
ao pgecen BANG-JENSEN AND GREGORY GUTIN

Dit Halls mean

Springer Monographs in Mathematics

~~

wy

a

ue Pi

. -
_ ol

Digitized by the Internet Archive

in 2022 with funding from

Kahle/Austin Foundation

https://archive.org/details/digraphstheoryalOO00bang

Springer Monographs in Mathematics

Springer
London
Berlin ,
Heidelberg
New York
Barcelona
Hong Kong

Milan
Paris
Singapore

Tokyo

Jorgen Bang-Jensen and Gregory Gutin

Digraphs
Theory, Algorithms and Applications

ry Springer

Jorgen Bang-Jensen, PhD
Department of Mathematics and Computer Science

SDU Odense University
Campusvej 55
DK-5230 Odense M
Denmark

Gregory Gutin, MSc, PhD

Department of Computer Science

Royal Holloway
University of London
Egham
Surrey
TW20 0EX
UK

ISBN 1-85233-268-9 Springer-Verlag London Berlin Heidelberg

British Library Cataloguing in Publication Data
Bang-Jensen, Jorgen

Digraphs : theory, algorithms and applications. -
(Springer monographs in mathematics) ~
1.Directed graphs
L Title II.Gutin, Gregory
511.5
ISBN 1852332689

Library of Congress Cataloging-in-Publication Data
Bang-Jensen, Jorgen, 1960-

Digraphs : theory, algorithms, and applications / Jorgen Bang-Jensen and Gregory Gutin.
p- cm. -- (Springer monographs in mathematics)

Includes bibliographical references and indexes.
ISBN 1-85233-268-9 (alk. paper)

1. Directed graphs. I. Gutin, Gregory, 1957- II. Title. III. Series.
QA166.15 .B36 2000
511..5--de21 00-044032

Mathematics Subject Classification (1991): 05C20, 05C38, 05C40, 05C45, 05C70, 05C85, 05C90, 05C99, 68R10, 68Q25,
68W05, 68W40, 90B06, 90B70, 90C35, 94C15

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the
Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

© Springer-Verlag London Limited 2001
Printed in Great Britain

2nd printing, with corrections 2001

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in
this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typesetting: Camera-ready by authors
Printed and bound at the Atheneum Press Ltd., Gateshead, Tyne & Wear

12/3830-54321 Printed on acid-free paper SPIN 10833447

We dedicate this book to our parents, especially to our fathers, Borge

Bang-Jensen and the late Mikhail Gutin, who, through their very broad

knowledge, stimulated our interest in science enormously.

an 7
-

ae
s 4

, 4

-

4 =

“s > sea rioct (2 Aad be}? vi -

onl ver 4 5 j on, > fiaets p ‘al CUP pie mt re el ;

; 7 try Witt (PT ES) fon] whit ele | ; i ¢ i (i Oe ep etal

- —~ ? 4 : a _ 4

* ey Way oe i6~—3
oe = hy

Preface

Graph theory is a very popular area of discrete mathematics with not only

numerous theoretical developments, but also countless applications to prac-

tical problems. As a research area, graph theory is still relatively young, but

it is maturing rapidly with many deep results having been discovered over

the last couple of decades.

The theory of graphs can be roughly partitioned into two branches: the

areas of undirected graphs and directed graphs (digraphs). Even though both

areas have numerous important applications, for various reasons, undirected

graphs have been studied much more extensively than directed graphs. One

of the reasons is that undirected graphs form in a sense a special class of

directed graphs (symmetric digraphs) and hence problems that can be for-
mulated for both directed and undirected graphs are often easier for the

latter. Another reason is that, unlike for the case of undirected graphs, for

which there are several important books covering both classical and recent

results, no previous book covers more than a small fraction of the results

obtained on digraphs within the last 25 years. Typically, digraphs are consid-

ered only in one chapter or by a few elementary results scattered throughout

the book.

Despite all this, the theory of directed graphs has developed enormously

within the last three decades. There is an extensive literature on digraphs

(more than 3000 papers). Many of these papers contain, not only interesting

theoretical results, but also important algorithms as well as applications.

This clearly indicates a real necessity for a book, covering not only the basics

on digraphs, but also deeper, theoretical as well as algorithmic, results and

applications.

The present book is an attempt to fill this huge gap in the literature

and may be considered as a handbook on the subject. It starts at a level

that can be understood by readers with only a basic knowledge in university

mathematics and goes all the way up to the latest research results in several

areas (including connectivity, orientations of graphs, submodular flows, paths

and cycles in digraphs, generalizations of tournaments and generalizations

of digraphs). The book contains more than 700 exercises and a number of

applications as well as sections on highly applicable subjects. Due to the fact

that we wish to address different groups of readers (advanced undergraduate

vill Preface

and graduate students, researchers in discrete mathematics and researchers

in various areas including computer science, operations research, artificial

intelligence, social sciences and engineering) not all topics will be equally

interesting to all potential readers. However, we strongly believe that all

readers will find a number of topics of special interest to them.

Even though this book should not be seen as an encyclopedia on directed

graphs, we included as many interesting results as possible. The book con-

tains a considerable number of proofs, illustrating various approaches and

techniques used in digraph theory and algorithms.

One of the main features of this book is the strong emphasis on algorithms.

This is something which is regrettably omitted in some books on graphs.

Algorithms on (directed) graphs often play an important role in problems

arising in several areas, including computer science and operations research.

Secondly, many problems on (directed) graphs are inherently algorithmic.

Hence, whenever possible we give constructive proofs of the results in the

book. From these proofs one can very often extract an efficient algorithm

for the problem studied. Even though we describe many algorithms, partly

due to space limitations, we do not supply all the details necessary in order

to implement these algorithms. The later (often highly non-trivial step) is a

science in itself and we refer the reader to books on data structures.

Another important feature is the vast number of exercises which not only

help the reader to train his or her understanding of the material, but also

complements the results introduced in the text by covering even more mate-

rial. Attempting these exercises (most of which appear in a book for the first

time) will help the reader to master the subject and its main techniques.

Through its broad coverage and the exercises, stretching from easy to

quite difficult, the book will be useful for courses on subjects such as (di)graph

theory, combinatorial optimization and graph algorithms. Furthermore, it

can be used for more focused courses on topics such as flows, cycles and

connectivity. The book contains a large number of illustrations. This will

help the reader to understand otherwise difficult concepts and proofs.

To facilitate the use of this book as a reference book and as a graduate

textbook, we have added comprehensive symbol and subject indexes. It is our

hope that the detailed subject index will help many readers to find what they

are looking for without having to read through whole chapters. In particular,

there are entries for open problems and conjectures. Every class of digraphs

which is studied in the book has its own entry containing the majority of pages

on which this class is treated. As sub-entries to the entry ‘proof techniques’

we have indexed different proof techniques and some representative pages

where the technique is illustrated.

Due to our experience, we think that the book will be a useful teaching
and reference resource for several decades to come.

Preface 1x

Highlights

In this book we cover the majority of the important topics on digraphs rang-

ing from quite elementary to very advanced ones. Below we give a brief outline

of some of the main highlights of this book. Readers who are looking for more

detailed information are advised to consult the list of contents or the subject

index at the end of the book.

Chapter 1 contains most of the terminology and notation used in this

book as well several basic results. These are not only used frequently in other

chapters, but also serve as illustrations of digraph concepts. Furthermore,

several applications of directed graphs are based on these elementary results.

One such application is provided in the last section of the chapter. Basic

concepts on algorithms and complexity can also be found in the chapter.

Due to the comprehensive subject and notation indices, it is by no means

necessary to read the whole chapter before moving on to other chapters.

Chapters 2 and 3 cover distances and flows in networks. Although the
basic concepts of these two topics are elementary, both theoretical and al-

gorithmic aspects of distances in digraphs as well as flows in networks are

of great importance, due to their high applicability to other problems on di-

graphs and large number of practical applications, in particular, as a powerful

modeling tool.

We start with the shortest path problem and a collection of classical algo-

rithms for distances in weighted and unweighted digraphs. The main part of

Chapter 2 is devoted to minimization and maximization of distance parame-

ters in digraphs. We conclude the chapter by the following applications: the

one-way street problem, the gossip problem and exponential neighbourhood

local search, a new approach to find near optimal solutions to combinatorial

optimization problems.

In Chapter 3 we cover basic, as well as some more advanced topics on

flows in networks. These include several algorithms for the maximum flow

problem, feasible flows and circulations, minimum cost flows in networks and

applications of flows. We also illustrate the primal-dual algorithm approach

for linear programming by applying it to the transportation problem. Al-

though there are several comprehensive books on flows, we believe that our

fairly short and yet quite detailed account of the topic will give the major-

ity of readers sufficient knowledge of the area. The reader who masters the

techniques described in this chapter will be well equipped for solving many

problems arising in practice.

Chapter 4 is devoted to describing several important classes of directed

graphs, such as line digraphs, the de Bruin and Kautz digraphs, series-parallel

digraphs, generalizations of tournaments and planar digraphs. We concen-

trate on characterization, recognition and decomposition of these classes.
Many properties of these classes are studied in more detail in the rest of

the book.

x Preface

In Chapter 5 we give a detailed account of results concerning the exis-

tence of hamiltonian paths and cycles in digraphs as well as some extensions

to spanning collections of paths and cycles, in particular, the Gallai-Millgram

theorem and Yeo’s irreducible cycle factor theorem. We give a series of nec-

essary conditions for hamiltonicity which ‘converges’ to hamiltonicity. Many

results of this chapter deal with generalizations of tournaments. The reader

will see that several of these much larger classes of digraphs share various nice

properties with tournaments. In particular the hamiltonian path and cycle

problems are polynomially solvable for most of these classes. The chapter il-

lustrates various methods (such as the multi-insertion technique) for proving

hamiltonicity.

In Chapter 6 we describe a number of interesting topics related to hamil-

tonicity. These include hamiltonian paths with prescribed end-vertices, pan-

cyclicity, orientations of hamiltonian paths and cycles in tournaments and

the problem of finding a strong spanning subdigraph of minimum size in a

strong digraph. We cover one of the main ingredients in a recent proof by

Havet and Thomassé of Rosenfeld’s conjecture on orientations of hamiltonian

paths in tournaments and outline a polynomial algorithm for finding a hamil-

tonian path with prescribed end-vertices in a tournament. We conclude the

chapter with a brief introduction of a new approach to approximation algo-

rithms, domination analysis. We illustrate this approach by applying results

on hamiltonian cycles in digraphs to the travelling salesman problem.

Connectivity in (di)graphs is a very important topic. It contains numerous

deep and beautiful results and has applications to other areas of graph theory

and mathematics in general. It has various applications to other areas of

research as well. We give a comprehensive account of connectivity topics in

Chapters 7, 8 and 9 which deal with global connectivity issues, orientations

of graphs and local connectivities, respectively.

Chapter 7 starts from basic topics such as ear-decompositions and the fun-

damental Menger’s theorem and then moves on to advanced topics such as

connectivity augmentation, properties of minimally k-(arc)-strong digraphs,

highly connected orientations of digraphs and packing directed cuts in di-

graphs. We describe the splitting technique due to Mader and Lovasz and

illustrate its usefulness by giving an algorithm, due to Frank, for finding a

minimum cardinality set of new arcs whose addition to a digraph D increases

its arc-strong connectivity to a prescribed number. We illustrate a recent ap-

plication due to Cheriyan and Thurimella of Mader’s results on minimally

k-(arc)-strong digraphs to the problem of finding a small certificate for k-

(arc)-strong connectivity. Many of the proofs in the chapter illustrate the
important proof technique based on the submodularity of degree functions in
digraphs.

Chapter 8 covers important, aspects of orientations of undirected and

mixed graphs. These include underlying graphs of certain classes of digraphs.

Nowhere zero integer flows, a special case of flows, related to (edge-)colourings

Preface Xi

of undirected graphs is discussed along with Tutte’s 5-flow conjecture, which

is one of the main open problems in graph theory. The famous theorem by

Nash-Williams on orientations preserving a high degree of arc-strong con-

nectivity is described and the weak version dealing with uniform arc-strong

connectivities is proved using splitting techniques. Submodular flows form a

powerful generalization of circulations in networks. We introduce submodu-

lar flows and illustrate how to use this tool to obtain (algorithmic) proofs
of many important results in graph theory (including the Lucchesi- Younger

theorem and the uniform version of Nash- Williams’ orientation theorem). Fi-
nally we describe in detail an application, due to Frank, of submodular flows

to the problem of orienting a mixed graph in order to maintain a prescribed

degree of arc-strong connectivity.

Chapter 9 deals with problems concerning (arc-)disjoint paths and trees

in digraphs. We prove that the 2-path problem is V’P-complete for arbitrary

digraphs, but polynomially solvable for acyclic digraphs. Linkings in planar

digraphs, eulerian digraphs as well as several generalizations of tournaments

are discussed. Edmonds’ theorem on arc-disjoint branchings is proved and

several applications of this important result are described. The problem of

finding a minimum cost out-branching in a weighted digraph generalizes the

minimum spanning tree problem. We describe an extension, due to Frank, of

Fulkerson’s two-phase greedy algorithm for finding such a branching.

Chapter 10 describes results on (generally) non-hamiltonian cycles in di-

graphs. We cover cycle spaces, polynomial algorithms to find paths and cycles

of ‘logarithmic’ length, disjoint cycles and feedback sets, including a scheme of

a solution of Younger’s conjecture by Reed, Robertson, Seymour and Thomas,

applications of cycles in digraphs to Markov chains and the even cycle prob-

lem, including Thomassen’s even cycle theorem. We also cover short cycles in

multipartite tournaments, the girth of a digraph, chords of cycles and Adam’s

conjecture. The chapter features various proof techniques including several

algebraic, algorithmic, combinatorial and probabilistic methods.

Digraphs may be generalized in at least two different ways, by consider-

ing edge-coloured graphs or by considering directed hypergraphs. Alternating

cycles in 2-edge-coloured graphs generalize the concept of cycles in bipartite

digraphs. Certain results on cycles in bipartite digraphs, such as the charac-

terization of hamiltonian bipartite tournaments, are special cases of results

for edge-coloured complete graphs. There are useful implications in the other

direction as well. In particular, using results on hamiltonian cycles in bi-

partite tournaments, we prove a characterization of those 2-edge-coloured

complete graphs which have an alternating hamiltonian cycle. We describe

an application of alternating hamiltonian cycles to a problem in genetics.

Generalizations of the classical theorems by Camion, Landau and Rédei to

hypertournaments are described.

Chapter 12 contains some topics that were not covered in other chapters.

These include: an elementary proof of Seymour’s second neighbourhood con-

xii Preface

jecture in the case of tournaments, various types of orderings of the vertices

of digraphs of paired comparisons, kernels, a recent proof by Galvin of the

Dinitz conjecture on list colourings using kernels in digraphs, and homomor-

phisms (an elegant generalization of colouring and also a useful vehicle for

studying the borderline between P and NP-complete problems). We describe

basic concepts on matroids as well as questions related to the efficiency of ma-

troid algorithms. We give a brief account on simulated annealing, a broadly

applicable meta-heuristic which can be used to obtain near optimal solutions

to optimization problems, in particular, on digraphs. We discuss briefly how

to implement and tune simulated annealing algorithms so that they may

produce good solutions.

Technical remarks

We have tried to rank exercises according to their expected difficulty. Marks

range from (—) to (++) in order of increasing difficulty. The majority of
exercises have no mark, indicating that they are of moderate difficulty. An

exercise marked (—) requires not much more than the understanding of the

main definitions and results. A (+) exercise requires a non-trivial idea, or
involves substantial work. Finally, the few exercises which are ranked (++)
require several deep ideas. Inevitably, this labelling is subjective and some

readers may not agree with this ranking in certain cases. Some exercises have

a header in bold face, which means that they cover an important or useful

result not discussed in the text in detail.

We use the symbol 0 to denote the end of a proof, or to indicate that

either no proof will be given or is left as an exercise.

A few sections of the book require some basic knowledge of linear program-

ming, in particular the duality theorem. A few others require basic knowledge

of probability theory.

We would be grateful to receive comments on the book. They may be sent

to us by email to jbj@imada.sdu.dk. We plan to have a web page containing

information about misprints and other information about the book, see

http://www.imada.sdu.dk/Research/Digraphs/

Acknowledgements

We wish to thank the following colleagues for helpful assistance and sugges-
tions regarding various versions of the manuscript.

Adrian Bondy, Thomas Bohme, Samvel Darbinyan, Reinhard Diestel,
Odile Favaron, Herbert Fleischner, Andras Frank, Vladimir Gurvich, Frédéric

Preface xiii

Havet, Bill Jackson, Hao Li, Martin Loebl, Wolfgang Mader, Crispin Nash-

Williams, Jarik NeSetril, Gert Sabidussi, Paul Seymour, Alexander Schrijver,

Stéphan Thomassé, Carsten Thomassen, Bjarne Toft and Ke-Min Zhang.

We extend special thanks to the following colleagues who read parts of

the book and provided invaluable input to the project:

Noga Alon, Alex Berg, Jens Clausen, Charles Delorme, Yubao Guo, Jing

Huang, Alice Hubenko, Tommy Jensen, Tibor Jordan, Thor Johnson, Ilia

Krasikov, Gary MacGillivray, Steven Noble, Erich Prisner, Eng Guan Tay,

Meike Tewes, Lutz Volkmann and Anders Yeo.

Of course, any misprint or error that remains is entirely our responsibility.

We wish to thank Springer-Verlag, London and in particular David An-

derson, Karen Barker, Beverly Ford, Stephanie Harding, Sally Tickner and

Nicolas Wilson for all their help and encouragement. We also thank the

anonymous reviewers used by Springer when we submitted our proposal.

They provided us with encouragement and useful feedback.

We are grateful to our colleagues and the technical staff at Department

of Mathematics and Computer Science, University of Southern Denmark at

Odense, for their encouragement and help as well as to the department itself

for financial support. In particular, we wish to thank Andrew Swann for all

his help with the formatting of the manuscript. We thank the Danish National

Research Council for financial support through grant no 9701393.

Last, but most importantly, we wish to thank our families, in particular

our wives Lene and Irina, without whose constant support we would never

have succeeded in completing this project.

Odense, Denmark Jergen Bang-Jensen

London, UK Gregory Gutin

August 2000

4 ~
id

4 i‘ 4

f

‘ -

‘ + j att

j , rawehit

3 Ps A (

.
J nt

‘ :
{ Pe) 5 ay

pal i" . = hy

| - d f a i

! iyi . ey cede ge ed "WOLVOT elodre ids, '
oe a: Te . : yu t af whi: iY wT

Bi Bs Sie Niger lei? = (io eae is Oe 4
é es LTT a wor _ - i's ii” 2 "ee & ox colameatvuts a

ne Tia © oth ES oa Bre gled hdd wre Seah yieaay Mat EL RGD
fi rr a we q abe ¥ Ue ty 2 i; i, bd 7A il rwsiwa: ae.

_ Huetirral? alse) «20g nee A ta ree Oe ite
7 ; mith 7 aby Fee? Halal os 4 ibe tt yee ike 4

_ prea We aia Soe Tots tn tet sgastrtgeasieo' ta «
7 eer eee fall iL Neder o Aad iparygittee devi. bem ‘

— oe iS otal ty sa bake
. o — 0 4 (fea oe 4

1

=

v raneoeb 2) lo Go vere to ‘Rudvat
4 . il |

SS . >= n & 2 kyr

ow is -_ ti ' aS ; ey fers é S4 > 4 ay

eo @ fee Ses ate

Urine 7 sa a wei

Contents

1. Basic Terminology, Notation and Results 1

Pere pecs oubsets, viatrices and: Vectors oem Mle ceo oes an 1

1.2 Digraphs, Subdigraphs, Neighbours, Degrees............... 2

1.3 Isomorphism and Basic Operations on Digraphs............ 6

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs.... 10

Romo rone and Unilateral Connectivity: 2....¢7.0¢ (tre ee 16

1.6 Undirected Graphs, Biorientations and Orientations 18

Pie Mixed raps ang HY Deretapns. ooo ae. hes coun tcp wien fe 22

1.8 Classes of Directed and Undirected Graphs 20

POTN Le ASDEC Caan cee ae ie epee ae Gee ica oen he 28

Po ee Orne and @hete Complexity «7.65 0 omc tia: 29

1.9.2 MP-Complete and ’P-Hard Problems 33
1.10 Application: Solving the 2-Satisfiability Problem............ 35

Pearle RCL CISOS ate Marra A ras eh ian der eenie tac iey ere REC EMM Re Naw eat Nae 38

EL IStANCCS er ee ee eee ee re Me ee ee Te 45

2.1 lerminology and-Notation on Distances... 2.21 ..e08 2 46

Cee erucyure Of OHOrtess Falls os eect: oe cree: ee eee 48

2.3 Algorithms for Finding Distances in Digraphs.............. 50

prota Dreidin- hirer search 1 Dio lees soot ts ae tere gc 50
Dee MN CY COC UIVLAD IIS wert eae mee te re 52

Ee ED kot ean CONUT emt te ee ee eee 53

2.3.4 The Bellman-Ford-Moore Algorithm 55

ome Lier Oyas Wardial UAIZOrIthine «ee ete. tee 58

2.4 Inequalities Between Radius, Out-Radius and Diameter 59

2.4.1 Radius and Diameter of a Strong Digraph 59

2.4.2 Extreme Values of Out-Radius and Diameter 60

2.5 Maximum Finite Diameter of Orientations................. 61

2.6 Minimum Diameter of Orientations of Multigraphs 63

2.7 Minimum Diameter Orientations of Complete Multipartite

CPDL bed ohG Recent eee a Seti ape cere Reike dark Serre anenetaen fa Waa 67

2.8 Minimum Diameter Orientations of Extensions of Graphs.... 69

2.9 Minimum Diameter Orientations of Cartesian Products of

Xvi Contents

2.10: Kings in-Disraph@ 25. eeu ewes or > oo 74

2 10.1:-2-Kings in Totrnaments 235 2-2: «me i ar 74

2.10.2 Kings in Semicomplete Multipartite Digraphs........ 75

2.10.3 Kings in Generalizations of Tournaments-... 78

2.11 Application: The One-Way Street and the Gossip Problems .. 78

2.11.1 The One-Way Street Problem and Orientations of Di-

STAPHS wed cg gp Seaatele cuae ater ae ate en a 79

2:11.2: The Gossip Problem = 22. 4 ox32e3 se ee 80

2.12 Application: Exponential Neighbourhood Local Search for the

TSP eens ae eo eed ee ee ee 82

2:12.) Local Search for the {TSP \)..- = - + oeaee een 82

2.12.2 Linear Time Searchable Exponential Neighbourhoods

for the TSP gaaen lf hee eee eee ore ee 84

2.12.3 The Assignment. Neighbourhoeds.75 4. ue shee sels = 85

2.12.4 Diameters of Neighbourhood Structure Digraphs for

Phe TOR ty bea Sate cides cee et tote eee wakes 86

2.13. Exercises G24.) 0M cai tects tee ee eee ee ee 89

Flows"in: Net works errs <ceeie re ie e t e e 95

3.) sDehnitionsrand Basic Properwese arte are ae 95

3.L.d> ‘Flowssand Their Balance Vectors -.34 5. 7c ie 96

3) log “The Residual Networan. = eye ee eee 98
3.2 Reductions Among Different Flow Models 99

32.1) Eliminating, Mower Bounds a. tries ee ae ee 99

3.2.2, Flows withyone,source and one oimk ease eee 100

3:2.0'— Circulations ac facto Oe ae coe oe ee ieee 101
3.2.4 Networks with Bounds and Costs on the Vertices 102

3.3 | Flow: Decompositions 2 srt. cys qa aa ee 104

3.4 Working with the Residual Network 105

3.0 Che Maximum: Klow Problems... cmsett ioe eee & oe 108

g.0-. ‘The Ford-FulkersonsA lgorithmy yee cee ae eee ole 110

3.5.2 Maximum Flows and Linear Programming........... 113

3.6 Polynomial Algorithms for Finding a Maximum (s,t)-Flow .. 114

3.6.1 Flow Augmentations Along Shortest Augmenting Paths114
3.6.2 Blocking Flows in Layered Networks and Dinic’s Al-

gorithm) 2. cihoeiakae «Wer ne an oct ok 116

3.6.3. Thé.Preflow.Piusm Algorithme 22. ose) 6 oe 5 117

3.7° Unit Capacity Networks and Simple Networks.............. 122

3.0.1, Unit Capacity Networks cn ceh ac hieirce ot eee. a 122
3ot.2) Simple NGtwOrks yr. sant ee Sue Ree eck dS ee 124

3-6, /Girculations and Feasible, Plows acres amen eee toe 2 one 125

3.9 Minimum Value Feasible (s,t)-Flows 127
3.10 Minimum: Cost HOWS ya. cette. niin Ciena a hte 128

3.10.1 Characterizing Minimum Cost Flows

3:10;2 Building up an Optimal Solutiomeews: 0.4.6 se eee 134

Contents Xvil

cE UE ANCATIONG Olt 1O We iaiuea ca. SaReN Mas OR il. Beads Mba d vGurs.e.« WEN

3.11.1 Maximum Matchings in Bipartite Graphs 137

3.11.2 The Directed Chinese Postman Problem............. 141

3.11.3 Finding Subdigraphs with Prescribed Degrees........ 142

3.11.4 Path-Cycle Factors in Directed Multigraphs 143

3.11.5 Cycle Subdigraphs Covering Specified Vertices 145

3.12 The Assignment Problem and the Transportation Problem... 147

aan er CIS@ckenman near ED ot. siti Mes |. ten Buc bhtiiwokins bs. Zolbdee vos 158

CG LAGSes ols DIST p lise eis. Ate. hse Sic Rei Sl 1 culP senshi ive dk al

eee DOI= PAL CAD EAT CH Buck, ado oct ds wie bike Rip ys tebe Ad Secliculams che 6 He 2,

4.2 Acyclic Orderings of the Vertices in Acyclic Digraphs ube;

4.3 Transitive Digraphs, Transitive Closures and Reductions 176

PWR OTOUO RD ICT ANG siNG. BE teeter cy SR ERE us.) cies tun uatacte «tae 179

ae AVC BCS Ni ac iss eee epee ge i ee Ee CEE Re ee 182

4.6 The de Bruijn and Kautz Digraphs and their Generalizations 187

img oeties marallelbigtapns tert. or. a.ad oC eet oom el ee 191

4 oo OinsioTransitivesDipTapns nis me tmaekt Acktt eb 18022 eee 195

4.9 The Path-Merging Property and Path-Mergeable Digraphs... 198

4.10 Locally In-Semicomplete and Locally Out-Semicomplete Di-

SEAT IG s cee rec marae ns erate PROT bel ylation. Sie aid oats as 5 200

ANI atocally Semicomplote,Disraphs.cem,) el eager too ae. hs 202

4 el RoundsDipraphs.s0aeagnrse ta amense ston or aia bke'« ty: 203

4.11.2 Non-Strong Locally Semicomplete Digraphs.......... 207

4.11.3 Strong Round Decomposable Locally Semicomplete

Digraphs ye wae ner chy gt sis ca etin as cathpe he oda 209

4.11.4 Classification of Locally Semicomplete Digraphs...... 211

4:12, Totally &;-Decomposable, Digraphs gait san tis wad? aoe ons os. 215

a> ieyeintersectionsDignap hs wacee nue tics yack alae sige de> hie fis; sm « 2G

Ae eee arial ST ADI Newegg siete i<j cpa ckee +s SEO URED werent © valetat. 219
4:15 Application: Gaussian Elimination teen 44... - deka oe 221

AsO LEX CTCISCS banat tates aiid b sas ie tabuienmety Ok alii hs sm Bos 6s 224

Hamiltonicity and Related Problems...................... 227

5.1 Necessary Conditions for Hamiltonicity of Digraphs......... 229

Solel Be Pati CONbrACtiONcn.5 heSaurtise init «celta gcus f+ «hore Spore m3 229

Dal eee) aS PEL ATLONICHGY at ahah a lnt woiattine lls «i eoAbiehe,», 0 230

5.1.3 Pseudo-Hamiltonicity and 1-Quasi-Hamiltonicity 232

5.1.4 Algorithms for Pseudo- and Quasi-Hamiltonicity 233

5.28 Path, Coverime NUmDET ta. pare Ss ete NR seoaliseah >, 74: 234
5.3 Path Factors of Acyclic Digraphs with Applications......... 235

5.4 Hamilton Paths and Cycles in Path-Mergeable Digraphs..... 237

5.5 Hamilton Paths and Cycles in Locally In-Semicomplete Di-

Poe al Ohean Oct ee TE RL MC EN ee Oe en 238

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs . 240

XVI Contents

5.6.1. Sufficient Conditions cxsssree etree ante = te ene 240

5.6.2. elheMultizInsertion Technique. ern: fete. 2 - 246

5.6.34 Proofs of Theorems 5.6altand 0-619. eee ee - = 248

5.7 Longest Paths and Cycles in Semicomplete Multipartite Di-

graphs PyeR rere ah 1 ORey ee Eee re eee 250

54. levBasic Resultac. sae eee ie eee eee Zod

572 The. Good Cycle Pactors Theorem, 12/522 eee ee 253

5iv«os ‘Consequencestol Lemna: 9.7.12, 5.0.06... ene 256

5.7.4 Yeo’s Irreducible Cycle Subdigraph Theorem and its

Applications = 50.5 7ec i 5 cee ne ee 259

5.8 Longest Paths and Cycles in Extended Locally Semicomplete

Digraphs: frc.2 ite ie ees ao al aaa enna ot ween 264

5.9 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 265

5.10 Vertex-Heaviest Paths and Cycles in Quasi-Transitive Digraphs269

5.11 Hamilton Paths and Cycles in Various Classes of Digraphs... 273

Dot 27 Re erCises ean ener yi es cars’ Aeeadacr neater, Mestre ase hag Sees 276

Hamiltonian -Refinements<: 2... ora) 2 aan eee ee 281

6.1 Hamiltonian Paths with a Prescribed End-Vertex........... 282

6.2 Weakly Hamiltonian-Connected Digraphs.................. 284

6.2.1 Results for Extended Tournaments 284

6.2.2 Results for Locally Semicomplete Digraphs 289
6:3 »Hamiltonian-ConnectedsDigraphsyeesase ne tee 292

6.4 Finding a Hamiltonian (z,y)-Path in a Semicomplete Digraph 295

6.57" Pancyelicity ol Digraphs eee ne 2) (ee eee ree ete. a 299

6.5.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs. 299

6.5.2 Pancyclicity in Extended Semicomplete and Quasi-

‘Transitive Digraphisvai.t. (eee eke oe Cee cee 300

6.5.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete

Digraphsm sane Eas ASattes eerste ee eee 303

6.5146. Furthew RancyclicityeResults sees here ie) en. 306

6.5:5° eCycle Extendability in Digraphs scee.m-eee tee. 308

6.60#Arc-Pancyclicityiiaet te ear ee ee eee, 309

6.7 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs . 312

6.7.1 Hamiltonian Cycles Containing Prescribed Arcs 312

6.7.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle .. 315

6.7.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles Lt
6.8 Arc-Disjoint Hamiltonian Paths and Cycles................ 318

6.9" ‘Oriented’ Hamiltonian’ Pathsvand Cycles se. soces.. .. tee cs o21

6.10 Covering All Vertices of a Digraph by Few Cycles........... 326

6.10.1 Cycle Factors with a Fixed Number of Cycles........ 326

6.10.2 The Effect of a(D) on Spanning Configurations of

Paths and’ Cycles: 3\ cares or ne eee ee eee nes 329

6.11 Minimum Strong Spanning Subdigraphs................... 331

6.11.1 A Lower Bound for General Digraphs 331

Contents xix

6.11.2 The MSSS Problem for Extended Semicomplete Di-

CCADIS MS, AAEM e I MTU AMUN, Ree OG he a Bates 332

6.11.3 The MSSS Problem for Quasi-Transitive Digraphs 334

6.11.4 The MSSS Problem for Decomposable Digraphs..... . 335

6.12 Application: Domination Number of TSP Heuristics 33/

G-ld Exercisesyne manne +. heels oe MUIR i. Bae en 339

Global Connectivity soccer pa Rw bee: A: 345

GL) AddinionaliNotation andi Préliminariesimwaud ot: i.8...... 346

7.1.1 The Network Representation of a Directed Multigraph 348

jase Ear Decompositions denty! and nieeig dssecri A. UF Bs soe 349

(ie wenrer sh Lhetreni a. pitied nysaim teen eats Bie HRS ko kas 353

7.4 Application: Determining Arc- and Vertex-Strong Connectivity 355

foam besplitting. of Operations: sac) nosis sess oo Ree LE es 358

7.6 Increasing the Arc-Strong Connectivity Optimally 362

7.7 Increasing the Vertex-Strong Connectivity Optimally........ 367

Rermie One-Way Pairsiveh isthe RM eA. Lee eee... be. 368

(22> Optimal-k-Strong Augmentation 2.408) JAS... 370
Wii2o) Special ‘Classes of Digraplis tis Wid. A ckste es see ot

7.7.4 Splittings Preserving k-Strong Connectivity.......... ats

7.8 A Generalization of Arc-Strong Connectivity 376

7.9 Arc Reversals and Vertex-Strong Connectivity 378

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 381
7.10.1 Minimally k-Arc-Strong Directed Multigraphs........ 382

P0r2 Minimalkei-otrone Digraplis\ fae. to 4. eee ae ok 387

(LE Critically. k-Strong:Digraphs7nneais. fee. 4 PS. ds 391

7.12 Arc-Strong Connectivity and Minimum Degree............. 392

7.13 Connectivity Properties of Special Classes of Digraphs 393

7.14 Highly Connected Orientations of Digraphs 395

Te oe Packine :Ontsre teenies Le ee Pe Ted Ge 400

7.16 Application: Small Certificates for k-(Arc)-Strong Connectivity 404
_ 7.16.1 Finding Small Certificates for Strong Connectivity 405

7.16.2 Finding k-Strong Certificates fork >1.............. 406

7.16.3 Certificates for k-Arc-Strong Connectivity 408

Gel rrEEXeLCISES Rese Me ae FE RE Le POA Sens 409

Orientations of;Graphsicg .¢ Sees. Jee) A es 415

8.1 Underlying Graphs of Various Classes of Digraphs 415

8.1.1 Underlying Graphs of Transitive and Quasi-Transitive

Digrapliss care hieriattint 1 UTM GOS cls Gye cee ky 416

8.1.2 Underlying Graphs of Locally Semicomplete Digraphs. 419

8.1.3. Local Tournament Orientations of Proper Circular Arc

Graphs yen capeta annals PRpmitech RA Serr ste. 421

8.1.4 Underlying Graphs of Locally In-Semicomplete Digraphs424

8.2 Fast Recognition of Locally Semicomplete Digraphs......... 429

XX Contents

8.3. Orientations With no Even Cycles.........--.-.++e-eeeee- 432

8.4 Colourings and Orientations of Graphs+++.+-- 435

8.5 Orientations and Nowhere Zero Integer Flows-- 437

8.6 Orientations Achieving High Arc-Strong Connectivity 443

8.7 Orientations Respecting Degree Constraints..............-- 446

8.7.1 Orientations with Prescribed Degree Sequences....... 446

8.7.2. Restrictionson Subsets of) Vertices...... 224 -- 1.) eo = 450

8.8 &.Submodular-Flows A+. 65.48 «<< acto > ee ee, eee 451

8.8.1. Submodular! Flowmiodelswe ngs ene, rere 452

8.8.2 Existence of Feasible Submodular Flows............. 453

8.8.3. Minimum Cost Submodular Flows.0...-....+... 457

8.8.4 Applications of Submodular Flows........./......... 458

8:9 *oOrientations-ofMixedsGraphs 2 juetoaeee-s = 2 saree aa « 462

8,10 ‘Exercises sa% 4.0 24). ee SOE ee Oe. 467

Disjoint) Paths and) Treese). 4.03). ture. wieeeieee eek = 5.5 - A475

0:1 Additional Definitions... ..--)oReEne) aa eee ee 476
9.2: (Disjoint. PathsProbleniss.nia:*. nish: Lapeer} Sse ee on 477

9.2.1 The Complexity of the k-Path Problem 478

9.2.2 Sufficient Conditions for a Digraph to be k-Linked.... 482

9.2.3. The k-Path Problem for Acyclic Digraphs 484

9.3. Linkings in Tournaments and Generalizations of Tournaments 487

9.3.1 Sufficient Conditions in Terms of (Local-)Connectivity 488
9.3.2 The 2-Path Problem for Semicomplete Digraphs...... 492

9.3.3 The 2-Path Problem for Generalizations of Tournaments493

9.49 Linkings:insPlanar Digraphsaaaaey tie nee eee 497

9.5. Arc-Disjointy Branchitigs).i9a-e sedate a eee ae aetes 500

9.5.1 Implications of Edmonds’ Branching Theorem 503

9.6° Edge-DisjointyMixed| Branchinge anoint 506

9.74 _Arc-Disjoint:Path, Problems. <.....>0,-ossa bene bae eee 507

9.7.1 Arc-Disjoint Paths in Acyclic Directed Multigraphs ... 510

9.7.2 Arc-Disjoint Paths in Eulerian Directed Multigraphs .. 511

9.7.3 Arc-Disjoint Paths in Tournaments and Generaliza-

tions-of;Lournaments< t-.ct uohly iene Be et Hie cae 2 517

9.85 Integer. Multicommodity, Flows e3..0.0) enckeeeeee. a 520

9,9) Arc-Digjoint In-.and: Out-Branchings.. ({ienteeees. crete. 2. 522

9.10 “Minimum Cost, Branchings ay 4c. be Sebel eto-eiee: 527

, 9.10.1 Matroid Intersection Formulation................... 527

9.10.2 An Algorithm for a Generalization of the Min Cost

Branching Problems... ih esaeeOMen ss ode 528

9.10.3 The Minimum Covering Arborescence Problem....... 535
9.11 Increasing Rooted Arc-Strong Connectivity by Adding New

ALCS Yt y cts cpus Pe yaaa wk tee soit ants, REE Pee oe oe 536

10.

af.

Contents XXi

Se MOLEROETVICEMTOELOM ISTH DIS. nc a dks nek: AGE ek dose aes 545

BO mV OCLOMODACES OL LNOTANNS + weak clon M@hais duly Ldsoss 546

10.2 Polynomial Algorithms for Paths and Cycles............... 549

TU asUisjoiniy Gycles ‘and Peedbackioetst aus 05. s6%0dsl bdo. sass 553

10.3.1 Complexity of the Disjoint Cycle and Feedback Set

BOOGIE Kein: hein ah ob Meee a4 aca MELEE oe beble. 553

10.3.2 Disjoint Cycles in Digraphs with Minimum Out-Degree

Be ASE Rah cat SW SRS a etek ae te A EM CIMA 554

10.3.3 Feedback Sets and Linear Orderings in Digraphs 557

10.4 Disjoint Cycles Versus Feedback Sets...............0000 eee 561

10.4.1 Relations Between Parameters v; and 7; 561

10.4.2 Solution of Younger’s Conjecture2.0c....05. 563

10.5 Application: The Period of Markov Chains................. 565

1.6 Ayelestol Lent nik MGduUIO p Meeks tee. ae atk k SR ean « 567

10.6.1 Complexity of the Existence of Cycles of Length k

Module: Problemise@s vier see wes eres s Aaa tee wee 568

10.6.2 Sufficient Conditions for the Existence of Cycles of

PenstonoMogmot ce, 2k os 56 cree et «cea Se 570

10.7 ‘Short’ Cycles in Semicomplete Multipartite Digraphs....... 573

10.8 Cycles Versus Paths in Semicomplete Multipartite Digraphs . 577

12 ASir tlie eer ee ee ee, oA Se 580

Heo rv dditionaltlopicson Cycles woe oe} ees eee 583

Os hordsroitey cles: sarees ek ee es See ee es 583

101022Adam’'s Conjectures tL ae ee Tbe og 584
DE SEE ereI seagate cr te re ee er ls he eis Sie I Seg nN 586

Generalizations of Digraphs, <i.% see see oats Ar Ak es any 591

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 592

LL. 1 1eProperly Coloured: Kuler:Trails 2 28. wees aero 594

11,1-2-Properly: Coloured Cyclesson ae 00 0n4 oie oor nt. 597
11.1.3 Connectivity of Edge-Coloured Multigraphs.......... 601
11.1.4 Alternating Cycles in 2-Edge-Coloured Bipartite Multi-

PE AVISM Ee te eee ire cc eee ee ees aati etn eee 604

11.1.5 Longest Alternating Paths and Cycles in 2-Edge-Coloured
Completegvilltigrapusus ess eee ecne ae oe comma ee 607

11.1.6 Properly Coloured Hamiltonian Paths in c-Edge-Coloured

CompletenGrapnss Co Saas yore se ou elec aas os sive so al oe 613

11.1.7 Properly Coloured Hamiltonian Cycles in c-Edge-Coloured

(Wormplete Grapus, C13 eos 1 We aches os tae eg ces Sh a, « 615

11 OFArc-Coloured: Directed Multigraphs.....tu. 0... -s0< + ssw ee 620

11.2.1 Complexity of the Alternating Directed Cycle Problem 621

dee el nes Min ctious.g4 i)) “AN CEG(1) aa she cyanate hehe ree 624
11.2.3 Weakly Eulerian Arc-Coloured Directed Multigraphs.. 626

seo mtt yet OUT a ATCDLS, oes cies anisia = ayiav eles donnie Wepage «A sad. 9S danny 627

11.3.1 Out-Degree Sequences of Hypertournaments 628

Xxii Contents

11.3:24Hamilton\ Paths 2% J. eee ree See ee 629

11.3.3. Hamilton! Cycles hea Ok SSR Aer het 630

11.4 Application: Alternating Hamilton Cycles in Genetics 632

114:1¢Proof of Theoremileed eek” Se eee eee ake - 634

UbAiorProofeof PiéorenttiA Dip 2a ee ee LE se 635

11.5 fi xercisés 2k Mini Ses Leek rae <0 reer a ot alee 636

12. 2A dditionalvlopicsits,.02 ose 5n.00 222 ore eee eee oe ee 639

12.1 Seymour’s Second Neighbourhood Conjecture 639

12.2 Ordering the Vertices of a Digraph of Paired Comparisons ... 642

12.2.1 Paired. Comparison.Dipraphs ee -o hee. 2.8 a 642

12.2.2 The Kano-Sakamoto Methods of Ordering 645

12.2:3 Orderings,forssemicomplete, PODs 2.422222 28. See 645

12:2:4.The Mutual Orderings (22848 ee hehe ee 646

12.2.5 Complexity and Algorithms for Forward and Back-

wardi Orderiniee es > vacant oo ey ae 647

12.3 (k,1)-Kernels..... PT ee TE Ee eee 650
1223) WE Cre] Ss Hie ete, sac ee ein es een Bo ae 650

12.3.2 sOuasi- Kernels 6c alia ae Bee ree 653

12.4 List Edge-Colourings of Complete Bipartite Graphs......... 654

12.5 Homomorphisms — A Generalization of Colourings.......... 658

12.6 Other Measures of Independence in Digraphs 664

12.7 aMatroids 4282 2. 0 air te. eee nica a Serene amar 665

12.7.1 so hewDualiof- aeMatroid.camae ase ac ieee ata a 667

12.7.2 The Greedy Algorithm for Matroids 668

i2s/selndependencey Oracles, waa oa.a paces eee eee te 669

12.7.4, Umon of) Matroids .< decease) Seoaeeeiiantie eee |. 670

12:7.04 Two Matroid Intersection) satsnacane See 4. BE 671

12.7.6 Intersections of Three or More Matroids............. 672

12.8 Finding Good Solutions to WP-Hard Problems............. 673

12,9 ;Exercisesgordr thrid atlen Sed oa tine Seren ee 5 677

References? .. AaMiinsoiunt: kee aie ac Shen eat eae ae 683

Symbol Wngex stots cc teirtn, tani. nae rer are nae ee ene v1e

AULHOr INGGX ccs Sather ects ome > one oe are ere TE Te ee 23

Subject Index

1. Basic Terminology, Notation and Results

In this chapter we will provide most of the terminology and notation used

in this book. Various examples, figures and results should help the reader to

better understand the notions introduced in the chapter. The results covered

in this chapter constitute a collection of simple yet important facts on di-

graphs. Most of our terminology and notation are standard. Therefore, some

readers may proceed to other chapters after a quick look through this chapter

(unfamiliar terminology and notation can be clarified later by consulting the

indexes supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and ma-

trices. Digraphs, directed pseudographs, subdigraphs, weighted directed pseu-

dographs, neighbourhoods, semi-degrees and other basic concepts of directed

graph theory are introduced in Section 1.2. ISomorphism and basic operations

on digraphs are considered in Section 1.3. In Section 1.4, we introduce walks,

trails, paths and cycles, and study some properties of tournaments and acyclic

digraphs. Basic notions and results on strong and unilateral connectivity are

considered in Section 1.5. Undirected graphs are formally introduced in Sec-

tion 1.6; in this section we also characterize eulerian directed multigraphs,

digraphs with out-branchings (in-branchings) and graphs having strong ori-

entations. Hypergraphs and mixed graphs are defined in Section 1.7. Several

important classes of directed and undirected graphs are introduced in Sec-

tion 1.8. Some basic notions on algorithms are given in Section 1.9. The last

section is devoted to a solution of the 2-satisfiability problem using some

properties of digraphs.

1.1 Sets, Subsets, Matrices and Vectors

For the sets of real numbers, rational numbers and integers we will use Rk, Q

and Z, respectively. Also, let Z;} ={zE€Z: z>O}and Z={zEZ: z>

0}. The sets R+, Ro, Q+ and Qo are defined similarly.
The main aim of this section is to establish some notation and terminology

on finite sets used in this book. We assume that the reader is familiar with

the following basic operations for a pair A, B of sets: the intersection ANB,

the union AU B (if AN B = 9, then we will sometimes use A + B instead
of AU B), and the difference A\B (often denoted by A — B). Sets A and

2 1. Basic Terminology, Notation and Results

B are disjoint if AN B = 0. We will often not distinguish between a single

element set (singleton) {x} and the element z itself. For example, we may
write AUb instead of AU{b}. The Cartesian product of sets X;, X2,..., Xp
ISX XeA ex oe Oe (i, Ae apd) Re oo ane Saige oy

For sets A,B, A C B means that A is a subset of B; A C B stands for

AC Band A#B. A non-empty set B is a proper subset of a set A if

BCA. A collection $;,S2,...,5; of (not necessarily non-empty) subsets of

a set S is a subpartition of S if $;N S; = @ for alll1<iAg<t A
subpartition $1, 5S2,...,5; is a partition of S if Ul_,5; = S. We will often
use the name family for a collection of sets. A family F = {X1, Xo,..., Xn}

of sets is covered by a set S if SMX; 4 @ for every i = 1,2,...,n. We

say that S is a cover of ¥. For a finite set X, the number of elements in

X (i.e. its cardinality) is denoted by |X|. We also say that X is an |X|-
element set (or just an |X|-set). A set S satisfying a property P is a
maximum (maximal) set with property P if there is no set S’ satisfying P
and |S’| > |.S| (S C S‘). Similarly, one can define minimum (minimal) sets
satisfying a property P. .

In this book, we will also use multisets which, unlike sets, are allowed

to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will

use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m X n matrix S = [s,;;] the transposed matrix (of S) is the
n X m. matrix. S? = [t,| such that bg eS lO, CVE) — ol ee and

j =1,2,...,n. Unless otherwise specified, the vectors that we use are column-

vectors. The operation of transposition is used to obtain row-vectors.

1.2 Digraphs, Subdigraphs, Neighbours, Degrees

A directed graph (or just digraph) D consists of a non-empty finite set

V(D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V(D) the vertex set and A(D) the
arc set of D. We will often write D = (V,A) which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will be sometimes denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;

V(D) = {u,v,w,2,y,z}, AWD) = {(u,v), (u,w), (w,u), (z,u), (2, 2), (y, 2)}.
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

For an arc (u,v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u,v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices are adjacent,

1.2 Digraphs, Subdigraphs, Neighbours, Degrees 3

Figure 1.1 A digraph D

ie. u is adjacent to! v and v is adjacent to u. If (u,v) is an arc, we also say

that u dominates v (or v is dominated by u) and denote it by uv. We

say that a vertex u is incident to an arc a if u is the head or tail of a. We
will often denote an arc (2, y) by zy.

For a pair X,Y of vertex sets of a digraph D, we define

(X,Y)p ={zy € A(D): tEX, ye Y},

i.e. (X,Y)p is the set of arcs with tail in X and head in Y. For example, for

the digraph H in Figure 1.2, ({u,v}, {w,z})a# = {uw}, ({w, z}, {u,v})y =
{wv}, and ({u, v}, {u, v}) 4 = {uv, vu}.

H H'

Figure 1.2 A digraph H and a directed pseudograph H’.

For disjoint subsets X and Y of V(D), XY means that every vertex of
X dominates every vertex of Y, X=>Y stands for (Y,X)p = 0, and XHY
means that both XY and X=>Y hold. For example, in the digraph D of

Figure 1.1, u>{v, w}, {z,y, z}=>{u, v, w} and {z,y}Hz.
The above definition of a digraph implies that we allow a digraph to have

arcs with the same end-vertices (for example, wv and vu in the digraph H

in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or

' Some authors use the convention that x is adjacent to y to mean that there is
an arc from z to y, rather than just that there is an arc xy or yx in D, as we
will do in this book.

4 1. Basic Terminology, Notation and Results

loops (i.e. arcs whose head and tail coincide). When parallel arcs and loops

are admissible we speak of directed pseudographs; directed pseudographs

without loops are directed multigraphs. In Figure 1.2 the directed pseu-

dograph H' is obtained from H by appending a loop zz and two parallel arcs

from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y)p (for

every pair X,Y of vertex sets of D) are multisets. (parallel arcs provide re-

peated elements). We use the symbol wp(z, y) to denote the number of arcs

from a vertex x to a vertex y in a directed pseudograph D. In particular,

p(x, y) = 0 means that there is no arc from z to y.

We will sometimes give terminology and notation for digraphs only, but we

will provide necessary remarks on their extension to directed pseudographs,

unless this is trivial.

Below, unless otherwise specified, D = (V, A) is a directed pseudograph.

For a vertex v in D, we use the following notation:

N§(v) = {ue V—v: vue A}, No(v) ={weV—v: we Aj}.

The sets Nj(v), Np(v) and Np(v) = Nf(v) U Np5(v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We

call the vertices in N#(v), Np5(v) and Np(v) the out-neighbours, in-
neighbours and neighbours of v. In Figure 1.2, Njj(u) = {v,w}, Ny (u) =

{v}, Nua(u) = {v, w}, Nip (w) a: {v, 2}, Ny (w) = {u, z}, Nyy (z) = {w}. For
a set W CV, we let

NEW) = LU Néw)-W, NEW) = LU Now) - Ww.
wew wew

That is, N5(W) consists of those vertices from V — W which are out-
neighbours of at least one vertex from W. In Figure 1.2, NA ({w, z}) = {v}
and Nj ({w, z}) = {u}.

For a set W CV, the out-degree of W (denoted by d5(W)) is the num-
ber of arcs in D whose tails are in W and heads are in V — W, ice. di (W) =
|(W, V -W)p|. The in-degree of W, d5(W) = |(V-W, W)p|. In particular,
for a vertex v, the out-degree is the number of arcs, except for loops, with tail
v. If D is a digraph (that is, it has no loops or multiple arcs), then the out-
degree of a vertex equals the number of out-neighbours of this vertex . We call
out-degree and in-degree of a set its semi-degrees. The degree of W is the
sum of its semi-degrees, i.e. the number dp(W) = d5(W) + dp(W). For ex-
ample; in Figure 1.2, dj;(u) = 2,d;,(u) = 1,dxz(u) = 3, hay iE diy (w) =
4, dpi z= den (2) = 1, di ({u,v, w}) = dzz({u, v,w}) = 1. Sometimes, it is
useful to count loops in the semi-degrees: the out-pseudodegree of a vertex
v of a directed pseudograph D is the number of all arcs with tail v. Simi-
larly, one can define the in-pseudodegree of a vertex. In Figure 1.2, both
in-pseudodegree and out-pseudodegree of z in H’ are equal to 2.

The minimum out-degree (minimum in-degree) of D is

6*(D) = min{d$(z): s€V(D)} (6-(D) = min{d,(xr): 2 € V(D)}).

1.2 Digraphs, Subdigraphs, Neighbours, Degrees 5

The minimum semi-degree of D is

OVC Ds min{d*(D),6~ (D)}.

Similarly, one can define the maximum out-degree of D, A+(D), and the

maximum in-degree, A~(D). The maximum semi-degree of D is

A Oieemaxt 2 (DA ())

We say that D is regular if 5°(D) = A°(D). In this case, D is also called
6°(D)-regular.

For degrees, semi-degrees as well as for other parameters and sets of di-

graphs, we will usually omit the subscript for the digraph when it is clear

which digraph is meant.

Since the number of arcs in a directed multigraph equals the number of

their tails (or their heads) we obtain the following very basic result.

Proposition 1.2.1 For every directed multigraph D,

Pend ep at oh = ALD),
z€V(D) zeV(D)

O

Clearly, this proposition is valid for directed pseudographs if in-degrees

and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.

A digraph H is a subdigraph of a digraph D if V(H) C V(D), A(A) C
A(D) and every arc in A(#) has both end-vertices in V(H). If V(H) = V(D),
we say that H is aspanning subdigraph (or a factor) of D . The digraph L

with vertex set {u,v,w, z} and arc set {uv, uw, wz} is a spanning subdigraph

of H in Figure 1.2. If every arc of A(D) with both end-vertices in V(#) is in
A(H), we say that H is induced by X = V(H) (we write H = D(X)) and
call H an induced subdigraph of D. If L is a non-induced subdigraph of D,

then there is an arc ry such that x,y € V(L) and zy € A(D)—A(L). Such an
arc zy is called a chord of L (in D). The digraph G with vertex set {u,v, w}

and arc set {uw, wu, vu} is a subdigraph of the digraph H in Figure 1.2; G is

neither a spanning subdigraph nor an induced subdigraph of H. The digraph

G along with the arc uv (which is a chord of G) is an induced subdigraph of

H. For asubset A’ C A(D) the subdigraph arc-induced by A’ is the digraph

D(A’) = (V', A’), where V’ is the set of vertices in V which are incident with
at least one arc from A’. For example, in Figure 1.2, H({zw, uw}) has vertex

set {u,w,z} and arc set {zw, uw}. If H is a subdigraph of D, then we say
that D is a superdigraph of H.

It is trivial to extend the above definitions of subdigraphs to directed

pseudographs. To avoid lengthy terminology, we call the ‘parts’ of directed

pseudographs just subdigraphs (instead of, say, directed subpseudographs).

6 1. Basic Terminology, Notation and Results

For vertex-disjoint subdigraphs H, L of a digraph D, we will often

use the shorthand notation (H,L)p, HL, H>L and HL instead of

(V(H),V(L))p, V(H)3V(L), V(A)>V(L) and V(A)HV (LZ).
A weighted directed pseudograph is a directed pseudograph D along

with a mapping c: A(D)—R. Thus, a weighted directed pseudograph is

a triple D = (V(D), A(D),c). We will also consider vertex-weighted di-
rected pseudographs, i.e. directed pseudographs D along with a mapping

c: V(D)->R. (See Figure 1.3.) If a is an element (i.e. a vertex or an arc)

of a weighted directed pseudograph D = (V(D), A(D),c), then c(a) is called
the weight or the cost of a . An (unweighted) directed pseudograph can

be viewed as a (vertex-)weighted directed pseudograph whose elements are

all of weight one. For a set B of arcs of a weighted directed pseudograph

D = (V,A,c), we define the weight of B as follows: c(B) = }),<, c(a). Sim-
ilarly, one can define the weight of a set of vertices in a vertex-weighted di-

rected pseudograph. The weight of a subdigraph H of a weighted (vertex-

weighted) directed pseudograph D is the sum of the weights of the arcs in

H (vertices in H). For example, in the weighted directed pseudograph D in

Figure 1.3 the set of arcs {ry, yz, zz} has weight 9.5 (here we have assumed

that we used the arc zz of weight 1). In the directed pseudograph H in Figure

1.3 the subdigraph U = ({u, 2, z}, {vz, zu}) has weight 5.

2 y(2.5)

y

5 Shs

1

zr Zz

0.3 a(2) 2(0) u(3)

D fag

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Isomorphism and Basic Operations on Digraphs

Suppose D = (V, A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V, A’) where xy € A’
if and only if wp(z,y) > 1. Let zy be an arc of D. By reversing the
arc zy, we mean that we replace the arc zy by the arc yz. That is, in

1.3 Isomorphism and Basic Operations on Digraphs if

the resulting directed multigraph D’ we have wp (x,y) = wp(xz,y) — 1 and

up (y,) = up(y, 2) +1.
A pair of (unweighted) directed pseudographs D and H are isomorphic

(denoted by D = H) if there exists a bijection ¢ : V(D)>V(H) such that
Up(z,y) = wx((x), O(y)) for every ordered pair x,y of vertices in D. The

mapping ¢ is an isomorphism. Quite often, we will not distinguish between

isomorphic digraphs or directed pseudographs. For example, we may say that

there is only one digraph on a single vertex and there are exactly three

digraphs with two vertices. Also, there is only one digraph of order 2 and size

2, but there are two directed multigraphs and six directed pseudographs of

order and size 2 (Exercise 1.4). For a set of directed pseudographs W, we say

that a directed pseudograph D belongs to W or is a member of W (denoted

D €W) if D is isomorphic to a directed pseudograph in W. Since we usually

do not distinguish between isomorphic directed pseudographs, we will often

write D = H instead of D = H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak

of labeled digraphs. In this case, a pair of digraphs D and H is indistin-

guishable if and only if they completely coincide (ie. V(D) = V(H) and

A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1,2}. Indeed, the labeled digraphs ({1, 2}, {(1, 2)}) and ({1, 2}, {(2,1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H

which one obtains from D by reversing all arcs. It is easy to verify, using

only the definitions of isomorphism and converse, that a pair of directed

multigraphs are isomorphic if and only if their converses are isomorphic

(Exercise 1.9). To obtain subdigraphs, we use the following operations of

deletion. For a directed multigraph D and a set B C A(D), the directed

multigraph D — B is the spanning subdigraph of D with arc set A(D) — B.
If X C V(D), the directed multigraph D — X is the subdigraph induced by

V(D) —X, i.e. D-— X = D(V(D) — X).For a subdigraph H of D, we define
D-H = D-V(RH). Since we do not distinguish between a single element set
{x} and the element z itself, we will often write D — x rather than D — {z}.
If H is anon-induced subdigraph of D, we can construct another subdigraph

H' of D by adding a chord a of H; H'= H +a.
Let G be a subdigraph of a directed multigraph D. The contraction of

G in Dis a directed multigraph D/G with V(D/G) = {g}U(V(D) —V(G)),
where g is a ‘new’ vertex not in D, and up/g(2,¥) = uD(z,y),

upja(t,9)= >> mn(2,v), uojelgy)= > Hv(r,y)
veV(G) veV(G)

for all distinct vertices z,y € V(D) — V(G). (Note that there is no loop in
D/G.) Let G,,G2,...,G be vertex-disjoint subdigraphs of D. Then

D/{G1, Gay... Gr} = (..- ((D/G1)/G2) -.)/Gi.

8 1. Basic Terminology, Notation and Results

Clearly, the resulting directed multigraph D/{G1,G2,...,G¢} does not de-

pend on the order of G,,G2,...,G,;. Contraction can be defined for sets of

vertices, rather than subdigraphs. It suffices to view a set of vertices X as a

subdigraph with vertex set X and no arcs. Figure 1.4 depicts a digraph H

and the contraction H/L, where L is the subdigraph of H induced by the

vertices y and z.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the

following operation called composition. Let D be a digraph with vertex

set {v1,U2,.--,Un}, and let G1,G2,...,Gn be digraphs which are pairwise

vertex-disjoint. The composition D[G),G2,...,Gn] is the digraph LD with
vertex set V(G,) UV(G2) U... UV(G,,) and arc set (U7_, A(Gi)) U {gi9; :

9: € V(Gi),9; € V(G;), viv; € A(D)}. Figure 1.5 shows the composition
T[G,,G1,Gy], where G, consists of a pair of vertices and an arc between

them, G has a single vertex, G, consists of a pair of vertices and the pair of

mutually opposite arcs between them, and the digraph T is from Figure 1.4.

H T = H/L, L= H({y, z})

Figure 1.4 Contraction.

Ge

Gy

Figure 1.5 T[Gz, Gz, Gv]

Let @ be a set of digraphs. A digraph D is -decomposable if D is a
member of @ or D = H[S},..., Sp] for some H € @ with h = |V(H)| > 2

1.3 Isomorphism and Basic Operations on Digraphs 9

and some choice of digraphs 5), 52,...,S, (we call this decomposition a ®-

decomposition). A digraph D is called totally 6-decomposable if either

D € @ or there is a $-decomposition D = H[S),...,S,] such that h > 2, and

each S; is totally $-decomposable. In this case, if D ¢ 6, a 6-decomposition

of D, -decompositions S; = H;[Si1,..., Sin;] of all S; which are not in $, @-

decompositions of those of 5;; which are not in , and so on, form a sequence

of decompositions which will be called a total -decomposition of D. If

D € @, we assume that the (unique) total 6-decomposition of D consists of
itself.

To illustrate the last paragraph of definitions, consider ¥ = hs ee D3},

where K 1 is the digraph with a single vertex, K 2 is the (complete) digraph
with two vertices and two arcs, and D2 has two vertices {1,2} and the arc
(1, 2). Construct the digraph D by deleting from the digraph in Figure 1.5 the

pair of arcs going from G; to G,. The digraph D is totally Y-decomposable.

Indeed, D = D2[D2,Q] is a W-decomposition of D, where Q is the sub-

digraph of D induced by V(G¢) U V(G,). Moreover, Q = Dolione! is
a W-decomposition of Q. The above two decompositions form a total ©-

decomposition of D.

If D = H[Si,...,5,| and none of the digraphs S,,...,S, has an arc,

then D is an extension of H. Distinct vertices x,y are similar if x,y have

the same in- and out-neighbours in D — {z,y}. For every 1 = 1,2,...,h, the

vertices of S; are similar in D. For any set @ of digraphs, $°' denotes the

(infinite) set of all extensions of digraphs in ®, which are called extended
@-digraphs. We say that # is extension-closed if = 6°".

The Cartesian product of a family of digraphs D;, D2,..., D,, denoted

by Di x Dz x... x Dy or []j_, Di, where n > 2, is the digraph D having

Vil VDP OV (DD) ebovi(DA)
STW eee, en Gav (L)), ee ee Oy

and a vertex (uj, U2,...,Un) dominates a vertex (v1, U2,...,Un) of D if and

only if there exists an r € {1,2,...,n} such that u,v, € A(D,) and u; = vu;
for all i € {1,2,...,n} — {r}. (See Figure 1.6.)

The operation of splitting a vertex v of a directed multigraph D con-

sists of replacing v by two (new) vertices u,w so that uw is an arc, all arcs

of the form xv by arcs xu and all arcs of the form vy by wy. The sub-

division of an arc uv of D consists of replacing uv by two arcs uw, wu,

where w is a new vertex. If H can be obtained from D by subdividing

one or more arcs (here we allow subdividing arcs that are already subdi-

vided), then H is a subdivision of D. For a positive integer p and a digraph

D, the pth power D? of D is defined as follows: V(D?) = VD), zy
in D? if ¢ # y and there are k < p—1 vertices z1,22...,2, such that

E21 29->... >z,—y in D. According to this definition D! = D. For ex-

ample, for the*digraph H,,='({1,2,..?,n};{@,¢+ Dl) ¢=1,2,2°,n —1}),

10 1. Basic Terminology, Notation and Results

é : | (2,2)

1 3

(1, a) (3, a)

D H /Bysedal

Figure 1.6 The Cartesian product of two digraphs.

we have H2 = ({1,2,...,n},{(i,j): 1<i<j <it2<nj}u{(n—1,n)}).
See Figure 1.7 for the second power of a digraph.

UW &
D Dp

Figure 1.7 A digraph D and its second power Re

Let H and L be a pair of directed pseudographs. The union H UL of H

and L is the directed pseudograph D such that V(D) = V(H) UV(L) and
Up(2,y) = ba (x,y) + uL(z,y) for every pair z,y of vertices in V(D). Here
we assume that the function jy is naturally extended, i.e. uy (zr, y) = 0 if at

least one of x,y is not in V(H) (and similarly for wr). Figure 1.8 illustrates
this definition.

1.4 Walks, Trails, Paths, Cycles and Path-Cycle

Subdigraphs

In the following, D is always a directed pseudograph, unless otherwise speci-

fied. A walk in D is an alternating sequence W = 214; 220273... ©p—1 p12

of vertices x; and arcs a; from D such that the tail of a; is x; and the head

of a; is 2i41 for every 1 = 1,2,...,k —1. A walk W is closed if z; = zy,

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs iil

b b b
e c

a
a (6

C Cc f os if

d d g
g

H L HUL

Figure 1.8 The union D = H UL of the directed pseudographs H and L.

and open otherwise. The set of vertices {71,22,..., 24} is denoted by V(W);

the set of arcs {a1,@2,...,@%-1} is denoted by A(W). We say that W is a

walk from 2; to zz or an (%1, Z%)-walk. If W is open, then we say that the

vertex 2, is the initial vertex of W, the vertex x, is the terminal vertex

of W, and x; and z, are end-vertices of W. The length of a walk is the

number of its arcs. Hence the walk W above has length k—1. A walk is even

(odd) if its length is even (odd). When the arcs of W are defined from the
context or simply unimportant, we will denote W by 2,22... 2x.

A trail is a walk in which all arcs are distinct. Sometimes, we identify

a trail W with the directed pseudograph (V(W), A(W)), which is a subdi-
graph of D. If the vertices of W are distinct, W is a path. If the vertices

U4, 09,---, 2-1 are distinct, k > 3 and 7» = ax,, W is a cycle. Since paths

and cycles are special cases of walks, the length of a path and a cycle is

already defined. The same remark is valid for other parameters and notions,

e.g. an (x, y)-path. A path P is an [z, y]-path if P is a path between x and

y, e.g. P is either an (z,y)-path or a (y,z)-path. A longest path (cycle) in

D is a path (cycle) of maximal length in D.
When W is a cycle and z is a vertex of W, we say that W is a cycle

through z. In a directed pseudograph D, a loop is also considered a cycle

(of length one). A k-cycle is a cycle of length k. The minimum integer k for

which D has a k-cycle is the girth of D; denoted by g(D). If D does not have
a cycle, we define g(D) = oo. If g(D) is finite then we call a cycle of length

g(D) a shortest cycle in D.
For subsets X,Y of V(D), an (z,y)-path P is an (X,Y)-path if x € X,

y €Y and V(P)N(X UY) = {z, y}. Note that, if X NY # @ then a vertex
x € X MY forms an (X,Y)-path by itself. Sometimes we will talk about an
(H, H')-path when H and H’ are subdigraphs of D. By this we mean an

(V (4), V(H'))-path in D.
An (21,2,)-path P = 21 %2..., is minimal if, for every (41, 2,)-path

Q, either V(P) = V(Q) or Q has a vertex not in V(P). For a cycle C =

£122 ...2p2X1, the subscripts are considered modulo p, i.e. x; = x; for every s

12 1. Basic Terminology, Notation and Results

and i such that i = s mod p. As pointed out above (for trails), we will often

view paths and cycles as subdigraphs. We can also consider paths and cycles

as digraphs themselves. Let P,, (Ca denote a path (a cycle) with n vertices,

ie. Pal= (f1: duu RYN (1, 2), 230k — 1))) and Cp oP raid):
A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cy-

cle) if V(W) = V(D). A digraph D is hamiltonian if D contains a Hamilton

cycle; D is traceable if D possesses a Hamilton path. A trail W = 2122...2%

is an Euler (or eulerian) trail if A(W) = A(D), V(W) = V(D) and 2; = 2x;

a directed multigraph D is eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.9.

x2 L6

£5 ; CA “27

Figure 1.9 A directed graph H.

The walk 21 %2%6%3%4%62724X57, iS a hamiltonian walk in D. The path

£501 X2T3X426X7 iS hamiltonian path in D. The path 2, 29%3242%6 is an

(v1, %¢)-path and r22324%673 is an (%2,23)-trail. The cycle 2, 29732747571

is a 5-cycle in D. The girth of D is 3 and the longest cycle in D has length 6.

Let W = 2122...0%, Q = yiyo-.- ye be a pair of walks in a digraph D.

The walks W and Q are disjoint if V(W)MV(Q) = 0 and arc-disjoint if
A(W) mM A(Q) = @. If W and Q are open walks, they are called internally

disjoint if {x2, LZ 5.3 : Spay f NV(Q) =) and V(W) N {yo, UB oions »Ye-1} = 0.

We will use the following notation for a path or a cycle W = 2122...2%

(recall that x, = x, if W is a cycle):

Wits, aa) = UiLj41.-..L;-

It. is easy to see that W[2;, xj] is a path for x; 4 2; we call it the subpath
of W from a; to a;. If 1 <i < k then the predecessor of x; on W is the

vertex 2;_; and is also denoted by 2; . If 1 <i < k, then the successor of 2;

on W is the vertex 2,41 and is also denoted by x}. Similarly, one can define

af* = (a})+ and a7~ = (a;)~, when these exist (which they always do if
W is a cycle).

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 13

Also, for a set X CV(W), we set Xt = {zt+: rE X},X-={2-: we
X}, Xt+ = (X7T)*, etc. We will normally use such notation when a vertex
x under consideration belongs to a unique walk W, otherwise W is given as
a subscript, for example, Bins

Proposition 1.4.1 Let D be a digraph and let x,y be a pair of distinct
vertices in D. If D has an (x,y)-walk W, then D contains an (x, y)-path P

such that A(P) C A(W). If D has a closed (x,x)-walk W, then D contains
a cycle C through x such that A(C) C A(W).

Proof: Consider a walk P from z to y of minimum length among all (z, y)-
walks whose arcs belong to A(W). We show that P is a path. Let P =

%1 22 ...%,, where = x; and y = zx. If a; = z; for some 1 <i <j <k,

then the walk P{z,,2;|P[xzj+41, 7%] is shorter than P; a contradiction. Thus,

all vertices of P are distinct, so P is a path with A(P) C A(W).

Let W = 2122...z% be a walk from x = z; to itself (x = z,). Since D

has no loop, ze-1 4 zx. Let yi y2...yz be a shortest walk from y,; = z; to

Yt = Zp-1- We have proved above that y;y2... yz is a path. Thus, y1yo... y4y1

is a cycle through y; = z. oO

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-

studied family of digraphs, in particular, due to the following important prop-

erties.

Proposition 1.4.2 Every acyclic digraph has a vertex of in-degree zero as

well as a vertex of out-degree zero.

Proof: Let D be a digraph in which all vertices have positive out-degrees.

We show that D has a cycle. Choose a vertex v; in D. Since d*(v,) > 0, there
is a vertex v2 such that v; v2. As d*(v2) > 0, vg dominates some vertex v3.

Proceeding in this manner, we obtain walks of the form v,v2...vg. As V(D)

is finite, there exists the least k > 2 such that v, = v; for some 1 <i < k.

Clearly, vjuj41 ...Uz is a cycle.

Thus an acyclic digraph D has a vertex of out-degree zero. Since the

converse H of D is also acyclic, H has a vertex v of out-degree zero. Clearly,

the vertex v has in-degree zero in D. O

Proposition 1.4.2 allows one to check whether a digraph D is acyclic: if D

has a vertex of out-degree zero, then delete this vertex from D and consider

the resulting digraph; otherwise, D contains a cycle.

Let D be a digraph and let 21,22,...,%p be an ordering of its vertices.

We call this ordering an acyclic ordering if, for every arc z;z; in D, we

have 2 < j. Clearly, an acyclic ordering of D induces an acyclic ordering of

every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph

with a cycle has an acyclic ordering. On the other hand, the following holds:

Proposition 1.4.3 Every acyclic digraph has an acyclic ordering of its ver-

tices.

14 1. Basic Terminology, Notation and Results

Proof: We give a constructive proof by describing a procedure that generates

an acyclic ordering of the vertices*in an acyclic digraph D. At the first step,

we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition

1.4.2.) Set x; = v and delete z; from D. At the ith step, we find a vertex u

of in-degree zero in the remaining acyclic digraph, set z; = u and delete z;

from the remaining acyclic digraph. The procedure has |V(D)| steps.
Suppose that 2; 2; in D, but i > j. As x; was chosen before 2;, it

means that x; was not of in-degree zero at the jth step of the procedure; a

contradiction. O

The notion of complexity of algorithms is discussed in Section 1.9. In

Exercise 1.69, the reader is asked to show that the algorithm above can be

performed in time O(|V(D)| + |A(D)}|).

Proposition 1.4.4 Let D be an acyclic digraph with precisely one vertex x

(y) of in-degree (out-degree) zero in D. For every vertex v € V(D) there is
an (z,v)-path and a (v,y)-path in D.

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)-
path (an (z,v)-path). Oo

An oriented graph is a digraph with no cycle of length two. A tourna-

ment is an oriented graph where every pair of distinct vertices are adjacent.

In other words, a digraph T with vertex set {v1,v2,...,Un} is a tournament if

exactly one of the arcs vjvj and v;v; is in T for every i # j € {1,2,...,n}. In
Figure 1.10, one can see a pair of tournaments. It is an easy exercise to verify
that each of them contains a Hamilton path. Actually, this is no coincidence
by the following theorem of Rédei [625]. (In fact, Rédei proved a stronger
result: every tournament contains an odd number of Hamilton paths.)

Figure 1.10 Tournaments.

Theorem 1.4.5 Every tournament is traceable.

Proof: Let T be a tournament with vertex set {v1,U2,...,Un}. Suppose that
the vertices of T are labeled in such a way that the number of backward arcs,
i.e. arcs of the form v;v;, j > i, is minimum. Then, v1 v2 .. -Un is a Hamilton
path in T. Indeed, if this is not the case, there exists a subscript i < n such

1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 15

that viviga ¢ A(T). Thus, v;410; € A(T). However, in this case we can switch

the vertices v; and v;+ in the labelling and decrease the number of backward

arcs; a contradiction. oO

A q-path-cycle subdigraph F of a digraph D is a collection of gq paths

fi;--y.6g oud t Cycles C;,...,Cz such that. all of Py,...,P,,Ci,...,C; are

pairwise disjoint (possibly, g = 0 or t = 0). We will denote F by F = P,U...U

P,UC,U...UC; (the paths always being listed first). Quite often, we will

consider q-path-cycle factors, i.e. spanning g-path-cycle subdigraphs. If

t = 0, F is a q-path subdigraph and it is a q-path factor (or just a path-

factor) if it is spanning. If g = 0 we say that F is a t-cycle subdigraph

(or just a cycle subdigraph) and it is a t-cycle factor (or just a cycle

factor) if it is spanning. In Figure 1.11, abc U defd is a 1-path-cycle factor,

and abcea U dfd is a cycle factor (or, more precisely, a 2-cycle factor).

a d

H

Figure 1.11 A digraph H.

The path covering number pc(D) of D is the minimum positive integer

k such that D contains a k-path factor. In particular, pc(D) = 1 if and only if

D is traceable. The path-cycle covering number pcc(D) of D is the min-

imum positive integer k such that D contains a k-path-cycle factor. Clearly,

pec(D) < pc(D). The proof of the following simple yet helpful assertion on
the path covering number is left as an easy exercise to the reader (Exercise

1.34).

Proposition 1.4.6 Let D be a digraph, and let k be a positive integer. Then

the following statements are equivalent:

() pep.
(ii) There are k —1 (new) arcs e1,...,€n—-1 such that D + {e1,...,ex-1} is

traceable, but there is no set of k —2 arcs with this property.

(iit) k — 1 is the minimum integer s such that addition of s new vertices to

D together with all possible arcs between V(D) and these new vertices

results in a traceable digraph.
oO

16 1. Basic Terminology, Notation and Results

1.5 Strong and Unilateral Connectivity

In a digraph D a vertex y is reachable from a vertex z if D has an (x, y)-

walk. In particular, a vertex is reachable from itself. By Proposition 1.4.1,

y is reachable from « if and only if D contains an (x,y)-path. A digraph D

is strongly connected (or, just, strong) if, for every pair x,y of distinct

vertices in D, there exists an (z,y)-walk and a (y,z)-walk. In other words,

D is strong if every vertex of D is reachable from every other vertex of D.

We define a digraph with one vertex to be strongly connected. It is easy to

see that D is strong if and only if it has a closed Hamilton walk (Exercise

1.47). As C,, is strong, every hamiltonian digraph is strong. The following

basic result on tournaments is due to Moon [570].

Theorem 1.5.1 (Moon’s theorem) [570] Let T be a strong tournament on
n > 3 vertices. For every x € V(T) and every integer k € {3,4,...,n}, there

exists a k-cycle through x in T.-In particular, a tournament is hamiltonian

if and only if it is strong.

Proof: Let x be a vertex in a strong tournament 7’ on n > 3 vertices.

The theorem is shown by induction on k. We first prove that T has a 3-

cycle through z. Since T is strong, both O = N*(x) and I = N~(z) are

non-empty. Moreover, (O,/) is non-empty; let yz € (O,J). Then, ryzz is a

3-cycle through x. Let C = 2021 ...2; be a cycle in T with zg = xp = 2 and

t € {3,4,...,2—1}. We prove that T has a (t + 1)-cycle through z.
If there is a vertex y € V(T) — V(C) which dominates a vertex in C

and is dominated by a vertex in C, then it is easy to see that there exists

an index i such that x;y and y2j41. Therefore, C[zo, zi]yC[ri41, 24] is a

(t + 1)-cycle through z. Thus, we may assume that every vertex outside of

C either dominates every vertex in C or is dominated by every vertex in C.

The vertices from V(T’) — V(C) that dominate all vertices from V(C) form a
set R; the rest of the vertices in V(T) —V(C) form a set S. Since T is strong,
both S and R are non-empty and the set (S,R) is non-empty. Hence taking

sr € (5, R) we see that zosrC|x2, xo] is a (t+ 1)-cycle throughxz =z. O

Corollary 1.5.2 (Camion’s theorem) /140] Every strong tournament is
hamiltonian. : oO

A digraph D is complete if, for every pair x,y of distinct vertices of D,

both zy and yz are in D. For a strong digraph D = (V,A), a set S C V

is a separator (or a separating set) if D — S is not strong. A digraph
D is k-strongly connected (or k-strong) if |V| > k +1 and D has no
separator with less than k vertices. It follows from the definition of strong
connectivity that a complete digraph with n vertices is (n — 1)-strong, but

is not n-strong. The largest integer k such that D is k-strongly connected

is the vertex-strong connectivity of D (denoted by «(D)). If D is not

1.5 Strong and Unilateral Connectivity U6

strong, we set K(D) = 0. For a pair s,t of distinct vertices of a digraph D,
a set S C V(D) — {s,t} is an (s,t)-separator if the digraph D — S has
no (s,t)-paths. For a strong digraph D = (V,A), a set of arcs W C Aisa

cut (or a cut set) if D — A is not strong. A digraph D is k-arc-strong
(or k-are-strongly connected) if D has no cut with less than k arcs. The

largest integer k such that D is k-arc-strongly connected is the arc-strong

connectivity of D (denoted by \(D)). If D is not strong, we set A(D) = 0.

A strong component of a digraph D is a maximal induced subdigraph

of D which is strong. If D;,...,D, are the strong components of D, then

clearly V(D,) U... UV(Di) = V(D) (recall that a digraph with only one

vertex is strong). Moreover, we must have V(D;) 1V(D;) = 0 for every i 4 j
as otherwise all the vertices V(D;) UV(D;) are reachable from each other,
implying that the vertices of V(D;) UV(D;) belong to the same strong com-
ponent of D. We call V(D,) U... UV(D;) the strong decomposition of
D. The strong component digraph SC(D) of D is obtained by contract-

ing strong components of D and deleting any parallel arcs obtained in this

process. In other words, if D;,...,D; are the strong components of D, then

V(sC(D)) ={u7, v2,...,v;} and A(SC(D)) = {ujv; + (V (D;), V(D;)) pb F
0}. The subdigraph of D induced by the vertices of a cycle in D is strong,

i.e. is contained in a strong component of D. Thus, SC(D) is acyclic. By
Proposition 1.4.3, the vertices of SC(D) have an acyclic ordering. This im-

plies that the strong components of D can be labeled Dj,...,Dz such that

there is no arc from D; to D; unless j < 7. We call such an ordering an

acyclic ordering of the strong components of D. The strong components of

D corresponding to the vertices of SC(D) of in-degree (out-degree) zero are
the initial (terminal) strong components of D. The remaining strong

components of D are called intermediate strong components of D.

Figure 1.12 shows a digraph D and its strong component digraph SC(D).
Note that s1, $2, $3, $4, $5 is an acyclic ordering of V(SC(D)).

It is easy to see that the strong component digraph of a tournament T' is

an acyclic tournament. Thus, there is a unique acyclic ordering of the strong

components of T, namely, T;,...,7; such that T;-T; for every i < 7. Clearly,

every tournament has only one initial (terminal) strong component.
A digraph D is unilateral if, for every pair x, y of vertices of D, either x

is reachable from y or y is reachable from z (or both). Clearly, every strong

digraph is unilateral. A path P,, is unilateral; hence, being unilateral is a

necessary condition for traceability of digraphs. The following is a character-

ization of unilateral digraphs.

Proposition 1.5.3 A digraph D is unilateral if and only if there is a

unique acyclic ordering D,,D2,...,Dz of the strong components of D and

(V (Dj), V (Di+1)) # O for every 1 = 1,2,...,¢—1.

Proof: The sufficiency is trivial. To see the necessity, observe that if

(V (D;), V(Di41)) = 9, then no vertex of V(Dj+1) is reachable from any ver-
tex of V(D;) and vice versa. Finally, observe that, if (V(Di),V(Di+1)) 4 9

18 1. Basic Terminology, Notation and Results

$1

83

pa -

82

D SC(D)

Figure 1.12 A digraph D and its strong component digraph SC(D). The vertices

$1, $2, $3, $4, 85 are obtained by contracting the sets {a, b}, {c, d, e}, {f, 9, h, i}, {9, k}

and {1,m,n} which correspond to the strong components of D. The digraph D has

two initial components, D;,D2 with V(D1) = {a,b} and V(D2) = {c,d,e}. It has

one terminal component Ds with vertices V(Ds) = {l,m,n} and two intermediate
components D3, D4 with vertices V(D3) = {f,g9,h,i} and V(Da) = {j, k}.

for every i=1,2,...,t—1, then D,, Do,..., D; is the unique acyclic ordering

of the strong components of D, because SC(D) has a hamiltonian path (see

Exercise 1.18). 0

1.6 Undirected Graphs, Biorientations and Orientations

An undirected graph (or a graph) G = (V,£) consists of a non-empty

finite set V = V(G) of elements called vertices and a finite set E = E(G) of
unordered pairs of distinct vertices called edges. We call V(G) the vertex
set and E(G) the edge set of G. In other words, an edge {x,y} is a 2-
element subset of V(G). We will often denote {x, y} just by ry. If zy € E(G),

we say that the vertices x and y are adjacent. Notice that, in the above

definition of a graph, we do not allow loops (i.e. pairs consisting of the same

vertex) or parallel edges (i.e. multiple pairs with the same end-vertices). The
complement G of a graph G is the graph with vertex set V(G) in which

two vertices are adjacent if and only if they are not adjacent in G.

When parallel edges and loops are admissible we speak of pseudographs;

pseudographs with no loops are multigraphs. For a pair u,v of vertices in

a pseudograph G, wc(u,v) denotes the number of edges between u and v.

In particular, wg(u,u) is the number of loops at u. For a pseudograph G, a

directed pseudograph D is called a biorientation of G if D is obtained from

G by replacing each edge {x,y} of G by either ry or yz or the pair xy and

yx (except for a loop xx which is replaced by a (directed) loop at x). Note
that different copies of the edge zy in G may be replaced by different arcs

in D. Thus if wg(z,y) = 3 then we may replace one edge {x,y} by the arc

1.6 Undirected Graphs, Biorientations and Orientations 19

zy, another by the arc yx and the third by the pair of arcs zy and yx. An

orientation of a graph G is a biorientation of G which is an oriented graph

(i.e. digraph having no 2-cycle and no loops). Clearly, every digraph is a bior-

ientation and every oriented graph an orientation of some undirected graph.

The underlying graph UG(D) of a digraph D is the unique graph G such

that D is a biorientation of G. For a graph G, the complete biorientation
o

of G (denoted by G) is a biorientation D of G such that ry € A(D) implies
yx € A(D). A digraph D = (V, A) is symmetric if ry € A implies yx € A.

Clearly, D is symmetric if and only if D is the complete biorientation of some

graph. An oriented path (cycle) is an orientation of a path (cycle).
Vee

A pseudograph G is connected if its complete biorientation G is strongly
o

connected. Similarly, G is k-connected if G is k-strong. Strong components

in G are connected components, or just components in G. A bridge ina

connected pseudograph G is an edge whose deletion from G makes G discon-

nected. A pseudograph G is k-edge-connected if the graph obtained from

G after deletion of at most k—1 edges is connected. Clearly, a pseudograph is

bridgeless if and only if it is 2-edge-connected. The neighbourhood Ng(z)

of a vertex z in G is the set of vertices adjacent to x. The degree d(z) of a
vertex xz is the number of edges except loops having x as an end-vertex. The

minimum (maximum) degree of G is

6(G) = min{d(z): 2 € V(G)} (A(G) = max{d(xz): + € V(G)}).

We say that G is regular (or 6(G)-regular) if 6(G) = A(G). A pair of

graphs G and GH is isomorphic if CG and H are isomorphic.

A digraph is connected if its underlying graph is connected. The notions

of walks, trails, paths and cycles in undirected pseudographs are analogous

to those for directed pseudographs (we merely disregard orientations). An

zy-path in an undirected pseudograph is a path whose end-vertices are x

and y. When we consider a digraph and its underlying graph UG(D), we

will often call walks of D directed (to distinguish between them and those

in UG(D)). In particular, we will speak of directed paths, cycles and trails.
An undirected graph is a forest if it has no cycle. A connected forest is a

tree. It is easy to see (Exercise 1.41) that every connected undirected graph
has a spanning tree, i.e. a spanning subgraph, which is a tree. A digraph

D is an oriented forest (tree) if D is an orientation of a forest (tree). A
subgraph T of a (connected) digraph D is a spanning oriented tree of D

if UG(T) is a spanning tree in UG(D). A subdigraph T of a digraph D is an
in-branching (out-branching) if T is a spanning oriented tree of D and T’

has only one vertex s of out-degree (in-degree) zero. The vertex s is the root

of T. (See Figure 1.13.) We will often use the notation F;* (F>-) to denote
an out-branching (in-branching) rooted at s in the digraph in question.

Since each spanning oriented tree R of a connected digraph is acyclic as

an undirected graph, R has at least one vertex of out-degree zero and at

20 1. Basic Terminology, Notation and Results

D lal L

Figure 1.13 The digraph D has an out-branching with root r (shown in bold);

H contains an in-branching with root s (shown in bold); L possesses neither an

out-branching nor an in-branching.

least one vertex of in-degree zero (see Proposition 1.4.2). Hence, the out-

branchings and in-branchings capture the important cases of uniqueness of

the corresponding vertices. The following is a characterization of digraphs

with in-branchings (out-branchings).

Proposition 1.6.1 A connected digraph D contains an out-branching (in-

branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-

ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components, D, and

Dy. Let T be an arbitrary spanning oriented tree in D. Then each of T'(D;)
and T'(D2) contains a vertex of in-degree zero. These vertices are of in-degree

zero in T as well because of the definition of initial strong components. Thus,

T is not an out-branching and D has no out-branchings. Therefore, if D has

an out-branching, D contains only one initial strong component.

Now we suppose that D contains only one initial strong component Dj,

and r is an arbitrary vertex of D,. We prove that D has an out-branching

with root r. In SC(D), the vertex x corresponding to D, is the only vertex
of in-degree zero and, hence, by Proposition 1.4.4, every vertex of SC(D) is

reachable from x. Thus, every vertex of D is reachable from r. We construct

an oriented tree T' as follows. In the first step T consists of r. In Step 7 > 2,

for every vertex y appended to T in the previous step, we add to T' a vertex

z, such that yz and z ¢ V(T), together with the arc yz. We stop when no

vertex can be included in T. Since every vertex of D is reachable from r, T

is spanning. Clearly, r is the only vertex of in-degree zero in T. Hence, T is

an out-branching. oO

The oriented tree TJ’ constructed in the proof of Proposition 1.6.1 is a

so-called BFS tree of D (see Chapter 2).
The following well-known theorem is due to Robbins.

Theorem 1.6.2 (Robbins’ theorem) /637] A connected graph G has a
strongly connected orientation if and only if G has no bridge.

1.6 Undirected Graphs, Biorientations and Orientations 74k

Proof: Clearly, if G has a bridge, G has no strong orientation. So assume

that G is bridgeless. Then every edge uv is contained in some cycle (see

Exercise 1.38). Choose a cycle C in G. Orient C as a directed cycle T;.

Suppose that 7), 7>,..., 7% are chosen and oriented in such a way that every

Ti41 (1 < i < k) is either a cycle having only one vertex in common with

eT OTe (aT, ora path with only initial and terminal vertices in

common with T*. If UG(T*) = G, then we are done as a simple induction

shows that T* is strong. Otherwise, there is an edge zy which is not in

UG(T*) such that x is in UG(T*). Let C be a cycle containing zy. Orient
C to obtain a (directed) cycle Z. Let z be a vertex in UG(T*) which is first
encountered while traversing Z (after leaving x). Then, set 7,41 = Z[z, z].

The path (or cycle) 7,41 satisfies the above-mentioned properties. Since L(G)
is finite, after a certain number of iterations € < m—1 we have UG(T") =G.

Oo

We formulate and prove the following well-known characterization of eu-

lerian directed multigraphs (clearly, the deletion of loops in a directed pseu-

dograph D does not change the property of D of being eulerian or otherwise).

The ‘undirected’ version of this theorem marks the beginning of graph theory

[225] (see the book [240] by Fleischner for a reprint of Euler’s original paper
and a translation into English, and see the book [119] by Biggs, Lloyd and

Wilson or Wilson’s paper [737] for a discussion of the historical record).

Theorem 1.6.3 (Euler’s theorem”) A directed multigraph D is eulerian

if and only if D is connected and dt (x) = d~ (x) for every vertex x in D.

Proof: Clearly, both conditions are necessary. We give a constructive proof

of sufficiency by building an Euler trail T. Let T be initially empty. Choose

an arbitrary vertex x in D. Since D is connected, there is a vertex y € N*(z).

Append z to T as well as an arc from z to y. Since d~(y) = dt (y), there is
an arc yz with tail y. Add both y and yz to T. We proceed similarly: after

an arc uv is included in JT, we append v to T together with an arc a ¢ T

whose tail is v. Due to the condition dt(w) = d~(w) for every vertex w,
the above process can terminate only if the last arc appended to T is an arc

whose head is the vertex x and the arcs of D with tail z are already in T. If

all arcs of D are in T, we are done. Assume it is not so. Since D is connected,

this means that T contains a vertex p which is a tail of an arc pq not in T.

‘Shift’ cyclically the vertices and arcs of T such that T starts and terminates
at p. Add the arc pq to T and apply the process described above. This can

terminate only when the last appended arc’s tail is p and all arcs leaving p

are already in T. Again, either we are done (all arcs are already in T) or we
can find a new vertex to restart the above process. Since V(D) is finite, after
several steps all arcs of D will be included in T. O

? Buler’s original paper [226] only dealt with undirected graphs, but it is easy to
see that the directed case generalizes the undirected case (see also Exercise 1.44).

22 1. Basic Terminology, Notation and Results

The algorithm described in this proof can be implemented to run in

O(\V(D)| + |A(D)|) time (see Exercise 1.72). A generalization of the last

theorem is given in Theorem 11.1.2. For eulerian directed multigraphs, the

following stronger condition on out-degrees and in-degrees holds.

Corollary 1.6.4 Let D be an eulerian directed multigraph and let @4Wec

V(D). Then, d*(W) =d-(W).

Proof: Observe that

S_ dt(w) =|(W,W)|+d*(W), S$) dw) =|(W,W)| +d (W). (1.1)
wEew weEew

By Theorem 1.6.3, > ,,cw 4* (w) = wew @ (w). The corollary follows from
this equality and (1.1). 0

A matching M in a directed (an undirected) pseudograph G is a set of

arcs (edges) with no common end-vertices. We also require that no element

of M is a loop. If M is a matching then we say that the edges (arcs) of

M are independent. A matching M in G is maximum if M contains the

maximum possible number of edges. A maximum matching is perfect if it

has n/2 edges, where n is the order of G. A set Q of vertices in a directed
or undirected pseudograph H is independent if the graph H(Q) has no
edges (arcs). The independence number, a(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)

colouring of a directed or undirected graph H is a partition of V(H) into

(disjoint) independent sets. The minimum number, x(#), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.3, the operation of composition of digraphs was introduced.

Considering complete biorientations of undirected graphs, one can easily de-

fine the operation of composition of undirected graphs. Let H be a graph

with vertex set {v1,v2,...,Un}, and let G1,G2,...,G, be graphs which are

pairwise vertex-disjoint. The composition H[G),G2,...,Gn] is the graph L

with vertex set V(G1) UV(G2) U... UV(G,) and edge set

Ui, E(G;) U {9:93 2 OE VG eeu: Ee VG) Uses E E(H)}.

If none of the graphs Gj,...,Gy in this definition of H[Gi,...,G,] have

edges, then H[G,...,G,] is an extension of H.

1.7 Mixed Graphs and Hypergraphs

Mixed graphs are useful by themselves as a common generalization of undi-
rected and directed graphs. Moreover, mixed graphs are helpful in several
proofs on biorientations of graphs.

1.7 Mixed Graphs and Hypergraphs 23

A mixed graph M = (V,A,£) contains both arcs (ordered pairs of

vertices in A) and edges (unordered pairs of vertices in £). We do not allow

loops or parallel arcs and edges, but M may have an edge and an arc with the

same end-vertices. For simplicity, both edges and arcs of a mixed graph are

called edges. Thus, an arc is viewed as an oriented edge (and an unoriented

edge as an edge in the usual sense). A biorientation of a mixed graph

M = (V,A,£) is obtained from M by replacing every unoriented edge ry

of EF by the arc zy, the arc yx or the pair zy, yx of arcs. If no unoriented

edge is replaced by a pair of arcs, we speak of an orientation of a mixed

graph®. The complete biorientation of a mixed graph M = (V, A, E) isa

biorientation M of M such that every unoriented edge zy € E is replaced

in M by the pair ry, yx of arcs. Using the complete biorientation of a mixed

graph M, one can easily give the definitions of a walk, trail, path, and cycle

in M. The only extra condition is that every pair of arcs in M obtained in

replacement of an edge in M has to be treated as two appearances of one

thing. For example, if one of the arcs in such a pair appears in a trail T, then

the second one cannot be in T. A mixed graph M is strong if M is strong.

Similarly, one can give the definition of strong components. A mixed graph

M is connected if M is connected. An edge @ in a connected mixed graph

M is a bridge if M — 2@ is not connected.

Figure 1.14 illustrates the notion of a mixed graph. The mixed graph

M depicted in Figure 1.14 is strong; u,(u,v),v, {v,u},u is a cycle in M;

M —< has two strong components: one consists of the vertex y, the other is

M' = M ({u,v, w}); the edge {v, w} is a bridge in M’, the arc (u,v) and the
edge {u,v} are not bridges in M’; M is bridgeless.

Y

Figure 1.14 A mixed graph.

Theorem 1.7.1 below is due to Boesch and Tindell [120]. This result is
an extension of Theorem 1.6.2. We give a short proof obtained by Volkmann

3 Note that a mixed graph M = (V,A, E) may have a directed 2-cycle in which
case no orientation of M is an oriented graph (because some 2-cycles remain).

24 1. Basic Terminology, Notation and Results

[730]. (Another proof which leads to a linear time algorithm is obtained by

Chung, Garey and Tarjan [157].)

Theorem 1.7.1 Let e be an unoriented edge in a strong mized graph M.

The edge e can be replaced by an arc (with the same end-vertices) such that

the resulting mixed graph M' is strong if and only if e 1s not a bridge.

Proof: If e is a bridge, then clearly there is no orientation of e that results

in a strong mixed graph. Assume that e is not a bridge. Let M’ = M — e.

If M' is strong, then any orientation of e leads to a strong mixed graph;

thus, assume that M’ is not strong. Since e is not a bridge, M’ is connected.

Let £1, L2,...,L, be strong components of M’'. Since M is strong, there

is only one initial strong component, say L,, and only one terminal strong

component, say L;. Let u (v) be the end-vertex of e belonging to L; (Lx).
By strong connectivity of L,, L2,...,L, and Proposition 1.4.4 (applied to

oO

the strong component digraph of M'), M' + (v,u) is strong. o

An orientation of a digraph D is a subdigraph of D obtained from D

by deleting exactly one arc between x and y for every pair x £ y of vertices

such that both zy and yz are in D. See Figure 1.15 for an illustration of this
definition.

a
D H jag H"

Figure 1.15 A digraph D and subdigraphs H, H' and H” of D. The digraph H is
an orientation of D but neither of H’, H” is an orientation of D.

Since we may transform a digraph to a mixed graph by replacing every
2-cycle.with an undirected edge, we obtain the following reformulation of
Theorem 1.7.1.

Corollary 1.7.2 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge. Oo

A hypergraph is an ordered set H = (V,€) such that V is a set (of
vertices of H) and € is a family of subsets of V (called edges of H)

1.8 Classes of Directed and Undirected Graphs 25

The rank of H is the cardinality of the largest edge of H. For example,
Ho = ({1, 2,3, 4}, {{1, 2,3}, {2, 3}, {1, 2,4}} is a hypergraph. The rank of Ho
is three. The number of vertices in H is its order. We say that H is 2-

colourable if there is a function f : V—{0,1} such that, for every edge

E é€ €, there exist a pair of vertices t,y € E such that f(x) # f(y). The
function f is called a 2-colouring of H. It is easy to verify that Hp is 2-

colourable. In particular, f(1) = f(2) =0, f(3) = f(4) = 1 is a 2-colouring
of Ho. A hypergraph is uniform if all its edges have the same cardinality.

Thus an undirected graph is a 2-uniform hypergraph.

1.8 Classes of Directed and Undirected Graphs

In this section, we define certain families of directed and undirected multi-

graphs which will be used in various chapters of this book.

A multigraph G is complete if every pair of distinct vertices in G are

adjacent. We will denote the complete graph on n vertices (which is unique

up to isomorphism) by Ky. Its complement K, has no edge.

A multigraph H is p-partite if there exists a partition V;,V2,...,Vp of.

V (ZH) into p partite sets (ie, V(H) =WU...UV,, Vin V; = @ for every
i # j) such that every edge of H has its end-vertices in different partite

sets. The special case of a p-partite graph when p = 2 is called a bipartite

graph. We often denote a bipartite graph B by B = (Vi, V2; E). A p-partite

multigraph H is complete p-partite if, for every pair x € Vi, y € V; (i #3),
an edge zy is in H. A complete graph on n vertices is clearly a complete

n-partite graph for which every partite set is a singleton. We denote the

complete p-partite graph with partite sets of cardinalities n1,n2,...,np by

Kn,,n2,....np- Complete p-partite graphs for p > 2 are also called complete

multipartite graphs.

To obtain short proofs of various results on subdigraphs of a directed

multigraph D = (V, A) the following transformation to the class of bipartite
(undirected) multigraphs is extremely useful. Let BG(D) = (V',V"; E) de-
note the bipartite multigraph with partite sets V’ = {v': v EV}, V" =
{v’ : v € V} such that wgq(p)(u'w") = up(uw) for every pair u, w of ver-

tices in D. We call BG(D) the bipartite representation of D; see Figure

6:
A p-partite digraph is a biorientation of a p-partite graph; see Figure

1.17 (b). Bipartite (i.e. 2-partite) digraphs are of special interest. It is well-
known (and was proved already by Konig [497]) that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension

of this statement to cycles in digraphs is not valid (the non-bipartite digraph

with vertex set {x,y,z} and arc set {ry, xz, yz} is such an example that can

easily be generalized). However, the obvious extension does hold for strong

bipartite digraphs. Theorem 1.8.1 can be traced back to the book [404] by

Harary, Norman and Cartwright.

26 1. Basic Terminology, Notation and Results

1 ee

1
4 9! ol)

Bh 2u!

5

4! Ag

5! 5!

D BG(D)

Figure 1.16 A directed multigraph and its bipartite representation.

Theorem 1.8.1 A strongly connected digraph is bipartite if and only if tt

has no cycle of odd length.

Proof: If D is bipartite, then it is easy to see that D cannot have an odd

cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary

vertex x in D. We claim that for every vertex y € V(D) — = and every choice
of an (z,y)-path P and a (y,a)-path Q, the length of P and Q are equal

modulo 2.

Suppose this is not the case for some choice of y, P and Q. Then choose y,

P and Q such that the parity of the lengths of P and Q differ and |V(P)| +
|V(Q)| is minimum among all such pairs of (2, y)- and (y,x)-paths whose
lengths differ in parity. If V(P) NV(Q) = {z,y}, then PQ is an odd cycle,
contradicting the assumption. Hence there is a vertex z ¢ {x,y} in V(P)N
V(Q). Let z be chosen as the first such vertex that we meet when we traverse
Q from y towards x. Then Plz, y]QlyS ,z| is a cycle and it is even by our

assumption. But now it is easy to see that the parity of the paths P[z, z]
and Q[z,z] are different and we get a contradiction to the choice of y,P
and @. This proves the claim and, in particular, it follows that for every

y € V(D) — a, the lengths of all paths from x to y have the same parity.
Now let

U={y: the length of every (x, y)-path is even},

U'={y: the length of every (z, y)-path is odd}.

This is a bipartition of V(D) and neither U nor U’ contains two vertices
which are joined by an arc, since that would imply that some vertex had

paths of two different parities from z. oO

An extension of this theorem to digraphs whose cycles are all of length 0
modulo k > 2 is given in Theorem 10.5.1.

1.8 Classes of Directed and Undirected Graphs 27

Recail that tournaments are orientations of complete graphs. A semicom-

plete digraph is a biorientation of a complete graph (see Figure 1.17(a)).

The complete biorientation of a complete graph is a complete digraph

(denoted by En). The notion of semicomplete digraphs and their special

subclass, tournaments, can be extended in various ways. A biorientation of a

complete p-partite (multipartite) graph is a semicomplete p-partite (mul-

tipartite) digraph; see Figure 1.17(c). A multipartite tournament is
an orientation of a complete multipartite graph. A semicomplete 2-partite

digraph is also called a semicomplete bipartite digraph. A bipartite

tournament is a semicomplete bipartite digraph with no 2-cycles.

ae
(a) K4 and a semicomplete digraph of order four.

Ww W
(b) A 3-partite graph G and a biorientation of G.

Ee ~~
(c) The complete 3-partite graph K2,1,2 and

a semicomplete 3-partite digraph D.

Figure 1.17 Classes of graphs and digraphs.

28 1. Basic Terminology, Notation and Results

One can use the operation of extension introduced in Section 1.3 to de-

fine ‘extensions’ of the above classes of digraphs. We will speak of extended

semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex-

tended semicomplete multipartite digraphs, etc. Clearly, every ex-

tended semicomplete digraph is a semicomplete multipartite digraph, which

is not necessarily semicomplete, and every extended semicomplete multipar-

tite digraph is a semicomplete multipartite digraph. Therefore, the class of

semicomplete multipartite digraphs is extension-closed, and the class of

semicomplete digraphs is not.

Recall that a digraph D is acyclic if D has no cycle. Obviously, every

acyclic digraph is an oriented graph. A digraph D is transitive if, for every

pair of arcs zy and yz in D such that x # z, the arc zz is also in D. It is easy

to show that a tournament is transitive if and only it is acyclic (see Exercise

1.46). Sometimes, we will deal with transitive oriented graphs, i.e. transitive

digraphs with no cycle of length two. A digraph D is quasi-transitive if,

for every triple x,y, z of distinct vertices of D such that ry and yz are arcs

of D, there is at least one arc between x and z. Clearly, a semicomplete

digraph is quasi-transitive. Note that, if there is only one arc between x and

z, it can have any direction; hence quasi-transitive digraphs are generally not

transitive.

ik Q

Figure 1.18 A transitive digraph T and a quasi-transitive digraph Q.

1.9 Algorithmic Aspects

In this book we will often describe and analyze algorithms on digraphs. We
will concentrate more on graph-theoretical aspects of these algorithms than
on their actual implementation on a computer. (In particular, we will some-
times not prove the best possible complexity of an algorithm. However, in
most such cases, we will provide a reference to a better complexity.) Still
some very basic notions related to data structures and algorithms are re-
quired and will be given below. For more details on design and analysis of
combinatorial algorithms, the reader is addressed to numerous books on the

1.9 Algorithmic Aspects 29

subject, e.g., to Aho, Hopcroft and Ullman [6], Brassard and Bratley [134]

and Cormen, Leiserson and Rivest [169].

1.9.1 Algorithms and their Complexity

Recall that unless specified otherwise n (m) denotes the number of vertices
(arcs) in the directed multigraph under consideration. In the following, all

logarithms whose base is unspecified are of base 2. For a pair of given functions

f(k), 9(k) of a non-negative integer argument k, we say that f(k) = O(g(k))
if there exist positive constants c and ko such that 0 < f(k) < cg(k) for all

k > ko. If there exist positive constants c and ko such that 0 < cf(k) < g(k)
for all k > ko, we say that g(k) = 92(f(k)). Clearly, f(k) = O(g(k)) if and
only if g(k) = Q(f(k)). If both f(k) = O(g(k)) and f(k) = Q(g(k)) hold,

then we say that f(k) and g(k) are of the same order and denote it by

f(k) = O(9(k)).
In the analysis of an algorithm, first of all we will be interested in its time

complexity which must reflect the running time of the corresponding com-

puter program on various computers. In order to make the time complexity

measure sufficiently universal, it is usually assumed that computations are

performed by some abstract computer. The computer executes elementary

operations, that is, arithmetical operations, comparisons, data movements

and control branching, each in constant time. Since we are interested only in

the asymptotics of the execution time, the number of elementary operations

of an algorithm will be considered as its time complexity. In the vast majority

of cases, the time complexity (which will often be called just the complex-

ity) of an algorithm depends on the size of its input. An algorithm A is an

O(g(n)) algorithm for some function g(n) of its input size if the running time
of A on inputs of size n never exceeds cg(n) for some constant c (depending
only on A).

Since the typical inputs to the algorithms considered in this book are

(weighted) directed multigraphs, the size of inputs will be measured by the

numbers of vertices and arcs, that is, by n and m, and, for digraphs with

weights on the arcs (vertices), by log |cmax|, where |Cmax| is the maximum of

the absolute values of the weights of arcs (vertices). An algorithm of com-

plexity O(p(n, m, log |cmax|)), where p(n, m, log |cmax|) is a polynomial in n,
m and log|cmax|, is a polynomial-time (or just polynomial) algorithm.

The notion of equating efficient algorithms with polynomial algorithms is

due to Edmonds [210] and is at present the most popular formalization for
the intuitive notion of ‘efficient’ algorithms. Although we would normally not

call an algorithm of complexity O(n!°), where n is the size of the input, an
efficient algorithm, it is very rarely the case that polynomial algorithms have

such a high degree of their associated polynomials.

There are two well-known and often-used ways to represent a digraph

D = (V, A) for computational purposes: as a collection of adjacency lists and
as an adjacency matrix.

30 1. Basic Terminology, Notation and Results

For the adjacency matrix representation of a directed multigraph

D = (V,A), we assume that the vertices of D are labeled v1, v2,.--,Un in

some arbitrary but fixed manner. The adjacency matrix M (D)c= Traz;]

of a digraph D is an n x n-matrix such that mij = 1 if uu; and mij = 0

otherwise. For directed pseudographs we let mi; = (vi, v;), that is, mij is the

number of arcs from v; to v;. The adjacency matrix representation is a very

convenient and fast tool for checking whether there is an arc from a vertex

to another one. A drawback of this representation is the fact that to check

all adjacencies, without using any other information besides the adjacency

matrix, one needs {2(n”) time. Thus, the majority of algorithms using the

adjacency matrix cannot have complexity lower than 2(n?) (this holds in

particular if we include the time needed to construct the adjacency matrix).

Figure 1.19 A directed multigraph and a representation by adjacency lists Adjt.

The adjacency list representation of a directed pseudograph D =

(V, A) consists of a pair of arrays Adj* and Adj~. Each of Adj* and Adj~

consists of |V| (linked) lists, one for every vertex in V. For each x € V, the
linked list Adj*(x) (Adj~ (a), respectively) contains all vertices dominated

by x (dominating x, respectively) in some fixed order (see Figure 1.19). Using
the adjacency list Adj*(x) (Adj~ (x)) one can obtain all out-neighbours (in-
neighbours) of a vertex x in O(|Adj*(x)|) (O(|Adj~ (x)|)) time. A drawback
of the adjacency list representation is the fact that one needs, in general,

more than constant time to verify whether zy. Indeed, to decide this we

have to search sequentially through Adjt (a) (or Adj~ (x)) until we either find
y (x) or reach the end of the list.

To illustrate the concepts described in this section, let us consider the

Hamilton path problem in tournaments. Theorem 1.4.5 states that every

tournament is traceable. However, the proof that we have presented is non-

constructive, i.e. it does not provide us with a polynomial algorithm to find

a Hamilton path in a tournament. Now we give two constructive proofs of

Theorem 1.4.5 and show how these lead to polynomial algorithms to construct

a Hamilton path in a tournament.

1.9 Algorithmic Aspects 31

Inductive Proof of Theorem 1.4.5: Clearly, the one vertex tournament

has a Hamilton path (the vertex itself). Assume that the theorem holds for
every tournament with less that n(> 2) vertices. Consider a tournament T
with n vertices and a vertex x € V(T). By induction, the tournament T — x

has a Hamilton path, P = yy2...yn_-1. If ry1, then xP is a Hamilton path

in T; if y,-1—2, then Pz is a Hamilton path in T. Assume that y;->2 and

L—Yn-1- Then, it is easy to show that there exists an index 1 < n — 1 such

that yi>x and r>yj41. Thus, Ply1, yi]eP[yi+1, yn—i] is a Hamilton path in

i O

This constructive proof gives rise to the following simple algorithm to find

a Hamilton path in a tournament. One of the reasons for the simplicity of

this algorithm is that it is recursive (for a discussion of recursive algorithms,

see e.g. the book [169] by Cormen, Leiserson and Rivest).

HamPathTour:

Input: A tournament T on n vertices labelled 71, 72,..., 2p and its adjacency

matrix M = [m,,].
Output: A Hamilton path in T.

Hewes, and — 2.

If 2 > n go to Step 7.

Let P = y:y2...yi—1 be the current path.

. If z;>y, then P :=2;P. Let 1 :=%1-+ 1 and go to Step 2.

. If yx12; then P := Px;. Let i:=1i+1 and go to Step 2.

Om = tO4 — 2:0; I 7-27, 74 then P— Ply, y7\27 by s49, vit 1-
Let 7 :=7+1 and go to Step 2.

7. Return the path P.

OR oN

The correctness of this algorithm follows from the above proof. To see

that this algorithm can be implemented as an O(n?) algorithm, observe that

the algorithm has two nested loops, each of which perform O(n) operations

(we count queries to the adjacency matrix as constant time) and all other

steps take constant time. Thus, the complexity is O(n?).

The reader who is familiar with algorithms for sorting numbers might have

noticed that HamPathTour is very similar to the algorithm Insertion-Sort

which sorts numbers by inserting one at a time in a list (see e.g. [169, pp. 2-4]).

This resemblance is no coincidence. In fact, given any set S = {aj,..., an}

of n distinct real numbers we can form an acyclic tournament T(S) with
Vs) es orondaAio)))—" 10,0," Go aGale< 1-7 <i n}) The
correct (sorted) increasing order on S corresponds to the unique Hamilton
path a,(1)@_(2) ---@nx(n) of T(S) which again is the unique acyclic ordering of

V(T(S)) (see also Exercise 1.18). Thus any algorithm for finding a Hamilton
path in a tournament can be used for sorting numbers (we compare numbers,

by looking at the orientation of the arc between the corresponding vertices

32 1. Basic Terminology, Notation and Results

int T(S)). Conversely, several sorting algorithms can be translated into al-

gorithms for solving the more general problem of finding Hamilton paths in

tournaments. One such example is the classical Mergesort algorithm (see

e.g.(169, pp. 12-15]), which we now translate into the language of tourna-

ments. For simplicity we shall assume that the number of vertices of the

input tournament is a power of two. The reader can easily extend the al-

gorithm to the general case, see Exercise 1.70. It is convenient to state the

algorithm as a recursive algorithm (which is the reason why we specify a

parameter for the algorithm). We assume that the tournament is available

through its adjacency matrix.

MergeHamPathTour(7)):

1. Split T into two tournaments T; and T2 on the same number of vertices.

2. P;:= MergeHamPathTour(7;), 2 = 1,2.

3. P:= MergePaths(P,, P2).

4, Return P. ,

Here MergePaths is a procedure, which given two disjoint paths P, P’

in tournament T merges these two into one path P* such that V(P*) =

V(P) UV(P’). This can be done in the same way as one would merge two

sorted lists of numbers into one sorted list.

Procedure MergePaths(P, P! N:
Input: Paths P =a{75 .-?2;, and P =yiyo...9;-

Output: A path P* such that V(P*) = V(P)UV(P’).

If P’ is empty then P*:=P.

SifePeisiemptyathensPaca cr
If x; dominates y, then P*:=r,; MergePaths(P — 2,,P’).

. If y; dominates x, then P*:=y,; MergePaths(P, P’ — y;).

. Return P*.

The classical analysis of the MergeSort algorithm (see e.g. [169]) shows

that the algorithm uses O(n log n) comparisons to sort n real numbers. Sim-
ilarly it follows from our description above that the algorithm MergeHam-

PathTour will find a Hamilton path in a tournament T with n vertices after

making O(nlogn) queries about adjacencies of vertices in T. Note that to

implement the algorithm we do not need to construct the adjacency matrices

of each of the tournaments considered in the recursive calls. Indeed, all adja-

cencies can be checked using the adjacency matrix of the original tournament.

Hence, if we only count the number of times we need to check the direction of

an arc, then MergeHamPathTour is a faster algorithm than HamPathTour.

4 Note that this is only a virtual description, since we do not need to construct
the adjacency matrix in this case. We simply compare the two numbers x and y
and «—y holds if and only if x < y.

1.9 Algorithmic Aspects 33

1.9.2 NP-Complete and MP-Hard Problems

There are many interesting algorithmic problems concerning (di)graphs for
which no polynomial algorithm is known. Many of those problems (formulated
in their decision form) belong to the class NPC of so-called MP-complete
problems. For a detailed introduction to the class of MP-complete problems,
see the book by Garey and Johnson [303]. A problem is a decision problem

if it requires the answer ‘yes’ or ‘no’. By a problem we understand actually a

family of instances. For example, we will consider the Hamilton cycle prob-

lem in a digraph: given a digraph, decide whether or not it has a Hamilton

cycle. Every digraph provides an instance of this problem. The so-called

travelling salesman problem (TSP) is similar: given a weighted complete
digraph D and a real number B, decide whether D contains a Hamilton cycle

of weight at most B. An instance of the last problem consists of a complete

digraph and a specification of the weights of its arcs.

A decision problem S belongs to the complexity class P if and only if there

exists a polynomial algorithm A which, given any instance of S, produces an

answer in the set {‘yes’,‘no’} such that the answer from A on input z is ‘yes’
if and only if z is a ‘yes’ instance for? S. Since A is polynomial, it follows

that it produces its answer after at most p(|z|) steps, where |z| is the size of
the input z and p is a fixed polynomial (depending on S).

A decision problem belongs to the class VP (co-NP) if, for every ‘yes’-
instance (‘no’-instance) of the problem, there exists a short ‘proof’, called a

certificate, of polynomial size (in n, m and log |cmaz|) such that, using the

certificate, one can verify in polynomial time that the instance is indeed a

‘yes’ (‘no’) instance. The certificate depends on the instance of the problem,

but it must have the same structure for all instances of the problem. To

illustrate this definition, let us show that both the Hamilton cycle problem

and travelling salesman problem are in NP. Given a permutation 7 of the

vertices in a digraph D (m is the certificate for hamiltonicity of D), it is
easy to verify whether this permutation corresponds to a Hamilton cycle in

D (note that this certificate has the same structure for each instance of the
problem, namely it is a permutation of the vertices). Indeed, assuming that

V(D) = {1,2,...,n}, we simply have to check that m(i)m(i + 1) is an arc
of D for every 1 = 1,2,...,n, where the vertex n + 1 is the same as the

vertex 1. If we also have weights on the arcs, then it is also easy to verify

that the weight of the proposed Hamilton cycle is no more than B. Notice

that the situation here is not symmetric: it is unknown if the ‘complement’

of the Hamilton cycle problem (given a digraph, check whether it has no

Hamilton cycle) is in WP. Indeed, it is difficult to imagine what kind of

certificate will enable a polynomial algorithm to check that a digraph is not

hamiltonian. Actually, such a certificate would answer in affirmative the well-

known complexity question: whether NP =co-N’P (see e.g. [303, Theorem

> Thus a hypothetical polynomial algorithm for the Hamilton cycle problem must
produce the answer ‘yes’ precisely when the input digraph has a Hamilton cycle.

34 1. Basic Terminology, Notation and Results

7.2]). A positive answer to this question seems to be unlikely with our current

knowledge of algorithms.

Given a pair of decision problems S, T, we say that S is polynomially

reducible to 7 (denoted S <p 7) if there is a polynomial algorithm A that

transforms an instance z of S into an instance A(x) of T such that the second

instance has the same answer as the first one. That is, x is a ‘yes’ instance of

S if and only if A(z) is a ‘yes’ instance of J. Some polynomial reductions are

quite easy. For example, we can readily reduce the Hamilton cycle problem

to the travelling salesman problem: given a digraph D Consider a copy of a

os such that V(D) = V(Kn); and, for every arc e in en its weight is 1 if

e € A(D) and 2 otherwise. Let also B = n. Clearly, D is hamiltonian if and

only if with the prescribed weights ve has a Hamilton cycle of weight not

exceeding B. Obviously, the as transformation can be carried out by a

polynomial algorithm.

A decision problem is MP-hard if all problems in VP can be polynomi-

ally reduced to this problem. If the problem is ’P-hard and also belongs to

NP, then it is MP-complete. The class NPC consists of all \/P-complete
problems. In order to show that a decision problem W is /P-hard, we must

show that every problem in VP can be polynomially reduced to W — a seem-

ingly impossible task. However, polynomial transformations are closed under

composition, that is, S <p J and T <p K implies that S <p K (see Exercise

1.73). Hence, in order to prove that W is NP-hard, it suffices to prove that

there is some NP-complete problem which is polynomially reducible to W

(see Exercise 1.75). Of course this only works if we already have established

that there is some problem that belongs to the class NPC of M’P-complete
problems. This extremely important and non-trivial step was provided by

Cook in 1971 [165] (independently, a similar discovery was made by Levin

[513]).
Since there are a huge number of known NP-complete problems, the task

to prove that a given problem is NP-complete is sometimes not too diffi-

cult. On the other hand, it is also highly non-trivial in many cases. We will

give a number of examples of \’P-completeness and MN P-hardness proofs

throughout this book. It is well-known that the Hamilton cycle problem

is NP-complete as shown by Karp in his classical paper [474]. From the

above transformation, it follows that the travelling salesman problem is NP-
complete as well.

Quite often we will deal with optimization problems rather than deci-

sion problems. Since an optimization problem consists of finding an optimal

solution to a prescribed problem, such a problem very often has a decision

analogue. For example, in the usual formulation of the travelling salesman

problem the goal is to find a minimum weight Hamilton cycle in a weighted

complete digraph. The decision analogue was stated above. If the decision

analogue of an optimization problem is NP-hard, then we will also say that

the optimization problem is MP-hard. So, the optimization version of the

1.10 Application: Solving the 2-Satisfiability Problem 35

travelling salesman problem is NP-hard. For a wealth of information on

NP-hard optimization problems and their approximability properties, see

the book [33] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela
and Protasi.

From a complexity point of view, there is no significant difference between

a decision problem and its optimization analogue (if it exists). To illustrate
this statement, let us consider the problem of deciding whether a strong

digraph has a cycle of length at least k (here k is part of the input). The

optimization analogue is the problem of finding a cycle of maximum length

in a strong digraph. If we solve the optimization problem, we easily obtain a

solution to the decision problem: just check whether the length of the longest

cycle is at least k. On the other hand, using binary search one can find an

answer to the optimization problem by solving a number of decision problems.

In our example, we first check whether or not the digraph under consideration

has a cycle of length at least n/2. Then, solve the analogous problem with

n/4 (if D has no cycle of length at least n/2) or 3n/4 (if D has a cycle of
length at least n/2) instead of n/2, etc. So, we would need to solve O(log n)
decision problems, in order to obtain an answer to the optimization problem.

1.10 Application: Solving the 2-Satisfiability Problem

In this section we deal with a problem that is not a problem on digraphs, but

it has applications to several problems on graphs, in particular when we want

to decide whether a given undirected graph has an orientation with certain

properties. In Chapter 8 we will give examples of this. We will show how to

solve this problem efficiently using the algorithm for strong components of

digraphs from Chapter 4.

A boolean variable z is a variable that can assume only two values 0

and 1. The sum of boolean variables 7; + 22 +... + 2, is defined to be 1 if

at least one of the z;’s is 1 and 0 otherwise. The negation 7 of a boolean

variable z is the variable that assumes the value 1 — x. Hence © = x. Let X

be a set of boolean variables. For every x € X there are two literals, over z,

namely z itself and Z. A clause C over a set of boolean variables X is a sum

of literals over the variables from X. The size of a clause is the number of
literals it contains. For example, if u,v,w are boolean variables with values

u=0,v =0 and w = 1, then C = (u+ 0+) is a clause of size 3, its value

is 1 and the literals in C are u, U and w. An assignment of values to the set

of variables X of a boolean expression is called a truth assignment. If the

variables are z1,..., 2%, then we denote a truth assignment by t = (t1,..., tx).

Here it is understood that x; will be assigned the value ¢; fori =1,...,k.

The 2-satisfiability problem, also called 2-SAT, is the following prob-

lem. Let X = {21,..., 2%} be a set of boolean variables and let C1,...,C, be

a collection of clauses, all of size 2, for which every literal is over X. Decide if

_ there exists a truth assignment t = (t1,...,¢,) to the variables in X such that

36 1. Basic Terminology, Notation and Results

the value of every clause will be 1. This is equivalent to asking whether or

not the boolean expression F = C) *... * Cp can take the value 1. Depending

on whether this is possible or not, we say that F is satisfiable or unsat-

isfiable. Here ‘*’ stands for boolean multiplication, that is, 1 * 1 = 1,

1*0=0«x1=0*0=0. Fora given truth assignment t = (t;,...,t,) and

literal g we denote by q(t) the value of g when we use the truth assignment

i.e; if Ges anda = 1, then git) Llp)

To illustrate the definitions, let X = {r1, 22,23} and let C) = (41 +73),

Cy = (a2 + 23), C3 = (J + 3) and C4 = (z2 + x3). Then it is not difficult to

check that F = C, * C2 * C3 * C4 is satisfiable and that taking z; = 0,22 =

1 .g3.=. li we obtain fr. 1.

If we allow more than 2 literals per clause then we obtain the more general

problem Satisfiability (also called SAT) which is NP-complete, even if all
clauses have size 3, in which case it is also called 3-SAT (see e.g. page

359 in the book [600] by Papadimitriou and Steiglitz). (In his proof of the
existence of an NP-complete problem, Cook used the satisfiability problem

and showed how every other problem in VP can be reduced to this problem.)

Below we will show how to reduce 2-SAT to the problem of finding the strong

components in a certain digraph. We shall also show how to find a satisfying

truth assignment if one exists. This step is important in applications, such

as those in Chapter 8.

Let C1,...,C, be clauses of size 2 such that the literals are taken among

the variables z,,...,2, and their negations and let F = C, *... * C, be

an instance of 2-SAT. Construct a digraph D- as follows. Let V(D¢) =
{1,...,Zk,X1,-.., KR} (ie. Dz has two vertices for each variable, one for

the variable and one for its negation). For every choice of p,q € V(D+) such
that some C; has the form C; = (p+ q), A(Ds#) contains an arc from p to q
and an arc from @ to p (recall that Z = x). See Figure 1.20 for examples of
a 2-SAT expressions and the corresponding digraphs. The first expression is
satisfiable, the second is not.

Lemma 1.10.1 If D¢ has a (p,q)-path, then it also has a (G,p)-path. In
particular, tf p,q belong to the same strong component in Dr, then p,q belong

to the same strong component in Dr.

Proof: This follows easily by induction on the length of a shortest (p, q)-

path, using the fact that (x,y) € A(Ds) if and only if (,z) € A(Dr). a

Lemma 1.10.2 If D¢ contains a path from p to q, then, for every satisfying
truth assignment t, p(t) = 1 implies q(t) = 1.

Proof: Observe that F contains a clause of the form (@+) and every clause
takes the value 1 under any satisfying truth assignment. Thus, by the fact
that ¢ is a satisfying truth assignment and by the definition of Dz, we have
that for every arc (a,b) € A(Ds), a(t) = 1 implies b(t) = 1. Now the claim
follows easily by induction on the length of the shortest (p,q)-path in Dr. O

1.10 Application: Solving the 2-Satisfiability Problem 37

v3 £3

\

em x2 Ty 2

(a) (0)
Figure 1.20 The digraph D¢ is shown for two instances of 2-SAT. In (a) F =
(Ti + 3) * (v2 + Z3) * (Z7 + xg) * (v2 + v3) and in (b) F = (x1 + a2) * (Z1 + 22) *
(Z2 + x3) * (T2 + 73)

The following is an easy corollary of Lemma 1.10.1 and Lemma 1.10.2.

Corollary 1.10.3 Ift is a satisfying truth assignment, then for every strong

component D' of Dz and every choice of distinct vertices p,q € V(D’') we
have p(t) = q(t). Furthermore we also have p(t) = q(t). Oo

Lemma 1.10.4 F 1s satisfiable if and only if for every i = 1,2,...,k, no

strong component of Dy contains both the variable x; and its negation Z;.

Proof: Suppose t¢ is a satisfying truth assignment for F and that there is

some variable x; such that x; and 7; are in the same strong component in Dr.

Without loss of generality z;(t) = 1 and now it follows from Lemma 1.10.2
and the fact that Dz contains a path from z; to 7; that we also have 7;(t) = 1

which is impossible. Hence if F is satisfiable, then for every 1 = 1,2,...,k,

no strong component of D- contains both the variable x; and its negation
Le

Now suppose that for every 1 = 1,2,...,k, no strong component of Dr

contains both the variable xz; and its negation z;. We will show that F is

satisfiable by constructing a satisfying truth assignment for F.

Let D,,...,D, denote some acyclic ordering of the strong components of

Df (i.e. there is no arc from D; to D; if i < j). Recall that by Proposition

1.4.3, such an ordering exists. We claim that the following algorithm will

determine a satisfying truth assignment for F: first mark all vertices ‘unas-
signed’ (meaning truth value still pending). Then going backwards starting

from D, and ending with D, we proceed as follows. If there is any vertex
v € V(D;) such that 0 has already been assigned a value, then assign all

38 1. Basic Terminology, Notation and Results

vertices in D; the value 0 and otherwise assign all vertices in D; the value 1.

Observe that this means that, for every variable z;, we will always assign the

value 1 to whichever of x;, Xj belongs to the strong component with the high-

est index. To see this, let p denote whichever of x;,%; belongs to the strong

component of highest index j. Let i < 7 be chosen such that p € D;. Suppose

we assign the value 0 to p. This means that at the time we considered p,

there was some q € D; such that g € D; for some f > j. But then p € Dy,

by Lemma 1.10.1, contradicting the fact that i < f.

Clearly all vertices in V(F) will be assigned a value, and by our previous
argument this is consistent with a truth assignment for the variables of F.

Hence it suffices to prove that each clause has value 1 under the assignment.

Suppose some clause Cy = (p+ q) attains the value 0 under our assignment.

By our observation above, the reason we did not assign the value 1 to p

was that at the time we considered p we had already given the value 1 to p

and p belonged to a component D; with a higher index than the component

D; containing p. Thus the existence of the arc (p,q) € A(D+) implies that

q € Dy for some h > j. Applying the analogous argument to q we conclude

that ¢g is in some component D, with g > h. But then, using the existence

of the arc (g,p), we get that 7 S g>h>j >i, a contradiction. This shows

that we have indeed found a correct truth assignment for F and hence the

proof is complete. oO

In Chapter 4 we will see that for any digraph D one can find the strong

components of D and an acyclic ordering of these in O(n +m) time. Since the
number of arcs in D¢ is twice the number of clauses in D¢ and the number

of vertices in Dz is twice the number of variables in Dz, it is not difficult

to see that the algorithm outlined above can be performed in time O(k + r)
and hence we have the following result.

Theorem 1.10.5 The problem 2-SAT is solvable in linear time with respect

to the number of clauses. Oo

The approach we adopted is outlined briefly in Exercise 15.6 of the book

[600] by Papadimitriou and Steiglitz, see also the paper [230] by Even, Itai
and Shamir.

It is interesting to note that if, instead of asking whether F is satisfiable,

we ask whether there exists some truth assignment such that at least £ clauses

will get the value 1, then this problem, which is called MA X-2-SAT, is V’P-

complete as shown by Garey, Johnson and Stockmeyer [304] (here @ is part
of the input for the problem).

1.11 Exercises

1.1. Let X and Y be finite sets. Show that |X UY|+|XNY|=|X|+]Y|.

1.2. Let X and Y be finite sets. Show that |X UY|? + |X NY|? > |X|? +|Y|?.

1s B

1.4.

Ds

EO:

thet

1.11 Exercises 39

Find a mistake in the following ‘definition’ of a subdigraph: H = (V’, A’) is
a subdigraph of D = (V, A) if and only if V’ C V and A’ C A hold.

(—) Draw the six non-isomorphic directed pseudographs of order and size 2.

(—) Prove that the number of vertices of odd degree in a digraph is always
even. Hint: use Proposition 1.2.1.

Prove that for every n > 2 there exists a unique tournament T' on n vertices
for which all out-degrees of the vertices are distinct.

(—) Prove that every tournament on n > 2k + 2 vertices has a vertex of
out-degree at least k + 1.

. Prove that every undirected graph has two vertices with the same degree.

. (—) Prove that, if D and H are isomorphic directed pseudographs, then their
converses are also isomorphic.

. Describe an infinite family F of directed pseudographs such that no D € F
is isomorphic to its converse.

. (—) Transitivity of paths. Let D be a digraph and let x,y,z be vertices
in D, x # z. Prove that, if D has an (z,y)-path and a (y, z)-path, then it
contains an (2, z)-path as well.

. (—) Decomposing a closed walk into cycles. Prove that every closed
walk can be decomposed into a collection of (not necessarily disjoint) cycles.

. Open walk decomposition. Prove that every open walk can be decom-
posed into a path and some cycles (not necessarily disjoint).

. (—) Prove that, if the in-degree of every vertex in a digraph D is positive,
then D has a cycle.

. (—) Let x and y be distinct vertices of a digraph D. Suppose that there is a
sequence of cycles C,...,Cx in D such that z is in Ci, y is in Cy and C; and
Ci41 have at least one common vertex for every i € {1,2,...,k —1}. Prove
that there exists an (z, y)-path in D.

. Prove Proposition 1.4.6.

. (—) Let G be an (undirected) multigraph. Using Proposition 1.2.1, prove
that the sum of degrees of vertices in G equals twice the number of edges in
G.

. Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a
unique acyclic ordering if and only if D is traceable.

. (—) Let D be the digraph in Figure 1.21.
(a) Determine the set of out-neighbours and the set of in-neighbours for all

vertices of D.
(b) Determine the semi-degrees of D.
(c) Determine 6°(D) and A°(D).
(d) Is D regular?

. (—) Let D be the digraph in Figure 1.21.

40

IL all

1.29.

1.30.

1. Basic Terminology, Notation and Results

a b

if e

Figure 1.21 A digraph D.

(a) Draw the subdigraphs induced by the vertex sets {a,b,c,d,e} and

{a,d, f,9, hy.
(b) Draw the subdigraphs arc-induced by the arc sets {ab, cd, ed, hc, ha} and

{ab, bc, dc, fb, bg}.
(c) Let H be the subdigraph of D with vertex set V(H) = {a,b,c,d,e,h}

and arc set A(H) = {ab, bc, dc, ed, eh, ae}. List all chords of H in D.
(d) Let H be as above. Is H induced in D? Is it arc-induced?

(—) Let D be the digraph from Figure 1.21. Draw the directed multigraphs
D/{a,b,c,d,e,h} and D/{e, f, h}.

. (—) Prove that an undirected graph is eulerian if and only if it has an eulerian
orientation.

. (—) Let D be the digraph from Figure 1.21. Determine the independence
number a(D) of D.

. Let D be the digraph in Figure 1.21. Determine the chromatic number of
UG(D).

. Let T = (V,A) be a tournament such that every vertex is on a cycle. Prove
that for every a € A the digraph T — aa is unilateral.

. Prove that, if a tournament T has a cycle, then it has two hamiltonian paths.

. Let D be a semicomplete multipartite digraph such that every vertex of D
is on some cycle. Prove that D is unilateral.

. Let G be an undirected graph. Prove that either G or its complement G is
connected.

Prove that every strong tournament T’ on at least 4 vertices has two distinct
vertices z, y such that T — x and T — y are both strong.

Strong connectivity is equivalent to cyclic connectivity in digraphs.
A digraph is cyclically connected if for every pair x, y of distinct vertices of
D there is a sequence of cycles Ci,...,C, such that «x is in Cj, y is in C, and
C; and Ci+1 have at least one common vertex for every i € {1,2,...,k — 1}.
Prove that a digraph D is strong if and only if it is cyclically connected.

1.31.

1.32.

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

1.47.

1.48.

1.11 Exercises 41

(—) Let D be the digraph from Figure 1.21. Find an out-branching with root
ain D.

(—) Prove that a directed multigraph D is strong if and only if it has an
out-branching rooted at v for every vertex v of D.

(+) Preserving cycle subdigraphs. Let D be a strong digraph with the
property that, for every pair xz, y of vertices, the deletion of all arcs between

x and y results in a connected digraph. Let F = C; UC2U...UC; bea
cycle subdigraph in D such that every cycle C; has length at least three.
Prove that D has a strong spanning oriented subgraph containing F. Hint:
use Corollary 1.7.2 (Volkmann [730]).

Prove Proposition 1.4.6.

(—) Show that every digraph D contains a path of length at least 6°(D).

Show that every oriented graph D on n vertices and with 6°(D) > [(n—1)/4]
is strong. Show that this is best possible in terms of 6°(D).

Prove that a connected digraph is strong if and only if every arc is contained
in a cycle. Hint: use the result of Exercise 1.30.

Prove that every edge of a 2-edge-connected graph belongs to a cycle.

(—) Prove that an undirected tree of order n has n — 1 edges.

Prove that every undirected tree has a vertex of degree one.

Prove that every connected undirected graph G has a spanning tree. Hint:
observe that a connected spanning subgraph of G with mimimum number of
edges is a tree.

Using the results of the last two exercises, prove that every connected undi-
rected graph G has a vertex x such that G — x is connected.

An undirected multigraph G is eulerian if it contains a closed trail T’ such
that A(T) = A(G). Prove without using Theorem 1.6.3 that G is eulerian if
and only if G is connected and d(x) is even for every vertex x of G.

Prove using Exercise 1.43 that, if an undirected graph G = (V, £) has no
vertex of odd degree, then it has an orientation D = (V, A) such that df(v) =
dp(v) for all ve V.

Let G = (V, E) be an eulerian graph. Using Exercise 1.43 and Corollary 1.6.4,
prove that d(W) is even for every proper subset W of V.

(—) Prove that a tournament is transitive if and only if it is acyclic. Hint:
apply Theorem 1.5.1.

Hamiltonian walks in strong digraphs. Prove that a digraph is strong
if and only if it has a Hamilton closed walk.

(—) Prove that every strong digraph H has an extension D = H[Kn,,...,

Kn,], h = |V(H)|, such that D is hamiltonian. Hint: consider a hamiltonian
closed walk in H.

42

1.49.

1.55.

1.56.

etBSTf

1.58.

1 OO:

1.60.

1.61.

62°

1.63.

1. Basic Terminology, Notation and Results

A transitive triple in a digraph D is a set of three vertices 2, y, z such that

zy,vz and yz are arcs of D. Prove that, if a 2-strong digraph D contains a

transitive triple, then D has two cycles whose length differ by one.

. List all the acyclic orders of the digraph SC(D) in Figure 1.12.

. (—) Hamiltonian extensions of cycles. Characterize extensions of cycles
which are hamiltonian.

. Let D = C,[Kn,,--.,Kn,] be an extension of a cycle. Prove that «(D) =
IM 7p | Le ee hs

. (+) Traceable semicomplete bipartite digraph characterization.
Prove that a semicomplete bipartite digraph B is traceable if and only if
it contains a 1-path-cycle factor F. Hint: demonstrate that, if F consists of
a path and a cycle only, then B is traceable; use it to establish the desired

result (Gutin [355]). (See also Chapter 5.)

. (+) Let B be a strong semicomplete bipartite digraph containing a cycle
factor consisting of two cycles. Prove that B is hamiltonian (Gutin [353)).

(+) Hamiltonian semicomplete bipartite digraph characterization.
Using the result of Exercise 1.54 prove that a semicomplete bipartite digraph
B is hamiltonian if and only if B is strong and B contains a cycle factor
(Gutin [353]). (See also Chapter 5.)

(—) Show that every orientation of a quasi-transitive digraph is a quasi-
transitive digraph.

Prove that every strong quasi-transitive digraph of order n > 3 has a strong
orientation, and so does every strong semicomplete bipartite digraph with
every partite set of cardinality at least 2. Hint: use Corollary 1.7.2.

(—) Prove that, if a bipartite tournament has a cycle then it has a 4-cycle.

(—) Describe an infinite family of strong bipartite tournaments without a
6-cycle.

Characterize 2-connected undirected graphs for which every cycle has odd
length.

(—) Show that for every undirected graph G on n vertices we have x(G) >

[n/a(G)].

Show that a digraph D has a cycle factor if and only if its bipartite repre-
sentation BG(D) contains a perfect matching.

Describe an infinite family of strong multipartite tournaments, each of which
have a cycle factor but is not hamiltonian.

. Describe an infinite family of strong quasi-transitive digraphs, each of which
have a cycle factor but is not hamiltonian.

. Give a characterization of hamiltonian complete 3-partite undirected graphs.

. Give an infinite class of strong extended tournaments, none of which is hamil-
tonian.

1.67.

1.68.

1.69.

12:

1.73.

1.74.

Toe

1.76.

1.11 Exercises 43

4-kings in bipartite tournaments. A vertex v in a digraph D is a k-king,
if for every u € V(D) — {v} there is a (v, u)-path of length at most k. Prove
that a vertex of maximum out-degree in a strong bipartite tournament is a

4-king. For all s,t > 4 construct strong bipartite tournaments with partite
sets of cardinality s and t which do not have 3-kings. (Gutin [356])

(+) A special case of the maximum independent set problem. The
maximum independent set problem is as follows. Given an undirected graph
G, find an independent set of maximum cardinality in G. The purpose of
this exercise is to show that a special case of the maximum independent set
problem is equivalent to the 2-satisfiability problem and hence can be solved
using any algorithm for 2-SAT.

(a) Let G = (V,E) be a graph on 2k vertices and suppose that G has a
perfect matching (i.e. a collection e1,...,e% of edges with no common
end-vertex). Construct an instance F of 2-SAT which is satisfiable if
and only if G has an independent set of k vertices. Hint: fix a perfect
matching M of G and let each edge in M correspond to a variable and
its negation.

(b) Prove the converse, namely if F is any instance of 2-satisfiability, then
there exists a graph G = (V, E) with a perfect matching such that G has
an independent set of size |V(G)|/2 if and only if F is satisfiable.

(c) Prove that it is WP-complete to decide if a given graph has an indepen-
dent set of size at least @, even if G has a perfect matching. Hint: use a
reduction from MAX-2-SAT.

Linear time algorithm for finding an acyclic ordering of an acyclic
digraph. Verify that the algorithm given in the proof of Proposition 1.4.3
can be implemented as an O(n + m) algorithm using the adjacency list rep-
resentation.

. Show how to extend the algorithm MergeHamPathTour (see Subsection 1.9.1)
so that it works for tournaments with an arbitrary number of vertices.

. Based on the proof of Theorem 1.5.1, give a polynomial algorithm to find
cycles of lengths 3, 4,...,n through a given vertex in a strong tournament T’.
What is the complexity of your algorithm and how do you store information
about T and the cycles you find?

(+) Fast algorithm for Euler trails. Demonstrate how to implement the
algorithm in the proof of Theorem 1.6.3 as an O(n + m) algorithm. Hint:
use adjacency lists along with a suitable data structure to store the trail
constructed so far.

Suppose S,7, K are decision problems such that S <p 7 and 7 <p K. Prove
that S <p K.

The independent set problem is as follows: Given a graph G = (V, E)
and natural number k, decide whether G has an independent set of size at
least k. Show that the independent set problem belongs to the complexity

class NP.

Suppose W is an NP-complete problem and that 7 is a decision problem
such that W <p T. Prove that 7 is NP-hard.

Finding a cycle of maximum weight in a digraph. Show that it is
an NP-hard problem to find a cycle of maximum weight in a digraph with

44

Lats

Se

1579:

1.80.

ieee

1.82.

33:

1.84.

1.85.

1. Basic Terminology, Notation and Results

weights on its arcs. Hint: show how to reduce the Hamilton cycle problem to

this problem by a polynomial reduction.

The acyclic subdigraph problem. Let S be the following decision prob-

lem. Given a digraph D and a natural number k, does D contain an induced

acyclic subdigraph on at least k vertices? Show that the independent set
problem polynomially reduces to S (the independent set problem is: given a
graph G and a number k, does G contain an independent set of size at least

tye

Show that if a decision problem S belongs to the complexity class P then it

also belongs to VP.

Show that P C NPNco— WNP.

Show that if there is some decision problem S which belongs to both of the
classes P and NPC, then P = NP.

(+) Reducing the Hamilton cycle problem to Satisfiability. Describe
a polynomial reduction from the Hamilton cycle problem to the Satisfiability
problem. Hint: model different attributes by different sets of clauses. For
example you should use one family of clauses to ensure that every vertex is
the tail of at least one arc.

Describe a polynomial reduction from the problem of deciding whether an
undirected graph has a matching of size k to the problem MAX-2-SAT.

Finding a 1-maximal cycle. A cycle C in a digraph D is 1-maximal if
D has no cycle C’ such that C — a is a subpath of C’ for some arc a of C.
Describe a polynomial algorithm for finding a 1-maximal cycle in a strong
digraph. What is the complexity of your algorithm? Hint: compare it with
the proof of Theorem 1.5.1.

Describe a linear time algorithm to check whether a given acyclic digraph
has more than one acyclic ordering. Hint: use the result of Exercise 1.18.

Transitive subtournaments in tournaments. Show that every tourna-
ment on 8 vertices contains a transitive tournament on 4 vertices (as an
induced subdigraph). Hint: start from a vertex of maximum out-degree. Use
the idea above to prove that every tournament on n vertices contains a tran-
sitive tournament of size {2(log n).

2. Distances

In this chapter, we study polynomial algorithms which find distances in

weighted and unweighted digraphs as well as some related complexity re-

sults. We consider bounds on certain distance parameters of a digraph and

describe several results on minimizing (and maximizing) the diameter of an
orientation of a graph. We study some applications of distances in digraphs to

the travelling salesman problem, the one-way street problem and the gossip

problem.

Additional terminology and notation are given in Section 2.1. Some basic

results on the structure of shortest paths in weighted digraphs are proved in

Section 2.2. In Section 2.3 we study algorithms to find shortest paths from a

vertex to the rest of the vertices of weighted and unweighted digraphs. We

also consider the Floyd-Warshall algorithm to compute distances between all

pairs of vertices in a weighted digraph. In Section 2.4 we consider bounds

on the following parameters: out-radius, in-radius, radius and diameter of a

digraph. The problem of maximizing the diameter of a strong orientation of

a bridgeless graph is investigated in Section 2.5. The problem of minimizing

the diameter of an orientation of a bridgeless graph, which has applications to

the one-way street problem and the gossip problem, is studied extensively in

Sections 2.6, 2.7, 2.8 and 2.9. Notice that while both the problem of finding an

orientation of minimum diameter and the problem of finding an orientation

of maximum diameter are \/P-hard, the former is much more complicated

from a graph theoretical point of view than the latter.

So-called kings in various classes of digraphs are investigated in Section

2.10. The notion of a king is related to the study of domination in biology

and sociology. The last two sections are devoted to applications of distances

in digraphs. In Section 2.11 we discuss the one-way street problem and the

gossip problem as well as their natural extensions to digraphs. Some recent

results on the topics are described. In particular, we state theorems on sharp

upper bounds of the minimum diameter orientations of quasi-transitive and

semicomplete bipartite digraphs. In Section 2.12 we consider a new approach

to compute near optimal solutions to the travelling salesman problem, the

exponential neighbourhood local search (ENLS). We show how to utilize the

notions and results on distances in the study of ENLS.

46 2. Distances

2.1 Terminology and Notation on Distances

Let D = (V, A) be a directed pseudo-graph. Recall that, for a set WoGV.

Ni(W) = LJ Nt Na (W) sol Je eis
weEew weEew

Ker NW) = WaNS (Wh Ni (W), Np’ (W) = Np(W). For every posi-

tive integer p, we can define the pth out-neighbourhood of W as follows:

we?(W) = NAUNS?->(W)) — LJ NEW).
i=0

Similarly, one can define Np?(W) for every positive integer p. In par-

ticular, N+2(W) = Nt+(N+(W)) — (WU Nt(W)). Sometimes, N7,?(W)

(N5°(W)) is called the open pth out-neighbourhood (open pth in-

neighbourhood) of W. We will also use the closed pth in- and out-

neighbourhoods of a set W of vertices of D which are defined as follows

(p> 0):

P P

NSW] =W, NSW] = UNSW), Np?W]=U Np'(W).
1=0 i=0

To simplify the notation, we set N3[W] = Nj'[W] and Np[W] = Nz‘ [W].
See Figure 2.1.

e€ d

Figure 2.1 A digraph D. The out-neighbourhoods of the set W = {a,b} are

N*({a,b}) = {f,9}, N**({a, b}) = fe}, N**({a,b}) = {a}, N**({a, b}) = {c}.
The closed out-neighbourhoods of W = {a,b} are N*[f{a, ae = fad; f,9},

N*({a,b}] = {a,b,e,f,9}, N*°[{a,d}] = {a,b,d,e,f,g}, N*4[{a,0}
{asib;ie, dy eng Oi:

Let D = (V,A,c) be a directed multigraph with a weight function c :
AR on its arcs. Recall that the weight of a subdigraph D' = (V, A’) of D is
given by c(A’) = >7,<4, c(a). Whenever we speak about the length of a walk
we mean the weight of that walk (with respect to c). A negative cycle in a

weighted digraph D = (V, A,c) is a cycle W whose weight c(W) is negative.

2.1 Terminology and Notation on Distances 47

We assume that D has no negative cycle, for otherwise the following

definition becomes meaningless. If z and y are vertices of D then the distance

from zx to y in D, denoted dist(z, y), is the minimum length of a (zx, y)-walk,

if y is reachable from x, and otherwise dist(xz,y) = co. Since D has no cycle

of negative weight, it follows that dist(z,x) = 0 for every vertex x € V. It

follows from Proposition 1.4.1 that there is a shortest (2, y)-walk which is, in
fact, a path (if D has no cycle of zero weight either, a shortest. walk is always

a path). Furthermore, by Proposition 1.4.1, the distance function satisfies the

triangle inequality:

dist(z, z) < dist(x, y) + dist(y, z) for every triple of vertices x,y,z. (2.1)

The above definitions are applicable to unweighted directed multigraphs

as well: simply take the weight of every arc equal to one (then, the length of

a walk in the ‘weighted’ and ‘unweighted’ cases coincide).

The distance from a set X to a set Y of vertices in D is

dist(X, Y) = max({dist(z,y): € X,yeEY}!. (2:2)

The diameter of D is diam(D) = dist(V,V). Clearly, D has finite diameter
if and only if D is strong. The out-radius rad‘(D) and the in-radius

rad (D) of D are defined by

radt(D) = min{dist(z,V): €V}, rad (D) =min{dist(V,z): 2 € V}.

Because of the obvious duality between out-radius and in-radius, in many

cases, we will consider only one of them. The radius of D is

rad(D) = min{(dist(z, V) + dist(V,z))/2: «eV}.

To illustrate the definitions above, consider the digraph D in Figure 2.1.

Here we have dist(a,V) = dist(b,V) = dist(e,V) = 4 and dist(c,V) =
dist(d, V) = dist(f,V) = dist(g,V) = 3. Furthermore, we have dist(V,c) =
dist(V, f) = 4, dist(V,a) = dist(V,b) = dist(V,d) = 3 and dist(V,e)
dist(V, g) = 2. Now we see that rad*(D) = 3, rad (D) = 2, rad(D) = 2.5
and diam(D) = 4. It is also easy to see that dist({a,c}, {b, f}) = 3.

The following proposition gives a characterization of weighted digraphs

D of finite out-radius.

Proposition 2.1.1 A weighted digraph D has a finite out-radius if and only

if D has a unique initial strong component.

Proof: A digraph with two or more initial strong components is obviously

of infinite out-radius. If D has only one initial strong component, then D

contains an out-branching (by Proposition 1.6.1). Thus, rad*(D)<oo. O

1 This definition may seem somewhat unnatural (with max instead of min), but it

_ simplifies some of the notation in this chapter and also appears quite useful.

48 2. Distances

This proposition implies that a weighted digraph D has a finite in-radius if

and only if D has a unique terminal strong component. Notice that rad(D) <

oo if and only if D is strong.

For an undirected graph G, we can introduce the notions of distance

between pairs of vertices, vertex sets, radius, etc. by considering G. For an

integer r, a vertex v is an r-king if dist(v, V) < r. For example, the vertex c

in Figure 2.1 is a 3-king.

2.2 Structure of Shortest Paths

In this section we study elementary, but very important properties of shortest

paths in weighted digraphs. We also consider some complexity results on

paths in directed and mixed weighted graphs.

We assume that D = (V,A,c) is a weighted digraph with no negative

cycle.

Proposition 2.2.1 If P=2,22...2, is a shortest (41, 2;%)-path in D, then

Plg;,2;| 18 a shortest (x;,2;)-path jor alll <4< 7 < k-

Proof: Suppose that 2;Qa; is an (2;,2;)-path whose length is smaller than

that of P[z;,z;]. Then the weight of the walk W = Pla, 2;]QP[x;, zx] is
less than the length of P. However, by Proposition 1.4.1, and the fact that

D has no negative cycle, W contains an (z;,2;)-path R whose length is at

most that of W and hence is smaller than that of P, a contradiction. O

Let s be a fixed vertex of D such that dist(s,V) < oo. Consider spanning

subdigraphs of D, each of which contains a shortest path from s to every

other vertex in D. The proof of the following theorem shows that given any

such subdigraph D’ of D, we can construct an out-branching of D rooted at

s, which contains a shortest (s,u)-path for every u € V — s.

Theorem 2.2.2 Let D' and s be as above. There exists an out-branching

F+ such that, for every u € V, the unique (s,u)-path in F+ is a shortest
(s,u)-path in D.

Proof: We will give a constructive proof showing how to build F'+ from any

collection {P, : v € V—s} of shortest paths from s to the rest of the vertices.
Choose a vertex u € V — s arbitrarily. Let initially F+ := P,. By Propo-

sition 2.2.1, for every x € V(F;+), the unique (s,z)-path in F> is a shortest

(s,a)-path in D. Hence, if V(F;*) = V, then we are done. Thus, we may
assume that there exists w ¢ V(F;*). Let z be the last vertex on P,, which
belongs to F;+. Define H as follows:

V(H) = V(FS)UV(Pylz,w]), A(H) = A(FS) U A(Py[z, w)).

2.2 Structure of Shortest Paths 49

We claim that, for every vertex x in P,[z,w], the unique (s,z)-path in H
is a shortest (s,2)-path in D. By Proposition 2.2.1, P,|[s,z] is a shortest
(s,z)-path in D. Since z € V(F3*), the unique (s,z)-path Q in H has the
same length as P,,[s,z]. Therefore, the length of the path QP,,[z,z] is equal
to the length of the path P,,[s, xz]. Now observe that QP,[z,2] is the unique
(s,x)-path in H. We set F* := H and use an analogous approach to include

all vertices of D and preserve the desired property of Fy. O

Our constructive proof above implies the existence of a polynomial al-

gorithm to construct the final out-branching, starting from a collection of

shortest paths from s to all other vertices. We call such an out-branching a

shortest path tree from s. As we will see in Exercises 2.8 and 2.9, the

algorithms described in the next section can be easily modified so that they

construct a shortest path tree directly, while searching for the shortest paths.

If we allow D to have negative weight cycles, then we obtain the following

result for shortest paths (recall that in the presence of negative cycles the

length of a shortest walk may not be defined, whereas the length of a shortest

path is still well-defined).

Proposition 2.2.3 It is NP-hard to find a shortest path between a pair of

vertices of a given weighted digraph.

Proof: Let D = (V, A) be an (unweighted) digraph and let z # y be vertices

of D. Set c(wv) = —1 for every arc uv € A. We have obtained a weighted

digraph D’ = (V,A,c). Clearly, D’ has an (z,y)-path of length 1 — n if

and only if D has a hamiltonian (2, y)-path. Since the problem of finding

a hamiltonian (x, y)-path is ’P-complete (see Exercise 6.3) and D’ can be
constructed from D in polynomial time, our claim follows. oO

Clearly D' above has a negative cycle if and only if D has any directed

cycle. As we will show in Subsection 2.3.2, we can find a longest path in an

acyclic digraph in polynomial time, using a reduction to the shortest path

problem.

In Section 2.3, we will see that one can check whether a weighted digraph

has a negative cycle in polynomial time. However, unless P = NP, this

result cannot be extended to weighted mixed graphs, because of the following
theorem by Arkin and Papadimitriou [28].

