplanes) with distance n. From each pair we 

choose one word. Since the code has dimension m + 1, we find n words. With these 

words we form a square matrix (n by n). Then replace all Os by —1. Because any two 

of the chosen words have distance !•??., the resulting matrix is a Hadamard matrix. In 

fact, it is a Sylvester matrix (see Chapter 1, and especially Exercise 2). 

We briefly discuss equidistant codes and a connection to geometry. These codes 

have the property that any two distinct codewords have the same distance. The 

code treated at the end of Chapter 9 was an example with distance 6. The rows of 

a Hadamard matrix, with —Is replaced by Os, also form an equidistant code. How 

large can an equidistant code be? 

If the distance d is odd, then the code obviously can have only two codewords. 

If d = 2k and the code has m words of length n (n sufficiently large), then it is not 

difficult to show that 

m < k2 + k + 2 

unless the code is trivial. (Here, a code is called trivial if the m by n matrix with the 

codewords as rows has the property that every column has m — 1 or m equal entries 

(see Deza (1973))). 

Now, let A be the incidence matrix of a projective plane of order k. To A we 

adjoin k — 1 columns of ones and then we adjoin a row of zeros. The resulting matrix 

has as its rows the codewords of an equidistant code with k2 + k + 2 words with mutual 

distance d = 2k. It is much more difficult to show that the converse is true, namely 

that if an equidistant code with k2 + k + 2 words and mutual distance 2k exists, then 

also a projective plane of order k exists (cf. Van Lint (1969)). We remark that it has 

been shown that in the case that k = 6, that is, d = 12 (where no projective plane 

exists), the maximal number of words is 32 (cf. J. I. Hall et- al. (1977)). 

Exercises 

1. Prove that in the expansion of (x + 1)" in F2[ai], the coefficient of xk is 1 iff 

the binary expansion of n has a 1 in every position where the binary expansion of k 
has a 1. Let n = 2m. Let 

(* + !)* = Xy aixn~1~i. 
i= 1 

Show that a = (a0,..., an_1) £ 7Z(r, m.) iff w(k) > m — r. 

2. Let n = 2m. Show that for any x £ F2n there is a codeword c in 72.(1, m) such 
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that d(x, c) < |■(??. — y/n). (Hint: use the relation between 72.(1, m) and Hadamard 

matrices.) 

3. Let m be even. Show that there is a vector x in F2m such that for all c £ 

72(1, m) one has d(x, c) > |(?? — y/ii). 

4. Suppose the code 72(2,5) is used and the received message is 

(10110100101101001011000000001111). 

Decode this message. (This is tedious! Useful to do it once and to realize that this 

is work for computers.) 

5. Delete the top row and the first column of the generator matrix of 72(1,5). 

We call the new matrix G. The matrix G is the generator matrix of a linear code 

C. Show that all the words ^ 0 in C have weight 16. Find seven columns of G such 

that every word in C has either seven 0’s or four l’s on these seven positions. Use 

this idea to construct a [21,5,10] code. 

6. Let w be a word of the extended binary Golay code £?, with weight 8 and 

support A. Prove that 

(a) the set of words with support disjoint from A form the Reed-Muller code 

72(1,4); 

(b) the restrictions to the complement of A of all words in Q form the Reed- 

Muller code 72(2,4); 

(c) the restrictions to the complement of A of words whose support meets A 

either in the empty set, or in a 2-set containing a fixed a £ A, form the Kerdock code 

/C(4). 

Hence give an alternative proof of (12.12) for fC(4). 

Show that the restrictions to the complement of A of words whose supports meet 

A in 0, {a, b), {a,c} or {b.c} (for fixed a,6,c € A) form a [16,7,6] code. Can you 

recognize this code? 

REMARK. From (b), we see that there is a Injection between the set of symplectic 

forms on F2 and the partitions of an 8-set A into (at most) two parts of even car¬ 

dinality. The zero form corresponds to the partition {0, A}; non-zero singular forms 

to partitions into parts of size 4; and non-singular forms to partitions into parts ol 

sizes 2 and 6. 

7. Let m = 2k. Consider the vectors in F2m\{0} on the quadric with equation 

xxx2 + ... 4- x2k-\X2k = 0. We take these as columns of a matrix G. The matrix G 

generates a linear code C. Determine the weight enumerator of C. 

8. Consider the example given in the section on Kerdock sets. The elements E 
and F of E were constructed. Show that the line A(l, 1) leads to the totally singular 
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4-spaces with points (a, 6, c, d, c/, a, b, c) and (a, a, c, d, 6, 6, d, c). Which one belongs to 

E? 

9. Consider the 1-space A(a, 1) in W0 and show that by (12.14) it corresponds 

to the totally singular 4-space Fa of type I on Q with basis vectors (0,0,1,0,0,1,0,0), 

(1,0,0,1,1,0,0 ,1), (1,1,1,0,1,0,1,0), and (1,1,0,1,0,0,1,0). Then solve F °) = Fa to 

find the element X\X3 + x1xi 4- x2x3 + x3x4 in /C. Check that this form and x1.t2 + x3x4 

have nonsingular difference. 

10. Represent a quadratic form in r, to r4 by a graph on four vertices 1,2,3,4 

by letting a term XiXj correspond to the edge {z,;}- Which graphs correspond to 

nonsingular quadratic forms? Use these pictures to construct K.{4). 

11. Consider the words in Qu ending in five 0’s. Show that if we delete these 

five 0’s, the resulting code is the Z used in the construction of the partial geometry 

with s — t = 5, a = 2, in Example (7.20). So there is a natural bijection between the 

cosets of Qn in F3n and those of Z in F3. Show that the tripartite incidence graph 

r of the three ‘linked’ partial geometries is a subgraph of the graph of Proposition 

(11.12). 

12. Prove that Aut(7?.(r, m)) = AGL(m, 2) if 0 < r < m - 1. 

13. Show that the coset of 1Z( 1, 2n) containing the function 

XlXn+\ + X2Xn+2 + . . . + XnX2n + X1X2 . . . Xi 

for 2 < i < n, contains words of only two different weights (and has the weight 
distribution given by (12.9)). 

Deduce that the supports of the words of weight 22n_1 + 2n_1 form a square 

2-design having the symmetric difference property of Chapter 5, viz., the symmetric 

difference of any three blocks is either a block or the complement of one. 

Show that these designs, for different values of i, are pairwise non-isomorphic. 

(HINT. The hyperplanes of AG(2??,,2) can be obtained as symmetric differences of 

pairs of blocks. Prove that, no matter how the affine space is coordinatized, the 

degree of a polynomial function is invariant.) 

REMARK. Only in the quadratic case (i = 2) does the design admit the translation 

group of the affine space as a group of automorphisms. 

The examples are due to N. J. Patterson. 

14. Prove that the support of any word of minimum weight in H(r,m) is an 

(m - r)-flat. [HINT: Show that a hyperplane meets such a support set in 0 or at least 

H5I Points) and hence in 0, ||5|, or |S| points. Show that |S n H\ = ||5| for some 

hypeiplane H; using induction, deduce that S D H is an (m — r — l)-flat, and that S 
is the union of two translates of this flat.] 



13. Self-orthogonal codes and projective 
planes 

We shall first look at some self-dual codes. A first example was given in Chapter 9, 

namely the [8,4] extended Hamming code over F2. Actually, this is an example of a 

larger class, that follows from Theorem (12.3). The code 7Z(r,2r + 1) is self-dual. We 

have seen some designs related to these codes and in a later chapter it will be shown 

that quite often self-duality is a useful property to have when trying to construct 

designs from codes. 

Now we shall consider a special class of ternary self-dual codes. The codes are 

cyclic with length n = — 1 (mod 3), where n has the following property. If a is 

a primitive n-th root of unity, then for 0 < i < n the powers a1 and or' are not 

zeros of the same irreducible polynomial. Now choose a polynomial g[x) that divides 

xn — 1, that has g(l) ^ 0, and such that for every i with 0 < i < n either g(ar) — 0 

or ^(qW) = 0. Let C be the cyclic (ternary) code with generator g(x). Clearly C 

has dimension |(n + 1) and since C1 has generator (x — l)g(x), the code CL is the 

subcode of C consisting of the words c(x) E C with c(l) = 0. It follows that C has a 

basis consisting of 1 and a set of basis vectors of C1. Using the fact that n + 1 = 0 

(mod 3) it then follows that C is self-dual. 

(13.1) EXAMPLE. Take n = 11 and let C be the code with generator m^x). So the 

zeros are cd with i = 1,3. 4,5.9. By Theorem (10.6), the minimum distance of C is 

at least 4. Since C is self-dual, it must have minimum weight at least 6 (and hence 

C in fact has d = 5). So C is a. ternary self-dual [12,6,6] code, necessarily £12! 

The main topic in this chapter are (selPdual) codes generated by the incidence 

matrix of a projective plane. We have seen an example in the section on projective 

geometry codes. 

Let A be the incidence matrix of PG(2. ?7). We consider the subspace C of 

pn2+n+i js generated by the rows oi .4. If n is odd it is easy to see what the code 

is. If we calculate the sum of the rows of A that have a 1 in a fixed position, the 

result is a row with a 0 in that position and l’s elsewhere. These rows generate the 

subspace of F2"2+n+1 consisting of all words of even weight. Since C obviously has no 
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words of odd weight, this subspace is C. The case of even n is more difficult. We are 

mainly interested in n = 2 (mod 4). (We use PG(2,n) for any projective plane of 

order n, in contrast to our earlier notation where this symbol stood for the projective 

plane over F„.) 

(13.2) Theorem. If n = 2 (mod 4) then the rows of the incidence matrix of 

PG(2,n) generate a code C with dimension \(n2 + n + 2). 

Proof, (i) Since n is even, the code C is self-orthogonal, that is, C C (C)±- 

Therefore dimC < l(n2 + n -f 2). 

(ii) Let dimC = r and let k ?r2-f ?? + 1 — r = dimC"1-. Let H be a parity check 

matrix of rank k for C and assume that the coordinate places have been permuted 

in such a way that H has the form (Ik P). 

Define N (£ £). Interpret A and N as rational matrices. Then 

det ANT = det A = (n -f- 1 )n.2(’l2+n). 

Since all entries in the first k columns of ANr are even, we find that 2fc|detA It 

then follows that r > |(n2 + n + 2). 

From (i) and (ii) the theorem follows. □ 

We remark that the theorem can also be proved using the invariant factors of 

A. That method has the advantage that it generalizes to other characteristics. It 

will be illustrated in the proof of Theorem (13.10). The following proposition is an 

immediate consequence of Theorem (13.2). 

(13.3) Proposition. If n = 2 (mod 4^ then the rows of the incidence matrix A 

of PG(2, n) generate a code C, for which C is self-dual. □ 

We continue with a few other properties of PG(2, n), where n = 2 (mod 4), 

formulated in terms of coding theory. 

(13.4) Theorem. The code C of Proposition (13.3) has minimum weight n + 1 

and every word of minimum weight is a line in PG(2, n). 

PROOF. Let v ^ 0 be a codeword with w(v) = d. Since every line has a 1 as overall 

parity check, we see that: 

(1) if d. is odd then v meets every line at least once; 

(2) if d is even then every line through a fixed point of v meets v in a second point. 

In case (2) we immediately have d > n + 1. In case (1) we find (n + T)d > n2 + n + 1, 

that is, d > n T 1. If u;(v) = n + 1 then there is a line l of PG(2, n) that meets v 



13. Self-orthogonal codes and projective planes 155 

in at least three points. If there is a point of / not on v, then every line ^ l through 

this point meets v (by (1)). This would yield cl > n + 3. □ 

We remind the reader that ‘type II ovals’ were defined in Chapter 1. 

(13.5) Theorem. The words of weight n + 2 in C are precisely the type II ovals 

ofPG(2,n). 

PROOF, (i) Let V G C and w(v) — n + 2. Every line meets v in an even number of 

points. Let l be a line and suppose that v and l have 2a points in common. Each of 

the n lines ^ l through one of these 2a points meets v at least once more. Therefore 

2a + n < n + 2, that is, a = 0 or a = 1. 

(ii) let V be a type II oval. Let 5 be the set of \{n + 1 )(n + 2) distinct lines of 

PG(2, n) through the pairs of points of V. Each point not in v is on |(n + 2) of these 

lines; each point of v is on ?? + 1 lines of S. Since n = 2 (mod 4), it follows that v 

is the sum of the lines of S, that is, v € C. El 

We do not treat the case n = 0 (mod 4) in general but we give one example 

because it plays a role in our treatment of the binary Golay code. (See Chapter 1.) 

(13.6) EXAMPLE. Let S be a set of three points «x, a2, a3 in PG(2,4) not on one 

line. There are nine lines in PG(2,4) that contain exactly one of these three points. 

These form the set C. Each point on one of the lines through two points of 5 is on 

exactly one line in C. So, as elements of E,21 these lines are independent. (We are 

in fact looking at points of a unital and the nine tangents.) Observe that the line 

through and a2 is independent of the previous nine lines. This implies that the 

code C generated by the incidence matrix A of PG(2,4) has dimension at least 10. 

Clearly C is again self-orthogonal and therefore C has dimension at most 11. The 

even-weight subcode of C is generated by the 20 words obtained by adding the top 

row of A to the other rows. These rows all have weight 8 and they are mutually 

orthogonal. This means that the even-weight subcode of C is doubly even. Now we 

are in a different situation than in Theorem (13.5). The ovals of PG(2,4) correspond 

to words of weight 6 in Cx but they are apparently not in C. Hence C does not have 

dimension 11 but dimension 10. The even-weight subcode of C (with dimension 9) 

is also a subcode of Cx. This code and one orbit of ovals generate an even-weight 

code of dimension 10; adjoining another orbit of ovals produces an even-weight code 

of dimension 11 containing all the ovals. This is Cx. 

For a self-dual [n, k\ code C over F„ we find from Theorem (9.14) the following 

relation for the weight enumerator A({, ?/): 

(13.7) A(f,77) = q~kA{p-{,v + (q - 1)0» 

where k = \n. This means that the polynomial A({,r/) is invariant under the linear 

transformation with matrix ^ <? = 2, all codewords of C have even 
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weight, that is, A(£,rj) is invariant under the transformation £ i—> —£. The two 

transformations generate the dihedral group T>8. It was shown by A. M. Gleason (see 

Berlekamp et al (1972), Gleason (1978), and Mallows and Sloane (1973)) that the 

ring of polynomials in f and ?/, that are invariant under this group, is the free ring 

generated by f2 + rf and f2r?2(f2 — 7/2)2. 

Much of the work described in this chapter was motivated by attempts to con¬ 

struct a projective plane of order 10 or to prove its nonexistence (and this finally led 

to the latter of the two). We start by sketching the first significant result in the long 

history of these attacks. 

Suppose a plane of order 10 exists. From (13.3) to (13.5) we know that the 

incidence matrix of this plane generates a code C for which C is a [112,56] self-dual 

code and that the weight enumerator A(f, 77) of C has coefficients 

A0 = l, At = A2 = ... = A10 = 0, An = 111. 

In the same way as before, we see that C is doubly even, so A13 = A14 = 0. By 

using (13.7) or Gleason’s result, one then sees that A(£,r/) is uniquely determined if 

we know A12, A15, and A16. MacWilliams et al (1973) investigated the codewords of 

weight 15 in C. It was assumed that the incidence matrix of the plane led to a code 

C for which A15 ^ 0. Geometric arguments of the same type as the ones we used 

to piove Theorems (13.4) and (13.5) severely restricted the possible corresponding 

geometric configurations and this resulted in a particular configuration of 15 lines 

that had to be part of the plane. In other words, a part of the incidence matrix 

was known. A computer search then showed that starting with this part it was not 

possible to complete the matrix to an incidence matrix of a plane of order 10. At that 

point it was therefore known that if such a plane exists, then A15 = 0. Later Bruen 

and Fishei (1973) pointed out that this same result also follows from a computer 

result of R. H. F. Denniston concerning the non-existence of 6-arcs not contained in 

7-arcs in a plane of order 10 (see Exercise 5). 

Subsequent attacks on the plane went along the same lines. Coefficients of the 

weight enumerator were related to special geometric subconfigurations of the plane 

and these were used as input for computer searches. Several years of computing 

finally led to the nonexistence of the plane. 

As a historically interesting remark we include an attempt to construct the 

plane with the methods of this chapter. It is based on Theorem (13.4). Let D be 

the incidence matrix of a 2-(56,11,2) design. Four of these designs are known. The 

matrix G .— (I56 D) generates a. binary [112,56] code C. The code is doubly even and 

self-dual. We discuss only the case where the 2-(56,ll,2) design corresponds to the 

Gewirtz graph. In that case D is symmetric and therefore (D J58) is also a generator 

matiix foi C. It follows that in order to show that C has minimum weight 12, it is 

sufficient to consider the sum of * < 6 rows of G. Let Xj (1 < j < 56) be the number 
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of ones in the j-th column and in some given i-tuple of rows of D. Then we have 

X>i = n*\ £ 
J = 1 

Therefore x Xj(xj — 2) = 2?2 — 13i, that is. at least 13z — 2i2 columns have exactly 

one 1 in these i rows. This shows that the weight of the sum of these i rows is at 

least 2i(7 — i). This is at least 12 and takes this value only if i = 1 or i — 6. Suppose 

that the sum of six rows of G has weight 12. This implies that Xj = 0 for 20 values 

of j, Xj = 1 for six values of j, and for the remaining 30 columns of D we have 

Xj = 2. So, the six rows of D (blocks of the design) have the property that no point 

is in more than two of them, and thus the}' correspond to the tangents of a (type I) 

oval in the 2-(56,l 1,2) design. If we are lucky, then the code C corresponds to the 

plane PG(2,10) and then we can reconstruct the plane using Theorem (13.4) (just 

consider the ovals of the design through a fixed point). The other designs with the 

same parameters can be treated in a similar way. None of the designs produced the 

desired result (and we now know why). 

A further generalization of these ideas is based on a different inner product on 

Fpv+1, where N := n2 + n + 1. This is the so-called Minkowski inner product 

(x,y) := x1y1 + x2y2 + .. . + xNyN - xN+1yN+1. 

(13.8) Theorem. Let A be the incidence matrix of a projective plane 7r of order 

n, and let C be the code generated by the rows of A over Fp. To each row of A we 

adjoin the symbol —1 (so the sum of the symbols in a row is 0). The extended matrix 

generates a code that we call C*. If p\\n, then C' is ‘self-dual’ with respect to the 

Minkowski inner product. 

PROOF. Interpreting orthogonality and thus duality with respect to the Minkowski 

inner product, it is clear that C* C (C'*)-L. The dimension of C* is equal to the 

p-rank rkp(A) of A (its rank regarded as a matrix over Fp). We now appeal to the 

theory of invariant factors, or Smith normal form (cf. Cohn (1974), p. 279). There 

are integral matrices P and Q, invertible over Z (that is, having determinants il), 

such that PAQ = D, where D is a diagonal matrix diag(dud2,... ,dN) with d, G Z, 

satisfying di\di+1 for 1 < i < N — 1. Now rkp(A) = rkp(D) is the number of invariant 

factors di which are not divisible by p. We have 

(det A)2 — det A4T = det[nl + J) = (n + l)2?^-1, 

so ± det A = det D = dxd2---dN is exactly divisible by p^"1)/2. Thus at most 

l(iV — 1) of the invariant factors are divisible by p, that is, dimC* > |(iV + 1). Since 

we already observed that C* C (C*)x we must have C* = (C*)x. □ 

(13.9) EXAMPLE. We give an example very similar to Example (13.1). Consider 

PG(2,3) in its cyclic representation corresponding to the difference set {0,1,3,9} 
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(mod 13). The cyclic ternary code C generated by the incidence matrix A of the 

plane (a circulant) has generator polynomial g(x), where g(x) is the greatest common 

divisor of x13 — 1 and 1 + x + x3 -f xy. This is 

g(x) = xs — x5 — x4 — x3 + x2 — x + 1. 

If a is a primitive 13-th root of unity satisfying a3 + a2 — 1 = 0, then g(x) = 

m1(x)m7(x) with zeros a* with i = 1,3,7,8,9,11. By Theorem (10.6) the minimum 

distance of C is at least 4 and since the lines of PG(2,3) have four points, the distance 

is exactly 4. The dual code C1 has generator (x — 1 )g(x) and as in Example (13.1), it 

consists of the words c(x) E C with c(l) = 0. We take as basis for C the word 1 and 

six basis vectors of Cx. Since 13 + 1 is not divisible by 3, the code C is not self-dual. 