Theorem 2.2.4 Given a weighted mixed graph, it is NP-complete to deter-

mine whether a negative cycle exists. 0

It follows from Proposition 2.2.3 that it is MP-hard to find a shortest path

between a pair of vertices in a weighted mixed graph. More interestingly,

Arkin and Papadimitriou showed that the same is true even if we restrict

ourselves to weighted mixed graphs without negative cycles [28].

50 2. Distances

2.3 Algorithms for Finding Distances in Digraphs

In this section we describe well-known algorithms to find distances in weighted

and unweighted digraphs. Almost all algorithms which we describe are for

finding the distances from a fixed vertex of a digraph to the rest of the ver-

tices. If the given digraph is unweighted then one can use the very simple and

fast breadth-first search algorithm, that is introduced in Subsection 2.3.1. If

the given digraph D is weighted and acyclic, another fast and simple approach

based on dynamic programming is provided in Subsection 2.3.2. When D is

an arbitrary digraph, but its weights are non-negative, Dijkstra’s algorithm

introduced in Subsection 2.3.3 solves the problem. When the weights may be

negative, but no negative cycle is allowed, the Bellman-Ford-Moore algorithm

given in Subsection 2.3.4 can be applied. This algorithm has the following

additional useful property: it can be used to detect a negative cycle (if one

exists).
If we are interested in finding the distances between all pairs of vertices of

a weighted digraph D, we can apply the Bellman-Ford-Moore algorithm from

every vertex of D. However, there is a much faster algorithm, due to Floyd

and Warshall. We describe the Floyd-Warshall algorithm in Subsection 2.3.5.

The reader can find comprehensive overviews of theoretical and practical

issues on the topic in the papers [153] by Cherkassky and Goldberg and [154]

by Cherkassky, Goldberg and Radzik.

2.3.1 Breadth-First Search (BFS)

This approach allows one to find quickly the distances from a given vertex s

to the rest of the vertices in an unweighted digraph D = (V, A). BFS is based
on the following simple idea. Starting at s, we visit each vertex x dominated

by s. We set dist’(s,z) := 1 and s := pred(z) (s is the predecessor of z).

Now we visit all vertices y not yet visited and dominated by vertices x of

distance 1 from s. We set dist’(s,y) := 2 and x := pred(y). We continue

in this fashion until we have reached all vertices which are reachable from s

(this will happen after at most n—1 iterations, by Proposition 1.4.1). For the

rest of the vertices z (not reachable from s), we set dist’(s, z) := oo. In other

words, we visit the first (open) out-neighbourhood of s, then its second (open)

out-neighbourhood, etc. A more formal description of BFS is as follows. At

the end of the algorithm, pred(v) = nil means that either v = s or v is not

reachable from s. The correctness of the algorithm is due to the fact that

dist(s,x) = dist’(s,x) for every 2 € V. This will be proved below.

BFS

Input: A digraph D = (V, A) and a vertex s € V.

Output: dist'(s,v) and pred(v) for all v € V.

1. For each v € V set dist'(s,v) := 00 and pred(v) := nil.

2.3 Algorithms for Finding Distances in Digraphs 51

2. Set dist'(s,s) := 0. Create a queue Q consisting of s.

3. While Q is not empty do the following. Delete a vertex u, the head of Q,

from Q and consider the out-neighbours of u in D one by one. If, for an

out-neighbour v of u, dist’(s, v) = 00, then set dist’(s,v) := dist'(s,u)+1,
pred(v) := u, and put v to the end of Q.

If D is represented by adjacency lists, the complexity of the above algo-

rithm is O(n + m). Indeed, Step 1 requires O(n) time. The time to perform

Step 3 is O(m) as the out-neighbours of every vertex are considered only once
and)°.cy d* (x) =m, by Proposition 1.2.1.

To prove the correctness of BFS, it suffices to prove that dist(s,z) =

dist'(s,x) for every x € V. By Steps 2 and 3 of the algorithm, dist(s,r) <
dist'(s, x). Indeed, vj v2...ug, where v; = s, vy = z and y; = pred(v;41) for

every i = 1,2,...,k—1, is an (s,z)-path. By induction on dist(s, x), we prove

that, in fact, the equality holds. If dist(s,z) = 0, then x = s and the result

follows. Suppose that dist(s,2) = k > 0 and consider a shortest (s,z)-path
P. Let y be the predecessor of @, i.e., y = tp. By the induction hypothesis,

dist’(s,y) = dist(s, y) = k — 1. Since x is dominated by y , by the algorithm,
dist'(s, x) < dist'(s,y) +1 =k = dist(s,r). Combining dist(s, x) < dist’(s, x)
with dist'(s,z) < dist(s,x), we are done.

The BFS algorithm allows one to compute the radius, out-radius, in-

radius and diameter of a digraph in time O(n? + nm). Using the array pred

one can generate the actual paths. We finish this section with the following

two important observations which are stated as propositions. Proposition

2.3.1 follows from the description of BFS. Proposition 2.3.2 has been already

proved. In both propositions D = (V, 4A) is a directed multigraph with a

specified vertex s.

Proposition 2.3.1 Let U be the set of vertices reachable from s. Then

(U,B), where B = {(pred(v),v) : v € U — 8} is an out-branching in D(U)
with root s. Oo

We call the out-branching in the above proposition a BFS tree of D(U)
with root s, or simply a BFS tree from s. It is instructive to compare

Proposition 2.3.1 with Theorem 2.2.2.

Proposition 2.3.2 Let dist(s,V) < oo. For every non-negative integer p <

dist(s,V), we have Nt?(s) ={v EV: dist(s,v) =p}. Oo

Given an directed multigraph D = (V, A) and a vertex s we call sets

N°(s),N*(s),N*9(s),N7*°(s),.-.,

the distance classes from s. By the proposition above, N*t*(s) consists

precisely of those vertices whose distance from s is 7. See Figure 2.2 for an

illustration of a BFS tree and the corresponding distance classes.

Summarizing the discussion above we obtain the following.

52 2. Distances

Theorem 2.3.3 When applied to a directed multigraph D and a verter s in

D, the BFS algorithm correctly determines a BFS tree T from s in D in time

O(n+m). Furthermore, the distance classes from s in D are the same as the

distance classes from s inT. 0

WwW zr Zz

Figure 2.2 A digraph D with a BFS tree indicated by the fat arcs. The distance
classes from s are N°(s) = s; N+(s) = {u,w}, N*?(s) = {v, x,y} and NT°(s) =

{2}.

2.3.2 Acyclic Digraphs ©

Let D = (V,A,c) be an acyclic weighted digraph. We will show that the

distances from a vertex s to the rest of the vertices can be found quite easily,

using dynamic programming. Without loss of generality, we may assume that

the in-degree of s is zero. Let LC = v1, V2,...,Un be an acyclic ordering of the

vertices of D such that v; = s. Clearly, dist(s,v;) = 0. For every i, 2<i<n,

we have

dist(s, vj) = ser eap ae + c(vj,vi) = vj € N~(ui)} if N~ (vi) 40
(oe) otherwise.

(2.3)
The correctness of this formula can be shown by the following argument.

We may assume that v; is reachable from s. Since the ordering CL is acyclic,

the vertices of a shortest path P from s to v; belong to {v1,v2,..., vi}. Let

uz be the vertex dominating v; in P. By induction, dist(s,v,%) is computed

correctly using (2.3). The term dist(s,v,) + c(vz,u;) is one of the terms in
the right-hand side of (2.3). Clearly, it provides the minimum.

The algorithm has two phases: the first finds an acyclic ordering, the

second implements Formula (2.3). The complexity of this algorithm is O(n +
m) since the first phase runs in time O(n+m) (see Section 4.1) and the second
phase requires the same asymptotic time due to the formula }),-y d(x) =m
in Proposition 1.2.1. Hence we have shown the following.

Theorem 2.3.4 The shortest paths from a fixed vertex s to all other vertices

can be found in time O(n + m) for acyclic digraphs. Oo

2.3 Algorithms for Finding Distances in Digraphs 53

We can also find the length of longest (s,x)-paths in linear time in any

acyclic digraph, by replacing the weight c(uv) of every arc uv with —c(uv). In

particular, we can see immediately that the longest path problem for acyclic

digraphs is solvable in polynomial time. In fact, a longest path of an acyclic

digraph can always be found in linear time:

Theorem 2.3.5 For acyclic digraphs a longest path can be found in time

O(n +m).

Proof: Exercise 2.6. a

2.3.3 Dijkstra’s Algorithm

The next algorithm, due to Dijkstra [192], finds the distances from a given
vertex s in a weighted digraph D = (V,A,c) to the rest of the vertices,

provided that all the weights of arcs are non-negative.

In the course of the execution of Dijkstra’s algorithm, the vertex set of D

is partitioned into two sets, P and Q. Moreover, a parameter 6, is assigned

to every vertex uv € V. Initially all vertices are in Q. In the process of the

algorithm, the vertices reachable from s move from Q to P. While a vertex

v is in Q, the corresponding parameter 6, is an upper bound on dist(s, v).

Once v moves to P, we have 6, = dist(s,v). A formal description of Dijkstra’s

algorithm follows.

Dijkstra’s algorithm

Input: A weighted digraph D = (V, A,c), such that c(a) > 0 for every a € A,

and a vertex s € V.

Output: The parameter 6, for every v € V such that 6, = dist(s, v).

iwc —).Q -— V0, — 0 and 0,..= co for every uc V —s.

2. While Q is not empty do the following.

Find a vertex v € Q such that 6, = min{d,: u € Q}.
Se) =U, — UY.

dy, := min{d,, dy + c(v, u)} for every u€E QN NT (v).

To prove the correctness of Dijkstra’s algorithm, it suffices to show that

the following proposition holds.

Proposition 2.3.6 At any time during the execution of the algorithm, we

have that

(a) For every v € P, by = dist(s, v).
(b) For every u € Q, 5, is the distance from s to u in the subdigraph of D

induced by PUu.

54 2. Distances

Proof: When P = 0, 6, = dist(s, s) = 0 and the estimates 6, = 00, u € V-s,

are also correct.

Assume that P = Po and Q = Qo are such that the statement of this

proposition holds. If Qo = 9, we are done. Otherwise, let v be the next

vertex chosen by the algorithm. Since Part (b) follows from Part (a) and

the way in which we update 6, in the algorithm, it suffices to prove Part

(a) only. Suppose that (a) does not hold for P = Po Uv. This means that

dy > dist(s,v). Let W be a shortest (s,v)-path in D. Since dy > dist(s,v), W

must contain at least one vertex from Q = Qo — v. Let u be the first vertex

on W which is not in Py. Clearly, u # v. By Proposition 2.2.1 and the fact

that u € W, we have dist(s,u) < dist(s, v). Furthermore, since the statement

of this proposition holds for Po and Qo, we obtain that dist(s,u) = 6,. This

implies that 6, = dist(s,u) < dist(s,v) < dy. In particular, 6, < 6,, which

contradicts the choice of v by the algorithm. O

Each time a new vertex v is to be chosen we use O(n) comparisons to find

min{é, : u € Q}. Updating the parameters takes O(n) time as well. Since

Step 2 is performed n—1 times, we conclude that the complexity of Dijkstra’s

algorithm is O(n?). In fact, Dijkstra’s algorithm can be implemented (using

so-called Fibonacci heaps) in time O(nlogn + m) (see the paper [278] by

Fredman and Tarjan). ;

Summarizing the discussion above we obtain

Theorem 2.3.7 Dijkstra’s algorithm determines the distances from s to all

other vertices in time O(nlogn +m). 0

Figure 2.3 illustrates Dijkstra’s algorithm.
It is a challenging open question whether there exists a linear algorithm

for calculating the distances from one vertex to all other vertices in a given

digraph with no negative cycles. It is easy to see that Dijkstra’s algorithm

sorts the vertices according to their distances from s. Fredman and Tarjan

[278] showed that, if Dijkstra’s algorithm can be implemented as a linear time

algorithm, then one can sort numbers in linear time. Thorup [715] showed
that the opposite claim holds as well: if one can sort numbers in linear time,

then Dijkstra’s algorithm can be implemented as a linear time algorithm.

Currently, no one knows how to sort in linear time?.

In the case when D is the complete biorientation of an undirected graph

G and c(u,v) = c(v,u) holds for every arc uv of D, Thorup [716] recently
gave a linear algorithm for calculating shortest paths from a fixed vertex to all

other vertices. Thorup’s algorithm avoids the sorting bottleneck by building a

hierarchical bucketing structure, identifying vertex pairs that may be visited

in any order.

2 Some readers may be confused about this as they may know of a lower bound
of 2(nlog n) for sorting a set of n numbers. However, this lower bound is only
valid for comparison based sorting. There are algorithms for sorting n numbers
that are faster than (2(nlog n), see e.g. the paper [25] by Anderson.

2.3 Algorithms for Finding Distances in Digraphs 55

(9)

Figure 2.3 Execution of Dijkstra’s algorithm. The white vertices are in Q; the
black vertices are in P. The number above each vertex is the current value of the
parameter 6. (a) The situation after performing the first step of the algorithm. (b)—
(g) The situation after each successive iteration of the loop in the second step of
the algorithm. The fat arcs indicate the corresponding shortest path tree found by
the algorithm if extended as in Exercise 2.8.

2.3.4 The Bellman-Ford-Moore Algorithm

This algorithm originates from the papers [102] by Bellman, [245] by Ford
and [572] by Moore. Let D = (V, A,c) be a weighted digraph, possibly with

arcs of negative weight. The algorithm described below can be applied to find

the distances from a given vertex s in D to the rest of the vertices, provided

D has no negative cycle.

56 2. Distances

Let 6(v,m) be the length of a shortest (s,v)-path that has at most m

arcs. Clearly, 5(s,0) = 0 and 6(v,0) = co for every v € V —s. Let v€ V. We

prove that for every m > 0,

6(v,m + 1) = min{d(v,m), min{d(u,m) + c(u,v): ue N~(v)}}. (2.4)

We show (2.4) by induction on m. For m = 0, (2.4) trivially holds. For

m > 1, (2.4) is valid due to the following argument. Assume that there is a

shortest (s,v)-path P with no more than m+1 arcs. If P has at most m arcs,

its length is 5(v,m), otherwise P contains m + 1 arcs and, by Proposition

2.2.1, consists of a shortest (s,u)-path with m arcs and the arc uv for some

u € N~(v). If every shortest (s,v)-path has more than m + 1 arcs, then there

is no in-neighbour wu of v such that 6(u,m) < oo. Therefore, Formula (2.4)

implies correctly that 6(v,m +1) = o.

Since no path has more’than n — 1 arcs, 6(v,n — 1) = dist(s,v) for every

v€V-—-s. Thus, using (2.4) for m = 0,1,...,n — 2, we obtain the distances

from s to the vertices of D. This results in the following algorithm.

The Bellman-Ford-Moore algorithm

Input: A weighted digraph D = (V, A,c) with no negative cycle, and a fixed

vertex s € V.
Output: The parameter 6, for every v € V such that 6, = dist(s,v) for all

UeVe

1. Set 6, := 0 and 6, := 00 for every v € V — s.

2. Fort =1ton-—1 do: for each vu € A update the parameter 6, by setting

dy := min{d,, dy + c(v, u)}.

It is easy to verify that the complexity of this algorithm is O(nm). Hence

we have

Theorem 2.3.8 When applied to a weighted directed graph D = (V,A,c)

with no negative cycle and a fixed verter s € V, the Bellman-Ford-Moore

algorithm correctly determines the distances from s to all other vertices in D

in time O(nm).. 0

Figure 2.4 illustrates the execution of the Bellman-Ford-Moore algorithm.

Chécking whether D has no negative cycle can be accomplished as fol-

lows. Let us assume that D is strong (otherwise, we will consider the strong

components of D one by one; an effective algorithm to build the strong com-

ponents is described in Chapter 4). Let us append the following additional

step to the above algorithm:

3. For every arc vu € A do: if 6, > 6, + c(vu) then return the message
‘the digraph contains a negative cycle’.

2.3 Algorithms for Finding Distances in Digraphs 57

Figure 2.4 Execution of the Bellman-Ford-Moore algorithm. The vertex labellings
and arc weights are given in the first digraph. The values of the parameter 6 are
given near the vertices of the digraphs (a)-—(f). In the inner loop of the second step
of the algorithm the arcs are considered in the lexicographic order: ab, ac, ba, bc,
cb, da, dc, ec, ed, sd, se. (a) The situation after performing the first step of the
algorithm. (b)-(f) The situation after each of the 5 successive executions of the
inner loop in the second step of the algorithm.

Theorem 2.3.9 A strong weighted digraph D has a negative cycle if and

only if Step 3 returns its message.

Proof: Suppose that D has no negative cycle. By the description of Step

2 and Proposition 2.2.1, 6, < dy + c(vu) for every arc vu € A. Hence, the

message will not be returned.

Assume that D has a negative cycle Z = vjv2...vgv,. Assume for the

purpose of contradiction that Step 3 of the Bellman-Ford-Moore algorithm

58 2. Distances

does not return the message. Thus, in particular, 6), < dy,_, + ¢(vj—1v;) for

every i= 1,2,...,k, where vp = vx. Hence,

k

DS thy ss
oil 4

Since the first two sums in the last inequality are equal, we obtain 0 <

ae , C(uj-10;) = c(Z); a contradiction. Oo
—

Oper = ye e(vj-101).

1

2.3.5 The Floyd-Warshall Algorithm

The above algorithms can be run from all vertices to find all pairwise dis-

tances between the vertices of a strong digraph D. However, if D has nega-

tive weight arcs, but does not contain a negative cycle, we may only use the

Bellman-Ford-Moore algorithm n times, which will result in O(n?m) time

(see Exercise 2.19 for a faster method). The Floyd-Warshall algorithm will
find the required distances faster, in O(n*) time. According to Skiena [674],
in practice, the algorithm even outperforms Dijkstra’s algorithm applied from

n vertices (when the weights in D are all non-negative) due to the simplicity

of its code (and, thus, smaller hidden constants in the time complexity). The
algorithm originates from the papers [243] by Floyd and [734] by Warshall.
We assume that we are given a strong weighted digraph D = (V,A,c) that

has no negative cycle. In this subsection, it is convenient to assume that

Va 1s te

Denote by 67? the length of a shortest (i, j)-path in D({1,2,...,m—1}U

{i,7}), for all 1 < m <n-1. In particular, bi; is the length of the path 77, if

it exists. Observe that a shortest (i, j)-path in D({1,2,...,m}U {i, j}) either
does not include the vertex m, in which case jt = 67?, or does include it,

aj?

in which case 67?** = 6m + 6™.. Therefore,

batt = min{dj7, dim + Om; }- (2.5)

Observe that 67° = 0 for all i = 1,2,...,n, and, furthermore, for all pairs

i,j such that i # j, dj; = c(i,j) if ij € A and 4}, = oo, otherwise. Formula
(2.5) is also correct when there is no (i, j)-path in D({1,2,...,m}U {i, j}).
Clearly, le is the length of a shortest (7, 7)-path (in D). It is also easy to

verify that O(n?) operations are required to compute opt? for all pairs i, 7.

The above assertions can readily be implemented as a formal algorithm
(the Floyd-Warshall algorithm, see Exercise 2.14). The Floyd-Warshall al-
gorithm allows one to find the diameter and radius of a weighted digraph
without cycles of negative weight in O(n*) time. Using the algorithm, we
may check whether D has no negative cycle. For simplicity let us assume, as
above, that D is strong. Then the verification can be based on the following
theorem (see, e.g., Lawler’s book [509]) whose proof is left to the interested
reader as Exercise 2.15.

2.4 Inequalities Between Radius, Out-Radius and Diameter 59

Theorem 2.3.10 A weighted digraph D has a negative cycle if and only if

O° <0 for some m,i € {1,2,...,n}. Oo

2.4 Inequalities Between Radius, Out-Radius and

Diameter

For a network representing a certain real-world system, it is desirable to have

a small diameter as it increases the reliability of the system (see e.g., Fiol,

Yebra and Alegre [236]). Small out-radius means that the system has an ele-
ment that can quickly reach the rest of the elements (for example, by sending

a message to them). In-radius and radius have similar interpretations. How-

ever, networks representing real-world systems normally do not have many

arcs to avoid too costly constructions. The objectives of minimizing the diam-

eter or/and radius (or out-radius) and the size of a digraph clearly contradict
each other. Therefore, it is important for a designer to know what kind of

trade-off can be achieved. The inequalities of this section give some insight

into this problem.

2.4.1 Radius and Diameter of a Strong Digraph

It is well-known that, in a connected undirected graph G, we have rad(G) <

diam(G) < 2rad(G). This inequality holds also for strong digraphs (for our
definition of radius).

Proposition 2.4.1 For a strong digraph D = (V,A), we have rad(D) <

diam(D) < 2rad(D).

Proof: Clearly, rad(D) < diam(D). Let x be a vertex of D such that
(dist(x, V) + dist(V,z))/2 = rad(D), and let y, z be vertices of D such that
dist(y, z) = diam(D). Since dist(y, z) < dist(y, 2) + dist(ax, z) < 2rad(D), we
conclude that diam(D) < 2rad(D). Oo

The following simple bound (called the Moore bound) on the order of a
strong digraph is important in certain applications [236]. We leave its proof

to the reader (Exercise 2.25).

Proposition 2.4.2 Letn, d andt be the order, the maximum out-degree and

the diameter, respectively, of a strong digraph D. Thenn < 14+d+d?+...+d'.
O

The Moore bound is attained for d = 1 by the cycle Cian and for t = 1 by the

complete digraph on d+1 vertices. However, it is well-known (see Bridges and

Toueg [136] and Plesnik and Zndm [609]) that this bound cannot be attained
for d > 1 andt > 1. Therefore,

60 2. Distances

dt} =]!

Ur d-1

for d > 1 and t > 1. After simple algebraic transformations, we obtain the

following.

Proposition 2.4.3 Letn, d andt be the order, the: maximum out-degree and

the diameter, respectively, of a strong digraph D. Ifd > 1 andt > 1, then

t > |logy(n(d —1) + 1)].

0

The cases d = 2,3 have received special consideration. For d = 2, Miller

and Fris [566] proved that there is no 2-regular digraph of diameter t > 3
and order n = d+ d? +... +d‘. Moreover, for most values of k no 2-regular
digraphs of order n = d+d* +...+d' —1 exists (see Miller [565]). 3-regular
digraphs of order n = d+ d?+...+d°, with d = 3, have been studied by
Baskoro, Miller, Plesnik and Zndm [96].

2.4.2 Extreme Values of Out-Radius and Diameter

In this subsection, we will consider results on the following problems: what

is the minimum (maximum) value of the out-radius and diameter of a strong
digraph with n vertices and m arcs?

We start with the minimization problem for the out-radius. Theorem 2.4.4

is due to Goldberg [327].

Theorem 2.4.4 Let D be a strong digraph and let f(n,m) = = '

Then rad*(D) > f(n,m). For all integers m > n > 2, there exists a digraph

D(n,m) (which we call the Goldberg digraph D(n,m)) of order n and size m
whose out-radius is f(n,m).

Proof: Let v be a vertex of D such that dist(v, V) = rad*(D), and let T be
a BFS tree of D with root v. Let also W be the set of vertices w € V such

that df(w) = 0. For a vertex w € W, let P(w) denote the set of vertices,
except for v, in the (v, w)-path of T. Then,

n-1=|Uwew P(w)| < S) |P(w)| < |Wldist(v, V) = |W|rad* (D).
wew

Thus,

|W |radt(D) >n—-1. (2.6)

Since D is strong, every vertex w € W is the tail of an arc in D — A(T).
Being a tree, T has n — 1 arcs (see Exercise 1.39). Hence, |W| < m—(n—1).
Combining this with (2.6), we obtain that radt(D) > f(n,m).

2.5 Maximum Finite Diameter of Orientations 61

Set r= n—1-—(m—n+1)(f(n,m) — 1). It is not difficult to verify that
0<r<m-—n+l. The digraph D(n,m) is constructed as follows. Take r

cycles of length f(n,m) +1 and m—n-+1-—r cycles of length f(n,m), mark

a vertex in each cycle by v, and then identify all m—n-+1 vertices marked by

v. Since r > 0, at least one of the cycles in D(n,m) has f(n,m) +1 vertices.

Thus, dist(v, V(D(n,m))) = f(n,m). Hence, rad*+(D(n,m)) = f(n,m). 0

Figure 2.5 depicts D(10, 14). Clearly, rad*(D(10, 14)) = 2.

Figure 2.5 The Goldberg digraph D(10,14).

Being quite simple, the problem of finding a tight upper bound for the

out-radius of a digraph of order n and size m has not been studied in the

literature. The following two theorems solve the problems of establishing
lower and upper bounds for the diameter of a strong digraph. Theorem 2.4.5

was proved by Goldberg [328]; Theorem 2.4.6 was derived by Ghouila-Houri
[314].

Theorem 2.4.5 Let D be a strong digraph of order n and sizem,m>n-+l,

and let g(n,m) = [2=2]. Then diam(D) > g(n,m). This bound is the best
m—n+l1

possible. O

Theorem 2.4.6 Let D be a strong digraph of order n and size m. Then

diam(D) < n—1, ifn < m < (n? +n — 2)/2 and diam(D) < [n+ $ -

2m —n? —n+ +2], otherwise. |

Oriented graphs of diameter 2 and minimum size (for fixed order n) were
discussed by Fiiredi, Horak, Pareek and Zhu [285].

2.5 Maximum Finite Diameter of Orientations

For a connected bridgeless multigraph G, let G’ denote an orientation of G

having maximum finite diameter. Let Ip(G) stand for the length of a longest
path of G. The following theorem was obtained by Gutin [366].

62 2. Distances

Theorem 2.5.1 Let G be a connected bridgeless graph. Then, diam(G') =

Ip(G).

Proof: For every strongly connected orientation Go of G we obviously have

diam(Go) < lp(G). Hence, to prove this theorem it suffices to construct some

orientation G, of G with the property diam(G1) = lp(G).

Let P = 2122...2,% be a longest path of G, and associate each vertex

x; with a label r(z;) = i. Since G has no bridge, the edge rp_17,% is not a

bridge. Consequently, there exists an ({z1,22,---,£-1},2%)-path R; which

is different from the path z,_;2,. Let x; be the initial vertex of R1. Define

r(v) = i for all vertices v € V(Ri) — {xx}. Since z;_17; is not a bridge

there exists an ({21,22,..-,Zi-1}, {@i, Zi41,---, 7%} UV(R1))-path Re which

is different from the path z;_12;. If z; is the initial vertex of Rz (observe

that j <i), then define r(v) = j for all vertices v in Rz besides the terminal

one. Analogously, we can build paths R3, R4,... and define the label r(.) of

the vertices of R3, R4,... until we obtain a path R, with the initial vertex 7,

and set r(v) = 1 for all vertices v in R, but the terminal one.

Now, we orient the path P from x; to zx (we obtain the directed path Q),

and each path R; (i = 1,2,...,s) from its end vertex having a bigger label

to its other end vertex (we derive the path Q;). It is easy to check that the
oriented graph induced by the arcs of the paths U_, Q; UQ is strong. Define

X =V(G) — (Ui V (Ri) UV (P))

and suppose that X # @ (the case X = @ is easier). Since G has no bridge

there exists some vertex v € X and a pair of paths from v to vertices in

V(G) — X with no common vertices (besides v), see Exercise 7.18. We merge
these two paths to one (path $;). Now orient the last path from its end vertex

having the bigger label to the one having the smaller label. If the labels of

the two end vertices coincide then the orientation is arbitrary. The labels of

all other vertices of the path S; are the same as the label of terminal vertex

of this path.

If X — V(S,) 4 @ we will continue the construction of paths S2,S3,...
passing over the rest of the vertices of X until Uf_,V(S;) = X, where the

orientations and labels are chosen in the same manner. Finally orient each

unoriented edge uv from u to v if r(u) > r(v) and from v to u otherwise.
Let D denote the obtained oriented graph. The digraph D contains a

strongly connected spanning subgraph. Therefore, D is strongly connected.

Since all the arcs (u,w) of D, besides those in P, are oriented such that
r(u) > r(w), there is no path from x; to zz having length less than k — 1.

Hence, diam(D) = k — 1. Oo

Since the longest path problem for undirected graphs is W’P-hard (see the

book [303] by Garey and Johnson), the last theorem implies that the problem

to find a maximum finite diameter orientation of a graph is V’P-hard as well.

2.6 Minimum Diameter of Orientations of Multigraphs 63

2.6 Minimum Diameter of Orientations of Multigraphs

The same complexity result holds for the following problem: find a minimum

diameter orientation of a graph. Indeed, the following assertion holds.

Theorem 2.6.1 (Chvatal and Thomassen) /164] It is NP-complete to
decide whether an undirected graph admits an orientation of diameter 2.

For a bridgeless multigraph G, let diammin(G) denote the minimum di-

ameter of an orientation of G. We will present a minor modification of the

original proof of Theorem 2.6.1 by Chvatal and Thomassen [164]. The main
difference is in the use of Lemma 2.6.2 (which is applied to two different

results in this section). Define a bipartite tournament BT,, with partite

sets U,W, each of cardinality s, as follows. Let U = {u1,u2,...,us} and

W = {w1,w2,...,ws}. The vertex u; dominates only vertices w;, wi41,...,

Wi+|s/2|-1 (the subscripts are taken modulo s) for every i = 1,2,...,s.

Lemma 2.6.2 Let s > 2. The diameter diam(BT;) equals 3. In particular,

dist(U, U) = dist(W, W) = 2.

Proof: Clearly, it suffices to show that dist(U,U) = dist(W,W) = 2. This
follows from the fact that, for every i # j, we have N*(u;) — Nt(u;) 4 0
and, hence, there is a vertex w € W such that ujow—u;. 0

Lovasz [520] proved that it is WP-hard to decide whether a hypergraph of

rank? 3 is 2-colourable. By the result of Lovdsz, Theorem 2.6.1 follows from

the next theorem.

Theorem 2.6.3 Given a hypergraph H of rank 3 and order n, one can con-

struct in polynomial time (in n) a graph G such that diampin(G) = 2 if and
only if H is 2-colourable.

Proof: Let k be the integer satisfying 8 < k < 11 and n+k is divisible by 4.

Let Ho be a hypergraph obtained from H by adding k new vertices v1,..., Ux.

Moreover, append three new edges {{v;, vi41} : i = 1,2,3} to Ho if H has an
odd number of edges, and add four new edges {{u;, vi4i} : 7 = 1,2,3,4} to

Hp otherwise. Observe that Hp has an even number of edges, which is at least

four. To construct G, take disjoint sets R and Q such that the elements of R

(Q) are in a one-to-one correspondence with the vertices (the edges) of Ho.
Let G(R) and G(Q) be complete graphs, and p € R and q € Q be adjacent if

and only if the vertex corresponding to p belongs to the edge corresponding

to q (in Ho).
Append four new vertices w1, w2,w3,w4 and join each of them to all the

vertices in RU Q. Finally, add a new vertex x and join it to all the vertices

3 Recall that the rank of a hypergraph is the cardinality of its largest edge.

64 2. Distances

in R. We show that the obtained graph G has the desired property. (Clearly,

G can be constructed in polynomial time.)
Assume that G admits an orientation G* of diameter 2. For a vertex

u € R, set f(u) = 0 if and only if zu in G*; otherwise, f(u) = 1. Since
distg- (2, q) = 2 (distg-(q,x) = 2, respectively) for each q € Q, every edge e

of H contains a vertex y such that f(y) = 0 (f(y) = 1, respectively). Thus

H is 2-colourable.
Now assume that H is 2-colourable. Then Ho admits a 2-colouring which

generates a partition R = R, U R2 such that every edge of Hp has a vertex

corresponding to an element from R; and |R;| > 4 (for every i = 1,2). An
orientation G' of G of diameter 2 is defined as follows. Orient the edges in

each complete graph G(L) € {G(Ri),G(R2),G(Q)} such that the resulting
tournament contains the bipartite tournament BT\;). Let A;, B; be the par-

tite sets of the bipartite tournaments in G(R;) (i = 1,2) and let A, B be the
partite sets of the bipartite tournament in G(Q). The rest of the edges in G
are oriented as follows:

z— Ry R22, Ri>Q>Ro,

(Ay U A2)>w1A, Bow,>(B, U Bo),

(Ay U A2)>w2>B, A>w2->(B; U Bo),

(By U Bz)-w3- A, B-w3(A, U Ad),

(By U B2)>w4B, A>w4-(A1 U A2).

Using Lemma 2.6.2, it is not difficult to verify that diam(G’) = 2
example, to show that distg:(A1,V(G’)) < 2 and distg:(V(G'), A1) < 2, it
suffices to observe that distg/(A,, A,) = 2 and

By, UR2UQU {w, we} C NT(A)),

{x,w3,wa} C N*(By UR, UQU {wy, w2})

By, U {z, w3, wa} C N7~(Aj),

N~ (Bi U {z,w3,wa}) C R2 UQU {wy, wo}.

O

Chvatal and Thomassen [164] dealt with the following parameter which
we call the strong radius. The strong radius of a strongly connected digraph
D = (V, A), srad(D), is equal to

min{max{dist(v, V), dist(V,v)} : vu € V}.

Chvatal and Thomassen [164] showed that it is MP-hard to decide whether
a graph admits a strongly connected orientation of strong radius 2. The
strong radius is of interest because, in particular, srad(D) < diam(D) < 2srad(D) for every strongly connected digraph D (this follows from the fact that rad(D) < srad(D) for every strong digraph D and Proposition 2.4.1).

2.6 Minimum Diameter of Orientations of Multigraphs 65

Following [164], we prove a sharp upper bound for the value of the strong

radius of a strong orientation of a bridgeless connected multigraph. The first

part of the proof of Theorem 2.6.4 is illustrated in Figure 2.6.

Figure 2.6 Constructing the orientation D of H in the proof of Theorem 2.6.4.
The integers on arcs indicate the step number in the process of obtaining D.

Theorem 2.6.4 /164] Every bridgeless connected multigraph G = (V, E) ad-

mits an orientation of strong radius at most (rad(G))? + rad(G).

Proof: We will show a slightly more general result. Let u € V be arbi-

trary and let distg(u,V) =r, then there is an orientation L of G such that

dist, (u,V) <r? +r and dist; (V,u) <r? +r.
Since G is bridgeless, every edge uv is contained in some undirected cycle;

let k(v) denote the length of a shortest cycle through wv. It is not difficult to
prove (see Exercise 2.28) that, for every v € N(u),

k(v) < 2r +1. (2am)

We claim that there is a subgraph H of G and an orientation D of H with

the following properties:

(a) Ne(u) C V(H).
(b) For each v € N(u), D has a cycle C, of length k(v) containing either wv

or vu.
(c) D is the union of the cycles Cy.

Observe that by this claim and (2.7), we have

max{dist p(u, V(D)), distp(V(D), u)} < 2r. (2.8)

We demonstrate the above claim by constructing H and D step by step.

Let uv be an edge in G and let Z, be an undirected cycle of length k(v)

through uv. Orient Z, arbitrarily as a directed cycle and let C, denote the

cycle obtained this way. Set H := Z,, D := Cy. This completes the first

step. At step i(> 2), we choose an edge uw such that w ¢ V(H) and an

undirected cycle Z = wiw2...w,w1 in G such that w; = u, we = w, and

k = k(w). If no vertex in Z, — u belongs to H, then append the directed

_ cycle Cy = w, we... ww to D and the cycle Z to H. Go to the next step.

66 2. Distances

Otherwise, there is a vertex w; (2 <i < k) such that w; € V(H) (and

hence w; € V(D)). Suppose that w; has the least possible subscript with this

property. Since w; € V(D), there is some neighbour v of u such that w; € Cy

(Recall that C, is a directed cycle.) Let Cy = viv2...vev1, where u = 01,

v € {vo,u4}, and w; = v; for some j. By considering the converse of D, if

necessary, we may assume, without loss of generality, that v = v2. Now we

consider two cases.

Case 1: w, # v. In this case, define the directed cycle Cy = uw2w3

... wiCy[v;41,u] and observe that C,, has length k(w). (Indeed, if C, had

more than k(w) arcs, the path C,,[w;,u] would be longer than the path
Py. = wiwij41...wpu. In that case, the walk Z,[u,v;]P2[wi+1, u] containing

uv would be of length less than k(v); a contradiction.) Let Z, := UG(Cy).

Add C, to D and Z, to H. Go to the next step.

Case 2: w; = v. In this case, define the directed cycle C, as follows: Cy =

Ge [u, v;]wi_1 wie ...wW2u and observe that C,, has length k(w) (the proof of

the last fact is similar to the one given in Case 1). Let Z,, := UG(C,,). Add
Cy to D and Z, to H. Go to’the next step.

Since V(G) is finite and we add at least one new vertex to H at each step,

this process will terminate with the desired subgraph H and its orientation

D. Thus, the claim is proved.

Consider the directed multigraph D. In G, contract all the vertices of D

into a new vertex u* (the operation of contraction for undirected multigraphs

is similar to that for directed multigraphs) and call the resulting multigraph

G*. Note that G* is bridgeless and that by the property (a) of the above

claim, we obtain distg-(u*,V(G*)) < r—1. By the induction hypothesis,
there is an orientation L* of G* such that

distz+(u*, V(L*)) <r? —r and distz-(V(L*),u*) <r? —r. (2.9)

Consider an orientation L of G obtained by combining L* with D and

orienting the rest of the edges in G arbitrarily. By (2.8) and (2.9), we have

dist, (u, V(L)) <r? +r and dist,(V(L),u) <r? +r.

O

The sharpness of the bound in Theorem 2.6.4 is proved in [164]. Theorem
2.6.4 immediately implies the following.

Corollary 2.6.5 For every bridgeless connected multigraph G of radius r,
diammin(G) < 2r? + 2r. Oo

Plesnik [607] generalized Theorem 2.6.4 and Corollary 2.6.5 to orientations
of weighted multigraphs.

2.7 Minimum Diameter Orientations of Complete Multipartite Graphs 67

Theorem 2.6.6 Let G be a bridgeless connected multigraph in which every

edge has weight between 1 and W. If the radius of G is r, then G admits

an orientation of strong radius at most r? +rW and of diameter at most

2r? + 2rW. 0

Plesnik [607] showed that the result of the previous theorem regarding

the strong radius is sharp.

Chung, Garey and Tarjan [157] generalized Corollary 2.6.5 to mixed
graphs. They proved the following.

Theorem 2.6.7 Every bridgeless connected mixed graph G of radius r ad-

mits an orientation of diameter at most 8r? + 8r. Such an orientation can be

found in time O(r?(n + m)). Oo

2.7 Minimum Diameter Orientations of Complete

Multipartite Graphs

Many authors consider the following parameter p(G) of a bridgeless graph
G: p(G) := diammin(G) — diam(G). It turns out that, for many interesting
graphs G, p(G) = 0, 1 or 2 (a result which is quite different from the ‘pes-

simistic’ bound proved in Theorem 2.6.4). In this section, we discuss results

on minimum diameter orientations of complete multipartite graphs.

Soltés [676] obtained the following result for complete bipartite graphs.

Theorem 2.7.1 If ny > nq > 2, then p(Kn,n.) = 1 form < ea eis and

PAL anrers ee, OLLET WISE.

The original proof of Theorem 2.7.1 is rather long. A shorter proof of

this result using the well-known Sperner’s lemma’ is given by Gutin [361].

We present below an adapted version of the proof in [361]. We start from
Sperner’s lemma. (We call a family F of subsets of {1,2,...,n} an antichain

if no set in F is contained in another.)

Lemma 2.7.2 Let F be an antichain on {1,...,n}. Then

I< (inyay):
The bound is attained by taking F to be the family of all subsets of size |n/2].

O

4 For an elegant probabilistic proof of Sperner’s lemma, see Alon and Spencer [14].

68 2. Distances

Proof of Theorem 2.7.1: Let n1 > n2 > 2. Let O(K) be the set of strongly

connected orientations of a complete bipartite graph K = Kn,,n2- It is easy

to see that no digraph in O(K) has diameter 2. Thus, it suffices to show that

there is an orientation D € O(K) of diameter 3 when nj < (ine72|)) and

that there is an orientation D € O(K) of diameter 4 but no orientation of

diameter 3 when ni > (Eeene as

Let us first assume that nj < (ine/2])" If nj = ne, then the bipartite

tournament BT;,, defined just before Lemma 2.6.2 provides the required ori-

entation (see Lemma 2.6.2). Now, consider the case when nj > no. Let V; and

V> be the partite sets of K, |V;| =i. Let U be a subset of V; of cardinality

ny. Orient the edges between U and V2 in such a way that the resulting di-

graph D’ is isomorphic to BT; and d*(v) = |n2/2] for every v € U. Clearly,

{N+(v) : v € U} is an antichain on V2 (see Lemma 2.7.2). This antichain

is formed by some subsets of V2 of cardinality |n2/2]. Since |Vi| < (; es)

and there are Wee) subsets of V2 (each of cardinality |n2/2]) forming a

(maximum) antichain, the out-neighbourhoods of vertices in V; — U can be

chosen in such a way that the family F = {Nt(v): v € Vi} is an antichain.

The family F determines an orientation of K which we denote by D. By

Lemma 2.6.2, dist.p: (V2, V2) = 2 and, thus, dist p(V2, V2) = 2. Since the out-

neighbourhoods of every pair of vertices in V; are not contained in each other,

dist p(Vi,Vi) = 2. Thus, diam(D) = 3 as every vertex in D is dominated by

another vertex.

Now let us assume that n, > (ine /2]) Let H € O(K) and Vj, V2 be the

partite sets of K such that n; = |V;|. By Lemma 2.7.2, there is a pair of
vertices z,y € Vi such that N(x) C N#(y). Therefore, disty(z,y) > 2.
Hence, by the obvious parity reason, disty(z,y) > 4. Thus, there is no

orientation of K of diameter 3. To present an orientation H of K of di-

ameter 4, choose a set W C V, of cardinality lanes): Orient the edges of

Kk (W UV.) such that the resulting digraph H' is isomorphic to the digraph
D defined above. Let w be a fixed vertex of W. For a vertex v € W UVa, set

Ni (v) = Nz, (v), and for a vertex v € Vi —W set N7#(v) = Nf(w). We have
proved that diam(H') = 3. It remains to show that dist(Vi — W,V(H)) < 4
and dist(V(H),V; — W) < 4. Actually, by the definition of H, it suffices to
demonstrate that dist(w, w’) = 4, where w’ € Vj — W. The last fact follows
from dist 7 (w,V2) < 3 and Nj (w')NV2 £0. oO

Let f(ni,...,nx) be the minimum possible diameter of a k-partite tourna-
ment with partite sets of sizes n1,...,nx. For k = 2 the value of this function

was determined in Theorem 2.7.1 (if min{n1,n2} = 1, then f(n1,n2) = oo).

For k > 3 the problem to determine the function f(ni,...,n,) was posed
independently by Gutin [366] and Plesnik [607]. It is easy to show that
2< f(mi,...,mx) <3 for every k > 3 and all positive integers n1,..., nz (see
Proposition 2.7.4 below). Thus, it suffices to find out when f(n1,...,n%) = 2.
In [366, 487, 607], it was shown that f(m1,...,nz) =2ifny =ng=...=n,

2.8 Minimum Diameter Orientations of Extensions of Graphs 69

exceptifor jk = 4;ingd=ine = ng. = ‘ng = 1 ‘(it is easy) to-secathat

f(1, 1,1, 1) = 3). This result was extended by Koh and Tan [488] as follows.
An ordered pair p,q of integers is called a co-pair if 1 < p< q< (p72).

An ordered triple p,q,r of positive integers is called a co-triple if p,q and

p,T are CO-pairs.

Theorem 2.7.3 Jf mj,...,mx can be partitioned into co-pairs when k is

even and into co-pairs and a co-triple when k is odd, then f(m4,..., mx) = 2.

0

Since even this theorem falls short to provide a complete solution to the

above-mentioned problem, we give only a proof of the most basic result on

f(ni,...,nx) obtained independently by Plesnik [607] and Gutin [361].

Proposition 2.7.4 For every k > 3 and all positive integers nj,...,nz, we

hover2 < f(ni,ee. 47g) SS:

Proof: Obviously, f(ni,...,n%) > 2.

If k is odd, let R(n,,n2,...,n%) stand for a multipartite tournament with

partite sets V|,..., Ve of cardinalities n1,...,n, such that VV; if and only

if 7 —i1 = 1,2,...,|k/2] (mod k). If k is even, then R(ni,n2,...,nx) is

determined as follows:

Filmy n2,-0; 1h) — Ve = R(ngsm2,5--, Te —2) ;

VV Gea ek VV = 2s, One RD)

We show that diamR(n1,72,...,n%) <3 for every k > 3.

Case 1: k is odd, k > 3. It is sufficient to prove that dist(Vi,Vi) < 3

for allt = 1,2,...,k. lf 1 < 7 < |k/2| +1, then Vi-V; by the definition.

If [AJ +1 < j < k, then Vigjoj41 — Vj, hence dist(Vi,V;) = 2. Since
Vi - Vik/2j+1 = Vik/2j427Ni, we have dist(Vi, Vi) < 3.

Case 2: k is even, k > 4. Since R(ni,...,nk) — Vk = R(ne,...,K-1),

we have dist(Vi,V;) < 3 for all 1 <i, 7 < k—1. Moreover, Via>Vi>Vi41

for i = 1,3,5,...,k —3 and Vy > V,_1. Therefore dist(Vi,Vi) < 2 for

t = 1,2,...,k —1. Analogously, Vi2Vizi7V;, for i = 1,3,5,...,k —3 and

Ve-172Vi7VeV;,. Hence dist(Vi, Vz) < 3 for t = 1,2,...,k — 1. Finally,

Via 9Vi Ve 4V,. Therefore dist(Vz, Vk) < 3. oO

2.8 Minimum Diameter Orientations of Extensions of

Graphs

Proposition 2.7.4 was generalized by Koh and Tay [496, 691] to extensions
of graphs. We recall the notion of an extension of a graph introduced in

Chapter 1. Let H be a graph with vertex set {1,...,h} and let m,...,nn

70 2. Distances

be positive integers. Then G = H [Ke , Kn,] is the graph with vertex set

{(pi,i): 1<i<h, 1 < pj < ni} such that vertices (p;,t) and (p;,j) are

adjacent in G if and only if ij € E(H). (We call G an extension of H.)

Theorem 2.8.1 (Koh and Tay) /496] Let H be a connected graph of order

h>3. LetG=H[Kn,---)Kn,] with nj > 2, 1<i<h. Then, diam(H) <
diammin(G) < diam(H) + 2.

Figure 2.7 An orientation F of G = P3[K3, K2, K2]. Observe that diam(G) = 2
and diam(F’) = 4.

This theorem is illustrated by Figure 2.7. The .requirement h > 3

is important as one can see from Theorem 2.7.1 (diam(K2) = 1, but
diammin(K2[Kn,,; K2]) = 4 for n, > 3). Clearly, diam(H) < diam(D) for
every orientation D of G. To prove the more difficult part of the inequality

in Theorem 2.8.1, we will use the following lemma.

Lemma 2.8.2 /496] Let ti,ni be integers such that 2 < ti < ni for1 <

i < h. If the graph G' = H[Kz,,..., Kt] admits an orientation F' in
which every verter v lies on a cycle Cy of length not exceeding s, then

G = H[Kn,,.-.,Kn,] has an orientation F whose diameter is at most
max{s, diam(F’)}.

Proof: Given an orientation F’ of G’, we define an orientation F' of G as

follows. We have (p,i)—+(q,j) in F if and only if one of the following holds:

(a) p<ti,q<t; and (p,i)(q,j) in F’.

(b) p<ti,q2 tj and (p, i)+(t;,9) in F’.

(c) p> ti, q <t; and (t;,i)+(q, j) in F’.
(d) p> tj and q >t; and (t;,i)>(t;,j) in F’.

Let u = (p,i) and uv = (q,j) be a pair of distinct vertices in F. If i # j,
then it is clear that dist p(u, v) < diam(F’) (we can use obvious modifications
of the corresponding paths in F'’). We have the same result if i = j but p < t;
or q < tj. If i = j, p,q > t;, then using the cycle C, we conclude that
distr(u,v) < s. 0

2.9 Minimum Diameter Orientations of Cartesian Products of Graphs (A!

Proof of Theorem 2.8.1: We prove that there exists an orientation D of G

such that diam(D) < diam(H) + 2. If diam(H) = 1, then this claim follows
from Proposition 2.7.4. Thus, we may assume that diam(H) > 2.

Define an orientation F’ of H[T,,...,T»], where every T; = Ko, as follows:

(1, i) 4(1, j)+(2, i) (2, 3) 9(1, 2) if and only if ¢ <j. (2.10)

Let u = (p,i) and v = (q,j) be a pair of distinct vertices in F’. We
show that dist (u,v) < diam(H) +2. Suppose that iki k2...k,j is a path of

length s+1 = distz(i,7) in H. Then the path Q = (p,7), (kT, ki), (k3, ke),-..,

(k3,ks),(9*,j), where x* = 1 or 2, is of length dist (i, 7) in F’. If j* = q, then

the last inequality follows. Otherwise, i.e. j* # q, the path Q, (3—k*, ks), (q, 7)

is of length disty(7,j) + 2 in F’. Thus, diste-(u,v) < diam(H) + 2. Thus,
diam(F’) < diam(H). By (2.10), every vertex of F’ belongs to a cycle of
length 4. Now this theorem follows from Lemma 2.8.2. 0

Thus, totally non-trivial extensions (i.e., with at least two vertices in every

independent set used for the extension) of bridgeless undirected graphs G can

be divided into three classes according to the difference between the minimum

diameter of an orientation of the extension (with at least two vertices in every

independent set used for the extension) and diam(G). Some wide subclasses
of these three classes have been constructed in [496, 691]. These constructions

indicate that perhaps the following conjecture is true.

Conjecture 2.8.3 /496] If H in Theorem 2.8.1 is of diameter at least 3,

then the upper bound on diammin(G) there can be replaced by diam(H) + 1.

2.9 Minimum Diameter Orientations of Cartesian

Products of Graphs

The Cartesian product of a family of undirected graphs G),G2,...,Gn,

denoted by G = G, x G2 x... xX Gn or [];_, Gi, where n > 2, is the graph
Gshaving VV (G)k= (Gi) beV (G2) oe n0V(Gin) = { (wy 20948 - Wn)
w; € V(G;),i = 1,2,...,n} and a pair of vertices (u1,u2,...,Un) and

(v1, V2,.-.,Un) of G are adjacent if and only if there exists anr € {1,2,...,n}

such that u,v, € E(G,) and u; = vu; for alli € {1,2,...,n} — {r}. Let P,
(C;,, Kn) be the (undirected) path (cycle, complete graph) of order n and let

T,, stand for a tree of order n. Roberts and Xu [638, 639, 640, 641] and Koh

and Tan [484] evaluated the quantity p(P, x P,). (We remark that Roberts
and Xu [638, 639, 640, 641] considered objective functions other than p for

orientations of the Cartesian products of undirected paths.) Koh and Tay

[491] proved that most of those results can be extended as follows.

Theorem 2.9.1 For n > 2, ki > 3, kz > 6 and (ki, k2) 4 (3,6), we have

U2 2. Distances

O

This, in particular, generalizes the main result of McCanna [558] on n-

cubes, i.e. the graphs []/_, Pe. Koh and Tay [490] have obtained the values

of g(r, k) = p(C2, x P,) for r,k > 2:

(a) q(r,k) =Oif k > 4.
(b) g(r, k) = 2 if k = 2 and r is even.

(c) g(r, k) = 1, otherwise.

They have also evaluated p(Km x Px), p(Km X Cor41) and p(Km x Ks)

[492], p(Km Xx Cor) [495] and p(Im x Tn) [493]. Konig, Krumme and Lazard

[500] studied the Cartesian products of cycles. They proved the following

interesting result.

Theorem 2.9.2 Let p,q be integers with p,q > 6. If at least one of these

two integers is even, then p(Cp x Cy) = 0. If both p and q are odd, then

Pi Cpa: 0

Kénig, Krumme and Lazard [500] evaluated p(Cp x C,) in most cases
when the minimum of p and q is smaller than 6. They also extended the

p(Cp xX C,) = 0 part of Theorem 2.9.2 to the Cartesian products of three
or more cycles. These results are described in more detail in [691]. Some of
the above results were extended by Koh and Tay [491], where the following

theorem was proved.

Theorem 2.9.3 Form > 2,r> 0, ki > 3, ko > 6 and (ki, k2) 4 (3,6), we

have perce | ea Cre): oO

This result was further extended by Koh and Tay in [494]. The rest of

this subsection is based on [494].
Let G be the set of all bipartite graphs G such that diam(G) > 3 and G

admits an orientation (called a G-orientation) of diameter diam(G), in which
every vertex is contained in a cycle of length at most diam(G). Let G* be the
set of all bipartite graphs G such that diam(G) > 3 and G admits an ori-

entation F (called a G*-orientation) of diameter diam(G) with the following
further properties: every vertex is contained in a cycle of F' of length at most

diam(G) and if uv in F then there exists a (u, v)-walk of length at least
three and at most diam(G).

Let S be the set of all graphs in which every graph G admits an orientation

H (called an S-orientation) such that for all vertices u,v € V(H) at least
one of the following holds:

(a) min{dist 7 (u,v), disty(v, u)} < diam(G).

2.9 Minimum Diameter Orientations of Cartesian Products of Graphs 73

(b) There are vertices y and z such that

max{dist 7 (u, y) + dist x(v, y), dist 7 (z, u) + dist 7(z,v)} < diam(G).

Let S* be the set of all graphs in which every graph G admits an orien-

tation H (called an S*-orientation) such that for all vertices u,v € V(H) at
least one of the following holds:

(a) min{disty(u, v), disty(v, u)} < diam(G).
(b) There is a vertex y such that disty(u, y) + disty(v,y) < diam(G).
(c) There is a vertex z such that dist q(z,u) + disty(z,v) < diam(G).

Clearly, G* C G and S C S*. Koh and Tay [494] showed the following:

(a) Form > 2:and k'> 4) C3, x Pee G*.

(b) On x C4 S G.

(c) For m > 2 and n > 3, Cam X Con € G*.

(d) If T’ and T” are trees of diameter at least four, then T’ x T” € G*.
eye eee pe sed Cy 9 > SPU Theat PU {4G so(G) 0 he Sfalso

figg § 2p < GCS)

(f) If T is a tree which is not a path, then T € S*.
(g) If G2 is the set of all graphs of diameter two, then G2 C S*.

Due to the fact that the families G,G*,S,S* of graphs are quite large, the

following results proved by Koh and Tay [494] are undoubtedly interesting.

Theorem 2.9.4 IfG € G and A; € S,i =1,2,...,n, then p(Gx]]i_, Ai) =
0.

Theorem 2.9.5 If G € G* and A; € S*, i = 1,2,...,n, then p(G x

Wien, ig t aes O

We will prove only Theorem 2.9.4 since the proof of Theorem 2.9.5 is

similar and is left as Exercise 2.32.

Proof of Theorem 2.9.4: Let diam(G) = k and let U and W be the
partite sets of G. Let F (H;) be a G-orientation (an S-orientation) of G (Aj,
i=1,2,...,n). We will orient G x]j_, A; inductively as follows:

1. Orient G as F and A; as H;. In G x Aj, orient an edge {(z, 7), (x, 7)}
from (z,2) to (z,7) if and only if either z € U and ij € A(H;) or rx € W
and ji € A(Hj); orient an edge {(z,7),(y,7)} from (a,7) to (y,7) if and
only if zy € A(F).

2. Suppose that G x (be A;, where 1 < r < n—1, has been oriented. Orient

A,+1 as H,41. Orient Gx]]j) A; so that the orientation of Gx[]7_, Aix
{j} is isomorphic to that of G x []j_, Ai for each 7 € V(A,41) and
Orientwanl ea gens (r,a),eee rst) (2, Qs © Ors)) OM Tea;y Gr, 4)

to (z,a1,...,@r,j) if and only if either x € U and ij € A(A,41) or
xz € W and ji € A(H,41).

74 2. Distances

Let F* be the resulting orientation of G x [[{_, i. Define the following

sets

Ry; = {(u,v) € V(Hi x Ay): disty;(u,v) < diam(A;)},

Ry = {(u,v) € Vi x H;): (u,v) ¢ Riu, dista,; (v,u) < diam(A;)},

Rs; = {(u,v) € V(Hi x Hi): (u,v) ¢ Rui U Rai, Fy, 2 € V(Hi)
max {dist y7,(u, y) + disty, (v,y), dist, (z, u) + disty, (z,v)} < diam(A;)}.-

Observe that R1;, Roi, R3; form a partition of VibliocH.).

Let (r,a@1,-.-,@n) and (y,bi,...,bn) be a pair of distinct vertices of

F*, We will eoneaniens in F*, a path Pi P)P3P, from (Giese etO

(y,b1,.--,0n) of length at most ee 1 4d = eee arate).

(See Exercise 2.29.)

Without loss of generality; assume that « € U (the case of z € W can be

treated similarly). Let x’ be‘the successor of x either on a shortest (z, y)-path

in F if z # y or on a shortest cycle through z if z = y. Clearly, x’ ew.

The path P, is a shortest path from (x, @),...,@n) to (Z,¢1,-.-. ,Cn), where

¢;,1=1,...,n, is defined as follows:

(a) C7 = Dat (aj, b;) € Rij.

(b) Cua; ik (Gz, b;) € Raj.

(c) If (a;,b;) € Rai, we set c; = yi, where y; is a vertex satisfying

dist 77, (aj, yi) + dist x, (bi, ys) < diam(A;).

The path P, is a shortest path from (x,ci,...,Cn) to (a',c1,...,¢€n). The

path P3 is a shortest path from (2',ci,...,Cn) to (z', b1,...,6,) and the path

P, is a shortest path from (2',b1,...,bn) to (y,b1,...,6n). Observe that the

total length of P, and P3 does not exceed 5>;_, diam(Aj;) and the total length
of P, and P, is at most k. oO

2.10 Kings in Digraphs

In this section, we study r-kings in tournaments, semicomplete multipartite

digraphs and other generalizations of tournaments. The main emphasis is on

4-kings in semicomplete multipartite digraphs. The notion of a 2-king and

some results on 2-kings in tournaments will be generalized in Section 12.3.2.

2.10.1 2-Kings in Tournaments

Studying dominance in certain animal societies, the mathematical sociologist

Landau [508] observed that every tournament has a 2-king. In fact, in every

2.10 Kings in Digraphs 75

tournament 7’, each vertex x of maximum out-degree is a 2-king. Indeed, for a

vertex y € T, y # a, either xy or there is an out-neighbour of x which is an

in-neighbour of y. In both cases, dist(x, y) < 2. Observe that if a tournament

T has a vertex of in-degree zero, this vertex is the only r-king in T for every

positive integer r. Moon [569] proved the following.

Theorem 2.10.1 Every tournament with no vertex of in-degree zero has at

least three 2-kings.

Proof: Exercise 2.35. O

The following example shows that this bound on the number of 2-kings

by Moon is sharp. Let T,, be a tournament with vertex set {z1,272,...,¢n}

and are set A= X UY U{az,_22,,}, where

5 OS Ce, eas Bee ee

Y—4jrae Pate 7-1 n—l(j,1)4 en 2).

It is easy to verify that, for n > 5, tn-3,%n-2,Ln—-1 are the only 2-kings in

Tn (Exercise 2.37), see Figure 2.8.

Piette saya omen
Figure 2.8 An example of a tournament with exactly three 2-kings. The arcs which
are not shown are oriented from right to left.

Since the converse of a tournament is a tournament, the above two results

can be reformulated for 2-serfs. (A vertex x is a 2 serf if dist(V,2) < 2.) The

concepts of 2-kings and 2-serfs in tournaments were extensively investigated
by both mathematicians and political scientists (the latter have studied so-

called majority preferences). The interested reader is referred to Reid [630]
for a comprehensive recent survey on the topic.

2.10.2 Kings in Semicomplete Multipartite Digraphs

It is easy to see that Proposition 2.1.1 implies that a multipartite tourna-

ment TJ has a finite out-radius if and only if J contains at most one vertex of

in-degree zero (Exercise 2.38). Moreover, the following somewhat surprising
assertion holds. If a multipartite tournament has finite out-radius, the out-

radius is at most four. In other words, every multipartite tournament with

at most one vertex of in-degree zero contains a 4-king. (Similar results hold

for quasi-transitive digraphs and a certain class of digraphs that includes

76 2. Distances

multipartite tournaments, see Subsection 2.10.3.) This result was proved in-

dependently by Gutin [356] and Petrovic and Thomassen [605]. The bound
is sharp as there exist infinitely many p-partite tournaments without 3-kings

for every p > 2 [356]. Indeed, bipartite tournaments C4[Kq, Ky, Kq,Kaq] for
q > 2 do not have 3-kings (dist(u,v) = 4 for distinct vertices u,v from the

same K,,). It is clear that every multipartite tournament, for which the initial

strong component is some C4[Ky, Kg, Kq; Ka] (q > 2), has no 3-king either.
Thus, 4-kings are of particular interest in multipartite tournaments. In

a number of papers (see, e.g., Gutin [361], Koh and Tan [485, 486, 489],

Petrovi¢ [604] and the survey paper [630] by Reid) the authors investigate
the minimum number of 4-kings in multipartite tournaments without vertices

of in-degree zero. (If a multipartite tournament has exactly one vertex of in-

degree zero, it contains exactly one 4-king, so this case is trivial.) In our view,

the most interesting result in this direction was obtained by Koh and Tan in
[485].

Theorem 2.10.2 LetT be ak-partite tournament with no vertex of in-degree

zero. If k = 2, T contains at least four 4-kings; it has exactly four 4-kings

if its initial strong component consists of a cycle of length four. If k > 3, T

contains at least three 4-kings; it has exactly three 4-kings if its initial strong

component consists of a cycle of length three. O

This theorem can be considered as a characterization of bipartite (p-
partite, p > 3) tournaments with exactly k 4-kings for k € {1,2,3,4}
(K € {1,2,3}). The next theorem by Gutin and Yeo [376] goes further with
respect to both exact number of 4-kings and the class of digraphs under
consideration.

Theorem 2.10.3 Let D = (V,A) be a semicomplete multipartite digraph
and let k be the number of 4-kings in D. Then

1. k =1 if and only if D has exactly one vertex of in-degree zero.
2k = 2,3 or 4 if and only if the initial strong component of D has k

vertices.

3. k = 5 if and only if either the initial strong component Q of D has five
vertices or Q contains at least six vertices and possesses a path “Pes
PoPip2p3pa such that dist(po,ps) = 4 and {pi, p2, p3,pa}>V — V(P);

0

We have seen that a vertex of maximum out-degree in a tournament is
a 2-king. It is slightly more difficult to show that a vertex of maximum out-
degree in a bipartite tournament is a 4-king (Exercise 1.67). With 4-kings in
k-partite tournaments for k > 3, the situation is more complicated as can
4 oe from the next theorem by Goddard, Kubicki, Oellermann and Tian
Byalte

2.10 Kings in Digraphs lash

Theorem 2.10.4 Let T be a strongly connected 3-partite tournament of or-
der n > 8. If v is a vertex of maximum out-degree in T, then dist(v, V(T)) <
[n/2] and this bound is best possible. Oo

In the rest of this subsection, we will prove the following theorem using
an argument adapted from [376].

Theorem 2.10.5 Every semicomplete multipartite digraph with at most one
vertex of in-degree zero has a 4-king.

For the proof we need the following lemmas:

Lemma 2.10.6 Jf P = popi...pe is a shortest path from po to pe in a

semicomplete multipartite digraph D, and € > 3, then there is a (pe, po)-path

of length at most 4 in D(V(P)).

Proof: Since ¢ > 3 and P is a shortest path we have ({po,pi},pe) = 9. If
Pe—Ppo we are done, so assume that pe and po belong to the same partite set

of D. This implies that pe—p;. Analogously, (po, {p2, p3}) = 0, which implies
that either pepip2p3po OF pepip2Po is a (pe, Po)-path of length at most 4 in

DVite)}. oO

Lemma 2.10.7 Let D be a semicomplete multipartite digraph and let Q be

an initial strong component of D. If Q has at least two vertices, then D has

only one initial strong component. Every verter in Q, which is a 4-king in Q,

1s a 4-king in D.

Proof: Assume that |V(Q)| > 2, but D has another initial strong component

Q'. Since Q contains adjacent vertices, there is an arc between Q and Q’, a

contradiction.

Let x be a 4-king in Q and let y € V(D) — V(Q) be arbitrary. If x and y
are adjacent, then clearly sy. Assume that « and y are not adjacent. Since

Q is strong, it contains a vertex z dominated by x. Clearly, s+z—y. Hence

dist(z,y) < 2 and g is a 4-king in D. a)

Lemma 2.10.8 Let D be a strong semicomplete multipartite digraph and let

w be a verter in D. Fori > 3, if Nt*(w) £9, then dist(NT*(w), N**[w]) < 4.

Proof: Let z € N**(w) be arbitrary. Since a shortest path from w to z is

of length i > 3, by Lemma 2.10.6, dist(z,w) < 4. Let g € N**[w] — {w, z}
and let ror;...7; be a shortest (w,q)-path in D. If 1 <7 < 3 then, since z

dominates at least one of the vertices ro,r1, either zror1 ...7j; Or 271 ...7; is

a (z,q)-path in D of length at most 4. If j > 4 then, since z dominates at

least one of the vertices r;_3,7j~2, either z27j;-37j-27j-117j OY 27j_-27j-17; is
a (z,q)-path in D of length at most 4. Oo

Proof of Theorem 2.10.5: Let D be a semicomplete multipartite digraph

with at most one vertex of in-degree zero. If D has a vertex x of in-degree zero,

78 2. Distances

then clearly z is a 2-king in D. Thus, assume that D has no vertex of in-degree

zero. Then, every initial strong component Q of D has at least two vertices.

By Lemma 2.10.7, Q is unique and every 4-king in Q is a 4-king in D. It

remains to show that Q has a 4-king. If every vertex in Q is a 4-king, then we

are done. Otherwise, let w be a vertex in Q which is not a 4-king of Q. Then,

r = distg(w, V(Q)) > 5. By Lemma 2.10.8, disto(NG"(w), NG" [w]) <4 Ve}

every vertex in N3"(w) is a 4-king in Q (since NG" [w] = V(Q)). O

2.10.3 Kings in Generalizations of Tournaments

Bang-Jensen and Huang [80] considered kings in quasi-transitive digraphs.

The main result of [80] is the following.

Theorem 2.10.9 Let D be a quasi-transitive digraph. Then we have

(1) D has a 3-king if and only if it has a finite out-radius?.
(2) If D has a 8-king, then the following holds:

(a) Every vertex in D of maximum out-degree is a 3-king.

(b) If D has no vertex of in-degree zero, then D has at least two 3-kings.

(c) If the unique initial strong component of D contains at least three vertices,

then D has at least three 3-kings.

QO

In the following family. of quasi-transitive digraphs, every digraph has a

3-king but no 2-king: C3[K,,, Kx,, Kx] for every ki, k2,k3 > 2.

In [605], Petrovic and Thomassen obtained the following.

Theorem 2.10.10 Let G be an undirected graph whose complement is the

disjoint union of complete graphs, paths and cycles. Then every orientation

of G with at most one vertex of in-degree zero has a 6-king. QO

2.11 Application: The One-Way Street and the Gossip
Problems

In this section, we show how (some extensions of) the one-way and gossip

problems lead one to consider minimum diameter orientations of digraphs.

Recall that an orientation of a digraph D is a subdigraph of D obtained from
D by deleting exactly one arc between x and y for every pair z # y of vertices
such that both zy and yz are in D. Some results are given » minimum diam-
eter orientations of digraphs from well-known classes, semicumplete bipartite
digraphs and quasi-transitive digraphs.

5 See Proposition 2.1.1.

2.11 Application: The One-Way Street and the Gossip Problems 79

2.11.1 The One-Way Street Problem and Orientations of Digraphs

Graph theoretical modelling of the one-way problem can be traced back to

the classical paper of Robbins [637]. It is well-known that introduction of

one-way streets usually decreases the number of car accidents and allows one

to simplify the traffic control. By Robbins’ theorem (see Theorem 1.6.2) a

connected graph G has a strongly connected orientation if and only if G has

no bridge. This theorem shows when the one-way street system can be intro-

duced. One reason why one-way streets are not used everywhere is that the

travelling distances after such arrangements will increase. To minimize this

disadvantage of the one-way traffic system, we may choose certain assign-

ments of directions that minimize some disadvantage criterion. Three such

criteria are discussed by Roberts and Xu [638, 639, 640, 641] Most other pa-

pers on the topic deal only with one criterion: the minimization of the longest

path that has to be travelled, i.e. the diameter of an orientation of the undi-

rected graph representing the street configuration. We restrict ourselves to

this objective function.

Practically all papers on the topic consider orientations of undirected

graphs. This corresponds to converting all streets, which were initially two-

way, into one-way streets (see, e.g., Koh and Tay [492, 493, 495], Konig,

Krumme and Lazard [500] and Plesnik [608]). This model is quite restricted:
certain streets may already be one-way. To take such streets into considera-

tion, one has to study orientations of directed rather than undirected graphs.

While there are a few papers (see, e.g., Boesch and Tindell [120], Chung,

Garey and Tarjan [157], and Volkmann [730]) dealing with finite diameter
orientations of digraphs, we are aware of only one paper [378] devoted to

minimizing the diameter of an orientation of a digraph. In particular, the

following results are proved by Gutin and Yeo [378]. For a digraph D, as in

the case of undirected graphs, let diammin(D) denote the minimum diameter

of an orientation of D.

Theorem 2.11.1 Jf D is a strong quasi-transitive digraph of order n > 3,

then
diammin(D) < max{3, diam(D)}.

There is an infinite family Q of strong quasi-transitive digraphs such that for

every Q € Q, diam(Q) = 2 but no orientation of Q is of diameter® 2. QO

Theorem 2.11.2 If D is a strong semicomplete bipartite digraph of order
<7 . .

n> 4 such that D#Kin-1, then diampin(D) < max{5,diam(D)}. There is

an infinite family B of strong semicomplete bipartite digraphs such that for

every B € B, diam(B) = 4 but diammin(B) = 5. Oo

6 Observe that by Exercise 1.57 every strong quasi-transitive digraph of order

n > 3 has a strong orientation. So does every strong semicomplete bipartite

digraph with every partite set of cardinality at least 2. On the other hand,
$7). 5

Kin-1, 2 = 2, has no strong orientation.

80 2. Distances

The sharpness of the upper bounds of these theorems can be seen from the

following examples. Let T,, k > 3, be a (transitive) tournament with vertices

@1,02,..-,¢, and arcs 2,2; for every 1<i< j <k. Let y be a vertex not in

T,, which dominates all vertices of T; but zz and is dominated by all vertices

of T; but 2;. (See Figure 2.9.) The resulting semicomplete digraph D,4+1 has

diameter 2. However, the deletion of any arc of Dy41 between y and the set

{r,23,---,Lx~—1} leaves a digraph with diameter 3. Indeed, if we delete yz;

(ziy), 2<%i<k-—1, then a shortest (xz, 2;)-path ((x;,21)-path) becomes of

length 3.

Figure 2.9 A semicomplete digraph of diameter 2 with no orientation of diameter
2

Let H be a strong semicomplete bipartite digraph with the following

partite sets V; and Vo and arc set A: Vj = {21,272,273}, V2 = {y1, y2, y3}, and

A = {£191 Y1%1, 21Y2, Y321, L2Y1, YoT2, Y3L2, Y1X3, L3Y3, T3Y2}-

Let H’ = H—2,y, and H" = H —y;2. It is easy to verify that diam(H) = 4

(in particular, dist(y2, y3) = 4) and that diam(H') = diam(H”) = 5 (a short-
est (<1, y3)-path in H’ and a shortest (y2,2)-path in H” are of length 5).
The digraph H can be used to generate an infinite family of semicomplete

bipartite digraphs with the above property: replace 23, say, by a set of inde-

pendent vertices.

2.11.2 The Gossip Problem

‘There are n ladies, and each one of them knows an item of scandal which

is not known to any of the others. They communicate by telephone, and

whenever two ladies make a call, they pass on to each other, as much scandals
as they know at the time. How many calls are needed before all ladies know

every scandal?’ This is the way the so-called gossip problem (apparently due
to A. Boyd) was stated by Hajnal, Milner and Szemerédi [392] in 1972. Since
then numerous research papers on the topic have been published (see e.g.

2.11 Application: The One-Way Street and the Gossip Problems 81

surveys Fraigniaud and Lazard [248], Hedetniemi, Hedetniemi and Liestman

[409], Hromkovié, Klasing, Monien and Peine [433]). The main reason of this
popularity is a high applicability of the gossip problem, especially in computer

networks.

Actually the above quotation captures only a special case of the gossip

problem. In a more general setting, this problem can be formulated as follows.

Let G be a connected graph of order n. Every vertex v of G holds initially an

item J(v) (different from the items of other vertices). A vertex v can pass all
items it currently has to all or some of its neighbours at one step. The aim is

to calculate the minimum number of steps required to pass to every vertex u

the set {I(v) : v € V(G)} of all items.
The problem can be specified by allowing only one-way communications

(like in radio communications over one frequency or email) when at every

given step, for every pair u,v of adjacent vertices, either u can pass all items

it holds to v, or v can pass all items it holds to u, but not both [248]. This
specification is often called half-duplex. The half-duplex gossip problem is

NP-hard [248]. On the other hand, this problem is normally of interest, from

the applications point of view, only for some special families of graphs such

as the Cartesian products of cycles used in practice to build the Intel A-

prototype (see Rattner [622]) and many transputer-based machines (see May
[557]). Several important families of graphs are discussed by Fraigniaud and

Lazard [248]. The solutions obtained for them are based on an upper bound
that includes, as the main term, the minimum diameter of an orientation of

a given undirected graph [248].
In the half-duplex gossip problem, we may consider symmetric digraphs

CG instead of undirected graphs G. The half-duplex model can be extended

from symmetric to arbitrary digraphs D, where a vertex v can pass all its

items only to vertices wu such that vu is an arc in D. The use of arbitrary

digraphs may well be of interest when security concerns dictate that some of

the directions of communications are forbidden.

We consider only the half-duplex model for a strong digraph D. Let s(G)
stand for the minimum number of steps for gossiping in this model. Since the

minimum number of steps to pass all items of vertex u to another vertex v

is dist(u, v), we have s(D) > diam(D).
Gutin and Yeo [378] proved the following simple upper bound on s(D),

which is an improvement on the similar upper bound in [248] even in the case

of symmetric digraphs.

Theorem 2.11.3 Let D = (V, A) be a strong digraph. Then

s(D) < min{2 rad(D), diammin(D)}.

Proof: Let H be an orientation of D of minimum diameter. Let every vertex

in D pass its items to all out-neighbours in H. Repeat this iteration till every

vertex holds all items. Clearly, the number of iterations required is the length

of the longest path in H, i.e. s(D) < diam(H) = diammin(D).

82 2. Distances

Let x be a vertex of D such that rad(D) = (dist(x,V) + dist(V, x))/2.
Let F+ (F>) be a BFS tree of D rooted at x (the converse of a BFS tree of

the converse of D rooted at x). In the first dist(V,z) steps pass items from

vertices to their out-neighbours along arcs of F,. Thus, in the end, x holds

all items. During the next dist(z,V) steps pass items from vertices to their

out-neighbours along arcs of F’*. Hence, in the end, every vertex holds all

items. Thus, s(D) < 2rad(D). O

The bound of Theorem 2.11.3 is of special interest when D satisfies

diam(D) = diampin(D). In this case, a minimum diameter orientation of
D provides an optimal solution to the gossip problem. Thus, an orienta-

tion H of diameter possibly exceeding diam(D) by a small constant leads
to a good approximate solution for the gossip problem (given H, the up-

per bound min{2rad(D),diam(H)} for g(D) can be computed in polyno-
mial time). In the previous subsection, we saw that slight modifications of

diam(D) = diammin(D) hold for some important families of digraphs.

2.12 Application: Exponential Neighbourhood Local
Search for the TSP

The aim of this section is to introduce a new approach to obtain near optimal

solutions for the travelling salesman problem (TSP). The main idea is to find,
in polynomial time, a best solution in a specially constructed set of solutions
of exponential cardinality. This idea can be applied not only to the TSP, but
also to other NP-hard combinatorial optimization problems. This general
idea was used already in the papers by Sarvanov and Doroshko (651, 652]
and Gutin [354].

2.12.1 Local Search for the TSP

The TSP is stated as follows. Given a weighted complete digraph (K 7),
find a hamiltonian cycle in K n Of minimum cost. In this section and some
others where the TSP is considered, we will often call a hamiltonian cycle
in Ky a tour; it is also assumed that V(Kn) Sd 2 ee) peg CSP
is a well-studied N’P-hard problem with numerous applications (see, e.g.,
the books by Cook, Cunningham, Pulleyblank and Schrijver [166], Lawler,
Lenstra, Rinooykan and Shmoys [511], Reinelt [632] and the paper [466] by
Johnson and McGeoch). Since the TSP is NV P-hard, no polynomial time
exact algorithms to solve the problem are known. However, there is a well-
tested approach (see, e.g., Johnson and McGeoch [466]) that provides near
optimal solutions (which is sufficient in most applications) in reasonable time
for large-scale instances of the TSP. The approach consists of two phases. In
the first phase, a construction heuristic quickly produces a solution which

2.12 Application: Exponential Neighbourhood Local Search for the TSP 83

is normally far from optimal but is much better than a random solution’.
(Some construction heuristics for the TSP are described later in this book.)
In the second phase, a local search heuristic is used. During every iteration of
this heuristic, a neighbourhood of a current best solution is considered and
a better solution (in certain cases, the best solution in the neighbourhood)
is found. When no better solution in the neighbourhood exists the heuristic
terminates. (There are several variations of the above description [466].)

In many cases, so-called 3-Opt is applied. In 3-Opt, the neighbourhood of

a hamiltonian cycle C consists of all tours in K n Obtained from C’ by deleting

three arcs and then adding three arcs. (This notion can be easily generalized

to k-Opt for every fixed k > 3.) The cardinality of this neighbourhood is

certainly O(n*). Also, O(n?) time is required to completely search this neigh-
bourhood (i.e., to find the best hamiltonian cycle) if we look at the tours of

the neighbourhood one by one. Certainly, the cubic time is unacceptable for

large-scale instances of the TSP. However, 3-Opt is widely used in practice

since usually only a small fraction of the neighbourhood is searched before a

better solution is found. Despite the fact that 3-Opt allows one to find quite

good solutions to large-scale instances of the TSP, the way of looking at the
solutions one by one seems rather inefficient.

Therefore, in the 1980’s, Sarvanov and Doroshko [651, 652] and Gutin
[354] introduced independently some neighbourhoods of exponential size
where the best solution can be obtained in polynomial time. Recently, var-

ious neighbourhoods of exponential size for the TSP were suggested and

investigated (see, e.g., Balas and Simonetti [37], Burkard, Deineko and Woeg-
inger [137], Glover [318], Glover and Punnen [320], Potts and Velde [611] and
Punnen [616]). The paper [188] by Deineko and Woeginger is an excellent
survey on the topic. Balas and Simonetti [37] and Carlier and Villon [448]
constructed and implemented local search algorithms which use exponential

neighbourhoods. Their results are very encouraging. They also show the ne-

cessity of further theoretical research on the topic.

There are different types of neighbourhoods for the TSP; many of them

can be found in [188, 466]. The following definition of a neighbourhood struc-
ture for the TSP is due to Deineko and Woeginger [188]. In this definition,

we assume that every tour T = m(1)m(2)...a(n)(1) starts from the ver-
tex 1, ie., (1) = 1. Therefore, we will identify T with the permutation

m(1)7(2)...2(n). A neighbourhood structure consists of a neighbourhood
N(T) for every tour T such that the neighbourhood N((1)7(2)...a(n)) =
m*N(12...n), where 7(1) = 1 and * stands for the permutation product (ap-
plied from right to left). This definition is somewhat restrictive (for example,
it requires the cardinality of neighbourhoods to be the same) but reflects the

very important ‘shifting’ property of neighbourhoods which distinguish them

7 For certain families of instances of the TSP, some construction heuristics produce
near optimal tours by themselves; see, e.g., Glover, Gutin, Yeo and Zverovich
[319]. In such cases local search is perhaps not required.

84 2. Distances

from arbitrary sets of tours. Another important property of neighbourhood

N(T) of a tour T, which is usually imposed, is that the best tour of N(T)

can be computed in time polynomial in n. This is necessary to guarantee

an efficient local search. Neighbourhoods satisfying this property are called

polynomially searchable.

The largest known polynomially searchable neighbourhoods are those of

size 2°("!°") (note that there are (n — 1)! tours in En and (n — 1)! =

20(nlogn) as well). Such neighbourhoods were introduced independently in

[354, 616, 652]. Punnen’s neighbourhoods [616] are the most general among
them. We will consider a special family of these neighbourhoods, which is

a slight generalization of neighbourhoods in [354, 652]. We call those neigh-
bourhoods the assignment neighbourhoods. (See Subsection 2.12.3 for the

definition of these neighbourhoods.) Some features of these neighbourhoods

were investigated in [369]. Gutin [369] proved that, for every 6 > 0, there is a
neighbourhood of cardinality 20("'°8™ that can be searched in time O(n1+*).
Deineko and Woeginger [188] demonstrated that to search a neighbourhood
of cardinality 2°("!°€™ one needs time 2(n!+*), where 6 > 0.

Since the diameter of neighbourhood structure digraphs (defined later) is

of certain importance for local search, this parameter has also been studied.

We present some recent results on the topic in Subsection 2.12.4.

2.12.2 Linear Time Searchable Exponential Neighbourhoods for

the TSP

In this section, we demonstrate how to use the algorithm from Subsection

2.3.2 to search some exponential neighbourhoods. We introduce a neighbour-

hood of exponential size based on one of the approaches described by Glover
Se

and Punnen [320]. Assume that n, the order of (Kn,c), equals one modulo
three (it is easy to see how to modify our Pusce when n does not equal one
modulo three). Let C = vvPutufugudu2 ...v?utv?u be a hamiltonian cycle of
K n- Define a neighbourhood of C as follows:

NB (Cy tutu to mee yop, eee (ORIN jy eel, oer e

where all superscripts are taken modulo three. Clearly, |NB(C)| = 3!"/3!,
We show how to find the best hamiltonian cycle in NB(C) in time O(n).

Construct an auxiliary weighted digraph D = (V, A, w) as follows:

V = {py.q, tgs tgs Ue tt € {1,2,.-¥, eh},
A= {pus ud ul. ak CU Orne © ino eo

eats w(p,ui) = e(v, vi) + e(vi,vitt) + e(vit} oh for every 7 €
0,1, 2},

2
Ui) Feud, vitt) + ev DS)

2.12 Application: Exponential Neighbourhood Local Search for the TSP 85

for every i € {1,2,...,t-—1}, j,k € {0,1,2}, and w(ut,g) = c(vf*?,v) for
every k € {0,1, 2}.

All (p,q)-paths in D are of the form puj!u5? ...uf‘q, where s; € {0, 1,2},
1=1,2,...,t. Therefore, the mapping

8) 82 8
i

@: pus us? ...ug'quv} a ee ee eG AY bomU,

is a bijection from the set of (p, qg)-paths in D into N B(C). Moreover, for every

(p, q)-path R in D, we have w(R) = c(¢(R)). Hence, to find a minimum weight
hamiltonian cycle in NB(C), it suffices to compute a shortest (p, q)-path in

D. This can be done in time O(|A|) = O(n) by the algorithm described in
Subsection 2.3.2. Moreover, since we can readily give an acyclic ordering of

vertices in D, we do not need the first phase of the algorithm in Subsection

25 4

2.12.3 The Assignment Neighbourhoods

The purpose of this subsection is to introduce the assignment neighbour-

hoods. i

Let C = 2122...2,%2, be a cycle in Ky. The operation of removal of

a vertex 2; (1 <i < k) results in the cycle 7122... 2%;-12j41... 2421 (thus,

removal of x; is not deletion of z; from C). Let y be a vertex of K n hot in

C’. The operation of insertion of a vertex y into an arc 2;Z;+4, results in the

cycle 21 2%2...2;YLj41 ...2~21. An insertion of y into C is an insertion of y

into 2;%;41 for some 1 <i <k. For aset Z = {z1,...,2s} (s < k) of vertices

not in C, an insertion of Z into C means an insertion of z; in C’ followed

by an insertion of z2 into the obtained cycle, etc. Furthermore, we require

that, in the cycle obtained after insertion of all vertices of Z into C, no pair

of vertices from Z is adjacent.

Let T = 21%72...2721 be a tour in Kn andilet: Zi 1 oo teen, a) Des

set of pairwise non-adjacent vertices of T. The assignment neighbourhood

N(T, Z) of T with respect to Z consists of the tours that can be obtained from
T by removal of the vertices from Z one by one followed by an insertion of Z

into the cycle derived after the removal. For example, for H = 112223242521,

(AA 2i6.23)) =) (tot tse 2502, 0oTita lel 0s, Lotel ie i222 ait, J} =

{1,3}}. Let T = 21 22...2n21 and s = |Z|; then it is easy to verify that

|N(T, Z)| = (n — s)!/(n — 28)!

(clearly, we have n — s > s).
We show that the best tour in N(T, Z) can be found in time O(n?) [369,

616]. Let C = yiy2..-Yn—sy1 be the cycle obtained from T after removal
of Z and let Z = {21, z2,...,2s}. Let @ be an injective mapping from Z

to Y = {y1,y2,---,Yn—s}. If we insert some z; into an arc y;y;41, then the

weight of C will be increased by c(yjzi) + c(ziyj+1) — c(yjyj4i). Therefore,

86 2. Distances

if we insert every z;,7 = 1,2,...,8, Into Y¥g(i)¥o(i) 41> the weight of C’ will be

increased by

s

f(¢) = S-(c(yaciy 2a) + e(z:yg(s)41) — C(¥e(s)Yo(s)+1))-
o—

Clearly, to find a tour of N(T, Z) of minimum weight, it suffices to minimize

f(@) on the set of all injections ¢ from Z to Y. This can be done using the

following weighted complete bipartite graph B. The partite sets of B are

Z and Y, and the weight of an edge zy; is set to be c(yjzi) + c(ziyjti) —

C(yjYj+1):
By the definition of B, every maximum matching M of B corresponds to

an injection ¢y from Z to Y. Moreover, the weights of M and om coincide.

A minimum weight maximum matching in B can be found by solving the

assignment problem (see Section 3.12). Therefore, in O(n*) time, we can find

the best tour in N(T, Z).

2.12.4 Diameters of Neighbourhood Structure Digraphs for the

TSP

Given a neighbourhood N(T) for every tour T in Kn (i.e., some neighbour-
hood structure), the corresponding neighbourhood digraph (of order

(n —1)!) is a directed graph with vertex set consisting of all tours in K n and

arc set of pairs (T’,T”) such that T” € N(T’). When all neighbourhoods
N(T) are polynomially searchable, the corresponding digraph is polyno-

mially searchable. The diameter of the neighbourhood digraph is one of

the most important characteristics of the neighbourhood structure and the

corresponding local search scheme [188, 318, 448]. Clearly, a neighbourhood

structure with a neighbourhood digraph of smaller diameter seems to be more

useful than that with a neighbourhood digraph of larger diameter, let alone

a neighbourhood structure whose digraph has infinite diameter (in the last

case, some tours are not ‘reachable’ from the initial tour during local search

procedure).
For example, the neighbourhood digraph for polynomially searchable

‘pyramidal’ neighbourhoods introduced by Carlier and Villon [448] has di-

ameter d, = O(logn). (In [448], it was proved that d, < logn, the lower
bound d, = §2(logn) follows from the facts that the cardinality of pyramidal
neighbourhoods is 2°(") [448] and the total number of tours is 2°(!°8”) .)

In this subsection, using the assignment neighbourhoods, we construct

certain polynomially searchable ‘compound’ neighbourhoods whose digraphs

have diameter bounded by a small constant. We follow the presentation of
Gutin and Yeo [375].

For a positive integer k < n/2, the neighbourhood digraph I'(n, k) has
>

a vertex set formed by all tours in K,. In I'(n,k), a tour T dominates a

2.12 Application: Exponential Neighbourhood Local Search for the TSP 87

tour R if there exists a set Z of k non-adjacent vertices of T such that

R€ N(T,Z). Clearly, T dominates R if and only if R dominates T, i.e.,

I'(n,k) is symmetric. We denote by dist, (7, R) the distance from T to R in
I (nik),

For a tour T in K n, let Inx denote the family of all sets of k non-adjacent

vertices in T’. Clearly, the neighbourhood N;(T) of a tour T in I'(n, k) equals

Uzer,,N(T, Z).

Thus if, for some k, i(n,k) = |Znx| is polynomial in n, then since N(T, Z)

is polynomially searchable I['(n,k) is polynomially searchable. Otherwise,

I(n,k) may be non-polynomially searchable. Since polynomially searchable

I’(n, k) are our main interest, we start by evaluating i(n, k) in Theorem 2.12.1.
It follows from Theorem 2.12.1 that, for fixed k, i(n,k) and i(n,n —k) are

polynomial.

Theorem 2.12.1 /375] i(n,k) = (Fash) + (fpkst)¢ 0

Corollary 2.12.2 If p is a non-negative fixed integer (p < |n/2|), then

I'(n,p+1) and I'(n, |(n — p)/2]) are polynomially searchable.

Proof: This follows from Theorem 2.12.1 and (77) = (,,",)- Oo

It can be shown (Exercise 2.47) that for n is even I'(n,n/2) consists of an
exponential number of strongly connected components and, thus, its diame-

ter is infinite (for example, 7) 72...@n,2, and 21 ...£%n—-22%nLn—1 2X, belong to

different strong components of this digraph). Therefore, below we consider
I'(n,k) for k < n/2 only.

Theorem 2.12.3 (Gutin and Yeo) /375] diam(I(n, |(n — 1)/2])) <4.

Proof: We assume that n > 5, as for 2 < n < 4 this claim can be verified

directly. Let C = 21 22...%n2%, and T = yj yo..-Ynyi be a pair of distinct

tours in (om Put k = |(n — 1)/2]. We will prove that dist,(T,C) < 4, thus
showing that diam(I’(n,k)) < 4.

We call a vertex v even (odd) with respect to C if vu = 2;, where 1 <

j <nand 7 is even (odd). For a set of vertices X of ee let Xoaa (Xeven) be

the set of odd (even) vertices in X.
First we consider the case of even n, i.e. k = n/2—1. The proof in this case

consists of two steps. At the first step, we show that there exists a tour JT”

whose vertices alternate in parity and such that dist,(T,T") < 2. Moreover,

T" has a pair of consecutive vertices which are also consecutive in C. At the
second step, we will see that dist,(T’,C) < 2 as the odd and even vertices
of T” (except for the vertices of the above pair) can be separately reordered

to form C. Thus, we will conclude that dist,(T',C) < 4. Now, we proceed to

the proof.

88 2. Distances

Clearly, T has a pair y;,yj+1 such that y;+1 is odd and y; is even. Let

Z = {Yj+2,Yj+4)
shes Yj+2k }

and let |Zoaa| = s. Remove the vertices of Z from T and then insert the s odd

vertices of Z into the arcs yj41Yj+3,-- +) Yj+2s—1Yj+2st1 and k—s even vertices

of Z into the arcs yj42541Yj+25+3) Yj+2st+3Yj+2s+5) +--+ 1 Yj+2k—-1Yj+2k+1- We

have obtained a tour

/ 2 P '

T! = YjpYjt1Uj-oyj+3Uj+4ayjts --- YjitQh—1Vj42kYj+2k41 Yj»

where {v;42,---,Ujtor} = Z.

Let Z' = {y543,Yj+5)---»Yj+2e¢1} and let |Z,,.,| = t. Since the number

of odd vertices in V(Kn) —{yj,yj41} is equal to k = |Zoaa|+|Zpqql = st+k—-t,

we obtain that s = t. Remove Z’ from J” and insert the t even vertices of Z’

into the arcs yj41Vj42, Vj+2Uj+45 Vj+6Uj+8,---)Vj+2s—2Uj+2s and the k—s odd

vertices of Z’ into the arcs, Ujpt2s+2Vj+25+45 ++ +5 VJj+Qk—2WVj4+2k» Vj+2kYj- We

have derived a tour T” = uju2...tUnuy. Clearly, the vertices of T’’ alternate

in parity, i.e., for every m, if um is odd, then u+1 is even.

Now we prove that the processes of insertion of Z and Z' can be performed

in such a way that T”’ contains a pair of consecutive vertices which are also

consecutive in C' (i.e. there exist indices p and q such that up = 2, and
Up+1 = Lq41). Since 1 < |Z'| < n, there exists a pair of distinct indices 7,m
such that 2;,%m € Z' and 2j41,%m_1 ¢ Z'. Without loss of generality, we

assume that 7 is odd. We consider two cases.

Case 1:|Z/,,,| > 2. We prove that we may choose index g = 1. Since x44 ¢ Z'
ands iMissevyen, either i, — 2:11 Ol fyei CG Semeqtn lt ete Seen tlie cle

process of insertion of Z, we insert 2j41 into yj+on-1Yj+2K4+1, Le. Zit. =

vj+2k- In the process of insertion of Z', we insert x; into vj+24y; if 2i41 = Yj

or into Uj+2k—-2U;+2k, Otherwise (i.e. Ti41 = Vj+2k).

Case 2: |Z/ ,,| = 1. Thus, m is even. Since n > 6, it follows that |Z!,,.,| > 2.
Analogously to Case 1, one may take q = m — 1.

Therefore, without loss of generality, we assume that un_1; = 2j, Un =

Titi. Since {ug,u4,..., Usk, i41} = Ceven, we can delete {uo,us,..., Uo}

from T" and insert it into the obtained cycle to get the tour C’ given by

C" = uj 243g %i45Us -..U2k-12j-1Un—12i41U1. Analogously, we can delete

{u1,U3,...,U2x-1} from C’ and insert it into the obtained cycle to get C.
We conclude that dist,(T,C) < 4.

Now let n be odd; then k = (n — 1)/2. Notice that, without loss of gen-
erality, we may assume that rp, = yp (to fix the initial labellings of T and
C). Consider tours X = 21 %2...%n%n4121 and Y = yyo.. -Yn—1YnYn41Y1 in

Kn41, where Yn = fn, Yn41 = Tn41. If we assume that j =n, j+1l=n+ ig
we can obtain, analogously to the case of even n, a tour Y” such that the

2.13 Exercises 89

vertices of Y” alternate in parity (with respect to their indices in Xa ee
follows z, in Y" and dist,(Y,Y") < 2. Now ifi=nandi+l=n+ 1, then
we can show, similarly to the case of even n, that dist,(Y”, X) < 2 and, thus,
dist,(Y, X) < 4. Notice that, in the whole process of constructing X from
Y, we have never removed z,, and Ln41 OF inserted any vertex into the arc
LnLn+1- Thus, we could contract the arc 2,241 to Zp and obtain C from T
in four ‘steps’. This shows that dist,(T,C) < 4. O

We can extend Theorem 2.12.3 using the following.

Theorem 2.12.4 /375] Let dist,(T,C) =1 for tours T and C and let m be
any integer smaller than k. Then, distm(T,C) < [k/m].

Corollary 2.12.5 For every positive m < |(n —1)/2],

diam(I'(n,m)) < 4f|(n — 1)/2]/m].
In particular, if p is a positive fixed integer, then diam(I'(n, |(n—p)/2|)) < 8
provided n > 2p +1.

Proof: The first inequality follows directly from the above two theorems and

the triangle inequality for distances in graphs. It also implies the second one.

Indeed, n > 2p + 1 infers

(n-1)/2 _ m=,
Gp fa = 9 = Tapa] =”

Hence, [Q] < 2. Oo

2.13 Exercises

2.1. Formulate the shortest (s,t)-path problem as a linear programming problem
with integer variables. Hint: use a variable for each arc.

2.2. (—) Show by an example that a minimum weight out-branching with root s
may not be a shortest path tree from s.

2.3. (—) Illustrate the shortest path algorithm for acyclic digraphs (Subsection
2.3.2) on the acyclic digraph in Figure 2.10.

2.4. Finding the longest paths from a fixed vertex to all other vertices
in a weighted acyclic digraph. Develop a polynomial algorithm for finding

the longest paths from a fixed vertex s to all other vertices in an arbitrary
weighted acyclic digraph. Preferably your algorithm should run in linear time.

2.5. Find the longest paths from s to all other vertices in the acyclic digraph in
Figure 2.10, e.g. using the algorithm that you designed in Exercise 2.4.

90

BAG),

74M

Leo

7489).

ZeLO;

2d.

2. Distances

Figure 2.10 A weighted acyclic digraph.

Finding a longest path in a weighted acyclic digraph in linear time.
Show how to find a longest path in a weighted acyclic digraph D in linear
time. Hint: use a variant of the dynamic programming approach taken in
(2.3), or construct a superdigraph D’ of D such that one can read out a
longest path in D from a shortest path tree from some vertex s in D’.

(—) Execute Dijkstra’s algorithm on the digraph in Figure 2.11.

2

Figure 2.11 A digraph with non-negative weights on the arcs.

ff

1 5

1

3

7

1 3

12

Complete the description of Dijkstra’s algorithm in Subsection 2.3.3 such
that not only the distances from s to the vertices of D are computed, but
also the actual shortest paths are found.

Complete the description of the Bellman-Ford-Moore algorithm in Subsec-
tion 2.3.4 such that not only the distances from s to the vertices of D are
computed, but also the actual shortest paths are found.

(—) Execute the Bellman-Ford-Moore algorithm on the digraph in Figure
2.12. Perform the scanning of arcs in lexicographic order.

. Négative cycle detection using the Bellman-Ford-Moore algorithm.
Prove Theorem 2.3.10.

- Show how to detect a negative cycle in the digraph in Figure 2.13 using the
extension of the Bellman-Ford-Moore algorithm.

Show by an example that Dijkstra’s algorithm may not find the correct dis-
tances if it is applied to a weighted directed graph D where some arcs have
negative weights, even if there is no negative cycle in D.

2.14.

2.15.

2.16.

Pypiltey

2.13 Exercises 91

a 7 b

Figure 2.13 A weighted digraph with a negative cycle.

(—) Show how to implement the Floyd-Warshall algorithm so that it runs in
time O(n?).

Prove Theorem 2.3.10.

Re-weighting the arcs of a digraph. Let D = (V,A,c) be a weighted
digraph and let 7: V + FR be a function on the vertices of D. Define a new
weight function c* by c*(u,v) = c(u, v) +(u) — m(v) for all v € V. Let dist*
be the distance function with respect to D* = (V,A,c"), and let P be an
(x, y)-path in D. Prove that P is a shortest (x, y)-path in D (with respect
to c) if and only if P is a shortest (z,y)-path in D* (with respect to c”).
Hint: consider what happens to the length of a path after the transformation
above.

. (—) Consider the weights introduced in Exercise 2.16. Show that the weight
of a cycle in D is unchanged under the transformation from D = (V, A,c) to
‘D* =(V,A,c’).

Getting rid of negative weight arcs by re-weighting. Let D = (V, A,c)
be a weighted digraph with some arcs of negative weight, but with no negative
cycle. Let D’ = (V, A’,c’) be obtained from D by adding a new vertex s and
all arcs of the form sv, v € V, and setting c’(s,v) = 0 for all v € V and
c'(u,v) = c(u, v) for all u,v € V. Let 1(v) = dist p/(s, v) for all v € V. Define
c* by c*(u, v) = c(u, v) + 7(u) — m(v) for all u,v € V. Prove that c*(u,v) > 0
for allu,v EV.

92

Py AIG).

Dye Pi dhe

Posy

2.24.

220%

Ze2OF

PAT

228,

2e29)

2.35.

2. Distances

Johnson’s algorithm for shortest paths. Show that by combining the

observations of Exercises 2.16-2.18, one can obtain an O(n“ logn + nm) al-

gorithm for the all pairs shortest path problem in digraphs with no negative

cycles (Johnson [463)}).

. Let M = [mij] be the adjacency matrix of a digraph D = (V, A) with V =
{1,2,...,n} and let k be a natural number. Prove that there is an (7, 7)-walk
of length k in D if and only if the (7, 7) entry of the kth power of M is positive.

. Show how to compute the kth power of the adjacency matrix of a digraph of
order n in time O(P(n) log n), where P(n) is the time required to compute
the product of two n x n matrices.

Finding a shortest cycle in a digraph. Describe a polynomial algorithm
to find the shortest cycle in a digraph. Hint: use Exercise 2.20.

(+) The generalized triangle-inequality. An arc-weighted digraph D =
(V, A,c) satisfies the generalized triangle-inequality if, whenever P and
Q are (x, y)-paths for some x, y © V(D) we have that |A(P)| < |A(Q)| implies
that c(P) < c(Q). Describe a polynomial algorithm to check whether a given
arc-weighted digraph satisfies the generalized triangle-inequality.

The generalized triangle-inequality was defined above. Show that one can
find the shortest path from a given vertex to all other vertices in O(n + m)
time in a weighted digraph which satisfies the generalized triangle-inequality.

Prove Proposition 2.4.2. :

(—) Draw the Goldberg digraph D(12, 15) (see the proof of Theorem 2.4.4).

(—) Derive a formula for the maximum diameter of an orientation of the
complete k-partite graph Kn, jno,....n,- Hint: apply Theorem 2.5.1.

Short cycles through an edge. Let G = (V,E) be a 2-edge-connected
graph and let uv € E. Prove that G has a cycle of length at most 2dist(u, V)+
1 through the edge uv. Hint: use the (undirected) distance classes from u and
v as weli as the fact that uv is not a bridge.

(—) Let Gi,G2,...,Gp be connected undirected graphs. Prove that

Pp

diam(I?_,Gi) =)~ diam(Gi).
Gal

- Prove that p(Cp x Cz) > 0 when both p and q are odd (p,q > 3) (West, see
(500]).

. Construct orientations of P3 x Ps and P3 x Py of diameter 8.

. Prove Theorem 2.9.5.

. (—) For every odd number n > 3, give an example of a tournament T of
order n, in which all vertices are 2-kings.

. (—) Let T be a tournament on 4 vertices. Show that T contains a vertex
which is not a 2-king.

Prove Theorem 2.10.1 (Moon [571)).

2.36.

Desite

2.38.

2.39.

2.40.

2.41.

2.42.

2.43.

2.44,

2.45.

2.46.

2.47.

2.48.

2.49.

2.13 Exercises 93

(—) Describe an infinite family of semicomplete digraphs, in which every
member has exactly two 2-kings.

Prove that the tournament T, in Subsection 2.10.1 has only three 2-kings for
i) 22 Ws

Prove that a multipartite tournament T has a finite out-radius if and only if
T contains at most one vertex of in-degree zero. Hint: use Proposition 2.1.1.

(—) Characterize 2-kings in multipartite tournaments.

3-kings in quasi-transitive digraphs. Show that every quasi-transitive
digraph of finite radius has a 3-king (Bang-Jensen and Huang [80]).

Prove Theorem 2.9.5.

Prove Theorem 2.12.1.

Prove Theorem 2.12.4.

Prove that, in the half-duplex model of gossiping (see Section 2.11), s(G) <
diam(G) + 1 for every connected bipartite graph G (Krumme, Cybenko and
Venkataraman [504)).

Using the upper bound of the previous exercise, prove that s(C2,) =k+1
for every integer k > 2.

(—) Evaluate the cardinality of a neighbourhood in k-Opt for the TSP (k >
3):

(—) Poor quality exponential neighbourhoods. Show that, if n is even,
then I'(n,n/2) (see Subsection 2.12.4) consists of an exponential number of
strongly connected components and, thus, its diameter is infinite.

(—) Find the cardinality of the assignment neighbourhood N(T, Z) for the
TSP with n vertices and k = |Z| (Gutin [369]).

Maximizing exponential neighbourhoods. Find the value of k = |Z| for
which the cardinality of the assignment neighbourhood N(T, Z) for the TSP
with n vertices is maximum (Gutin [369]).

i) ,

- rT: > ‘ ; svnes 78.6 ’

Ci

Y ela bas Lona pel ote ge tus panel inl
rte - G ~ 4 _

y ? oe ‘ fal

Wiis: “ ; C wei lage fui) ri Sie oti eg eh WES

is My, Bene Vos ies iiiwel 6 end % =) Me We egabaigihi

7 7 F t? inet eg 4, Ph ~
: - ;

Rs p ingapieed t wri JAt

LPT a pe OC ep tT’ 2ag ‘
“ ‘ “ee e

> (heats i wee uoev ore 2) Contd alba, @Abowtet ps- © ;

7 Sra i be Rly - aes ie x sist foc wh?) , Srp ne deeds) ersch i ‘

: , (pelt) weane ee

+ Pig ag kes Prong. eels sry jig a pam ee es at

} + M vepphahatpnAtAiily— — un: ;

a) fe ' i ‘p2 tats a 2 ‘ne ing mL {if ¥ pia) a 16 ViliA st is ak ant

ae. = 9 A

NW ould Woe ‘aboukhun wiry rut ehcinogem nah el ae
7 -

Yah aahe Nock jim fs > 7 yay a : = , —
mies: (2 £44 ‘ie &!

ie ato at eat th pt coy!) tet, aria tea oy | Ana 7 a oki
ae we: an fi i untiigies daaenet ued ii et betel eas 7

: ut rm
eh

3. Flows in Networks

The purpose of this chapter is to describe basic elements of the theory and

applications of network flows. This topic is probably the most important

single tool for applications of digraphs and perhaps even of graphs as a whole.

At the same time, from a theoretical point of view, flow problems constitute

a beautiful common generalization of shortest path problems and problems

such as finding internally (arc)-disjoint paths from a given vertex to another.

The theory of flows is well understood and fairly simple. This, combined with

the enormous applicability to real-life problems, makes flows a very attractive

topic to study. From a theoretical point of view, flows are well understood

as far as the basic questions, such as finding a maximum flow from a given

source to a given sink or characterizing the size of such a flow, are concerned.

However, the topic is still a very active research field and there are challenging

open problems such as deciding whether an O(nm) algorithm! exists for the

general maximum flow problem.

Several books deal almost exclusively with flows see e.g. the books [7] by

Ahuja, Magnanti and Orlin, [199] by Dolan and Aldous, the classical text
[246] by Ford and Fulkerson and [578] by Murty. In particular, [7] and [578]
contain a wealth of applications of flows. In this chapter we can only cover

a very small part of the theory and applications of network flows, but we

will try to illustrate the diversity of the topic and show several applications

of a practical as well as theoretical nature. Many of the results given in this

chapter will be used in several other chapters such as those on connectivity

and hamiltonian cycles.

3.1 Definitions and Basic Properties

A network is a directed graph D = (V, 4A) associated with the following

functions on V x V: a lower bound l;; > 0, a capacity uj; > lj; and

a cost cj; for each (i,j) € V x V. These parameters satisfy the following
requirement:

1 Here and everywhere in this chapter n is the number of vertices and m the
number of arcs in the network under consideration.

96 3. Flows in Networks

For every (i,j) €V x V, if ij ¢ A, then li; = wiz = 0. (Sat)

In order to simplify notation in this chapter we also make the assumption

that

Ciy = —CFi V(i,7) EVx’. (a2)

This assumption may seem restrictive but it is purely a technical con-

vention to make some of the following definitions simpler (in particular, the

definition of costs in the residual network in Subsection 3.1.2). When it comes

to implementing algorithms for various flow problems involving costs, this as-

sumption can easily be avoided (Exercise 3.2). Finally we assume that if there

is no arc between i and j (in any direction) then c;; = 0.

In some cases we also have a function b: V + R called a balance vector

which associates a real number with each vertex of D. We will always assume

that

oy hep d: (3.3)
vEV

We use the shorthand notation NV = (V,A,l,u,b,c) to denote a network
with corresponding digraph D = (V, A) and parameters |, u, b,c. If there are

no costs specified, or there is no prescribed balance vector, then we omit the

relevant letters from the notation. Note that whenever we consider a network

N = (V,A,l, u, b,c) we also have a digraph, namely the digraph D = (V, A)
that we obtain from N by omitting all the functions 1, u, b,c.

For a given pair of not necessarily disjoint subsets U,W of the vertex set

of a network NV = (V,A,l,u) and a function f on V x V we use the notation

f(U, W) as follows (here f;; denotes the value of f on the pair (i, 7)):

FORE SS Pe (3.4)
tEU, JEW

We will always make the realistic assumption that n = O(m) which holds
for all interesting networks. In fact, almost always, the networks on which we

work will be connected as digraphs.

3.1.1 Flows and Their Balance Vectors

A flow. in a network N is a function x : A 4 Ro on the arc set of NV’. We
denote the value of x on the arc ij by x;;. For convenience, we wili sometimes
think of « as a function of V x V and require that xi; = 0 if ij ¢ A (see e.g.
the definition of residual capacity in (3.7)). An integer flow in WN is a flow
x such that x;; € Zp for every arc ij. For a given flow z in N the balance
vector of z is the following function b, on the vertices:

3.1 Definitions and Basic Properties 97

be(v) = >) tw - D> tu We. (3.5)
vweEA UuveEeA

That is, b(v) is the difference between the flow on arcs with tail v and the
flow on arcs with head v. We classify vertices according to their balance values
(with respect to x). A vertex v is a source if b,(v) > 0, a sink if ba (v) < 0
and otherwise v is balanced (b,(v) = 0). When there is no confusion possible
(in particular when there is only one flow in question) we may drop the index
x on b and say that b is the balance vector of z.

A flow x in N = (V,A,l,u,6,c) is feasible if l;; < Uj, sts tor all
aj € A and b;(v) = b(v) for all v € V. If no balance vector is specified for the
network, then a feasible flow z is only required to satisfy Ij; < 14; < uz; for
all (1,7) € A.

The cost of a flow x in N = (V, A,l,u,c) is given by

cr = Ss Cij7Lij- (3.6)

ijEA

See Figure 3.1 for an example of a feasible flow.

(1, 3, 4, 3)

(Pat s6ix2) (0, 3, 3, 2)

(0, 0, 3, 1)

(5, 6, 8, 4)
(3, 3, 3, 1)

(Ole lae: Ful) (yey to)

(2, 2, 4,1) c e

Figure 3.1 A network NV = (V,A,l,u,c) with a feasible flow zx specified. The
specification on each arc 2) is (lij, 2ij, Uiz, Cij). The cost of the flow is 109.

We point out that whenever the lower bounds are all zero (an assumption

that is not a restriction of the modeling power of flows as we shall see in

Section 3.2) we will always assume that if 777 is a 2-cycle of a network NV
and zx is a flow in N, then at least one of 2;;,2;; is equal to zero. We call
such a flow a netto flow in NV. The practical motivation for this restriction

is that very often one uses flows to model items (water, electricity, telephone

messages, etc.) that move from one place to another in time. Here it makes

perfect sense to say that sending 3 units from 7 to j and 2 units from j to

i is the same as sending 1 unit from 7 to j and nothing from j to i (we say

98 3. Flows in Networks

that 2 of the units cancel out). In some of the definitions below it is easier

to work with netto flows.

The notion of flows generalize that of paths in directed graphs. Indeed, if

P is an (s,t)-path in a digraph D = (V, A), then we can describe a feasible

flow x in the network NV = (V,A,/ = 0,u = 1) by taking z;; = 1 if 77 is an

arc of P and 2;; = 0 otherwise. This flow has balance vector

iee—es

bp (iv) =< leit Ut
0 otherwise.

We can also see that if there are weights on the arcs of D and we let N inherit

these weights as costs on the arcs, then the cost of the flow defined above

is equal to the length (weight) of P. Hence the shortest path problem is a

special case of the minimum cost flow problem (which is studied in Section

3.10) with respect to the balance vector described above (here we implicitly

used Theorem 3.3.1 for the other direction of going from a flow to an (s, t)-

path in D.) In a very similar way we can also see that flows generalize cycles

in digraphs. It is an important and very useful fact about flows that in some

sense one can also go the other way. As we shall see in Theorem 3.3.1, every

flow in a network with n vertices and m arcs can be decomposed into no

more than n + m flows along simple paths and cycles. Furthermore, paths

and cycles play a fundamental role in several algorithms for finding optimal

flows where the optimality is with respect to measures we define later.

3.1.2 The Residual Network

The concept of a residual network was implicitly introduced by Ford and
Fulkerson [246].

For a given flow z in a network N = (V,A,l,u,c), define the residual
capacity r;; from 7 to j as follows:

Tig = (uig — Bag) + (tye — Lis). (3.7)

The residual network N(x) with respect to x is defined as V(r) =
(V, A(z),l = 0,r,c), where A(x) = {ij : rij > 0}. That is, the cost function
is the same? as for N and all lower bounds are zero. See Figure 3.2 for an
illustration.

The arcs of the residual network have a natural interpretation. If i ZEA
and zi; = 5 <7 = u;;, then we may increase x by up to two units on the arc
aj at the cost of cj; per unit. Furthermore, if we also have 1,; = 2 then we can
also choose to decrease x by up to 3 units along the arc ij. The cost of this
decrease is exactly cj; = —c;; per unit. Note that a decrease of flow along the

2 Note that this differs from definitions in other texts such as [7], but we can do
this since we made the assumption (3.2)

3.2 Reductions Among Different Flow Models 99

(2, —3)

Figure 3.2 The residual network N(x) corresponding to the flow in Figure 3.1.
The data on each arc is (r,c).

arc 17 may also be thought of as sending flow in the opposite direction along

the residual arc jz and then canceling out.

3.2 Reductions Among Different Flow Models

The purpose of this section is to show that one can restrict the general defi-

nition of a flow network considerably and still retain its modeling generality.

We also show that one can model networks with lower bounds, capacities and

costs on the vertices by networks, where all these numbers are on arcs only.

3.2.1 Eliminating Lower Bounds

We start with the following easy observation which shows that within the

general model the assumption that all lower bounds are zero does not limit

the model.

Lemma 3.2.1 Let N = (V,A,l,u,6,c) be a network.

(a) Suppose that the arc ij € A has 1;; > 0. Let N' be obtained from N

by making the following changes: b(j) := b(j) + lij, b(t) := b(t) — li,

Uij = Uiz — Liz, lij == 0. Then every feasible flow x in N corresponds to

a feasible flow z' in N' and vice versa. Furthermore, the costs of these

two flows are related by cl x = c? 2! + lijci;.

(b) There exists a network Nj=o in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow x' in Ni=o
and vice versa. Furthermore, the costs of these two flows are related by

cx = cg! SF jes lj Caz-

100 3. Flows in Networks

Proof: Part (a) is left to the reader as Exercise 3.3. Since we may eliminate

lower bounds one arc at the time, (b) follows from (a) by induction on the

number of arcs. O

It is also useful to observe that we can construct NV’ from N in time

O(n +m) and reconstruct the flow x from z’ in time O(m). Hence the time

for eliminating lower bounds and reconstructing a flow in the original network

is negligible since all algorithms on networks need O(n+m) time just to input

the network.

3.2.2 Flows with one Source and one Sink

Let s,t be distinct vertices of a network N = (V, A,! = 0,u,c). An (s, t)-flow

is a flow z satisfying the following for some k € Ro:

(k ifv=s
by) = ek iv Se

QO otherwise.

The value of an (s,t)-flow x is denoted by |z| and is defined by

|| = bz(s). (3.8)

The next lemma combined with Lemma 3.2.1 shows that using only (s, t)-
flows, one can model everything which can be modeled via flows in the general

network model.

Lemma 3.2.2 Let N = (V,A,l = 0,u,b,c) be a network. Le? M =

Deseo b(v) and let Ny, be the network defined as follows: Ng = (V U

{s,t}, A’,l'=0,u’',b',c’), where

(G) FAN =A Oi sri b(r) > OU rts 6@ 0),
(b) ui; = us for all ij € A, Usp = B(r) for all r such that b(r) > 0 and

Ugt = —b(q) for all q such that b(q) < 0,

(c) ci; = ci for allij € A and c! =0 for all arcs leaving s or entering t,
(d) b'(v) =0 for allu € V, b'(s) = M, b(t) = —M.

Then every feasible flow x in N corresponds to a feasible flow z' in N,, and

vice versa. Furthermore, the costs of x and x' are related by c!x = c'" z'. See
Figure 3.3.

Proof: Exercise 3.4. oO

It follows from Lemma 3.2.2 that. given any network N in which all lower
bounds are zero, we can check the existence of a feasible flow in N by con-
structing the corresponding network WV, and check whether this network has
3 Recall that we also have M = — Daan cor b(v) by (3.3).

3.2 Reductions Among Different Flow Models 101

an (s,t)-flow x such that |z| = M where M is defined in Lemma 3.2.2. This
latter task is precisely the problem of finding the maximum value of a feasible
(s, t)-flow in N¢, a problem which we study extensively in Sections 3.5-3.7.
See also Theorem 3.8.3.

(1, 0) (4, 0)

Figure 3.3 Part (a) shows a network N with a feasible flow with respect to the
balance vector specified at each vertex. The numbers on each arc are (capacity,
flow). Costs are omitted for clarity. Part (b) shows the network N+ as defined in
Lemma 3.2.2 and a feasible flow 2’ in Nz.

3.2.3 Circulations

A circulation is a flow xz with b,(v) = 0 for all v € V. Combining our next
result with Lemma 3.2.1 and Lemma 3.2.2 shows that one can also model

everything that can be modeled in the general (flow) network model by the

seemingly much more restricted circulations. Note that we cannot completely

exclude lower bounds in this reduction (see Exercise 3.5).

Lemma 3.2.3 Let N = (V,A,l = 0,u,6,c) be a network with distinct ver-
tices s,t and let the balance vector of N satisfy b(v) =0 for allu € V —{s,t},
b(s) = M, b(t) = —M, for some M € Ro. Let N* = (V,AU {ts}, 1”, u",c)
be the network obtained from N by adding a new arc ts with lower bound

lis = M, capacity uzs = M and cost c/, = 0, keeping the lower bound, ca-

pacity and cost of each original arc and posing no restriction on the balance

vector of N*. Then every feasible (s,t)-flow x in N corresponds to a feasible

circulation x" in N* and vice versa. Furthermore, the costs of x and x' are

related by cha =cl'T x".

Proof: Exercise 3.5. oO

The concept of a circulation is a very useful tool for applications to ques-

tions concerning sub(di)graphs of (di)graphs as we show in Section 3.11.

102 3. Flows in Networks

3.2.4 Networks with Bounds and Costs on the Vertices

In some applications of flows one is not interested in imposing lower bounds

and capacities on arcs, but rather on vertices. One such example is when one

is looking for a cycle subdigraph that contains all vertices of a certain subset

X and possibly other vertices (see Section 3.11). Another example is when one

is looking for a path factor which covers all vertices of a digraph (see Section

5.3). We show below how to model networks with lower bounds, capacities and

costs on vertices (and possibly also on arcs) by standard networks where all

functions, other than the balance vectors, are on the arcs. First we introduce

a useful transformation of any digraph to a bipartite digraph which we will

use not only for the problem above but also several other places in the book.

: :

a, @<———® ,,

WA Sy by

a t) c

ara
cs @ ce

d ds @ dt

Figure 3.4 The vertex splitting procedure.

Given a digraph D = (V, A), construct a new digraph Dsr as follows.
For each vertex v € V, Dsr contains two new vertices Us,Uz~ and the arc
UpUs. For each arc zy € A(D), A(Dsr) contains the arc x,y;. See Figure 3.4.
We say that the digraph Ds- is obtained from D by the vertex splitting
procedure.

Now suppose that MN = (V, A,l,u,b,c,/*, u*, c*) is a network with a pre-
scribed balance vector b, lower bounds, capacities and costs l,u,c on the arcs
(the case when there are no such specifications can easily be modeled by
taking | = 0,u = oo, c = 0) and lower bounds, capacities and costs [*, u*, c*
on the vertices. To be precise we have to define the meaning of these new
parameters. There is some freedom in such a definition, but for the applica-
tions we will need, it suffices to use the definition that I*(v) is the minimum
and u*(v) the maximum amount of flow that may pass through v and the
cost of sending one such unit through v is c*(v). By ‘passing through’ we

3.2 Reductions Among Different Flow Models 103

mean the obvious thing when b(v) = 0 and if b(v) > 0 (b(v) < 0) we think of
I*(v),u*(v),c*(v) as bounds and costs per unit on the total amount of flow
out of (in to) v.

Let Dsr be the digraph obtained from D = (V,A) by performing the
vertex splitting procedure. Define a new network based on the digraph Dgr
by adding lower bounds, capacities and costs as follows:

(a) For every arc i,j; (corresponding to an arc ij of A) we let A'(isj,) = h(ij),
where h € {l, u, c}.

(b) For every arc ii, (corresponding to a vertex i of V) we let h’ (isis) = h*(i),
where h* € {l*,u*,c*}.

Finally we define the function b’ as follows:

b(2) =) then b'(7,) = b's) = 0:
If b(2) > O then b'(i¢) = b(z) and b’(i,) = 0;
If b(2) < O then b'(2:) = 0 and 0'(i,) = b(#).

(1, 3, 2)

(0, 3, 4)

(0, 3, 0)

(1, 4, 6)

Figure 3.5 The construction of N’ from NV. The specification is the balance vector
and (1, u,c). For clarity only one arc of NV has a description of bounds and cost.

See Figure 3.5 for an example of the construction. It is not difficult to
show the following result.

Lemma 3.2.4 Let N and N' be as described above. Then every feasible flow

in N corresponds to a feasible flow in N' = (V(Dsr), A(Dsr),l’,u’, b',c’)
and vice versa. Furthermore, the costs of these flows are the same.

Proof: Exercise 3.6. Oo

104 3. Flows in Networks

3.3 Flow Decompositions

In this section we consider a network NV = (V,A,/ = 0,u) and denote by

D = (V,A) the underlying digraph of NV’. By a path or cycle in N we mean

a directed path or cycle in D. We will show that every flow in a network

can be decomposed into a small number of very simple flows in the same

network. Besides being a nice elementary mathematical result, this also has

very important algorithmic consequences as will be clear from the succeeding

sections.

A path flow f(P) along a path P in WN is a flow with the property that

there is some number k € Ro such that f(P);; = k if ij is an arc of P and

otherwise f(P);; = 0. Analogously, we can define a cycle flow f (W) for any

cycle W in D. The arc sum of two flows x, 2’, denoted x + 2’, is simply the

flow obtained by adding the two flows arc-wise.

Theorem 3.3.1 Every flow x in N can be represented as the arc sum of

some path and cycle flows f(P:), f(P2),..-.,f(Po), f(Ci),---,f(Cg) with the

following two properties:

(a) Every directed path P;, 1 <i < a with positive flow connects a source

vertex to a sink verte.

(b) a+B<n+m and B<m.

Proof: Let z be a non-zero flow in NV. Suppose first that b,(i9) > O for

some ig € V. Since bz (io) > 0 it follows from (3.5) that there is some arc
igi; leaving ig with 2;,;, > 0. If b(t1) < 0 then we have found a path from

ig to the sink i,. Otherwise b(i,) > 0 and it follows from (3.5) and the fact
that x4:, > 0 that 2; has some arc 2172 leaving it with 2;,;, > 0. Continuing

this way, we either find a path P from ip to a sink vertex 7, such that x

is positive on all arcs on P, or eventually some vertex that was examined

previously must be reached for the second time. In the later case we have

detected a cycle C = ipip41...ip—1tpt, such that x is positive on all arcs of

C’. Now we change the flow z as follows:

(i) If we detected a path P from ip to a sink 7, then let 6 = min{aj,;,,, :
igig41 € A(P)} and define uw by uw = min{bz (io), —bz (tx), 6}. Let f(P) be
the path flow of value yz along P. Decrease x by p units along P.

(ii) Otherwise we have detected a cycle C. Let w = min{x;,i,,, : igigai €
A(C)} and let f(C) be a cycle flow of value yz along C. Decrease x by
units along C.

If no arc carries positive flow after the changes made above we are done.

Otherwise we repeat the process above. If every vertex v becomes balanced
with respect to the current flow z (i.e. bz(v) = 0) before z is identically zero,
then just start from a vertex ig which has an arc igi; with positive flow. From
now on only cycle flows will be extracted in the subroutine described above.

3.4 Working with the Residual Network 105

Since each of these iterations either results in a vertex becoming balanced
with respect to the current flow, or in an arc ij loosing all its flow, i.e., Lij
becomes zero, the total number of iterations, extracting either a path flow
or a cycle flow from the current flow, is at most n +m. It follows from the
description above that (a) and the first part of (b) holds. The second part of
(b) follows from the fact that each time we extract a cycle flow at least one
arc loses all its flow. Oo

The proof above immediately implies an algorithm for finding such a

decomposition in time O(m7?) if one uses DFS to find the next path or cycle

flow to extract. However if we use an appropriate data structure and a little

care, this complexity can be improved.

Lemma 3.3.2 Given an arbitrary flow x in N one can find a decomposition

of x into at most n +m path and cycle flows, at most m of which are cycle

flows, in time O(nm).

Proof: Exercise 3.7. O

The following useful fact is an easy consequence of Theorem 3.3.1.

Corollary 3.3.3 Let N be a network. Every circulation in N can be decom-

posed into no more than m cycle flows. oO

3.4 Working with the Residual Network

Suppose NV is a network and z, 2’ are feasible flows in NV’. What can we say

about the relation between x and 2’? Clearly one can be obtained from the

other by changing the flow along each arc appropriately, but we can reveal

much more interesting relations as we shall see below. In fact it turns out

that if z is feasible in NV and z’ is any other feasible flow in NV, then x’ can be

expressed in terms of x and some feasible flow in the residual network N(z).

The other direction holds as well: if x is feasible in N and y is feasible in

N (a) then we can ‘add’ y to x and obtain a new feasible flow in NV. These
two properties imply that in order to study flows in a network N it suffices

to find one feasible flow x and then work in the residual network N(x). We
assume below that all lower bounds are zero. Recall that due to the results

in Section 3.2 this restriction does not limit our modeling power.

The first lemma shows that if z is a feasible flow in NV = (V, A,/ = 0,u, b,c)

and @ is a feasible flow in V(x) then one can ‘add’ & to x and obtain a new

feasible flow in VV. Here ‘adding’ is arc-wise and should be interpreted as

defined below. Recall that we may assume we are dealing with netto flows.

Definition 3.4.1 Let x be a feasible flow in N = (V,A,l = 0,u,c) and let

z be a feasible flow in N(x). Define the flow x* =x @Z as follows: Start by

letting xj; := xij for every 17 € A and then for every arc ij in N(x) such

that £;; > 0 we modify x* as follows (see Figure 3.6).

106 3. Flows in Networks

(a) If Lii= 0 then ti = Lig + aie i ’

(b) If Gay = 0 and Li < Lij then Ti; = Lij — Lji and £i4= 0.

(c) lf L5i z= Liz then vi, = Lji — Lij-

Note that by (3.7), if 0 < 2;; < %; then ij € A. Using that @ is a netto

flow it is easy to check that the resulting flow <* is also a netto flow.

iL x £

a Geig j a aye (0, A a apes etna a)
(a) Pal tae e—__——-e OSS

b) a fea > (0) j G Lii Li; j Q Lig —Zji J
As —— s o—_—_____-e

(Bap =U

© O fre SS J ‘ Lii > Bij J i Lji — Lij j

Figure 3.6 The three different cases in Definition 3.4.1. The three columns shows
the flows %, x and x", respectively. An arc between 7 and 7 is shown unless the
corresponding flow on that arc is zero.

Theorem 3.4.2 Let z be a feasible flow in N = (V,A,l = 0,u,c) with bal-
ance vector bz and & is a feasible flow in N(x) = (V, A(z),7r,c) with balance

vector bz. Then z* = 2 QZ is a feasible flow in N with balance vector bz + bz
and the cost of x* is given by cla* = cla +c.

Proof: Let us first show that 0 < Ti; < uiz for every 17 € A. We started

the construction of x* by letting x}; := 2,; for every arc. Hence it suffices to
consider pairs (i,j) for which %;; > 0. We consider the three possible cases

(a)-(c) in Definition 3.4.1. In Case (a) we have z*; = 0 and

Ore ai, = Fiz + iy S ti + Tig

= ij + (way — Vij + ji)
= Uij,

since we have zj; = 0 in Case (a). In Case (b) we will have z;; = 0 and

3.4 Working with the Residual Network 107

Taek:
OS af Sfp — 2H ST — BH

= (Wig — Big + By) — By
= Uij;

since we have 2;; = 0 in Case (b). In Case (c) it is easy to see that we get
xj, = 0 and that 0 < 25; < uji.

Consider the balance vector of the resulting flow. We wish to prove that

x* has balance vector b, + bz, that is, for every i € V,

ber (t)= > af, — >> at, = be (i) + dg (i): (3.9)
ijeA jicA

This can be proved directly from the definitions of the balance expressions

for x and z. However this approach is rather tedious and there is a simple

inductive proof using Theorem 3.3.1. If % is just a cycle flow in N(z), then it

is easy to see (Exercise 3.12) that the balance vector of x* equals that of a.
Similarly, if Z is just a path flow of value 6 along a (p, q)-path, for some distinct

vertices p,q € V, then b,+(v) = bz (vu) for vertices v which are either internal

vertices on P or not on P and b,«(p) = bz(p) + 6, bz+(q) = bz (gq) — 6. In the
general case, when Z is neither a path flow nor a cycle flow in N(x) we consider

a decomposition of ¢ into path and cycle flows in NV (z) according to Theorem
3.3.1. Using the observation above and Theorem 3.3.1 (implying that when

adding all balance vectors of the paths and cycles in a decomposition, we

obtain the balance vector of £) it is easy to prove by induction on the number

of paths and cycles in the decomposition that (3.9) holds.

We leave it to the reader to prove using the same approach as above that

the cost of z* is given by c?a* = cx +c’ & (see Exercise 3.12). O

The next theorem shows that the difference between any two feasible flows

in a network can be expressed as a feasible flow in the residual network with

respect to any of those flows.

Theorem 3.4.3 Let N = (V,A,l = 0,u,c) be a network and let x and z'
be feasible netto flows in N with balance vectors b, and bz. There exists a

feasible flow = in N(x) with balance vector bg = bz: — bz such that cz’ = x@z.

Furthermore, the costs of these flows satisfy c'= = c! a' —c' x.

Proof: Let x,’ be feasible netto flows in NV = (V,A,l = 0,u,c) and define

a flow in N(z) as follows. For every arc pg € N (2) we let Zp, := 0 and then
for every arc ij € A such that either z;; > 0 or x}; > 0 holds, we modify z

as follows:

(a) If rij > Zi; then X ji i= Lig — vi; F L's5

(b) If Li > Xi; then Lig c= Zi; — Lig + Lj.

108 3. Flows in Networks

Using that x and 2’ are feasible netto flows in N, one can verify that

is a feasible netto flow in V(x) (Exercise 3.13). It also follows easily from

Definition 3.4.1 that 2’ = x @ Z. Now the last two claims regarding balance

vector and cost follow from Theorem 3.4.2. Oo

The following immediate corollary of Theorem 3.4.3 and Corollary Diao

will be useful when we study minimum cost flows in Section 3.10.

Corollary 3.4.4 If z and a' are feasible flows in the network N = (V,A,l=

0,u,c) such that by = bz, then there exist a collection of at most m cycles

W,, We,...,We in N (a) and cycle flows f(Wi),...,f(Wk) in N(x) such that

the following holds:

(a) z' = 2@(f(Wi)+...+f(We)) = (.-.((e@f(WMi))@f(W2))e...)OF(We);
(b) cha! =clxt+ Sais: c! f (W;). oO

3.5 The Maximum Flow Problem

In this and the next section we study (s,t)-flows in networks with all lower
bounds equal to zero. That is we consider networks of the type V = (V, A,l=

0,u) where s,t € V are special vertices and we are. only interested in flows

x which satisfy b,(s) = —b,(t) and b,(v) = 0 for all other vertices. We call
s the source and ¢ the sink of NV’. By Theorem 3.3.1, every (s,t)-flow x
can be decomposed into a number of path flows along (s,t)-paths and some

cycle flows whose values do not affect the value of the flow x. Based on this

observation we also say that z is a flow from s to ft.

Recall from (3.8) that the value |x| of an (s, t)-flow is |x| = b,(s). We are
interested in determining the maximum value k for which N has a feasible

(s, t)-flow of value* k. Such a flow is called a maximum flow in NV. The
problem of finding a maximum flow from s to t in a network with a specified

source s and sink t is known as the maximum flow problem [246].
An (s, t)-cut is a set of arcs of the form (5, S) where S, 5 form a partition

of V such that s € S,t € S. The capacity of an (s, t)-cut (5, S) is the number

u(S, S), that is, the sum of the capacities of arcs with tail in S and head in

S (recall (3.4)). Cuts of this kind are interesting in relation to the maximum
flow problem as we shall see below.

Lemma 3.5.1 For every (s,t)-cut (S,S) and every (s,t)-flow x, we have

|z| = 2(5,.5) —2(S,S). (3.10)

Proof: Starting from the definition of || and the fact that b,(v) = 0 for all
v € S—s we obtain

“ Observe that there always exists a feasible flow in NV since we have assumed
l=0.

3.5 The Maximum Flow Problem 109

|| = bs (s)+ D> be(i)
iE€S—s

pow cpa Say
i€S ijEA jicA

= 2(S,V) —2(V,S)

= 2(5,S) +2(S,S) — 2(5,S) — 2(S, S)

=n(S,5)= 2595):

where we also used (3.4). a)

Since a feasible flow « satisfies x < u, every feasible (s, t)-flow must satisfy

a(S, S) < u(S,S) for every (s,t)-cut (S,S). (3.11)

A minimum (s, t)-cut is an (s,t)-cut (S,S) with

u(S,S) = min{u(S’, S’) : (S’,S’) is an (s, t)-cut in N}.

It follows from (3.11) and Lemma 3.5.1 that the capacity of any (s, t)-
cut provides an upper bound for the value |z| for any feasible flow x in the

network. We also obtain the following useful consequence.

Lemma 3.5.2 If a flow x has value |z| = u(S,S) for some (s,t)-cut (S,S),

then x(S,S) =0, x is a mazimum (s,t)-flow and (S,S) is a minimum (s ,t)-
cut. O

Suppose z is an (s,t)-flow in N and P is an (s,t)-path in N(z) such that
rij > € > 0 for each arc 717 on P. Let x" be the (s,t)-path flow of value ¢«

in N(x) which is obtained by sending € units of flow along the path P. By
Theorem 3.4.2, we can obtain a new flow 2’ = x @ 2" of value |z| + € in N,
implying that z is not a maximum flow in NV. We call a path P in N(z) as
above an augmenting path with respect to z. The capacity 6(P) of an
augmenting path P is given by

OUD) a= Mind feat gels tansarciol Wa}: (sal2)

We call an arc 17 of P for which 2;; < uj; a forward arc of P and an

arc 17 of P for which z;; > 0 a backward arc of P.

When we ‘add’ the path flow x” to x according to Definition 3.4.1 we

say that we augment along P by « units. It follows from the definition of

6(P) and Theorem 3.4.2 that 6(P) is the maximum value by which we can
augment zx along P and still have a feasible flow in NV after the augmentation.

Now we are ready to prove the following fundamental result, due to Ford

and Fulkerson, relating minimum (s,t)-cuts and maximum (s, t)-flows.

110 3. Flows in Networks

Theorem 3.5.3 (Max-flow Min-cut theorem) [246] Let N = (V, A, =

0,u) be a network with source s and sink t. For every feasible (s, t)-flow x in

N the following are equivalent:

(a) The flow x is a maximum (s,t)-flow.
(b) There is no (s,t)-path in N(x).
(c) There exists an (s,t)-cut (S,S) such that |x| = u(S, i).

Proof: We show that (a)=>(b)=(c)=>(a).

Figure 3.7 Illustration of part (b)=(c) in the proof of Theorem 3.5.3. The set S
consists of those vertices that are reachable from s in N(x). The left part shows

the situation in the residual network where we have SS and the right part shows
the corresponding situation in NV.

(a)=>(b): Suppose x is a maximum flow in NV and that A(z) contains an
(s,t)-path P. Let 6(P) > 0 be the capacity of P and let 2’ be the (s, t)-
path flow in (x) which sends 6(P) units of flow along P. By Theorem

3.4.2 « @ 2" is a feasible flow in N of value |x|+6(P) > |z|, contradicting
the maximality of x. Hence (a)=(b).

(b)=(c): Suppose that M(x) contains no (s, t)-path. Let

S ={y €V: N(x) contains an (s, y)-path}.

By the definition of S, there is no arc from S to S in N(x). Thus the

definition of (x) implies that for every arc ij € (S,S) we have a;; = Uij
and for every arcij € (S,S) we have x;; = 0 (see Figure 3. 7). This implies
that we have |r| = «($,S) — 2(S,S) = u(S,S) —0 = u(S,S). Hence we
have proved that (b)=(c).

(c)=(a): This follows directly from Lemma 3.5.2. Oo

3.5.1 The Ford-Fulkerson Algorithm

The proof of Theorem 3.5.3 suggests the following simple method for finding
a maximum (s,t)-flow in a network where all lower bounds are zero. Start

3.5 The Maximum Flow Problem Hitt

with x = 0. This is a feasible flow since 0 = 1;; < uj; for all arcs ij € A. Try
to find an (s,t)-path P in (a). If there is such a path P, then augment x by
6(P) units along P. Continue this way until there is no (s,t)-path in N (a)
where x is the current flow. This method, due to Ford and Fulkerson [246],
is called the Ford-Fulkerson (FF) algorithm.

Strictly speaking this is not really an algorithm if we do not specify how
we wish to search for an augmenting (s, t)-path. It can be shown (see Exercise
3.17) that, when the capacities are allowed to take non-rational values and
there is no restriction on the choice of augmenting paths (other than that
one has to augment as much as possible along the current path), then the
process above may continue indefinitely and without even converging to the
right value of a maximum flow (see Exercise 3.17). For real-life applications
this problem cannot occur since all numbers represented in computers are

rational approximations of real numbers and in this case the algorithm will
always terminate (Exercise 3.18).

Theorem 3.5.4 If N = (V,A,l = 0,u) has all capacities integers, then

the Ford-Fulkerson algorithm finds a maximum (s,t)-flow in time O(m|z*]),
where x* is a maximum (s,t)-flow.

Proof: The following generic process called the labelling algorithm will

find an augmenting path in \(z) in time O(n + m) if one exists®. Start with

all vertices unlabelled except s and every vertex unscanned. In the general

step we pick a labelled but unscanned vertex v and scan all its out-neighbours

while labelling (by backwards pointers showing where a vertex got labelled

from) those vertices among the out-neighbours of v that are un-labelled.

If t becomes labelled this way, the process stops and an augmenting path,

determined by the backwards pointers, is returned. If all vertices are scanned

and t was not labelled the process stops and the set of labelled vertices S

and its complement S correspond to a minimum (s,t)-cut (recall the proof

of Theorem 3.5.3).

Each time we augment along an augmenting path, the value of the current

flow increases by at least one, since the capacities in the residual network

are all integers (this is clear in the first iteration and easy to establish by
induction for the rest of the iterations of the algorithm). Hence there can be

no more than |z*| iterations of the above search for a path and the complexity
follows. Oo

To see that the seemingly very pessimistic estimate in Theorem 3.5.4

for the time spent by the algorithm may in fact be realized, consider the

network in Figure 3.8 and the sequence of augmenting paths specified there.

The reader familiar with the literature on flows may see that our example is

different from the classical example in books on flows. The reason for this is

5 We could also use path finding algorithms such as BFS and DFS, but the original
algorithm by Ford and Fulkerson uses only the generic labelling approach. See
also Section 3.6.

iy 3. Flows in Networks

ez M b M cs

M M

8 1 t

M M

o—
d M e€ M if

Figure 3.8 A possibly bad network for the Ford-Fulkerson algorithm. The number

M denotes a large integer. If we choose augmenting paths of the form sabeft with

augmenting capacity 1 in odd numbered iterations and augmenting paths of the

form sdebct with augmenting capacity 1 in even numbered iterations, then a max-
imum flow x of value 2M will be found only after 2M augmentations. Clearly, if
instead we augment first along sabct and then along sdeft, each time by M units,
we can find a maximum flow after just two augmentations.

that if we interpret the Ford-Fulkerson algorithm precisely as it is described

in [246, page 18] (see also the proof of Theorem 3.5.4), then the algorithm
will not behave badly on the usual example, whereas it still will do so on the

example in Figure 3.8.

The value of the maximum flow in the example in Figure 3.8 is 2M. This

shows that the complexity of the Ford-Fulkerson algorithm is not bounded by

a polynomial in the size of the input (recall from Chapter 1 that we assume

that numbers are represented in binary notation). It is worth noting though

that Theorem 3.5.4 implies that if all capacities are small integers then we get

a very fast algorithm which, due to its simplicity, is easy to implement. The

following is an easy but very important consequence of the proof of Theorem
O,080:

Theorem 3.5.5 (Integrality theorem for maximum (s, t)-flows) /246]
Let N = (V,A,l =0,u) be a network with source s and sink t. If all capacities

are integers, then there exists an integer maximum (s,t)-flow in N.

Proof: This follows from our description of the Ford-Fulkerson algorithm. We

start with x = 0 and every time we augment the flow we do this by adding an
integer valued path flow of value 6(P) € Z,. Hence the new (s, t)-flow is also
an integer flow. It follows from the fact that all capacities are integers that in
a finite number of steps we will reach a maximum flow (by Lemma 3.5.1 |z|
cannot exceed the capacity of any cut). Now the claim follows by induction
on the number of augmentations needed before we have a maximum flow. O

An (s, t)-flow in a network NV is maximal if every (s,t)-path in NV uses at
least. one arc pg such that tpg = Upg (such an arc is called saturated). That
is, either x is maximum or after augmenting along an augmenting path P the
resulting flow x! has xj, < aj; for some arc®. This is equivalent to saying that

® Recall that we always work with netto flows.

3.5 The Maximum Flow Problem bili}

every augmenting path with respect to x contains at least one backward arc

when P is considered as an oriented path in NV. It is important to distinguish

between a maximal flow and a maximum flow. An (s,t)-flow xz is maximal if

it is either maximum, or in order to augment it to a flow with a higher value,

we must reduce the flow in some arc. See also Figure 3.9.

(2, 1)

(1,1)

Cc Cad

Figure 3.9 A network N with flow x which is maximal but maximum as the path
P = sabcdt is an (s,t)-path in V(r). Note that the arc bc is a backward arc of P.
The data on each arc are (capacity, flow).

3.5.2 Maximum Flows and Linear Programming

We digress for a short while to give some remarks on the relation between

maximum flows and linear programming. First observe that the maximum

flow problem (with lower bounds all equal to zero) is equivalent to the fol-

lowing linear programming problem:

maximize k

subject to

ky sifu = 6

bev) hail vit

0 otherwise.

Oia ity for every ij € A.

The matrix T of the constraints of this linear program is given by T =

& , where S is the vertex-arc incidence matrix’ of the underlying directed

graph of the network (recall the definition of b;) and J is the m x m identity

matrix. The matrix S has the property that every column contains exactly

’ The vertex-arc incidence matrix S = [s;;] of a digraph D = (V, A) has rows
labelled by the vertices of V and columns labelled by the arcs of A and the entry
$y;,a; equals 1 if the arc a; has tail vi, —1 if a; has head v; and 0, otherwise.

114 3. Flows in Networks

+1 and exactly one —1. This implies that S is totally unimodular, i.e., each

square submatrix of S has determinant 0, 1, or —1 (see e.g., the book [166]

by Cook, Cunningham, Pulleyblank and Schrijver). Hence it follows from

Exercise 3.19 that the matrix T is also totally unimodular. Therefore the

integrality theorem for maximum flows (Theorem 3.5.5) follows immediately

from the Hoffmann-Kruskal characterization of total unimodularity (see [166,
Theorem 6.25]).

Since the maximum flow problem is just a linear programming problem,

it follows that one can find a maximum flow using any method for solving

general linear programming problems. In particular, by the total unimodular-

ity of T, the Simplex algorithm will always return an integer maximum flow

provided that all capacities are integers. However, due to the special nature

of the problem, more efficient algorithms can be found when we exploit the

structure of flow problems. Finally, we remark that the Max-flow Min-cut

theorem can be derived from the duality theorem for linear programming

(see e.g. the book [600)).

3.6 Polynomial Algorithms for Finding a Maximum
(s, t)-Flow

The Ford-Fulkerson algorithm can be modified in various ways to ensure that

it becomes a polynomial algorithm. We describe two such modifications (see
also Exercises 3.25 and 3.26). After doing so we describe a different approach
in which we do not augment the flow by just one path at the time. For the
first two subsections we need the following definition.

Definition 3.6.1 A layered network is a network N = (V,A,l = 0, u)
with the following properties:

(a) There is a partition V =Vo UV, UVa U... UYU Viti such that Vo =
{s},Vi+1 = {t} and

(b) every arc of A goes from a layer V; to the nezt layer Vi+1 for some
i=0,1,...,k.

See Figure 3.10 for an example of a layered network.

3.6.1 Elow Augmentations Along Shortest Augmenting Paths

Edmonds and Karp [216] observed that in order to modify the Ford-Fulkerson
algorithm so as to get a polynomial algorithm, it suffices to choose the aug-
menting paths as shortest paths with respect to the number of arcs on the
path.

Let x be a feasible (s, t)-flow in a network NV. Denote by 5, (s,t) the length
of a shortest (s,¢)-path in N(x). If no such path exists we let O¢ (Sit) 60,

3.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 115

12

3 1

‘ 11

5
ie

12 4 14
$ et

7
8

10 y

4 6

Figure 3.10 A layered network with source s and sink t. The numbers on the arcs
indicate the capacities.

Suppose that there is an augmenting path in N’(z) and let P be a shortest

such path. Let r be the number of arcs in P. Define the network LN (zx) as

the network one obtains from \/(z) by taking the vertices from the distance

classes Vo,Vi,...,V;, ie. Vi = {v : distyy(a)(s, uv) =i}, and all arcs belonging

to (Vi, Viti) (2) for 7 = 0,1,...,r—1 along with their residual capacities r;;.

Observe that, by the definition of distance classes, CN’(x) contains all the
shortest augmenting paths with respect to x in N(z).

The crucial fact that makes augmenting along shortest paths a good ap-

proach is the following lemma.

Lemma 3.6.2 /216] Let x be a feasible (s,t)-flow in N and let z' be obtained
from x by augmenting along a shortest path in N(x). Then

5z'(8,t) > 52(s,t). (3.13)

Proof: Suppose this is not the case for some z, x’ where z’ be obtained from z

by augmenting along a shortest path P in N(x). By the remark above LN (z)
contains all the shortest augmenting paths (with respect to x) in V(x). Let

r = 6,(s,t). By our assumption \’(z’) contains an (s,t)-path P’ whose length
is less than r. Thus P’ must use an arc ij such that 17 ¢ A(NV(z)). However,
every arc that is in V(2’) but not in CN (z) is of the form ji where ij is an

arc of P, or is inside a layer of CN (z). It follows that P’ has at least r +1
arcs, contradicting the assumption. 0

Note that even if V(x’) contains no (s,t)-path of length 6,(s,t), it may
still contain a path of length 6,(s,t) +1, since we may use an arc which was

inside a layer of LN (2).

Theorem 3.6.3 (Edmonds, Karp) /216] If we always augment along
shortest augmenting paths, then the Ford-Fulkerson algorithm has complexity

O(nm?).

Proof: By Lemma 3.6.2, the length of the current augmenting path increases

monotonically throughout the execution of the algorithm. It follows from the

116 3. Flows in Networks

proof of Lemma 3.6.2 that, if the length of the next augmenting path does

not go up, then that path is also a path in LN (xr). Note also that at least

one arc from some layer V; to the next disappears after each augmentation

(recall that in each augmentation we augment by 6 (P) units along the current

augmenting path P). Hence the number of iterations in which the length of

the current augmenting path stays constant is at most m. Since the length

can increase at most n — 2 times (the length of an (s, t)-path is at least 1 and

at_ most n — 1) and we can find the next augmenting path in time O(n +m)

using BFS we obtain the desired complexity. oO

Zadeh [753] constructed networks with n vertices and m arcs for which the

Edmonds-Karp algorithm requires 2(nm) augmentations to find a maximum

flow. Hence the estimate on the worst case complexity is tight.

3.6.2 Blocking Flows in Layered Networks and Dinic’s Algorithm

Let £L= (V=VoUV,U.". UY, A,l = 0,u) be a layered network with

Vo = {s} and V; = {t}. An (s,t)-flow z in CL is blocking if there no (s,t)-
path of length k in the residual network C(x). Note that a blocking flow is
also maximal flow (recall the difference between a maximal and a maximum

flow as explained in the end of Section 3.5). That is, every augmenting path

with respect to z (if there is any) must use at least one arc pg such that

DeV;,g € Vitor somey 27:
We saw above that if we always augment along shortest augmenting paths,

then the length of a shortest augmenting path is monotonically increasing.

Hence if we have a method to find a blocking flow in a layered network in

time O(p(n,m)), then we can use that method to obtain an O(np(n,m))
algorithm for finding a maximum (s, t)-flow in any given network.

The method of Edmonds and Karp above achieves a blocking flow in time

O(m?). It was observed by Dinic [195] (who also independently and earlier
discovered the method of using shortest augmenting paths) that a blocking

flow in a layered network can be obtained in time O(nm), thus resulting in
an O(n?m) algorithm for maximum flow.

The idea is to search for a shortest augmenting path in a depth first search

manner. We modify slightly the standard DFS algorithm (see Section 4.1) as

shown below. The vector 7 is used to remember the arcs of the augmenting
path detected if one is found.

Dinic’s: algorithm (one phase)

Input: A layered network C= (V=V0UWU... UY, A,l = 0,u).
Output: A blocking flow z in CL.

1. Initialization: z;; := 0 for every arc ij in A, let v := s be the current
vertex and let A’ := A.

3.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 117

2. Searching step: If there is no arc with tail v in A’ (from v to the next
layer among the remaining arcs), then if v = s go to Step 5; otherwise
go to Step 4;

If there is an arc vw € A’, then let v := w, let r(w) := v. If v t repeat
Step 2.

3. Augmentation step: Using the 7m labels find the augmenting path P

detected and augment x along P by 6(P) units. Delete all arcs ij of A’
for which 2;; = uj. Erase all labels on vertices (7(i) := nil for alli € V).
Let v := s and go to Step 2.

4. Arc deletion step: (The search above has revealed that there is no

(v,t)-path in the current digraph D' = (V, A’). Furthermore, v # s).
Delete all arcs with head or tail v from A’, let v := m(v) and go to Step
2:

5. Termination: Return the blocking flow z.

Theorem 3.6.4 Dinic’s algorithm (one phase of) correctly determines a

blocking flow in a given layered network L in time O(nm).

Proof: Let £=(V =VoUWU... UVz, A,l = 0,u). Each time the current

flow is augmented in the algorithm it is changed along an augmenting path

of length k. We only delete an arc from A’ when it is no longer present in

the residual network L(x) where z is the current flow. Hence no deleted arc

could be used in an augmenting path of length k with respect to the current

flow. Furthermore, when the algorithm terminates there is no (s,t)-path in

the current digraph D’ = (V, A’). Here A’ consists of those arcs from one
layer to the next which are still not filled to capacity by the current z. It

follows that the algorithm terminates with a blocking flow.

The complexity follows from the fact that we perform at most O(n) steps
between each deletion of an arc which is either saturated (via the actual

augmenting path P) or enters a vertex for which we deleted all arcs having

that vertex as the head or tail (see Step 4). Oo

3.6.3 The Preflow-Push Algorithm

The flow algorithms we have seen in the previous sections have the common

feature that they all increase the flow along one augmenting path at a time.

Very often, when searching for an augmenting path, one finds a path P con-

taining an arc rq whose capacity is relatively small compared to the capacity

of the prefix P[s,r] of that path (see e.g. Figure 3.11). This means that along

P[s,r] we were able to augment by a large amount of flow, but due to the

smaller capacity of the arc rq we only augment by that smaller amount and

start all over again. In Dinic’s algorithm this could be taken into account by

not starting all over again, but instead backtracking until a new forward arc
can be found in the layered network. However we are still limited to finding
one path at a time. Now we present a different approach, due to Goldberg

118 3. Flows in Networks

Figure 3.11 A bad example for a standard flow algorithm such as the Edmonds-
Karp algorithm. The capacities of arcs are either 1, if no number is shown or M,
where M is a large number. Algorithms such as the Edmonds-Karp algorithm will
augment M times along the path from s to r each time by just one unit.

and Tarjan [324, 325], which allows one to work with more than one aug-

menting path at a time. The algorithm of Goldberg and Tarjan, called the

preflow-push algorithm, tries to push as much flow towards t as possible,

by first sending the absolute maximum possible, namely }> srcA Usr, Out of s

and then trying to push this forward to t. At some point no more flow can be

sent to t and the algorithm returns the excess flow back to s again. This very

vague description will be made precise below (the reader should compare this

with the so-called MKM-algorithm described in Exercise 3.25).

Let NV = (V, A,l = 0,u) be a network with source s and sink t. A feasible
flow x in N is called a preflow if b,(v) < 0 for all v € V —s. Note that every
(s,t)-flow x is also a preflow since we have b,(v) = 0 if v € V — {s,t} and
b,(t) = —bz(s) < 0. Hence preflows generalize (s, t)-flows, an observation that
we shall use below. Let x be a preflow in a network NV. A height function
with respect to x is a function h: V + Zp which satisfies

AS itn elnth eas 0: (3.14)

h(p) < h(q) +1 for every arc pq of N(z).

The following useful lemma is an immediate consequence of Theorem
Scan (a)y

3.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 119

Lemma 3.6.5 Let x be a preflow in a network N = (V,l =0,u) with source

s and sink t and let v be a vertex such that b,(v) <0. Then N(x) contains a

(vu, s)-path.

Proof: By the definition of a preflow, s is the only vertex r for which we have

b,(r) > 0. Hence, by Theorem 3.3.1(a), every decomposition of x into path

and cycle flows contains an (s,v)-path P. Now it follows that N(x) contains
a (v,s)-path, since every arc of P has positive flow in NV and hence give rise

to an oppositely oriented arc in NV(z). Oo

Now we are ready to describe the (generic) preflow-push algorithm. Dur-

ing the execution of the algorithm, a vertex v € V is called active if b,(v) < 0.

An arc pq of N(x) is admissible if h(p) = h(q) + 1. The algorithm uses two

basic operations push and lift.

push(pq): Let p be a vertex with b,(p) < 0 and let pg be an admissible

arc in N(x). The operation push(pq) changes Zpq tO pq + p, where

p = min{—b,(p),Tpq}-
lift(p): Let p be a vertex with b,(p) < 0 and h(p) < h(q) for every arc pq in

N (a). The operation lift(p) changes the height of p as follows:

h(p) := min{h(z) + 1: pz is an arc of N(z)}.