However with respect to the Minkowski inner product, the code C* is self-dual. A 

basis is obtained by adjoining —1 to 1 and 0 to the other basis vectors. Of course in 

this case the fact that C* has dimension 7 follows directly from degg(x) = 6. 

The construction of Theorem (13.8) was generalized by Lander (1981), (1983). 

He showed the following. 

(13.10) Theorem. Let ir he a. projective plane of order n with incidence matrix 

A. Let N := n2 + n + 1, and let p be a prime such that ps\\n (s > 0). Then there is 
a sequence 

{0} = C_I CCoC...CCs = Ff+1 

of codes of length TV -|- 1 over Fp, with the following properties: 

(a) each code C\ is invariant under all automorphisms of n; 

(b) Cq is the extended code genera ted by the rows of A; 

(c) for —1 < i < s, Cf = C,_1_i (relative to the Minkowski inner product); 

(d) dimCi is equal to the number of invariant factors of A not divisible by pi+1 for 
i < s; 

(e) for 0 < * < s — 1, Ci has minimum weight n + 2, and the words of weight n + 2 

in C0 correspond to lines or possibly (if p — 2) ovals in w. □ 

Remarks. 1. If s is odd, we see from (3) that C(J_1)/2 is a self-dual code associated 
with 7r. 

2. Lander has also calculated the dimensions of the codes Cj in the case where 7r 

is Desarguesian, generalizing the known result that dimC0 = 1 + (^V in this case 

(cf. Goethals (1973), Hamada (1973)). 

3. Example (13.6) is an example of Theorem (13.10). There p — 2, s = 2. The 

matrix A has ten odd invariant factors, two are divisible by 2 but not by 4, and the 

others have a factor 4 (here det, A = 5 • 410). 

The methods of this chapter were used by Assmus and Van Lint (1979) to give 

a characterization of the biplane of order 2. 
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(13.11) Theorem. Let V be a symmetric 2-(v, k, A) design with k = 0 (mod 4), 

A = 2 (mod 4), A|k. Suppose T> has ovals and that these ovals also form a design 

2-(v, K, A). Then T> is the unique 2-(7,4,2) design. 

PROOF. First we observe that the design formed by the type II ovals has K = 

(fc + A)/A. Let A be the incidence matrix of V and let C be the binary code generated 

by the rows of A. Clearly C C Cx. Since v is odd we have dimC < ^(u — 1). We 

proceed as in the proof of Theorem (13.8). Let dx, d2,..., dv be the invariant factors of 

A. Then di\di+1, (1 < i < v — 1), dxd2 •■•</„ = det.4 = k(k— X)iv~1)/2, and dxd2 ■ ■ ■ dv_x 

is the g.c.d. of the minors of order v— 1 of A. If we add all the rows of A we find a row 

with all entries k■ It follows that dxd2 ■ ■ • d„_i is a divisor of (k — \)<'v~1^2. Therefore 

at least |(u — 1) of the invariant factors are odd and hence the rank of A over F2 is 

at least |(u — 1). Since 1 £ Cx but 1 £ C (all codewords of C have even weight) we 

have proved that dimC = |(u — 1) and Cx is the direct sum of C and 1. 

Now consider a vector of weight d > 0 in Cx. The same argument as in Theorem 

(13.5) shows that d > (k -f A)/A, and so the ovals are vectors of minimum weight in 

Cx. Now, using the fact that the ovals also form a design we can repeat the argument 

and thus show that the minimum weight of C is k (which is achieved by the blocks 

of D). Since the minimum weight of Cx is less than k we see that each oval has the 

form 1 + c, where c £ C. It follows that the sum of two ovals is in C. If these two 

ovals meet in a points, we must have 2 (yry) ^ k. Because we know that all words 

in C have weight divisible by 4, we find a = 1 as only possibility (and hence A = 2). 

This means that the design formed by the ovals of T> is a projective plane of order 

4A; on v = 1 + \k{k — 1) points, and therefore k — 4. □ 

Exercises. 

1. Let C be the ternary code of length 16 with generator 

g(x) = 7Ji1(x)m2(x)m4{x)m8(x). 

Show that C has minimum distance at least 6. 

2. Consider the code generated by the incidence matrix of the projective plane 

of order 4. Find the number of words of weight 5,6,7,8, and 9, respectively. Give a 

geometric characterization of these words in each of these cases. Then determine the 

weight enumerator of the code. 

3. Let A be the incidence matrix of PG(2,4). Suppose k rows of A sum to 

0 (over F2). What can k be? Do the corresponding lines form a special geometric 

configuration? 

4. The words of minimum weight in TZ[ r, m) correspond to the (m — r)-flats (see 

Chapter 12, Exercise 14). Use this fact and Gleason’s result on self-dual codes to find 

the weight enumerator of 7Z(2,5). 
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5. Suppose that a projective plane of order 10 exists, and that w is a word of 

weight 15 in the code of this plane. Let S be the support of w. 

Prove that any line meets S in 1, 3 or 5 points. By counting incidences between 

i points of S and a line, for i — 0,1,2, show that there are exactly six lines meeting 

S in 5 points, and that each point of S lies on two of these lines. 

Hence show that this set of six lines is a 6-a.rc in the dual plane, which cannot 

be extended to a 7-arc. 

6. (a) Use the MacWilliams identities to show that a doubly even self-dual code 

of length 16 necessarily has weight enumerator 

£16 + 28£iy + 198<es77s + 28£4t/12 + r?16. 

(b) Find two inequivalent codes satisfying the above conditions. 



14. Quadratic residue codes and the 
Assmus-Mattson theorem 

Before starting with the actual topics of this chapter, we must prove a theorem on 

cyclic codes that will provide us with a very useful tool for the treatment of many 

codes. We use the symbol Wj to denote the permutation of positions in codewords 

given by ^(x*) := xjk (mod xn — 1), where we use the identification of vectors in 

F" and polynomials mod(xn — 1). We consider binary cyclic codes of length n, where 

n is odd. 

(14.1) Theorem. For every ideal V in F2n, there is a unique polynomial c(x) G V, 

called the idempotent of V, with the following properties: 

(a) c(x) = c2(x); 

(b) c(x) generates V; 

(c) V/W€v[c(x)/(x) = /(x)], that is, c(x) is a unit-element for V; 

(d) if (j, n) = 1, then 7rj(c(x)) is the idempotent of-KjV. 

PROOF. Let g{x) be the generator polynomial of the ideal V and let g(x)h(x) = xn —1 

in F2[x]. Since xn — 1 has no multiple zeros, we have (g(x), h(x)) — 1. Therefore there 

are polynomials Pi(x) and p2(x) such that 

(14.2) Pi(x)fif(x) + p2(x)li(x) = 1 (in F2[x]). 

We multiply both sides of this equation by c.(x), where c(x) := Pi{x)g(x). We find 

c2(x) + pi(x)p2(x)g(x)h[x) = c(x). 

Since in F2n (interpreted as F2[x] (mod x" - 1)) we have g{x)h(x) = 0, we have 

proved (a). 

The monic polynomial of lowest degree in the ideal generated by c(x) is (c(x), x — 

1) = (p1(x)g(x),g(x)h{x)) = g[x). This proves (b). 

By (b) every f(x) in V is a. multiple of c(x). Let /(x) = c(x)/i(x). Then 

c(x)f (x) = /(x) by (1). This proves (c). 
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Since tt, is an automorphism of F", the polynomial nj(c(x)) is an idempotent 

and also a unit-element in WjV. Since such an element is unique, (d) has been proved. 

□ 

(14.3) EXAMPLE. We consider an example in detail. Let n = 2m — 1. Let m1(x) 

be the minimal polynomial of a primitive element a of F2m. Then, by Theorem 

(10.4) , m1{x) generates a Hamming code, which we now denote by Hm. Let xn — 1 = 

m1(x)h(x) in F2[a;]. We know that h(x) generates a code H*m equivalent to Hx. This 

code H*m has dimension m and hence it consists of 0 and the n cyclic shifts of the 

word h(x). (This is an equidistant code!) It follows that there is an exponent s such 

that f(x) := xsh(x) is the idempotent of H*m. Equation 14.2 now has the form 

p1(x)m1(x) + x’h(x) = 1. 

Clearly 1 + f(x) is the idempotent of Hm. It follows that for any polynomial q(x), 

the word q(x)(l + f(x)) is in Hm. 

In this chapter we shall consider cyclic codes for which the word length n is an 

odd pi ime. The alphabet will be F?, where q is required to be a quadratic residue (mod 

n). So we require that = 1 (mod n). As usual a will denote a primitive 

n-th root of unity in an extension field of F,;. Later we shall require that a satisfies 

one extra condition (only for convenience). Since the word length n is a prime, we 

can also consider the finite field F„ (this is not the alphabet). We partition this field 
into {0}, the squares, and the nonsquares: 

R0 ■= {i2 (mod n) : i £ Fn, i ^ 0}, 

Ri ■■= f:\Ro- 

The elements of R0 are also called the quadratic residues mod n. Furthermore we 
define 

0o(a) := n giix) := n {x - ar). 
reRo re 

Since we have required that q (mod n) is in /?0, the polynomials ^0(a:) and gi(x) 

both have all their coefficients in F^. Furthermore 

X’1 ~ 1 = (x - l)ga[x)gi{x). 

(14.4) Definition. The cyclic codes of length n over F, with generators g0(x), 

respectively (a: — l)^0(x) are both called quadratic residue codes (QR codes). 

For the time being we consider extended quadratic residue codes only for the 

case q = 2. The definition is as usual. In the binary case the code with generator 

(x ~1 )&°(x) consists of the words of even weight in the code with generator g0(x). If G 

is a generator matrix for the first of these codes, then ('1 ^ 1') is a generator for the 

second code and the generator for the extended code is (QV 1 G11) (cf. Chapter 9). 

Note that in the binary case the condition that q is a quadratic residue mod n is 
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satisfied if n = ±1 (mod 8). If j G R\, then the permutation 7r;- maps R0 into 

Rr and vice versa. It is easily seen that if we replace R0 by Ry in (14.4) we obtain 

equivalent codes in the sense ol Chapter 9. If n = — 1 (mod 4) then — 1 G R\ and 

therefore the transformation x e-> x-1 maps a codeword of the code with generator 

g0(x) to a codeword of the code with generator gi(x). 

(14.5) Theorem. If c = c(.t) is a codeword in the QR code with generator g0(x) 

and if c(l) # 0 and w(c) = d, then 

(a) d2 > n, 

(b) if n = — 1 (mod 4), then d.2 — d + 1 > n, 

(c) if n = —1 (mod 8) and q = 2, then cl = 3 (mod 4). 

PROOF. Since c(l) / 0, the polynomial c(x) is not divisible by (x — 1). By a suitable 

permutation n, we can transform c(x) into a polynomial c(x) that is divisible by gy(x) 

and of course again not divisible by (x — 1). This implies that c(x)c(x) is a multiple 

of i _|_ x q. x2 q. .. . 4- xn~1. Since the polynomial c(x)c(x) has at most dr nonzero 

coefficients, we have proved the first assertion. 

If n = — 1 (mod 4), then in the proof of (a) we may take j = —1. In that case 

it is clear that c(x)c(x) has at most d2 - d + 1 nonzero coefficients, proving (b). 

/. -lk- /■ - l,. Hence, if terms in the product c{x)c(x) cancel, then they cancel four 

at a time. Therefore n = d2 — d + 1 — 4a for some a > 0, and (c) is proved. D 

For the next two theorems we consider only binary QR codes. We define 

0(x) := £ *r. (14.6) 

The polynomial 6{x) is an idempotent because 2 is a quadratic residue mod n. Hence 

6(a)2 = 6(a), that is. 6(a) G F2. In the same way we see that 6(al) = 6(a) if i £ R0 

and 6(a') + 6(a) - 1 if i G R^. We now make the extra restriction on a announced 

earlier, namely we require that 6(a) = 0. Then 6(a’) — 0 if i G Ro> G(a ) = 1 if 

i G Ri. Finally, we observe that 6(a°) = (n - l)/2. The following proposition is now 

obvious. 

(14.7) Proposition. If the primitive n-th root of unity a is suitably chosen, 

then the polynomial 6(x) of (14.6) is the idempotent of the QR code with geneiatoi 

(x - l)g0(x) ifn = 1 (mod 8) and of the QR code with generator g0(x) if n = -1 

(mod 8). ^ 

Let C be the circulant with the codeword 6 as its first row. We define: 

0 if ?? = 1 (mod 8), 
1 if n = -1 (mod 8), 
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and 

It follows from Proposition (14. t) that the rows of G (which are clearly not indepen¬ 

dent) generate the extended binary QR code of length n + 1. 

We number the coordinate places for the extended binary QR code using the 

coordinates of the projective line, that is, (1,0), (0,1), (1,1),.,., (n - 1,1). Here the 

overall parity check is in front, in position (1,0). We now consider the permutations 

of the group PSL(2,n) acting on the positions. This group is generated by the trans¬ 

formations S := (01) and T := QlS). Since .S' leaves (1,0) invariant and acts as a 

cyclic shift on the remaining positions, it maps the code into itself. It is not difficult 

to show that T maps each row of G into a linear combination of at most three rows 

of G (see Exercise 5). These facts establish the following theorem. 

(14.8) Theorem. The automorphism group of the extended binary QR code of 
length n + 1 contains PSL(2,n). [—j 

Remark. Gleason and Prange slightly altered the definition of an extended code 

for nonbinary QR codes. They require that the coordinate in the check position 

is multiplied by a (constant) factor in such a way that the resulting code is self- 

orthogonal if n = -1 (mod 4), respectively orthogonal to the other QR code if 

n = 1 (mod 4). They show that Theorem (14.8) then also holds in the nonbinary 

case. For a discussion see Assmus and Mattson (1969) or Mac Williams and Sloane 

We now combine the results of Theorems (14.5) and (14,8). 

(14.9) Theorem. The minimum weight of the binary QR code of length n with 
generator g0(x) is an odd number d for which 

(a) d2 > n if n = 1 (mod 8), 

(b) d2 — d + 1 > n if n = -1 (mod 8). 

Proof The code is invariant under a doubly transitive permutation group. By the 

remark following Corollary 10.8 we see that the minimum distance must be odd. So 

lor a codeword c of minimum weight, the condition c(l) ^ 0 of Theorem (14 5) is 
satisfied. v ' ' □ 

Remark. The reader familiar with the theory of difference sets should have no 

difficulty checking that if equality holds in case (b) of Theorem (14.9), then there 

exists a projective plane of order cl - 1 (see the proof of (b) and (c) in Theorem 

The bound of Theorem (14.9) is known as the square root bound. Assmus, 

Mattson, and Sachar generalized the theorem as follows. Let C be an [n,(n + l)/2] 
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cyclic code with minimum weight cl. Assume that C± C C and that the words of 

minimum weight support a 2-design. Then cl~ — cl + 1 > n and equality holds iff the 

design is a projective plane of order cl — 1. 

We now give a first example, by far the most interesting QR code! 

(14.10) Example. Over F2 we have 

X23 _ 1 = (x - l)(arxl + x9 + x7 + x6 + x5 + l)(xu + x10 + x6 + x5 + x4 + x2 + 1) 

= (x - 1)soU‘)0iU')- 

The binary QR code C of length 23 with generator go(x) is a [23,12] cyclic code. By 

Theorem (14.9) the minimum distance d of this code is odd and satisfies d2 — d+1 > 23. 

So d is at least 7 and we already know that this implies that d — 7 and that C is the 

unique code £?23. 

The automorphism group of the binary Golay code is the Mathieu group Af24> 

a much larger group than the one guaranteed by Theorem (14.8) (but, as this proof 

shows, containing PSL(2, 23) as a subgroup). 

The fact that the extended binary Golay code Q2A is self-dual (see Chapter 11) 

also immediately follows from its representation as an extended QR code. 

The following theorem is due to Assmus and Mattson (1969). It is one of the 

most important theorems in combinatorial coding theory. 

(14.11) Theorem. Let A be an [n, k] code over F, and let B := A1 be the [n, n-k] 

dual code. Let the minimum weights of these codes be cl and e. Let t be an integei 

less than d. Let v0 be the largest integer satisfying v0 — [(u0 + q — 2)/(q — 1)] < d and 

let w0 be the largest integer satisfying wn — [(u’n + q — 2)/(q — 1)] < e, where if q — 2 

we take v0 = w0 = n. Let B have a t most cl - t non-zero weights less than or equal to 

n-t. Then for each weight v with cl < v < v0, the subsets of S := {1,2,..., n} that 

support codewords of weight v in A form a t-design. Furthermore, for each weight w 

with e < w < min{?r — t,wn}. the subsets of S that support words of weight w in B 

also form a t-design. 

PROOF. We shall use the following notation. If T is a subset ol ,5 and C a code of 

length n, then C\T denotes the code that is obtained by deleting the coordinates in 

T from the codewords of C. The subcode of C consisting of the words of C that have 

a 0 in all the positions of T is denoted by C0(7 )• The proof is in six steps. 

(1) By definition of v0, two words of A with weight < v0 and with the same 

support, must be scalar multiples of each other (since there exists a linear combination 

of these two words with weight < cl). An analogous statement holds for B. 
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(2) Suppose that (S,T>) is a ^-design and T a t-subset of S. Denote by a,- the 

number of blocks D of T> with \D n T\ = i. By Proposition (1.4) we have 

§0=0 (j= 
By solving these equations, we find that af does not depend on the choice of the set 

T. The statement for i = 0 implies that the complements of the blocks of V also 

form a t-design (see Proposition (1.39)). 

(3) By definition of d, the deletion of any cl — 1 columns of a generator matrix 

of A yields a matrix that still has rank k. 

(4) Let T be a t-subset of 5. By (3) the code A\T is an [n - t, k] code. Clearly 

C := B0(T)\T is a subcode of the dual of A\T. Since the dimension of C is at least 

n~ k~t,C must be (A\T)X. Let 0 < Vl < v2 < .. . < vr < n - t (where r < d - t) 

be the possible nonzero weights in the code B. Then these are also the only possible 

nonzero weights for the code C. Since the minimum weight of A\T is at least d — t, 

we know d - t coefficients of the weight enumerator of A\T. There are at most that 

many coefficients of the weight enumerator of C (the dual code) that we do not yet 

know. Theorem (9.14) yields a system of linearly independent equations for these 

unknowns. We could solve these equations. However, the important observation is 

that the solution, and hence the weight enumerator of the code C, does not depend 

on the choice of the set T. Using Mac Williams’ Theorem a second time then shows 

that the same statement holds for the weight enumerator of A\T. 

(5) We now prove the second assertion of the theorem. Let w < min{n - t, w0}. 

Let £ be the collection of ro-subsets of S that support words of weight w in B. 

Consider the set £' of complements of sets in £. For any t-subset T of 5 we find from 

(1).that the number of sets of £' containing T is ^ times the number of words of 
weight w m C (as defined in (4)). By (4) this number does not depend on T. Hence 

£' is a Cdesign. By Proposition (1.39), the collection £ is also a Cdesign. 

(6) To prove the first assertion of the theorem, we start with v = d. Let V be 

the collection of d-subsets of S that support codewords of weight d in A. In the same 

way as m (5) we see that the number of sets in V containing a given t-subset T of S 

is ^ times the number of words of weight d - t in A\T. By (4), this number does 

not depend on T. We now proceed by induction. Let d < v < v0 and assume that 

the assertion of the theorem is true for all v' with cl < v' < v. Let V be as before 

The number of subsets of V containing a given t-subset T of S is \/{q - 1) times 

the number of words of weight „ - / in A\T corresponding to words of weight u in 

A. By (4) the total number of words of weight t> - t in A\T does not depend on T. 

By the induction hypothesis and (2), the number of words of weight v — t in A\T 

corresponding to words of weight < v in A is also independent of T. Hence V is a 
t-design. 
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We shall now give several examples of this theorem. 

(14.12) Example. Take n = 8, k = 4, q = 2. and let A = A1 be the extended [8,4] 

Hamming code. Then d = e = 4. Take t — 3. The condition of Theorem (14.11) is 

satisfied. Taking v = 4 we find the result of Proposition (9.12). 

(14.13) Example.Take n = 12, k = 6, q — 3, and let A = A1 be the extended 

ternary Golay code. Then d = e — 6. (See Exercise 3.) Since all weights are divisible 

by 3, the condition of Theorem (14.11) is satisfied for t = 5. It follows that the 

supports of the words of weight 5 in the ternary Golay code form a 5-design. 