By the remark after the proof of Lemma 3.6.5, the number h(p) is well-
defined. See Figure 3.12 for an illustration of a lift.

height height

e ®

10 10

Cd @

P
5 5

P

0 0

(a) (6)

Figure 3.12 Lifting the vertex p form height 4 to height 7.

Lemma 3.6.6 Let x be a preflow in N and let h be defined as in (3.14).

If p € V satisfies bz(p) < 0, then at least one of the operations push(pq),

lift(p) can be applied.

120 3. Flows in Networks

Proof: Suppose b,(p) < 0, but we cannot perform a push from p. Then there

is no admissible arc with tail p and hence we have h(p) < h(q) for every arc

pq in N(z). It follows from Lemma 3.6.5 that there is at least one arc out of

p in N(x) and hence we can perform the operation lift(p). Oo

The generic preflow-push algorithm

Input: A network NV = (V,l = 0,u) with source s and sink t.

Output: A maximum (s, t)-flow in NV.

Preprocessing step:

(a) For each p € V let h(p) := dist (p, t);

(b) Let A(s) := 7;
(c) Let 2sp := Usp for every arc out of s in N;

(d) Let aj; := 0 for all other arcs in NV.

Main loop:

While there is an active vertex p € V —t do the following:

if N(x) contains an admissible arc pg then push(pq) else lift(p).

Theorem 3.6.7 The generic preflow-push algorithm correctly determines a

mazimum (s,t)-flow in N in time O(n?m).

Proof: We first show that the function h remains a height function through-

out the execution of the algorithm. Initially this is the case since we use

exact distance labels and there are no arcs out of s in N(x) (Exercise 3.20).

Observe that for every vertex p, h(p) is only changed when we perform the

operation lift(p) and then it is changed so as to preserve the condition (3.14).

Furthermore, the operation push(pq) may introduce a new arc gp in N(z),

but this are will satisfy h(q) = h(p) — 1 and hence does not violate (3.14).

It follows that h remains a height function throughout the execution of the

algorithm.

It is easy to see that x remains a preflow throughout the execution of the

algorithm, since only a push operation affects the current x and by definition

a push operation preserves the preflow condition.

Now we prove that, if the algorithm terminates, then it does so with a

maximum flow x. Suppose that the algorithm has terminated. This means

that no vertex v € V has b,(v) < 0. Thus it follows from the definition of a

preflow that x is an (s,t)-flow. To prove that x is indeed a maximum flow, it

suffices to show that there is no (s,t)-path in N(x). This follows immediately
from the fact that h remains a height function throughout the execution of

the algorithm. By (3.14), every arc pg in N(x) has h(p) < h(q) +1 and we
always have h(s) = n, h(t) = 0. Since no (s,t)-path has more than n — 1 arcs,
there is no (s,t)-path in N(x) and hence, by Theorem 3.5.3, z is a maximum
(s, t)-flow.

To prove that the algorithm terminates and to determine its complexity,

it is useful to distinguish between two kinds of pushes. An execution of the

3.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 121

operation push(pq) is a saturating push if the arc pq is filled to capacity

after the push and hence pq is not an arc of N(x) immediately after that
push. A push which is not saturating is an unsaturating push.

We now establish a number of claims from which the complexity of the
algorithm follows.

(A) The total number of lifts is O(n”): By Lemma 3.6.5, every vertex
p with b,(p) < 0 has a path to s in N(x). Hence, we have h(p) < 2n—1,

by (3.14). Since the height of a vertex p increases by at least one every

time the operation lift(p) is performed, no vertex can be lifted more than

2n — 2 times the claim follows.

The total number of saturating pushes is O(nm): Let us consider

a fixed arc pq and find an upper bound for the number of saturating

pushes along this arc in the algorithm. When we perform a saturating

push along pq, we have h(p) = h(q) + 1 and the arc pq disappears from

the residual network. It can only appear again in the current residual

network after flow has been pushed from q to p in some later execution

of the operation push(qp). At that time we have h(q) = h(p) +1. This

and the fact that h remains a height function and never decreases at

any vertex, implies that before we can perform a new saturating push

along pq, h(p) has increased by at least two. We argued above that we

always have h(p) < 2n — 1 and now we conclude that there are at most
O(n) saturating pushes along any given arc. Thus the total number of

saturating pushes is O(nm).
(C) The total number of unsaturating pushes is O(n?m): Let @ =

Yo. (v)<o 2(v). Then @ > 0 during the whole execution of the algorithm

and since h(v) < 2n at any time during the execution we have & < 2n?
after the preprocessing step. Let us examine what happens to the value

of & after performing the different kinds of operations. A lift will increase
® by at most 2n — 1. Hence, by (A), the total contribution to ® from

lifts is O(n?). A saturating push from p to q can increase @ by at most

h(q) < 2n —1 (it may also decrease & if p becomes balanced, but we are
not concerned about that here). Hence, by (B), the total contribution to

@ from saturating pushes is O(n?m). An unsaturating push from p to

q will decrease @ by at least one, since p becomes balanced and h(p) =

h(q) +1 (if q was balanced before, then & decreases by one and otherwise

it decreases by h(p)).

It follows from the considerations above that the total increase in &

during the execution of the algorithm is O(n?m). Now it follows from

the fact that @ is never negative that the total number of unsaturating

pushes is O(n?m). o

(B 4

It is somewhat surprising that the simple approach above results in an

algorithm of such a low complexity. The complexity bound is valid no matter

which vertex we choose to push from or lift. This indicates the power of

12 3. Flows in Networks

the approach. However, the algorithm does have its drawbacks. If no control

is supplied to direct the algorithm (as to which vertices to push from or

lift), then a large amount of time may be spent without any effect on the

final maximum flow. The reader is asked in Exercise 3.21 to give an example

showing that a large amount of useless work may be performed if no extra

guidance is given to the choice of pushes. There are several approaches which

can improve the performance of the preflow-push algorithm we mention just

two of these. For details see e.g. [7].

(a) If we examine the active vertices in a first-in first-out (FIFO) order, then
we obtain an O(n?) algorithm [325].

(b) If we always push from a vertex p which has the largest height h(p) among
all active vertices, then we obtain an O(n?\/m) algorithm [149, 325].

Cheriyan and Maheshwari [149] have shown by examples that the worst
case bounds for the FIFO and maximum height variants are tight. For another

way to improve the performance of the generic algorithm in practice, see
Exercise 3.22.

3.7 Unit Capacity Networks and Simple Networks

In this section we consider two special cases of networks, both of which occur
in applications and for which, due to their special structure, one can obtain
faster algorithms for finding a maximum flow. All networks considered in this
section are assumed to have a source s and a sink t.

3.7.1 Unit Capacity Networks

A unit capacity network is a network NV = (V,A,1=0,u= 1), ice. all arcs
have capacity equal to one. Unit capacity networks are important in several
applications of flows to problems such as finding a maximum matching in
a bipartite graph (Subsection 3.11.1), finding an optimal path cover of an
acyclic digraph (Section 5.3) and finding cycle subdigraphs covering specified
vertices (Subsection 3.11.5).

Lemma 3.7.1 If N is a unit capacity network without cycles of length 2 and
xr is a feasible (s,t)-flow, then N (zx) is also a unit capacity network.

Proof: Exercise 3.39. oO

Leto! (VAs 0ne= 1) be a unit capacity network with source
s and sink t. Since the value of a minimum (s,t)-cut in N is at most n —
1 (consider the cut (s,V — s)), we see from Theorem 3.5.4 that the Ford-
Fulkerson algorithm will find a maximum (s, t)-flow in time O(nm). The
purpose of this section is to show that one can obtain an even faster algorithm.
Our exposition is based on an idea due to Even and Tarjan [232]

3.7 Unit Capacity Networks and Simple Networks 123

Lemma 3.7.2 Let £=(V =VoUY,U... UY, A,l = 0,u = 1) be a layered
unit capacity network with Vo = {s} and V, = {t}. One can find a blocking
(s,t)-flow in L in time O(m).

Proof: It suffices to see that the capacity of each augmenting path is 1 and
no two augmenting paths of the same length can use the same arc. Hence it
follows that Dinic’s algorithm will find a blocking flow in time O(m). O

Lemma 3.7.3 Let N = (V,A,l = 0,u = 1) be a unit capacity network and
let x* be a maximum (s,t)-flow in N. Then

disty(s,t) < 2n/V|x*] (3.15)

Proof: Let w = disty(s,t) and let Vo = {s},Vi,Vo,...,V. be the first w
distance classes from s. Since NV contains no multiple arcs, the number of

arcs from V; to Vi41 is at most |V;||Vizi| for i = 0,1,...,w —1. Since the
arcs in (V;,Vi;,1) correspond to the arcs across an (s,t)-cut in NV, we have

la*| < [VillViz.| for i = 0,1,..., I} > Vier for
7=0,1,...,w—1. Now we easily see that

w+l1
n=|Vl>Ml>Ve (ie (3.16)

1=0

implying that w < 2n/,/|2*|. Oo

Theorem 3.7.4 [232] For unit capacity networks the complexity of Dinic’s

algorithm is O(n? m).

Proof: Let N be a unit capacity network with source s and sink t. We

assume for simplicity that MN has no 2-cycles. The case when N does have
a 2-cycle can be handled similarly (Exercise 3.41). Let q be the number of
phases performed by Dinic’s algorithm before a maximum (s, t)-flow is found

in N. Let 0 = 2, 2%),...,2(9 denote the (s,t)-flows in N which have
been calculated after the successive phases of the algorithm. Thus 2) is the

starting flow which is the zero flow and 2“) denotes the flow after phase i

of the algorithm. Let t = [n3] and let K denote the value of a maximum
(s,t)-flow in NV.

By Lemmas 3.7.1 and 3.7.2 it suffices to prove that the total number of

phases, q, is O(n). This is clear in the case when K < 7, since we augment
the flow by at least one unit after each phase. So suppose that K > r.

Choose j such that |r| < K —7 and |z%+1)| > K — 7. By Theorem 3.4.2
and Theorem 3.4.3 the value of a maximum flow in V(2%)) is K — |x| > r.

yipplying Lemmas 3.7.1 and 3.7.3 to N(x)), we see that dist N(a(3)) (8) t) <

2n3. Using Lemma 3.6.2 and the fact that each phase of Dinic’s algorithm

results in a blocking flow, we see that 7 < 2ni. Thus, since at most T phases

remain after phase 7 we conclude that the total number of phases q is O(n).
Oo

124 3. Flows in Networks

3.7.2 Simple Networks

A simple network is a network N = (V,A,/ = 0, u) with special vertices s,t

in which every vertex in V — {s, t} has precisely one arc entering or precisely

one arc leaving. For an example see Figure 3.13.

oOo.

Figure 3.13 A simple network. Capacities are not shown.

Below we assume that the simple network in question does not have any

2-cycles. It is easy to see that this is not a serious restriction (Exercise 3.42).

Lemma 3.7.5 Let N = (V, A,l = 0,u = 1) be a simple unit capacity network

on n vertices and let x* be a maximum (s,t)-flow in N. Then

disty(s,t) < n/|z*|. (3.17)

Proof: Let w = disty(s,t) and Vo = {s},Vi, V2,..., Vu be the first w distance

classes from s. Every unit of flow from s to t passes through the layer V; for

2 =1,2,...,w—1. Furthermore, since N is a simple unit capacity network,

at most one unit of flow can pass through each v € V. Thus |V;| > |2*|, for
1=1,2,...,w—1 and hence

ik

IVi> SoM > w —1)|2"1,
t=!

implying that w < |V|/|z*|. Oo

Lemma 3.7.6 If N is a simple unit capacity network, then N(a) is also a
simple unit capacity network.

Proof: Exercise 3.40. oO

Using Lemma 3.7.5 and Lemma 3.7.6 one can prove the following result
due to Even and Tarjan. We leave the details as Exercise 3.43.

Theorem 3.7.7 [232] For simple unit capacity networks Dinic’s algorithm
has complexity O(.,/nm). Oo

3.8 Circulations and Feasible Flows 125

We point out that Dinic’s algorithm will also find a maximum (s, t)-flow in

time O(,/nm) in a simple network even if not all capacities are one, provided

that the network has the property that at most one unit of flow can pass

through any vertex v € V — {s,t}. In particular a vertex may be the tail of

an arc with capacity oo provided that it is the head of at most one arc and

this arc (if it exists) has capacity one. We use this extension of Theorem 3.7.7
in Section 3.11.

3.8 Circulations and Feasible Flows

We now return to the general flow model when lower bounds are present on

the arcs. We wish to determine whether a feasible flow exists with respect to

the given lower bounds and capacities on the arcs and a prescribed balance

vector. As we showed in Section 3.2, in order to study the general case, it

suffices to study circulations since we may use Lemmas 3.2.1-3.2.3 to trans-

form the general case to the case of circulations. Note that in this section we

always assume that all the data of the network are integers (that is / and u

are integers).
We need the following very simple observation. The proof is analogous to

that of Lemma 3.5.1.

Lemma 3.8.1 /f x is a circulation in N then for every partition S,S of V

we have z(S,S) = 2(S, 5S). Oo

The example in Figure 3.14 gives us a starting point for detecting what

can prevent the existence of a feasible circulation.

b

(3, 5) (0, 2)

qa, 5)

Figure 3.14 A network with no feasible circulation. The specification on the arcs
is (1, u).

Let NV be the network in Figure 3.14 and let S = {b} and S = {a,c}.
Then 1(S,S) = 3 > 2 = u(S,S). Now using Lemma 3.8.1 we see that if z is
a feasible flow in VV we must have

Pion tS, O) = 219,9) ob, 5) = 3,

126 3. Flows in Networks

implying that there is no feasible flow in N. More generally, our argument

shows that if V = (V,A,1, u) is a network for which some partition Si srory

satisfies 1(S,S) > u(S,S), then N has no feasible circulation. Hoffman [431]

proved that the converse holds as well.

Before we prove Theorem 3.8.2 we remark that Theorem 3.4.2 remains

valid for networks with non-zero lower bounds provided that we modify the

definition of x @ Z slightly (see Exercise 3.30).

Theorem 3.8.2 (Hoffman’s circulation theorem) [431] A network N =
(V,A,1,u) with non-negative lower bounds on the arcs has a feasible circula-
tion if and only if the following holds for every proper subset S of V:

1(5, S) < u(S,3). (3.18)

Proof: Let N = (V,A,l,u) be a network. We argued above that if x is
a feasible circulation in NV’, then for every partition (S,S) of V we have
HGS) aces

To prove the converse we assume that (3.18) holds for all S C V and give
an algorithmic proof showing how to construct a feasible circulation starting

from the all-zero circulation. Clearly x = 0 is a circulation in N and if 1 = 0,

then we are done. So we may assume that 1;; > 2;; for some 77 € A.
We try to find a (j,i)-path in N(z). If such a path P exists, then we

let 6(P) > 0 be the minimum residual capacity of an arc on P. Let € =
min{6(P),li;—2i;}. By Theorem 3.4.2 (which, as remarked earlier, also holds

when some lower bounds are non-zero), we can increase the current flow x
by € units along the cycle iP and obtain a new circulation.

We claim that we can continue this process until the current circulation

z has lj; < 24; < us for all arcs 17 € A, that is, we can obtain a feasible

circulation in NV’ (observe that the procedure above preserves the inequality

x <u). Suppose this is not the case and that at some point we have x; < Is

for some arc st and there is no (t, s)-path in V(x). Define T as follows:

T = {r: there exists a (t,r)-path in N(z)}.

It follows from the definition of the residual network M(x) (in particular
(3.7)) that in NV we have 2,; = uj; for all arcs ij with i € T and j € T and
Lqr < Igr for all arcs gr with q € T andr € T. Using that s € T and xg < et
we obtain that

u(T,T) = 2(T,T) =2(T,T) <1(T,T),

contradicting the assumption that (3.18) holds. This and the fact that all
data are integers shows that the algorithm we described above will indeed
find a feasible circulation in NV. Oo

It is not difficult to turn the proof above into a polynomial algorithm
which, given a network NV = (V,A,l,w), either finds a feasible circulation x
in N, or a subset S violating (3.18) (Exercise 3.29). 0

3.9 Minimum Value Feasible (s, t)-Flows 1Z7

We conclude with a remark on finding feasible flows with respect to arbi-
trary balance vectors in general networks. This problem is relevant as a start-

ing point for many algorithms on flows. It follows from the results in Section

3.2 and the fact that the preflow-push algorithm can be turned into an O(n?)
algorithm (using the FIFO implementation) that the following holds.

Theorem 3.8.3 There exists an O(n?) algorithm for finding a feasible flow

in a given network N = (V,A,l,u,b). Furthermore, if l,u,b are all integer

functions, then an integer feasible flow can be found in time O(n°). O

Using Lemma 3.2.2 and Theorem 3.8.2 one can derive the following fea-

sibility theorem for flows by Gale (Exercise 3.44):

Theorem 3.8.4 /289] There exists a feasible flow in the network N =
(V, A,l = 0,u, b) if and only if

S— 0(s)) < u(S, S) for every S CU. (3.19)

3.9 Minimum Value Feasible (s, t)-Flows

Let NV = (V,A,l,u) be a network with source s, sink t and non-negative

lower bounds on the arcs. A minimum feasible (s, t)-flow in N is a feasible

(s, t)-flow whose value is minimum possible among all feasible (s, t)-flows.
Although at first glance this problem may seem somewhat artificial, it turns

out that for many applications it is actually a minimum feasible flow that is

sought (see e.g. Section 5.3 and Section 5.9).
To estimate the value of a minimum (s, t)-flow, let us define the demand,

7(S,S) of an (s,t)-cut (S,) as the number

FH) a eT Soy (3.20)

Let x be a feasible flow. Then, by Lemma 3.5.1, for every (s, t)-cut (5, S)
we have

|x| =2(S,5)—2(S;S)
> 1(S, S) — u(S, S) (3.21)

= 7(S, 5).

Hence the demand of any (s,t)-cut provides a lower bound for the value

of a minimum feasible (s, t)-flow. The next result shows that the minimum
value of an (s, t)-flow is exactly the maximum demand of an (s, t)-cut.

128 3. Flows in Networks

Theorem 3.9.1 (Min-flow Max-demand theorem) Let N = (V, A,l, u)
be a network with non-negative lower bounds on the arcs. Suppose x 1s a

minimum feasible (s,t)-flow in N. Then

|x| = max{y7(S,S):s € S,t € S}. (3.22)

Furthermore we can find a minimum feasible (s,t)-flow by two applications

of any algorithm for finding a mazimum (s,t)-flow.

Proof: Suppose z is a feasible (s,t)-flow in N. If |z| = 0, then z is clearly

a minimum (s,t)-flow (since all lower bounds are non-negative). Hence we

may assume that |z| > 0. Suppose that y is a feasible (t, s)-flow in N(z).
Then x @ y is a feasible flow in N of value |z| — |y|, by Theorem 3.4.2 (as
we remarked in the last section, this lemma is also valid in the general case

of non-zero lower bounds). Now suppose that y is a maximum (t, s)-flow in
N(x). Apply Theorem 3.5.3 to y and A(z) and let (T,T) be a minimum

(t, s)-cut in N(x). The capacity of (T,T) is by definition equal to r(T,T),

where r is the capacity function of N(x). By the choice of (JT,T) and the
definition of the residual capacities we have

lyl =r(7,T)
ar De (wij — tig) + oy (ap — lap)

ij€(T,T) qp€(T,T)

= u(T,T) —U(T,T) + 2(T,T) — 2(T,T)

= u(T,T) —U(T,T) + |z\, (3.23)

by Lemma 3.5.1. Rearranging this, we obtain that |z|—|y| = 1(T,T)—u(T,T).
This implies that the flow 2@y (whose value is |x|—|y|) is a minimum feasible
(s, t)-flow and proves (3.22).

It remains to prove the second claim on how to find a minimum (s, t)-flow.
It follows from the argument above that once we have any feasible (s, t)-flow,
we can find a minimum (s,t)-flow by just one max flow calculation. On the
other hand it follows from Lemma 3.2.1 and Lemma 3.2.2 that we can find a
feasible (s, t)-flow in NV (if any exists) by performing the two transformations
suggested in those lemmas and then using a max flow algorithm to check
whether there is a feasible flow in the last network constructed (now feasibility
is with respect to the value of b(s) and all lower bounds are zero). O

3.10 Minimum Cost Flows

We now turn to networks with costs on the arcs and study the follow-
ing problem called the minimum cost flow problem: Given a network
N = (V,A,l,u, b,c) find a feasible flow of minimum cost (recall that the cost

3.10 Minimum Cost Flows 129

of a flow is given by ea 1ij;C;;). By the results in Section 3.2, without loss
of generality, we may treat the problem only for networks with lower bound
zero on all arcs and furthermore assume that we are looking for either an
(s, t)-flow of value 6(s) or a circulation of minimum cost. However, for differ-
ent applications, different flow models may be more convenient than others.
Hence, except for always assuming that the lower bounds are zero, we will

treat the general case, and hence all the special cases also, below.

We mentioned in Section 3.2 that the shortest path problem is a special

case of the minimum cost flow problem. To see this, let D = (V,A,c) be an

arc weighted digraph with special vertices s,t and assume that D has no cycle

of negative weight. Let V = (V,A,l = 0,u = 1,c) be the network obtained

from D by adding a lower bound of zero and a capacity of 1 to each arc of D

and interpreting the weight of an arc in D as its cost in NV. We claim that a

shortest (s,t)-path in D corresponds to a minimum cost integer (s, t)-flow of
value 1 in V. Clearly, any (s,t)-path P of weight M in D can be transformed

into an (s,t)-flow of cost M just by sending one unit of flow along P in N.

Thus it suffices to prove that every (s,t)-flow x of value one and cost M can
be transformed into an (s,t)-path in D of weight at most M. By Theorem

3.3.1 we may decompose z into a path flow of value one along an (s,t)-path
P' and a number of cycle flows. All these cycles have non-negative cost since

D has no negative cycle. Hence it follows that P’ has cost at most M. It

follows from our observations above that every minimum cost (s, t)-flow of

value 1 in NV can be decomposed into an (s,t)-path of the same cost and

some cycle flows along cycles of cost zero.

In Exercise 3.47 the reader is asked to show that the maximum flow

problem is also a special case of the minimum cost flow problem. However,

the minimum cost flow problem is interesting not only because it generalizes

these two problems, but also because a large number of practical applications

can be formulated as minimum cost flow problems. The very comprehensive

book by Ahuja, Magnanti and Orlin [7] contains a large number of such
applications. We will discuss one of these in a reformulated form below.

A small cargo company uses a ship with a capacity to carry at most r units

of cargo. The ship sails on a long route (say from Southampton to Alexandria)
with several stops at ports in between. At these ports cargo may be unloaded

and new cargo loaded. At each port there is an amount 6;; of cargo which is
waiting to be shipped from port i to port j > i (ports are numbered after

the order in which the ship visits them). Let f;; denote the income for the

company from transporting one unit of cargo from port 2 to port j. The goal
for the cargo company is to plan how much cargo to load at each port so as

to maximize the total income while never exceeding the capacity of the ship.

We illustrate how to model this problem, which we call the ship loading

problem, as a minimum cost flow problem because it shows not only that

sometimes it is easier to work with the general model, but also that allowing

negative costs on the arcs may simplify the formulation.

130 3. Flows in Networks

Let n be the number of stops including the starting port and the terminal

port. Let NV = (V,A,l = 0,u,c) be the network defined as follows:

Ve = fouvarenatnt U (ema 4 cS

A = {v1 02, 0203, ---)Un—1Un} U {VigVi, Vig VU] ° 17 <0

The capacity of the arc vjuj41 is r for 1 = 1,2,...n— 1 and all other arcs have

capacity oo. The cost of the are u4;u; is —fij for 1 <i <j <n. All other arcs

have cost zero (including those of the form v;;v;). The balance vector of u;; is

bi; for 1 <i < j < mand the balance vector of v; is —(b1; + bai +... + 04-11)

for i = 1,2,...,n. (See Figure 3.15.)

Figure 3.15 The network for the ship loading problem with 3 intermediate stops.
For readability vertices are named by numbers only. The costs (capacities) are
only shown when non-zero (not infinite). The balance vectors are as specified in
the description in the text, i.e. the balance vector of the vertex 34 is b34 and the
balance vector of the vertex 4 is —(b14 + boa + b34).

We claim that this network models the ship loading problem. Indeed,

suppose that t12,t13,...,tin,t23,.-.,tn-in are cargo numbers, where t,;(<

b;;) denote the amount of cargo the ship will transport from port 7 to port j

and that the ship is never loaded above capacity. The total income from these

cargo loads is I =), << j<n tij fij- Let x be the flow in WV defined as follows.
The flow on an arc of the form v;;v; is tj;, the flow on an arc of the form
jj 0; is bj; — ti; and the flow on an arc of the form v;v;41, 1 = 1,2,...,n—1,

is the sum of those tay for which a < i and b > i+ 1. It follows from the

fact that tj;, 1 <7 <j <n, are legal cargo numbers that z is feasible with

respect to the balance vector and the capacity restriction. It is also easy to

see that the cost of x is —I.

3.10 Minimum Cost Flows 131

Conversely, suppose that x is a feasible flow in NV of cost J. We claim

that we get a feasible cargo assignment s;;, 1 <i < j < n with income —J

by letting s;; be the value of x on the arc u,;;v;. This is easy to check and
we leave the details to the reader. It follows that a minimum cost flow in V
corresponds to an optimal loading of the ship and vice versa.

Below we consider the minimum cost flow problem in some detail. Further

applications are given in Section 3.11. See also Section 3.12 for two important

special cases of the minimum cost flow problem.

We use the notion of the cost of a path or a cycle in a network. This is

simply the sum of the costs of all arcs in the path or cycle. An augmenting

path (cycle) with respect to a given flow z in a network N is a path (cycle)
in N(x). Whenever we speak about an augmenting cycle or path P we use

6(P) to denote the minimum residual capacity of an arc on P in A(z).

Furthermore, for every 3 < 6(P) we denote by 2’ := x @ GP the flow we

obtain from x by augmenting along P with 6 units.

Whenever we say that a flow z is optimal in a network NV, we mean by

this that z is a minimum cost flow among all flows in NV with balance vector

i

3.10.1 Characterizing Minimum Cost Flows

Recall from Theorem 3.5.3 that, when we consider maximum (s, t)-flows, we

can verify optimality by showing that there is no (s,t)-path in the residual

network with respect to the current flow. It turns out that we can also use

the residual network to check whether a given feasible flow in a network NV =
(V, A,l,u,c) has minimum cost among all flows with the same balance vector.

Suppose first that x is feasible in NV and that there is some cycle W in N(z)

such that the cost c(W) of W is negative. Let 6 denote the minimum residual
capacity of an arc on W and let 2’ be the cycle flow in N(x) which sends 6

units around W. Then it follows from Theorem 3.4.2 that r@z’ is a flow in V
with the same balance vector as x and cost c’r+c? 2! = c!x+dc(W) < ca.
Thus if (x) contains a cycle of negative cost, then z is not a minimum cost
feasible flow in VV with respect to the balance vector by.

The interesting thing is that the other direction holds as well. Indeed,
suppose z is feasible in V = (V,A,l,u, b,c) and that N(x) contains no cycle

of negative cost. Let y be an arbitrary feasible flow in NV. Since we have
specified a balance vector b for N, it follows from Corollary 3.4.4 that there

exist a collection of at most m cycles Wi, W2,..., Wx in N(z) and cycle flows

f(Wi),.--, (We) in N(z) such that cy = PI c(W;)6;, where 6; > 0
is the amount of flow that f(W;) sends along W; in (a). Since N(x) has no
negative cost cycle, c(W;) > 0 for i = 1,2,...,k and we see that® c’y > ca.

8 In fact, our argument shows that cly = cz if and only if y can be obtained
from x by ‘adding’ zero or more cycle flows, each of cost zero, in N(z).

ey 3. Flows in Networks

Thus we have established the following important optimality criterion for the

minimum cost flow problem.

Theorem 3.10.1 Let x be a feasible flow in the network N = (V,A,l, u,b, c).

Then x is a minimum cost feasible flow in N if and only if N(x) contains

no directed cycle of negative cost. Oo

It is natural to ask how useful is this optimality criterion is. First ob-

serve that using the Bellman-Ford-Moore algorithm (Subsection 2.3.4) we

can check whether an arbitrary given network contains a negative cycle in

time O(nm). Thus we obtain the following algorithm, due to Klein [480], for

finding a minimum cost feasible flow in a network.

The cycle canceling algorithm

Input: A network N = (V,A,l,u,),c).
Output: A minimum cost feasible flow in NV.

1. Find a feasible flow x in N.
2. Search for a negative cycle in NV(z).
3. If such a cycle W is found then augment z by 6(W) units along W and

go to Step 2.

4. Return z.

Just as is the case for the Ford-Fulkerson algorithm, the cycle canceling

algorithm may never terminate if the capacities are non-rational numbers. It

is easy to modify the example in Exercise 3.17 to show this. However, if all

lower bounds and capacities are integers (or just rational numbers) then this

is indeed an algorithm, although not always a very fast one. See Figure 3.16

for an illustration of the algorithm.

Let U and C denote the maximum capacity of NV and the maximum

numerical value among all costs of NV.

Theorem 3.10.2 Jf all lower bounds, capacities, costs and balance vectors

of the input network N are integers, then the cycle canceling algorithm finds
an optimum flow in time O(nm?CU).

Proof: By Theorem 3.8.3 we can find a feasible flow x in NV in time O(n’).
Hence Step 1 can be performed within the promised time bound, since we

assume that all networks in this chapter have m = 2(n). The maximum

possible cost of a feasible flow in V is mUC and the minimum possible cost

is —mUC. Since we decrease the cost of the current flow by at least one

in Step 3 it follows that after at most O(mUC) executions of Step 3 we
obtain a minimum cost feasible flow. Now the complexity follows from the
fact that Step 2 can be performed in time O(nm) using the Bellman-Ford-
Moore algorithm. Oo

Furthermore, just as it was the case for maximum flows, we have a nice
integrality property.

3.10 Minimum Cost Flows 133

Figure 3.16 An illustration of the cycle canceling algorithm. (a) A network NV
with a feasible flow z with respect to the balance vector (b(1), b(2), (3), b(4)) =
(2, 3,1, —6). The data on the arcs are (capacity, flow, cost); (b) the residual network
N (ax). The data on the arcs are (residual capacity, cost); (c) the residual network
after augmenting by 2 units along the cycle 1421; (d) the residual network after
augmenting by 2 units along the cycle 2432; (e) the final optimal flow.

Theorem 3.10.3 (Integrality theorem for minimum cost flows) /f all
lower bounds, capacities and balance vectors of the network N are integers,

then there exists an integer minimum cost flow.

Proof: This is an easy consequence of the proof of Theorem 3.10.2. By

Theorem 3.8.3 we may assume that the flow x after Step 1 is an integer flow.

Now the claim follows easily by induction of the number of augmentations

made by the cycle canceling algorithm since in each augmentation we change

the current flow by an integer amount along the arcs of the augmenting cycle.

O

For arbitrary networks with integer valued data the complexity of the

cycle canceling algorithm is not very impressive and the algorithm is clearly

not polynomial since its running time is exponential in both the maximum

capacity and the maximum (absolute value of the) cost. It is easy to construct
examples for which the algorithm, without some guidance as to how the next

negative cycle should be chosen, may use O(mUC) augmentations before it
arrives at an optimum flow (Exercise 3.52). However, for several applications,

134 3. Flows in Networks

such as when we are looking for certain structures in digraphs, both U and

C are small and then the algorithm is quite attractive due to its simplicity

(see e.g. some of the results in Section 3.11).

The problem of finding a strongly polynomial algorithm’? for the mini-

mum cost flow problem was posed by Edmonds and Karp [216] in 1972 and

remained open until Tardos [687] found the first such algorithm in 1985. We

mentioned above that if we use just any negative cycle in Step 3, then the

cycle canceling algorithm may use a non-polynomial number of iterations.

Goldberg and Tarjan showed that the following variant of the algorithm is

already strongly polynomial [326]. The mean cost of a cycle W is the number

c(W)/|A(W)].

Theorem 3.10.4 /326] If we always augment along a cycle of minimum

mean. cost (as negative mean cost as possible) in Step 3, then the cycle can-

celing algorithm has complexity O(n?m* logn) even if some arcs have non-

rational data. 0

The correctness of the algorithm, provided that it terminates, follows

from Theorem 3.10.1, since there is no negative cycle in the current residual

network at termination. Due to space considerations we will not prove the

complexity part of the theorem here. We refer the interested reader to [7, 578]
for nice accounts for the complexity of this algorithm. It is interesting to note

that, although the proof of the complexity statement of Theorem 3.10.4 is

quite non-trivial, it uses just the basic definitions of flows along with some

new concepts which are used to make the proof smoother.

3.10.2 Building up an Optimal Solution

The cycle canceling algorithm starts from a (generally) non-optimal but fea-

sible flow and continues through a sequence of feasible flows until an optimal

flow is found (provided the algorithm ever terminates). In this subsection we
describe another approach, due to Jewell [460] and Busacker and Gowen [138],
in which we start from a (generally) in-feasible flow which is optimal’? and
continue through a sequence of optimal but in-feasible flows until a feasible

and optimal flow is reached.

Theorem 3.10.5 (The buildup theorem) /460, 138] Suppose that x is a

minimum cost feasible flow in a network N = (V,A,l = 0,u,c) with respect
to the balance vector b = b, and let P be a minimum cost (p, q)-path in N (2).

Let a < 6(P) and let f(P) be the path flow of value in N(x). Then the flow

z' := £@ f(P) is a minimum cost feasible flow in N with respect to the
balance vector b' given by

i. A graph algorithm is strongly polynomial if (counting each arithmetic opera-
tion as constant time) the number of operations is bounded by a polynomial in
n and m.

1° Recall that optimality is with respect to flows with the same balance vector.

3.10 Minimum Cost Flows 135

b(v) if v ¢ {p,q}
b'(v) = 4 b(p) +a ifvu=p

b(q)-a ifu=q.

Proof: By Theorem 3.10.1 it is sufficient to prove that there is no negative

cycle in V(2'). Since x is optimal there is no negative cycle in N(x). Suppose
that N(x’) contains a negative cycle W. By the definition of x’, every arc
in N(z’) is either an arc of N(x) or the opposite of an arc on P. Consider
the directed multigraph H that we obtain from A(P) U A(W) considered as
a multiset by deleting all arcs a such that both a and the opposite arc is in

A(P)UA(W). It is easy to see that if we add the arc gp to H then we obtain a
directed multigraph M such that each connected component of M is eulerian.

Hence, by Exercise 3.8, we can decompose A(H) into a (p,q)-path P’ and a

number of cycles W,,W2,..., Wx. It follows from our remark above and the

way we defined H that all arcs of P’,W,,W2,...,W,» are arcs of N(x). By
(3.2) opposite arcs have costs which cancel and hence, using that c(W) < 0
we obtain

= Ci),

since the cost of each W; must be non-negative because W; is a cycle in

N (a). Thus we see that P’ is a (p,q)-path with a cost smaller than that of
P, contradicting the minimality of P. Hence W cannot exist and the proof

is complete. Oo

Based on Theorem 3.10.5 we can construct an algorithm, called the

buildup algorithm [460, 138], for finding an optimal feasible flow in a net-
work N = (V,A,1 = 0,u,6,c). The algorithm described below only works if

there are no negative cycles in the starting network. This restriction poses no

practical problems since, according to Exercise 3.49, we may reduce the gen-

eral minimum cost flow problem to the case when all costs are non-negative.

Under the assumption that NV has no negative cycles, the flow z = 0 is an

optimal circulation in NV. At any time during the execution of the buildup

algorithm the sets U,, Z, are defined with respect to the current flow z as

follows:
Uz = {u|bz(v) < b(v)}, Zz = {v|bz(v) > b(v)}.

Observe that U, = 0 if and only if Z, = 9.

The buildup algorithm
Input: A network NV = (V,A,/ = 0,u, },c).

Output: A minimum cost feasible flow in N with respect to b or a proof

that the problem is infeasible.

136 3. Flows in Networks

7 Letic;a—10 forkevery.49/er4;

. If Uz = @ then go to Step 8;

. If there is no (Uz, Z,)-path in N(x) go to Step 9; ;
. Let p and g be chosen such that p € U;z,q € Zz and N(z) contains a

(p, q)-path;
5. Find a minimum cost (p,q)-path P in N (2);
6. Let « = min{d(P), b(p) —bz(p), bz (q) —b(q)} (6(P) is the residual capacity

of P);
7. Let x := 2 @eP; Modify U,, Z, and go to Step 2;

8. Return z;

9. Return ‘no feasible solution’.

BwN re

See Figure 3.17 for an illustration of the algorithm.

(d) (e)

Figure 3.17 The buildup algorithm performed on the network from Figure 3.16(a).
Part (a)-(d) show the current residual network with respect to the flow x, starting
from x = 0 in (a). For each arc (u, c) is specified and in (a) b(v) is specified for each
vertex. White circles correspond to the set U, and white boxes correspond to Zz.
Black circles represent vertices that have reached the desired balance value. Part
(e) shows the final optimal flow.

Theorem 3.10.6 /460, 138] Let N = (V,A,l =0,u,b, c) have ail data inte-
gers and no negative costs. The buildup algorithm correctly determines a min-

3.11 Applications of Flows 137

imum cost feasible flow x in N or detects that no feasible flow exists in N. The

algorithm can be performed in time O(n?mM), where M = maxyey |b(v)|.
Furthermore, if there is a feasible flow in N, then the algorithm will find an

integer optimal feasible flow in N.

Proof: Exercise 3.50. Oo

The following result shows that, when we consider minimum cost (s, t)-

flows, the cost of successive augmenting (s,t)-paths form a monotonically

increasing function. One can make a more general statement (Exercise 3.51),

but for simplicity we consider only (s, t)-flows here.

Proposition 3.10.7 Let N be a network with distinct vertices s,t and let x

be an optimal (s,t)-flow in N. Suppose z' is obtained from x by augmenting

along a minimum cost (s,t)-path P in N(x) and that x" is obtained from z'
by augmenting along a minimum cost (s,t)-path P! in N(x’). Then

ea—cs'>cle’—cls". (3.24)

Proof: Let z,2’,x" and P, P’ be as described in the proposition. Analogously

to the way we argued in the proof of Theorem 3.10.5 we can show that the

directed multigraph H’ obtained from the multiset of arcs from A(P)UA(P’)
by deleting arcs that are opposite in the two paths can be decomposed into

two (s,t)-paths @, R and some cycles W,,...,W, such that all arcs of these

paths and cycles are in V(x). Since z is optimal each cycle W;, i = 1,2,...,p

has non-negative cost by Theorem 3.10.1. Using that P is a minimum cost

(s,t)-path in N(x) we conclude that each of R,Q have cost at least c(P)
implying that c(P’) > c(P). Hence (3.24) holds. Oo

3.11 Applications of Flows

In this section we illustrate the applicability of flows to a large spectrum of

problems both of a theoretical and practical nature. For further applications

see e.g. Section 3.12 and Chapter 7. Since we will need these results in later

chapters the main focus is on finding certain substructures in digraphs.

3.11.1 Maximum Matchings in Bipartite Graphs

Let G = (V, E) be an undirected graph. Recall that a matching in G is a set
of edges from E, no two of which share a vertex and a maximum matching of

G is a matching of maximum cardinality among all matchings of G. Matching

problems occur in many practical applications such as the following schedul-

ing problem. We are given a set T = {t1,to,...,t,} of tasks (such as handling

a certain machine) to be performed and a set P = {p1,p2,...,ps} of persons,

each of which is capable of performing some of the tasks from T’. The goal

138 3. Flows in Networks

is to find a maximum number of tasks such that each task can be performed

by some person who does not at the same time perform any other task and

no task is performed by more than one person. This can be formulated as a

matching problem as follows. Let B = (P,T; E) be the bipartite graph whose
vertex set is PUT and such that for each 1,7 such that 1<i<s,1<j <r,

E contains the edge p;t; whenever person p; can perform task t;. Now it is

easy to see that the answer to the problem above is a matching in B which

covers the maximum possible number of vertices in T (see also Exercise 3.53).

For arbitrarily graphs finding a maximum matching fast is quite complicated

and it was a great breakthrough when Edmonds [210] found a polynomial
algorithm. For the case of bipartite graphs we describe a simple algorithm

based on flows.

Theorem 3.11.1 For bipartite graphs the maximum matching problem is

solvable in time O(,/nm).

Proof: Let B = (X,Y; E) be an undirected bipartite graph with bipartition

(X,Y). Construct a network Vg = (X UY U{s, t}, A,l = 0, u) as follows (see
Figure 3.18):

A={ij:i€X,j€Y and ij € E}U{si:ie X}U{jt:j EY}, uz = 00
for all ij € (X,Y), us; = 1 for alli € X and uj =1 forallj EY.

————

B NB

Figure 3.18 A bipartite graph and the corresponding network. Capacities are one
on all arcs of the form sv, ut and oo on all arcs corresponding to edges of B.

We claim that the value of a maximum (s,t)-flow in Ng equals the size
of a maximum matching in B. To see this suppose that x is an integer flow
in N of value k. Let M = {ij :i€ X,je Y and 2; > 0}. For-each 7 € X
the flow on the arc x; is either zero or one. Furthermore, if z,; = 1, then
it follows from the fact that x is integer valued and b, (7) = 0 that precisely
one arc from 7 to Y has non-zero flow. Similarly , for each j € Y, if Zip = 1
then precisely one arc from X to j has non-zero flow. It follows that M isa
matching of size k in B and hence, by Theorem 3.5.5, the size of a maximum
matching in B is at least the value of a maximum flow in N, B-

3.11 Applications of Flows 139

On che other hand; sifei =" fairpieg; eoX,07€ Y,4 = 1,2,...,h} is

a matching in B, then we obtain a feasible (s,t)-flow of value h in Ng by

sending one unit of flow along each of the internally disjoint paths sq;rjt,

7 = 1,2,...,h. This shows that the opposite inequality also holds and the

claim follows.

It follows from the arguments above that, given a maximum integer flow

x, we can obtain a maximum matching M of B by taking precisely those arcs

of the form u;v;, uy; € X,v; € Y which have flow value equal to 1. Note that

Np is a simple network. Hence the complexity claim follows from the fact

that we can find a maximum flow in WN in time O(,/nm), using the algorithm
of Theorem 3.7.7 (recall that this complexity is also valid for simple networks

where not all capacities are 1, provided that at most one unit of flow can pass

through any vertex distinct from s,t). 0

In the case of dense graphs a slightly faster algorithm of complexity

O(n'°,/m/logn) was given by Alt, Blum, Mehlhorn and Paul in [23]. It
is still possible to obtain fast algorithms for finding a maximum matching

in general graphs, see e.g. Tarjan’s book [690]. However, it does not seem
possible to formulate the maximum matching problem for an arbitrary graph

as an instance of the maximum flow problem in some network. In [482] a
generalization of flows which contains the maximum matching problem for

general graphs as a special case was studied by Kocay and Stone.

A vertex cover of an undirected graph G = (V, FE) is a subset U C V
such that every edge e € E has at least one of its end vertices in U. Since no

two edges of a matching share a vertex, it follows that for every vertex cover

U in G, the size of U is at least the size of a maximum matching. For general

graphs there does not have to be equality between the size of a maximum

matching and the size of a minimum vertex cover. For instance if G is just

a 5-cycle, then the size of a maximum matching is 2 and no vertex cover

has less than 3 vertices. We now prove the following result, due to K6nig

[498], which shows that for bipartite graphs equality does hold. The proof

illustrates the power of the Max-flow Min-cut theorem.

Theorem 3.11.2 (K6nig’s theorem) [498] Let B = (X,Y; E) be an undi-

rected bipartite graph with bipartition (X,Y). The size of a maximum match-
ing in B equals the size of a minimum vertex cover in B.

Proof: Let Ng = (VU{s,t}, A,/ = 0, u) be defined as in the proof of Theorem

3.11.1. Let z be a maximum flow in Ng and let (S,S) be the minimum cut

defined as in the proof of Theorem 3.5.3 with respect to x (see Figure 3.19).
Recall that S is precisely those vertices of V U {s,t} which can be reached
from s in Np(x). Since the capacity of each arc from X to Y is o, there is

no edge from SAX to SNY in G. Thus U = (XN S)U(YNS) is a vertex
cover in B. Furthermore, it follows from the definition of S that we must

have z,; = 1 for alli € X NS and £j¢ = 1 for all'y € Y NS. This shows

140 3. Flows in Networks

xns Ys,

2 ays! Yio

Figure 3.19 The situation when a maximum flow has been found. The thick dotted

arc indicates that there is no arc between the two sets X 1S and YN S.

that |x| =|XNS|+|Y S|. “We showed in the proof of Theorem 3.11.1 that
|M*| = |z| = |X N S| +|Y S|, where M* is a maximum matching in B.
Hence |M*| = |U|, SOG that U is a minimum vertex cover and the proof
is complete. oO

Recall that a matching is perfect if it covers all vertices. We saw above that

the simple proof of Theorem 3.11.1 was easily modified to a proof of Konig’s

theorem. Not surprisingly we can also derive the following characterization of

the existence of a perfect matching in a bipartite graph. The result below is a

slight weakening of a result (dealing with matchings that meet all vertices of

one bipartition class of bipartite graphs) due to Hall [393]. For an undirected

graph G = (V, E) and a subset U C V, we denote by N(U) the set of vertices
in V —U which have at least one edge to a vertex in U.

Theorem 3.11.3 (Hall’s theorem) /393] A bipartite graph B = (X,Y; E)
has a perfect matching if and only if |X| = |Y| and the following holds:

|N(U)| > |U| for everyU C X. (3.25)

Proof: The necessity of |X| = |Y| and (3.25) is clear since every vertex in U
has a private neighbour in Y if B has a perfect matching.

Suppose now that (3.25) holds and let x be an integer maximum flow in
the network Ng which is defined as in the proof of Theorem 3.11.1. If we can

prove that |z| = |X| then it follows from the proof of Theorem 3.11.1 that
B has a perfect matching. So suppose |x| < |X|. By the proof of Theorem

3.11.2 we have |z| = |X 1S|+|Y NMS], where S is the set of vertices that are
reachable from s in Ng(a). Since (3.25) holds and we argued in the proof of
Theorem 3.11.2 that all neighbours of X MS are in Y NS, we also have

[X| =|XNS|+|XNS| <|YNS|+|XN8S| =|2| < |X,

a contradiction. Hence we must have |z| = |X| and the proof is complete. O

3.11 Applications of Flows 141

3.11.2 The Directed Chinese Postman Problem

Suppose a postman has to deliver mail along all the streets in a small!! town.

Assume furthermore that on one-way streets the mail boxes are all on one

side of the street, whereas for two-way streets, there are mail boxes on both

sides of the street. For obvious reasons the postman wishes to minimize the

distance he has to travel in order to deliver all the mail and return home to

his starting point. We show below how to solve this problem in polynomial

time using minimum cost flows.

We can model the problem by a directed graph D = (V, A) and a weight
function w : A+R + where V contains a vertex for each intersection of streets

in the town and the arcs model the streets. A 2-cycle corresponds to a two-

way street and an arc which is not in a 2-cycle corresponds to a one-way

street in the obvious way. The weight of an arc corresponds to the length of

the corresponding street. Now it is easy to see that an optimal route for the

postman corresponds to a closed walk in D which traverses each arc at least

once.

We have seen in Theorem 1.6.3 that if a digraph is eulerian, then it con-

tains a closed trail which covers all arcs precisely once. Thus if D is eulerian

the optimalwalk is simply a eulerian trail in D (using each arc exactly once).

Below we show how to solve the general case by reducing the problem to a

minimum cost circulation problem. First observe that there is no solution to

the problem if D is not strongly connected, since any closed walk is strongly

connected as a digraph. Hence we assume below that the digraph in question

is strong, a realistic assumption when we think of the postman problem.

Let D = (V, A) be a strong digraph and let c be a weight function on A.

The cost c(W) of a walk W is Daje 4cijWi; where W;; denotes the number

- of times the arc ij occurs on W. Define N as the network NV = (V,A,l =
1,u = oo,c), that is, all arcs have lower bounds one, capacity infinity and

cost equal to the weight on each arc.

Theorem 3.11.4 The cost of a minimum cost circulation in N equals the

minimum cost of a Chinese postman walk in D.

Proof: Suppose W is a closed walk in D which uses each arc ij € A Wi; > 1

times. Then it is easy to see that we can obtain a feasible circulation of cost
c(W) in N just by sending W;; units of flow along each arc ij € A.

Conversely, suppose x is an integer feasible circulation in N. Form a

directed multigraph D' = (V, A’) by letting A’ contain x;; copies of the arc
ij for each ij € A. It follows from the fact that @ is an integer circulation that

D’ is an eulerian directed multigraph (see Figure 3.20). Hence, by Theorem

1.6.3, D' has an eulerian tour T’. The tour T corresponds to a closed walk W

in D which uses each arc at least once and clearly we have c(W) =c’z. O

11 This assumption is to make sure that the postman can carry all the mail in his

backpack, say. Without this assumption the problem becomes much harder.

142 3. Flows in Networks

a d a é d

(a) (0)

Figure 3.20 Part (a) shows a digraph with cost 1 (not shown) on every arc. Part
(b) shows the values of a minimum cost circulation in the corresponding network.
This circulation corresponds to the postman tour abdacdacbda.

3.11.3 Finding Subdigraphs with Prescribed Degrees

In some algorithms on directed multigraphs an important step is to decide

whether a directed multigraph D contains a subdigraph with prescribed de-

grees on the vertices. One such example is when we are interested in checking

whether D contains a cycle factor (see Chapter 5). Below we show that such
problems and more general versions of these problems can be answered using

flows. See Exercise 3.67 for another application of flows to a similar question

involving construction of directed multigraphs with specified in- and out-

degrees. Another application of the techniques illustrated in this subsection

can be found in Section 7.16.

Theorem 3.11.5 There ezists a polynomial algorithm for the following prob-

lem. Given a directed multigraph D = (V,A) with V = {v,v2,...,Un} and

integers a1,Q2,...,4n, b1,b2,...,bn, find a subdigraph D' = (V,A*) of D

which satisfies dj, (vi) = a; and dp, (vi) = b; for each i = 1,2,...,n, or show

that no such subdigraph exists. Furthermore, if there are costs specified for

each arc, then we can also find in polynomial time the cheapest (minimum

cost) subdigraph which satisfies the degree conditions.

Proof: We may assume that a; < d}(vi), bi < d5(vi) for each i = 1,2,...,n
and that 57, a; = 7j_, bj. Clearly each of these conditions is necessary
for the existence of D' and they can all be checked in time O(n). Let M =

> <1 4i and define a network WN as follows: VN = (V'UV"U{s, t}, A’, = 0, u),

WICKES OCP a, Osean. te Vee a and Al = "480, : a9=
1,2,...,n}U {ujt : 7 = 1,2,...,n}U {ujul : ujv; € A}. Finally, we let
Usy, = Aj, Uyt = U10r i 1 aoe es an tf other arcs have capacity one.

‘Clearly the maximum petane value of an (s,t)-flow in V is M. We claim
that MV has an (s, t)-flow of value M if and only if D has the desired subdi-
graph.

Suppose first that D' = (V, ave is a subdigraph satisfying dp, (vi) = a;
and dp, (vi) = b; for each i = 1,2,...,n. Then the following is an (s, t)-flow

3.11 Applications of Flows 143

of value M in N: ey = aj, ty~ = bj, for each i = 1,2,...,n and tyyy

equals one if vjv; € A* and zero otherwise.
Suppose now that z is an integer (s,t)-flow of value M in N and let

Afise{ou;:: Lyiyit = 1}. Then D' = (V, A*) is the desired subdigraph.

It follows from our arguments above that we can find the desired subdi-

graph D’ in polynomial time using any polynomial algorithm for finding a

maximum flow in a network.

Observe also that, if we have a cost function c on the arcs of D and let NV

inherit costs in the obvious way (arcs incident to s or t have cost zero), then

finding a minimum cost subdigraph D’ can be solved using any algorithm for

minimum cost flows. Oo

It follows from Theorem 3.11.5 that we can decide whether a given digraph

has a spanning k-regular subdigraph for some specified natural number k in

polynomial time. In fact, using minimum cost flows we can even find the

cheapest such subdigraph in the case that there are costs on the arcs. What

happens if we do not require the regular subdigraph to be spanning? If k = 1,

then the existence version of the problem is trivial, since such a subdigraph

exists unless D is acyclic. Yannakakis and Alon observed that already when

k > 2 the existence version of the problem becomes \’P-complete. For details

see [279].

3.11.4 Path-Cycle Factors in Directed Multigraphs

We saw in the last subsection that we can use flows to find a cycle factor in

a given digraph or to prove that none exists. We now show that flows are in

fact very useful for studying the more general path-cycle factors in digraphs.

Finding this type of subdigraph is an important ingredient in several polyno-

mial algorithms for hamiltonian path and cycle algorithms for generalizations

of tournaments (see Chapter 5).
We start with three necessary and sufficient conditions for the existence of

a cycle factor in a digraph. The reason for giving all three is that in certain

cases one of them provides a better way to deal with the problem under

consideration than the other two. The first two parts are given in Ore’s book

[595]; the last is due to Yeo [748].

Proposition 3.11.6 Let D = (V,A) be a directed multigraph.

(a) D has a cycle factor if and only if the bipartite representation BG(D) of

D contains a perfect matching.

(b) D has a cycle factor if and only if there is no subset X of V such that

either |Uyex N+(v)| < [XI or |Upex N-(0)| < |X.
(c) D has a cycle factor if and only if V cannot be partitioned into subsets

Y, Z, Ri, Ry such that (Y, Ri) =0, (Ro, Ri UY) =9, |¥| > |Z| and Y

is an independent set.

144 3. Flows in Networks

Proof: (a): The reader was asked to prove (a) in Exercise 1.62, but we give

the proof here for completeness. Suppose BG(D) has a perfect matching

consisting of edges v1 ¥; (1), 1+; UnUn (ny Where 7 is a permutation of the set

{1,...,n}. Then the arcs v1 Vq(1), +.) UnUx(n) form a cycle factor. Indeed, in

the digraph D’ induced by these arcs every vertex v; has out-degree and in-

degree equal to one and such a digraph is precisely a disjoint union of cycles

(Exercise 3.57).

Conversely, if C; UC2U ... UC, is a cycle factor in D, then for every

v; € V let (i) be the index of the successor of v; on the cycle containing

v;. Then 7 induces a permutation of V and {ujv,() : vi € V} is a perfect

matching in BG(D).

(b): Clearly D has a cycle factor if and only if the converse of D has a

cycle factor, so it suffices to show that D has a cycle factor if and only if there

is no subset X satisfying |U,<x N*(v)| < |X|. Necessity is clear because if
|Uvex Nt (v)| < |X| holds for some X then there can be no cycle subdigraph
which covers all vertices of X (there are not enough distinct out-neighbours).

So suppose |U,cx Nt(v)| > |X| holds for all X C V. Then it is easy to
see that |N(X')| > |X’'| holds for every subset X' C V' of BG(D) (where
V(BG(D)) = V' UV", recall Section 1.6). It follows from Theorem 3.11.3
that BG(D) has a perfect matching and now we conclude from (a) that D
has a cycle factor. Par

(c): We first prove the necessity. Suppose D has a cycle factor F and

yet there is a partition Y, R,, R2, Z as described in (c). By deleting suitable
arcs from the cycles in F we can find a collection of |Y| vertex-disjoint paths
such that all these paths start in Y and end at vertices of V — Y each of

which dominate some vertex in Y (here we used that Y is an independent

set). However this contradicts the existence of the partition Y, R,, Ro,Z as

described in (c), since it follows from the fact that |Z| < |Y| that there can
be at most |Z| such paths in D (all such paths must pass through Z).

Now suppose that D has no cycle factor. Then we conclude from (b) that

there exists a set X such that |U,¢. N*(v)| < |X| holds. Let

Y ={u € X: d5/x,(v) = 0}, Ri = V—X—N*(X), Ro = X-Y, Z=N*(X).

Then (Y, R:) = 0, (Ro, RiUY) = @ and Y is an independent set. Furthermore,
since | ,cx N*(v)| < |X| we also have |Z| + |X —Y| = |U,ex Nt(v)| <
|X| = |X —Y|+]Y¥], implying that |Z| < |Y|. This shows that Y, Z,R1, Ro
form a partition as in (c). Oo

It is not difficult to show that Proposition 3.11.6 remains valid for directed
pseudographs (where we allow loops) provided that we consider a loop as a
cycle (Exercise 3.58). We will use that extension below.

Combining Proposition 3.11.6 with Theorem 3.11.1 we obtain

Corollary 3.11.7 The existence of a cycle factor in a digraph can be checked
and a cycle factor found (if one exists) in time O(,/nm). Oo

3.11 Applications of Flows 145

Recall that the path-cycle covering number pcc(D) of a directed pseudo-

graph is the least positive integer k such that D has a k-path-cycle factor. The

next result (whose proof is left as Exercise 3.68) and Theorem 3.11.1 imply

that we can calculate pcc(D) in polynomial time for any directed pseudo-

graph.

Proposition 3.11.8 Let n be the number of vertices in a directed pseudo-

graph D and let v be the number of edges in a maximum matching of BG(D).

Ifv =n, then pcc(D) = 1, otherwise pcc(D) =n — v. 0

The following result by Gutin and Yeo generalizes Proposition 3.11.6(c).

Corollary 3.11.9 [377] A digraph D has a k-path-cycle factor (k > 0) if

and only if V(D) cannot be partitioned into subsets Y, Z, Ri, Ra such that

(Y, Ri) =9, (Ro, Ri UY) =9, |Y| >|Z| +k and Y is an independent set.

Proof: Assume that k > 1. Let D' be an auxiliary digraph obtained from D

by adding & new vertices uj,...,u,% together with the arcs {u;w, wu; : w €

V(D), i = 1,2,...,k}. Observe that D has a k-path-cycle factor if and only

if D’ has a cycle factor. By Proposition 3.11.6 (c), D’ has a cycle factor if

and only if its vertex set cannot be partitioned into sets Y, Z', Ry, Ro that

satisfy (Y, Ri) = 0, (Ro, R: UY) = 9, |Y| > |Z'| and Y is an independent
set. Note that if Y,Z', Ri, R. exist in D’ then the vertices uj,...,u, are in

Z'. Let Z = Z' — {u,...,ux}. Clearly, the subsets Y, Z, Ri, Ro satisfy

(Y, Ri) =0, (Ro, Ri UY) =90, |Y| >|Z|+k and Y is an independent set. O

The proof above and Corollary 3.11.7 easily implies the first part of the

following proposition.

Proposition 3.11.10 Let D be a directed pseudograph and let k be a fixed

non-negative integer. Then

(a) In time O(.,/nm) we can check whether D has a k-path-cycle-factor and
construct one (if it exists).

(b) Given a k-path-cycle factor in D, in time O(m), we can check whether

D has a (k —1)-path-cycle factor and construct one (if it exists).

Proof: Exercise 3.69. Oo

3.11.5 Cycle Subdigraphs Covering Specified Vertices

In the solution of several algorithmic problems, such as finding the longest

cycle in an extended semicomplete digraphor a semicomplete bipartite di-

graph, it is an important subproblem to find a cycle subdigraph which covers

as many vertices as possible. Below we show how to solve this problem using

a reduction to the assignment problem, due to Alon (see [363]).

146 3. Flows in Networks

Theorem 3.11.11 There is an O(n) algorithm which finds, for any given

digraph D, a cycle subdigraph covering the maximum number of vertices in

D.

Proof: Let D be a digraph and let D’' be the directed pseudograph one

obtains by adding a loop at every vertex. Let B be the weighted bipartite

graph one obtains from the bipartite representation BG(D’) of D by adding
the following weights to the edges: the weight of an edge ry’ of B equals 1 if

x #y and equals 2 if = y. It is easy to see (Exercise 3.63) that, by solving
the assignment problem for B (in time O(n*), see Section 3.12) and then
removing all the edges with weight 2 from the solution, we obtain a set of

edges of B corresponding to some 1-regular subdigraph F of D of maximum
order. Oo

Jackson and Ordaz [452] proved the following sufficient condition for the
existence of a cycle factor in a digraph. (For undirected graphs the analogous

condition implies that the graph has a hamiltonian cycle [161].)

Proposition 3.11.12 [452] If D is a k-strong digraph such that the mazi-

mum size of an independent set in D is at most k, then D has a spanning
cycle subdigraph.

We now prove a generalization of this result and discuss its relevance to

the problem of finding a cycle through a specified set of vertices in certain

generalizations of tournaments. Deciding whether there is a cycle containing

all vertices from a prescribed set X in an arbitrary digraph is an VP-complete
problem already when |X| = 2 (see Theorems 9.2.3 and 9.2.6). Proposition
3.11.12 corresponds to the special case X = V in the following theorem, due
to Bang-Jensen, Gutin and Yeo.

Theorem 3.11.13 /70] Let D = (V,A) be a k-strong digraph and let
X C V(D) be such that a(D(X)) < k, then D has a cycle subdigraph (not
necessarily spanning) covering X.

Proof: This can be proved directly from Theorem 3.8.2 (Exercise 3.65). We
give a simple proof based on Proposition 3.11.6 which also holds for directed
pseudographs (see Exercise 3.58).

Let D and X be as defined in the theorem. Form the directed pseudograph
D' from D by adding a loop at each vertex not in X. Then D has a cycle
subdigraph covering X if and only if D’ has a cycle factor, because the new
arcs cannot contribute to cycles which cover vertices from X. Suppose D’ has
no cycle factor. Then by Proposition 3.11.6 (c) we can partition the vertices
of V into sets Ri, R2, Y,Z so that (Y,Ri) = 0, (Ro, Ri UY) =O, yy) > 1)
and Y is an independent set. Note that no vertex with a loop can be in an
independent set (see Section 1.6 for the definition of an independent set of
vertices). Thus we have Y C X. It follows from the description of the arcs

3.12 The Assignment Problem and the Transportation Problem 147

between the sets above that there is no path from Y to R; in D—Z. Thus we
must have |Z| > k since D is k-strong. But now we have the contradiction

k < Z| <|Y| < a(D(X)) <b.
Thus D' has a cycle factor, implying that D has a cycle subdigraph covering
AS Oo

Theorem 3.11.13 shows that the obvious necessary condition for the exis-
tence of a cycle covering a specified subset X, namely that there exists some
collection of disjoint cycles covering X is satisfied in many cases. Indeed, if D
is k-strong, then we may take X arbitrarily large, provided its independence
number stays below k + 1.

We point out that, when |X| = k and D is k-strong, then the existence
of a cycle subdigraph covering X can also be proved easily using Menger’s
theorem (Theorem 7.3.1). See Exercise 7.17.

The proof above combined with that of Theorem 3.11.11 immediately
implies the following result.

Theorem 3.11.14 There ezists an O(n*) algorithm for checking whether

a given digraph D = (V,A) with a prescribed subset X C V has a cycle

subdigraph covering X. oO

3.12 The Assignment Problem and the Transportation
Problem

In this section we study two special cases of the minimum cost flow problem,

both of which occur frequently in practical applications. Being special cases

of the minimum cost flow problem, they can be solved using any of the algo-

rithms described in Section 3.10. The purpose of this section is to illustrate a

general approach, the primal dual algorithm, for solving linear programming

problems while using the transportation problem as an example. In order to

read parts of this section the reader is supposed to have some basic knowledge

of linear programming and the duality theorem for linear programming (see
e.g. the book [600] by Papadimitriou and Steiglitz).

In the assignment problem, the input consists of a set of persons

Py, P2,.-.,Pn, a set of jobs Ji, J2,...,J, and an n x n matrix M = [M,,|

whose entries are non-negative integers. Here M;; is a measure for the skill

of person P; in performing job J; (the lower the number the better P; per-

forms job J;). The goal is to find an assignment 7 of persons to jobs so

that each person gets exactly one job and the sum by at Min(i) 18 mini-

mized. Note that it is easy to formulate the weighted bipartite matching

problem (given a complete!” undirected bipartite graph Ky, with weights

*? Assuming that the graph is complete is no restriction since we can always replace
non-edges by edges of weight oo.

148 3. Flows in Networks

on its edges, find a perfect matching of minimum total weight) as an instance

of the assignment problem. On the other hand, it is also easy to see that,

given any instance of the assignment problem, we may form a complete bipar-

tite graph B = (U,V; E) where U = {Pi, Po,..., Pn}, V = {Ji, Jo,---, In}

and E£ contains the edge P;J; with the weight M;; for each 1 = 1,2,...,m,

j =1,2,...,n. This shows that the assignment problem is equivalent to the

weighted bipartite matching problem.

It is also easy to see from this observation that the assignment problem is

a (very) special case of the minimum cost flow problem. In fact, if we think
of M;; as a cost, then what we are seeking is a flow of minimum cost so that

the balance vector is one for each P;, 1 = 1,2,...,m and the balance vector

is minus one for each J;, 7 =1,2,...,n.

In the transportation problem we are given a set of production plants

S1,52,...,Sm who produce a certain product to be shipped to a set of re-

tailers T,,T2,...,T. For each pair (S;,T;) there is a real-valued cost cj; of

transporting one unit of the product from S; to T;. Each plant produces aj,

1=1,2,...,m, units per time unit and each retailer needs b;, 7 = 1,2,...,n,

units of the product per time unit. We assume below that }0;", ai = D05_, by
(this is no restriction of the model as shown in Exercise 3.71). The goal is to

find a transportation schedule for the whole production (i.e. how many units

to send from. 5; to 7; fori = 1,2,...,m, j = 1,2, :..,") im order to minimize

the total transportation cost.
Again the transportation problem is easily seen to be a special case of the

minimum cost flow problem. Consider a bipartite network NV with bipartition

classes S = {51,52,...,S5m} and T = {T),T2,...,T,} and all possible arcs

from S to T’ where the capacity of the arc S;T; is co and the cost of sending

one unit of flow along S;T; is c;;. Now it is easy to see that an optimal trans-

portation schedule corresponds to a minimum cost flow in NV with respect to

the balance vectors

b(Si) = a;,1 =1,2,...,m, and b(T;) = bs 9 ile 2h eee

The fact that both the assignment problem and the transportation prob-
lem are special cases of the minimum cost flow problem allows one to use
any algorithm for finding a minimum cost flow to solve these problems. Be-
low we are going to describe how to obtain more efficient algorithms for the
transportation problem and the assignment problem by using the so-called
primal-dual algorithm approach to linear programming problems. First we
formulate the transportation problem as a linear programming problem.

™m nm

min Dy TE

i=1 j=1
n

Site Dy ieianys rl diceala Dt dim (3.26)

3.12 The Assignment Problem and the Transportation Problem 149

m

SY oiyialy PSSM hop

pal

ey et Op stor all 2,9.

The linear programming dual of the transportation problem is

m™m mr

max ; aiat) 35;

— Jeasll

Sits MOP Py ste; e for allay) (2.0)

a;,; unrestricted for all 2, j.

Here the dual variables aj,...,@, correspond to the first set of equalities

and the dual variables (;,...,3, correspond to the second set of equalities

in the transportation problem.

Assume that we are given a feasible solution a1,...,@m,1,...,2n to the

dual (3.27) and define a set Z7 of indices by TJ = {(i,j) : aj + Bj = ci;}.
Suppose that z is a feasible solution to the transportation problem and that

zi; = 0 for all (7,7) ¢ Z7. Then we have

m™m n

Na a Cig Lig = Ds Cij Vij

i=1 j=l (i,j)ELI

= (ret Bag
(4,j)ELT

= \Pai(3, wig) + > Bil a iz)
i=l {j:(4,j)EZT} j=l {i:(4,j) ELT}

Combining this with the weak duality theorem for linear programming!*
shows that z is an optimal solution to the transportation problem.

In order to study how to use this observation algorithmically, we define the

restricted primal problem with respect to the given dual solution (a, 3):

13 When the primal is a minimization problem, then the value of the dual objective
function is at most the value of the primal objective function for any pair of
feasible solutions to the dual and the primal.

150 3. Flows in Networks

m+n

min y Tj

i=1
n

S-U.) Lig +Ti = Mi, t= be Ape anette

=u

Bie
~

2 + irmts = by, j= 1,2,..-,7 (3.28)

0

#720 forall (1,7) cxbal

t4,=0 forall (6.5) Coes.

ran0; te 12. 21a

The variables r1,r2,.--,m+n are usually called slack variables. They

ensure that (3.28) always has a feasible solution. Furthermore, the optimum

in (3.28) is zero if and only if (3.26) has a feasible solution. The dual of (3.28),

called the dual of the restricted primal problem, is as follows:

m n

max aya; +) B3b;
faa j=l

sts top-G; <0 © Morals) el7 (3.29)

G7,0; <1 itor aller.

Let x,r be an optimal solution to the restricted primal problem (that is,

one that minimizes)~’"*" r;). Observe that if r = 0, then z is also a feasible
solution to the transportation problem and since 2;; = 0 for all (7,7) ¢ ZZ,

we see from the argument above that z is in fact an optimal solution to the

transportation problem. Furthermore, it follows from (3.28) that minimizing
yt" r; is equivalent to the following maximization problem:

max) Xi

(i,j)ELT
m

8.0: Seay =a; Me bea Ane ahs 5

i=1

> 25 <b; 5 =k Qe (3.30)

jt
CP DOU We Ker al OR Ph ad Rolf

Liz = 0 for (i, 7) ¢gITI.

3.12 The Assignment Problem and the Transportation Problem 151

This is just a maximum flow problem. Indeed, let Nog) = (V,A,l =

0,u) be the network whose vertices are V = X UY U {s,t}, where X =

PSG aeier atid.) e107, (hus ptqh and whose arcs are A = {ss; : 7 =

Decca se pul {tbe 2... tt} U4 ste (t, 9) C27}. Lhe capacity of the

arc 88; is aj,1 = 1,2,...,m, the capacity of the arc t;t is b;, 7 =1,2,...,n and

the capacity of each arc of the form s;t; is oo. We call N(«,A) the admissible

network with respect to (a, 3). It is not difficult to show that there is

a 1-1 correspondence between maximum (s, t)-flows in M(q,g) and optimal
solutions to (3.30).

What do we do if the value of the maximum (s, t)-flow in N«,8) is strictly

smaller than }>." , a; (recall that this is equivalent to saying that the optimum

value in (3.28) is strictly greater than zero)? In this case zx, restricted to the
arcs {s;t; : (i,j) € ZZ}, is not a feasible solution to the transportation

problem. However, this is where the main step in the primal-dual algorithm

comes into play. We now show that in this case it is always possible to modify

the current dual solution (a, 3) to a new feasible dual solution (a’, 3’) in such
a way that the value of a maximum (s,t)-flow in the network M(q a’) is at

least as large as the corresponding value in M(q,g). Furthermore, if it is the

same, then after a finite number of repetitions of dual solution changes, the

value of a maximum flow in the current admissible network will increase.

Let « be a maximum flow in N(q,g) and suppose that |z| < i", ai.
Let S be the set of vertices that are reachable from s in N(g,g)(z). Let I =

age as Medi dD eet and.define IS" by

YE EM RR eh ee ho Se Ma ae

As we saw in the proof of Theorem 3.5.3, (5,9) is a minimum (s, t)-cut

in N(q,a)- In particular, since all arcs of the form s;t; have capacity oo, there

is no pair (i,j) € ZZ for which i € I* and j € J — J* (compare this with the

proof of Theorem 3.11.2). Thus, arguing as we did in the proof of Theorem

3.11.2 and using Theorem 3.5.3 we obtain

jel ear) yived;: (3.31)
ieI—I* jeJ*

Going back to the problem (3.30) and using the fact that |x| is exactly
the value of an optimal solution to this problem, we see from (3.31) that the

optimal solution for the current problem (3.28) is given by

n+m

ai dy oop SIH
j=) i=1 iS

= oat > by — 2 SS, a;,+ > b;)

i=1 j=l ieI—I* jeJ*

152 3. Flows in Networks

= Shai oat) Dv bem Dy
iel* 1EI—I* jE J—J* j¢€J*

This implies that the following feasible solution (a, 3) is optimal for (3.29):

lib sel CGMS
rite lat laitetaGuli phe

(3.32)

SO edie
Se gard V5 RAS ini ae best

Let

eas e:= min{ : (i,j) IJ and a; + B; > 0} (3.33)
1 a

= minf So“ F§ per jerry},

and define (a*, 3*) as follows:

u

en ee eres

Ci) hor See wee

(3.34)
pee rer
J Bi he args TESTS:

It follows easily from the fact that |r| < >", ai = O4_, 6; that I* 4 0
and J — J* # @. Furthermore, since there is currently no arc s;t; with (i,j) ¢
TJ, we have c;; —a;— 8; > 0 for all such pairs (7, 7). This shows that € exists

and is strictly greater than zero.

Lemma 3.12.1 Let a,(,a*,@* be as above. Then the following holds:

(a) (a*, B*) is a feasible solution to the dual (3.27) of the transportation
problem.

(b) For every arc sit; in N(q,g) such that x is non-zero the arc s;t; is also
an arc of N(a+,a)

(c) The network N(q+,g+) contains at least one arc s;t; for which i € I* and
peal — J

(d) The value of a maximum (s,t)-flow in N(q«,g+) is at least as large as the
value of the current mazimum flow x in N(q,,)-

3.12 The Assignment Problem and the Transportation Problem 153

Proof: Exercise 3.72. oO

Putting the observations we made above together, we obtain the following
algorithm for the transportation problem.

The primal-dual algorithm for the transportation problem
Input: An instance of the transportation problem.
Output: An optimal transportation schedule!4.

1. Initialize the dual variables as follows:

For 2 := 1 to m let a; := min{¢j7 27 =1,2,! ..jm};

Por j :-=1 ton let 6; :-= min{cj; — a; :i = 1,2,...,m)};

. Construct the admissible network Na);
Find a maximum flow z in N(q,g);
If |z| = }>;~, ai then return z;

. Update the dual variables according to (3.33) and (3.34);

. Construct the new admissible network and go to Step 3. Oop ww

Theorem 3.12.2 The primal-dual algorithm will find an optimum solution

for any given transportation problem with m plants and n retailers in time

O(M(n+m)?), where M = Di", ai = 5, by.

Proof: We give a brief sketch which gives a complexity of O(M(n + m)?).
In Exercise 3.74 the reader is asked to show how to implement the algorithm

so that one obtains the desired complexity.

It is easy to check that the dual variables which are calculated in Step
1 form a feasible solution and that the admissible network will contain at

least one arc from X to Y. Forming NM(q,g) can be done in time O((n +m)?)
and we can find the first maximum flow in time O((n + m)?M) using the
Ford-Fulkerson algorithm (see Theorem 3.5.4).

We can easily construct N(q+,g-) from N(q,g) in time O((n + m)*). By
Lemma 3.12.1(b) we do not have to start all over when we wish to calculate

a maximum flow in the updated admissible network Na ,p*): In fact, the

current flow x (interpreted in the obvious way) is a feasible (s,t)-flow in
Nap). Thus starting from z and searching for an augmenting path in the

residual network, we can either find an augmenting path or detect that the

current 2 is still maximum in time O((n + m)?). This and the fact that we
always augment by an integer amount of flow implies that, in order to prove

the complexity O(M(n +m)?) for the algorithm, it suffices to show that the
number of changes in the dual variables between two consecutive increases
in the value of the maximum flow in the admissible network is at most m.

Suppose that the current flow x has value less than)>;", a; and let us
estimate the number of times we can change the dual variables without en-

abling an increase in the flow value. Let (a, 3) be the actual dual variables,
let S be the set of vertices that are reachable from s in N(q,g)(x) and define

14 Tn the form of an optimal flow, from which the schedule can be read out easily.

154 3. Flows in Networks

S* similarly for N(q+,g+). By Lemma 3.12.1(b), no arc which carries flow dis-

appears when we change from N(q,g) to Na ,gx)- It is easy to show that this

implies that S Cc S*. By Lemma 3.12.1(c) we add at least one new arc sjt;

such that s; € S and t; € S (in N(«,g) there is no such arc since they all have

infinite capacity) and hence we obtain that |S*NY| > |SNY|. Since |Y| =m

it follows that after at. most m changes of dual variables we can increase the

flow in the current admissible network. Oo

For the assignment problem we have n = m and M = n, implying that

the following holds (see also Exercise 3.76).

Theorem 3.12.3 The assignment problem on n persons and n jobs is solv-

able in time O(n3). Oo

For the assignment problem the O(n?) implementation of the primal-dual

algorithm above is due to Kuhn [505] and is also known under the name the
Hungarian method. The interested reader can find more details on the

implementation of the primal-dual algorithm for the transportation and the

assignment problems in e.g. the book [578] by Murty.
In practice it is not necessary to work explicitly on the network N(a,8):

Suppose we keep a table containing the following information: the cost ma-

trix, the supplies and demands for the actual instance of the transportation

problem and the actual values of the dual variables (a, 3). These can all be
kept compactly as shown below.

The cost matrix can be found in the upper left part of the diagram. Each
cell corresponding to an entry in the matrix is divided into an upper and a
lower part. In the lower part we have specified the cost c;; of sending one unit
from plant i to retailer 7. No numbers are specified in the upper halves of each
cell at this point (see below). The values of the supplies and demands are
specified as the vectors a (in the rightmost column) and 6 (in the bottom row
of the diagram). There is also a column which specifies the initial value of the
a vector and a row specifying the initial value of the 6 vector. These have

3.12 The Assignment Problem and the Transportation Problem 155

been calculated according to Step 1 of the primal-dual algorithm. Finally,
shaded cells indicate the set Z,7.

Equipped with such a diagram we may first find a feasible flow x which
may or may not be maximum in the current admissible network, e.g. by a
greedy approach. The search for a new augmenting path with respect to z can

also be modeled by adding a small amount of information to the diagram.

Namely, we show labels which indicate how a search might progress. We

start by labelling those rows i < m for which b,(i) < a; by ‘s, +’. Then we

search for an augmenting (s,t)-path as follows (compare this with the proof
of Theorem 3.5.4):

If a row 2’ is labelled then every column j’ for which the cell i’j' is

admissible (the corresponding arc is an arc of the admissible network)

may be labelled (capacity is 00 here). We label such a column by ‘i’, +’.

If a column j is already labelled and 2;; > 0, then we may label the row

eby 3;
If at some point we label a column j for which b,(j) < 6; then we have

a breakthrough: an augmenting path corresponding to the labels we can
trace backwards from j has been found. In this case we augment the flow

as much as possible, delete all labels and start the labelling process again.

If no more rows or columns can be labelled, the process stops.

It is easy to see that the description above is merely a specification of the

Ford-Fulkerson algorithm on the residual network with respect to z and the

current admissible network.

When a maximum flow in M(4,g) has been found and it has a value less

than)°\", a;, the primal-dual algorithm updates the dual variables. Given

the labels above we can easily identify the sets J*, J* as the set of labeled

rows and columns and calculate the new dual variables (a*, 6*) according
to (3.34). Note that in order to avoid fractional values of a*, 6* it is more

convenient to use the following choice for the new dual variables a*, 3* (here

€ is as defined in (3.33)). In Exercise 3.77 the reader is asked to show that
this choice for a*, 3* still gives a feasible solution and one which has a higher

value for the objective function in (3.27).

“i @harite Vel

, Qj ifi e J —I*

(3.35)

x Bj 2e if 7 € J*

Pit Ge ai pel Je

Below we show a diagram representation of the algorithm on the example

above, starting from a maximum flow in the network N(q,g). Recall that
shaded cells indicate the arcs of the current admissible network.

156 3. Flows in Networks

No augmenting path found so we make a dual change:

€, = min{5-2-0,6-2-0,5-2-1,8-2-1,4-2-0} = 2

€4 = min{6-1-0,8-1-0,10-1-1,4-1-1,3-1-0} = 2

2e = min {e1,€4} = 2.

The new diagram, with updated dual variables and admissible arcs

indicated by shaded cells, together with the new labelling step is

shown below: .

Augment along each of the paths ss,t3t and ss jtgt by one unit along

each. After this columns 4, 5 and 6 can be labelled ‘4,+’ and now we

can send 5 units along ss4tst and 4 units along ss4tgt. After these aug-

mentations the next labelling step results in the following labels:

3.12 The Assignment Problem and the Transportation Problem

No augmenting path found so we make a dual change:

€; = min{5-4-0} = 1

ép = 1210-0 = 2

€e4 = 6-3-0 = 3

26 = Tan 7,69, 4} =.

he
VAVAVA VB
eles ie aa =i -

157

158 3. Flows in Networks

A feasible solution to (3.26) has been found. Control for optimality:

min

S> eigaig =F +54+644+4404 22412414204 12 = 127
Oe ilag eal

Sasa; + > Bjbj = 30+ 66 + 12+ 40 - 4-12 —5 = 127.
i=1 FN

Above we have illustrated the primal-dual algorithm when applied to the

transportation problem. We would like to stress that this approach is quite

general. It works for any linear programming problem and its dual, provided

that both problems have feasible solutions: We refer the reader to the book by

Papadimitriou and Steiglitz [600] for an excellent account of the primal-dual
algorithm approach.

3.13 Exercises

Unless otherwise stated, all numerical data in the exercises below are integers.

3.1. Find a feasible flow in the network NV of Figure 3.21.

Figure 3.21 A network N with balance vector b specified at each vertex. All lower
bounds and costs are zero and capacities are shown on the arcs.

3.2. Suppose the network N = (V, A,l,u,b,c) has some 2-cycle iji for which
cij # —cji. Show how to transform N into another network NV’ without 2-
cycles such that every feasible flow in NV corresponds to a feasible flow in NV’
of the same cost. What is the complexity of this transformation?

3.3. Prove Lemma 3.2.1 (a).

3.4. Prove Lemma 3.2.2.

3:5)

3.6.

Bate

3.8.

3.9.

3.13 Exercises 159

Prove Lemma 3.2.3. In particular, argue why we need to take I;, = M rather
than [by ==A()}

Prove Lemma 3.2.4.

(+) Fast decomposition of flows. Prove Lemma 3.3.2.

Decomposing an eulerian directed multigraph into arc-disjoint cy-
cles. Prove that the arc set of every eulerian directed multigraph can be
decomposed into arc-disjoint cycles. Hint: form a circulation in an appropri-
ate network and apply Theorem 3.3.1.

Find the residual network corresponding to the network and flow indicated
in Figure 3.22.

Figure 3.22 A network with a flow x. The notation for the arcs are (I, z, u).

3.10.

Spl.

3.12.

3.13.

3.14.

3.15.

Find the balance vector b, for the flow z in Figure 3.22.

Eliminating lower bounds on arcs in maximum flow problems. Show
how to reduce the maximum (s,t)-flow problem in a network N with some
non-zero lower bounds on the arcs to the maximum (s’,t’)-flow problem in a
network NA’ with source s’ and sink t’ and all lower bounds equal to zero.

Let x be a flow in N = (V,A,/ = 0,u,c) and let f(W) be a cycle flow of
value 6 in N(x). Show that the flow x* = x @ f(W) has the same balance

vector as x in NV. Show also that the cost of x” is given by c’ x +c? f(W).

Prove that the flow z defined in the proof of Theorem 3.4.3 is a feasible flow
in N(z).

Let z be a feasible flow in N = (V, A,l = 0, u,c) and let y be a feasible flow in
N(z). Show that N(x @ y) = N(z)(y), where N(x)(y) denotes the residual
network of N(x) with respect to y. That is, show that the two networks
contain the same arcs and with the same residual capacities.

An alternative decomposition of a flow. Consider the proof of Theorem
3.3.1 and suppose that, instead of taking w = min{bz(io), —bz (tz), 5}, we let
p. = 6. What kind of decomposition into path and cycle flows will we get and
what is the bound on their number?

160 3. Flows in Networks

3.16. Structure of minimum (s, t)-cuts. Decide which of the following is true

or false. In each case either give a counter-example or a proof of correctness.

(a) If all arcs have different capacities, then there is a unique minimum

(s, t)-cut.
(b) If we multiply the capacity of each arc by aconstant k, then the structure

(as subset of the vertices) of the minimum (s,t)-cuts is unchanged.

(c) If we add a constant k to the capacity of each arc, then the structure (as

subset of the vertices) of the minimum (s,t)-cuts is unchanged.

3.17. (+) The Ford-Fulkerson algorithm may never terminate if capaci-

ties are real numbers.

Figure 3.23 A bad network for the generic Ford-Fulkerson algorithm. All arcs
except the three in the middle have capacity r + 2. Those in the middle have

capacities 1,r,r”, where r is the golden ratio.

3.18.

3.19.

3.20.

3.21.

Let NV be the network in Figure 3.23. Here r is the golden ratio, i.e. r?> = 1—r.
Observe that r°t? = r™ — r+! for n =1,2,....

(a) Show that the value of a maximum flow in N is 1+r+r? =2.
(b) Devise an infinite sequence of augmentations along properly chosen aug-

menting paths in the current residual network so that the flow value will
converge towards 1+ }>°,r’ = 2. This shows that, when the capaci-
ties are non-rational numbers, the Ford-Fulkerson algorithm may never
terminate. Hint: first augment by one unit and then by r* units in the
ith augmentation step, i > 2, along an appropriately chosen augmenting
path.

(+) Prove that the Ford-Fulkerson algorithm will always terminate if all
capacities are rational numbers.

Let S be a totally unimodular p x q matrix and J the p x p identity matrix.
Show that the matrix [S J] is also totally unimodular.

Exact distance labels give a height function for the preflow-push
algorithm. Let NV be a network with source s and sink ¢t and let « be a
preflow in NV such that there is no (s,t)-path in N(z). Prove that if we let
h(i) equal the distance from i to t in N(z) for i € V —s and h(s) = n, then
we obtain a height function.

Bad performance of the preflow-push algorithm. Give an example
which shows that the preflow-push algorithm may use many applications of
push and lift without sending any extra flow into t or back to s.

3.22

3.23.

3.24.

3.25.

3.13 Exercises 161

age some useless work in the preflow-push algorithm. Let
= (V,A,l=0, u) be a network with source s and sink t. Suppose that we

rae the generic preflow-push algorithm on NV. Let h be a height function
with respect to N and z. We say that h has a hole at position i + 1, for
some 2 < n at some point in the execution of the algorithm if at that time
the following holds:

|{u : h(v) = j}| > O for every j <i and
ante) =. 1}] = 0.

Let h’ be defined as follows:
h'(v) = h(w) if h(v) € {1,2,...,c} U{n,n+1,...,2n—-1}
h'(v) =n4+1 if t < A(v) <n.

(a) Prove that h’ is a height function, that is, (3.14) is satisfied.
(b) Describe how to implement this modification of the height function ef-

ficiently so that it may be used as a subroutine in the preflow-push
algorithm.

(c) Explain why changing the height function as above when a hole is de-
tected may help speed up the preflow-push algorithm.

Using the height function to detect a minimum cut after termi-
nation of the preflow-push algorithm. Suppose z is a maximum (s,t)-
flow that been found by executing the preflow-push algorithm on a network
N = (V,A,l = 0,u). Describe a method to detect a minimum (s,t)-cut in
O(n) steps using the values of the height function upon termination of the
algorithm.

(+) Re-optimizing a maximum (s,t)-flow. Suppose z is a maximum
flow in a network NV = (V, A,l = 0, u). Show how to re-optimize x (that is, to
change it to a feasible flow of maximum value) in each of the following cases:
(a) Increase the capacity of one arc by k units. Show that the new optimal

solution can be found in time O(km).
(b) Decrease the capacity of one arc by k units. Show that new optimal

solution can be found in time O(km). Hint: use Theorem 3.3.1.

(+) Pulling and pushing flow, the MKM-algorithm. The purpose of
this exercise is to introduce another, very efficient, method for finding a block-
ing (s,t)-flow in a layered network due to Malhotra, Kumar and Maheshwari
[544]. Let C= (V =VoUWYU... UY, A,] = 0, u) be a layered network with
Vo = {s} and Vi, = {t}. Let y be a feasible (s,t)-flow which is not blocking
in £. For each vertex i € V — {s,t} let ai, Gi, pi be defined as follows:

a= ST Uji — Yji (3.36)

jiEA

BEDE 85 95 (3.37)
ijeA

pi = min{ai, Bi}. (3.38)

Let

= Usj — Ysj» Pt = a Ujt — Yjt- (3.39)

sjEA jteA

Finally let p = miniey {pi}.
Suppose that p > 0 and let i € V be chosen such that p = pi.

162

3.26.

3.

(a)

(b)

(c)

(d)

Flows in Networks

Prove that it is possible to send an additional amount of p units from a

to t (called pushing from i to t) and p units of flow from s to 7 in L

(called pulling from s to 1). Hint: use that the network is layered.

The observation above leads to the following algorithm A for finding a

blocking flow in a layered network. Below the p-values always refer to

the current flow.

The MKM-algorithm

1. Start with the zero flow y = 0 and calculate p; for all 1 € V. If some

i € V has p; = 0 then go to Step 6;
2. Choose i such that pi = p;
3. Push p units of flow from i to ¢t and pull p units from s to 7;
4. Delete all arcs which are saturated with respect to the new flow. If

this results in some vertex of in- or out-degree zero, then also delete
that vertex and all incident arcs. Continue this until no more arcs
can be deleted;

5. Calculate p; for all vertices in the current layered network. If p; > 0
for all vertices then go to Step 2. Otherwise go to Step 6.

6. If ps = 0 or p: = 0, then halt;
7. If there is a vertex i with p; = 0, then delete all such vertices and

their incident arcs;

8. Go to Step 5.
Prove that the algorithm above correctly determines a blocking flow in
the input layered network CL.
The complexity of A depends on how we perform the different steps,
especially Step 3. Suppose we apply the following rule for performing
Step 3. We always push/pull p units one layer at a time. If j is the
current vertex from (to) which we wish to send flow to (from) the next
(previous) layer, then we always fill an arc with tail (head) 7 completely
if there is still enough flow left and then continue to fill the next arc as
much as possible.
Argue that, using the rule above, we can implement the algorithm to
run in O(n?) time. Hint: at least one vertex will be deleted between
two consecutive applications of Step 3. Furthermore, one can keep the
p-values effectively updated (explain how).
Illustrate the algorithm on the layered network in Figure 3.10.

Finding maximum (s, t)-flows by scaling. Let V = (V,A,l=0,u) bea
network with source s and sink t and let U denote the maximum capacity of
an arc in NV.

(a)
(b)

(c)

(—) Prove that the capacity of a minimum (s, t)-cut is at most U| A].
Let C be a constant and let x be a feasible (s, t)-flow in NV. Show that in
time O(|A]) one can find an augmenting path of capacity at least C, or
detect that no such path exists in N(x). Hint: consider the subnetwork
of N(x) containing only arcs whose capacity is at least C.
Consider the following algorithm:

Max-flow by scaling
1. U := max{uij : ij € A};
2. xij := 0 for every 17 € A;

3. Cia giles. UI.
4. while C > 1 do
5 while N(x) contains an augmenting path of capacity at least C

3.13 Exercises 163

do augment «x along P;
6. C= C/2
7. return x

Prove that the algorithm correctly determines a maximum flow in the
input network NV.

(d) Argue that every time Step 4 is performed the residual capacity of every
minimum (s,t)-cut is at most 2C|A|.

(e) Argue that the number of augmentations performed in Step 5 is at most
O(|A|) before Step 6 is executed again.

(f) Conclude that Max-flow by scaling can be implemented so that its
complexity becomes O(|A|? log U). Compare this complexity to that of
other flow algorithms in this chapter.

3.27. Show how to find a maximum (s, t)-flow in the network of Figure 3.24 using
(a) The Ford-Fulkerson method.
(b) Dinic’s algorithm.
(c) The preflow-push algorithm.
(d) The MKM-algorithm described in Exercise 3.25.
(e) The scaling algorithm described in Exercise 3.26.

Figure 3.24 A network with lower bounds and cost equal to zero on all arcs and
capacities as indicated on the arcs.

3.28. (+) Rounding a real-valued flow. Let NV = (V,A,l,u) be a network
with source s and sink t¢ and all data on the arcs non-negative integers (note
that some of the lower bounds may be non-zero). Suppose z is a real-valued
feasible flow in NV such that 2;; is a non-integer for at least one arc.
(a) Prove that there exists a feasible integer flow x’ in NV with the property

that |x;; — 2;;| < 1 for every arc ij € A.
(b) Suppose now that |z| is an integer. Prove that there exists an integer

feasible flow x” in N such that |z""| = |z|.
(c) Describe algorithms to find the flows z’,x"’ above. What is the best

complexity you can achieve?

3.29. Finding a feasible circulation. Turn the proof of Theorem 3.8.2 into a
polynomial algorithm which either finds a feasible circulation, or a proof that
none exists. What is the complexity of the algorithm?

3.30. Residual networks of networks with non-zero lower bounds. Show

how to modify the definition of x © z in order to obtain an analogue of

164

Seas le

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3. Flows in Networks

Theorem 3.4.2 for the case of networks where some lower bounds are non-

zero.

Show that a feasible circulation (if one exists) can always be found by just

one max flow calculation in a suitable network. Hint: transform the network

into an (s,t)-flow network with all lower bounds equal to zero.

(+) Flows with balance vectors within prescribed intervals. Let NV =

(V, Al, u) be a network where V = {1,2,...,n} and let a; <bi,7=1,2...,n

be integers. Prove that there exists a flow ¢ in N which satisfies

Src Ug NIfSA (3.40)

ai <b2(1) <b; Vi EV (3.41)

if and only if the following three conditions are satisfied:

Soa <0 (3.42)
ieV

yo bao (3.43)
ieV

u(X,X) > U(X, X) + max{a(X), —b(X)} VX CV, (3.44)

where a(X) = }0,.y di.
Hint: construct a network which has a feasible circulation if and only it (3.40)
and (3.41) holds. Then apply Theorem 3.8.2.

Submodularity of the capacity function for cuts. Let N = (V, A,l, u)

be a network with source s and sink t. Prove that, if ($,S) and (T,T) are
(s,t)-cuts, then

u(S,S) + u(T,T) > u(SAT, SAT) +u(SUT,SUT).

Hint: consider the contribution of each arc in the network to the four cuts.

Show that, if (S,S) and (T,7) are minimum (s,t)-cuts, then so are (SN

T, SOT) and (SUT,S UT). Hint: use Exercise 3.33.

(+) Finding special minimum cuts. Suppose that z is a maximum (s, t)-
flow in a network N = (V,A,l,u). Let

U = {i: there exists an (s,i)-path in NV(z)},

W ={j: there exists an (j,t)-path in V(zx)}.

Prove that (U,U) and (W, W) are minimum (s,t)-cuts. Then prove that for
every minimum (s,t)-cut (S,T) we have U C S and W CT.

(+) Let x be an (s, t)-flow in a network NV = (V, A,l,u). Explain how to find
an augmenting path of maximum capacity in polynomial time. Hint: use a
variation of Dijkstra’s algorithm.

(+) Augmenting along maximum capacity augmenting paths. Show
that, if we always augment along an augmenting path with the maximum
residual capacity, then the Ford-Fulkerson algorithm becomes a polynomial
algorithm (Edmonds and Karp [216]). Hint: show that the number of aug-
mentations is O(mlog U), where U is the maximum capacity of an arc.

3.38

3.39.

3.40.

3.41.

3.42.

3.43.

3.44.

3.45.

3.46.

3.13 Exercises 165

Converting a maximum preflow to a maximum (s, t)-flow. Let NV =
(V,A,l = 0,u) be a network with source s and sink t. A preflow z in N is
maximum if |b, (t)| equals the value of a maximum (s, t)-flow in NV.
(a) Let NV = (V,A,1 = 0,u) be a network with source s and sink ¢ and let y

be a maximum preflow in NV. Prove that there exists a maximum (s, t)-
flow xz in N with the property that xi; < yi; for every arc aj € A. Hint:
use flow decomposition.

(b) How fast can you convert a maximum preflow to a maximum (s, t)-flow?

(—) Prove Lemma 3.7.1.

(—) Prove Lemma 3.7.6.

Show that the complexity of Dinic’s algorithm for unit capacity networks

remains O(n3m) even if we allow the network to have 2-cycles. Hint: prove a
modified version of Lemma 3.7.3 and apply that as we applied Lemma 3.7.3
in the proof of Theorem 3.7.4.

Elimination of 2-cycles from simple networks. Suppose that NV =
(V,A,l = 0,u = 1) is a simple unit capacity network with source s, sink
t and that uvu is a 2-cycle in NV. Show that we may always delete one of the
arcs wv or vu without affecting the value of a maximum (s, t)-flow in NV.

Prove Theorem 3.7.7. Hint: see the proof of Theorem 3.7.4.

Show how to derive Theorem 3.8.4 from Lemma 3.2.2 and Theorem 3.8.2.

Scheduling jobs on identical machines. Let J be a set of jobs which are
to be processed on a set of identical machines (such as processors, airplanes,
trucks etc). Each job is processed by one machine. There is a fixed schedule
for the jobs, specifying that job 7 € J must start at time s; and finish at time
f;. Furthermore, there is a transition time t;; required to set up a machine
which has just performed job i to perform job 7 (e.g., jobs could be different
loads for trucks and t;; could be time to drive a truck from the position
of load 2 to that of load 7). The goal is to find a feasible schedule for the
jobs which requires as few machines as possible. Show how to formulate this
problem as a minimum value (s, t)-flow problem.

(+) Scheduling supervision of projects. This exercise deals with a prac-
tical problem concerning the assignment of students to various projects in
a course. All projects which are chosen by at least one student are to be
supervised by one or more qualified teachers. Each student is supervised by
one teacher only. There are n students, m different projects and ¢t possible
supervisors for the projects.
Let b;, 1 = 1,2,...,m, denote the maximum number of students who may
choose the same project (they work alone and hence need individual super-
vision). For each project i, 1 = 1,2,...,m, there is a subset A; C {1,...,t}
of the teachers who are capable of supervising the ith project. Finally each
teacher j7, 7 = 1,2,...,¢ has an upper limit of k; on the number of students
(s)he can supervise.
Every student must be assigned exactly one project. We also assume that
each student has ranked the projects from 1 to m according to the order of
preference. Namely, the project the student would like best is ranked one.
Denote the rank of project 7 by student 7 by rj;.

166

3.47.

3.48.

3.49.

3.50.

3. Flows in Networks

The goal is to find an assignment p(1), p(2),...,p(n) of students to projects

(that is student 7 is assigned project p(i)) which respects the demands above
and at the same time minimizes the sum)>”"_, rip(i).

(a) Show how to formulate the problem as a minimum cost flow problem.
(b) If we only wish to find a feasible assignment (i.e. one that does not violate

the demands above), then which is the fastest algorithm you can device?
(c) Which minimum cost flow algorithm among those in Section 3.10 will

give the fastest algorithm for the problem when formulated as in question
a)?

(d) oe p(1), p(2),..., p(n) be an optimal assignment of students to projects.
Suppose that before the actual supervision of the projects starts, some
supervisor j € {1,2,...,t} lowers his/her capacity for supervision from
k; to kj < kj.
Describe a fast algorithm which either proves that no feasible assignment
exists or changes the assignment p(1),p(2),...,p(n) to a new optimal
assignment p’(1), p’(2),...,p’(m) with respect to the new restrictions.

(e) Suppose now that the change in capacity only happens after the students
have started working on the projects. The goal now is to find a new
optimal and feasible solution or show that no feasible solution exists,
while at the same time rescheduling as few students as possible to new
projects (we assume that rescheduled students must start all over again).
Explain briefly how to solve this variant of the problem. Hint: devise
some measure of cost for rescheduling a student in a minimum cost flow
model.

‘

(—) Let NV = (V,A,l = 0,u) be a network with source s and sink t and let
N' = (V,A',l' = 0,u’,c’) be obtained from N by adding a new arc ts with
Uts = 00 and cs = —1 taking u;; = ui; for all ij € A and c,; = 0 for all
ij € A. Prove that there is a 1-1 correspondence between the minimum cost
circulations in NV’ and the maximum (s, t)-flows in NV.

Let NV = (V, A,l =0,u,b,c) be a network with some arcs of infinite capacity
and some arcs of negative cost.
(i) Show that there exists a finite optimal solution to the minimum cost

flow problem (finding a feasible flow in NV of minimum cost) if and only
if N has no cycle C of negative cost such that all arcs of C have infinite
capacity. Hint: study the difference between an arbitrary feasible solution
and some fixed solution of finite cost.

(ii) Let K be the sum of all finite capacities and those b-values that are pos-
itive. Show that, if there exists a finite optimal solution to the minimum
cost flow problem for A’, then there exists one for which no arc has flow
value more than K. Hint: use flow decomposition.

Eliminating negative cost arcs from minimum cost flow problems.
Suppose NV = (V,A,l = 0,u,b,c) contains an arc uv of negative cost, but
no cycle of infinite capacity and negative cost (see Exercise 3.48). Derive a
result similar to Lemma 3.2.1 which can be used to transform W into a new
network N+ in which all costs are non-negative and such that given any
feasible flow «* in NV+ we can obtain a feasible flow xz in N and find the
cost of x efficiently, given the cost of «*. Hint: reverse arcs of negative costs,
negate the costs of such arcs and update balance vectors.

Prove Theorem 3.10.6.

3.51.

3.56.

3.57.

3.58.

3.59.

3.60.

3.62.

3.63.

3.13 Exercises 167

Try to generalize the statement of Proposition 3.10.7 to the case when the
paths P, P’ do not necessarily have the same end vertices. Hint: consider the
network A/.¢ obtained as in Lemma 3.2.2.

. Show by an example that the cycle canceling algorithm may use 2Q(mUC)
augmentations before arriving at an optimal flow.

. (—) Show how to reduce the problem of finding a matching in a bipartite
graph B = (X,Y, £) which maximizes the number of edges incident vertices
in X to the problem of finding a maximum matching in a bipartite graph.

. (+) Prove that, if D is a k-regular semicomplete digraph on n vertices,
then D contains a spanning tournament T which is regular or almost regular
(\5+ (LT) — 6- (T)| < 1) depending on whether n is odd or even. Observe that
every regular tournament has an odd number of vertices (Bang-Jensen [47]).

. (+) Generalized matchings in undirected graphs. Let G = (V, E)
be an undirected graph. Recall that for any subset S C V we denote by
Ne(S) the set of vertices in V — S which have at least one edge to S. Prove
that every graph G either has a vertex disjoint collection of edges e1,..., ex
and odd cycles Ci,...,C, covering V, or a set S C V with |Ne(S)| < |S|
and S is independent. Derive an algorithm from your proof which either
finds the desired generalized matching, or an independent subset S such that
|N(S)| < |S|. Hint: use Theorem 3.8.2 on an appropriate network.

Prove the following theorem due to Konig [499]. Every regular bipartite graph
has a perfect matching.

(—) 1-regular digraphs. Prove that, if D is a 1-regular digraph, then D is
precisely a collection of vertex disjoint cycles C),...,C, for some k > 1.

Cycle factors of directed pseudographs. Prove that Proposition 3.11.6
also holds for directed pseudographs provided we consider a loop as a cycle.

(+) Calculating the path-cycle covering number of a digraph. Show
how to find in time O(,/nm) the minimum integer k such that a given digraph
D has a path-cycle factor with k paths. Hint: use minimum value flows in an
appropriately constructed simple network.

(+) Path-cycle covering numbers of extensions of digraphs. Let R be
a digraph on r vertices, and let 1; < wi,l2 < v2,...,l, < ur be 2r non-negative
integers. Let J, denote an independent set on p vertices. Show how to find
min{pcec(R[Ip,,--.2p,]) : li < pi < ui, ¢ = 1,...,7} im time O(n*). Hint:
generalize the network you used in Exercise 3.59 (Bang-Jensen and Gutin

(65, 365]).

. Let k € Z,. Show that a directed graph D = (V, A) has a k-path-cycle factor
if and only if |U,¢x N*(v)| > |X| —& and |U,ex N (v)| = |X| —.

Show how to decide in time O(,/nm) whether or not a given input digraph
D with special vertices x, y contains a 1-path-cycle factor such that the path
is a path between z and y.

Complete the proof of Theorem 3.11.11.

168

3.64.

3.66.

BON

3.68.

3.69.

3.70.

3.71.

3.72.

3.73.

3.74.

3.79.

3. Flows in Networks

Heaviest cycle subdigraphs in digraphs. Describe an O(n?) algorithm to

find, in a digraph with non-negative weights on the arcs, a cycle subdigraph

of maximum weight. Hint: use the same approach as in the proof of Theorem

Sl dahl.

. (+) Prove Theorem 3.11.13 directly from Theorem 3.8.2. Show that your

proof implies the existence of an algorithm, which given a k-strong digraph

D and asubset X C V(D), either finds a collection of disjoint cycles covering

all the vertices of X, or an independent set X ' C X of size more than k.

Find a minimum cost Chinese postman walk in the digraph of Figure 3.25.

Figure 3.25 A digraph with weights on the arcs.

Show how to formulate the following problem as a flow problem. Given
two sequences of non-negative integers a1, @2,...,@n and bi, b2,...,bn decide
whether or not there exists a directed multigraph D = ({v1, v2,.-., Un}, A)
such that d5(vi) = a; and dp(vi) = b; for each i = 1,2,...,n. Hint: use
Theorem 3.11.3 or the proof idea of this theorem.

Prove Proposition 3.11.8.

Prove Proposition 3.11.10. Hint: use the same network as in Exercise 3.59.

Every regular directed multigraph has a cycle factor. Prove this claim.

Show how to reduce the case when } 7", ai #))"'_, 6; to the case when the
equality holds for the transportation problem. Hint: introduce new plants or
retailers.

Prove Lemma 3.12.1.

Prove that Lemma 3.12.1 also holds when we consider the dual variables

a”, 8" which are updated as in (3.35).

(+) Show that by using appropriate data structures and by keeping labels
(used in previous searches for augmenting paths) until a new augmenting path
has been found (implying that the value of the current flow can be increased),
cne can implement the primal-dual algorithm for the transportation problem
so that it runs in time O(M(n+™m)’).

Solve the following assignment problem using the primal-dual method.

SHIM

3.78.

3.19:

3.80.

3.81.

3.13 Exercises 169

. Show that the buildup algorithm of Section 3.10 can be applied to solve the
assignment problem in time O(n?).

Show that if we update the dual variables according to (3.35) we still obtain
a feasible solution to (3.27) whose objective function value is strictly higher
than that of a, (.

The following table shows an instance of the transportation problem after
some iterations of the primal-dual method outlined in Section 3.12. Complete
the algorithm on this example.

Tree solution to a flow problem. Let N = (V,A,l = 0,u,b,c) be a
network with n vertices for which there exists a feasible flow and let D =
(V, A) be the underlying digraph of \. Prove that there exists a feasible flow
z in N such that the number of arcs on which 0 < xi; < wij is at most n—1.
We call such a feasible flow a tree solution. Hint: show that, if C is a cycle
in UG(D) where 0 < xi; < ui; for every arc on the cycle, then we can change
the current flow such that the resulting flow 2’ is either 0 or ui; for at least
one arc ij of C and no new arc pq with 0 < x, < upg is created.

Let NV = (V,A,l = 0,u,b,c) be a network with n vertices for which there
exists a feasible flow. Prove that there exists an optimal feasible flow which
is a tree solution.

Vertex potentials and flows. Let NV = (V,A,l = 0,u,b,c) be a network
and z a feasible flow in NV. Prove that xz is an optimal flow if and only if there
exists a function : V-+R such that cf; > 0 for every arc ij in N(x). Here
ci; = cij — 7(i) + 1(j) is the reduced cost function and the costs in N(z)
are with respect to c” instead of c. Hint: see Exercises 2.16-2.18.

170

3.82.

3.83.

3. Flows in Networks

Complementary slackness conditions for optimality of a flow. Let

N =(V,A,1=0,u,6,c) be a network and z a feasible flow in NV. Prove that
zx is an optimal flow if and only if there exists a function 7: V-+F such that

the following holds:

Ci >0 => «;=0 (3.45)

Ciy <1) Lij = Wij (3.46)

0 <a ate ee Be — i. (3.47)

Here cf; = ci; — m(t) + 7(j) as above. Hint: use Exercise 3.81.

(+) A primal-dual algorithm for minimum cost flows. Let NV =
(V, A,l = 0,u,c) be a network with source s and sink t for which the value
of a maximum (s,t)-flow is K > 0. Let x be an optimal (feasible) (s, t)-flow
of value k < K and let : V-+R be chosen such that cj; > 0 for every arc
ij in N(x) (see Exercise 3.81): Define Ao as those arcs ij of N(x) for which
we have cj; = 0 and let No be the subnetwork of N(x) induced by the arcs
of Ao. f

(a) Show that if y is a feasible (s,t)-flow in No of value p then 2’ =x Gy is
an optimal (s, t)-flow of value k+p in NV. Hint: verify that c7; > 0 holds
for every arc ij in N(z2’).

(b) Suppose y is a maximum (s, t)-flow in No, but 2’ = xz Gy has value less
than K. Let S denote the set of vertices which are reachable from s in
No(y). Let €, €1,€2 be defined as follows. Here we let €; = oo if there are
no arcs in the corresponding set, i = 1, 2:

€1 = min {c7,|i € S,j € S, ci; > 0 and zi; < wij, }

€2 = min {—ci,|i € S,j € S, ci, < 0 and zi; > 0}.

Let « = min{e1, €2}. Prove that € < oo.
(c) Now define 7’ as follows: m'(v) := m(v) + if v € S and x'(v) := m(v)

if v € S. Let No contain those arcs of N(z') for which we have cf, =o
and let S’ denote the set of vertices which are reachable from s in Nj.
Show that S is a proper subset of S’ and that gee > 0 holds for all arcs
in N(x’). Hint: use Exercise 3.14.

(d) If t ¢ S’, then we can change 7’ as above (based on the set S’ rather
than S). Conclude that after at most n — 1 such updates of the vector
x’, the current network Nj contains an (s,t)-path.

(e) Use the observations above to design an algorithm that finds a minimum
cost (s,t)-flow of value K in N by solving a sequence of maximum flow
problems. What is the complexity of this algorithm?

4. Classes of Digraphs

In this chapter we introduce several classes of digraphs. We study these,

along with the classes of digraphs defined already in Chapter 1, with respect

to their characterization, recognition and decomposition. We also consider

some basic properties of these classes. Further properties of the classes are

studied in the following chapters of this book.

We start this chapter by introducing Depth-First Search (DFS), an im-
portant technique in algorithms on graphs. This technique is used in this

chapter and some other chapters to design fast algorithms. In particular,

DFS is used in Section 4.2, where we describe a fast algorithm to find an

acyclic ordering in an acyclic digraph. In Section 4.3, we introduce and study

the transitive closure and a transitive reduction of a digraph. We use these

notions in Section 4.7. A linear time algorithm for finding strong components

of a digraph based on DFS is given in Section 4.4.

Several characterizations and a recognition algorithm for line digraphs are

given in Section 4.5. We investigate basic properties of de Bruijn and Kautz

digraphs and their generalizations in Section 4.6. These digraphs are extreme

or almost extreme with respect to their diameter and vertex-strong connectiv-

ity. Series-parallel digraphs are introduced and studied in Section 4.7. These

digraphs are of interest due to various applications such as scheduling. In the

study of series-parallel digraphs we use notions and results of Sections 4.3

and 4.5.

An interesting generalization of transitive digraphs, the class of quasi-

transitive digraphs, is considered in Section 4.8. The path-merging property

of digraphs which is quite important for investigation of some classes of di-

graphs including tournaments is introduced and studied in Section 4.9. Two

classes of path-mergeable digraphs, locally in-semicomplete and locally out-

semicomplete digraphs, both generalizing the class of tournaments, are de-
fined and investigated with respect to their basic properties in Section 4.10.

The intersection of these two classes forms the class of locally semicomplete

digraphs, which are studied in Section 4.11. There we give a very useful clas-

sification of locally semicomplete digraphs, which is applied in several proofs

in other chapters. A characterization of a special subclass of locally semicom-

plete digraphs, called round digraphs, is also proved.

(2 4. Classes of Digraphs

Three classes of totally decomposable digraphs forming important gener-

alizations of quasi-transitive digraphs as well as some other classes of digraphs

are studied in the above-mentioned sections. We investigate recognition of

these three classes in Section 4.12. Some properties of intersection digraphs

are given in Section 4.13. Planar digraphs are discussed in Section 4.14. The

last section is devoted to an application of digraphs to solving systems of

linear equations.

4.1 Depth-First Search

In this section we will introduce a simple, yet very important, technique in

algorithmic graph theory called depth-first search. While depth-first search

(DFS) has certain similarities with BFS (see Section 2.3.1), DFS and BFS
are quite different procedures, each with its own features.

Let D = (V, A) be a digraph. In DFS, we start from an arbitrary vertex
of D. At every stage of DFS, we visit some vertex xz of D. If x has an
unvisited out-neighbour y, we visit the vertex y! . We call the arc ry a tree
arc. If x has no unvisited out-neighbour, we call « explored and return to
the predecessor pred(x) of x (the vertex from which we have moved to 2).
If x does not have a predecessor, we find an unvisited vertex to ‘restart’ the
above procedure. If such a vertex does not exist, we stop.

In our formal description of DFS, each vertex x of D gets two time-stamps:
tvisit(r) once z is visited and texpl(x) once z is declared explored.

DFS
Input: A digraph D = (V, A).
Output: pred(v), tvisit(v) and texpl(v) for every v € V.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. set, time := 0.
3. For each vertex v € V do: if tvisit(v) = 0 then perform DFS-PROC(v).

DFS-PROC(v):

1. Set time := time + 1, tvisit(v) := time.
2. For each u € N*(v) do: if tvisit(u) = 0 then pred(u) := v and perform

DFS-PROC(u).
3. Set-time := time + 1, texpl(v) := time.

Clearly, the main body of the algorithm takes O(n) time. The total time
for executing the different calls of the procedure DFS-PROC is O(m) (as
Yecv 4* (x) = m by Proposition 1.2.1). As a result, the time complexity of
DFS is O(n +m).

‘If has more than one unvisited out-neighbour, we choose y as an arbitrary
unvisited out-neighbour.

4.1 Depth-First Search 173

Unlike BFS, in the end of DFS, the tree arcs may form a non-connected
spanning subdigraph F' of D (recall that we perform BFS from a prescribed
vertex). The arc set of F' is {(pred(v),v) : v € V, pred(v) # nil}. Since each
component of UG(F) is a tree, F is a forest. We call F a DFS forest: a
tree in F' is a DFS tree; the root of a DFS tree is some vertex v used in
Step 3 of the main body of DFS to initiate DFS-PROC. Clearly, the root r
of a DFS tree T' is the only vertex of T whose in-degree is zero. According to
the above description of DFS every vertex in T can be reached from r by a
path (hence T is an out-branching rooted at r in the subdigraph induced by
V(T)). We say that a vertex z in T is a descendant of another vertex y in
T (denoted by x > y) if y lies on the (r,x)-path in T. Note that in general
there may be many different DFS forests for a given digraph D.

It is convenient to classify the non-tree arcs of a digraph D = (V, <A)
with respect to a given DFS forest of D. If we visit a vertex x and consider

an already visited out-neighbour y of x, then the following possibilities may
occur.

1. The vertex y is explored, i.e., texpl(y) # 0. This means that x and y

belong to different DFS trees. In this case, the arc zy is a cross arc.

2. The vertex y is not explored. If x > y then zy is a backward arc. If

y > «x then zy is a forward arc. If none of the above two variants occurs,

zy is (again) a cross arc.

We illustrate the DFS algorithm and the above classification of arcs in

Figure 4.1. The tree arcs are in bold. The non-tree arcs are labeled B,C or

F depending on whether they are backward, cross, or forward arcs. Every

vertex u is time-stamped by tvisit(w)/texpl(u) if one or both of them have
been changed from the initial value of zero.

Observe that, for every vertex uv € V, we have tvisit(v) < texpl(v). There
is no pair u, v of vertices such that tvisit(u) = tvisit(v) or tvisit(u) = texpl(v)
or texpl(u) = texpl(v) due to the fact that before assigning any time to

tvisit(...) or texpl(...) the value of time is increased. We consider some
additional simple properties of DFS. We denote the interval from time t to

time t' > t by [t,t’] and write J C I’ if the interval J is contained in the
interval I’.

Proposition 4.1.1 Let D = (V,A) and let the numbers tvisit(v), texpl(v),
v € V, be calculated using DFS. For every pair of vertices u and v, one of

the assertions below holds:

(1) The intervals [tvisit(u), texpl(u)] and [tvisit(v), texpl(v)] are disjoint;
(2) [tvisit(u), texpl(u)] C [tvisit(v), texpl(v)];
(3) [tvisit(v), texpl(v)] C [tvisit(u), texpl(u)].

Proof: Without loss of generality, we may assume that tvisit(u) < tvisit(v).
If texpl(u) < tvisit(v), then the first assertion is valid. So, assume that

174 4. Classes of Digraphs

: : GN DS ay SD

ea Pre

q qa

C 4/3 GES. B®
x x y s

(a) tine aad (b) time = 4

(e) time = 14

Figure 4.1 Some steps of DFS on a digraph starting from the vertex v.

texpl(u) > tvisit(v). This means that v was visited when wu has been al-
ready visited but u was not explored yet. Thus, there is a directed path from

u to v in the DFS forest, implying that v > u. Since u cannot become ex-

plored when v is still unexplored, texpl(v) < texpl(u). This implies the third

assertion. O

This proposition implies immediately the following.

Corollary 4.1.2 For a pair x,y of distinct vertices of D, we have y > x if

and only if tvisit(x) < tvisit(y) < texpl(y) < texpl(z). 0

Proposition 4.1.3 Let F be a DFS forest of a digraph D = (V, A) and let

x, y be vertices in the same DFS tree T of F. Then y > = if and only if,

at the time tvisit(x), the vertex y can be reached from x along a path all of
whose internal vertices are unvisited.

Proof: Assume that y > 2. Let z be an internal vertex of the (zx, y)-path in
T’. Thus, z > x. By Corollary 4.1.2, tvisit(x) < tvisit(z). Hence, z is unvisited
at time tvisit(z).

Suppose that y is reachable from z along a path P of unvisited vertices
at time tvisit(r), but y 4 «. We may assume that z = yp (the predecessor
of y on P) is a descendant of x in T, that is, z > x holds. By Corollary 4.1.2,
texpl(z) < texpl(x). Since y is an out-neighbour of z, y is visited before z is

4.2 Acyclic Orderings of the Vertices in Acyclic Digraphs 175

explored. Hence, tvisit(y) < texpl(z). Clearly, tvisit(2) < tvisit(y). Therefore,
tvisit(z) < tvisit(y) < texpl(x). By Proposition 4.1.1, it means that the
interval [tvisit(y),texpl(y)] is contained in the interval [tvisit(x), texpl(z)].
By Corollary 4.1.2, we conclude that y > x; a contradiction. O

4.2 Acyclic Orderings of the Vertices in Acyclic

Digraphs

Acyclic digraphs play a very important role in both theory and applications

of digraphs (the reader will see this fact in this and the following chapters

of the book). Some basic properties of acyclic digraphs have been studied

in Section 1.4 where we showed that every acyclic digraph D has an acyclic

ordering of the vertices (Proposition 1.4.3). The purpose of this subsection is
to show how to find an acyclic ordering fast?.

Let D be an acyclic digraph and let vj,v2,...,Un be an ordering of the

vertices in D. We recall that this ordering is acyclic if the existence of an arc

u,v; in D implies 1 < 7. By Proposition 1.4.3 every acyclic digraph has an

acyclic ordering of its vertices. Now we demonstrate that using DFS one can
find an acyclic ordering of the vertices of D in (optimal) linear time.

Below we assume that the input to the DFS algorithm is an acyclic digraph

D = (V,A). In the formal description of DFS let us add the following: 7 :=
n+1 in the line 2 of the main body of DFS and i := 7 —1, v; := v in the last

line of DFS-PROC. We obtain the following algorithm which we denote by

DFSA):

DFSA(D)
Input: A digraph D = (V, A).
Output: An acyclic ordering v1,...,Un of D.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. set times=0,2:=n+1.

3. For each vertex v € V do: if tvisit(v) = 0 then perform DFSA-PROC(v).

DFSA-PROC(v)

1. Set time := time + 1, tvisit(v) := time.
2. For each u € Nt(v) do: if tvisit(u) = 0 then pred(u) := v and perform

DFSA-PROC(u).
3. Set time := time + 1, texpl(v) := time, i := 1-1, vj := v.

? Notice that in the majority of literature an acyclic ordering is called a topological
sorting. We feel that the name acyclic ordering is more appropriate, since no
topology is involved. Knuth [481] was the first to give a linear time algorithm for
topological sorting.

176 4. Classes of Digraphs

Theorem 4.2.1 The algorithm DFSA correctly determines an acyclic order-

ing of any acyclic digraph in time O(n +m).

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to

show that the ordering v1, v2,...,Un is acyclic. Observe that according to our

algorithm

texpl(v;) > texpl(v;) if and only if 2 < 9. (4.1)

Assume that D has an arc vgv, such that k > s. Hence, texpl(v;) > texpl(v,).

The arc vzvs is not a cross arc, because if it were, then by Proposition 4.1.1

and Corollary 4.1.2, the intervals for vz and vs would not intersect, i.e., vz

would be visited and explored before v, would be visited; this and (4.1) make

the existence of v,gv, impossible. The arc vgvu, is not a forward arc, because if

it were, texpl(v,) would be smaller than texpl(v,). Therefore, v,gv; must be

a backward arc, i.e., uy > vs. Thus, there is a (vs, v,)-path in D. This path

and the arc vgv, form a cycle, a contradiction. a)

Figure 4.2 illustrates the result of applying DFSA to an acyclic digraph.

The resulting acyclic ordering is z,w,u, y, Z, v.

In Section 4.4 we apply DFSA to an arbitrary not necessarily acyclic

digraph and see that the ordering v1, v2,...,Un obtained by DFSA is very

useful to determine the strong components of a digraph.

NOW SD Ae Sie C8

y C5/6 > TCA. 10/1 w

Figure 4.2 The result of applying DFSA to an acyclic digraph

4.3 Transitive Digraphs, Transitive Closures and
Reductions |

Recall that a digraph D is transitive if, for every pair zy and yz of arcs in D
with x # z, the arc zz is also in D. Transitive digraphs form the underlying
graph-theoretical model in a number of applications. For example, transitive

4.3 Transitive Digraphs, Transitive Closures and Reductions ae

oriented graphs correspond very naturally to partial orders (see Section 5.3

for some terminology on partial orders, the correspondence between transitive

oriented graphs and partial orders and some basic results). The aim of this

section is to give a brief overview of some properties of transitive digraphs as

well as transitive closures and reductions of digraphs.

Clearly, a strong digraph D is transitive if and only if D is complete®. We

have the following simple characterization of transitive digraphs; its proof is

left as Exercise 4.2.

Proposition 4.3.1 Let D be a digraph with an acyclic ordering D,,Do2,...,

Dy, of its strong components. The digraph D is transitive if and only if each

of D; ts complete and the digraph H obtained from D by contraction of

D,,...,Dp followed by deletion of multiple arcs is a transitive oriented graph.

fmother words Die" | Di 3>7 04, 5\: Oo

The transitive closure TC(D) of a digraph D is a digraph with
V(TC(D)) = V(D) and, for distinct vertices u,v, the arc uv € A(TC(D))
if and only if D has a (u,v)-path. Clearly, if D is strong then TC(D) is
a complete digraph. The uniqueness of the transitive closure of an arbitrary

digraph is obvious. To compute the transitive closure of a digraph one can ob-

viously apply the Floyd-Warshall algorithm in Chapter 2. To obtain a faster

algorithm for the problem one can use the fact discovered by a number of re-

searchers (see, e.g., the paper [238] by Fisher and Meyer, or [286] by Furman)

that the transitive closure problem and the matrix multiplication problem

are closely related: there exists an O(n*)-algorithm, with a > 2, to compute

the transitive closure of a digraph of order n if and only if the product of

two boolean n x n matrices can be computed in O(n) time. Coppersmith
and Winograd [168] showed that there exists an O(n?:3"°)-algorithm for the
matrix multiplication. Goralcikova and Koubek [333] designed an O(nmreqa)-

algorithm to find the transitive closure of an acyclic digraph D with n vertices

and Mreq arcs in the transitive reduction of D (the notion of transitive re-

duction is introduced below). This algorithm was also studied and improved

by Mehlhorn [561] and Simon [672].
An arc uv in a digraph D is redundant if there is a (u,v)-path in D

which does not contain the arc uv. A transitive reduction of a digraph

D is a spanning subdigraph H of D with no redundant arc such that the

transitive closures of D and H coincide. Not every digraph D has a unique

transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each

of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive

reduction of an acyclic digraph. The intersection of digraphs D,,..., Dx

with the same vertex set V is the digraph H with vertex set V and arc set

3 By the definition of a transitive digraph, a 2-cycle zyx does not force a loop at
xz and y.

178 4. Classes of Digraphs

A(D,) NM... A(Dx). Similarly one can define the union of digraphs with

the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning

subdigraphs L of D for which TC(L) = TC(D).

Theorem 4.3.2 /5] For an acyclic digraph D, there exists a unique digraph

D!' with the property that TC(D') = TC(D) and every proper subdigraph

H of D' satisfies TC(H) # TC(D'). The digraph D' is the intersection of

digraphs in S.

The proof of this theorem, which is due to Aho, Garey and Ullman, follows

from Lemmas 4.3.3 and 4.3.4.

Lemma 4.3.3 Let D and H be a pair of acyclic digraphs on the same vertex

set such that TC(D) = TC(H) and A(D) — A(H) # 9. Then, for every
e € A(D) — A(H), we have TC(D —e) =TC(D).

Proof: Let e = zy € A(D) — A(H). Since e ¢ A(H), H must have an (z, y)-

path passing through some other vertex, say z. Hence, D has an (2, z)-path

P,, and a (z,y)-path P_,. If P,, contains e, then D has a (y,z)-path. The

existence of this path contradicts the existence of P,, and the hypothesis that

D is acyclic. Similarly, one can show that P,, does not contain e. Therefore,

D —€¢ has an (2, y)-path. Hence, TC(D — e) = TC(D). Oo

Lemma 4.3.4 Let D be an acyclic digraph. Then the set S(D) is closed
under union and intersection.

Proof: Let G,H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), GUH is a subdigraph of TC(D). The transitivity of TC(D) now
implies that TC(G U H) is a subdigraph of TC(D). Since G is a subdigraph
of GU H, we have TC(D) (= TC(G)) is a subdigraph of TC(G U H). Thus,
we conclude that TC(GU H) = TC(D) and GUH € S(D).

Now let €1,...,€p be the arcs of G— A(GN H). By repeated application
of Lemma 4.3.3, we obtain

TC(G —-e, Goer &p) = ICKG).

This means that TC(GN H) = TC(G) =TC(D), henceG@NHES(D). O

Aho, Garey and Ullman [5] proved that there exists an O(n*)-algorithm,
with a > 2, to compute the transitive closure of an arbitrary digraph D of
order n if and only if a transitive reduction of D can be constructed in time
O(n’). Therefore, we have

Proposition 4.3.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n?3"°). Oo

4.4 Strong Digraphs 179

Simon [673] described an O(n+m)-algorithm to find a transitive reduction
of a strong digraph D. The algorithm uses DFS and two digraph transforma-

tions preserving TC'(D). This means that to have a linear time algorithm for

finding transitive reductions of digraphs from a certain class D, it suffices to

design a linear time algorithm for the transitive reduction of strong compo-

nent digraphs of digraphs in D. (Recall that the strong component digraph

SC(D) of a digraph D is obtained by contracting every strong component

of D to a vertex followed by deletion of parallel arcs.) Such algorithms are
considered, e.g., in the paper [385] by Habib, Morvan and Rampon.

While Simon’s linear time algorithm in [673] finds a minimal subdigraph

D' of a strong digraph D such that TC(D’) = TC(D), no polynomial algo-
rithm is known to find a subdigraph D” of a strong digraph D with minimum
number of arcs such that TC(D") = TC(D). This is not surprising due to the
fact that the corresponding optimization problem is ’P-hard. Indeed, the

problem to verify whether a strong digraph D of order n has a subdigraph

D" of size n such that TC(D") = TC(D) is equivalent to the hamiltonian
cycle problem, which is P-complete by Theorem 5.0.1.

A subdigraph D” of a digraph D with minimum number of arcs such

that TC(D") = TC(D) is sometimes called a minimum equivalent sub-
digraph of D. By the above discussion, we see that a minimum equivalent

subdigraph of an acyclic digraph is unique and can be found in polynomial

time. This means that the main difficulty of finding a minimum equivalent

subdigraph of an arbitrary digraph D lies in finding such subdigraphs for

the strong components of D. This issue is addressed in Section 6.11 for some

classes of digraphs studied in this chapter. For the classes in Section 6.11,

the minimum equivalent subdigraph problem is polynomial time solvable.

4.4 Strong Digraphs

In many problems on digraphs it suffices to consider the case of strong di-

graphs. For example, if we wish to find a cycle through a given vertex z in a

digraph D, we need only consider the strong component of D containing z.

Furthermore, certain properties, such as being hamiltonian, imply that the

digraph in question must be strong. The aim of this section is to develop a

fast algorithm for finding strong components in a digraph and in particular

to recognize strong digraphs.
Tarjan [688] was the first to obtain an O(n + m)-algorithm to compute

the strong components of a digraph. We start this section by presenting this

algorithm, then we discuss its complexity and prove its correctness. Our pre-

sentation is adapted from the book [169] by Cormen, Leiserson, and Rivest.

180 4. Classes of Digraphs

SCA(D)
Input: A digraph D.

Output: The vertex sets of strong components of D.

1. Call DFSA(D) to compute the ‘acyclic’ ordering v1, V2,---,Un-

2. Compute the converse D’ of D.

3. Call DFS(D’), but in the main loop of DFS consider the vertices accord-

ing to the ordering v1, v2,..-,Un. In the process of DFS(D’) output the

vertices of each DFS tree as the vertices of a strong component of D.

Figure 4.3 illustrates the strong component algorithm (SCA). Clearly, the

complexity of SCA is O(n+m). It is more difficult to establish the correctness

of SCA. Several lemmas are needed.

(a) (b)

Figure 4.3 (a) A digraph D; the order of vertices found by DFSA is shown. (b)
The converse D’ of D; the bold arcs are the arcs of a DFS forest for D’.

The proof of our first lemma is simple and left as an exercise, Exercise

4.3.

Lemma 4.4.1 If a pair x,y of vertices belongs to the same strong component

S of a digraph D, then the vertices of every path between x and y are in S.

oO

Lemma 4.4.2 In any execution of DFS on a digraph, ail vertices of the same

strong component are placed in the same DFS tree.

Proof: Let S be a strong component of a digraph D, let r be the first vertex

of S visited by DFS and let x be another vertex of S. Consider the time

tvisit(r) of DFS. By Lemma 4.4.1, all vertices on an (r,z)-path belong to S
and apart from r are unvisited. Thus, by Proposition 4.1.3, x belongs to the

same DFS tree as r. Oo

In the rest of this section tvisit(u) and texpl(u) are the time-stamps cal-

culated during the first step of SCA (recall that these depends on the order in

which the DFS routine visits the vertices). The forefather ¢(u) of a vertex
u is the vertex w reachable from u such that texpl(w) is maximum.

4.4 Strong Digraphs 181

Since u is reachable from itself, we have

texpl(u) < texpl((u)). (4.2)

Clearly, by the definition of forefather

if v is reachable from wu, then texpl(¢(v)) < texpl(¢(u)). (4.3)

The next lemma gives a justification for the term ‘forefather’.

Lemma 4.4.3 In any execution DFS on a digraph D, every verter u € V(D)

is a descendant of its forefather ¢(u).

Proof: If ¢(u) = u, this lemma is trivially true. Thus, assume that ¢(u) 4 u

and consider the time tvisit(u) of DFS for D. Look at the status of ¢(u). The
vertex ¢(u) cannot be already explored as that would mean texpl(¢(u)) <
texpl(u), which is impossible. If ¢(u) is already visited but not explored, then,
by Corollary 4.1.2, u is a descendant of ¢(w) and the lemma is proved.

It remains to show that ¢(u) has been indeed visited before time tvisit(w).

Assume it is not true and consider a (u, ¢(u))-path P. If every vertex of P

except for u has not been visited yet (at the time tvisit(u)), then by Propo-

sition 4.1.3 ¢(u) is a descendant of u, i.e. texpl(d(u)) < texpl(u), which is

impossible. Suppose now that there is a vertex x in P apart from wu which

has been visited. Assume that z is the last such vertex in P (going from u

towards ¢(u)). Clearly, has not been explored yet (as x dominates an unvis-
ited vertex). By Proposition 4.1.3 applied to P[z, 6(u)], @(u) is a descendant
of x. Thus, texpl(¢(u)) < texpl(z), which contradicts the definition of ¢(u).

Thus, ¢(u) has been indeed visited before time tvisit(u), which completes
the proof of this lemma. O

Lemma 4.4.4 For every application of DFS to a digraph D and for every

u € V(D), the vertices u and ¢$(u) belong to the same strong component of

DD.

Proof: There is a (u, ¢(u))-path by the definition of forefather. The existence
of a path from ¢(u) to u follows from Lemma 4.4.3. O

Now we show a stronger version of Lemma 4.4.4.

Lemma 4.4.5 For every application of DFS to a digraph D and for every

pair u,v € V(D), the vertices u and v belong to the same strong component

of D if and only if ¢(u) = g(v).

Proof: If u and v belong to the same strong component of D, then every

vertex reachable from one of them is reachable from the other. Hence, ¢(u) =

¢(v). By Lemma 4.4.4, u and v belong to the same strong components as their

forefathers. Thus, ¢(u) = (uv) implies that u and v are in the same strong
component of D. Oo

182 4. Classes of Digraphs

Theorem 4.4.6 The algorithm SCA correctly finds the strong components

of a digraph D.

Proof: We prove by induction on the number of DFS trees found in the

execution of DFS on D’ that the vertices of each of these trees induce a

strong component of D. Each step of the inductive argument proves that

the vertices of a DFS tree formed in D’ induce a strong component of D

provided the vertices of each of the previously formed DFS trees induce a

strong component of D. The basis for induction is trivial, since the first tree

obtained has no previous trees, and hence the assumption holds trivially.

Recall that by the description of SCA, in the second application of DFS, we

always start a new DFS tree from the vertex which currently has the highest

value of texp] among vertices not yet in the DFS forest under construction.

Consider a DFS tree T with root r produced in DFS(D’). By the defini-
tion of a forefather ¢(r) = r. Indeed, r is reachable from itself and has the
maximum texpl among the vertices reachable from r. Let S(r) = {v € V(D) :
o(v) =r}. We now prove that

V(T) = S(r). (4.4)

By Lemmas 4.4.2 and 4.4.5, every vertex in S(r) is in the same DFS tree.
Since r € S(r) and r is the root of T, every vertex in S(r) belongs to T.
To complete the proof of (4.4), it remains to show that, if u € V(T), then
u € S(r), namely, if texpl(¢(x)) #4 texpl(r), then z is not placed in T. Suppose
that texpl(¢(z)) # texpl(r) for some vertex x. By induction hypothesis, we
may assume that texpl(¢(x)) < texpl(r), since otherwise x is placed in the
tree with root ¢(x) # r. If x was placed in T, then r would be reachable from
x. By (4.3) and ¢(r) =r, this would mean texpl(x) > texpl(¢(r)) = texpl(r),
a contradiction. O

4.5 Line Digraphs

For a directed pseudograph D, the line digraph Q = L(D) has vertex set
V(Q) = A(D) and arc set

A(Q) = {ab: a,b € V(Q), the head of a coincides with the tail of b}.

A directed pseudograph H is a line digraph if there is a directed pseudo-
graph D such that H = L(D). See Figure 4.4. Clearly, line digraphs do not
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex
a € A(D) if and only if a is a loop in D.

The following theorem provides a number of equivalent characterizations
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor-
man [403], (iii) to Heuchenne [425], and (iv) and (v) to Richards [634]; con-
ditions (ii) and (iii) have each been rediscovered several times, see the survey

4.5 Line Digraphs 183

3 23 34

1 2 N
4 12 * 45

5 25 54

H Q

Figure 4.4 A digraph H and its line digraph Q = L(A).

[419] by Beineke and Hemminger. The proof presented here is adapted from
[419]. For an n x n-matrix M = [mx], a row i is orthogonal to a row j if
yo e-1 MikMjx = 0. One can give a similar definition of orthogonal columns.

Theorem 4.5.1 Let D be a directed pseudograph with vertex set {1,2,...,n}

and with no parallel arcs and let M = [mj,,;] be its adjacency matriz (i.e., the

nx n-matriz such that mj; = 1, ifij € A(D), and mij =0, otherwise). Then

the following assertions are equivalent:

(i) D is a line digraph;

(ii) there exist two partitions {A;}ier and {B;}ier of V(D) such that A(D) =

Uier A; x B;*;
(iii) if vw,uw and uz are arcs of D, then so is vz;

(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) < (ii), (ii)
Piya (ti er (iV), (iv) <> (vy), (iv) = (il),

(i) > (ii). Let D = L(A). For each v; € V(H), let A; and B; be the sets
of in-coming and out-going arcs at v;, respectively. Then the arc set of the

subdigraph of D induced by A; U B; equals A; x B;. If ab € A(D), then there

is an i such that a = v;v; and b = v;vz. Hence, ab € A; x B;. The result

follows.

(ii) => (i). Let Q be the directed pseudograph with ordered pairs (A;, B;)
as vertices, and with |A; B;| arcs from (A;, B;) to (Aj, B;) for each 7 and
j (including i = j). Let o4; be a bijection from A; N B; to this set of arcs
(from (A;,B;) to (A;,B,;)) of Q. Then the function o defined on V(D) by
taking o to be oj; on A; MB; is a well-defined function of V(D) into V(L(Q)),
since {A; Bi}i,j;er is a partition of V(D). Moreover, a is a bijection since

every oj; is a bijection. Furthermore, it is not difficult to see that o is an
isomorphism from D to L(Q) (this is left as Exercise 4.4).

* Recall that X x Y = {(z,y): 2 € X,yeEY}.

184 4. Classes of Digraphs

(ii) => (iii). If vw, uw and uz are arcs of D, then there exist 7,7 such that

{u,v} C A; and {w,z} C B;. Hence, (u,z) € A; x B; and uz € D.

(iii) > (iv). Assume that (iv) does no hold. This means that some rows,

say i and j, are neither identical nor orthogonal. Then there exist k,h such

that mix = Mjx = 1 and min = 1,mj, = 0 (or vice versa). Hence, ik, 7k, ih

are in A(D) but jh is not. This contradicts (iii).

(iv) = (v). Both (iv) and (v) are equivalent to the statement:

for all i,7,h,k, if min = Mig = mzx = 1, then mj, = 1.

(iv) = (ii). For each 7 and j with m,; = 1, let Ajj = {h: maj = 1} and
Bij = {k: mi = 1}. Then, by (iv), Aij is the set of vertices in D whose

row vectors in M are identical to the ith row vector, whereas B;; is the set
of vertices in D whose column vectors in M are identical to the jth column

vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, Ai; x By; C A(D), and moreover A(D) = U{Ai; x Bij : mij = 1}. By
the orthogonality condition, A;; and Ap, are either equal or disjoint, as are

Bj; and Bnx. For zero row vector 7 in M, let A;; be the set of vertices whose

row vector in M is the zero vector, and let Bj; = 0. Doing the same with the
zero column vectors of M completes the partition as in (ii). Oo

The characterizations (ii)-(v) all imply polynomial algorithms to verify

whether a given directed pseudograph is a line digraph. This fact is obvious

regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an

algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-

ple) just after Proposition 4.5.3. The criterion (iii) also provides the following

characterization of line digraphs in terms of forbidden induced subdigraphs.

Its proof is left as Exercise 4.5.

Corollary 4.5.2 A directed pseudograph D is a line digraph if and only D

does not contain, as an induced subdigraph, any directed pseudograph that can

be obtained from one of the directed pseudographs in Figure 4.5 (where dotted

arcs are missing) by adding zero or more arcs (other than the dotted ones).

Observe that the digraph of order 4 in Figure 4.5 corresponds to the

case of distinct vertices in Part (iii) of Theorem 4.5.1, and the two directed
pseudographs of order 2 correspond to the cases tz =u #vu=wandu=wF

Uv = @, respectively.

Clearly, Theorem 4.5.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[419]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [419] and
Prisner [614].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete

4.5 Line Digraphs 185

Figure 4.5 Forbidden directed pseudographs.

digraphs, in particular, see e.g., the papers [207] by Du, Lyuu and Hsu and

[236] by Fiol, Yebra and Alegre. In Section 4.7, we need the following charac-

terization, due to Harary and Norman, of the line digraphs of acyclic directed

multigraphs. It is a specialization of Parts (i) and (ii) of Theorem 4.5.1. The
proof is left as (an easy) Exercise 4.6.

Proposition 4.5.3 [403] A digraph D is the line digraph of an acyclic di-

rected multigraph if and only if D is acyclic and there exist two partitions

{Aj}ier and {Bi}ier of V(D) such that A(D) = Uje, A; x B;. Oo

We will now show how Proposition 4.5.3 can be used to recognize very

effectively whether a given acyclic digraph R is the line digraph of another

acyclic directed multigraph H, i.e., R = L(H). The two procedures, which

we construct and illustrate by Figure 4.8 can actually be used to recognize

and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 4.5.1(i) and (ii)).

We first use Proposition 4.5.3 to check whether H above exists. The follow-

ing procedure Check-H can be applied. Initially, all arcs and vertices of R are

not marked. At every iteration, we choose an arc uv in R, which is not marked

yet, and mark all vertices in N*(u) by ‘B’, all vertices in N~(v) by ‘A’ and all
arcs in (N~(v), N*(u))R by ‘C’. If (N~(v), NT(u))r 4 N7(v) x N*(u) or if
we mark a certain vertex or arc twice (starting from another arc u'v') by the
same symbol, then this procedure stops as there is no H such that L(H) = R.

(We call these conditions obstructions.) If this procedure is performed to

the end (i.e. every vertex and arc received a mark), then such H exists. It is

186 4. Classes of Digraphs

not difficult to see, using Proposition 4.5.3, that Check-H correctly verifies

whether H exists or not.

To illustrate Check-H, consider the digraph Ro of Figure 4.8(a). Suppose

that we choose the arc ab first. Then ab is marked, at the first iteration,

together with the arcs af and ag. The vertex a receives ‘A’, the vertices

b, f,g get ‘B’. Suppose that fi is chosen at the second iteration. Then the

arcs fh, fi,gh,gi are all marked at this iteration. The vertices f,g receive

‘A’, the vertices h,i ‘B’. Suppose that bc is chosen at the third iteration.

We see that this arc is the only arc marked at this iteration. The vertex b

receives ‘A’, the vertex c ‘B’. Finally, say, ce is chosen. Then both cd and ce

are marked. The vertex c gets ‘A’, the vertices d,e receive ‘B’. Thus, all arcs

became marked with no obstruction happened. This means that there exists

a digraph Ho such that Hp = L(Ro).

Suppose now that H does exist. The following procedure Build-H con-

structs such a directed multigraph H. By Proposition 4.5.3, if H exists,

then all arcs of R can be partitioned into arc sets of bipartite tournaments

with partite sets A; and B; and arc sets A; x B;. Let us denote these di-

graphs by T),...,7%. (They can be computed by Check-H if we mark every

(N~(v), N*(u))p not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H

as follows. The vertex set of H is {to,t1,...,tk, tii}. The arcs of H are

obtained by the following procedure. For each vertex v of R, we append one

arc a, to H according to the rules below:

(a) If dr(v) = 0, then a, := (to, te+1);
(b) If dR(v) > 0,dz(v) = 0, then a, := (to,t;), where i is the index of T;

such that v € Aj;

(c) If df(v) = 0,dp(v) > 0, then ay := (tj,tk41), where j is the index of T;
such that v € B;;

(d) If dp(v) > 0,dR(v) > 0, then a, := (t;, t;), where 2 and j are the indices
of T; and T; such that v € A; B,.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider Ro of Figure 4.8 once again. Earlier we
showed that there exists Ho such that Ro = L(Ho). Now we will con-
struct Ho. The previous procedure applied to verify the existence of Ho
has implicitly constructed the digraphs T, = ({a, 6, f,g}, {ab, af,ag}), Tz =
(Cs 9, h, i}, {fh, fi, gh, gt}), T3 = ({b, c}, {bc}), Ts = ({c, d, e}, {cd, ce}).
Thus, Ho has vertices to,...,ts. Considering the vertices of Ro in the lex-
icographic order, we obtain the following arcs of Hp (in this order):

toti, tit3, t3t4, tats, tats, tite, tite, tots, tots.

4.6 The de Bruijn and Kautz Digraphs and their Generalizations 187

The directed multigraph Ho is depicted in Figure 4.8(c). It is easy to check
that Ro a L(A).

The iterated line digraphs are defined recursively: L1(D) = L(D),
L¥*1(D) = L(L*(D)), k > 1. It is not difficult to prove by induction (Ex-
ercise 4.8) that L*(D) is isomorphic to the digraph H, whose vertex set

consists of walks of D of length k and a vertex vou; ...vx (which is a walk

in D) dominates the vertex v)v2...ux%Vg41 for every Up41 € V(D) such that

UgUR4+1 € A(D). New characterizations of line digraphs and iterated line di-

graphs are given by Liu and West [518].
The following proposition can be proved by induction on k > 1 (Exercise

4.10).

Proposition 4.5.4 Let D be a strong d-regular digraph (d > 1) of order n

and diameter t. Then L*(D) is of order d*n and diameter t + k. Oo

4.6 The de Bruijn and Kautz Digraphs and their

Generalizations

The following problem is of importance in network design. Given positive in-

tegers n and d, construct a digraph D of order n and maximum out-degree at

most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity «(D) is as large as possible. So we have a 2-objective optimization

problem. For such a problem, in general, no solution can maximize/minimize

both objective functions. However, for this specific problem, there are solu-

tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-

graphs, as well as some of their generalizations. For more information on the

above classes of digraphs, the reader may consult the survey [204] by Du, Cao

and Hsu. For applications of these digraphs in design of parallel architectures

and large packet radio networks, see e.g. the papers [113] by Bermond and

Hell, [114] by Bermond and Peyrat and [649] by Samatan and Pradhan.
Let V be the set of vectors with ¢t coordinates, t > 2, each taken from

{0,1,...,d—1}, d > 2. The de Bruijn digraph Dz(d, t) is the directed pseu-
dograph with vertex set V such that (11, %2,...,2¢) dominates (yi, y2,..-, yt)

if and only if zz = y1,23 = Y2,---,2t = Yyt-1- See Figure 4.6 (a). Let Dg(d, 1)
be the complete digraph of order d with loop at every vertex.

These directed pseudographs are named after de Bruijn who was the

first to consider them in [185]. Clearly, Dg(d,t) has d‘ vertices and the
out-pseudodegree and in-pseudodegree of every vertex of Dg(d,t) equal d.

This directed pseudograph has no parallel arcs and contains a loop at every

vertex for which all coordinates are the same. It is natural to call Dg(d,t)

188 4. Classes of Digraphs

(b)
Figure 4.6 (a) The de Bruijn digraph Dg(2, 2); (b) The Kautz digraph Dx (2, 2).

d-pseudoregular (recall that in the definition of semi-degrees we do not

count loops).
Since Dp(d,t) has loops at some vertices, the vertex-strong connectivity

of Dg(d,t) is at most d—1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [444]
proved that Dg(d,t) is (d — 1)-strong, and moreover, for every pair x # y
of vertices there exist d — 1 internally disjoint (x, y)-paths of length at most
t+ 1. To prove this result we will use the following two lemmas. The proof

of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 4.11.

Lemma 4.6.1 /236] For t > 2, Dg(d,t) is the line digraph of Dp(d,t — 1).
O

Lemma 4.6.2 Let x,y be distinct vertices of Dp(d,t) such that ry. Then,

there are d—2 internally disjoint (x, y)-paths different from xy, each of length
at most t+ 1.

Proof: Let z = (21,22,...,2¢) and y = (22,...,24, yz). Consider the

walk W;, given by Wy = (21, %2,-...,%+), (@2,.-., 24, k), (@3,...,2t,k,22),...,
(k,22,...,2t),(%2,...,2t, Yt), Where k # 2}, yz. For each k, every internal ver-
tex of W, has coordinates forming the same multiset My = {x2,..., 24, k}.
Since for different k, the multisets M, are different, the walks W; are inter-
nally disjoint. Each of these walks is of length t + 1. Therefore, by Propo-
sition 1.4.1, Dg(d,t) contains d — 2 internally disjoint (x, y)-paths P, with
A(P,) € A(W,). Since k # 21,44, we may form the paths P; such that none
of them coincides with zy. Oo

Theorem 4.6.3 [444] For every pair x,y of distinct vertices of Dp(d,t),
there exist d—1 internally disjoint (x,y)-paths, one of length at most t and
the others of length at most t +1.

4.6 The de Bruijn and Kautz Digraphs and their Generalizations 189

Proof: By induction on t > 1. Clearly, the claim holds for t = 1 since
Dara

Dp(d,1) contains, as spanning subdigraph, Kg. For t > 2, by Lemma 4.6.1,

we have that

Dp(d,t) = L(Dp(d,t — 1)). (4.5)

Let x,y be a pair of distinct vertices in Dg(d,t) and let e,,e, be the arcs

of Dp(d,t — 1) corresponding to vertices z,y due to (4.5). Let u be the head

of e, and let v be the tail of ey.

If uw # v, by the induction hypothesis, Dg(d,t — 1) has d — 1 internally

disjoint (u,v)-paths, one of length at most t — 1 and the others of length at

most t. The arcs of these paths together with arcs e; and e, correspond to

d—1 internally disjoint (x, y)-paths in Dg(d,t), one of length at most t and
the others of length at most t+ 1.

If u = v, we have ry in Dg(d,t — 1). It suffices to apply Lemma 4.6.2

to see that there are d — 1 internally disjoint (z, y)-paths in Dg(d,t), one of

length one and the others of length at most ¢ + 1. Oo

By this theorem and Corollary 7.3.2, we conclude that «(Dp(d,t)) =
d—1. From Theorem 4.6.3 and Proposition 2.4.3, we obtain immediately the

following simple, yet important property.

Proposition 4.6.4 The de Bruijn digraph Dg(d,t) achieves the minimum

value t of diameter for directed pseudographs of order d' and maximum out-

degree at most d. O

For t > 2, the Kautz digraph Dx(d,t) is obtained from Dg(d + 1,t)
by deletion of all vertices of the form (x1,%2,...,24) such that 2; = 241

for some i. See Figure 4.6 (b). Define Dx (d, 1) Sion. Clearly, Dx (d,t)
has no loops and is a d-regular digraph. Since we have d+ 1 choices for the

first coordinate of a vertex in Dx(d,t) and d choices for each of the other
coordinates, the order of Dx (d,t) is (d+1)d'~! = d' +d‘. It is easy to see
that Proposition 4.6.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 4.6.1 and 4.6.2. Their

proofs are left as Exercises 4.12 and 4.13.

Lemma 4.6.5 For t > 2, the Kautz digraph Dx(d,t) is the line digraph of

Dx(d,t — 1). oO

Lemma 4.6.6 Let ry be an arc in Dx(d,t). There are d—1 internally dis-

joint (x, y)-paths different from xy, one of length at most t+ 2 and the others

of length at most t +-1. Oo

The following result due to Du, Cao and Hsu [204] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-

strong connectivity point of view. This theorem can be proved similarly to

Theorem 4.6.3 and is left as Exercise 4.14.

190 4. Classes of Digraphs

Theorem 4.6.7 /204] Let x,y be distinct vertices of Dx(d,t). Then there

are d internally disjoint (x, y)-paths in Dx (d,t), one of length at most t, one

of length at most t + 2 and the others of length at mostt +1. oO

This theorem implies that Dx (d,t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and

Itoh [441] and Reddy, Pradhan and Kuhl [624] in the following way. We

can transform every vector (z1,2,-..,2¢) with coordinates from Zq =

{0,1,...,d — 1} into an integer from Z4 = {0,1,...,d° — 1} using the poly-

nomial P(21,22,.--,2:) = 21d°-1 + xod'~? +... + 24. It is easy to see that

this polynomial provides a bijection from Z', to Za. Moreover, for 1,7 € Za,

ij in Dp(d,t) if and only if 7 = di + k (mod d‘) for some k € Za.

Let d,n be two natural numbers such that d < n. The generalized de

Bruijn digraph Dg(d,n) is a directed pseudograph with vertex set Z, and

arc set

{(i,di +k (mod n)): i,k € Zag}.

For example, V(Dg(2,5)) = {0,1,2,3,4} and A(De(2,5)) = {(0,0), (0, 1),

(1,2), (1,3), (2,4), (2,0), (3, 1), (3,2), (4,3), (4,4)}.
Clearly, Dg(d,n) is d-pseudoregular. It is not difficult to show that

diam(Dg(d,n)) < flog,n]. By Proposition 2.4.3, a digraph of maximum out-
degree at most d > 2 and order n has a diameter at least |logyn(d—1) +1).
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal

diameter. It was proved, by Imase, Soneoka and Okada [443], that De(d,n)

is (d — 1)-strong. It follows from these results that the generalized de Bruijn

digraphs have almost minimum diameter and almost maximum vertex-strong

connectivity.

The Kautz digraphs were generalized by Imase and Itoh [442]. Let n,d be
two natural numbers such that d < n. The Imase-Itoh digraph D;(d, 7) is the

digraph with vertex set Z, such that i) if and only if 7 = —d(i+1)+k (mod
n) for some k € Zq. It has been shown (for a brief account, see the paper
[204]) by Du, Cao and Hsu, that D;(d,n) are of (almost) optimal diameter
and vertex-strong connectivity.

Du, Hsu and Hwang [206] suggested a concept of digraphs extending both

generalized the de Bruijn digraphs and the Imase-Ito digraphs. Let d,n be

two natural numbers such that d < n. Given q € Z, — {0} and r € Z,,
consecutive-d digraph D(d,n,q,r) is the directed pseudograph with vertex
set Z, such that ij if and only if 7 = gi+r+k (mod n) for some k € Zq.

Several results on diameter, vertex- and arc-strong connectivity and other

properties of consecutive-d digraphs are given in [204]. In Section 5.11, we

provide results on hamiltonicity of consecutive-d digraphs.

4.7 Series-Parallel Digraphs 191

4.7 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel

directed multigraphs. Vertex series-parallel digraphs were introduced by

Lawler [510], and Monma and Sidney [568] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role

for the design of efficient algorithms in scheduling and sequencing problems,

they have been extensively studied in their own right as well as in relations

to other optimization problems (cf. the papers [36] by Baffi and Petreschi,
[116] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [633] by Rendl

and [682] by Steiner). Arc series-parallel directed multigraphs were intro-

duced even earlier (than vertex series-parallel digraphs) by Duffin [209] as a
mathematical model of electrical networks.

For an acyclic digraph D, let Fp (Ip) be the set of vertices of D of

out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first

introduce minimal vertex series-parallel (MVSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D, =

(V, A), D2 = (U, B) is a pair of MVSP digraphs, so are the acyclic digraphs

constructed by each of the following operations (see Figure 4.7):

(a) Parallel composition: P = (V UU, AUB);
(b) Series composition: S = (V UU, AUBU (Fp x Iy)).

It is interesting to note that we can embed every MVSP digraph D into

the Cartesian plane such that if vertices u,v have coordinates (ry, yy) and

(Zy, Yv), respectively, then there is a (u,v)-path in D if and only if rz, < ry

and yy, < yy. The proof of this non-difficult fact is given in the paper [726]

by Valdes, Tarjan, and Lawler; see Exercise 4.15. See also Figure 4.9.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if the

transitive reduction of D is an MVSP digraph (see Subsection 4.3 for the

definition of the transitive reduction). See Figure 4.8.
The following class of acyclic directed multigraphs, arc series-parallel

(ASP) directed multigraphs, is related to VSP digraphs. The digraph P»

is an ASP directed multigraph. If D,, D2 is a pair of ASP directed multi-

graphs, then so are acyclic directed multigraphs constructed by each of the

following operations (see Figure 4.10):

(a) Two-terminal parallel composition: Choose a vertex u; of out-degree

zero in D; and a vertex v; of in-degree zero in D; for i = 1,2. Identify u;

with u2 and v, with v9;

(b) Two-terminal series composition: Choose u € Fp, and v € Ip, and
identify u with v.

192 4. Classes of Digraphs

@ eh
c

be

e

aaa
ane

Figure 4.7 (De)construction of an MVSP digraph Ro by series and parallel
(de)compositions.

We refer the reader to the book [97] by Battista, Eades, Tamassia and
Tollis for several algorithms for drawing graphs nicely, in particular drawing

of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-

duced above.

4.7 Series-Parallel Digraphs 193

() (c)
Figure 4.8 Series-parallel directed multigraphs: (a) an MVSP digraph Ro, (b) a
VSP digraph Ri, (c) an AVSP directed multigraph Ho.

z

Figure 4.9 The MVSP digraph Ro of Figure 4.7 embedded into the Cartesian
plane such that for every (u,v)-path in Ro we have ry < xy and yu < yy (and vice
versa).

Theorem 4.7.1 An acyclic directed multigraph D with a unique verter of

out-degree zero and a unique vertex of in-degree zero is ASP if and only if

L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(P2) = P,, which is an MVSP digraph;
(ii) The line digraph of the two-terminal series (parallel) composition of D;

and Dz is the series (parallel) composition of L(D,) and L(D2). Oo

194 4. Classes of Digraphs

| LN ~ IX

ee Ne Ped Gees pe BM ARN te Ae
3 5

ae

4 5

Figure 4.10 (De)construction of an ASP directed multigraph Ho by two-terminal
series and parallel (de)compositions.

It is easy to check that L(Ho) = Ro for directed multigraphs Ho and Ro

depicted in Figure 4.8. The following operations in a directed multigraph D

are called reductions:

(a) Series reduction: Replace a path www, where dh(v) = dp(v) = 1 by
the arc uw;

(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just
one arc from u to v.

The following proposition due to Duffin (see also the paper [726] by
Valdes, Lawler and Tarjan) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 4.16.

Proposition 4.7.2 [209] A directed multigraph is ASP if and only if it can

be reduced to Pp by a sequence of series and parallel reductions. oO

The reader is advised to apply a sequence of series and parallel reductions

to the directed multigraph Ho of Figure 4.8 to obtain a digraph isomorphic to

4.8 Quasi-Transitive Digraphs 195

P;. From the algorithmic point of view, it is important that every sequence of

series and parallel reductions transforms a directed multigraph to the same

digraph. Indeed, this implies an obvious polynomial algorithm to verify if a

given directed multigraph is ASP. The proof of the following result, due to

Harary, Krarup and Schwenk, is left as Exercise 4.17.

Proposition 4.7.3 [401] For every acyclic directed multigraph D, the result

of application of series and parallel reductions until one can apply such re-

ductions is a unique digraph H. 0

In [726], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on

Propositions 4.7.2 and 4.7.3. They also presented a more complicated linear-

time algorithm to recognize VSP digraphs. Since we are limited in space,

we will not discuss the details of the linear-time algorithms. Instead, we

will consider the following simplified polynomial algorithm to recognize VSP

digraphs.

VSP recognition algorithm:

Input: An acyclic digraph D.

Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.

2. Try to compute an acyclic directed multigraph H with |I[p| = |Fp| = 1
such that L(H) = R. If there is no such H, then output NO.

3. Verify whether H is an ASP directed multigraph. If it is so, then YES,

otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,

then, by Theorem 4.7.1, R is MVSP and thus D is VSP. If H is Step 2 is not

found, then, by Theorem 4.7.1, R is not MVSP implying that D is not VSP.

If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed

in polynomial time by Proposition 4.3.5. Step 2 can be implemented using

Procedure Build-H described in the end of Section 4.5. This procedure implies

that if there is an H such that L(H) = R, then there is such an H with
additional property that |Ip| = |Fp| = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 4.7.2.

4.8 Quasi-Transitive Digraphs

Quasi-transitive digraphs were introduced in Section 1.8. The aim of this
section is to derive a recursive characterization of quasi-transitive digraphs

- which allows one to show that a number of problems for quasi-transitive

196 4. Classes of Digraphs

digraphs including the longest path and cycle problems are polynomial time

solvable (see Theorem 5.10.2). The characterization implies that every quasi-

transitive digraph is totally Y-decomposable, where Y is the union of all

transitive digraphs and all extended semicomplete digraphs. Our presentation

is based on [79].

Proposition 4.8.1 Let D be a quasi-transitive digraph. Suppose that P =

@12Q...L,% 18 a minimal (21, z%)-path. Then the subdigraph induced by V (P)

is a semicomplete digraph and x;—2; for every2 <i1+1<j<k, unless

k =4, in which case the arc between x; and x, may be absent.

Proof: The cases k = 2,3,4,5 are easily verified. As an example, let us

consider the case k = 5. If 2; and z; are adjacent and 2<i1+1<j <5,

then x;—>z; since P is minimal. Since D is quasi-transitive, x; and 2j+2

are adjacent for 1 = 1,2,3. This and the minimality of P imply that

23—21,04—X2 and z5-—>23. From these arcs and the minimality of P we

conclude that 75;—>2,. Now the arcs 2425 and 252, imply that 24-37. Sim-

ilarly, 75 -4+2,—Z2 implies 75-72.

The proof for the case k > 6 is by induction on k with the case k = 5 as the

basis. By induction, each of D({x1,2%2,...,%-1}) and D({x2,23,...,r%}) is

a semicomplete digraph and z;—>2; for any 1 < 7 —i < k — 2. Hence z3

dominates z; and rz, dominates x3 and the minimality of P implies that zr,

dominates 21. oO

Corollary 4.8.2 If a quasi-transitive digraph D has an (zx, y)-path but x does

not dominate y, then either ya, or there exist vertices u,v € V(D) —{z,y}
such that r>uv—-y and youve.

Proof: This is easy to deduce by considering a minimal (z,y)-path and
applying Proposition 4.8.1. O

Lemma 4.8.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then AGB.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of z € A and y € B there
exists a path from z to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 4.8.2 can hold and hence ry. oO

Lemma 4.8.4 /79] Let D be a strong quasi-transitive digraph on at least two
vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S' are two subdigraphs of D such that UG(S) and UG(S") are

distinct connected components of UG(D), then either Si3S' or S'S,
or both SS" and S'+S in which case |V(S)| = |V(S')| = 1.

4.8 Quasi-Transitive Digraphs 197

Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S’ are completely adjacent

in D (Exercise 4.18). We prove (a) by induction on |V(D)|. Statement (a) is
trivially true when |V(D)| = 2 or 3. Assume that it holds when |V(D)| <n
where n > 3.

Suppose that there is a vertex z such that D — z is not strong. Then there

is an arc from (to) every terminal (initial) component of D — z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 4.8.3 imply that

X-—Y for every initial (terminal) strong component X (Y) of D — z. Similar
arguments show that each strong component of D — z either dominates some

terminal component or is dominated by some initial component of D — z

(intermediate strong components satisfy both). These facts imply that z is

adjacent to every vertex in D — z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D — v is strong. Since D is

strong, D contains an arc vw from v to D — v. By induction, UG(D — v) is
not connected. Let connected components S and S' of UG(D — v) be chosen
such that w € S, S++S' in D (here we use (b) and the fact that D — v is
strong). Then v is completely adjacent to S’ in D (as v>w). Hence UG(S’)
is a connected component of UG(D) and the proof is complete. QO

The following theorem completely characterizes quasi-transitive digraphs

in recursive sense (see also Figure 4.11).

Theorem 4.8.5 (Bang-Jensen and Huang) /79]/ Let D be a digraph

which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-

tices {u1,U2,...,ut} and strong quasi-transitive digraphs H,, H2,..., At

such that D = T[Hj, Ho,..., Hi], where H; is substituted for uj, 1 =

Nt seg
(b) If Dis strong, then there exits a strong semicomplete digraph S with

vertices {v,V2,...,Us} and quasi-transitive digraphs Q1,Q2,..-,Qs such

that Q; is either a vertex or is non-strong and D = S[Qi,Q2,.-.,Qs];

where Q; is substituted for vij,1=1,2,...,8.

Proof: Suppose that D is not strong and let Hi, H2,...,H; be the strong

components of D. According to Lemma 4.8.3, if there is an arc between

H;, and H;, then either Hj+A; or H;+H;. Now if H;>H;5H, then, by

quasi-transitivity, H;H;. So by contracting each H; to a vertex h;, we get

a transitive oriented graph T with vertices hi,h2,...,h¢. This shows that

DM igs toe oli g|:
Suppose now that D is strong. Let Q1,Q2,...,Qs be the subdigraphs of

D such that each UG(Q;) is a connected component of UG(D). According
to Lemma 4.8.4(a), each Q; is either non-strong or just a single vertex. By

198 4. Classes of Digraphs

Figure 4.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

Lemma 4.8.4(b) we obtain a strong semicomplete digraph S if each Q; is
contracted to a vertex. This shows that D = S[Q1, Q2,...,Qs]- Oo

4.9 The Path-Merging Property and Path-Mergeable
Digraphs

A digraph D is path-mergeable, if for any choice of vertices x,y € V(D)
and any pair of internally disjoint (x, y)-paths P, Q, there exists an (z, y)-path

Rin D, such that V(R) = V(P)UV(Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worth while studying

path-mergeable digraphs. The results presented in this section are adapted

from [50}, where the study of path-mergeable digraphs was initiated by Bang-
Jensen.

We prove a characterization of path-mergeable digraphs, which implies

that path-mergeable digraphs can be recognized efficiently.

Theorem 4.9.1 A digraph D is path-mergeable if and only if for every

pair of distinct vertices x,y € V(D) and every pair P = x2...2,ry,

P!=cy..-Ysy, 7,8 > 1 of internally disjoint (x, y)-paths in D, either there

4.9 The Path-Merging Property and Path-Mergeable Digraphs 199

U1 U2 U3 U4 U5 U6

V1 V2 U3 U4 U5 V6

Figure 4.12 A digraph which is path-mergeable. The fat arcs indicate the path
LU U2V1VIVZ3UZU4U5U4U5UEUEYy from zx to y which is obtained by merging the two

2, y)-paths LU1U2UZU4US UGYy and LV1V2UZ3 V4 U5 VEY.

exists ani € {1,...,r}, such that 2,1, or there exists a j € {1,...,8},
such that yj.

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =

1, so suppose that r+ s > 3. If there is no arc between {z1,...,2,} and

{yi,-.-,ys}, then clearly P,P’ cannot be merged into one path. Hence we

may assume without loss of generality that there is an arc x;y; for some

1,J9,1<t<7,1< 9 < s.Ifj = 1 then the claim follows. Otherwise apply

induction to the paths P[x, x;]y;, «P’[y1, yj].

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition

4.9.3 below. O

The proof of the following result is left as Exercise 4.23.

Corollary 4.9.2 Path-mergeable digraphs can be recognized in polynomial

time. oO

The next result shows that, if a digraph is path-mergeable, then the merg-

ing of paths can always be done in a particularly nice way.

Proposition 4.9.3 Let D be a digraph which is path-mergeable and let P =

£21...2py, P!’ = ry... ysy, 7,8 > 0 be internally disjoint (x, y)-paths in

D. The paths P and P’ can be merged into one (x,y)-path P* such that
vertices from P (respectively, P') remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r +s) steps.

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or
s = 0, so suppose that r,s > 1. By Theorem 4.9.1 there exists an i such that

either x;y, or y;->21. By scanning both paths forward one arc at a time, we

can find 7 in at most 27 steps; suppose without loss of generality x;-y,. By

applying the induction hypothesis to the paths P[z;,z,]y and 2;P'[y, ysly,

we see that we can merge them into a single path @ in the required order-

__ preserving way in at most 2(r+s—i) steps. The required path P* is obtained

200 4. Classes of Digraphs

by concatenating the paths 7P{z,,x;] and Q, and we have found it in at most
2(r +s) steps, as required. Oo

4.10 Locally In-Semicomplete and Locally

Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,

for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semi-

complete digraph. Clearly, the converse of a locally in-semicomplete digraph

is a locally out-semicomplete digraph and vice versa. A digraph D is locally

semicomplete if it is both locally in- and locally out-semicomplete. See

Figure 4.13. Clearly every semicomplete digraph is locally semicomplete. A

locally in-semicomplete digraph with no 2-cycle is a locally in-tournament

digraph. Similarly, one can define locally out-tournament digraphs and

locally tournament digraphs. For convenience, we will sometimes re-

fer to locally tournament digraphs as local tournaments and to locally

in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

Ps
(a) (0)

Figure 4.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) A locally semicomplete digraph.

Proposition 4.10.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.

Proposition 4.10.1 /50] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = Y1Y2---Yk,
Q = 2122...2 be a pair of internally disjoint (x, y)-paths (ie., y, =z) =z

4.10 Locally In-Semicomplete and Locally Out-Semicomplete Digraphs 201

and yx = z¢ = y). We show that there exists an (z, y)-path R in D, such that

V(R) = V(P)UV(Q). Our claim is trivially true when |A(P)| +|A(Q)| = 3.
Assume now that |A(P)| + |A(Q)| > 4. Since D is out-semicomplete, either
Y2—>Z2 OY Z2—Y2 (or both) and the claim follows from Theorem 4.9.1.

The proposition holds for locally in-semicomplete digraphs as they are

the converses of locally out-semicomplete digraphs. O

The path-mergeability can be generalized in a natural way as follows. A di-

graph D is in-path-mergeable if, for every vertex y € V(D) and every pair

P,Q of internally disjoint paths with common terminal vertex y, there is a

path R such that V(R) = V(P)UV(Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or Q (or, possibly, both).

Observe that, in this definition, the initial vertices of paths P and Q may coin-

cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,

it is easy to see that not every path-mergeable digraph is in-path-mergeable

(see Exercise 4.19). A digraph D is out-path-mergeable if the converse of D

is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)

digraph is locally in-semicomplete (locally out-semicomplete). The converse is

also true (hence this is another way of characterizing locally in-semicomplete

digraphs). The proof of Proposition 4.10.2 is left as Exercise 4.20.

Proposition 4.10.2 Every locally in-semicomplete (out-semicomplete, re-

spectively) digraph is in-path-mergeable (out-path-mergeable, respectively).

O

Some simple, yet very useful, properties of locally in-semicomplete di-

graphs are described in the following results (in [81], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,

so the statements below are their slight generalizations first stated by Bang-

Jensen and Gutin [65]). Observe that a locally out-semicomplete digraph,

being the converse of a locally in-semicomplete digraph, has similar proper-

ties (see Exercise 4.26). The claim of Theorem 4.10.4 is illustrated in Figure

4.14.

Lemma 4.10.3 Every connected locally in-semicomplete digraph D has an

out-branching.

Proof: By Proposition 1.6.1, it suffices to prove that D has only one ini-

tial strong component. Assume that D has a pair D;, D2 of initial strong

components (i.e. no arc enters D; or D2). Let y; € V(D;), 1 = 1,2, and let

P=2,22...2, be ashortest path between V(D,) and V(D2) in the underly-
ing graph G of D. Since no arc enters D,; or Do, there is an index k < s such

that 2122 ...2,—1 is a path in D, but x,—z,_1. Since D is in-semicomplete,

the vertices x,_2 and zx, are adjacent. However, this contradicts the fact that

P is a shortest path between V(D;) and V(Dz2) in G. Oo

202 4, Classes of Digraphs

Theorem 4.10.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertexra € A

dominates some verter in B, then a+B.

(ii) If D is connected, then SC(D) has an out-branching.

Proof: Let A and B be strong components of D. for which there is an arc

(a,b) from A to B. Since B is strong, there is a (b’,b)-path in B for every

b' € V(B). By the definition of locally in-semicomplete digraphs and the fact

that there is no arc from B to A, we can conclude that ab’. This proves (i).
Part (ii) follows from the fact that SC'(D) is itself a locally in-tournament

digraph and Lemma 4.10.3. oO

Figure 4.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a € A such that a B.

4.11 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [44].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete

4.11 Locally Semicomplete Digraphs 203

digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [55]. In

the process of deriving this classification, we will show several important

properties of locally semicomplete digraphs. We start our consideration from

round digraphs, a nice special class of locally semicomplete digraphs.

4.11.1 Round Digraphs

A digraph on n vertices is round if we can label its vertices v1, v2,...,Un
so that for each i, we have N*(u;) = {vi41,-..,Vizat(v,)} and N~(vj) =

{Uj—ad-(v;)>-»+)Vi-1} (all subscripts are taken modulo n). We will refer to

the ordering v1, v2,...,Un as a round labelling of D. See Figure 4.15 for

an example of a round digraph. Observe that every strong round digraph

D is hamiltonian, since vjv2...Unv; form a hamiltonian cycle, whenever

U1,UV2,+.+,Un is a round labelling. Round digraphs form a subclass of lo-

cally semicomplete digraphs. We will see below that round digraphs play an

important role in the study of locally semicomplete digraphs.

2 3

R

Figure 4.15 A round digraph with a round labelling.

Proposition 4.11.1 [438] Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let v;, v2,..., Un, be a round labelling of

D. Consider an arbitrary vertex, say v;. Let x,y be a pair of out-neighbours

of v;. We show that z and y are adjacent. Assume without loss of generality

that vj,v,y appear in that circular order in the round labelling. Since v;>y

and the in-neighbours of y appear consecutively preceding y, we must have

x—y. Thus the out-neighbours of v; are pairwise adjacent. Similarly, we can

show that the in-neighbours of v; are also pairwise adjacent. Therefore, D is

locally semicomplete. 0

In the rest of this subsection, we will prove the following characterization

of round digraphs due to Huang [438]. This characterization generalizes the

corresponding characterizations of round local tournaments and tournaments,

due Bang-Jensen [44] and Alspach and Tabib [22], respectively.

204 4. Classes of Digraphs

soe ((c) (d)

Figure 4.16 Some forbidden digraphs in Huang’s characterization

An arc zy of a digraph D is ordinary if yz is not in D. A cycle or path

Q of a digraph D is ordinary if all arcs of Q are ordinary.

To prove Theorem 4.11.4 below, we need two lemmas due to Huang [438].

Lemma 4.11.2 Let D be a round digraph then the following is true:

(a) Every induced subdigraph of D is round.

(b) None of the digraphs in Figure 4.16 is an induced subdigraph of D.

(c) For each x € V(D), the subdigraphs induced by N*(x) — N~ (a) and

N~(ax) — N* (a) are transitive tournaments.

Proof: Exercise 4.29. , oO

Lemma 4.11.3 Let D be a round digraph. Then, for each vertex x of D, the

subdigraph induced by Nt+(x) N~(a) contains no ordinary cycle.

Proof: Suppose the subdigraph induced by some N*(r)MN~ (a) contains an
ordinary cycle C. Let v1, v2,...,Un be a round labelling of D. Without loss

of generality, assume that x = v;. Then C must contain an arc v;v; such that

vju; ¢ A(D) andi > j. We have 1; € N~(v,) but vj ¢ N~(v;), contradicting
the assumption that v,,v2,...,Un is a round labelling of D. oO

Theorem 4.11.4 (Huang) /438] A connected locally semicomplete digraph
D is round if and only if the following holds for each vertex x of D:

(a) N*(x) — N~(a) and N~(x) — N* (x) induce transitive tournaments and
(b) N*(x) A N~(x) induces a (semicomplete) subdigraph containing no or-

dinary cycle.

Proof: The necessity follows from Lemmas 4.11.2(c) and 4.11.3. To prove

the sufficiency, we consider two cases.

Case 1: D has an ordinary cycle. We start by proving that D contains an

ordinary Hamilton cycle. Let C = 2122 ...2,~2, be a longest ordinary cycle

in D. Assume that k # n, the number of vertices in D. Since D is connected

there is a vertex v € V(D) — V(C) such that v is adjacent to some vertex of
Or

Suppose that there is an ordinary arc between v and some vertex, say

x1, of C. We may without loss of generality assume that the ordinary arc

4.11 Locally Semicomplete Digraphs 205

is 2,v (indeed, if necessary, we may consider the converse of D instead of
D). The vertices v and £2 are adjacent since they are out-neighbours of 7}.
The arc between v and xz» must be ordinary since D does not contain as
induced subdigraph the digraph depicted in Figure 4.16 (a). Since C is a
longest ordinary cycle, v cannot dominate x2. Thus, r2++v. Similarly, we can
prove that x;++v for every i = 3,4,...,k. Hence, N~(v) — N+(v) contains all
vertices of C’', which contradicts the assumption that N~(v) — N+(v) induces
a transitive tournament.

Since there is no ordinary arc between v and C, we may assume that vr,v

is a 2-cycle of D. Using the fact that D is locally semicomplete, it is easy to

derive that V(C) C Nt(v) M N~(v). This contradicts the assumption that
Nt(v) A N~(v) contains no ordinary cycle.

Thus, we have shown that D contains an ordinary Hamilton cycle. This

implies that N*+(x) — N~(x) #0 for every x € V(D).

We apply the following algorithm to find a round labelling of D. Start with

an arbitrary vertex, say y,, and, for each 7 = 1,2,..., let y;+1 be the vertex

of in-degree zero in the (transitive) tournament induced by Nt (y;) — N~ (y;).
Let y1,y2,.--,Yr be distinct vertices produced by the algorithm such that the

vertex w of in-degree zero in the tournament induced by N*(y,) — N~(y,)

is in {y1,Y2; ORT S1oYS

We show that w = y. If w = y; with j > 1, then {yj_1,y,}Hy;-

Thus, yj-1 and y, are adjacent by an ordinary arc (since the digraph

in Figure 4.16(b) is forbidden). But either y;-14+y, or y;++y;-1 contra-
dicts the fact that y; is the vertex of in-degree zero in the tournament in-
duced by Nt (yj;-1) — N~(yj-1) or N*(y-) — N~(y,). Thus, w = y, and
C' = yi y2-.-.Yry1 is an ordinary cycle.

We next show that r = n. Suppose r < n. Then, there is a vertex u,

which is not in C’ and is adjacent to some y; of C’. Suppose first that u €

N*(y;) — N~(y;). Then, being out-neighbours of y;, the vertices y;+; and

u are adjacent. Since D contains no induced subdigraph isomorphic to the

digraph in Figure 4.16 (a) and y,41 is the vertex of in-degree zero in the
subdigraph induced by Nt (y;) —N~ (yi), we have u € Nt (yi41) — N7 (yi41)-
This implies that wu and yij+2 are adjacent. Similarly, we must have u €

N+ (yi42)—N~(yi+2). Continuing this way, we see that u € N* (yx) —N7 (yx)
for every k = 1,2,...,r. Hence, C’ is contained in the subdigraph induced

by N~(u) — N*(u), a contradiction.
A similar argument applies for the case u € N~ (yi) - NT (yi). So, we may

assume that u € N*(y;)QN (y;) and there is no ordinary arc between u and
C’. Using the fact that D is locally semicomplete, it is easy to see that C’
is contained in the subdigraph induced by Nt(u)M N~(u), a contradiction.
Thus, r = n, i.e., the algorithm labels all vertices of D. To complete Case 1,

it suffices to prove that y1, y2,---, Yn is a round labelling. Suppose not. Then,

there are three vertices Yq, Ys, Yc listed in the circular order in the labelling

such that, without loss of generality, we have

206 4. Classes of Digraphs

YaYc and ya Yo-

Assume that the tree vertices were chosen such that the number of vertices

from yp to ye in the circular order is as small as possible. This implies that

c= b+1. Since yg and y, are both in-neighbours of y-, they are adjacent.

Thus, ysya- Since we also have yp++yc (recall that ye € Nt (ys) — N~ (yo)

by the definition of the labelling) and D contains no induced subdigraph

isomorphic to the digraph given in Figure 4.16 (a), yat*Yc- So, yc is not the

vertex of in-degree zero in the tournament induced by N*(yo) — N~ (ye),

contradicting the choice of ye.

Case 2: D contains no ordinary cycle. If D has no ordinary arc, D is

complete. Thus, any labelling of V(D) is round. So assume that D has an

ordinary arc. Since D has an ordinary arc, but has no ordinary cycle, we

claim that there is a vertex z; with

N~(z1) — N*(e:) =@ and N* (zi) —N (21) £9.

Indeed, let w2w; be an ordinary arc in D. We may set z; = we unless

N~(w2) — N+ (we) # @. In the last case there is an ordinary arc whose head
is W2. Let w3w2 be such an arc. Again, either we may set z; = w3 or there is

an ordinary arc w4w3. Since D is finite and contains no ordinary cycle, the

above process cannot repeat vertices and hence terminates at some vertex wj

such that we may set 21 = wj.

We apply the following algorithm to find a path in D. Begin with 2,

and, for each i = 1,2,..., let z;4; be the vertex of in-degree zero in the

(transitive) tournament induced by N*t(z;)— N~(z;) unless this set is empty.
Since D has no ordinary cycle, this produces a path P = 2,22...z5 with

N*(z,) - N~ (zs) = @. Applying an argument similar to that used above, we
can show that z}, 22,...,2s is a round labelling of the subdigraph induced by

V(P). Thus, if P contains all vertices of D, then a round labelling of D is
established. So assume that there is a vertex v not in P, which is adjacent

to some vertex of P. It is easy to see that there is no ordinary arc between v

and P. This implies that v € N*+(z;)N.N7(z;) for each i = 1,2,...,s. In fact,

it is not hard to see that the same is true for every vertex v € V(D) —V(P).
Therefore, if we apply the above algorithm starting from an appropriate (‘z1-

type’) vertex not in P, we obtain a new ordinary path Q and V(Q)NV (P) = @.
By applying the above algorithm as many times as possible, we obtain a

collection of vertex-disjoint ordinary paths P* = zk 2k .. Sg Rice Le Dost, te

Let z;**,...,2h "1 be the remaining vertices (these form a complete digraph).
It is easy to verify that labelling the vertices according to the ordering

NE th, eee 2 By 22 +48) Zande Oy ea aes Aaepias CeMey | eee, me

results in a round labelling of D. In fact the proof above implies that if

we let D;, 1 = 1,2,...,¢+ 1, be the subdigraph induced by the vertices

4.11 Locally Semicomplete Digraphs 207

Figure 4.17 An example of a round digraph containing 2-cycles. Undirected edges
are used to indicate 2-cycles and fat edges between two boxes indicate a complete
connection in both directions between the corresponding vertices.

with superscript i above, then we have D ee) [Di, Do,..., De, Di41] (see

Figure 4.17). Oo

It is left as an exercise to show that this proof implies a polynomial algo-

rithm to decide whether a digraph D is round and to find a round labelling

of D if D is round.

Corollary 4.11.5 (Bang-Jensen) //4] A connected local tournament D is
round if and only if, for each verter x of D, Nt (x) and N~ (2) induce tran-

sitive tournaments. 0

4.11.2 Non-Strong Locally Semicomplete Digraphs

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-

Jensen.

Theorem 4.11.6 /44] Let D be a connected locally semicomplete digraph

that is not strong. Then the following holds for D.

(a) If A and B are distinct strong components of D with at least one arc

between them, then either AXB or BHA.

(b) If A and B are strong components of D, such that AB, then A and B

are semicomplete digraphs.
(c) The strong components of D can be ordered in a unique way D;, Do,...,

D, such that there are no arcs from D; to D; for j > 1%, and D; dominates

LS Ore eh 2D tL.

208 4. Classes of Digraphs

Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete

digraph as well as a locally out-semicomplete digraph. Part (a) of this theo-

rem follows immediately from Part (i) of Theorem 4.10.4 and its analogue for
locally out-semicomplete digraphs. Part (b) can be easily obtained from the

definition of a locally semicomplete digraph. Finally, Part (c) follows from the

fact proved in Theorem 4.10.4 (and its analogue for locally out-semicomplete

digraphs) that SC(D) has an out-branching and an in-branching. Indeed, a

digraph which is both out-branching and in-branching is merely a hamilto-

nian path. O

A locally semicomplete digraph D is round decomposable if there exists

a round local tournament R on r > 2 vertices such that D = R[S,...,S;],
where each S; is a strong semicomplete digraph. We call R[S,...,5,] a

round decomposition of D. The following consequence of Theorem 4.11.6,

whose proof is left as Exercise 4:30, shows that connected, but not strongly

connected locally semicomplete digraphs are round decomposable.

Figure 4.18 A round decomposable locally semicomplete digraph D. The big cir-
cles indicate the sets that correspond to the sets Wi, W2,...,We in the decompo-
sition D = R[Wi, W2,..., We], where R is the round locally semicomplete digraph
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there
is a complete domination in the direction shown.

Corollary 4.11.7 /44] Every connected, but not strongly connected locally
semicomplete digraph D has a unique round decomposition R[D,, Do,..., De,
where Di, Dz,...,Dpy is the acyclic ordering of strong components of D and
R is the round local tournament containing no cycle which one obtains by
taking one vertex from each Dj. oO

4.11 Locally Semicomplete Digraphs 209

Now we describe another kind of decomposition theorem for locally semi-

complete digraphs due to Guo and Volkmann. The proof of this theorem is

left as Exercise 4.31. The statement of the theorem is illustrated in Figure

4.19.

Theorem 4.11.8 /349, 351] Let D be a connected locally semicomplete di-
graph that is not strong and let D,,...,D, be the acyclic ordering of strong

components of D. Then D can be decomposed into r > 2 induced subdigraphs

DD, D,... Dts follows:

D,=D,, 1 =D,

Aisi = min{ j | N+(Dj) NV(D!) 4 0},
andy = OV (Ds OV (Dyan 7) Were UV (Dy a).

The subdigraphs D}, Ds,...,D}
ie satisfy the properties below:

(a) Di consists of some strong components of D and is semicomplete for

etal fe? eer ee

(b) Di,, dominates the initial component of Di and there exists no arc from
D102. fOr 1, 2,...,7 — 1

(c) ifr > 3, then there is no arc between Di and Di; for i,j satisfying |j -1| >

Dh Oo

For a connected, but not strongly connected locally semicomplete digraph

D, the unique sequence D}{, D},...,D} defined in Theorem 4.11.8 is called

the semicomplete decomposition of D.

4.11.3 Strong Round Decomposable Locally Semicomplete

Digraphs

In the previous subsection we saw that every connected non-strong locally

semicomplete digraph is round decomposable. This property does not hold

for strong locally semicomplete digraphs (see Lemma 4.11.14). The follow-

ing assertions, due to Bang-Jensen, Guo, Gutin and Volkman, provide some

important properties concerning round decompositions of strong locally semi-

complete digraphs.

Proposition 4.11.9 /55] Let R[H,, Ho,...,Hq| be a round decomposition of

a strong locally semicomplete digraph D. Then, for every minimal separating

set S, there are two integers i and k > 0 such that S = V(H;)U...UV (His).

Proof: We will first prove that

if V(Hi) NS #0, then V(H,) CS. (4.6)

210 4. Classes of Digraphs

toy Di, ia) Dl

Figure 4.19 The semicomplete decomposition of a non-strong locally semicomplete

digraph with 16 strong components (numbered 1-16 corresponding to the acyclic

ordering). Each circle indicates a strong component and each box indicates a semi-
complete subdigraph formed by consecutive components all of which dominate the
first component in the previous layer. For clarity arcs inside components as well
as some arcs between components inside a semicomplete subdigraph Dj (all going

from top to bottom) are omitted.

Assume that there exists H; such that V(H;)N S #4 0 # V(d;) — S.
Using this assumption we shall prove that D — S is strong, contradicting the

definition of S.

Let s’ € V(H;) NS. To show that D — S is strong, we consider a pair

of different vertices x and y of D — S and prove that D — S has an (z, y)-

path. Since S is a minimal separating set, D' = D — (S — s’) is strong.

Consider a shortest (x, y)-path P in D’ among all (z, y)-paths using at most
two vertices from each H;. The existence of such a path follows from the fact
that R is strong. Since the vertices of H; in D' have the same in- and out-

neighbourhoods, P contains at most one vertex from H;, unless 2, y € V(H;)
in which case P contains only these two vertices from H;. If s’ is not on

P, we are done. Thus, assume that s’ is on P. Then, since P is shortest

possible, neither x nor y belongs to H;. Now we can replace s’ with a vertex

in V(H;) — S. Therefore, D — S has an (2, y)-path, so (4.6) is proved.
Suppose that S consists of disjoint sets T;,...,7 such that

T; = V (H;,) U...U V (Aj;+k;) and (VU 4) U V (Aj, +4:41)) nS=0

fori € {1,...,¢}. If € > 2, then D—T; is strong and hence it follows from the

fact that R is round that H;,-, dominates H;,4%,41 for every i = 1,...,2.

Therefore, D — S is strong; a contradiction. O

Corollary 4.11.10 /55) If a locally semicomplete digraph D is round decom-

posable, then it has a unique round decomposition D = R[D,, Do,..., Dal.

4.11 Locally Semicomplete Digraphs 211

Proof: Suppose that D has two different round decompositions: D =
TUR se, Dawend D = RH, ,...,f1,].

By Corollary 4.11.7, we may assume that D is strong. By the definition
of a round decomposition, this implies that a,3 > 3. Let S be a minimal

separating set of D. By Proposition 4.11.9, we may assume without loss of

generality that S = V(D, U...UD;) = V(H, U...U4;) for some i and j.

Since D — S is non-strong, by Corollary 4.11.7, Di+1 = Hj41,..., Da = He

(in particular, a - i = G — j). Now it suffices to prove that

ee ai ain particular. 2 = 7). (4.7)

If D(S) is non-strong, then (4.7) follows by Corollary 4.11.7. If D(S) is
strong, then first consider the case a = 3. Then S = V(D}), because D—S is

non-strong and a = 3. Assuming that j > 1, we obtain that the subdigraph of

D induced by S has a strong round decomposition. This contradicts the fact

that R’ is a local tournament, since the in-neighbourhood of the vertex Thad
in R’ contains a cycle (where rj, corresponds to Hp, p= 1,...,). Therefore,

(4.7) is true for a = 3. If a > 3, then we can find a separating set in D(S)
and conclude by induction that (4.7) holds. O

Proposition 4.11.9 allows us to construct a polynomial algorithm for

checking whether a locally semicomplete digraph is round decomposable.

Proposition 4.11.11 /55] There exists a polynomial algorithm to decide
whether a given locally semicomplete digraph D has a round decomposition

and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separating

set S in D starting with S’ = N*(a) for a vertex x € V(D) and deleting
vertices from S’ until a minimal separating set is obtained. Construct the

strong components of D(S) and D—S and label these D;, D2,..., Da, where

D,,...,Dp, p > 1, form an acyclic ordering of the strong components of

D(S) and Dy+1,...,Dq form an acyclic ordering of the strong components
of D — S. For every pair D; and D; (1 <i #j <a), we check the following:
if there exist some arcs between D; and Dj, then either Dj ~D; or Dj Dj.

If we find a pair for which the above condition is false, then D is not round

decomposable. Otherwise, we form a digraph R = D({z1,22,...,%q}), where

xz; € V(D;) for i = 1,2,...,a. We check whether R is round using Corollary
4.11.5. If R is not round, then D is not round decomposable. Otherwise, D

is round decomposable and D = R[Dj,..., Dal.

It is not difficult to verify that our algorithm is correct and polynomial.
O

4.11.4 Classification of Locally Semicomplete Digraphs

We start this subsection with a lemma on minimal separating sets of locally
-semicomplete digraphs. It will be shown in Lemma 7.13.4 that for a strong

212 4. Classes of Digraphs

locally semicomplete digraph D and a minimal separating set S in D, we

have that D — S is connected.

Lemma 4.11.12 /55] If a strong locally semicomplete digraph D 1s not semi-

complete, then there exists a minimal separating set S C V(D) such that

D—S is not semicomplete. Furthermore, if D,,D2,...,Dp is the acyclic

ordering of the strong components of D and D{,D,...,D), is the semicom-

plete decomposition of D—S, thenr > 3, D(S) is semicomplete and we have

Doo D1.

Proof: Suppose D — S is semicomplete for every minimal separating set S.

Then D — S is semicomplete for all separating sets S. Hence D is semicom-

plete, because any pair of non-adjacent vertices can be separated by some

separating set S. This proves the first claim of the lemma.

Let S be a minimal separating set such that D — S is not semicomplete.

Clearly, if r = 2 (in Theorem 4.11.8), then D — S is semicomplete. Thus,

r > 3. By the minimality of S every vertex s € S dominates a vertex in D,

and is dominated by a vertex in Dp. Thus if some z € D, was dominated by

s € S, then, by the definition of a locally semicomplete digraph, we would

have D,++D,, contradicting the fact that r > 3. Hence (using that D, is
strongly connected) we get that D,++S and similarly S++D,. From the last

observation it follows that S is semicomplete. oO

Now we consider strongly connected locally semicomplete digraphs which

are not semicomplete and not round decomposable. We first show that the

semicomplete decomposition of D—S has exactly three components, whenever

S is a minimal separating set such that D — S is not semicomplete.

Lemma 4.11.13 /55] Let D be a strong locally semicomplete digraph which

is not semicomplete. Either D is round decomposable, or D has a minimal

separating set S such that the semicomplete decomposition of D — S has
exactly three components D}, D5, D3.

Proof: By Lemma 4.11.12, D has a minimal separating set S such that the

semicomplete decomposition of D — S has at least three components.

Assume now that the semicomplete decomposition of D — S has more

than three components D},...,D/, (r > 4). Let D1, D2,..., Dp be the acyclic
ordering of strong components of D — S. According to Theorem 4.11.8 (c),
there is no arc between D; and D’ if |i — | > 2. It follows from the definition
of a locally semicomplete digraph that

N*+(Dj)NS =0 for i > 3 and N~(D§j)NS = for j <r -2. (4.8)

By Lemma 4.11.12, D(S) is semicomplete and S = N+(D,). Let Dp41,.-.,
Dp+q be the acyclic ordering of the strong components of D(S). Using (4.8)

4.11 Locally Semicomplete Digraphs 213

and the assumption r > 4, it is easy to check that if there is an arc be-

tween D; and D; (1 < i # j < p+q), then Dj»~D; or Dj D,. Let
Py Ooch eg |) wither nee (Ds \efor. tess 1 2nnneptpigh Now
it suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair D;, D; induces a strong di-

graph, we see that R is a local tournament. By Corollary 4.11.7 each of

EbeveWbdigraphsnlG—mly =i Topi Ge, Spee hy lt ese (A) MVD.)
and R!” = R—V(R)NV(DS5) is round. Since Nt(v) NV(R) (as well as
N~(v)NV(R)) is completely contained in one of the sets V(R’), V(R") and
V(R'") for every v € V(R), we see that R is round.

Thus if r > 4, then D is round decomposable. oO

Our next result is a characterization of locally semicomplete digraphs

which are not semicomplete and not round decomposable. This character-

ization was proved for the first time by Guo in [341]. A weaker form was
obtained earlier by Bang-Jensen in [49]. Here we give the proof of this result

from [55].

Lemma 4.11.14 Let D be a strong locally semicomplete digraph which is not

semicomplete. Then D is not round decomposable if and only if the following

conditions are satisfied:

(a) There is a minimal separating set S such that D —S is not semicom-

plete and for each such S, D(S) is semicomplete and the semicomplete

decomposition of D —S has exactly three components D},, D5, D3;
(b) There are integers a, B, u,v with A.» <a<B<p-landp+1l<p<

vy <p+q such that

N (D2) MV (D,) 4 0 and (N* (Da) OV (DAY,

or N~(D,)NV(Da) #0 and N+(D,)NV(Dg) #9,

where D,,Do,...,Dp and Dp41,...,Dp+q are the acyclic orderings the

strong components of D—S and D(S), respectively, and D), is the initial

component of D5.

Proof: If D is round decomposable and satisfies (a), then we must have D =

R[D,,D2,...,Dp+q], where R is the digraph obtained from D by contracting
each D; into one vertex. This follows from Corollary 4.11.7 and the fact that

each of the digraphs D — S and D — V(D4) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 4.11.12 and

4.11.13, D satisfies (a), so we only have to prove that it also satisfies (b).
If there are no arcs from S to D$, then it is easy to see that D has a

round decomposition. If there exist components D+; and D; with V(D;) C

V(D3), such that there are arcs in both directions between Dp; and Dj,
then D satisfies (b). So we can assume that for every pair of sets from the

214 4. Classes of Digraphs

collection D,, D2,...,Dp+q, either there are no arcs between these sets, or

one set completely dominates the other. Then, by Corollary 4.11.5, D is

round decomposable, with round decomposition D = R[D,, D2,..., Dp+q] as

above, unless we have three subdigraphs X,Y, Z € {Di, Do,..., Dp+q} such

that XK YHZHX and there exists a subdigraph W € {Dj, Do,..., Dp+q}—

{X,Y, Z} such that either WHX,Y, Z or X,Y, ZW.

One of the subdigraphs X,Y,Z, say without loss of generality X, is a

strong component of D(S). If we have V(Y) C S also, then V(Z) C V(D$)
and W is either in D(S) or in D4 (there are four possible positions for W
satisfying that either WH+X,Y,Z or X,Y,Z+4W). In each of these cases

it is easy to see that D satisfies (b). For example, if W is in D(S) and

W'+X,Y, Z, then any arc from W to Z and from Z to X satisfies the first part

of (b). The proof is similar when V(Y) C V(D$). Hence we can assume that
V(Y) C V(D3). If Z = Dp, then W must be either in D(S) and X,Y, ZHW,

or V(W) C V(Dj) and W++X,Y, Z (which means that W = D; and Y = D;
for some 2 <i < j < p). In both cases it is easy to see that D satisfies (b).

The last case V(Y),V(Z) C V(D3) can be treated similarly. Oo

We can now state a classification of locally semicomplete digraphs.

Theorem 4.11.15 (Bang-Jensen, Guo, Gutin, Volkmann) /55] Let D
be a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D,, D2,...,Da]|, where R is a round local tournament on a > 2
vertices and Dj is a strong semicomplete digraph for i= 1,2,...,a;

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 4.11.14;

(c) D is a semicomplete digraph which is not round decomposable. Oo

We finish this section with the following useful proposition, whose proof
is left as Exercise 4.35.

Proposition 4.11.16 /55] Let D be a strong non-round decomposable locally
semicomplete digraph and let S be a minimal separating set of D such that
D —S is not semicomplete. Let Dj,...,Dp be the acyclic ordering of the
strong components of D—S and Dp+1,...,Dp+q be the acyclic ordering of
the strong components of D(S). Suppose that there is an arc s > v from $
to Dy with s € V(D;) and v € V(D;), then

D;U fF ees Dp4gD34D), Shere s U Ds.

4.12 Totally 6;-Decomposable Digraphs 215

4.12 Totally 6;-Decomposable Digraphs

Theorem 4.8.5 is a very important starting point for construction of poly-

nomial algorithms for hamiltonian paths and cycles in quasi-transitive di-

graphs (see Chapter 5) and solving more general problems in this class of
digraphs. This theorem shows that quasi-transitive digraphs are totally #-

decomposable, where @ is the union of extended semicomplete and transitive

digraphs. Since both extended semicomplete digraphs and transitive digraphs

are special subclasses of much wider classes of digraphs, it is natural to study

totally é-decomposable digraphs, where @ is a much more general class of

digraphs than the union of extended semicomplete and transitive digraphs.

However, our choice of candidates for the class & should be restricted in such

a way that we can still construct polynomial algorithms for some important

problems such as the hamiltonian cycle problem using properties of digraphs

in @,

This idea was first used by Bang-Jensen and Gutin [62] to introduce the
following three classes of digraphs:

(a) ®o is the union of all semicomplete multipartite digraphs, all connected

extended locally semicomplete digraphs and all acyclic digraphs,

(b) #, is the union of all semicomplete bipartite digraphs, all connected ex-

tended locally semicomplete digraphs and all acyclic digraphs, and

(c) #2 is the union of all connected extended locally semicomplete digraphs

and all acyclic digraphs.

The aim of this section is to show that totally ;-decomposable digraphs

can be recognized in polynomial time for i = 0,1,2. (If these recognition

problems were not polynomial, then the study of the properties of totally

@;-decomposable digraphs would be of much less interest.)

A set ® of digraphs is hereditary if D € @ implies that every induced

subdigraph of D is in &. Observe that every $;, 1 = 0,1, 2 is a hereditary set.

Lemma 4.12.1 Let & be a hereditary set of digraphs. If a given digraph D

is totally -decomposable, then every induced subdigraph D' of D is totally

@-decomposable. In other words, total -decomposability is a hereditary prop-

erty.

Proof: By induction on the number of vertices of D. The claim is obviously

true if D has less than 3 vertices.

If D € @, then our claim follows from the fact that @ is hereditary. So

we may assume that D = R[Hj,...,H,], r > 2, where R € © and each of

H,,...,H, is totally 6-decomposable.

Let D’ be an induced subdigraph of D. If there is an index 7 so that

V(D') c V(H;), then D’ is totally é-decomposable by induction. Otherwise,
D = Aili. 1,)|, wheres > 2.and Re ©, is the subdigraph of A

induced by those vertices i of R, whose H; has a non-empty intersection with

216 4. Classes of Digraphs

V(D’') and the T;’s are the corresponding H;’s restricted to the vertices of

D'. Observe that ’R' € ®, since @ is hereditary. Moreover, by induction, each

T; is totally 6-decomposable, hence so is Oke O

Lemma 4.12.2 There ezists an O(mn + n?)-algorithm for checking if a di-

graph D with n vertices and m arcs has a decomposition D = Bits steppldchs

r > 2, where H; is an arbitrary digraph and the digraph R 1s either acyclic

or semicomplete multipartite or semicomplete bipartite or connected extended

locally semicomplete.

Proof: If D is not connected and D,,...,D, are its components, then D =

K.[Di,...,D-]. Hence, in the rest of the proof we may assume that D is

connected. We consider the different possibilities for R we are interested in,

one by one.

Check whether R can be acyclic: First find the strong components

D,,...,D, of D. If k = 1 then R cannot be acyclic and we can stop ver-

ifying that possibility. So suppose k > 2.

If we find two strong components D; and D; such that there is an arc
between them but there are non-adjacent vertices x € D; and y € Dj, then

we replace D; and D; by their union. This is justified because D; and D;

cannot be in different sets H, and H; in a possible decomposition. Repeat

this step but now check also the possibility for a pair D' and D” of new

‘components’ to have arcs between D’ and D” in different directions. In the

last case we also replace D' and D" by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them, or

there are all possible arcs from one to the other. Let V1,...,V,, 7 > 1 denote

the distinct vertex sets of the obtained ‘components’. If r = 1, then we cannot

find an acyclic graph as R. Otherwise D = R[V\,...,V;], r > 2, and we obtain

R by taking one vertex from each Vj.

Check whether R can be a semicomplete multipartite digraph: Find

the connected components Gj,...,G,., c > 1, of the complement of the un-

derlying graph UG(D) of D. If c = 1, then R cannot be semicomplete mul-

tipartite. So we may assume that c > 2 below. Let G; be the subgraph of

UG(D) induced by the vertices V; of the jth component G; of the comple-

ment of UG(D). Furthermore, let Gj1,...,Gjn;, mj > 1, be the connected
components of G';. Denote Vj, = V(Gjx).

Starting with the collection W = {V,,...,V-}, we identify two of the sets
V, and V; if there exist Vj, and Vj, a € {1,..., ni}, b € {1,...,n;} such that
we have none of the possibilities Vig-tVjp, Vjs-+Via or Via >Vjp and V3, Via.

Clearly the obtained set V; UV; induces a connected subdigraph of D. Let
Qi,...,Q, denote the sets obtained, by repeating this process until no more
changes occur. If r = 1, then R cannot be semicomplete multipartite. Other-
wise, F is the semicomplete multipartite digraph obtained by set-contracting
each connected component of Q; into a vertex.

4.13 Intersection Digraphs 217

Checking whether R can be a semicomplete bipartite digraph or a con-
nected extended locally semicomplete digraph is left as Exercise 4.38.

It is not difficult to see that, for every R being either acyclic or semicom-
plete multipartite, the procedures above can be realized as an O(nm + n*)-
algorithm. The same complexity is proved for semicomplete bipartite digraphs
and extended locally semicomplete digraphs in Exercise 4.38. 0

Theorem 4.12.3 /62] There exists an O(n?m-+n°*)-algorithm for checking if
a digraph with n vertices and m arcs is totally $;-decomposable for i = 0,1, 2.

Proof: We describe a recursive algorithm to check 4;-decomposability. We

have shown in Lemma 4.12.2 how to verify whether D = R[Hj,..., H,,
r > 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite

or connected extended locally semicomplete. Whenever we find an R that

could be used, the algorithm checks total ;-decomposability of H,,...,H,

in recursive calls.

Notice how the algorithm exploits the fact that total ;-decomposability

is a hereditary property (see Lemma 4.12.1): if some R is found appropriate,

then R can be used, because if D is totally };-decomposable, then each of

H,,...,H, (being an induced subdigraph of D) must also be totally $;-

decomposable. Since there are O(n) recursive calls, the complexity of the

algorithm is O(n?m + n?). Oo

4.13 Intersection Digraphs

Let U and V be sets and let F = {(S,,T,) : Sy,Ty C U and vu € V} be

a family of ordered subsets of U (one for each v € V). The intersection
digraph corresponding to F is the digraph Dz = (V, A) such that vw € A
if and only if S$, NT,, # @. The set U is called the universal set for D-=.

The above family of pairs form a representation of D. The concept of an

intersection digraph is a natural analogue of the notion of an intersection

graph and was introduced by Beineke and Zamfirescu [101] and Sen, Das,

Roy and West [661]. Since an arc is an ordered pair of vertices, every line

digraph L(D) is the intersection digraph of the family A(D'), where D’ is the

converse of D. It follows from the definition of an intersection digraph that

every digraph D is the intersection digraph of the family {(At(v), A~(v)) :
v € V(D)}, where At(v) (A~(v)) is the set of arcs leaving v (entering v).
Here the universal set is A(D).

Clearly, a digraph can be represented as the intersection digraph of various

families of ordered pairs. It is quite natural to ask how large the universal set

U has to be. For a digraph D the minimum number of elements in U such
that D = Dg for some family F of ordered pairs of subsets of U is called

the intersection number, in(D) of D. Sen, Das, Roy and West [661] prove

_ the following theorem for the intersection number of an arbitrary digraph D.

218 4. Classes of Digraphs

For a digraph D = (V, A), a set B C A is one-way if there is a pair of sets

X,Y CV (called a generating pair) such that B = (X,Y)p, that is, B is

the set of arcs from X to Y.

Theorem 4.13.1 [661] The intersection number of a digraph D = (V, A)

equals the minimum number of one-way sets required to cover A.

Proof: Let B,,...,B, be a minimum collection of one-way sets covering

A and let (X1,Y1),...,;(Xz, Y~) be the corresponding generating pairs. Let

Sy = {i: v © Xj}, and T, = {i: v € Y;}. Then S,N Ty F O if and only if
vw € A, showing that in(D) < k.

Now let U be a universal set of cardinality u = in(D) such that D has
a representation by a set of ordered pairs (S,,T,) of subsets of U. We may

assume that U = {1,2,...,u}. Define u one-way sets covering A as follows:

v € X; if and only if i € S, and v € Y; if and only if i € T,. Then vw € A if

and only if v € X;, w € Y; for some 7. Thus, k < in(D). Oo

A subtree intersection digraph is a digraph representable as the inter-

section digraph of a family of ordered pairs of subtrees in an undirected tree.

A matching diagram digraph is digraph representable as the intersection

digraph of a family of ordered pairs of straight-line segments between two par-

allel lines. An interval digraph is a digraph representable as the intersection

digraph of a family of ordered pairs of closed intervals on the real line. Sub-

tree intersection digraphs, matching diagram digraphs and interval digraphs

are ‘directed’ analogues of chordal graphs, permutation graphs and interval

graphs, respectively, where subtrees, straight-line segments and real line in-

tervals are also used for representation (see the book [331] by Golumbic).
While chordal graphs form a special family of undirected graphs, Harary,

Kabell and McMorris showed that every digraph is a subtree intersection

digraph.

Proposition 4.13.2 [400] Every digraph is a subtree intersection digraph.

Proof: Let D = (V, A) be an arbitrary digraph. Let G = (U, E), U = Vu{z},

E = {{z,v}: v € V}, a ¢ V. Clearly, G is an undirected tree. Setting

Sy = G({v}) and T, = G({x} U{w : wv € A}) provides the required
representation. 0

The following construction by Miiller shows that every interval digraph

is a matching diagram digraph [576]. Let {({a,, by], [cv,dy] : vu € V(D)}
be a representation of an interval digraph D. To obtain a representation

{(Sy,Ty) : v € V(D)} of D as a matching diagram digraph we set S, to be
the line segment between points (a,,0) and (by, 1) in the plane, and T, to be
the line segment connecting the points (cy, 1) and (d,,0).

There are several characterizations of interval digraphs, see, e.g., the pa-
pers [650] by Sanyal and Sen and [736] by West. We restrict ourselves to just
one of them.

4.14 Planar Digraphs 219

Theorem 4.13.3 /661] A digraph D is an interval digraph if and only if
there exist independent row and column permutations of the adjacency matrix

M(D) of D which result in a matrix M' satisfying the following property: the

zero entries of M' can be labeled R or C such that every position above and

to the right of an R is an R and every position below and to the left of a C

is aC. 0

None of the characterizations given in [650, 736] implies a polynomial

algorithm to recognize interval digraphs. Miiller [576] obtained such an algo-

rithm. A polynomial algorithm is also given in [576] to recognize unit interval

digraphs, i.e., interval digraphs who have interval representations, where all

intervals are of the same length.

4.14 Planar Digraphs

We now discuss planar (di)graphs, i.e. (di)graphs that can be drawn without
crossings between (arcs) edges (except at endpoints). Clearly this property
does not depend on the orientation of the arcs and hence we can ignore the

orientation below when we give a formal definition. Furthermore, most of the

results and definitions in this section are for undirected graphs, but are valid
also for planar digraphs as far as their underlying graphs are concerned.

An undirected graph G = (V, £) is planar if there exists a mapping f
which maps G to RR? in the following way:

Each vertex is mapped to a point in R? and distinct vertices are mapped

to distinct points.

Each edge uv € E is mapped to a simple (that is, not self-intersecting)

curve Cy, from f(u) to f(v) and no two curves corresponding to distinct

edges intersect, except possibly at their endpoints.

For algorithmic purposes as well as for arguing about planar graphs, it is

inconvenient to allow arbitrary curves in the embeddings of planar graphs.

A polygonal curve from uw to v is a piecewise linear curve consisting of

finitely many lines such that the first line starts at u, the last line ends at v

and each other line starts at the last point of the previous line. Since we can

approximate any simple curve arbitrarily well by a polygonal curve we may

assume that the curves used in the embedding are always polygonal curves.

A planar graph G may have many different embeddings in the plane (each

embedding corresponds to a mapping f as above). Sometimes we wish to refer

to properties of a specific embedding f of G. In this case we say that G is

plane (that is, already embedded) with planar embedding f. A plane graph G

partitions R? into a finite number of (topologically) connected regions called
faces. Precisely one of these faces is unbounded and we call this the outer

face. It is easy to see that, for any fixed face F of G, we may reembed G in

220 4. Classes of Digraphs

R2 in such a way that F becomes the outer face. The boundary of a face F

is denoted by bd(F’) and we normally describe a face by listing the vertices in

clockwise order around the face (for the unbounded face this corresponds to

listing the vertices on the boundary in the anti-clockwise order). See Figure

4.20 for an illustration of the definitions.

4 4

(a) (b) (c)

Figure 4.20 (a) shows a non-planar embedding of a graph H; (b) shows a planar
embedding of H; (c) shows a planar embedding of H where all curves are polygonal.
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543.
The outer face is 36543.

Observe that, if we add the edge 25 to the graph H in Figure 4.20, then

the resulting graph, which is isomorphic to K3,3, is no longer planar. In fact

planar graphs have a famous characterization, due to Kuratowski:

Theorem 4.14.1 (Kuratowski’s theorem) /507] A graph has a planar
embedding if and only if it does not contain a subdivision® of Ks or K33. O

Based on this it is possible to show that planar graphs (and hence also

planar digraphs) can be recognized efficiently. In fact Hopcroft and Tarjan

[432] showed that it can be done in linear time and if the graph is planar,

one can find a planar embedding in the same time.

The following relation between the number of vertices, edges and faces in

a plane graph, known as Euler’s formula, is easy to prove by induction on

the number of faces.

Theorem 4.14.2 If G is a connected plane graph on n vertices and m edges,
then

nm—m+o= 2,

where @ denotes the number of faces in the embedding on G. In particular

the number of faces is the same in every embedding of G. oO

° A subdivision H’ of a graph H is any graph that can be obtained from H by
replacing each edge by a path all of whose internal vertices have degree 2 in H’.

4.15 Application: Gaussian Elimination 221

We leave it to the reader to derive the following easy consequence of
Theorem 4.14.2 (see Exercise 4.42):

Corollary 4.14.3 For every planar graph on n > 3 vertices and m edges we

have m < 3n —6. 0

If we allow multiple edges, then we cannot bound the number of edges

as we did above. However for planar digraphs we have the following easy

consequence:

Corollary 4.14.4 No planar digraph on n > 3 vertices has more than 6n—12

arcs. O

For much more information about drawings of graphs (in particular em-

beddings of planar graphs) we refer the reader to the recent book [97] by
Battista, Eades, Tamassia and Tollis. This book also contains a number of

results on how to use digraph techniques (in particular network flows) to
obtain nice drawings of (di)graphs.

4.15 Application: Gaussian Elimination

In many applications, such as modeling a problem by a system of differential

equations and then solving this system by numerical methods (cf. the book

[208] by Duff, Erisman and Reid), the final step of the solution of the problem

under consideration consists of solving a system of linear equations: Ax = b,

where A = [a;;] is an n x n matrix of coefficients, b is a given vector of
dimension n and z is a vector of unknowns. In a considerable number of

applications the matrix A is sparse, i.e., most entries of A are zero. The

system Az = b is often solved by the Gaussian elimination method. To use

this method, the only requirement is that all diagonal elements a,; of matrix

A can be made non-zero row and column permutations.

In many cases in practice, a sparse matrix A has some special structure,

which allows one to solve the system much faster than just using Gaussian

elimination directly. One of the most important such structures is block-

triangular structure. Let ni,n2,...,n% be natural numbers such that 1 <

nt <n <... < ng =n and let no = 0. We call the submatrices A’) =

[ai,,j,], With np_1 +1 < tp, jp < Np, the main (n1,...,p)-blocks (or just
main blocks). We say that A has (n1,..., p)-block-triangular structure
(or just block-triangular structure) if all entries of A below the main blocks

are zero. (More precisely, one should call this structure upper block-triangular

[208], but since we do not consider lower block-triangular structure here, we
will omit the word ‘upper’.) The matrix

3241
5600
SU sgo
0003

dae 4. Classes of Digraphs

has (3, 1)-block-triangular structure. See also Figure 4.21.

n_0

= _N
=~ bes = n_2

iN =<"
Deas

Figure 4.21 An (mi, n2, 73, 74)-block-triangular structure. White space consists of

entries equal zero.

If A has block-triangular structure, we solve first the system Al?) z(?) =

b(?), where x?) (b(?)) is the vector consisting of np last coordinates of x (0).

The values of coordinates of x), which we found, equal the values of the

corresponding unknowns in the system Az = 6 since in the last np rows of A

all coefficients except for some in the last np columns are zero. Taking into
consideration that the values of coordinates of x‘) are already found, we can

compute the values of coordinates of r°—!) using the block A‘?—)). Similarly,
using all blocks of A (in the decreasing order of their indices) we can compute
all coordinates in z.

However, quite often the block-triangular structure of A is hidden, i.e.

A has no block-triangular structure, but A can be transformed into a matrix

with block-triangular structure after certain permutations a and 7 of its

rows and columns, respectively. Here we are interested in using the Gaussian

elimination method and thus we assume that all diagonal entries of A are

non-zero (when it is possible, one can find permutations of rows and columns

of A, which bring non-zero diagonal to A using perfect matchings in bipartite

graphs, see [208]). Therefore, we do not wish to change the diagonal entries
of A. This can be achieved by using only simultaneous permutations of rows

and columns of A, i.e. 7 = T.

To reveal hidden block-triangular structure of A, the following approach

can be used. Let us replace all non-zero entries of A by 1. We obtain matrix

B = [bj;], which can be viewed as the adjacency matrix of some directed

pseudograph D with vertex set {v1,...,Un}, ie. bj; = 1 if and only if uv; 0;

in D. (Clearly, D has no parallel arcs, but due to the assumption on the

diagonal elements it has a loop at every vertex.) Suppose that D is not

strong, D;,..., Dp is the acyclic ordering of the strong components of D (i.e.

there is no arc from D; to D; if j > i) and the vertices of D are ordered
Un (1) > Un(2)1 +++) Un(n) such that

4.15 Application: Gaussian Elimination 223

V(Di) = HOR Pre rely cee yy 0G A reg h hhc

It is easy to see that B has (n1,...,np)-block-triangular structure. This im-
plies that A has block-triangular structure. The above observation suggests

the following procedure to reveal hidden block-triangular structure of A.

1. Replace every non-zero entry of A by 1 to obtain a (0, 1)-matrix B.

2. Construct a directed pseudograph D with vertex set {v1,...,Un} such

that B is the adjacency matrix of D.

3. Find the strong components of D. If D is strong, then B (and thus A)
does not have hidden block-triangular structure®. If D is not strong, let

D,,...,Dp be the strong components of D (in acyclic order). Find a
permutation 7 on {1,...,n} such that

V (Di) = Uninet Un(ni+2)>°°- RU eda

This permutation reveals hidden block-triangular structure of B (and

thus A). Use m to permute rows and columns of A and coordinates of z
and 0b.

To perform Step 3 one may use Tarjan’s algorithm in Section 4.4.

We will illustrate the procedure above by the following example. Suppose

we wish to solve the system:

ais Hots 4 OL4 — 2;

22 + Or4e= 1,

22; + 2x2 + 423 + 924 = 6,

329 ao Thigh = a)

We first construct the matrix B and the directed pseudograph D. We

have V(D) = {v1, v2, v2, v4} and

A(D) = {v1 V3, 014, V2V4, UZU1, U3V2, U3 V4, V4V2} U {uju;: 7 = 1, 2,3, 4}.

The digraph D has strong components D) and D), which are subdigraphs
of D induced by {v1, v3} and {v2, v4}, respectively. These components suggest

the following permutation 7, m(i) =i for i = 1,4, 7(2) = 3 and 7(3) = 2, of
rows and columns of A as well as elements of x and J, the right-hand side.

As a result, we obtain the following:

x, + 32} + 824, = 2,
2a, +425 +22, 92, =6,

Cote. — a,
325 + 224 = 3,

® Provided we do not change the set of entries of the diagonal of A

224 4. Classes of Digraphs

where x! = 2; fori =1,4, 7) = 23 and 23 = 22.

a sivas the last two equations separately, we obtain 7, = 1, Ti gene

Now solving the first two equations, we see that r; = 2, ao UP ience,

2, fp eee — ay = 0:

A discussion on practical experience with revealing and exploiting block-

triangular structures is given in [208].

4.16 Exercises

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

Let 6(u) be the forefather of a vertex u as defined in Section 4.4. Combining

(4.2) and (4.3), prove that ¢(¢(u)) = o(u).

Prove Proposition 4.3.1.

Prove Lemma 4.4.1.

In part (ii) > (i) of Theorem 4.5.1, prove that o(D) = L(Q).

Derive Corollary 4.5.2 from Theorem 4.5.1 (iii).

(—) Prove Proposition 4.5.3 using Theorem 4.5.1 (i) and (ii).

Prove the aa simple properties of line digraphs:

G)SECD) = Pr-1 if and only if D = Py;

(ii) L(D) = C, if and only if D = cx

Let D be a digraph. Show by induction that L*(D) is isomorphic to the
digraph H, whose vertex set consists of walks of D of length k and a vertex
vov1...Ug dominates the vertex v1 v2...UkUk+1 for every ve4i1 € V(D) such

that v,ve+i € A(D).

Using the results in Exercise 4.7, prove the following elementary properties
of iterated line digraphs: Let D be a digraph. Then
(i) L*(D) is a digraph with no arcs, for some k, if and only if D is acyclic;
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then

lime; = 008
k—oo

where nx is the order of L*(D);
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large

values of k, each connected component of L* (D) has at most one cycle.

Prove by induction on k > 1 Proposition 4.5.4.

Prove Lemma 4.6.1.

Prove Lemma 4.6.5.

Prove Lemma 4.6.6.

Prove Theorem 4.6.7.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4,25.

4.26.

4,27.

4.28.

4.29.

4.30.

4.31.

4.16 Exercises 225

Upwards embeddings of MVSP digraphs. Prove that one can embed
every MVSP digraph D into the Cartesian plane such that, if vertices u,v
have coordinates (ru, yu) and («,, yy), respectively, and there is a (u, v)-path
in D, then ry < zy and yz < yy. Hint: consider series composition and
parallel composition separately.

Prove Proposition 4.7.2. Hint: use induction on the number of reductions
applied for the ‘if’ part and the number of arcs for the ‘only if’ part.

Prove Proposition 4.7.3.

Prove part (b) of Lemma 4.8.4. Hint: if w and v are in S then there is a

path from u to v in UG(S). Similarly, if z and y are in S’. Use these paths
(corresponding to sequences of non-adjacent vertices in D) to show that if
ru and vy are arcs, then u = v and x = y must hold if D is quasi-transitive.

(—) Construct an infinite family of path-mergeable digraphs, which are not
in-path-mergeable.

Prove Proposition 4.10.2.

(—) Show that the following ‘claim’ is wrong. Let D be a locally in-
semicomplete digraph and let D contain internally disjoint paths P,, P2 such
that P; is an (z;, y)-path (¢ = 1,2) and x1 # x2. Then 2; and zp are adjacent.

Orientations of path-mergeable digraphs. Prove that every orientation
of a path-mergeable digraph is a path-mergeable oriented graph.

(+) Prove Corollary 4.9.2.

Path-mergeable digraphs which are neither locally in-semicomplete
nor locally out-semicomplete. Show by a construction that there ex-
ists an infinite class of path-mergeable digraphs, none of which is locally
in-semicomplete or locally out-semicomplete. Then extend your construction
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions.

(—) Path-mergeable transitive digraphs. Prove that a transitive digraph
D = (V, A) is path-mergeable if and only if for every x,y € V and every pair
ruy, cvy of (x, y)-path of length 2 either uv or v—u holds.

Reformulate Lemma 4.10.3 and Theorem 4.10.4 for locally out-semicomplete
digraphs.

Orientations of locally in-semicomplete digraphs. Prove that every
orientation of a digraph which is locally in-semicomplete is a locally in-
tournament digraph.

Strong orientations of strong locally in-semicomplete digraphs.
Prove that every strong locally in-semicomplete digraph has a strong ori-
entation.

Prove Lemma 4.11.2.

Prove Corollary 4.11.7.

Prove Theorem 4.11.8.

226

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

4. Classes of Digraphs

Recognition of round digraphs. Show that the proof of Theorem 4.11.4

implies a polynomial algorithm to decide whether a digraph D is round and

to find a round labelling of D (if D is round).

(+) Using Lemma 4.11.13, show that, if D is a non-round decomposable

locally semicomplete digraph, then the independence number of UG(D) is at

most two.

(—) Give an example of a locally semicomplete digraph on 4 vertices with
no 2-king.

Prove Proposition 4.11.16.

Prove the assertion stated in Exercise 4.33 using Lemma 4.11.14 and Propo-
sition 4.11.16.

Extending in-path-mergeability. Prove that, if P,Q are internally dis-
joint (x, z)- and (y, z)-paths in an extended locally in-semicomplete digraph
D and no vertex on P — z is similar to a vertex of Q — z, then there is a path
R from either x or y to z,in D such that V(R) = V(P) UV(Q).

Prove that there exists an O(mn+n7)-algorithm for checking if a digraph D
with n vertices and m arcs has a decomposition D = R[Mi,...,H,], r > 2,
where H; is an arbitrary digraph and the digraph R is either semicomplete
bipartite or connected extended locally semicomplete.

(—) Let D be a connected digraph which is both quasi-transitive and locally
semicomplete. Prove that D is semicomplete.

(—) Let D be a connected digraph which is both quasi-transitive and locally
in-semicomplete. Prove that the diameter of UG(D) is at most 2.

(—) Prove that the intersection number in(D) < n for every digraph D of
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [661]).

Prove Corollary 4.14.3. Hint: use that each edge is on the boundary of pre-
cisely two faces and that each face has at least 3 edges.

(—) Check which of the following 4 x 4-matrices A = [a;;] have hidden block-
triangular structure (the entries not specified equal zero). Only simultaneous
permutations of rows and columns are allowed.

(a) a4; = i+'1 for i = 1,2,3, aay = as; = 7 for i = 2,3, and aaj'="2 for
SS Aah, ake

(b) Q12 = @21 = Q14 = A411 = A034 = A43 = 2 and aAayi = 1 for — ee Shee

5. Hamiltonicity and Related Problems

In this chapter we will consider the hamiltonian path and cycle problems for

digraphs as well as some related problems such as the longest path and cycle

problems and the minimum path factor problem. We describe and prove a

number of results in the area as well as formulate several open questions.

We recall that a k-path factor of a digraph D is a collection of k vertex-

disjoint paths covering V(D). Recall that the minimum positive integer k
such that D has a k-path factor is the path covering number of D, denoted

by pc(D). A pce(D)-path factor of D is also called a minimum path factor
of D. Recall also that a digraph is traceable if it contains a hamiltonian path.

For arbitrary digraphs the hamiltonian path and hamiltonian cycle prob-

lems are very difficult and both are \’P-complete (see, e.g. the book [303]
by Garey and Johnson). For convenience of later referencing we state these

results as theorems.

Theorem 5.0.1 The problem to check whether a given digraph has a hamil-

tonian cycle is NP-complete. 0

Theorem 5.0.2 The problem to check whether a given digraph has a hamil-

tonian path is NP-complete. Oo

It is worthwhile mentioning that the hamiltonian cycle and path problems

are NP-complete even for some special classes of digraphs. Garey, Johnson

and Tarjan showed [305] that the problem remains VP-complete even for
planar 3-regular digraphs. It follows easily from Theorems 5.0.1 and 5.0.2

that the problem to determine the minimum path factor as well as the longest

path and cycle problems are NP-hard as optimization problems for arbitrary

digraphs. This is also true for several special classes of digraphs. However,

for some important special classes of digraphs these problems are polynomial

time solvable. One such class is the class of acyclic digraphs (see Theorem

2.3.5 and Section 5.3). The reader will see in this chapter that many more
such classes can be found.

In Section 5.1, some powerful necessary conditions, due to Gutin and Yeo,

are considered for a digraph to be hamiltonian. These conditions can be used
for the hamiltonian path problem due to the following simple observation:

228 5. Hamiltonicity and Related Problems

Proposition 5.0.3 A digraph D has a Hamilton path if and only if the di-

graph D*, obtained from D by adding a new vertex x* such that x* dominates

every vertex of D and is dominated by every vertex of D, is hamiltonian. O

In Section 5.2 we prove that the path covering number of an arbitrary

digraph is never more than its independence number. In Section 5.3 we show

that the minimum path factor problem for acyclic digraphs can be solved

quite efficiently. Furthermore, we show that algorithms for finding minimum

path factors in acyclic digraphs are useful in a number of applications.

In Section 5.4, we obtain necessary and sufficient conditions by Bang-

Jensen for a path-mergeable digraph to be hamiltonian. Since locally in-

semicomplete and out-semicomplete digraphs are proper subclasses (see

Proposition 4.10.1) of path-mergeable digraphs, we may use these condi-

tions, in Section 5.5, to derive a characterization of hamiltonian locally in-

semicomplete and out-semicomplete digraphs. As corollaries, we obtain the

corresponding results for locally semicomplete digraphs. Digraphs with re-

stricted degrees are considered in Section 5.6. There, a number of degree-

related sufficient conditions for a digraph to be hamiltonian are described. In

that section, we also consider a recently introduced and powerful proof tech-

nique, called multi-insertion, that can be applied to prove many theorems on

hamiltonian digraphs.

In the last decade quite a number of papers were devoted to studying the

structure of longest cycles and paths of semicomplete multipartite digraphs.

In Section 5.7, we consider the most important results obtained in this area

so far including some striking results by Yeo. The proofs in that section

provide further illustrations of the multi-insertion technique. In Section 5.8,

we discuss generalizations of characterizations of hamiltonian and traceable

extended semicomplete digraphs to extended locally semicomplete digraphs.

Sections 5.9 and 5.10 are devoted to quasi-transitive digraphs. We present
two interesting methods to tackle the hamiltonian path and cycle problems,
and the longest path and cycle problems, respectively, in this class of di-
graphs. The second method by Bang-Jensen and Gutin allows one to find
even vertex-heaviest paths and cycles in quasi-transitive digraphs in polyno-
mial time (where the weights are on the vertices). The last section is devoted
to results on hamiltonian paths and cycles in some classes of digraphs not con-
sidered in the previous sections. The proof of Theorem 5.11.2 by Thomassen
illustrates how the properties of tournaments can be used to prove results on
more general digraphs.

For additional information on hamiltonian and traceable digraphs, see
e.g. the surveys [61, 66] by Bang-Jensen and Gutin, [126] by Bondy, [368] by
Gutin and [728, 729] by Volkmann.

5.1 Necessary Conditions for Hamiltonicity of Digraphs 229

5.1 Necessary Conditions for Hamiltonicity of Digraphs

An obvious condition for a digraph to be hamiltonian is to be strong. Another
obvious and, yet, quite powerful necessary condition for a digraph to be
hamiltonian is the existence of a cycle factor!. Both conditions can be verified
in polynomial time (see Sections 4.4 and 3.11.4). The purpose of this section is

to describe a series of more powerful conditions, called k-quasi-hamiltonicity,

which were recently introduced by Gutin and Yeo in [379]. An equivalent
form of 1-quasi-hamiltonicity, pseudo-hamiltonicity, was actually investigated

earlier by Babel and Woeginger in [35] for undirected graphs.
We prove that every (k + 1)-quasi-hamiltonian digraph is also k-quasi-

hamiltonian (however, there are digraphs which are k-quasi-hamiltonian, but

not (k + 1)-quasi-hamiltonian). We introduce an algorithm that checks k-
quasi-hamiltonicity of a given digraph with n vertices and m arcs in time

O(nm*). Hence, these conditions can be efficiently verified for small values
of k. Thus, they can be incorporated in software systems which investigate

properties of digraphs (or graphs); one such system is described by Delorme,

Ordaz and Quiroz in [189]. We prove that (n — 1)-quasi-hamiltonicity coin-

cides with hamiltonicity and 1-quasi-hamiltonicity is equivalent to pseudo-

hamiltonicity.

5.1.1 Path-Contraction

In this section we consider, for technical reasons, directed multigraphs. We use

a variation of the operation of contraction of a set of vertices in a directed

multigraph. This operation is called path-contraction and is defined as

follows. Let P be an (zx, y)-path in a directed multigraph D = (V, A). Then
D//P stands for the directed multigraph with vertex set V(D//P) = VU
{z}—V(P), where z ¢ V, and ups/p(uv) = up(ur), ups;p(uz) = up(uz),
Lp//p(2v) = up(yv) for all distinct u,v € V — V(P). In other words, D//P

is obtained from D by deleting all vertices of P and adding a new vertex

z such that every arc with head z (tail y) and tail (head) in V — V(P)
becomes an arc with head (tail) z and the same tail (head). Observe that
a path-contraction in a digraph results in a digraph (no parallel arcs arise).

We will often consider path-contractions of paths of length one, i.e. arcs e.

Clearly, a directed multigraph D has a k-cycle (k > 3) through an arc e if
and only if D//e has a cycle through z. Observe that the obvious analogue of

path-contraction for undirected multigraphs does not have this nice property

which is of use in this section. The difference between (ordinary) contraction
(which is also called set-contraction) and path-contraction is reflected in

Figure 5.1.

" Haggkvist [387] posed a problem to find classes of digraphs for which strong
connectivity and the existence of a cycle factor are sufficient for hamiltonicity.
In this chapter we consider some classes with this property.

230 5. Hamiltonicity and Related Problems

ib d
z y

c

D a
a

2

b d b Zz d

3

c c

D/{z,u,v,y} D//P, P =czuvy

Figure 5.1 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel

arcs.

As for set-contraction, for vertex-disjoint paths P,, P2,...,P; in D, the

path-contraction D//{P,,...,P,} is defined as the directed multigraph
(...((D//P1)//P2) ...)// Ps; clearly, the result does not depend on the order

Of Ps otek ie

5.1.2 Quasi-Hamiltonicity

The results in the remainder of this section are due to Gutin and Yeo. Let

D = (V,A) be a directed multigraph. Let QH;(D) = (V, A1) be the directed

multigraph with arc set

A, = {e € A: e is contained in a cycle factor of D}.

For k > 2, QH;(D) = (V, Ax) is the directed multigraph with arc set A, =

{e€ A: QH,-1(D//e) is strong}. For k > 1, a directed multigraph D is
k-quasi-hamiltonian, if QH;,(D) is strong. We assume (by definition) that
every directed multigraph is 0-quasi-hamiltonian. The quasi-hamiltonicity

number of a directed multigraph D of order n, qhn(D), is the maximum
integer k(< n) such that D is k-quasi-hamiltonian.

Figure 5.2 illustrates the notion of quasi-hamiltonicity. The directed multi-

graph H is 0-quasi-hamiltonian, but not 1-quasi-hamiltonian (QH,(H) =
H — {(3,4), (4,3)} is not strong). Hence, qhn(H) = 0. The directed multi-
graph D is 1-quasi-hamiltonian as QH,(D) = D is strong (every arc of D

5.1 Necessary Conditions for Hamiltonicity of Digraphs 231

belongs to a cycle factor of D). However, D is not 2-quasi-hamiltonian since
Q@H2(D) is not strong (indeed, QH\(D//(3,4)) = QH;i(L) is not strong).
Thus, qhn(D) = 1.

6 5 Ta 6 5

H D ib

Figure 5.2 Digraphs.

We start with some basic facts on k-quasi-hamiltonicity.

Proposition 5.1.1 [379] Let D be a directed multigraph of order n(> 2) and
let k € {2,3,...,2—1}. Then A(QH,(D)) C A(QHx-1(D)). In particular,

if D is k-quasi-hamiltonian, it is (k — 1)-quasi-hamiltonian.

Proof: We prove the claim by induction on k. Let e € A(QH2(D)). Thus,
QH,(D//e) is strong which, in particular, means that D//e has a cycle factor.
Hence, e € A(QHi(D)). Let now k > 3 and let e € A(QH,(D)). Then,
QH,-1(D//e) is strong. By the induction hypothesis, QH,~-2(D//e) is also
strong. Hence, e € A(QH,x_-1(D)). Oo

Theorem 5.1.2 [379] A directed multigraph is hamiltonian if and only if it

is (n — 1)-quasi-hamiltonian.

Proof: Clearly every hamiltonian directed multigraph of order 2 is 1-quasi-

hamiltonian. Now assume that all hamiltonian directed multigraphs of order

n — 1 are (n — 2)-quasi-hamiltonian, and let D be a hamiltonian digraph of
order n. Whenever we contract an arc belonging to a hamiltonian cycle we

obtain a hamiltonian digraph of order n — 1, which therefore is (n — 2)-quasi-
hamiltonian. Hence, every arc on a Hamilton cycle lies in QHn_-1(D), which
implies that QH,-1(D) is strong, i.e. D is (n — 1)-quasi-hamiltonian. Thus,

the ‘only if’ part is proved.

We prove the ‘if’ part. Let D be a directed multigraph, such that

QH,-1(D) is strong. Let e) be an arc in QH,_1(D). Since QHn-2(D//e1) is
strong there exists an arc e2 in QHn_2(D//e1). Since QHn_3((D//e1)//e2)

232 5. Hamiltonicity and Related Problems

is strong there exists an arc e3 in QH,_3((D/e1)//e2). Continuing this pro-

cedure we obtain arcs €1,€,...,€n—2, such that the directed multigraph

QH,((((D//e1)//e2).--)//en—2) is strong. Let

D' = (((D//e1)//e2) ---)//en-25

and observe that, since QH,(D’) is strong and D’ has order 2, D’ must be

hamiltonian. By inserting the arcs e€1,€2,...,@n—2 into a Hamilton cycle in

D', we obtain a Hamilton cycle in D. Oo

We leave the proof of the following theorem as a non-trivial exercise (Ex-

ercise 5.1).

Theorem 5.1.3 /379] For every k > 0, there exists a digraph D such that

Ghn(Diji— keen: . Oo

5.1.3 Pseudo-Hamiltonicity and 1-Quasi-Hamiltonicity

For a positive integer h, a sequence of vertices Q = v1 U2... Vani in a directed

multigraph D of order n is an h-pseudo-hamiltonian walk if every vertex

of D appears h times in the sequence v102...Uan and v;vji41 € A(D) for

every i = 1,2,...,hn (vangi = vi). A directed multigraph D possessing

such a sequence is called h-pseudo-hamiltonian and the minimum /h for

which D is h-pseudo-hamiltonian is the pseudo-hamiltonicity number

ph(D) of D. If D has no h-pseudo-hamiltonian walk for any positive integer

h, then ph(D) = oo. A directed multigraph D is pseudo-hamiltonian if
ph(D) < oo.

For example, in Figure 5.2, the digraph D is 2-pseudo-hamiltonian:

1212346565431 is a 2-pseudo-hamiltonian walk of D. This digraph is not

1-pseudo-hamiltonian as D is not hamiltonian. Thus, ph(D) = 2. It is not
difficult to see that the digraph H in Figure 5.2 is not pseudo-hamiltonian. We

have already seen that D is 1-quasi-hamiltonian, but H is not. The above

conclusions on pseudo-hamiltonicity of D and H can actually be obtained

from Theorem 5.1.5.

Lemma 5.1.4 follows from the fact that every regular directed multigraph

has a cycle factor (see Exercise 3.70), which implies that every h-regular

directed multigraph can be decomposed into h cycle factors.

Lemma 5.1.4 Every arc of a regular directed multigraph is included in a
cycle factor. oO

Theorem 5.1.5 /379] A directed multigraph is pseudo-hamiltonian if and

only if it is 1-quasi-hamiltonian.

5.1 Necessary Conditions for Hamiltonicity of Digraphs 233

Proof: Let D be a pseudo-hamiltonian directed multigraph, let Q be an

h-pseudo-hamiltonian walk in D, and let A(Q) = (v1, v2, v2U3,-.-,Uan—1Uhns

Unni) be the sequence of arcs in Q. Construct a new directed multigraph

H(D,Q) from D by replacing, for every pair x,y with up(ry) > 0, all arcs

from x to y in D by t(> 0) parallel arcs from z to y, where t is the number

of appearances of zy in A(Q). By the definition of an h-pseudo-hamiltonian

walk, H(D,Q) is an h-regular directed multigraph. Thus, by Lemma 5.1.4,

every arc zy in H(D,Q) is in a cycle factor. Therefore, y(p,Q) (ry) > 0
implies 4gH,(p)(ry) > 0. Since H(D,Q) is strong, we obtain that QH,(D)
is also strong, i.e. D is 1-quasi-hamiltonian.

Now let D be a 1-quasi-hamiltonian directed multigraph, i.e. QH;(D) is
strong. For each arc e in QH,(D) let F. be a cycle factor in D including e.
Let D’ = Ueea(qu,(p))Fe- As the union of cycle factors, D’ is regular. Since

QH,(D) is strong, D’ is also strong. Therefore, D’ has a eulerian trail, which
corresponds to a pseudo-hamiltonian walk in D. oO

The following theorem provides a sharp upper bound for the pseudo-

hamiltonicity number of a digraph.

Theorem 5.1.6 [379] For a pseudo-hamiltonian digraph D, ph(D) < (n —
1)/2. For every integer n > 3, there exists a digraph H,, of order n such that

ph(Hn) = [(n — 1)/2].

Proof: Exercise 5.2. Oo

5.1.4 Algorithms for Pseudo- and Quasi-Hamiltonicity

It is easy to check whether a digraph is 1-quasi-hamiltonian (i.e., by Theorem

5.1.5 is pseudo-hamiltonian). Indeed, checking whether Q H,(D) is strong can
be done in time O(n + m) (see Section 4.4). Hence, it suffices to show how
to verify for each arc ry if this arc is on some cycle factor. We can merely

replace xy by a path xrzy, where z is not in D, and check whether the new

digraph has a cycle factor. This can be done in time O(,/nm) by Corollary

3.11.7. Thus, we obtain the total time of O(./nm?). This complexity bound
was improved by Gutin and Yeo [379] as follows.

Theorem 5.1.7 We can check whether a directed multigraph D is pseudo-

hamiltonian in O(nm) time.

Proof: Exercise 5.3. O

The following theorem implies that one can check k-quasi-hamiltonicity

for a constant k in polynomial time.

Theorem 5.1.8 [379] In O(nm*) time, one can check if a directed multi-
graph is k-quasi-hamiltonian.

234 5. Hamiltonicity and Related Problems

Proof: In this proof, we describe an algorithm A that, in time T (k), checks

whether a directed multigraph D is k-quasi-hamiltonian. We will show that

T(k) = O(nm*).

If k = 1, the algorithm A uses the algorithm B of Theorem 5.1.7. Thus,

T(1) = O(nm). If k > 2 then, for each arc e in D, A verifies whether D//e

is (k — 1)-quasi-hamiltonian. The algorithm A forms QH;,(D) from all arcs

e such that D//e is (k — 1)-quasi-hamiltonian. Finally, A checks whether

QH;,(D) is strong (in time O(m)). This implies that, for k > 2,

T(k) < mT(k—1)+O(m).

Since T'(1) = O(nm), we obtain that T(k) = O(nm*). Oo

5.2 Path Covering Number

The following attainable lower bound for the path covering number of a

digraph D is quite trivial: pcc(D) < pc(D). We will see later in this chapter

that pcc(D) = pc(D) for acyclic digraphs and semicomplete multipartite
digraphs D. The aim of this short section is to obtain a less trivial attainable

upper bound for pc(D). This bound is of use in several applications (see, e.g.,

Section 5.3).
Recall that the independence number a(D) of a digraph D is the cardi-

nality of a maximum independent set of vertices of D (a set X C V(D) is

independent if no pair of vertices in X is adjacent). Rédei’s theorem (Theo-

rem 1.4.5) can be rephrased as saying that every digraph with independence

number 1 has a hamiltonian path and hence path covering number equal 1.

Gallai and Milgram generalized this as follows.

Theorem 5.2.1 (Gallai-Milgram theorem) /298] For every digraph D,

pe(D) < a(D).
This theorem is an immediate consequence of the following lemma by

Bondy [126]:

Lemma 5.2.2 Let D be a digraph and let P = P, UP2U...UP, be an s-path

factor of D. Let i(P) (t(P)) denote the set of initial (terminal) vertices of the
paths in P. Suppose that s > a(D). Then there exists an (s — 1)-path factor

P' of D such that i(P') C i(P) and t(P') Cc t(P).

Proof: The proof is by induction on n, the order of D. The case n = 1
holds vacuously. Let P be as described in the lemma. Let the path P; in P
be denoted by 2j1252...%jr;, j =1,2,...,8. Since s > a(D) the subdigraph
D(i(P)) must contain an arc r,12;1 for some k # j (1 <k,j <s).

If r, = 1, then we can replace P,, P; by the path pi P; and obtain the
desired path factor. So suppose that r, > 1. Now consider D* = D —2,, and

5.3 Path Factors of Acyclic Digraphs with Applications 235

the path factor P* which we obtain from P by deleting x,; from the path Py.

Clearly a(D*) < a(D) and we have i(P*) = i(P) — te1 + pa, t(P*) = t(P).
Thus it follows by the induction hypothesis that D* has an (s—1)-path factor

Oisuch thatet(Q) e t(P*))4(Q) Gi(P*).
If reo € i(Q), let Q, be the path of Q whose initial vertex is 7,2. Replacing

Q, with r%1Q, we obtain a path factor in D with the desired properties. So

suppose that x, is not an initial vertex of any of the paths in Q. Then 251

must belong to i(Q) and we obtain the desired path factor by replacing the

path Q, of Q which starts at 2j; by the path 2,%1Q,. Oo

The following theorem due to Erdés and Szekeres [596] follows easily from
Theorem 5.2.1.

Theorem 5.2.3 Let n,p,q be positive integers with n > pq, and let I =

(i1,22,...,%n) be a sequence of n distinct integers. Then there exists either

a decreasing subsequence of I with more than p integers or an increasing

subsequence of I with more than q integers.

Proof: Let D = (V,A) be the digraph with V = {i1,%2,...,in} and A =

{imiz : m< k and im < ix}. Observe the obvious correspondence between

independent sets of D and decreasing subsequences of J (respectively, paths

of D and increasing subsequences of J). Let F = P, U...U P, be a minimal

path factor of D. By Theorem 5.2.1, s < a(D). Hence, a(D)-max$_, |P;| >

n > pq. Thus, either a(D) > p, i.e., there exists a decreasing subsequence

with a(D) > p integers, or max#_, |P;| > q, i-e., there exists an increasing
subsequence with more than q integers. O

Very recently, the following improvement on Theorem 5.2.1 in the case of

strong digraphs was proved by Thomassé. This was originally conjectured by

Las Vergnas (see [107]).

Theorem 5.2.4 /695/ If a digraph D is strong, then pc(D) < max{a(D) —

1a}:

Las Vergnas (see [106]) proved the following generalization of Theorem
Deel).

Theorem 5.2.5 Every digraph D of finite out-radius has an out-branching
with at most a(D) vertices of out-degree zero. Oo

Theorem 5.2.5 implies Theorem 5.2.1 (Exercise 5.7).

5.3 Path Factors of Acyclic Digraphs with Applications

For acyclic digraphs it turns out that the minimum path factor problem can

be solved quite efficiently. This is important since this problem has many

practical applications. One such example is as follows.

236 5. Hamiltonicity and Related Problems

A news agency wishes to cover a set of events Fy, H2,...,H, which take

place within the coming week starting at a prescribed time T;. For each event

E; its duration time t; and geographical site O; is known. The news agency

wishes to cover each of these events by having one reporter present for the

full duration of the event. At the same time it wishes to use as few reporters

as possible. Assuming that the travel time t,; from O; to Oj; is known for
each 1 < 1,7 <n, we can model this problem as follows. Form a digraph

D = (V,A) by letting V = {v1,v2,...,Un} and for every choice of i 4 j put

an arc from v; to v; if T; > 7; +t, +t. It is easy to see that D is acyclic.

Furthermore, if the events can be covered by k reporters then D has a k-path

factor (just follow the routes travelled by the reporters). It is also easy to see

that the converse also holds. Hence having an algorithm for the minimum

path factor problem for acyclic digraphs will provide a solution to this and a

large number of similar problems (such as airline and tanker scheduling, see
Exercise 5.8).

Clearly, pc(D) = pcc(D) for every acyclic digraph D. Using flows in
networks, we can effectively find a pcc(D)-path-cycle factor in any digraph D

(see Exercises 3.59 and 3.7). Since a k-path-cycle factor in an acyclic digraph
has no cycles, this implies that the minimum path factor problem for acyclic
digraphs is easy (at least from an algorithmic point of view).

Theorem 5.3.1 For acyclic digraphs the minimum path factor problem is
solvable in time O(./nm). Oo

Another application of the path covering number of acyclic digraphs is
for partial orders. A partial order consists of a set X anda binary relation
‘ < ' which is transitive (that is, x < y,y < z implies x < z). Let P = (X, x)
be a partial order. Two elements x,y € X are comparable if either x ~ y
or y < x holds. Otherwise z and y are incomparable. A chain in P is
a totally ordered subset Y of X, that is, all elements in Y are pairwise
comparable. An antichain on P is a subset Z of X, no two elements of
which are comparable. Dilworth proved the following famous min-max result
relating chains to antichains:

Theorem 5.3.2 (Dilworth’s theorem) /193] Let P = (X,~<) be a partial
order. Then the minimum number of chains needed to cover X equals the
mazimum number of elements in an antichain.

Proof: Given P = (X, x), let D = (X, A) be the digraph such that ryEA
for « # y € X if and only if x < y. Clearly, D is transitive. Furthermore,
a path (an independent set) in D corresponds to a chain (antichain) in P.
We need to show that pc(D) = a(D). By Theorem 5.2.1, pe(D) < a(D).
Let F =P, UP2U...UP be a minimum path factor of D. By transitivity
of D, each V(P;) induces a complete subgraph in UG(D). Hence, a(D) =
a(UG(D)) < k = pce(D). Thus, pc(D) = a(D). Oo

5.4 Hamilton Paths and Cycles in Path-Mergeable Digraphs 237

The last theorem can obviously be reformulated as follows: a(D) = pc(D)
for every transitive oriented graph D. We conclude this section with an ex-

tension of the analogous result to extended semicomplete digraphs. Lemma

5.3.3 will be used in Section 6.11.

Lemma 5.3.3 Let D be an acyclic extended semicomplete digraph with

a(D) =k, then the following holds:

{a} pelt D)= k.
(b) One can obtain a minimum path factor of D as follows: choose a longest

path P in D, remove V(P) and continue recursively.

(c) One can find a minimum path factor using the greedy algorithm in (b) in
total time O(nlogn) (using the adjacency matrix).

Proof: By Theorem 5.2.1 pc(D) < k. On the other hand no path can contain

two vertices from the same independent set as that would imply that D

contains a cycle. Hence pc(D) = k. To prove (b), let P be a longest path

of D. By the argument above a(D — P) > k —1. On the other hand D can
be written as D = S[Ka,, Ka,,.--, Ka,], where S is a semicomplete digraph
and s = |V(S)|. By Rédei’s theorem (Theorem 1.4.5), S has a hamiltonian
path P’. In D this path corresponds to a path Q which contains precisely

one vertex from each maximal independent set. Hence Q is a longest path

in D by the remark above and we have a(D — Q) = k — 1. Now the second

claim follows by induction on k. The third claim follows from the description

of procedure MergeHamPathTour in Section 1.9.1, assuming that we have an

adjacency matrix representation of D. Note that we delete the paths as we

find them and hence the total complexity is still O(n logn). Oo

5.4 Hamilton Paths and Cycles in Path-Mergeable

Digraphs

The class of path-mergeable digraphs was introduced in Section 4.9, where

some of its properties were studied. In this section, we prove a characteriza-

tion of hamiltonian path-mergeable digraphs due to Bang-Jensen [50].

We begin with a simple lemma which forms the basis for the proof of

Theorem 5.4.2. For a cycle C, a C-bypass is a path of length at least two

with both end-vertices on C and no other vertices on C’.

Lemma 5.4.1 [50] Let D be a path-mergeable digraph and let C' be a cycle in

D. If D has a C-bypass P, then there exists a cycle in D containing precisely

the vertices V(C) UV(P).

Proof: Let P be an (x, y)-path. Then the paths P and C[z, y] can be merged
into one (zx, y)-path R, which together with C[y, z] forms the desired cycle.

O

238 5. Hamiltonicity and Related Problems

Theorem 5.4.2 (Bang-Jensen) [50] A path-mergeable digraph D of order

n > 2 is hamiltonian if and only if D is strong and UG(D) is 2-connected.

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D)

is 2-connected and D is not hamiltonian. Let C = uju2...upui be a longest

cycle in D. Observe that, by Lemma 5.4.1, there is no C-bypass. For each

i € {1,...,p} let X; (respectively Y;) be the set of vertices of D— V(C) that

can be reached from u; (respectively, from which u; can be reached) by a

path in D — (V(C) — u;). Since D is strong,

Xp UGA R= Yh ONO eee

Since there is no C-bypass, every path starting at a vertex in X; and ending

at a vertex in C must end at u;. Thus, X; C Yj. Similarly, Y; C X; and,

hence, X; = Y;. Since there is no C-bypass, the sets X; are disjoint. Since

we assumed that D is not hamiltonian, at least one of these sets, say Xj, is

non-empty. Since UG(D) is-2-connected, there is an arc with one end-vertex

in X, and the other in V(D) — (Xj Uu;), and no matter what its orientation

is, this implies that there is a C-bypass, a contradiction. 0

Using the proof of this theorem, Lemma 5.4.1 and Proposition 4.9.3, it is

not difficult to show the following (Exercise 5.10):

Corollary 5.4.3 /50] There is an O(nm)-algorithm to decide whether a
given strong path-mergeable digraph has a hamiltonian cycle and find one

of it exists.

Clearly, Theorem 5.4.2 and Corollary 5.4.3 imply an obvious characteriza-

tion of longest cycles in path-mergeable digraphs and a polynomial algorithm

to find a longest cycle. Neither a characterization nor the complexity of the

hamiltonian path problem for path-mergeable digraphs is currently known.

The following problem was posed by Bang-Jensen and Gutin:

Problem 5.4.4 /65/ Characterize traceable path-mergeable digraphs. Is there

a polynomial algorithm to decide whether a path-mergeable digraph is trace-

able?

For a related result, see Proposition 6.3.2. This result may be considered

as a characterization of traceable path-mergeable digraphs. However, this

characterization seems of not much value from the complexity point of view.

5.5 Hamilton Paths and Cycles in Locally

In-Semicomplete Digraphs

According to Proposition 4.10.1, every locally in-semicomplete digraph is

path-mergeable. By Exercise 5.12, every strong locally in-semicomplete di-

5.5 Hamilton Paths and Cycles in Locally In-Semicomplete Digraphs 239

graph has a 2-connected underlying graph. Thus, Theorem 5.4.2 implies the

following characterization of hamiltonian locally in-semicomplete digraphs?.

Theorem 5.5.1 (Bang-Jensen, Huang and Prisner) /81] A locally in-
semicomplete digraph D of order n > 2 is hamiltonian if and only if D is

strong. Oo

This theorem generalizes Camion’s theorem on strong tournaments (The-

orem 1.5.2). Bang-Jensen and Hell [75] showed that for the class of locally
in-semicomplete digraphs Corollary 5.4.3 can be improved to the following

result.

Theorem 5.5.2 /75] There is an O(m + nlogn)-algorithm for finding a
hamiltonian cycle in a strong locally in-semicomplete digraph.

In Section 5.4, we remarked that the Hamilton path problem for path-

mergeable digraphs is unsolved so far. For a subclass of this class, locally

in-semicomplete digraphs, an elegant characterization, due to Bang-Jensen,

Huang and Prisner, exists.

Theorem 5.5.3 /81] A locally in-semicomplete digraph is traceable if and

only if it contains an in-branching.

Proof: Since a Hamilton path is an in-branching, it suffices to show that

every locally in-semicomplete digraph D with an in-branching T is traceable.

We prove this claim by induction on the number b of vertices of T of in-degree

zero.

For b = 1, the claim is trivial. Let b > 2. Consider a pair of vertices x, y

of in-degree zero in T’. By the definition of an in-branching there is a vertex

z in T such that T contains both (z,z)-path P and (y,z)-path Q. Assume

that the only common vertex of P and Q is z.

By Proposition 4.10.2, there is a path R in D that starts at x or y and

terminates at z and V(R) = V(P) UV(Q). Using this path, we may replace
T with an in-branching with b — 1 vertices of in-degree zero and apply the

induction hypothesis of the claim. Oo

Clearly, Theorem 5.5.3 implies that a locally out-semicomplete digraph is

traceable if and only if it contains an out-branching. By Proposition 1.6.1,

we have the following:

Corollary 5.5.4 A locally in-semicomplete digraph is traceable if and only

if it contains only one terminal strong component. 0

? Actually, this characterization, as well as the other results of this section, were
originally proved only for oriented graphs. However, as can be seen from Exercises
4.27 and 4.28, the results for oriented graphs immediately imply the results of
this section.

240 5. Hamiltonicity and Related Problems

Using Corollary 5.5.4, Bang-Jensen and Hell [75] proved the following:

Theorem 5.5.5 A longest path in a locally in-semicomplete digraph D can

be found in time O(m + nlogn). Oo

Corollary 5.5.4 and Lemma 4.10.3 imply the following:

Corollary 5.5.6 (Bang-Jensen) //4] A locally semicomplete digraph has

a hamiltonian path if and only if it 1s connected. oO

Notice that there is a nice direct proof of this corollary (using Proposition

4.10.2), which is analogous to the classical proof of Rédei’s theorem displayed

in procedure HamPathTour in Section 1.9.1. See Exercise 5.14.

5.6 Hamilton CS and Paths in Degree-Constrained

Digraphs

In Subsection 5.6.1 we formulate certain sufficient degree-constrained condi-

tions for hamiltonicity of digraphs. Several of these conditions do not follow

from the others, i.e. there are certain digraphs that can be proved to be

hamiltonian using some condition but none of the others. (The reader will be

asked to show this in the exercises.)
In Subsection 5.6.3 we provide proofs to some of these conditions to illus-

trate the power of a recently introduced approach, which we call the multi-

insertion technique. (This technique can be traced back to Ainouche [9] for
undirected graphs and to Bang-Jensen [48] for digraphs, see also the paper

[68] by Bang-Jensen, Gutin and Huang). The technique itself is introduced

in Subsection 5.6.2. The strength of the multi-insertion technique lies in the

fact that we can prove the existence of a hamiltonian cycle without actually

exhibiting it. Moreover, our hamiltonian cycles may have quite a complicated

structure. For example, compare the hamiltonian cycles in the proof of The-

orem 5.6.1 to the hamiltonian paths constructed in the inductive proof of

Theorem 1.4.5. The multi-insertion technique is used in some other parts of

this book, see e.g. Section 5.7.

Let x,y be a pair of distinct vertices in a digraph D. The pair {z, y} is
dominated by a vertex z if zz and z—>y; in this case we say that the

pair {x,y} is dominated. Likewise, {x,y} dominates a vertex z if r>z
and y—>z; we call the pair {x,y} dominating.

5.6.1 Sufficient Conditions

Considering the converse digraph and using Theorem 5.5.1, we see that a

locally out-semicomplete digraph is hamiltonian if and only if it is strong.
This can be generalized as follows. We prove Theorem 5.6.1 in Subsection
5.6.3.

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs 241

Theorem 5.6.1 (Bang-Jensen, Gutin and Li) /69/ Let D be a strong di-
graph of order n > 2. Suppose that, for every dominated pair of non-adjacent

vertices {x,y}, either d(x) > n andd(y) > n—1 ord(x) > n—-1 and d(y) > n.
Then D is hamiltonian.

The following example shows the sharpness of the conditions of Theorem

5.6.1 (and Theorem 5.6.5), see Figure 5.3. Let G and H be two disjoint

transitive tournaments such that |V(G)| > 2,|V(H)| > 2. Let w be the vertex
of out-degree 0 in G and w’ the vertex of in-degree 0 in H. Form a new digraph

by identifying w and w’ to one vertex z. Add four new vertices z,y,u,v

ana*the arcs {rv yo.ux, uy} U-{e2z,27 yz, zy} 'Uirg = re {2, 7,0}, 9 ©
V(G) —w}Uf{hs : h € V(A) - w',s € {u,x,y}}. Denote the resulting
digraph by Qn, where n is the order of Q,. It is easy to check that Q,

is strong and non-hamiltonian (Exercise 5.17). Also x,y is the only pair of
non-adjacent vertices which is dominating (dominated, respectively). An easy

computation shows that

d(x) =d(y) =n—1l=d*(a) +d (y) =d (2) +d*(y).

Figure 5.3 The digraph Qn. The two unoriented edges denote 2-cycles.

Combining Theorem 5.6.1 with Proposition 5.0.3 one can obtain sufficient

conditions for a digraph to be traceable (see also Exercise 5.16). Theorem

5.6.1 also has the following immediate corollaries.

Corollary 5.6.2 (Ghouila-Houri) /315/ If the degree of every vertex in a

digraph D of order n is at least n, then D is hamiltonian. 0

Corollary 5.6.3 Let D be a digraph of order n. If the minimum semi-degree

of D, 6°(D) > n/2, then D is hamiltonian. oO

It turns out that even a slight relaxation of Corollary 5.6.3 brings in non-

_ hamiltonian digraphs. In particular, Darbinyan [177] proved the following:

242 5. Hamiltonicity and Related Problems

Proposition 5.6.4 Let D be a digraph of even order n > 4 such that the

degree of every vertex of D is at least n —1 and 6°(D) > n/2—1. Then

either D is hamiltonian or D belongs to a non-empty finite family of non-

hamiltonian digraphs. QO

By Theorem 5.5.1, a locally semicomplete digraph is hamiltonian if and

only if it is strong [44]. This result was generalized by Bang-Jensen, Gutin

and Li [69] as follows.

Theorem 5.6.5 Let D be a strong digraph of order n. Suppose that D sat-

isfies min{d*(x) + d~(y), d~ (x) + d*(y)} > n for every pair of dominating

non-adjacent and every pair of dominated non-adjacent vertices {x,y}. Then

D is hamiltonian.

We prove this theorem in Subsection 5.6.3. Theorem 5.6.5 implies Corol-

lary 5.6.3 as well as the following theorem by Woodall [739]:

Corollary 5.6.6 Let D be a strong digraph of order n > 2. If dt (x) +

d~(y) > n for all pairs of vertices x and y such that there is no arc from

xz toy, then D is hamiltonian. O

The following theorem generalizes Corollaries 5.6.2,5.6.3 and 5.6.6. The
swe

inequality of Theorem 5.6.7 is best possible: Consider Ky—2 (n > 5) and fix

a vertex u in this digraph. Construct the digraph H, by adding to pam a
oo

pair v,w of vertices such that both v and w dominates every vertex in Ky_2

and are dominated by only u, see Figure 5.4. It is easy to see that Hy is

strong and non-hamiltonian (H,, — u is not traceable). However, v,w is the

only pair of non-adjacent vertices in H, and d(v) + d(w) = 2n — 2.

Figure 5.4 The digraph H,.

Theorem 5.6.7 (Meyniel’s theorem) /564] Let D be a strong digraph of
order n > 2. If d(x) + d(y) > 2n —1 for all pairs of non-adjacent vertices in
D, then D is hamiltonian. oO

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs 243

Short proofs of Meyniel’s theorem were given by Overbeck-Larisch [597]
and Bondy and Thomassen [128]. The second proof is slightly simpler than
the first one and can also be found in the book [735] by West (see Theorem
8.4.38). Using Proposition 5.0.3 one can easily see that replacing 2n — 1 by
2n — 3 in Meyniel’s theorem we obtain sufficient conditions for traceability.
(Note that for traceability we do not require strong connectivity.) Darbinyan
[180] proved that by weakening the degree condition in Meyniel’s theorem

only by one, we obtain a stronger result:

Theorem 5.6.8 /180] Let D be a digraph of order n > 3. If d(x) + d(y) >
2n — 2 for all pairs of non-adjacent vertices in D, then D contains a hamil-

tonian path in which the initial verter dominates the terminal vertez. Oo

Berman and Liu [111] extended Theorem 5.6.7 as formulated below. For
a digraph D of order n, a set M C V(D) is Meyniel if d(x) + d(y) > 2n-1

for every pair x, y of non-adjacent vertices in M. The proof of Theorem 5.6.9

is based on the multi-insertion technique.

Theorem 5.6.9 /111] Let M be a Meyniel set of vertices of a strong digraph

D of order n > 2. Then D has a cycle containing all vertices of M. O

Another extension of Meyniel’s theorem was given by Heydemann [428].

Theorem 5.6.10 [4/28] Let h be a non-negative integer and let D be a strong

digraph of order n > 2 such that, for every pair of non-adjacent vertices x

and y, we have d(x) + d(y) > 2n —2h+1. Then D contains a cycle of length
greater than or equal to [5+] +1. oO

Manoussakis [547] proved the following sufficient condition that involves
triples rather than pairs of vertices. Notice that Theorem 5.6.11 does not

imply either of Theorems 5.6.1, 5.6.5 and 5.6.7 [69].

Theorem 5.6.11 /547] Suppose that a strong digraph D of order n > 2

satisfies the following conditions: for every triple x,y,z € V(D) such that x

and y are non-adjacent

(a) If there is no arc from x to z, then d(x) +d(y)+d*t(x)+d-(z) >3
(b) If there is no arc from z to x, then d(x) +d(y) +d (x) + dt (z) > 3n—

Then D is hamiltonian. oO

The next theorem resembles both Theorem 5.6.5 and Theorem 5.6.7. How-

ever, Theorem 5.6.12 does not imply any of these theorems. The sharpness of

the inequality of Theorem 5.6.12 can be seen from the digraph H,, introduced

before Theorem 5.6.7.

244 5. Hamiltonicity and Related Problems

Theorem 5.6.12 (Zhao and Meng) [758] Let D be a strong digraph of

order n > 2. If

d+(x)+d*(y)+d-(u)+d (v) > 2n-1

for every pair x,y of dominating vertices and every pair u,v of dominated

vertices, then D is hamiltonian. ; Oo

Theorems 5.6.5 and 5.6.12 suggest that the following conjecture by Bang-

Jensen, Gutin and Li, may be true.

Conjecture 5.6.13 /69] Let D be a strong digraph of order n > 2. Suppose

that d(x)+d(y) > 2n—1 for every pair of dominating non-adjacent and every

pair of dominated non-adjacent vertices {x,y}. Then D is hamiltonian.

Bang-Jensen, Guo and_, Yeo [57] proved that, if we replace the degree

condition d(x) + d(y) > 2n — 1 with d(x) + d(y) > 3n — 4 in Conjecture
5.6.13, then D is hamiltonian. They also provided additional support for

Conjecture 5.6.13 by showing that every digraph satisfying the condition of

Conjecture 5.6.13 has a cycle factor.

Perhaps Conjecture 5.6.13 can even be generalized to the following which

was conjectured by Bang-Jensen, Gutin and Li:

Conjecture 5.6.14 /69] Let D be a strong digraph of order n > 2. Suppose

that, for every pair of dominated non-adjacent vertices {x,y}, d(x) + d(y) >
2n—1. Then D is hamiltonian.

Let F' be the digraph obtained from the complete digraph Kane’ by

adding three new vertices {z, y, z} and the following arcs {ry, yx, yz, zy, zz}U

{ru, ut, yu: ue Vika see Figure 5.5. Clearly F is strongly connected
and the underlying undirected graph of F is 2-connected. However, F is not

hamiltonian as all hamiltonian paths in F'— 2 start at z, but x does not dom-

inate z. The only pairs of non-adjacent vertices in D are z and any vertex

we Vic Ken and here we have d(z) + d(u) = 2n — 2. Thus both conjectures
above would be the best possible.

One of the oldest conjectures in the area of hamiltonian digraphs is the
following conjecture by Nash-Williams.

Conjecture 5.6.15 /586, 587] Let D be a digraph of order n > 3 satisfying
the following conditions:

(i) For every positive integer k less than (n —1)/2, the number of vertices of
out-degree less than or equal to k is less than k.

(ii) The number of vertices of out-degree less than or equal to (n — 1)/2 is
less than or equal to (n — 1)/2.

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs 245

z

Figure 5.5 The digraph F.

(iii) For every positive integer k less than (n — 1)/2, the number of vertices
of in-degree less than or equal to k is less than k.

(iv) The number of vertices of in-degree less than or equal to (n—1)/2 is less

than or equal to (n — 1)/2.

Then D is hamiltonian.

Conjecture 5.6.15 seems to be very difficult (see comments by Nash-

Williams in [587, 588]). This conjecture was inspired by the corresponding

theorem by Pésa [610] on undirected graphs. Pdsa’s result implies that the as-

sertion of this conjecture is true at least for symmetric digraphs, i.e. digraphs

D such that zy € A(D) implies yz € A(D).

One may also try to obtain digraph analogues of various other sufficient

degree conditions for graphs, such as Chvatal’s theorem [159], which asserts
that, if the degree sequence dj < dz < ... < d, of an undirected graph

satisfies the condition dy < k < }=>dn_~ > n—k for each k, then the graph

is hamiltonian. Similarly, one may ask whether every strong digraph whose

non-decreasing degree sequence d; < dz < ... < dy satisfies the following
condition is hamiltonian:

dps 2h end, pant Sh), ben — LL. (5.1)

For a digraph D we can obtain the non-decreasing out-degree and in-

degree sequences: df < dj <...< dt andd; < dy <...<d> (orderings
of vertices of D in these two sequences are usually different). Using the two
sequences, one may suggest conditions similar to (5.1):

dj <k< > dt_,>n—kand

246 5. Hamiltonicity and Related Problems

dp <k<>>d_,20-k, p21 ee ee

It is not difficult to construct an infinite family of non-hamiltonian strong

digraphs that satisfy both (5.1) and (5.2) (Exercise 5.25). However, if we

‘mix’ the out-degrees with the in-degrees in (5.2), we obtain the following

conjecture due to Nash-Williams:

Conjecture 5.6.16 /588] If the non-decreasing out-degree and in-degree se-

quences of a digraph D satisfy the conditions

df <k<5>d,_,>n—k and

dj <k<5 dt, >n-k, petite © ahs

then D is hamiltonian.

One may expect that for oriented graphs (i.e., digraphs with no 2-cycles)

a result much stronger than Corollary 5.6.3 holds. Haggkvist [387] proved
the following theorem and. made a much stronger conjecture. Notice that

Haggkvist [387] constructed non-hamiltonian oriented graphs D with 6°(D) >
n/3 (these oriented graphs do not even contain cycle factors).

Theorem 5.6.17 /387] Let D be an oriented graph of order n and let

6°(D) > (§ —2718)n. Then D is hamiltonian. Oo

Conjecture 5.6.18 /387] Let D be an oriented graph of order n and let
6+ (D) > (8n — 2)/8. Then D is hamiltonian.

Jackson conjectured that for regular oriented graphs an even stronger

assertion holds.

Conjecture 5.6.19 [449] Every k-regular oriented graph of order at most
4k +1, where k £ 2, contains a Hamilton cycle.

5.6.2 The Multi-Insertion Technique

Let P = uju2...us be a path in a digraph D and let Q = v1 v2...u; be a
path in D—V(P). The path P can be inserted into Q if there is a subscript
1 € {1,2,...,t-—1} such that visu, and u,—v;41. Indeed, in this case the
path Q can be extended to a new (v1, v¢)-path Q[u, vi]PQ[vi41, ve]. The path
P can be multi-inserted into Q if there are integers i; = 1 < in <...<
im = 8+1 such that, for every k = 2,3,...,m, the subpath P[ui,_,, ui, —1] can
be inserted into Q. The sequence of subpaths P[u;,_,,ui,—1], k = 2,...,m,

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs 247

is a multi-insertion partition of P. Similar definitions can be given for the
case when Q is a cycle.

The complexity of algorithms in this subsection is measured in terms of

the number of queries to the adjacency matrix of a digraph. In this subsection

we prove several simple results, which are very useful while applying the

multi-insertion technique. Some of these results are used in this section, others

will be applied in other parts of this book. The following lemma is a simple

extension of a lemma by Bang-Jensen, Gutin and Li [69].

Lemma 5.6.20 Let P be a path in D and let Q = v1 v2...v4 be a path (a

cycle, respectively) in D—V(P). If P can be multi-inserted into Q, then there

is a (v1, v¢)-path R (a cycle, respectively) in D so that V(R) = V(P)UV(Q).
Given a multi-insertion partition of P, the path R can be found in time

O(\V (PIV (Q)]).

Proof: We consider only the case when Q is a path, as the other case (Q is a

cycle) can be proved analogously. Let P = u,u2...us. Suppose that integers

43 = 1 < 1o,< ... <tm = 5 +1 are such that. the subpaths P[u;,_,, wi,-],
k = 2,3,...,m, form a multi-insertion partition of P.

We proceed by induction on m. If m = 2 then the claim is obvious, hence

assume that m > 3. Let zy € A(Q) be such that the subpath P[u;,, u;,—1]

can be inserted between xz and y on Q. Choose r as large as possible such that

Ui,-1—y. Clearly, P[u;,,ui,—1] can be inserted into Q to give a (v1, v;)-path

Q*. Thus, if r = m we are done. Otherwise apply the induction hypothesis

to the paths P[u;,,us] and Q* (observe that by the choice of r none of the

subpaths of the multi-insertion partition of P[u;,,us] can be inserted between
x and y in Q, and thus every such subpath can be inserted into Q*).

If we postpone the actual construction of R till we have found a new

multi-insertion partition M of P and all (distinct) pairs of vertices between

which the subpaths of M can be inserted, then the complexity claim of this

lemma follows easily. O

The next two corollaries due to Bang-Jensen, Gutin and Huang, respec-

tively, Yeo can easily be proved using Lemma 5.6.20; their proofs are left as

an easy exercise (Exercise 5.21).

Corollary 5.6.21 /68] Let D be a digraph. Suppose that P = uju2...Ur is a

path in D andC is a cycle in D—P. Suppose that for eachi = 1,2,...,r—1,

either the arc ujui41 or the vertex u; can be inserted into C’, and, in addition,

assume that u, can be inserted into C. Then D contains a cycle Z with the

vertex set V(P) UV(C) and Z can be constructed in time O(|V (P)||V(C)|).
Oo

Corollary 5.6.22 /744] Let D be a digraph. Suppose that P = uju2...Ur 18
a path in D and C is a cycle in D— P. Suppose also that for each odd index

4 the arc ujuj41 can be inserted into C, and if r is odd, u, can be inserted

248 5. Hamiltonicity and Related Problems

into C. Then D contains a cycle Z with the verter set V(P) UV(C) and Z
can be constructed in time O(|V(P)||V(C)]). Oo

Corollary 5.6.23 /68] Let D be a digraph. Suppose that C is a cycle of even

length in D and Q is a cycle in D—C. Suppose also that for each arc uv of

C either the arc uv or the vertex u can be inserted into Q. Then D contains

a cycle Z with the verter set V(Q) UV(C) and Z can be constructed in time

OV (Q)IIV(C)]).

Proof: If there is a vertex x on C' that can be inserted into Q then apply

Corollary 5.6.21 to C[zt,z] and Q. Otherwise, all the arcs of C can be in-

serted into Q and we can apply Corollary 5.6.22 to C[yt,y] and Q, where y

is any vertex of C. oO

5.6.3 Proofs of Theorems 5.6.1 and 5.6.5

The following lemma is a slight modification of a lemma by Bondy and

Thomassen [128]; its proof is not too difficult and is left as an exercise to
the reader (Exercise 5.18).

Lemma 5.6.24 Let Q = v1 v2...v4 be a path in D.and let w,w! be vertices
of V(D) — V(Q) (possibly w = w'). If there do not exist consecutive vertices
Vi, Vit1 ONG such that v;w, w'v;41 are arcs of D, then d> Q(w w)+d6 (w’) <t+é,
where € = 1 if uw and 0, otherwise. oO

In the special case when w’ = w above, we get the following interpretation
of the statement of Lemma 5.6.24.

Lemma 5.6.25 Let Q = v;v2...v¢ be a path in D, and let w € V(D)—V(Q).
If w cannot be inserted into Q, hen dg(w) <t+1. If, in addition, v; does
not dominate w, then dg(w) < t. Oo

Let C be a cycle in D. Recall that an (x,y)-path P is a C- bypass if
|V(P)| > 3, 2 #y and V(P)NV(C) = {z,y}. The length of the path Cla, y]
is the gap of P with respect to C.

Proof of Theorem 5.6.1: Assume that D is non-hamiltonian and C —
©1X2...XLmX is a longest cycle in D. We first show that D contains a C-
bypass. Assume D does not have one. Since D is strong, D must contain a
cycle Z such that |V(Z) MN V(C)| = 1. Without loss of generality, we may
assume that V(Z) V(C) = {x1}. Let z be the successor of 21 on Z. Since D
has no C-bypass, z and x2 are non-adjacent. Since z and T2 are a dominated
pair, d(z) +d(x2) > 2n—1. On the other hand, since D has no C- bypass, we
have dc_z,(z) = dz_2, (22) = 0 and |({z, x9}, v) U (y, {z, 2})| < 2 for every
y € V(D) —-(V(C) UV(Z)). Thus, d(z) + d(a2) < 2(n — 1); a contradiction.

5.6 Hamilton Cycles and Paths in Degree-Constrained Digraphs 249

Let P = uyuzg...us be a C-bypass (s > 3). Without loss of generality,
let uy = 21, Us = £141, 0 < y < m. Suppose also that the gap y of P is
minimum among the gaps of all C-bypasses.

Since C’ is a longest cycle of D, y > 2. Let C’ = Clave |i Ca
C[z7+41, 2%], R = D—V(C), and let az; be any vertex in C’ such that 2; 2;.
Let also x, be an arbitrary vertex in C’.

We first prove that

don (xj) > |V(C")| +2. (5.3)
Since C is a longest cycle and P has the minimum gap with respect to C,

uz is not adjacent to any vertex on C’, and there is no vertex y € V(R)—{uz}
such that either uzp>y—z, or T,4y— U2. Therefore,

de: (tp) + der (uz) < 2(|V(C")| — 1) (5.4)
and

dr(rz) ae dr(u2) < 2(n a) ee 1). (5.5)

By the maximality of C’, u2 cannot be inserted into C”, so by Lemma
5.6.25,

don (ua) < |V(C")| +1. (5.6)
The fact that the pair of non-adjacent vertices {x;,u2} is dominated by

x, along with (5.4), (5.5) and (5.6), implies that

2n —1 < d(zj) + d(u2) < don (xj) + 2n — |V(C")| — 3.

This implies (5.3).

By (5.3) and Lemma 5.6.25, z2 can be inserted into C”. Since C is a
longest cycle, it follows from Lemma 5.6.20 that there exists 3 € {3,...,y}

so that the subpath C[x2, zg_1] can be multi-inserted into C", but C[x2, xg]
cannot. In particular, xg cannot be inserted into C”. Thus, by (5.3) and
Lemma 5.6.25, x; does not dominate xg and de (rg) < |V(C")|. This along
with (5.4)-(5.6) gives d(xg) + d(u2) < 2n — 3. Since u2 forms a dominated
pair with z2, we have that d(u2) > n — 1. Hence,

d(xg) <n—2. (5.7)
By the definition of multi-insertion, there are a € {2,3,...,6 —1} and

i € {y+1,...,m} such that z;9z2q and rg_1-2;41. Observe that the

pair {zg,zi41} is dominated by xg_1. Thus, by (5.7) and the assumption
of the theorem, either rg—2i41 or %441-2g. If tg—7;41, then the path

P|z2,2g] can be multi-inserted into C” which contradicts our assumption.
Hence, 2;41—+2g. Considering the pair rg, x;+2, we conclude analogously that

250 5. Hamiltonicity and Related Problems

Li42—2g. Continuing this process, we finally conclude that x;+xg, contra-

dicting the conclusion above that the arc z;xg does not exist. 0

Proof of Theorem 5.6.5: Assume that D is not hamiltonian and C =

Z1LQ...L£2mZ, is a longest cycle in D. Set R = D—V(C). We first prove that

D ee a C-bypass with 3 vertices.

Since D is strong, there is a vertex y in R Aa a vertex xz in C’ such

that yz. If y dominates every vertex on C, then C is not a longest cycle,

since a path P from a vertex xz; on C' to y such that V(P) NV(C) = {2;}
together with the arc y2;4; and the path C[z:41,2;] form a longer cycle

in D. Hence, either there exists a vertex x, € V(C) such that 2,3y—2,41,

in which case we have the desired bypass, or there exists a vertex 2; €
V(C) so that y and z; are non-adjacent, but yz;+1. Since the pair {y, z;}

dominates z;41, d+(x;) + d~(y) =n. This implies the existence of a vertex
z € V(D) — {x;,2;41,y} such that 1;z-y. Since C is a longest cycle,

z€V(C). So, B = zyx;41 is the desired bypass.

Without loss of generality, assume that z = x, and the gap 7 of B with

respect to C' is minimum among the gaps of all C-bypasses with three vertices.

Clearly, 7 > 2.

Let C’ = C[z2,2;] and C” = C[xj41,2:]. Since C is a longest cycle,
C” cannot be multi-inserted into C”. It follows from Lemma 5.6.24 that
dé (xj) + dou (x2) < |V(C")| +1. By Lemma 5.6.25 and the maximality
of C, den (y) < |V(C")| + 1. Analogously to the way we derived (5.4) in the
previous proof, we get that dr(y) + dp(x;) + dz(r2) < 2(n —m—1). Clearly,
dé, (2;) + do. (x2) < 2|V(C")| — 2. Since do: Ge = 0, the last four inequalities
imply

d(y) + dt (aj) +d (a2) < 2n—-2. (5.8)

Since y is adjacent to neither x2 nor x;, the assumption of the theorem
implies that dt (y) + d~(r2) > n and d~(y) + d+(zx;) > n, which contradicts
(5.8). Oo

5.7 Longest Paths and Cycles in Semicomplete
Multipartite Digraphs

While both Hamilton path and Hamilton cycle problems are polynomial time
solvable for semicomplete multipartite digraphs (the latter was a difficult
open problem for a while and was proved recently by Bang-Jensen, Gutin and
Yeo [72] using several deep results on cycles and paths in semicomplete mul-
tipartite digraphs, see also [746]), only a characterization of traceable semi-
complete multipartite digraphs is known. In Subsection 5.7. 1, we give basic
results on hamiltonian and longest paths and cycles in Site, multi-
partite digraphs. Several results of Subsection 5.7.1 are proved in Subsection

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 251

5.7.3 using the most important assertion of Subsection 5.7.2. In Subsection

5.7.4, we formulate perhaps the most important known result on Hamilton

cycles in semicomplete multipartite digraphs, Yeo’s Irreducible Cycle Sub-

digraph Theorem, and prove some interesting consequences of this powerful

result. Due to the space limit our treatment of hamiltonian semicomplete

multipartite digraphs is certainly restricted. The reader can find more infor-

mation on the topic in the survey papers [65, 66] by Bang-Jensen and Gutin

[368] by Gutin and [728] by Volkmann, the theses [345, 362, 692, 745], by

Guo, Gutin, Tewes and Yeo respectively and the papers cited there.

5.7.1 Basic Results

We start by considering the longest path problem for semicomplete multipar-

tite digraphs. The following characterization is proved in Subsection 5.7.3.

Theorem 5.7.1 (Gutin) /358, 363] A semicomplete multipartite digraph

D is traceable if and only if it contains a 1-path-cycle factor. One can verify

whether D is traceable and find a hamiltonian path in D (if any) in time
O(n),

This theorem can be reformulated as pc(D) = 1 if and only if pcc(D) = 1
for a semicomplete multipartite digraph D. Using the result of Exercise 3.59,

the last statement can be easily extended to the following result by Gutin:

Theorem 5.7.2 /362] For a semicomplete multipartite digraph D, pc(D) =

pcec(D). The path covering number of D can be found in time O(n?:*). Oo

The non-complexity part of the next result by Gutin follows from Theorem

5.7.1. The complexity part is a simple consequence of Theorem 3.11.11.

Theorem 5.7.3 /363] Let D be a semicomplete multipartite digraph of order

n.

(a) Let F be a 1-path-cycle subdigraph with maximum number of vertices in

D. Then D contains a path P such that V(P) = V(F).
(b) A longest path in D can be constructed in time O(n*).

O

We see from Theorem 5.7.1 that the hamiltonian path problem for semi-

complete multipartite digraphs turns out to be relatively simple. The hamilto-

nian cycle problem for this class of digraphs seems to be much more difficult.

One could guess that similarly to Theorem 5.7.1, a semicomplete multipar-

tite digraph is hamiltonian if and only if it is strong and has a cycle factor.

Even though these two conditions (strong connectivity and the existence of a

cycle factor) are sufficient for semicomplete bipartite digraphs and extended

_ semicomplete digraphs (see Theorems 5.7.4 and 5.7.5), they are not sufficient

252 5. Hamiltonicity and Related Problems

for semicomplete k-partite digraphs (k > 3) (see, e.g., an example later in

this subsection). The following characterization was obtained independently

by Gutin [353] and Haggkvist and Manoussakis [389].

Theorem 5.7.4 A semicomplete bipartite digraph D is hamiltonian if and

only if D is strong and contains a cycle factor. One can check whether D

is hamiltonian and construct a Hamilton cycle of D (if one exists) in time

O(n?).

Some sufficient conditions for the existence of a hamiltonian cycle in a

bipartite tournament are described in the survey paper [368] by Gutin.

Theorem 5.7.5 [359] An extended semicomplete digraph D 1s hamiltonian

if and only if D is strong and contains a cycle factor. One can check whether

D is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n25).

These two theorems can be generalized as follows.

Theorem 5.7.6 (Gutin) /357, 362] Let D be strong semicomplete bipartite

digraph. The length of a longest cycle in D is equal to the number of vertices

in a cycle subdigraph of D of maximum order. One can find a longest cycle

in D in time O(n’).

Theorem 5.7.7 [362] Let D be a strong extended semicomplete digraph and
let F be a cycle subdigraph of D. Then D has a cycle C which contains all

vertices of F. The cycle C can be found in time O(n*). In particular, if F is

mazimum, then V(C) = V(F), i.e., C is a longest cycle of D.

Proofs of the last two theorems are given in Subsection 5.7.3. One can see

that the statement of Theorem 5.7.7 is stronger than Theorem 5.7.6. In fact,

the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs does not

hold [362], see Exercise 5.29. The following strengthening of Theorem 5.7.7
is proved in [82]:

Theorem 5.7.8 (Bang-Jensen, Huang and Yeo) /82] Let D = (V, A)

be a strong extended semicomplete digraph with decomposition given by D =

([H,,H2,...,H,], where s = |S| and every V(H;) is a maximal independent
set in V. Let mj, 1 = 1,2,...,8, denote the mazimum number of vertices

from H; which are contained in a cycle subdigraph of D. Then every longest

cycle of D contains precisely m; vertices from each H;, i =1,2,...,t. oO

One may ask whether there is any degree of strong connectivity, which

together with a cycle factor is sufficient to guarantee a hamiltonian cycle

in a semicomplete multipartite digraph (or a multipartite tournament). The

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 253

answer is negative. In fact, there is no s such that every s-strong multipartite

tournament with a cycle factor has a Hamilton cycle. Figure 5.6 shows a non-

hamiltonian multipartite tournament T which is s-strong (s is the number of

vertices in each of the sets A, B,C, D and X,Y, Z), and has a cycle factor. We

leave it to the reader to verify that there is no Hamilton cycle in T (Exercise

5,28).

Figure 5.6 An s-strong non-hamiltonian multipartite tournament T with a cycle
factor. Each of the sets A,B,C,D and X,Y,Z induces an independent set with
exactly s vertices. All arcs between two sets have the direction shown.

We conclude the description of basic results on hamiltonian semicomplete

digraphs by the following important result which we mentioned above.

Theorem 5.7.9 (Bang-Jensen, Gutin and Yeo) /72] One can verify
whether a semicomplete multipartite digraph D has a hamiltonian cycle and

find one (if it exists) in time O(n"). Oo

Very recently Yeo [746] proved that the problem can be solved in time

O(n*).

5.7.2 The Good Cycle Factor Theorem

The purpose of this subsection, based on the paper [68] by Bang-Jensen,

Gutin and Huang, is to prove some sufficient conditions for a semicomplete

multipartite digraph to be hamiltonian.

Let F = C,; UC, be a cycle factor or a 1-path-cycle factor in a digraph

D, where C, is a cycle or a path in D and C2 is a cycle. A vertex v €

V(C;) is called out-singular (in-singular) with respect to C3_; if vu=>C3_;

(C3_;=>v); v is singular with respect to C3_; if it is either out-singular or

in-singular with respect to C3_;.

254 5. Hamiltonicity and Related Problems

Lemma 5.7.10 /68] Let QUC be a cycle factor in a semicomplete multi-

partite digraph D. Suppose that the cycle Q has no singular vertices (with

respect to C) and D has no hamiltonian cycle, then for every arc xy of Q

either the arc zy itself can be inserted into C,, or both vertices x and y can

be inserted into C.

Proof: Assume without loss of generality that there is some arc ry on Q

such that neither x nor zy can be inserted into C. Since D is a semicom-

plete multipartite digraph and z is non-singular and cannot be inserted into

C, there exists a vertex v on C which is not adjacent to z and v2.

Furthermore, v is adjacent to y since x and y are adjacent. Since ry can-

not be inserted into C, we have vy. Then D contains a Hamilton cycle

Q[y, z]C[vt, vjy, which contradicts the assumption. a)

Lemma 5.7.11 /68] Let D be a semicomplete multipartite digraph contain-

ing a cycle factor Cy UC, such that C; has no singular vertices with respect

to C3_;, for both i = 1,2; then D is hamiltonian. Given C, and C2, a hamil-

tonian cycle in D can be found in time O(|V(C1)||V (C2)|)-

Proof: If at least one of the cycles C,, C2 is even, then by Corollary 5.6.23 and

Lemma 5.7.10 we can find a Hamilton cycle in D in time O(|V(C1)||V (C2)]).
Thus, assume that both of C), C2 are odd cycles. If some vertex in C; can be

inserted into C3_; for some 7 = 1 or 2, then by Corollary 5.6.21 and Lemma

5.7.10, we can construct a Hamilton cycle in D in time O(|V(C1)||V(C2))).
Thus, we may also assume that no vertex in C; can be inserted into C3_; for

both 7 = 1,2. So, by Lemma 5.7.10, every arc of C; can be inserted into C3_,;.

Now we show that either D is hamiltonian or we may assume that every

arc of C; can be inserted between two different pairs of vertices in C3_;

(i = 1,2). Consider an arc £122 of Cy. Since both 2; and z2 are non-singular

and cannot be inserted into C2, there exist vertices v; and v2 on C2 such that

vu; is not adjacent to 2; and Vv, 22; , 1 = 1,2. If vx} 422, then we obtain

a Hamilton cycle. So we may assume that the only arc between x2 and vj is

X£2v,. For the same reason, we may assume that v2 dominates x; but is not

dominated by z;. Now the arc 2,22 can be inserted between v; and v; and

between v2 and up :

Hence, 2; Z2 cannot be inserted between two pairs of vertices only in the

case that vj = v2 and v; = vf. We show that in this case D is hamiltonian.
Construct, at first, a cycle C* = C,[x2,21]C2[vj', v5 Jaa which contains all

the vertices of D but v; ,v1. The arc v; v, can be inserted into C;, by the

remark at the beginning of the proof. But v; v; cannot be inserted between

zr; and 2, since v; does not dominate z2 and v; = v2 is not dominated by

r,. Hence, the arc v; v; can be inserted into C* to give a hamiltonian cycle
of D. This completes the proof that either D is hamiltonian or every arc on

C; can be inserted between two different pairs of vertices in C3_.;.

Assume without loss of generality that the length of C2 is not greater
than that of C,;. Then C; has two arcs z;y; (i = 1,2) that can be inserted

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 255

between the same pair u, v of vertices in C2. Since C, is odd, one of the paths

Q = Cilyf, xz] and Ci[y{, 27] has odd length. Without loss of generality,
suppose that Q is odd. Obviously, C* = C2[v, u]Ci[x2, y:]v is a cycle of D.

By the fact shown above each arc of the path Q can be inserted into Cy

between a pair of vertices different from u,v. Therefore, each arc of Q can

be inserted into C*. Hence, by Corollary 5.6.22 we conclude that D has a

hamiltonian cycle H. It is not difficult to verify that H can be found in time

O(IV(Cr)IIV (C2))). a
Let D be a semicomplete multipartite digraph and let C UC’ be a cycle

subdigraph of D. We write that C=>C’ if C contains singular vertices with
respect to C” and they all are out-singular, and C’ has singular vertices with

respect to C’ and they all are in-singular. A cycle factor F = CyUC,U...UC;

is good if for every pair i,j, 1<i<j <t, neither C;~>C; nor Cj~>C;.

Since this definition and the proof of Lemma 5.7.12 are quite important,

we illustrate them in Figure 5.7. Observe that if C,C’ are a pair of disjoint

cycles in a semicomplete multipartite digraph D, then (up to switching the

role of the two cycles) at least one of the following four cases apply (see Figure

Dat)i

(a) Every vertex on C has an arc to and from C”.
(b) There exist vertices x € V(C),y € V(C’) such that z>V(C") and

y=>V(C), or V(C')=>2 and V(C)>y.
(c) C contains distinct vertices z,y such that r>V(C") and V(C’)>y.
(d) CSC"

The alternatives (a)-(c) are covered by the definition of a good cycle factor
(for cycle factors containing only two cycles); the alternative (d) is not.

SA OmGLOn GLOne.o
(a) (b) (c) (d)

Figure 5.7 The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (a) every vertex on C has arcs to and from C’. In (b)-(d) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e.
in (b) all arcs between xz and C’ leave z).

The following lemma gives the main result for a good cycle factor con-
taining two cycles.

Lemma 5.7.12 /68] If D is a semicomplete multipartite digraph containing

a good factor Cy UC2, then D is hamiltonian. A Hamilton cycle in D can be

constructed in time O(|V(C;1)||V(C2)|).

256 5. Hamiltonicity and Related Problems

Proof: The first case is that at least one of the cycles C, and C2 has no

singular vertices (Situation (a) in Figure 5.7). If both C, Cz have no singular

vertices then D is hamiltonian by Lemma 5.7.11 and we can find a Hamilton

cycle in D in time O(|V(C1)||V (C2)|). Assume now that only one of them has
no singular vertices. Suppose without loss of generality that C; contains an

out-singular vertex « and C2 has no singular vertices. Since C2 contains no
singular vertices, C has at least one vertex which is not out-singular. Suppose

that « € V(C) was chosen such that zt is not out-singular. Hence there is

a vertex y on C2 dominating x7. If ry, then y can be inserted into C; and

hence, by Lemma 5.7.10 and Corollary 5.6.21, D is hamiltonian (consider

C2[yt, y] and C,). Otherwise, x is not adjacent to y. In this case, ryt and

D has the hamiltonian cycle C,[x*, z]C2[y*, y]z. The above arguments can
be easily converted into an O(|V (C;1)||V (C2)|)-algorithm.

Consider the second case: each-of C), C2 has singular vertices with respect

to the other cycle. Assume without loss of generality that C; has an out-

singular vertex z,. If C2 also contains an out-singular vertex r2 (Situation

(b) in Figure 5.7), then x is not adjacent to 2 and z;2x3_, for both i = 1,2.

Hence D is hamiltonian. If C2 contains no out-singular vertices then it has in-

singular vertices. Since C; UC? is a good factor, C, contains both out-singular

and in-singular vertices (Situation (c) in Figure 5.7). Since both Cy and C2
have in-singular vertices, the digraph D’ obtained from D by reversing the

orientations of the arcs of D has two cycles C and C} containing out-singular
vertices. We conclude that D' (and hence D) is hamiltonian. Again, the above
arguments can be converted into an O(|V(C;1)||V (C2)|)-algorithm. 0

The main result on good cycle factors is the following theorem by Bang-
Jensen, Gutin and Huang. This theorem can be proved by induction on t, the
number of cycles in a good cycle factor. We leave the details to the reader
(see Exercise 5.39).

Theorem 5.7.13 (Bang-Jensen, Gutin and Huang) /68/] If D is a
strong semicomplete multipartite digraph containing a good cycle factor F =
Cy, UC2U...UC; (t > 1), then D is hamiltonian. Furthermore, given F one
can find a hamiltonian cycle in D in time O(n?). Oo

5.7.3 Consequences of Lemma 5.7.12

In this subsection mostly based on [68], we will show that several important
results on semicomplete multipartite digraphs are consequences of Lemma
On lel

Proof of Theorem 5.7.1: It is sufficient to prove that if P is a path and
C is a cycle of D such that V(P) 1 V(C) = 9, then D has a path P’ with
V(P') = V(P)UV(C). Let P and C be such a pair, and let u be the initial and
v the terminal vertex of P. If u is non-singular or in-singular with respect
to C, then obviously the path P’ exists. Similarly if v is non-singular or

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 257

out-singular with respect to C. Assume now that u is out-singular and v is
in-singular with respect to C.

Add a new vertex w to D and the arcs zw, for all z # u and the arc wu to
obtain the semicomplete multipartite digraph D'. Then w forms a cycle C’
with P in D’ and C UC" is a good cycle factor of D'. Therefore, by Lemma
5.7.12, D’ has a hamiltonian cycle. Then D contains a hamiltonian path.

It is easy to see that the proof above supplies a recursive O(n?)-algorithm
for finding a hamiltonian path in D given a 1-path-cycle factor F. Thus,
the complexity result of this theorem is due to the fact that we can either

construct a 1-path-cycle factor in a digraph or discover that it does not exist

in time O(n?°): see Exercise 3.59. Oo

To obtain the rest of the proofs in this subsection, we need the following:

Lemma 5.7.14 /68] Let D be a strong semicomplete multipartite digraph

containing a cycle subdigraph F = Cy UCgU...UC; such that for every

pair i,j (l<i<j<t) Cj>C; or Cj>C; holds. Then D has a cycle C

of length at least |V(F)| and one can find C in time O(n?) for a given F.

If D is an extended semicomplete digraph, then we can choose C' such that

V(F) CV(C).

Proof: Define a tournament T(F) as follows: {C,,...,C:} forms the vertex
set of T(F) and C;C; in T(F) if and only if C;>C; in D. Let H be the
subdigraph of D induced by the vertices of F and let W be a partite set of

D having a representative in C.

First consider the case that T(F) is strong. Then it has a hamiltonian
cycle. Without loss of generality assume that C,C2...C;C is a hamilto-

nian cycle in T(F). If each of C; (i = 1,2,...,t) has a vertex from W
then for every 1 = 1,2,...,¢ choose any vertex w; of V(C;) A W. Then

C7i[wi, wy |Co[we, wy]... Cr[we, wy]wi is a hamiltonian cycle in H. If there

exists a cycle C; containing no vertices of W, then we may assume (shifting

the cyclic order if needed) that C; has no vertices from W. Obviously, H has

a hamiltonian path starting at a vertex w € WNV(C;) and finishing at some

vertex uv of C;. Since vw, H is hamiltonian.

Now consider the case where T(F) is not strong. Replacing in F every
collection X of cycles which induce a strong component in T'(F) by a hamilto-
nian cycle in the subdigraph induced by X, we obtain a new cycle subdigraph

L of D such that T(L) has no cycles. The subdigraph T(L) contains a unique

hamiltonian path Z,Z2...Z;, where Z; is a cycle of £. Since D is strong

there exists a path P in D with the first vertex in Z, and the last vertex in

Zq (1 <q <s) and the other vertices not in £. Assume that q is as small as
possible. Then we can replace the cycles Z,,...,Zs by a cycle consisting of

all the vertices of PUZ,U...UZ, except maybe one and derive a new cycle

subdigraph with less cycles. Continuing in this manner, we obtain finally a

single cycle. .

258 5. Hamiltonicity and Related Problems

In the case of an extended semicomplete digraph D, if D(V(F)) is not

strong, then T(F) is not strong. Also, C;=>C; implies that C;-+C;. This,

combined with the above argument on semicomplete multipartite digraphs,

allows one to construct a cycle C such that V(F) C V(C).
Using the above proof together with an O(n”)-algorithm for constructing

a hamiltonian cycle in a strong tournament (see Theorem 5.5.2 or Exercise

5.15) and obvious data structures one can obtain an O(n?)-algorithm. 0

Lemma 5.7.15 /68] Let C UC" be a cycle factor in a strong semicom-
plete multipartite digraph D of order n. Then D has a cycle Z of length

at least n — 1 containing all vertices of C. The cycle Z can be found in time

O(IV(C)IIV(C")]).
Proof: Suppose that the (existence) claim is not true. By Lemma 5.7.12, this
means that each of C' and C’ has singular vertices with respect to the other

cycle, and all singular vertices on one cycle are out-singular and all singular

vertices on the other cycle are in-singular. Assume without loss of generality

that C’ has only out-singular vertices with respect to C’. Since D is strong

C has a non-singular vertex x. Furthermore we can choose x such that its

predecessor z~ on C is singular. Let y be some vertex of C’ such that yz.

If z~ is adjacent to y*, the successor of y on C’, then D has a hamiltonian

cycle. Otherwise z~—y** and D has a cycle of length n — 1 containing all
vertices of C’. The complexity result easily follows from the above arguments.

O

The next two results due to Gutin are easy corollaries of Lemma 5.7.15:

Corollary 5.7.16 /353] Let CUC" be a cycle factor in a strong semicomplete

bipartite digraph D. Then D has a hamiltonian cycle Z. The cycle Z can be

found in time O(|V(C)||V(C’)]).

Proof: Since D is bipartite, it cannot have a cycle of length n — 1. 0

Corollary 5.7.17 /359] Let CUC' be a cycle factor in a strong extended
semicomplete digraph D. Then D has a hamiltonian cycle Z. The cycle Z

can be found in time O(|V(C)||V(C’)|).

Proof: If C and C’ have a pair x, y of non-adjacent vertices (x € V(C), y €
V(C")) then obviously s>y*, ya* and D has a Hamilton cycle that can
be found in time O(|V(C)|V(C’)|). Assuming that any pair of vertices from
C and C" is adjacent, we complete the proof as in Lemma 5.7.15. Oo

Corollaries 5.7.16 and 5.7.17 imply immediately the following useful result.

Proposition 5.7.18 If F = C,UC2U... UC, is a cycle factor in a digraph
which is either semicomplete bipartite or extended semicomplete and there is
no F' = C,{UC,U... UC) such that for every i = 1,2,...,k, V(Ci) C V(C})
for some j € {1,2,,...,r}, then without loss of generality Ci=>C; for every
Vag

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 259

Lemma 5.7.15 implies immediately the following result first proved by
Ayel (see [449]).

Corollary 5.7.19 If C is a longest cycle in a semicomplete multipartite di-

graph D, then D—V(C) is acyclic. QO

Proof of Theorem 5.7.6: Let F = C, U...UC; be a cycle subdigraph of

maximum order in a strong semicomplete bipartite digraph D. We construct

a semicomplete digraph S, a generalization of the tournament T in Lemma

5.7.14, as follows. The vertices of S are the cycles in F, C;-+C; in S if and
only if there is an arc from C; to C; in D. Cycles of length two in S indicate

what cycles in F¥ can be merged together by Corollary 5.7.16. Therefore, we

can merge cycles in F till S becomes oriented, i.e. without 2-cycles. Now we

can apply Lemma 5.7.14.

Complexity details are left. to the reader. Oo

Proof of Theorem 5.7.7: The proof is similar to that of Theorem 5.7.6,

applying Corollary 5.7.17 instead of Corollary 5.7.16. Details are left to the

reader as Exercise 5.35. oO

5.7.4 Yeo’s Irreducible Cycle Subdigraph Theorem and its
Applications

While Lemma 5.7.12 is strong enough to imply short proofs of results on

longest cycles in some special families of semicomplete multipartite digraphs

such as semicomplete bipartite graphs and extended semicomplete digraphs,

this lemma does not appear strong enough to be used in proofs of longest cycle
structure results for other families of semicomplete multipartite digraphs.

In this subsection based on Yeo’s paper [744], we formulate the very deep

theorem of Yeo on irreducible cycle subdigraphs in semicomplete multipartite

digraphs, the main theorem in [744], that is more powerful than Lemma

5.7.12. We give a proof of the main lemma (Lemma 5.7.20) in the original
proof of Yeo’s theorem, but do not provide the rest of the lemmas since these

would require significant space. We provide short proofs of some important

consequences of this theorem.

Recall that for two subdigraphs X,Y of D, a path P is an (X,Y)-path

if P starts at a vertex x € V(X), terminates at a vertex y € V(Y) and

V(P)N(V(X)UV(Y)) = {z, y}.

Lemma 5.7.20 [744] Let D be a semicomplete multipartite digraph, and let
C, and C2 be a pair of disjoint cycles in D, such that Cy>>C2 and Ci) $C.

Assume that there is no cycle in D, with verter set V(C,) UV (C2). Then there
exists a unique partite set V of D such that for every (V(C2), V(Ci))-path
P starting at verter u and terminating at verter v either {ué,,vG, } EW AUE

there exists a cycle C* in D, with V(C*) = V(C1) UV(C2) UV (P).

260 5. Hamiltonicity and Related Problems

Proof: Since C;~>C, and C,#C2, there is a vertex © E€ V(Ci), with

r=>Cz and x+#C3. Let V be the partite set containing the vertex z. Let

y € V(C2) be chosen such that y~2t. Then y € V, since otherwise

C = C,[y,y7]Ci[zt, 2]y is a cycle with V(C) = V(Ci) UV(C2). We will

now show the following assertion:

V(Ci)>y. (5.9)

Label the vertices in Cz such that Cz = y1y2---Ymy1, where yi = y, and

assume that (5.9) is not true, i.e. V(C1)#y1. Define the statements ax and

Br as follows.

ax: The vertex y, € V and V(C,)#-yx, for every k = 1,3,5,...,K.

Bx: The arc yrye41 can be inserted into Ci[xt,2], for every k =

Leo eee :

We will now show that’ax and Gx are true for every odd K, with 1 <

K < ™m. Clearly a, holds, so if we prove the following two implications, we

are done by induction.

ax and Bx_2 imply Bx (when K = 1, ax implies Gx): If we can insert yx

into C;, then it can be inserted into Ci [zt , z], since yx cannot be inserted

between z and xt (by ax, yx € V). Also, by Bx—2 and Corollary 5.6.22

we can insert the path C2[y1, yx] into the cycle Ci [zt , z]C2[yh, ym)z*. So
we may assume that yx cannot be inserted into C). Since Cj} #yx, there

must bea zK € V(C;1) such that zx € V and ZR YK 2b. Now YpzK,

since there otherwise would be a cycle, C = Colyt, yx]Ci[zk, zKlyz, in

D with V(C) = V(C1) UV(C2). Thus yxy} can be inserted between z7

and zx, which implies that YKYK can be inserted into C\[zt, x], since

zg #0 (rR EV).
axK—2 and Bx_-2 imply ax: yx € V, since otherwise by Gx_2 and Corollary

5.6.22 we can insert the path P = y;y2...yK_1 into the cycle

Ci[z*, 2]Colyx, Ymlx*

and obtain a cycle in D with vertex set V(C,) UV(C2).
If V(C,)>yx, then z;_»—7yx, where zx ~2 was defined when we proved

Br—2. When we defined z%_2, we found that Yp_»72K-2- The cycle

Ce iClear ss: ZK _2|C2 [yK; Vie_-2l@K-2

has V(C) = V(C,) UV(C3), a contradiction. This completes the proof
that ax holds.

Since ym can be inserted into C; (namely between x and zt), Corollary

5.6.22 implies that we can insert the path C2[y1, ym] into C, to obtain a new

cycle in D with vertex set V(C,) UV(C 2). This is a contradiction, which
implies that (5.9).

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 261

Let ut = UG, and v- = vg,. To complete the proof of this lemma it

suffices to consider the following two cases.

Case 1: {ut,v-} NV =9. The cycle

C* = Ci[x*, v7 |Coly, u]P[ub, vp]Ci[v, 2]Co[u*, y~]at

has V(C*) = V(C,) UV (Cs) UV(P).
Case 2: The vertices ut and v~ are in different partite sets.

We claim that D contains a cycle C*, with V(C*) = V(P) UV(C,) UV(C2).
Assume that C* does not exist. According to Case 1, we have that either ut €

V orv € V, but not both. Now we may assume that ut—v— , since otherwise

C* = C,[v, v-]C2[ut,ug,]P would have V(C*) = V(P) UV(C;) U V(C)).
Now according to Case 1, used for the path P’ = utv—, we have that either

ut+ € V or uv € V, but not both, since either ut € V or v~ € V.
Continuing this process and using the fact that D has no cycle with vertex

set V(P)UV (C,)UV (C2) we obtain that utu7, utt-u-—, ... which clearly
is impossible since C; has an out-singular vertex with respect to C2. This is

a contradiction, and thus C* exists. O

Lemma 5.7.20 and several other results in [744] imply the following pow-
erful theorem. Notice that, in fact, Yeo [744] proved three sets of properties

of irreducible subdigraph. We include only the two most important ones.

Theorem 5.7.21 (Yeo’s irreducible cycle subdigraph theorem) [7/4]

Let D be a semicomplete multipartite digraph with partite sets Vi}, V2,..., Ve.

Let X C V(D) and let F be a cycle subdigraph of D consisting of t cycles

that covers X, such that t is minimum. Then the following holds.

(a) We can label the cycles C),C2,...,C, of F, such that C;~>C;, whenever

L<i<j<t.
(b) Assume that C,,C2,...,C, are ordered as stated in (a), then there are

Cycles} Crs s Cra ae-e , Case. (no = pret it), anduntegens!qrjq2, ta dakG

{1,2,...,c}, such that the following is true. For every (Cj,C;)-path P
starting at u and terminating at v with V(P)NV(F) = {u,v} and1<

i<j <t, there exists an integer k € {1,2,...,m}, such that ngp_-1 <1 <

FeStty and {ug,,0c,} CVn, VX. Oo

By a careful analysis of the complete proof of Theorem 5.7.21 in [745] one

can obtain the following:

Theorem 5.7.22 [745] Let D be a semicomplete multipartite digraph, and

let X C V(D) be arbitrary. Let F be a cycle subdigraph of D that covers

X. Then in O(|V(D)|?) time we can find a new cycle subdigraph, F', of D,
that covers X, such that F' has the properties (a) and (b) given in Theorem
5.7.21. Furthermore we can find F', such that for every cycle C' in F, the

_ vertices X NV(C) are included in some cycle of F'. Oo

262 5. Hamiltonicity and Related Problems

Theorems 5.7.21 and 5.7.22 are very important starting points of [72],

where polynomial solvability of the Hamilton cycle problem for semicomplete

multipartite digraphs is established. We will prove some important conse-

quences of Theorem 5.7.21 and state several more of them.

Theorem 5.7.23 [744] Every regular semicomplete multipartite digraph 1s

hamiltonian.