(14.14) Example. Let A be any [12/, 6/] ternary self-dual code. Suppose d > 31. 

Take t = 5. Since all weights in A are divisible by 3, the condition of the theorem is 

satisfied (as in the previous example). Taking v — d we find that the supports of the 

minimum weight words of A form a 5-design. 

(14.15) Example. Take n = 24, k = 12, q = 2, and let A = Ax be the extended 

binary Golay code C/24. We have already proved that 0, 8, 12, 16, and 24 are the 

only weights that occur. Therefore the existence of the 5-(24,8,l) Steiner system also 

follows from Theorem (14.11). 

(14.16) EXAMPLE. Let n = 47. Consider the binary QR code of length 47. By 

Theorem (14.9), the minimum distance d is at least 9. Then (c) of Proposition (14.5) 

shows that the minimum distance is at least 11. Since |H(x, 6)| > 223, the code cannot 

be 6-error-correcting. Hence the minimum distance is 11. The extended code C is 

self-dual with minimum distance 12. MacWilliams’ Theorem allows us to compute 

the weight enumerator of this code. The only weights that occur are 0, 12, 16, 20, 

24, 28, 32, 36, and 48. (Note that this also follows from the fact that the code is 

doubly even and contains 1.) We can again apply Theorem (14.11) with t = 5. We 

may take v =12, 16, 20, or 24. In this way we find four different 5-designs (and also 

the complements). 

These examples explain why so much effort has been put into finding the mini¬ 

mum distance of other quadratic residue codes. Very little is known (but it is doubtful 

whether long QR codes will yield interesting results). A survey for n < 59 can be 

found in Assmus and Mattson (1972a). Assmus and Mattson (1972b) proved that the 

minimum distance of the [60,30] extended binary QR code is 18 by using so-called 

contractions. These are mappings ol self-orthogonal codes to shorter codes that are 

still self-orthogonal. Again Theorem (14.11) can be applied with t — 5 and one finds 

5-designs on 60 points. 

We give one more example of Theorem (14.11). It will turn up again in (16.20). 

(14.17) Example. Consider a [22'-1 - 1,22'-1-2/-1.5] primitive binary BCH code 

C (see (10.5)). As in previous examples one can use MacWilliams’ Theorem to show 
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that in Cx no other weights occur than 22,~2 and 22'-2 ± 2'-1. To apply Theorem 

14.11 take n = 22'-1, k = 22,_1 — 21 — 1, q = 2, and A = C. In Ax only three weights 

occur. So we can take t — 3 and find that for each v, the words of weight v support 

a 3-design. 

From Proposition (12.7), we see that the dual code Cx is a subcode of a punc¬ 

tured second order Reed-Muller code TZ(2,2/— 1). The codewords of this code are all 

the linear combinations of cyclic shifts of the idempotents of the codes with generator 

(xn — 1 )/ml(x), respectively (xn - 1 )/m3{x) (in the usual notation). Using this fact 

(see MacWilliams and Sloane (1977)) one can show that Cx is a union of cosets of 

7^.(1,2/ — 1), where each coset corresponds to an alternating bilinear form of rank 

21 — 2. As in Lemma 12.9 this leads to the conclusion that all nonzero codewords in 

C1 have weight 22'-2 ± 2'-1 or 22'-2. 

Remark. For l = 2, the extended code appeared in Chapter 12, Exercise 6. 

In his thesis Delsarte (1973) generalized MacWilliams’ relations and used the 

generalization to prove theorems similar to the Assmus-Mattson theorem. (The 

thesis contains much more than this! — Chapter 17 is based on it.) We shall present 

some of his theory and give some theorems relating (nonlinear) codes and designs. 

In order to treat nonlinear codes we generalize the idea of a weight enumerator. 
We consider only binary codes. 

(14.18) DEFINITION. Let C be a. code of length n over F2. Define 

A, := |C'|-1 • |{(x, y) : x £ C, y e C, d(x, y) = *}|. 

We call (Aq, Aj,..., An) the distance distribution of C and define the distance enu¬ 
merator by 

n 

A(.t, y) := J2AiXiyn~\ 
i = 0 

If C is linear, then A,: equals the number of words of weight i in C and A(x, y) is the 

weight enumerator as defined in (9.13). Note that if C is linear and we replace C by 

C - c, where c EC, then the weight enumerator does not change. Any code with 

this property is called distance invariant. For such a code the weight enumerator and 
the distance enumerator are the same. 

We observe that A(l,l ) equals the number of codewords. The following definition 
applies to polynomials, regardless ol a connection with codes. 

(14.19) DEFINITION .If A(x, y) = £”i=0 A,*y-< is a polynomial in * and y (homoge¬ 
neous of degree n), then 

A'ix'y):=A(rT)A{y-x'y+x') 
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is called the MacWilliams transform of A(x,y). If C is linear and A(x,y) is the 

weight enumerator of C, then A'(x,y) is the weight enumerator of C1 by Theorem 

(9.14). For any distance enumerator A(x, y) we have A0 — 1 and for any polynomial 

A(x, y) with A0 = 1 we have A"(x, y) = ,4(.r, y). 

The following polynomials play an important role in coding theory. 

(14.20) DEFINITION. Let n be fixed. The Krawtchouk polynomial Kk(x) is defined 

by 

Kk{x) := E(-lY 
j=o 

where 
x{x - 1) • • • (x - j + 1) 

(x G R). 

The following lemma is established by a trivial counting argument. 

(14.21) Lemma. If x G F" has weight i, then 

E (-l)(x'y) = Kk(i\ 
y£F2n 

The following inequalities are the basis of a bound known as the linear program¬ 

ming bound (cf. Van Lint (1982)). We shall use them for other purposes. 

(14.22) Lemma. Let C be a binary code of length n with distance distribution 

(A0,Au...,An). Then 

X>4/Yt(i)> 0, k G {0,1,..., n}. 
i=0 

PROOF. Let |C| = M. From Lemma 14.21 we find 

M'ZA,Ki{,) = jz £ £ (_!)<*■—>•> 
>'=o »'=o (x.yjec2 

d( x ,y )= ) w(x)=k 

= E (E(-d<z 
\x€C 

w( x) = k 

> 0. 

□ 

REMARK. If we replace the numbers A{ by the coefficients of the weight enumerator 

of C, then in the double sum over x and y we should take only the terms with x = 0. 
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This amounts to leaving out the exponent 2 in the final expression. So, if in the proof 

we have equality, then this remains true after replacing the A{ by the coefficients of 

the weight enumerator. We use this fact below. 

Let C be any binary code of length n with distance enumerator A(x,y). If 

A'(x,y) = ^i*=o A'ixlyn~l is the MacWilliams transform of A(x,y), then 

(14.23) 
1° I i=0 j = 0 

1 ^ ^ 

1^ I i=0 

jj \k - j 

So, by Lemma (14.22), the numbers A'k are nonnegative. Clearly A'0 = 1. We can 

now define what Delsarte called the four fundamental parameters of a code C. The 

first two are the minimum distance d and the number s of distinct nonzero distances 

between codewords (the number of nonzero A,- with i > 0). The other two are the 

dual distance d' defined by 

d' := min{z > 1 : A[ / 0}, 

and the so-called external distance s' which is the number of nonzero coefficients A[ 

with 1 < i < n. The name ‘dual distance’ is clear because it is the distance of the 

dual code if C is linear. If C is linear, then the assertion of the following theorem is 

trivial; but for nonlinear codes it gives an interesting combinatorial interpretation to 
the dual distance. 

(14.24) Theorem. Let C he a binary code of length n with |C| = M and dual 

distance d'. Let [C] be the M by n array with the codewords of C as rows. Then if 

r < d' any set of r columns of [C] contains each r-tuple exactly M/2r times. 

PROOF. Since Ak = 0 for 1 <. k < c/', we have from (14.22) (see the remark following 

the lemma) that Z)xec(~l)*x,z> = 0 for every z £ F" with iv(z) = k. Taking w(z) = 1 

we see that every column of [C] must have M/2 ones and M/2 zeros. Then taking 

w(z) = 2, we conclude that every pair of columns must contain each of the four- 

possible pairs exactly M/4 times. Proceeding by induction the result follows. □ 

REMARK. The matrix [C] mentioned in Theorem (14.24) is often referred to as an 
orthogonal array of strength d' — 1. 

We shall now show a relation between these parameters and designs obtained 

from the codes. In the following Ah, A<2,..., Ait are the nonzero coefficients of 
A(x,y). 

An interesting situation arises when 5 < d'. In that case consider A'ix y) and 
substitute y — 1. We find 

i + X>qy,j = ^Ed;(i-,r(i + xr'. 
i=i *■' ;=o 
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Since A\ = 0 for 1 < i < d\ the l-th derivative of the right hand side in the point x = 1 

does not depend on the values of the nonzero A\ for 0 < l < s — 1. By calculating these 

derivatives we find s linearly independent equations for the numbers Ai}. Therefore, 

these numbers depend only on the parameters ??., |C|, and the numbers L, i2,..., is. 

Now, take any codeword as origin and consider the weight enumerator of C. Clearly, 

nonzero coefficients only occur for indices 0 and ij (1 < j < s). Using the remark 

following Theorem (14.22) we see that the MacWilliams transform of this weight 

enumerator must have 0 coefficients for 1 < i < cl'. Therefore the same equations 

that we found for the Aij apply. Then we have proved the following theorem. 

(14.25) Theorem. If C is a binary code for which s < cl', then C is distance 

invariant. □ 

If C is distance invariant, then An = 0 or An — 1. Let us assume that we know 

An. We shall show that one can obtain i-designs by considering the words of some 

fixed weight as blocks. We take t \= d! — s, where J s — An. Consider some fixed 

f-tuple of positions and denote by \i} the number of code words of weight ij that 

have ones in those t positions. Next, take 0 < j < s, r := t + j. We now count 

pairs (c, x), where x is a word of weight r with ones in the t fixed positions and c is 

a codeword with ones in all the positions of x. From Theorem (14.22) we see that 

there are £(V) such pairs (where M := |C|). On the other hand, the number of 
^ \ J / 

pairs is In this way we find J linearly independent equations for the 

s unknowns A^. It follows that these numbers are independent of the choice of the 

f-tuple. So, we have the following theorem on designs from codes. 

(14.26) Theorem. Let C he a binary code for which s < cl'. If i > d' — s and 

t := d' — J, then the words of weight i in C form a t-design. 

(14.27) Example. In Chapter 12 we showed that the Iverdock code fC(m) had the 

fundamental parameters s = 4, cl' = 6, and that An — 1 (where n = 2m). So Theorem 

(14.26) can be applied with t — 3. We find Proposition (12.12). 

Several authors have generalized the idea of QR codes. We mention Camion 

(1975), Dels arte (1971), and Ward (1974). An elementary presentation of the theory 

was given by Van Lint and MacWilliams (1978). We shall only sketch the ideas and 

show a connection with certain well known designs. In the generalization the length 

of the codes is q = pm (m > 1). As alphabet we may use any finite field F. Let G 

be the additive group of Fr We identify the positions of the code with elements of 

G and represent a codeword as 

(14.28) c = cax3-> (cn e 
geo 

which is to be considered as a formal expression. Note that this corresponds to the 

representation of cyclic codes in the case that m — 1, where G = {0,1,... ,p — 1). 
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DEFINITION. The group algebra FG consists of all expressions of the form (14.28) 

with the following rules for addition and multiplication: 

E a9x3 © I] b9X-3 '■= EK + 
and 

\9l+92=S / 

where the summations are over all elements g in G. Then (FG, ©,*) is a ring. 

Let ( be a primitive p-th root of unity in some extension field F of F. Let 

a be a primitive element of F?. Every element g E G can be represented as g = 

i0 + i\Ot + . .. + with coefficients ij in Fp. We now define the character 

: G —> F by 

(14.29) 0x(5r) : = 

and for each h £ G we define the character iph by 

(id-30) iph(g) := ip1(gh). 

These characters are extended linearly to FG by defining 

^ ^Ea#a'#j := EM’/tsO- 

The reader who is familiar with character theory will see that we now have all the 

characters of G and that h <-> iph establishes an isomorphism between G and the 

group of characters. The proofs of all the facts that are stated below depend heavily 

on calculations with these characters. We leave out these (usually straightforward) 

proofs that can be found in Van Lint and Mac Williams (1978). In the following 

definition of the generalized codes U (respectively V) denotes the set of nonzero 
squares (respectively non-squares) in G. 

(14.31) Definition. The generalized quadratic residue code of length q over F 

consists of all c = Zcgx,s such that V’H(c) = 0 for all u G U. We shall use the 
notation GQR code. 

The code defined in (14.31) is denoted by A+. The code B+ is defined by 

replacing U by V. The codes A and B are the corresponding subcodes consisting of 

the words c satisfying the additional requirement L’0(c) = 0. From the independence 

of the characters one sees that A+ has dimension i(q + 1). 

To see that we are indeed generalizing the earlier concept, the reader should 

convince himself that if m = 1 the definitions given in (14.31) and (14.4) are the 
same. 
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In the paper by Van Lint and MacWilliams it is shown that the idea of idempotent 

can be generalized. In the same way as was mentioned in the remark following (14.8) 

one can extend A+ and B+ to and Bby adding an extra symbol to the codewords 

such that the extended codes are dual codes. One can show that these codes are both 

invariant under PSL(2,g). It then follows that Proposition (14.5) also generalizes. In 

fact, one can show that if m = 21 and K := Fpi, then the word c := Yig^K xS is iu H+. 

So, for even m the minimum weight is ecpial to yjq. 

In the paper quoted above a. fairly difficult, proof, restricted to the case m = 2, 

shows that the only words of minimum weight in are the words in the orbit 

of (J2geKx9) under PSL(2,<?), and multiples of these words. It then follows that 

the union of the supports of codewords of minimal weight in A^ and Bx are the 

images of Fp U {oo} under the action of PGL(2,p2) on the projective line of order p2 

(represented by G U {oo}). So these words form the Mobius plane 3-{p2 + 1, p+ 1,1), 

(see Chapter 1). Once again a design is obtained from the words of minimal weight 

in a code (in this case a code and its dual — for each of the codes Aand Bthe 

words of minimum weight form a 2-design). Note that the partition of the blocks of 

the inversive plane of order 3, used in Chapter 6 (see Exercise 7, and the proof of 

(6.7)), is generalized here! 

Van Lint and MacWilliams conjectured that this result on words of minimum 

weight was true for all even m. In order to prove this they needed the following the¬ 

orem, which is quite interesting for its own sake. In 1984 Blokhuis gave an extremely 

elegant and ingenious proof of that theorem. We mention it since it is worth knowing 

and also because, combined with GQR codes, it yields new designs. 

(14.32) Theorem. Let q be a prime power and let S be a subset of the field Fg2 

with the following properties: 

(a) The difference of any two elements of S is a square in Fp; 

(b) 0 G 5 and 1 € 5. 

Then S is the subheld Fq. D 

Exercises 

1. Let xA + x + l be the generator of the [15,11] binary Hamming code. Determine 

the idempotent of this code. 

2. Let xn - 1 = g(x)h(x) over F2. Let C be the binary code with generator g(x). 

Show that if h(x) has even degree, the idempotent of C is xg(x)h'(x). 

3. Show that the ternary Golay code is a QR code. Show that the square root 

bound yields a better result than the BCH bound. Show that d = 6 and that the 

extended code is self-dual. 

4. Determine all perfect QR codes. 
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5. Let G be the matrix introduced after Proposition (14.7) (that ‘generates’ the 

QR code). Let H be the matrix obtained by applying the permutation T to the 

coordinate positions. Consider the rows of G and H corresponding to position (z, 1), 

where i £ R0. Prove that the sum of these two rows is equal to the sum of the first 

two rows of G (corresponding to the positions (1,0) and (0,1)). 

6. Show, using the methods of Chapter 9, that the extended ternary QR code 

of length 24 is self-dual. What is the square root bound for the minimum distance 

of the QR code? Show that Gleason and Prange’s generalization of Theorem (14.8) 

implies that the extended code has minimum distance 9. Prove that the words of 

weight 9 in this code carry a 5-(24,9,6) design. 

7. Show, using the same ideas as in the proof of the Assmus-Mattson theorem, 

that if C is a binary [n, k, d] code (k > 1) such that for each weight i > 0 the 

codewoids of weight i form a t-design (t < <7), then the same is true for Cx. 

8. Consider the field F32 with generator a satisfying a2 = 1 -f 2a. Go through 

the construction of the corresponding GQR code and then construct the 3-(10,4,l) 

design from the words of minimum weight in the code and its dual. (The solution is 

given in several examples in Van Lint and MacWilliams (1978)). 
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In this chapter we treat a class of codes that have a number of properties in common 

with QR codes; for example, they also led to several new 5-designs. The results are 

due to V. Pless (1972, 1975). The construction of the ternary Golay code given in 

Proposition (11.9) is an example of these codes. 

We remind the reader of the construction of Paley matrices. Let q be a power 

of an odd prime and let \ be the quadratic character on F?. We number the rows 

and columns of a matrix of order q + 1 using the (inhomogeneous) coordinates of 

the projective line of order q, namely oo (for the point (1,0)) and the elements of F?. 

Define Cq+1 by 

C-oo.oo • 0, Cco,a • T Ca oo . X( 1) 

c-a.b x(b — a) (a, b & Fq). 

So 

<?,+ ! = 0 1T 
s„ 

where 5 has entries sa h = x{b 

We observe that 

(a) Cq+1Cj+1 = -Iq+1 over F3 if q = -1 (mod 3); 

(b) Cq+1 is symmetric if q = 1 (mod 4); 

(c) Cq+1 is skew-symmetric if q = —1 (mod 4). 

The Paley matrices are examples of a larger class of matrices known as conference 

matrices. 

(15.1) DEFINITION. A conference matrix of order n is a real matrix C with entries 

±1 outside the diagonal and 0 on the diagonal such that CCT = (n — 1)1. 

The codes of this chapter are defined as follows. 

(15.2) Definition.Let q = -1 (mod 6). A .symmetry code of dimension q + 1 is a 

[2q + 2,g + l] ternary code Sym2?+2 with generator matrix 

G2, + 2 := (Iq +1 Gq+1) , 

where Cq+1 is a Paley matrix. 
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We observe that most of the following goes through if we only require that Cq+i 

is a (symmetric or skew-symmetric) conference matrix. 

(15.3) Proposition. The code Sym2 +2 is self-dual (and hence all its weights are 

divisible by 3). 

PROOF. This follows directly from property (a) of Paley matrices mentioned above. 

□ 

(15.4) Proposition. The matrix 

:= ((-1)1,+1)/2C',+1 A+i) 

is also a generator matrix of Sym2?+2. 

PROOF. We have G2q+2G*2q+2 = o because C?T+1 = Since Sym2?+2 is 

self-dual and the matrix G2q+2 has rank q T 1, we are done. □ 

(15.5) Proposition. The linear transformation of F3?+2 with matrix 

Z = 
O 

(-i y+l'2i 
?+i 

4+i 
o 

leaves Sym2?+2 invariant. 

PROOF. This is a consequence of Proposition (15.4). □ 

(15.6) Example. Take q = 5. The generator G12 = (I6 C6) is the matrix that 

was used in (11.9) to define the ternary extended Golay code C?12. Several coding 

theorists independently found this representation of Ql2 but did not realize that the 

same construction for other values of q would yield interesting codes. 

Before looking at other examples, we shall make some general assertions about 

the minimum distance of symmetry codes. In describing codewords we shall denote 

by u>;(x), respectively wr(x), the contribution to the weight of x due to the first q + 1, 

respectively the last q + 1 coordinates. 

(15.7) Lemma. For every codeword x in a symmetry code of length 2q + 2 we 
have 

(a) if w,(x) = 1, then wr(x) ~ q, 

(b) if w,(x) = 2, then iur(x) = {q + 3)/2, 

(c) if w,(x) = 3, then w,.(x) > 3(q - 3)/4. 

Proof. Consider three rows of the generator matrix. Since multiplication of a 

column by -1 does not alter weights, we may assume that x in (a), (b), (c) is the 

sum of one, two, or three rows of the following array. 
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a times b times c times d times 

1 0 0 ... 0 0 + + +" + . ..+ 
0 1 0 ... 0 Z21 0 *23 + . ..+ + . ..+ - ...- - .. .- 

0 0 1 ... 0 *31 *32 0 + ...+ — ... — + ...+ -...- 

Using the size and property (a) of the Paley matrix Cq+1, we find: 

a + b-\-c + d = q — 2, 

a + b — c — d — —x23, 

a — b + c — d — —x32, 

CL — b — C -\~ d — —X2i£31. 