Proof: Let D be a regular semicomplete multipartite digraph. By Exercise

3.70, D contains a cycle factor F = Cy UC2U...UC;. We may assume that *

is chosen, such that t is minimum. If t = 1 then D is hamiltonian, so assume

that t > 1.
Lewy X. = V (D). Let’ C2,} Ca, 2Cn and qi, 25 -- 2, Im. be rdelined as

in Theorem 5.7.21. Let yx € A(D) be an arc from y € V(C;), with i €
{2,3,...,t} to z € V(C,). Part (b) of Theorem 5.7.21 implies that z~,y* €
V,,- Now we define the two distinct arcs ai;(yx) = zy* and ag(yr) = zy.

By Theorem 5.7.21, a;(yx) and a2(yz) are arcs in D. Indeed, x and yt (a~

and y) are adjacent. If y‘—a then yt* € V,,, which is impossible.
If y'x' and yz are distinct arcs from V(D) —V (C1) to V(C1), then we see

that a,(yx), a2(yx), ai(y'z') and a2(y'z’) are four distinct arcs from V (C1)
to V(D) —V(C;). We have now shown that the number of arcs leaving V(C;)
is at least twice as large as the number of arcs entering V(C,). However this

contradicts the fact that D is an eulerian digraph (see Corollary 1.6.4). O

Theorem 5.7.24 (Yeo) /744] Let D be a (|k/2] + 1)-strong semicomplete
multipartite digraph, and let X be an arbitrary set of vertices in D such that

X includes at most k vertices from each partite set of D. If there is a cycle

subdigraph F = C1 U...UC;, which covers X, then there is a cycle C in D,

such that X CV(C).

Proof: We may clearly assume that F has the properties described in The-

orem 5.7.21, and t > 2, since otherwise we are done. Let Cy,,Cn,,.--;Cn,,

and q1,42,---,Qm be defined as in Theorem 5.7.21. Since X contains at

most k vertices from each partite set, we have that min{|V,, 9 V(C1) N
X|,|Va. AV(Ch,) A X|} = r < |k/2]. Assume without loss of generality
that |Vg, ANV(Ch,) A X| =r. Since D is (|k/2| + 1)-strong we get that there
exists a (V(Ch,) — (Van V(Cay) O 4), VCs. U VC 7) path in
D—(VyNV (Cn,)OX)~, P =p, ... py. Assume that p, € V(C;) (1 <i < nj).
By Theorem 5.7.21, the (Cp,,Ci)-path P contradicts the minimality of Ff,

since no <i <n, and pj} ¢g X NV. Oo

A family of semicomplete multipartite digraphs described in [744] shows
that one cannot weaken the value |k/2| + 1 of strong connectivity in this
theorem. Using the fact that every k-strong digraph of independence number

at most k has a cycle factor (see Proposition 3.11.12) and applying Theorem
5.7.24, we obtain the following two corollaries:

5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 263

Corollary 5.7.25 [744] If a k-strong semicomplete multipartite digraph D
has at most k vertices in each partite set, then D contains a Hamilton cycle.

0

Corollary 5.7.26 /744] A k-strong semicomplete multipartite digraph has a

cycle through any set of k vertices. Oo

Theorem 5.7.23 was generalized by Yeo [748] as follows (its proof also
uses Theorem 5.7.21). Let i,(D) = max{|d*(z) — d~(z)|: x € V(D)} and
ig(D) = A°(D) — 6°(D) for a digraph D (the two parameters are called the
local irregularity and the global irregularity, respectively, of D [748}).

Clearly, i;(D) < ig(D) for every digraph D.

Theorem 5.7.27 [748] Let D be a semicomplete c-partite digraph of order n

with partite sets of cardinalities nj, n2,...,N¢ such that ny < no <...< Ne.

If ig(D) < (n — ne-1 — 2n-)/2+4+1 or i(D) < min{n — 3n, +1, (n — ne_i —
2n-)/2+1}, then D is hamiltonian. Oo

The result of this theorem is best possible in a sense: Yeo [748] constructed
an infinite family D of non-hamiltonian semicomplete multipartite digraphs

such that every D € D has i;(D) = i,(D) = (n — ne_-1 — 2ne + 1)/2+1<
n—3n.4+2.

Another generalization of Theorem 5.7.23, whose proof is based on The-

orem 5.7.21, was obtained by Guo, Tewes, Volkmann and Yeo [348]. For a

digraph D and a positive integer k, define

GER y= So (dt (a) -k) + Syme, ea
zEV(D),d+(r)>k xweEV(D),d-(«)<k

Theorem 7.5.3 in Ore’s book [595] on the existence of a perfect matching in
a bipartite graph can easily be transformed into a sufficient condition for a

digraph to contain a cycle factor. This condition is as follows. If, for a digraph

D and positive integer k, we have f(D,k) < k—1, then D has a cycle factor.

For a positive integer k > 2, let Gi, be a semicomplete 3-partite digraph with

thempartie sete Vy. — 4 x}, Ve"=—{ 41, yo, Yeo}) and Ve = {z1;2ay ty ze}

and arc set

{yx,xz,zy,yv: y € Vo,z € V3,u € V3 — a} U {zz}.

The digraph Gi! is the converse of G),. We observe that f(G,,k) = k-1
(Exercise 5.43), but G, is not hamiltonian, as a hamiltonian cycle would
contain the arc rz, and every second vertex on the cycle would belong to the

partite set V3. Since x has no in-neighbour in V3 — 2}, this is not possible.

Clearly, Gi is not hamiltonian either.

Theorem 5.7.28 /348] Let D be a semicomplete multipartite digraph such

that f(D,k) < k-—1 for some positive integer k. If D is not isomorphic to
Gi, or Gy, then D is Hamiltonian. Oo

264 5. Hamiltonicity and Related Problems

The authors of [348] introduced the following family of semicomplete mul-

tipartite digraphs. Let D be a semicomplete multipartite digraph with par-

tite sets Vi,Vo, ...,Ve. If min{|(2x:, V;)|,|(Vj,%4)|} > $|Vj| for every ver-

tex; i€. Vieand for every 1. < 4,7. < k,. 9 F'4,.then DAs. called a

semi-partitioncomplete digraph. Several sufficient conditions to guar-

antee hamiltonicity of semi-partitioncomplete digraphs were derived in [348].

In particular, the following result was proved.

Theorem 5.7.29 If a strong semi-partitioncomplete digraph D of order n

has less than n/2 vertices in every partite set, then D is hamiltonian. oO

5.8 Longest Paths and Cycles in Extended Locally

Semicomplete Digraphs

From Section 5.5, we know that characterizations of hamiltonian and trace-

able locally semicomplete digraphs are practically the same as those of semi-

complete digraphs: every strong locally semicomplete digraph is hamiltonian

and every connected locally semicomplete digraph is traceable. In the pre-

vious section, we derived characterizations of hamiltonian and traceable ex-

tended semicomplete digraphs. The reader may suspect that similar charac-

terizations hold for extended locally semicomplete digraphs. This is indeed

true. Moreover, the hamiltonicity characterization can be generalized even

to extended locally in-semicomplete digraphs. However, the traceability one

does not hold for extended locally in-semicomplete digraphs. In this section

we briefly consider these characterizations and their generalizations to the

longest path and cycle problems. We start from the following characteriza-

tion by Bang-Jensen and Gutin [62].

Theorem 5.8.1 An eztended locally semicomplete digraph is hamiltonian if

and only if it is strongly connected and has a cycle factor. Given a cycle factor

of a strong extended locally semicomplete digraph D, a hamiltonian cycle of

D can be found in time O(n”), where n is the number of vertices in D. O

This theorem can be generalized to extended locally in-semicomplete di-

graphs [59]. Theorem 5.8.2, whose proof is left as Exercise 5.44, shows that

extended locally semicomplete digraphs are still ‘nicer’ with respect to the

longest cycle than semicomplete bipartite digraphs (see the remark after The-
orem 5.7.7).

Theorem 5.8.2 /62] Let D be a strongly connected extended locally semi-
complete digraph. Given a cycle subdigraph F = Cy U...UCG; of D of

mazimum order, one can find a (longest) cycle C of D such that V(C) =

V(Ci)U... UV(C,) in time O(n?). Oo

5.9 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 265

Theorem 5.8.3 /62] A connected extended locally semicomplete digraph D
has a hamiltonian path if and only if it contains a 1-path-cycle factor. Given

a 1-path-cycle factor of D, one can construct a hamiltonian path of D in time

O(n?).

Proof: Exercise 5.45. oO

4

Figure 5.8 The digraph L.

Unlike Theorem 5.8.1, Theorem 5.8.3 cannot be generalized to extended

locally in-semicomplete digraphs as one can see from the following example

[59]. The extended locally in-semicomplete digraph L in Figure 5.8 contains

a 1-path-cycle factor consisting of path 1234 and cycle 565 (and even an in-

branching rooted in the vertex 6), but has no hamiltonian path. It is natural

to pose the following problem:

Problem 5.8.4 /65]/

(a) Find a characterization of traceable extended locally in-semicomplete di-

graphs.

(b) Establish the complexity of the problem of deciding whether an extended

locally in-semicomplete digraph has a hamiltonian path.

Theorem 5.8.3 can easily be generalized to longest paths.

Theorem 5.8.5 [62] The order of a longest path in an extended locally semi-

complete digraph D equals to the mazimum order of a 1-path-cycle subdigraph

of D. Moreover, given a 1-path-cycle subdigraph F of an extended locally

semicomplete digraph D, a path P such that V(P) = V(F) can be found in
time O(n?). Oo

5.9 Hamilton Paths and Cycles in Quasi-Transitive

Digraphs

The methods developed in [79] by Bang-Jensen and Huang and [365] by Gutin
_ to characterize hamiltonian and traceable quasi-transitive digraphs as well as

266 5. Hamiltonicity and Related Problems

to construct polynomial algorithms for verifying the existence of Hamilton

paths and cycles in quasi-transitive digraphs can be easily generalized to

much wider classes of digraphs [65]. Thus, in this section, along with quasi-

transitive digraphs, we consider totally $-decomposable digraphs for various

sets @ of digraphs.

By Theorem 4.8.5, every strong quasi-transitive digraph D has a decom-

position D = S[Q,,Q2,...,Qs], where S is a strong semicomplete digraph,

s=|V(S)|, and each Q;,1 = 1,2,...,s, is either just a single vertex or a non-

strong quasi-transitive digraph. Also, a non-strong quasi-transitive digraph

D with at least two vertices has a decomposition D = T[Hj, Ho,..., Ht],

where T is a transitive oriented graph, t = |V(T)|, and every H; is a strong
semicomplete digraph. These decompositions are called canonical decomposi-

tions. The following characterization of hamiltonian quasi-transitive digraphs

is due to Bang-Jensen and Huang [79].

Theorem 5.9.1 /79] A strong quasi-transitive digraph D with canonical de-

composition D = S[Q1, Q2,...,Qs] is hamiltonian if and only if it has a cycle

factor F such that no cycle of F is a cycle of some Q;.

Proof: Clearly, a Hamilton cycle in D crosses every Q;. Thus, it suffices to

show that, if D has a cycle factor F such that no cycle of F is a cycle of some

Qi, then D is hamiltonian. Observe that V(Q;) NF is a path factor F; of Q;

for every 1 = 1,2,...,s. For every i = 1,2,...,s, delete the arcs between end-

vertices of all paths in F; except for the paths themselves, and then perform

the operation of path-contraction for all paths in F;. As a result, one obtains

an extended semicomplete digraph S’ (since S is semicomplete). Clearly, S'
is strong and has a cycle factor. Hence, by Theorem 5.7.5, S’ has a Hamilton
cycle C’. After replacing every vertex of S’ with the corresponding path from
F, we obtain a Hamilton cycle in D. Oo

Similarly to Theorem 5.9.1, one can prove the following characterization
of traceable quasi-transitive digraphs (see Exercise 5.47).

Theorem 5.9.2 [79] A quasi-transitive digraph D with at least two vertices
and with canonical decomposition D = R[G,,G2,...,G,] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path Of 8S
completely in some D(V(G;)). O

It appears that Theorems 5.9.1 and 5.9.2 do not imply polynomial al-
gorithms to verify hamiltonicity and traceability, respectively (see Exercise
5.46). The following characterization of hamiltonian quasi-transitive digraphs
is given implicitly in the paper [365] by Gutin:

Theorem 5.9.3 (Gutin) /365] Let D be a strong quasi-transitive digraph
with canonical decomposition D = S[Qi,Q2,...,Qs5]. Let ny,...,n5 be the
orders of the digraphs Qi, Q2,...,Qs, respectively. Then D is hamiltonian
if and only if the extended semicomplete digraph S' = Sl Kau wines es,

5.9 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 267

has a cycle subdigraph which covers at least pc(Q;) vertices of ie for every

fe hori 258:

Proof: Suppose that D has a Hamilton cycle H. For every j = 1,2,...,s,

V(Q;)N4 is a kj-path factor F; of Q;. By the definition of the path covering

number, we have k; > pc(Q,;). For every j = 1,2,...,8, the deletion of the

arcs between end-vertices of all paths in F; except for the paths themselves,

and then path-contraction of all paths in ¥; transforms H into a cycle of 9’

having at least pc(Q;) vertices of K,, for every j = 1,2,...s.

Suppose now that S’ has a cycle subdigraph £ containing p; > pc(Q;)

vertices of en for every j = 1,2,...s. Since S’ is a strong extended semicom-

plete digraph, by Theorem 5.7.7, S’ has a cycle C' such that V(C) = V(L).
Clearly, every Q; has a p;-path factor F;. Replacing, for every j = 1,2,...8,

the p; vertices of Ky, in C with the paths of F;, we obtain a hamiltonian
cycle in D. O

Theorem 5.9.3 can be used to show that the Hamilton cycle problem for

quasi-transitive digraphs is polynomial time solvable.

Theorem 5.9.4 (Gutin) /365] There is an O(n*) algorithm which, given a
quasi-transitive digraph D, either returns a hamiltonian cycle in D or verifies

that no such cycle ezists. oO

The approach used in the proofs of Theorems 5.9.3 and 5.9.4 in [365]
can be generalized to a much wider class of digraphs as was observed by

Bang-Jensen and Gutin [65]. We follow the main ideas of [65].

Theorem 5.9.5 Let & be an extension-closed set of digraphs, i.e. &°*' = @,

including the trivial digraph K, on one vertex. Suppose that for every digraph

H € © we have pcc(H) = pc(A). Let D be a totally S-decomposable digraph.

Then, given a total -decomposition of D, the path covering number of D can

be calculated and a minimum path factor found in time O(n‘).

Proof: We prove this theorem by induction on n. For n = 1 the claim is

trivial.

Let D be a totally $-decomposable digraph and let D = R[Hj,..., H,|

be a -decomposition of D such that R € #, r = |V(R)| and every H; (of
order n;) is totally $-decomposable. A pc(D)-path factor of D restricted to
every H; corresponds to a disjoint collection of some p; paths covering V (H;).

Hence, we have pc(H;) < p; < n;. Therefore, arguing similarly to that in the

proof of Theorem 5.9.3, we obtain

Pepe mini pc Rice... Kge|)i DCU) <Pirarts, 2 — 1,-0.7}

Since @ is extension-closed, and since, for every digraph Q € ©, pc(Q) =

_ pcc(Q), we obtain

268 5. Hamiltonicity and Related Problems

pe(D) = min{ pcc(R[K », ,<++546 pal) oe PCa), = Pete — eee tee
(5.10)

By the result of Exercise 3.60, given the lower and upper bounds pc(H;)

and nj (i =1,...,r), we can find the minimum in (5.10) and thus pc(D) in

time O(n?). Let T'(n) be the time needed to find the path covering number

of a totally 6-decomposable digraph of order n. Then, by (5.10),

T(n) = O(n?) + DT (ni).

Furthermore, T(1) = O(1). Hence T(n) = O(n’). Oo

Recall (see Section 4.12) that 9 (2) is the family of all semicomplete
multipartite, extended locally semicomplete and acyclic digraphs (semicom-

plete bipartite, extended locally semicomplete and acyclic digraphs). Clearly,

both families of digraphs are extension-closed. As we know, pc(D) = pcec(D)
for every semicomplete multipartite digraph D (see Theorem 5.7.2), for ev-
ery extended locally semicomplete digraph D (by Theorem 5.8.3) and every

acyclic digraph D (which is trivial). Notice that one can check whether a

digraph D is totally $p-decomposable (totally 2-decomposable) and, if this

is the case, find a total y-decomposition (@2-decomposition) in time O(n*)

(see Section 4.12). Therefore, Theorem 5.9.5 implies the following theorem
by Bang-Jensen and Gutin:

Theorem 5.9.6 /66] The path covering number of a totally £j)-decomposable

digraph can be calculated in time O(n*). Oo

Corollary 5.9.7 [66] One can verify whether a totally)-decomposable di-
graph is hamiltonian in time O(n‘).

Proof: Let D = R[M,,...,H;,], r = |R|, be a decomposition of a strong
digraph D (r > 2). Then, D is hamiltonian if and only if the following family
S of digraphs contains a hamiltonian digraph:

Ste RECs |e pel Ay pee tH en ee ine

Now suppose that D is a totally)-decomposable digraph. Then, every
digraph of the form R[Kp,,...,Kp,] is in 2. We know (see Theorems 5.7.4
and 5.8.1) that every digraph in $2 is hamiltonian if and only if it is strong
and contains a cycle factor. Thus, all we need is to verify whether there is a
digraph in S containing a cycle factor. It is easily seen that there is a digraph
in S containing a cycle factor if and only if there is a circulation in the network
formed from R by adding lower bounds pc(H;) and upper bounds |V (H;)|
to the vertex v; of R for every i = 1,...,r. Since the lower bounds can be

5.10 Vertex-Heaviest Paths and Cycles in Quasi-Transitive Digraphs 269

found in time O(n‘) (see Theorem 5.9.5) and the existence of a circulation

checked in time O(n?) (see Exercise 3.31), we obtain the required complexity

O(n‘). Oo

Since every quasi-transitive digraph is totally $-decomposable this theo-

rem immediately implies Theorem 5.9.4. Note that the minimum path factors

in Theorem 5.9.5 can be found in time O(n*). Also, a hamiltonian cycle in

a hamiltonian totally ®2-decomposable digraph can be constructed in time

O(n*).

5.10 Vertex-Heaviest Paths and Cycles in

Quasi-Transitive Digraphs

The approach described in the previous section seems to be of not sufficient

power to allow us to construct polynomial time algorithms for longest paths

and cycles in quasi-transitive digraphs and their generalizations. A more pow-

erful method that leads to such algorithms was first suggested by Bang-Jensen

and Gutin [63]. In this section, we describe the method in [63].
From now on, assume that every digraph D we consider has non-negative

weights w(.) on the vertices. Recall that the (vertex-)weight w(H) of a sub-
digraph of D is the sum of the weights of its vertices. For a positive integer

k, the symbol w;(D) denotes the weight of a heaviest k-path subdigraph of

D, i.e. one with the maximum weight among all k-path subdigraphs. For

convenience we define wo(D) = 0. We consider the following problem which
we call the HPS problem. Given a digraph D on n vertices, find a heaviest

k-path subdigraph of D for every k = 1,2,...,n.

Theorem 5.10.1 /63] Let be a set of digraphs including the digraph on

one vertex. Suppose that 6 = $°*' and, for every D € © on n vertices,

wrri(D) — we(D) < we(D) — we-1(D), (5:11)

where k = 1,2,...,n —1. If there ts a constant s > 2 so that, for every

L € ©, the HPS problem can be solved in time O(|V(L)|°), then, for every
totally. &-decomposable digraph D, the HPS problem can be solved in time

O(|V (D)|§*1), provided we are given a total -decomposition of D.

Proof: Let D = R[H;,...,H,] be a decomposition of D, where R € &

and H; is totally -decomposable and has n,; vertices (i = 1,...,r). Set
Do = R[Fi,..., E,-], where E; is the digraph with n; vertices and no arcs.

Assign new weights to the vertices of Do as follows. The ith vertex of E; is

assigned the weight

ew H;) —wiei(Hy), j= 1,...5% t= 1,---, 73.

270 5. Hamiltonicity and Related Problems

We show that, given solutions of the HPS problem for H,,...,H, and Do,

one can easily construct a solution of the HPS problem for D. This will lead

to a recursive algorithm as desired.

Let F, be a heaviest k-path subdigraph of Do and let m; be the number

of vertices in F,, which belong to E; (j = 1,...,r). By (5.11), Wij > Way

whenever g > 7. Therefore, using that all vertices in Ej are similar, we can

always change the vertices of F, so that 7, contains precisely the first m;

vertices of EF; for each 7 = 1,...,r. Assume now that this is the case. Now,

for each 7 = 1,...,r, replace the vertices of E; in F, by a heaviest mj-path

subdigraph of H;. This replacement provides a k-path subdigraph 7; of D.

It is easy to check that

A= me = do wm; (H;) = w(Te) < we(D).
j=1 4=1

So, the weight of a heaviest k-path subdigraph of Do is at most w,;(D).

Analogously, starting with a heaviest k-path subdigraph of D, one can prove

that the weight of a heaviest k-path subdigraph of Do is at least w,(D).
Therefore, 7; is a heaviest k-path subdigraph of D.

The arguments above lead to the following recursive algorithm called

Aups.

1. Use the total $-decomposition of D to find the decomposition D =
Ri weete dd al:

2. Solve the HPS problem for H,,...,H, using Ayps.
3. Form Do (with the weights ,;) and solve the HPS problem for Do using

an O(|V(D)|*)-time algorithm. Change the solutions F; (if it is neces-
sary) so that each of F; contains the first vertices of E; without ‘blanks’,
fon Cachsy zal oe

4. Using the solutions obtained in Step 2, transform every F; into a k-path
subdigraph 7; of D as in the discussion above.

It is easy to check that the complexity of Algorithm Ayps¢ is O(|DI#t*).

O

Using Theorem 5.10.1, we will prove the following:

Theorem 5.10.2 (Bang-Jensen and Gutin) /63] For a quasi-transitive
digraph D on n vertices, the following two problems can be solved in time
O(n?):

(1) For every k = 1,2,...,n, find a heaviest k-path subdigraph of D.
(2) Find a heaviest cycle of D.

Let W be the class of all transitive oriented graphs and all extended semi-
complete digraphs. It follows from Theorem 4.8.5 that every quasi-transitive

5.10 Vertex-Heaviest Paths and Cycles in Quasi-Transitive Digraphs 271

digraph is totally Y-decomposable. Thus, to prove the first part of Theorem
5.10.2, it suffices to show that every digraph D € W satisfies the conditions
of Theorem 5.10.1 with s = 4.

Proof of Part (a) of Theorem 5.10.2: Consider a digraph D € W¢** on
n vertices. We show that D satisfies the conditions of Theorem 5.10.1 with
s = 4. A total Y-decomposition of D can be found in O(n‘), see Section
4.12. For a non-negative integer k, let w;,(D) denote the weight of a heaviest
k-path-cycle subdigraph of D.

Let D' be the digraph obtained from D by the vertex splitting procedure.

In other words, we replace every vertex v of D by the arc v'v" such that vu"
dominates a vertex u’ if and only if vu. Also, we define w(v'v") = w(v) for
every v € V(D) and w(v"'u’) = 0 for every pair u,v of distinct vertices of D.

Construct a network Np as follows. Add a pair s,t of new vertices to D’. For

each vertex uv of D, we add the arcs (s,v’) and (v",t) to D’. Assign capacity
one to each arc of Np. Finally, assign cost zero to every arc adjacent to either

s or t and cost c(a) = —w/(a) for each arc a € A(D’).

By Exercise 3.64, we can find a maximum weight cycle subdigraph CL in
D’ in time O(n?). Since s and ¢ cannot be on any cycle in Np, the digraph £L

corresponds to the minimum cost circulation fo in Np (see Theorem 3.3.1).

Starting from fp and using the buildup algorithm introduced in Section 3.10

we can construct, in time O(n*), minimum cost flows f,,..., fn of values

1,...,n in Np. By Theorem 3.3.1, every f, is the sum of k flows of value

1 along paths from the source s to the sink t and a number of cycle flows.

Hence, f;, provides a collection 7, of k paths and a number of cycles such

that the paths and the cycles have no common vertices, except the source

and the sink of the network. Moreover, by the definition of Np, none of the

cycles contain the source or the sink. It follows from the definition of Np and

the fact that f, is a minimum cost flow in Np that the paths and the cycles

in {Q — {s,t}: Q € F,} form a heaviest k-path-cycle subdigraph L; in D.
In particular, c(f,) = —w,(D) for every k=1,...,n.

If D is an extended semicomplete digraph then, by Theorem 5.7.1, for

every k = 1,...,n, we can construct a k-path subdigraph Q; so that V(Q;,) =
V(L,). If D is acyclic then just let QO, = £,. Obviously, Q; is a heaviest k-
path subdigraph of D. Note that Q1,...,Q, can be found in time O(n*).

Since w,(D) = w),(D) = —c(fx), it follows from Proposition 3.10.7 that
(5.11) holds.

The proof that the complexity bound of O(n’) is left as Exercise 5.50. O

Proof of Part (b) of Theorem 5.10.2: Let D be a strong quasi-transitive
digraph on n > 2 vertices and let D = R[Hi,...,H,], where R is semicom-

plete, H,,...,H, are quasi-transitive digraphs and r > 2. (If D is not strong,

then we consider the strong components of D one by one.) We claim that D

has a heaviest cycle C containing vertices from more than one of the digraphs
H,,...,H,. Indeed, let C’ be a heaviest cycle of D completely contained in

a H;. Since D is strong, there is a path in D, of length at least 2, starting

PHP 5. Hamiltonicity and Related Problems

at. a vertex x of C’, terminating at a vertex y of C’ and containing no other

vertices from H;. Hence, by the definition of R[H,,...,H,], there is a path

of length at least 2, starting at x, terminating at the successor zx’ of x (in

C’) and containing no other vertices from H;. Clearly, the last path and C’
minus the arc (x, 2’) form a cycle as desired.

Now it is easy to see the correctness of the following algorithm for finding

a heaviest cycle of D. Note that our approach finds a heaviest cycle C' which

contains vertices from at least two H;’s. By the remark above this is also a

heaviest cycle of D.

1. Solve the HPS problem for H,,...,H, using Algorithm Ayps.

2. Form Do with the weights w;;, as in the proof of Theorem 5.10.1, and

the network Np,.

3. Construct a minimum cost circulation fo in Np,. Deleting the source and

sink of Np,, form a heaviest cycle subdigraph Z of Do.

4. Using Theorem 5.7.7, construct a heaviest cycle C of Do by merging the

cycles in Z.

5. Using the solutions of Step 1 and the cycle C, form a heaviest cycle of D

(analogously to what we did in the proof of Theorem 5.10.1).

The proof that the complexity bound is O(n*) is left as Exercise 5.50. O

Theorem 5.10.2 implies the following:

Corollary 5.10.3 /63] For a quasi-transitive digraph D on n vertices, the
following problems can be solved in time O(n°).

(a) Find a longest path of D.

(b) Find a longest cycle of D.
(c) For a set X C V(D), check if D contains a cycle through X and construct

one (if it exists).

Proof: Exercise 5.51. oO

Theorem 5.10.2 can be generalized to the following result by Bang-Jensen
and Gutin (see the definitions of 6;-decomposable digraphs in Section 4.12):

Theorem 5.10.4 /62] Let D be a digraph of order n with non-negative
weights on the vertices. Then

(a) If D is totally y-decomposable, then for allk =1,... ,n, some maximum
weight k-path subdigraphs of D can be found in time O(n°).

(b) If D is totally y)-decomposable and X C V(D), then we can check if D
has ae covering all the vertices of X and find one (if it exists) in time
O(n°).

(c) If D is totally 2-decomposable, then a mazimum weight cycle of D can
be found in time O(n°).

(d) If D is totally j-decomposable and X C V(D), then a cycle of D con-
taining all vertices of X can be found in time O(n°) (if it exists).

5.11 Hamilton Paths and Cycles in Various Classes of Digraphs 273

(e) If D is totally $;-decomposable, then a longest cycle of D can be found
in time O(n°).

O

5.11 Hamilton Paths and Cycles in Various Classes of

Digraphs

Grdétschel and Harary [336] showed that only very few bridgeless graphs have
the property that every strong orientation is hamiltonian.

Theorem 5.11.1 /336] Let G be a bridgeless graph. If G is neither a cycle

nor a complete graph, then G contains a strong non-hamiltonian orientation.

O

However, there are quite a number of graphs with the property that every

strong orientation is traceable.

Theorem 5.11.2 (Thomassen) /699] Let G be a 2-edge-connected undi-
rected graph such that every connected component of G is either bipartite

or an odd cycle of length at least 5. Also assume that G has at most one

non-bipartite component. Then every strong orientation of G is traceable.

To prove Theorem 5.11.2, we need the following lemma whose proof is left

as Exercise 5.49.

Lemma 5.11.3 Let L be the complement of an odd cycle uju2...U2~41U1,

k > 2, and let F be an orientation of L. Then, there arei # j € {1,2,...,2k+
1} such that ujujuiz1 or Uiziuju; is a path in F. Oo

Proof of Theorem 5.11.2: Let Gj,...,G, be bipartite connected com-

ponents of G such that A;,B; are partite sets of Gj, i = 1,...,r. Let

Z = UjU2...U2k4+1U1 be the odd cycle in G, if one exists.

Let H be a strong orientation of G. Define a partition A,B of V(G) as
follows:.Let, A* = A; U...U.A, and B* = B, U...UB,. If Z does not exist

(in G), then A = A*, B = B*. Otherwise, by Lemma 5.11.3, without loss of
generality, we have that there exists a j such that u,u;u2 is a directed path

ind =LetyA:= A*\U {u3, Us, - ae ,Urk+1}, Iape— Jar) {u2, U4, - aC , Urk} U {uy}.

By this construction, H(A) is a tournament and H (B) is either a tournament
(if Z does not exist) or H has a path xzy such that z,y € B and zy ¢ G(B).

We now show that H has a cycle C including all vertices of A. If H(A)
is strong, then C exists by Camion’s theorem (see Theorem 1.5.2). If H(A)
is not strong, then there is a shortest path P in H from the terminal strong

component of H(A) to its initial strong component. Let P start at u and
terminate at w. (Clearly, P does not have vertices other than u and w in

274 5. Hamiltonicity and Related Problems

these two components.) It is easy to check that H((A — V(P)) U {u, w}) has

a hamiltonian (w,u)-path Q. The paths P and Q form a cycle containing As

Let C be a longest cycle containing A.

If H —V(C) is a tournament, then some vertex of C dominates a vertex v

of the initial strong component of H — V(C). The tournament H — V(C) has

a hamiltonian path starting at v; this path can be extended to a hamiltonian

path in H. Thus, we may assume that H — V(C) is not a tournament. In

particular, z,y € V(H) — V(C). Let C = vv2...Umvi1. We consider two

cases.

Case 1: z € V(C). We first prove that C contains vertices v;,vi+; such

that v; dominates one of z,y and v;+; is dominated by the other one and

1 <j <m-1. Since G has no triangles, each of z* and z~ is adjacent to at

least one of z,y. By the maximality of C, if z* and y are adjacent, we must

have zt—y and then z,z* is the desired pair. Hence, we may assume that

zt is adjacent to x and, hence, either z, z* is the desired pair or z* 2. Now
considering z~ one can prove that either z~,z is the desired pair or z~, zt

is the desired pair.

Among all pairs v;,v;+,; satisfying the above property choose one such

that j is the smallest possible. We may assume (by interchanging z and y if

needed) that vji>x and yv;,;. We show that 7 = 1. Assume that j > 1.
Because of the minimality of j7, x is not dominated by vj4, when 1 < s <j

and because of the maximality of C, x does not dominate vj. Hence, z is

not adjacent to vj41. Similarly, we can see that y is not adjacent to vj+j-1

and none of the vertices uj+;, 1 < s < j, is dominated by y. Since G has no

triangle, j > 3 and vj41-y and zv;4;~-1; a contradiction to the minimality

of 7. Thus, we may assume that v;92, yvi41.

We add to the oriented graph H—V(C) the arc yx obtaining a tournament

T. Let v be a vertex in the initial strong component of T dominated by a

vertex u in C’. By Camion’s theorem, T has a hamiltonian path P starting

at v and terminating at some vertex w. If yz is not on P, then C[u*,u]P

is a hamiltonian path of H. If yx is on P, then P[{v, y]C[vi4i, vi] Plz, w] is a
hamiltonian path of H.

Case 2: z ¢ V(C). If H — V(C) is strong, then we consider any arc of
H between «x and C (such an arc exists as the degree of x in G equals 2). If

this arc starts (terminates) at x, we add to H — V(C) the arc ry (yx) and

consider a hamiltonian cycle in the resulting tournament. Using this together

with C and the arc between x and C, it is easy to find a hamiltonian path

in Hy

So we assume that H — V(C) is not strong. Let Hi, H2,...,H, be an

acyclic ordering of strong components of H — V(C). We may assume without

loss of generality (consider the converse of H if needed) that at most one of
z,y belongs to V(H;). Clearly, some vertex v in H is dominated by a vertex
in C’. We can find a hamiltonian path in H as in the case when H — V(C)

5.11 Hamilton Paths and Cycles in Various Classes of Digraphs 275

is a tournament unless for some 7, V(H;) = {x} and V(Hi+1) = {y} or
V(Ai_-1) = {y}. But this is impossible due to the existence of xzy. 0

In this theorem it is important that G does not contain a 3-cycle. Indeed,

let M be a multipartite tournament consisting of a strong tournament T

with fixed vertex y and triple x2,,22,23 of independent vertices such that

N* (ai) = {y} for every i = 1, 2,3. Since |N+({a1, 22, 23})| < 2 (see Exercise
3.61), M has no 1-path-cycle factor. (Recall that a multipartite tournament
is traceable if and only if it has a 1-path-cycle factor, see Theorem 5.7.1.)

However, Thomassen [699] remarks that Theorem 5.11.2 is perhaps far from
being the best possible. He claims that by using the method of the proof

of this theorem, it is not difficult to show that any strong orientation of a

graph, whose complement is a disjoint union of two 5-cycles and independent

vertices, has a hamiltonian path.

Problem 5.11.4 Find a non-trivial extension of Theorem 5.11.2.

We recall that a digraph D is unilateral if for every pair z,y of distinct

vertices of D there is a path between x and y (not necessarily both (2, y)-path

and (y,z)-path). For some of the graphs in Theorem 5.11.2 not only all strong

orientations are traceable, but also all unilateral ones satisfy this property.

This was shown by Fink and Lesniak-Foster in the following theorem.

Theorem 5.11.5 /235] Let G be a graph and let F = Q,U...UQ, be a path
subgraph of G in which every path Q; is of length 1 or 2. Then an orientation

of G — Uk_, E(Q;) is traceable if and only if it is unilateral. Oo

Erdés and Trotter [223] investigated when the Cartesian product of two
directed cycles is hamiltonian. They proved the following (below gcd means
the greatest common divisor):

Theorem 5.11.6 Let d = gcd(k,m). The Cartesian product Gppe On is
hamiltonian if and only if d > 2 and there exist positive integers d,,d2 such

that d, + dz =d and gcd(k, d,) = gcd(m, d2) = 1. Oo

For a generalization of Theorem 5.11.6, see Theorem 10.10.5.

In Section 4.6, we introduced de Bruijn digraphs Dg(d, t), Kautz digraphs

Dx(d,t) as well as their generalizations: Dg(d,n), D;(d,n), D(d,n,q,r).

(The digraphs D(d,n,1,r) are special circulant digraphs.) The consecutive-d

digraphs D(d,n,q,r) are the most general among the digraphs listed above.

Thus, we restrict our attention to these digraphs. Du, Hsu and Hwang [206]
proved the following result for digraphs D(d,n,q,r).

Theorem 5.11.7 If gcd(n,q) > 2, or gcd(n,q) = 1 and q > 5, then

D(d,n,q,r) is hamiltonian. a

276 5. Hamiltonicity and Related Problems

Hwang [439] as well as Du and Hsu [205] characterized hamiltonian di-
graphs D(d,n,q,r) for gcd(n,q) = 1 and d=1 (d = 2, respectively). Chang,

Hwang and Tong [143] showed that every digraph D(4,n,q,r) is hamiltonian.

They also gave examples of digraphs D(3,n,q,r), which are not hamiltonian

[142].

We finish this chapter by the following result by Cooper, Frieze and Mol-

loy. For a fixed integer r and a property P, we say that almost all r-regular

digraphs satisfy P if the fraction of r-regular digraphs of order n with P

(among all r-regular digraphs of order n) tends to 1 when noo.

Theorem 5.11.8 /167] For a fixed integer r > 3, almost all r-regular di-

graphs are hamiltonian. O

It is easy to show that almost all 1-regular digraphs are non-hamiltonian

(Exercise 5.54). The fact that almost all 2-regular digraphs have no hamilto-

nian cycle follows directly from the fact that the expected number of hamil-

tonian cycles in a randomly and uniformly chosen 2-regular digraph tends

to zero (for details see Section 3 of Chapter 4 in the book [14] by Alon and
Spencer).

5.12 Exercises

5.1. (+) Let G, be an undirected graph with vertex set X UZUY, where X =
{01,%2,..., tn), ¥ = {yi, yo, o=-,depi} and Z = (21,205. 4. 2691} sand edee
set

LOU EEX Ue YR Ul yas et 1 eke
o

Let D, =Gx. Prove that ghn(D;,) = k (Gutin and Yeo [379]).

5.2. Prove Theorem 5.1.6.

5.3. Prove Theorem 5.1.7.

5.4. Let a digraph Z have V(Z) = {1,2,...,6} and A(Z) = {i7: j-i=2o0r3
(mod) 6}. Find qhn(Z). Is Z hamiltonian?

5.5. (+) Prove without using Theorem 5.2.1 that every acyclic digraph D has an
a(D)-path factor. Hint: use Theorem 3.8.2.

5.6. A refinement of the Gallai-Milgram theorem. We say that a path P
from z to y is end-extendable if there exists another path P’ such that
P = P'{x,y}. If no such path P’ exists then P is non-end-extendable.
Prove the following slight strengthening of the Gallai-Milgram theorem.

Proposition 5.12.1 Every digraph D with independence number a(D) =o
has a path factor P\, P2,..., Pt, t <a, such that P, is a non-end-extendable
path in D and P; is a non-end-extendable path in D—V(P,)U...U VIPs)
Or 2 Se Sith

Hint: show how to modify a given path factor into one with the property
above.

Due

5.8.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21,

5.22.

5.23.

5.24.

5.12 Exercises PRE

Show that Theorem 5.2.5 implies Theorem 5.2.1.

Scheduling airplanes. An airport has a certain number of runways that
can be used for landing of airplanes. How would you schedule airplanes to use
the minimum number of the runways (in order to possibly have some spare
ones permanently ready for emergency landings) if every use of a runway can
be determined as a fixed time interval ?

(—) Show by examples that property (1) and (2) of Lemma 5.3.3 need not
hold for arbitrary acyclic digraphs.

. Using the proof of Theorem 5.4.2, Lemma 5.4.1 and Proposition 4.9.3, prove
Corollary 5.4.3.

. Prove Theorem 5.2.4 for path-mergeable digraphs.

. Prave that every strong locally in-semicomplete digraph has a 2-connected
underlying graph.

. Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian cycle if and only if it is strong (Bang-Jensen [44]).

. Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian path if and only if it is connected (Bang-Jensen [44]). Hint:
use Lemma 4.10.2.

Give a direct proof of the following result. One can find a longest cycle is a
semicomplete digraph in time O(n“) (Manoussakis [546]).

(—) Using Proposition 5.0.3 and Theorem 5.6.1 prove the following:

Proposition 5.12.2 Let D be a digraph of order n. Suppose that, for every
dominated pair of non-adjacent vertices {x,y}, either d(x) > n—1 and d(y) >
n—2 or d(x) > n—2 and d(y) > n—1. Then D is traceable.

Prove that the digraph Q, introduced before Theorem 5.6.1 is strong and
non-hamiltonian.

Prove Lemma 5.6.24.

Find an infinite family of hamiltonian digraphs that satisfy the conditions
of both Theorem 5.6.1 and Theorem 5.6.5, but do not satisfy the conditions
of Theorem 5.6.7 and are neither locally out-semicomplete nor locally in-
semicomplete (Bang-Jensen, Gutin and Li [69}).

Find an infinite family of hamiltonian digraphs that satisfy the conditions
of Theorem 5.6.12, but do not satisfy the conditions of Theorem 5.6.7 (Zhao
and Meng [758]}).

Prove Corollaries 5.6.21 and 5.6.22.

Using Meyniel’s theorem, prove that if a strong digraph D has at least n? —
3n +5 arcs, then D is hamiltonian (Lewin [514)).

Prove that every digraph with more than (n—1)? arcs is hamiltonian (Lewin
[514]).

Prove that, if the minimum semi-degree of a digraph D of order n is at least
(n + 1)/2, then every arc of D is contained ina Hamilton cycle of D.

278

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

5.36.

5. Hamiltonicity and Related Problems

. Construct an infinite family of non-hamiltonian strong digraphs that satisfy
both (5.1) and (5.2) (Bermond and Thomassen [115]).

. Prove that every vertex of a semicomplete multipartite digraph D belongs to
a longest path in D (Volkmann [729)).

. (+) Give a direct proof of the first (non-algorithmic) part of Theorem 5.7.1
(Gutin [358, 363]).

. Show that the multipartite tournament in Figure 5.6 is non-hamiltonian.

. Show that the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs
does not hold, i.e., there are a strong semicomplete bipartite digraph D and
a maximum cycle subdigraph F in D such that D(V(F)) is not hamiltonian
(Gutin [362]).

An oriented graph D = (V, A) is an arc-locally tournament digraph if it
has the following two properties:
(i) Whenever z,y are distinct vertices and there exists an arc uv € A such

that ru, yv € A, there is at least one arc between z and y in D.

(ii) Whenever z, y are distinct vertices and there exists an arc zw € A such
that zz, wy € A, there is at least one arc between z and y in D.

Prove that, if D = (V, A) is a connected arc-local tournament digraph and C
is a cycle, then every vertex of V — C is adjacent to a vertex of C.

(+) Hamiltonian paths and cycles in arc-locally tournament di-
graphs. Prove the following two theorems by Bang-Jensen [48]:

Theorem 5.12.3 An arc-locally tournament digraph is hamiltonian if and
only tf tt 1s strong and has a cycle factor.

Theorem 5.12.4 An arc-locally tournament digraph is traceable if and only
if it has a 1-path-cycle factor.

Hint: use Exercise 5.30 and study the structure of the arcs between disjoint
cycles.

(—) Arc-local tournament digraphs were defined above. Prove that every
bipartite tournament is an arc-local tournament digraph.

Prove Theorem 5.7.13 by induction on t.

By inspecting all intermediate steps in the proof of Corollary 5.7.16, show
that the following statement holds. Let D be a bipartite digraph obtained
by taking two disjoint even cycles C = wju2...u2K-1U2%u1 and Z =
V1U2...U2r—1V2rv1 and adding an arc between v2;-1 and u2; and between
voi and u2j-1 (in any direction, possibly one in each direction) for all
1=1,2,...,k andj =1,2,...,r. D is hamiltonian if and only if it is strong.
Moreover, if D is strong, then, given cycles C and Z as above, a hamiltonian
cycle of D can be found in time O(|V(C)||V(Z)|) (Gutin [362]).

Prove Theorem 5.7.7.

Prove the following generalization of Lemma 5.7.15. If a strong semicomplete
multipartite digraph D has a cycle subdigraph F = C,U...UC; with p(< n)
vertices, then, for every i, D has a cycle of length at least p—t+1 covering
all vertices of C; (Bang-Jensen, Gutin and Huang [68]).

5.37.

5.38.

5.39.

5.40.

5.41.

5.47.

5.48.

5.49.

5.50.

5.51.

5.52.

5.12 Exercises 279

Construct an infinite family of semicomplete multipartite digraphs showing
that the result of Exercise 5.36 is best possible (Bang-Jensen, Gutin and
Huang [68]).

Using the result of Exercise 5.36, prove that every strong semicomplete mul-
tipartite digraph D with 1-path-cycle subdigraph F = PUC, U...UC; of
order p has a path of length at least p —t — 1 starting at the initial vertex of
P (Bang-Jensen, Gutin and Huang [68]).

Prove Theorem 5.7.13.

Prove the following proposition. Let D be a strong semicomplete multipartite
digraph of order n and let r be the cardinality of minimum partite set of
D. If for each pair of dominated non-adjacent vertices z,y, d(x) + d(y) >
min{2(n — r) + 3,2n — 1}, then D is hamiltonian (Zhou and Zhang [760]).

(—)Prove that every oriented graph of minimum in-degree and out-degree
k > 2, on at most 2k + 2 vertices, is a multipartite tournament with at most
two vertices in each partite set.

. Prove the following theorem due to Jackson:

Theorem 5.12.5 [449] Every oriented graph of minimum in-degree and out-
degree k > 2, on at most 2k +2 vertices, is hamiltonian.

. (—) Check that f(G,,k) =k —1, where the digraph G', and the function f
are introduced after Theorem 5.7.27.

. Prove Theorem 5.8.2.

. Characterization of traceable extended locally semicomplete di-
graphs. Prove Theorem 5.8.3.

. (—) Prove that the following problem is NP-complete: Given a digraph
D = (V,A) and a partition V = Vi U...UV,, check whether D has a
cycle factor C; U... UC, such that no cycle C; is contained in a set Vj,
ED. Ep:
Hint: consider an arbitrary vertex x in D and let V; = V(D) — {x}, V2 = {x}.

(—) Characterization of traceable quasi-transitive digraphs. Prove
Theorem 5.9.2 using Theorem 5.7.1.
Hint: see the proof of Theorem 5.9.1.

(—) Another characterization of traceable quasi-transitive digraphs.
Formulate and prove a characterization of traceable quasi-transitive digraphs
similar to Theorem 5.9.3.

Prove Lemma 5.11.3.

Prove the complexity bound for both parts of Theorem 5.10.2.

(—) Deduce the results of Corollary 5.10.3 from Theorem 5.10.2.

Prove that if D is a strong oriented graph of order at least three and D does
not contain, as induced subdigraph, any digraph in Figure 5.9, then D is
hamiltonian (Kemnitz and Greger [477]).
Hint : show that D is locally out-semicomplete and use the characterization
of hamiltonian locally out-semicomplete digraphs (Gutin and Yeo [380]).

280 5. Hamiltonicity and Related Problems

We seni ameaae
Figure 5.9 Forbidden digraphs. Unoriented arcs can be oriented arbitrarily.

5.53.

5.04.

5.55.

5.56.

5.07.

A counterexample to a conjecture from [477]. Consider the tournament

D with V(D) => {x1, 2,3, 04,25} and

A(D) = {v122, £223, 0304, 0405, 15L1, L113, (204,135, L421, r5r2}

and any 2-strong tournament J’, containing three vertices y1, y2, y3 such that

— {yry2, yoys, ysyi} C A(T).

Let us construct an oriented graph T* with vertex set V(D) UV(T) and arc
set

A(D)U A(T) U {yize, vay1, yot2, Layo, y3t4, T2y3}.

Prove that

(a) T™ is strong. ;
(b) T* does not contain, as induced subdigraph, any orientation of Ki,3.
(c) For every vertex v in T*, T*(N(v)) is strong.
(d) T* is not hamiltonian.

(Gutin and Yeo [380])

(—) Prove that almost all 1-regular digraphs are non-hamiltonian.

Connected (g,f)-factors in some semicomplete multipartite di-
graphs. Given a digraph D and two positive integers f(r), g(x) for every

x € V(D), a subgraph H of D is called a (g, f)-factor if g(x) < dj (zr) =

d(x) < f(x) (g(x) < du(x) < f(x), respectively) for every c € V(D). If
f(x) = g(x) = 1 for every x, then a connected (g, f)-factor is a hamiltonian
cycle. Prove the following result by Gutin:

Theorem 5.12.6 /370] Let D be a semicomplete bipartite digraph or an ex-
tended locally in-semicomplete digraph. Then D has a connected (g, f)-factor
if and only if D is strongly connected and contains a (g,f)-factor. One can
check whether D has a connected (g, f)-factor in O(n*) time. Oo

Connected (g, f)-factors in quasi-transitive digraphs. The additional
terminology used in this exercise are introduced in the previous exercise.
Prove the following assertion. The connected (g, f)-factor problem is polyno-
mial time solvable for quasi-transitive digraphs (Gutin [370]).

Let G be the complete graph on 5 vertices with one edge deleted. Find a
strong orientation of G which is not hamiltonian.

6. Hamiltonian Refinements

In this chapter we discuss results which in one way or another generalize the

notion of hamiltonicity. As can be seen from the content of the chapter, there

are quite a number of such topics. In fact many more could be added, but we

feel that the ones included here are representative.

We start by studying hamiltonian paths with one or more end vertices

prescribed, that is, we study paths which start in a prescribed vertex, paths

which connect two prescribed vertices and finally paths which start and end in

prescribed vertices. Not surprisingly, the level of difficulty of these problems

increase when we fix more and more end vertices. Even for tournaments the

last problem is still not completely solved.

The next topic is pancyclicity, which may be seen as a generalization

of hamiltonicity. We first study digraphs of order n which have cycles of

all lengths from 3 to n and subsequently digraphs in which every vertex is

in a k-cycle for every k € {3,4,...,n}. After that we discuss briefly arc-

pancyclicity where we want cycles of all possible lengths from 3 to n through

each arc. These problems are very hard and almost all known results deal with

tournaments, generalizations of tournaments or digraphs which are almost

complete.

Another topic covered is hamiltonian cycles which either avoid or contain

certain prescribed arcs. These problems are very difficult even for tourna-

ments. As we will show in Section 6.7, some of these results imply that the

problem of deciding the existence of a hamiltonian cycle in a digraph ob-

tained from a semicomplete digraph by adding just a few new vertices and

some arcs is already very difficult. In fact the problem is highly non-trivial

even if we add just one extra vertex. We also discuss various results concern-

ing arc-disjoint hamiltonian paths and cycles, in particular the conjecture

by Kelly that the arcs of every regular tournament can be decomposed into

arc-disjoint hamiltonian cycles.

We then move on to orientations of hamiltonian cycles. We discuss in

some detail one of the main tools in a recent proof by Havet and Thomassé

of the deep result that every tournament on at least 8 vertices contains every

orientation of a hamiltonian undirected path.

After this we briefly discuss another relative of the hamiltonian cycle
problem; the problem of finding a set of few cycles that cover all vertices of a

282 6. Hamiltonian Refinements

digraph. We study both the case when these cycles are allowed to intersect,

pairwise but only in a path, and the case when we want the cycles to be

disjoint.

The last two sections deal with applications. First we show that for every

strong digraph D belonging to one of several classes of generalizations of

tournaments, one can find a spanning subgraph which is strongly connected

and has the minimum number of arcs among all such subdigraphs of D in

polynomial time. For general digraphs this problem is NP-complete since

it generalizes the hamiltonian cycle problem. Finally we address the ibs?

problem and show that some widely used heuristics for the problem find tours

which are better than a fraction (depending on 7) of all possible tours, thus

indicating that the solutions they find may be expected to be of reasonable

quality.

~

6.1 Hamiltonian Paths with a Prescribed End-Vertex

We begin with hamiltonian paths starting or ending at a prescribed vertex.

Besides being of independent interest, results of this type are also useful in

connection with results on hamiltonian paths with both end vertices pre-

scribed (but not necessarily the direction of the path).
To get a feeling for arguing with extended tournament structure, we start

with the following easy result.

Proposition 6.1.1 Suppose that a strong extended tournament D has an

(x, y)-path P such that D—P has a cycle factor. Then D has a hamiltonian

path starting at x and a hamiltonian path ending at y.

Proof: Choose a path P’ starting at x as long as possible so that D — P’

has a factor which consists of minimal number of cycles C1, C2,..., Cg. Then,

by Proposition 5.7.18, we may assume that Cj>C,; when i < 7. Let P’ =

UjU2...U, Where u; = 2. If g # 0, then, by the assumption on P’, u, is

completely dominated by C;. Since D is strong, there is an arc from P’ to

C,. Let u; be the vertex of P’ with largest index i < r such that there is an

arc u;z from u; to C;. Let z~ be the predecessor of z on C;. Since uj+1 has no

arc to C,, we obtain z~ u;+1. Here we used the property that nonadjacent

vertices of an extended semicomplete digraph are similar (defined in Chapter

1). Hence C[z,z~] can be inserted between u; and uj41, contradicting the
choice of P’. So gq = 0 and P’ is a hamiltonian path starting at x. A similar

argument can be applied to show that D has a hamiltonian path ending at

y. Oo

The following result, due to Bang-Jensen and Gutin, shows that, for di-

graphs that are either semicomplete bipartite or extended locally semicom-

plete, there is a nice necessary and sufficient condition for the existence of a
hamiltonian path starting at a prescribed vertex.

6.1 Hamiltonian Paths with a Prescribed End-Vertex 283

Theorem 6.1.2 /66] Let D = (V,A) be a digraph which is either semicom-
plete bipartite or extended locally out-semicomplete and let x € V. Then D
has a hamiltonian path starting at « if and only if D contains a 1-path-cycle
factor F of D such that the path of F starts at x, and, for every vertex y of
V —{a}, there is an (x,y)-path' in D. Moreover, if D has a hamiltonian path

starting at x, then, given a 1-path-cycle factor F of D such that the path of

F starts at x, the desired hamiltonian path can be found in time O(n’).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose

that F = PUC,U...UC; is a 1-path-cycle factor of D that consists of a path

P starting at x and cycles Ci, i = 1,...,t. Suppose also that every vertex

of D is reachable from x. Then, without loss of generality, there is a vertex

of P that dominates a vertex of C,. Let P= 2,29.. Zp, C1 = Yiyo--- Yai;

where z = 2; and x,y, for some k € {1,2,...,p}, s € {1,2,...,q}. We

show how to find a new path starting at 2 which contains all the vertices of

V(P) UV(C;). Repeating this process we obtain the desired path. Clearly,
we may assume that k < p and that z, has no arc to V(C}).

Assume first that D is an extended locally out-semicomplete digraph. If P

has a vertex z; which is similar to a vertex y; in Cy, then rjy;+41, yjtit1 € A

and using these arcs we see that P[x1,2;|Clyj;41, y;|P[zi+1, tp] is a path
starting from z and containing all the vertices of PU Cj. If P has no vertex

that is similar to a vertex in C,, then we can apply the result of Exercise

4.37 to P[z,, Zp] and z~Ci[ys, ys—1] and merge these two paths into a path

R starting from x, and containing all the vertices of P[z,,2,] UC. Now,
P[z1,2,%—-1]R is a path starting at z and containing all the vertices of PUC}.

Suppose now that D is semicomplete bipartite. Then either y,_1 72,441,

which implies that P[r1,2%]Cilys, ys—i]P[t%41,2p] is a path starting at x

and covering all the vertices of P U C4, or 2441—Ys-1. In the latter case,

we consider the arc between x42 and ys—2. If ys-272442 we can construct

the desired path, otherwise we continue to consider arcs between 2443 and

Ys—3 and so on. If we do not construct the desired path in this way, then we

find that the last vertex of P dominates a vertex in C,, contradicting our

assumption above.

Using the process above and breadth-first search, one can construct an

O(n?)-algorithm for finding the desired hamiltonian path starting at z. O

Just as the problem of finding a minimum path factor generalizes the
hamiltonian path problem, we may generalize the problem of finding a hamil-

tonian path starting at a certain vertex to the problem of finding a path factor

with as few paths as possible such that one of these paths starts at a specified

vertex z. We say that a path factor starts at z if one of its paths starts at
z and denote by pc,(D) the minimum number of paths in a path factor that

' This is equivalent to saying that D has an out-branching with root 2.

284 6. Hamiltonian Refinements

starts at z. The problem of finding a path factor with pc,(D) paths which

starts at x in a digraph D is called the PFx problem?.

Let &, be the union of all semicomplete bipartite, extended locally semi-

complete and acyclic digraphs. Using an approach similar to that taken in

Section 5.10, Bang-Jensen and Gutin proved the following.

Theorem 6.1.3 /66] Let D be a totally $,-decomposable digraph. Then the

PFr problem for D can be solved in time O(\|V(D)|*). 0

6.2 Weakly Hamiltonian-Connected Digraphs

Recall that an [z,y]-path in a digraph D = (V,A) is a path which ei-

ther starts at z and ends at y or oppositely. We say that D is weakly

hamiltonian-connected if-it has a hamiltonian [z, y]-path (also called an

[z, y|-hamiltonian path) for every choice of distinct vertices z, y € V. Ob-
viously deciding whether a digraph contains an [z, y]-hamiltonian path for
some z, y is not easier than determining whether D has any hamiltonian path

and hence for general digraphs this is an M’P-complete problem by Theorem

5.0.2 (see also Exercise 6.3)..In this section we discuss various results that

have been obtained for generalizations of tournaments. All of these results

imply polynomial algorithms for finding the desired paths.

6.2.1 Results for Extended Tournaments

We start with a theorem due to Thomassen [698] which has been generalized
to several classes of generalizations of tournaments as will be seen in the
following subsections.

Theorem 6.2.1 /698] Let D = (V,A) be a tournament and let 21,22 be

distinct vertices of D. Then D has an [x1,22]-hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1, 22 belongs to the initial strong com-

ponent of D or none of x1, 22 belongs to the terminal strong component
(or both).

(b) D is strong and fori = 1 or 2, D—12; is not strong and x3_; belongs to

neither the initial nor the terminal strong component of D — 2;.

(c) D is isomorphic to one of the two tournaments in Figure 6.1 (possibly
after interchanging the names of x, and x2).

The following easy corollary is left as Exercise 6.4:

? Observe that pc,(D) < pc(D) +1 holds for every digraph D.

6.2 Weakly Hamiltonian-Connected Digraphs 285

?

Figure 6.1 The exceptional tournaments in Theorem 6.2.1. The edge between 21
and x2 can be oriented arbitrarily.

Corollary 6.2.2 /698] Let D be a strong tournament and let x,y,z be dis-
tinct vertices of D. Then D has a hamiltonian path connecting two of the

vertices in the set {x,y,z}. a)

Thomassen [698] used a nice trick in his proof of Theorem 6.2.1 by using

Corollary 6.2.2 in the induction proof. We will give his proof below.

Proof of Theorem 6.2.1: Let x), z2 be distinct vertices in a tournament

D. It is easy to check that if any of (a)-(c) holds, then there is no [, 22]-
hamiltonian path in D.

Suppose now that none of (a)-(c) hold. We prove by induction on n that D
has an [z1, Z2]-hamiltonian path. This is easy to show when n < 4 so assume

now that n > 5 and consider the induction step with the obvious induction

hypothesis. If D is not strong then let D,, Do2,...,Ds, s > 2 be the acyclic

ordering of the strong components of D. Since (a) does not hold, we may
assume without loss of generality that x; € V(D,) and zz € V(D,). Observe
that D,; has a hamiltonian path P, starting at x, (Exercise 6.1) and D, has

a hamiltonian path P, ending at r2. Let P; be a hamiltonian path in D; for

each i = 2,3,...,s—1. Then P,P)... P,_1P; is an (21, £2)-hamiltonian path.
If D — z; is not strong for i = 1 or 2, then we may assume without loss

of generality that i = 1. Let Dj,...,D,, p = 2 be the acyclic ordering of the

strong components of D — 21. Since (b) does not hold we may assume, by
considering the converse of D if necessary, that rz belongs to Ds Let y be

any out-neighbour of x; in D,. Our argument for the previous case implies

that there is a (y, z2)-hamiltonian path P in D—<, implying that 2; P is an

(x1, £2)-hamiltonian path in D. Hence we may assume that D — 2; is strong
Glatt 2,

If D — {x1,z2} is not strong, then it is easy to prove that D has an

(x;,23_;)-hamiltonian path for i = 1,2 (Exercise 6.2). Hence we only need

286 6. Hamiltonian Refinements

to consider the case when D’ = D — {21,22} is strong. Let uju2...Un—2U1

be a hamiltonian cycle of D’. By considering the converse if necessary, we

may assume that x, dominates u;. Then D has an (21, 72)-hamiltonian path

unless x2 dominates un_2 so we may assume that is the case. By the same

argument we see that either the desired path exists or z; dominates un—3 and

x2 dominates un—s. Now it is easy to see that either the desired path exists,

or n — 2 is even and we have 21+>{u1,U3,.--,Un—3}, To {U2, U4,--- he ancy A

If x; or z_ dominates any vertex other than those described above, then by

repeating the argument above we see that either the desired path exists or

{x1,Z2}++V(C), which is impossible since D is strong. Hence we may assume

that

{u,U4,---,Un—2}r> £1 +4{u1, U3,.--,Un—3},

{u1,U3,---,Un—3}> To >{u2, U4,..-,Un—2} (6.1)

If n = 6, then using that (c) does not hold, it is easy to see that the desired
path exists. So we may assume that n > 8. By induction, the theorem and

hence also Corollary 6.2.2 holds for all tournaments on n — 2 vertices. Thus

D' has a hamiltonian path P which starts and ends in the set {u1,u3, us}
and by (6.1), P can be extended to an (x1, 22)-hamiltonian path of D. O

We now turn to extended tournaments. An extended tournament D does

not always have a hamiltonian path, but, as we saw in Theorem 5.7.1, it

does when the following obviously necessary condition is satisfied: there is

a 1-path-cycle factor in D. Thus if we are looking for a sufficient condition

for the existence of an [z, y]-hamiltonian path, we must require the existence

on an [z,y]-path P such that D — P has a cycle factor (this includes the

case when P is already hamiltonian). Checking for such a path factor in an
arbitrary digraph can be done in polynomial time using flows, see Exercise

3.62.

The next result is similar to the structure we found in the last part of the

proof of Theorem 6.2.1.

Lemma 6.2.3 /67] Suppose that D is a strong extended tournament con-
taining two adjacent vertices x and y such that D — {x,y} has a hamilto-
nian cycle C' but D has no hamiltonian [x, y|-path. Then C is an even cycle,

N*t(z)NV(C) = N-(y)NV(C), N-(z)NV(C) = Nt+(y) NV(C), and the
neighbours of x alternate between in-neighbours and out-neighbours around
CG.

Proof: Exercise 6.5. oO

Bang-Jensen, Gutin and Huang obtained the following characterization
for the existence of an [z, y]-hamiltonian path in an extended tournament.
Note the strong similarity with Theorem 6.2.1.

6.2 Weakly Hamiltonian-Connected Digraphs 287

Theorem 6.2.4 [67] Let D be an extended tournament and 11,22 be distinct

vertices of D. Then D has an (x1, £2|-hamiltonian path if and only if D has

an [21,22]-path P such that D—P has a cycle factor and D does not satisfy

any of the conditions below:

(a) D is not strong and either the initial or the terminal component of D

(or both) contains none of x, and 22;
(b) D ts strong and the following holds fori = 1 ori = 2: D—2; is not strong

and either x3_; belongs to neither the initial nor the terminal component

of D—2,, or x3_; does belong to the initial (terminal) component of D—2;

but there is no (x3_;,2;)-path ((2;,23_;)-path) P' such that D — P' has
a cycle factor.

(c) D, D—2,, and D— 22 are all strong and D is isomorphic to one of the

tournaments in Figure 6.1. Oo

The proof of this theorem in [67] is constructive and implies the following
result (the proof is much more involved than that of Theorem 6.2.1). We point

out that the proof in [67] makes explicit use of the fact that the digraphs have

no 2-cycles. Hence the proof is only valid for extended tournaments and not

for general extended semicomplete digraphs, for which the problem is still

open.

Theorem 6.2.5 /67] There exists an O(,/nm) algorithm to decide if a given
ettended tournament has a hamiltonian path connecting two specified vertices

xz and y. Furthermore, within the same time bound a hamiltonian [z, y|-path

can be found if it exists. 0

Theorem 6.2.4 implies the following characterization of extended tourna-

ments which are weakly hamiltonian-connected (see Exercise 6.7).

Theorem 6.2.6 /67] Let D be an extended tournament. Then D is weakly
hamiltonian-connected if and only if it satisfies each of the conditions below.

(a) D is strongly connected.
(b) For every pair of distinct vertices x and y of D, there is an [z,y|-path

P such that D — P has a cycle factor.

(c) For each vertex x of D, D—« has at most two strong components and

if D—« is not strong, then for each vertex y in the initial (respectively
terminal) strong component, there is a (y,x)-path (respectively an (x, y)-

path) P' such that D — P' has a cycle factor.
(d) D is not isomorphic to any of the two tournaments in Figure 6.1. O

The following result generalizes Corollary 6.2.2. Note that we must assume
the existence of the paths described below in order to have any chance of

having a hamiltonian path with end vertices in the set {x,y,z}. The proof

below illustrates how to argue with extended tournament structure.

288 6. Hamiltonian Refinements

Corollary 6.2.7 [67] Let x,y and z be three vertices of a strong extended

tournament D. Suppose that, for every choice of distinct vertices u,v €

{x,y,z}, there is a [u,v]-path P in D so that D — P has a cycle factor.

Then there is a hamiltonian path connecting two of the vertices in { ha) cele

Proof: If both D — xz and D — y are strong, then, by Theorem 6.2.4, either

D has a hamiltonian path connecting z and y, or D is isomorphic to one

of the tournaments in Figure 6.1, in which case there is a hamiltonian path

connecting x and z. There is a similar argument if both D — z anduD.— z,

or D —y and D — z are strong. So, without loss of generality, assume that

neither D — x nor D — y is strong. Let $,S2,...,5; be an acyclic ordering

of the strong components of D — z. Note that S; has an arc to z, since D is

strong.

Suppose first that y € V(S;) for some 1 < i < t. We show that this implies

that D — y is strong, contradicting our assumption. Consider an [z, y]-path

P and a cycle factor F of D —P. It is easy to see that P cannot contain

any vertex of S;41,...,5. Hence each of these strong components contains a

cycle factor consisting of those cycles from F that are in S; for 7 =i+1,...,t.

In particular (since it contains a cycle), each S; has size at least 3 for 7 =

i+1,...,t. It also follows from the existence of P and ¥ that every vertex in

S; is dominated by at least one vertex from U = V(S1)U...UV (S;-1). Indeed,

if some vertex z € V(S;) is not dominated by any vertex from U, then using

that S,=>S, for all 1 <r < p < t we get that z is similar to all vertices in

U. However, this contradicts the existence of P and ¥. Now it is easy to see

that D — y is strong since every vertex of S;—y is dominated by some vertex

from V(S,)U...UV(S;_1) and dominates a vertex in V(Sj41) U...UV(S¢).

Hence we may assume that y belongs to 5; or S;.

By considering the converse of D if necessary, we may assume that y €

V(S,). By Theorem 6.2.4(b) we may assume that there is no (y, z)-path W

such that D — W has a cycle factor. Thus it follows from the assumption of

the corollary that there is an (x, y)-path P’! = v)v2...vp, vy = LZ, Up = y Such

that D — P' has a cycle factor F'. Since P’ — x is contained in S,, we can

argue as above that each S;, i > 1, has a cycle factor (inherited from F') and
hence each S; contains a hamiltonian cycle C;, by Theorem 5.7.7.

Note that every vertex of S; which is not on P’ belongs to some cycle

of F' that lies entirely inside S,. Hence, if r = 2 (that is, P’ is just the

arc zy), then it follows from Proposition 6.1.1 (which is also valid when
the path in question has length zero) that S$; contains a hamiltonian path

starting at y. This path can easily be extended to a (y,z)-hamiltonian path

in D, since each S;, 7 > 1, is hamiltonian. Thus we may assume that r > 3.

If 5S; —y is strong then D—y is strong, contradicting our assumption above.

Let T),72,...,7's, s > 2, be an acyclic ordering of the strong components of

5S, —y. Note that each V(T7;) is either covered by some cycles from the cycle
factor F' of D — P’ and hence T; has a hamiltonian cycle (by Theorem
5.7.5), or is covered by a subpath of P’[v2,v,—i] and some cycles (possibly

6.2 Weakly Hamiltonian-Connected Digraphs 289

zero) from F' and hence T; has a hamiltonian path (by Theorem 5.7.1). Note

also that there is at least one arc from y to T; and at least one arc from T,

to y. If J; contains a portion of P'[v2,v,_1], then it is clear that T, contains

v2. But then D — y is strong since z-v2, contradicting our assumption. So

T; contains no vertices of P’[v,,v,;—1] and hence, by the remark above, 7;

has a hamiltonian cycle to which there is at least one arc from y. Using the

structure derived above, it is easy to show that D has a (y,z)-hamiltonian

path (Exercise 6.6). 0

It can be seen from the results above that, when we consider weak

hamiltonian-connectedness, extended tournaments have a structure which is

closely related to that of tournaments. To see that Theorem 6.2.4 does not

extend to general multipartite tournaments, consider the multipartite tour-

nament D obtained from a hamiltonian bipartite tournament B with classes

X and Y, by adding two new vertices x and y along with the following arcs:

all arcs from x to X and from Y to g, all arcs from y to Y and X to y and an

arc between z and y in any direction. It is easy to see that D satisfies none

of the conditions (a)-(c) in Theorem 6.2.4, yet there can be no hamiltonian

path with end vertices x and y in D because any such path would contain a

hamiltonian path of B starting and ending in X or starting and ending in Y.

Such a path cannot exist for parity reasons (|X| = |Y |). Note also that we can
choose B so that the resulting multipartite tournament is highly connected.

Bang-Jensen and Manoussakis [86] characterized weakly hamiltonian-
connected bipartite tournaments. In particular, they proved a necessary and

sufficient condition for the existence of an [z, y]|-hamiltonian path in a bipar-

tite tournament. The statement of this characterization turns out to be quite

similar to that of Theorem 6.2.4. The only difference between the statements

of these two characterizations is in Condition (c): in the characterization for

bipartite tournaments the set of forbidden digraphs is absolutely different

and moreover infinite.

6.2.2 Results for Locally Semicomplete Digraphs

Our next goal is to describe the solution of the [x, y]-hamiltonian path prob-

lem for locally semicomplete digraphs. Notice that this solution also covers
the case of semicomplete digraphs and so, in particular, it generalizes Theo-

rem 6.2.1 to semicomplete digraphs.

We start by establishing notation for some special locally semicomplete

digraphs. Up to isomorphism there is a unique strong tournament with four

vertices. We denote this by T}. It has the following vertices and arcs:

V(T}) = {a1, a2, 03,04}, A(Ty) = {a1@2, a203, 0304, 2401, 4103, 2204}.

The semicomplete digraphs T?, T?, and Tj are obtained from T} by adding
some arcs, namely:

290 6. Hamiltonian Refinements

A(T?) = A(TY) U {aga1, asa2},

A(T?) = A(Tq) U {a3ai}, A(Ti) = A(Ly) U {14s}.
Let 74 = {T},T?,T?, T?}. It is easy to see that every digraph of 74 has a

unique hamiltonian cycle and has no hamiltonian path between two vertices

which are not consecutive on this hamiltonian cycle (such two vertices are

called opposite).

Let 7¢ be the set of semicomplete digraphs with the vertex set {1, 22, 1,

@2,a3,a4}, each member D of 7@ has a cycle a,;a2a3a4a,; and the digraph

D({a1,@2,a3,a4}) is isomorphic to one member of 74, in addition, 7; —

{a,,a3} > 23-; > {a2,a4} > 2; for i = 1 or i = 2. It is straightforward

to verify that 7g contains only two tournaments (denoted by Tj and T;,’),
namely the ones shown in Figure 6.1, and that |7¢| = 11. Since none of the

digraphs of 74 has a hamiltonian path connecting any two opposite vertices,

no digraph of 7g has a hamiltonian path between x; and 79.

For every even integer m > 4 there is only one 2-strong, 2-regular locally

semicomplete digraph on m vertices, namely the second power C?, of an

m-cycle (Exercise 6.8). We define

T* = { C2, | mis even and m > 4}.

It is not difficult to prove that every digraph of 7* has a unique hamilto-

nian cycle and is not weakly hamiltonian-connected (Exercise 6.9, see also

[47]). For instance, if the unique hamiltonian cycle of C? is denoted by

U1U2UZU4U5UgU1, then ujyuzgus5u, and upU4ugu2 are two cycles of Ce and

there is no hamiltonian path between any two vertices of {uj,u3,us} or of
{u2, U4, us}.

Let Tj be the digraph consisting of Ge together with two new vertices x
and x2 such that 2; + {uj,u3,us} > to > {u2, us, ug} 4 2). Furthermore,

Tg (Tg, respectively) is defined as the digraph obtained from T2? by adding
the arc 2122 (the arcs 2122 and x22}, respectively). Let 7g = {T?,T?,T3}.
It is easy to see that every element of 7g is a 3-strong locally semicomplete
digraph and has no hamiltonian path between 2 and zo.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 6.2.10 by Bang-Jensen, Guo and Volkmann
in [56]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 6.2.1.

6.2 Weakly Hamiltonian-Connected Digraphs 291

Lemma 6.2.8 /56/ Let D be a strong locally semicomplete digraph on n > 4
vertices and x1,22 two distinct vertices of D. If D — {21,22} is strong, and
N*(21) Nt (a2) #0 or N~(21) NN~(a2) £0, then D has a hamiltonian
path connecting 2, and x2.

Proof: Exercise 6.10. Oo

Another useful ingredient in the proof of Theorem 6.2.10 is the following

linking result. An odd chain is the second power, P73, 41 for some k > 1, of

a path on an odd number of vertices.

Lemma 6.2.9 /56] Let D be a connected, locally semicompletedigraph with

p = 4 strong components and acyclic ordering D,, D2,..., Dp of these. Suppose

that V(D,) = {ui} and V(D,) = {vi} and that D — x is connected for
every verter x. Then for every choice of uz € V(D2) and v2 € V(D,-1), D
has two vertex disjoint paths P, from uz to v; and Pz from u, to v2 with

V(Pi) UV(P2) = V(D) if and only if D is not an odd chain from u, to v;.

Proof: If D is an odd chain, it is easy to see that D has no two vertex disjoint

(u;, v3_;)-path for 2 = 1,2 (Exercise 6.11). We prove by induction on p that

the converse is true as well. Suppose that D is not an odd chain from wu, to

v,. Since the subdigraph D —z is connected for every vertex x, |N*(D;)| > 2
for alli < p— 2 and |N~(D;)| > 2 for all j > 3. If p = 4, then it is not

difficult see that D has two vertex disjoint paths P,; from uz to v; and P»

from u; to v2 with V(P,) UV(P2) = V(D) (Exercise 6.13). If p = 5, it is

also not difficult to check that D has the desired paths, unless D is a chain

on five vertices. So we assume that p > 6. Now we consider the digraph D’,

which is obtained from D by deleting the vertex sets {u,,vi}, V(D2 — u2)

and VDs-1 = U2).

Using the assumption on D, it is not difficult to show that D’' is a con-

nected, but not strongly connected locally semicompletedigraph with the

acyclic ordering {u2}, D3, D4,..., Dp—2, {v2} of its strong components. Fur-

thermore, for every vertex y of D’, the subdigraph D’‘ — y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of Dp_2. Note
that there is a (u,u)-hamiltonian path P in D({u1,u}UV(D2 — u2)) and
similarly there is a (v, v;)-hamiltonian path Q in D({v, v1} UV(Dpy-1 — v2)).
Hence if D’ has disjoint (u2,v)-, (u, v2)-paths which cover all vertices of D’,

then D has the desired paths. So we can assume D' has no such paths. By

induction, D’ is an odd chain from uz to v2. Now using that D is not an odd

chain from u, to v1 it is easy to see that D has the desired paths. We leave

the details to the reader. 0

A weaker version of Lemma 6.2.9 was proved in [47, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and Volkmann

for the existence of an [x, y]-hamiltonian path in a locally semicomplete di-
graph. Note again the similarity to Theorem 6.2.1.

292 6. Hamiltonian Refinements

Theorem 6.2.10 /56] Let D be a connected locally semicomplete digraph

on n vertices and x1; and x2 be two distinct vertices of D. Then D has no

hamiltonian [x1,22|-path if and only if one of the following conditions 1s

satisfied:

(1) D is not strong and either the initial or the terminal component of D (or

both) contains none of x1, 22.

(2) D is strongly connected, but not 2-strong,
(2.1) there is ani € {1,2} such that D—z; is not strong and x3_; belongs

to neither the initial nor the terminal component of D — z;;

(2.2) D — 2x, and D — a2 are strong, s is a separating vertex of D,

D,,Do,...,Dp is the acyclic ordering of the strong components of

D-s, x; € V(Da) and z3_; € V(Dg) with a < B — 2. Further-
more, V(Da4+i) U V(Da+42) U... UV(Dg-1) contains a separating
verter of D, or D' = D(V(Da) UV(Da41) U... UV(Da)) is an odd
chain from x; to 13; with N~(Da+2) N V(D — V(D')) = @ and
N*(Dg8s) 0 Vib AV (BD) = 03

(3) D is 2-strong and is isomorphic to T? or to one member of Tg UTg UT *

and x1, 22 are the corresponding vertices in the definitions. 0

As an easy consequence of Theorem 6.2.10, we obtain a characterization

of weakly hamiltonian-connected locally semicomplete digraphs. The proof is

left to the interested reader as Exercise 6.12.

Theorem 6.2.11 /56] A locally semicomplete digraph D with at least three

vertices is weakly hamiltonian—connected if and only if it satisfies (a), (b) and
(c) below:

(a) D is strong,
(b) the subdigraph D — x has at most two components for each verter x of

D,
(c) D is not isomorphic to any member of Tg U Tg UT*. Oo

6.3 Hamiltonian-Connected Digraphs

We now turn to hamiltonian paths with specified initial and terminal vertices.
An (x, y)-hamiltonian path is a hamiltonian path from z to y. Clearly,
asking for such a path in an arbitrary digraph is an even stronger require-
ment than asking for an [z,y]-hamiltonian path?. A digraph D = (V, A)
is hamiltonian-connected if D has an (z,y)-hamiltonian path for every
choice of distinct vertices 2, y € V.

* We know of no class of digraphs for which the [z, y]-hamiltonian path problem is
polynomially solvable, but the (x, y)-hamiltonian path problem is ’P-complete.
For arbitrary digraphs they are equivalent from a complexity point of view (see
Exercise 6.3).

6.3 Hamiltonian-Connected Digraphs 293

No characterization for the existence of an (z,y)-hamiltonian path is
known even for the case of tournaments*. Note however, that we sketch a

polynomial algorithm for the problem in the next section, so in the algorith-

mic sense a good characterization does exist. The following very important

partial result due to Thomassen will be used in the algorithm of the next

section.

Theorem 6.3.1 (Thomassen) /698] Let D = (V,A) be a 2-strong semi-
complete digraph with distinct vertices x,y. Then D contains an (zx,y)-

hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x,y)-paths each of length at least
two,

(b) D contains a verter z which is dominated by every vertex of V —x and D

contains two internally disjoint (x, y)-paths each of length at least two.

Oo

In his proof Thomassen explicitly uses the fact that the digraph is allowed

to have cycles of length 2. This simplifies the proof (which is still far from

trivial), since one can use contraction to reduce to a smaller instance and

then use induction.

An important ingredient in the proof of Theorem 6.3.1 as well as in several

other proofs concerning the existence of an (x, y)-hamiltonian path in a semi-

complete digraph D is to prove that D contains a spanning acyclic graph in

which z can reach all other vertices and y can be reached by all other vertices.

The reason for this can be seen from the following result which generalizes

an observation by Thomassen in [698].

Proposition 6.3.2 /50] Let D be a path-mergeable digraph. Then D has a

hamiltonian (x, y)-path if and only if D contains a spanning acyclic digraph

H in which dy(x) = di(y) = 0 and so that, for every vertex z € V(D), H
contains an (x, z)-path and a (z,y)-path.

Proof: Exercise 6.15. O

Theorem 6.3.1 and Menger’s theorem (see Theorem 7.3.1) immediately
imply the following result. For another nice consequence see Exercise 6.16.

Theorem 6.3.3 [698] If a semicomplete digraph D is 4-strong, then D is

hamuiltonian-connected. O

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x,y for which there is no (z, y)-hamiltonian path

[698]. Hence, from a connectivity point of view, Theorem 6.3.3 is the best

possible.

4 By this we mean a structural characterization involving only conditions that can

be checked in polynomial time.

294 6. Hamiltonian Refinements

Theorem 6.3.3 is a very important result with several consequences.

Thomassen has shown in several papers how to use Theorem 6.3.3 to ob-

tain results on spanning collections of paths and cycles in semicomplete di-

graphs. See e.g. the papers [699, 701] by Thomassen and also Section 6.7.

The following extension of Theorem 6.3.3 to extended tournaments has been

conjectured by Bang-Jensen, Gutin and Huang:

Conjecture 6.3.4 /67] If D is a 4-strong extended tournament with an

(x,y)-path P such that D — P has a cycle factor, then D has an (x, y)-

hamiltonian path.

Extending Theorem 6.3.3 to locally semicomplete digraphs, Guo [342]

proved the following:

Theorem 6.3.5 (Guo) /342] Let.D be a 2-strong locally semicomplete di-

graph and let x,y be two distinct vertices of D. Then D contains a hamilto-

nian path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x,y)-paths in D, each of which ts of
length at least 2 and D is not isomorphic to any of the digraphs Tz and

T; (see the definition in the preceding section).

(b) The digraph D has two internally disjoint (x,y)-paths P,,P2, each of
which is of length at least 2 and a path P which either starts at x, or

ends at y and has only x or y in common with P,, Py such that V(D) =

V(P,\) UV(P2) UV(P). Furthermore, for any verter z ¢ V(P;) UV(P2),
z has a neighbour on P; — {x,y} if and only if it has a neighbour on

P, — {x,y}. 0

Since neither of the two exceptions in (a) is 4-strong, Theorem 6.3.5 im-

plies the following:

Corollary 6.3.6 /342)] If a locally semicomplete digraph is 4-strong, then it

is hamiltonian-connected. O

In [341] Guo used Theorem 6.3.5 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-

cally tournament digraphs with no hamiltonian path from z to y for specified

vertices x and y. In particular this characterization shows that there exist in-

finitely many 3-strongly connected digraphs which are locally tournament di-

graphs (but not semicomplete digraphs) and are not hamiltonian-connected.
Thus, as far as this problem is concerned, it is not only the subclass of semi-

complete digraphs which contain difficult instances within the class of locally

semicomplete digraphs. It should be noted that Guo’s proof does not rely on

Theorem 6.3.3. However, due to the non-semicomplete exceptions mentioned

above, it seems unlikely that a much simpler proof of Corollary 6.3.6 can be

found using Theorem 6.3.3 and Theorem 4.11.15.

Not surprisingly, there are also several results, such as the following by

Lewin, on hamiltonian-connectivity in digraphs with many arcs.

6.4 Finding a Hamiltonian (x, y)-Path in a Semicomplete Digraph 295

Theorem 6.3.7 [514] Every digraph on n > 3 vertices and at least (n —
1)? +1 arcs is hamiltonian-connected. 0

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows
that we only need a slight strengthening of the degree condition in Theorem
5.6.3 to get a sufficient condition for strong hamiltonian-connectivity.

Theorem 6.3.8 [108] Every digraph D onn vertices which satisfies 5°(D) >
ntl is hamiltonian-connected. Oo

If we just ask for weakly hamiltonian-connectness then Overbeck-Larisch

showed that we can replace the condition on the semi-degrees by a condition
on the degrees:

Theorem 6.3.9 [597] Every 2-strong digraph on n vertices and minimum

degree at least n+ 1 is weakly hamiltonian-connected. O

Thomassen asked whether all 3-strong digraphs D = (V, A) on n vertices
with d*(x) + d~(x) > n+1 for all x € V are necessarily hamiltonian-
connected. However, this is not the case, as was shown by Darbinyan [179].

6.4 Finding a Hamiltonian (z, y)-Path in a
Semicomplete Digraph

In this section we discuss algorithmic aspects of the (x, y)-hamiltonian path
problem for semicomplete digraphs. The main result is the following by Bang-
Jensen, Manoussakis and Thomassen:

Theorem 6.4.1 /87] The (z,y)-hamiltonian path problem is polynomially
solvable for semicomplete digraphs. Oo

We will not give the proof of this difficult result here, but rather outline
the most interesting ingredients in the non-trivial proof in [87]. As usual, we
will always use n to denote the number of vertices of the digraph in question.

The first lemma is quite simple to prove, but it turns out to be very useful

for the design of the algorithm of Theorem 6.4.1.

If x,w,z are distinct vertices of a digraph D, then we use the notation

Qz,z, Q.w to denote two disjoint paths such that the first path is an (z, z)-

path, the second path has terminal vertex w, and V(Qz,z)UV(Q..w) = V(D).
Similarly Q,,, and Qy,. denote two disjoint paths, such that the first path is

a (z,z)-path, the second path has initial vertex w, and V(Q.,2) UV (Qw,.) =

V(D).

Lemma 6.4.2 /87] Let x,w,z be distinct vertices in a semicomplete digraph
T, such that there exist internally disjoint (x,w)-, (£,z)-paths P,, Po in T.

_ Let R=T —V(P,)UV(P).

296 6. Hamiltonian Refinements

(a) There are either Qzw, Q..z OT Qz,z, Q.w in T, unless there is no arc

from R,; to V(P,\) UV(P2) — 2, where R; is the terminal component of

WOES),

(b) In the case when there is an arc from R;, to V(P\) UV(P2) —& we can

find one of the pairs of paths, such that the path with only one end verter

specified has length at least one, unless V(P;) UV(P2) = {w, 2, z}.
(c) Moreover there is an O(n”) algorithm to find one of the pairs of paths

above if they exist.

Proof: If R = @ then both pairs of paths exist. Hence we may assume that

R# 9. Assume there is an arc uv where u € R; and v € (V(P,) UV (P2)) —2.

Assume without loss of generality that v € P;. Since u € Ri, T(R) has a

hamiltonian path Q ending at u and starting at some vertex y. By Proposition

4.10.2, the semicomplete digraph T (RU V(P,) — x) has a hamiltonian path
starting either at y or the successor of x on P; and ending in w. This path

together with P: forms the desired pair of paths Q,,-,Q.w. This proves (a).

It is easy to verify (b) by the same argument. As the strong components of

T(R) and a hamiltonian cycle in each of them can be found in O(n?) time
(Theorem 5.5.2), we can find Q and Q,.-,Q.w in O(n?) time. Oo

We point out that the proof above shows that Lemma 6.4.2 is valid also

for digraphs that are locally in-semicomplete.

The following lemma allows one to use symmetry and thereby reduces the

number of cases to consider when looking for an (z, y)-hamiltonian path.

Lemma 6.4.3 Let T be a semicomplete digraph and x,y vertices of T, such

that there exist 2 internally disjoint (x, y)-paths and an (x, y)-separator {u,v}

in T’. Suppose that u,v do not induce a 2-cycle, say, vAu. Let T' denote the

semicomplete digraph obtained from T, by adding the arc vu. Then T has

an (x,y)-hamiltonian path if and only if T' has an (x,y)-hamiltonian path.

Proof: Exercise 6.18. oO

The next result shows that either T is 2-strong or we can reduce the

problem to smaller instances.

Lemma 6.4.4 [87] If T is not 2-strong then either the desired path exists in
T’, or we can reduce the problem to one or two smaller problems, such that

in the latter case the total size of the subproblems is at most n + 1. oO

We now outline the major steps of the algorithm in [87] for the (z,y)-
hamiltonian path problem. First we make some assumptions which do not
change the problem.

We assume that there is no arc from z to y and that neither z nor y are
contained in a 2-cycle (if there is such a cycle containing x (y), then delete
the arc entering x (leaving y)). It is easy to see that the new semicomplete
digraph has an (z, y)-hamiltonian path if and only if the original digraph has

6.4 Finding a Hamiltonian (, y)-Path in a Semicomplete Digraph 297

one. So we assume that the input is a semicomplete digraph T which has
the form above. In order to refer to smaller versions of the same problem we

refer to the problem as the hamiltonian problem. Note that by Lemma

6.4.4 we may assume that T is 2-strong (otherwise we just consider smaller
subproblems).

With the assumptions above it follows from Theorem 6.3.1 that, if there

are three internally disjoint (2, y)-paths in 7, then the desired hamiltonian

path exists. Thus, by Lemma 6.4.4, the interesting part is when T' is 2-strong

and there are two but not three internally disjoint (x, y)-paths. By Menger’s
theorem (which we study in Chapter 7) we may thus assume that there exists

an (x, y)-separator of size two in T.

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener-

alizes Theorem 6.3.1. It is very important for the proof of Theorem 6.4.1,

because it corresponds to a case when no reduction is possible (see the de-

scription of the algorithm below) and hence one has to prove the existence

of the desired path directly. Recall that for specified distinct vertices s,t, an

(s, t)-separator is a subset S C V — {s,t} such that D—S has no (s,t)-path.

An (s,t)-separator is trivial if either s has out-degree zero or t has in-degree

zero in D—S.

Theorem 6.4.5 /87] Let T be a 2-strong semicomplete digraph on at least 10

vertices and let x,y be vertices of T such that ya. Suppose that T—xz,T—y

are both 2-strong. If all (x,y)-separators consisting of two vertices (if any

exist) are trivial, then T has an (x, y)-hamiltonian path. Oo

Besides the results mentioned above the algorithm uses the following re-

sults: ;

Lemma 6.4.6 [87] Suppose T is 2-strong and there exists a non-trivial sep-
arator {u,v} of x,y. Let A,B denote a partition of T — {u,v} such that

weA.,e € Band AGB. Let T’ = T(AU{u,v}),T" = T(BU {u,v}). We
can reduce the hamiltonian problem to at most four hamiltonian problems

such that one has size max{|A|,|B|} +2 or max{|A|,|B|}+3 and the others
(if any) have size at most min{|A|,|B|} +3. Oo

Lemma 6.4.7 [87] Suppose that T is 2-strong, n > 6, and all (z,y)-

separators of size 2. x,y are trivial. If T —x or T — y is not 2-strong, then

either the desired path exists in T, or we can reduce the problem to one or

two smaller problems, such that in the latter case, the total size of the sub-
problems is at most n+ 2. Oo

The hamiltonian algorithm

1. If n < 9, then settle the problem in constant time.

2. If T is not 2-strong, then using Lemma 6.4.4 we settle the problem, or

reduce to smaller instances of the hamiltonian problem.

298 6. Hamiltonian Refinements

3. If there are no (z,y)-separators of size 2, then T has the desired path,

by Theorem 6.3.1.
4. If all (x, y)-separators of size 2 are trivial, we check if T— az and T —y

are 2-strong. Then we settle or reduce the problem using Theorem 6.4.5

or Lemma 6.4.7.

5. Let {u,v} be a non-trivial (x, y)-separator and let A, B form a partition

of T— {u,v}, such that y € A,x € B and A++B. (Such a partition can be

found in time O(n?), by letting B be the vertices which in T — {u,v} can
be reached from z by a directed path and then taking A = V—B—({u, v}.)

Also, if necessary, add an arc to make u,v induce a 2-cycle. This does

not change the problem, by Lemma 6.4.3.

6. Use the algorithmic version of Lemma 6.4.2 to find Qz.u, Q..» or Qz,

Quin T” = T(BU {u, v}), and use an analogous algorithm to find Q,, y,

Qo ae Oa incl GON vo} ey These’ pathistexistsincow ies

2-strong, and the paths with one end vertex unspecified can be chosen

of length at least one, since A, B both have size at least 2 (here we used

that {u,v} is a non-trivial separator).
7. If these paths match then T has the desired (z, y)-hamiltonian path. So

suppose (by renaming uw, v if necessary) that we find Qz,u, Q..» in T” and

Qu,ys Q»,. ite

8. Using Lemma 6.4.6 we can now reduce the problem to smaller instances

of the hamiltonian problem.

In Step 7 we say that the two sets of paths in T” and T’ match if the

following holds: the paths are P; from x to w and P, from p to z in T” and

R, from r to y and R2 from s to q in T' where {w, z} = {r,s} = {u,v} and

w = sand z=r. In this case the path P,; Rp PR, is the desired hamiltonian

path since g—p by the definition of B in Step 5.

The complexity of the algorithm outlined above is O(n°) (in fact, it is
O(n‘) for every « > 0). No attempt was made in [87] to improve the
complexity, but it seems quite difficult to improve it very much.

It is interesting to note that the algorithm described above cannot be
easily modified to solve the problem of finding the longest path with specified
initial and terminal vertex in a semicompletedigraph. In several places we
explicitly use that we are searching for a hamiltonian path. There also does
not seem to be any simple reduction of this problem to the problem of deciding
the existence of a hamiltonian path from z to y.

Conjecture 6.4.8 /65] There exists a polynomial algorithm which, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest
(x, y)-path.

Note that, if we ask for the longest [x, y]-path in a tournament, then this
can be answered using Theorem 6.2.1 (see Exercise 6.19).

6.5 Pancyclicity of Digraphs 299

Conjecture 6.4.9 /65] There exists a polynomial algorithm which, given

a digraph D that is either extended semicomplete or locally semicomplete,

and two distinct vertices x and y of D, decides whether D has an (x, y)-

hamiltonian path and finds such a path if one exists.

6.5 Pancyclicity of Digraphs

A digraph D of order n is pancyclic if it has cycles of all lengths 3,4,...,n

We say that D is vertex-pancyclic if for any v € V(D) and any k €

{3,4,...,n} there is a cycle of length k containing v. We also say that D

is (vertex-)m-pancyclic if D contains a k-cycle (every vertex of D is on
a k-cycle) for each k = m,m+1,...,n. Note that some early papers on

pancyclicity in digraphs require that D is (vertex-)2-pancyclic in order to be

(vertex-)pancyclic (see e.g. the survey [115] by Bermond and Thomassen). We
feel that this definition is too restrictive, since often one can prove pancyclicity

results for much broader classes of digraphs when the 2-cycle is omitted from

the requirement.

6.5.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs

The following claim is due to Alon and Gutin:

Lemma 6.5.1 /11] Every directed graph D = (V, A) on n vertices for which
6°(D) > n/2+1 is verter-2-pancyclic.

Proof: Let v € V be arbitrary. By Corollary 5.6.3 there is a Hamilton cycle

UjU2...Un—1U1 in D — v. If there is no cycle of length k through v then

for every i, |Nt(v) M {ui}| + |N~(v) N {uizn-2}| < 1, where the indices are
computed modulo n — 1. By summing over all values of 7, 1 <1 <n—1, we

conclude that |N~(v)|+|N*(v)| <n —1, contradicting the assumption that
all in-degrees and out-degrees exceed n/2. O

Thomassen [696] proved that just by adding one to the degree condition

for hamiltonicity in Theorem 5.6.7 one obtains cycles of all possible lengths

in the digraphs satisfying the degree condition.

Theorem 6.5.2 /696] Let D be a strong digraph on n vertices such that

d(x) + d(y) > 2n whenever x and y are nonadjacent. Then either D has

cycles of all lengths 2,3,...,n, or D is a tournament (in which case tt has
Oo

cycles of all lengths 3,4,...,n) orn is even and D is isomorphic to K2,2.
O

The following example from [696] shows that 2n cannot be replaced by

~-2n —1 in Theorem 6.5.2. For some m < n let Dnjm = (V, A) be the digraph

300 6. Hamiltonian Refinements

with vertices V = {v1,v2,---,Un} and arcs A = {ujv;|t <j ort = J+ 1} -

{vivi-m—1|l <i <n—m+]1}. We leave it as Exercise 6.20 to show thatwW, fn

is strong, has no m-cycle and if m > (n+1)/2, then Dn,m satisfies Meyniel’s

condition for hamiltonicity (Theorem 5.6.7). In [176] Darbinyan characterizes

those digraphs which satisfy Meyniel’s condition, but are not pancyclic.

Theorem 6.5.2 extends Moon’s theorem (Theorem 1.5.1) and Corollaries

5.6.2 and 5.6.6. However, as pointed out by Bermond and Thomassen in

[115], Theorem 6.5.2 does not imply Meyniel’s theorem (Theorem 5.6.7). The

following result is due to Haggkvist:

Theorem 6.5.3 /391] Every hamiltonian digraph on n vertices and at least
1 5n(n + 1) — 1 arcs is pancyclic. Oo

Song [679] generalized the result of Jackson given in Theorem 5.12.5 and

proved the following theorem.

Theorem 6.5.4 [679] Let D = (V, A) be an oriented graph on n > 9 vertices

with minimum degree n — 2. Suppose that D satisfies the following property:

sy A> d*(z)+d (y) >n-3. (6.2)

Then D is pancyclic. oO

Song [679] pointed out that, if the minimum degree condition in Theorem

6.5.4 is relaxed, then it is no longer guaranteed that D is hamiltonian.

Using Theorem 6.5.4 and Theorem 10.7.3, Bang-Jensen and Guo proved

that under the same conditions as in Theorem 6.5.4 the digraph is in fact

vertex-pancyclic.

Theorem 6.5.5 [54] Let D be an oriented graph on n > 9 vertices and

suppose that D satisfies the conditions in Theorem 6.5.4. Then D is verter

pancyclic. O

It should be noted that every digraph which satisfies the condition of

Theorem 6.5.4 is a multipartite tournament with independence number at

most 2.

There are several other results on pancyclicity of digraphs with large

minimum degrees, see e.g. the papers [174, 175, 178] by Darbinyan.

6.5.2 Pancyclicity in Extended Semicomplete and

Quasi-Transitive Digraphs

In this subsection we show how to use the close relationship between the class

of quasi-transitive digraphs and the class of extended semicomplete digraphs

to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs

from analogous results for extended semicomplete digraphs.

6.5 Pancyclicity of Digraphs 301

A digraph D is triangular with partition Vo, Vi, V2, if the vertex set of
D can be partitioned into three disjoint sets Vo, Yi, V2 with Voi Viva V.
Note that this is equivalent to saying that D = C’3[D(Vo), D(Vy), D(V2)).

Gutin [367] characterized pancyclic and vertex- -pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
De C5 Ree] with at least 3 vertices is pancyclic since all cycles are
of even length. Hence we must assume that there are at least 3 partite sets
in order to get a pancyclic extended semicomplete digraph. It is also easy
to see that the (unique) strong 3-partite extended semicomplete digraph on
4 vertices is not pancyclic (since it has no 4-cycle). These observations and
the following theorem completely characterize pancyclic and vertex-pancyclic
extended semicomplete digraphs.

Theorem 6.5.6 /367] Let D be a hamiltonian extended semicomplete di-
graph of ordern > 5 with k partite sets (k > 3). Then

1. (a) D is pancyclic if and only if D is not triangular with a partition
Vo,Vi,V2, two of which induce digraphs with no arcs, such that either

Vo] = |Vi] = |Va| or no D(V;) (i = 0,1,2) contains a path of length 2.
2. (b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3

or k = 3 and D contains two cycles Z,Z' of length 2 such that ZU Z'
has vertices in the three partite sets. 0

It is not difficult to see that Theorem 6.5.6 extends Theorem 1.5.1, since

no semicomplete digraph on n > 5 vertices satisfies any of the exceptions

from (a) and (b).
The next two lemmas by Bang-Jensen and Huang [79] concern cycles

in triangular digraphs. They are used in the proof of Theorem 6.5.9 which

characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 6.5.7 [79] Suppose that D is a triangular digraph with a partition

Vo,Vi, V2 and suppose that D is hamiltonian. If D(V,) contains an arc ry

and D(V2) contains an arc uv, then every verter of Vo U {x,y,u,v} is on

cycles of lengths 3,4,...,n

Proof: Let C be a hamiltonian cycle of D. We construct an extended semi-

complete digraph D’ from D in the following way. For each of i = 0,1, 2, first

path-contract® each maximal subpath of C' which is contained in D(V;) and
then delete the remaining arcs of D(V;). It is clear that D' is a subdigraph of
D, and in this process, C' is changed to a hamiltonian cycle C’ of D'. Hence D'

is also triangular with a partition Vj, V;, V; such that |Vj| = |V| = |V3| =r,
for some r (the last fact follows from the existence of a hamiltonian cycle in
D'). Then each vertex of D is on a cycle of length k with 3r < k < |V(D)|
(to see this, just use suitable pieces of the r subpaths of C in each Vj).

° Recall the definition of path-contraction from Subsection 5.1.1.

302 6. Hamiltonian Refinements

Now we may assume that r > 2 and we show that each vertex of Vo U

{x,y,u,v} is on acycle of length k with 3 < k < 3r—1. To see this, we modify

D' to another digraph D” as follows. If x and y are in distinct maximal

subpaths P,, Py of C in D(Vj), then we add (in D') an arc from the vertex to
which P, was contracted to the vertex to which P, was contracted. If x and

y are in the same maximal subpath P of C in D(V;), then we add (in D’) an

arc from the vertex to which P was contracted to an arbitrary other vertex of

V{. For the vertices u and v we make a similar modification. Hence we obtain
a digraph D" which is isomorphic to a subdigraph of D. The digraph D” is

also triangular with a partition Vo’, V;’, V2’ such that |Vo’| = |Vj"| = |V2'| =r.
Moreover D'(V,") contains an arc z’y' and D"(V;') contains an arc u’v’. It

is clear now that each vertex of Vg’ U {z', y’,u’,v’} is on a cycle of length k
where 3 < k < 3r—1. Using the same structure as for these cycles we can

see that in D each vertex of VoU {z,y,u,v} is on a cycle of length k with

3 Shor le O

Lemma 6.5.8 /79] Suppose that D is a triangular digraph with a partition

Vo,Vi, V2 and D has a hamiltonian cycle C. If D(Vo) contains an are of C

and a path P of length 2, then every verter of V; UV2UV(P) is on cycles of
LEN OU Si aan 1D

Proof: Exercise 6.24. ; Oo

It is easy to check that a strong quasi-transitive digraph on 4 vertices is
pancyclic if and only if it is a semicomplete digraph. For n > 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 6.5.9 [79] Let D = (V,A) be a hamiltonian quasi-transitive di-
graph onn > 5 vertices.

1. (a) D is pancyclic if and only if it is not triangular with a partition
Vo,Vi, V2, two of which induce digraphs with no arcs, such that either
[Vo] = |Vi| = |Val, or no D(V;) (i =0,1,2) contains a path of length 2.

2. (b) D is not verter-pancyclic if and only if D is not pancyclic or D is
triangular with a partition Vo, V1, V2 such that one of the following occurs:

(b1) |Vi| = |Vo|, both D(V,) and D(V2) have no arcs, and there exists a
vertex x € Vo such that x is not contained in any path of length 2 in
D(Vo) (in which case x is not contained in a cycle of length 5).

(62) one of D(Vi) and D(V2) has no arcs and the other contains no path of
length 2, and there exists a vertex x € Vo such that x is not contained
in any path of length 1 in D(Vo) (in which case x is not contained in
a cycle of length 5).

Proof: To see the necessity of the condition in (a), suppose that D is trian-
gular with a partition Vo, Vi, V2, two of which induce digraphs with no arcs.
If |Vo| = |Vi] = |V2|, then D contains no cycle of length n — 1. If no D(V;)

6.5 Pancyclicity of Digraphs 303

(i = 0, 1,2) contains a directed path of length 2, then D contains no cycle of
length 5.

Now we prove the sufficiency of the condition in (a). According to Theo-
rem 4.8.5, there exists a semicomplete digraph T on k vertices for some k E25)
such that D is obtained from T by substituting a quasi-transitive digraph H,
for each vertex v € V(T) (here H, is non-strong if it has more than one
vertex). Let C be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D’ from D in the following way: for each H,,v € V(T), first
path-contract each maximal subpath of C which is contained in H, and then
delete the remaining arcs of H,. In this process C is changed to a hamiltonian
cycle C" of D’.

Suppose D is not pancyclic. Then it is easy to see that D’ is not pancyclic.

By Theorem 6.5.6, D’ is triangular with a partition Vj, V), V3. Let V; C V be

obtained from V;', i = 0,1, 2, by substituting back all vertices on contracted

subpaths of C. Then D is triangular with partition Vo, V;, V2. Moreover each

D(V;) is covered by r disjoint subpaths of C for some r.

By Lemma 6.5.7, two of Vo,Vi, V2, say Vi and V2, induce subdigraphs

with no arcs in D. If |Vo| = |Vi| = |V2| we have the first exception in (a).
Hence we may assume that |Vo| > |Vi] = |V2|. Then D(Vo) contains an arc of
C. From Lemma 6.5.8, we see that D(Vo) contains no path of length 2. This
completes the proof of (a).

The proof of (b) is left to the reader as Exercise 6.25. Oo

6.5.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete

Digraphs

We saw in the last subsection how the structure theorem for quasi-transitive

digraphs (i.e., Theorem 4.8.5) was helpful in finding a characterization for

(vertex-) pancyclic quasi-transitive digraphs. Now we show that the structure

theorem for locally semicomplete digraphs (Theorem 4.11.15) is also very

useful for finding a characterization of those locally semicomplete digraphs

which are (vertex-)pancyclic. Our first goal (Lemma 6.5.13) is a characteri-
zation of those round decomposable locally semicomplete digraphs which are

(vertex-)pancyclic.

Lemma 6.5.10 Let R be a strong round local tournament and let C be a

shortest cycle of R and suppose C has k > 3 vertices. Then for every round

labelling vp,v1,...,Un—1 of R such that vo € V(C) there exist indices 0 <
ee oad < Ope 1 Sonat G = U9Ug, Va «6+ Va,-9 U0»

Proof: Let C be a shortest cycle and let L = v9,U1,...,Un—1 be a round

labelling of R so that vp € V(C). If the claim is not true, then there exists a

iambper2. <1 < k—1.so that.C = voVa,VagwanVayas Von Where 0 <a) <1... <

aj; and q < aj_;. Now the fact that CL is a round labelling of R implies

that vj_1— vo, contradicting the fact that C' is a shortest cycle. Oo

304 6. Hamiltonian Refinements

Recall that the girth g(D) of a digraph is the length of a shortest cycle in

D = (V,A). For a vertex v € V we let g,(D) denote the length of a shortest

cycle in D that contains v. The next lemma shows that every round local

tournament R is g(R)-pancyclic.

Lemma 6.5.11 A strong round local tournament digraph R on r vertices

has cycles of length k,k +1,...,r, where k = g(R).

Proof: By Lemma 6.5.10 we may assume that RA contains a cycle of the

form Vj, Vig ---Vi,Vi;, Where 0 = 11 < 12 <... < iz <r. Because D is strong,

v;,, dominates all the vertices v;,,41,---;Vim4i for m = 1,2,..., k. Now it is

easy to see that D has cycles of lengths k,k + 1,...,r through the vertices

Viz Vigs +++) Vix: O

There is also a very nice structure on cycles through a given vertex in a

round local tournament digraph. We leave the proof as Exercise 6.26.

Lemma 6.5.12 If a strong round locally tournament digraph with r vertices

has a cycle of length k through a verter v, then it has cycles of all lengths

k,k+1,...,r through v. O

Lemma 6.5.13 [55] Let D be a strongly connected round decomposable lo-
cally semicomplete digraph with round decomposition D = R[S,,..., Sp]. Let

V(R) = {ri,7T2,---,Tp}, where r; is the vertex of R corresponding to S;. Then

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) <

Max1<i<p lV (S;)| +1.

(2) D is vertex-pancyclic if and only if, for eachi = 1,...,p, either g,,(R) =3

or gr(R) < |V(Si)| + 1.

Proof: As each S; is semicomplete, it has a hamiltonian path P;. Further-

more, since FR is a strong locally semicomplete digraph, it is hamiltonian by

Theorem 5.5.1. Thus, starting from a p-cycle with one vertex from each Sj,

we can get cycles of all lengths p+ 1,p+2,...,n, by taking appropriate pieces

of hamiltonian paths Pye ro, ..), Pp moi, -.<, op. Las. it g (it) —"s sen

is pancyclic by Lemma 6.5.11. If g(R) < maxi<i<,|V(S;)| + 1, then D is
pancyclic by Lemma 6.5.11 and the fact that (by Moon’s theorem) every S;

has cycles of lengths 3,4,...,|V(S;)|. If g(R) > 3 and, for every i = 1,...,r,
g(R) > |V(S;)| +1, then D is not pancyclic since it has no (g(R) — 1)-cycle.
The second part of the lemma can be proved analogously by first proving

that for each 1 = 1,2,...,p, every vertex in S; is on cycles of all lengths

gr;(R), gr,(R) + 1,...,n (using Lemma 6.5.12) and then applying Theorem
L531; QO

The main part of the characterization of (vertex-)pancyclic locally semi-
complete digraphs is to prove the following lemma (recall Theorem 4.11.15).

6.5 Pancyclicity of Digraphs 305

Lemma 6.5.14 /55] Let D be a strong locally semicomplete digraph on n
vertices which is not round decomposable. Then D is vertex-pancyclic.

Proof: If D is semicomplete, then the claim follows from Moon’s theorem. So

we assume that D is not semicomplete. Thus, D has the structure described

in Lemma 4.11.14.

Let S be a minimal separating set of D such that D —S is not semi-

complete and let D;, D2,..., Dp be the acyclic ordering of the strong compo-

nents of D — S. Since the subdigraph D(S) is semicomplete, it has a unique
acyclic ordering Dp4+1,..., Dp4+q with q > 1 of its strong components. Recall-
ing Lemma 4.11.14 (a), the semicomplete decomposition of D — S contains

exactly three components D{, D5,D%. Recall that the index of the initial
component of D4 is \2. From Theorem 4.11.8 and Lemma 4.11.12, we see

that D, = Di > S => Dy, and there is no arc between D} and D3.
We first consider the spanning subdigraph D* of D which is obtained by

deleting all the arcs between S and D). By Lemma 4.11.14, D* is a round
decomposable locally semicompletedigraph and D* = R*[Dj, Dz,..., Dp+q|;

where R* is the round locally semicomplete digraph obtained from D* by

contracting each D; to one vertex (or, equivalently, R* is the digraph obtained

by keeping an arbitrary vertex from each D; and deleting the rest). It can

be checked easily that g,(R*) < 5 for every v € V(R*). Thus D* is vertex
5-pancyclic by the remark in the proof of Lemma 6.5.13 (in the case when

n = 4, D is easily seen to be vertex-pancyclic so we may assume n > 5). Thus,

it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle.

We define

t = max{i|N*(S)NV(Di) £0, A2 <i <p},

A= V(D),) LB) sce, V(D),

t’ =min{ j |N*(Dj)NV(D3) #0,p+1<j<ptq}
and B = V(Dy) U...UV(Dp4q).

It follows from Proposition 4.11.16 that B+D34A.
Since we have St+>D,;+D),++ DHS, every vertex of S is in a 4-cycle

and since we have B++D3H+A+>D{+S, each vertex of V(D3) U AUV(D}) is
contained in a 4-cycle.

By the definition of t' and A, there is an arc sa from D, to A. It follows

from Lemma 4.11.14 (b) that there is an arc a's’ from A to B. Let v € V(D})
and w € V(D4) be arbitrarily chosen. Then savs and s'wa’s’ are 3-cycles.

Suppose D}, contains a vertex x that is not in A, then At+z. We also have
z,s' € N*(a’) and this implies that rs’. From this we get that z-+Dy»,, in
particular, zs. Hence xsaz is a 3-cycle and xvsaz is a 4-cycle. Thus, there

only remains to show that every vertex of S U A is contained in a 3-cycle.

Let u be a vertex of S and let D, be the strong component containing u.

If Dy has at least three vertices, then u lies on a 3-cycle by Theorem 1.5.1.

306 6. Hamiltonian Refinements

So we assume |V(Dyz)| < 2. If £ < t’, then u and a’ are adjacent because
D, dominates the vertex s’ of B. If £ > t', then either wu = s or s > u (if

V (De) = {s,u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore,

in any case, u is adjacent to one of {a,a’}. Assume without loss of generality

that a and u are adjacent. If u > a, then wavu is a 3-cycle. If a > u, then

uwau is a 3-cycle because of D5 — A. Hence, every vertex of S has the

desired property.

Finally, we note that S' = N*(D34) is a subset of V(D3) and it is also a
minimal separating set of D. Furthermore, D — S’ is not semicomplete. From

the proof above, every vertex of S’ is also in a 3-cycle. So the proof of the

theorem is completed by the fact that A C S$’. 0

Combining Lemmas 6.5.13 and 6.5.14 we have the following characteriza-

tion of pancyclic and vertex-pancyclic locally semicomplete digraphs due to

Bang-Jensen, Guo, Gutin and Volkmann:

Theorem 6.5.15 /55] A strong locally semicomplete digraph D is pancyclic

if and only if it is not of the form D = R[S1,..., Sp], where R is a round local
tournament digraph on p vertices with g(R) > max{2,|V(S1)|,...,|V(Sp)|} +
1. D ts vertez-pancyclic if and only if D is not of the form D = R[{Si,..., Sp],
where R is a round local tournament digraph with g,,(R) > max{2,|V(S;)|}+
1 for some i € {1,...,p}, where r; is the verter of R corresponding to S;. O

6.5.4 Further Pancyclicity Results

To characterize pancyclic locally in-semicomplete digraphs seems a much
harder problem than that of characterizing pancyclic locally semicomplete
digraphs. Tewes [692] studied this problem and obtained several partial re-
sults of which we will state a few below.

Theorem 6.5.16 /692, Theorem 4.4] Let D be a locally in-tournament di-
graph on n vertices and let 3 < k < n be an integer such that 6~ (Dee
AEM] — 4. Furthermore, let D be strong if k > 2d-(D) +2. Then D has a
cycle of length k. Fork > ./n +1 this bound is sharp. oO

Let the function f(k) be defined as follows for fixed n:

n k=1 ; : FOR) = 4 ote ade if k is even

ni? + 5 if k is odd.

Theorem 6.5.17 /692, Theorem 4.13] Let D be a strongly connected locally
in-tournament digraph on n vertices such that 6-(D) > f(k) for some integer
3<k<Vn+1. Then D has cycles of all lengths Se Se alice dp O

6.5 Pancyclicity of Digraphs 307

Since every regular tournament is strong (Exercise 6.23) it is also pancyclic
by Moon’s theorem. Note that by Theorem 5.7.23, every regular multipartite
tournament is hamiltonian. This motivated Volkmann to make the following
conjecture.

Conjecture 6.5.18 /728] Every regular p-partite tournament with p > 4 is
pancyclic.

Note that in the 3-partite tournament D = C3[K,, Kx, Kg] all cycles
have length some multiple of 3. Hence the condition p > 4 above is necessary.

For p > 5 Conjecture 6.5.18 follows from the following stronger result due

to Yeo [747] (For an outline of Yeo’s proof see [728]).

Theorem 6.5.19 /747] Every regular multipartite tournament with at least

5 partite sets is vertex-pancyclic. oO

Using a probabilistic approach, Yeo [749] also proved that all, except pos-
sibly a finite number of exceptions, regular 4-partite tournaments are vertex-

pancyclic (in particular, every regular 4-partite tournament on at least 488

vertices is vertex-pancyclic). The infinite family of regular and non-pancyclic

3-partite tournaments described above shows that no such result holds for

3-partite tournaments.

Clearly, the results above give strong support for the following conjecture

by Yeo:

Conjecture 6.5.20 /749] If a 4-partite tournament is regular, then it is

vertex-pancyclic.

We conjecture that the only non-vertex-pancyclic regular 3-partite tour-

naments are the triangular ones:

Conjecture 6.5.21 Every 3-regular _semicomplete multipartite digraph D

which is not of the form D = C3[Kx, Kz, Kx] for any k is verter-pancyclic.

There are also many results on sufficient conditions in terms of the num-

ber of arcs for a digraph to contain a cycle of length precisely k. We refer

the reader to the survey of Bermond and Thomassen [115] for a number of
references to such results.

Recall that for a given directed pseudograph D = (V, A), the line digraph
L(D) of D has vertex set A and a-+a’ is an arc in L(D) precisely when the
head of a equals the tail of a’ in D (note that a loop in D gives rise to a
loop in L(D)). Let D = (V, A) be a directed pseudograph; D is pancircular

if it contains a closed trail of length q for every g € {3,4,...,|A]}. Due to a
natural bijection between the set of closed trails in D and the set of cycles

in L(D), we obtain the following:

_ Proposition 6.5.22 L(D) is pancyclic if and only if D is pancircular. O

308 6. Hamiltonian Refinements

Imori, Matsumoto and Yamada [445], who introduced the notion of pan-

circularity, proved the following theorem.

Theorem 6.5.23 Let D be a regular and pancircular directed pseudograph.

Then, L(D) is also regular and pancircular. Oo

This theorem was used in [445] to show that de Bruijn digraphs are pan-

cyclic and pancircular.

Theorem 6.5.24 [445] Every de Bruijn digraph Dp(d,t) is pancyclic and

pancircular.

Proof: de Bruijn digraphs Dg(d,t) were introduced for d > 2 and t > 1. Let

Dp(d,0) be the directed pseudograph consisting of a singular vertex and d

loops. Clearly, Dg(d,1) = L(Dp(d,0)). Since

Da(d,t + 1) = L(Da(d,t)) (6.3)

for t > 1 by Proposition 4.6.1, we conclude that (6.3) holds for all t > 0. We

prove the theorem by induction on t > 0. Clearly, Dg(d,0) is pancyclic and

pancircular. Assume that Dg(d,t) is pancyclic and pancircular. By Theorem

6.5.23, L(Dp(d,t)) is pancircular. By Proposition 6.5.22, L(Dp(d,t)) is pan-

cyclic. By (6.3), Dg(d,t + 1) = L(Dpa(d,t)). Thus, Dg(d,t + 1) is pancyclic
and pancircular. 0

6.5.5 Cycle Extendability in Digraphs

The following definitions are due to Hendry [420]. A non-hamiltonian cycle

C in a digraph D is extendable if there is some cycle C’ with V(C’) =
V(C)U{y} for some vertex y € V—V(C). A digraph D which has at least one
cycle is cycle extendable if every non-hamiltonian cycle of D is extendable.

Clearly a cycle extendable digraph is pancyclic if and only if it contains a

3-cycle and vertex-pancyclic if and only if every vertex is in a 3-cycle.

The following is an easy consequence of the proof of Theorem 1.5.1:

Theorem 6.5.25 /571] A strong tournament T = (V, A) is cycle extendable
unless V can be partitioned into sets U,W, Z such that WU Z and T(U)
is strong. 0

Hendry [420] studied cycle extendability in digraphs with many arcs and

obtained the next two results.

Theorem 6.5.26 [420] Every strong digraph on n vertices and at least n? —

3n +5 arcs is cycle extendable. Oo

6.6 Arc-Pancyclicity 309

Hendry showed that digraphs may have very large in- and out-degree and
still not be cycle extendable. This contrasts to the situation for undirected

graphs. Hendry has shown in [421, Corollary 8] that, apart from certain excep-

tions, every graph satisfying Dirac’s condition for hamiltonicity (d(x) > n/2

for every vertex [198]) is also cycle extendable (with the obvious analogous
definition of cycle extendability for undirected graphs). The main result of
[420] is the following.

Theorem 6.5.27 [420] Let D be a digraph on n > 7 vertices such that
6°(D) > ees Then D is cycle extendable unless n = 3r for some r and

D contains F,, as a spanning subdigraph and D is a spanning subdigraph of

G,,. See Figure 6.2 for the definition of Fn,Gn. Oo

F 3, G3k

Figure 6.2 The digraphs F,, and G,. All arcs indicate complete domination in the
direction shown.

6.6 Arc-Pancyclicity

A digraph D of order n is arc-k-cyclic for some k € {3,4,...,n} if each arc of

D is contained in a cycle of length k. A digraph D = (V, A) is arc-pancyclic

if it is arc-k-cyclic for every k = 3,4,...,n. Demanding that a digraph is

arc-pancyclic is a very strong requirement, since in particular every arc must

be in a hamiltonian cycle. Hence it is not surprising that most results on arc-

pancyclic digraphs are for tournaments and generalizations of tournaments.

However, Moon proved that almost all tournaments are arc-3-cyclic [571], so

for tournaments this is not such a hard requirement, in particular in the light

of Theorem 6.6.1 below.

Tian, Wu and Zhang characterized all tournamentsthat are arc-3-cyclic

but not arc-pancyclic. See Figure 6.3 for the definition of the classes Dg, Dg.

Theorem 6.6.1 /718] An arc-3-cyclic tournament is arc-pancyclic unless it
belongs to one of the families Dg, Dg (in which case the arc yx does not belong

to a hamiltonian cycle). QO

310 6. Hamiltonian Refinements

De Dg

Figure 6.3 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induce an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction.

It is not difficult to derive the following two corollaries from this result:

Corollary 6.6.2 [718] At most one arc of every arc-3-cyclic tournament is

not in cycles of all lengths 3,4,...,n.

Proof: Exercise 6.31. Oo

Corollary 6.6.3 [741] A tournament is arc-pancyclic if and only if it is arc-
3-cyclic and arc-n-cyclic.

Proof: Exercise 6.32. Oo

The following result due to Alspach is also an easy corollary:

Corollary 6.6.4 /19] Every regular tournament is arc-pancyclic. Oo

Finally, observe that since each tournament in the infinite family Dg is

2-strong and the arc yz is not in any hamiltonian cycle we have the following
result due to Thomassen:

Theorem 6.6.5 /698] There exist infinitely many 2-strong tournaments con-
taining an arc which is not in any hamiltonian cycle. oO

6.6 Arc-Pancyclicity 311

In [341, 343] Guo studied arc-pancyclic locally tournament digraphs and
obtained several results which generalize those above. In particular he made
the important observation that one can in fact get a more general result by
studying paths from zx to y for all such pairs where the arc xy is not present
rather than just those for which the arc yx is present (which is the case for
tournaments of course).

Theorem 6.6.6 /343] Let D be an arc-3-cyclic local tournament and let x,y
be distinct vertices such that there is no arc from x to y. Then D contains

an (x,y)-path of length k for every k such that 2 <k <n-—1 unless D is

isomorphic to one of the local tournaments T;,T? (from Section 6.2) or D

belongs to one of the families Dg or Dg, possibly with the arc from y to x

missing. oO

The proofs of Theorems 6.6.1 and 6.6.6 are very technical and consist of

a long case analysis. Hence it makes no sense to give any of these proofs here.

However, we will finish the section with a proof of the following partial result

which Guo used in his proof of Theorem 6.6.6.

Theorem 6.6.7 [343] Let D be a connected, arc-3-cyclic local tournament

which is not 2-strong. Then D is isomorphic to C3[T,,T2,{s}] where T; is
an arc-3-cyclic tournament for i = 1,2 and s is a vertex. Furthermore, D is

arc-pancyclic.

Proof: First observe that D is strongly connected since it is connected

and arc-3-cyclic. Since D is not 2-strong, it has a separating vertex s. Let

T),T2,...,T; denote the acyclic ordering of the strong components of D — s.

If there is an arc zs from V(T;) to s, then no arc from x to V(T2) can be in

a 3-cycle. Hence we must have s++V (7) and similarly V(T;,)Hs. Since D is
arc-3-cyclic, each of T;, 7}; must be an arc-3-cyclic tournament.

If k > 3 then for every vertex u € V(T>), either no arc from V(T;) to u
or no arc from u to V(T3) can be in a 3-cycle, contradicting our assumption.

Thus we must have k = 2 and we have proved that D = C3[T;,To, {s}}.
It remains to prove that D is arc-pancyclic. Since T; and T2 have hamil-

tonian paths, it is easy to see that each arc which does not belong to either

T; or T2 is on cycles of all possible lengths. So we just have to consider arcs

inside T,,T>. If |V(T,)| = |V(Z2)| = 1 there is nothing more to prove. So
suppose without loss of generality that |V(T;)| > 3. Let uu2...u,-ui, r > 3,

be a hamiltonian cycle of T;. Let uju; be an arbitrary arc of T;. If T, — u; is

strong, then T; — u; has a hamiltonian cycle and hence T; has a hamiltonian

path starting with the arc uju;. Using this and a hamiltonian path in Tz we

can easily obtain cycles of all lengths 3,4,...,n through u;u; in D. Suppose

now that T; — u; is not strong. Then 7; — u; satisfies the assumption of the

theorem, so by induction it has the same structure as D and u; must belong

to the initial component of T, — u;. Hence again we find a hamiltonian path
- starting with the arc u,u; in T; and finish as above.

312 6. Hamiltonian Refinements

Similarly, if |V(T2)| > 3 the same proof as above can be applied to every

arc of T). Thus we have shown that D is arc-pancyclic. oO

It is interesting to note that the problem of characterizing arc-pancyclic

semicomplete digraphs is still open and seems quite difficult. A partial result

was obtained by Darrah, Liu and Zhang [181].

6.7 Hamiltonian Cycles Containing or Avoiding

Prescribed Arcs

We now turn our attention to hamiltonian cycles in digraphs with the ex-

tra condition that these cycles must either contain or avoid all arcs from a

prescribed subset A’ of the arcs..Not surprisingly, problems of this type are

quite difficult even for semicomplete digraphs. If we have no restriction on the

size of A’, then we may easily formulate the hamiltonian cycle problem for

arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence

the avoiding problem without any restrictions is certainly ’P-complete. Be-

low, we study both types of problems from a connectivity as well as from a

complexity point of view. We also show that when the number of arcs to be

avoided respectively, contained in a hamiltonian cycle is some constant, then,

from a complexity point of view, the avoiding version is no harder than the

containing version. Finally, we show that for digraphs which can be obtained

from a semicomplete digraph by adding a few new vertices and some arcs,

the hamiltonian cycle problem is very hard and even if we just added one

new vertex, the problem is highly non-trivial.

6.7.1 Hamiltonian Cycles Containing Prescribed Arcs

We start by studying the problem of finding a hamiltonian cycle that contains

certain prescribed arcs €), €2,..., ex. This problem, which we call the k-HCA

problem, is clearly very hard for general digraphs. We show below that

even for semicomplete digraphs this is a difficult problem. For k = 1 the

k-HCA problem is a special case of the (x, y)-hamiltonian path problem and

it follows from the result in Section 6.4 that there is a polynomial algorithm

to decide the existence of a hamiltonian cycle containing one prescribed arc
in a semicomplete digraph.

Based on the evidence from Theorem 6.4.1, Bang-Jensen, Manoussakis

and Thomassen raised the following conjecture. As mentioned above, when

k = 1 the conjecture follows from Theorem 6.4.1.

Conjecture 6.7.1 /87] For each fixed k, the k-HCA problem is polynomially
solvable for semicomplete digraphs.

When k = 2 the problem already seems very difficult. This is interesting,
especially in view of the discussion below concerning hamiltonian cycles in

6.7 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 313

digraphs obtained from semicomplete digraphs by adding a few new vertices.

Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA

problem becomes \VP-complete even for tournaments [89]. The proof of this
result in [89] contains an interesting idea which was generalized by Bang-

Jensen and Gutin in [60]. Consider a digraph D containing a set W of k

vertices such that D — W is semicomplete. Construct a new semicomplete

digraph Dy as follows. First, split every vertex w € W into two vertices

W 1, W2 such that all arcs entering w now enter w, and all arcs leaving w now

leave w2. Add all possible arcs from vertices of index 1 to vertices of index 2

(whenever the arcs in the opposite direction are not already present). Add all

edges between vertices of the same index and orient them randomly. Finally,

add all arcs of the kind w;z and zw2, where w € W and z € V(D) —W. See

Figure 6.4. It is easy to show that the following holds:

W

S

D Dw

Figure 6.4 The construction of Dw from D and W. The fat arc from W; to W2

indicates that all arcs not already going from W2 to W; (as copies of arcs in D) go

in the direction shown. The four other fat arcs indicate that all possible arcs are

present in the direction shown.

Proposition 6.7.2 /60] Let W be a set of k vertices of a digraph D such

that D — W is a semicomplete digraph. Then D has a cycle of length ce > k

containing all vertices of W, if and only if the semicomplete digraph Dw has

a cycle of length c+k through the arcs {wi wz: w € W}.

Proof: Exercise 6.36. O

Let D = (V,A) be a semicomplete digraph and A’ = {u101,...,UkUE}

be a subset of A. Let D’ be the digraph obtained from D by replacing each

314 6. Hamiltonian Refinements

arc ujv; € A’ by a path ujw,v;, 1 = 1,2,...,k, where w; is a new vertex.

Then every cycle C in D that uses all arcs in A’ corresponds to a cycle C"

in D’ which contains all vertices of W = {wi,w2,..-,wx} and conversely.

This observation and Proposition 6.7.2 allows us to study cycles through a

specified set W of vertices in digraphs D such that D — W is semicomplete

instead of studying cycles containing k = |W| fixed arcs in semicomplete

digraphs.

Note that, if k is not fixed, then it is ’P-complete to decide the existence

of a cycle through k given vertices in a digraph which can be obtained from a

semicomplete digraph by adding k new vertices and some arcs. Indeed, take

k = |V(D)|, then this is the Hamilton cycle problem for general digraphs.
This proves that the k-HCA is NP-complete for semicomplete digraphs.

Now we can reformulate Conjecture 6.7.1 to the following equivalent state-

ment: ,

Conjecture 6.7.3 /60] Let k be a fixed natural number. There exists a poly-

nomial algorithm to decide if there is a hamiltonian cycle in a given digraph

D which is obtained from a semicompiete digraph by adding at most k new

vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 6.7.2

and Theorem 6.4.1. Surprisingly, when |W| = 2 the problem already seems

very difficult (recall from Section 6.4 and the remark above that even the
case |W| = 1 is highly non-trivial).

We conclude this subsection with some results on the k-HCA problem

for highly connected tournaments. Thomassen [701] obtained the following

theorem for tournaments with large strong connectivity (the function f(k) is

defined recursively by f(1) = 1 and f(k) = 2(k —1)f(k —1) +3 for k > 2).
The proof is by induction on k and uses Theorem 6.3.3 to establish the case

k = 1 (this is another illustration of the importance of Theorem 6.3.3).

Theorem 6.7.4 [701] If {21,y1,...,2k, yx} is a set of distinct vertices in an
h(k)-strong tournament T, where h(k) = f(5k)+12k+9, then T has a k-path
factor P; UP2U...U Py such that P; is an (%;,y;)-path for i = 1,...,k. 0

Theorem 6.7.4 implies the following:

Theorem 6.7.5 [701] If ay,...,a% are arcs with no common head or tail in

an h(k)-strong tournament T, then T has a hamiltonian cycle containing

Q1,...,a% tm that cyclic order. oO

Combining the ideas of avoiding and containing, Thomassen proved the
following:

Theorem 6.7.6 [701] For any set A; of at most k arcs in an h(k)-strong
tournament T and for any set Az of at most k independent arcs of T — Aj,
the digraph T — A, has a hamiltonian cycle containing all arcs of Ag. oO

6.7 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 315

6.7.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle

How many arcs can we delete from a strong tournament and still have a

hamiltonian cycle no matter what set of arcs is deleted? This is a difficult

question, but it is easy to see that for some tournaments the answer is that

even one missing arc may destroy all hamiltonian cycles. If some vertex has

in- or out-degree 1, then deleting that arc clearly suffices to destroy all hamil-

tonian cycles. On the other hand, it is also easy to construct for every p an

infinite set S of strong tournaments in which 6°(T) > p for every T € S and

yet there is some arc of T which is on every hamiltonian cycle of T' (see Ex-

ercise 6.35). It follows from Theorem 6.7.7 below that all such tournaments
are strong but not 2-strong.

We can generalize the question to k-strong tournaments and again it is

obvious that if some vertex v has in- or out-degree k (this is the smallest

possible by the connectivity assumption), then deleting all k arcs out of or

into v, we can obtain a digraph with no hamiltonian cycle. Thomassen [699]
conjectured that in a k-strong tournament, k is the minimum number of arcs

one can delete in order to destroy all hamiltonian cycles. The next theorem

due to Fraisse and Thomassen answers this in the affirmative.

Theorem 6.7.7 [249] For every k-strong tournament D = (V, A) and every
set A’ C A such that |A| < k—-1, there is a hamiltonian cycleC in D-—A'. O

The proof is long and non-trivial; in particular it uses Theorem 6.3.3.

Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [71].

The authors proved Theorem 6.7.8 using results on irreducible cycle factors in

multipartite tournaments, in particular Yeo’s irreducible cycle factor theorem

(Theorem 5.7.21). This is just one more illustration of the power of Theorem

oereoie

Theorem 6.7.8 [71] Let T = (V, A) be ak-strong tournament on n vertices,

and let X,,X2,...,Xp (p > 1) be a partition of V such that 1 < |X,| <
|X| <...<|X,|. Let D be the digraph obtained from T by deleting all arcs

which have both head and tail in the same X; (i.e. D=T —Uf_, A(T(Xi))).

If |Xp| < n/2 and k > |X,| + Po) ||Xi|/2], then D is hamiltonian. In other
words, T has a hamiltonian cycle which avoids all arcs with both head and

tail in some X;. 0

We will not give the proof here since it is quite technical, but we give

the main idea of the proof. The first observation is that D is a multipartite

tournament, which follows from the way we constructed it. Our goal is to

apply Theorem 5.7.21 to D. Hence we need to establish that D is strong (see

Exercise 6.40) and has a cycle factor (Exercise 6.41). Now we can apply The-

orem 5.7.21 to prove that every irreducible cycle factor in D is a hamiltonian

cycle. This last step is non-trivial (Exercise 6.42).

The following result shows that the bound for k in Theorem 6.7.8 is sharp:

316 6. Hamiltonian Refinements

Theorem 6.7.9 [71] Let2<1y <1ro<...< 1p be arbitrary integers. Then

there exists a tournament T and a collection X,,X2,...,Xp of disjoint sets of

vertices in T such that

(a) T is (rp —1+ 0?) [ri/2])-strong;
(Oya Aga (Ona Loa ony
(c) D=T —UP_, A(T(X;)) is not hamiltonian. Oo

In fact, the paper [71] is concerned with aspects of the following more

general problem:

Problem 6.7.10 /71] Which sets B of edges of the complete graph K,, have

the property that every k-strong orientation of K, induces a hamiltonian

digraph on K, — B?

The Fraisse-Thomassen theorem says that this is the case whenever B con-

tains at most k—1 edges. Theorem 6.7.8 says that a union of disjoint cliques of

sizes T1,...,Tp has the property whenever ae Lri/2| +maxi<icr{[ri/2]} <
k. By Theses 6.7.9, this is the best possible result for unions of cliques.

Let us show that Theorem 6.7.8 implies Theorem 6.7.7. Let T be a k-

strong tournament on n vertices and let A’ = {e,€2,...,ex-1} be a given

set of k — 1 arcs of T. In UG(T) these arcs induce a number of connected
components, X4;Xo753.;X,) 1 pe k=" 1. Denote by a; 42— 4s 2)2 sp

the number of arcs form A’ which join two vertices from X;. Then we have

ye as = K-11 and |X;| <a; +1,i=1,2,...,p. We may assume that the
numbering is chosen so that |X1| < |Xo| < ... < |Xp|. Note that |X,| <k <
n/2. Furthermore, since each a; > 1 we also have |X,| < (k—1)—(p—1)+1=
k —p+1. Now we can make the following calculation:

oo + Se = = (Hel Le

< (Mey 2 5 x

Now it follows from Theorem 6.7.8 that T has a hamiltonian cycle which
avoids every arc with both head and tail in some X; and in particular it
avoids all arcs in A’. This shows that Theorem 6.7.8 implies Theorem 6.7.7.

6.7 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs 317

Note that if A’ induces a tree and possibly some disjoint edges in UG(T),
then Theorem 6.7.8 is no stronger than Theorem 6.7.7. This can be seen
from the fact that in this case we have equality everywhere in the calculation
above. In all other cases Theorem 6.7.8 provides a stronger bound.

In relation to Problem 6.7.10, it seems natural to investigate bounds for
k in different cases of the set B. In particular, what are sharp bounds for k
when B is a spanning forest of K’, consisting of m disjoint paths containing

11, ---, Tm vertices, respectively ? The same question can be asked if we replace

‘paths’ by ‘stars’ or by ‘cycles’ (in the last case ‘spanning forest’ should also

be replaced by ‘spanning cycle subdigraph’).

How easy is it to decide given a semicomplete digraph D = (V, A) and

a subset A’ C A whether D has a hamiltonian cycle C which avoids all

arcs of A’? As we mentioned earlier, this problem is NP-complete if we

pose no restriction on the arcs in A’. In thecase when A’ is precisely the

set of those arcs that lie inside the sets of some partition X,, X2,...,X, of

V, then the existence of C’ can be decided in polynomial time. This follows

from the fact that D(A — A’) is a semicomplete multipartite digraph and, by
Theorem 5.7.9, the hamiltonian cycle problem is polynomially solvable for

semicomplete multipartite digraphs. The same argument also covers the case

when k = 1 in the conjecture below.

Conjecture 6.7.11 For every k there exists a polynomial algorithm which,

for a given semicomplete digraph D = (V, A) and a subset A' C A such that
|A'| = k, decides whether D has a hamiltonian cycle that avoids all arcs in
7

At first glance, cycles that avoid certain arcs seem to have very little to do

with cycles that contain certain specified arcs. Hence, somewhat surprisingly,

if Conjecture 6.7.1 is true, then so is® Conjecture 6.7.11.

Suppose that Conjecture 6.7.1 is true. Then it follows from the discussion

of Subsection 6.7.1 that also Conjecture 6.7.3 holds. Hence, for fixed k, there

is a polynomial algorithm A; which, given a digraph D = (V, A) and a subset

W CV for which D — W is semicomplete and |W| < k, decides whether or
not D has a hamiltonian cycle. Let k be fixed and D be a semicomplete

digraph and let A’, |A’| < k, be a prescribed set of arcs in D. Let W be the
set of all vertices such that at least one arc of A’ has head or tail in W. Then

|W| < 2|A’| and D has a hamiltonian cycle avoiding all arcs in A' if and only
if the digraph D — A’ has a hamiltonian cycle. By the remark above we can
test this using the polynomial algorithm A,, where r = |W].

6.7.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles

Recall from Chapter 4 that we call an arc ry ordinary if it is not contained in

a 2-cycle. Deciding whether a given digraph has a hamiltonian cycle C such

® We thank Thomassen for pointing out this consequence to us (private commu-
nication, August 1999).

318 6. Hamiltonian Refinements

that all arcs of C are ordinary is of course an NP-complete problem since the

hamiltonian cycle problem for oriented graphs is NP-complete. This implies

that the problem is ’P-complete even for semicomplete digraphs.

Tuza [724] studied this problem for semicomplete digraphs and posed the

following conjecture:

Conjecture 6.7.12 [724] Let s be a positive integer and suppose that D =

(V, A) is a semicomplete digraph such that for every Vic MealVicusyathe

induced semicomplete digraph D(V —Y) is strong and has at least one or-

dinary arc. Then there exists a hamiltonian cycle in T which has at least s

ordinary arcs.

The following result shows that it is enough to prove that there is a cycle

of length at least s + 1 with this property.

Proposition 6.7.13 [724] If a strong semicomplete digraph T has a cycle

of length at least s +1 which contains at least s ordinary arcs, then T has a

hamiltonian cycle with at least s ordinary arcs.

Tuza has proved the existence of such a cycle for s = 1,2, see [724]. It is

easy to see that s+ 1 cannot be replaced by s in Proposition 6.7.13 (Exercise

6.43).

6.8 Arc-Disjoint Hamiltonian Paths and Cycles

From Euler’s theorem (Theorem 1.6.3) one easily derives the following result

attributed to Veblen in [115] (see also Exercise 6.44).

Theorem 6.8.1 The arcs of a digraph can be partitioned into cycles if and

only if, for each vertex x, we have dt (x) = d (2). Oo

The proof of the following strengthening of Theorem 6.8.1 for regular

digraphs by Kotzig is left as Exercise 6.46.

Theorem 6.8.2 /503] If D is a regular digraph, then the arc set of D can

be partitioned into cycle factors. oO

We.now consider decompositions of the arc set of a digraph into hamil-

tonian cycles. Deciding whether such a decomposition exists for an arbitrary

digraph is an extremely hard problem. Even for complete digraphs this is

non-trivial. It is an old result due to Walecki (see [20]) that the edge set
of the complete undirected graph K,, has a decomposition into hamiltonian

cycles if and only if n is odd (if n is even then each vertex has odd degree
and no decomposition can exist). Using this result we easily conclude that

+

the arc set of K, can be decomposed into hamiltonian cycles when n is odd.

However for even n another approach is needed by the remark above.

6.8 Arc-Disjoint Hamiltonian Paths and Cycles 319

It is easy to check that the arcs of K 4 cannot be decomposed into hamil-
tonian cycles. Indeed, without loss of generality, the first cycle in such a

decomposition is 12341 where the vertices of K4 are labeled 1,2,3,4. After re-
moving these arcs one obtains a strong semicomplete digraph with a unique
hamiltonian cycle 14321 and hence the desired decomposition cannot exist.

With a little more effort one can also prove that the arc set of K 6 cannot
be decomposed into 5 hamiltonian cycles (Exercise 6.45). On the other hand
Tillson proved that for all other values of n such a decomposition does indeed
exist.

Theorem 6.8.3 (Tillson’s decomposition theorem) /719] The arcs of
oe

K,, can be decomposed into hamiltonian cycles if and only if n # 4,6. Oo

Theorem 6.8.3 will be used in Section 6.12. Answering a question of

Alspach, Bermond and Sotteau, Ng [591] extended Theorem 6.8.3 to the
following:

Srey

hamiltonian cycles if and only if (r,s) # (4,1) and (r,s) 4 (6,1). 0

The following conjecture, due to Kelly (see [571]), is probably one of the
best known conjectures in tournament theory:

Conjecture 6.8.5 (Kelly’s conjecture) The arcs of a regular tournament

of order n can be partitioned into (n — 1)/2 hamiltonian cycles.

This conjecture was verified for n < 9 by Alspach [115, page 28]. Jack-

son [449] proved that every regular tournament of order at least 5 contains

a hamiltonian cycle C and a hamiltonian path arc-disjoint from C. Zhang

proved in [754] that there are always two arc-disjoint hamiltonian cycles for

n > 5. A digraph D is almost regular if A°(D) — 6°(D) < 1. Thomassen
[699] proved the following:

Theorem 6.8.6 /699] Every regular or almost regular tournament of order

n has at least |,/n/1000| arc-disjoint hamiltonian cycles. 0

This result was improved by Haggkvist to the following:

Theorem 6.8.7 [387] There is a positive constant c (in fact c > 2718) such
that every regular tournament of order n contains at least cn arc-disjoint

hamiltonian cycles. Oo

Thomassen [703] proved that the arcs of every regular tournament of order
n can be covered by 12n hamiltonian cycles.

320 6. Hamiltonian Refinements

So far the Kelly conjecture remains unsettled as far as a published proof

goes. Thus it remains a serious challenge to find a proof of this long standing

and very interesting conjecture.

For further results on decompositions into hamiltonian cycles we refer the

reader to the paper [20] by Alspach, Bermond and Sotteau and the paper

[592] by Ng.

Let T be the tournament on n = 4m+2 vertices obtained from two regular

tournaments 7; and T>, each on 2m +1 vertices, by adding all arcs from the

vertices of T; to T2 (i.e. V(T1)H4V(T2) in T). Clearly T is not strong and so
has no hamiltonian cycle. The minimum in-degree and minimum out-degree

of T is m which is about 7. Bollobds and Haggkvist [123] showed that if we
increase the minimum in- and out-degree slightly, then, not only do we obtain

many arc-disjoint hamiltonian cycles, we also obtain a very structured set of

such cycles.

Theorem 6.8.8 /123] For every « > 0 and every natural number k there is
a natural number n(e,k) with the following property. If T is a tournament of

order n > n(e,k) such that 6°(T) > (4 +.)n, then T contains the kth power
of a hamiltonian cycle. O

It is easy to prove that every tournament on n vertices with minimum in-

and out degree at least + is strongly connected (see Exercise 1.36).

We now turn our attention to other results concerning arc-disjoint hamil-
tonian paths and cycles in tournaments. Thomassen [699] completely char-
acterized tournaments having at least two arc-disjoint hamiltonian paths. A
tournament is almost transitive if it is obtained from a transitive tourna-
ment with acyclic ordering uj, u2,...,Un (ie. uj u; for alll <i < j <n) by
reversing the arc ujUn. Let T be a non-strong tournament with the acyclic
ordering T;,T2,...,T, of its strong components. Two components De, lees
are called consecutive for i =1,2,...,k—1.

Theorem 6.8.9 /699] A tournament T fails to have two arc-disjoint hamil-
tonian paths if and only if T has a strong component which is an almost
transitive tournament of odd order or T has two consecutive strong compo-
nents of order 1. oO

Deciding whether a given tournament JT has a hamiltonian path P and
a hamiltonian cycle C such that P and C are arc-disjoint seems to be a
difficult problem. Thomassen found the following partial solution involving
arc-3-cyclic tournaments:

Theorem 6.8.10 /699] Let T be an arc-3-cyclic tournament of order at least
3. Then T has a hamiltonian path P and a hamiltonian cycle arc-disjoint
from P, unless T is a 3-cycle or the tournament of order 5 obtained from a
3-cycle by adding two vertices x,y and the arc xy and letting y (respectively
x) dominate (respectively, be dominated by) the vertices of the 3-cycle. 0

6.9 Oriented Hamiltonian Paths and Cycles Syl

It is easy to see that regular tournaments are arc-3-cyclic (Exercise 6.47).
Hence Theorem 6.8.10 generalizes the result of Jackson above. But Theorem

6.8.10 goes much further since, as we mentioned in Section 6.6, almost all

tournaments satisfy the assumption of the theorem (see [571]). The following
conjecture in some sense generalizing Kelly’s conjecture was proposed by

Thomassen:

Conjecture 6.8.11 /699] For any « > 0 almost all tournaments of order n

have |(0.5 — €)n| arc-disjoint hamiltonian cycles.

Erdos (see [699]) raised the following problem:

Problem 6.8.12 Do almost all tournaments have 6°(T) arc-disjoint hamil-
tonian cycles?

As we mentioned in the beginning of Section 6.7 there is no degree con-

dition which guarantees that a strong tournament contains two arc-disjoint

hamiltonian cycles. In fact one can easily show that even high arc-strong con-

nectivity does not exclude the existence of one arc which is in all hamiltonian

cycles (see Exercise 6.35). Thomassen posed the following conjecture.

Conjecture 6.8.13 /699] For each integer k > 2 there exists an integer a(k)

such that every a(k)-strong tournament has k arc-disjoint hamiltonian cycles.

Thomassen [699] showed by an example that a(2) > 2 and conjectured that
a(2) = 3. His example also shows that a is not bounded by any linear func-

tion.

6.9 Oriented Hamiltonian Paths and Cycles

Since every tournament has a hamiltonian directed path, it is natural to

ask whether every tournament contains every orientation of a hamiltonian

undirected path. This is not true, as one can see from the examples in Figure

6.5.

Figure 6.5 The unique tournaments with no anti-directed hamiltonian path.

aoe 6. Hamiltonian Refinements

A path is anti-directed if the orientation of each arc on the path is op-

posite to that of its predecessor. The reader can easily verify that none of the

three tournaments in Figure 6.5 contains an anti-directed hamiltonian path

(Exercise 6.48). Griinbaum [340] proved that, except for the three tourna-
ments of Figure 6.5, every tournament contains an anti-directed hamiltonian

path. Rosenfeld [644] strengthened this to the following statement:

Theorem 6.9.1 /644] In a tournament on at least 9 vertices, every vertex

is the origin of an anti-directed hamiltonian path. Oo

Rosenfeld conjectured that there exists a natural number N such that ev-

ery tournament on at least N vertices contains every orientation of a hamilto-

nian undirected path. Griinbaum’s examples show that we must have N > 8.

Rosenfeld’s conjecture has been studied extensively and many partial results

were obtained until it was proved by Thomason [694] (see also Theorem
6.9.3). We will mention one of these partial results here (see also the papers

[21] by Alspach and Rosenfeld and [683] by Straight).
Forcade found the following beautiful result which generalizes Redei’s

theorem for tournaments whose number of vertices is a power of two.

Theorem 6.9.2 /244] If T is a tournament on n = 2” vertices for some

r, then for every orientation P of a path on n vertices, T contains an odd

number of occurrences of P. 0

Thomason [694] proved Rosenfeld’s conjecture by showing that N is less

than 2128. He also conjectured that N = 8 should be the right number. This
was confirmed very recently by Havet and Thomassé [408].

Theorem 6.9.3 (Havet-Thomassé theorem) [408] Every tournament on
at least 8 vertices contains every orientation of a hamiltonian path. oO

The proof of Theorem 6.9.3 in [408] is very long (involving a lot of cases),
but it uses a very nice partial result which we shall describe below. First
we need some new notation. Let P = uju2...un be an oriented path. The
vertex u; (Un) is the origin (terminus) of P. An interval of P is a maximal
subpath P’ = P[uj,u,]’ such that P’ is a directed path (i.e. either a (uj, uU;)-
path or a (u;,u;)-path). See an illustration in Figure 6.6. The intervals are
labeled J), J2,..., J,(p) starting from u;. The length @;(P) of the ith interval
is the number of arcs in the directed subpath corresponding to J;. If the
first interval of P is directed out of u;, then P is an out-path, otherwise
P is an in-path. Now we can describe any oriented path P by a signed
sequence sgn(P)(¢;,2,...,lp)), where sgn(P) is ‘+’ is P is an out-path
and otherwise sgn(P) is ‘—’. We also use the notation *P to denote the
subpath P[ug, un].

” We use the same notation here as for directed paths, i.e. Plug, uj] = weuspa... tj
when i < 7.

6.9 Oriented Hamiltonian Paths and Cycles 323

1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.6 An oriented path with intervals [1, 3], [3, 6], [6, 7], [7, 8], [8, 10], [10, 11],
(11, 12].

For every set X C V in a tournament T = (V,A), we define the sets

R*(X) (R~(X)) to be those vertices that can be reached from (can reach)

the set X by a directed path. By definition X C Rt(X)NR(X). A vertex u
is an out-generator (in-generator) of T if R*(u) = V (R~(u) = V). Recall

that by Theorem 1.4.5, every tournament T has at least one out-generator

and at least one in-generator. In fact, by Proposition 4.10.2, a vertex is an

out-generator (in-generator) if and only if it is the initial (terminal) vertex
of at least one hamiltonian path in T’.

The next result, due to Havet and Thomassé, deals with oriented paths

covering all but one vertex in a tournament. It plays an important role in the

proof of Theorem 6.9.3 in [408].

Theorem 6.9.4 [408] Let T = (V,A) be a tournament on n+ 1 vertices.
Then

(1) For every out-path P on n vertices and every choice of distinct vertices

x,y such that |Rt({z,y})| > 4:(P) +1, either x or y is an origin of (a

copy of) P inT.

(2) For every in-path P on n vertices and every choice of distinct vertices

z,y such that |R~({z,y})| > 4(P) +1, either x or y is an origin of (a

copy of) P inT.

The following is an easy corollary of Theorem 6.9.4. We state it now since

we shall use it in the inductive proof below.

Corollary 6.9.5 /694] Every tournament T on n vertices contains every

oriented path P onn—1 vertices. Moreover, every subset of €;(P)+1 vertices

contains an origin of P. In particular, there are at least two distinct origins

id mame oO

Proof of Theorem 6.9.4: (We follow the proof in [408]). The proof is by
induction on n and clearly holds for n = 1. Now suppose that the theorem

holds for all tournaments on at most n vertices. It suffices to prove (1) since
(2) can be reduced to (1) by considering the converses of T and P.

Let P = u,u2...un be given and let x,y be distinct vertices such that

|R*({x,y})| > &(P) +1. We may assume that xy and hence Rt(x) =
Rt ({z,y}). We consider two cases.

324 6. Hamiltonian Refinements

Case 1 £;(P) > 2: If |N*(z)| > 2, let z € N*(x) be an out-generator of
T(R* (x) — x) and let t € N*(z) be distinct from z. By the definition of z
we have that |Rf_,({t,z})| = |R*(z)| —1 > &(*P). Note that *P is an
out-path, since ¢;(P) > 1. By the induction hypothesis, either z or t is the
origin of *P in T — z, implying that z is an origin of P in T’.

Thus we may assume that Nt (xr) = {y}. Since |R*({z, y})| > 4(P)+1>
3 we see that N*(y) 4 @. Let q be an out-generator of T(NT(y)). Then qg
is also an out-generator of T(R*({z,y}) —y), qx and |Rz_,({z, a})| =

|R*({x, y})| —1 > €:(*P). By induction, either z or q is the origin of *P in
T — y and since x has no out-neighbour in T — y it must be gq that is the

origin. Now we see that y is the origin of P in T.

Case 2 €;(P) = 1: We consider first the subcase when |N*(x)| > 2. Let
X := Rp_,(N*(a)) and consider the partition (X,Y, {xz}) of V, where Y =
V — X —@. By the definition of these sets we have Yor, XHY and y € X.

If |X| > €.(P) +1, then we claim that z is an origin of P in T; indeed, let
p € Nt(q) be an in-generator of T(X) and take u € N*(zx) — p. By the
induction hypothesis, either p or wu is an origin of xP in T —z and hence z is

an origin of P in T.

So we may assume that |X| < :(P). Note that £.(P) < n —2 holds
always (remember we count arcs). Hence |Y| > 1, since T has n +1 vertices.
Let s be an in-generator of T(Y). Since dt(r) > 1 and XHKY we have
Ry_,(s) = V —y. Let w € Y —s be arbitrary. By the induction hypothesis

either w or s is an origin of P in T — y and hence y is an origin of P in T.

Now consider the case when N*(x) = {y}. Suppose first that |Nz_,(y)| >
n — 2. By induction, Theorem 6.9.4 and hence Corollary 6.9.5 holds for T —
{x,y}. Thus some vertex in Nj (y) is an origin of **P. Hence z is an origin
of P in T (using xy and an arc into y from the origin of ««P in T— {z, y}).
So we may assume that |Nt(y)| > 2. Let U = Rr_,(N*(y)) and W =
V—U — {z,y}. Then W+{z,y} and UW U {2}. If |U| > €:(P) +1, then
by the same proof as we used above (beginning of Case 2), we get that y
is an origin of P. So suppose |U| < é(P). This implies in particular that
fo(P) 2 |N*(y)| > 2.

If |W| > 2 then we let w € W be an in-generator of T — {x,y} and take
w' € W —w arbitrary. By induction either w or w’ is an origin of the in-path
**P (recall that ¢2(P) > 2 and hence **P is an in-path). Thus using the arc
zy and an arc into y from the origin of **P in W we see that z is the origin of
P. Finally consider the case when |W| = 1 (note that |W| =n—1- (Gi cant,
since |U| < £:(P) <n — 2). Then |U| =n —2 and &(P) =n—-2 (since we
assumed above that ¢)(P) > |U|). Thus *P is a directed in-path. Using that
y is an in-generator of T — x, we get that a is an origin of P. This completes
the proof of the theorem. O

If the path in Theorem 6.9.4 has n+1 vertices instead of n, then the state-
ment is no longer true. However, the exceptions (to the n+1,n+1 version of
Theorem 6.9.4) can be characterized [408] and based on this characterization

6.9 Oriented Hamiltonian Paths and Cycles 325

Havet and Thomassé were able to prove that the tournaments in Figure 6.5
are indeed the only tournaments that do not contain every orientation of a
hamiltonian path.