Assertion (a) is obvious. To prove (b) we acid the first two rows of the array and find 

wr{x) = 2 + |(1 + *23) + a + b = \{q + 3). 

Now add all three rows. Then 

wr(x) > b + c + d 

= \ {3(<? ~~ 2) + a’23 + *32 + *21*31} 

□ 

(15.8) Lemma. Let wx and w2 be integers. For a symmetry code we have 

(a) there is a codeword x with iui(x) — 101 and 10,.(x) — w2 iff there is a codeword y 

with w,(y) = w2 and wr(y) — wlf‘ 

(b) wr(x) > 0 for all codewords x/0. 

PROOF. Property (a) is a consequence of Proposition (15.4). Property (b) follows 

from the fact that Cq+1 is nonsingular. □ 

(15.9) Example. We consider Sym36. so q = 17. By Lemma 15.7 a codeword x 

with w,(x) < 3 has weight > 12 (all weights are divisible by 3). We wish to show 

that there is no codeword of weight less than 12. Bjf Lemma (15.8), it is sufficient to 

consider the possibility of a codeword x with ui](x) = 4, ior(x) = 5. All possibilities 

were checked by computer and no such combination was found. If one wishes to 

check this by hand, there are two ways to proceed. One way is to realize that C18 is a 

bordered circulant. This means that there are not too many essentially different ways 

to choose four rows. For example, if one of these is the top row, then without loss one 

chooses the next row and sees to it that the size of the largest gap between chosen 

rows occurs next. One could also use the method of the proof of Lemma (15.1) and 

add a fourth row to the array, asking whether the four could be orthogonal and have 

a sum with weight 4. There is in fact an essentially unique way of doing this, take 

o = 3, b = c = d = 4, and all x{j = 1. Then the fourth row would be 

0001 ...0+ + +0 + -+-+-+ + + 
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and then one must show that this cannot be completed to a conference matrix. In 

this case the special form of the Paley matrix is not used. The case q = 17 is the 

largest for which hand calculation still is feasible. The result of this is that Sym36 

has minimum distance 12. 

We now apply the Assmus-Mattson Theorem (14.11). We have n = 36, k = 18, 

q = 3. Furthermore d = e — 12 and we must take v0 = w0 = 23. If t = 5, 

the conditions of the theorem are satisfied. We find 5-designs from the supports of 

codewords of weight 12, 15, 18, 21 and also the complementary designs. For all these 

designs (with one possible exception) there was no earlier construction. 

In Pless (1975) the examples q = 5, q = 11, q - 17, q = 23, and q = 29 are 

treated. Of course q = 5 yields the well known Steiner system 5-(12,6,l) related to 

Qi2- All other 5-designs were new. The comparison with known designs was based 

on the study of automorphisms of the designs from symmetry codes. 

Consider a matrix M with entries from F?. If replacing all nonzero entries by 

1 yields a permutation matrix, then we call M a monomial matrix. We denote by 

G(q) the group of all monomial matrices that map Sym2s+2 into itself (the mapping 

is c ^ cM). The corresponding group of permutation matrices is called G(q). 

(15.10) Lemma. If A ana B are monomial matrices of order q + 1 such that 

A~1Cq+1B = Cq+1, then (AQ°B) 6 G{q). 

PROOF. Codewords in Sym2?+2 have the form a(/9+1 C?+1), where a is a row vector 
of length q + 1. Now 

a(A+i C’j+i) (o 5) -aA(/,+1 A~1Cq+1B), 

which is clearly a codeword. q 

Recall that the positions of Cq+X were numbered 00,0,1,... , q — 1. We define 

analogues of the transformations S' and T used in Chapter 14. As before, S is the 

permutation x >—> x + 1 on the line (and S leaves 00 invariant). We consider S and 

also Cq+1 as linear transformations of F|+1. For the standard basis vectors e e 
(a £ F,) we have 

eoaC?+i = y~) ea, 
a 6 Fq 

eaCq+x = \( — l)eoo + ^2 X(b — a)eb. 

66 F, 

It follows that 

ecxjC'<;_|_i ,5 = GooiSCq + j 
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and 
eaCg+1S = x(-l)eoo + X{b~ a)e&+i 

Fq 

= x(-l)eco + x(6 — a - l)et 
66 FQ 

— ^aSCq+l, 

that is, 

(15.11) 

In the same way the permutation P{b2) defined by x b2x {b ^ 0) can be shown 

to satisfy 

(15.12) P(b2)~1Cq+1P(b2) = Cq+1. 

The permutation Tx = x'1 (where CU1 : = oo) that we used for QR codes is now 

replaced by a monomial transformation that behaves in the same way as T when 

considered as a permutation only. We denote it by T*. We define 

eooT* := ( —l)(?-1)/2e0, e0T* := eM, eaT* := x(G)e-i/a (a ^ 0, oo). 

Once again it is straightforward to check that 

(15.13) {T*)~1Cq+1T* — Cq+1. 

The permutations 5, P(b2), and the monomial transformation T* generate a 

group R*. It is easily seen that R*/{/, — 1} is isomorphic to PSL(2,q). From Lemma 

(15.10) and the relations (15.11), (15.12), and (15.13) we then have the following 

theorem. 

(15.14) Theorem. The group G(q) contains a subgroup isomorphic to PSL(2,q). 

□ 

S-'C'^S = c, 5+i- 

Remark. By Theorem (15.5), the monomial matrix 

/o (_1)(?+iV2/\ 

\1 O ) 

is also an automorphism of Sym25+]. The induced permutation Z, which has order 

2, commutes with those already found; so we have a subgroup PSL(2,q) X Z2 of 

G(q). In Pless (1975) it is shown that in fact G(q) contains a subgroup isomorphic 

to PGL(2,q) X Z2. It is known that G(5) is Mla. In general, the group G(q) is not 

known (see Exercise 5). 

(15.15) Example. From Exercise 6 of Chapter 14 we have a 5-(24,9,6) design. 

Assmus and Mattson (1969) have shown that the full automorphism group of this 

design is PSL(2,23). Using q = 11 we can construct the code Sym24 and fiom Lemma 
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15.7 we find the minimum distance to be 9. From this code we also find a 5-(24,9,6) 

design. By Theorem (15.14), this design has PSL(2,11) as a group of automorphisms. 

Since this is not a subgroup of PSL(2,23), the two designs are not the same. For 

more details we refer to Pless (1975); there the method of contraction mentioned in 

Chapter 14 is also used. 

Exercises 

1. Let C be a conference matrix of order n. Show that multiplying some columns 

and some rows by —1 produces another conference matrix. In this way we can 

normalize the matrix to make all entries in the top row (not on the diagonal) equal 

to 1. Show, using the same method as in the proof of Lemma (15.7), that one can 

make the normalized matrix symmetric if n = 2 (mod 4) and skew-symmetric if 

n = 0 (mod 4) (it is obvious that n must be even). 

2. Let P be the Paley matrix C12. Show that 

H'■=(-! })®(/ + />) 

is a Hadamard matrix. Use H to construct a skew-symmetric conference matrix C 
of older 24. With C constiuct a, ternary self-dual [48,24] code. Find automorphisms 
of this code. 

3. In Example (15.9) an assertion is made about a fourth row of the array of 

Lemma 15.7 that would yield a word of weight 9. Prove this assertion. 

4. Let P be a symmetric matrix over F3 such that P2 = -I. Let C be the code 

generated by G := (/„ P) and let C* be the code generated by G* := (P I„). Prove 

that Fln = C © C*. (A special case is the fact that F312 is the direct sum of two codes 
that are equivalent to Q12.) 

5. Let G(q) be the automorphism group of the symmetry code Sym9 , and H 
any subgroup. 

(a) Prove that the converse of (15.10) holds: that is, if H preserves the first q -f- 1 

coordinate positions setwise, then its elements are all of the form described 

in (15.10). Deduce that only the identity permutation can fix the first q + 1 
coordinates elementwise. 

(b) Prove that, if/7 preserves the partition of the set of coordinate positions into 

the orbits of Z (see Remark following (15.14)), then H commutes with Z. 

(c) Prove that, if H preserves neither the partition into the first and the last q + 1 

coordinates, nor the partition into the orbits of Z, then H is doubly transitive. 

(d) If you are familiar with permutation group theory, you might like to try to 
identify G(q) in all cases. 



16. Nearly perfect binary codes and uniformly 
packed codes 

We have seen ( in Chapter 9, Exercise 8; and in Chapter 11) that words of fixed weight 

in a perfect code yield designs, in fact some of the most interesting ones! The two 

5-designs connected with the Golay codes also have very interesting automorphism 

groups. These two facts explain the interest of both design-theorists and group- 

theorists in perfect codes. For both categories it is sad that Van Lint (1971) and 

Tietavainen (1973) proved that if e > 1 and the size of the alphabet is a prime 

power, then there are no nontrivial perfect e-error-correcting codes except the Golay 

codes. Best (1982) and Hong (1984) extended this result to arbitrary alphabets for 

e > 2. So, only the cases e = 1 and non prime power alphabet with e = 2 remain 

open. 

In this chapter we present some of the theory of binary nearly perfect codes, 

due to Goethals and Snover (1972). These codes are a special case of the class of 

uniformly packed codes, introduced bjr Semakov, Zinoviev and Zaitsev (1971). These 

codes also lead to t-designs. The theory of uniformly packed codes was further de¬ 

veloped by Goethals and Van Tilborg. For a survey of most of what is known about 

these codes we refer to Van Tilborg (1976). Later in this chapter we shall describe 

some of the connections between uniformly packed codes, so-called two-weight codes, 

and strongly regular graphs. Much of the theory of uniformly packed codes depends 

heavily on algebraic methods; the non-existence results involve arguments from num¬ 

ber theory. Since we are mainly interested here in combinatorial methods, we restrict 

our attention to results obtained by such methods. 

First, we shall be concerned with the subclass of nearly perfect binary codes. 

Let C C F" be a code with minimum distance d = 2t + 1. For all c 6 C we 

define 

T(c) := B(cJ + l)\B(cJ). 

We partition this set into two subsets Ti(c) and 71(c), where 

71(c) := (x£ T(c) : <Z(x,C) = t}. 

So, the words in T2(c) have distance t + 1 to C. 
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(16.1) Lemma. For each c £ C we have |T\(c)| < (") |_7yfJ • 

PROOF. W.l.o.g., we can take c = 0. A word x in 2j(c) has weight 2 + 1 and the 

(unique) codeword u at distance 1 to x has weight 22 + 1. For this word u there are 

exactly (^j1) words x in Ti(c). Let N2%+1 denote the maximum number of codewords 

of weight 22 + 1 (given 0 £ C). Count pairs (u, S'), where u is a codeword of weight 

22+1 and S is a 2-subset of its ones. Doing this in two ways we find 

N. 21+1 

n — 2 

2 + 1 
J- 

This proves the lemma. □ 

(Note that the proof does not use the fact that 0 £ C.) 

The following theorem is a generalization of the (trivial) sphere packing bound 

given in Exercise 1 of Chapter 9. It is known as the Johnson bound (Johnson 1962). 

(16.2) Theorem. If C £ F2n is a code with minimum distance d = 22 + 1, then 

1 !n\ (n — 2 , n — 2 
W- £ + 

i=0 [n/(t +1)J \2/ V2+1 ^2+1^ < 2". 

Proof. Clearly the balls B{c, 2), where c runs through C, are disjoint. The words in 

R ■— Ucec T2(c) are not in any of these balls. A word x £ F2n can be contained in at 

most [n/(t + 1)J distinct sets T2(c) (with c £ C). From Lemma (16.1) we therefore 
find 

Since |F”| = 2n and |5(c,2)| = (") the result follows. □ 

(16.3) Definition.A binary code for which equality holds in the Johnson bound is 

called nearly perfect. Here we exclude codes for which 2 + 1 divides n + 1. 

Remark. Note that if 2 + 1 divides n + 1, then (16.2) reduces to the sphere packing 

bound and if equality holds, then we have a perfect code. This divisibility condition 

was one of the first known necessary conditions for the existence of a perfect code. 

The following regularity condition is a consequence of the definition of nearly 
perfect codes. 
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(16.4) Proposition. Let C be a nearly perfect binary code of length n and 

minimum distance 2t -f 1. Let xE F". Then 

(a) if d(x,C) > t, there are exactly [n/(t + 1)J codewords c with d(x, c) = t-\- 1. 

(b) ifd(x,C) — t, then there are exactly |_(n — t)/(t +1 )J codewords c with d(x, c) — 

t T 1. 

PROOF. Equality in the Johnson bound implies that equality occurs in (16.1) and in 

the estimate for jV2t+1. Both assertions follow directly from these equalities. □ 

The minimal number p(C) such that every word in the space of all words has 

distance at most p(C) to some codeword is called the covering radius of the code 

C. If a code C has minimum distance e and covering radius e + 1, then C is called 

quasi-perfect. So, a nearly perfect code is quasi-perfect with the extra property that 

every word that has distance at least e to the code, has distance e or e + 1 to the 

same number of codewords (namely |n/(e + 1)J). We now consider a more general 

situation, again for quasi-perfect codes. 

(16.5) Definition. An e-error-correcting code C of length n over F? is called 

uniformly packed with parameters o and 0 iff for every word in x £ F?n 

(a) if x has distance e to C, then x has distance e + 1 to exactly a codewords, where 

a < (n — e)(q — l)/(e + 1); 

(b) if x has distance > e to C, then x has distance e + 1 to exactly 0 codewords. 

For an explanation of the condition on a, see Exercise 2. 

We shall give a few easy examples first. More complicated nearly perfect and 

uniformly packed codes will occur later. 

(16.6) Example. Consider the parity check matrix of a. binary Hamming code (cf. 

Chapter 9) and delete any column. We obtain the parity check matrix of a linear 

code C with parameters n = 2m — 2. k = 2m — m — 2, and d = 3. If we substitute 

these parameters in (16.3), then equality holds, so C is a nearly perfect code. 

(16.7) EXAMPLE. Let H be a. Hadamard matrix of order 12. Take the 24 rows of 

H and -H and then replace + by 0 and - by 1. We find a binary code of length 

12 with 24 words. Clearly the minimum distance of this code is 6. We puncture this 

code to obtain a (11, 24, 5) code C. A word z £ F2'J can have distance 2 or 3 to 

at most four codewords. Suppose there is a word z that has distance 2 or 3 to four 

codewords. Without loss of generality we may assume that one of these is 0 and that 

z therefore has weight 2. The other words then have weight 5 and distance 6. In the 
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original ± notation we have 

Ci — H—h + + + + + + + + Hi 

c2 =- — + + + + + +i 

c3 =- + + + — + + +, 

c4 =- + + + + + + —-—. 

This implies the existence of a Hadamard matrix of order 12 with the four rows 

(+, Cj), ( —, c2), ( —, c3), ( —, c4). Then (—4, —4, —4, 0, 0,... , 0) is a linear combination 

of these four rows and must therefore be orthogonal to the remaining eight rows of 

the Hadamard matrix. This is clearly impossible. We have thus shown that a word 

z has distance 2 or 3 to at most three codewords. 

Now count pairs (c,z), where c 6 C and z has distance 2 or 3 to c. Choosing 

c first, we find 24 • ((j1) + (g1)) = 5280 such pairs. The number of words z with 

distance 2 or 3 to the code is at most 211 — 24 • (1 + 11) = 1760. Each has distance 

2 or 3 to at most three codewords. It follows that every word z with distance > 1 

to C has distance 2 or 3 to exactly three codewords. So C is uniformly packed with 

parameters a = 2 and /? = 3. This is an example of the situation that was excluded 

in the definition of nearly perfect codes, namely e + 1 divides n + 1. 

We now look at designs obtained from nearly perfect codes. 

(16.8) Theorem. Let C be a nearly perfect binary code of length n with minimum 

distance d = 2t + 1. Let 0 6 C. Then the words of weight d are the (characteristic 

functions of) blocks of a t-design Vl with parameters t-(n,d. A), where X — \(n — 

*)/(* +1)J. 

Proof. Let A be a. t-subset of the coordinate places and let a be the word (of weight 

t) with l’s in the positions of A. By Proposition (16.4)(ii) there are [(n — t)/(t + 1)J 

codewords u of weight d such that d(u, a) = t + 1, that is, such that A is contained 

in the block corresponding to u. □ 

(16.9) Theorem. Let C be a nearly perfect binary code of length n with minimum 

distance d — 2t-\-1. Let 0 6 C . Then the collection XL of (t-j-l)-subsets corresponding 

to words u 6 T2(0) (words of weight t + 1 with distance t+ 1 to C) is a t-(n, t + 1, A) 

design, where A = (n - t) - (t + l)[(n - t)/(t + 1)J. 

Proof. By definition, V2 consists of all the (t + l)-subsets of the set of positions 

that are not contained in a block of Dx. From Theorem (16.8) it follows that the 

(t + l)-subsets that are contained in a block of T>i form a t-design. Apparently the 

blocks of £>2 are all (t + l)-sets which are not blocks of this design. (This is not the 

complement of the design!) r-i 
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(16.10) Theorem. The design T>, of Theorem (16.8) can be extended to a 

(t + l)-(n + 1, t -f 2, A) design, where A = | (n — t)/(t + 1)J. 

Proof. Consider the extension C of the code C of Theorem (16.8). Fix k and delete 

the k-th coordinate of each word in C. The resulting code Ck has length n, distance 

d, and |C*| = \C\. It follows that Ck is nearly perfect (and contains 0). Since this is 

true for every k, it follows from Theorem (16.8) that the words u of weight d + 1 in 

C are the blocks of a (t -f l)-design with the same A as in Theorem (16.8). □ 

(16.11) EXAMPLE. If we apply Theorem (16.10) to the shortened Hamming code of 

length 6, we find a 2-(7,4,2) design, which is of course the complement of the Fano 

plane. 

The Preparata codes. 

We shall now construct an infinite sequence of uniformly packed codes with 

minimum distance 5. The codes were first constructed by Preparata (1968). A very 

simple description of these codes was given by Baker, Van Lint, and Wilson (1983). 

We treat the extended codes first. 

In the following m is odd (m > 3), n — 2m — 1. Let F denote the field F2m 

and let x i—► x° be an automorphism of F, that is, a is a power of 2. We require 

that both x i—> xa+1 and x t—► xa~1 are one to one mappings. This is the case iff 

(a ± 1,2m — 1) = 1 and a — 2 provides the easiest example. 

For the admissible values of a we shall define a code V(a) of length 2n + 2 = 2m+1. 

The codewords will be described by pairs (X, Y), where C F, Y C F. As usual we 

interpret the pair (X, Y) as the corresponding pair of characteristic functions, hencs 

as a (0,l)-vector of length 2m+1. We shall let the zero element of F correspond to the 

first position (in the A'-part and E-part). 

(16.12) DEFINITION. The extended Preparata code V(o) of length 2m+1 consists of 

the codewords described by all pairs (X,Y) satisfying 

(a) |AT | is even, |K| is even, 

(b) DrexX = Ey6y V, 

(c) E,e* *CT+1 + (Erex ^)CT+1 = Eygy r+1- 
The code V(a) is obtained by deleting the first coordinate. 

For a discussion of the properties of these codes, we make the following conven¬ 

tions concerning notation. The symmetric difference of two sets X\, X2 is denoted 

by Xi A X2 (this corresponds to addition of codewords). The set {x + a : x 6 X} 

is denoted by X + a. Many of the calculations depend on the following equality: 

(16.13) (a + &r+1 = a*+1 + a°b + alf + b°+\ 
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The following theorems all hold for V(cr). In some cases, we give the proof only 

for V := V(2) because it is easier to read; the proof in the general case is similar. 

(16.14) Proposition. The code V is distance invariant. 

PROOF. We compare a codeword (Ao,l'o) with (0,0) = 0. Let a := 52xeXo x- The 

mapping {X,Y) (U,V), where U := (X A X0) + a. V (Y A Y0) is clearly one 

to one. We now show that if (ALT') is a codeword, then so is (U,V) and vice versa. 

The conditions (a) and (b) of (16.12) are trivially checked. For condition (c), we use 

(16.13): 

J2 z3 + = 5Z(-r + Q')3 + + °o3 + f x + 
xeU \xeU 1 x£X ieA’o \x£X J 

= E*3 + Z *3 + (E+ q3 
^6 A' xGA'o \x£X / 

= L«/3+E!/3 = Z y3- 
y£V y£V0 ycv 

□ 

The proofs of the main properties of these codes become simpler if we first find 

some automorphisms of the codes. 

(16.15) Proposition. The group Aut V(cr) contains the permutations 

(a) (AT, T ) (X + c, T + c), c £ F, 

(b) (X,Y)»(Y,X), 

(c) (X,Y') (—)• (aX, qY), a £ F*, 

(d) (W, Y) ^ (X*, F0), <f> E Aut(F). 

PROOF. To check condition (c) of (16.12) for the mapping (a), again use (16.13). All 
other properties are trivially true. □ 

(16.16) Proposition. V has minimum distance 6. 

Proof. By Proposition (16.14) it is sufficient to show that the minimum weight 

is 6. Since there are obviously no words of weight 2, we only have to show that 

weight 4 cannot occur. First assume that there is a codeword {{x1,x2},{yuy2}). By 

Proposition (16.15) we may then assume that xx = 0. Then (c) of (16.12) yields 

y\ + yl = 0, 

and this implies that y-y = y2, a contradiction. 

By Propositions (16.14) and (16.15). it remains to check the possibility of \X\ = 

4, Y = 0, where X = {0,a,6,c}. From (b) and (c) of (16.12) we find 

ci -t- & -}■ c = 0, 

«3 + b3 + c3 = 0. 
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Substitution of the first of these in the second and then using formula 16.13 yields 

ab{a + 6) = 0, whence a = 6, a contradiction. 

Finally we show that there are indeed codewords of weight 6. Let a,b,c be 

distinct elements of F. Define y by y3 a3 + 63 + c3 and define x by x := a + b+c + y. 

Then ({0, x}, {a, 6, c, y}) is a codeword (note that i^O). □ 

From Definition (16.12), it is not trivial to see what the number of codewords in 

a Preparata code is. We will need results from Chapter 10. 

(16.17) Proposition. \V{a)\ = 2k where k — 2m+1 — 2m — 2. 

PROOF. Consider (16.12). A set A" satisfying (a) can be chosen in 2n ways. We now 

count how many sets Y in F* satisfy (b) and (c), and adjoin the element 0 to each 

such set if necessary to satisfy condition (a). Let lo be a primitive element of F and 

let rrii(x) be the minimal polynomial of to'. We have two equations over F for the 

elements y of Y (namely (16.12) (b) and (c)). If we consider F as an m-dimensional 

vector space over F2, then these equations become 2m linear equations. We claim 

that these linear equations are independent. This is so because (<r + l,n) = 1 and 

hence ma+1(x) has degree m, which implies that the cyclic code over F2 with length n 

and generator rn1(x)m^+1(x) has dimension n — 2m. From this it follows that for each 

choice of X, the equations (16.12) (b) and (c) have 2n_2m solutions Y with Y C F*. 

This proves the assertion. □ 

We have now achieved our goal. 

(16.18) Theorem. The code 'P(a) is a. nearly perfect binary code of length 

2m+i — 1 with minimum distance 5. 

PROOF. This follows from the definition of nearly perfect codes and Propositions 

(16.16) and (16.17). □ 

The Preparata codes have a number of remarkable properties (besides being 

nearly perfect). The fact that V(cr) is nearly perfect determines the weight enumera¬ 

tor of V(cr). As was already remarked in Chapter 12, it turns out that this code and 

the Kerdock code of the same length are formally dual in the sense that they satisfy 

the Mac Williams relations! 

The Preparata code of length 16 is unique; it is in fact the Nordstrom-Robinson 

code (Chapter 11, Exercise 2). So it is equal to the Kerdock code K.(4). 

It is not difficult to show (using (16.4)) that the Preparata code is a subcode 

of the Hamming code of the same length. (See Exercise 4.) One can also show (see 

Exercise 7) that the extended Hamming code is a union of translates of a Preparata 

code. Again, these properties are in some sense 'dual’ to those of Kerdock codes, viz., 
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a Kerdock code is a union of translates of the first order Reed-Muller code (the dual 

of the extended Hamming code). 

The codes V(a) provide an interesting application of Theorem (16.10). 

(16.19) EXAMPLE. Let m = 2k — 1. Consider the extended Preparata code of length 

4*\ By Theorem (16.10), the words of weight 6 in this code form a 3-(4fc, 6, (4k — 4)/3) 

design. We consider the special case k = 2. (We take a = 2.) The reader should check 

(see Exercise 8) that the codewords for which XXex x — 0 form a linear subcode with 

minimum distance 8. This subcode has seven cosets and each of these has 16 words 

of weight 6. Since these words mutually have distance at least 6, they must form 

the blocks of a 2-(16,6,2) design (corresponding to a Hadamard matrix). If we start 

with one of these designs, then the blocks of the 3-( 16,6,4) design are obtained by 

simultaneous cyclic shifts on the positions (in the V-part and V-part) corresponding 

to nonzero elements of F23. 

Note that the blocks of the 3-design form a constant weight code with weight 6, 

distance 6, and with 112 words (see Exercise 6). 

It was shown by Lindstrom (1975) and Van Tilborg (1976) that the shortened 

Hamming codes and the Preparata codes are the only binary nearly perfect codes; 

(more precisely, such codes must have the parameters of these codes). In fact, Van 

Tilborg proved that for e > 4 there does not exist a nontrivial uniformly packed code. 

For smaller values of e there are many interesting examples. 

As a preparation for the next theorem, we give an example of a uniformly packed 

code for which this property follows from design properties of the codewords. 

(16.20) EXAMPLE. In Example (14.17), we saw that the words of weight 6 in the 

extension C of the 2-error-correcting binary BCH code C of length 22,~1 — 1 form 

a 3-design. Consider a word x of weight 2 or 3. Then x has distance 2 or 3 to 0 

and distance at least 2 to all other codewords. Using the 3-design, we see that x 

must have distance 2 or 3 to exactly A codewords, where A is the parameter of the 

3-design. Therefore C is a uniformly packed code with parameters a = A,/3 = A + l. 

The reader should check for himself that this code is not nearly perfect. 

The application of the Assmus-Mattson theorem in Example (14.17) was based 

on the fact that the dual code had only three weights (not 0). Goethals and Van 

Tdborg (see Van Tilborg (1976)) proved that it is this property that makes the 

code uniformly packed. The proof uses Delsarte’s theory and exploits properties 

of Krawtchouk polynomials extending methods that we sketched in Chapter 14. It 

would take too long to give the proof here, so we only state the theorem. 
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(16.21) Theorem. Let C be an e-error-correcting linear code. Then C is uniformly 

packed iff the number of nonzero weights in C1 is e + 1. □ 

In fact, they show a more general result, namely that C is uniformly packed if 

its external distance is e + 1. 

A special case that has been extensively studied is e = 1. In this case CL has 

only two nonzero weights. Such codes are called two-weight codes. We shall give a few 

examples of such codes. This list is far from complete; see Calderbank and Kantor 

(1986) for many further examples. 

First, recall Exercise 12 of Chapter 9: if a linear code has minimum distance 

3, then the columns of a parity check matrix represent different points in projective 

space. This has led to the name projective code for a code for which the generator 

matrix has pairwise linearly independent columns (that is, for which the dual code 

has distance at least 3). We give below several examples of sets of points in projective 

spaces which meet every hyperplane in a or b points, for some numbers a and b. 

There is a strong connection between two-weight codes and one of our earlier 

topics, namely strongly regular graphs. This was shown by Delsarte (1972) with the 

next theorem and its converse ((16.22) and (16.31)). 

(16.22) Theorem. Let C be a q-ary two-weight projective code of length n. Let 

the two weights be w1, w2 (wx < w2). Define the graph T(C) by taking the codewords 

as vertices and joining x and y if c/(x, y) = iux. Then T(C) is a strongly regular graph. 

PROOF. Let k be the dimension of C and let there be &,• words of weight w{ (i = 1,2). 

Consider the matrix A — ( ^ ), in which the rows of Ai are all the codewords of weight 

Wi (i = 1,2). Then every column of A has qk — qk~l nonzero entries. Therefore we 

have 
b\ 4- b2 = qk — 1 

bx’Wx + b2w2 = n(qk — c/-1). 

50 we can calculate bx and b2. 

Now take any column of A and let r,- denote the number of zeros in this column 

in Ai (i = 1,2). The words with a zero in this column form a two-weight (projective) 

subcode of C and we can therefore calculate rx and r2 in the same way that we 

calculated bx and b2. This implies that these numbers do not depend on the column 

that was chosen. 

We now know that every column of Ax has rx zeros. Therefore we know the sum 

of the distances of the rows of Ax to the first row of Ax. Let Si of these words have 

distance w, to the first row of Ax (i = 1,2). Then the sum of the distances to the 

first row is Sjrcx + s2w2 and of course Si + s2 = bx — 1. Therefore we can also calculate 

51 and s2. 
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We have thus proved that if {x, y} is an edge in F(C), then there is a constant 

number of vertices z joined to x and to y. The calculation in the case that {x, y} is 

not an edge is similar. □ 

There is another construction of strongly regular graphs from uniformly packed 

codes, as follows. Let C be a linear uniformly packed 1-error-correcting q-ary code. 

We take the vertices of the graph T = r*(C) to be the cosets of C in V = F?n, Two 

vertices are adjacent if the cosets contain words with Hamming distance 1 from each 

other. Clearly the graph admits the translation group of V/C as an automorphism 

group. 

(16.23) Theorem. Let C be a q-ary [n, d, > 3] uniformly packed code, with 

parameters a and 0. Then the graph constructed above is strongly regular, with 

parameters (qn~d, n(q — 1), q — 2 + 2a, 20). 

PROOF. Using the translation group, we may assume that an arbitrarily chosen 

vertex x contains the zero vector (hence is the coset C). The neighbours of x are the 

cosets containing vectors of weight 1; since no two such vectors lie in the same coset, 

the valency is n(q — 1). 

Suppose that y is adjacent to x, and y contains a vector y with support {i}. 

The q — 2 multiples of y other than 0 and y lie in cosets adjacent to x and y. Any 

further common neighbour contains a vector with support {j}, say, where {i, j} is 

contained in the support of a word w of C of weight 3 with d(y, w) = 2. There are 

a such words w, and for each a there are two choices for y. So A = q — 2 + 2a. 

The argument for non-adjacent vertices is similar. □ 

We now proceed to give examples of sets in projective spaces with just two 

cardinalities of hyperplane sections. The reader should calculate, for at least some of 

these, the parameters of the graphs and codes which arise. 

(16.24) Example. In a projective line, hyperplanes are points, and so every set has 

this property, with a = 0, b = 1. The corresponding graphs are of Latin square type. 

(16.25) EXAMPLE. The complement of a A'-dimensional subspace S of PG(n, q) 

meets a hyperplane containing 5' in ^+1(qn~k _ \)/(q _ i) points, and meets any 

other hyperplane in 9*+a(?"-*-1 - 1 )/(q - 1) points, since such a hyperplane meets 5 

in a (k — l)-dimensional subspace. 

(16.26) EXAMPLE. We saw some examples in PG(2,^) in Chapter 7. In (7.14), 

Denniston s construction of sets meeting every line in 0 or k points was mentioned, 

where q is a power of 2, and k any divisor of q. In (t. 18), we met Baer subplanes 

and unitals, two classes of subsets of PG(2, q2) meeting every line in 1 or q -f 1 points 

(and having q2 + q + 1 and q3 -f 1 points respectively). 
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(16.27) EXAMPLE. Another example is an ovoid in PG(3,</), a set of q2 -f 1 points, 

no three on a line, and such that each hyperplane meets the ovoid in 1 point or in 

q + 1 points. We met ovoids in connection with inversive planes in Chapter 1. Two 

classes of examples are known: the elliptic quadrics, and the Suzuki-Tits ovoids (the 

latter occurring only for q = 22h+1, h > 1). 

(16.28) EXAMPLE. Let X be a non-singular quadric in PG(n— 1 ,q), with n even. A 

section of A" by a non-tangent, hyperplane is a non-singular quadric in PG(n — 2,<?); 

all such quadrics are equivalent, since n — 2 is odd (see Dickson (1958)), and so have 

the same cardinality. Any section by a tangent hyperplane has the form X fl xx for 

some x E X\ all such sets have the same cardinality. So A’ has the required property. 

Note that there are two types of non-singular quadric in PG(??. — 1, q) with n even, the 

elliptic and the hyperbolic. Elliptic quadrics in PG(3,^) are ovoids, so this example 

overlaps with the preceding one. We now work a particular case in detail. 

Let W be the set of 35 points x in F^jO} on the quadric with equation xxx2 -f 

x3x4 + x5x6 = 0. We take these vectors as columns of a 6 by 35 matrix G. We claim 

that G generates a two-weight code. To see this, we first observe that the z-th row 

of G is the characteristic function of the intersection of W and the hyperplane with 

equation = 1 (1 < i < 6). Hence the weight of a linear combination aTG (a & F|) 

is the number of solutions of 

6 

x1x2 + x3x4 + x5x6 = 0 and ^ a.Xj = 1. 
i— 1 

Without loss of generality we may take ax — 1 (unless a = 0). By substitution and 

the affine transformation 

J/2 = x2, ya = x3 + aAx2, y4 — x4 + a3x2, 

2/5 = X-S + Cts«2, 2/(3 = x6 + 0,5X2, 

(which is invertible) we see that we must count the number of solutions of the equation 

(1 + a2 + a3a4 + a5a6)y2 + y3y4 + y5y 6 = 0. 

If the coefficient of y2 is 1, then the number of solutions is 16 and otherwise it is 20. 

So we indeed have a two-weight code of length 35 and it is projective. The dual of 

the code generated by G is therefore a uniformly packed code. From this code we 

find a strongly regular graph on 64 points. (Compare Example (5.16).) 

The following example is slightly more difficult. It is related to many other areas 

of combinatorics and sometimes called the Hill cap (cf. Hill (1978)). 

(16.29) Example. Let V be a. 2-(6,3.2) design. We define a set S* of vectors in F36 

as follows. A vector x is in S* if all its coordinates are nonzero and an even number 

of them is —1; furthermore x is in S* if it supports a. block of V. Let S be the set 
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of points of PG(5,3) corresponding to the points of 5*. Then |S| = 4 • 10 + 24 = 56. 

Using the fact that the complement of a block of T> is not a block, it is not difficult to 

show that each hyperplane of PG(3,5) meets 5 in 11 or in 20 points. Using this set 

(the Hill cap) as in the construction described above, now deleting the columns not 

corresponding to points of S, we find a ternary code of length 56 with two weights, 

namely 36 and 45. So, the dual code is uniformly packed. 

(16.30) Example. Let, C be the [5,4] binary even-weight, code. This is a two-weight 

code with weights 2 and 4. Hence P(C') is a strongly regular graph on 16 points with 

parameters (16,5,0,2). It is the Clebsch graph. This definition is in fact the same as 

was given in Chapter 2. 

The next theorem is the converse to Theorem (16.22). It is more difficult to 

prove. For the proof we refer to Delsarte (1972). 

(16.31) Theorem. Let P he a strongly regular graph on n = pa vertices (p a 

prime). Let k, r, s be the eigenvalues of T (all integers). Let the elementary abelian 

p-group Gn be a regular group of automorphisms ofT. Then there is a two-weight 

code C over Fp such that T = T(C). □ 

The proof of the theorem also shows that the word length N of C, and the 

weights Wi, w2 of C are related by 

(r - s)(p - 1 )N = -k- s(pa - 1), 

and 

(r - s)ia8- = + ( ~ 1 j pa~\ (*=1,2). 

(16.32) Example. Consider the partial geometry with parameters (5,5,2) of Van 

Lint and Schrijver, treated in Chapter 7. Corresponding to this partial geometry there 

is a strongly regular graph. The easiest way to describe this graph is to take as its 

vertices the codewords of the [5,4] ternary linear code C defined by c £ C 44 (c. 1) = 0 

and to join two vertices by an edge iff their distance is 2 or 5. It is easily checked that 

this is indeed a strongly regular graph with parameters (81,30,9,12) and that the lines 

of the paitial geometry are certain cliques ol the graph. For our present application 

we need only to observe that the graph clearly has an elementary abelian group of 

order 81 (namely the translations) as a group of automorphisms. By Theorem (16.31) 

this graph is associated with a two-weight code of dimension 4 over F3. The formulas 

given after the theorem show that this code has length 25 and that the two weights 

are 15 and 18. By Theorem (16.21) the dual of this code is a uniformly packed code. 

Exercises. 

1. Denote by A(n, cl, w) the maximum number of codewords in a binary code of 

length n and minimum distance > d for which all codewords have weight io. Prove 
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that 

A(n, 2k — 1, w) A(n, 2k, w) < L-L-7 
~w w 

Use this result to give a proof of Lemma 16.1. 

2. Let C be a q-ary e-error-correcting uniformly packed code of length n with 
parameters a and (3. Show that 

«=o 
i^EO-ir + a-^ 

iq-lY + H\e + l (9-1) 
e+1 

9 • 

Check that a = (n — e)(q — l)/(e + 1) would imply that C is perfect. 

3. Consider the following construction (analogous to (16.12)). Binary words of 

length 24 are described by triples (X,Y,Z), where X,Y,Z are subsets of F8. We 

require 

(a) Ergx x Eygy V Ezgz zi 
(b) E,ex^3 + Eyey2/3 + Efez^3 = 0. 
Show that the code defined in this way is the binary Golay code. (This construction 

is due to G. Glauberman.) 

4. Consider a Preparata code V{2) and adjoin to this code all the words that 

have distance 3 to the code. Show that the new code is the Hamming code of the 

corresponding length. 

5. Determine the number of words of weight 5, respectively 6, in the code V{2) 

of length 15. 

6. Let C be a constant weight code with weight 6 and distance 6. If \C\ = 112, 

then show that the words of C are the blocks of a 3-design. 

7. Let C0 be the extended Preparata code V{a). For each a G F* we define the 

code Ca to be the code obtained by adding the word corresponding to ({0, a}, {0, a}) 

to the codewords of C0. Prove the following. 

(a) For each a£P, the code Ca has minimum weight 4. 

(b) The codes Ca (a G F) are pairwise disjoint. 

(c) The code H := UaeF is linear. 

(d) H is the extended Hamming code. 

8. Consider the Preparata code V{2) of length 2n + 1 = 2m+1 — 1 as defined in 

(16.12). We define the linear code Cm to be the subcode of V(2) consisting of the 

words with E*£a x — 0- Using the notation of cyclic codes we now denote codewords 

of Cm as (ci(£), i, c2(£)) (as usual, the polynomials are in the ring F2[£]/(£n - 1).) 

In our case Ci(£) is the representation of the word corresponding to Ar\{0}, z = 1 if 

0 £ L and 0 otherwise, and c2(£) represents L\{0}. 

(a) Show that the definition of Cm implies that cx{uj) = 0, where u is a primitive 

element of F2 m » 
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(b) Show that conditions (a) to (c) of (16.12) imply that the polynomial c2 

satisfies c2(l) = i, c2(lo) = 0, and c2(cu3) = cjcu3). 

(c) Using the result of (b) and the BCH bound, show that Cm is a [2n +1,2n — 

3m, 5] code. 

The code V(2) is a union of cosets of C„„ where each coset is determined by the 

value of x■ We consider the coset Cm(i) for which this value is the field element 

id1. Let /(£) be the idempotent polynomial defined in Example 14.3, so f(u) = 1 and 

/(W) = 0 for all powers i not belonging to the same cyclotomic coset as 1. 

(d) Show that Cm(i) is obtained by adding the word (£%0,£*/(£)) to all the 

words of Cm. 

Remark. This exercise describes the original definition of Preparata codes. It has 

the advantage that the structure of the linear subcode Cm is easy to understand 

and often useful in further treatment of these codes. However, finding the minimum 

distance using this description is quite difficult. 

9. Recall the 4-dimensional vector space W/Z over F3 used to define the (5,5,2) 

partial geometry in (7.15): W is the set of 6-tuples over F3 with sum 0, Z the span 
of the all-1 vector. 

Show that the 1-dimensional subspaces of W/Z (the points of PG(3,3)) can be 

divided into three types, with coset representatives of the form (Rl^1, 021222, 0313 

respectively. (Here OH^1 means a vector with four Os, one 1 and one 2.) Let S{ be 

the set of points of type i. Show that \St\ = 15,15,10 for i = 1,2,3 respectively. 