In [408] Havet and Thomassé also proved the following nice result which
is of independent interest.

Proposition 6.9.6 /408] Let P be an out-path on n, vertices and Q an in-
path on n vertices. Let T = (V, A) be a tournament onn =n, + No vertices.
Ifx € V is the origin of a copy of P and of Q in T, then we may choose
copies of P and Q such that V(P)NV(Q) = {x} and x is the origin of both
copies.

How easy is it to find an occurrence of a prescribed orientation of a hamil-
tonian path P in a tournament? If P is a directed path, then this can be done
in time® O(nlogn) (see Section 1.9.1). Some patterns can be found faster:
Bampis, Hell, Manoussakis and Rosenfeld [42] showed that one can find an
anti-directed hamiltonian path in O(n) time. This is the best possible as
shown in [415]. The following somewhat surprising result by Hell and Rosen-

feld shows that finding distinct patterns requires quite different complexities:

Theorem 6.9.7 [415] For every 0 < a <1 there exists an orientation P of

a path on n vertices so that every algorithm which checks for an occurrence

of P in a tournament T with n vertices must make 2(nlog%n) references to

the adjacency matriz of T in the worst case. O

Based on Theorem 6.9.3 Havet proved the following result:

Theorem 6.9.8 [405] There is an O(n?) algorithm that takes as input a
tournament on n > 8 vertices and an oriented path P on at most n vertices

and returns an occurrence of P inT. 0

It is not known whether there are orientations of paths that in the worst

case need (2(n'**) references (for some € > 0) to the adjacency matrix to be
found in a tournament. By this we mean that in some cases one needs that

many steps to either find the desired path or conclude that no such path

exists.

Instead of considering orientations of hamiltonian paths in tournamenis,

one may just as well consider orientations of hamiltonian cycles in tourna-

ments. However, one particular cycle, namely the directed hamiltonian cycle,

can only be found in strong tournaments. Rosenfeld [645] conjectured that
the directed hamiltonian cycle is the only orientation of a hamiltonian cy-

cle that can be avoided by tournaments on arbitrarily many vertices. This

conjecture was settled by Thomason who proved the following:

8 We remind the reader that in measuring the complexity, we only count how many
times we have to ask about the orientation of a given arc.

326 6. Hamiltonian Refinements

Theorem 6.9.9 /694] Every tournament on n > 21” vertices contains every

oriented cycle of length n except possibly the directed hamiltonian cycle.

Thomason also conjectured that the correct value of the lower bound on n

is 9. One easily obtains a tournament with 8 vertices having no anti-directed

hamiltonian cycle by adding a new vertex v to the tournament on 7 vertices

in Figure 6.5 and joining v arbitrarily to the other 7 vertices. Hence 9 would

be best possible if true.

Using the methods developed in [408] along with a number of new ideas,
Havet [406] proved the following result. Recall that every strong tournament
has a hamiltonian cycle.

Theorem 6.9.10 /406] Every tournament T on n > 68 vertices contains

every oriented cycle of length n, except possibly the directed hamiltonian cycle.

O

Not surprisingly, if a digraph is almost complete, then it will contain all

orientations of a hamiltonian undirected path. The following result is due to
Heydemann, Sotteau and Thomassen:

Theorem 6.9.11 [427] Let D be a digraph on n vertices and at least (n —
1)(n — 2) +3 arcs and let C be an arbitrary orientation of a cycle of length
n. Then D contains a copy of C, except for the case when D is not strong
and C' ts a directed hamiltonian cycle. oO

6.10 Covering All Vertices of a Digraph by Few Cycles

Now we discuss another analogue of the hamiltonian cycle problem, namely
that of covering the vertices of a digraph with few cycles. In some cases
we insist that these are disjoint and that there is a prescribed number of
cycles, whereas in other cases we allow the cycles to intersect, but only ina
prescribed pattern.

6.10.1 Cycle Factors with a Fixed Number of Cycles

Two cycles X,Y in a digraph D = (V, A) are complementary if V(X) N
V(Y) =@ and V(X) UV(Y) = V, that is, these cycles form a 2-cycle factor
in D.

Since every strong tournament has a hamiltonian cycle, a tournament T
contains a 2-cycle factor if and only if T can be partitioned into two strong
subtournaments. Thomassen posed the following problem which generalizes
the problem of the existence of a 2-cycle factor in a tournament.

6.10 Covering All Vertices of a Digraph by Few Cycles 327

Problem 6.10.1 (Thomassen) /629] Is it true that for all natural num-
bers r,s, there exists a natural number f(r,s) with the following property:
except for finitely many exceptions for each r,s, every f(r, s)-strong tourna-
ment T can be partitioned into an r-strong tournament T;, and an s-strong
tournament T> ?

Considering the case r = s = 1, Reid proved the following (see also
Exercise 6.52):

Theorem 6.10.2 /629] Every 2-strong tournament on at least 8 vertices has
a 2-cycle factor consisting of a 3-cycle and an (n — 3)-cycle.

This was extended by Song to all pairs of cycle lengths k,n — k, where

k = 3,4,...,n — 3 [678]. It follows from these results that f(1,1) = 2. It
is worth noticing that the problem of determining the analogue f'(1,1) of
f(1, 1) for semicomplete digraphs is open. Since every 3-strong semicomplete

digraph contains a spanning 2-strong tournament (Proposition 7.14.5), we
obtain that 2 < f’(1,1) < 3 holds for semicomplete digraphs.

There are a number of results on 2-cycle factors in bipartite tournaments.
One of these is the following due to Song:

Theorem 6.10.3 /677] Let R be a bipartite tournament with 2k +1 vertices
in each partite set (k > 4). If every vertex of R has out-degree and in-degree

at least k, then for any verter x in R, R contains a 2-cycle factor CUC' such

that C includes x and the length of C is at most 6 unless R is isomorphic to

Calhpri ten, Khe, Kel O

For further results on 2-cycle factors in semicomplete bipartite digraphs

see e.g. the paper [757] by Zhang and Wang and [756] by Zhang, Manoussakis
and Song.

It seems that the problem deciding the existence of a 2-cycle factor in

semicomplete p-partite digraphs with p > 3 is quite difficult and we do not

know any non-trivial partial results about that. The following conjecture has

been proposed by Volkmann. For a semicomplete multipartite digraph D with

p partite sets V;,V2,...,Vp, the independence number a(D) is equal to the
size of a largest set among the V;,’s.

Conjecture 6.10.4 /728] Let D be a p-partite tournament with partite sets

Vi, V2,...,Vp and let a=a(D). If D is (a+ 1)-strong, then D has a 2-cycle

factor, unless D is a member of a finite family of multipartite tournaments.

In fact Conjecture 6.10.4 is just one instance of the following meta-

conjecture due to Volkmann (private communication, 1997). Several results

which hold for k-strong tournaments should also hold for every semicomplete

multipartite digraph D provided that D is (a(D) + k — 1)-strong. One in-

stance where this is known to be true is for the hamiltonian cycle problem

(see Theorem 5.7.25).

328 6. Hamiltonian Refinements

An obvious necessary condition for a digraph D to contain a 2-cycle factor

is that the girth of D is at most n/2. The second power D = C3,,, of an

odd cycle has girth k + 1 and D is a 2-strong locally semicomplete digraph.

This shows that Theorem 6.10.2 cannot be extended to locally semicomplete

digraphs. Confirming a conjecture by Bang-Jensen [47],Guo and Volkmann

proved that powers of odd cycles are the only exceptions when n > 8.

Theorem 6.10.5 /351] Let D be a 2-strong locally semicomplete digraph on

n > 8 vertices. Then D has a 2-cycle factor such that both cycles have length

at least 3 if and only if D is not the second power of an odd cycle. oO

Guo and Volkmann have shown that, although Theorem 6.10.2 cannot be

extended to locally semicomplete digraphs, there is still enough structure to

allow 2-cycle factors with many different lengths. We refer the reader to [352]
for details.

The next conjecture by Bang-Jensen, Guo and Yeo goes further than

Problem 6.10.1. It may be seen as a first step towards studying partitions

into subtournaments containing prescribed vertices in highly connected tour-
naments.

Conjecture 6.10.6 /58] For all natural numbers r,s there exists a natural

number g(r, s) such that the following is true with no more than finitely many

exceptions for each choice of r,s: for every tournament T which is g(r, s)-

strong and every choice of distinct vertices x,y € V(T), there exist vertex-

disjoint subtournaments T,,Ty of T such that V(T) = V(Tz) UV (Ty), Tz is
r-strong, Ty is s-strong and x € V(Tz), y € V(Ty).

Note that it is easy to decide in polynomial time whether a tournament

T contains two disjoint cycles C; and Cy such that r € V(C,) and y €

V(C,). This follows from the fact that, by Moon’s theorem, every strongly

connected tournament is vertex-pancyclic. Hence C, and Cy exist if and
only if T’ contains disjoint 3-cycles, one containing x and the other y. It

follows from this that every 4-strong tournament contains cycles Cz, Cy as
above. Bang-Jensen, Guo and Yeo proved that this already holds for 3-strong
tournaments and an infinite family of 2-strong counter examples was given
[58]. Hence g(1, 1) = 3.

The existence of a 2-cycle factor such that each cycle contains a prescribed
vertex and has a prescribed length in a bipartite graph has been studied in
the papers [516, 733] by Little, Teo and Wang.

We now turn to cycle factors with more than two cycles. Bollobds (see
[678]) posed the following problem:

Problem 6.10.7 Let k be a positive integer. What is the least integer g(k)
so that all but a finite number of g(k)-strong tournaments contain a k-cycle
factor?

6.10 Covering All Vertices of a Digraph by Few Cycles 329

Chen, Gould and Li [147] answered this problem by proving that g(k) <
3k? +k. In relation to Problem 6.10.7 Song made the following much stronger
conjecture:

Conjecture 6.10.8 /678] For any k integers ny, no,...,.ng with ny > 3 for

Qe lao a, Roan SDE ni =n, all but a finite number of k-strong tourna-

ments on n vertices contain a k-cycle factor such that the k cycles have the

lengths n1,n2,...,Nz, respectively.

If, instead of tournaments, we consider digraphs which are almost com-

plete, then, by the following result, due to Amar and Raspaud, we may almost

completely specify the lengths of the cycles in a cycle factor.

Theorem 6.10.9 /24] Let D be a strong digraph on n vertices and at least
(n —1)(n— 2) +83 arcs. For every partitionn =n, +n2+... +ng such that
nm >3,1=1,2,...,k, D contains a k-cycle factor C; UCU... UC, such

that C; has length n; fori =1,2,...,k except in two cases:

MOA 1s — o.ond a 2) 3,. oF.

PO wi — > Ne = Sand a(.D)= 4, 0

6.10.2 The Effect of a(D) on Spanning Configurations of Paths
and Cycles

Since semicomplete digraphs have a lot of structure, it is natural to believe

that some of this structure is present in digraphs with small independence

number, in particular for digraphs of independence number two.

Two cycles C,C’ are consistent if they are either disjoint or their in-

tersection is a subpath in both cycles. Chen and Manalastras proved the

following:

Theorem 6.10.10 /146] If D is strong and a(D) < 2, then D is either

hamiltonian or it has a pair of consistent cycles which is spanning. Oo

Bondy [125] gave a short proof of this theorem based on Lemma 5.2.2.
In Chapter 7 we introduce the concept of an ear decomposition of a strong

digraph. Using this concept we see that, if D has a pair of consistent cycles

C,C' which are spanning and not disjoint, then these along with all remaining
arcs of D (not on C,C’) form an ear decomposition with precisely two non-

trivial ears. Clearly the converse also holds.

Theorem 6.10.10 immediately implies the following result, which implies

Theorem 5.2.4 in the case a(D) = 2:

Corollary 6.10.11 /146] If D is strong and a(D) < 2, then D is traceable.
O

330 6. Hamiltonian Refinements

It is tempting to ask whether one can generalize Corollary 6.10.11 to the

statement that every k-strong digraph D with a(D) < k +1 is traceable.

However, the example in Figure 6.7 by Bondy [125] shows that such a gener-

alization is not possible. See Conjecture 12.6.2 for a weaker conjecture which

may still be true.

Figure 6.7 A 2-strong digraph D with a(D) = 3 and no hamiltonian path. The
vertical edges correspond to directed 2-cycles.

Note that, if a digraph D = (V, A) has a hamiltonian path, then pc(D —

X) < |X|+1 for every X C V (see also Proposition 1.4.6). In the digraph
in Figure 6.7 we have pc(D — X) = 3 = |X|+ 1 when X consists of the two
left vertices. Hence, the example in Figure 6.7 also shows that the condition

above is not always sufficient to guarantee a hamiltonian path in a digraph.

Gallai posed the following conjecture. For a = 2 the conjecture follows

from Theorem 6.10.10.

Conjecture 6.10.12 /296] Every strong digraph D has a spanning collection

of a(D) not necessarily disjoint cycles.

The cyclomatic number of an (un)directed graph D = (V,4A) is the

parameter |A| — |V| + c(D), where c(D) denotes the number of connected
components of UG(D). A digraph is cyclic if every vertex belongs to a cycle.

The following conjecture, which Bondy [125] attributes to Chen and Man-
alastras [146], generalizes Gallai’s conjecture above and Theorem 5.2.4:

Conjecture 6.10.13 /125, 146] Every strong digraph D contains a cyclic

spanning subdigraph with cyclomatic number at most a(D).

The example below due to Favaron (see {125]) shows that one cannot hope
to find, for every strong digraph D, a strong spanning subdigraph of D with

cyclomatic number at most a(D). Let r > 2 and take r copies T;,T>,...,T>

6.11 Minimum Strong Spanning Subdigraphs Boll

of the strong tournament on four vertices. Let the vertices be labelled so that

the unique hamiltonian cycle in the ith copy is ujxjujyjuj, 1 = 1,2,...,r.

Let D, be the digraph obtained from the disjoint union of T,,T2,...,T> by

adding the arcs ujuj41 and vj;410; for all odd i, respectively, uji,u; and vjvj44

for all even i, 1 <i < r. Then D, is strong, a(D) = r and it can be shown

that D, has no strong spanning subdigraph with cyclomatic number less than

2r—1 (Exercise 6.53). Moreover, every cyclic spanning subdigraph of D with

cyclomatic number r consists of r disjoint 4-cycles.

6.11 Minimum Strong Spanning Subdigraphs

We consider the following problem, which we call the MSSS problem (MSSS

stands for Minimum Spanning Strong Subdigraph): given a strongly con-

nected digraph D, find a strongly connected spanning subdigraph D’ of

D such that D' has as few arcs as possible. This problem, which gener-

alizes the hamiltonian cycle problem and hence is NP-hard, is of prac-

tical interest and has been studied extensively in the literature, see e.g.

[5, 317, 434, 478, 479, 673]. We will address this problem again in Section

7.16, where we also discuss the related problem for higher connectivities.

Since the MSSS problem is \P-hard, it is natural to study the problem

under certain extra assumptions. In order to find classes of digraphs for which

we can solve the MSSS problem in polynomial time, we have to consider

classes of digraphs for which we can solve the hamiltonian cycle problem

in polynomial time. This follows from the fact that the hamiltonian cycle

problem can be solved in polynomial time if we can solve the MSSS problem

in polynomial time.

6.11.1 A Lower Bound for General Digraphs

Recall that pec(D), the path-cycle covering number of D, is the smallest

(positive) number of paths in a k-path-cycle factor of D. Define, for every

digraph D, the number pcc*(D) by

*(D) = 0 if D has a cycle factor

pec D) = pec(D) otherwise.

Proposition 6.11.1 For every strongly connected digraph D = (V,A) of

order n, every spanning strong subdigraph of D has at least n+pcc*(D) ares.

Proof: Let D be strong and let D’ be a spanning strong subdigraph with

n+k arcs. We may assume (by deleting some arcs if necessary) that no proper

subdigraph of D’ is spanning and strong. It is easy to prove, by induction on

-.k, that D’ can be decomposed into a cycle Po = C and k arc-disjoint paths

332 6. Hamiltonian Refinements

or cycles P;, Po,...,P, with the following properties (here D; denotes the

digraph with vertices U;_) V(P;) and arcs? U5 A(Pj)):

1. For each 1 = 1,...k, if P; is a cycle, then it has precisely one vertex

in common with V(D;_1). Otherwise the end-vertices of P; are distinct

vertices of V(D;_;) and no other vertex of P; belongs to V(Dj;-_1).

2p Uiag ALP) = Al D):

By the minimality assumption on D’, each P; has length at least two.

It follows that D has a k-path-cycle factor consisting of C and k paths P/,

i = 1,2,...,k, where P! is the path one obtains from P; by removing the

vertices it has in common with V(D,_1) (defined above). It follows that
pees (Dik: O

We prove in the next subsection that the inequality of Proposition 6.11.5

is in fact an equality for extended semicompletedigraphs. It was shown in [90]

that this is also the case for semicomplete bipartite digraphs. The inequality

of Proposition 6.11.5 is not always an equality for general semicomplete mul-

tipartite digraphs, as such digraphs can have a cycle factor and still not be

hamiltonian (see Section 5.7).

Figure 6.8 A quasi-transitive digraph D with pcc*(D) = 0 and no hamiltonian
cycle.

Even for quasi-transitive digraphs strict inequality may hold in Proposi-
tion 6.11.5. The quasi-transitive digraph D in Figure 6.8 has a cycle factor
consisting of two 3-cycles and hence pcc*(D) = 0, but D is not hamiltonian
and it is easy to see that the minimum spanning strong subdigraph has 7
arcs.

6.11.2 The MSSS Problem for Extended Semicomplete Digraphs

The next result by Bang-Jensen and Yeo shows that the inequality in Propo-
sition 6.11.1 is actually an equality for digraphs that are extensions of a

° This coincides with the definition of an ear decomposition in Section 7.2.

6.11 Minimum Strong Spanning Subdigraphs 333

semicomplete digraph. The main tool in the proof below is the character-
ization of the longest cycle in an extended semicomplete digraph given in
Theorem 5.7.8.

Theorem 6.11.2 /90] Let D = (V, A) be an extended semicomplete digraph
and let D = (V, A) be a minimum strong spanning subdigraph of D. Then
|A| =n + pec*(D).

Proof: (Sketch) Let D = S[H), H2,..., Hs], s = |V(S)|, be a strong extended
semicomplete digraph, where the decomposition is such that S is semicom-
plete. For each i = 1,2,...,s we let m; denote the maximum number of
vertices from H; that can be covered by any cycle subdigraph of D. Let C
be a longest cycle of D. By Theorem 5.7.8, C contains precisely m,; vertices
from H; for each i = 1,2,...,s. If D is hamiltonian, then pecs (2D) =" Osand
there is nothing to prove. Hence we may assume below that pcc*(D) > 0. By
Corollary 5.7.19, the extended semicomplete digraph D' = D — C is acyclic.

Let k = a(D'). By Lemma 5.3.3, D' has a path-factor P, UP, U... UP,

where P, is a longest path in D', P2 is a longest path in D’ — P, and so on.

Start by letting H:=(V(C), A(C)). Since P, is a longest path in D’, its
initial (terminal) vertex x (y) has no arc entering (going out) in D’. Thus,
since D is strong there exist arcs uz,yv such that u,v are vertices of H.

Change H by adding the vertices of P and all arcs of P along with the arcs

uz, yv to H. Now consider the path P) in D’ — P,. Using that P2 is a longest

path in D’ — P;, we again conclude that there must exist an arc from V(H)
to the initial vertex of P; and an arc from the terminal vertex of P, to H.

Now it is easy to see how to continue and end up with a subdigraph H which

is strong, spanning and has n+ k arcs.

It remains to prove that this is optimal. By the remark above pcc*(D) > 0,
so by Proposition 6.11.1 it suffices to prove that k = pcc(D). Let p = pcec(D)

and let R,, R2,..., Rp, Q be an arbitrary p-path-cycle factor of D where Q

consists of one or more cycles and R; is a path for 1 = 1,2,...,p. If some

R; contains two vertices from the same H;, then we can replace it with a

new path Rj and a cycle C; (Exercise 6.54). Doing this for all the paths

R,, Ro,..., Rp until none of these contains two independent vertices we end

up with a collection of paths R,, Ro,...,R,, where R; is the result of remov-

ing zero or more cycles from DIR, Wels Nou or the cycle subdigraph Q'

we obtain by taking Q and all the cycles we extracted above. By the defini-
tion of m;, Q' contains at most m; vertices from H;. Thus a(D—V(Q')) >k

and since no R; contains two independent vertices, it follows that p > k must

hold. *
Corollary 6.11.3 /90] The minimum spanning strong subdigraph of an ez-

abhe 5
tended semicomplete digraph can be found in time O(n2).

Proof: Exercise 6.55. 0

1° Observe that by the definition of p, no R; is empty.

334 6. Hamiltonian Refinements

6.11.3 The MSSS Problem for Quasi-Transitive Digraphs

We first give a lower bound for the number of arcs in any minimum span-

ning strong subdigraph of an arbitrary given strong quasi-transitive digraph.

This bound can be calculated in polynomial time using Gutin’s algorithm for

finding a hamiltonian cycle in a quasi-transitive digraph (Theorem 5.9.4) as

well as the algorithm of Theorem 5.9.5. We prove that this lower bound is

also attainable for quasi-transitive digraphs. The proof of this uses Theorem

Dt cor

Definition 6.11.4 Let D be a strong quasi-transitive digraph and define

pe*(D) by pc*(D) =0 if D is hamiltonian and pc*(D) = pc(D) otherwise.

Lemma 6.11.5 For every strongly connected quasi-transitive digraph D, ev-

ery spanning strong subdigraph of D has at least n + pc*(D) arcs.

Proof: Exercise 6.57. oO

In fact Lemma 6.11.5 holds for arbitrary digraphs. This is not in contradic-

tion with Theorem 6.11.2 since pcc*(D) = pc*(D) for every strong extended
semicomplete multipartite digraph by Theorems 5.7.2 and 5.7.5. Below we

characterize the optimal solution to the MSSS problem for quasi-transitive

digraphs and show that the problem is polynomially solvable.

Theorem 6.11.6 /82) Every minimum spanning strong subdigraph of a

quasi-transitive digraph has precisely n + pc*(D) arcs. Furthermore, we can

find a minimum spanning strong subdigraph in time O(n‘).

Proof: Let D = S[W1,W2,...,Ws], s = |S| > 2, be the decomposition of

a strong quasi-transitive digraph D according to Theorem 4.8.5. Using the

algorithm of Theorem 5.9.4 we can check whether D is hamiltonian and find

a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian

cycle is the optimal spanning strong subdigraph. Suppose below that D is

not hamiltonian. Then in particular we have pc*(D) = pc(D) by Definition
6.11.4.

Let Do = S[Hi, H2,...,Hs] be the extended semicomplete digraph one

obtains by deleting all arcs inside each W; (that is, |V(H;)| = |V(W;)| and
H; is obtained from W; by deleting all arcs).

For each i = 1,2,...,8, let m; denote the maximum number of vertices

which can be covered in H; by any cycle subdigraph of Do. According to

Theorem 5.7.8 every longest cycle C in Do contains exactly m; vertices from

H;,i=1,2,...,s. By Theorem 5.7.8 we can find C in time O(n). Let

k = max{pc(W,) — m;:t = 1,2,-, 3,8}. (6.4)

Note that by Theorem 5.9.3, k > 1 since D has no hamiltonian cycle.

Let m?} = max{pc(W;i),m;}, i = 1,2,...,s and define the extended semi-

complete subdigraph D* of D by D* = S[H}, H},...,H3], where H} is an

6.11 Minimum Strong Spanning Subdigraphs 335

independent set containing m} vertices for i = 1,2...,s. Since vertices in-
side an independent set of D have the same in- and out-neighbours, we may
think of C’ as a longest cycle in D* (i.e. C contains precisely m; vertices from
Ws 4—1,2,...,8). By Corollary 5.7.19, D* is acyclic and by Lemma5.3.3,
i Cy can be'covered by.k. paths P*, Py,.).. , Pf such that P* is a longest
Porn (VPs) UV iP* ,)) for’ =1;2,...,k.

It follows from the proof of Theorem 6.11.2 that we can glue P¥ onto C
and then P; onto the resulting graph etc., until we obtain a spanning strong
subdigraph D** of D* with |V*| +k arcs.

Now we obtain a spanning strong subdigraph of the quasi-transitive di-
graph D as follows. Since m* > pc(W;) for i = 1,2,...,s, each W; contains
a collection of t; = m? paths Pj, Pj2,..., Piz; such that these paths cover all

vertices of W;. Such a collection of paths can easily be constructed from a

given collection of pc(W;) paths which cover V(W;). Let xi, 242,..., Zit, be
the vertex set of Hj‘, i = 1,2,...,s. Replace x;; in D** by the path Deter

each 7 = 1,2,...,¢;,7 =1,2,...,5. We obtain a spanning strong subdigraph

D' of D. The number of arcs in D’ is

A(D') = Y>(IWil = mf) + (V1 + 8)
= (pea oh) or AI lei)
=n+k (6.5)

It remains to argue that D’ is the smallest possible. By Lemma 6.11.5, it

suffices to prove that pc*(D) > k.

Since this part is similar to the proof of Theorem 6.11.2 we only sketch

how to prove it. Let P,, Po,...,P, be an optimal path cover of D. Path-

contract all subpaths that lie inside some W; and let P;,...,P, denote the

resulting paths. Delete all arcs that still remain inside each W; after this
contraction. That way we obtain a path cover of an extended semicomplete

digraph which we may consider as a subdigraph of Do.

As in the proof of Theorem 6.11.2 we can continue replacing paths in

the current collection by a cycle or a path until every path in the current

collection contains at most one vertex from H;. Let P;', P;’...,P!’ be the
final collection after removing all such cycles. Using an argument analogous

to the last part of the proof of Theorem 6.11.2, we now conclude that r >k

implying that the subdigraph D’ is optimal. Oo

6.11.4 The MSSS Problem for Decomposable Digraphs

In fact the proof of Theorem 6.11.6 is valid for a much larger class of digraphs

as we show below. For every natural number f¢, let WY, be the class of all

digraphs for which a minimum path-factor can be found in polynomial time

336 6. Hamiltonian Refinements

O(n‘). For every natural number t, let (2; be the class of all digraphs of the

form D = S[M,, H2,...,Hs], s = |S| > 2, where S is a strong semicomplete

digraph and H; € %, i =1,2,...,s. By Theorem 5.9.5 the class (24 contains

all quasi-transitive digraphs.

The next result is an extension of Theorem 5.9.3 to a much larger class

of digraphs.

Theorem 6.11.7 Let t be a natural number and let D be a strong digraph

from the class 2; with decomposition D = S[W,,W2,...,Ws], where s = |S|,

W;, €%,71=1,2,...,8s and S is a strong semicomplete digraph. Let Do =

S|H,, H2,...,Hs]| be the extended semicomplete digraph obtained by deleting

all arcs inside each W, (that is, |V(H;)| = |V(W;)|). Then D is hamiltonian
if and only if Do has a cycle subdigraph which covers at least pc(W;) vertices

Ofel yet =i 2A es :

Proof: Exercise 6.58. : oO

Gutin’s approach to solving the hamiltonian cycle problem for quasi-

transitive digraphs can be extended to a proof of the following result.

Theorem 6.11.8 For every natural number t, the:hamiltonian cycle problem

is solvable in time O(n'*!) for digraphs that belong to 2¢.

Proof: Exercise 6.59. O

Let D = S[M, H2,..., Hs] be a digraph in (;. To find a minimum strong
spanning subdigraph in D, let D' be the extended semicomplete digraph
obtained from D by deleting all arcs within each H; for i = 1,2,...,s. By
Theorem 5.7.7, we can find a longest cycle C in D’. Let m; = |V(Hi)NV(C)|
forg = le ee sand let

k= max{pe(H;) —m;: 4 =1,2,...,s}.

Using a proof analogous to that of Theorem 6.11.6, we can show that the
minimum strong spanning subdigraph of D contains n + k arcs when k > 1
and is a hamiltonian cycle when k < 0. Combining this with Theorems 6.11.7
and 6.11.8 we obtain the following result:

Theorem 6.11.9 For every natural number t, the MSSS problem is solvable
in time O(n't") for all digraphs in Q. Oo

We close this section with the following conjecture by Bang-Jensen and
Yeo:

Conjecture 6.11.10 /90] There exists a polynomial algorithm for the MSSS
problem in the case of semicomplete multipartite digraphs.

6.12 Application: Domination Number of TSP Heuristics 337

6.12 Application: Domination Number of TSP
Heuristics

The (asymmetric) travelling salesman problem (TSP) is formulated in Section
1.9. Here, the word asymmetric simply refers to the fact that in a 2-cycle the

costs of the two arcs may be different.

A heuristic for an optimization problem R is an algorithm which given

an instance R of R finds some solution s to R for which there is generally

no guarantee on the quality of s compared to an optimal solution s* to R.

So for the TSP problem a heuristic is any algorithm which returns some

permutation of the vertices of the input complete graph K n- For more on
heuristics see Section 12.8.

An equivalent of the following notion of the domination number of an

algorithm was introduced by Glover and Punnen [320]. The domination

number, domn(A,7), of a heuristic A for the TSP is the maximum integer

d = d(n) such that, for every instance Z of the TSP on n cities, A produces

a tour 7’ which is not worse than at least d tours in Z including T itself.

Clearly, every exact TSP algorithm has domination number (n — 1)!. Thus,
the domination number of an algorithm close to (n — 1)! may be taken as an
indication that the algorithm is of high quality.

Glover and Punnen [320] asked whether there exists an algorithm A
whose running time is polynomial in n and which has domination number

domn(A,n) > n!/p for some p being a constant or even polynomial in n.

They conjectured that, unless P = NP, the answer to this question is nega-

tive. In [381], Gutin and Yeo proved that the answer to the Glover-Punnen
question is, in fact, positive. They showed the existence of such an algorithm

for p = n—1. The proof of the main result in [381] (see Theorem 6.12.1) uses
Tillson’s Theorem 6.8.3.

Using Theorem 6.12.1, Punnen and Kabadi [615] proved that several well-
known and widely used TSP construction heuristics, such as various vertex

insertion algorithms and Karp’s cycle patching algorithm, have domination

number at least (n — 2)!.
In this section, we prove Theorem 6.12.1 and the Punnen-Kabadi result

on vertex insertion algorithms, Theorem 6.12.2.

Let (K n Cc) denote a complete digraph on n vertices whose arcs are

weighted according to a weight function c. The total cost of all Hamilton

cycles in (K n,C) is denoted by o(n,c). Denote the sum of the costs of all

arcs in (KnsC) by (Kn). The average cost of a Hamilton cycle in

(Kn, is denoted by r(n,c). As every arc of Fe is contained in (n — 2)!

Hamilton cycles, +(n,c) = o(n,c)/(n — 1)! = (n — 2)!c(Kn)/(n — 1)!, hence,
TKO 0) = .01 K n)/(n — 1). This formula can also be shown using linearity of

_ expectation (see [14]). Recall that by a tour we mean a Hamilton cycle in

338 6. Hamiltonian Refinements

ne An automorphism of a digraph D is a bijection @ : V(D)>V(D) such

that cy € A(D) if and only if ¢(z)d(y) € A(D).

Theorem 6.12.1 /381] Let H be a tour in iG, such that c(H) < r(n,c). If
>

n £ 6, then there are at least (n—2)! tours in Kn whose cost is at least c(H).

Proof: The result is trivial for n = 2,3. If n = 4, the result follows from the
<7

simple fact that the most expensive tour T in Kn has cost c(T’) > c(H).

Assume that n > 5 and n # 6. Let D, = {Ci,...,Cn-1} be a decom-

position of the arcs of K n into tours (such a decomposition exists by The-
o

orem 6.8.3). Given a tour T in Kn, clearly there is an automorphism of

im n that maps C, into T. Therefore, if we consider D; together with the
Dara

decompositions (Dj, ..., D(n—1):) of Kn obtained from Dj using all automor-

phisms of ves which map the vertex 1 into itself, we will have every tour
o>

of K, in one of the D,’s. Moreover, every tour is in exactly n — 1 of the

decompositions D,, D2,...,D(n—1): (by mapping a tour C; into a tour C;

(1,7 € {1,2,...,n — 1}) we fix the automorphism).

Choose the most expensive tour in each of D; and form a set € from
all distinct tours obtained in this manner. Clearly, |E| > (n — 2)!. As

Ate

See c(C;) = c(Kn), every tour T of € has cost c(T) > 7(n,c). There-

fore, c(H) < c(T) for every T € E. oO

Vertex insertion algorithms for the TSP work as follows. First, we find
<a

some ordering 1}, ...,Un of vertices of (Kn,c). Then, we perform n — 1 steps.

On the first step we form the cycle vj v2v,;. On step k, 2< k <n-—1, given

the k-cycle U_(1)Un(2)-+-Un(k)Um(1) from the previous step, we find jo, which

minimizes the expression

Cun) Upel) CORP Uae) Cag) Urges

1 <j <k, and insert vz41 between vz (j;,) and vz(j.41) forming a (k+1)-cycle.

The fastest such algorithm is the random insertion algorithm, in which the

initial vertex ordering is random (see the paper [319] by Glover, Gutin, Yeo

and Zverovich for computational experiments with this and other heuristics

for the (asymmetric) TSP).
Now we can prove the Punnen-Kabadi result:

Theorem 6.12.2 /615] Let H, be a tour constructed by a vertex insertion
byad

algorithm A for the TSP on (Kn,c). Then c(Hn) < T(n,c).

Proof: We prove this result by induction on n. The theorem is trivially true

for n = 2. Let Hn—1 = Un(1)Un(2)---Un(n—1)Un(1) be the cycle constructed in

Step n — 2 of the algorithm and assume that in Step n — 1, it was decided to

insert Up between v,z(j,) and Vz(j.41) in order to obtain H,. Then, we have

6.13 Exercises 339

CHn) = c(Hn—1) + C(Yn(jo)Un) + C(Un%n(jo41)) — C(Un(jo)Ym(jo-+1))
m—1

gE iit Liat [C(Yn(iyn) + C(UnUm(i+1)) = C(Um(HPm(i41))] S
n—-1

rie c(V — Un, Un) + e(vn, V — un) — e(Hn-1)

n—1

a (n aad 2)T(n ma 1,c) is c(V a Onda as ChUna me Up)

+7 n—-1l
com

z CKn =n) + (VV — Un, Un) + c(tn, V — Un)

n—-1l
“ints

_ c(Kn)

1

1g ,.C),

where 7(n — 1,c) is the average cost of a tour in Kn —Un. Oo

Theorems 6.12.1 and 6.12.2 imply the following result by Punnen and

Kabadi:

Theorem 6.12.3 /615] For every vertex insertion algorithm A we have

domn(A,n) > (n — 2)!. 0

6.13 Exercises

6.1.

Or2:

6.3.

(—) Prove that a strong semicomplete digraph D has a hamiltonian path
starting at x for every x € V(D).

Prove that, if D is a strong semicomplete digraph with distinct vertices x, y
such that D — x and D — y are strong but D — {z, y} is not strong, then D
has an (z, y)-hamiltonian path and a (y,z)-hamiltonian path.

(—) Prove that, from a complexity point of view, the hamiltonian path prob-
lem, the [z, y]-hamiltonian path problem and the (z,y)-hamiltonian path
problem are all equivalent. That is, each of them can be reduced in polyno-
mial time to each of the two others.

. Derive Corollary 6.2.2 from Theorem 6.2.1.

. Prove Lemma 6.2.3.

). Prove the last claim in the proof of Corollary 6.2.7.

. Derive Theorem 6.2.6 from Theorem 6.2.4.

340

6.8.

6.15.

6.16.

6.22.

6.23.

6.24.

6.25.

6. Hamiltonian Refinements

2-regular 2-strong locally semicomplete digraphs. Prove that for every

n > 5 there exists (up to isomorphism) precisely one 2-strong and 2-regular

locally semicomplete digraph, namely the second power ce of an n-cycle.

. Prove that, if D is the second power of an even cycle, then D contains a unique

hamiltonian cycle. Next, prove that D is not weakly hamiltonian-connected.

. Prove Lemma 6.2.8.

. Prove that if D is the second power Pele of an odd path P = uj u2... U2k+1,

then there is no pair of disjoint (wi, u2e)-, (v2, U2k+1)-paths in D.

. Prove Theorem 6.2.11.

. Suppose D = (V, A) is a non-strong locally semicomplete digraph with strong

decomposition D:, D2, D3, D4 such that D — a is connected for every x € V.

Let ui € V(D;) be specified for each i = 1,2,3,4. Prove that D contains

disjoint (ui, u3)-,(u2, us)-paths P,Q so that V = V(P) UV(Q).

. (+) Prove the following. Let T be a 2-strong semicomplete digraph and z, y
vertices of T’, such that T — x and T — y are both 2-strong, r/y, and neither
x nor y is contained in a 2-cycle. If T — {x,y} is not 2-strong then T has
an (,y)-hamiltonian path.Hint: consider a minimal separator of the form

{u, x,y}.
(+) Prove Proposition 6.3.2.

(—) Hamiltonian cycles containing a prescribed arc in semicomplete
digraphs. Use Theorem 6.3.1 to show that every 3-strong semicomplete di-
graph D = (V,A) has a cycle containing the arc a for any prescribed arc
a€éA.

. (++) Prove Theorem 6.4.5.

. Prove Lemma 6.4.3.

. Longest [x,y]-paths in tournaments. Find a characterization for the
length of a longest [x, y]-path in a tournament. Hint: use Theorem 6.2.1.

. Non-pancyclic digraphs satisfying Meyniel’s condition. Prove that if
m > (n+1)/2, then the digraph Dy, described after Theorem 6.5.2 satisfies
Meyniel’s condition for hamiltonicity but has no m-cycle.

. Pancyclic digraphs satisfying Woodall’s condition for hamiltonicity.
Prove that, if D satisfies the condition in Corollary 5.6.6, then either D is

>

pancyclic, or n is even and D=K2z,2. Hint: use Theorem 6.5.2.

Prove the following result due to Overbeck-Larisch [598]. If a digraph D =
(V, A) satisfies d(x) + d(y) > 2n +1 for every pair of non-adjacent vertices
x,y € V, then D is pancyclic. Hint: use Theorem 6.5.2.

(—) Prove that every regular tournament is strong.

(+) Prove Lemma 6.5.8. Hint: use a similar approach as that taken in the
proof of Lemma 6.5.7.

(+) Vertex-pancyclic quasi-transitive digraphs. Prove part (b) of The-
orem 6.5.9. Hint: use a similar approach as taken in the proof of (a) to reduce

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.13 Exercises 341

the problem to one for extended semicomplete digraphs and then apply The-
orem 6.5.6.

Prove Lemma 6.5.12. Hint: consider a shortest cycle through v (which by the
assumption has length at most k).

[420] Prove the following: let C = vi v2...vzv1 be a non-extendable cycle in a
digraph D = (V, A) on n vertices where 2 < k <n—1and let u€ V—V(C).
Then

(a) for every 1 <i <k, D contains at most one of the arcs uju and uvji41.

(b) |(u, V(C))| + |(V(C), u)| < k,
(c) for every 1 <i<k, |(ui,V —V(C))| + |(V —V(C), vi41)| <n —k, and
(d) if vj—1u, wvi41 € A, then for 1 <h<i-—2ori+1<h<k, D contains

at most one of the arcs vp_v; and vjvp~4i and hence |(vi,V(C) — v;)| +

(V(C) — vi, ui) Sk.

Cycle extendable regular tournaments. Characterize these.

Cycle extendable locally semicomplete digraphs. Characterize cycle
extendable locally semicomplete digraphs.

(+) Weakly cycle extendable digraphs. Call a digraph D weakly cycle
extendable if every cycle C which is not a longest cycle of D is contained
in some larger cycle C’, i.e. V(C) C V(C’). For each of the following classes
characterize weakly cycle extendable digraphs:
e Extended semicomplete digraphs.
e Path-mergeable digraphs.
e In-semicomplete digraphs.

Prove Corollary 6.6.2.

Prove Corollary 6.6.3.

(+) A bipartite digraph D = (V, A) on an even number n of vertices is even
(vertex-)pancyclic if it has cycles of all lengths 4,6, 8,...,n (through every
vertex v € V). Prove the following theorem due to Zhang [755]:

Theorem 6.13.1 A bipartite tournament D 1s even vertexz-pancyclic if and

only if D is hamiltonian and is not isomorphic to CalK2,K2,Ka, Ka).

Extend Theorem 6.13.1 to semicomplete bipartite digraphs (Gutin [367]).

For every p > 1, construct an infinite family S of strong tournaments which
satisfy that 6°(T) > p for each T € S and there is some arc a € A(T) which
belongs to every hamiltonian cycle of T. Extend your construction to work
also for arbitrary high arc-strong connectivity.

Prove Proposition 6.7.2.

(+) Hamiltonian cycles in almost acyclic digraphs. Prove that for
every fixed k there is a polynomial algorithm to decide whether there is a
hamiltonian cycle in a given digraph D, which is obtained from an acyclic
digraph H = (V, A) by adding a set S of k new vertices and some arcs of
the form st where s € S andt € V US. Hint: use the fact that the k-path
problem is polynomial for acyclic digraphs (see Theorem 9.2.14).

342

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

6. Hamiltonian Refinements

Let D be constructed as in Exercise 6.37. Show that, if k is not fixed (that

is, k is part of the input), then the problem above is NP-complete.

Let T be a tournament, let Yi, Y2,..., Ys (s > 1) be disjoint sets of vertices in

T and let x and y be arbitrary distinct vertices in V(T) — (Yi UY2U...UYs).
Prove that, if there exist k disjoint (x, y)-paths in T, then there exist at least
k — >°_, L¥il/2] disjoint (2, y)-paths in T — Uj, A(T(¥i)).

(+) Let X1, X2,...,Xp and D be defined as in Theorem 6.7.8. Prove that D
is strong. Hint: first prove the following two claims and then combine them
into a proof that D is strong:

(a) Ifa € X; andy € X; (1<i#j <1), then there are [|X;|/2]+||X;|/2]+
[|X1|/2] disjoint (x, y)-paths in D;,;.

(b) If z,y € X; (xc # y), then there are |X;| disjoint (z,y)-paths in D;.
Furthermore there is an (z,y)-path in D (Bang-Jensen, Gutin and Yeo

[71]). .

(+) Prove that the digraph D in Theorem 6.7.8 has a cycle factor [71]. Hint:
let D’ be obtained from D by the vertex-splitting technique (Section 3.2).
Form a network from D’ by putting lower bound 1 on arcs of the kind vzvs,
v € V(D) and zero elsewhere. Put capacity 1 on arcs of the kind vv; and oo
on all other arcs. Now apply Theorem 3.8.2 and deduce the result from the
structure one can derive using a presumed bad cut (S,S).

(+) Prove that the digraph D in Theorem 6.7.8 is hamiltonian [71]. Hint:
consider any irreducible factor. Apply Theorem 5.7.21 and conclude that the
cycle factor is a hamiltonian cycle.

Show by an example that s+1 cannot be replaced by s in Proposition 6.7.13.

Show that Theorem 6.8.1 follows from Theorem 1.6.3.

Prove that the arcs of K 6 cannot be decomposed into 5 hamiltonian cycles.

(—) Prove Theorem 6.8.2. Hint: use Exercise 3.70.

(—) Prove that every regular tournament is arc-3-cyclic. Show that this is
not always true for regular semicomplete digraphs.

(—) Verify that none of the three tournaments in Figure 6.5 contain an anti-
directed hamiltonian path.

Prove Theorem 6.8.9.

Orientations of paths in strong tournaments. Prove the following state-
ment. Let T be a strong tournament on n vertices and P an out-path on n—1
vertices. Then
(a) every vertex of T except possibly one is an origin of P and
(b) if €:(P) > 2, then every vertex of out-degree at least 2 is an origin of P.

Orientations of paths in 2-strong tournaments. Let T be a 2-strong
tournament on n vertices and let P be an oriented path on n — 1 vertices.
Prove that every vertex of T is an origin of P.

Show that there is only one 2-strong tournament on 7 vertices which has no
2-cycle factor.

6.53.

6.54.

6.55.

6.56.

6.58.

6.59.

6.13 Exercises 343

Let D, be the digraph which is defined in the end of Subsection 6.10.2.
Show that every strong spanning subdigraph of D, has cyclomatic number
at least 2r — 1. Next show that every cyclic spanning subdigraph of D, with
cyclomatic number r is an r-cycle factor in which all cycles are 4-cycles.

Prove that if a path P in an extended semicomplete digraph D contains two
vertices from an independent set J of D, then there exists a path P’ and a
cycle C’ in D with V(P) = V(P’)UV(C’).

(+) Prove Corollary 6.11.3. Hint: the proof is algorithmic. Identify the sub-
routines needed to do the different steps. See also Exercise 3.59.

Show that the proof of Theorem 6.11.6 can be turned into an O(n*) algo-
rithm for finding a minimum strong spanning subdigraph of a quasi-transitive
digraph.

. (+) Prove Lemma 6.11.5. Hint: consider the way we argued in the proof of
Proposition 6.11.1.

(+) Prove Theorem 6.11.7. Hint: use the same approach as in the proof of
Theorem 5.9.1.

(+) Prove Theorem 6.11.8. Hint: use the same approach as in the proof of
Theorem 5.9.4.

a” a) -

4 i

fol ‘ ? ’ a) a

> " r od ne

’ ~ ‘ te fer ‘
i

| ‘ a! A) oe ria. i

. i] wot

{ ‘ é fs¥ ons ie ua * cd ike .
> ' > + 6 lo fi pe S P ’ ‘ if DIP MGR Steparitry

»
r

a) Y Bye) n° OD aiy |
:

' 6
‘ e

ad =o, fire ill Lied Sys uy Sald aid hd RS dS) Bh
< Aa ry v f be? vy! ib Oy Pf) @aty’ aT

j 7 5 f int Woe bdr wd ie WA
, : ; ‘ er : ui a eel A

. i ar i
un . -t

1 Wore aii ai hoasyee vw vaw edoombiuros Galle Tt Bens titinh rou") dey) hee ;
; : 7 pees ol ib Oph ase u!

| 4)

Ib Way aiid aioe tes . P| ‘ets ays ah Veto Sai sen Fey kaa ¢
Portas reriey | ity R Rept rere pad
: " ~ @ t(hrowheares te op om

% 1 Wor1g-sthd aes thins He. ajo mals Sect led Natancnoied eri

7 . ; Sa > a T s aa) > +. : Le POG De piadr:
: oy

x _ a

é. i>) toa bar Geta «? mm Thee 62 A tert lon be
Wiens dap eenieatiafuzink Anoly? tz ¥ PLi wad tog ~
vies, ae a4 ite ‘yam, +

hy

ima ye. Bese

[OMe; : Phere ett (ngs SM. demas te —

ce ee Pym Thien nu? Pang we oan BT

7. Global Connectivity

The concept of connectivity is one of the most fundamental concepts in (di-
rected) graph theory. There are numerous practical problems which can be

formulated as connectivity problems for digraphs and hence a significant part

of this theory is also important from a practical point of view. Results on con-

nectivity are often quite difficult and a deep insight may be required before

one can obtain results in the area. The purpose of this chapter is to con-

vey some of that insight by illustrating several important topics as well as

techniques that have been successful in solving global connectivity problems.

Several of these problems, such as the connectivity augmentation problems in

Sections 7.6 and 7.7, are of significant practical interest. Because of the very

large number of important results on connectivity, we will devote this chapter

as well as Chapters 8 and 9 to this area. This chapter will mainly deal with

global connectivity aspects. That is, the directed multigraph in question is

k-(arc)-strong for some k > 0, or we want to make it k-(arc)-strong by adding
new arcs.

We will often consider directed multigraphs rather than directed graphs,

since several results on arc-strong connectivity hold for this larger class and

also it becomes easier to prove many results. However, when we consider

vertex-strong connectivity, multiple arcs play no role and then we may as-

sume that. we are considering digraphs. Note that, unless we explicitly say

otherwise, we will assume that we are working with a directed graph (i.e

there are no multiple arcs).
After introducing some new terminology and an efficient way of repre-

senting a directed multigraph as a network we proceed to ear-decompositions

of strong directed multigraphs. We show how to use this useful concept to

obtain short proofs of several basic connectivity results. Then we state and

prove Menger’s theorem which is one of the most fundamental results in

graph theory. Based on Menger’s theorem, we describe various algorithms to

determine the arc-strong and vertex-strong connectivity of a directed multi-

graph. In Section 7.5 we introduce the operation of splitting off a pair of

arcs incident with a vertex. We prove Mader’s splitting theorem which allows

one to give inductive proofs for several important results on directed multi-
graphs. Using Mader’s theorem we describe a solution due to Frank for the

-problem of finding a minimum set of new arcs to add to a directed multigraph

346 7. Global Connectivity

such that the result is a k-arc-strong multigraph. In Section 7.7 we describe

a solution by Frank and Jordan of the analogous problem for vertex-strong

connectivity.

Another way of increasing the arc-strong or vertex-strong connectivity of

a digraph is by reversing the orientation of certain arcs. In Section 7.9 we

discuss this approach and describe an interesting result for semicomplete di-

graphs by Bang-Jensen and Jordan. In Section 7.10 we study the structure of

directed multigraphs which are k-(arc)-strong but removing any arc destroys

that property. We prove deep results by Mader on the structure of such di-

rected multigraphs. Section 7.11 deals with digraphs which are k-strong but

no vertex can be deleted without decreasing the vertex-strong connectivity.

In Section 7.12 we briefly discuss directed multigraphs for which the degree

of arc-strong connectivity is as large as possible, that is, equal to the mini-

mum degree. In Section 7.13 we show that decomposable digraphs have an

interesting connectivity structure.

In Section 7.14 we study an interesting problem due to Jackson and

Thomassen concerning the existence of highly connected orientations of di-

graphs with high connectivity. We show that such orientations exist in the

case of locally semicomplete digraphs and quasi-transitive digraphs. In Sec-

tion 7.15 we give a proof due to Lovasz of the Lucchesi- Younger theorem con-

cerning arc-disjoint dicuts in directed multigraphs. Finally, in Section 7.16

we consider the problem of finding a small spanning subdigraph of a directed

multigraph D with the same degree of arc-strong, respectively vertex strong,
connectivity as D.

7.1 Additional Notation and Preliminaries

Let D = (V,A) be a directed multigraph and let X,Y C V be subsets

of V. We denote by dt(X,Y) the number of arcs with tail in X — Y and

head in Y — X, ie dt(X,Y) = |(X — Y,Y — X)p|. Furthermore we let
d(X,Y) = d+(X,Y)+dt(Y, X). Hence we have d+(X) = d+(X,V — X) and
d~(X) =dt(V — X,X). An arc zy leaves a set X if € X andyEeV—X.
The sets X,Y are intersecting if each of the sets X —Y,XNY,Y — X is
non-empty. If also V— (X UY) #9, then X and Y are crossing.

Let F be a family of subsets of a set S. We call a set 4 € F a member of
F. The'family ¥ is an intersecting family (a crossing family) if A,B € F
implies AUB, ANB € F whenever A, B are intersecting (crossing) members
of F. A family F of subsets of a set S is laminar if it contains no two
intersecting members. That is, if A,B € F and ANB #0 then either A C B
or B C A holds. A family of sets is cross-free if it contains no two crossing
members.

For an arbitrary directed multigraph D = (V, A) and vertices x,y € V we
denote by A(z,y) («(z,y)) the maximum number of arc-disjoint (internally
disjoint) (x, y)-paths in D. The numbers \(z, y), «(x,y) are called the local

7.1 Additional Notation and Preliminaries 347

arc-strong connectivity, respectively, the local vertex-strong connec-
tivity from x to y. Furthermore we let

X'(D) = min X(zx, y)
z,yeEV

OB) = : : :

« (D) aa oe) (7.1)

Analogously to the way we defined a cut with respect to an (s,t)-flow
in Chapter 3 we define an (s,t)-cut to be a set of arcs of the form (U,U),
where U = V —U and s € U,t € U. Recall that an (s,t)-separator is a
subset X C V(D) — {s,t} with the property that D — X has no (s,t)-path.
We also say that X separates s from t. Thus a separator of D is a set of

vertices S such that S is an (s,t)-separator for some pair s,t € V(D) (recall
the definition of a separator from Subsection 1.5). A minimum separator
of D is a minimum cardinality separator X of D.

The following simple observation plays a central role in many proofs of

connectivity results.

Proposition 7.1.1 Let D = (V,A) be a directed multigraph and let X,Y be

subsets of V. Then the following holds:

GT OX) a tY) ds (CUY) Pd? (XA Yt a XGY)

da eda Wa dal XU) dat iY yd ala) (7.2)

Furthermore, if d~(X NY) =dt(X NY), then we also have

d*(X)+d*(Y) =d*(X -Y)+dt(Y —X)+e

Gy ayy ad (Kk SY) Pan(eaix) He) (7.3)

wheree=d(X NY,V —(XUY)).

Proof: Each of these equalities can easily be proved by considering the con-

tribution of the different kinds of arcs that are counted on at least one side

of the equality. For example Figure 7.1 shows the possible edges contributing

to at least one side of the first equality. 0

A set function f on a groundset S is submodular if f(X)+ f(Y) >
f(X UY) + f(X NY) for all X,Y C S. The next corollary which follows
directly from Proposition 7.1.1 is very useful, as we shall see many times in

this chapter.

Corollary 7.1.2 For an arbitrary directed multigraph D, dvds are sub-

modular functions on V(D). O

Recall that for a proper subset X of V(D) we denote by N+(X) the set of
_out-neighbours of X. The next result shows that the functions |N~|,|N*|
are also submodular.

348 7. Global Connectivity

Figure 7.1 The various types of arcs contributing to the out-degrees of the sets

2G EY awaeh XC We.

Proposition 7.1.3 Let D = (V, A) be a digraph and let X,Y be subsets of

V. Then the following holds:

IN*(X)[+INF(Y)| > INT (X NY) + |NT(XUY)|
IN~(X)| + IN (Y)| 2 IN (XY) +|N-(XUY)].

Proof: These inequalities can easily be checked by considering the contribu-

tions of the different kind of neighbours of the sets X,Y, X NY and X UY

(Exercise 7.1). Oo

7.1.1 The Network Representation of a Directed Multigraph

In many proofs and algorithms concerning directed multigraphs, it is con-

venient to think of a directed multigraph as a (flow) network. Here we will
formalize this and prove an elementary result which will be applied in later

sections.

Definition 7.1.4 Let D = (V,A) be a directed multigraph. The network
representation of D, denoted N(D), is the following network: N(D) =

(V,A',£ = 0,u) where A’ contains the arc ij precisely when D contains at

least one arc from i to j. For every arc ij € A’ ui; is equal to the number of

arcs from i to j in D. See Figure 7.2.

The next lemma shows a useful connection between arc-disjoint paths in

D and flows in N(D).

Lemma 7.1.5 Let D = (V, A) be a directed multigraph and let s,t be distinct

vertices of V. Then X(s,t) equals the value of a maximum (s,t)-flow in N(D).

Proof: Let P,,...,P, be a collection of pairwise arc-disjoint (s,t)-paths in

D. These paths may use different copies of an arc between the same two

7.2 Ear Decompositions 349

D N(D)

Figure 7.2 A directed multigraph D and its network representation V/(D). Num-
bers on arcs indicate capacity in N(D).

vertices 7 and j, but, since the paths are arc-disjoint, in total they use no

more than u;; copies of the arc 17. Hence we can construct a feasible (s, t)-
flow of value r in N(D) just by sending one unit of flow along each of the

paths P,,..., P,. Conversely, if z is any integral (s, t)-flow of value k in N(D)

(recall Theorem 3.5.5), then by Theorem 3.3.1, x can be decomposed into k

(s,t)-path-flows f(P,),...,f(P,) of value 1 (those that have a higher value

r > 1 can be replaced by r (s,t)-path-flows of value 1 along the same path)

and some cycle flows. By the capacity constraint on the arcs, at most u;; of

these path flows use the arc 77. Hence we can replace the arcs used by each

f(P;) by arcs in D in such a way that we obtain k arc-disjoint (s,t)-paths in
D. This completes the proof of the lemma. oO

7.2 Ear Decompositions

In this section we study the structure of strongly connected digraphs by

introducing the concept of an ear decomposition (see Figure 7.3) and derive

a number of interesting results from this definition. Among other things, we

reprove some of the results from Chapter 1.

Definition 7.2.1 An ear decomposition of a directed multigraph D =

(V, A) is a sequence € = {Po,P,,Po,..., Pr}, where Po is a cycle! and each
P; is a path, or a cycle with the following properties:

(a) P, and P; are arc-disjoint when 1 # j.

1 Some authors take Pp to be just a vertex, but it is easy to see that the two

definitions are equivalent for strong directed multigraphs with at least one arc.

350 7. Global Connectivity

(b) For each i = 1,...t: If P; is a cycle, then it has precisely one vertex

in common with V(D;-1). Otherwise the end-vertices of P; are distinct

vertices of V(Dj-1) and no other verter of P; belongs to V(Di-1)- Here

D; denotes the digraph with vertices Uj=o V(P;) and arcs Uj-o A(P;).

(c) Uso A(R;) = 4.
Each P;, 0 < i < t is called an ear of €. The number of ears in E 4s

the number t +1. An ear P; is trivial if |A(P;)| = 1. All other ears are

non-trivial.

Figure 7.3 An ear decomposition € = {Po,Pi,..., Pe} of a digraph. The num-
ber on each arc indicates the number of the ear to which it belongs. The ears
Po, Pi, P2, P3 are non-trivial and the ears P4, Ps, Pe are trivial.

Theorem 7.2.2 A directed multigraph is strong if and only if it has an ear

decomposition. Furthermore, if D is strong, then for every vertex v, every

cycle C containing v can be used as starting cycle Po for an ear decomposition

of D.

Proof: We may assume that |V(D)| > 3 since otherwise the claim is trivial.

Suppose first that D has an ear decomposition € = {Po, Pi, Po,..., Pi}. Note

that the digraph Po is strong. Now it is easy to prove, by induction on the

number of ears in €, that D is strong. If D; is strong, then D;+, is also strong

since it is obtained by adding a path with two end-vertices x, y in D; and all

other vertices outside of V (Dj).

Conversely, assume that D is strong and let v be an arbitrary vertex in

V(D). Since |V(D)| > 3 and D is strong, there is some cycle C = uju2... Ur,
where u; = u, = v, through v. Let Po := C, 1 := 0 and execute phase 1 and

2 below:
Phase 1:

1. If every vertex of V(D) is in V(D;), then go to Phase 2.
2. Let i := i+ 1 and let u be a vertex not in V(D;_1) such that there is

some arc zu from V(Dj;_1) to u.

7.2 Ear Decompositions 351

3. Let P; be a shortest path from u to V(Dj_1).

4. Take xP; as the next ear and repeat Phase 1.

Phase 2:

1. For each remaining arc vw of D which was not included in A(D,) (i is
the counter above) do the following:

2. Let 7 :=7+ 1 and let P; = vw (that is, include all these arcs as trivial
ears).

To see that the algorithm above finds an ear decomposition of D, it suffices

to check that we can always find an arc ru and a path from u to V(D;) as

claimed in Phase 1. This follows easily from the fact that D is strong. Oo

There are several interesting consequences of Theorem 7.2.2 and its proof.

Corollary 7.2.3 Every ear-decomposition of a strong digraph on n vertices

and m arcs has m—1n+1 ears.

Proof: Exercise 7.2. Oo

Corollary 7.2.4 Every strong directed multigraph D on n vertices contains

a spanning strong subgraph with at most 2n — 2 arcs. Furthermore, there are

directed multigraphs for which every spanning strong subgraph has at least

2n — 2 arcs.

Proof: First observe that we can remove all trivial ears in any ear decomposi-

tion of D without destroying strong connectivity. Thus it suffices to estimate

the number of arcs in the non-trivial ears. Let € = Po, Py,..., Pr, Pr4i,..-, Pt

be an ear decomposition of D where Po, P;,...,P, are the non-trivial ears.

Let. P! be the path P; — V(D;_1). Since each P,;, i =1,2,...,r adds at least

one new vertex, there can be no more than n—|V(Po)| of these. Each new ear
P;, adds |V (P/)| + 1 new arcs and hence we can make the following estimate:

|A(D-)| = |[V(Po)| + DIV (P| + Y)
4=1

:

=|V(Po)l+r+ > (IV (Pi)
i=!)

=n+r
<n+n-—|V(Pp)|

< 2n -2, (7.4)

where equality only holds if |V(Po)| = 2 and each P;, i = 1,2,...,r, has
length 2. To see that the estimate 2n —2 is best possible, it suffices to consider

the complete biorientation of a path on n vertices. 0

_ Corollary 7.2.5 There is a linear algorithm to find an ear decomposition of

a strong directed multigraph D.

352 7. Global Connectivity

Proof: This can be seen from the proof of Theorem 7.2.2. The proof itself is

algorithmic and it is not too hard to see that if we use breadth first search

(see Section 2.3.1) together with a suitable data structure to find the path

from u to V(Dj-_1), then we can obtain a linear algorithm. Details are left to

the interested reader as Exercise 7.21. O

Corollary 7.2.6 It is an NP-complete problem to decide whether a given

digraph D has an ear decomposition with at most r non-trivial ears. It 1s

NP-complete to decide if a given digraph D has an ear decomposition with

at most q arcs in the non-trivial ears.

Proof: Note that in both cases the numbers r (respectively g) are assumed

to be part of the input to the problem. A strong digraph D has an ear

decomposition with only one non-trivial ear (respectively, precisely n arcs in

the non-trivial ears) if and only if D has a Hamilton cycle. Hence both claims

follow from Theorem 5.0.1. — Oo

The next two Corollaries were proved in Chapter 1, but we reprove them

here to illustrate an application of ear-decompositions. Recall that a bridge

of an undirected graph G is an edge e such that G — e is not connected.

Corollary 7.2.7 [637] A strong digraph D contains a spanning oriented sub-

graph which is strong if and only if UG(D) has no bridge.

Proof: If UG(D) has a bridge, zy, then D contains the 2-cycle ryz, since

D is strong. Observe that no matter which of these two arcs we delete we

obtain a non-strong digraph. Suppose conversely that UG(D) has no bridge.

Consider again the proof of Theorem 7.2.2. If we can always choose the path

from u to V(D;-1) in such a way that it does not end in z, or contains at
least one inner vertex, then it follows from the fact that we use shortest paths

that no ear P;, 1 > 1 contains a 2-cycle. In the remaining case, the only path

from u to V(Dj_1) is the arc ux and hence the 2-cycle ruz is a bridge in

UG(D). It remains to avoid using a 2-cycle as starting point (that is, as the
cycle Po). This can be done, unless all cycles in D are 2-cycles. If this is the

case then UG(D) is a tree and every edge of UG(D) is a bridge, contradicting
the assumption. oO

Corollary 7.2.8 [120] A mized graph M has a strong orientation if and only
if M is‘strongly connected and has no bridge.

Proof: This follows from Corollary 7.2.7, since we may associate with any

mixed graph M = (V,A, E) the directed graph D one obtains by replacing

each edge in M by a 2-cycle. Clearly deleting an arc of a 2-cycle in D corre-

sponds to orienting the corresponding edge in M. QO

Ear decompositions of undirected graphs can be similarly defined. These
play an important role in many proofs on undirected graphs, in particular in
Matching Theory; see e.g. the book by Lovdsz and Plummer [525].

7.3 Menger’s Theorem 353

7.3 Menger’s Theorem

The following theorem, due to Menger [562], is one of the most fundamental
results in graph theory.

Theorem 7.3.1 (Menger’s theorem) /562] Let D be a directed multigraph
and let s,t € V(D) be a pair of distinct vertices. Then the following holds:

(a) The maximum number of arc-disjoint (s,t)-paths equals the minimum

number of arcs covering all (s,t)-paths and this minimum is attained for

some (s,t)-cut (U,U).

(b) If the arc st is not in A(D), then the mazimum number of internally
disjoint (s,t)-paths equals the minimum number of vertices in an (s,t)-
separator.

Proof: First let us see that version (b) involving vertex disjoint paths can
be easily derived from the arc-disjoint version (a). First recall that multiple
arcs play no role in questions regarding (internally) vertex disjoint paths and

hence we can assume that the directed multigraph in question is actually a

digraph. Given a digraph D = (V,A) and u,v € V construct the digraph

Dsr by the vertex splitting procedure (see Section 3.2.4). Now it is easy to

check that arc-disjoint (us, v;)-paths in D’ correspond to internally disjoint

(u,v)-paths in D (if an (us,v¢)-path in Ds contains the vertex 2; (x,) for

some x # u,v, then it must also contain x, (z;)). Furthermore, for any set of

é arcs that cover all (u;,v;)-paths in Dsr, there exists a set of @ arcs of the

form w}w},..., ww with the same property and such a set corresponds to
an (s,t)-separator X = {w!,...,w*} in D. Hence it suffices to prove (a).

Because of the similarity between Menger’s theorem (in the form (a)) and
the Max-flow Min-cut theorem (Theorem 3.5.3), it is not very surprising that

we can prove Menger’s theorem in version (a) using Theorem 3.5.3. We did
part of the work already in Section 7.1.1 where we showed that A(s, t) equals
the value of a maximum (s, t)-flow in N(D). Similarly it is easy to see that
every (s,t)-cut (U,U) in D corresponds to an (s,t)-cut (U,U) in N(D) of
capacity |(U,U)| and conversely. Now (a) follows from Theorem 3.5.3. Oo

As we shall see in Exercise 7.16, for networks where all capacities are

integers, we can also derive the Max-flow Min-cut theorem from Menger’s

theorem.

In order to illustrate the use of submodularity in proofs concerning con-

nectivity for digraphs we will give a second proof of Theorem 7.3.1 (a) due to
Frank [260] (note that this proof requires no prerequisites other than Propo-

sition 7.1.1):

Second proof of Menger’s theorem part (a):
Clearly the maximum number of arc-disjoint (s,t)-paths can be no more

than the minimum size of an (s, t)-cut.
The proof of the other direction is by induction on the number of arcs in

 D. Let k denote the size of a minimum (s, t)-cut. The base case is when D has

354 7. Global Connectivity

precisely k arcs. Then these all go from s to ¢t and thus D has k arc-disjoint

(s,t)-paths. Hence we can proceed to the induction step. Call a vertex set

U tight if s € U,t g U and d*+(U) = k. If some arc zy does not leave any

tight set, then we can remove it without creating an (s,t)-cut of size (k — 1)

and the result follows by induction. Hence we can assume that every arc in

D leaves a tight set.

Claim: If X and Y are tight sets, then so are X NY and X UY.

To see this we use the submodularity of d*. First note that each of X NY

and X UY contains s and none of them contains t. Hence, by our assumption,

they both have degree at least k in D. Now using (7.2) we conclude

k+k=dt(X)+dt(Y) >dt(XUY)+dt(XNY)>k+h, (7.5)

by the remark above. It follows that each of X UY and X NY is tight and

the claim is proved.
If every arc in D is of the from st, then we are done, so we may assume

that D has an arc su where u # t. Let T be the union of all tight sets that do

not contain u. Then T # 9, since the arc su leaves a tight set. By the claim,

T is also tight. Now consider the set T U {u}. If there is no arc from u to
V —T, then dt (TU {u}) < k-1, a contradiction since TU{u} contains s but
not t. Hence there must be some v € V —T'—u such that uv € A(D). Now let

D' be the digraph we obtain from D by replacing the two arcs su, uv by the

arc sv. Suppose D’ contains an (s, t)-cut of size less than k. That means that

some set X containing s but not t has out-degree at most k — 1 in D’. Since

dp (X) > k it is easy to see that we must have s,v € X and u ¢ X. Hence
d7,(X) = k and now we get a contradiction to the definition of T (since we
know that v ¢ T). Thus every (s,t)-cut in D’ has size at least k. Since D’
has fewer arcs than D it follows by induction that D’ contains k arc-disjoint

(s,t)-paths. At most one of these can use the new arc sv (in which case we
can replace this arc by the two we deleted). Thus it follows that D also has

k arc-disjoint (s,t)-paths. Oo

Corollary 7.3.2 Let D = (V, A) be a directed multigraph. Then the following
holds:

(a) D is,k-arc-strong if and only if it contains k-arc-disjoint (s,t)-paths for
every choice of distinct vertices s,t EV.

(b) D is k-strong if and only if |V(D)| >k+1 and D contains k internally
vertex disjoint (s,t)-paths for every choice of distinct vertices s,t € V.

Proof: Recall that, by definition, a directed multigraph D = (V, A) is k-arc-

strong if and only if D — A’ is strong for every A’ C A with |A'| < k—1. Now
we see that (a) follows immediately from Theorem 7.3.1(a). To prove (b) we
argue as follows: By definition (see Chapter 1) D is k-strong if and only if
|V(D)| > k+1 and D — X is strong for every X C V such that |X| < k—-1.

7.4 Application: Determining Arc- and Vertex-Strong Connectivity 355

Suppose that D has at least k + 1 vertices but is not k-strong. Then we can

find a subset X C V of size at most k — 1 such that D — X is not strong.

Let D,,...,D,, r > 2 be any acyclic ordering of the strong components in

D—X. Taking s € V(D,) and t € V(D}) it follows that there is no arc from
s tot and that X is an (s, t)-separator of size less than k. Now it follows from

Theorem 7.3.1(b) that D does not contain k internally vertex disjoint paths
from s to t.

Suppose conversely that there exists s,t € V(D) such that there are no

k internally disjoint (s,t)-paths in D. If there is no arc from s to t, then it

follows from Theorem 7.3.1(b) that D contains an (s,t)-separator X of size
less than k. Then D — X is not strong and, by definition, D is not k-strong.

Hence we may assume that there is an arc st in D. Let r be the number of

arcs from s to t in D (i.e. (s,t) = r). If r > k, then k of these arcs form
the desired (s,t)-paths, so by our assumption on s,t we have r < k. Now

consider the digraph D’ obtained from D by removing all arcs from s to t. In

D’ there can be no k—r internally disjoint (s,t)-paths (since otherwise these

together with the r arcs from s to t would give a collection of k internally
disjoint (s,t)-paths). Thus, by Theorem 7.3.1(b), there exists a set X' C V
of size less than k — r which forms an (s,t)-separator in D’.

Let A,B denote a partition of V — X' in such a way thats Ee B,tE A

and there is no arc from B to A in D’. Since |V| > k +1, at least one of the
sets A, B contains more than one vertex. Without loss of generality we may

assume that A contains a vertex v distinct from t. Now we see that X' U {t}
is an (s,v)-separator of size less than kK -r +1 < k in D and there is no
arc from s to v in D. Applying Theorem 7.3.1(b) to this pair we conclude as

above that D is not k-strong. O

Recall the numbers A’(D), «'(D) which were defined in (7.1).

Corollary 7.3.3 Let D be a directed multigraph. The number X'(D) equals
the mazimum number k for which D is k-arc-strong. The number k'(D) equals
the mazimum number k for which k < |V|—1 and D is k-strong. Hence we
have X'(D) = X(D) and k'(D) = K(D). Oo

7.4 Application: Determining Arc- and Vertex-Strong

Connectivity

In applications it is often important to be able to calculate the degree of

arc-strong or vertex-strong connectivity of a directed multigraph. We can re-

duce the problem of finding Kp(z,y) to that of finding the local arc-strong
connectivity from x, to y; in the digraph Dsr which we obtain by applying

the vertex splitting procedure to D (see the proof of Theorem 7.3.2). Thus

it is sufficient to consider arc-strong connectivity. It follows from Menger’s

356 7. Global Connectivity

theorem and Lemma 7.1.5 that A(D) can be found usingO(n”) flow calcula-

tions. Namely, determine \(z, y) for all choices of x,y € V(D). However, as

we shall see below we can actually find A(D) with just O(n) flow calculations.

For a similar result see Exercise 7.7.

Proposition 7.4.1 [654] For any directed multigraph D = (V, A) with V =

{vU1,V2,---,Un} the arc-strong connectivity of D satisfies

dD) = min {A(v1, v2), ---; A(Un—1, Un) A(Un; v1)}.

Proof: Let k = \(D). By (7.1) and Corollary 7.3.3, A(D) is no more than the

minimum of the numbers A(v1, v2), ---; A(Un—1, Un); A(Un, V1). Hence it suffices

to prove that k = A(v;,i41) for some i = 1,2,...,n (where Un41 = vi). By

Corollary 7.3.3 and Theorem 7.3.1, some X C V has out-degree k. If there is

an index i < n —1 such that v; € X and vi41 € V — X, then, by Menger’s

theorem, A(v;,vi41) < & and the claim follows. If no such index exists, then

we must have X = {v,p,Ur4i,---,Un} for some 1 <r <n. Now we get by

Menger’s theorem that A(vn,vi1) < k and the proof is complete. Oo

Combining this with Lemma 7.1.5, we get the following result due to

Schnorr [654]:

Corollary 7.4.2 We can calculate the arc-strong connectivity of a directed

multigraph by O(n) mazimum flow calculations in N(D). 0

If D has no multiple arcs, then its network representation \V(D) has all

capacities equal to 1 and it follows from Theorem 3.7.4 that we can find a

maximum flow in N(D) in time O(n3m) and hence we can calculate \(D)

in time O(n3m).
Esfahanian and Hakimi [224] showed that the bound, n, on the number of

max-flow calculations that is needed can be improved by a factor of at least

2:

Note that, if we are only interested in deciding whether \(D) > k for
some value of k which is not too big compared to m, then it may be better

to use the simple labelling algorithm of Ford and Fulkerson (see Chapter 3).

In that case it is sufficient to check for flows of value at least k, which can be

done with k flow-augmenting paths and hence in time O(km) per choice of
source:and terminal. Thus the overall complexity of finding \(D) is O(knm)
(see also the book by Even [229]). This can be improved slightly; see the
paper [295] by Galil. For other connectivity algorithms based on flows, see

e.g. [228, 232].
One may ask if there is a way of deciding whether a given directed multi-

graph D is k-(arc)-strong without using flows. Extending work by Linial,
Lovasz and Wigderson [515] (see also [523]), Cheriyan and Reif [150] gave

7.4 Application: Determining Arc- and Vertex-Strong Connectivity 357

Monte-Carlo and Las Vegas” type algorithms for k-strong connectivity in di-
graphs. Both algorithms in [150] are based on a characterization of k-strong

digraphs via certain embeddings in the Euclidean space R‘~!. The algorithms

are faster than the algorithms described above, but the price is the chance

of an error (for the Monte Carlo algorithm), respectively only the expected

running time can be given (for the Las Vegas Algorithm). We refer the reader
to [150] for details.

The currently fastest algorithm to determine the arc-strong connectivity

uses matroid intersection (see Section 12.7 for the definition of the matroid

intersection problem) and is due to Gabow [287]. This algorithm finds the arc-
strong connectivity of a digraph D in time O(A(D)mlog (n?/m)). It is based
on Edmonds’ branching theorem (Theorem 9.5.1). In Chapter 9 we discuss the
relation between arc-strong connectivity and arc-disjoint branchings, which

is used in Gabow’s algorithm. Gabow’s approach also works very efficiently

for the case when we want to decide if \(D) > k for some number k.
The currently fastest algorithm to determine k(D) is due to Henzinger,

Rao and Gabow [422]. This algorithm is based on flows and combines ideas
from [228, 232, 295, 398]. The complexity of the algorithm is O(min{«(D)? +
n,k(D)n}m).

For undirected graphs Ibaraki and Nagamochi [579] found a very elegant
and effective way to calculate the edge-connectivity without using flow algo-

rithms. We describe their method briefly below (see also [269, 580]).
A maximum adjacency ordering of an undirected: graph G = (V, E)

is an ordering v1,V2,...,Un of its vertices, satisfying the following property

d(vi+1, Vi) 2 d(v;, Vi) for 1 = Dainty t Si) < nN, (7.6)

where V; = {v1,v2,...,v;} and d(X,Y) denotes the number of edges with

one end in X —Y and the other in Y — X.

Theorem 7.4.3 [579]

(a) Given any undirected graph G on n vertices, one can find a maximum
adjacency ordering of G starting at a prescribed vertex v, in time O(n +

m).
(b) For every mazimum adjacency ordering V1,V2,-.-,Un of G we have

Corollary 7.4.4 [579] There is an O(nm + n”) algorithm to determine the
edge-connectivity of a graph with n vertices and m edges.

2 A Monte-Carlo algorithm always terminates, but may make an error with some
small probability, whereas a Las Vegas algorithm may (with some small proba-
bility) never terminate, but if it does, then the answer it provides is correct; see
the book [134] by Brassard and Bratley.

358 7. Global Connectivity

Proof: This is an easy consequence of (b) and the fact that for every choice

of z,y € V(G):

A(G) = min{A(z, y), A(G/{z, y})}, (7.7)

where G/{z,y} is the graph we obtain from G by contracting the set {z, y}.
The equality (7.7) follows from the fact that \(G) equals the size of a mini-
mum cut (X,V — X) in G. If this cut separates x,y, then A(G) = A(z, y) by
Menger’s theorem, and otherwise X is still a cut in G/{z,y}, implying that

A(G) = A(G/{z, y}) (contractions do not decrease edge-connectivity). Hence
we can start from an arbitrary maximum adjacency ordering v),v2,..-,Un-

This gives us A(Un—1, Un). Save this number, contract {vn_1, vn} and continue

with a maximum adjacency ordering of G/{vun_i, Un}. The edge-connectivity

of G is the minimum of the numbers saved. We leave the remaining details

to the interested reader (see also the paper [581] by Nagamochi and Ibaraki).
O

D D/{zx,y}

Figure 7.4 A digraph D with \(D) = 0, A(z, y) = 2 and (D/{z, y}) = 1.

It is an interesting open problem whether some similar kind of ordering
can be used to find the arc-strong connectivity of a directed multigraph.
Note that (7.7) does not hold for arbitrary directed multigraphs. To see this
consider Figure 7.4.

7.5 The Splitting off Operation

In Frank’s proof of Menger’s theorem in Section 7.3, we saw how one could ap-
ply the idea of replacing two arcs incident to some vertex by one and thereby
apply induction. In this section we shall see yet another indication that this
type of operation can be very useful. We consider a directed multigraph D
with a special vertex s. We always assume that

d}(s) = dp(s). (7.8)

7.5 The Splitting off Operation 359

To emphasize that s is a special vertex we specify D as D = (V + 8, A) or

D = (V + s,E UF) where F is the set of arcs with one end-vertex in s.

Furthermore we will assume that the local arc-strong connectivity between

every pair x,y of vertices in V is at least k. By Menger’s theorem this is

equivalent to

d*({U),d-(U)>k forall @AU CY. (7.9)

Whenever a digraph D = (V + s, A) satisfies (7.9) for some k we say that
D is k-arc-strong in V.

We consider the operation of replacing a pair (us, sv) of arcs incident with

s by one new arc uv. The operation of performing this replacement is called

splitting off or just splitting the pair (us,sv) and the resulting directed
multigraph is denoted by D,,,. The splitting of a pair (ws, sv) is admissible

if (7.9) holds in D,,,. If this is the case we will also say that the pair (us, sv)
is an admissible pair (or an admissible splitting).

A set @ #4 X C V is k-in-critical (k-out-critical) if d~(X) = k
(d*(X) = k). When we do not want to specify whether X is k-in-critical

or k-out-critical, we say that X is k-critical.

The following useful lemma is due to Frank:

Lemma 7.5.1 /258] If X and Y are intersecting k-critical sets then one of

the following holds:

(a) X UY is k-critical,
(b) Y —X is k-critical and d(X NY,V +s—(XUY)) =0.

Proof: We consider three cases:
Case 1: X UY $ V and X,Y are either both k-out-critical or both

k-in-critical.
Assume that X,Y are both k-out-critical. It follows from (7.9) that

d+(X UY),d+(X NY) > k. Using the submodularity of dp, we obtain:

k+k=d*(X)+d'(Y)

> d*(X UY) +d*(XnY)

>k+k, (7.10)

and from this we get that X UY is k-critical and hence (a) holds. The same

conclusion is reached if X,Y are both k-in-critical.

Case 2: X UY = V and X,Y are either both k-out-critical or both

k-in-critical.

We will assume that X,Y are both k-out-critical, the proof is analogous in

the other case. Let S = V+s—X andT = V+s—Y. Then d-(S) =d-(T) =k

and SNT = {s}. Since S-T = Y —X and T-—S = X —Y we get from (7.9)

that d~(S —T),d~(T —S) > k. Since d~(s) = d*(s), we can apply (7.3) and

obtain:

360 7. Global Connectivity

k+k=d (S)+d (T)

=d-(S—T)+d-(T-S)+d(SNT,V +s—(SUT))

>k+k+d(V —-S,T), laava

from which we see that Y —X = S—T is k-in-critical and that d(SNT, V +s—

(SUT)) = 0. Since XNY =V+s—(SUT) and V+s—(XUY) = {s} = SOT

we also see that d(X NY,V +s —(X UY)) =0. Thus (b) holds.

Case 3: One of X,Y is k-in-critical and the other is k-out-critical.

We consider the case when X is k-in-critical and Y is k-out-critical, the

other case is analogous. Let Z = V+s—X. Then we have dt (Y) = d*(Z) =k,

YNZ =Y—X and YUZ = V+s—(X-Y). Hence dt(YNZ) =d*(Y-X) >k
and d+(Y UZ) =d-(V+s—(YUZ)) =d (X —Y) > k. Now we can apply
(7.2) and we get .

k+k=d*t(Y)+d*(Z)
=d+(YnNZ)+d*t(YUZ)+d(¥,Z)
>kt+k+d(Y,Z), (7.12)

implying that d™(Y — X) = d'*(Y NZ) = k and that d(Y, Z) = 0. Since
Z-Y=V+s—-(XUY) and Y —-Z=XNY, the last equality shows that
d(x NY,V +s—(X UY)) =0. Thus (b) holds. Oo

We are now ready to prove the following important result by Mader.

Theorem 7.5.2 (Mader’s directed splitting theorem) /537] Suppose

that D = (V +s, EUF) satisfies (7.9) and that d*(s) = d~(s). Then for
every arc sv there is an arc us such that the pair (us, sv) is an admissible

splitting.

Proof: The proof we give is due to Frank [258]. First note that a pair (us, sv)
can be split off preserving (7.9) if and only if there is no k-critical set which
contains both u and v. Hence if there is no k-critical set containing v, then

we are done. If X and Y are intersecting k-critical sets containing v, then

only alternative (i) can hold in Lemma 7.5.1, because the existence of the
arc su implies that d(V +s —(X UY), X NY) > 1. Hence the union T of all
k-critical sets containing v is also k-critical. If we can find an in-neighbour u

of s in V —T’,, then we are done, since by the choice of T’, there is no k-critical

set which contains u and v. So suppose that all in-neighbours of s are in T.

If T is k-out-critical then

ds (Vi EY) dP ead (Ton) (6) Vn)

< k —(d-(s) —d*(s) +1)
=k-1,

7.5 The Splitting off Operation 361

since s has no in-neighbour in V — T and sv is an arc from s to T’ (we also
used d~(s) = d*(s)). This contradicts (7.9) so we cannot have that T' is
k-out-critical. But if T is k-in-critical, then

GV —T)=d ss) =d-(1) = dar) at (Vv —7 38)

<K—al-0 < k;

a contradiction again. Hence we have shown that (us, sv) is an admissible
pair and the proof is complete. oO

Ss

Figure 7.5 A digraph D = (V + 8, A) which is 2-arc-strong in V and has no
admissible splitting at s. Note that d-(s) = 2 #1=dt(s).

Note that the assumption that d~(s) = d*(s) in Theorem 7.5.2 cannot
be removed. Figure 7.5 shows an example of a digraph D = (V + s, A) with
no admissible splitting at s.

Corollary 7.5.3 Suppose that D = (V +s,E+ F) satisfies (7.9) and that
d*(s) = d~(s). Then there exists a pairing ((u1S, $v1),..-,(UrS, 8Ur)), T =
d~(s), of the arcs entering s with the arcs leaving s such that replacing all

arcs incident with s by the arcs u,v1,...,Urv,r and then deleting s, we obtain

a k-arc-strong directed multigraph D'. Oo

See Figure 7.6 for an example of a complete splitting in a digraph.

Frank and Jackson showed that for eulerian directed multigraphs one can

get a stronger result. Namely, it is possible to split off all arcs incident with

the special vertex s in such a way that all local arc-strong connectivities

within V are preserved.

Theorem 7.5.4 /257, 451] Let D = (V + s,A) be an eulerian directed
multigraph. Then for every arc us € A there exists an arc sv € A such that

ADu» (x, y) = Ap(z, y) for all ZY S Ve O

362 7. Global Connectivity

Figure 7.6 A digraph D = (V +s,A) which is 2-arc-strong in V. A complete
splitting of the arcs is shown in the right figure after removal of s. The set X shows
that we cannot split off both of the pairs (as, sb), (cs, sa), since that would leave X
with out-degree one.

A similar result concerning local connectivity preserving splittings holds

for general undirected graphs. This very powerful result was proved by Mader

[536]. Such a similarity between eulerian digraphs and general undirected
graphs with respect to certain properties seems to be quite common. To

say it popularly: Eulerian digraphs often behave like undirected graphs. For

another example of this phenomenon see Section 9.7.2.

Bang-Jensen, Frank and Jackson showed that it is possible to give a com-

mon generalization of Theorem 7.5.4 and Mader’s directed splitting theorem

(Theorem 7.5.2) to mixed graphs. Since the statement of this result is rather

technical, we refer the interested reader to the paper [53].
It was pointed out by Enni in [218] that Theorem 7.5.4 cannot be extended

to arbitrary digraphs, not even if one only wants to preserve the minimum

of A(z, y) and A(y, xz). For two other generalizations of Theorem 7.5.2 see the
papers [684] by Su and [288] by Gabow and Jordan.

7.6 Increasing the Arc-Strong Connectivity Optimally

We will consider the following problem. Given a directed multigraph D =

(V, E) which is not k-arc-strong, find a minimum cardinality set of new arcs

F to add to D such that the resulting directed multigraph D'’ = (V,EU
F) is k-arc-strong. This D' is called an optimal augmentation of D. We
will present a solution to this problem due to Frank [258]. Frank solved the
problem by supplying a min-max formula for the minimum number of new
arcs as well as a polynomial algorithm to find such a minimum set of new
arcs. First let us make the simple observation that such a set F indeed exists,
since we may just add k parallel arcs in both directions between a fixed vertex
v € V and all other vertices in V (it is easy to see that the resulting directed
multigraph will be k-arc-strong).

7.6 Increasing the Arc-Strong Connectivity Optimally 363

Definition 7.6.1 Let D = (V,A) be a directed multigraph. Then y4(D) is
the smallest integer y such that

>) (k-d7(Xi)) <7 and
Xi EF

>, dt (X) <%
Xi€F

for every subpartition F = {X,...,X+} of V.

We call y,(D) the subpartition lower bound for arc-strong con-
nectivity. By Menger’s theorem, D is k-arc-strong if and only if y,(D) < 0.

Indeed, if D is k-arc-strong, then dt(X),d~(X) > k holds for all proper

subsets of V and hence we see that +,,(D) < 0. Conversely, if D is not k-arc-

strong, then let X be aset with d~(X) < k. Take F = {X}, then we see that

yn(D) > k—d-(X) > 0.

Lemma 7.6.2 /258] Let D = (V,A) be a directed multigraph and let k be
a positive integer such that y,(D) > 0. Then D can be extended to a new

directed multigraph D' = (V +s, AUF), where F consists of y~(D) ares
whose head is s and yx(D) arcs of whose tail is s such that (7.9) holds in D'.

Proof: We will show that, starting from D, it is possible to add y,(D) arcs
from V to s so that the resulting graph satisfies

di (Xie ator alls. G4 (7.13)

Then it will follow analogously (by considering the converse of D) that it is

also possible to add y,(D) new arcs from s to V so that the resulting graph

satisfies

d-(X)>k forall OA XCV. (7.14)

First add k parallel arcs from v to s for every v € V. This will certainly

make the resulting directed multigraph satisfy (7.13). Now delete as many
new arcs as possible until removing any further arc would result in a digraph

where (7.13) no longer holds (that is, every remaining new arc vs leaves a
k-out-critical set). Let D denote the current directed multigraph after this

deletion phase and let S be the set of vertices v which have an arc to s in

D. Let F = {X1,...,X,} be a family of k-out-critical sets such that every

uv € S is contained in some member X; of F and assume that F has as few

members as possible with respect to this property. Clearly this choice implies

that either F is a subpartition of V, or there is a pair of intersecting sets

X. iy ox j mF:

364 7. Global Connectivity

Case 1: F is a subpartition of V.

Then we have

t=1

=) (dp(X) + dp (Xi, 8))
ail

=) dh(Xi) + d5V(s),
—/

implying that d=(s) = yo (k — d§(Xi)) < ve(D), by the definition of

yn (D).

Case 2: Some pair X;, X; € F is intersecting.

If X;,Xj are crossing, then the submodularity of dz and (7.9) imply

that X;U X; is also k-out-critical and hence we could replace the two sets

X;,Xj; by the set X;U X; in F, contradicting the choice of F. Hence we

must have X;U X; = V and F = {X1, X2}, where without loss of generality

sip 0745 Let X = V —X = X,-—X, and Y = V,— X2 = X, — X_. Then

dp (X) = dp (41) and dp (VY) = dj,(X2) and hence we get

yn(D) > (k — dp(X)) + (k - dp(Y))
= k—d5(X1) +k — d}(X)
> k — dp (X1) +k — d5(X2) + d5(s)

= d,,(s),

since X,, X2 are k-out-critical in D. Thus d=(s) < ye(D) as claimed. 0

Theorem 7.6.3 (Frank’s arc-strong connectivity augmentation the-

orem) /258] Let D = (V,A) be a digraph and k a natural number such that
y~(D) > 0. The minimum number of new arcs that must be added to D in

order to give a k-arc-strong digraph D' = (V, AU F) equals y;,(D).

Proof: To see that we must use at least y,(D) arcs, it suffices to observe

that if X and Y are disjoint sets then no new arc can increase the out-degree

(in-degree) of both sets. Hence a subpartition ¥ realizing the value of yx in

Definition 7.6.1 is a certificate that we must use at least y,(D) new arcs.

To prove the other direction we use Mader’s splitting theorem and Lemma

7.6.2. According to this lemma we can extend D to a new digraph D by adding

a new vertex s and y,(D) arcs from V to s and from s to V. Note that we

may not need 7,(D) arcs in both directions, but we will need it in one of

the directions by our remark in the beginning of the proof. In the case where

7.6 Increasing the Arc-Strong Connectivity Optimally 365

fewer arcs are needed, say from V to s we add arbitrary arcs from V to s so
that the resulting number becomes 7;(D).

Now it follows from Corollary 7.5.3 that all arcs incident with s can be
split off without violating (7.9). This means that, if we remove s, then the

resulting graph D’ is k-arc-strong. Oo

See Figure 7.7 for an example illustrating the theorem.

ee NEN,
D D'

=)

Figure 7.7 A digraph D with y2(D) = 5. The big circles indicate a subpartition
which realizes y2(D). The right part of the figure shows an optimal 2-arc-strong
augmentation D’ of D obtained by adding 5 new arcs. Compare this with Figure
7.6. Here the digraph in the right part is the same as the augmented digraph D’.

The reader may have noticed that in the proof of Lemma 7.6.2, we never

used exactly how we obtained the minimal set of arcs from V to s so that

(7.13) held. The proof is valid for every such set of arcs that is minimal

with respect to deletion of arcs. This means in particular that we can use

a greedy approach to find such a set of arcs starting from the configuration

with k parallel arcs from every vertex v € V to s. This gives rise to the fol-

lowing algorithm, by Frank [258], for augmenting the arc-strong connectivity

optimally to k for any digraph D which is not already k-arc-strong:

Frank’s arc-strong connectivity augmentation algorithm

Input: A directed multigraph D = (V, A) and a natural number k such that

Vk (D) > 0:

Output: A k-arc-strong optimal augmentation D* of D.

1. Let v1, v2...,Un be a fixed ordering of V and let s be a new vertex.

2. Add k parallel arcs from v; to s and from s to v; for each 1 = 1,2,...,n.

3. Starting from i := 1, remove as many arcs from v; to s as possible without

violating (7.13); If i < nm then let i :=1-+ 1 and repeat this step;

Let y—~ denote the number of remaining arcs from V to s in the resulting

digraph.
4. Starting from i := 1, remove as many arcs from s to v; as possible without

violating (7.14); If 1 <n then i :=17+ 1 and repeat this step;

366 7. Global Connectivity

Let y+ denote the number of remaining arcs from s to V in the resulting

digraph.
5. Let y = max{y~, 7}. If y~ < yt, then add yt — y~ arcs from v, to 5;

If y+ <y~, then add y~ — * arcs from s to v1.
6. Let D’ denote the current digraph. In D’ we have dj,(s) = dp,(s) and

(7.9) holds. Split off all arcs incident with s in D’ by applying Theorem
7.5.2 7 times. Let D* denote the resulting directed multigraph.

7. Return D*.

Using flows this algorithm can be implemented as a polynomial algorithm

for augmenting the arc-strong connectivity of a given digraph [258]. See Ex-
ercises 7.28 and 7.30.

Frank [258] pointed out that his algorithm also works for the so-called

vertex-weighted arc-strong connectivity augmentation problem.

Here there are weights c(v) on the vertices and the cost of adding an arc

from u to v is equal to c(u) + c(v). The only change needed in the al-
gorithm above is that now the ordering of the vertices should be so that

c(v1) < c(v2) < ... < c(vn). The reason why this greedy approach works

is outlined in [258] and comes from the fact that a certain polymatroidal
structure is present [258, 274].

If instead we allow weights on the arcs and ask for a minimum weight

(rather than just minimum cardinality) set of new arcs to add to D in order

to obtain a k-arc-strong digraph D’, then we have the weighted arc-strong

connectivity augmentation problem.

Theorem 7.6.4 The weighted arc-strong connectivity augmentation problem

is NP-hard.

Proof: We show that the Hamilton cycle problem can be reduced to the

weighted arc-strong connectivity augmentation problem in polynomial time.
This will imply the claim by Theorem 5.0.1.

Let D = (V,A) be a digraph on n vertices V = {1,2,...,n}. Define
o

weights c(ij) on the arcs of the complete digraph K,, with vertex set V as
follows:

ses 1 ifijeA
ctl) as fe if ij ¢ A. cen

Let-Do = (V,@) (that is, the digraph on V with no arcs). Since every vertex
of a strong digraph is the tail of at least one arc, we need at least n arcs to
make Do strong. Now it is easy to see that Do can be made strongly connected
using arcs with total weight at most n if and only if D has a Hamilton cycle.
Thus we have reduced the Hamilton cycle problem to the weighted arc-strong
connectivity augmentation problem. Clearly our reduction can be carried out
in polynomial time. Oo

7.7 Increasing the Vertex-Strong Connectivity Optimally 367

We complete this section with an interesting result by Cheng and Jordan.
It implies that the so-called successive augmentation property holds for
arc-strong connectivity.

Theorem 7.6.5 /148] Let D be a directed multigraph with \(D) = €. Then
there exists an infinite sequence D = Do, D,,D2,... of directed multigraphs
such that, for every i > 0, Di41 is a superdigraph of D;, V(Di) = V(D) and
Dj; is an optimal (+ %)-arc-strong augmentation of D. Oo

It is shown by an example in [148] that a similar property does not hold
for the vertex-strong connectivity augmentation problem which we consider
below.

7.7 Increasing the Vertex-Strong Connectivity
Optimally

We now turn to the vertex-strong connectivity augmentation problem:

given a digraph D = (V, A) on at least k +1 vertices, find a smallest set F

of new arcs for which D’ = (V, AU F) is k-strong.

Note that when it comes to studying vertex-strong connectivity, multiple

arcs play no role and hence we shall always consider digraphs (knowing that

our results extend to directed multigraphs). In particular, in this section

d},(v) =|Np(v)| for any vertex v in a digraph D.
Let us first observe that, even if we do not allow multiple arcs, we cannot

bound the number of arcs we need to add to make a digraph D k-strong

by some function of y,(D) (recall Definition 7.6.1). To see this, it suffices
to note that there are k-arc-strong digraphs which are not k-strong and one

can construct such digraphs where the number of new arcs one needs to add

in order to obtain a k-strong superdigraph is arbitrarily high (see Exercise

Gal).

Suppose X is a set of vertices in a digraph D such that Nt[X] 4 V
and |N*(X)| < k (recall that N*[X] = X UN*(X)). Then it follows from
Menger’s theorem that D is not k-strong because the set N+(X) separates
every vertex in X from every vertex in V — Nt[X]. Furthermore, in order

to obtain a k-strong digraph by adding arcs to D we must add at least
k —|N*t(X)| new arcs with tail in X and head in V — X.

Similarly to the definition of y,(D) in Definition 7.6.1 we can define 7; (D)

as follows:

Definition 7.7.1 Let D = (V,A) be a directed graph. Then y;,(D) is the

smallest integer y such that

368 7. Global Connectivity

Do (R= IN-(X))) <7 and
YEA E

> (k= INT (X))) $1,
XEFt

for every choice of subpartitions F~,Ft of V with the property that every

X €F- satisfies N~[X] #4 V and every X € Ft satisfies N*[X] AV.

As with arc-strong connectivity it is not hard to see that y;(D) is a lower

bound for the number of new arcs we must add to D to obtain a k-strong

digraph. This follows from the fact that the sets in F~ are disjoint and hence

no new arc can increase the in-neighbourhoods (out-neighbourhoods) of two
sets from F- (Ft). We call the number yj(D) the subpartition lower
bound for vertex-strong connectivity.

Let ax(D) denote the minimum number of new arcs that must be added
to a digraph D = (V, A) in order to obtain a k-strong digraph. It is easy to
see that a,(D) is well-defined provided that D has at least k+1 vertices. We
also call a,(D) the k-strong augmentation number of D.

7.7.1 One-Way Pairs

First we point out that for vertex-strong connectivity augmentation, the sub-

partition lower bound is no longer sufficient, that is, it may not be possible to

make D k-strong by adding y;(D) arcs. An example illustrating this is given

in Figure 7.8(a). Here k = 2 and it is not difficult to check that y;(D) = 2.
However, it is not possible to make D 2-strong by adding just two new arcs.

In order to explain this, we need a few new definitions. Let X,Y be disjoint

non-empty proper subsets of V. The ordered pair (X,Y) is a one-way pair

in D = (V, A) if D has no arc with tail in X and head in Y (that is, YX).
This definition is due to Frank and Jordan [272]. For such a pair (X,Y) we
refer to X (Y) as the tail (head) of the pair. Let h(X,Y) = |V—X—Y|. The
deficiency of a one-way pair (X,Y) with respect to k-strong connectivity is

ne(X,Y) = max{0, k — h(X,Y)}. (7.16)

For instance, if N+[X] # V then the pair (X, V — N+[X]) is a one-way
pair with deficiency n,(X,V — Nt[X]) = max{0,k — |N*+(X)|}. One-way
pairs are closely related to k-strong connectivity.

Lemma 7.7.2 [272] A digraph D = (V, A) is k-strong if and only if we have
h(X,Y) > k for every one-way pair (X,Y) in D.

Proof: Suppose first that D is k-strong. By Corollary 7.3.2, there are k
internally disjoint (s,t)-paths for every choice of distinct vertices s,t € V.
Now let (X,Y) be a one-way pair and take s € X,t € Y. For every collection

7.7 Increasing the Vertex-Strong Connectivity Optimally 369

Figure 7.8 An example, due to Jordan [468, Figure 3.9.1], showing that the subpar-
tition lower bound is not always attainable. The desired connectivity is k = 2 and
the value 72(D) is 2 and it is realized by the subpartitions {{d}, {e}}, {{a}, {f}},
respectively (see (a)). Part (b) shows three pairwise independent one-way pairs
(T,, H1), (T2, H2), (T3, H3) (tails are indicated by boxes). This shows that a2(D) >
3. In fact a2(D) = 3, since adding the arcs af, ed, da will result in a 2-strong digraph.

of the k internally disjoint paths from s to t, each such path must use a vertex

in V —X —Y and hence h(X,Y) > k. Conversely, assume that h(X,Y) >k

for every one-way pair (X,Y). Let S be a minimal separator of D. By the

definition of a separator, V — S can be divided into two sets X,Y so that

there is no arc from X to Y in D—S (namely let s,t be separated by S$

and let X denote those vertices that can be reached from s in D — S and

Y =V —X —S). Thus (X,Y) is a one-way pair and h(X, Y) = |S| showing
that |S| > k and hence D is k-strong. Oo

Two one-way pairs (X,Y), (X', Y') are independent if either their heads

or their tails are disjoint. Hence one-way pairs that contribute to the sums in

Definition 7.7.1 are always independent since either all heads or all tails are

disjoint for those pairs. As we saw in Figure 7.8, the sum of deficiencies over

one way pairs for which either all tails are disjoint or all heads are disjoint

does not always provide the right lower bound for the number of new arcs

needed in order to make the digraph k-strong.

By Lemma 7.7.2, in order to obtain a k-strong superdigraph of D, we

must add enough new arcs to eliminate all one-way pairs with nx(X,Y) > 0
(we must add at least n,(X,Y) arcs from X to Y). Clearly, if (X,Y), (X’, Y')

are independent one-way pairs, then no new edge can decrease both nx (X, Y)

and n,x(X', Y'). This shows that, if F is any family of pairwise independent

one-way pairs in D, then we must add at least

(Ce. Eee (7.17)
(X,Y)EF

new arcs to D in order to obtain a k-strong digraph. We call the number 7;,(F)
the deficiency of ¥. Now consider Figure 7.8(b). Here we have indicated one-

way pairs (T;, H;), i = 1, 2,3. These are pairwise independent and have total

370 7. Global Connectivity

deficiency 3. Thus it follows from our arguments above that we need at least

3 new arcs to make D k-strong. In fact 3 arcs are sufficient in this case as

pointed out in the caption of the figure.

7.7.2 Optimal k-Strong Augmentation

The following theorem, due to Frank and Jordan, shows that the maximum

deficiency over families of independent one-way pairs gives the right lower

bound for the vertex-strong connectivity augmentation problem.

Theorem 7.7.3 (The Frank-Jordan vertex-strong connectivity aug-

mentation theorem) /272] For every digraph D on at least k + 1 vertices

we have

ax(D) = max{np(F) : F is a family of independent one-way pairs in D}.
(7.18)

In Section 7.8 we will show how to derive Theorem 7.7.3 from a more

general result concerning a generalization of arc-connectivity augmentation.

Theorem 7.7.4 [272] There exists a polynomial algorithm which, given a

digraph D = (V, A) and a natural number k, finds a minimum cardinality set

F of new arcs to add to D so that the resulting graph is k-strong. Oo

This algorithm relies on Theorem 7.7.3 and the ellipsoid method*and

hence it is not a combinatorial algorithm. In [273] a combinatorial polynomial

algorithm was found for fixed k. It is beyond the scope of this book to describe

any of these algorithms here. The combinatorial algorithm in [273] relies on

a detailed study of the structure of one-way pairs. We refer to the proof of

Lemma 7.10.6 for an example of a proof that uses the structure of one-way

pairs.

Although we may have a,(D) > y;(D) as we saw in Figure 7.8, Frank
and Jordan proved (see below) that the difference cannot be arbitrary large.

A family F of independent one-way pairs is subpartition-type if either all

the tails in F are pairwise disjoint, or all the heads in F are pairwise disjoint.

It is easy to see that if F is subpartition-type, then n.(F) < y;(D).

Proposition 7.7.5 [273] For any digraph D = (V,A) and any target con-

nectivity k there exists a family F of independent one-way pairs such that the

deficiency, nx(F), of F equals a,(D) and F is either subpartition-type or the

disjoint union of two families of subpartition-type. Thus ax(D) < 2y;(D).

The next result shows that if we need to add many arcs to D (in terms

of k) to make it k-strong, then the subpartition lower bound is attainable.

3 For a thorough treatment of the ellipsoid method and its consequences for Com-
binatorial Optimization, see the book [339] by Grétschel, Lovdsz and Schrijver.

7.7 Increasing the Vertex-Strong Connectivity Optimally 371

Proposition 7.7.6 [273] If F is a family of independent one-way pairs and

n(F) > 2k? —1, then F is subpartition-type. Hence if a,(D) > 2k? —1, then

7 (D) = ax(D).

Now let us consider the special case of the vertex-strong connectivity

augmentation problem when we want to increase «(D) from k tok +1. The
following result is due to Frank and Jordan:

Theorem 7.7.7 [273] If K(D) =k and ax41(D) > 2k + 2, then ag41(D) =

Vel (D).

Frank and Jordan also showed that when we augment the connectivity by

just one, then we can restrict the structure of the set of new arcs.

Theorem 7.7.8 [272] If k(D) =k, then D can be optimally augmented to

a (k+1)-strong digraph by adding disjoint cycles and paths. In particular if

D is a k-strong and k-regular digraph, then there are disjoint cycles covering

V whose addition to D gives a (k + 1)-strong and (k + 1)-regular digraph.

It is instructive to compare this result with Theorem 7.10.7.

Recently, Frank has shown that the problem of augmenting the connec-

tivity by one can be solved in polynomial time without using the ellipsoid

method.

Theorem 7.7.9 [266] There exists a combinatorial polynomial algorithm for

increasing the vertez-strong connectivity of a digraph by one.

7.7.3 Special Classes of Digraphs

For general digraphs one cannot say much about the structure of families

of independent one-way pairs, but as we are going to see, there are (non-

trivial) classes of digraphs for which nice structure can be found and hence

a good estimate on the value of a,(D) can be given. The first result, due to

Masuzawa, Hagihara and Tokura, deals with in-branchings.

Theorem 7.7.10 /555] Let B = (V,A) be an in-branching. Then ax(B) is

given by

Gp(.B) = SS max{0,k — dt (v)}.
veEV

O

The proof of this result in [555] is long, but Frank and Jordan found a short
proof based on Theorem 7.7.3, see [273].

For an arbitrary digraph we define n,~,7«* by

372 7. Global Connectivity

ny (D) =)_ max{0,k — d~(v)}, (7.19)
vEV

nt (D) = }_ max{0,k — d*(v)}. (7.20)
vEV

Frank made the following conjecture, which would imply that we have

ax (D) = yx(D) for every acyclic digraph D:

Conjecture 7.7.11 [261] For any acyclic digraph D on at least k+1 vertices

ax(D) = max{nx (D),ne*(D)}-

A partial result was obtained by Frank and Jordan in [273].

Lemma 7.7.12 [273] Let D = (V,A) be an acyclic digraph for which

ax(D) = ¥i(D). Then a,(D) = max{nx~ (D),ne*(D)}-

Proof: Since a,(D) = yj(D) there exists some family F of independent

one-way pairs with ,(F) -= ax,(D) such that all tails, or all heads, in F

are pairwise disjoint. By considering the converse of D if necessary, we may

assume that the tails {T,...,7;} of F are pairwise disjoint.
Because D is acyclic, the subgraph induced by T; is acyclic for each i =

1,2,...,t. Hence each T; contains a vertex 2; of out-degree zero in D(T;).

Thus N+(a,;) C N+(T;) and hence k— d*(x;) > k—|N*(T;)| > k—h(Ti, Hi)
for each i = 1,2,...,¢. Now we obtain

showing that a,(D) = n,*+(D). Oo

Bang-Jensen made the following conjecture at a meeting in Budapest in

1994:

Conjecture 7.7.13 For every semicomplete digraph D on at least k + 1

vertices
k(k + 1)
ee

If true this would be the best possible since a transitive tournament T

on n > k +1 vertices needs this many arcs. To see this it suffices to observe

that, if v1, v2,...,Un is the unique acyclic ordering of the vertices in T’,, then

the first k vertices need k,k —1,...,2,1 new arcs entering them in order to

satisfy the condition that the in-degree is at least k. It is not difficult to check

Qk (D) <

7.7 Increasing the Vertex-Strong Connectivity Optimally 373

(Exercise 7.20) that one can always make a transitive tournament k-strong

by adding eet 1) new arcs. The following partial result follows from the work

of Frank and Jordan [273]:

Proposition 7.7.14 For every semicomplete digraph D on at least k + 1

vertices we have ax(D) < k?.

Proof: We prove this by showing that if D is an r-strong semicomplete

digraph which has at least r + 2 vertices, then we need at most 2r + 1 new

arcs to make it (r + 1)-strong. This will imply that we need at most k? arcs
to make any semicomplete digraph k-strong.

Suppose first that D is not strongly connected. Since every semicomplete

digraph has a Hamilton path (by Theorem 1.4.5), it follows that we can make

D strong by adding one arc.

Suppose now that r > 1 and that there is some r-strong semicomplete

digraph D for which we need at least 2r + 2 arcs to obtain an (r + 1)-strong

semicomplete digraph from D. Thus a,41(D) > 2r+2 and then we conclude

from Theorem 7.7.7 that a-41(D) = y71,(D). Hence, by the definition of
741(D), there exist 2r + 2 pairwise disjoint sets X1,X2,...,Xar+2, such

that either each of these has |N+(X;)| = r or each has |N~(X;)| = r. By
considering the converse of D if necessary, we may assume that |N*(X;)| =r
for each X;. Let X’ be obtained by taking one vertex 2; from each X; and

let D’ = D(X’). Since D’ is semicomplete and has 2r + 2 vertices, it is easy

to see that some 2; has at least r + 1 out-neighbours in D’. However each of

these contributes to |N5(X;)|, contradiction. Oo

7.7.4 Splittings Preserving k-Strong Connectivity

In Section 7.5 we saw that, with respect to arc-strong connectivity, it is

always possible to split off all arcs incident to a vertex v without decreasing

the arc-strong connectivity of the resulting directed multigraph provided that

d*(v) =d~(v). To see that this does not extend to vertex-strong connectivity,
consider the digraph D in Figure 7.8. If we add a new vertex s and arcs

ds,es, sa, sf, then we obtain a 2-strong digraph D'. However, it follows from

the fact that a2(D) = 3 (as we argued previously, see Figure 7.8) that there
cannot exist a complete splitting off at s in D’ such that the resulting digraph

(after removing s) is 2-strong.
Below we prove a splitting result for vertex-strong connectivity, due to

Frank and Jordan. We do this to illustrate some of the proof techniques that

can be used in this area. The reader will notice that they are different from the

arc-strong connectivity proofs, although they do have common ingredients.

An arc a in a k-strong digraph D is k-critical if it cannot be deleted

without destroying the property of D being k-strong. Note that if an arc is

k-critical then it enters a set X with |Np(X)| =k and |Np_,(X)|=k-1

and leaves a set Y with |Nj(Y)| =k and |Nj_,(Y)| =k -1.

374 7. Global Connectivity

A subset U C V ina k-strong digraph D = (V, A) is out-tight (in-tight)

if |V —U| >k+1 and |NZ(U)| =k (\Np5(U)| = &)-

Lemma 7.7.15 [84] Let D = (V, A) be a k-strong digraph and let e = ry be

a k-critical arc in D. Then there exists a unique minimal out-tight set K in

D—e and a unique minimal in-tight set B in D—e. There is no are from K

to B in D —e, and in addition, (D — e) + f is k-strong for any arc f = wv

withué€ K andve€ B.

Proof: Since e is k-critical, K(D — e) = k — 1. Suppose that there exist two

different minimal out-tight sets K, and K2 in D —e. Let Hy = V — Ki -

Np_.(K1) and Hy = V — Ky — N$_,(K2). Then (Ki, Hi) and (K2, H2)

are one-way pairs in D — e with hp_-(Ki, Hi) = k — 1, 1 = 1,2. Since we

can make D — e k-strong by adding the arc e, these one-way pairs cannot

be independent. This implies that c € K, 1 Ko and y € Hi 2 Ab. Thus

in D —e we have Nz_.(y) C V — Ki U Ke. Hence, by Menger’s theorem,

|V ae (ky U K2)| = k and [N+ (Ky N K2)|, |N* (iy U K2)| > k- i since D—e

is (k — 1)-strong. Thus, using Proposition 7.1.3 and the fact that D — e is

(k — 1)-strong,

k-1+k-1=|N}_,(K1)|+|N5_.(K2)|

> |Nb_.(K1 9 Ke)| + |Np_.(Ki U K2)|
>k-1+k-1.

This gives |Nt+(K,M K2)| = k — 1, contradicting the minimality of K,. The

uniqueness of B follows similarly.

To see the second statement, observe that for any out-tight set L and the

unique minimal out-tight set K we have K C L and BC (V -L—N*(L)).
(In particular, ANB = @.) Hence, adding any arc from K to B will eliminate
all one-way pairs (X,Y) with h(X,Y)=k-1. O

The following splitting result for vertex-strong connectivity is due to

Frank and Jordan:

Theorem 7.7.16 /271] Let D = (V +s,AUF) be a k-strong digraph for

which |N*(s)| = |N~(s)| = d > 2k—1 holds and every arc e incident with s
is k-critical. Then the arcs incident to s can be split off completely such that

the resulting digraph D' obtained by deleting s is k-strong. oO

Proof: If k = 1, then d5(s) = df(s), since D has no multiple arcs, and the
claim follows from Theorem 7.5.2. Hence we may assume that k > 2.

Let N~(s) = {u1,...,ua} and N*(s) = {v,,..., va}. Since each arc inci-
dent with s is k-critical, it follows from Lemma 7.7.15 that there exist unique

out-tight sets O;,O2,...Oq4 and unique in-tight sets [,,Io,...,Iq such that

u; € O; and O; is the unique minimal out-tight set in D — u;s, respectively,

uv; € I; and J; is the unique minimal in-tight set in D—sv;, fori = 1,2,...,d.

We claim that O;NO; = @forl<i<j<dandI,N1l; =QOforl<i<j<d.

7.7 Increasing the Vertex-Strong Connectivity Optimally 375

Suppose this is not true. Then without loss of generality O;:1O; 4 @ for some

i # j. Note that u,s is the only arc from O, to s in D for r = 1,2,...,d, since

O, has only k—1 out-neighbours in D—u,s. Hence it follows that uj; € O;-O;

and u; € O; — Oj and O;NO; has no arc to s. Since |N~(s)| > 2k-1>k
(because k > 2), we have |V —(O;UO;)| > k—1. This and Menger’s theorem

imply that |NB_,(O: N.0;)|,|Nj_,(Oi U O;)| > k — 1. However, applying

Proposition 7.1.3 to O;,O; in D — s (which is (k — 1)-strong) we conclude

(k —1) + (k—1) =|N5_,(0:)| + |N5_,(0;)|

> |Np-,(0:9.0;)|+|NB_,(0;U0;)| (7.21)
> (k—1)+ (k—1).

It follows from (7.21) that |Nj_,(O;O;)| = k—1 and since O; NO; has no
arc to s we get the contradiction |N5(O;NO;)| = k—1. Thus we have shown
that O,,O2,...Og are disjoint and similarly [,, I2,..., Iq are all disjoint.

This implies that yj(D — s) > d = 2k —1 and hence, by Theorem 7.7.7

ax(D — s) = ¥;,(D — s). Since D is k-strong it follows that y;(D — s) cannot
be greater than d, since the d arcs to and from s eliminate all sets with fewer

than k neighbours. Thus a,(D-—s) = d. It remains to prove that we can make

D—s k-strong by adding a set of d arcs which form a pairing of {u1,..., ua}
with: {t),:-. ,va}-

Let F be any optimal augmenting set consisting of d arcs so that adding

these arcs to D — s results in a k-strong digraph D*. Then F' must contain

exactly one arc whose tail is in O; and exactly one arc whose head is in J;,

i= 1,2,...,d, since O,,O2,...Og are disjoint and I,, I2,...,Iq are disjoint.

This gives a pairing (O1,I,(1)),---,(Oa,Jn(a)), where 7 is a permutation of

{1,2,...,d}. Note that the set O; = V — (O; UN#_,(O;)) is in-tight in
D — s. Let e; be the unique arc in F' which has tail in O; and head in J,(;).

Then e; must have its head in O; (because after adding F, O; has an in-

neighbour in O;). Then the minimality of [,(;) and Proposition 7.1.3 implies

that T,(%) e O;.

Clearly the arc e; is k-critical in D*, since it is the only arc from F’ which

leaves O;. Thus, by Lemma 7.7.15, there is a unique minimal out-tight set

O containing the tail of e; and a unique minimal in-tight set J containing

the head of e; in D* — e;. We claim that O = O; and I = I,(;). Clearly

O; is out-tight in D* — e;, so O C Oj. If we do not have equality, then this

would contradict the minimality of O; in D — us (here we used that s has

precisely one in-neighbour in O;). Now it follows from Lemma 7.7.15 that

we can replace the arc e; by any arc from Oj; to J,,;), in particular, the arc

U;Vz(i), and still have an optimal augmenting set F’. This shows that we can

replace the arcs in F' one by one, until we get the optimal augmenting set

F* = {uUq(1),--+,UdUz(p) } and the proof is complete. oO

376 7. Global Connectivity

For further results on splittings that preserve vertex-strong connectivity

the reader is referred to the papers [271, 272] by Frank and Jordan, the paper

[467] by Jorddn and Jordén’s PhD thesis [468].

7.8 A Generalization of Arc-Strong Connectivity

Below we show how to reduce the vertex-strong connectivity augmentation

to a generalization of the arc-strong connectivity augmentation problem.

Let D = (V, A) be a directed multigraph with two specified (not necessar-
ily disjoint) subsets S,T of vertices. We say that D is k-(S,T)-arc-strong

if there are k arc-disjoint (s,t)-paths in D for every choice of s € S,t € T.

Thus if S = T = V this corresponds to D being k-arc-strong.

Recall that in the proof of Menger’s theorem (Theorem 7.3.1) we re-

duced local vertex-strong connectivity to local arc-strong connectivity via

the vertex-splitting technique (recall Figure 3.4). It follows from the proof of

Theorem 7.3.1 that a digraph D = (V, A) is k-strong if and only if Dsr is
k-(S,T)-arc-strong, where S = {v,: v € V},T = {u;: v € V}. Two subsets
X,Y are (S,T)-independent if XNYOT = 96, orS Cc XUY. A fam-
ily F of subsets of V is (S,T)-independent if the sets in F are pairwise
(S,T)-independent. A set X C V is essential if XMT#@QandS—-XF9.

Frank and Jordan [272] characterized the size of a minimum cardinality
set of new arcs to add to a digraph D = (V, A) with specified subsets S,T C V

in order to make the resulting digraph k-(.S, T)-arc-strong.

Theorem 7.8.1 [272] Let D = (V, A) be a digraph with a pair of non-empty

(not necessarily distinct) subsets S,T C V. Then D can be made k-(S,T)-
arc-strong by adding at most y arcs with tails in S and heads in T if and only

if

So (k-d-(Z)) <7 (7.22)
ZEH

holds for every (S,T)-independent family H of essential subsets of V. oO

To see that we really need to consider deficiencies of (S,T')-independent
families (and not just a kind of subpartition lower bound), consider the di-
graph with four vertices {s1,s2,t1,t2} and no arcs. If we take k = 1, then
it is easy to see that, if we can add arcs from S to T only, we need four
arcs sitj, 1,7 = 1,2 to obtain a 1-(S,T)-are-strong digraph. The only (S,T)-
independent family with four members is {{s;,t;}: 7,7 = 1,2}.

So far no combinatorial polynomial algorithm is known for the (S,T)-
arc-strong connectivity augmentation problem for general k. For k = 1 Enni
described such an algorithm in [219].

Theorem 7.8.1 is not only a generalization of the arc-strong connectivity
augmentation result in Theorem 7.6.3 (and hence implies Theorem 7.6.3 as

7.8 A Generalization of Arc-Strong Connectivity SHG

can be verified by solving Exercise 7.39). Theorem 7.8.1 also implies Theorem
7.7.3 as we shall see below.

Proof of Theorem 7.7.3 [273]:

Let D = (V,A) be a digraph with «(D) < k which we want to make
k-strong. We first construct the digraph D’ = (S UT, 4A‘) by the vertex

splitting procedure (splitting each v into v,, vz, see Figure 3.4). By the remark

in the beginning of this section D’ is I-(S,T)-arc-strong if and only if D
is l-strong. Let y,5,r(D') denote the k-(S,T)-arc-strong connectivity
augmentation number of D, that is, the minimum number of new arcs

with tails in S and heads in T, one has to add to Dsr in order to make it k-

(S,7)-arc-strong. Furthermore let 7x(D) (7x,s,r(D’)) denote the maximum
deficiency, with respect to k, over all independent families of one-way pairs

in D (respectively, (S,7)-independent families of essential sets in D‘).
From the construction of D’ and the proof of Theorem 7.3.1, it follows

easily that, if F is a new set of arcs all with tails in S and heads in T such

that adding F' to D’ makes the resulting digraph k-(S,T)-arc-strong, then
the corresponding set of arcs added to D will result in a k-strong digraph.

Hence we have

an(D) < Ye,8,7(D’). (7.23)

Below we will demonstrate that nx(D) > mx,s,r(D'). We show that
there is some family F' of (S,T)-independent essential sets with deficiency

nk,s,v(F') = nk,s,r(D') from which we can construct an independent fam-
ily F of one-way pairs in D with nx(F) = ne,s,r(F'). For this choose
F' = {Z,,...,Z,} with deficiency nx,s,r(D’) to satisfy the following prop-

erty:

ie

|F'| is minimal and with respect to this Syd — Z;|+|SN Z;|) is maximal.
i—"

; (7.24)
Claim A: For every Z; € F' there is no arc from S — Z; to TN Z;.
Proof of Claim A: Suppose there is some j with 1 < j <r for which there

is an arc st from S— Z; toTNZ;. If |TZ,| > 2, then replacing 2; by 2; —t

we obtain a new (S,7')-independent family F" of essential sets and since

dj, (t) = 1 it follows that the deficiency of F" is at least that of F’. But now

F" contradicts the choice of F' so as to satisfy (7.24). Hence TN Z; = {t}.

Since v; € T dominates v, € S for each v € V, we have |S — Z;| > 2, (as

otherwise d~(Z;) > |T|—1=|V|-—12> k and we could have deleted Z; from

F' without decreasing the deficiency, contradicting (7.24)). Now replace Z;

by Z; U {s} in F'. The new family F* still consists of essential sets and has

at least the same deficiency. This contradiction to (7.24) completes the proof

of the claim. O

Note that by Claim A,

378 7. Global Connectivity

dp (Z;) = |{ve: ve € Zj and vs € Z;}I. (7.25)

Claim B: For every Z; € F’ there is some v € V so that both v, and vy;

belong to Z;.

Proof Claim B: Suppose some Z; does not satisfy this property. Choose

vs ¢ Z; so that y% € Z;. If S— Z; # {vs}, then replace Z; by Z; U{s} in F’.
The new family F* still consists of essential sets and has at least the same

deficiency. This contradicts (7.24). Hence we may assume that S — Z; =
{vs}. By the assumption that Z; does not contain any pair vs,uz, we get

that TM Z; = {v4} and as above we see that Z; can be deleted from F’,
contradicting (7.24). Oo

Now we can finish the proof of Theorem 7.7.3: Let

Ap={vEV June ZV, = 10 6 V3 Us. 2, dud, © 2a), 0 sy ie

It follows from the fact that each Z; is essential and Claim B that X;,Y; 4 0.
Furthermore, by Claim A, (X;,;Y;) is a one-way pair and, by (7.25), it has

deficiency k — dj, (Z;). Let

F = {G5 ¥1) 22 (Ars Yr) }-

Since F’ is (S,T)-independent, F consists of independent one-way pairs and

by the remark above, the deficiency of F equals n,,5,r(D'). This shows that

nx(D) > nx,s,r(D’). Combining this with (7.23), we get

nk,s,T(D') < nk(D) < ax(D) < Ye,5,7(D’).

By Theorem 7.8.1 equality holds everywhere and Theorem 7.7.3 follows. O

7.9 Arc Reversals and Vertex-Strong Connectivity

Suppose now that we want to increase the vertex-strong connectivity of a
digraph by re-orienting arcs rather than adding new ones. This gives rise to
the following problem.

Problem 7.9.1 Given natural number k and a digraph D = (V,A) on at
least k + 1 vertices, find a minimum set F C A of arcs in D such that the
digraph D' obtained from D by reversing every arc in F is k-strong.

If such a subset exists, then we let r,(D) = |F|, where F is a minimum
cardinality subset of A, whose reversal makes the resulting digraph k-strong.
Otherwise we let r,.(D) = o0.

For arbitrary digraphs it is not clear how we can decide whether such a
reversal even exists, let alone find an optimal one (unless we try all possibili-
ties which clearly requires exponential time). Indeed, this seems to be a very

7.9 Arc Reversals and Vertex-Strong Connectivity 379

difficult problem (see also Conjecture 8.6.7). Clearly, if r,(D) < oo, then we
have

ax(D) < rx(D), (7.26)

since, instead of reversing in D we may add exactly those new arcs we would

obtain by reversing and keep the original ones.

We will now show that for semicomplete digraphs D, the function r;(D)
behaves nicely.

Lemma 7.9.2 /84] If a semicomplete digraph D has at least 2k +1 vertices

then rx(D) is finite and is bounded by a function depending only on k.

Proof: To see this it suffices to use the following two simple observations,

the proofs of which are left to the reader as Exercises 7.26 and 7.36.

(a) If D is a k-strong digraph and D’ is obtained from D by adding a new

vertex x and arcs from x to every vertex in a set X of k distinct vertices

of D and arcs from every vertex of a set Y of k distinct vertices of D to

x, then D’ is also k-strong.

(b) If T is a semicomplete digraph on at least 4k —1 vertices, then T contains

a vertex with in-degree and out-degree at least k.

By observations (a) and (b), for every semicomplete digraph T, r;,(T) <

rz(ZI’) for some subgraph T’ of T with |V(T")| < 4k — 2. Continue removing
vertices as long as we can find a vertex of in- and out-degree at least k,

or the current graph has 2k + 1 vertices. When this process stops we have

2k +1 < |V(T")| < 4k — 2 in the current semicomplete digraph T’. Then
we can make T’ k-strong by reversing some arcs and add back each of the

removed vertices in the reverse order of the deletion. This provides a simple

upper bound for r;,(7') (and hence for a;,(T)) as a function of k: we need to

reverse at most {En 2) (EE = 8) arcs. O

Note that the process above may not lead to an optimal reversal for the

original semicomplete digraph(in terms of the number of arcs to reverse), not

even if we reverse optimally in T’ (see also Exercise 7.40). Bang-Jensen and
Jordan showed that, somewhat surprisingly, as soon as the number of vertices

in the given semicomplete digraph D is sufficiently high (depending only on

k), the minimum number of arcs in D we need to reverse in order to achieve

a k-strong semicomplete digraph equals the minimum number of new arcs we
need to add to D to obtain a k-strong semicomplete digraph.

Theorem 7.9.3 /84] If D is a semicomplete digraph on at least 3k — 1 ver-

tices for some k > 2 then ax(D) = rx(D).

The idea is to show that r,(D) < a,(D), by demonstrating that a certain

optimal augmenting set F of D has the property that, if we reverse the

380 7. Global Connectivity

existing (opposite) arcs of F' in D, then we obtain a k-strong semicomplete

digraph. As we point out later, even for semicomplete digraphs, it is by no

means the case that just an arbitrary optimal augmenting set will have this

property. It was shown in [84] that 3k—1 is the best possible for semicomplete

digraphs. However, in the case when D is tournament, the question as to

whether or not the bound is best possible was left open and the following

conjecture was implicitly formulated.

Conjecture 7.9.4 /84] For every tournament D on at least 2k +1 vertices,

we have ax(D) = rz(D).

One may argue that perhaps if we restrict ourselves to only adding arcs

between adjacent vertices, then we could have a,(D) = rz,(D) for arbitrary
digraphs D, provided both numbers are finite and the number of vertices in

D is large enough. This is not true, however, as can be seen from the following
example:

Figure 7.9 A digraph with a2(D) = 1 and r2(D) = 2. The digraphs T; and T> are
2-strong. Fat arcs between sets of vertices indicate that all arcs between these sets
are present and have the direction shown.

Let T) and T> be disjoint 2-strong digraphs, let u € V(Ti), v € V(T2) be
fixed vertices and let D be the digraph obtained from T, and T by adding
new vertices x,y, z and the following arcs (see Figure 7.9):

{roy:r EV(Ti)} U {ys : 8s € V(T2)} U {sr: 3 € V(Te),r €V(T1)} U
{rox:reEV(T1) —u}U {soz:8 € V(T2) — v} U {2-5u, 20, z2}

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 381

It is not difficult to see that a2(D) = 1 and that any arc whose addition to
D results in a 2-strong digraph has tail 2 and head in T) U z. On the other

hand it is also easy to see that r2(D) > 2 (Exercise 7.34). This example can
be modified to work for any k > 1 (Exercise 7.35).

If we add arcs to the digraph D described above without increasing the

number of out-neighbours of 2 and of z, we can construct a semicomplete

digraph D' of any given size for which xz is an optimal augmentation but

reversing xz does not make D’ 2-strong.This — and similar constructions for

higher connectivity — show that even for semicomplete digraphs we cannot

reverse along an arbitrary optimal augmenting set for k > 2.

The following conjecture which is stronger than Conjecture 7.7.13 was

made by Bang-Jensen at a meeting in Budapest in 1994. Again the transitive

tournament on n > 2k +1 vertices shows that the bound would be best

possible if true.

Conjecture 7.9.5 For every tournament T on n vertices and every positive

integer k such that n > 2k+1 we have rz(T) < RAED

The problem of determining the optimal number of arcs to be reversed to

make an arbitrary digraph k-arc-strong was shown by Frank to be polynomi-

ally solvable in [254]. We will return to this in Section 8.8.4, where we shall

see how to solve this problem using submodular flows.

We complete this section with the following useful observation, which we

use in Section 7.14.

Lemma 7.9.6 [44, 344] Let D = (V, A) be a k-strong digraph and let xy be
an arc of D. If D has at least (k + 1)-internally disjoint (x, y)-paths each of

length at least 2, then the digraph D' obtained from D by replacing the arc

zy by the arc yx (or just deleting xy if yx € A) is k-strong. Furthermore, if

D' is not (k +1)-strong, then every minimum separating set S' of D' is also

separating in D.

Proof: Suppose that D’ is not (k+1)-strong. Let S’ be a minimum separator

of D'. Then |S’| < k and there is some pair a, b of vertices separated by S’ in

D’'. It follows from the assumption on k(x, y) that either S’'N {x,y} 4 0, or

S' does not separate xz, y. From this we get that {a,b} 4 {x,y} and that a,b
are also separated by S’ in D. This shows that every minimum separating

set of D’ is also separating in D. Since D is k-strong we have |S'| = k and

hence D’ is k-strong. 0

7.10 Minimally k-(Arc)-Strong Directed Multigraphs

A directed multigraph D = (V, A) is minimally k-(arc)-strong if D is k-

(arc)-strong, but for every arc e € A, D — e is not k-(arc)-strong. From an

382 7. Global Connectivity

application point of view it is very important to be able to identify a small

subgraph of a k-(arc)-strong directed multigraph which is spanning and still
k-(arc)-strong. The reason for this could be as follows. If many arcs of D

are redundant, then it may make sense to discard these. If one is writing

an algorithm for finding a certain structure that is based on k-(arc)-strong

connectivity, then working with the smaller subgraph could speed up the

algorithm, especially if k is relatively small compared to n.

Note however that, if we are given a k-(arc)-strong directed multigraph
D = (V,A) and ask for the smallest number of arcs in a spanning k-(arc)-

strong subgraph of D, then this is an NP-hard problem. Indeed, a strong

digraph D on n vertices has a strong spanning subgraph on n arcs if and only

if D has a hamiltonian cycle. Hence, we must settle for finding spanning sub-

graphs with relatively few arcs. Since every k-arc-strong directed multigraph

on n vertices has at least kn arcs, the proof of Theorem 7.10.1 together with

Exercise 9.27 implies that there is a polynomial algorithm to find a spanning

k-arc-strong subgraph with no more than twice the optimum number of arcs.

We discuss this topic in more detail in Section 7.16.

7.10.1 Minimally k-Arc-Strong Directed Multigraphs

We present some important degree results by Mader [535]. Combining these

results with Theorem 7.5.2 we obtain a construction method (also due to

Mader) to generate all k-arc-strong directed multigraphs. We start with a

result by Dalmazzo which gives an upper bound on the number of arcs in

any minimally k-arc-strong directed multigraph of order n.

Theorem 7.10.1 /172] A minimally k-arc-strong directed multigraph has at

most 2k(n — 1) arcs and this is the best possible.

Proof: Let D = (V, A) be k-arc-strong and let s be a fixed vertex of V. By
Theorem 7.3.2 d*(U),d~(U) > k for every 0 4 U C V. Hence, by Edmonds’
branching theorem (Theorem 9.5.1), D contains k-arc-disjoint in-branchings
Hetracs ,f,, rooted at s and k arc-disjoint out-branchings Fe ie es EF, k

rooted at s. Let A’ = A(F,,)U...UA(Fy,)U A(F3) U...UA(F%,) and let
D' = (V,A’'). Then D’ is k-arc-strong and has at most 2k(n — 1) arcs. Thus
if D is minimally k-arc-strong, then A = A’. To see that this bound cannot
be sharpened it suffices to consider the directed multigraph obtained from a
tree T. (as an undirected graph) and replacing each edge uv of T by k arcs
from u to v and k arcs from v to u. Oo

It it easy to see that, if D = (V, A) is minimally k-arc-strong, then every
arc uv leaves a k-out-critical set* and enters a k-in-critical set. Applying
(7.2) we obtain Lemma 7.10.2 below which implies that every arc wv leaves

* Recall that this means that there is some X C V such that u ExX,veV-X
and d*(X) =k.

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 383

precisely one minimal k-out-critical set X,, and enters precisely one minimal
k-in-critical set Y,,. Here minimal means with respect to inclusion.

Lemma 7.10.2 If X,Y are crossing k-in-critical sets in D, then XNY and
X UY are also k-in-critical sets and d(X,Y) = 0.

Proof: Suppose X,Y are crossing and k-in-critical. Using (7.2) we get

k+k=d (X)+d (Y)

=d (XUY)+d (XNY)+d(X,Y)

>k+k,

implying that X NY and X NY are both k-in-critical and d(X,Y) =0. O
Intuitively, Lemma 7.10.2 implies that minimally k-arc-strong directed

multigraphs have vertices of small in-degree and vertices small out-degree.

The next result by Mader shows that this is indeed the case. In fact, a much

stronger statement holds.

Theorem 7.10.3 /535] Every minimally k-arc-strong directed multigraph

has at least two vertices x,y with d* (x) = d(x) =dt(y) =d-(y) =k.

Proof: We give a proof due to Frank [260]. Let R be a family of k-in-critical
sets with the property that

every arc in D enters at least one member of 7. (7.27)

By our remark above such a family exists since D is minimally k-arc-strong.

Our first goal is to make R cross-free (that is, we want to replace R
by a new family R* of k-in-critical sets such that 7* still satisfies (7.27)
and no two members of #* are crossing). To do this we apply the so-called

uncrossing technique which is quite useful in several proofs. If there are

crossing members X,Y in R, then by Lemma 7.10.2, XNY and XUY are k-in-

critical and d(X, Y) = 0. Hence every arc entering X or Y also enters X UY,
or X MY. Thus we can replace the sets X,Y by X NY, X UY in FR (we only

add sets if they are not already there). Since |XNY|?+|XUY/? > |X|?+|Y/?
and the number of sets in R does not increase, we will end up with a family R

which is cross-free. Note that we could have obtained such a family directly by

choosing the members in FR as the unique minimal k-in-critical sets entered by

the arcs of A. However, this choice would make the proof more complicated,

since we lose the freedom of just working with a cross-free family satisfying

(7.27). We shall use this freedom in Case 2 below. Assume below that

R is cross-free. (7.28)

Now the trick is to consider an arbitrary fixed vertex s and show that

V —s contains a vertex with in-degree and out-degree k. This will imply the

_ theorem.

384 7. Global Connectivity

Let s be fixed and define the families S and U as follows

S={XER:8¢X}, V={V—-Xis EX ER}: (7.29)

Let. f= LU) = o.U UU,
Claim A: The family C is laminar.

Proof of Claim A: We must show that no two members of £ are inter-

secting. Suppose X,Y € CL are intersecting. Then X and Y cannot both be

from S since then they are crossing and this contradicts (7.28). Similarly X

and Y cannot both be from U, since then V — X,V — Y are crossing mem-

bers of R, a contradiction again. Finally, if X ¢ S and Y €U, then X and

V —Y are crossing members of R, contradicting (7.28). This proves that £

is laminar. O

By the choice of S and U we have the following property:

Every arc either enters a member of S or leaves a member of U (or both).
(7.30)

Suppose R is chosen such that (7.27) and (7.28) hold and furthermore

S—> |X| is minimal. (7.31)
“XEL

To complete the proof of the theorem we consider two cases.

Case 1 Every member of C has size one:

Let X =dr GV —s: {zr} €.o} and Y = (y-e Vi—s - 1y) ei.
Then X cannot be empty, since every arc leaving s enters X. Similarly Y is

non-empty. Now if X MY = @, then there can be no arc leaving X, by the

definition of X and (7.30). However d*(X) > k, since D is k-arc-strong and
hence we have shown that X NY # 0. Let t be any element in X NY, then

we have d*(t) = d-(t) =k.

Case 2 Some member Z of CL has size at least two:

Choose Z such that |Z| is minimal among all members of C of size at
least two.

Note that, if we consider the converse D* of D and let R* = {V—-—X:

X € R} and then define S*,U/* as we defined S and U from R, then S* =U

and U* = S. Furthermore, the corresponding family £* satisfies (7.30) and
(7.31). This shows that we may assume without loss of generality that Z € S.
We claim that

the directed multigraph D(Z) is strongly connected. Whey)

Suppose this is not the case and let Z,, Z2 be a partition of Z with the

property that there are no arcs from Z2 to Z;. Then we have k < d7(Z;) <

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 385

d~(Z) =k, implying that Z, is k-in-critical and that every arc that enters
Z also enters Z,. Let R’ = R — {Z} + {Z,}, S’' = S —{Z} + {Z,} and let
L'=S'UU. Then £’ still satisfies (7.30) and

peri Sa
XEL! XEL

However, this contradicts the choice of R. Thus we have shown that D(Z) is
strongly connected. This establishes (7.32).

We return to the proof of the theorem. Let

A={zeZ:{z}EeS},B={zEZ:{z} eu}.

If AN B # @ then any vertex t € AN B has d*(t) = d~(t) and we are done.
Suppose AM B = @. Then we claim that

A=0. (7.33)

Suppose A # @. By the choice of R so that CL satisfies (7.31), we cannot
leave out any set without violating (7.30). Hence we cannot have A = Z, be-
cause then we could leave out Z without violating (7.30). Now (7.32) implies
that there is an arc uv from A to Z — A. Since C satisfies (7.30), the arc
uv either enters some member of S or leaves a member of U. If it enters a

member M of S, then by the definition of A, M cannot be of size one. On

the other hand, by the fact that C is laminar and the minimality of Z, M

also cannot have size at least two. Hence wv must leave a member W of U.

Since we have assumed AN B = 9, this must be a set of size more than one.

Using that C is laminar it follows that W C Z, contradicting the choice of

Z. Hence we must have A = @ and (7.33) is established. Next we claim that

B=Z. (7.34)

Since A = @ and Z is minimal among all members of CL of size at least

2, every arc with both ends in Z must leave a member of B (using the same

arguments as above). Hence B # @ and we must have B = Z, since otherwise

(7.32) would imply the existence of an arc from Z — B to B, contradicting

what we just concluded.

Now we are ready to complete the proof of the theorem. Since B = Z,

every vertex in Z has out-degree k. Thus we have

RZ| =) d"(o)
vEZ

= d*(Z) + |A(D(Z))|
>k+|A(D(Z))|

386 7. Global Connectivity

=k+()/d-(v))-d (2)
vEZ

= Do al (v)

vEZ

> k|ZI.

Hence equality holds everywhere, in particular, every vertex in Z has in-

and out-degree k. O

2 2 2

oe ee ek
1 ei

; 1

Figure 7.10 A construction of a 2-arc-strong directed multigraph starting from a
single vertex.

Using Theorem 7.5.3 and Theorem 7.10.3 one can obtain the following

complete characterization of k-arc-strong directed multigraphs, due to Mader

[537].

Theorem 7.10.4 /537] A directed multigraph D is k-arc-strong if and only

if it can be obtained starting from a single vertex by applying the following

two operations (in any order):

Operation A: Add a new arc connecting existing vertices.

Operation B: Choose k distinct arcs uj,v,,...ugvzp and replace these by 2k

NEW ATCS U1S,...,UkS,$8V1,...,8U~, Where s is a new verter.

Proof: Clearly Operation A preserves the property of being k-arc-strong. To

see that this also holds for Operation B we apply Menger’s theorem. Suppose

D is k-arc-strong and D' is obtained from D by one application of Operation

B but D’ is not k-arc-strong. Let U C V(D"') be some subset such that
d},(U) < k —1. Then we must have U # {s} and U # V(D), since clearly s
has in- and out-degree k in D'. Now it is easy to see that the corresponding set

U-—s has out-degree less than k in D, a contradiction. From these observations

it is easy to prove by induction on the number of vertices that every directed

multigraph that can be constructed via operations A and B is k-arc-strong.

Here we assume by definition that every directed pseudograph having just

one vertex is k-arc-strong.

The other direction can be proved using induction on the number of arcs.

If D is k-arc-strong and not minimally k-arc-strong, then we can remove an

arc and apply induction. Otherwise it follows from Theorem 7.10.3 that D

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 387

contains a vertex s such that d+(s) = d~(s) = k. According to Theorem 7.5.3
this vertex and the 2k arcs incident with it can be replaced by k new arcs

in such a way that the resulting directed multigraph D’ is k-arc-strong. By

induction D' can be constructed via operations A and B. Since we can go

from D’ back to D by using operation B once, D can be constructed using

operations A and B. Oo

See Figure 7.10 for an illustration of the theorem.

7.10.2 Minimally k-Strong Digraphs

In this section D = (V, A) is always a digraph (i.e. no multiple arcs) and

hence we know that dt(v) = |Nt(v)| for each v € V.
We saw in the last section that every minimally k-arc-strong directed

multigraph has at least two vertices with in- and out-degree equal to k.

Mader conjectures that this is also the case for vertex-strong connectivity in

digraphs.

Conjecture 7.10.5 /538] Every minimally k-strong digraph contains at least

two vertices such that both have in- and out-degree k.

This conjecture is still open and seems very difficult. For k = 1 the truth

of Conjecture 7.10.5 follows from Theorem 7.10.3. Mader [541] has proved
the conjecture for k = 2. For all other values of k the conjecture is open.

Examples by Mader [535] show that one cannot replace two by three in the

conjecture.

Recall (from Subsection 7.7.4) that an arc e of a k-strong digraph is k-

critical if D —e is not k-strong. By Lemma 7.7.2, for each k-critical arc uv we

can associate sets Tyy, Hyy such that (Ty,, Huy) is a one-way pair in D — uv

and h(Ty,», Huv) = k—1. This one-way pair may not be unique, but below we

always assume that we have chosen a fixed one-way pair for each k-critical

arc in D. Compare this with Lemma 7.7.15.

Lemma 7.10.6 Let D = (V, A) be a k-strong digraph. Then the following is

true:

(a) If D has two k-critical arcs ux, uy, such that d+(u) > k+1, then |Tuy| >

LH gel 2
(b) If D has two k-critical arcs xu, yu, such that d~(u) > k+1, then |Hzu| >

[Tyul.

Proof: Since (b) follows from (a) by considering the converse of D, it suffices
to prove (a). Hence we assume that uz, uy are k-critical arcs of D and that

d*(u) >k+1. Let (Tuc, Hux), (Tuy; Huy) be the pairs associated with uz, uy
above. Note that these are not one-way pairs in D, since there is a (unique)
arc, namely ux (uy) which goes from Tyz (Tuy) to Hue (Huy). Let also Syz =

V —(Tuz UHyz) and Suy = V — (Tuy U Huy). Then |Suz| = |Suy| = *—1 and

388 7. Global Connectivity

(A) | (B)

Figure 7.11 Illustration of the proof of Lemma 7.10.6. Part (A) illustrates the case

when HuzM Huy # @. Part (B) illustrates the case when Hus Huy = @. The first

row of each 3 x 3 diagram corresponds to the set Tyz. The first column corresponds

to Tuy and so on. The positions of x,y indicate that they can be in either of the
two neighbouring cells. The numbers a,b,c,d,e denote the cardinality of the sets

corresponding to their cell.

zt € Hur — Huy, y € Huy — Huz. It will be useful to study Figure 7.11 while

reading the proof.
Let a,b,c, d,e be defined as in Figure 7.11. Since each of the sets Suz, Suy

has size k — 1 we see that

atb+2c+d+e=2k-2. (7.35)

We claim that Hu; N Huy = ~. Suppose this is not the case and let

z € Huz 1 Hwy be arbitrarily chosen. Now it follows from the fact that

(Tur, Hux) is a one-way pair in D — ux and (Tuy, Huy) is a one-way pair in

D-—uy, that the set C7, indicated by the line I in Figure 7.11, separates u from

zin D. Hence c+d+e > k, since D is k-strong. Now (7.35) implies that the

set C;, indicated by the line II, has size at most k — 2. Since d*(u) >k+1

and u has precisely two arcs, namely uz,uy out of Ty; Ty, in D — Cy,,

we see that there is some out-neighbour w of u inside Ty; N Tyy. But now

it is easy to see that Cy; U {u} separates w from z, contradicting that D is
k-strong. Hence we have shown that Hy; Huy = 0.

To complete the proof, we only need to show that a > d. Suppose this

is not the case. Then in particular d > 1 and the size of the set Cy; is at

most |Sy,| + a—d < k — 2. Thus as above we can argue that u has an out-
neighbour w inside Tyz 1 Tuy. Now Cz; U {u} separates w from z in D, a

contradiction. 0

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 389

An anti-directed trail is the digraph T one obtains from a closed undi-

rected trail T’ of even length by fixing a traversal of T and orienting the edges

so that every second vertex v has in-degree zero when we consider just the

two arcs between v and its successor and predecessor on T. We denote the

anti-directed trail T by T = v,0,v202...v,0;v1, where 0; indicates that the
vertex 0; is dominated by both its successor and its predecessor on the trail

T. A vertex which dominates (is dominated by) both its successor and its

predecessor on T' is a source (sink) of T. Note that if a vertex v is repeated

on T then v may be both a source and a sink. An anti-directed cycle is

an anti-directed trail in which no vertex occurs twice (that is, the underlying

graph is just a cycle). See Figure 7.12 for an illustration of the definitions.

V1 V1

V2 = U3

U3 v2

Figure 7.12 An anti-directed trail v1 01 v202v303v1 on 6 vertices. The vertex v2 = v3
is both a source and a sink of T’. Note that T contains no anti-directed cycle.

Now we can prove the following important result due to Mader:

Theorem 7.10.7 [538] Let D be a k-strong digraph containing an anti-

directed trail T = v1 01,0202... Vr0,v1,. Then at least one of the following holds:

(a) Some arc e € A(T) is not k-critical in D.
(b) Some source v; of T has out-degree k in D.

(c) Some sink 0; of T has in-degree k in D.

Proof: If (b) or (c) holds there is nothing to prove so suppose that d*(v;) 2

k +1 for each source and d~(0;) > k +1 for each sink of T’. We shall prove

that (a) holds. -

Suppose to the contrary that every arc e on T is k-critical. Applying

Lemma 7.10.6 (a) to the arcs v1 0,, 7101, we obtain |Ty,o,.| > |Hv,o;|- Similarly,

we get from Lemma 7.10.6 (b) that |Hy,o,| > |Tv2s,|. Repeating this argument

around the trail we reach the following contradiction

[Tur0.] > |Hoyo.| > [Tora| > |Hvotal > --. > |Hv-a,| > [Tore

Hence we have shown that (a) holds. Oo

The following is an easy consequence (see Exercise 7.48).

390 7. Global Connectivity

Corollary 7.10.8 /538] Every minimally k-strong digraph contains a vertex

x of in-degree k, or a vertex y of out-degree k. O

Using Theorem 7.10.7, Mader proved the following much stronger state-

ment.

Theorem 7.10.9 /538] Every minimally k-strong digraph contains at least

k vertices of out-degree k and at least k vertices of in-degree k. O

Theorem 7.10.7 has many other nice consequences. Here is one for undirected

graphs.

Corollary 7.10.10 /533] Let C be a cycle of a k-connected undirected graph

G. Then either C contains an edge e which can be removed without decreasing

the connectivity of G, or some verter v € V(C) has degree k inG.

Proof: To see this, it suffices to consider the complete biorientation D of G

and notice that D — zy is k-strong if and only if D — {ry, yr} is k-strong

(Exercise 7.25) which happens if and only if G — e is k-connected, where

e = ry. Next, observe that in D, the cycle C either corresponds to one anti-

directed trail C’, obtained by alternating the orientation on the arcs taken

twice around the cycle C, when |C| is odd, or to two anti-directed cycles

C’,C" when |C| is even. Now the claim follows from Theorem 7.10.7. a)

One reason why Corollary 7.10.10 is important is the following easy con-

sequence concerning augmentations of undirected graphs, which was pointed

out by Jordan.

Corollary 7.10.11 /469] Let G = (V,E) be an undirected graph which is

k-connected, but not (k + 1)-connected. Then every minimal set of edges F

which augments the connectivity of G to (k +1) induces a forest. Oo

For directed graphs one obtains the following result, due to Jordan, on

augmentations from k-strong to (k + 1)-strong connectivity. Compare this

with Theorem 7.7.8.

Corollary 7.10.12 [467] Let D = (V,A) be a directed graph which is k-

strong, but not (k +1)-strong and let F be a minimal set of new arcs, whose

addition to D gives a (k+1)-strong digraph. Then the digraph induced by the

arcs in F’ contains no anti-directed trail. oO

One can also apply Theorem 7.10.7 to questions like: how many arcs can

be deleted from a k-strong digraph, so that it still remains (k—1)-strong [540]
(for undirected graphs see [122]). One easy consequence is the following.

Corollary 7.10.13 /540] If D = (V,A) is minimally k-strong and D' =

(V, A’) is a spanning (k — 1)-strong subgraph of D, then the difference Do =
(V, A — A’) contains no anti-directed trail.

7.11 Critically k-Strong Digraphs 391

Proof: Suppose T = v1 0, v202...v,0,v; is an anti-directed trail in Do. Since
D is minimally k-strong, (a) cannot hold in Theorem 7.10.7. Suppose without
loss of generality that (b) holds, then some source v; has d},(v;) = k. However,
since dp (v;) = 2, this implies that dp,(v;) = k — 2, dontvedictics the fact
that D’ is (k — 1)- -strong. 0

Theorem 7.10.7 has many other important applications. We illustrate one
such application 1 in Section 7.16. We finish this section with a conjecture by
Mader.

Conjecture 7.10.14 /540] Every minimally k-strong digraph on n vertices
contains at least nok +k vertices with out-degree equal to k.

Mader has proved [540, page 437] that there are at least 4 such Eq
vertices. For more on the topic see the very informative survey [540] by Mader.

7.11 Critically k-Strong Digraphs

In this section we always consider directed graphs (no multiple arcs). A vertex

uv of a digraph D is critical if k(D — v) < K(D). The goal of this section is
to illustrate some conditions under which we can always find a non-critical

vertex in a digraph D. First observe that there can be no function f(k) with

the property that every k-strong digraph D with at least f(k) vertices has

a vertex uv such that D — v is still k-strong. This is not even the case for

tournaments. To see this consider the example due to Thomassen (private

communication, 1985) in Figure 7.13.
The example in Figure 7.13 can easily be generalized to arbitrary degrees

of vertex-strong connectivity, by replacing each of the tournaments on seven

vertices (right and left side of the figure) by the kth power of a (2k + 1)-cycle
and replacing the three long paths by k long paths starting at the top k

vertices in the left copy and ending at the top k vertices in the right copy.

Below we discuss some results by Mader on sufficient conditions for a

k-strong digraph to contain a non-critical vertex.

Definition 7.11.1 Let D have k(D) = k. A fragment in D is a subset
X CV with the property that either |N*+(X)| =k and X UN*(X) #V, or
LVa(Aj)=—k and XUN -(X) #V.

Thus a fragment X corresponds to a one-way pair (X,Y) with A(X, Y) =
. k. Mader proved the following important result:

Theorem 7.11.2 [539] Every critically k-strong digraph contains a fragment

of size at most k.

392 7. Global Connectivity

~ NY

V CaUanll

Figure 7.13 A family 7 of 3-strong tournaments (the three paths from left to
right can be arbitrary long). The big arc indicates that all arcs not explicitly shown
go from right to left. It can be verified (Exercise 7.46) that each tournament in 7
is 3-strong and has the property that every vertex other than z, y is critical. Thus
after removing at most two vertices we obtain a 3-strong tournament in which every
vertex is critical. ‘

This was conjectured by Hamidoune [394, Conjecture 4.8.3] who also con-

jectured the next two results, both of which are easy consequences of Theorem

al Wed

Corollary 7.11.3 [539] Every critically k-strong digraph contains a vertex

x with in-degree, or out-degree less than 2k.

Proof: Let D = (V, A) be a critically k-strong digraph. By Theorem 7.11.2,

D contains a fragment X with |X| < k. By considering the converse of D if
necessary, we may assume that |N*(X)| = k. We prove that every vertex of
X has out-degree at most 2k—1. Let € X be arbitrary. Note that every out-

neighbour of x outside X contributes to |N*(X)|, implying that there are at
most k of these. Now the claim follows from the fact that dj} (x) (2) <k-1.

O

We leave the proof of the next easy consequence as Exercise 7.41.

Corollary 7.11.4 [539] Every critically k-strong oriented graph contains a

vertex x with in-degree, or out-degree less than [SA]. 0

7.12 Arc-Strong Connectivity and Minimum Degree

Let D = (V, A) be a digraph and let 5(v) = min{dt(v),d~(v)} for uv € V.

Obviously, the highest arc-strong connectivity a digraph can possibly have

is 6°(D). It is not easy to classify those digraphs for which the equality \(D) =
6°(D) actually holds. However, since we can calculate \(D) in polynomial

7.13 Connectivity Properties of Special Classes of Digraphs 393

time (see Subsection 7.4), it is easy to verify whether a given digraph D
satisfies \(D) = 6°(D).

In this section we will give two sufficient conditions for this equality. The

first result is due to Dankelmann and Volkmann.