(These types are orbits of the symmetric group S6.) 

There is a natural bijection between the points and the hyperplanes of PG(3, 3) 

(with this description): the hyperplane corresponding to the point [u; + Z] is 

{[w + Z] : (v, w) = 0}. 

Hence the hyperplanes can also be divided into three types. 

Verify the following table, whose (i,j) entry is the number of points of type j 
incident with a hyperplane of type i. 

041121 021222 0313 
04ii2i 6 3 4 
0"1222 3 6 4 

0313 6 6 1 

Thus each of the sets Si and S2 meets every hyperplane in 3 or 6 points, while 

the set S3 meets every hyperplane in 1 or 4 points. Verify that the code and strongly 

regular graph derived from 5j are those of Example (16.32). What is the set S3? 

10. This exercise outlines direct constructions of strongly regular graphs from a 

set 5 C PG(n -1, q), with the property that any hyperplane meets S in a or b points. 
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(a) Let p be a point of PG(n — 1 ,q). Show that the number of pairs (r,s) of 

distinct points of S \ {p} such that p, r, s are collinear depends only on whether or 

not p G S. [Consider the case where p $ 5; the other case is similar. Let x, resp. y, 

be the number of hyperplanes containing p and meeting S in a, resp. b points. Show 

that 
c/"-1 - 1 

x + y = -— - 
q - 1 

, K<| f ~ 1 

q - 1 

ansd deduce that x and y are determined. Now show that the required number (3 of 

pairs satisfies 

xa(a - 1) + yb(b - 1) = /? • 1 ^ — --b (|<S'|(|5| - 1) - /3) ■ j ■] 

(b) Construct a graph Tj as follows. The vertex set is the underlying vector 

space y = F"; vertices x and y are adjacent if and only if [x — y] G S. Use (a) to 

show that the graph Tx is strongly regular. 

(c) Show that the set S* of hyperplanes meeting 5 in a points has the property 

that any point lies in a* or b* members of 5*, for some numbers a* and b*. In other 

words, 5* satisfies the same conditions as 5, with a* and b* replacing a and b. 

(d) Now construct T2 as follows. The vertex set is the dual space of V. Two 

vertices f and g are joined if and only if the hyperplane ker(f — g) meets S in a points. 

Prove that F2 is strongly regular. 

(e) Which of the two strongly regular graphs in the text ((16.22) and (16.23)) is 

T1; and which is T2? 

(f) Now suppose that a is a polarity of PG(??. — !,<?), and S a set of points with 

the property that |pa n S| depends only on whether or not p G S. Show that the 

strongly regular graphs Ti and T2 constructed above are isomorphic. (This situation 

occurs in Example (16.28), where S is a quadric and cr the associated polarity.) 





17. Association schemes 

Association schemes form a class of combinatorial structures including many types 

we have met, such as strongly regular graphs, square, quasi-symmetric, and tight 

designs, regular two-graphs, and systems of linked square designs. Their definition 

leads naturally to the use of algebraic methods in their study. So important and 

natural are they that closely related objects have been defined several times: in 

statistics by R. C. Bose and his co-workers (for example, Bose and Shimamoto (1952), 

Bose and Mesner (1959)), in group theory by D. G. Higman (1971a, b), and also in 

group theory by B. Weisfeiler (1976) and others (though the last two formulations 

were slightly more general). The most important contribution to the subject was the 

thesis of P. Deisarte (1973). 

Since the last edition of our book, two specialized accounts have been published, 

by Bannai and Ito (1984), and by Brouwer, Cohen and Neumaier (1989). We do not 

attempt the same level of coverage. 

To motivate the definition: we have seen several times that a strongly regular 

graph and its complement carry essentially the same information, so we should think 

of them together as a set on which three relations are defined: equality, adjacency, 

and non-adjacency. The definition ensures that the vector space spanned by the 

matrices of these three relations (viz. I. A, and J — / — A, where A = A(P)), is closed 

under multiplication. Similarly, a square design, its complement, and their duals are 

described by a set (the set of points and blocks) with four relations: equality; same 

type (both points or both blocks); incidence; and non-incidence. Note that, in all 

cases, equality is one of the basic relations; we take this for granted, and assume 

that the other relations are irreflexive and symmetric, and so can be represented by 

graphs. 

(17.1) DEFINITION. An association scheme consists of a set X together with a 

partition of the set of 2-element subsets of X into d non-empty classes ri,...,rd, 
satisfying the two conditions 

(a) given x E X, the number n((x) of points y E X with {x,y} E depends only 

on t, not on x (so we write this number as n,-); 

(b) given x,y E X with {x,y} E T*, the number p-j(x,y) of points z E X with 

{x,z} E r< and {z, y) E T) depends only on i,j,k, not on x and y (so we write 
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this number as pL). 

Points x and y are called ith associates if {.r, y} E T(. 

It is convenient to take a, set of n "colours Ci,...,cn, and colour an edge of 

the complete graph on Ar with colour c,- if it belongs to T,. Then T, is the c,- 

coloured subgraph. Condition (a) asserts that each monochrome subgraph is regular. 

Condition (b) asserts that the number of triangles with prescribed colouring on a 

given base depends only on the colouring, not on the chosen base. The reader should 

check the following easy result. 

(17.2) Proposition. In an association scheme with two classes, the two mono¬ 

chrome subgraphs are strongly regular. Conversely, a complementary pair of strongly 

regular graphs forms a two-class association scheme. □ 

It will be convenient to enrich the picture slightly by adding a loop at each point, 

and assigning a new colour c0 to each loop (or regarding the loops as edges of a highly 

degenerate graph ro). Then condition (b) holds even if i, j, k are allowed to take the 

value 0 (and some of x,y,z to be equal); we take p% = n, (where n0 = 1), p’. = 1. 

and p\- = 0 if one of i, j, k is zero and the other two are unequal. 

(1/ .3) EXAMPLE. Two important classes of association schemes are the Hamming 

and Johnson schemes. The point set of the Hamming scheme H(n,q) are all ordered 

n-tuples of elements from an alphabet A of size q\ two 72-tuples are 7th associates if 

theii Hamming distance is i, for i — 1,... ,d. In the Johnson scheme J(v, k), with 

k < ~v, the point set is the set of all fc-element subsets of a fixed u-set; two k-sets are 

ith associates if their symmetric difference has cardinality 2i. As we will see, Delsarte 

used the Hamming and Johnson schemes as settings for classical coding theory and 
design theory respectively. 

The following construction shows why association schemes and their generaliza¬ 

tions are of interest to group theorists. It extends our remark about rank 3 permu¬ 
tation groups in Chapter 2. 

Let G be a group of permutations of a set A. Suppose that any two distinct 

points of A" are interchanged by some element of G. (Such a group is called generously 

transitive-, clearly this property is a strengthening of transitivity.) The set of 2-element 

subsets of X falls into orbits L,.T, under the action of G. This partition is an 

association scheme. (To see that condition (b) holds, suppose that {x,y} and {x\ y'} 

belong to the same orbit I\. Then some element of G carries {x,y} to {x1 y'} and 

so carries {a : {* *} 6 € I',} to {a : j.t'..-} e r„ {*,„'} £ r,}. It follows 
that Pkij(x,y)--=pkij(x', i/'). 

Remark. Various generalizations of the notion of an association scheme have been 

proposed. Usually, the basic relations are taken to be sets of ordered (rather than 
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unordered) pairs; it is assumed that, instead of all the relations T; being symmetric, 

they satisfy Ft = F*. for some ?’*, where F* is the converse of T,-, that is, 

r* = {(y,x) : (as,2/) G TJ. 

If the definition (17,1) is taken over verbatim, we obtain what Higman (1971a,b) 

calls a homogeneous coherent configuration. In particular, any transitive permutation 

group gives rise to such a configuration, by a slight modification of the construction 

in the preceding paragraph. However, this is too general for our purposes. Delsarte, 

in his thesis (1973), admits configurations satisfying these axioms and the additional 

condition that 

PkH = Pkn 

for all i,j, k. For such structures, almost all the results of this chapter remain true, 

with some modifications (mainly, replacing the real by the complex field in the al¬ 

gebraic arguments). Where necessary, we refer to these structures as association 

schemes in the sense of Delsarte. 

(17.4) DEFINITION. A d-class association scheme is called metric if, for i = 1,... , d, a 

pair {x, y} belongs to T* if and only if the distance from x to y in the graph rx is equal 

to i. (This definition depends on the ordering of the association classes r1?.. . ,rd. 
Strictly speaking, a scheme is metric if there is an ordering of the association classes 

for which the above condition holds.) 

Note, however, that once Tj is given, the rest of the ordering is determined. A 

connected graph T of diameter d is called distance-regular if, setting F,- = {{x,t/} : 

d(x, y) = for i = 1.d (where <f(x, y) is the distance in the graph F, we obtain 

an association scheme. The following result is true. 

(17.5) Proposition. Let T be a connected graph of diameter d. For i = 1,... ,d, 

let r,(x) denote the set of vertices at distance i from x. Then T is distance-regular 

if and only if there exist positive integers c,-, a,:, (i — 0,..., d) such that, for all x, y 

with y G r,-(x), 

IFjfir) fl T(y)\ = c,-,a,-, or &,• 

according as j = i — 1, i, i + 1. 

A d-class association scheme is metric if and only if 

(a) = 0 unless \i — j\ < k < i + j; 

(b) plf1 > 0 for i = 0,..., d — 1. D 

The distance-regular graphs which ‘generate’ the Hamming and Johnson asso¬ 

ciation schemes, in the sense described above, are called the Hamming and Johnson 

graphs, and are denoted by the same symbols. 

(17.6) REMARK. It can happen that more than one of the association graphs in a 

scheme is distance-regular; so the scheme can be metric in more than one way. For 
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example, if v — 2fc-f-l, the graph T*. in the Johnson scheme J(v, k) is distance-regular. 

(This is the so-called ‘odd graph’, whose vertices are the ^-subsets of a 2k + 1-set, 

two vertices adjacent if they are disjoint. For k = 2 it is the Petersen graph.) For a 

description of the ways in which this phenomenon can occur, see Bannai and Bannai 

(1980), or Bannai and Ito (1984), §111.4. 

Now a number of identities connect the parameters of an association scheme; for 

example, 

Pij = Pjo 

nkPij = 

(17-T) = 
3 = 0 

d d 

YiPhiPtj = Y^PhsPly 
t=0 5=0 

All these equations can be proved by counting arguments. For example, the last 

equation comes from counting the number of paths with colour sequence (cft,Cj,c;-) 

from x to y, where {x,y} £ Ffc, in two different ways (Fig. 17.1). 

Fig. 17.1. Counting paths 

Let Ai be the adjacency matrix of T; for / = 1.d, and A0 = I. Then the 

(x,y) entry of A;A;- is the number of paths with colour sequence (c;, Cj) from x to y, 

and so is p\- if {x,y} £ Tt,. Thus, we have the equation: 

<17-8) A,*, = 
k = 0 

So the symmetric matrices An.Ad commute pairwise (by the first equation of 

(17.7)), and their d-dimensional span (over R) is closed under multiplication, and so 
is a commutative algebra A. 

The equations of (17.7) all have algebraic interpretations. For example, the 
fourth equation is the associative law 

{AhAi)Aj — Ah(AiAj). 
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If the scheme is metric, then the equations (17.8) read 

(17.9) A{Ax = + diAi + c;+1Ai+1. 

Thus, A2, A3,..., Ad can be expressed inductively as polynomials in A1 of degrees 

2, 3,... , d; so A\ generates A. 

(17.10) DEFINITION. The algebra. A is called the Bose-Mesner algebra of the associ¬ 

ation scheme. In the case of a scheme arising from a generously transitive permutation 

group, it is sometimes called the centralizer algebra of the group (since it consists of 

all those matrices which commute with all the permutation matrices in the group). 

Just in the case of strongly regular graphs, the eigenvalues of the A,: and their 

multiplicities can be calculated from the parameters, and provide powerful non¬ 

existence criteria. Note that since A0,.. ., Ad are commuting symmetric matrices, 

they can be simultaneously diagonalized. The calculation of their spectra is made 

easier by the next result. 

(17.11) Theorem. With the notation introduced earlier, let P, he the matrix with 

(j, k) entry p*., for k = 0,... , cl. Then P0,.. ., Pd generate an algebra isomorphic to 

A (under the map A{ i—> P{, i = 0,..., d.) 

PROOF. The fact that P,Pj = Ylt-o f^ijPk follows from the identities (17.5): the (s,t) 

entries of the two sides of the equation are Yhi=oPi»Pjk and Yfi-o PijPla ■ □ 

REMARK. This isomorphism can be explained by noting that it is the ‘regular rep¬ 

resentation’ of A\ in other words, the image of A £ A under the isomorphism is the 

matrix representing left multiplication by A, relative to the basis A0,...,Ad of A. 

(This is clear from the definition if A = At for some i, and extends by linearity to all 

of A.) 

The matrices Pt are the intersection matrices or reduced adjacency matrices of 

the scheme. They are (d + 1) x (d + 1) matrices, and so are normally very much 

smaller than the adjacency matrices of the scheme. The eigenvalues of A, are the 

same as those of P,-, and the latter can be much more easily computed. 

The matrices A0,..., Ad are commuting symmetric matrices, and so have a si¬ 

multaneous basis of eigenvectors (Cohn (1974), p. 203). By (17.11), the same is true 

of P0,.. ., Pd. Let {u0,..., u<J be such a basis, and let UjPt = Pi(j)Uj for each i,j, so 

that pi(j) is the jth eigenvalue of P, (or of A{, by (17.11)). The function i-> p,-(j), 

for i = 0,..., d, extends linearly to a character of the algebra. A, denoted by 7r,-. The 

multiplicity of this character is the dimension of the simultaneous eigenspace. Just as 

for strongly regular graphs, it is possible to compute these multiplicities; the integral¬ 

ity condition, asserting that these numbers are non-negative integers, is a powerful 

non-existence criterion for association schemes. 
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(17.12) Theorem. Let TCj be a character of the algebra A. Let u_, and vj 

be left and right eigenvectors of the matrices Pf with eigenvalue ^(A,-) = Pi(j) for 

j = 0,... ,d, each normalized to have first entry 1. Then the multiplicity rrij of ir;- is 

given by 

\X\ 

Proof. This argument contains several ideas of wider significance! Let n = \X\, 

and let n,, pk- be the parameters of the scheme. Let P and Q be the matrices with i,j 

entries pj(i) and qj(i) = mjpi(j)/ni respectively. The matrices P and Q are called 

the first and second eigenmatrices of the scheme. We have 

pi(k)pj(k)vk = PJ)vk 

= 

1=0 

= J2p'ijPi(k)vk, 
1 = 0 

so Z)f=o P'ijPi[k) — Pi(k)pj(k). It follows that the vector 

(Po(k),..., Pd(k))T 

is an eigenvector of P,- with eigenvalue p,(k). By definition, this vector is equal to vJ. 

The trace of Ah Ah ... Ah is equal to the number of closed paths with colour 

sequence i2,.. ., ik. In particular, we have 

Trace(Aj) = nSi0, 

(17T3) Trace(A,Aj) = nn{6,7, 

Trac e(A»AiAfc) = m?.fcp*., 

where Sij is the Kronecker delta, that is. 

S ij ~ 

1 if i = j, 
0 if i + j. 

The second equation in (17.13), in terms of eigenvalues, yields 

d 

nnAij = J2mkPi(k)Pj[k) 
k = 0 

d 

= niY,Pj{k)qk{j), 
k=0 

by definition of qk(j). Thus, the eigenmatrices P and Q satisfy 

(17-14) QP = nl. 
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Hence PQ = nl, giving 

or mk = n 
= n! (E-=o {Pi(kY) /■ 

It also follows from (17.14) that 

is a left eigenvector of _P,: with eigenvalue Pi(k), and hence is equal to u.k. So we have 

n 

□ as required. 

(17.15) Definition. Assume the notation defined above. The association scheme 

is said to be P-polynomial if there are polynomials /o, /i, • • •, /d, where /;- has degree 

j, so that pi(j) = for all ij. 

Note that this is equivalent to the statement that Pi = fi(Pi), and hence to 

Ai = /i(Ai), by (17.11). In other words, we have the following. 

(17.16) Proposition. An associa tion scheme is P-polynomial if and only if it is 

metric. D 

(17.17) Example. The Hamming scheme H(d,q) is metric, and hence it is P- 

polynomial. The eigenvalues of the basis matrices are given by the Krawtchouk 

polynomials which we met (for q — 2) in Chapter 14. Specifically, Pi(j) = Ki{j), 

where 

Then the polynomials /,; in (17.13) differ from these only by a simple affine transfor¬ 

mation, viz. 
cl T x 

fit.x) = I<i(d-). 

(The last assertion follows because A',(x) = (q — l)d — qx, so that x = K\{d — ^£).) 

We refer to Exercise 4, or Bannai and Ito (1984), §111.2, for the proof. 

Let Ek denote the orthogonal projection of the Rn onto the eigenspace affording 

the character 7rfc. By definition, we have the spectral decomposition 

d 

A; = J2Pi(k)Ek. 
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By (17.14), it follows that 
d 

Ej = n 1 ^ qi(k)Ak. 
k=0 

The matrices E0,..., Ed thus form another basis for the Bose-Mesner algebra. In 

this basis, the multiplication has the simple form 

EiEj = 8ijEi\ 

in other words, the Ei are orthogonal idempotents. 

There is a second multiplication defined on the Bose-Mesner algebra A, namely 

pointwise or Hadamard multiplication: if A = B = (6y), then AoB = C = (q,), 
where 

Cjj cijj bij. 

We met this operation in Chapter 2, but we will consider it in greater detail here. 
The basis matrices A0,.. ., Ad satisfy 

-4, o Aj = SijAi, 

in other words, they form a basis of orthogonal idempotents for A, o. The Hadamard 

product of two Es lies in A, and so is expressible in terms of the Es: 

(17-18) EioEj = jrg*JEkt 
k = 0 

where 
d 

9i{m)qj(i n) = YlcliMm)- 
k=0 

Equation (17.18) shows that the numbers 9‘, for k = 0,...,d, are the eigenvalues of 

E{ o Ej. By (2.25), we draw the following conclusion, known as the Krein bound. 

(17.19) Theorem. For all i,j, k, we have ryf. >0. □ 

The parameters qk satisfy various relations similar to (17.7). We do not give 
details. 

For any polynomial f[x) and matrix .4, we will use (of)(A) for the result of 

evaluating / at A using Hadamard multiplication. For example, if f(x) - x2 + 3x + l 

then (o f)(A) = Ao A + 3A + J. (Note that J is the identity for o.) 

(17.20) Definition. An association scheme is said to be Q-polynomial (with respect 

to the ordering E0.Ed of the ordinary idempotents) if there exist polynomials 

9oj • ■ • j <7d, where q{ has degree i for 0 < i < d, such that 

Ei = (o q^Ei) 

for i = 0,..., d. 
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An equivalent condition is that 

(a) Qij — 0 unless \i — j\ < k < i + j; 

(b) > 0 for i = 0,... ,d. — 1. 

Only a small proportion of all association schemes have either the P-polynomial 

or the Q-polynomial property. Nevertheless, of those which do, (and especially those 

with a fairly large number of classes), very many have both of these properties. These 

include the schemes of greatest importance for design theory and coding theory, the 

Hamming and Johnson schemes, as well as others such as schemes of alternating 

bilinear forms which are relevant to the material in Chapter 12. Consequently, these 

schemes have received the most attention. 

D. A. Leonard (1984) proved the following remarkable result. 

(17.21) Theorem. All the parameters of a P- and Q-polynomial association 

scheme can be expressed in terms of five quantities. □ 

The explicit expressions for the parameters are very complicated. The full state¬ 

ment of Leonard’s theorem in Bannai and Ito (1984) covers eleven pages, the bulk of 

which consists of formulae for the parameters, subdivided into nine cases. We refer 

to Bannai and Ito (1984), §111.5, or Brouwer, Cohen and Neumaier (1989), §8.1, for 

details. 

The significance of Leonard’s theorem is that it brings the complete classifica¬ 

tion of P- and Q-polynomial association schemes within reach. Bannai and Ito (1984) 

regard this as the main problem of algebraic combinatorics. Such a program requires 

a large number of classifications of specific classes of association schemes by their 

parameters. See Exercise 3 for a simple example of such a classification, and Bannai 

and Ito (1984) for comments on the general problem. We remark that particular clas¬ 

sification theorems require analysis of the clique structure of the graphs in question, 

in the same spirit as Bose (1963) (as we discussed in Chapter 7). 

The proof of (17.12) above suggests that a formal ‘duality’ holds between the 

first and second eigenmatrices of an association scheme. Linder this duality, the 

intersection numbers and the Krein parameters (the latter suitably normalized, by 

multiplying by |Af|) correspond, as do tire basis matrices and the minimal idem- 

potents, matrix multiplication and Hada.ma.rcl product, valencies and multiplicities, 

the P-polynomial and Q-polynomial conditions, etc. We will see below that various 

coding-theoretic and design-theoretic properties of subsets of an association scheme 

also correspond under this duality. We shall say that one scheme is the formal ducd 

of another if the first eigenmatrix of the first scheme coincides with the second eigen- 

matrix of the second scheme (up to ordering of rows and columns). 

Delsarte (1973) found a situation in which there is an actual duality between 

association schemes, which implies the formal duality just defined. 
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Let A be an abelian group which is a group of automorphisms of the association 

scheme (A, {ro,..., rd}), and acts transitively on X. In this situation, A is sharply 

transitive on X, and we can set up a bijection between A" and A as follows: select 

a: £ A; then y £ X corresponds to g £ A if g maps x to y. Under this correspondence, 

the given action of A on A translates into the action of A on itself by right translation. 

We now assume that this has been done, and take X = A. Moreover, we write A 

additively, so that the identity element is denoted by 0. 

For 0 < i < d, let C,- = {a £ A : {0,a} £ F,}. Now the sets C; determine the 

scheme: a and b are ith associates if and only if b — a £ C{. 

Now let A* be the group of characters of A. (Note that A* is an abelian group 

with the same order as A; but the group operation is naturally written as multipli¬ 

cation, since it is given by (</> • y)(a) = J>{a) ■ y(a).) For <j>, y G A*, write 0 ~ y if 

= x(Cs) for 0 < i < d, where <f(S) = Yl,es This is obviously an equiva¬ 

lence relation on A*; let C* = {1},..., C* be its equivalence classes. Delsarte proved 
the following. 

(17.22) Theorem. With the above notation, d = e; moreover, if we call <f>, y £ A* 

i associates whenever <t> ■ y 1 £ C*, then we obtain an association scheme, which is 
a formal dual to the original scheme. q 

Remark. There are close connections with the theory of Schur rings: see Tamaschke 
(1963). 

The Hamming schemes admit abelian transitive automorphism groups. If we 

give the alphabet A the structure of an abelian group of order q, then the Cartesian 

power A" acts on the points of H(n,q). (If A is a field, this is just the group of 

translations of the vector space.) The dual of H(n,q), in the sense of (17.22), turns 

out to be isomorphic to H(n,q) again. (See Exercise 12.) In particular, the first and 
second eigenmatrices of H(n,q) are equal. 

We come now to the central material of Delsarte’s thesis, in which association 

schemes appear as a natural setting for coding and design theory, and these two 
theories are related by formal duality. 

Let (A, {r0,...; T,}) be an association scheme. We assume fixed but arbitrary 

older mgs of the basis matrices and of the minimal idempotents in the Bose-Mesner 

algebra, subject to the condition that An = / and E0 = (l/n)J. Let P and Q be the 
eigenmatrices of the scheme. 

Let C be a subset of A, with \C\ > 1. The distribution vector of C is the vector 
a — (a0,..., ad), where 

1 
G’ ~ £ C x C : x and y are ith associates}!. 
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Its Q-transform is the vector b = aQ. 

(17.23) Theorem. The distribution vector and its Q-transform are non-negative 

vectors. 

PROOF. The non-negativity of a is clear. We have 

\C\bk = \C\Y/aiQk(i), 
i=0 

which is the sum of all the entries of the submatrix indexed by C of the matrix 

Xu=o AiQt(i) ='Ek. Now Ek is positive semi-definite (having eigenvalues 0 and 1); 

so, if c is the characteristic function of C, we have 

\C\bk = cEkcT > 0, 

as required. □ 

This result generalizes (14.22), and forms the basis of the most general version 

of the linear programming bound. 

Now let M be a non-empty subset of {1,... ,d}. We say that the set C is an 

M-code if a{ — 0 for all i £ M\ and C is an M-design if b{ = 0 for all i £ M. Thus, 

M-codes and M-designs are configurations extremal with respect to specified subsets 

of the inequalities (17.23). We investigate what these concepts mean in specific cases. 

Clearly, C is an Af-code if and only if no two elements of C are ith associates for 

any i £ M\ in other words, C is a coclique in the graph obtained by amalgamating 

the Tj for i £ M. Suppose, in particular, that the scheme is P-polynomial (that is, 

metric), with the basis matrices ordered in the natural way, and that M = {1,..., t} 

for some t < d. Then an Af-code (or t-code, a.s we say in this particular case), is a 

set C of points satisfying 

'dx.yec (a 7^ V ^ d{x, y) > t], 

where d is the distance in the graph Pi; this is an obvious generalization of the 

definition of a code with minimum distance greater than t, as given in Chapter 9. 

Many concepts of coding theory extend to this situation. For example, we have 

the sphere-packing bound: 

(17.24) Theorem. A 2e-code C in a P-polynomial scheme satisfies 

ici<m/ (y>f). 

□ 
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This, of course, holds because the balls of radius e with centres at the points of 

C are pairwise disjoint, and each such ball contains Xj;=o n{ points. A code attaining 

the bound is called perfect. Perfect codes in various distance-regular graphs have 

been examined, and sometimes classified; see Biggs (1973), (1974), Cameron et al. 

(1976), for example. 

The interpretation of the concept of M-design is much less clear. We restrict 

attention to the case where the association scheme is Q-polynomial (with the idem- 

potents ordered in the natural way), and M = {1,..., /} (in which case we refer to a 

/-design). Even here, we have no general interpretation; it is necessary to work out 

the meaning of the condition in each case. We give the most important example. 

(17.25) Theorem. A t-design in the Johnson scheme J(k, v) is the same thing as 

a t-design in the usual sense. 

PROOF. Let X be a u-set. We use the matrices Njt of the proof of (1.51) : for i < j, 

Nij is the (j) x (j) matrix whose rows and columns are indexed by the j-subsets and 

/-subsets of A respectively, having (J, I) entry 1 if / C J, 0 otherwise. Set iV; = Nki. 

We leave it to the reader to show that, for any i < k, the space spanned by the 

matrices E0, is the same as the space spanned by N0NJ,..., N{Nf. 

Recall that |C|6,: is equal to the sum of all entries of the matrix Et lying in rows 

or columns indexed by C. Assume that C is a /-design in J(v,k), and let c be the 

characteristic function of C. Then, for i = 1,..., t, we have 

cE{cr — 0. 

Moreover, we have 1£,:1T = 0 for * = 1,... , t (since E0E{ = O and E0 = (l/n)J); 
and 

(c - Q'1)£,0(c - qT)t = 0, 

where a = \C\/{^j. 

By the preceding paragraph, it follows that 

(c - al)NtNj(c - a 1 )T = 0, 

whence cNt = a\Nt = Al for some number A. 

But entries in the vector cNt count the number of ^-sets in C which contain a 
given Tsubset. So (X.C) is a /-design. 

Conversely, a /-design is an z-design for all i < /; then the above argument 

reverses to show that cEiCT = 0 for i = 1,..., /, whence C is a /-design in the 
Johnson scheme. r-, 
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Thus, the inequalities (17.23) give conditions satisfied by the Q-transform of a 

subset of the Johnson scheme, so that the extremal sets are precisely the t-designs. 

These have been worked out by S. Hobart (1989), who gave an elementary (and 

remarkably short!) proof of the following result. We have outlined her argument in 

Exercise 10. 

(17.26) Theorem. 

cardinality b. Then 

Let a be the distribution vector of a subset S of J(v,k), of 

E 

with inequality if and only if S is the block set of a t-design. □ 

We mention the next result without proof. Recall from Chapter 14 that a set C 

of n-tuples over an alphabet A is an orthogonal array of strength t if there is a positive 

constant A such that, for an}? choice of t distinct coordinates *l5..., it, and any choice 

of elements £ A, then number of words w £ C for which wik = ak for 

k — 1,..., t, is precisely A. 

(17.27) Theorem. A non-empty subset of the Hamming scheme H(n,q) is a 

t-design in the scheme if and only if it is an orthogonal array of strength t. □ 

Delsarte proved the following result, dual to (17.23). 

(17.28) Theorem. Let C be a 2e-design in a Q-polynomial association scheme 

with multiplicities m0,..., md. Then 

\c\ > Em«- 
i-0 

□ 

(17.29) Example. Consider the Johnson scheme J(v,k). We saw that, in the 

notation of (17.25), the matrix NeNj, with rank ("), is a positive combination of the 

idempotents E0,..., Ee. Thus, 

E m> = 
i = 0 

and (17.28) reduces exactly to the theorem of Ray-Chaudhuri and Wilson (1.50). 

(17.30) Example. In the Hamming scheme H(n,q), the multiplicities are the same 

as the degrees, viz. 

m,: = Hi = (q - 1)! j • 
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Thus, we obtain Rao’s inequality (Rao (1947)): an orthogonal array C of strength 2e 

in H(n, q) satisfies 

Tight orthogonal arrays of strength 4 have been determined by Noda (1979). 

Further refinements of these results involve Delsarte’s ‘four fundamental param¬ 

eters’ defined in Chapter 14. These are generalized to association schemes as follows. 

(17.31) Definition, (a) Let C be a non-empty subset of an association scheme, 

having distribution vector a. The minimum distance of C is the integer 

d = min{i > 1 : a{ ^ 0}, 

and the number of non-zero distances of C is the integer 

6 = |{*>l:a4^0}|. 

(b) Let C be a non-empty subset of an association scheme, having distribution 

vector a with Q-transform b. The dual distance of C is the integer 

d' = min{i >1:6,^ 0}, 

and the external distance of C is the integer 

r = |{i > 1 : bi / 0}|. 

Remarks. 1. The minimum distance and the dual distance are only meaningful if 

a fixed ordering of the basis matrices, resp. the idempotents, is given. In practice, 

we only consider minimum distance in P-polynomial schemes, and dual distance in 

Q-polynomial schemes. These parameters are one greater than the largest t for which 

C is a t-code, resp. a t-design, in the sense previously defined. 

2. The terms degree and strength are also used for s and d' — 1, respectively. 

In the next theorem, the valencies of the association scheme are n*, and the 
multiplicities m,-, as usual. 

(17.32) Theorem, (a) Let C he a non-empty subset of a P-polynomial association 

scheme, having minimum distance d and external distance r Put e = \Md - 111 
Then 12 y ;J' 

< |A"|/|C| < X>, 
*=0 !=0 

In particular, e < r. If one of these hounds is attained, then all three are attained 
(and C is a perfect code). 

(b) Let C be a non-empty subset of a Q-polynomial association scheme, having 

dual distance d' and number of non-zero distances a. Put e = [~(d' — 1)J Then 

L mi < |c| < mi ■ 

»=0 J=0 
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In particular, e < s. If one of these bounds is attained, then all three are attained 

(and C is a tight design). □ 

(17.33) EXAMPLE. Let C be a linear code in H{n,q), and Cx its dual (where q is a 

prime power). Then the distribution vectors a and a' of C and CL satisfy 

|C|a' = aQ, \C±\a = a'Q. 

(Recall that P — Q for the Hamming schemes, and PQ = |X|J, where \X\ — 

|C| • |C'X|.) This assertion is equivalent to the MacWilliams identities (9.15) (see 

(14.23)). In particular, the minimum distance and external distance of C1- are equal 

to the dual distance and number of distances, respectively, of C. More can be said. 

For example, if the induced structure on C is an association scheme, then the space 

X/Cx — which can be identified with the group of characters of C — carries in a 

natural way an association scheme, which is the dual of C. (See Exercise 6 for a 

particular example of this situation.) 

Sometimes, pairs of non-linear codes have the properties that their distribution 

vectors are Q-transforms of each other, up to a factor. We saw this phenomenon for 

the Preparata and Kerdock codes. No satisfactory explanation is known. 

One more result will suffice to illustrate Delsarte’s work. If C is a subset of 

the point set of an association scheme (A", {Ti,.. . ,rd}), then C carries an induced 

structure given by the graphs F,|C which are non-empty (that is, for which a{ ^ 0 

— there are s of these). When does it happen that this induced structure is an 

association scheme with s classes? Delsarte showed the following. 

(17.34) Theorem. Let C be a subset of a Q-polynomial association scheme, 

having number of distances s and strength t (that is, dual distance t + 1). Suppose 

that t > 2s - 2. Then the induced structure on C is an association scheme with s 

classes, having multiplicities mn,.... m, — 1, and |C| — 0 ™;. 

(17.35) REMARK. The theorem applies when X is a Johnson scheme, and s — 2, 

t > 2, in which case C is the set of blocks of a quasi-symmetric 2-design. In this case, 

(17.34) reduces to (5.3). 

Exercises 

1. Show that, for n even, the Hamming scheme H(n, 2) is metric with respect 

to the ordering Tn_i, IT, F„_3, T4,..., T3, Fn_2, Fi, rn. 

2. Let G be a finite group, with conjugacy classes C0 = {1Cd. Define 

relations ro,..., rd on G by 

Ti = {(x,y)eGxG\x-1yeCi}. 
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(a) Show that these relations are invariant under left and right multiplication by 

elements of G. 

(b) Show that (G, {ro,..., rd}) is an association scheme in the sense of Delsarte. 

(c) Show that the second eigenmatrix of this association scheme is the character 

table of the group G. 

3. Let T be a distance-regular graph with parameters c{ = i, a{ = 0, = d — i 

for 0 < i < d. Let x be a fixed vertex, and r,-(x) the set of vertices at distance i from 

x. 

(a) Show that the map y i—> rt(x) n Ti_1(y) is a bijection between r,(x) and the set 

of f-element subsets of the d-set r^x), for 0 < i < d. 

(b) Hence show that T is a Hamming graph H(d, 2). 

4. Show that, for fixed d and q, the Krawtchouk polynomials Ki(x) satisfy the 

recurrence 

(■q ~ l)(rf - * + l)AVi(z) + i(q - 2)Ki(x) + (i + 1 )Ki+1(x) = K^KJx), 

where I<1(x) = (q — 1 )d — qx, and (by convention) K_i(x) = Kd+1(x) = 0. Deduce 

that, for x = 0,1,..., d, the vector 

(K0(x),I\\(x),... ,A'd(x))T 

is an eigenvector for the intersection matrix Px of the Hamming scheme id(d, q), with 

eigenvalue Kx(x). Deduce (17.17). 

5. Let A be the additive group of F?, and let d be a divisor of q— 1 such that, if q 

is odd, then {q — l)/d is even. Let K be the multiplicative group of dth roots of unity 

in F*. (By assumption, -1 £ I\.) Let Cx.Cd be the cosets of I<, and C0 = {0}. 

Prove that the structure constructed from Cn,.. ., Cd by the recipe preceding (17.22) 

is an association scheme. (These association schemes are called cyclotomic schemes 
C(q, d).) Prove that 

(a) for q = 1 (mod 4), the Paley graph P(q) is a class in C(q, 2); 

(b) the Clebsch graph is a. class in C(16,3); 

(c) it is possible to choose three classes ol (7(81,8) whose union is a strongly regular 

graph with parameters (81, 30, 9. 12) (and is the point graph of the Van Lint- 

Schrijver partial geometry of Example (7.20)). 

Show that cyclotomic schemes are formally self-dual. 

Remark. If we consider association schemes in the sense of Delsarte, it is not 

necessary to require that (q - 1 )/d is even in this construction. 

6. Let Ti be the strongly regular graph of (11.12), with parameters (243, 22, 1, 

2). Let r2 be the strongly regular graph of Chapter 11, Exercise 9, with parameters 

(243, 132, 81, 60). Show that the association schemes defined by rx and T2 are formal 

duals of each other. Are they actual duals (in the sense of (17.22))? 
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7. (a) Verify that the two strongly regular graphs associated with a set of points 

in projective space having just two cardinalities of hyperplane sections ((16.22) and 

(16.23), or Exercise 10 of Chapter 16) give rise to association schemes which are 

formal duals of each other. 

(b) Prove that a 2-cla.ss association scheme is formally self-dual if and only if 

the two strongly regular graphs which define the scheme are of pseudo- or negative 

Latin square type or conference graphs. [Hint: use the eigenvalues k,r,s of one of 

the graphs as parameters. In fact, the conclusion follows from the assumption that 

{M} = {f,g}-] 

8. What does it mean to say that a set of fc-sets is an e-error correcting code in 

the Johnson scheme? Show that a necessary condition for a perfect 1-error correcting 

code in J(u, k) is that 1 + k(v — k) divides . Prove that, if k = 3 and v > 6, then a 

perfect 1-error correcting code in J(v,k) can exist only for v = 6, and find the unique 

example with v = 6. 

9. Show that a perfect 1-error-correcting code in the odd graph of (17.6) (the 

graph T*, in the Johnson scheme J(2k -f 1 ,fc)) is the set of blocks of a (k — 1)- 

(2k -f 1, fc, 1) design, and conversely. 

10. (a) Give an example of a 3-design with exactly 3 distances between blocks, 

whose induced structure in the Johnson scheme is not an association scheme. 

(b) Show that, if a 3-design has three distances, and has the further property that 

the complement of any block is a block, then the induced structure is an association 

scheme. 

11. Let S be a set of b points of the Johnson scheme J(v,k) (that is, fc-subsets 

of a u-set A'). For distinct px,. ,.,pt € X, let A{pl:...iPt} be the number of members of 

5 which contain p1,... ,pt. Let (a0,..., ak) be the distribution vector of S. 

By counting choices of {px.pt] C A' and j members of S containing pu ... ,p(, 

for j = 1,2, show that 

.Ptl = 

E(Ab».rd)2 = 

Now use the variance trick to show Hobart’s Theorem (17.26). 

12. Use Theorem (17.22) to show that the Hamming scheme H(d,2) is self-dual. 

[Hint: Let A be the translation group. The characters of A are bijective with words; 

w <_> 0w) where d>w(v) = (— 1 )<v w>. Use (14.21) to show that the equivalence class of 

the relation ~ defined before (17.22) are the sets 

C* = {^w : wt(w) = *'} 

for 0 < i < d.\ 
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13. (a) Let X be the set of points and blocks of a square 2-(u,k,A) design, 

carrying the three relations 

• same type (both points, or both blocks); 

• incident; 

• different type and non-incident. 

Show that X is a 3-class association scheme. 

(b) Let T be a graph with vertex set V. Let X = {u+, v~ : v E V}, and define a 

graph F* with vertex set X in which v( and w‘ are adjacent if and only if 6e = bvw, 

where B = (bvw) is the (0,—,+) adjacency matrix of T introduced in Chapter 4. 

Show that switching F does not change the isomorphism type of T*, so that it is an 

invariant of the two-graph A derived from T. Show also that, if A is a non-trivial 

regular two-graph, then T* is a distance-regular graph of diameter 3 (and so defines 

a 3-class association scheme). 

(c) Show that a formal dual of an association scheme of type (a) above (if it 

exists) is of type (b), and vice versa. 

(d) Let D be a subset of an abelian group A of order v, with \D \ = k. Suppose 
that 

• for all a £ A, a / 0, the number of pairs {dx,d2) E D2 with a = dx - d2 is 

precisely A; 

• for all d E D, —d E D. 

(Such a set is called a difference set with multiplier —1.) Show that 

(A, {D + a : a E A}) 

is a square 2-(u, k, A) design. Show further that the association scheme derived from 

this design as in (a) admits a transitive abelian group of automorphisms isomorphic 

to Z2 X A. Deduce that there exists a regular two-graph on v points whose eigenvalues 

have multiplicities k and v — k. 

(e) Take A = Z4 x Z4, D = {(0, x), (x, 0) : x E Z4,x ^ 0}. Verify tha.t D is a 

difference set with multiplier —1. What is the corresponding regular two-graph? 