Theorem 7.12.1 /173] Let D = (V,A) be a directed graph on n vertices
without multiple arcs and let v1, v2,...,Un be ordered so that 5(v1) > 5(v2) >

... > 6(Un) = 6°(D). If 6°(D) > |n/2], or 6°(D) < |n/2] and there exists a
k, 1<k<6°(D) such that

k

S—(6(vi) + 5(Un4i-6(D)-1)) > k(n — 2) + 26°(D) — 1,

then (D) = 6°(D).

Theorem 7.12.1 implies the following result by Xu which is a generaliza-

tion of a result for undirected graphs in [329].

Corollary 7.12.2 /742] Let D be a digraph on n vertices. If there are |n/2|
disjoint pairs of vertices (v;,w;) with

O(u;) 4 0(w,; > mn. foralli = 1,2 6.51/22

then \(D) = 6°(D).

For further results on the relation between A(D) and 6°(D) see [38, 173].

7.13 Connectivity Properties of Special Classes of

Digraphs

In this section we describe a few results on the connectivity of various classes

of digraphs introduced in Section 1.8 and Chapter 4. Some of these results

will be used in other sections and chapters in this book.

The next lemma implies that almost all minimally k-strong decomposable

digraphs are subdigraphs of extensions of digraphs.

Lemma 7.13.1 /52] Let D = F[S,S2,...,55] where F is a strong digraph
on f > 2 vertices and each S; is a digraph with n; vertices and let Do =

Gap oe a ly ,| be the digraph obtained from D by deleting every arc

which lies inside some S; (recall that Kp, is the digraph on n; vertices and
no arcs). Let S be a minimal (with respect to inclusion) separating set of Do.
Then S is also a separating set of D, unless each of the following holds:

foto = V (5) U0 V(S5)...UV (Ss) \ V(S;). for some 2 € {1,2,..., f}, and
(b) D(S;) is a strong digraph, and

394 7. Global Connectivity

He K3

H, H3 K2 K3

Hy, K;3

Figure 7.14 A 2-strong digraph D with decomposition D = Q[Mi, H2, Hs, Ha).
Fat arcs indicate that all possible arcs are present and have the direction shown.
The right figure shows the 2-strong digraph Do = Q[K2, K3, Ks, Ks] obtained from
D by deleting all arcs inside each Hj.

(c) D=C,[S, Si].

In particular, if F has at least three vertices, then D is k-strong if and only

if Do is k-strong.

Proof: Let S be a minimal separating set of Do and assume S is not sep-

arating in D. It is easy to see that, if z and y with z,y ¢ S belong to

different S;, then D — S has an (z,y)-path if and only if Do — S has such

a path. Thus, since S is separating in Dp but not in D, we must have

Sav (Sr)ULV (So)ee6 UM(Ss) \V(S;) oor someit- Ginl le oee oy eeNote
that here we used the minimality of S to get that SMS; = 0 for some j.

Now it follows trivially that D(S;) must be a strong digraph, since D — S is

strong and the minimality of S implies that D = C2[S, Sj] (if some S$; C S

does not have arcs in both directions to S;, then S — S; is also separating,

contradicting the choice of S). 0

See Figure 7.14 for an example illustrating the lemma.

Combining Lemma 7.13.1 with Theorem 4.8.5 we obtain.

Corollary 7.13.2 If D is a k-strong quasi-transitive digraph with decompo-

sition D = Q[Wi,...,Wiqi], then the digraph Do = Q[Kiwi,--- : Kiwi]

(that is, the digraph Agathe by deleting all arcs inside each W;) is also k-

strong. oO

Another easy consequence of Lemma 7.13.1 is the following result by

Bang-Jensen, Gutin and Yeo:

7.14 Highly Connected Orientations of Digraphs 395

Lemma 7.13.3 [70] Suppose that D is a digraph which can be decomposed

as D = F[S;, S2,..., Sz], where f = |V(F)| > 2, and let Do = D— Ul {uv
u,v € V(S;)}. Then D is strong if and only if Do is strong.

Here is a useful observation on locally semicomplete digraphs due to Bang-

Jensen. The proof is left as Exercise 7.38.

Lemma 7.13.4 /44] Let D be a strong locally semicomplete digraph and let

S be a minimal (not necessarily minimum) separating set of D. Then D—S

is connected. QO

Lemma 7.13.5 Let D = (V, A) be ak-strong digraph and let D' be obtained
from D by adding a new set of vertices X and joining each vertex of X to

V in such a way that |N4,(v)|,|Np(v)| > &k +1 for each v € X. Then D' is
k-strong. If D' is not also (k +1)-strong, then every minimum separating set
of D' is also a minimum separating set of D.

Proof: Suppose D’ is not (k +1)-strong and let S’ be a minimum separating

set of D’. Then |S'| < k. Let S = S’MV(D). Since every vertex of X — S'
has an in-neighbour and an out-neighbour in V — S we get that D —S is

not strong and hence S = S’ must hold and S’ is also separating in D. This

implies that |S'| = k, D’ is k-strong and every minimum separating set of D’
is also a minimum separating set of D. O

7.14 Highly Connected Orientations of Digraphs

We saw in Corollary 7.2.7 that every strong digraph without a bridge has

a strong orientation. In this section we investigate how much of the degree

of arc-strong or vertex-strong connectivity of a digraph D comes from its 2-

cycles. More precisely, suppose we must delete one arc of every 2-cycle (thus

obtaining an orientation of D), can we always maintain a high arc-strong,

respectively vertex-strong, connectivity if the starting digraph has high arc-

strong, respectively vertex-strong, connectivity? It is not difficult to see that

we may not be able to preserve the same degree of arc-strong, respectively

vertex-strong, connectivity, not even if D is semicomplete. See Figure 7.15
for an example. So the question is whether there exist functions f(k), g(k)

with the property that every f(k)-strong ((g(k)-arc-strong) digraph contains
a spanning k-strong (k-arc-strong) subgraph without cycles of length 2.

Let us first consider arc-strong connectivity. Note that every k-arc-strong

oriented graph D must have UG(D) 2k-edge-connected. In particular, if G

is an undirected graph with edge-connectivity A(G) = 2k — 1 and G is the

complete biorientation of G, then D does not contain a spanning k-arc-strong

subgraph. Hence the following result due to Jackson and Thomassen implies

that g(k) = 2k and this is the best possible by the remark above.

396 7. Global Connectivity

Figure 7.15 A 2-strong semicomplete digraph which has no 2-arc-strong spanning

subtournament. Undirected edges correspond to directed 2-cycles.

Theorem 7.14.1 /[451, 708] Every 2k-arc-strong digraph has a k-arc-strong

orientation. , oO

Since we may convert a digraph to a mixed graph by replacing each 2-cycle

with an undirected edge, Theorem 7.14.1 follows from Theorem 8.9.1.

The vertex-strong connectivity case seems much harder. Jackson and

Thomassen posed the following conjecture (see [708]):

Conjecture 7.14.2 Every 2k-strong digraph has a k-strong orientation.

If true this would be the best possible (meaning that we cannot weaken

the vertex-strong connectivity demand by one, without adding further re-

quirements). To see this let G be the k’th power of an undirected cycle

C = vyv2q...V2rV, On 2r, r > k vertices. It is not difficult to prove that

G is 2k-connected and that the only separating sets of size 2k in G are those

obtained by taking two sets of k consecutive vertices on C’, each separated

by at least one vertex on both sides. From this it follows that, if we add

the diagonals v,U;-41, V2Ur42,--+)UrV2r, then we obtain a (2k + 1)-connected

graph H. Now let D be the complete biorientation of H. Then «(D) = 2k+1

and it is clear that D cannot have a (k + 1)-strong orientation, since UG(D)
is not 2(k + 1)-edge-connected. See Figure 7.16 and Exercise 7.43.

Note that, if an oriented graph D is k-strong, then UG(D) is k-connected

and 2k-edge-connected. However, the converse is not true, that is, it is not

enough to require that D is k-strong and that UG(D) is 2k-edge-connected

in order to guarantee that D has a k-strong orientation. The semicomplete

digraph in Figure 7.15 shows this and the example can be generalized to an ar-

bitrary odd number of vertices by taking the second power on an odd cycle C

and orienting the original edges as in Figure 7.15. This shows that Conjecture

8.6.7 can neither be extended to mixed graphs, nor to digraphs. Another ex-

ample, due to Alon and Ziegler [708, page 406]-showing that UG(D) may be

k-connected and 2k-edge-connected and still D has no k-strong orientation—is

obtained from the complete biorientation of the graph constructed by taking

two large complete graphs G1, G2 sharing just one vertex uv and adding k — 1

independent edges with one end in V(G) — v and the other in V(G2) — v.

7.14 Highly Connected Orientations of Digraphs 397

AS LI

PSF K\ ISX
aN ee

Figure 7.16 A 7-connected 7-regular graph obtained from the third power of a
10-cycle by adding longest diagonals

Very little progress has been made on Conjecture 7.14.2 and it is not even

known if there is some function f(k) so that every f(k)-strong digraph has a
k-strong orientation. Below we shall describe some results on special classes
of digraphs.

Using the structure theorem (Theorem 4.11.15) for locally semicomplete
digraphs Guo proved that every (2k—1)-strong locally semicomplete digraph

which is not semicomplete can be oriented as a k-strong local tournament.

This was improved by Huang [437] who proved that the following much

stronger statement holds:

Theorem 7.14.3 [437] Every k-strong locally semicomplete digraph which

is not semicomplete can be oriented as a k-strong local tournament. oO

Bang-Jensen and Thomassen [44] proved that for semicomplete digraphs

the function f(k) indeed exists. The value of this function was later improved
by Guo.

Theorem 7.14.4 /344] For every natural number k, every (3k—2)-strong lo-

cally semicomplete digraph has an orientation as a k-strong local tournament

digraph.

We will not prove the bound 3k — 2 here, but instead give the proof by Bang-

Jensen and Thomassen that f(k) < 5k for semicomplete digraphs. That proof

illustrates the main ideas and Guo’s proof is a refinement of the proof we give.
Note that by Theorem 7.14.3 it is enough to consider semicomplete digraphs.

We prove by induction on k that every 5k-strong semicomplete digraph

D contains a spanning k-strong tournament. The case k = 1 is easy, since

_ by Theorem 1.5.1, every strong semicomplete digraph has a Hamilton cycle.

Let C be a Hamilton cycle in D. For every 2-cycle of D delete an arbitrary

arc of that 2-cycle, unless one of its arcs is used by C. In the latter case

we delete one arc of the 2-cycle so as to preserve C’. We obtain a spanning

strong tournament T of D. Note that the case k = 1 also follows easily from

Corollary 7.2.7.

398 7. Global Connectivity

Suppose we have proved the statement for all r < k — 1, that is, every or-

strong semicomplete digraph contains a spanning r-strong tournament. Let

D be a 5k-strong semicomplete digraph and suppose D does not contain a

spanning k-strong tournament. We derive a contradiction to this assumption.

First observe that we must have |V(D)| > 5k + 2 since otherwise D is the

complete digraph on 5k + 1 vertices and this clearly contains a k-connected

spanning tournament.

By induction D contains a (k — 1)-strong spanning tournament. Let T be

chosen among all (k — 1)-strong spanning tournaments of D such that the

following holds:

(i) The number s of separating sets of size k — 1 in T is minimum over all

k — 1-strong spanning subtournaments of D.

(ii) T has a separating set S of size k — 1 such that the number m of strong

components of T — S is minimum taken over all separating sets of size

k—1lof T.

Let S be some separating set of T such that T — S has precisely m strong

components 7T},..., 7m (written in the unique acyclic order). Let U = V(Z})U

... UV(Im-1) and W = V(T,,). Since D is 5k-strong it follows easily from
Menger’s theorem (Corollary 7.3.2) that in D there are 5k internally disjoint

paths from W to U (see Exercise 7.19). At most k — 1 of these can pass

through S. Thus in D — S there are at least 4k + 1 arcs from W to U. Let

U' CU (W' C W) be those vertices v of U (W) for which some arc in D
from W to U has v as its head (tail). Since D—S has at least 4k +3 vertices,

either U or W has size at least 2k + 2. Using this and the fact that D—S

has 4k + 1-internally disjoint (w,wu)-paths for every choice of u € U,w € W,

we get from Corollary 7.3.2 that either |U'| > 2k +1 or |W'| > 2k +1. By
considering the converse of D if necessary, we may assume |U'| > 2k + 1.

The digraph T(U') is a tournament on at least 2k + 1 vertices and hence

it has a vertex x with at least k out-neighbours in U'. Let y be a vertex in

W' such that yx is an arc of D (y exists since x € U’). In T we have the

arc xy (since every vertex in U dominates every vertex in W) and since x

has out-degree at least k in T(U'), there are at least k (x, y)-paths of length
2 in T. Let T’ be the spanning tournament in D that we obtain from T by

replacing the arc zy by the arc yx. Applying Lemma 7.9.6 we get that T"

has no more than s minimum separating sets. However, it is easy to see that

T'—S is either strong (if € V(T;)), or it has fewer strong components than

T — S and hence we obtain a contradiction to the choice of T according to

(i), (ii). 0
It can be seen by inspecting Guo’s proof in [344] that (3k — 2)-strong

connectivity is the best bound one can prove using his approach. However,

at least for k = 2 this is not sharp when we have more than 2k vertices:

Proposition 7.14.5 /83] Every 3-strong semicomplete digraph on at least 5
vertices contains a spanning 2-strong tournament. 0

7.14 Highly Connected Orientations of Digraphs 399

Figure 7.17 A k-strong semicomplete digraph D. All arcs between H and T go
from H to 7’, except the 2-cycle xyr shown as an edge. All other arcs not shown
are in 2-cycles. A, B, C represent arbitrary complete digraphs on at least one vertex
each. The set C has k — 3 vertices and hence k is defined as |C| + 3. The one-way
pair T, H (in D—zy) shows that we cannot delete ry and the one-way pair (T’, H’)
with T’ = AU {y,t}, H’ = BU {h, x} shows that we cannot delete yz.

It is perhaps worthwhile to notice that it does not seem easy to con-

struct k-strong semicomplete digraphs with many vertices such that both

arcs of some 2-cycle are critical with respect to k-strong connectivity (that

is, deleting any of these arcs, the digraph is no longer k-strong). In order

to obtain such a semicomplete digraph we must construct it so that we can

prove that it is k-strong and that some 2-cycle zyz has the property that

none of D — {xy} and D — {yz} is k-strong. Here the concept of one-way

pairs and Lemma 7.7.2 is a useful tool. Suppose that none of D — {xy} and

D — {yx} are k-strong. Then each of these must be (k — 1)-strong and there
must exist one-way pairs (71, Hi), (T2, H2) in D — zy, respectively D — yx

with A(T,,H,) = h(T2,H2) = k-—1 and zg € %N Ho,y € T2N HM. Based

on these findings one can construct a semicomplete digraph with the desired

property. See Figure 7.17. We leave it to the reader to verify that D is indeed

k-strong (Exercise 7.42).
Let us call a 2-cycle zyx in a semicomplete digraph D critical if we

cannot delete any of the arcs ry,yx without decreasing the vertex-strong

_ connectivity of D.

Problem 7.14.6 Investigate the structure of the critical 2-cycles in semi-

complete digraphs.

400 7. Global Connectivity

As an illustration of the usefulness of the structural characterization of

quasi-transitive digraphs in Theorem 4.8.5 we show how Theorem 7.14.4 im-

plies the same statement for quasi-transitive digraphs.

Corollary 7.14.7 For every natural number k, every (3k — 2)-strong quasi-

transitive digraph has an orientation as a k-strong quasi-transitive digraph.

Proof: Let D be a (3k — 2)-strong quasi-transitive digraph and let D =

Q[Wi,...,Wa], ¢ = |Q|, be a decomposition of D according to Theorem

4.8.5. By Corollary 7.13.2, the digraph Do obtained from D by deleting all

arcs inside each W; is also (3k — 2)-strong. By Theorem 4.8.5, if Q con-

tains a 2-cycle qiqjqi, then each of W;,W; have size one. Now let H be a

semicomplete digraph obtained from Do by adding an arbitrary arc between

every pair of vertices inside each V(W;). Clearly H is (at least) (3k — 2)-
strong and hence, by Theorem 7.14.4, it contains a spanning k-connected

tournament T' (which is obtained from H by deleting one arc from every

2-cycle, that is, T is an orientation of H). By the way we constructed H,

we have T = Q'(T),...,T,] for some choice of tournaments T),...,T7\g; on

|W1|,...,|W,| vertices respectively. Here Q’ is a spanning tournament in
Q. Applying Corollary 7.13.2 to T = Q’[T1,...,T,], we get that the quasi-

transitive digraph D' = Q'[Kiwi) o- Ky, |] is k-strong and by the remark

above on 2-cycles in Q we see that D’' is a spanning subgraph of D. It is

easy to see that, if we delete an arc from every 2-cycle of a quasi-transitive

digraph, then the result is a quasi-transitive digraph. Let W/ be obtained

from W; by deleting one arc from every 2-cycle in W, for 1 = 1,2,..., Wg.

Now we see that D” = Q'[W{, W3,..-, W,] is the desired k-strong orientation

of D. 0

Note that it also follows from the proof above that every (3k — 2)-strong

quasi-transitive digraph contains a spanning k-strong extended tournament.

7.15 Packing Cuts

In this section we consider directed multigraphs. Let D = (V, A) be a directed

multigraph which is connected, but not strongly connected. A directed cut

(or just a dicut) in D is a set of arcs of the form (X, V — X), where X isa
non-empty proper subset of V such that there are no arcs from V — X to X

(ie. (X,V — X) is a one-way pair with h(X,V — X) = 0). Two directed cuts
are arc-disjoint if they do not share an arc. Note that two dicuts (X,V — X)

and (Y,V — Y) may be arc-disjoint but still X NY # @. As an example

consider a directed path-a,29...2,. Here {({21,...,2;},{%i+1,.-.,2¢}) ;

1<i<k-—1)} isa family of k ~1 arc-disjoint cuts (each having precisely one

arc). Clearly these cuts overlap considerably when we consider their vertex

sets. For simplicity we will sometimes denote a dicut (X,V — X) just by the
set X.

7.15 Packing Cuts 401

A dijoin is a subset A’ C A which covers all dicuts. Define Q(D) and
T(D) as follows

§2(D) = the maximum number of arc-disjoint dicuts in D.

T(D) = min {|A’| : A’ is a dijoin}. (7.36)

Suppose D = (V,4A) is connected but not strongly connected. Then it is
clear that we can obtain a strong directed multigraph by contracting certain
arcs. It is also clear that, if we contract an arc a which is not an arc of a
dicut (X,V — X), then in the resulting directed multigraph D’ = (V', A’),
the corresponding pair (X', V — X‘) is still a dicut. On the other hand, if A’ is

a dijoin and we contract all arcs of A’, then the resulting directed multigraph

is strong. Let p(D) denote the minimum number of arcs whose contraction in
D leads to a strong directed multigraph. Then it follows from the discussion
above that

QD) < p(D) < 7(D). (7.37)
Note that, if D is a directed (x,y)-path on r vertices, then a,;(D) = 1,

since we may add a new arc yz and get a strong digraph. However, in order

to obtain a strong directed multigraph by contracting arcs, we must contract

r —1 arcs, showing that p(D) =r —1. This proves that p(D) and a,(D) may
be arbitrarily far apart.

Let D be a directed multigraph. Recall that the operation of subdividing

an arc consists of replacing the arc zy in question by the path ruy of length

two, where u is a new vertex. If several arcs are subdivided, then all the new

vertices (used to subdivide these arcs) are distinct.

Lemma 7.15.1 Let D = (V,A) be a directed multigraph and let D' be ob-

tained from D by subdividing each arc once. If D has k arc-disjoint dicuts,

then D' has 2k arc-disjoint dicuts.

Proof: Let D’ = (V', A’) be obtained from D by subdividing each arc once.

Let X,,..., X, be chosen such that the dicuts (X1,V —X1),..., (Xz, V —Xx)

are arc-disjoint in D. For each dicut (X;, V — X;) we denote by X; the set we
obtain in D' by taking the union of X; and the new vertices that subdivide
the arcs leaving X;. Now it is easy to see that each of the dicuts (X1,V’ —

X1), (Xj, V' — X}f),.--, (Xe, V' — Xk), (X;,,V' — X;,) are arc-disjoint. Oo

The next theorem, due to Lucchesi and Younger shows that in fact equal-

ity holds everywhere in (7.37).

Theorem 7.15.2 (the Lucchesi-Younger theorem) /528/ Let D =
(V, A) be a directed multigraph which is connected and either D has just one

vertex, or it is not strongly connected. Then §2(D) = 7(D).

Proof: We give a proof due to Lovadsz [521]. The proof is by induction on

the number of arcs in A. If A = 0, then D has precisely one vertex and there

are no dicuts. Hence the statement of the theorem is vacuously true.

402 7. Global Connectivity

Now let a € A be an arbitrary arc. Contract a and consider the resulting

directed multigraph D/a. Note that the dicuts of D/a are exactly those in

D which do not contain the arc a. By induction, r(D/a) = 2(D/a). Hence if
2(D/a) < Q(D)—1, then we can cover all dicuts in D by r(D/a)+1 < Q(D)

arcs and the theorem is proved. Hence we may assume that

2(D/a) = Q(D) for every arca € A. (7.38)

By Lemma 7.15.1, if we subdivide all arcs in A, then the resulting digraph

has at least 2(D) + 1 arc-disjoint dicuts (with equality only if 2(D) = 1).
Hence, starting from D and subdividing arbitrary (not previously subdivided)

arcs, we will get a sequence of directed multigraphs Dp = D,Dj,...,Dh,

where §2(D;) = 2(D) for each i < h — 1 and 2(D,) = 2(D) +1. Let f be
the last arc we subdivided in this process and let H = D;,_1. Now H contains

(2D) lV idicuts! Xy, 457-5“ a(pjaa such that only two of them have an

arc in common and that arc is f.

Observe that H/f arises from G/f by subdivision. Hence, by the as-

sumption (7.38), Q(H/f) = Q(D) and so H contains 2(D) arc-disjoint di-
cuts Y1, Y2,...,¥cp) none of which contains the arc f. This implies that

X1,X2,.--,Xa(p)41, V1, Ye,-.., Yacp) is a collection of 22(D) + 1 dicuts in
H such that no arc belongs to more than two of these. Thus the following

lemma will give us a contradiction, implying that (7.38) cannot hold and
hence the theorem follows.

Lemma 7.15.3 Jf a digraph D contains at most k arc-disjoint dicuts, and

C is any collection of dicuts in D such that no arc belongs to more than two

dicuts in C, then |C| < 2k.

Proof of Lemma 7.15.3: Call two dicuts (X, V — X), (Y, V —Y) crossing

if X and Y are crossing as sets. The first step is to uncross crossing dicuts in
the family.

It follows from (7.2) that, if (X,V—X), (Y, V—Y) are crossing dicuts, then
each of (XUY,V —(XUY)), (XNY,V—(XNY)) are dicuts and d(X,Y) = 0.
Furthermore, the dicuts (X UY, V —(X UY)) and (XNY,V —(XNY)) cover
each arc of D the same number of times as the dicuts (X, V — X), (Y,V —Y)
(here we used that d(X,Y) = 0). Let C' = C — {(X,V — X),(Y,V -Y)} +
{(XUY,V —(XUY)),(X NY,V —(XNY))}. Then C’ has the same property
as C that no arc covers more than two dicuts in C and furthermore we have

SE lide), Ona (7.39)
(X, VER ec (Z,V=Z)ee?

because |X UY|? + |X NY|? > |X|? + |¥|?. when X,Y cross. Hence, if we
replace crossing dicuts pairwise as we did above, then we will eventually reach
a new family C* of size |C| such that the dicuts in C* are pairwise non-crossing
and no arc of D belongs to more than two dicuts in C*. Hence it suffices to
prove that C* contains at most 2k dicuts.

7.15 Packing Cuts 403

Betty A p2ay Zu Farid letAy = (2), V— Zp 1) 2) Be
the corresponding arc sets. Construct an undirected graph GIG" =n VRE tas
follows: V = {v,v2,...,Ua¢} and there is an edge between v,; and v; if and
only if A; A; # @. Since D contains at most k arc-disjoint dicuts, it follows
that G(C*) has at most k independent vertices. Hence it suffices to show that
G(C*) is a bipartite graph since then we get |C = Feel Rea

Let vj, v3 ...v,v;, be an arbitrary cycle in G(C*). Note that the arc sets of
the corresponding dicuts Aj,..., A must be different, since if (Ai VitZ)) =
(Z;,V — Z;) for some 1 <i <j < s, then every arc in (Zi, V — Z}) is covered
twice (by (Z;, V — Zj) and by (Z;,V — Z)) and hence the vertices v}, v; each
have degree one in G(C*), contradicting the fact that they are on a cycle.
Note also that if two dicuts (X,V — X) and (Y,V — Y) have X UY =V,
then they are arc-disjoint and hence are not adjacent in G(C*).

OFcr
©) ©O

Figure 7.18 Illustration of the definition of being to the right and left for cuts. In
the two situations in part (a) (part (b)) the dicut (X,V — X) is to the left (right)
of the dicut (Y, V — Y). In the right part of (a) we have X UY =V.

Since A,jN Aj,, # @ fori =0,1,...,s—1, where Aj = Af, it follows from

our remarks above that we have either Z; C Zj,, or Zj,, C Zj. We prove
that the two possibilities occur alternatingly and hence s is even. Suppose

not, then without loss of generality we have Z§ C Z, C Z}. Let us say that a

dicut A’ is to the left of another dicut A; if either Z; C Zs or ZiUZ; Ve

(which is equivalent to V — Zj C Zj) and that Aj is to the right of Ai
if Z;N Z; = @ (which is equivalent to Z; C V — Z;), or Z; C Zi (which is
equivalent to V—Zj C V — Z;). See Figure 7.18. Since C* contains no crossing
members, each A; # A’ is either to the right or to the left of Aj. Since A}
is to the right of A) and Aj = A is to the left of A}, it follows that there
is some 2 < j < s—1 such that Aj is to the right of Aj and Aj, , is to the

left of Ai. Suppose first that 7; Z| = 0, then we cannot have Z;,, C Z| as
Aj,, and A’, have a common arc. So we must have 2 U Za =V, Shy then
any arc a common to A; and Aj,, enters Z;, contradicting that d~(Z}) = 0.

404 7. Global Connectivity

Hence we must have Z{ C Zj. The fact that Aj, Aj,,, have a common arc a

(and hence either Z; C Zj,, or Z\ 41, © Z;) implies that, by the choice of 7,

we have Zi, C Z| C Zj,,. But now the arc a belongs to three dicuts Aj, A’

and A’,,,, a contradiction. This completes the proof of the lemma and, by

the remark above, also the proof of the theorem. O

Combining (7.37) and Theorem 7.15.2, we obtain:

Corollary 7.15.4 Let D be a non-strong directed multigraph whose under-

lying graph is connected. Then p(D) = 7(D), that is, D can be made strongly

connected by contracting t(D) ares.

The proof of Theorem 7.15.2 is not constructive but using submodular

flows one can find a minimum dijoin A’ C A of D in polynomial time. See

Corollary 8.8.10.
x

7.16 Application: Small Certificates for k-(Arc)-Strong
Connectivity

We complete the chapter with a topic that is, of practical interest and at the

same time illustrates important applications of several of the concepts from

the chapter.

Let D = (V,A) be a directed multigraph which is k-(arc)-strong. What
is the cost (measured in the number of arcs, or the sum of arc costs if these

are present) of a minimum cost spanning subgraph D! = (V, A’) of D such
that D’ is k-(arc)-strong? A spanning k-(arc)-strong subgraph D’ of D is

called a certificate for k-(arc)-strong connectivity of D. Finding an optimal
certificate (that is, one with the smallest cost) for k-(arc)-strong connectivity
is a difficult problem, even when k = 1. Namely, if all costs are 1 (that is,

we only count the number of arcs), then the optimal D’ has n arcs if and

only if D has a Hamilton cycle. Thus the problem is W’P-hard already when

k = 1 and we have uniform costs. By the remark above, the Hamilton cycle

problem is a special case of the problem of finding an optimal certificate for

strong connectivity. This makes it interesting to consider classes of digraphs

for which we know that the Hamilton cycle problem is polynomially solvable

and to see what we can say about the complexity of finding the optimal

certificate for vertex-strong connectivity. This was done in Section 6.11 for

some classes of generalizations of tournaments.

In practical applications, e.g. to speed up algorithms, it is often important

to work with a small certificate for k-(arc)-connectivity. This means that one

is interested in finding polynomial algorithms which find a certificate D’ for

7.16 Application: Small Certificates for k-(Arc)-Strong Connectivity 405

k-(arc)-strong connectivity with the property that the cost of D’ is not more

than some constant (larger than 1) times the cost of the optimal certificate®.

In this section we present some recent results by Cheriyan and Thurimella

[151] which show that we can approximate the size of a smallest k-(arc)-strong
spanning subgraph better, the higher k is.

7.16.1 Finding Small Certificates for Strong Connectivity

For k = 1, the 2-approximation algorithm sketched in the proof of Theorem

7.10.1 could be used since D is 1-strong if and only if it is 1-arc-strong.

However, one can do better than this. When k = 1 the problem of finding a

small certificate for strong connectivity is a special case® of a problem which

is also called the problem of finding the minimum equivalent subdigraph

of a directed multigraph. That is, given D, find a spanning subgraph D’ with

as few arcs as possible such that D’ contains an (z,y)-path if and only if

D does for every choice of z,y € V(D) (it is clear that D’ will not contain
multiple arcs and hence must be a digraph). This problem, which has many

practical applications, has been considered several times in the literature, see

e.g. [5, 317, 434, 478, 479, 554, 636, 673]. See also Section 4.3.

Now let D be a strongly connected digraph (recall that we may assume

that D has no multiple arcs since multiple arcs will not be present in a min-

imally strong directed multigraph). Khuller, Raghavachari and Young [478]
gave a 1.65-approximation algorithm for the size of a smallest strongly con-

nected subgraph of any strongly connected digraph. The idea in the algorithm

from [478] is to find a long cycle, contract it and continue recursively. The

authors were able to show that this approach can be performed in such a way

that one obtains a solution in polynomial time with no more than 1.65 times

the size of an optimum solution. This was later improved to about 1.61 using

results from [479].
Khuller, Raghavachari and Young also considered the restriction when the

digraph in question has no cycle with more than r arcs. Then the problem

is known under the name SCCS, [478]. In [479] it is shown that if one only
considers digraphs with no cycle longer than 3, then the optimal certificate

can be found in polynomial time. The algorithm is based on the following

result.

®° Such an algorithm which is polynomial and finds a solution (for a minimization
problem) whose cost is at most pz times the value of an optimal solution (y > 1)
is called an y-approximation algorithm for the problem.

6 Tt is in fact the most important ingredient since once we know the best subgraph
inside each strong component, we can contract each strong component to a vertex

and consider the problem of finding a minimum equivalent subdigraph of an
acyclic directed multigraph. That problem is solvable in polynomial time by

Proposition 4.3.5.

406 7. Global Connectivity

Theorem 7.16.1 [479] The SCCS3 problem reduces in time O(n”) to the

problem of finding a minimum edge-cover’ in a bipartite graph.

This gives an O(n? +m,/n) time algorithm for the SCCS3 problem, since
the problem of finding a minimum edge cover in a bipartite graph is equivalent

to the problem of finding a maximum matching in such a graph [497]. The

latter problem can be solved in time O(,/nm) (see Theorem 3.11.1).
However, already the SCCS; problem is \’P-hard and the SCCSj7 is

even MAX SN P-hard, implying that there cannot exist a polynomial time

approximation scheme for this problem, unless P = NP [478]. Khuller,
Raghavachari and Young posed the following problem concerning the weighted

version. Here the goal is to find a spanning strong subdigraph of minimum

weight.

Problem 7.16.2 [478] Does there exist a y-approzimation algorithm for

minimum weight strong connectivity certificates with p < 2?

The existence of a polynomial algorithm with approximation guarantee

2 follows from the fact that finding a minimum cost in-branching (out-

branching) with a given root can be done in polynomial time (see Section
9.10). Indeed, if F~ (F*) is a minimum cost in-branching (out-branching)
rooted at r, then D' = (V, A(F-) U A(F‘*)) is strong and clearly has cost at
most twice the optimum. In Exercise 7.49 the reader is asked to show that

the approximation guarantee of this approach cannot be lower than 2.

Once again we remind the reader that in Section 6.11 we showed that an

optimal strong subdigraph of a digraph D can be found in polynomial time

in case D belongs to one of several classes of generalizations of tournaments.

7.16.2 Finding k-Strong Certificates for k > 1

Cheriyan and Thurimella recently gave an approximation algorithm with a

very good approximation guarantee by combining some fairly elementary

results on subgraphs of (di)graphs with Mader’s powerful result on anti-
directed trails and k-critical arcs (Theorem 7.10.7). We start with the two
subgraph results and then describe the simple algorithm from [151].

Proposition 7.16.3 /151] Let B = (V,E) be a bipartite graph with mini-
mum degree k. Let E' C E be a minimum cardinality subset of E with the
property that B' = (V, E') has minimum degree k—1. Then |E'| < |E|—|V|/2
and this bound is best possible. oO

Proposition 7.16.4 There exists a polynomial algorithm A which, given a
directed multigraph D = (V, A) with minimum semi-degree 6(D) > r, returns
a minimum cardinality subset A’ C A such that the directed multigraph D' =
(V, A’) has 6(D’) > r.

” An edge-cover of an undirected graph G = (V, E) is a set of edges E’ C E such
that every uv € V is incident with at least one edge from E’.

7.16 Application: Small Certificates for k-(Arc)-Strong Connectivity 407

Proof: This (as well as the more general minimum arc cost version) can be

solved using a minimum value (minimum cost) flow algorithm on a suitable

network constructed from D (see Exercise 7.47). 0

Theorem 7.16.5 /151] There exists a polynomial algorithm which, given a

digraph D = (V,A) which is k-strong, returns a spanning k-strong subgraph

D" = (V,A") of D such that |A"| < (1+ ;)|A3,:|, where AS,, denotes a
minimum cardinality arc set At,, C A such that D* = (V, A%,,) is k-strong.

Proof: Let & be the following algorithm:

Input: A directed graph D = (V, A) and a number k such that D is k-strong.

Output: A small certificate D = (V, A) for k-strong connectivity of D.

1. Use the algorithm A of Proposition 7.16.4 to find a minimum cardinality

subset A’ C A such that the digraph D' = (V, A’) has 6(D’) > k — 1;
Dabo AA — A’

3. Find a minimal (with respect to inclusion) subset A” C A with the prop-

erty that D = (V, A’ U A") is k-strong;

4. Return D.

Clearly D = (V, A’ U A") is k-strong, so we can concentrate on the ap-

proximation factor and the running time.

To see that the approximation factor is as claimed, let D* = (V, A3,,)

denote an arbitrary optimal certificate for k-strong connectivity of D. Clearly

we have

IA'| < [Abpl- (7.40)
To bound the size of A” we use Theorem 7.10.7. We claim that D” =

(V,A") has no anti-directed trail. Suppose it does and let T be an anti-
directed trail in D”. Note that T is a subdigraph of D. Hence we can apply

Theorem 7.10.7 to D. Now it follows from the fact that every arc of A” is

k-critical in D that only (b) or (c) can hold in Theorem 7.10.7 when applied
to D. However by the choice of A’, neither (b), nor (c) can hold in D since
every source (sink) of T has out-degree (in-degree) at least k + 1 in D. Thus
T cannot exist and D” has no anti-directed trail. From this it follows, by

considering the bipartite representation BG(D"), that

|A"| < 2|V| —1. (7.41)

We leave the proof of this as Exercise 7.48 (recall the definition of BG(D) in

Chapter 1).
Combining (7.40) and (7.41), it is easy to see that the approximation

guarantee of B is at least as good as (1 + 2). However, using Proposition
7.16.3 we can do a little better. Let A** be a minimum cardinality subset of

Aj pt 80 that the spanning subgraph D** = (V, A**) has 6(D**) > k—1.

408 7. Global Connectivity

Consider BG(D*) and the edge sets E*, E** corresponding to Aj,, and A

By Proposition 7.16.3

|A™| = |B" | < |B"| -|V(BG(D"))|/2
= |Acel IVI: (7.42)

By the choice of A’ we have |A’| < |A**| and combining (7.41) and (7.42)

gives

AL. pl = 11+ @IVI- 0)
[Aco a |AS rt

<1 = (7.43)

since clearly |A%,,| > k|V|.
It remains to prove that B can actually be performed in polynomial time.

Step 1 is performed by the polynomial algorithm A whose existence is proved

in Exercise 7.47. Step 3 can be implemented by starting from D and deleting

arcs of A one by one until every remaining arc from A is k-critical. Clearly

this part can be done in polynomial time, using any algorithm for checking

whether a digraph is k-strong. oO

The authors claimed in [151] that the running time of the algorithm can
be made O(k|A|?).

7.16.3 Certificates for k-Arc-Strong Connectivity

In Theorem 7.10.1 we saw that for k-arc-strong connectivity one can ap-

proximate the size (measured in number of arcs) of an optimal certificate
for k-arc-strong connectivity within a factor of 2, using arc-disjoint in- and

out-branchings. In Chapter 9 we shall see that one can even handle the case

when there are costs on the arcs and still get a 2-approximation algorithm.

Since D is 1-arc-strong if and only if it is strong, we covered the case k = 1

in the discussion above for vertex-strong connectivity.

Cheriyan and Thurimella showed that also for arc-strong connectivity

one can approximate the size of an optimal certificate better the higher the
arc-strong connectivity is.

Theorem 7.16.6 /151] There exists a polynomial algorithm which given a
digraph D = (V,A) which is k-arc-strong returns a spanning k-arc-strong
subgraph D! = (V,A') of D such that |A'| < (1+ 4/Wk)|Aopt|, where |Aopt|
denotes the number of arcs in an optimal certificate for k-arc-strong connec-
tivity. The running time of the algorithm is O(k°|V |? + |A|*> (log (|V|)2).

7.17 Exercises 409

Proof: The idea is similar to the vertex-strong connectivity case so we will
only sketch the proof here. Let D = (V, A) be k-arc-strong. First find, using
the algorithm A, a minimum cardinality subset U C A such that H = (V,U)
has 6(H) > k. Then find an inclusion-wise minimal subset U’ C (A—U) such
that H = (V,U UU’) is k-arc-strong. As in the proof of Theorem 7.16.5, the
key step is to estimate the size of U’, since |U| is clearly at most the size of
an optimal solution.

To estimate |U'| we use the following definition. An arc uv of a k-arc-
strong digraph W is special if W — wv is not k-arc-strong and furthermore
dy (u), dy (v) => k+1. Clearly each arc in the set U' is special in the digraph
H. Hence we can apply the following estimate.

Theorem 7.16.7 /151] Let k > 1 be an integer and let W = (V,A) be k-
arc-strong. The number of special arcs in W is at most 4V/k|V]. oO

Combining this with the fact that |A’| is no more than the size of an
optimal certificate the theorem follows. For the complexity bound we refer

to [151]. O
See also [152] for an expanded version of [151].

7.17 Exercises

7.1. Submodularity of |N~| and |N*|. Prove Proposition 7.1.3.

7.2. (—) Prove Corollary 7.2.3.

7.3. Complexity of converting between a directed multigraph and its
network representation. Show that given a directed multigraph D one
can construct its network representation M’(D) in polynomial time. Show
that converting in the other direction cannot always be done in a time which
is polynomial in the size of the network representation. Hint: recall that we
assume that capacities are represented as binary numbers.

7.4. Prove that, if D = (V, A) is an eulerian directed multigraph and X is a proper
non-empty subset of V, then d*(X) = d7(X).

7.5. Show that every k-regular tournament is k-arc-strong.

7.6. (—) Prove that every eulerian directed multigraph is strong.

7.7. Let D be a digraph, let s be a vertex of D and let k be a natural number.
Suppose that min{X(s, v), A(v, s)} > k for every vertex v € V(D) — s. Prove
that A(D) > k.

7.8. (—) Vertex-strong connectivity of planar digraphs. In a planar undi-
rected graph G on n vertices and m edges we always have m < 3n — 6 by
Buler’s formula (see Corollary 4.14.3). Conclude that no planar digraph is
6-strong.

7.9. (—) Let D be a k-strong digraph and let a be an arbitrary arc of D. Prove
that D — a is (k — 1)-strong.

410

MLO?

Goll,

ol.

(Gilsy,

7.14.

(elbe

CNG.

TALI

7. Global Connectivity

(—) Let D be a k-strong digraph and let a be an arbitrary arc of D. Let by

be obtained from D by reversing a. Prove that D’ is (k — 1)-strong.

Connectivity of powers of cycles. Recall that the kth power of a cycle

C =v1...Unv1 is the digraph with vertex set {v1,..., Un} and arc set {viv; :

i+1<j<it+k,i=1,2,...,n}. Prove that the kth power of a cycle on

n >k+1 vertices is k-strong.

(—) For every natural number k describe a k-strong digraph D for which

reversing any arc of D results in a digraph with vertex-strong connectivity

less than k.

(+) Finding k arc-disjoint (x, y)-paths of minimum total weight. Let
D =(V,A,w) be a directed multigraph with weights on the arcs, let x,y € V
be distinct vertices and let k be a natural number. Describe a polynomial
algorithm which either finds a minimum weight collection of k arc-disjoint
(x, y)-paths, or demonstrates that D does not have k arc-disjoint (x, y)-paths.
Hint: use flows. Argue that you can find k internally disjoint (z,y)-paths of
minimum total weight using a similar approach.

(+) Minimum augmentations to ensure k arc-disjoint (s, ¢)-paths.
Let D = (V,A,w) be a directed multigraph, let s,t be special vertices of
D and let k be a natural number such that D does not have k arc-disjoint
(s,t)-paths. Prove that it is possible to augment D optimally so that the new
directed multigraph has k arc-disjoint (s,t)-paths and all new arcs go from
s to t. Now consider the same problem when there are weights on the arcs.
Devise an algorithm to find the cheapest set of new arcs whose addition to
D gives a directed multigraph with k arc-disjoint (s,t)-paths. Hint: use min
cost flows.

(+) Minimum number of new edges to add so that the new digraph
has k arc-disjoint out-branchings at s. Show how to reduce this problem
to the general k-arc-connectivity augmentation. Try to derive a min-max
formula for the optimal number of new arcs.

Equivalence of Menger’s theorem and the Max Flow Min Cut the-
orem. Prove that Menger’s theorem implies the Max-flow Min-cut theorem
for network in which all capacities are integer valued.

Refining Menger’s theorem. Let D be a k-strong directed multigraph.
Let 21, 22,...,2r, Yi, Y2,---, Ys be distinct vertices of D and let ai, a2,...,ar,
bi, b2,...,b; be natural numbers such that

Saat Sa = 1),

j=l t=1

Prove that D contains k internally disjoint paths P;, P2,...,P, with the
property that precisely a; (bj) of these start at x; (end at y;). Argue that
the analogous statement concerning arc-disjoint paths is true if we replace
vertex-strong connectivity by arc-strong connectivity.

. Refining Menger’s theorem for undirected graphs. Prove the analo-
gous statement of Exercise 7.17 for undirected graphs.

. Menger’s theorem for sets of vertices. Let D be k-strong and let X,Y
be distinct subsets of V(D). Prove that D contains k internally disjoint paths

7.20.

ed Le

eed.

7.23.

7.24.

7.25.

7.26.

le2igs

7.28.

(29:

7.17 Exercises 411

which start in X and end in Y and have only their starting (ending) vertex
in X (Y).

Augmenting acyclic tournaments to k-strong connectivity. Prove
that an acyclic tournament on n > k +1 vertices can be made k-strong by

adding tet) arcs. Hint: use Exercise 7.11.

(+) Ear decomposition in linear time. Supply the algorithmic details
missing in the proof of Corollary 7.2.5. In particular, describe how to store
the arcs in such a way that the ear decomposition can be found in linear
time.

(+) Strong orientations of mixed multigraphs in linear time. Give
an O(n+m) algorithm for finding a strong orientation of a mixed multigraph
or a proof that no such orientation exists (Chung, Garey and Tarjan [157)]).

(+) Cycle subdigraphs containing specified arcs. Prove the following.
Suppose D is k-strong (respectively, k-arc-strong) and e€1,¢€2,...,€% are arcs
of D such that no two arcs have a common head or tail. Then D has a cycle
subgraph (respectively, a collection of arc-disjoint cycles) F = {Ci,...,C;},
1 <r<k such that each arc e; is an arc of precisely one of the cycles in F.
Hint: add two new vertices s,t, connect these appropriately to D and then

apply Menger’s theorem to s and t.

Prove the following: Every s-regular round digraph has strong vertex- and
arc-connectivity equal to s (Ayoub and Frisch [34)]).

Connectivity of complete biorientations of undirected graphs. Let G
be a k-connected undirected graph for some k > 1 and let D be the complete
biorientation of G. Prove that for every arc ry of D the digraph D — zy is
k-strong if and only if D — {ry, yx} is k-strong.

Obtaining new k-strong digraphs by adding vertices. Let D be a k-
strong digraph, let z be a new vertex and let D’ be obtained from D and x
by adding k arcs from z to distinct vertices of D and k arcs from distinct
vertices of D to x. Prove that D’ is k-strong.

Obtaining new k-arc-strong directed multigraphs by adding new
vertices. Let D be a k-arc-strong directed multigraph, let x be a new vertex
and let D’ be obtained from D and z by adding k arcs from z to arbitrary
vertices of D and k arcs from arbitrary vertices of D to x. Prove that D’ is

k-arc-strong.

(+) Greedy deletion of arcs in Frank’s algorithm. Show how to imple-
ment Steps 2 and 3 of Frank’s algorithm in Section 7.6 by using flows to find
the maximum number of arcs that can be deleted for each vertex v; (Frank
[258]). Hint: let t be a vertex of V — vi, identify s and t to one vertex t’ and
then calculate X(v;,t’) in the resulting directed multigraph. Do this for all
t € V—v; and let p be the smallest of the numbers calculated. Using Menger’s

theorem, show that we may delete precisely min{p(v;, 8), @ — k} arcs from v;

to s without violating (7.9).

Perform Frank’s algorithm on the digraph in Figure 7.19 when the goal is to

obtain a 2-arc-strong directed multigraph.

412

7.30.

Colle

7.32.

7.33.

7.34.

7.35.

7.36.

(Gole

7.38.

7.39.

7.40.

7.41.

7.42.

7.43.

7. Global Connectivity

AE DIG
Figure 7.19 A directed graph H.

(+) Finding an admissible split. Show that Step 5 of Frank’s algorithm
in Section 7.6 can be implemented using flows. That is, show how to decide
if a given splitting (ws, sv) is admissible, that is, it preserves k-arc-strong
connectivity in V (Frank [258]). Hint: we need to decide if there is a set
U CV such that u,v € U and d*(U) =k or d (U) =k. This can be done
using flows in a way similar to that outlined in the hint above.

(+) Let D= (eis Vasu hed et, bt bE aT where J, denotes the digraph, that
is, just an isolated vertex and n is an even number. Prove that y,(D) = k.
Try to determine a;(D).

Let H be the digraph in Figure 7.19. Determine a2(H) and a set of a2(H)
arcs whose addition to H results in a 2-strong digraph. Use one-way pairs to
verify optimality.

Let D be a digraph with «(D) = k and suppose that y,,,(D) = 2k +1.
Prove that ax4i1(D) = yk41(D).

Let D be the digraph illustrated in Figure 7.9. Prove that r2(D) > 2.

Generalize the example in Figure 7.9 to obtain a set of digraphs D =
{Di pDowl.+, Visuchithat 6,.(De) Sa, (Dz) Kia Se

Vertices with high in- and out-degree in semicomplete digraphs.
Prove that every semicomplete digraph on at least 4k — 1 vertices has a
vertex x with d*(a),d~ (x) > k. Show that this is the best possible.

Minimal k-out-critical sets are strongly connected. Prove that, if D is
a directed multigraph and X is a minimal k-out-critical set, then the directed
multigraph D(X) is strongly connected.

Removing a minimal separating set from a locally semicomplete
digraph. Prove Lemma 7.13.4.

Deriving Theorem 7.6.3 from Theorem 7.8.1. Show that Theorem 7.6.3
follows from Theorem 7.8.1. Hint: use (7.22) and the two ways of being (S, T)-
independent to derive Theorem 7.6.3.

Let T’ be the tournament on 7 vertices shown in Figure 7.20. Show that
r2(T) = 1 and that ro(T —v) =3.

Derive Corollary 7.11.4 from Theorem 7.11.2.

Semicomplete digraphs with a k-critical 2-cycle. Prove that the semi-
complete digraph D in Figure 7.17 is k-strong, but that neither D — ry nor
D — yz is k-strong.

Constructing k-(strongly)-connected k-regular (di)graphs. Prove that
the rth power of an undirected cycle is (2r)-connected. Prove that, if n is even
and G is obtained from an even cycle v1 v2...v2%v1 by taking the rth power

7.17 Exercises 413

xX Me

Figure 7.20 A strong tournament T on 7 vertices. The fat arcs indicate that all
arcs between the sets indicated have the directions shown.

7.44,

7.45.

7.46.

7.47.

7.48.

and then adding longest diagonals (v1v%+41, v2vk42 etc), then G is (2r + 1)-
connected. These graphs are due to Harary [399], see also the book [717, page
202-205] by Thulasiraman and Swamy.

Bi-submodularity of the function h(X,Y) on one-way pairs. Let
D = (V,A) be a digraph. Recall that a pair (X,Y), where X,Y CV, isa
one-way pair if there are no edges from X to Y and that h(X, Y) is defined by
h(X,Y) := |V—(XUY)|. Prove that the function h(X, Y) is bi-submodular,
ie. for every choice of one-way pairs (X,Y), (X’,Y’) the following holds:

WAXY TAX) ou Uy Oe hs OX UY,)

Hint: consider the contribution of a vertex v € V to each side of the inequality.

Let D be a digraph that is k-strong but not (k + 1)-strong. Call a one-way
pair (X,Y) critical if h(X, Y)=k. By Lemma 7.7.2 the family

F = {(X,Y) : (X,Y) is a critical one-way pair}

is non-empty. Prove that F is a crossing family of pairs of sets, i.e. if
(X,Y), (X’, Y’) € F satisfy XN X'’ AP and YNY’ #9, then (XUX’',YN
Y’), (XN X', Y UY’) € F. Hint: use Exercise 7.44.

Large 3-strong tournaments with every vertex critical. Prove that
every tournament in the class 7 from Figure 7.13 is 3-strong and that every
vertex different from z, y is critical.

Finding subgraphs with specified bounds on degrees. Describe a poly-
nomial algorithm which takes as input a digraph D = (V, A) on n vertices
and non-negative integers a1, @2,...,@n, 61, b2,...,bn such that d§(v;) > a;
and d5(vi) > b; for i= 1,2,...,n and returns a minimum cardinality subset

A’ of A such that the digraph D’ = (V, A’) satisfies that df, (vi) > a; and
d>, (vi) > b; for i = 1,2,...,n. Hint: use flows and use a similar network to
that used in the proof of Theorem 3.11.5.

Prove that if a digraph D = (V,A) contains no anti-directed trail, then
|A| < 2|V| — 1. Hint: consider the bipartite representation BG(D) of D and
show that this has no cycle.

414 7. Global Connectivity

7.49. (+) Show that for every p with 1 < p < 2 there exists a weighted digraph
D = D(p) for which the weight of D’ = (V, A(F,)UA(F;*)), where F, (F;*)
is a minimum cost in-branching (out-branching) rooted at r in D is at least
p times the weight of a minimum cost strong spanning subdigraph of D.

7.50. (—) Let D be a k-arc-strong semicomplete digraph on at least 2k +2 vertices.
Prove that there exists an arc a of D such that D — a is k-arc-strong. Hint:
prove that D cannot be minimally k-arc-strong.

7.51. (—) Describe a polynomial algorithm which given a directed multigraph D
decides whether \(D) = 6°(D).

8. Orientations of Graphs

The purpose of this chapter is to discuss various aspects of orientations of

(multi)graphs. There are many ways of looking at such questions. We can ask

which graphs can be oriented as a digraph of a certain type (e.g. a locally

semicomplete digraph). We can try to obtain orientations containing no di-

rected cycles of even length, or no long paths. We can try to relate certain

parameters of a graph to the family of all orientations of this graph (e.g.

what does high chromatic number imply for orientations of a graph). We can

also look for conditions which guarantee orientations with high arc-strong

connectivity or high in-degree at every vertex, etc. There are hundreds of

papers dealing with orientations of graphs in one way or another and we can

only cover some of these topics. Hence we have chosen some of those men-

tioned above. Finally we also study briefly the theory of submodular flows

which generalizes standard flows in networks and turns out to be a very use-

ful tool (not only theoretically, but also algorithmically) for certain types of
connectivity questions as well as orientation problems. We illustrate this by

applying the submodular flow techniques to questions about orientations of

mixed graphs as well as to give short proofs of the Lucchesi- Younger Theo-

rem and Nash-Williams’ orientation theorem. We recall that n and m usually

stand for the number of vertices and arcs (edges) of the (di)graph in question.

8.1 Underlying Graphs of Various Classes of Digraphs

In this section we discuss the underlying undirected graphs of several gener-

alizations of tournaments. As can be seen, these include classes of undirected

graphs that are very interesting in practical applications such as compara-

bility graphs, proper circular arc graphs and chordal graphs. For much more

information about these classes and their relations to each other, the reader

is encouraged to consult the books [133] by Brandstadt, [331] by Golumbic,
and [613] by Prisner. Here we will just define those classes that we need. A

graph G is a circular arc graph if there exists a family of circular arcs

indexed by the vertices of the graph such that two vertices are adjacent if
and only if the two corresponding arcs intersect. This family of circular arcs

form a representation of G. A proper circular arc graph is a circular arc

_ graph which has a representation by circular arcs, none of which is properly

416 8. Orientations of Graphs

contained in another. A graph G is chordal if every cycle of length at least

4 has achord, that is, G has no induced cycle of length four or more. Finally,

G is a comparability graph if it has a transitive orientation (that is, there

exists a transitive oriented graph T such that UG(T) is isomorphic to G).

We will always use A to denote the maximum degree of the undirected

graph in question.

8.1.1 Underlying Graphs of Transitive and Quasi-Transitive

Digraphs

Since every transitive digraph is also quasi-transitive, every comparability

graph has a quasi-transitive orientation. The next theorem by Ghouila-Houri

shows that the other direction also holds.

Theorem 8.1.1 /316] A graph G has a quasi-transitive orientation if and

only if it has a transitive orientation.

Proof: To illustrate the usefulness of the decomposition theorem for quasi-

transitive digraphs (Theorem 4.8.5), we give a proof which is quite different

from the one in [316]. We prove the non-trivial part of the statement by
induction on the number of vertices. The claim is easily verified when n < 3

so we proceed to the induction step, assuming n > 4. Suppose D is a quasi-

transitive orientation of G and that D is not transitive. If D is not strongly

connected then it follows from Theorem 4.8.5 that we can decompose D as

D =T[W,, W2,...,W:z], t= |V(T)| > 2, where T is transitive and each W;

is a strong quasi-transitive digraph. As t > 2 it follows by induction that

we can reorient each UG(W;) as a transitive digraph T;, 1 = 1,2,...,t. This

gives a transitive orientation D’! = T[T,,T2,...,T;] of G.

Suppose now that D is strong. By Theorem 4.8.5, D can be decomposed

as D = S[W,,W2,...,Ws], s = |V(S)| > 2, where S is a strong semicomplete

digraph and each W; is either a single vertex or a non-strong quasi-transitive

digraph. It follows by induction (as above) that we can orient each UG(W;) as
a transitive digraph T/, 7 = 1,2,...,s. Let TT, be the transitive tournament

on s vertices. Then D' = TT;[T{,T3,...,T!] is a transitive orientation of G.

O

The following construction is due to Ghouila-Houri [316]. Let G = (V, E)
be an undirected graph. Construct a graph G'g¢q from G as follows: V(Gyia) =
Uuwex(ay {tu Tyy} and there is an edge from ry, to Zyz precisely if w = vu
and uz ¢ E, or u = z and vw ¢ E. In particular there is an edge tyy2yy
for each uv € E. See Figure 8.1 for an illustration of this construction. Note
that, if tuyTyw is an edge of Gaga, then so is Tyyyy. Every edge of Gota
corresponds to a forbidden pair of oriented edges of G. The interest in this
construction lies in the following very useful fact.

Theorem 8.1.2 /316] A graph G is a comparability graph (and hence has a
transitive orientation) if and only if Gta is bipartite.

8.1 Underlying Graphs of Various Classes of Digraphs 417

Agta

Figure 8.1 An illustration of the construction of Gyta for two graphs. Due to space
considerations we have dropped the «’s in the name of the vertices of Gyta, Hata.

The graph G is a comparability graph. The graph H is not a comparability graph.
Note that bf, cb, dc, ed, fe, bf is a 5-cycle in Hygta.

Proof: Suppose G = (V, £) is a comparability graph and let T = (V, A) be

a transitive orientation of G. In Gygta the vertices X; corresponding to the

arcs of T (that particular orientation of the edge uv for each uv € E) form
an independent set. By symmetry of the definition of the edges of Ggta, the

remaining vertices X2 of Ggtq also induce an independent set. Hence Gytq is

bipartite with bipartition (X1, X2).

Conversely, suppose that G,zq is bipartite with bipartition (X,Y). Be-
cause Ggiq contains a perfect matching consisting of edges of the form LyyTyu

it follows that |X| = |Y| and X contains precisely one of the vertices Tuy, Zyu

for each uv € E. It follows from the definition of Ggzq that orienting the

418 8. Orientations of Graphs

edges corresponding to the vertices in X (Y) results in a quasi-transitive ori-

entation D of G. (If zy, € X, then orient uv from u to v, otherwise orient it

from v to u.) By Theorem 8.1.1, G has a transitive orientation. oO

Corollary 8.1.3 Comparability graphs can be recognized in time O(Am),

where m is the number of edges in the input graph.

Proof: This follows from Theorem 8.1.2 and the fact that the number of

edges in Ggta is O(A|E|). Note that we can check whether a given undirected

graph is bipartite in linear time using BFS (Exercise 8.2). Oo

For various results on recognition of comparability graphs see the papers

[330] by Golumbic, [411] by Hell and Huang, [574] by Morvan and Viennot

and [577] by Muller and Spinrad.

Consider the comparability graph G in Figure 8.1 and suppose that our

goal is to obtain a quasi-transitive orientation of G. If we choose the orienta-

tion ad, then this forces the edge between d and e to be oriented as e—d.

This in turn forces the orientations c+d and b-d and each of these force

f—d. Similarly it can be seen that the five edges ad, bd, cd, de, df force each

other. It is easy to see that the corresponding ten vertices in Gygtq form one

connected component of Geta.

It is not difficult to see that this observation holds for arbitrary compa-

rability graphs, i.e. if r,, and 2», are in the same connected component of

Gata and wz # vu, then once we decide on an orientation for the edge uv

in G, that orientation forces one on the edge wz. An implication class for

G = (V, E) is a maximal set of edges E’ with the property that in every

orientation of G as a quasi-transitive digraph the choice of an orientation of

one edge e € E’ forces the orientation of all other edges in E’.
By our remark above the implication classes for G coincide with the con-

nected components of Gg:q. More precisely the connected component C’ of

Gata corresponds to the implication class E’ = {uv € E : tuy € V(C)}.

It is not difficult to see that the implication classes form a partition of E.

Given Ggtq we can obtain the implication classes of G just by finding the

connected components of G'gzq. Hence we can find the implication classes in

time O(Am) (recall that Ggrq has O(Am) edges).
Let G be a comparability graph and suppose we want to find a transitive

orientation of G. We can obtain a quasi-transitive orientation just by picking

an arbitrary edge from each implication class, choosing an orientation for

this edge and then orient the remaining edges in that class the way they are

forced to be oriented. The problem is that this orientation will in general not

be transitive. Consider for example the graph G in Figure 8.1. Since each of

the edges ab, bc and ac form an implication class of size one, there is nothing

that prevents us from orienting these three edges as the 3-cycle a>b-c—a.

We now describe a simple and very useful technique, due to Hell and

Huang [411], for obtaining a transitive orientation of a given comparability

8.1 Underlying Graphs of Various Classes of Digraphs 419

graph G. Let 1,2,...,n be a fixed labelling of the vertices of G. We say that

a vertex xj; Of Gata is lexicographically smaller than a vertex 2, if either

ea Or ti='r' and 7 <is;

The lexicographic 2-colouring of Ga is the unique 2-colouring (on

colours A,B) which is obtained as follows. Mark all vertices of Ggta non-

coloured. Next, as long as there are uncoloured vertices, choose the lexico-

graphically smallest vertex 2;; which is not coloured yet and colour it A.

Colour all other vertices in the same connected component as they are forced

(that is, by A if the distance from 2;; is even and by B otherwise). When all
vertices of Gq are coloured the process stops.

The usefulness of lexicographic 2-colourings comes from the following re-

sult (see also Theorem 8.1.9).

Theorem 8.1.4 [411] Let G be a comparability graph with vertices 1,2,...,n

and let f : V(Gqgta) > {A, B} be the lexicographic 2-colouring of V(Ggta). De-
fine an orientation D of G such that an edge ij is oriented as ij precisely

when xj; receives colour A by the colouring f. Then D is a transitive orien-

tation of G.

Proof: Exercise 8.4. oO

Note that, if we apply the lexicographic 2-colouring procedure to a non-

comparability graph, then this will be discovered after Gjzq has been formed

when we try to 2-colour a non-bipartite connected component H of Gag. The

algorithm will discover that H is not bipartite and hence G does not have

any orientation as a quasi-transitive digraph. Thus we have obtained another

proof of Theorem 8.1.1 (the lexicographic 2-colouring algorithm either finds

a transitive orientation of G, or concludes that G has no quasi-transitive

orientation).
The whole algorithm (including the construction of Gia) can be per-

formed in time O(Am), where m is the number of edges of G, since we can

find the connected components of Ggzq using BFS.

8.1.2 Underlying Graphs of Locally Semicomplete Digraphs

For a given proper circular-arc graph G with a prescribed circular-arc rep-

resentation we get a natural order on the vertices of G by fixing a point on

the circle and labeling the vertices v1,v2,...,Un according to the clockwise

ordering of the right endpoints of their intervals (circular arcs) on the circle

with respect to this point. Since every proper circular-arc graph has a repre-

sentation in which no two arcs cover the whole circle [331], we may assume
that we are working with such a representation. Now it is not difficult to

see that the following process leads to a round local tournament orientation

of G (see Chapter 4 for the definition of a round local tournament’): orient

1 Hell and Huang use the name local transitive tournament instead of round
local tournament [411].

420 8. Orientations of Graphs

the edge between v; and v; from vu; to v; just if the left endpoint of the jth

interval is contained in the ith interval. Thus we have the following result

due to Skrien (see also [44, 410, 436}):

Proposition 8.1.5 /675] Every proper circular-arc graph has an orientation

as a round local tournament. Oo

In fact, Hell and Huang showed that the other direction holds as well.

Theorem 8.1.6 [411] A connected graph is a proper circular arc graph tf

and only if it is orientable as a round local tournament.

Proof: We proved one direction above. To prove the other direction assume

that D is a round local tournament and that v1,v2,...,Un is a round enu-

meration of V(D). If no such labelling is given, then we can find one in time
O(n + m) (Exercise 8.6). Now represent UG(D) by circular arcs as follows.
Let € be a fixed number such that 0 < € < 1. Make an n-scale-clock on a cycle

and associate with the vertex v; the circular arc from i to i+ dp(i) +€ in the
clockwise order for i = 1,2,...,n (indices modulo n). It is easy to check that

this gives a proper circular arc representation of UG(D). Note that here we
use the fact that the out-neighbours of every vertex of D induce a transitive

tournament (see Chapter 4) to see that no arc is properly contained in any
other arc. oO

By Theorem 8.1.6, the class of underlying graphs of locally semicomplete

digraphs contains the class of proper circular arc graphs. The next result,

due to Skrien [675] (see also [410, 436]) says that there are no other graphs
that can be oriented as locally semicomplete digraphs.

Theorem 8.1.7 [675] The underlying graphs of locally semicomplete di-

graphs are precisely the proper circular arc graphs. 0

Bang-Jensen, Hell and Huang [410] showed that, just as in the case of
comparability graphs, there is a useful auxiliary graph Gizq related to orien-

tations as a local eeeee digraph: Let G = (V, E) be given and define
Gita as follows: V(Gua) = UuweEe {Xuy,lyu} and there is an edge from ry,

tO Zwz precisely if v = z and uw dE, or u = w and vz ¢ E. Furthermore,

the edge ZuyXyu is in E(Giza) for each uv € E. The proof of the following
result is left as Exercise 8.7.

Theorem 8.1.8 [410] The graph G has an orientation as a local tournament
digraph if and only if the graph Gita is bipartite. 0

Suppose G is a proper circular arc graph. Then it follows from Theorem

8.1.7 and Theorem 8.1.8 that Gig is bipartite. Again each connected compo-

nent of Gjzq corresponds to an implication class E’ of edges of G. Hence we

can find a local tournament orientation of G by fixing the orientation of one

8.1 Underlying Graphs of Various Classes of Digraphs 421

arc from each implication class arbitrarily and then giving all remaining arcs
the forced orientation.

If our goal is to find a representation of G as a proper circular arc graph,

then we are not interested in just any local tournament orientation of G, but

we need an orientation as a round local tournament (compare with Theorem

8.1.6). Again we can use the lexicographic method which was defined in

Section 8.1.1 for this. Since Gig is bipartite, we can apply the lexicographic

2-colouring procedure which was defined in Section 8.1.1. It follows from the

next theorem and the proof of Theorem 8.1.6 that the lexicographic method

is also of use in recognition of proper circular arc graphs.

Theorem 8.1.9 /411] Let G be a proper circular arc graph and let f :

V (Gita) {A, B} be the lexicographic 2-colouring of V(Giza). Define an ori-
entation D of G such that an edge ij is oriented as ij precisely when z;;

receives colour A by the colouring f. Then D is a round local tournament

orientation of G. 0

This shows that using the lexicographic method one can obtain an O(Am)

algorithm for recognizing and representing proper circular arc graphs.

In fact an even faster and optimal algorithm for recognizing proper circu-

lar arc graphs has been found by Deng, Hell and Huang [190]. This algorithm

also uses the fact that a graph is a proper circular arc graph if and only if it

has an orientation as a round local tournament.

Theorem 8.1.10 /190] There is an O(n +m) algorithm to find a local tour-
nament orientation of a graph G or to report that G does not admit such an

orientation. Moreover, if a local tournament orientation exists, the algorithm

also identifies all balanced arcs. O

We will define the notion of a balanced arc in the next subsection.

8.1.3 Local Tournament Orientations of Proper Circular Arc

Graphs

In this subsection we describe a deep result by Huang [435, 436] which gives

a complete characterization of all the possible local tournament orientations

of a given proper circular arc graph. In order to state Theorem 8.1.12 below

we need several definitions.

Let G = (V, E) be an undirected graph. An edge zy of G is balanced if

every vertex z € V — {z,y} is adjacent to both or none of x and y. An edge

is unbalanced if it is not balanced. If all edges of G are unbalanced, then

G is reduced and otherwise G is reducible. It follows from this definition

that a graph which is not reduced can be decomposed as described in the

next lemma. See Figure 8.2 for an illustration.

422 8. Orientations of Graphs

e

G G’ H

Figure 8.2 A reduced graph G and a reducible graph G’. The graph G’ can be
reduced to the graph H by identifying the pairs {a,b}, {c, f} and {d, e}.

Lemma 8.1.11 Jf G is not a reduced graph, i.e. it has a balanced edge, then

there exist a reduced subgraph H of G and complete subgraphs Ka,,Ka,,---;

K., of G such that G = H[Ka,,Ka,;---,Ka,], h = |V(H)| *. Furthermore
we can find this (unique) decomposition in time O(n?*).

Proof: We leave the easy proof to the reader. oO

Actually such a decomposition can be found even faster in O(n”) time,

see the paper [217] by Ehrenfeucht, Gabow, McConnell, and Sullivan.

Let G = (V, E) be a proper circular arc graph. As we mentioned in the

last subsection one can partition E into disjoint non-empty subsets £),..., E,

with the property that, if we fix the orientation of one edge in each £;, then

there is precisely one way to orient all the remaining edges in FE so that

the resulting digraph is a local tournament digraph. In other words, the

orientation of one edge in E; implies the orientation of all other edges in E;.

As in the last section we call the sets F£,,...,#, the implication classes of G

(see Theorem 8.1.12 and Theorem 8.1.13 below).

Theorem 8.1.12 /436, Huang] Let G be a connected proper circular arc

graph and let Cy,...,Cy be the connected components of G. Then one of

the following two statements holds.

(a) G is bipartite, the set of all unbalanced edges of G with both ends in a

fized C; form an implication class and the set of all unbalanced edges of

G between two distinct C; and C; form an implication class (see Figure
Side

(b) G is not bipartite, k = 1, and all unbalanced edges of G form one impli-

cation class. oO

Observe that an edge forms an implication class by itself if and only if it

is balanced. Hence Theorem 8.1.12 can be reformulated as follows.

? Here the composition H[Gi, G2,..., Gv 1)\] is defined analogously to the com-
position of digraphs in Section 1.3.

8.1 Underlying Graphs of Various Classes of Digraphs 423

a Cj Cy

Figure 8.3 Implication classes for orientations of a graph G as a local tournament
digraph.The sets C;,C;,Cp denote distinct connected components of G. For each
component a bipartition A,,B, is shown. The edges shown inside C; form one
implication class and the edges shown between C; and C> form another implication
class.

Theorem 8.1.13 (Huang) /436] Let G be a proper circular-arc graph which

is reduced (that is, every edge ts unbalanced), let G denote the complement

graph of G and let Ci,...,C, denote the connected components of G.

(a) If G is not bipartite, then k = 1 and (up to a full reversal) G has only

one orientation as a locally tournament digraph, namely the round ori-

entation.

(b) If G is bipartite then every orientation of G as a locally tournament

digraph can be obtained from the round locally tournament digraph ori-

entation D of G by repeatedly applying one of the following operations:

(I) reverse all arcs in D that go between two different C;’s,
(II) reverse alli arcs in D that have both ends inside some C;: Oo

It is also possible to derive a similar result characterizing all possible

orientations of G as a locally semicomplete digraph. We refer the reader to

[436] for the details.
As an example of the power of Huang’s result (Theorems 8.1.12 and

8.1.13) we state and prove the following corollary which was implicitly stated

in [436] (see also Exercise 4.33).

Corollary 8.1.14 If D is a locally tournament digraph such that UG(D) is
not bipartite, then D = R[S\,...,5,], where R is a round locally tournament

digraph on r vertices and each S; ts a strong tournament.

Proof: If UG(D) is reduced, then this follows immediately from Theorem

8.1.13, because according to Theorem 8.1.13, there is only one possible lo-

cally tournament digraph orientation of UG(D). So suppose that UG(D)

is not reduced. By Lemma 8.1.11, UG(D) = H[Ka,,---,Ka,], h = |V(A)I,

where H is a reduced proper circular arc graph, each Ka, is a complete graph,

424 8. Orientations of Graphs

and some a; > 2. Because we can obtain an isomorphic copy of H as a sub-

graph of UG(D) by choosing an arbitrary vertex from each K,;, we conclude,

from Theorem 8.1.12, that in D all arcs between two distinct Ka,, Ka; have

the same direction (note that H is non-bipartite). Thus D = R[S},..., Sr],

where (up to reversal of all arcs) R is the unique round locally tournament

digraph orientation of H and each S; is the tournament D(V(Ka;)). Note

that D(V(K,;)) may not be a strong tournament, but according to Corol-

lary 4.11.7 we can find a round decomposition of D so that this is the case.
O

8.1.4 Underlying Graphs of Locally In-Semicomplete Digraphs

The structure of the underlying graphs of locally in-tournament digraphs is

more complicated than in the case of local tournaments and quasi-transitive

digraphs. In [725] Urrutia and Gavril studied locally in-tournament digraphs
under another name fraternally oriented graphs. This name, although

used in several papers (e.g. [292] by Galeana-Sanchez, [307] by Gavril, [308]
by Gavril, Toledano Laredo and de Werra and [309, 725] by Gavril and Urri-

tia), is somewhat misleading, since it may easily be confused with the name

fraternally orientable which is used for an undirected graph with an ori-

entation as a fraternally oriented graph.

In [725] an algorithm for recognizing graphs orientable as locally in-
tournament digraphs (as well as finding a locally in-tournament digraph ori-

entation if one exists) is given. The complexity is O(nm) which is worse than

the simple algorithm based on 2-satisfiability given in Proposition 8.1.15 be-

low.

In the paper [725] Urrutia and Gavril also gave a characterization in
terms of forbidden subgraphs of graphs orientable as locally in-tournament

digraphs. Unfortunately, the characterization is not in terms of minimal for-

bidden subgraphs. In fact, the characterization is merely a structural obser-

vation of what happens when the algorithm of [725] fails to find a locally
in-tournament digraph orientation.

In Section 1.10 we mentioned that algorithms for the 2-SAT problem

are useful for certain orientation problems. The proposition below gives one

example of this.

Proposition 8.1.15 /81] Graphs that are orientable as locally in-tournament
digraphs can be recognized in O(Am) time.

Proof: Let a graph G = (V, E) be given, and let D = (V, A) be an arbitrary
orientation of the edges of G, where A = {a1,a2,...,@m}. If a; is an orienta-

tion of an edge yz of G, fen the reverse renin of that edge is denoted

by a;. We now construct an instance of the 2-SAT problem as follows. The set

of variables is X = {21,...,%m}. The variables are interpreted as follows. If

8.1 Underlying Graphs of Various Classes of Digraphs 425

osey 1; then we keep the orientation a;, otherwise we take the opposite orien-

tation a;. The clauses consist of those pairs of literals (€; + €;) for which &;, é;
correspond to arcs with the same terminal vertex and nonadjacent initial

vertices in D. It is easy to see that G is orientable as a locally in-tournament

digraph if and only if the above-defined instance of 2-SAT is satisfiable. By

Theorem 1.10.5 the complexity of 2-SAT is O(K’) where K is the number of

clauses. Hence, it follows from the way we construct the clauses above that

we can recognize graphs orientable as locally in-tournament digraphs in time

O(Am). 0

The construction used in the proof above is illustrated in Figure 8.4. Part

(a) shows an undirected graph G; part (b) an arbitrary orientation D of G.
The instance of 2-satisfiability corresponding to this orientation contains one

variable for each arc of D and the following clauses:

(256 =F Bet); (fea te agi: (teh al Tee), (Sra st Gees (ihe a Dro)

eek a nes (ZFe ot Te) (ay, a apy (Zée ot eels

Part (c) shows an orientation of G as an in-tournament digraph corresponding

MemeBertritn ascieument (lap, lad) 2cb, led, lcesLdb, Leg, Lye, Lig, thes the) =

(0,0, 1, 1,0, 1, 1,0,0,0,0).

b if b f

a g a g

d h d h
(b) (c)

Figure 8.4 An undirected graph G and two orientations of G.

In Exercise 1.68 a useful correspondence between the 2-SAT problem and

the problem of deciding the existence of an independent set of size n/2 in
graphs with a perfect matching was indicated. Using this correspondence, it

is no surprise that for graphs which are orientable as in-tournament digraph

426 8. Orientations of Graphs

there is a construction similar to the one used in Theorem 8.1.2 for compa-

rability graphs. (In Theorem 8.1.8 we saw a similar one for the underlying

graphs of locally semicomplete digraphs.)

Let G = (V,E) be an undirected graph and define the undirected graph

Gita as follows: V(Gita) = Uuvex(a) {fu Tyu} and there is an edge from Fy

tO Lz precisely if w =v and z = u, or v = z and ww ¢ E.

The proof of the following lemma is left to the reader as Exercise 8.1. As

mentioned above, it is useful to compare this lemma with Exercise 1.68.

Lemma 8.1.16 A graph G = (V,E) of order n is orientable as a locally

in-tournament digraph if and only if the graph Gita has an independent set

of size n. Oo

abe
Figure 8.5 The digraphs Bi, B2, B3

Let B be the family of the three digraphs shown in Figure 8.5 and let F

be any subset of B other than {B,} or {Bo}. Skrien [675] characterized the
classes of those graphs which can be oriented without a member of F' as an

induced subdigraph. These are the classes of complete graphs, comparability

graphs, proper circular arc graphs, and nested interval graphs. Since each

of the forbidden configurations contains just two arcs, 2-SAT could be used

to solve the recognition problem for each of these four classes, all in time

O(Am).

The intersection graph I(F") of a family F’ = {S, : x € V} of sets has
vertex set V and two distinct vertices x,y are adjacent whenever S;M Sy #

#. A graph G is representable in the graph H if G is isomorphic to the

intersection graph of a family of connected subgraphs {H; : x € V(G)} of
H. It seems interesting that three of the four classes above can be defined by

representability. In the case of the underlying graphs of locally in-tournament

digraphs, we do not know of a similar characterization (see Theorem 8.1.19
for a partial result).

If we consider another kind of representability involving pointed sets,

then such a representation does indeed exist. A pointed set is a pair (X, p)
consisting of a set X and one element p € X. Maehara [542] defines the
catch digraph (2(F) of a family F = {(Sz,p,) : x € V} of pointed sets
as the digraph with vertex set V and an arc from z to y if py € Sz, for

z #y € V. Obviously the underlying graph of ({(Sz,pr) : x € V}) isa

8.1 Underlying Graphs of Various Classes of Digraphs 427

spanning subgraph of I'({S, : 2 € V}) for any family of pointed sets. The
converse only holds in special cases:

Lemma 8.1.17 /81, 725] If D is a locally in-semicomplete digraph, then

Q({(Np[2],z) : 2 € V}) = D and P({Np [a] : « € V}) =UG(D).

Proof: The first statement is obvious. Let now x and y be distinct vertices

of D such that N5[x]N Nd[y] 4 0. Then x > y or y 3 @ or z and y have
some common successor z. In the last case again x > y or y > 2, since D is

locally in-semicomplete. Then UG(D) = I'({Nj[z] : x € V}) by the remarks
above. oO

Gavril and Urrutia found the following characterization of locally in-

semicomplete digraphs in terms of catch digraphs and representability:

Theorem 8.1.18 /725] A digraph D = (V, A) is locally in-semicomplete if
and only if it is the catch digraph of a family ({(Sz,pz) : x € V}) such that
UG(D) equals I'({S,:2 € V}).

Proof: Let D be the catch digraph of ({(Sz, pz) : z € V}) such that UG(D)
is the intersection graph G of ({S, : x € V}). Choose any predecessors z, z
of a vertex y. Then p, € S; Sz, which implies rz € E(G). But then x > z
or z + z in D. The converse follows from Lemma 8.1.17. O

An undirected graph is unicyclic if it has precisely one cycle. The next

result, due to Prisner, and the corollaries below show that the class of graphs

orientable as in-tournament digraphs is quite large.

Theorem 8.1.19 /612] Every graph G that is representable in a unicyclic

graph is orientable as a locally in-tournament digraph.

Proof: We give a proof due to Bang-Jensen, Huang and Prisner [81]. Let

{H, : x € V(G)} be a representation of G in a unicyclic graph H with cycle
C = 2, 21,---,2¢—-1,20- The numbering is done clockwise around the cycle

(the reader should think of this as drawn in the plane). We may assume that

H is connected. For vertices x of G whose representative H, contains all

vertices of the cycle C, we define p; := zo. If H; contains some but not all

of the vertices of C’, then it contains just a subpath, since H, is connected.

For such vertices x we take p, as the first vertex of this path in the clockwise

orientation. If H, 7 C = @, then there is a unique vertex of H, separating

the rest of H, from C’ and we let p, be that vertex.

By Theorem 8.1.18, it suffices to show that the catch digraph D of the

family {(V(H,),pz) : z € V(G)} is an orientation of G. Let ry be an edge of
G, that is, H, Hy # 9. Let z be a vertex of H, 1 Ay. If Hz NC and H,NC

are nonempty, then it is easy to see that py € V(HzNC) or pz € V(Ay NC).

Thus « > y ory > z in D.
So suppose without loss of generality that Hz MC = @. Then there is

exactly one path from z to C. The vertex p, must lie on this path, and if

428 8. Orientations of Graphs

H,C = O, then so must the vertex py. We may assume without loss of

generality that p, lies on the (py, z)-subpath. Now pz € V(H,) andy > x

in D. If Hy NC # O, then the whole path from z to C must lie inside Hy,

whence y > « in D. O

—@ <___9-_____®-

Figure 8.6 A locally in-tournament digraph whose underlying graph is not repre-

sentable in a unicyclic graph

The converse is not true: Figure 8.6 shows a locally in-tournament di-

graph whose underlying graph is not representable in any unicyclic graph. It

can be easily shown that in any graph G representable in an unicyclic graph

the following must hold. Any vertex x of an induced cycle of length at least 4

must be adjacent to at least one vertex from any other induced cycle in G—z

(Exercise 8.12). But this property is certainly not obeyed by the underlying

graph of the digraph of Figure 8.6.

A cactus is a connected graph in which every block® is a cycle or an edge

(see Figure 8.7). The following conjecture was stated implicitly by Bang-

Jensen, Huang and Prisner in [81].

Conjecture 8.1.20 /81] Every graph orientable as a locally in-tournament
digraph is representable in a cactus.

Note that the opposite is not true: no cactus with at least two induced cycles

of length > 4 can be oriented as a locally in-tournament digraph. This implies

the claim since every graph can be represented in some subdivision of itself.

Just subdivide each edge once and take the set representing a vertex v as the

star at that vertex in the subdivided graph.

Theorem 8.1.19 has several consequences. We list some of them below.

° A block of an undirected graph G is a maximal connected subgraph without a
cut-vertex.

8.2 Fast Recognition of Locally Semicomplete Digraphs 429

Figure 8.7 A cactus.

Corollary 8.1.21 Every chordal graph and every circular arc graph is ori-

entable as a locally in-tournament digraph.

Proof: Chordal graphs are representable in trees (see [331, page 82]) and
hence in unicyclic graphs. By definition, every circular arc graph is repre-

sentable in some unicyclic graph. Now the claim follows from Theorem 8.1.19.

O

Another (non-trivial) corollary is the following by Bang-Jensen, Huang
and Prisner. For a proof see [81].

Corollary 8.1.22 /81] Every graph with exactly one induced cycle of length

greater than 3 is orientable as a locally in-tournament digraph. oO

We close this subsection with a characterization, due to Bang-Jensen,

Huang and Prisner, of those line graphs which are orientable as locally in-

tournament digraphs (a graph G is a line graph if there exists an undirected

graph H such that G is the intersection graph of the edges in H (considered

as subsets of V(H) of size two). We write G = L(H) if G is the line graph of
ioe

DEP! SE, D1 niet, TlH 1) 20 «Dea CYCle~ A Chordet 74. With 2.9 ©

{0,1,...,€ —1},i < j, is called a p-chord for p = min{j — i,i + £— j}.
Two chords 2;z; and x,2m are crossing if without loss of generality0 <1 <

ma <n < £ — 1.

Theorem 8.1.23 /81] For any connected graph G, the following are equiva-

lent:
(i) L(G) is orientable as a locally in-tournament digraph,

(ii) With at most one exception, every block of G is Kz or K3, and the ez-
ception is either K4 or a cycle with (possibly) non-crossing 2-chords. Oo

8.2 Fast Recognition of Locally Semicomplete Digraphs

In this section we study the recognition of locally semicomplete digraphs. We

show how to obtain an O(n?) algorithm using the structural characterizations

430 8. Orientations of Graphs

of Theorems 8.1.12 and 8.1.13 as well as the linear algorithm of Theorem

8.1.10 for recognizing and representing proper circular arc graphs. We include

this section to show another application of the main results from Subsection

8.1.3.

We will concentrate on local tournaments, but the results can be extended

to general locally semicomplete digraphs (see Exercise 8.10 and [76)).

It is easy to see that local tournaments can be recognized in polynomial

time. Given an oriented graph D, to test whether D is a local tournament

it is enough to verify the following property for each arc (x,y) of D: the

vertex x must be adjacent to every vertex which dominates y and the vertex

y must be adjacent to every vertex which is dominated by z. If the property

is satisfied for each arc of D, then D is a local tournament; otherwise D is

not a local tournament. It is easy to see that this verification can be done in

O(A(D)m) time, where A(D) is the maximum degree of D.
Below we shall show how to obtain an O(n”) algorithm to recognize local

tournaments. The description follows [76]. We point out that in [76] it was
claimed that the algorithm is linear. This is not quite true, since we use the

transformation to the complement graph as an important subroutine and the

size of the complement graph is generally not linear in the size of the original

graph.
In our algorithms, we assume that digraphs D are represented by the lists

of in-neighbours and out-neighbours. This allows us to get all in- and out-

neighbours of a vertex v with O(d(v)) operations, where d(v) is the degree of

v in UG(D). We also need additional information suitable to decide, in time

O(1), whether, for given vertices u and v, it is the case that u dominates v,

or v dominates u, or neither. It is possible to obtain, in time O(m), a version

of the adjacency matrix of D (with valid entries certified by the means of an

additional stack), which allows us to do this, cf. [6, Exercise 2.12]. If we ignore
the complexity of taking the complement graph, then this representation is

needed to give a linear algorithm.

Suppose that D is a local tournament. If D' is obtained from D by re-

versing a balanced arc‘, then D' is also a local tournament. Thus we can

arbitrarily and independently reverse any balanced arc and still have a local

tournament. We can also reverse unbalanced arcs, in suitable combinations.

Let Cy,C2,...,C be the components of UG(D). We define a partial re-

versal of D to be an operation which reverses all unbalanced arcs within

some C;, or reverses all unbalanced arcs between two fixed C; and C;. Par-

tial reversals also preserve the property of being a local tournament. This

follows from Theorem 8.1.13, but to see it directly, suppose that D” is ob-

tained from D by performing a partial reversal. If D” is not a local tour-

nament, then D” contains three vertices x,y,z such that y and z are two

non-adjacent in-neighbours or out-neighbours of z. Assume that y and z are

non-adjacent in-neighbours of x. (A similar discussion applies when y and z

* An arc is balanced if the corresponding edge is balanced in UG(D).

8.2 Fast Recognition of Locally Semicomplete Digraphs 431

are non-adjacent out-neighbours of x.) Note that both (y,a) and (z,) are

unbalanced and y and z are in the same component of:G(D). Thus a partial

reversal either reverses both or neither of the arcs (y, x) and (z, x). Hence D

contains either both (y,x) and (z,x) or both (z,y) and (z, z), contradicting
the fact that D is a local tournament.

It follows from Theorem 8.1.13 that the two operations described above

are sufficient to obtain all local tournament orientations of a fixed proper

circular arc graph G, starting from any one fixed local tournament orientation
of G.

Our strategy to obtain an O(n?) algorithm to recognize local tournaments
combines Theorems 8.1.13 and 8.1.10.

Suppose that D is the input oriented graph. We assume that D is con-

nected as otherwise we can consider each component of D separately. Let

G =UG(D). By Theorem 8.1.7, G is a proper circular arc graph if and only

if it can be oriented as a local tournament. Thus we first test whether G ad-

mits a local tournament orientation. This can be done in time O(n +m), by
Theorem 8.1.10. If G does not admit a local tournament orientation, then we

simply report that D is not a local tournament. Otherwise the algorithm of

Theorem 8.1.10 finds a local tournament orientation D' of G, and identifies

all balanced arcs.

We mark an edge by T if it has the same direction in both D and D’ and

by F if it has opposite orientations in D and D’. By the earlier observation

that balanced arcs can be reversed arbitrarily, we only need to check the

T — F assignment for the unbalanced edges of G. If there are two unbalanced

edges of G in one component or between two fixed components of G, such

that one is marked by T and the other is marked by F’, then D is a not local

tournament by Theorem 8.1.12. Otherwise D is a local tournament because,

according to the observations made above, D can be obtained from D’ by

performing partial reversals and changing directions of some balanced arcs. It

is easy to see that the above verifications can be implemented in time O(n”)

(again we stress that the only reason why the algorithm is not of complexity

O(n+m) is that we need to find the connected components of the complement

graph). Summarizing, we have the following algorithm:

Local tournament recognition algorithm

Input: An oriented graph D.

Output ‘yes’ if D is a local tournament digraph and ‘no’ otherwise.

1. If the underlying graph G of D does not admit a local tournament ori-

entation, then D is not a local tournament. Return the answer ‘no’.

2. Find a local tournament orientation D' of G.

3. For every edge e of UG(D) mark e by T if it has the same orientation in

both D and D’ and by F if it has opposite orientations in D and D’.

4. Construct the complement graph UG(D) of UG(D) and find the con-

nected components of UG(D).

432 8. Orientations of Graphs

6. Find the set of unbalanced edges in ally

7. If there are two unbalanced edges e,e’ of G such that e is marked by

T and e’ is marked by F and end vertices of e,e’ are all within one

component or both edges go between two fixed SN of UG(D),

then D is not a local tournament. Return the answer ‘no’.

8. Otherwise D is a local tournament. Return the answer ‘yes’

In the case of digraphs that are not strongly connected one can obtain a

simpler O(n + m) algorithm to decide whether the given digraph is locally

semicomplete based on Theorem 4.11.6. We leave this as an exercise (Exercise

8.11), see also [76].

8.3 Orientations With no Even Cycles

It can be seen from Section 10.6 that the problem of deciding whether a given

digraph has an even cycle is’ polynomially solvable, but very complicated. The

corresponding problem for undirected graphs is easy (see Exercise 8.17). Here

we will consider a somewhat opposite orientation problem where we wish to

achieve orientations with no even cycles. Since we can concentrate on strong

components when looking for even cycles, we only consider strong orientations

without even cycles. Clearly we can also concentrate on graphs that are non-

bipartite since otherwise every cycle will be even and the answer is trivial. It

is also clear that it suffices to consider graphs which are 2-connected.

Let G be an undirected graph and let us call an orientation D of G odd

if there is no directed cycle of even length in D. The following problem was

posed by Bang-Jensen in 1992 (see e.g. {313]).

Problem 8.3.1 Is there a polynomial algorithm which given an undirected

graph G either returns a strong odd orientation D of G or a proof (in the

form of a certificate that can be checked in polynomial time) that G has no

such orientation?

This seems to be a very hard problem and so far only a partial answer

(Theorem 8.3.3 below) is known. In order to state Theorem 8.3.3, we need

the following definitions. An odd-Kq is an undirected graph which is a sub-

division of the complete graph on four vertices in which each of the four

3-cycles of K'4 become odd cycles (see Figure 8.8 (a)). An odd necklace is
any undirected graph which can be obtained from an odd number t of odd

cycles C1, C2,...,C; by identifying one vertex of C; with one vertex of Cj41

(modulo ¢) in such a way that |V(C;) NV (C;)| = 1 if |i -—j] = 1 (mod k) and
|\V(C;) AV (C;)| = 0 otherwise (see Figure 8.8(b)).

The proof of the following lemma is left as Exercise 8.16.

Lemma 8.3.2 /313] Let G be a graph which is either an odd-K4, or an odd
necklace. Then every strong orientation of G has an even cycle. oO

8.3 Orientations With no Even Cycles 433

(a) (0)

Figure 8.8 Illustration of an odd-K,4 and an odd necklace. Each of the six dashed
lines in the odd-K4 in part (a) correspond to internally disjoint paths and the word
odd inside a cycle in part (b) indicates that the length of the bounding cycle is odd

However graphs that contain odd-K4’s may have strong odd orientations

as shown in Figure 8.9. Note that in this orientation the 2-connected subgraph

corresponding to the odd-K,4 is not oriented as a strong digraph.

Figure 8.9 A strong odd orientation of a graph with an odd-K, (shown as fat
arcs).

Gerards and Shepherd proved the following result:

Theorem 8.3.3 [313] Let G be 2-connected and non-bipartite. If G contains

neither an odd-K4 nor an odd necklace as a subgraph, then G has a strong

odd orientation. 0

By Lemma 8.3.2, Theorem 8.3.3 can be reformulated as

Theorem 8.3.4 /313] Let G be an undirected graph. Then each 2-connected

non-bipartite subgraph of G has a strong odd orientation if and only if G

contains neither an odd-K,4 nor an odd necklace as a subgraph. oO

The proof of Theorem 8.3.3 is based on a constructive characterization of

graphs with no odd-K4’s and no odd necklaces [313, Theorem 7, Corollary 8]

_ (see also [311]).

434 8. Orientations of Graphs

It is shown in [313] that graphs which contain no odd-k’4 and no odd

necklace can be recognized in polynomial time. Furthermore the proof of

Theorem 8.3.3 in [313] is constructive and implies that there is a polynomial

algorithm for Problem 8.3.1 for graphs with no odd-K4 and no odd chain.

For further results on orientations of graphs with no odd-K‘4 see the papers

[310, 312] by Gerards.

How many edges can a graph G have before every strong orientation of

G has an even cycle? Since every strong orientation of a complete graph on

n vertices is pancyclic by Theorem 1.5.1 it is clear that there is some upper

bound on the number of edges (as a function on n) for graphs which have

strong orientations without even cycles.

Let A and B be disjoint sets of size |(n—1)/2| and [(n—1)/2] respectively.

Form a graph H, by taking V(H,) = AU BU, where v is a new vertex

and E(H,) = {ab: a € A,b €.B}U {vc : c € AUB}. Then |E(H,)| =
|(n +1)?/4| — 1 and we can orient H,, so that it is strong and all cycles are
3-cycles just by orienting all arcs from v to A, from A to B and from B to v.

Let C,, = VoU1 .--Un—2Un—1V0 be a cycle. Let L, be obtained from Cy, by

adding all chords v;v; such that i — j is a positive even number. It is not

difficult to check that each graph L,, has |E(Ln)| = |(n+1)?/4] —1 and that
Ly has a strong orientation with no even cycles (Exercise 8.18).

These two classes show that the following result, due to Chung, Goddard

and Kleitman, is best possible in terms of the number of edges. We formulate

it as a theorem for oriented graphs.

Theorem 8.3.5 [158] Every strong oriented graph for which the number of

arcs is at least |(n + 1)?/4| = f(n) +1 contains an even cycle. Furthermore

every strong oriented graph D with f(n) arcs which has no even cycle consists

of a maximal hamiltonian arc-critical subdigraph H of D on an odd number

(2r +1, for some r) of vertices and an acyclic bipartite tournament B on the

remaining vertices, having the partite sets as equal in size as possible, each

vertex of which is joined tor +1 vertices of H. O

By a maximal hamiltonian arc-critical subdigraph of D we mean a sub-

digraph on, say, n’ vertices which has f(n') edges, is hamiltonian, and is

maximal with respect to these conditions (that is, every subdigraph of D
with n” > n' vertices is either non-hamiltonian or has less than f(n”) arcs).

Although Theorems 8.3.3 and 8.3.5 do give some information as to which

graphs. have strong orientations without even cycles, there are large classes of
graphs for which they give no information. One such class is the cubic graphs

one can obtain by joining two odd cycles of the same length by a perfect

matching. The Petersen graph® is one of these graphs. It is easy to see that

the Petersen graph (an orientation of which is shown in Figure 8.10) contains

° The Petersen graph, due to the Danish pioneer of graph theory, Julius Petersen
(1839-1910), is very important in several problems on undirected graphs (see e.g.
[735]).

8.4 Colourings and Orientations of Graphs 435

an odd-K‘4 and hence is not covered by Theorem 8.3.3. In Exercise 8.15 the
reader is asked to prove that every strong orientation of the Petersen graph
contains an even cycle.

Obviously an oriented graph has an even cycle if it has two cycles whose
length differ by one. Hence the following problem may be interesting to study.
The analogous problem was considered for undirected graphs by Bondy and
Vince in [129].

Problem 8.3.6 Is there a polynomial algorithm to decide whether a given

2-connected graph has a strong orientation without two cycles whose length

differ by one?

8.4 Colourings and Orientations of Graphs

In this section we discuss connections between a very important parameter of

an undirected graph G, its chromatic number, and properties of orientations

of G.

Recall that the chromatic number of an undirected graph G = (V, £),

denoted x(G) is the smallest natural number k for which V can be partitioned
into disjoint independent sets Vj, V2,...,V%. A more popular and obviously

equivalent definition is that x(G) is the smallest number k such that we

can assign each vertex v € V a colour from the set {1,2,...,k} without
ever using the same colour for vertices that are adjacent (joined by an edge)

in G. A k-colouring of an undirected graph G is any function mapping

V(G) to {1,2,...,k}. A k-colouring is proper if f(u) # f(v) for every edge
uv € E(G). For convenience we also define x(D) for every digraph as x(D) =

x(UG(D)).
For an arbitrary digraph lp(D) denotes the length of a longest path in D.

The first relation we will discuss is between the number lp(D) and x(G) for

an arbitrary orientation D of G.
If y(G) = k, then we can obtain an acyclic orientation D of G with

Ip(D) = k — 1 just by orienting all edges between V; and V; from V; to V;

for all 1 <i <j <k, where Vi, V2,...,V% is a partition of V into k disjoint

independent sets. Hence if y(G) is small then G has an orientation without
long directed paths. The interesting thing is that the opposite direction also

holds as was discovered independently by Gallai, Roy and Vitaver.

Theorem 8.4.1 (The Gallai-Roy-Vitaver theorem) /297, 646, 727] For

every digraph D, x(D) < \p(D) +1.

Proof: Let D = (V, A) be given and let T = (V, A’) be a maximal acyclic
subdigraph of D. Define the function f : V > Zo by letting f (v) equal the

number of vertices in a longest path starting in v in T. Since T is acyclic, f

436 8. Orientations of Graphs

is well-defined. Assume that f takes values in the set {1,2,...,k} (it is easy

to see that all values in this set are taken by f). Let Vi = {u € V: f(v) =1%}.

We claim that V; is an independent set in D for each i = 1,2,...,k.

Clearly this will imply that y(D) < Ip(D) + 1. Suppose u,v € V; for some 2

and that there is an arc from u to v in D. Let P be a path with 7 vertices

starting at v in T. Clearly, the arc wv does not belong to T,, since otherwise

uP is a path with i+ 1 vertices, contradicting the fact that f(u) = 7 (here we

used that T is acyclic to see that uP is indeed a path). By the maximality of

T we get that T + uv contains a cycle consisting of a path P’ from v to u in

T and the arc uv. Let P” be a path with i vertices starting at u in T. Since

T is acyclic the paths P’ and P” have only u in common. But now P’P" is

a path starting in v in T with more than 7 vertices, a contradiction. Oo

Gallai asked [297] whether every graph G has an orientation with precisely

one path of length y(G). This is not true, as shown by an example by Youngs

[752]. For a detailed discussion of this topic and related problems see the book

by Jensen and Toft [459]. -
An alternative formulation of Theorem 8.4.1 is that the chromatic number

of a graph is given by

x(G) = min{lp(D) + 1: D is an orientation of G}.°

For any orientation D of an undirected graph G, we obtain an upper

bound k on x(G) from Theorem 8.4.1. It follows from the fact that the
problem of finding the minimum & such that an undirected graph has a k-

colouring is WP-hard (as shown by Karp [474]) that it is an ’P-hard problem

to find an orientation D of a given undirected graph G which minimizes lp(D).

The next theorem by Tuza shows that given an orientation D of G one can

find a colouring using at most lp(D) + 1 colours fast.

Theorem 8.4.2 [723] If D is a digraph such that lp(D) < k, then a proper

k-colouring of UG(D) can be found in time O(n +m). Oo

Bondy obtained the following generalization of Theorem 8.4.1 to strong

digraphs. Note that Camion’s theorem is a direct consequence of Theorem
8.4.3.

Theorem 8.4.3 [124] Every strong digraph contains a directed cycle of

length.at least x(D). 0

Minty showed that one can also measure the chromatic number of a graph

by how much one can balance oriented cycles in orientations.

° Combining this with the famous 4-Colour Theorem by Appel and Haken [27]
which says that every planar graph has chromatic number at most four, we see
that the 4-Colour Theorem is equivalent to the statement that every planar graph
has an orientation such that no directed path has length more than 3.

8.5 Orientations and Nowhere Zero Integer Flows 437

Theorem 8.4.4 [567] If G has an orientation such that every oriented cycle
contains at least |V(C)|/k arcs in each direction, then y(G) < k. 0

This was strengthened by Tuza as follows.

Theorem 8.4.5 /723] If G has an orientation such that every cycle of length

|\V(C)| =1 (modulo k) contains at least |V(C)|/k arcs in each direction, then

x(G) < k. oO

For more relations between chromatic number and paths and cycles in di-

graphs see Bondy’s survey [126, Section 4.4] and the paper [685] by Szigeti
and Tuza.

8.5 Orientations and Nowhere Zero Integer Flows

In this section, unless otherwise stated, we assume that all undirected multi-

graphs in question are connected.

Let G = (V, £) be an undirected multigraph. A k-flow on G is an assign-
ment of an orientation a to each edge e € E as well as an integer x(a) from
the set {1,2,...,4 — 1} such that for each vertex v the sum of the values of

x on arcs into v equals the sum of the values of z on arcs leaving v. That

is, x is a circulation in the resulting oriented multigraph D. Hence we can

think of a k-flow on a multigraph G as a pair (D,xz) where D = (V, A) is an
orientation of G and z is an integer circulation in D with the property that

x(a) € {1,2,...,4 —1} for each a € A. Below we use this notation. The flow

z is sometimes called a nowhere-zero k-flow to stress the fact that 2 never

takes the value zero on an arc. We say that G has a k-flow if there exists

a k-flow on G. It is easy to see that a multigraph G has a k-flow for some

k if and only if each connected component of G has a k-flow. Furthermore,

it is easy to show that a connected multigraph with a cut-edge (A(G) = 1)
cannot have a k-flow for any k (see Exercise 8.22). It is easy to see that a
pseudograph G has a k-flow if and only if the multigraph H that we obtain
by deleting all loops from G has a k-flow. This is why we assume that we are
working with a multigraph rather than a pseudograph below.

For convenience, we will always specify the value of a flow z on an arc uv

by x(uv), rather than ry, as we did in Chapter 3. We start with a very easy

result on 2-flows.

Proposition 8.5.1 A multigraph G has a 2-flow if and only if all degrees of

G are even.

Proof: Clearly, if G has a 2-flow z then all degrees are even, since z is a
circulation which only takes the value 1. Suppose now that all degrees of

G are even. We may assume that G is connected as otherwise we consider
each component in turn. By Euler’s theorem, G has a closed walk W =

438 8. Orientations of Graphs

WoW] W2W3 ...Wm—1Wm, where wo = Wm which uses each edge precisely once.

Let D be the orientation obtained by orienting the edge w;w;+1 from w; to

wi41 fori =0,1,...,m—1. Then (D,z = 1) is a 2-flow in G. 0

For any abelian’ group (I’,+) we can define a flow in a multigraph G =

(V, E) as follows. A I’-flow in G is a pair (D,xz) where D is an orientation
of G, x maps A(D) to the non-zero elements {91,92,---,9)rj-1} of I and

satisfies
ey ACE 3 x(vw) for all v € V, (8.1)

uve A(D) vwe A(D)

where addition is in the group I’ and |I'| denotes the number of elements in
the group I’. That is, x is a circulation which takes values from I" — go, where

go is the neutral element of (I’, +).
Tutte proved the following important theorem, relating k-flows on a multi-

graph G to arbitrary group valued circulations on orientations of G.

Theorem 8.5.2 (Tutte) [720] If (',+) is a finite abelian group, then an

undirected multigraph G has a I'-flow if and only if it has a k-flow, where

jew hb O

An important step in proving Theorem 8.5.2 is to demonstrate the fol-

lowing theorem by Tutte. Although we do not prove Theorem 8.5.2, we still

prove Theorem 8.5.3 and then use it below. The group Z, is the additive

group of integers modulo k.

Theorem 8.5.3 [720] Let G = (V, E) be an undirected multigraph and k > 1
an integer. Then G has a k-flow if and only if G has a Z,-flow.

Proof: If (D, x) is a k-flow in G, then z(a) € {1,2,...,k—1} for eachae A
and

ye x(uv) — a z(vw) =0=0 (modulo k).
uvE A(D) vwEA(D)

Hence (D,z) is also a Z,-flow in G.

Suppose now that (D’,2’) is a Z,-flow in G. Since all calculations are
modulo k, we may assume that 2'(a) € {1,2,...,k — 1} for each a € A. By
the definition of a Z,-flow we also have

Sy z'(uv) — Se z'(vw) = 0 (modulo k).
uve A(D’‘) vweA(D')

For a given Z,-flow (D = (V,A),2), we let the balance vector b, be
defined as in (3.5), that is,

” Recall that an additive group (I’,+) is abelian if a +6 = 6+ a holds for all
elements a,b of I.

8.5 Orientations and Nowhere Zero Integer Flows 439

SD as 0 x(vw) — S- x(uv).

vwEA(D) uve A(D)

Now assume that (D’, 2’) is chosen among all Z,-flows in G such that the

g(D',z')= > |ber(v)| (8.2)
vEV(D’)

is minimized. We show that ¢(D',x') = 0, implying that (D’,z’) is a k-flow
in G. Suppose this is not the case. Then let

P= {ve V* bz (v) > 0}, M = {v € V : ba (v) < O}.

It follows from standard flow considerations (compare with Section 3.1)
that P,M # 0. By Theorem 3.3.1 we conclude that there is a path Q from P

to M in D’. Let (D", 2") be obtained by reversing all arcs of Q and changing

the flow of each arc a € A(Q) to k — 2'(a) while leaving the flow on all arcs
not on Q unchanged. It is easy to see that (D”, x") is a Z;,-flow in G and that
o(D" x2") = ¢(D',2') — 2k (which is still at least zero since every vertex in

P (M) contributes a positive (negative) multiple of k to the balance vector).
This contradicts the choice of (D'‘, x’) and hence we must have ¢(D', x’) = 0
implying that (D’, 2’) is a k-flow. Oo

The usefulness of Theorem 8.5.2 is illustrated several times below. The

point is that, as we shall see below, it is sometimes considerably easier to

establish that a multigraph has a I’-flow than it is to prove directly that it

has a |I’|-flow.
A multigraph is cubic if every vertex has degree 3.

Proposition 8.5.4 A cubic multigraph G has a 3-flow if and only if G is

bipartite.

Proof: Suppose first that G is cubic and bipartite with bipartition (X,Y).

Let D be the orientation obtained by orienting all edges from X to Y. Let

x = 1, then (D,z) is a Z3-flow in G. By Theorem 8.5.3, G has a 3-flow

(D!, =").
Suppose now that G is cubic and has a 3-flow (D, 2). Since the only values

of x are 1 and 2, it is easy to see that taking X (Y) as those vertices which

are the tail (head) of an arc whose z-value is 2, we obtain a partition of V(G)
into two independent sets. Thus G is bipartite with bipartition (X,Y). QO

A multigraph G is r-edge-colourable if one can assign each edge a

number from the set {1,2,...,7} in such a way that all edges incident to the

same vertex receive different numbers. Such an assignment is also called an

r-edge-colouring of G. By Exercise 3.56, every cubic bipartite multigraph

is 3-edge-colourable. For general 3-edge-colourable cubic multigraphs it may

not be possible to find a 3-flow (see Exercise 8.29), but one can always find
a 4-flow as the next result shows.

440 8. Orientations of Graphs

Theorem 8.5.5 A cubic multigraph G has a 4-flow if and only if G 1s 3-

edge-colourable.

Proof: By Theorem 8.5.2, G has a 4-flow if and only if it has a Z2 x Zo-

flow® . Observe that the non-zero elements of Z x Z2 are their own inverses.

Furthermore these three elements sum up to the zero element in Z2 x Zo.

This shows that at every vertex of G precisely one edge has flow equal to

(1,0), (0,1) and (1,1) respectively. Thus if (D,x) is a Z2 x Z2-flow in G,
then we can consider the elements (0,1), (1,0), (1,1) as edge colours and we
obtain that G is 3-edge-colourable. This argument works the other way also

and hence the claim is proved. 0

Theorem 8.5.6 A multigraph G has a 4-flow if and only if it contains two

eulerian subgraphs Gi,G2 such that E(G) = E(G,) U E(G2).

Proof: Exercise 8.28.

Theorem 8.5.7 [455] Evéry 4-edge-connected multigraph G has a 4-flow.

Proof: Let G = (V, EF) be 4-edge-connected. By Theorem 9.5.5, G has two

edge-disjoint spanning trees T,, T>. Every edge e € E — E(T;) forms a unique
cycle C. with E(T,). Let E,; be the modulo 2 sum of the edge sets of all

cycles of the form C., e. € E — E(T,). Then the subgraph G; of G induced

by F; is eulerian and contains all edges of E — F(T). Similarly there is an

eulerian subgraph G2 which contains all edges of E — E(T2). Hence E(G) =
E(G) U E(G2), because T; and T» are edge-disjoint, and the claim follows

from Theorem 8.5.6. O

Figure 8.10 The Petersen graph with a 5-flow (D,2) indicated. Notice that the
value 4 is only used once.

By Theorem 8.5.5 and the existence of 2-edge-connected cubic multi-
graphs which are not 3-edge-colourable (the most famous example being the

® The additive group (Z2 x Z2,+) has elements {(0,0), (1,0), (0, 1), (1, 1)} and
addition is coordinate-wise.

8.5 Orientations and Nowhere Zero Integer Flows 441

Petersen graph, see Figure 8.10 for an orientation of the Petersen graph) we

conclude that not all 2-edge-connected multigraphs have a 4-flow. However

Tutte conjectured that 4 can be replaced by 5.

Conjecture 8.5.8 (Tutte’s 5-flow conjecture) /720] Every multigraph
which is 2-edge-connected has a 5-flow.

The next lemma (described as a folklore result by Seymour in [663]) shows

that it is sufficient to prove the conjecture for multigraphs which are cubic

and 3-connected.

Lemma 8.5.9 If k > 3 and G = (V,E) is a 2-edge-connected multigraph

which does not have a k-flow, but every 2-edge-connected multigraph H =

(V"", EB") with |V"|+ |E"| < |V| + |E| has a k-flow, then G is cubic and
3-connected.

Proof: Suppose first that G has a cut-vertex z such that V —z has connected

components H;,...,H,, p > 2. By the minimality of G, each of the multi-

graphs H; + z,i=1,...,p have a k flow and using these we easily obtain a

k-flow for G. Hence we may assume that G is 2-connected.

Suppose {e,e’} is a 2-edge-cut in G. Let e = st and let U' UW' bea
bipartition of V such that s € U', t € W’' and there is no edge between U'

and W' in G — {e,e’}. Let U = U'— 8 and W = W' —t. By the definition
of U,W and the fact that G has no cut-vertex there is precisely one edge

between U and W in G, namely e’. Now let the multigraph G’ = (V', E’) be

obtained from G by contracting e into one vertex v, and deleting the loop

created this way. Since |V'|+|E’| < |V|+|£| and contraction cannot decrease
edge-connectivity, it follows from the assumption on G that there is a k-flow

Co er anG’.
In D' we may assume without loss of generality that e’ is oriented as an

arc a’ from W to U. Let r = 2'(a’). Since 2’ is a circulation the following

must hold:

> a'(vew)— > 2'(w've) = 39
wEew w' ew

ys x'(veu) — Se z'(u've) =— 1.

uceU u' EU

In G—e the vertex s (t) is adjacent only to vertices in U (W). Let D” be

the orientation obtained by using the orientations prescribed by D’ on the

edges of G and orienting the edge st from s to t. Define x” by x(a) = z'(a)

for all arcs except st where we take 2’"(st) =r. Then (D”, 2’) is a k-flow in G,

contradicting the assumption. Hence it follows that G is 3-edge-connected.

If G has a vertex s of degree at least 4, then it follows from a result of

Fleischner [239] (see Exercise 8.38) that s has neighbours wu, v so that replacing

442 8. Orientations of Graphs

the edges su, sv by the edge uv we obtain a 2-edge-connected multigraph (Css

By the minimal choice of G, there is a k-flow (D*,z*) in G* and it is easy

to obtain a k-flow in G from this (just replace the arc between u and v in

D* by a path of length 2 via s in G, using the two edges su, su and send the

appropriate amount of flow along that path). This contradicts the choice of

G and hence we conclude that G is cubic. It follows from Exercise 8.23 that

G is 3-connected. Oo

A major breakthrough on Tutte’s 5-flow conjecture came when Jaeger

[455] proved that every 2-edge-connected multigraph has an 8-flow. His proof

was surprisingly short and elegant. The reader is asked to give a proof of

Jaeger’s result in Exercise 8.31.

The strongest result so far is due to Seymour.

Theorem 8.5.10 /663, Seymour] Every 2-edge-connected multigraph has a

nowhere zero 6-flow. oO

Since the proof is based on arguments that do not involve directed graphs,

we will not give the proof in detail here (see Seymour’s original paper [663]
or the books by Diestel [191] and Fleischner [241]). It follows from Lemma
8.5.9 that it suffices to prove the result for 3-connected cubic multigraphs.

Seymour proves that the edge set of such a multigraph G can be covered by

two multigraphs G),G2 such that G; is eulerian and G2 has a 3-flow z’. It

follows from Theorem 8.5.1 that G; has a 2-flow. Since E(G) = E(G,)UE(G2)
it is easy to obtain a Zz x Z3-flow in G using z,z2’ and hence, by Theorem

8.5.2, G has a 6-flow.

An algorithmic version of Seymour’s proof, leading to a polynomial algo-

rithm for finding a 6-flow in any 2-edge-connected multigraph, was given by

Younger [751].
Recently, Bienia, Goddyn, Gvozdjak, Seb6 and Tarsi proved the following

interesting result. The case when k > 5 is an obvious consequence of Theorem

8.5.10.

Theorem 8.5.11 /118] If G has a nowhere-zero flow with at most k — 1
distinct values, then G has a k-flow. oO

For much more information on nowhere-zero flows we refer the reader to

the books by Fleischner [241] and Jensen and Toft [459], the papers [456, 457]
by Jaeger as well as [664] by Seymour. In particular Chapter 13 in the book by

Jensen’ and Toft [459] contains a lot of useful information about the subject
and the important open problems.

° In the language of Section 7.5 the result says that there is a feasible splitting
su, sv (with respect to 2-edge-connectivity) for some pair of neighbours u, v of s.

8.6 Orientations Achieving High Arc-Strong Connectivity 443

8.6 Orientations Achieving High Arc-Strong
Connectivity

Let us recall that an orientation D of a multigraph G = (V, E) is obtained by

assigning one of the two possible orientations to each edge of G (in particular

two parallel edges may receive opposite orientations). By Robbins’ theorem,

an undirected multigraph G = (V, F) has a strongly connected orientation if

and only if G is 2-edge-connected.

Below we describe two generalizations of Robbins’ theorem, due to Nash-

Williams, both of which are much deeper than Robbins’ theorem, especially

the one in Theorem 8.6.4.

In order to illustrate to usefulness of the splitting technique which was

discussed in Chapter 7, we prove Theorem 8.6.3 below using a splitting result

for undirected graphs. This theorem, due to Lovasz, is analogous to Theorem

7.5.2. The reader is asked to prove this theorem in Exercise 8.37. Analogously

to the directed case, we denote by \(z,y) the maximum number of edge-

disjoint ry-paths in G and we say that a graph G = (V +s, E) with a special

vertex s is k-edge-connected in V if A(z, y) > k holds for all z,y EV.

Theorem 8.6.1 (Lovasz’s splitting theorem) /522] Let G = (V + s, E)
be a multigraph with a designated verter s of even degree and suppose that G

is k-edge-connected in V , for some k > 2. Then for every edge st there exists

an edge su such that after splitting off the pair st,su the new graph is still

k-edge-connected in V?°. O

An undirected multigraph G = (V, £) is minimally k-edge-connected
if G is k-edge-connected (\(G) = k), but A(G — e) = k — 1 for every edge
e € E. The following theorem by Mader is analogous to Theorem 7.10.3. The

proof is left to the reader as Exercise 8.36.

Theorem 8.6.2 [532] Every minimally k-edge-connected multigraph has a

vertex of degree k. O

Now we can prove the following famous result of Nash-Williams:

Theorem 8.6.3 (Nash-Williams’ orientation theorem) /583] An undi-

rected multigraph G = (V, E) has a k-arc-strong orientation D if and only if

G is 2k-edge-connected.

Proof: The proof idea used below is due to Lovasz [522]. Suppose G has a

k-arc-strong orientation D. By Menger’s Theorem (in the version of Corollary

7.3.3), for every non-empty proper subset X of V we have dt (X),d~(X) > k.

10 As for directed graphs (see Section 7.5), splitting off the pair (su, sv) means

that we replace the edges su, suv by a new edge uv (or a copy of that edge if it

already exists).

444 8. Orientations of Graphs

This implies that in G we have d(X) > 2k and hence, applying Menger’s The-

orem for undirected multigraphs, we conclude that G is 2k-edge-connected.

To prove the other direction we proceed by induction on the number of

edges in G. Let G = (V, E) be 2k-edge-connected. If |E| = 2k, then G is just

two vertices x,y joined by 2k copies of the edge zy. Clearly this multigraph

has a k-arc-strong orientation. Thus we may proceed to the induction step.

Since adding arcs to a directed multigraph cannot decrease its arc-strong

connectivity, it suffices to consider the case when G is minimally 2k-edge-

connected.
By Theorem 8.6.2, G contains a vertex s such that dg(s) = 2k. Ap-

ply Lovasz’s splitting theorem to G with s as the special vertex and con-

clude that we can pair off the 2k edges incident to s in G in k pairs

(su ,,8V1),..., (Sug, Uz) in such a way that deleting s and adding the edges
U1U1,...,URUR to G —s results in a 2k-edge-connected graph H. Since H

has fewer edges than G it follows by induction that H has an orientation D’

which is k strong. ;
By Exercise 7.27, we can obtain a k-arc-strong orientation of G by adding

the arcs u1S,u2S,...,ugs and the arcs sv1, Sv2,..., sv, to H. Oo

Actually, Nash-Williams proved the following much stronger result which

clearly contains Theorem 8.6.3 as a special case.

Theorem 8.6.4 (Nash- Williams’ strong orientation theorem) /583/]
An undirected graph G has an orientation D such that there are |5Aq(z,y)|

arc-disjoint (x, y)-paths in D for every pair of vertices x,y EV. Oo

It is beyond the scope of this book to give a complete proof here. The

original proof by Nash-Williams [583] is quite complicated and so are alter-

native proofs by Mader (using a local edge-connectivity version of Theorem

8.6.1 [536]) and Frank [259]. It remains a real challenge to find a short and
transparent proof for this important theorem.

We will outline the main idea of Nash-Williams’ proof (the two other

proofs use the same approach). The first observation is that, if G is eulerian,

then the statement is easy to prove (Exercise 8.34). So we may assume that

G is not eulerian. We can make it eulerian by adding any matching on the

odd degree vertices!!. If we could add a matching M on the odd vertices in
such a way that after orienting G + M as an eulerian digraph D' and then

removing the arcs corresponding to M we still have

1
Xp(z,y) ae LsAc(z,9)] for all Liye 19 (8.3)

where D = D' — M!”, then we would have obtained the desired orientation.

™ Recall that by Exercise 1.5, every graph has an even number of vertices of odd
degree.

‘2 By this we mean the oriented graph obtained from D by removing the arcs
corresponding to M.

8.6 Orientations Achieving High Arc-Strong Connectivity 445

Let us see which conditions the matching M should satisfy in order to
give rise to the desired orientation D as above. Following Frank [259] we use
the notation f = 2|f/2] whenever f is an integer valued function. Let R
be defined as follows: R(@) = R(V) = 0 and for every 6 4 X 4 V we let
R(X) = max{Ag(a,y) : « € X,y € V — X}. We call R the requirement
function for G. By Menger’s Theorem for undirected edge-connectivity (8.3)
is equivalent to requiring that

d5(X) > Re(X)/2 for all X°c V, (8.4)

A matching M on the odd vertices of G is a good odd-vertex pairing
if

du(X) < dg(X) — Rg(X) for all X CV. (8.5)

Here dyy(X) denotes the number of edges from M with precisely one end
in X. Suppose M is a good odd-vertex pairing for G. Let D’ be an eulerian

orientation of G+ M and let D = D' — M. Then we have

dp(X) = dp. (X) — du(X)

= (dg(X) + du(X))/2 — du(X)

= (de(X) — du(X))/2
> Re(X)/2,

(8.6)
implying that (8.4) and hence (8.3) holds.

Thus if we can find a good odd-vertex pairing, then we get the desired

orientation easily. The main point then is to prove the next theorem.

Theorem 8.6.5 /583, Nash-Williams] Every undirected graph has a good

odd-vertex pairing. Oo

Instead of trying to find orientations where Ap(z,y) and Ap(y, xz) are
as close as possible for all pairs of vertices, one may also look for different

measures for the quality of an orientation. Pekéc (private communication,

October 1997) posed the following problem:

Problem 8.6.6 Let G be an undirected graph and define Mopt as

Mopt = max{ 1D Ap(2,y) : D is an orientation of G}.

z,yEV(D)

Is there a nice characterization for Mopt? In particular, can Mop be calculated

in polynomial time?

Not much is known about orientations that achieve high vertex-strong

connectivity. The following conjecture by Frank is still open. Note that for

k = 1 the conjecture follows from Robbins’ theorem. Compare also with
_ Section 7.14.

446 8. Orientations of Graphs

Conjecture 8.6.7 [262, Frank] A graph G = (V,E) has a k-strong orten-

tation if and only if G — X is 2(k — j)-edge-connected for every set X ofj

vertices (0<j <k).

8.7 Orientations Respecting Degree Constraints

In this section we first consider orientations of multigraphs which satisfy

prescribed constraints on their semi-degrees. Then we consider the more gen-

eral case when we have restrictions on certain subsets of the vertices (pos-

sibly all proper subsets of the vertex set). A set function f on a ground-

set S is supermodular if f(X) + f(Y) < f(X NY) + f(X UY) holds
for every choice of sets X,Y C S. Recall that f is submodular on S if

f(X)+f(Y) > F(X NY) + f(XUY) holds for every choice of sets X,Y CS.
The function f is modular if it is both submodular and supermodular!?

8.7.1 Orientations with Prescribed Degree Sequences

We saw in Section 3.11.3 that given a directed multigraph D = (V, A) and

numbers a1, 4@2,...,@, such that }>y_, a; < |Al, we can use algorithms for

maximum flows to decide whether D has an spanning subdigraph D’ such

that dp)v;) =a 10l = 4,2,

We start by showing that we can also solve a similar orientation prob-

lem using flows. Namely, given an undirected multigraph G = (V,£),

V = {1,2,...,n}, and numbers aj, a2,...,@, such that 7, aj = |E|, does
G have an orientation D for which dp (i ie SSR NO

First, form the reference orientation H = (V, A) of G i bate an edge

ij from i to 7 whenever i < j. Form the network N = (V, A,l = 0,u = 1) by
giving each arc of A capacity one and lower bound zero. Let us interpret a

feasible integer flow z in N as an orientation D’ = (V, A’) of G as follows.
If z;; = 1 then A’ contains the arc ij and otherwise it contains the arc ji.

Then for a given flow x we see that for each 7 = 1,2,...,n, the vertex 7 will

satisfy

dp (i) = D0 tj + (dh @ — SO 245).
jic A ijeA

Since we want D’ to have in-degree a; at vertex i, for i = 1,2,...,n, we

obtain the following restriction on the balance vector b, of z:

)-a, = S> aij - > a3 =balt), fort. 282s ees)
ijEA jicA

*S Note that a modular function f with f(@) =0 satisfies f(X) = De PET (&)!

8.7 Orientations Respecting Degree Constraints 447

Thus we have reduced the orientation problem to that of deciding whether

there exists a feasible flow x in N which has balance vector b, as in (8.7).

Hence, by Lemma 3.2.2, we can use any polynomial algorithm for maximum

flow to solve the orientation problem and find the desired orientation if one

exists.

Based on the reduction above and the feasibility theorem for flows (The-

orem 3.8.4) one may derive necessary and sufficient conditions for the exis-

tence of an orientation with a prescribed in-degree sequence (or equivalently,

out-degree sequence). One such feasibility theorem which is particularly well-

known is for orientations of complete graphs as tournaments. The score of a

vertex in a tournament is its out-degree. Landau proved the following char-

acterization for score sequences of tournaments (the reader is asked to give a

proof in Exercise 8.41):

Theorem 8.7.1 (Landau’s theorem) /508] A sequence (si, 82,..-,8n) of
integers satisfying 0 < s; < so <... < Sp ts the score sequence of some

tournament on n vertices if and only if

k

8 5; ee (5) : b= 2eeen,) with equality when kn:

i=1

O

For a very nice collection of different proofs of Landau’s theorem we refer

the reader to the survey paper [630] by Reid.
Harary and Moser [402] characterized score sequences of strong tourna-

ments.

Theorem 8.7.2 [402] A sequence 8; < 82 < ... < Sn of non-negative inte-

gers with n > 3 is the out-degree sequence of some strong tournament if and

only tf for each j, 1<j <n—1,

and

Below we denote for an undirected graph G = (V, £) and asubset X CV,

the number of edges of E with at least one end (both ends) in X by ec(X)

(ig(X)). Furthermore we denote by c(G) the number of connected compo-

nents of G. Frank proved the following theorem which deals with bounds on

__ the in-degrees of an orientation:

448 8. Orientations of Graphs

Theorem 8.7.3 [268] Let G = (V,E) be an undirected graph. Let f: V >

Z andg:V -> 2, U {oo} be modular functions on V such that f <g. Then

the following holds:

(a) There exists an orientation D of G such that

dp(v) > flv) for allvEV (8.8)

if and only if
eg(X) > f(x) for all X CV. (8.9)

(b) There exists an orientation D' of G such that

dp. (v) < g(v) for allu EV (8.10)

if and only if ‘
ig(X) < g(X) for all X CV. (8.11)

(c) There exists an orientation D* of G satisfying both (8.8) and (8.10) if

and only if there is one satisfying (8.8) and one satisfying (8.10 Lae

Proof: We consider (a) first. If D satisfies (8.8) then (8.9) follows easily from

the following calculation

fa f(a) < dain)
vex vEx

= eg(X) — d*(X) < eg(X). (8.12)

Suppose now that (8.9) holds but there is no orientation which satisfies

(8.8). Choose D among all possible orientations of G as one which minimizes

5 (f(v) — d5(v)). (8.13)
{veV:f(v)>dp(v)}

Let x be a vertex for which f(x) > dp(z). Let X consist of those vertices

u € V for which there is a directed (x,u)-path in D. Note that by the
definition of X we have d§(X) = 0 or X = V. Since f(X) < eg(X) it is
easy to see (using that z € X) that there is some vertex u € X such that
d~(u) > f(u). Let P be any (z,u)-path in D. Let D’ be obtained from D
by reversing the orientation of every arc on P. Now it is easy to see that D’

either satisfies (8.8) or achieves a smaller count for (8.13). This contradiction
completes the proof that (8.8) holds.

“ Frank calls the phenomenon formulated in part (c) of the theorem the linking
principle [259, 263].

8.7 Orientations Respecting Degree Constraints 449

To prove (b) we do as follows. Let g' be modular on V such that g/(v) =
min{dg(v),g(v)}. It is easy to see that G has an orientation D satisfying
dp(X) < g'(X) if and only if it has one satisfying d5(X) < g(X). On the

other hand G has an orientation satisfying (8.10) with respect to g’ if and only
if it has an orientation satisfying (8.8) with respect to f(v) = dq(v) — g'(v),
v € V (just consider the converse of such an orientation). By (a) such an
orientation exists if and only if eg(X) > f(X) for each X C V. Using that
Veeex da(x) = eg(X) + ig(X) we conclude that eg(X) > f(X) if and only
if ig(X) < g'(X). This proves (b).

To prove that (c) holds, we choose among all orientations satisfying (8.10)

an orientation D which minimizes (8.13). If the sum for this D is zero, then we

are done. Otherwise observe that the only vertex whose in-degree is increased

by reversing the path P (as in the proof of (a)) is the vertex x for which we
have dp(x) < f(v) < g(v) and hence we still have dp, (x) < g(v) and get the
same contradiction as in the proof of (a). Oo

The non-constructive proof above can easily be turned into a polynomial

algorithm which finds the desired orientations or a proof that none exists

(Exercise 8.42).
We also point out that using the approach from the beginning of this

subsection, Theorem 8.7.3 can be proved using flows (Exercise 8.43).

Although Theorem 8.7.3 is fairly simple to prove, it has several conse-

quences. One of these is Hall’s theorem which characterizes the existence of

a perfect matching in a bipartite graph (Theorem 3.11.3). To see that The-

orem 8.7.3 implies Hall’s theorem, it suffices to see that a bipartite graph

B = (U,V, E) has a perfect matching if and only if it has an orientation D

in which every vertex in U has in-degree one and every vertex in v € V has

in-degree dg(v) — 1. We leave the details to the reader as Exercise 8.44. The
next result, due to Ford and Fulkerson, can also be derived from Theorem

8.7.3. The proof of this is left as Exercise 8.40.

Corollary 8.7.4 [246] Let M = (V,A,E) be a mized graph. Let G = (V, E)

be the undirected part and let D = (V, A) be the directed part of M. The edges

from G can be oriented so that the resulting directed multigraph!* is eulerian
if and only if dg(v) +dp(v) +dp(v) is even for each v € V and the following

holds: |
dg(X) > d~(X) — dt (X) for all X CV. (8.14)

oO

The following common generalization of Robbins’ theorem (Theorem
1.6.2) and Theorem 8.7.3 was obtained by Frank in [268].

© Recall that a mixed graph may have an edge and an arc with the same end
vertices.

450 8. Orientations of Graphs

Theorem 8.7.5 [268] Let G = (V,E) be an undirected graph which is 2-

edge-connected. Let f : V + Zo andg:V — Z,U{oo} be modular functions

on V such that f < g. Then the following holds:

(a) There exists a strong orientation D of G such that

dp(v) = f(v) for allu EV (8.15)

if and only if

eq(X) > f(X)+c(G-X) for all X CV. (8.16)

(b) There exists a strong orientation D' of G such that

dp (v) < g(v) for allueV (8.17)

if and only if

ig(X)+c(G— X) < 9(X) for allQ@#X CY. (8.18)

(c) There exists a strong orientation D* of G satisfying both (8.15) and

(8.17) if and only if there is one satisfying (8.15) and one satisfying

(8.17). 0

8.7.2 Restrictions on Subsets of Vertices

The purpose of this subsection is to study more general problems on ori-

entations with degree conditions on subsets of vertices rather than just the

vertices themselves.
Let G = (V, E) be an undirected graph and let h: 2” + Z,U {0} satisfy

h(0) = h(V) = 0. The function h is fully G-supermodular’® if

h(X) + A(Y) < h(X NY) + h(X UY) + de(X,Y) (8.19)

holds for all pairs of subsets of V (recall that dg(X,Y) denotes the number

of edges in G with one end in X — Y and the other in Y — X). If (8.19)
is required to hold only for intersecting (crossing) sets, then we say that h

is intersecting (crossing) G-supermodular. A set function h on G is
symmetric if h(X) = h(V — X) for every X C V. The following quite
general theorem was proved in [251]. It allows one to find conditions for the
existence of k-arc-strong orientations satisfying certain degree constraints on

the vertices (see e.g. [259, page 98]).

'® This strange looking definition will be easier to understand when one consid-
ers the relation between orientations of mixed graphs and submodular flows in
Section 8.9. In particular, see (8.43).

8.8 Submodular Flows 451

Theorem 8.7.6 (Frank’s orientation theorem) /251] Let G be an undi-
rected graph and let h be a non-negative crossing G-supermodular function

on subsets of V. There exists an orientation D of G which satisfies

dp(X) > A(X) for all X CV (8.20)

if and only if both

en > filV;) (8.21)
ViEF

and

er >)) MV —Vi) (8.22)
ViEF

hold for every partition F = {V,,V2,...,Vi} of V, where ex denotes the

number of edges connecting different V;’s. If h is intersecting G-supermodular,

then (8.21) alone is necessary and sufficient. If h is fully G-supermodular, or

h 1s symmetric and crossing supermodular, then it suffices to require (8.21)

and (8.22) only for partitions of V into two sets. Oo

It is an easy exercise (Exercise 8.51) to show that Frank’s orientation

theorem implies Nash-Williams’ orientation theorem.

Frank shows in [259] how to derive Theorem 8.7.6 from the theory of
submodular flows discussed in Section 8.8. See also Exercise 8.66.

8.8 Submodular Flows

In all of this section we consider set functions which are integer valued and

zero on the empty set. The purpose of this section is to introduce a very useful

generalization of flows, due to Edmonds and Giles [215] and to show how
many important theorems in graph theory and combinatorial optimization

are special cases of this theory.

Let D = (V, A) be a directed multigraph and let r: A > R be a function

on A. We use the notation

POS Se rr(a), FP CFD ra): (8.23)
a€(U,U) a€(U,U)

That is, r*(U) (r~(U)) is the sum of the r values on arcs leaving (entering)
and = 7 — Ui

In Chapter 3 it is shown that every feasible flow in a network NV =

(V, A,l, u, b) can be modeled as a circulation in an augmented network. Recall
that for a circulation z in a network N we require that for every vertex v,

17 Note that the function r+ is a generalization of d* for any directed multigraph
D, since taking r = 1 we obtain d*.

452 8. Orientations of Graphs

the flow into v equals the flow out of v. This easily translates to non-empty

proper subsets of the vertex set V, i.e. for every circulation r and every non-

empty proper subset U of V, z~(U) = xt(U). The flows we will consider

below do not in general satisfy this property, but there is a bound b(U) on

the difference between the flow into U and the flow out of U.

Let F be a family of subsets of S and let b: F + ZU {oo} be a function

defined on F. The function b is fully submodular on F if the inequality

b(X) + B(Y) > (X NY) +0(X UY) (8.24)

holds for every choice of members X,Y of F. If (8.24) is only required to hold

for intersecting (crossing) members of Ff, then 6 is intersecting (crossing)

submodular on Ff. By an intersecting (crossing) pair (F,b) we mean a family
F which is intersecting (crossing) and a function b which is submodular on

intersecting (crossing) subsets of F.

8.8.1 Submodular Flow Models

Let f : A ZU{-—oco} and g: A + ZU {oo} be functions on the arc set of a
directed multigraph D = (V, A). Let F be a family of subsets of V such that

0,V € F and let b: F + ZU {ov} be fully submodular on ¥. A function
z:A-—® is asubmodular flow with respect to F if it satisfies

a (U) — 2+ (U) < W(U) for all U € F. (8.25)

A submodular flow z is feasible with respect to f,g if f(a) < x(a) < g(a)

holds for all a € A. The set of feasible submodular flows (with respect to given

f,g and (Ff, b) form a polyhedron called the submodular flow polyhedron)

Q(f,9;(F,b)) [259].
Submodular flows were introduced by Edmonds and Giles in [215]. In that

paper it was only required that the function 6 is crossing submodular on a

crossing family F, something which gives much more flexibility in applications

(see Subsection 8.8.4). However, as remarked in [259] the crossing submodular
functions define the same class of polyhedra as do fully submodular functions.

Submodular flow polyhedra have very nice properties which makes sub-

modular flows a very powerful tool in combinatorial optimization (see e.g.

Subsection 8.8.4).

Theorem 8.8.1 (The Edmonds-Giles theorem) /215] Let D = (V, A)
be a directed multigraph. Let F be a crossing family of subsets of V such

that 0,V € F, letb: F 4 ZU {—oo} be crossing submodular on F with

b(0) = b(V) =0, and let f < g be modular functions on A such that f : A+
ZU{-co} and g: A- ZU {oo}. The linear system

{f <2<gandzx (U) —2t(U) < WU) for all U € F} (8.26)

8.8 Submodular Flows 453

is totally dual integral. That is, if f,g,b are all integer valued, then the lin-

ear program min {c! x : x satisfies (8.26)} has an integer optimum solution

(provided it has a solution). Furthermore, if c is integer valued, then the dual

linear program has an integer valued optimum solution (provided it has a so-

lution). Oo

In the definition of a submodular flow, we have followed Frank [254, 255,

259, 263, 264, 274] and Schrijver [655]. Sometimes the definition of a sub-
modular flow is slightly different (see e.g. the original paper by Edmonds and

Giles [215] or the book by Fujishige [280]), namely x is required to satisfy

f <a<gand zt(U) —2z (VU) < KU) for all U € F. (8.27)

There is really no difference in these two definitions, since we see that if x

satisfies (8.26), then —2 satisfies (8.27) with respect to the same submodular
function b and the bounds —g < — f.

One can also use supermodular functions in the definition as shown in the

next lemma. Hence there are several models to choose from when one wants

to model a problem as a submodular flow problem. Depending on the problem

at hand, one model may be easier to use than another. For an illustration of

this see Section 8.8.4, where we use several different definitions.

Lemma 8.8.2 Let D = (V, A) be a directed multigraph and let F be a cross-

ing family of subsets of V such that 0,V € F. If p is a crossing supermodular

function on F with p(@) = p(V) =0, then any x: A— R which satisfies

2-(U) — 2*(U) > pV) for allU EF (8.28)
is a submodular flow.

Proof: To see this, observe that the function b(U) = —p(U) is crossing
submodular on the crossing family F defined as the complements of sets in

F. Furthermore, by (8.23), (8.28) is equivalent to «~ (U) —a*(U) < —p(U) =
b(U) for all U € F. O

8.8.2 Existence of Feasible Submodular Flows

The following theorem, characterizing when a feasible submodular flow exists
with respect to functions f,g and b, is due to Frank:

Theorem 8.8.3 (Feasibility theorem for fully submodular flows)

[254] Let D = (V,A) be a directed multigraph, let f < g be modular func-

tions on A such that f : A + ZU{-—oo} andg: A > ZU {oo} and let b
be a fully submodular function on 2”. There exists an integer valued feasible

submodular flow if and only if

f~(U) — gt (U) < BU) for allU CV. (8.29)

In particular there exist a feasible integer valued submodular flow if and only

_ if there exists any feasible submodular flow.

454 8. Orientations of Graphs

Proof: We follow the proof by Frank in [259]. Suppose first that there exists a

feasible submodular flow z. Then we have f~(U)—gt(U) < a (U)—a2t(U) <

b(U), showing that (8.29) holds.

Suppose now that (8.29) holds. Define the set function p as follows

p(U) = f-U) — 9" (U). (8.30)

Claim: The function p is fully supermodular, that is, p(U) + p(W) < p(tUN

W)+p(U UW) for all U, W C V. Furthermore, equality only holds if f(a) =

g(a) for all arcs with one end in U — W and the other in W — U.

Proof of Claim: Since f and g are modular as set functions, we get, by

considering the contribution of each arc in A:

p(U) + p(W) = (f- (U) — gt (U)) + (f- (W) - 9 (W))

= (f~(U) + f-(W)) - (97 U) + 97 (W))

=(f-(UNW) +f (UUW) + fU,W))
—(g*(UNW)+gt(UUW) + 9(U,W))

= (p(UUNW) + p(UUUW)) — (g(U,W) — f(U,W)),

where f(U,W) counts the f values on arcs with one end in U — W and the

other in W —U18
From this it (Silws that p is supermodular datas f <q) and that equality

only holds if f(a) = g(a) for all arcs with one end in U — W and the other in
W —U. This completes the proof of the claim.

An arc a € A is tight if f(a) = g(a) and a subset U C V is tight if
p(U) = b(U). Suppose that there is no feasible flow with respect to f,g and
b in D and that f,g are chosen so that the number of tight arcs plus the

number of tight sets is maximum.

If every arc a € A is tight, then take z(a) = f(a) = g(a) for every a € A.
Now we have 2 (U) —at(U) = f~(U) — gt(U) < b(U) and hence z is a
feasible submodular flow in D, a poder

Hence we may assume that there is some arc ao such that f(ao) < g(ao).
Suppose that there is no tight set which is entered by ag. Then we can increase

f (ao), until either the new value f'(ao) equals g(ao), or we find a tight set U
(with respect to f', g) which is entered by ao. It follows that the new functions

f',g have a higher count of tight arcs plus tight sets. Hence, by the choice of

f,g, there exists a feasible submodular flow x with respect to f’,g. Obviously

x is also feasible with respect to f,g, contradicting the assumption. Hence

the arc ap must enter a tight set U.

Similarly we can prove (by lowering g otherwise) that the arc ag must

also leave some tight set W. Now we have, using the Claim, (8.29) and the
fact that p(U) = b(U), p(W) = b(W):

'8 Again this definition generalizes the corresponding definition of d(X,Y) in Chap-
ter 7.

8.8 Submodular Flows 455

P(UUNW) + p(UUW) > p(U) + p(W)
= b(U) + b(W)

> bUUNW)+bUUW)

> pPUNW) + p(UUW),

implying that equality holds everywhere above. However this contradicts the

second part of the Claim since f(a9) < g(ao) and we have argued that the
arc dao leaves U and enters W. This contradiction completes the proof. O

Note that the special case of Theorem 8.8.3 when b = 0 says that z~ (U) —

z*(U) = 0 for all subsets U C V. In particular z~(v) = x+(v) for all v €
V. That is, every feasible submodular flow with respect to f,g and b =

0 is circulation and conversely. It is easy to see that the characterization

in Theorem 8.8.3 in the case b = 0 is exactly the condition in Hoffman’s

circulation Theorem (Theorem 3.8.2).
In fact, the proof of Theorem 8.8.3 in some sense resembles that of The-

orem 3.8.2. Thus it is natural to ask how easy it is to find a feasible solu-

tion, or detect that none exists. This can be read out of the proof above:

the essential step is to decide whether an arc enters or leaves a tight set

(or both). This requires that we can find min{b(U) — p(U) : a € (U,U)}
and min{b(U) — p(U) : a € (U,U)} for every arc a of the directed multi-
graph D. This is a special case of the problem of minimizing a submodular

function, that is, finding the minimum value of the submodular function in

question over a prescribed family of sets. This can be done in polynomial time

for arbitrary submodular functions using the ellipsoid method as shown by

Grétschel, Lovasz, and Schrijver [338]. However, the ellipsoid method, though

polynomial, is not of practical use, since it is highly inefficient.

It was an open problem for several decades whether there exists a poly-

nomial combinatorial algorithm for minimizing a submodular function b over

a family F, that is, to find min{b(U) : u € F}. For submodular functions

which are symmetric (that is, b(X) = b(V — X)) Queyranne [617] has given
such a polynomial algorithm (Nagamochi and Ibaraki proved a slightly more

general result [582]). Queyranne’s algorithm is a generalization of the algo-
rithm by Nagamochi and Ibaraki [580] for finding the edge-connectivity of
a graph via maximum adjacency orderings which was mentioned in Section

7.4. Recently Schrijver [660] solved the problem completely by describing a

strongly polynomial time algorithm for minimizing an arbitrary submodular

function given by a value-giving oracle. Schrijver’s algorithm does not use the
ellipsoid method or any other linear programming method. A similar result

was obtained independently by Iwata, Fleischer and Fujishige [447].
It should be noted that even though the special problem we described

above of finding the minimum of b(U) over those U € ¥ that contain either
the head or the tail, but not both, of a fixed arc a € A, and 0 is fully

456 8. Orientations of Graphs

submodular seems to be a very special case of the problem of minimizing an

arbitrary submodular function, it is in fact equivalent to that problem. Let

F be a crossing family on a ground-set S and let b be a crossing submodular

function on ¥. Let D be the complete directed multigraph on the vertex set

S. Let Fuy = {X € F: ue Xu ¢ X}. Then F,, is a crossing family and

clearly

min{b(X) : X € F} =min{min{b(Y) :€ Fuy}: u,v € S}. (8.31)

Hence if we have a polynomial algorithm to minimize arbitrary submodular

functions over families of the type Fy, then there is one for arbitrary crossing

families.

As mentioned earlier, one can also define submodular flows for functions

b that are intersecting, respectively crossing, submodular functions (defined

on a family of subsets of the directed multigraph D which is intersecting,

respectively crossing). In the case of intersecting and in particular for cross-

ing submodular flows the feasibility theorem is much more complicated. A

collection U;,U2,...,Ux of subsets of a ground set S are co-disjoint if their

complements are pairwise disjoint (that is, U; JU; = S for all i # 7). Frank

proved the following two feasibility theorems ee rapier and crossing

submodular flows:

Theorem 8.8.4 (Feasibility theorem for intersecting submodular

flows) /255] Let D = (V,A) be a directed multigraph and let f,g be real
valued modular functions such that f < g. Let F' be an intersecting family

of subsets of V such that 0,V € F' and let b' be an intersecting submodular

function on F'. Then there exists a feasible submodular flow with respect to

f,g and b! if and only if

F(Y Xi) - 9 (UX) < DUH) (8.32)
a i

holds whenever X1,X2,...,Xt are disjoint members of F'. Furthermore, if

f,g,0' are all integer valued functions and (8.32) holds, then there exists a

feasible integer valued submodular flow with respect to f,g and b'. oO

Theorem 8.8.5 (Feasibility theorem for crossing submodular flows)
[255] Let D = (V,A) be a directed multigraph and let f,g be real valued
modular functions such that f <g. Let F" be a crossing family of subsets of
V such that 0,V € F" and let b" be a crossing submodular function on F".
Then there exists a feasible submodular flow with respect to f,g and b" if and
only if

rc eke no Xi) < Sox nif (8.33)
2=1 Gasil ies

8.8 Submodular Flows 457

holds for every subpartition {X,,X2,...,Xz} of V such that each X; is the

intersection of co-disjoint members Xj, Xi2,...,Xig, of F". Furthermore, if

f,g,6" are all integer valued functions and (8.33) holds, then there exists a

feasible integer valued submodular flow with respect to f,g and b". 0

Finding a feasible submodular flow or a configuration which shows that

none exists is much more difficult than finding a feasible circulation in a

network (recall Section 3.8). Frank [255] gave a combinatorial algorithm for
finding a feasible integer valued submodular flow with respect to bounds f,g

and a pair (F,b) which is either intersecting or crossing submodular. The

algorithm is polynomial provided one has an algorithm for minimizing the

involved submodular functions. For this task we can apply the recent algo-

rithms of Schrijver and Iwata, Fleischer and Fujishige which we mentioned

above.

8.8.3 Minimum Cost Submodular Flows

Let D = (V,A) be a directed multigraph and let f : A ~ ZU {-oo},
g: A— ZU {oo} be functions on the arc set of D. Let c: A > R be a cost
function on the arcs of D. Let B C 2” be a crossing family with 0,V € B. Let

b: 2” —, ZU{oo} be crossing submodular on B with b(0) = b(V) = 0. Denote
the network defined by D and these functions by Ns = (V, A, f, 9, (B, 6), c).

The minimum cost submodular flow problem is as follows:

Minimize yh c(a)z(a)
acA

subject to

a (U) —2*(U) < BU) for allU € B

f(a) < z(a) < g(a) for alla € A.

A feasible submodular flow with respect to f,g and b which achieves this

minimum is called an optimal submodular flow in Ns.

This problem, which again generalizes the minimum cost circulation prob-

lem from Chapter 3, is very interesting because it forms a common extension

of many problems on (di)graphs as well as problems from other areas (see
e.g. the book [280] by Fujishige). Recall also Theorem 8.8.1.

Fujishige proved the following (see also the papers [170] by Cunningham
and Frank and Frank’s paper [254)):

Theorem 8.8.6 [281] The minimum cost submodular flow problem can be
solved in polynomial time provided a polynomial algorithm for minimizing the

relevant submodular functions is available. oO

458 8. Orientations of Graphs

8.8.4 Applications of Submodular Flows

In this section we will illustrate the usefulness of submodular flows as a tool

to obtain short proofs of important results as well as algorithms for various

connectivity problems.

We start with Nash-Williams’ orientation theorem (Theorem 8.6.3). The
approach taken is due to Frank [256] (the same idea was used by Jackson

[451]). Let G = (V, E) be an undirected graph. Let D be an arbitrary ori-
entation of G. Clearly G has a k-arc-strong orientation if and only if it is

possible to reorient some arcs of D so as to get a k-arc-strong directed multi-

graph. Suppose we interpret the function z : A + {0,1} as follows: z(a) = 1

means that we reorient a in D and z(a) = 0 means that we leave the orien-
tation of a as it is in D. Then G has a k-arc-strong orientation if and only if

we can choose z so that the following holds:

_

d,(U) + 2*(U) -—z-(U) >k for al @AUCY. (8.34)

This is equivalent to

2~(U)—2*(U) < (d5(U) —k) = WU) for all UU CV,U £0,V, (8.35)

a9) = B(V) =0. (8.36)
Observe that the function 6 is crossing submodular on F = 2” (it is not

fully submodular in general, since we have taken 6(0) = b(V) = 0). Thus we
have shown that G has a k-arc-strong orientation if and only if there exists
a feasible integer valued submodular flow in D with respect to the functions
f =0,g=1 and b.

Suppose now that G is 2k-edge-connected, that is, dg(X) > 2k for all
proper non-empty subsets of V (by Menger’s theorem). We claim that x = $
is a feasible submodular flow. This follows from the following calculation:

dp(U) + 2*(U) ~2-(U) = dg (U) + 545 (U) - 550)
1s. 1 545 (U) + 545 (U)
nu 1

2
k.

(2k ~ a5 (U)) + £ab(v)

Hence it follows from the integrality statement of Theorem 8.8.5 and the
equivalence between (8.34) and (8.35) that there is a feasible integer valued
submodular flow x in D with respect to f,g and b. As described above this
implies that G has a k-arc-strong orientation where the values of x prescribe
which arcs to reverse in order to obtain such an orientation from D.

8.8 Submodular Flows 459

Notice that by formulating the problem as a minimum cost submodular

flow problem, we can also solve the weighted version where the two possible

orientations of an edge may have different costs and the goal is to find the

cheapest k-arc-strong orientation of the graph (Exercise 8.64). By Theorem

8.8.6, the optimal (minimum cost feasible) submodular flow in D with respect

to the functions f = 0,g = 1 and b (as defined in (8.35)) can be found in
polynomial time (see Exercise 8.63).

The following useful result, mentioned by Frank in [254], follows from the

discussion above and Theorem 8.8.6

Corollary 8.8.7 [254] There is a polynomial algorithm for finding the min-

imum number of arcs to reverse in a directed multigraph D in order to obtain

a k-arc-strong reorientation of D. O

Similarly, combining the discussion above with Frank’s algorithm for find-

ing a feasible submodular flow (or deciding that none exists) with respect to
a crossing submodular function, we obtain the following result (see Exercise

8.39 for a different proof based on Lovasz’s splitting theorem):

Corollary 8.8.8 /254] There is a polynomial algorithm for finding a k-arc-

strong orientation of a given undirected multigraph G or verify that G has no

such orientation. 0

The following theorem by Frank can also be derived from the formulation

of the k-arc-strong orientation as a submodular flow problem (see Fujishige’s

book [280]).

Theorem 8.8.9 /253] If D and D' are k-arc-strong orientations of an undi-

rected graph G, then there exists a sequence of k-arc-strong orientations

min, e, 1),-— 01) oo; G such that for each? — 1,2)6..,%, 7,18
obtained from D;_, by reversing all arcs in a directed path or a directed cy-

cle. O

Frank [253] gives a direct and short proof of this without using submodular
flows, but his proof uses submodular arguments (see Exercises 8.47-8.50).

In [275] Frank and Tardés showed how to reduce the following problem to
a submodular flow problem. Given a directed graph D = (V, A) and a special

vertex s, find a minimum set of new arcs to add to D such that the resulting

directed multigraph contains k internally disjoint paths from s to v for every
v € V —s. The similar problem where we only want arc-disjoint (s, v)-paths

is solvable via matroid intersection algorithms (see Exercise 9.57). In the
special case when D has already k — 1 arc-disjoint (s,v)-path for all v € V
the problem can also be solved by the Frank-Fulkerson algorithm, which is

discussed in Section 9.11.

460 8. Orientations of Graphs

As another prominent illustration of the generality of submodular flows,

let us now show how the Lucchesi-Younger theorem on coverings of arc-

disjoint directed cuts!? (Theorem 7.15.2) can be proved using a formulation
of the problem as a minimum cost submodular flow problem and the duality

theorem for linear programming. This application of submodular flows was

first pointed out by Edmonds and Giles [215].
We wish to find a minimum set of arcs which cover all directed cuts in

D. We assume that D is connected, since otherwise some dicut has no arcs

at all and clearly no cover exists (recall Section 7.15). Let z : A + {0,1} and
let us interpret the value of x(a) as follows. If x(a) = 1 then we choose a to
be in the cover and otherwise (if x(a) = 0) a is not chosen. Since the set of

chosen arcs must cover all directed cuts, we have the requirement

a (W)>1 for all W C V such that d5(W) = 0. (8.37)

Let F = {W:04W #V and d}(W) = 0}. Since d5(W) = 0 for all
W € fF, (8.37) is equivalent to

zt (W)—2-(W) <-1=)(W) for all W € F. (8.38)

By our remark on different formulations of submodular flow problems, we see

that this (having the form of (8.27)) is indeed a submodular flow formulation.
It follows from the remarks above that assigning cost one to each, we can

formulate the problem of finding an optimal cover of the directed cuts as the

following minimum cost submodular flow problem (in the form of (8.27)).

LY: Minimize SS x(a)
ac€A

subject to

rar) b for all U € F — {0,V}

WES Fal ery pee for alla € A.

Taking dual variables yyw for each member W of F and e(a) for each arc
a € A, we get that the dual of LY is

LY* : Maximize SS yw - >? €(a)

WeF-{0,V} acA

subject to

—e(a) + Dis yw <1 for allac A

ac(W,W)

yw > 0 for all W EF

*? Recall from Chapter 7 that a directed cut is a set of arcs of the form (U,V —U)
where d (U) = 0.

8.8 Submodular Flows 461

€(a) > 0 for all a € A.

Eliminate the variables e(a) from £Y* and notice that, if yw = 0 for all
members W € ¥ which are entered by a, then the optimal choice for €(a) is
e(a) = 0. We get that CY* is equivalent to the problem

LY** : Maximize > ywt do min{0,f1- > yw] }(8.39)
WeF—{0,V} acA ac(W,W)

subject to

yw > 0 for all W € F.

(8.40)

By the Edmonds-Giles theorem, there exist an integer valued optimum

solution {yw : w € F}U {e(a) : a € A} to LY* and hence to L**. Notice
that, if some variable yw in such a solution is 2 or more, then we can decrease

its value to 1 without changing the value of the objective function in (8.39).

Hence there exists an optimal solution to £** in which all values are 0 or 1.

It follows from the optimality of the solution that, if yw = yw = 1, then we

can assume that no arc enters both of W, W’ (otherwise we may put yyw = 0

without changing the value of the objective function). This shows that the

cuts corresponding to the non-zero values of y are arc-disjoint and hence we

have shown that the size of an optimal cover equals the maximum number of

arc-disjoint directed cuts, which is exactly the statement of Theorem 7.15.2.