Remark. Parts (c) and (d) are due to M. C. Whelan (1989), who also used a differ¬ 

ence set with multiplier -1 and parameters (4000, 775, 150) due to R. L. McFarland 

(1973) to construct a new regular two-graph on 4000 points. 
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affine permutation group, 129, 141 

affine plane, 14, 15, 93 

affine resolvable design, 16 

affine space, 17, 139 

algebra, Bose-Mesner, 201, 204 

algebra, centralizer, 38, 201 

algebra, group, 172 
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alternating bilinear form, 76, 95, 101, 
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alternating group, 36, 82, 89 

arc, 17, 130, 156, 160 

Arf invariant, 77 

Assmus-Mattson Theorem, 165-167, 

178, 188 

association scheme, 197, passim 

association scheme, cyclotomic, 212 

association scheme in the sense of Del- 

sarte, 199, 211-212 

association scheme, P-polynomial, 203, 

203-205 
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automorphism group, 3, 22, 67, 133, 
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Axiom of Choice, 83 

B 
Baer subplane, 9, 22, 27, 83-84, 99-100 

balanced incomplete-block design, 4 

ball, 118 

BCH code, 127-129, 167, 188 

BIBD, 4 

binary Golay code, 22, 130, 131-135, 

151, 155, 165, 193 

biplane, 46, 67, 156-157 

block graph, 70 

block design, 4 

blocks, repeated, 1-2, 14 

Boolean function, 139, 141 

Bose’s Theorem, 92 

Bose-Mesner algebra, 200-201, 204 

bound, Johnson, 182 

bound, linear programming, 169, 207 

bound, sphere-packing, 118, 182, 207 

bound, square root, 164 

Bruck-Ryser-Chowla Theorem, 7, 9, 73 
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c 
cardinals, infinite, 83 

category theory, 83 

centralizer algebra, 38, 201 

Chang graphs, 60-61, 64-65, 66, 74, 

103 

character, viii, 122, 172, 206 

check polynomial, 126 

class of set, 96 

classical GQ, 95-96 

Clebsch graph, 35, 43, 63, 67, 106, 109, 

112, 192 

cocktail party graph, 35, 43, 52, 63, 71 

code, BCH, 127-129, 167, 188 

code, binary Golay, 22, 130, 131-135, 

151, 155, 165, 193 

code, cyclic, 125, 142 

code, distance invariant, 168, 171, 186 

code, doubly even, 131 

code, equidistant, 150, 162 

code, equivalent, 119 

code, Euclidean geometry, 149 

code, extended, 120 

code, extended QR, 164 

code, GQR, 172 

code, Hamming, 120, 126-127, 133, 

140, 153, 162, 167, 183, 187, 193 

code, in association scheme, 207 

code, Kerdock, 142-145, 187, 211 

code, linear, 118, passim 

code, maximum distance separable, 

123, 129 

code, MDS, 123, 129 

code, narrow sense BCH, 128 

code, nearly perfect, 181, 182, 184- 

185, 188 

code, non-linear, 119, 123, 131, 137, 

142-145, 150, 151, 183-188, 192-194, 

211 

code, Nordstrom-Robinson, 137, 144 

code, perfect, 118, 120, 131, 135, 137— 

138, 173, 181, 208, 210 

code, Preparata, 185, 188, 192-194, 211 

code, primitive BCH, 128, 167 

code, projective, 189 

code, projective geometry, 149 

code, quadratic residue, 162, passim 

code, quasi-perfect, 183 

code, Reed-Muller, 139, passim, 153, 

168, 188 

code, Reed-Solomon, 129-130 

code, residual, 123 

code, RM, 139, passim, 153, 168, 188 

code, RS, 129-130 

code, self-dual, 120, 133, 135, 153, 167, 

173-174, 176 

code, self-orthogonal, 120, 130, 131, 

153, 164 

code, symmetry, 176, passim 

code, systematic, 119 

code, ternary Golay, 22, 135-136, 153, 

167, 173, 176 

code, two-weight, 181, 189-192 

code, uniformly packed, 181, 183, pas¬ 

sim 

coherent configuration, 199 

complement of design, 13, 70, 166, 

184-185 

complement of graph, 29, 32, 33, 35, 72 

complete graph, 29 

complete multipartite graph, 34-35 

complete transversal design, 93-94 

completely regular two-graph, 65-66 

conference graph, 110 

conference matrix, 40, 175 

conic, 18-19, 26, 134 

conjugate dual, 136 

contraction of code, 167 

Conway group, 58, 67 

covering radius, 183 
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cross ratio, 106-107 

cyclic code, 125, 142 

cyclotomic association scheme, 212 

D 
deficiency of net, 93 

degree of design, 210 

degree of net, 93 

Dembowski-Wagner Theorem, 8, 75 

derangement, 28 

derived design, .11 

Desargues’ Theorem, 8 

Desarguesian plane, 7, 158 

design, affine, 16, 69, 70, 79-80 

design, affine resolvable, 16 

design, balanced incomplete-block, 4 

design, complementary, 13, 70, 166, 

184-185 

design, complete transversal, 93-94 

design, derived, 11 

design, extendable, 11, 26 

design, Hadarnard, 10, 11-12, 17, 24, 

25, 72-73, 76 

design, in association scheme, 207 

design, pair, 30 

design, pairwise balanced, 4 

design, Paley, 10 

design, projective, 5, 17 

design, quasi-residual, 14. 17, 73-74 

design, quasi-symmetric, 69, passim, 

107-108, 211 

design, quasi-3, 75, 75-77 

design, residual, 13, 17 

design, resolvable, 16 

design, spherical, 111 

design, square, 5, 5-13, 17, 42, 69 

design, symmetric, 5, 69 

design, t-, 1, passim 

design, tight, 20, 20-21, 71, 211 

designed distance, 127-128 

diameter, 45 

dimension, 118 

distance distribution, 168, 169 

distance, dual, 170, 210 

distance enumerator, 168 

distance, external, 170, 210 

distance, Hamming, 117 

distance invariant code, 168, 171, 186 

distance, minimum, 118-119, 139, 170, 

186, 210 

distance regular graph, 199 

distribution vector, 206 

dodecad, 88 

doubly even code, 131 

doubly transitive group, 8, 36, 180 

duad, 81 

dual design, 5, 93 

dual distance, 170, 210 

dual (5, 6,12)s, 87 

dual 6-sets, 83, 85, 86 

duality of association schemes, 205-206 

duality of design, 6 

duality of Reed-Muller codes, 140 

E 
eigenmatrices, first and second, 202 

eigenvalue of graph, 37, 51-54, 70 

eigenvalue of two-graph, 61 

egglike inversive plane, 15 

EGQ, 98 

elliptic quadric, 15, 191 

embeddable net, 93 

equidistant code, 150, 162 

equivalence, monomial, 119, 124, 137 

equivalence of codes, 119 

equivalence of Hadarnard matrices, 9 

error-correcting codes, 117, passim 

Euclidean geometry code, 149 

extendable design, 11, 26 

extended code, 120 
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extended generalized quadrangle, 98 

extended QR code, 164 

extension of design, 11, 12, 26 

extension of graph, 59 

external distance, 170, 210 

extremal Smith graph, 113 

F 
factor, 81-83 

factorization, 16, 81-83 

field, finite, viii, 117, 138 

Fisher’s inequality, 5, 7, 12, 16, 70, 71 

flat, 8, 140-141 

Friendship Theorem, 45 

fundamental parameters, 170, 210 

G 
generalized line graph, 52-53, 55-56 

generalized quadrangle, 94, passim 

generalized quadrangle, classical, 95-96 

generator matrix, 119 

generator polynomial, 125 

generously transitive group, 198 

geometric graph, 92, 101, 112, 114 

geometry, affine, 17, 139 

geometry, algebraic, 35, 127 

geometry, Moore, 105 

geometry, partial, 15, 91, passim, 148, 

192 

geometry, projective, 7-8, 75, 124, 

189-191, 194-195 

Gewirtz graph, 35-36, 43, 106-109, 

156 

girth, 45 

Golay codes, sde binary or ternary 

GQ, 94, passim 

GQR code, 172 

Gram matrix, 41 

graph, 29 

graph, block, 70 

graph, Chang, 60—61, 64-65, 66, 74, 

103 

graph, Clebsch, 35, 43, 63, 67, 106, 

109, 112, 192 

graph, cocktail party, 35, 43, 52, 63, 71 

graph, complete, 29 

graph, complete multipartite, 34-35 

graph, conference, 110 

graph, distance regular, 199 

graph, extremal Smith, 113 

graph, generalized line, 52-53, 55-56 

graph, geometric, 92, 101, 112, 114 

graph, Gewirtz, 35-36, 43, 106-109, 

156 

graph, Hamming, 199 

graph, Higman-Sims, 107, 109, 112, 

113-114 

graph, Hoffman-Singleton, 46, 85-86, 
90, 103, 109 

graph, Johnson, 199 

graph, ladder, 34, 39, 71, 73 

graph, Latin square, 40, 93, 110, 190 

graph, line, 51, 69, 92 

graph, McLaughlin, 67, 112 

graph, Moore, 45-46, 81, 84-85, 88-89, 

105, 109 

graph, negative Latin square, 110, 114 

graph, null, 29 

graph, odd, 200, 213 

graph, Paley, 35, 39, 40 

graph, Petersen, 33-34, 40, 55, 63, 66, 

85, 103, 109, 114, 200 

graph, point, 92 

graph, pseudo-geometric, 92, 101, 112, 

114 

graph, pseudo Latin square, 110-114 

graph, rank 3, 36, 39, 115 

graph, regular, 30 

graph, Schlafli, 32, 35, 47, 63, 112 

graph, Shrikhande, 60, 63, 66, 67 
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graph, Smith, 111-113 

graph, square lattice, 33-35, 63, 67, 

71, 92,110 

graph, strongly regular, 32, passim, 

136, 138, 189-192, 194-195, 198 

graph, triangular, 33, 35, 53-55, 63, 87, 

93 

graph, (v,k. A), 43 

group, abelian, viii, 93, 192, 206 

group, affine, 129, 141 

group algebra, 172 

group, alternating, 36, 82, 89 

group, automorphism, 3, 22, 67, 133, 

141, 152, 164, 178-180 

group, Conway, 58, 67 

group, doubly transitive, 8, 36, 180 

group, generously transitive, 198 

group, imprimitive, 82 

group, intransitive, 82 

group, linear fractional, 16, 23, 88, 164, 

179 

group, Mathieu, 22, 165, 179 

group, symmetric, 82-83 

H 
H-matrix, 9 

Hadamard design, 10, 11-12, 17, 24, 

25, 72-73, 76 

Hadamard matrix, 9, 17, 24, 25-26, 

150, 183-184, 188 

Hadamard product, 42, 204 

Hall-Connor Theorem, 14, 73 

Hamming code, 120, 126-127, 133, 140, 

153, 162, 167, 183, 187, 193 

Hamming distance, 117 

Hamming graph, 199 

Hamming scheme, 198 

Hasse-Minkowski theory, 7 

Hermitian form, 95, 99 

Hessian configuration, 127 

hexacode, 134 

higher regularity conditions, 112 

Higman’s two-graph, 65-67 

Higman-Sims graph, 107, 109, 112, 

113-114 

Hill cap, 191-192 

Hoffman-Singleton graph, 46, 85—86, 

90,103,109 

hyperbolic quadric, 191 

hyper graph, 58 

hyperplane, 8, 124, 152, 191, 194-195 

I 
icosahedron, 133 

idempotent, 42, 161, 173, 204 

imprimitive group, 82 

incidence matrix, 4, 5, 43 

index of form, 95 

infinite cardinals, 83 

integrality condition, 37-38, 106, 201 

intersection matrix, 201 

intersection triangle, 21, 26, 86-87 

intransitive group, 82 

invariant factor, viii, 157-158 

inversive plane, 15, 173 

inversive plane, egglike, 15 

isomorphism, 3 

J 
Johnson bound, 182 

Johnson graph, 199 

Johnson scheme, 198 

K 
Kerdock code, 142-145, 187, 211 

Kerdock set, 144, 145-149 

Kirkman’s schoolgirl problem, 16 

knot, 18 

Krawtchouk polynomial, 169, 203, 212 
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Krein condition, 42, 45, 63, 105, 110— 

112, 204 

Kronecker product, 25, 42, 79 

L 
ladder graph, 34, 39, 71, 73 

Latin square, 14, 93 

Latin square graph, 40, 93, 110, 190 

Latin squares, mutually orthogonal, 15 

Latin squares, orthogonal, 14, 93 

line, 8, 17, 91, 155 

line, in design, 8—9 

line graph, 51, 69, 92 

line graph of design, 69 

line graph of partial geometry, 92 
line system, 49 

line system, star-closed, 49 

linear code, 118, passim 

linear fractional group, 16, 23, 88, 164, 

179 

linear programming bound, 169, 207 

lines, parallel, 14 

linked partial geometries, 97 

linked square designs, 78, 148 

M 
MacWilliams relations, 121-122, 155, 

160,166-167 

MacWilliams transform, 168-169 

majority logic decoding, 142 

Mathieu groups, 22, 165, 179 

matrix, adjacency, 36-37 

matrix, conference, 40, 175 

matrix, generator, 119 

matrix, Gram, 41 

matrix, Hadamard, 9, 17, 24, 25-26, 

150, 183-184, 188 

matrix, incidence, 4, 5, 43 

matrix, intersection, 201 

matrix, monomial, 119, 179 

matrix, Paley, 10, 132, 135, 175-176 

matrix, parity check, 120 

matrix, reduced adjacency, 201 

matrix, Sylvester, 10, 17, 27, 150 

matrix, Vandermonde, 20, 128 

maximum distance separable code, 123, 

129 

McLaughlin graph, 67, 112 

MDS code, 123, 129 

minimum distance, 118-119, 139, 170, 

186, 210 

minimum weight, 119, 129 

Minkowski inner product, 157 

Miracle Octad Generator, 24 

Mobius plane, 15, 173 

monomial equivalence, 119, 124, 137 

monomial matrix, 119, 179 

Moore geometry, 105 

Moore graph, 45-46, 81, 84-85, 88-89, 

105, 109 

morphism, 83 

mutually orthogonal Latin squares, 15 

N 
narrow sense BCH code, 128 

nearly perfect code, 181, 182, 184-185, 

188 

negative Latin square graph, 110, 114 

net, 14, 93 

net, embeddable, 93 

non-linear code, 119, 123, 131, 137, 

142-145, 150, 151, 183-188, 192-194, 

211 

nonsingular form, 144 

Nordstrom-Robinson code, 137, 144 

normalized H-matrix, 10 

nucleus, 18, 26, 134 

null graph, 29 
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o 
objects, 83 

odd graph,200, 213 

order of net, 93 

orthogonal array, 170, 209 

orthogonal GQ, 95 

orthogonal Latin squares, 14, 93 

orthogonal spread, 145-146 

oval, 17, 17-19, 22, 83-84, 97, 134, 

155-157, 159 

overall parity check, 120 

ovoid, 15-16, 191 

ovoid, Suzuki-Tits, 16, 191 

P 
P-polynomial association scheme, 203, 

203-205 

pair design, 30 

pairwise balanced design, 4 

Paley design, 10 

Paley graph, 35, 39, 40 

Paley H-matrix, 10 

Paley matrix, 10, 132, 135, 175-176 

Pappus’ Theorem, 8 

parallel lines, 14 

parallelism, 16 

parity check matrix, 120 

partial geometry, 15, 91, passim, 148, 

192 

passant, 17 

pentagon, 34, 35, 46, 62, 106, 109, 111, 

113, 115 

perfect code, 118, 120, 131, 135, 137— 

138, 173, 181, 208, 210 

Perron-Frobenius Theorem, 40 

Petersen graph, 33, 34, 40, 55, 63, 66, 

85, 103, 109, 114, 200 

plane, 8, 17 

plane, affine, 14, 15, 93 

plane, Desarguesian, 7, 158 

plane, inversive, 15, 173 

plane, Mobius, 15, 173 

plane, projective, 7, 81, 83-84, 89-90, 

122, 126, 132, 137, 152-158 

Playfair’s Axiom, 14 

point, 1, 8, 17, 91 

point graph of partial geometry, 92 

polarity, 6, 42-43, 46, 47, 195 

polarization, 43 

polynomial, check, 126 

polynomial, generator, 125 

polynomial, Krawtchouk, 169, 203, 212 

Preparata code, 185, 188, 192-194, 211 

primitive BCH code, 128, 167 

primitive element, 126 

Principle of Inclusion and Exclusion, 

viii, 13, 21, 24-25, 27, 112, 115 

projective code, 189 

projective design, 5, 17 

projective geometry, 7-8, 75, 124, 189— 

191, 194-195 

projective geometry code, 149 

projective plane, 7, 81, 83-84, 89-90, 

122, 126, 132, 137, 153-158 

projective space, 7-8 

pseudo-geometric, graph, 92, 101, 112, 

114 

pseudo Latin square graph, 110-114 

Q 
Q-polynomial association scheme, 204, 

204-205 

Q-transform, 207 

quadratic form, 44, 45, 76, 143 

quadratic residue, 162 

quadratic residue code, 162, passim 

quadric, 145-148, 191, 195 

quadric, elliptic, 15, 191 

quadric, hyperbolic, 191 

quasi-perfect code, 183 
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quasi-residual design, 14, 17, 73-74 

quasi-symmetric design, 69, passim, 

107-108,211 

quasi-3 design, 75, 75-77 

R 
rank 3 graph, 36, 39, 115 

rationality condition, 37-38 

reduced adjacency matrix, 201 

Reed-Muller code, 139, passim, 153, 

168, 188 

Reed-Solomon code, 129-130 

regular graph, 30 

regular two-graph, 58, 61-62 

regularity conditions, higher, 112 

repeated blocks, 1-2, 14 

residual code, 123 

residual design, 13, 17 

resolution, 16 

resolvable design, 16 

RM code, 139, passim, 153, 168, 188 

root system, 49 

RS code, 129-130 

s 
Schlafli graph, 32, 35, 47, 63, 112 

Schur ring, 206 

SDR, 64 

secant, 17, 96 

Segre’s Theorem, 19 

self-dual code, 120, 133, 135, 153, 167, 

174-174, 176 

self-orthogonal code, 120, 130, 131, 

153, 164 

set of class s, 96 

Shrikhande graph, 60, 63, 66, 67 

singular space, 145 

Smith graph, 111-113 

Smith normal form, viii, 157-158 

space, affine, 17 

Index 

space, projective, 7—8 

sphere packing bound, 118, 182, 207 

spherical design, 111 

spread,145-146 

spread, orthogonal, 145-146 

spread, symplectic, 146 

square design, 5, 5-13, 17, 42, 69 

square lattice graph, 33—35, 63, 67, 71, 

92,110 

square root bound, 164 

standard form, 119 

star, 49 

star-closed line system, 49 

Steiner system, 1, 2, 81, 86-88, 124, 

126-127, 132, 137-138, 178 

strength of design, 210 

strongly regular graph, 32, passim, 136, 

138, 189-192, 194-195, 198 

structure, 1, 2, 27 

subconstituents, 110, 110-115 

subgroup, Sylow, 36, 86 

subplane, 9, 27 

Suzuki-Tits ovoid, 16, 191 

switching, 40, 59 

Sylow subgroup, 36, 86 

Sylvester H-matrix, 10, 17, 27 

Sylvester matrix, 10, 17, 27, 150 

symmetric design, 5, 69 

symmetric difference and reflection, 64 

symmetric difference property, 77, 138, 

152 

symmetry code, 176, passim 

symplectic GQ, 95 

symplectic spread, 146 

syntheme, 81 

system of linked square designs, 78, 

148 

systematic code, 119 
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T 
t-design, 1, passim 

tangent, 17 

tensor product, 25, 42 

ternary Golay code, 22, 135-136, 153, 

167, 173, 176 

tight design, 20, 20-21, 71, 211 

topology, 58 

totally isotropic, 145 

totally singular, 145 

triangle property, 44, 46-47 

triangular graph, 33, 35, 53-55, 63, 87, 

93 

two-graph, 58, passim 

two-graph, completely regular, 65-66 

two-graph, Higman’s, 65-67 

two-graph, regular, 58, 61-62 

two-weight code, 181, 189-192 

u 
uniformly packed code, 181, 183, pas¬ 

sim 

unital, 23, 99, 127, 190 

unitary GQ, 95 

V 
(u, k, A) graph, 43 

valency, 30 

Vandermonde matrix, 20, 128 

variance trick, 6, 18 

volume, 9 

w 
weight, 118 

weight enumerator, 121, 155 

windmill, 31-32, 45, 51 

word, 117 

word length, 117 

wreath product, 119 

X 

Y 

Z 
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