Furthermore, by Theorem 8.8.6, we obtain the following corollary:

Corollary 8.8.10 There exists a polynomial algorithm which given a di-

rected multigraph D = (V, A) finds a minimum dijoin A' C A of D. Oo

Note that we can minimize the function b from (8.38) over a given collec-
tion of sets in polynomial time (using flows). Namely, the minimum value is

-1 if the collection contains a member of F and 0 otherwise.

It follows from the formulation of the minimum directed cut covering

problem as a submodular flow problem and Theorem 8.8.6 that we can also

solve the minimum cost version of the problem even if there are non-uniform

costs on the arcs and we want to find a minimum cost cover of the directed

cuts. Furthermore, we can also solve the problem of finding a set of arcs which

cover each directed cut at least k times for each k (simply replace the number

—1 by —k in (8.38)).
For much more material on submodular flows the reader is referred to

the papers [254, 255, 259, 263, 264] by Frank, [274] by Frank and Tardos,

Fujishige’s book [280] and the paper [655] by Schrijver. In particular [274]
and [280] give a lot of interesting results on the structure of submodular
flows and the relation between submodular flows and other models such as

independent flows and polymatroidal flows. Finally Schrijver’s paper [655] is

a very useful overview of the various models and their interrelations.

462 8. Orientations of Graphs

8.9 Orientations of Mixed Graphs

We conclude this chapter with some remarks on the orientation of mixed

graphs where the goal is to satisfy degree and/or connectivity requirements.

Note that in this section a mixed graph may contain multiple edges and/or

arcs. Also recall that when we speak of orienting a mixed (multi)graph this

means that we assign an orientation to every edge and leave the original arcs

unchanged (implying that the result may not be an oriented graph).

Orientation problems for mixed graphs are generally much harder than

for undirected graphs. One illustration of this is displayed in Figure 8.11. This

example, due to Tardos (see [263]), shows that the linking principle for strong

connectivity orientations does not hold for general mixed graphs (compare
this with Theorem 8.7.5).

(0,1] (0, 0}

[1,1] (0, 1]
Cc d

Figure 8.11 A mixed graph M with prescribed lower and upper bounds on the
desired in-degrees in the directed multigraph induced by the arc between a and c
and the arc between b and d in an orientation D of M. It is easy to see that by
orienting the edges ac, bd as a—c,d—b we obtain a strong orientation satisfying
the lower bounds on the directed multigraph induced by the newly oriented arcs.
Similarly if we orient the same edges as ca, b—+d we obtain a strong orientation
which satisfies the upper bounds on the directed multigraph induced by the newly
oriented arcs. However, there is no strong orientation which satisfies the lower and
upper bounds simultaneously on the directed multigraph induced by the newly
oriented arcs.

Not every 2k-arc-strong mixed graph has a k-arc-strong orientation (Ex-
ercise 8.54) but Jackson proved the following extension of Theorem 8.6.3.
The proof is left to the reader as Exercise 8.53.

Theorem 8.9.1 /451] Let M = (V,A,E) be a mized graph. Let G = (V, E)
and D = (V, A) denote the undirected, respectively the directed part of M and
define k by

ene
(ie min{ 5de(X) + dj,(X) : X is a proper, non-empty subset of V}.

Then the edges of E can be oriented in such a way that the resulting directed
multigraph is k-arc-strong. oO

8.9 Orientations of Mixed Graphs 463

It is not difficult to see that one can formulate the problem of orienting a
mixed graph so as to get a k-arc-strong directed multigraph as a submodular

flow problem. We can use the same approach as in Subsection 8.8.4. The only

change is that we insist that x(a) = 0 for original arcs (Exercise 8.53).
Jackson [451] conjectured that Theorem 8.9.1 could be extended to local

connectivities and hence providing a generalization of Nash-Williams’ strong

orientation theorem (Theorem 8.6.4). However, examples by Enni [218] show

that this conjecture is false. In the case when the directed part of M =

(V, A, B) is eulerian such an extension is indeed possible. In [218] Enni shows
how to extend Theorem 8.6.5 to the case of mixed graphs when the directed

part D = (V, A) is eulerian.
We remark that there seems to be no easy way of formulating orientation

problems concerning local connectivities as submodular flow problems.

When we consider orientation problems where the input is a mixed graph

M = (V,A, E) which we wish to orient so as to satisfy a certain lower bound

h(X) on the in-degree of every subset X of vertices, then we cannot in general
apply a theorem like Frank’s orientation theorem (Theorem 8.7.6). The reason

for this is that even if the function h(X) ‘behaves nicely’, we have to take into
account the arcs in A because these will contribute to the in-degree of the final

oriented graph D’. To give an example, consider a mixed graph M = (V, A, E)

and let h(X) = k for all non-empty proper subsets of V and h(@) = h(V) = 0.
That is, we are looking for a k-arc-strong orientation of //. When we want to

apply a theorem like Theorem 8.7.6 we have to consider the revised in-degree

lower bound h’ given by h'(X) = k—dp(X), where D = (V, A) is the directed
graph induced by the arcs already oriented in M. The function h' is easily

seen to be crossing G-supermodular, where G = (V, F) is the undirected part

of M (Exercise 8.62). However h’ is typically negative on certain sets and

hence Theorem 8.7.6 cannot be applied.

As we mentioned above, for the particular lower bound h(X) = k, when-

ever 0 # X # V, the problem can be formulated as a submodular flow

problem. This is no coincidence as we show below.

Let G = (V,E) be an undirected graph. Let h : 2” + ZU {-oo} be
crossing G-supermodular with h(@) = h(V) = 0. Let D = (V,A) be an
arbitrary but fixed orientation of G. Let x : A(D)—{0,1} be a vector and

define an orientation D’ = (V, A’) of G by taking A’ = {a: a € A,a(a) =

O}U {a: mesa wa) —1)}) Here @ denotes the opposite orientation of the arc
a (compare with Section 8.8.4). Then D’ will satisfy

dp, (U) > h(U) for all U CV (8.41)

if and only if dj(U) —«~ (U) + xt (U) > h(U) for all U C V, or equivalently

a~(U) —a2*(U) <d5(U) -—h(U) =b"(U) for all U CV. (8.42)

464 8. Orientations of Graphs

Since dp satisfies (7.2) and h is crossing G-supermodular”°, we conclude
that whenever U, W are crossing sets the following holds:

b"(U) +b" (W) = (dp(U) — h(U)) + (dp(W) — h(W))
= d,(UNW) +d5(UUW) +de(U, W) — (h(U) + h(W))

> d5(UNW)+d,5(UUW) +dc(U, W) — (h(UNW)

+ h(UUW) +dc(U,W))

= b'(UNW) +b" (UUW). (8.43)

Thus the function b” is crossing submodular on F" = 2 — {0, V} and the
equivalence of (8.41) and (8.42) shows that there is a one to one correspon-
dence between orientations satisfying (8.41) and integer valued solutions to

the submodular flow problem defined by (8.42) and 0 < x < 1. This shows

that we can use submodular flow algorithms to solve the orientation prob-

lem. We can also derive a characterization of the existence of an orientation

satisfying (8.41) from Theorem 8.8.5. We do this below as an illustration of
how to use the feasibility theorem for crossing submodular flows (Theorem

8.8.5).
Suppose there exists an integer valued feasible submodular flow with re-

spect to the crossing submodular function b” defined above. By (8.33) this
means that

t t

PU x) -st(U Xs Sey) (8.44)
it 1=1 2

holds for every subpartition P = {X1, X2,..., Xz} of V such that each X; is

the intersection of co-disjoint subsets Xj;1, Xj2,... Aig, Ol.

We derive an expression that relates only to G and h using (8.44). To do
so, it is helpful to study Figure 8.12.

Using that f = 0 and g = 1 and the definition of b” we see that (8.44) is
equivalent to

-45(U Xi) < eS (dp (Xiz) — A(Xi;)). (8.45)

For fixed i the sum on dp(Xi;) counts the following arcs:

(1) Those arcs which enter X; (the common intersection of all X;;’s) from
its complement, plus

2° Note how we use the definition of a crossing G-supermodular function here to
get rid of the contribution from edges with one end in X — Y and the other in
a. ©

8.9 Orientations of Mixed Graphs 465

Figure 8.12 The situation when deriving Theorem 8.9.2 from Theorem 8.8.5. The
set X; is part of a subpartition P of V and X; is the intersection of the five co-
disjoint sets Xi1,...,Xis whose complements (which form a partition of X;) are

indicated in the figure. The arcs shown are those between different sets Ke ES

(which are the same as those arcs that go between different X;;’s!) and those arcs
that enter X;.

(2) those arcs which go between different X;;’s (which is the same as arcs that
go from some X;; to some other X;,). This is the same as the number of

edges in G that go between two X;;’s. Denote the total number of edges

of this kind in G by e;.

Using this observation we conclude that (8.45) is equivalent to

t aE

dp (UL, X)) + Yd) = TOT ACG) - (8.46)
i=1 i=1 j=1

Finally, observe that the left hand side of (8.46) counts precisely those

edges of G which enter some X; € P. Now we have proved the following

orientation theorem due do Frank:

Theorem 8.9.2 (Frank’s general orientation theorem) [259] Let G =
(V,E) be an undirected graph. Let h : 2” -+ ZU {co} be crossing G-
supermodular with h(0) = h(V) = 0. There exists an orientation D of G
satisfying

dp(X) = h(X) for all X CV (8.47)

if and only if
qi

ep > > o() (Xi) — e1) (8.48)
i

holds for every subpartition P = {X1,X2,...,Xt} of V such that each X;

is the intersection of co-disjoint sets Xi1,Xi2,...,Xig;. Here ep counts the

466 8. Orientations of Graphs

number of edges which enter some member of P and e; counts the number of

edges which go between different sets Xi;, Xir- oO

By our previous remark on the function k — dp, Theorem 8.9.2 can be

used to derive a necessary and sufficient condition for the existence of a k-arc

strong orientation of a mixed graph. This is left to the reader as Exercise

8.56.

One might ask whether such a complicated condition involving partitions

and copartitions is really necessary in Theorem 8.9.2. The following example

due to Frank [263] shows that one cannot have a condition which only involves

partitions or subpartitions.

x va xX

Figure 8.13 Frank’s example showing that no (sub)partition type condition for
the existence of an orientation satisfying (8.47) exists.

Let G = (V,£E) be the graph in Figure 8.13 and let the sets X;, X2, X3

be as defined there. Define h by h(@) = A(V) = 0, h(X1) = A(X3) = 1,
h(X2) = 2 and A(X) = —oo for all other subsets of V. Then h is crossing

G-supermodular since no two crossing sets X,Y have h(X),h(Y) > —oo. It
is easy to check that G has no orientation satisfying (8.47) with respect to

h. On the other hand, if we decrease h(X;) by one for any i = 1,2,3, then

there exists a feasible orientation with respect to the new h;. This shows

that every certificate for the non-existence of an orientation with respect to

h must include all the sets X,, X2, X3. It is easy to see that these three sets

neither form a subpartition nor do they form a co-partition.

The example from Figure 8.13 also shows that there is no 2-arc-strong

orientation of the mixed graph in Figure 8.14. Hence even for orientations of

mixed graphs to obtain a uniform degree of arc-strong connectivity we cannot

hope for a much simpler condition.

Since we derived Theorem 8.9.2 from Theorem 8.8.5, it is possible to get
a simpler characterization if one can find such a characterization of feasibility

of submodular flows with respect to a crossing pair (F",b’’). This was done

8.10 Exercises 467

Cc d

Figure 8.14 A mixed graph which has no 2-arc-strong orientation and for which
every certificate for the non-existence of such an orientation must involve the three
sets {a}, {b, d}, {a,b,c} (263, Figure 2.3].

recently by Frank in [263] where a somewhat simpler (but still far from easy)
characterization was found.

8.10 Exercises

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

Gholfe

8.8.

8.9.

Prove Lemma 8.1.16.

Show how to check whether an undirected graph is bipartite in linear time
using BFS. Does your method extend to strongly connected digraphs? That
is, can you check whether a strong digraph is bipartite using BFS? Hint:
consider the proof of Theorem 1.8.1.

Show that, if a locally semicomplete digraph D contains a 2-cycle xyz, then
the edge ry is balanced in UG(D).

(+) Lexicographic 2-colouring gives a transitive orientation of com-
parability graphs. Prove Theorem 8.1.4.

Prove that, if G is a reduced proper circular-arc graph, then, up to revers-

ing the orientation of all arcs, G has a unique orientation as a round local
tournament.

(+) Linear algorithm for recognizing round local tournaments.
Prove that there is an O(n+m) algorithm which either finds a round labelling
of an oriented graph D or decides that D is not a round local tournament
(Huang [436]).

Prove Theorem 8.1.8.

Using the same approach as in the proof of Proposition 8.1.15 formulate the
instance of 2-SAT which corresponds to the oriented graph D in Figure 8.15.
Show that UG(D) has no orientation as a locally in-tournament digraph.

An orientation characterization of proper interval graphs. A straight
enumeration of an oriented graph is a linear ordering v1, v2,...,Un such
that for each i the vertex v; is dominated by v;_4¢-(v;),Vi-d-(v;)41) +++) Vi-1
and dominates vj+41, Vit2,---,Vita+(v;)- Here indices are not modulo n, that

is, 1 < i—d-(v;) and i+d*(v;) < n for each i = 1,2,...,n. A digraph
is straight if it has a straight enumeration (Deng, Hell and Huang [190]).

468

8.10.

Solely

8.13.

8.14.

8.15.

8.16.

Saliie

8. Orientations of Graphs

(o>) 2
tL

\ 5
1 Mi: 7

4

Figure 8.15 An oriented graph D.

A graph is a proper interval graph if it is the intersection graph of an
inclusion-free family of intervals on the real line.
(a) Prove that, if D has a straight enumeration, then D is an acyclic round

local tournament digraph.
(b) Prove that an undirected graph G is a proper interval graph if and only

if it has a straight orientation. Hint: compare this with Theorem 8.1.6.

(+) Recognizing locally semicomplete digraphs in O(n?) time. Ex-
tend the results from Section 8.2 to locally semicomplete digraphs. Hint: use
Exercise 8.3.(Bang-Jensen, Hell and Huang [76]).

Recognizing non-strong locally semicomplete digraphs in linear
time. Give a simple linear algorithm to recognize non-strong locally semi-
complete digraphs based on Theorem 4.11.6 (Bang-Jensen, Hell and Huang
(76]).

. (+) Adjacencies between induced cycles in graphs that are rep-
resentable in unicyclic graphs. Suppose that the undirected graph G is
representable in the unicyclic graph H. Prove that, if C is an induced cycle
of length at least 4 in G, then every vertex x of C is adjacent to at least one
vertex from every induced cycle of length at least 4 in G— <a.

Derive Theorem 8.4.1 from Theorem 8.4.3.

(+) Acyclic orientations such that every vertex is on an (s, t)-path.
Let G = (V, E) be an undirected graph. Let s,t be special vertices and assume
that, if G has a cut-vertex, then every cut-vertex v of G separates G — v into
two connected components, one containing s and one containing t. Prove that
G has an acyclic orientation D such that every vertex of D is on an (s,t)-path
(Gerards and Shepherd [313}).

Strong orientations of the Petersen graph contain an even cycle.
Prove that every strongly connected orientation of the Petersen graph has an
even cycle.

Strong orientations of odd-K4’s and odd necklaces contain even

cycles. Prove Lemma 8.3.2.

Undirected graphs without even cycles. Describe the structure of those
connected undirected graphs that have no even cycle.

8.21.

8.29.

8.30.

8.10 Exercises 469

. Graphs with strong orientations without even cycles and with the
maximum number of vertices. Prove that the graph L, defined in Section
8.3 has a strong orientation without even cycles.

. (—) Prove that Theorem 8.4.3 implies that every strong tournament has a
hamiltonian cycle.

. 3-colouring the Petersen graph. Find an orientation of the Petersen
graph which has no directed path of length 3. Use this to find a 3-colouring
of the Petersen graph by colouring as in the proof of Theorem 8.4.1.

Figure 8.16 shows a graph G known as the Grétzsch graph. Prove that every
orientation of G has a path of length 3. Find an orientation D of G such
that lp(D) = 3. Finally, show that, if e is any edge of G, then we can find an
orientation of G — e with no path of length 3.

Figure 8.16 The Groétzsch graph.

. Prove that, if a connected graph G has a k-flow (D, x) for some k, then D is
strongly connected.

. Prove that a cubic graph is 3-edge-connected if and only if it is 3-connected.

. (+) Prove that the Petersen graph has no 4-flow.

. Hamiltonian graphs have a 4-flow. Prove that every hamiltonian graph
has a 4-flow. Hint: use Theorem 8.5.6.

. Find a 4-flow in the cubic graph in Figure 8.17.

. Converting a Z;-flow to a k-flow. The proof of Theorem 8.5.3 gives rise
to a polynomial algorithm to convert a given Z;-flow to a k-flow. Describe
such an algorithm and illustrate it by converting the Z5-flow in the Petersen
graph in Figure 8.18 to a 5-flow.

. (+) Prove Theorem 8.5.6. Hint: define a Z2 x Z2-flow from G1, G2 and vice
versa.

Show that that the complete graph on 4 vertices is 3-edge-colourable and has
no 3-flow.

(+) Three spanning trees with no common edges in graphs which
are 3-edge-connected. Prove that every 3-edge-connected graph has 3

470

8.31.

8.32.

8.33.

8.34.

8.35.

8. Orientations of Graphs

Figure 8.17 A hamiltonian cubic graph

Figure 8.18 A Z;-flow in the Petersen graph.

spanning trees 71,72, T3 with the property that E(T1) N E(T2)N E(T3) = @.
Hint: use Theorem 9.5.5.

(+) Jaeger’s 8-flow theorem. Prove, without using Theorem 8.5.10, that
every 2-edge-connected graph G has an 8-flow. Hint: first observe that it
suffices to prove the statement for 3-edge-connected graphs. By Exercise 8.30,
G has three spanning trees such that no edge lies in all of these. Use this to
construct a Z2 xX Z2 x Z2-flow in G (compare this with the proof of Theorem
8.5.7).

A minimum counterexample to Tutte’s 5-flow conjecture has no 3-
cycle. Show that, if G is cubic 3-edge-connected and C is a 3-cycle of G, then
the graph H obtained by contracting C to one vertex v in G and deleting
the loops created is also cubic and 3-edge-connected. Show that every 5-flow
in H can be extended to a 5-flow in G.

Show by an example that the idea of Exercise 8.32 does not always work for
cycles longer than 5.

(—) Nash-Williams’ strong orientation theorem for eulerian multi-
graphs. Prove Theorem 8.6.4 for eulerian graphs. Hint: consider an eulerian
tour.

Almost balanced k-arc-connected orientations. Prove the following
slight extension of Nash-Williams’ orientation theorem. If G = (V, E) is 2k-
connected, then it has a k-arc-strong orientation D such that max{|d} (x) —

8.36.

8.37.

8.38.

8.39.

8.40.

8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

8.47.

8.10 Exercises 471

d,(x)|: « € V(D)} < 1. Hint: follow the proof of Theorem 8.6.3 and change
it appropriately when needed.

(+) Vertices of degree k in minimally k-edge-connected graphs.
Prove that every minimally k-edge-connected graph contains a vertex of de-
gree k. Hint: use the results analogous to Proposition 7.1.1 for undirected
graphs.

(+) Lovasz’s splitting theorem for undirected edge-connectivity.
Prove Theorem 8.6.1. Hint: define a set of vertices X not containing the
special vertex s to be k-dangerous if d(X) < k +1. Clearly a splitting
(su, sv) preserves k-edge-connectivity unless there is some k-dangerous set
X C V with u,v € X. Observe that the degree function of an undirected
graph has properties analogous to Proposition 7.1.1. Use this to show that
there are at most two distinct maximal k-dangerous sets X,Y which contain
a given neighbour ¢ of s. Let X,Y be distinct maximal k-dangerous sets
containing ¢ but not s if such sets exist. Otherwise, either let X be the
unique maximal k-dangerous set containing t but not s and Y = 0 or, if
no k-dangerous sets containing t but not s exists, then take X = Y = @.
Conclude that s has a neighbour t’ in V — (X UY) and show that (st, st’) is
an admissible splitting.

(+) Splittings that do not create cut-edges. Prove the following result
due to Fleischner [239]. If G is a 2-edge-connected undirected graph and s
is a vertex of degree at least 4, then there exist neighbours u,v of s such
that replacing the edges su, sv by one edge wv results in a graph which is
2-edge-connected. Hint: this follows from Theorem 8.6.1 if dg(s) is even. If
dg(s) is odd, then study maximal 2-dangerous sets containing neighbours of
s (see also the hints for Exercise 8.37).

(+) A polynomial algorithm for finding a k-arc-strong orientation
of a 2k-edge-connected multigraph. Convert the proof of Theorem 8.6.3
into a polynomial algorithm which finds a k-arc-strong orientation of an ar-
bitrary input multigraph, or outputs a proof that none exists.

Prove Corollary 8.7.4.

(+) Show how to derive Theorem 8.7.1 from Theorem 3.8.4.

Show how to convert the proof of Theorem 8.7.3 into a polynomial algorithm
which either finds an orientation with the desired property, or a set violating
the corresponding necessary condition.

Show how to derive Theorem 8.7.3 using the approach taken in the beginning
of Subsection 8.7.1 and Exercise 3.32.

Prove that Theorem 8.7.3 implies Hall’s theorem (Theorem 3.11.3).

Prove that the condition in Conjecture 8.6.7 is necessary in order to have a

k-strong orientation.

Reversing the orientation of a cycle preserves arc-strong connectiv-

ity. Prove that, if D is k-arc-strong and C is a cycle in D, then the digraph
obtained by reversing the orientation of all arcs on C is also k-arc-strong.

(+) Converting one k-strong orientation into another via reversal
of cycles. Suppose that D and D’ are k-arc-strong orientations of a graph

472

8.48.

8.49.

8.50.

8.51.

8.52.

8.53.

8.54.

8.55.

8.56.

8.58.

8. Orientations of Graphs

G = (V,E) and that d5(v) = d5,(v) for every v € V. Prove that one can

obtain D’ from D by successive reversals of the orientation of a cycle in the

current digraph.

Reversal of a path while preserving k-arc-strong connectivity. Sup-

pose that D and D’ are k-arc-strong orientations of a graph G and that there

exists a vertex u such that d5(u) < d5,(u). Show that D’ contains a vertex

v such that d5(v) > dz,(v) and a (u,v)-path P. Under what conditions can

we obtain a new k-arc-strong orientation of G by reversing the arcs of P?

(+) Finding a good path to reverse. Suppose that D and D’ are k-

arc-strong orientations of a graph G and that there exists a vertex u such

that d5(u) < d5,(u). Prove that there is always a vertex v such that

d;(v) > d>,(v) and a (u,v)-path P such that one can reverse all arcs of
P without destroying the k-arc-strong connectivity. Hint: use your obser-

vation in Exercise 8.48. Assume that all paths are bad. Use submodularity
of d, to show that the maximal sets X1,X2,...,Xn containing v but not
u and which have in-degree k in D are pairwise disjoint. Count those arcs
that have at most one end vertex in Un_, X; in both D and D’ and obtain a

contradiction (Frank [253]).

Proof of Theorem 8.8.9. Combine your observations in Exercises 8.47,
8.48 and 8.49 into a proof of Theorem 8.8.9.

Show that Theorem 8.6.3 is a special case of Theorem 8.7.6.

Let D = (V, A) be a digraph and z : A > R a function on the arc set of D.
Show that the function x (U) — 2+ (U) is a modular function.

(+) Prove Theorem 8.9.1. Hint: use a similar approach to that used in Section
8.8.4 to prove Theorem 8.6.3 via submodular flows.

Construct 2k-arc-strong mixed graphs with no k-arc-strong orientation. Hint:
they must violate the condition in Theorem 8.9.1.

Prove directly that the condition (8.48) is necessary for the existence of an
orientation satisfying (8.47). Hint: assume that D is an orientation which

satisfies (8.47) and study which edges are counted by the sum } 7", dp(Xij).

(+) Orienting a mixed graph to be k-arc-strong. Use Theorem 8.9.2 to
derive a necessary and sufficient condition for a mixed graph M = (V, A, E)
to have a k-arc-strong orientation (Frank [259, 263]).

. (+) Orientations containing k-arc-disjoint out-branchings from a
given root. Let G = (V,£) be an undirected graph with a special vertex
s € V and let k be a natural number. Prove without using Theorem 8.7.6
that G has an orientation such that d~(X) > k for every X C V — s if and
only if (9.5) holds (Frank [260]).

(+) Orienting a mixed graph in order to obtain many arc-disjoint
branchings. Consider the problem of finding an orientation of a mixed graph
M = (V,A, £) so that it has k arc-disjoint out-branchings rooted at a speci-
fiedvertex s or concluding that no such orientation exist. Show how to reduce
this problem to a submodular flow problem. Argue that you can also solve the
minimum cost version where there may be different costs on the two possible
orientations of an edge e € E.

8.59.

8.60.

8.62.

8.63.

8.64.

8.65.

8.66.

8.10 Exercises 473

(+) Arc-disjoint in- and out-branchings with a fixed root in orienta-
tions of graphs. Describe an algorithm to decide whether a given undirected
graph G = (V, £) has an orientation D such that there exist arc-disjoint in-
and out-branchings F,+, F; where u,v € V are specified (not necessarily dis-
tinct) vertices of V. Prove that the corresponding problem for mixed graphs
is NP-complete. Hint: use Theorem 9.9.2.

(—) Characterize when an undirected graph G = (V, Z) has an orientation
so that x,y are in the same strong component for specified distinct vertices
mye Vi

. Orienting a mixed graph so as to get a closed trail containing two
specified vertices. Show that the following problem is NP-complete: Given
a mixed graph M = (V, 4A, E) and two distinct vertices s,t. Decide if M has
an orientation that contains are-disjoint (s,t)-, (t, s)-paths.

Let M = (V, A, E) be a mixed graph and let D = (V, A) be the directed part

of M. Prove that for every k the function k — dj, is crossing G-supermodular.

Hint: use the fact that dj, is submodular.

Show how to minimize the submodular function b defined by (8.35) and
(8.36) over a given collection of subsets in polynomial time. Hint: use flows
to determine the in-degrees of the relevant sets.

Let k be a natural number and let G = (V,E) be a graph with a cost
function c that for every edge e € E assigns a cost to each of the two possible
orientations of e. Show how to formulate the problem of finding a k-arc-
strong orientation of G of minimum cost with respect to c as a minimum cost
submodular flow problem.

Reversing arcs in order to get many arc-disjoint out-branchings
from a fixed root. Show how to solve the following problem using sub-
modular flows. Given a directed multigraph D = (V, A), a vertex s € V and
a natural number k. Determine whether it is possible to reverse the orien-
tation of some arcs in A such that the resulting directed multigraph has k
arc-disjoint out-branchings rooted at s. Argue that one can also solve the
minimum cost version of the problem in polynomial time.

Derive Theorem 8.7.6 from the feasibility theorem for crossing submodular
flows (Theorem 8.8.5).

« 3 ‘

ho n isitineo ae Hep Of A

pass s'geactp te ert > Ua
2 a 7) -

i j "24

4 j 7

iat ings

' “vi 8 ey * it

; = { «yj Whi

* > re . cs a

‘37 ~%

r i 4 " on dq < otk me hile eels OES, vee

14 | Tr Casal Per, aalpeaees

Me (vy owt ees 44 ha 1 , « ee STU be

¥4 : hip op abd Lap FAS ey Ne ty «Ah ih paeael

that of He “at OF. ~~ aa | | * prt ris ih = - re te ae ahem

é ° ‘f ; . w 540) APP RSNT Ls by? : ,

eee ; | a JoSdudue & oben Oo agi. nb 2 ae
' _ ; ne y ue ed hs

me (ees) talents flirt ~ 1, yorrnifed eel) vsateeibeds +. woh mic ae

7 i 5 tiie + t wads tr) 7 y i aalie rrr a @ i, ww wey bei i, ahi “wee ! ; ht $4 , fii ? ea Lr 2 “a

nthe Ja lay Ane Ot , ‘$Y ify i aay ait

Ny ae) ohio tes wef (ES ee D>. pot bane Youre sea! J

E rit, ‘ eine Kits Wack uf te + eitiben Ss A cgbs aN earn gia ar, yi n ;

} a ai Ve actly Yeas eee wads Stele dba Sri veal ® Wie i F De

7 bose a > Ob a HATS PWS 2 pat bt The at ; }

_ - ‘ sé ioe cy 3 « - geeot

equitonend Seyryet tilts 23 Frese the. tb
"he gipeam tere Hi au wolla} + an) ovigw oa wel Wo boc! 2 met

__ Mee Sataanind as Peay a guitar i> caller ome |
eae ad A ulus Tea

2 oy Falk, Mat avin Rane nT oe

9. Disjoint Paths and Trees

In this chapter we concentrate on problems concerning (arc)-disjoint paths or

trees (arborescences). We embark from the 2-path problem which concerns

the existence of two disjoint paths with prescribed initial and terminal ver-

tices. We give a proof by Fortune et al. showing that the 2-path problem

is NP-complete. We proceed by studying the more general k-path problem

for various classes of digraphs. We show that for acyclic digraphs, the k-

path problem is polynomially solvable when k is not a part of the input.

Then we describe several results on the k-path problem for generalizations

of tournaments. Among other results, we show that the 2-path problem is

polynomially solvable for digraphs that can be obtained from strong semi-

complete digraphs by substituting arbitrary digraphs for each vertex of the

semicomplete digraph. We briefly discuss the k-path problem for planar di-

graphs and indicate how to use the topological concept of planarity in proofs

and algorithms for disjoint path problems in planar digraphs.

The next major topic is arc-disjoint branchings. We prove Edmonds’ fa-

mous branching theorem and show many consequences of this very important

and useful result. After discussing some related problems on branchings, we

move on to arc-disjoint path problems. We show that the arc-disjoint version

of the k-path problem is also VP-complete as soon as k is at least 2. Using a

nice observation due to Shiloach we show that, if a digraph does not contain

two arc-disjoint paths, one from wu to v and the other from z to y, for every

choice of u,v,z,y, then D is not 2-arc-strong. Results on arc-disjoint paths

in generalizations of tournaments as well as eulerian digraphs are described.

We point out how the structural characterizations for non-2-linked eulerian

digraphs resemble those for the analogous problems for undirected graphs.

We consider arc-disjoint in- and out-branchings and show that the prob-

lem to decide whether a digraph has arc-disjoint branchings F*,F such

that F> is an in-branching rooted at v and Ft is an out-branching rooted at
v is NP-complete. We describe a complete solution, due to Bang-Jensen, of

this problem for tournaments and indicate how the complexity version of the

problem (for tournaments) is closely related to problems concerning weak

linkings in tournaments. Namely, there is a polynomial algorithm for the
branching problem which uses polynomial algorithms for two weak linking

problems as subroutines.

476 9. Disjoint Paths and Trees

Finally, we discuss the problem of finding a minimum cost branching

with a given root in a weighted digraph. We describe a generalization of this

problem which also covers the case when one starts from a digraph which has

k but not k + 1 arc-disjoint branchings from a given root s and the goal is

to add as few new arcs as possible in order to obtain a new digraph which

has k +1 arc-disjoint out-branchings rooted at s. Then we give an algorithm

due to Frank and Fulkerson for solving this more general version and show

how the algorithm works when we apply it to the minimum cost branching

problem.

9.1 Additional Definitions

Recall that an out-branching (in-branching) rooted at a vertex s in a digraph

D is a spanning oriented tree T' which is oriented in such a way that every

vertex z # s has d(x) > 1 (dt(z) > 1). In this chapter we will also consider
the following generalization of a branching. An out-arborescence rooted at

s is an oriented tree T which is not necessarily spanning such that s € V(T)

and every vertex « € V(T) — s has d;(z) > 1. An in-arborescence with root
s is defined analogously.

Recall from Chapter 7 that for a digraph D = (V,'A) with distinct vertices
x,y we denote by kp(z,y) the largest integer k such that D contains k
internally disjoint (z, y)-paths. By Menger’s theorem «kp(z, y) equals the size

of a minimal (z, y)-separator.

When discussing intersections between paths P,Q we will often use the

phrase ‘let u be the first (last) vertex on P which is on Q’. By this we mean

that if, say, P is an (z,y)-path, then uw is the only vertex of P[z, u] (P[u, y])
which is also on Q.

In some sections it is also convenient to use the notation that for a given

set of arcs F’ and a set of vertices X of a digraph D we denote by d;(X),

respectively d(X), the number of arcs from F that enter, respectively leave,
X (hence d;(X) is shorthand for qn (RY (X)).

Let 21,%2,...,2k,Y1,Y2,-+-, yk be (not necessarily distinct) vertices of
a directed multigraph D. A (weak) k-linking from (21,22,...,2,%) to
(¥1,Y2,---,Yk) in D is a system of (arc-)disjoint paths P,, P2,...,P, such
that P; is an (a;,y;)-path in D. By ‘disjoint’? we mean that no P; con-
tains any of the vertices x;,y; as internal vertices for 7 # i (but paths
may share one of both of their end-vertices). Note that in a weak k-linking
the only restriction is that the paths are arc-disjoint. A directed multigraph
D = (V,A) is (weakly) k-linked if it contains a (weak) k-linking from
(v1, %2,-..,2) to (yi, y2,-.-,Y%) for every choice of not necessarily distinct
vertices £1, %2,..-,k,Y1,Y2,---, yk. A digraph D is k-(arc)-cyclic if it has
a cycle containing the vertices (arcs) 71,22,...,% (@1,@2,...,@%) for every
choice of k vertices (arcs).

9.2 Disjoint Path Problems A477

Recall that an [x, y]-path in a directed multigraph is a path which is either
an (x, y)-path or a (y, x)-path.

9.2 Disjoint Path Problems

The general problem we will consider here is the existence of certain paths
which are (arc)-disjoint and have specified or contain specified internal ver-
tices. There is a close relation between path and cycle problems as can be
seen from the following complexity statement. The proof is left to the reader
as Exercise 9.1.

Proposition 9.2.1 For general digraphs the following problems are equiva-

lent from a computational point of view (that is, if one is polynomially solvable

or NP-complete, then so are each of the others).

(P1) Given four distinct vertices u,, U2, V1, V2 in a digraph D. Decide whether

or not D has disjoint paths connecting u, to v1 and ug to v2. We call

this the 2-path problem.

(P2) Given two distinct arcs e,,e2 in a digraph D. Decide whether or not D

has a cycle through e, and e2.

(P3) Given two distinct vertices u and v in a digraph D. Decide whether or

not D has a cycle through u and v.

(P4) Given two distinct vertices u and v in a digraph D. Decide whether or

not D has disjoint cycles C,,Cy such that x € Cz andy € Cy.

(P5) Given three distinct vertices x,y,z. Decide whether D has an (zx, z)-path
which also contains the vertex y.

We prove in Theorem 9.2.3 that the 2-path problem is NP-complete.

Hence it follows from Proposition 9.2.1 that all the problems mentioned in

Proposition 9.2.1 are W’P-complete.
It is interesting to note that although problems (P1)-(P5) are all very

hard for general digraphs, the difficulty of these problems may vary consid-

erably for some classes of digraphs. For instance problem (P3) is trivial for

tournaments (and the more general locally semicomplete digraphs) since such

a cycle exists if and only if x and y are in the same strong component of D.

Problem (P4) is also easy for semicomplete digraphs, since such cycles exist

if and only if there exist disjoint 3-cycles C,C’ one containing x and the

other containing y (Exercise 9.14). However problems (P1) and (P2) are con-
siderably more difficult to prove polynomial for tournaments (see Theorem

9.3.12). Note that (P2) and also (P5) may be considered as special cases of
(P1) if we drop the requirement that the vertices must be distinct in (P1).

The following generalization of the 2-path problem is known as the k-path
problem. Given a digraph D and distinct vertices 21, 2%2;...,0%,Y1,Y2,---;

yr. Does D have a collection of disjoint paths P,, P:,...,P, such that P; is

478 9. Disjoint Paths and Trees

an (2;,y;)-path, 1 = 1,2,...,k? The result below shows that it suffices to

consider distinct vertices when proving that a digraph is k-linked (the proof

is left as Exercise 9.3).

Proposition 9.2.2 For every k > 1 a digraph D = (V,A) is k-linked if

and only if it contains disjoint (x;,yi)-paths P,, Po,...,P for every choice

of distinct vertices £1, %2,-.-,Lk,Y1,Y2,--+s Yk: Oo

Below we study the k-path problem. We start by showing that the problem

is NP-complete already when k = 2. We show that there is no degree of

vertex-strong connectivity which guarantees the existence of such paths. Then

in succeeding sections we go on to special classes of graphs such as acyclic

digraphs and generalizations of tournaments. There the reader will see that

quite a lot can be said about the problem and that it still is not trivial for

these classes of digraphs.

9.2.1 The Complexity of the k-Path Problem

We start with the following result by Fortune, Hopcroft and Wyllie show-

ing that already for k = 2 the k-path problem is very difficult for general

digraphs.

Theorem 9.2.3 [247] The 2-path problem is NP-complete.

Since this theorem is very important and the gadget construction’ used

in the proof is quite illustrative, we give the proof in detail below. We follow

the proof in [247].
First we need a lemma whose proof is left as Exercise 9.4.

Lemma 9.2.4 [247] Consider the digraph S shown in Figure 9.1 (a). Sup-

pose there are two disjoint paths P,Q passing through S such that P leaves

S at A and Q enters S at B. Then P must enter S at C and Q must leave

S at D. Furthermore, there exists exactly one more path R passing through

S which is disjoint from P,Q and this is either

(8,9, 10, 4, 11) or (8 9'F 10! 74 Tt):

depending on the actual routing of P. O

The digraph S in Figure 9.1 is called a switch. We can stack arbitrarily

many switches on top of each other and still have the conclusion on Lemma

9.2.4 holding for each switch. The way we stack is simply by identifying the

C and D arcs of one switch with the A and B arcs of the next (see Figure
9.2). A switch can be represented schematically as in Figure 9.1(c), or, when
we want to indicate stacking of switches, as in Figure 9.1(b).

’ Quite often ’P-completeness proofs are constructed by piecing together certain
gadgets about which one can prove certain properties. Based on these properties
one then shows that the whole construction has the desired properties. For other
instances of this technique, see e.g. Chapter 11.

9.2 Disjoint Path Problems 479

(b)

(a) (ec)

Figure 9.1 Part (a) shows a switch S. Part (b) and (c) show schematic pictures
of a switch ((247, Fig. 1]). In (c) the two vertical arcs correspond to the paths
(8,9,10,4,11), respectively , (8’,9’,10’,4’,11’). Note that for convenience, we label
the arcs, rather than the vertices in this Figure.

Proof of Theorem 9.2.3: The reduction is from 3-SAT (recall the definition
from Section 1.10). Let F = C, * C) *... * C, be an instance of 3-SAT

with variables 71, 2%2,...,2,. For each variable z; we let H; be the digraph

consisting of two internally disjoint (u,v)-paths of length r (the number of
clauses in F). We associate one of these paths with the literal 2; and the
other with the literal %;. We are now ready to explain the construction of.

the digraph D[F] and show that it contains disjoint (ui, v1)-, (u2, v2)-paths
if and only if F is satisfiable.

See Figure 9.3. We form a chain H,+H2—...—H, on the subdigraphs

corresponding to each variable (see the middle of the figure, H; corresponds

to the variable x;). With each clause C; we associate three switches, one for

each literal it contains. The left paths of these switches (that is, the paths in

the left hand part of the figure) all start at the vertex n;_; and end at n;. The

right path of each switch is substituted for a (private) arc of H; such that
the arc is taken from the path which corresponds to 7; if the literal is 7; and

from the path which corresponds to 7; if the literal is 7;. The substitution

is shown for the clause C; = x, + £2 + Zs in the figure. By the choice of the

lengths of the paths in H; we can make this substitution so that different arcs

in H; are substituted by different switches corresponding to several clauses,

all of which contain the literal x; or ;. The switches corresponding to the

480 9. Disjoint Paths and Trees

Figure 9.2 Stacking 3 switches on top of each other.

clause C; are denoted Sj, Si,2,5i,3. We stack these switches in the order

$1151,251,3.--Sr,1, Sr,25r,3 as Shown in the right part of the figure. A two

way arc between a clause and some H; (shown only for C;) indicates a switch

that is substituted for these arcs. Note that this is the same switch which is

shown in the right hand side of the figure! Finally, we join the D arc of the

switch S,.3 to the vertex z, of H;, add an arc from w,; in Hy to no and choose

vertices U1, U2, U1, V2 aS Shown (that is, uw is the tail of the C arc for S,3, ui

is the tail of the B arc of S|; and v2 is the head of the A arc of S;,;). This

completes the description of D[F].
We claim that D[F] contains disjoint (u1,v1)-, (u2, v2)-paths if and only

if F is satisfiable.

Suppose first that D[F] has disjoint (u1,v1)-, (u2,v2)-paths P,Q. It fol-

lows from the definition of D[¥] that the paths P and Q will use all the
arcs that go between two switches (i.e. those arcs that are explicitly shown

in the right hand side of Figure 9.3). Hence, by Lemma 9.2.4, after removing

the arcs of Q and the arcs of P from uj, to the first vertex z, of H,, the

only remaining way to pass through a switch S;; is to use either the right

path or the left path of S;,; but not both! By the construction of D[F], P
must traverse the subdigraphs corresponding to the variables in the order

Hy, H2,...,H, and each time P uses precisely one of the two paths in H;

9.2 Disjoint Path Problems 481

vd.

Cj =71 +22 +25

$1,3

S1,2

S11

no
Wh

SAP teak

Figure 9.3 A schematic picture of the digraph D[F].

(recall again that some of the arcs in H; in Figure 9.3 correspond to the right

path of some switch). Let T be the truth assignment which sets 2; := 1 if P
uses the path corresponding to 7; and let x; := 0 in the opposite case. We

show that this is a satisfying truth assignment for F.

It follows from the construction of D[¥] and the remark above on arcs
used by Q and the first part of P from u, to H, that the path P contains

all the vertices n9,m1,...,m, in that order. Since each of the paths from n;

to nj;41 are part of a switch for every 7 = 0,1,...r — 1, we must use the left

path of precisely one of these switches to go from n; to nj41. By Lemma

9.2.4, every time we use a left path of a switch, the right path cannot also be

used. From this we see that for each clause C;, 7 = 1,2,...r, it must be the

case that at least one of the literals y (in particular the one whose left path

we could use) of C; becomes satisfied by our truth assignment. This follows

because P must use the path corresponding to y in the middle. Thus we have
shown that F is satisfiable.

Suppose now that TJ” is a satisfying truth assignment for ¥. Then for
every variable x; which is true (false) we can use the subpath corresponding

to Z; (z;) in H;. For each clause C; we can fix one literal which is true and
use the left path of the switch that corresponds to that literal (that path

482 9. Disjoint Paths and Trees

cannot be blocked by the way we chose subpaths inside the H;’s). By Lemma

9.2.4 we can find disjoint paths P,Q such that P starts in u; and ends in

the initial vertex z; of H; and Q is a (u2,v2)-path in the right part of D[F].

Furthermore, by the same lemma, after removing the vertices of P and Q,

we still have the desired paths corresponding to each literal available. This

shows that we can route the disjoint (ui, v1)-, (u2, v2)-paths in D[F]. D

The digraph D[¥] above is not strongly connected and one may ask

whether the problem becomes easier if we require high vertex-strong con-

nectivity. However, using Theorem 9.2.3 Thomassen [710] proved that the

2-path problem remains \VP-complete even for highly connected digraphs.

Lynch proved that for undirected graphs the k-path problem is NP-

complete when k is part of the input [529].The case k = 2 was proved to

be polynomially solvable by Seymour [662], Shiloach [670] and Thomassen

[697] and a complete characterization was obtained by Seymour [662] and
Thomassen [697]. The results in [662, 697] (see also Jung’s paper [470]) im-
ply that every 6-connected undirected graph is 2-linked (see also the remark

at the end of Section 9.4). For fixed k > 3 the k-path problem is also poly-

nomially solvable [642]. This is just one of many important consequences of
the deep work of Robertson and Seymour on Graph Minors. The interesting

thing is that [642] only proves the existence of an O(n?) algorithm for fixed k
(the constant depending heavily on k). To date no actual algorithm has been
given, even in the case k = 3.

The following result due to Thomassen shows that for directed graphs

the situation is quite different from the undirected case. Namely, there is no

degree of vertex-strong connectivity which will guarantee a directed graph to

be 2-linked.

Theorem 9.2.5 [710] For every natural number k there exists an infinite
family of k-strong and non-2-linked digraphs D,. oO

In fact, Thomassen proved that even for the special case of cycles through

two fixed vertices (Problem (P3) of Proposition 9.2.1) no degree of vertex-
strong connectivity suffices to guarantee such a cycle. Recall that a digraph

D = (V,A) is 2-cyclic if it has a cycle containing x,y for every choice of
distinct vertices z,y € V.

Theorem 9.2.6 /710] For every natural number k there exists an infinite
family of k-strong digraphs Dj, which are not 2-cyclic. O

9.2.2 Sufficient Conditions for a Digraph to be k-Linked

In this section we briefly discuss some sufficient conditions for a digraph to be

k-linked for some (prescribed) k. Not surprisingly, if a digraph has sufficiently

many arcs then it is k-linked. The next result due to Manoussakis shows that

digraphs which are close to being complete are k-linked. The proof is left as
Exercise 9.5.

9.2 Disjoint Path Problems 483

Theorem 9.2.7 /545] Let D = (V, A) be a digraph of order n and let k be an
integer such that n > 2k > 2. If |A| > n(n — 2)+2k then D is k-linked. O

The proof of Theorem 9.2.7 in [545] is based on the following lemma.

Lemma 9.2.8 /545] If D—x is k-linked for some verter x € V which satisfies

d*(x),d~(x) > 2k —1, then D is k-linked.

Proof: Let 21, 22,...,2%,Y1,Y2,---, yk € V(D) be an arbitrary collection

of terminals. We wish to prove that D contains internally disjoint paths

P,, Po,...,P, where P; is an (x;,y;)-path for i = 1,2,...,k. By the assump-

tion that D—z is k-linked, it suffices to consider the case when x = x; for some

1 or x = y; for some j. Since z is one of the terminals, it follows that among

the 2k terminals at most 2k — 1 of these are out-neighbours (in-neighbours)

of x.

Since a path from x to an out-neighbour u of z can be taken to be just the

arc zu and hence cannot interfere with the other paths we wish to find, we

may assume that, if ¢ = 2; for somei, then y; ¢ N*(z) and similarly if x = y;
for some j then z; ¢ N(x). Let T denote the set of distinct terminals. Now

it is easy to see that for every desired path P; starting at + we may choose

a private member u; of Nt(x) — T and replace 2; by zi, = uj. Similarly

for every desired path Pj; ending at x we may choose a private member v;

of N~(x) — T and replace y; by y; = v;. If x, (y,) was not introduced by

the replacements above we let z/. = z, (yi, = ys). Now the existence of the
desired linking follows by taking a k-linking in D — z for the set of terminals

Di Casens ply y V15 Vos 25 UE Lp

The requirement on the number of arcs in Theorem 9.2.7 is very strong
and hence the result is not very useful. However Manoussakis showed by an

example that the number of arcs in Theorem 9.2.7 is best possible [545].
The next result, due to Heydemann and Sotteau, shows that for 2-linkings

one can also get a sufficient condition in terms of 6°(D). The proof is easy
and is left as Exercise 9.6. See also Theorem 9.2.10 below.

Theorem 9.2.9 [426] If a digraph D satisfies 5°(D) > n/2+1, then D is
2-linked. 0

The condition above is still quite restrictive and one would expect a

stronger result to hold. Examples from [426] show that we cannot weaken
the degree condition. However, we can strengthen the result in the following

way.

Theorem 9.2.10 If a digraph D satisfies 6°(D) > n/2+1, then for every
choice of distinct vertices z,y,u,v € V, D contains internally disjoint (x, y)-,

(u,v)-paths P,Q such that V(P) UV(Q) =V.

484 9. Disjoint Paths and Trees

Proof: Let X = V — {z,y,u,v} and construct D’ from D — {x,y,u,v} by

adding two new vertices p and q such that

N>.(p) = Np (v) 0X, Nf (p) = N5(z) NX,

N54) = Nay) NX, Np.(q) = Np (u) NX.

It is easy to see that for every w € V — {z,y, u,v}, dp, (w) 2 djp(w) — 2 and

d+, (w) > dp(w) — 2. Hence the resulting digraph D’ which has n= 1— 2

vertices satisfies 6°(D’) > n'/2. By Corollary 5.6.3, D’ has a hamiltonian

cycle C. Let p+,q+ (p~,q~) denote the successors (predecessors) of p,q on

C. Then «C[pt,q7]y and uC[q*, pv are the desired paths which cover V.
oO

Theorem 9.2.9 was extended.by Manoussakis to 3-linkings.

Theorem 9.2.11 /545] If a digraph D has n > 9 vertices and ‘yal CBs po

n/2+2, then D is 3-linked. 0

Based on Theorems 9.2.9 and 9.2.11, Manoussakis posed the following

problem. Note that f(n,k) <n —1, since the complete digraph is k-linked.

Problem 9.2.12 [545] Determine the minimum function f(n,k) such that
every digraph D on n vertices which satisfies 6°(D) > f(n,k) is k-linked.

According to Manoussakis [545], Hurkens proved that f(n,4) = n/2+ 3
when n > 13 and Manoussakis mentions that perhaps f(n,k) <n/2+k—1

holds for n > 4k — 3.

Let us conclude this section with a result in connection with problem (P3)
of Proposition 9.2.1. It is easy to see that, if a digraph is 2-linked, then it

is also 2-arc-cyclic and hence 2-cyclic. Heydemann and Sotteau proved that,

if we only want a digraph to be 2-cyclic, then it is possible to weaken the

condition in Theorem 9.2.7 somewhat.

Theorem 9.2.13 [426] Every strong digraph D = (V,A) with 6°(D) > 2
and |A| > n? —5n +15 is 2-cyclic. Oo

9.2.3 The k-Path Problem for Acyclic Digraphs

When the digraph considered is acyclic there is enough structure to allow an

efficient solution of the k-path problem for every fixed k Perl and Shiloach

[602] proved that the 2-path problem is polynomially solvable for acyclic di-
graphs. In their elegant proof they showed how to reduce the 2-path problem

for a given acyclic digraph to a simple path finding problem in another di-

graph. Fortune, Hopcroft and Wyllie extended Perl and Shiloach’s result to

arbitrary k. The proof of this result below is an extension of the proof by

Perl and Shiloach (see also Thomassen’s survey [707]).

9.2 Disjoint Path Problems 485

Theorem 9.2.14 [247] For each fixed k, the k-path problem is polynomially
solvable for acyclic digraphs.

Proof: Let D = (V, A) be acyclic and let 21, 22,...,@%, Y1,Y2,-+-, YR be dis-
tinct vertices of D for which we wish to find a k-linking from (21, @2,..., 2x)
to (y1,y2,---,yx)- We may assume that dp(2;) = dp(yi) = 0 for i =
1,2,...,k, since such arcs play no role in the problem and can therefore
be deleted.

Form a new digraph D' = (V',A') whose vertex set is the set of
all k-tuples of distinct vertices of V. For any such k-tuple (v1, v2,..., vz)

there is at least one vertex, say v,, which cannot be reached by any of

the other v; by a path in D. (Here we used that D is acyclic.) For each

out-neighbour w of v, such that w ¢ {v1,v2,...,UK}, we let A’ contain

Ee TOROR (Uy / Vo, 10.5 Vr 1, Urs Ups, -=~, Vk) (U1) U25s + 5 Uroi yD, Veta) oy UR)

Only arcs as those described above are in A’.

We claim that D’ has a directed path from the vertex (x1, 22,...,2%) to

the vertex (yi, y2,---,Yx) if and only if D contains disjoint paths P;, Po,...,
P, such that P; is an (2;,y;)-path fori =1,2,...,k.

Suppose first that D' has a path P from (21, 2%2,...,2%) to (yi, Y2,---5 Yk):

By definition, every arc of P corresponds to one arc in D. Hence we get a

collection of paths P;, P2,...,P, such that P; is an (2;, y;)-path by letting P;

contain those arcs that correspond to a shift in the ith vertex of a k-tuple, i =

1,2,...,k. Suppose two of these paths, P;, P; are not disjoint. Then it follows

from the assumption that d5(2;) = d}(yi) = 0 for i = 1,2,...,k and the def-
inition of D’ that there is some vertex u € V — {21,22,..., 2k, Y1,Y2,---, Yk}

such that u € V(Pi) NV (P;). Let w (z) be the predecessor of u on P; (P;).
We may assume without loss of generality that the arc on P corresponding

to wu is used before that corresponding to zu. This means that at the time
we change from w to uw in the ith coordinate, the 7th coordinate corresponds

to a vertex z’ which can reach u in D (through z). Now it follows from the

definition of the arcs in A’ that we could not have changed the ith coordinate
again before we have used the arc corresponding to zu in D’'. However that

would lead to a k-tuple which contains two copies of the same vertex u from

D, contradicting the definition of D'. Hence P; and P; must be disjoint.
Suppose now that D contains disjoint paths Q1,Q2,...,Q, such that

Q; is an (2;,y;)-path, i = 1,2,...,k. Then we can construct a path from
(@1,%2,...,2%) to (y1,y2,---,yk) in D’ as follows. Start with the tuple
(v1, 22,...,@%). At any time we choose a coordinate j of the current k-tuple

(21, 22,...,2,) such that the vertex z; is not in {yi,y2,-.., yx} and z; cannot

be reached in D by any other vertex from the tuple. Note that such a vertex
exictsisinver Jeisuacyclic and, d.i(1;)s=e0 for dsl, 245428, Kerli z7uGaV (Fy),
then we use the arc z;w corresponding to the arc out of z; on P; and change

the i’th coordinate from z; to w. If follows from the fact that Qi,...,Qx are

disjoint that this will produce a path from (21, 22,...,2%) to (yi, y2,---5 Yk)

in D’.

486 9. Disjoint Paths and Trees

Given any instance (D,21,22,-.-,2k,Y1,Y2,---, Yk) we can produce the

digraph D' in time O(k!n**?) by forming all possible k-tuples and deciding

which arcs to add based on the definition of D'. Then we can decide the

existence of a path from (21, 22,...,T%) to (y1, y2,---, Yk) in polynomial time

using BFS in D’. This proves that the k-path problem is polynomial for each

fixed k. O

Note that we don’t actually have to construct D’ in advance. It suffices

to introduce the vertices and arcs when they become relevant for the search

forva, path from (ap;09 iss @e) 40 (Yt, y2s eee aD

It is not difficult to see that we can also use the approach above to find

the cheapest collection of k disjoint paths where the ith path is an (aj, yi)-

path in a given acyclic digraph with non-negative weights on the arcs. Here

the goal is to minimize the total weight of the arcs used by the paths (see

Exercise 9.9). 7

Suppose that D is an acyclic graph and v is a vertex of in-degree 1. Let

u be the unique in-neighbour of v. Then the digraph D' = D//uv which we
obtain by path-contracting the arc uv is also acyclic. Furthermore, contract-

ing such an arc can have no effect on the existence of a certain linkage in

the digraph since only one path in such a linkage may enter the vertex v.

This shows that we may assume that all vertices except the terminals have

in- and out-degree at least 2 when considering the 2-linkage problem (and

more generally the k-linkage problem) for acyclic graphs. Furthermore we

may assume that no arc enters xz; and no arc leaves y;, i = 1,2.

It is also easy to see that given any acyclic digraph D with distinct ver-

tices 21,22, Y1,Y2 we may in polynomial time either decide the existence of

disjoint (71, y1)-, (v2, y2)-paths, or obtain a new reduced digraph D* such

that dp. (21) = d5.(z2) = df. (yi) = dp. (ye) = 0, every other vertex has in-
and out-degree at least 2 in D* and D* has the desired paths if and only if

D has such paths. Hence, from a computational point of view, the following

result due to Thomassen completely solves the 2-path problem for acyclic

digraphs.

Theorem 9.2.15 /704] Let D be an acyclic digraph on at least 5 ver-

tices with vertices £1,22,y1,y2 such that d~(41) = d-(z2) = dt(y1) =

d*(y2) = 0 and every other verter has in- and out-degree at least 2. Sup-
pose D does not contain disjoint (21, y1)-, (2, y2)-paths. Let H denote the

digraph one obtains from D by adding two new vertices £0, yo and the arcs

X01, LoL2, Yi Yo, Y2Yo, 1Y2, 22y1. Then H can be drawn in the plane such that

the outer cycle is formed by the two paths xo®1y2Yo, 2oL2Y1 Yo and every other

facial cycle? is the union of two directed paths in H (see Figure 9.4).

? A cycle C in a plane graph G is facial with respect to a planar drawing of G if
C is the boundary of some face.

9.3 Linkings in Tournaments and Generalizations of Tournaments 487

Yy2

vo yo

r2 Y1

Figure 9.4 The digraph H obtained from D by adding 2o0,yo and arcs
LoL1, LoL2, yi yo, Y2yYo, Liy2,22y1 (shown as fat arcs).

Theorem 9.2.15 was generalized by Metzlar [563]. The following interest-
ing connection between the 2-path problem for undirected graphs and the

2-path problem for acyclic digraphs is a corollary of Theorem 9.2.15.

Corollary 9.2.16 /704] Let D = (V,A) be an acyclic digraph and sup-

pose that the vertices 21,22,y1,y2 are all distinct and satisfy that d~(z;) =

d*(y;) = 0 for i = 1,2 and that all other vertices of D have in- and out-

degree at least 2. Then D contains disjoint (x1,y1)-, (22, y2)-paths if and

only if UG(D) contains such paths. 0

Thomassen [704] mentioned that it would be interesting to have a direct
proof of Corollary 9.2.16. Such a proof was given by Lucchesi and Giglio in

[527]. In that paper the connection between the 2-path problem for acyclic

digraphs and the 2-path problem for undirected graphs was studied. It was

shown that there is a very close connection between the two problems.

The example in Figure 9.5 shows that Corollary 9.2.16 has no analogue

when k > 2.

9.3 Linkings in Tournaments and Generalizations of
Tournaments

We now turn to linking problems for tournaments and their generalizations.

It turns out that for semicomplete digraphs enough structure is present to

allow a polynomial algorithm for the 2-path problem (Theorem 9.3.12). We

show in Subsection 9.3.3 that this algorithm can be used as a subroutine in

a polynomial algorithm for the 2-path problem for a large super class of the

semicomplete digraphs. .
We start out with some sufficient conditions in terms of the degree of

(local) strong connectivity.

488 9. Disjoint Paths and Trees

Figure 9.5 An acyclic digraph D in which every non-special vertex has in- and
out-degree at least 2. There does not exist disjoint paths P;, P2, P3 such that P; is
an (xi, yi)-path, 1 = 1, 2,3. However UG(D) has such paths.

xX

9.3.1 Sufficient Conditions in Terms of (Local-)Connectivity

The following proposition was proved by Thomassen [701] in the case when
D is a tournament. By inspection of the proof in [701] one sees that the only
place there where it is used that one is dealing with a tournament, rather

than an arbitrary digraph, is to be sure that there:is an arc between every

successor of x and every predecessor of y on the paths P;,..., P, below. Hence

we can state and prove Thomassen’s result in the following much stronger

form:

Proposition 9.3.1 /52, 701] Let D be a digraph and x,y,u,v distinct ver-

tices of D such that K(u,v) > q+2 and Py,...,P, are internally disjoint

(z,y)-paths such that the subdigraph D(V(P,)U...UV(P,)) has no (2, y)-
path of length less than or equal to 3 and such that the successor of x on P;

is adjacent to the predecessor of y on P; for all i,j € {1,2,...,p}. Then D

has q internally disjoint (u,v)-paths, the union of which intersects at most

2q of the paths Py,..-, Pp.

Proof: We may assume that p > 2q +1 since otherwise the claim is trivially

true. Let Q = {Q1,Q2,...,Qq} be internally disjoint (u,v)-paths in D —

{x,y}. We define two collections of subpaths of the paths in Q as follows (in
Exercise 9.15 the reader is asked to describe an algorithm for consfructing
such collections starting from Q).

Let Q{,Q5,..-,Q, be chosen such that either Qi = Q; or Qi = Q[u, z]
for some vertex z € V(P;) where j € {1,2,...,p} and P;[z,y] has only the

vertex z in common with U = V(Q{) U...UV(Qj). We also assume that
|U| is minimum subject to the conditions above. If some path P, contains
a vertex w from U and P,[w,y] contains no vertices from U — w, then the
minimality of U implies that one of the paths Q{,Q$,... ,Q,, terminates in
w. This implies that the collection Q),Q,..., Qj intersects at most q of the
paths Py, oye. tp:

9.3 Linkings in Tournaments and Generalizations of Tournaments 489

Analogously we can define a collection Q7,Q3,...,Qj where Q/ is either

Q; or Q!’ = Qi[w, v] for a vertex w on some P, satisfying that P,[x, w] con-
tains only the vertex w from V(Q//)U. . .UV(Q/) and such that Q1,Q9,.--,Q4

intersect at most q of the paths P;, Po,..., Pp.

Now we construct the desired paths as follows. For each 1 = 1,2,...,4,

if Qi = Q; or Q/ = Qi, then let R; := Q;. Otherwise let z be the terminal

vertex of Q/, let w be the initial vertex of Q!’ and let r,7 be chosen such that

z€V(P;),w € V(P,). Let 2’ (y’) be the successor (predecessor) of x (y) on
P, (P;). By the assumption that D contains no (z,y)-path of length 3 and

that every successor of x is adjacent to every predecessor of y on the paths

P;,..., Pp, we get that-y'z’ € A. Let R; := Qi P,(|z,y'|P,[z', w]Q)' (see Figure

9.6).

Figure 9.6 How to obtain R; from Q;,Q/, Pj and P,. The fat arcs indicate the
resulting (wu, v)-path.

Now Rj, R2,..., Rq are internally disjoint (u,v)-paths and by construc-

tion they contain no more than 2q vertices from the paths P,, P2,..., Pp. O

Our proof above is constructive and can easily be turned into a fast algo-
rithm for finding the desired collection of paths (Exercise 9.16). The following
result by Thomassen is an easy corollary

Corollary 9.3.2 [701] Every 5-strong semicomplete digraph is 2-linked.

Proof: Let D be a 5-strong semicomplete digraph and let 21,22,y1,y2 be

arbitrary distinct vertices of D. If D — {r3-;,y3-i} has an (2;,y;)-path P

of length at most 3 for i = 1 or i = 2, then D — P is strong and hence

490 9. Disjoint Paths and Trees

contains an (23_;,y3—i)-path. Hence we may assume that every (xi, yi)-path

in D — {x3_;,y3—i} has length at least 4 for 1 = 1, Ds

Let P,, P2,P3 be internally disjoint (21, y;)-paths in D — {x2,y2}. Then

D and these paths satisfy the assumption of Theorem 9.3.1 for gq = 1 and it

follows that D has an (x2, y2)-path which intersects at most two of the paths

P,, Po, P3. Since 11,22, yi, y2 were chosen arbitrarily, it follows from Lemma

9.2.2 that D is 2-linked. oO

Bang-Jensen [43] constructed the 4-strong semicomplete digraph in Figure

9.7, hence showing that 5-strong connectivity is best possible for general

semicomplete digraphs.

Figure 9.7 A 4-strong non-2-linked semicomplete digraph T. All arcs not shown
go from left to right and x1 y221, 2y122 are the only 2-cycles in JT. There is no pair
of disjoint (21, y1)-,(r2, y2)-paths in T. The tournament which results from T by
deleting the arcs y221 and yi 2 is also 4-strong.

We now turn our attention to special classes of generalizations of tour-

naments. The first lemma shows that for the class of round decomposable

locally semicomplete digraphs one can improve the bound from Corollary

9.3.2. The proof is left as Exercise 9.20.

Lemma 9.3.3 /52] For each natural number k, every (3k — 2)-strong round
decomposable locally semicomplete digraph is k-linked. oO

In order to get a result on k-linkings for locally semicomplete digraphs

that are not round decomposable we use the following lemma which allows

9.3 Linkings in Tournaments and Generalizations of Tournaments 491

us to apply Proposition 9.3.1. Recall that by Exercise 4.33, a(D) < 2 if D is

locally semicomplete but not round decomposable.

Lemma 9.3.4 /52] Let x and y be distinct vertices in a locally semicomplete

digraph D such that a(D) < 2 and let P\,...,P, be internally disjoint (x, y)-

paths such that the locally semicomplete digraph D' = D(V(P,)U...UV(P,))
has no (x, y)-path of length less than 6. Then for all 1 < i,j < p, the prede-

cessor u of y on P; dominates the successor v of x on P;.

Proof: We may assume that each P; is a minimal (2, y)-path. Suppose there

exist 7 and 7 such that the predecessor u of y on P; is not adjacent to the

successor v of x on P;. Note that the assumption of the lemma and Exercise
9.18 implies that ya. Therefore D’ is strong and we conclude from Exercise

9.18 (applied to u,v) that D’ contains an (z,y)-path of length at most 5,

contradicting the assumption. Hence uv must hold. Oo

The following theorem by Bang-Jensen gives a sufficient condition for the

existence of a specified k-linking in a locally semicomplete digraph which is

not round decomposable in terms of local connectivities. It generalizes a result

by Thomassen for tournaments [701]. Bang-Jensen also proved an analogous
result for quasi-transitive digraphs, see [52] for details.

Theorem 9.3.5 /52/] There exists, for each natural number k, a natural num-

ber f(k) such that the following holds. If D is a locally semicomplete digraph

with a(D) < 2 and 21,2%2,...,2k,Y1,Y2,---,Yk are distinct vertices in D

such that K(2;,yi) > f(k) for alli = 1,...,k, then D has disjoint paths
Py P,,...,f where P; is an (x;,4;)-path, 1 = 1,2;..., k.

Proof: Let f(1) = 1 and f(k) = 2(k — 1)f(k — 1) + 2k +1 for k > 2.
We prove by induction on k that this choice works for f. This is clear for

k = 1, so we proceed to the induction step assuming k > 2. Suppose that

21, 22,---,Lk, Y1,Y2,---, Ye are distinct vertices in a locally semicomplete di-

graph D for which a(D) < 2 and assume that K(2;,y;) > 2(k — 1) f(k-—1) +
2k +1 for alli =1,...,k. We prove that D — {x2,..., 2x, y2,---, yx} has an

(21, 41)-path P, such that Ky(2i, yi) > f(k — 1) fori = 2,...,k, where H =
D-—V(P,). Then the result follows by induction. If D—{x2,..., 2%, Y2,---s Ye}

has an (x, y)-path of length at most 5, then this can play the role of P,,

so assume that no such path exists. Let Q1,Q2,---, Q2(k-1)f(k-1)41 be in-

ternally disjoint (x1, y1)-paths in D — {x2,...,2%,Y2,---, Yk}. We show that

one of these can play the role of P;. First note that by Lemma 9.3.4 and

the remark above, we have that for all 1 < i,j < 2(k —1)f(kK-—1)+4+1
the predecessor of y; on Q; dominates the successor of x; on Q;. Hence, by

Proposition 9.3.1, for each i = 2,3,...,k, there are internally disjoint (2;, yi)-

paths P;,;, P2,i,...,Ps(x—1),; which together intersect at most 2f (k — 1) of
the paths Q1,Qo,...,Q2(k—-1)f(k-1)41- Hence there is at least one path Q,
which intersects none of Pj;,2<i<k,1<j < f(k—1). Thus we can use

_ that Q, as P,. oO

492 9. Disjoint Paths and Trees

Combining Lemma 9.3.3, Theorem 9.3.5 and Theorem 4.11.15 we obtain

the following result by Bang-Jensen (extending a similar result for semicom-

plete digraphs by Thomassen [701]):

Theorem 9.3.6 /52] There exists, for each natural number k, a natural num-

ber f(k) such that every f(k)-strong locally semicomplete digraph is k-linked.

Here and below the function f(k) is the function which is defined in the

proof of Theorem 9.3.5.

Corollary 9.3.7 [52] Every f(k)-strong locally semicomplete digraph is k-

arc-cyclic.

The function f(k) is probably far from best possible for Theorem 9.3.6

and Corollary 9.3.7. In particular, f(2) = 7, but, using Theorem 4.11.15, it

should be possible to prove that the following holds.

Conjecture 9.3.8 /52/] Every 5-strong locally semicomplete digraph is 2-

linked.

9.3.2 The 2-Path Problem for Semicomplete Digraphs

In the proof of Corollary 9.3.2 we really only used that K7_42, y;}(23-i, Y3—i)

was at least 3 for 2 = 1,2 in order to ensure the existence of three internally

disjoint (x1, y1)-paths in D — {x2, y2} and then we applied Proposition 9.3.1.
Bang-Jensen strengthened this sufficient condition as follows.

Theorem 9.3.9 /43] Let T be a semicomplete digraph and let 21,22, yi, yo
be distinct vertices of T. Suppose that

min{K7—{29,yo}(21,Y1)) KT—{x1,y1} (£2, Y2) } > 2 and

max{KT_{22,yo}(T1) Yi); Kp —{23,y1} (£2) yo) } 213;

then T has a pair of disjoint (x1, y1)-, (x2, y2)-paths. Oo

This is best possible with respect to local connectivities. The semicom-

plete digraph in Figure 9.7 shows that we cannot replace 3 by 2 above. How-

ever, see Theorem 9.3.13 for a special case where we can do this.

Bang-Jensen showed that for cycles through two arcs (the special case

when yj 22 and y2—2 1), we can strengthen Corollary 9.3.2 in the case of

tournaments. For semicomplete digraphs the digraph in Figure 9.7 shows that

we cannot always weaken the connectivity requirement.

Theorem 9.3.10 /43] Every 3-strong tournament and every 5-strong semi-

complete digraph is 2-arc-cyclic. 0

9.3 Linkings in Tournaments and Generalizations of Tournaments 493

It follows from the proof of Theorem 9.3.10 in [43] that for a fixed pair of
arcs e,e’ we can replace the connectivity requirement that D is 5-strong by
(5 — 2)-strong provided that i of the arcs e,e’ are not in a 2-cycle (i = 1,2).

Conjecture 9.3.11 /52] Every 3-strong locally tournament digraph is 2-arc-
cycle.

The example in Figure 9.7 indicates that finding a complete generalization

of those semicomplete digraphs that do not have disjoint (x, y)-, (u, v)-paths

for a given set of distinct vertices x, y, u,v may be very difficult. In the special

case where we allow u and y to be equal, that is, we are seeking an (z,v)-path
which passes through the vertex wu (that is, the problem (P5) in Proposition

9.2.1), it is indeed possible to give a characterization. Such a characterization
was given by Bang-Jensen in [45].

From the algorithmic point of view, the 2-path problem for semicomplete

digraphs was solved by Bang-Jensen and Thomassen who proved the following
result:

Theorem 9.3.12 /89] The 2-path problem is solvable in time O(n°) for
semicomplete digraphs. O

The proof of this result in [89] is highly non-trivial. The basic approach is

divide and conquer. However, several non-trivial results and steps are needed

to make the algorithm work. We state the most important of these results
below since it is of independent interest.

Recall from Chapter 6 that an (s,t)-separator S is trivial if t has in-

degree zero, or s has out-degree zero in D — S. The following result which

complements Theorem 9.3.9 is very important for the proof of correctness

of the algorithm of Bang-Jensen and Thomassen, since it corresponds to a

case where no problem reduction is possible (using the approach taken in the

algorithm).

Theorem 9.3.13 /89] Let T be a semicomplete digraph, and let x1, £2, 41, Y2

be distinct vertices of T, such that for each i = 1,2, there are two, but not

three, internally disjoint (x;,y;)-paths in T — {x3-;,y3-i}. Suppose that all

(xi, yi)-separators of size 2 in T — {x3_i, y3-i} are trivial, fori = 1,2. Then
T has a pair of disjoint (41, y1)-, (%2, y2)-paths. Furthermore such a pair of

paths can be constructed in time O(n?).

Note that the semicomplete digraph in Figure 9.7 does not satisfy the

assumption of Theorem 9.3.13 since the two non-labeled vertices in the middle

form a non-trivial (x2, y2)-separator of size 2 in T — {21,y1} .

9.3.3 The 2-Path Problem for Generalizations of Tournaments

Now we show that the 2-path problem can be solved in polynomial time for

quite large classes of digraphs which can be obtained starting from semicom-
_ plete digraphs and then performing certain substitutions. The algorithm we

494 9. Disjoint Paths and Trees

describe uses the polynomial algorithm from Theorem 9.3.12 for the case of

semicomplete digraphs as a subroutine. The results in this section are due to

Bang-Jensen [52].

Theorem 9.3.14 [52] Let D = F[S,,S2,...,S5] where F is a strong digraph

on f > 2 vertices and each S; is a digraph with n; vertices and let 21, £2, 1, Y2

be distinct vertices of D. There exists semicomplete digraphs T;,...,T's such

that V(T:) = V(S;), 1 = 1,2)..-,f, and the digraph) D= FlTx, 127.2914]

has vertezr-disjoint (x1,y1)-, (£2, y2)-paths if and only if D has such paths.

Furthermore, given D and 21, 22,41, Yy2, D' can be constructed in time O(n?),

where n is the number of vertices of D.

Proof: If D has the desired paths, then so does any digraph obtained from D

by adding arcs. Hence if D has the desired paths, then trivially D’ exists and

can be constructed in time O(n*) once we know a pair of disjoint (21, y1)-,

(2, y2)-paths.
If no S; contains both of z,,y; or both of x2, y2, then it is easy to see

that D has the desired paths if and only if it has such paths which do not

use an arc inside any S;. Thus in this case we can add arcs arbitrarily inside
each S; to obtain a D’ which satisfies the requirement.

Suppose next that some S; contains all of the vertices 21,22, 41, y2- If

there is an (z;,y;)-path P in S; — {x3_;,y3_-;}, j = 1 or 2, then it follows

from that fact that F' is strong that D has the desired paths and we can find

such a pair in time O(n”). Thus, by our initial remark, we may assume that
there is no (#;,y;)-path P in S; — {r3_;, y3_;} for 7 = 1, 2. Now it is easy to
see that D has the desired paths if and only if it has such paths which do not

use an arc inside any S;. Thus we can replace S; with a tournament in which

x, and x both have no out-neighbours in S; — {x1, x2} and every other S;

by an arbitrary tournament on the same vertex set. Clearly the digraph D’

obtained in this way satisfies the requirement.

Suppose now without loss of generality that 2,,y, € V(S;) for some j

but r2 ¢ V(S;). Suppose first that yo € V(S;). If there is no (#1, y;)-path in
Sj; — y2, then D has the desired paths if and only if it has such paths which

do not use an arc inside any S; and we can construct D’ by adding arcs in

S; in such a way that no (a1, y1)-path avoiding y2 is created (that is, y will

still separate 2, from y, in D'(V(S;))) and arbitrary arcs in every other Sj.
On the other hand if S; — yp contains an (x1, y1)-path avoiding yo, then it

follows from the fact that F' is strong that D has the desired paths and hence

D' exists as remarked above. Hence we may assume that y2 ¢ V (Sj).
If S; contains an (71, y)-path which does not cover all the vertices of 9;,

then it follows from the fact that F is strong that D has the desired paths.

Thus we may assume that either S; has no (a#1,y1)-path, or every (x1, 41)-
path in S; contains all the vertices of S;. In the last case we may assume that
V(S;) separates x2 from y2. Now D has the desired paths if and only if it
has such a pair which does not use any arcs from S;. Thus in both cases we

9.3 Linkings in Tournaments and Generalizations of Tournaments 495

can construct D’ by replacing S; by a tournament with no (21, y1)-path and
every other S; by an arbitrary tournament on the same vertex set, except in
the case when z2 and yo belong to some Sj, i # j. In this case we replace
that S; by a tournament with no (x2, y2)-path (by the remark above we may
assume that S; has no (22, y2)-path).

It follows from the considerations above that D’ can be constructed in
time O(n’). Oo

Recall that quasi-transitive digraphs can be decomposed according to

Theorem 4.8.5. Hence we can apply Theorem 9.3.14 to these digraphs.

Theorem 9.3.15 /52] There exists a polynomial algorithm for the 2-path

problem for quasi-transitive digraphs.

Proof: Let D be a quasi-transitive digraph and 21, 22,41, y2 specified dis-

tinct vertices for which we want to determine the existence of vertex-disjoint

(11, 41)-,(@2, y2)-paths. First check that D — {z;, y;} contains an (23_;, y3_i)-

path for 7 = 1,2. If not then we stop. Now it follows from Theorem 4.8.5 that

either 21, 22,41, y2 are all in the same strong component of D, or the paths

exist. For example, if D is not strong and yj, say, is not in the same strong

component as xz; then, by Theorem 4.8.5, x; and y; belong to different sets

W;, W; in the canonical decomposition D = Q[W1,...,Wjq)], where Q is a

transitive digraph. Hence x;y; and the desired paths clearly exist.

Thus we may assume that D is strong. Let D = S[W,, W2,...,W)s)] be a

decomposition of D according to Theorem 4.8.5. Now apply Theorem 9.3.14

and construct the digraph D' which has the desired paths if and only if D

does. As remarked in Theorem 9.3.14, D’ can be constructed in polynomial

time. By the construction of D’ (replacing each W; by a semicomplete di-

graph) it follows that D’ is a semicomplete digraph and hence we can apply

the polynomial algorithm of Theorem 9.3.12 to D’ in order to decide the

existence of the desired paths in D. The algorithm of Theorem 9.3.12 can

be used to find vertex-disjoint (x1, y1)-, (22, y2)-paths in D’ if they exist and

given these paths it is easy to construct the corresponding paths in D (it

suffices to take minimal paths). 0

By inspecting the proof of Theorem 9.3.14 it is not difficult to see that

the following much more general result is true. The main point is that in

the proof of Theorem 9.3.14 we either find the desired paths or decide that

they exist if and only if there are such paths that use no arcs inside any Sj.

Hence instead of making each T; semicomplete, we may just as well make it

an independent set, by deleting all arcs inside 5;.

Theorem 9.3.16 [52] Let & be a class of strongly connected digraphs, let &o

denote the class of all extensions of graphs in © and let

So ={F(Di 24 Dip) F € &, eachD; ts an arbitrary digraph}.

496 9. Disjoint Paths and Trees

There is a polynomial algorithm for the 2-path problem in ©* if and only

if there is a polynomial algorithm for the 2-path problem for all digraphs in

Po. O

This result shows that studying extensions of digraphs can be quite useful.

One example of such a class ®, for which Theorem 9.3.16 applies, is the

class of strong semicomplete digraphs. This follows from the fact that we can

reduce the 2-path problem for extended semicomplete digraphs to the case of

semicomplete digraphs in the same way as we did for quasi-transitive digraphs

in the proof of Theorem 9.3.15. Hence the 2-path problem is polynomially

solvable for all digraphs that can be obtained from strong semicomplete di-

graphs by substituting arbitrary digraphs for vertices. It is important to note

here that @ must consist only of strong digraphs, since it is not difficult to

reduce the 2-path problem for arbitrary digraphs (which is M’P-complete

by Theorem 9.2.3) to the 2-path problem for those digraphs that can be

obtained from the digraph H consisting of just an arc uv by substituting

arbitrary digraphs for the vertex v.

The proof of the following easy lemma is left to the reader as Exercise 9.21.

Note that four is best possible as can be seen from the complete biorientation

of the undirected graph consisting of 4-cycle x1 ry; yor and a vertex z joined

to each of the four other vertices.

Lemma 9.3.17 Let D be a digraph of the form D = CIS; , Sol, where S;

is an arbitrary digraph on n; vertices, i = 1,2. If D is 4-strong then D is

2-linked. g

The following result generalizes Corollary 9.3.2.

Theorem 9.3.18 /52] Let k > 4 be a natural number and let F be a digraph

on f > 2 vertices with the property that every k-strongly connected digraph

of the form F|T,,T2,...,Tz], where T;, i = 1,2,...,f, is a semicomplete

digraph, is 2-linked. Let D = F[S,,S2,...,S 5], where S; is an arbitrary di-

graph on nj vertices, i =1,2,...,f. If D is k-strongly connected, then D is
2-linked.

Proof: Let D = F[S;,S2,...,S], where S; is an arbitrary digraph on n;
vertices, 4 = 1)2,..2,f, be given. _By Lemma 9.3.17 we may assume that D
cannot be daconipesed as Dt C{R1, Ro], where R; and Rz are arbitrary
digraphs. Construct D’ as described in Theorem 9.3.14. Note that by Lemma
7.13.1, «(D') = «(D). Thus D’ is k-strong and using Theorem 9.3.14 and the
assumption of the theorem we conclude that D is 2-linked. oO

Corollary 9.3.19 /52] Every 5-strong quasi-transitive digraph is 2-linked.

Proof: By Theorem 4.8.5, every strong quasi-transitive digraph is of the form
D = F[S;,S2,...,5 5], f = |F|, where F is a strong semicomplete digraph
and each S; is a nonsense quasi-transitive digraph on n; vertices. By Lemma

9.4 Linkings in Planar Digraphs 497

4.8.4 and the connectivity assumption, |F'| > 3. Note that for any choice
of semicomplete digraphs T,,...,7; the digraph D’ = BT} jay. Cay iis
semicomplete. Hence the claim follows from Theorem 9.3.18 and the fact that,
by Corollary 9.3.2, every 5-strong semicomplete digraph is 2-linked. (Since F
has at least three vertices, it follows from Lemma 7.13.1 that «(D’) = K(D).)

O

9.4 Linkings in Planar Digraphs

In this section we briefly discuss the k-path problem for planar digraphs
(recall the definition of a planar digraph from Section 4.14). The constraint
that the digraph in question can be embedded in the plane clearly poses
some restrictions to the structure of disjoint paths. This is illustrated by the
following result.

y

Figure 9.8 A topological obstruction for the existence of disjoint (x, y)- and (u, v)-
paths in a planar graph G. The cycle C is the boundary of the outer face of G.

Proposition 9.4.1 Suppose that D = (V, A) is a planar digraph with distinct

vertices z,y,u,v € V and that D is embedded in the plane in such a way that

the vertices x,v,y,u appear on the bounding cycle C of the outer face in that

order (see Figure 9.4.1). Then D does not have a pair of disjoint (2x, y)-,

(u, v)-paths.

Proof: We first prove that no matter how we connect x and y by a simple

(that is, not self intersecting) curve R and u,v by another simple curve R’,

both inside the bounded disc with boundary C (see Figure 9.8) the two curves
must intersect. Suppose we can choose simple curves R, R’ so that R connects

x and y and R’ connects u and v. Then we can add a new point z in the

interior of the outer face and join it to each of the vertices x, y, u,v by disjoint

simple curves which lie entirely in the closed disc formed by the outer face and

498 9. Disjoint Paths and Trees

its boundary C. This gives us an embedding of Ks in the plane, contradicting

Theorem 4.14.1.

Suppose now that P,Q are disjoint paths in D such that P is an (x, y)-

path and Q is a (u, v)-path. In the embedding of D these correspond to simple

curves and hence, by the argument above, they must intersect at some point

in the plane. Since D is planar, no two arcs intersect in the interior (as curves)

and hence we see that P and Q must intersect in some vertex v of D. However

this contradicts the assumption that they are disjoint. O

We point out that the first part of the proof above can be established using

the Jordan curve theorem directly to establish that R and R’ must intersect

somewhere in the disc with boundary C (see e.g. the book by Bondy and

Murty [127]).
It was shown by Lynch [529] that when k is part of the input, then the

k-path problem remains NP-complete even for planar digraphs. For fixed k,

Schrijver has developed a polynomial algorithm.

Theorem 9.4.2 /656, 657] For every fired *k the k-path problem is polyno-

mially solvable for planar digraphs. oO

The proof method is based on cohomology over free (non-abelian) groups,

a topic which would require too much space to cover in the present book.

Schrijver mentions that part of the group theory and topology is mainly used

to keep notation fairly simple, but in any case the proof is too complicated to

include here even as a (convincing) sketch. For additional discussion on and

applications (for digraphs embedded on surfaces) of this very powerful proof

technique we refer the reader to Schrijver’s papers [656, 657, 658]. We should
mention though that arguments like those used in the proof of Proposition

9.4.1 play an important role in Schrijver’s approach.

To further illustrate how to use planarity in arguments in disjoint path

problems, we consider a special case of the k-path problem for which a good

characterization for the existence of a prescribed linking has been found by
Ding, Schrijver and Seymour [194].

Suppose that we are given a planar digraph D = (V, A) which is embedded

in the plane in such a way that the vertices s,,s2,...,5,,t1,te,...,tx all

belong to the boundary of the outer face F of D. Ding, Schrijver and Seymour

[194] proved that in this case there is a simple polynomial algorithm to decide

the existence of a collection of disjoint paths P,,P:,...,P,, where P; is an

(s;, t;)-path, i= i ai seey k.

In fact, as we will see below, it turns out to be easier to describe an

algorithm for the following slight extension of the problem: in addition to the

3 That is, k is not part of the input.

9.4 Linkings in Planar Digraphs 499

vertices 81, 82,...,Sx,1,t2,...,t, we are also given subsets A,, Ao,..., Ax of
A and we demand that P; can only use* arcs from A; for i = LD Meee

Motivated by the example in Figure 9.8 we say that two pairs of terminals
(s;,t;) and (s;,t;) on bd(F) cross if each simple curve from s; to t; in R? —F
(considered as a subspace of R*) crosses each simple curve from 8; to t; in
R? —F. By Proposition 9.4.1 a necessary condition for the existence of disjoint
(s1,ti),.-.,(Sk,tx)-paths in D is that the following cross-freeness condition
is satisfied:

for every i # j (s;,t;) and (s;,t;) do not cross. (9.1)

Using the cross-freeness condition we see that there is no solution unless
the terminals occur in the order uj, v1, U2, v2,...Ux, Ug around bd(F’), where
{ui, vi} = {87(i),tx(x)} for some permutation 7 of J oye gC lCALlyat iis
condition can be checked in polynomial time if we are given the (polygonal)
embedding of D.

We measure closeness of two polygonal paths with the same end-points
by the area between the two paths. See Figure 9.9 for an illustration. The
proof of the following lemma is left as Exercise 9.23.

V2 U3 V4
U5

U1

Figure 9.9 Let R be the path sviv2v3u4usvet in the underlying graph of D. The
(s,t)-path sv7v2v9vsveviit is closer to R than the (s,t)-path su7vgvgusveviit.

Lemma 9.4.3 Let R be a path from x to y along the boundary of the outer

face (ignoring the orientation of the arcs in D) and let D' be a subdigraph
of D which contains the vertices x and y. Then either D' has no (x, y)-path

or there exist a unique (x,y)-path Q in D' which is closest to R. Given the
embedding of D, we can find Q in polynomial time if it exists. Furthermore,

no other (x,y)-path ‘crosses over’ Q at any point (e.g. in Figure 9.9 the path

UgUgUs crosses over the path v2v9V10 at the vertex vg).

Now we are ready to describe a greedy algorithm which either finds the

desired paths in D, or a proof that no such paths exist (using only arcs from

the sets Aj, Ag,..., Ax).

* In [194] Ding, Schrijver and Seymour consider an even more general case where
not all paths linking different pairs of terminals must be disjoint, but for sim-
plicity we assume that they are all disjoint.

500 9. Disjoint Paths and Trees

Start with s,,t,. Since D satisfies the cross-freeness condition, one of the

two paths between s; and t, along bd(F’) contains no other terminals. Denote

this path by P.

If D(A,) contains no (s,,t,)-path, then there is no solution, so assume

below that such a path exists.

Let P, be the unique (s,,t,)-path in D(A,) which is closest to P. Modify

A;, i = 1,2,...,k — 1 by removing from A; every arc that is incident to a

vertex on P;,. Now repeat the steps above for the pair s,_1,t,-1 and continue

recursively.

After at most k iterations we either find the required linking or conclude

that no such linking exists.

To prove the correctness of the algorithm we observe that, if Q1, Q2,...,

Q, is asolution, then so is Qi, Qo,..., Qx—1, Px. Indeed, if P, intersects some

Q;, then so does Qy because P,_is either equal to Q, or strictly closer to P

than Q;. This shows that the greedy choice is legal and the correctness fol-

lows. It also follows from Lemma 9.4.3 that the algorithm above is polynomial

in the size of D.
We finish this section with some remarks on the problem (P3) in Propo-

sition 9.2.1 for the case of planar digraphs. By Theorem 9.2.6 there is no

degree of vertex-strong connectivity which guarantees that a digraph is 2-

cyclic (that is, has a cycle containing x,y for every choice of vertices z,y).

For planar digraphs the maximum degree of vertex-strong connectivity is 5

(Exercise 7.8). One may ask whether there is some degree of vertex-strong
connectivity which suffices to guarantee that the planar digraph is 2-cyclic.

However this is not the case as shown by the 5-strong non-2-cyclic planar

digraph D, (k = 20) in Figure 9.10 (Exercise 9.25). This example arose from
a personal communication with BoOhme and Harant (October 1999). The fact

that there exist 5-strong non-2-cyclic planar digraphs was also mentioned by

Bermond and Thomassen in the survey paper [115]. Note also that these ex-

amples of 5-strong non-2-cyclic planar digraphs show that for directed graphs

there is no analogue of Tutte’s theorem on hamiltonian planar graphs (every

4-connected planar graph is hamiltonian [721]).
Using the same family of planar undirected graphs G;, k > 20, as in

Figure 9.10 one can easily construct 5-strong planar graphs which do not

contain disjoint [s1,ti]-, [s2,t2]-paths, hence providing the proof that the

condition of being 6-connected cannot be lowered to being 5-connected for

undirected graphs (recall the discussion at the end of Subsection 9.2.1).

9.5 Arc-Disjoint Branchings

This section is devoted to a very important result due to Edmonds [214].

The result can be viewed as just a fairly simple generalization of Menger’s

theorem. However, as will be clear from the next subsections, it has many

important consequences. Recall again that an out-branching is a spanning

9.5 Arc-Disjoint Branchings 501

G4

(a) (6)

Figure 9.10 Part (a) shows a planar 5-connected graph G; with k = 4; Part (b)
shows a 5-strong planar digraph D, that is obtained from the complete biorientation
of G; (shown for k = 20) by adding two new vertices x,y and joining these by the
arcs indicated. The digraph has no cycle through z and y.

out-arborescence. In this and the next sections, unless explicitly stated oth-

erwise, we assume that we are dealing with a directed multigraph (that is,

we allow parallel arcs, but no loops).

Theorem 9.5.1 (Edmonds’ branching theorem) /214] A directed multi-
graph D = (V,A) with a special vertex z has k arc-disjoint spanning out-
branchings rooted at z if and only? if

al Xe) ok for all X CV —z. (9.2)

Proof: We give a short proof due to Lovasz [521]. The necessity is clear,
so we concentrate on sufficiency. The idea is to grow an out-arborescence F'

from z in such a way that the following condition is satisfied:

p-a(r)(U) 2k -1 for all U CV —z. (9.3)

If we can keep on growing F' until it becomes spanning while always

preserving (9.3), then the theorem follows by induction on k. To show that
we can do this, it suffices to prove that we can add one more arc at a time

to F until it is spanning. Let us call a set X C V — z problematic if

dp_a(p)(X) = k — 1. It follows from the submodularity of dp _ 4(p) (recall

Corollary 7.1.2) that, if X,Y are problematic and X NY # Q, then so are

X NY,X UY. Observe also that, if X is problematic, then X NV(F) # O,

because X has in-degree at least k in D. Let T denote the intersection of

all problematic sets not contained in V(F’). By the remark above, T is also
problematic. If all problematic sets are contained in V(F’), then we take
R= V.

° By Menger’s theorem (Theorem 7.3.1), (9.2) is equivalent to the existence of k
arc-disjoint-paths from z to every other vertex of D.

502 9. Disjoint Paths and Trees

We claim that there exists an arc uv in D such that u € V(F) NT and
v € T —V(F). Indeed if this was not the case then every arc that enters

T — V(F) also enters T and we would have

dp(T — V(F)) = d5_ace)(P -V(F)) S$ 45am (P)S-1, (94)

contradicting the assumption of the theorem.

The arc uv cannot enter a problematic set T’, since that would contradict

the definition of T (recall that u € T). Hence we can add the arc uv to F’
without violating (9.3) and the claim follows by induction. 0

The proof above can be turned into a polynomial algorithm which given

a directed multigraph D = (V, A) a vertex z € V and a natural number k,

either finds & arc-disjoint out-branchings from k, or a set X C V — z with

out-degree less than k (Exercise 9.27).
The following possible ‘generalization naturally emerges. In addition to

z, we are given a subset T C U —z so that d~(X) > k for every subset
X CV—2z,X NT # @ (by Menger’s theorem this is equivalent to saying

that there are k-arc-disjoint (z,t)-paths for every t € T). Is it true that there
are k arc-disjoint out-arborescences rooted at z so that each contains every

element of T’? The answer is yes if T = V — z (by Edmonds’ theorem) or if

|T| = 1 (by Menger’s theorem). However, Lovasz [519] found the example in
Figure 9.11 which shows that such a statement is not true in general. This

example can be generalized to directed multigraphs with arbitrarily many

vertices (Exercise 9.30).

Figure 9.11 A digraph with \(z,t) > 2, t € T which has no two arc-disjoint out-
arborescences rooted at z and both containing every element of T. Here T consists
of the three black vertices ({519, Figure 1)).

Observe that in Figure 9.11 d~ (x) = 1 < 2 =d*(z) holds for the only ver-
tex x not in T and recall that the desired number of arc-disjoint arborescences

9.5 Arc-Disjoint Branchings 503

above was two. Bang-Jensen, Frank and Jackson proved that, if \(z,r) > k

holds for those vertices « € V(D) for which d+(x) > d~(x) (that is, the value
of k is restricted by the local arc-connectivities from z to these vertices), then
a generalization is indeed possible.

Theorem 9.5.2 /53] Let D = (V, A) be a directed multigraph with a special

verter z and let T’ := {x € V—z: d~(x) < d*(az)}. If X(z,2) > k(> 1) for ev-
ery x € T", then there is a family F of k arc-disjoint out-arborescences rooted

at z so that every verter x € V belongs to at least r(x) := min(k, A(z, z))
members of F. 0

Clearly, if in Theorem 9.5.2 \(z,x) > k holds for every x € V, then we are

back at Edmonds’ theorem. Another special case is also worth mentioning.

Call a directed multigraph D = (V,A) with root z a preflow directed
multigraph if d~ (x) > d*(z) holds for every x € V — z. (The name arises
from a max-flow algorithms of Karzanov [475] and Goldberg and Tarjan [324],
see also the definition of a preflow in Chapter 3). The following corollary of

Theorem 9.5.2 may be considered as a generalization of Theorem 3.3.1.

Corollary 9.5.3 /53] In a preflow directed multigraph D = (V,A) for any

integer k(> 1) there is a family F of k arc-disjoint out-arborescences with
root z so that every vertex x belongs to min(k, A(z,x;D)) members of F. In

particular, if k := max(Ap(z,z): x2 € V—z), then every x belongs to Ap(z, x)
members of F. QO

Aharoni and Thomassen have shown that Edmonds’ branching theorem

cannot be generalized to infinite directed multigraphs [4].

9.5.1 Implications of Edmonds’ Branching Theorem

Below we give a number of nice consequences of Theorem 9.5.1 (for yet an-
other consequence see Theorem 9.7.2). The first result, due to Even, may be

viewed as a generalization of Menger’s theorem for global arc-strong connec-

tivity.

Corollary 9.5.4 /229, Theorem 6.10] Let D = (V,A) be a k-arc-strong di-

rected multigraph and let x,y be arbitrary distinct vertices of V. Then for

every 0 <r<k there exist paths P,, P2,...,P, in D which are arc-disjoint

and such that the first r paths are (x,y)-paths and the last k —r paths are

(y, z)-paths.

Proof: Let [D,z,y] be as described above. Add a new vertex s and join
it to x by r parallel arcs of the form sz and to y by k —r parallel arcs

of the form sy. Let D’ denote the new directed multigraph. We claim that
D' satisfies (9.2). To see this let X C V be arbitrary. If X # V, then we
have dp,(X) > dp(X) > k, since D is k-arc-strong. If X = V, we have

504 9. Disjoint Paths and Trees

d5(V) = dp.(s) = k. It follows from Theorem 9.5.1 that D’' contains k

arc-disjoint out-branchings all rooted at s. By the construction of D', these

branchings restricted to D must consist of r out-branchings rooted at x and

k —r out-branchings rooted at y. Take the r (x, y)-paths from those rooted

at z and the k — rr (y,z)-paths from those rooted at y and we obtain the

desired paths. O

The next result, due to Nash-Williams, gives a sufficient condition for

the existence of k-edge-disjoint spanning trees in an undirected graph. This

condition is the best possible in terms of the edge-connectivity (see the remark

after Theorem 9.5.6) and hence we see that for undirected graph we may need

twice the obvious edge-connectivity requirement to guarantee k edge-disjoint

trees. This contrasts with the case for directed graphs where k-arc-strong

connectivity suffices by Edmonds’ theorem.

Theorem 9.5.5 [584] Every 2k-edge-connected undirected graph contains k

edge-disjoint spanning trees.

Proof: Let G = (V, E) be a 2k-edge-connected undirected graph. By Nash-

Williams’ orientation theorem (Theorem 8.6.3), G has a k-arc-strong orien-

tation D = (V, A). Let z € V be arbitrary and note that d~(X) > k holds
for each subset X C V — z of vertices. Hence by Theorem 9.5.1, D contains

k-arc disjoint out-branchings rooted at z. Suppressing the orientation of all

arcs on the branchings we obtain k edge-disjoint trees in G = UG(D). Oo

The following characterization, due to Tutte, of undirected graphs which

have k edge-disjoint spanning trees can also be derived from Edmonds’

branching theorem and Theorem 8.7.6 (see Exercise 9.35). See also Exercise

8.57 for a simpler orientation result which still implies Theorem 9.5.6.

Theorem 9.5.6 [722] An undirected graph G = (V,E) has k edge-disjoint
spanning trees if and only if

>. Vi, Vj) > kp - 1), (9.5)
1<i<j<p

holds for every partition V,,V2,...,Vp» of V. Here e(V;,V;) denotes the num-

ber of edges with one end in V; and the other in V;. oO

It is easy to derive Theorem 9.5.5 from Theorem 9.5.6. Furthermore, we

can use Theorem 9.5.6 to show that the condition in Theorem 9.5.5 is best

possible in terms of the edge-connectivity. Let G, be the graph obtained from

the complete graph on 2k +2 vertices by removing the edges of a hamiltonian

cycle. Then it is easy to show that G, is (2k — 1)-edge-connected and using
Theorem 9.5.6 on the partition corresponding to one vertex per set in the

partition we can see that G, has no k edge-disjoint spanning trees (in fact
this partition has precisely one arc less than the required number). In order to

9.5 Arc-Disjoint Branchings 505

get an example with arbitrarily many vertices and no k edge-disjoint trees for

each k we let H be an arbitrary 2k-edge-connected graph and let H; be the

graph consisting of 2k + 2 copies H,, H2,...,H2442 of H and with one edge

between H; and H; just if the corresponding vertices v;, v; are adjacent in Gx

(where we have assumed that the vertices of G; are labelled v,,v2,..., VoK+2

and H; corresponds to v; for i = 1,2,...,2k + 2). It is not difficult to prove

that H; is (2k — 1)-edge-connected and the partition corresponding to the

2k + 2 copies of H shows that H; has no k edge-disjoint spanning trees.

Note also that G, above is (2k — 1)-edge-connected and (2k — 1)-regular.
Furthermore , a simple counting argument shows that all except finitely many

(2k — 1)-edge-connected and (2k — 1)-regular graphs have no k edge-disjoint

spanning trees (simply because they do not have enough edges).

In some applications (e.g. when a number of tasks have to be distributed to

different units who can cover part of the jobs or demands) one is interested

in covering all edges (arcs) of an undirected (a directed) graph by forests

(arborescences).

Theorem 9.5.7 [585] Let G=(V,E) be an undirected graph. Then E can
be covered by k forests if and only if

|E(G(X))| < k(|X|-1) for all X CV. (9.6)

Proof: Since no forest can use more than |X| —1 edges with both ends inside
any set X, we see that the condition (9.6) is necessary. To prove sufficiency we

use Theorem 9.5.1 and the following result which follows easily from Theorem

Sol:

Proposition 9.5.8 A graph H = (V, E) has an orientation D = (V, A) such

that dj(v) < k for every verter v € V if and only if

|E(G(X))| < k|X| for all X CV.

O

Suppose now that G = (V, E) satisfies (9.6). By Proposition 9.5.8, G has

an orientation D such that dp(v) < k for every vertex v € V. Add a new

vertex s to D and add k — dj (v) arcs from s to v for each v € V. Denote the

new directed multigraph by D’. We claim that

dp(X) =k for all X CV. (9.7)

This follows from the fact that for every X C V we have

dz (X) = D> d5(v) - |E(G(X))
vEx

= k|X| — |E(G(X))|
> k|X| - k(|\X|-1) =k

506 9. Disjoint Paths and Trees

By Theorem 9.5.1, D’ has k arc-disjoint out-branchings rooted at s. These

branchings must use all arcs of D since every vertex of V has in-degree one

in each of these branchings and we have only added k — dp(v) arcs from s

to v. Now delete the vertex s from each of the branchings and suppress the

orientations of all arcs. The resulting k forests cover FE. Oo

The last part of the proof above also implies the sufficiency part of the

following theorem. The necessity of (9.8) follows from the fact that no vertex

of an out-branching has in-degree bigger than one. The necessity of (9.9) is

seen as in the proof above.

Theorem 9.5.9 [252] The arc set of a directed graph D = (V,A) can be

covered by k out-arborescences if and only if

AU) Shen for allvu € V and (9.8)

|A(D(X))| < k(|X|- 1) for all X CV. (9.9)

Oo

9.6 Edge-Disjoint Mixed Branchings

We saw in the proof of Theorem 9.5.5 that we could use Edmonds’ branch-

ing theorem to prove that every 2k-edge-connected graph has k-edge-disjoint

spanning trees. However, that proof does not imply an algorithm to check

whether a given undirected graph has k edge-disjoint spanning trees. In fact

this problem is more complicated for undirected graphs than the problem of

finding k arc-disjoint out-branchings from a given root in a directed multi-

graph where the proof of Edmonds’ branching theorem provides the answer.

For undirected graphs the characterization, given in Theorem 9.5.6,is much

more complicated and does not imply a polynomial algorithm for the prob-

lem. Note that such an algorithm can be obtained from a formulation of the

problem as a matroid partition problem (see Exercise 12.46). See also the
remark at the end of the section.

A mixed multigraph is the same as a mixed graph, except that we

allow parallel arcs and parallel edges as well as arcs that are parallel to edges.

Consider the following common generalization of a spanning tree rooted at s

in an undirected multigraph and an out-branching with root s in a directed

multigraph. A mixed out-branching rooted at s is a mixed graph F' whose

underlying graph is a tree such that F contains an out-branching rooted at

s. We say that two subgraphs of a mixed multigraph are edge-disjoint if

they do not share any arcs or edges (they may contain different copies of an

arc/edge, but not the same).

9.7 Arc-Disjoint Path Problems 507

Definition 9.6.1 Let M = (V,EU 4A) be a mized multigraph with a special
vertex s. A mized out-branching F+ with root s is a spanning tree in the
underlying undirected multigraph G of M with the property that there is a
path from s to every other vertex v in F>.

One reason why mixed out-branchings are of interest in relation to undi-
rected graphs can be seen from the following easy lemma (which in particular
covers the case when no arc of M is directed).

Lemma 9.6.2 Let M = (V,EU A) be a mized multigraph with a special
vertex s called root. There are k edge-disjoint mized out-branchings rooted
at s if and only if there exist an orientation D of M with k edge-disjoint
out-branchings at s.

Proof: Exercise 9.31. Oo

The following characterization, due to Frank, generalizes Theorem 9.5.6

and Theorem 9.5.1. This theorem can be derived from the feasibility theorem

for intersecting submodular flows (Exercise 9.33).

Theorem 9.6.3 /252] Let M = (V,E UA) be a mized multigraph with a

special vertex s. There are k edge-disjoint mixed out-branchings rooted at s,

if and only if the following holds for all subpartitions F = {Vi,V2,...,Vi} of
V—-s:

Gp aks, (9.10)

where ag denotes the number of edges, oriented or not, which enter some

Vj. O

We point out that one can use submodular flows to decide in polynomial

time whether a given undirected graph G has k edge-disjoint spanning trees.

By Lemma 9.6.2 all we need to check is whether there is some orientation of

G which has k arc-disjoint out-branchings from a given vertex. Thus, given

G we form an arbitrary orientation D of G and then follow the approach in

Exercise 8.65. It is not hard to see that, with a slight modification, the same

approach can be used to determine the existence of k edge-disjoint mixed

branchings from a given root in a mixed graph (Exercise 9.32).

9.7 Arc-Disjoint Path Problems

Recall that a directed multigraph D = (V, A) is weakly k-linked if for every
choice of (not necessarily distinct) vertices s1,...,5%,t1,-..,t%, D contains

arc-disjoint paths P,,..., FP; such that P; is an (s;,¢;)-path for i =1,...,k.
The arc-disjoint k-path problem is the following. Given a directed multi-

graph D = (V,4A) and distinct vertices 21, 22,...,2%,Y1,Y2,---,Yk, decide

whether D contains k arc-disjoint paths P,,..., P, such that P; is an (2;, y:)-

path. In view of Theorem 9.7.2 below, the following result by Fortune,

_Hopcroft and Wyllie may seem slightly surprising.

508 9. Disjoint Paths and Trees

Theorem 9.7.1 [247] The arc-disjoint k-path problem is NP-complete al-

ready for k = 2.

Proof: Let [D,z,y,u,v] be an instance of the 2-path problem. Transform

D = (V, A) into the directed multigraph H by performing the vertex-splitting

procedure (see Section 3.2). Then it is easy to show that H has a pair of arc-

disjoint (xz, ys)-, (uz, Us)-paths if and only if D has disjoint (z, y)-, (u, v)-paths
(Exercise 9.36). Since H can be constructed from D in polynomial time, the

claim now follows from Theorem 9.2.3. Oo

For planar directed multigraphs it is an open problem whether there exists

a polynomial algorithm to decide the existence of two arc-disjoint paths with

prescribed end vertices (see e.g. Schrijver’s papers [656, page 265] and [658)).
Even the complexity of the special case when we are looking for arc-disjoint

(x, y)- and (y,xz)-paths is open! Hence we see from Theorem 9.4.2 that the

arc-disjoint 2-path problem is much more difficult for planar digraphs than

the 2-path problem. This is not really surprising since planarity certainly has

implications on vertex disjoint paths, whereas the implications on arc-disjoint

paths are not so obvious although there clearly are some.

Observe that, if D is weakly k-linked, then D is k-arc-strong. To see this

it suffices to take s; = x and t; = y for each 7, then there are k arc-disjoint

(x, y)-paths in D and since x,y may be chosen arbitrarily, it follows that D
is k-arc-strong.

Shiloach observed [669] that Edmonds’ branching theorem implies that
k-arc-strong connectivity is also sufficient for the existence of k arc-disjoint

paths with specified initial and terminal vertices:

Theorem 9.7.2 A directed multigraph D is weakly k-linked if and only if D

is k-arc-strong.

Proof: Above we have argued on the necessity. To see the sufficiency, let

L1,X2,.--,Le, Y1,---, yx be given. Construct a new directed multigraph D’

by adding a new vertex s and arcs sz;,i = 1,2,...,k to D. Since D is k-arc-

strong, it is not difficult to check that dp,(X) > k for every subset X of V.

Hence by Edmonds’ branching theorem, D’ has arc-disjoint out-branchings

Fy,..-,F;), all rooted at s. Since s has out-degree k in D’, each F+, must

use precisely one arc out of s and without loss of generality F*, uses the

arc sz;. Now it is clear that ay ; contains an (z;,y;)-path P; and the paths
P,,..., Px form the desired linking. oO

Using Theorem 9.5.2 we can obtain, in an analogous way, the following

sufficient condition, due to Bang-Jensen, Frank and Jackson, for the existence
of k arc-disjoint paths with prescribed initial and terminal vertices (Exercise
9.37).

9.7 Arc-Disjoint Path Problems 509

Theorem 9.7.3 /53] Let (s1,t1),...,(8k,tk) be k pairs of vertices in a di-
rected multigraph D = (V, A) so that for every vertex x with d~(x) < dt (a)

or x =t; there are arc-disjoint paths from s; tox (i =1,...,k). Then there

are arc-disjoint paths from s; to t; (t= 1,...,k). Oo

Note that, if we only impose the condition in Theorem 9.7.3 on the vertices

t;, 7 = 1,2,...,k, then D may not have arc-disjoint paths from s; to ¢;

(i = 1,2,...,k). This can be seen from the example in Figure 9.12. The
example can easily be generalized to arbitrary local strong connectivities

from s; to t;, 7 = 1,2 while preserving planarity. We formulate this as a

theorem below.

Theorem 9.7.4 For every natural number k there exists a planar digraph D

with distinct vertices $1, 82,t1,t2 such that D has kp(s;,t;) > k for i = 1,2,

but D has no arc-disjoint (s1,t1)-, ($2, t2)-paths. Oo

This shows that there is no sufficient condition for the existence of arc-

disjoint paths connecting the vertices of a prescribed set in terms of local

vertex-strong connectivities from s; to t;,1=1,2...,r.

$2

Sl ti

te

Figure 9.12 An example of a planar digraph with x«(si,ti) = 2, 7 = 1,2 and no

arc-disjoint (si,t1)-, ($2, t2)-paths.

As yet another example of the usefulness of Edmonds branching theorem,

we consider the following problem called the arc-disjoint (t1, t2)-linking

problem: given a directed multigraph D and two specified vertices ty and fp.

Do there exist arc-disjoint (s;,t1)-, ($2, t2)-paths for every choice of vertices

$1, in D, except possibly in the case when s; = t; # t; and there are no

arcs out of s;? The (1, t2)-cut condition is satisfied by D if

I(S,S)| > {i = 1,2: ti ¢ 5} (9.11)

for each (t;,t2)-cut (S,$). The cut condition is obviously a necessary con-

dition for the directed multigraph to have the arc-disjoint linking property.

Below we give a very simple proof due to Frank (private communication,

April 1994) that it is also sufficient.

510 9. Disjoint Paths and ‘Trees

Theorem 9.7.5 D has the arc-disjoint linking property with respect to the

set {t,,t2} if and only if D satisfies the (t;, tz)-cut-condition.

Proof: By the remark above, it suffices to consider the case when D satisfies

the (t;, t2)-cut-condition. Add an extra vertex t and the following new arcs:

ty t, tot, t1 52, t2s,. Now it follows from Theorem 9.5.1 and the fact that D

satisfies the (t,,t2)-cut condition that in the extended graph there are 2 arc-

disjoint in-branchings F;,, F,4 rooted at t. These contain the two required
paths in the original graph since the new arcs t,s2 and t2s; cannot play a

role. DO

9.7.1 Arc-Disjoint Paths in Acyclic Directed Multigraphs

The following easy observation, due to Fortune, Hopcroft and Wyllie, can

be used to reduce the arc-disjoint k-path problem to the k-path problem in

the case of acyclic directed multigraphs. We need the following lemma whose

proof is left as Exercise 9.38.

Lemma 9.7.6 If D is acyclic, then so is its line digraph L(D). 0

Theorem 9.7.7 [247] For each k, there exists a polynomial algorithm for

the arc-disjoint k-path problem for the class of acyclic directed multigraphs.

Proof: Let [D, 21, %2,...,2%,Y1, y2,---, yx] be an instance of the arc-disjoint

k-path problem where D is an acyclic directed multigraph. If some x; has out-

degree zero or some y; has in-degree zero, then trivially the desired paths do

not exist. Hence we may assume that this is not the case.

Transform the instance [D,21,22,..-,2k,Y1,Y2,---)Yk] into a new in-
stance [D’,2},25,..-,24,Y},Y9,---,Y,|] as follows. If z; has out-degree two

or more we add a new vertex x; and the arc 2/2; to D; otherwise let zi, := xj,
1=1,2,...,k. Similarly, if y; has in-degree more than one, we add a new ver-

tex y; and the arc y;y;; otherwise let y; := yj, j =1,2,...,k. Clearly, D’ has

arc-disjoint paths Pj,..., Pj, such that P! is an (a, y!)-path, i= 1,2,...,k,

if and only if D has arc-disjoint paths P;,..., P,, where P; is an (xj, y;)-path,
et Ee

Now consider D* := L(D') and let s; (t;) be the vertex of D* which
corresponds the unique arc with tail (head) x! (y{). Then it is easy to show
that D* has a collection Qi, Q2,...,Q% of disjoint paths so that Q; is an

(si, t)-path, i = 1,2,...,k if and only if D’ has arc-disjoint paths P[,..., Py
such that P; is an (xj, y;)-path, 1 =1,2,...,k.

Since there is a polynomial algorithm for transforming the instance

[Dyer Levasey Cbs Yrs Yo peee ale] MLO! [22 Sreyneh au, Sys tantogas-y es |) theather

orem now follows from Theorem 9.2.14. O

In [656], Schrijver shows how to apply a polynomial algorithm for the
arc-disjoint k-path problem in acyclic digraphs to solve a scheduling problem
in the airline industry.

9.7 Arc-Disjoint Path Problems 511

9.7.2 Arc-Disjoint Paths in Eulerian Directed Multigraphs

As we will see below, questions about arc-disjoint paths are slightly easier
for eulerian directed multigraphs than for arbitrary directed multigraphs.
However, the arc-disjoint 2-path problem seems difficult and is still open.
As we mentioned in Chapter 7, eulerian directed multigraphs often have
properties similar to those of undirected multigraphs. This is also illustrated
by their properties with respect to arc-disjoint paths as can be seen from
some of the results mentioned in this subsection (see, e.g., Figure 9.14).

We start with a very simple, yet quite important observation. As men-

tioned earlier the complexity version of the corresponding problem for planar

digraphs is still open.

Lemma 9.7.8 Let D be a eulerian directed multigraph and let s,t be distinct

vertices of D. Then D has arc-disjoint (s,t)-, (t,s)-paths if and only if D has
an (s,t)-path.

Proof: Let P be an arbitrary (s,t)-path. Let D’ be obtained from D by

removing the arcs of P. In D’, every vertex distinct from s,t has in-degree

equal out-degree and we have dj,(s) = d},(s) + 1, dp, (¢) = dz, (t) +1. Let
N(D') be the network representation of D! (recall Definition 7.1.4) and let
x be the flow that has value equal to the capacity on every arc. By the flow

decomposition theorem (Theorem 3.3.1), x can be decomposed into a (t, s)-
flow of value one and some cycle flows. Since the (t, s)-path in N’(D’) is also
a path in D’, D’ contains a (t, s)-path as claimed. O

Let z1,...,2% be a k-tuple of (not necessarily distinct) vertices, which

will be called terminals. We say that a trail T = (voviv2...v~¢_1 04) visits

the, terminals in the order 7,...,2,; 1f £1 = U;,,%2 = Vij,-+-, fk =

v;, for some 0 < 211 < ... < i, < t. (We do not exclude some additional

occurrences of terminals in a trail. In general, a trail may visit given terminals

in several different orders.) Based on the following lemma (whose proof is left

as Exercise 9.42), we could restrict ourselves only to eulerian trails. However,

it is sometimes convenient to work also with non-eulerian trails.

Lemma 9.7.9 Let D be an eulerian directed multigraph. Assume that there

is a trail visiting some terminals in the order x1,...,2%. Then there exists

an eulerian trail visiting the terminals in the same order. O

Given an eulerian directed multigraph and terminals 71, 72,...,2, there

are at least three different problems one may consider [440]:

Specific Trail Problem (ST-problem).

Instance: An eulerian directed multigraph G and an ordered k-tuple of ter-

minals 7, ,-.7., 26:

512 9. Disjoint Paths and Trees

Question: Does there exist a trail visiting the terminals in the order Tan Fe

rR

Unique Trail Problem (UT-problem).

Instance: An eulerian directed multigraph G and an unordered k-tuple of

terminals 71,..., 2x.

Question: Do all eulerian trails visit the terminals in the same cyclical order?

All Trail Problem (AT-problem).

Instance: An eulerian directed multigraph G and an unordered k-tuple of

terminals 71,..., Zz.

Question: Does there exist, for every permutation 7 of {1,...,k}, a trail

visiting the terminals in the order r,(1),-.-, x(k)?

We will denote by k-ST, k-UT and k-AT the corresponding problems when

the number of terminals is exactly k. The ST-problem seems to be the most

important among these three problems, since it is equivalent to the eulerian

arc-disjoint linking problem (see Lemma 9.7.10). However, the remaining two
problems occur naturally in the study of the ST-problem.

As we show below, results on these three problems for eulerian directed

multigraphs are, in fact, strongly related to arc-disjoint linkings in directed

multigraphs which are not eulerian, but become eulerian if we add the so-

called demand arcs. Let [D, 51, 52,...,8x,t1,t2,...,tx] be an instance of the

arc-disjoint k-path problem. The demand directed multigraph H asso-

ciated with this instance is the directed multigraph consisting of the arcs®

t1 $1, tgS2,...,tks,-. The special case of the arc-disjoint k-path problem when

D +H is eulerian, (here H is the demand directed multigraph of D) is called
the eulerian arc-disjoint k-linking problem. When, instead of being a

fixed number k, the number of demand arcs is part of the input, we call the

above problem the eulerian arc-disjoint linking problem.

Lemma 9.7.10 The k-ST-problem is equivalent to the eulerian arc-disjoint

k-linking problem.

Proof: We show that the k-ST problem is a special case of the eulerian arc-

disjoint k-linking problem using the following reduction. Let [D,21,..., 2x]

be an instance of the k-ST-problem. Define s,,t1,...,8,%,t, by sj; = 2; and

ti = Zizi,t = 1,...,k, (@e41 = 21) and let A consist of the arcs t;s;,

1 = 1,...,k. Then D + dH is eulerian and it is easy to see that D + H

has arc-disjoint paths P,,..., Px, where P; is and (s;,t;)-path, i = 1,2,...,k,
if and only if D has a trail visiting the terminals in the order 21, 29,..., Xx.

Conversely, given an instance [D, s1...,5,,t1,...,tx] of the eulerian arc-
disjoint k-linking problem (thus D + H is eulerian), we construct an instance

g Hence, if s1 = 82 =... = sx and t; = tg =... = tg, the demand directed
multigraph consists of k parallel arcs from t; to 31.

9.7 Arc-Disjoint Path Problems 513

of the k-ST-problem as follows. Let D be the directed multigraph obtained
from D by adding new vertices 11,...,%,, and arcs 2;8;,tjtj41,1 = 1,...,k.

Clearly, D is an eulerian directed eileen and it admits a posed teal

visiting the terminals in the order 2,..., 2, if and only if D admits an arc-

disjoint k-linking for the prescribed pairs (s;,t;)i =1,...,k, of terminals. O

Now we see from Lemma 9.7.8 that the arc-disjoint 2-path problem is

easy in the case when the directed multigraph in question becomes eulerian

if we add the two demand arcs t; 51, t282. This was also observed by Frank

in [257]. The eulerian arc-disjoint 3-linking problem is already considerably

harder. It was solved by Ibaraki and Poljak [440]. We describe their main
result in Theorem 9.7.11.

It is easy to see that for k = 3, the problems 3-ST, 3-UT, and 3-AT are

mutually equivalent from a complexity point of view. The reason is that for

k = 3 there are only two distinct cyclical orders of terminals, (11, 22, 73)

and (x1,23,22). Moreover, we may assume that one eulerian trail T of G is
already given (since it may be constructed by a polynomial time algorithm

according to Exercise 1.72). The trail T visits the terminals in one of the

possible orders, say (r1,22,23). Hence it only remains to decide whether

there is a trail visiting the terminals in the other order.

We recall the solution, due to Ibaraki and Poljak [440], of the UT-problem,
since it suggests a possible approach to the remaining two problems. Recall

that, for an arc a of D, D/a denotes the directed multigraph obtained from

D by (set-)contracting the arc a. We allow terminals to be identified by the
contraction. Below we denote the set of terminals by X and an instance of

the UT-problem by [D, X]. Clearly, if [D, X] admits several orders of visiting
terminals, then [D/a, X] admits several orders as well, but the converse need
not be true. We say that [D, X] is UT-minimal, if [D, X] admits unique
cyclical order of visiting terminals by an eulerian trail, but [D/a, X]| admits
several orders whenever any arc a is contracted. Ibaraki and Poljak charac-

terized UT-minimal instances.

Theorem 9.7.11 [440] Let [D, X] be a UT-minimal instance. Then
(a) d+(x) = d~(x) = 1 for every terminal x, and dt (u) = d-(u) = 2 for

every non-terminal u,
(b) D can be embedded in the plane such that every face is a directed cycle,

and all terminals lie on one common face. Oo

Observe that first part of the condition (b) is equivalent with the property

that the four edges incident to a non-terminal vertex u are oriented alterna-

tively out of and in to the vertex u (in the planar representation). See Figure

9.13.

Theorem 9.7.12 [440] Both the U EARLS and the 3-ST-problem are poly-

nomially solvable. O

514 9. Disjoint Paths and Trees

£3

L1 t2

Figure 9.13 An eulerian digraph with no (eulerian) trail visiting 71, 72, 73 in that
order.

Furthermore, Ibaraki and Poljak proved that the eulerian arc-disjoint link-

ing problem and hence the ST problem are \VP-complete.

Theorem 9.7.13 [440] The eulerian arc-disjoint linking problem is NP-
complete.

Proof: We sketch the construction used in [440]. The reduction is from the
arc-disjoint 2-path problem, which is ’P-complete by Theorem 9.7.1. Let

[D = (V, A), 81, 82, t1, t2] be an instance of the arc-disjoint 2-path problem.

Let D* = D+ 4 be the directed multigraph we obtain from D by adding

the two demand arcs ft; 8; and tg82.

Form a directed multigraph D’ from D by adding two new vertices s,t

and, for every v € V, appending max{0, dj}. (v) — d5.(v)} arcs of the form
sv as well as max{0,dp.(v) — dp.(v)} arcs of the form vt. Let p be the
sum of d}.(v) — dp.(v) taken over those vertices for which this number is
positive. Now let s; = s and t; = t, 7 = 3,4,...,p+2, be new terminals. Then

[D', 1, 82,.--, 8p42,t1,t2,...,tp42] is an instance of the eulerian arc-disjoint
linking problem and it is not difficult to show that D has arc-disjoint (s1, t1)-,

(s2, t2)-paths if and only if D' has arc-disjoint (s;,t;)-paths, i = 1,2,...,p+2,

(Exercise 9.43). Oo

Ibaraki and Poljak posed the following conjecture:

Conjecture 9.7.14 /440] The k-ST-problem is polynomial for any fized k.

The condition of minimality which was used in Theorem 9.7.11 can be

replaced by a more technical notion of irreducibility. Let us say that an

instance [D, X] is 2-irreducible if there is no set S,|S| > 1, of vertices
such that one of the following holds:

I(
I(

S)| < 2, D(S) is connected and SN. X = 9, S,
SpS)= ti and \S mx ea

9.7 Arc-Disjoint Path Problems 515

Note that D/S (the directed multigraph obtained by contracting S) is
eulerian whenever D is eulerian. It is not difficult to see the following:

Lemma 9.7.15 Let [D, X] be an instance of the UT-problem which admits
a unique order, and let S satisfy one of the conditions (a) and (b). Then
[D/S,X] admits a unique order as well. a)

It is also easy to see that D/S can be realized by a series of arc con-
tractions, and hence every minimal UT-instance is 2-irreducible. Thus, the

following theorem is a generalization of Theorem 9.7.11.

Theorem 9.7.16 [440] Let [D, X] be a UT-instance which is 2-irreducible
and admits eulerian trail with unique order of terminals. Then the conditions

(a) and (b) of Theorem 9.7.11 hold.

The polynomial time algorithm for the UT-problem is a consequence of

Theorem 9.7.16. The algorithm proposed in [440] consists of the following

steps:

1. Reduce an instance [D, X] to a 2-irreducible one. This can be done by
applying network flow techniques.

2. Check the degree conditions.

3. Using a planarity test, decide whether D has a planar drawing, and if

yes, then test the remaining conditions of Theorem 9.7.16.

The notion of 2-irreducibility formulated here is weaker than the notion

of irreducibility used in [440] where it was required, in addition, that [D, X]

does not contain any non-terminal vertex of in- and out-degree one. However,

using the general definition of irreducibility given in [88, Section 3], it can
be seen that this additional condition is automatically satisfied by any AT-

infeasible and irreducible instance.

Let [D, X] be an instance of AT-problem. Let us say that [D, X] is AT-
minimal, if [D, X] does not admit an eulerian trail visiting the terminals for
every given order, but [D/a, X] does whenever any arc a is contracted. The
following result by Bang-Jensen and Poljak shows that there are also degree

restrictions on AT-minimal instances.

Theorem 9.7.17 [88] Let [D, X] be k-AT-minimal. Then d+(u) < k—1 for
every non-terminal u, and d+ (x) < k — 2 for every terminal z. Oo

The edge-disjoint 2-path problem for undirected graphs is polynomially

solvable and a complete characterization of undirected graphs having no edge-

disjoint s;t, and sot2-paths is available (Dinic and Karzanov [196, 197], Sey-

mour [662] and Thomassen [697]). Such a graph G can be reduced to a graph
G’ that has a planar representation with the following properties (see Figure

9.14(a)):

516 9. Disjoint Paths and Trees

(a) Each of the four terminals has degree 2 and all other vertices have degree

3, and

(b) the terminals are located on the outer face in the order sj, S2,t1, te.

Be BEB ih,
SC lle

babey ces
(a) (b) (c)

Figure 9.14 Part (a) shows an infeasible instance for the edge-disjoint 2-path
problem for undirected graphs. The graph shown has no edge-disjoint zy-path and
uv-path; Parts (b) and (c) show infeasible instances of the arc-disjoint [s, t]-, [p, q]-
paths problem for eulerian directed multigraphs.

The complete biorientation G of an undirected graph G is eulerian and

it contains arc-disjoint (s1,t,)-, (s2,t2)-paths if and only if G contains edge-
disjoint s1t,, sgt2-paths. Hence, the arc-disjoint 2-path problem for eulerian

digraphs generalizes the edge-disjoint 2-paths problem. So far the arc-disjoint

2-path problem for eulerian digraphs remains unsolved. However, even the

simpler version in which we just require arc-disjoint [s1,t], [s2,t2]-paths
(that is, the order of s;,t; is not fixed in the ith path, 7 = 1,2) still gen-

eralizes the edge-disjoint 2-path problem. This problem was recently solved

by Frank, Ibaraki and Nagamochi in [270]. They proved that the problem is

solvable in polynomial time. Furthermore they showed the following result.

By a reduction below we mean a series of transformations such that the de-

sired paths exist in the new digraph if and only if they exist in the previous

digraph (for details see {270]).

Theorem 9.7.18 /270] Let D be an eulerian directed multigraph and let
$1, 52,t1,t2 be not necessarily distinct vertices of D. Then D contains arc-

disjoint [s1,t1], [s2,t2|-paths, unless it can be reduced to an eulerian directed

multigraph D' such that either D' has 6 vertices and is isomorphic to the
digraph in Figure 9.14(c), or each of (a),(b) and (c) below hold.

(a) Each of 81,82,t1,t2 have in- and out-degree one and all other vertices

have in- and out-degree two in D’.

(b) There is at most one cut vertex’ in UG(D').
(c) D has a planar embedding such that every face is a directed cycle and

all terminals are located on the outer face in the order s,p,t,q where

{s, t} = {81,ti} and {p,q} = {s2, tz}. O

” Recall that a vertex x in a connected undirected graph G is a cut vertex if G—z
is not connected.

9.7 Arc-Disjoint Path Problems 517

We finish this section with a remark on very recent work by Seymour
and Johnson (Seymour and Johnson, personal communication on work in
progress, February 2000) which may have far reaching consequences. There
seems to be a theory for eulerian directed multigraphs which is similar to
the graph minors theory for undirected graphs by Seymour and Robertson
(see e.g. [642]). Instead of ‘minor’ the natural containment relation when
studying eulerian directed multigraphs is immersion which we define below
for 2-regular directed multigraphs.

A 2-regular directed multigraph H is immersed in another 2-regular
directed multigraph D if we can obtain H from D by repeatedly choosing a
vertex v with in-neighbours uj, u2 and out-neighbours w}, wa, deleting v and
adding two new arcs u,w}, U2W2. See Figure 9.15.

2 2 2
1 2

1 3 1 1
3

7 4 4 4

6 5 6 5 6 5 6 5

D H

Figure 9.15 Immersing the directed multigraph H in the directed multigraph D
by suppressing the vertices 7,3 and 4 in that order.

It appears that an analogue of the structure theorem of graph minors®

holds for 2-regular directed multigraphs. The potential applications of such

a theorem include the well-quasi ordering of 2-regular directed multigraphs

under immersion and a polynomial time algorithm for the arc-disjoint k-path

problem. The polynomial solvability of the arc-disjoint k-path problem even

appears to hold for general eulerian directed multigraphs (Seymour, private

communication, February 2000).

9.7.3 Arc-Disjoint Paths in Tournaments and Generalizations of

Tournaments

We now consider the arc-disjoint 2-path problem for some generalizations of

tournaments. We prove that this problem and a related special case (the arc
version of problem (P5) from Proposition 9.2.1) are polynomially solvable

for semicomplete digraphs. As we will see in Section 9.9, the corresponding

algorithms are used as subroutines in a much more complicated algorithm

for a problem concerning arc-disjoint in- and out-branchings in tournaments.

® For a nice introduction to this deep result, see Diestel’s book [191].

518 9. Disjoint Paths and Trees

We prove the first results for the class of extended locally in-semicomplete

digraphs instead of just for semicomplete digraphs. We do this to show that

not much extra effort is needed to obtain the result (which also has the same

statement as for semicomplete digraphs alone) for this much larger class of

digraphs. The results in this subsection are due to Bang-Jensen [46, 51]

Recall that two vertices are similar if and only if they are non-adjacent and

have the same in- and out-neighbours. Note that, if x,y are non-adjacent ver-

tices with a common out-neighbour w in an extended locally in-semicomplete,

digraph, then xz and y are similar vertices, by the definition of an extension

and the definition of a locally in-semicomplete digraph.

The following lemma can be proved along the same lines as Lemma 9.7.20.

The proof is left to the reader as Exercise 9.39.

Lemma 9.7.19 Let D be a strong extended locally in-semicomplete digraph

and let x,y be distinct vertices of D. Then D has arc-disjoint (x, y)-,(y, x)-
paths tf and only if there 1s no arc a such that D —a contains no (x, y)-path

and no (y, x)-path. 0

Lemma 9.7.20 /51] Let D be an extended locally in-semicomplete digraph

and x,y,z vertices of D such that x # z and D contains a path from y

to z. If D has arc-disjoint (x,y)-, (x, z)-paths, then D contains arc-disjoint

(z,y)-, (y,z)-paths. Similarly, if an extended locally out-semicomplete digraph

D' has a path from « to y and arc-disjoint (x, z)-, (y,z)-paths, then D' has
arc-disjoint (x,y)-, and (y, z)-paths.

Proof: Let P; and P» be arc-disjoint paths such that P» is an (2, z)-path and

P,; is a minimal (zx, y)-path. If y € V(P2), or yz then the claim is trivial so

we assume that none of these hold. We can also assume that x and y are not

similar vertices, because if they are, then y dominates the successor of x on

Py» and again the claim is trivial.

If D has a (y, z)-path whose first intersection with V(P,)UV (P2) (starting
from y) is on P2, then the desired paths clearly exist. Hence we may assume
that D contains a path from y to V(P,;) U V(P2) — y whose only vertex w
from V(P,) UV(P2) —y is in V(P,) — V(P2). Now choose P among all such
paths so that w is as close as possible to x on P;. By the assumption above
w # x. Let u (v) denote the predecessor of w on P; (P), ie u = Wp, and
U= Wp.

Suppose first that u and v are not adjacent. Then, by the remark just
before Lemma 9.7.19, u and v are similar. Now the choice of P implies that
v = y (otherwise the predecessor of v on P dominates u, contradicting the
choice of P). By the assumption that xz and y are not similar we conclude
that u ~ x, but then Up, —>y, contradicting the minimality of P,.

Thus we may assume that u and v are adjacent. By the choice of P, this
implies that u-+v. Choose r as the first vertex on P which is dominated by
u. By the minimality of P,, r # y. Let s be the predecessor of r on P. The

9.7 Arc-Disjoint Path Problems 519

choice of r and P implies that u and s are similar. Thus as above, we must
have s = y and, since u # x we reach a contradiction as before.

The second half of the lemma follows from the first by considering the
converse and interchanging the names of x and z. Oo

Using Lemma 9.7.20 we can now characterize those extended locally in-

semicomplete digraphs which do not have arc-disjoint (z, y)-,(y, z)-paths.

Theorem 9.7.21 /51] An extended locally in-semicomplete digraph D has

arc-disjoint (x, y)-, (y, z)-paths if and only if it has an (a, y)-path and a (y, z)-

path and D has no arc e such that D—e has no (x, y)-path and no (y, z)-path.

Proof: Clearly if D has such an arc e, then the paths cannot exist. Now

assume that D has no such arc and that D has an (z,y)-path and a (y, z)-
path. We prove that D has the desired paths. By Lemma 9.7.19 we may

assume x # z.

By Lemma 9.7.20, we may assume that D contains no pair of arc-disjoint

(x, y)-,(x, z)-paths. Thus, by Menger’s theorem, there exists an arc e = uv

such that D —e has no path from z to {y,z}. Let A = {w : A(z,w) -
path in D —e} and B= V(D) — A. Then z € A, y,z € B and the only arc
from A to B is e.

Since D contains an (x, y)-path, D(A) has an (2,u)-path and D(B) has
a (v,y)-path. D(B) also has a (y, z)-path, since e does not destroy all paths

from y to z.

If v = y the desired paths clearly exist (and can in fact be chosen vertex

disjoint). If v = z, then it follows from our assumption that there is no arc

a in D(B) which separates y from z and also z from y. Now it follows from

Lemma 9.7.19 that D(B) contains arc-disjoint (z,y)-, (y, z)-paths and hence

D contains the desired paths. Thus we may assume v # y, z.

Now it is clear that the desired paths exist if and only if D(B) has arc-
disjoint (v,y)-, (y, z)-paths. By induction this is the case unless there exists

an arc e’ = ab in D(B) such that D(B) — e’ has no path from v to y and
no path from y to z, but then e’ separates x from y and y from z in D,

contradicting the assumption that D has no such arc. 0

Our proof above is constructive and hence we have the following (see also

Exercise 9.40):

Corollary 9.7.22 [46] There exists a polynomial algorithm which given
an extended in-semicomplete digraph D and distinct vertices x,y,z decides

whether D has arc-disjoint (x, y)-, (y, z)-paths (or equivalently, an (x, z)-trail

through y). Oo

We can now prove the main result of this subsection.

Theorem 9.7.23 [46] The arc-disjoint 2-path problem is polynomially solv-

able for semicomplete digraphs.

520 9. Disjoint Paths and Trees

Proof: (Sketch) Let [D,21,22,41,y2; be an instance of the arc-disjoint 2-

path problem for semicomplete digraphs. By relabelling if necessary, we can

assume that 212. Below it is understood that we stop as soon as the

existence of the desired paths have been decided.

It is easy to check whether D has (2;, y;)-paths for 1 = 1, 2. If not, then D

does not have the desired paths and we stop. Next check whether there is any

arc e such that D — e has no (2;, y;)-path for i = 1,2. If such an arc exists,

then D does not have the desired paths and we stop. Now check whether

D contains arc-disjoint (x2, y1)-, (22, y2)-paths P, P’. If this is the case then
either x; P or P[zi,y1] (if z1 € V(P)) and P’ are the desired paths and we

stop.

Hence, by Menger’s theorem, there is an arc e such that D — e has no

path from zz to {y1, y2}. Let

Y := {v:v has a path to {y1, yo} in D — e}; X :=V(D)=Y.

Then x2 € X and 2x; € Y, because the arc e does not separate x; from

{yi,y2}. Furthermore, e is the only arc from X to Y. Let z be the head of

e and let w be its tail. Note that D(X) contains an (r2,w)-path Q since D
contains an (£2, y2)-path.

If z = 21, then the desired paths exist: We cannot have another arc e’

which separates xz, from {y1,y2} in D' = D(Y) because then e’ separates
{x1, £2} from {y1, y2} and we would have stopped earlier. Thus by Menger’s
theorem D' contains arc-disjoint (21, y1)-, (11, y2)-paths P,, P2. Now P; and

QP» are the desired paths.

If z = yo, then the desired paths exist since any (21, y)-path in D’ and
Qy2 will work.

If z = y,, then the desired paths exist if and only if D' contains arc-

disjoint (21, 4y1)-, (yi, y2)-paths. This can be decided in polynomial time by

the algorithm whose existence follows from Corollary 9.7.22.

Finally, if z ¢ {x1,y1,y2}, then the desired paths exist if and only if

D' contains arc-disjoint (x1, y1),- (z,y2)-paths. Hence we have reduced the
problem to a smaller one of the same kind.

We leave it to the reader to verify that our steps above can be performed

in polynomial time and to estimate the time complexity of the algorithm

(Exercise 9.41). Oo

9.8 Integer Multicommodity Flows

Recall the definition of a network and a flow from Chapter 3. In this section

we consider briefly the following common generalization of flows and arc-

disjoint paths called the integer multicommodity flow problem (if k is

fixed in advance we call it the integer k-commodity flow problem):

9.8 Integer Multicommodity Flows 521

Given a natural number k > 1, a network NV = (V, A, £ = 0, u), 2k not nec-
essarily distinct vertices 51, 52,...,8,,t1,t2,...,t, and integers r1,7T2,...,Tk,

decide whether there exist integer valued flows f!, f?,..., f* such that each

of the following holds (recall that | f*| is the value of the flow f*):

(i) f* is an (s;, t;)-flow in NV,
CO a SS Pe en ee
(iii) f;, > 0 for every 17 € A, p= 1,2,...,k,

(iv) For every ij € A: poe fi; < us.

A collection of flows f', f?,..., f* which satisfies (i)-(iv) is called a feasi-
ble k-commodity flow with respect to (s;,t;), i= 1,2,...,k. We can

also consider the maximization version where no demands 71,7r2,...,7%

are specified (or they are to be considered as lower bounds) and the goal is

to maximize the sum of the values of the flows.

If we take k = 1 we have the standard (maximum) (s,t)-flow problem
which was studied in Chapter 3, where several polynomial algorithms were

described for the problem. However, Even showed that already when k = 2

the problem becomes very hard.

Theorem 9.8.1 /230] The integer 2-commodity problem is NP-complete.

Proof: The problem clearly belongs to NP since given a feasible instance

we can take specifications of 2 feasible flows, one from s; to t; and the other

from s2 to tz, as a valid certificate.

Now let [D = (V, A),21,22,y1,y2] be an instance of the arc-disjoint 2-

path problem. Let NV = (V,A,é = 0,u = 1), take s; = 2;,t; = yi, i = 1,2
and let r; = rp = 1. Then it is easy to see that D has arc-disjoint (21, y1)-,

(2, y2)-paths if and only if NV has a feasible integer 2-commodity flow with

respect to the pairs (s;,t;), 1 = 1,2. Now the claim follows from Theorem

Oriel: Oo

What we really observed above was simply that the arc-disjoint 2-path

problem is nothing but a very special case of the 2-commodity flow problem.

This is not surprising since if we concentrate on one of the two flows f* in
a feasible integer 2-commodity flow (with respect to the values r1,r2 and

the capacities of the given network), then f* is just a normal (s;, t;)-flow

and hence can be decomposed into r; (s;,t;)-paths and some cycle flows by

Theorem 3.3.1. Hence the integer multicommodity flow problem is nothing

but a generalization of arc-disjoint path problems.
The name multicommedity flow comes from the interpretation of each

flow as representing a different commodity that has to be shipped from the

source of that commodity to its sink while respecting the total capacity of

the network. Problems of this type are of importance in practical applications

such as telecommunications and routing problems. For a number of results
on how to solve multicommodity flow problems in practice see the book by

Gondran and Minoux [332]. See also the survey [31] by Assad.

522 9. Disjoint Paths and Trees

9.9 Arc-Disjoint In- and Out-Branchings

We saw in Section 9.5 that the problem of deciding the existence of k arc-

disjoint out-branchings all with the same root could be solved efficiently and

in Subsection 9.5.1 we saw that many problems can be reformulated and

solved using an algorithm for the k arc-disjoint out-branchings problem. In

this section we consider the following much harder problem concerning arc-

disjoint in- and out-branchings.

Problem 9.9.1 Given a digraph D and vertices u,v (not necessarily dis-

tinct). Decide whether D has a pair of arc-disjoint branchings F{,F> such

that F'* is an out-branching rooted at u and F~ is an in-branching rooted at
v.

Theorem 9.9.2 [46] Problem 9.9.1 is NP-complete for arbitrary digraphs.

Proof: We give a proof due to Thomassen (see [46]). The problem belongs to

NP, since if the desired branchings exist, then such a pair forms a certificate

that the given instance is a ’yes’ instance. We show how to reduce the arc-

disjoint 2-path problem to Problem 9.9.1 in polynomial time.

Let (D = (V,A),21, 2,41, y2) be an instance of the arc-disjoint 2-path

problem. Construct a new digraph D’ by adding 4 new vertices x, r/,, y/, y/
and the following arcs (see Figure 9.16):

[25a L422, YY, Y2Yo, ToT}, Yr) ’ YoY13 YoX, Yor} } U {uz} Oe V(D) 7 £1}U

{yu :v € V(D) — yo}.

Figure 9.16 The construction of D’ in the proof of Theorem 9.9.2. The fat arcs
indicate that all the arcs have that direction, except the arcs 221, yoy).

The reader can easily verify (Exercise 9.48) that there exists arc-disjoint
branchings ‘cs ; By in D' if and only if D contains a pair of arc-disjoint
(r1,41)-, (22, y2)-paths. Since we can construct D’ in polynomial time from
D, it follows that Problem 9.9.1 is WP-complete. Oo

9.9 Arc-Disjoint In- and Out-Branchings 523

It is easy to reduce (in polynomial time) Problem 9.9.1 for the case when
u # v to the case when u = v for arbitrary digraphs (Exercise 9.49). Hence

the problem remains \’P-complete when we ask for an out-branching and an

in-branching that are arc-disjoint and have the same root. However, Bang-

Jensen and Huang showed that, if the vertex that is to be the root is adjacent

to all other vertices in the digraph and is not in any 2-cycle, then the problem

becomes polynomially solvable.

Theorem 9.9.3 /79] Let D = (V,A) be a strongly connected digraph and v

a vertex of D such that v is not on any 2-cycle and V(D) = {v}UN7(v) U
Nt(v). Let A = {Aj, Ao,... Ax} (B = {Bi, Bo,...,B,y}) denote the set of
terminal (initial) components in D(N*(v)) (D(N~(v))). Then D contains
a pair of arc-disjoint branchings F*,F, such that F* is an out-branching
rooted at v and F is an in-branching rooted at v if and only tf there exist

two disjoint arc sets E,,Eg C A such that all arcs in E, U Ep go from

Nt(v) to N~(v) and every A; € A (B; € B) is incident with an arc from
Ex, (Eg). Furthermore, there exists a polynomial algorithm to find the desired

branchings, or demonstrate the non-existence of such branchings.

Proof: We prove the characterization and refer the reader to [79] and Exer-
cise 9.51 for the algorithmic part.

First we note that, if the branchings exist, then the arc sets E.,4 and Eg

exist. Indeed, if F, F> are such branchings, then there must be an arc from
F (F}) leaving (entering) every terminal (initial) component of D(N*(v))
(D(N~(v))) and since v is not on any 2-cycle, all these arcs go from N*(v)
to N~(v).

Suppose that there exist sets EH, and Eg as above. Every vertex x €

N*(v) has a path to one of the terminal components in A and every ver-

tex in N~(v) can be reached by a path from one of the initial compo-

nents in B. Hence, we can choose a family of vertex disjoint arborescences

[gee ey oe Poke peor esuch that (F;) is an in-arborescence

(out-arborescence) rooted at a vertex in A; (B;) and bites V (Ewe ie);
U5_, V(F*) = N7~(v). Let Ff be the out-branching induced by the arcs

{uw:w € N*(v)}UEBU Uja1 E(F;*) and F~ be the in-branching induced

by the arcs {uv: u € N~(v)}UB,AU aes E(F;). Then F* and F, are the
desired branchings. 0

The following is an easy corollary of Theorem 9.9.3.

Corollary 9.9.4 [46] A tournament D = (V, A) has arc-disjoint branchings
Fy} ,F;> rooted at a specified vertex v € V if and only if D is strong and for

every arc a € A the digraph D — a contains either an out-branching or an

in-branching with root v. Oo

There is a small inconsistency in the statement (and the proof) of The-
orem 9.9.3 in [79] as it was not mentioned that v is not on a 2-cycle and

524 9. Disjoint Paths and Trees

the statement (the part involving the ends to the arcs in E4, Eg) becomes
slightly different when v is on 2-cycles. However, as the reader is asked to

prove in Exercise 9.51, one can still describe a nice characterization and prove

that it can be checked in polynomial time whether the desired branchings ex-

ist and to find such branchings if they exist. Since the discussion above takes

care of the semicomplete case, a possible next step is to consider the following

problem posed by Bang-Jensen.

Problem 9.9.5 /65] Characterize those locally semicomplete digraphs D that
have arc-disjoint branchings F},F> for a given verter v € V(D).

When u # v, Problem 9.9.1 becomes much harder even for tournaments.

The following complete characterization for the case of tournaments was

found by Bang-Jensen. Note that the characterization is only valid for tour-

naments and not general semicomplete digraphs (in which case X,Y, Z, W is

not a partition of V — {u, v}).

Theorem 9.9.6 [46] Let Te (V, A) be a tournament and let u,v be distinct
vertices of T. Define the sets X,Y,Z,W as follows:

ke 1{peVsurve € Al Y={n€Vitus,2v € A},

Z={ee Vs eusur eAt, W = {2 €V: cu,av€ A}.

Then T has an out-branching Fi} and an in-branching F> such that
A(FT)N A(F;) = 0 if and only if none of the following holds.

(1) |V| < 3 or |V| =4 and vue A.
(2) T is not strong and either u is not in the initial strong component of T,

or uv ts not in the terminal strong component of T.
(3) T is strong and there exists an arc e such that u is not in the initial

strong component of T—e and v is not in the terminal strong component
of T —e.

(4) T is strong, ww € A, Y = 0, X,W #9 and (I) below holds

There is exactly one arc e; leaving the terminal strong component
(1) 4 of T(X) and there is exactly one arc e2 entering the initial strong

component of T(W) and e; # e2

and finally every (X,W)-path in T — {u,v} contains both e, and ey.
(5) T is strong, vu € A, Y = {y}, X,W #9, [T,u,v] satisfies (I), there is

no (X,W)-trail in T — {u,v} which contains y and every (X, W)-path in
T — {u,v} contains both e; and eg.

(6) T is strong, vu € A, Y =6, X,W £9, [T’, u,v] satisfies (I), there exist a
pair of arc-disjoint (u,v)-paths and for every choice of arc-disjoint (u, v)-
paths P,, Py either eq Conc A(P;), OT Ci Rea A(P2). Oo

9.9 Arc-Disjoint In- and Out-Branchings 525

By inspecting each of the exceptions above one easily derives the following
sufficient condition for the existence of arc-disjoint in- and out-branchings in
a tournament.

Corollary 9.9.7 [46] Every 2-arc-strong tournament T = (V,A) contains
arc-disjoint in- and out-branchings F, F+ for every choice of vertices r,s €

V. 0

Some of the conditions in Theorem 9.9.6 are quite complicated and even

to prove the necessity requires some work (Exercise 9.50). We now show how

to check the conditions in Theorem 9.9.6 efficiently. This together with the

fact that the proof in [46] is constructive implies a polynomial algorithm for
the arc-disjoint in and out-branching problem in tournaments.

Theorem 9.9.8 /46] There is a polynomial algorithm for checking whether a

given tournament with specified distinct vertices u,v has arc-disjoint branch-

ings F+,F > and finding such branchings if they exist.

Proof: The construction part of this proof relies on the fact that the proof

of Theorem 9.9.6 in [46] is constructive and that proof is very long and tech-

nical. Hence we will only show how to check each of the conditions (1)-(6)
in polynomial time (and hence checking whether or not the desired branch-

ings exist). Conditions (1)-(4) are easy to check in polynomial time, so we
concentrate on checking conditions (5) and (6). Let [T,u,v] be an instance
of the problem for which we wish to check conditions (5) and (6).

First we show how to check condition (5) using the polynomial algorithm
from Corollary 9.7.22. Since every (X,W)-trail contains an (X, W)-path and

every (X,W)-path contains e; and e2 we conclude that every (X, W)-trail

contains e; and e2. That is, every (X, W)-trail must start at the tail x of e;
and terminate at the head w of eg. It is easy to show that there exists an

(x, w)-trail that contains y if and only if there exist arc-disjoint (a, y)-, (y, w)-
paths. Now we use the algorithm from Corollary 9.7.22 to check whether or

not there exist arc-disjoint (x, y)-, (y,w)-paths. Condition (5) is satisfied if

and only if there do not exist such paths.

Here is how to check condition (6) using the polynomial algorithm A from
Theorem 9.7.23. It is easy to verify the existence of two arc-disjoint (u, v)-

paths (use Lemma 7.1.5). In fact, if such paths do not exist then [T, u,v]
satisfies (3). Let X) denote the terminal strong component of T(X) and W,
the initial strong component of T(W) and let s be the number of strong
components of T(W). Since Y = @ and there is only one arc leaving X; and
only one arc entering W1, the existence of two arc-disjoint (u, v)-paths implies

that l,s > 2,ie., X —X,;4#0 and W —-W, £0. Let T" = T — X; and check

whether there exist two arc-disjoint (u,v)-paths in T”’. If such paths exist

then [T, u,v] does not satisfy (6) and we stop. Let T’” = T — W, and check

whether there exist two arc-disjoint (u,v)-paths in T’’. If such paths exist

we stop because then [T,, u,v] does not satisfy (6).

526 9. Disjoint Paths and Trees

By now we know (since we have not stopped yet) that for every pair P,, P2

of arc-disjoint (u, v)-paths e; and ey belong to A(P,)M A(P2). That is [T, u, v]
satisfies (6) if and only if there do not exist arc-disjoint (u,v)-paths P,, P2

with e; € P;, i = 1,2. We use A to check that possibility in the following

way.

Since [T’, u, v] satisfies (I) we know that for every pair of arc-disjoint (u, v)-
paths exactly one of these paths contains a vertex from X; and exactly one

contains a vertex from W,. Moreover, if there exist arc-disjoint (u,v)-paths

P,, Py with e; € A(P;), 1 = 1,2 then we may assume that P;[u, X;] = uz and

P,[W,,v] = wv, where z is the tail of e; and w is the head of eo.

Let ZT’ be the tournament obtained from T as follows. Contract X; into

one vertex x2 and Wj into one vertex y,. Furthermore, if there are arcs in

both directions between zy and some z € JT — x2 we remove the arc zzz. The

arcs incident with y; are similarly modified. Let x; = u and y2 = v.

Now it is easy to see that there exist arc-disjoint (u, v)-paths P,, P2 in T

satisfying e; € A(P;), 7 = 1,2, if and only if there exist arc-disjoint (21, y,)-

(2, y2)-paths Pe dees in T’. Now we use A to check whether or not

such paths exist in T’.

It is easy to see that the above methods provide polynomial algorithms

to verify conditions (5) and (6). Oo

Bang-Jensen posed the following conjecture. This conjecture was verified

by Bang-Jensen and Huang [79] for the special case when D is quasi-transitive
and u = v:

Conjecture 9.9.9 /65/ Problem 9.9.1 is polynomially solvable for locally

semicomplete digraphs and quasi-transitive digraphs.

For the case when v is adjacent to all other vertices one can prove the
following using Theorem 9.9.3 and the extension in Exercise 9.51 (see Exercise
9.52).

Theorem 9.9.10 Let D be a 2-arc-strong digraph with a verter v that is
adjacent to all other vertices of D. Then D has arc-disjoint in- and out-
branchings rooted at v.

Thomassen conjectured that there is some sufficient condition, in terms
of arc-strong connectivity, for the existence of arc-disjoint in- and out-
branchings rooted at the same vertex in a digraph.

Conjecture 9.9.11 /708] There exists a natural number N such that every
digraph D which is N-arc-strong has arc-disjoint branchings Fy}, F> for every
choice of v € V(D).

For tournaments the following much stronger property has been conjec-
tured by Bang-Jensen and Gutin:

9.10 Minimum Cost Branchings 527

Conjecture 9.9.12 /65] There exists a function f : Z,>Z4 such that for
every natural number k every f(k)-strongly arc-connected tournament T has
2k arc-disjoint branchings | One toh a Ey epee esuchedhat Fi ane

Br are out-branchings rooted at v and Fy yy--+> PF), are in-branchings rooted

at v, for every vertex v € V(T). :

It follows from Corollary 9.9.7 that f(1) = 2.

9.10 Minimum Cost Branchings

Given a directed multigraph D = (V, A) a special vertex s and a non-negative

cost function w on the arcs. What is the minimum cost of an out-branching

Fy rooted at s in D? This problem, which is a natural generalization of

the minimum spanning tree problem for undirected graphs (Exercise 9.58),

is called the minimum cost branching problem. The problem arises

naturally in applications where one is seeking a minimum cost subnetwork

which allows communication from a given source to all other vertices in the

network (see the discussion at the end of the section).
The minimum cost branching problem was first shown to be polynomially

solvable by Edmonds [211]. Later Fulkerson [283] gave a two phase greedy
algorithm which solves the problem very elegantly. The fastest algorithm for

the problem is due to Tarjan [689]. Tarjan’s algorithm solves the problem in
time O(mlogn), that is, with the same time complexity as Kruskal’s algo-
rithm for undirected graphs [169]. The purpose of this section is to describe

a generalization of Fulkerson’s algorithm (due to Frank [250]) which can be
used to solve a more general problem.

9.10.1 Matroid Intersection Formulation

To illustrate the generality of matroids, let us show how to formulate the

minimum cost branching problem as a weighted matroid intersection problem.

We refer to Section 12.7 for relevant definitions on matroids.
Let D = (V, A) be a directed multigraph and let r € V be a vertex which

can reach all other vertices by directed paths. We define M, = (A,7Z,) and

Mp2 = (A,7Z2) as follows (here Z;, Zz C oan

e A’ € TZ, if and only if no two arcs in A’ have a common head and no arc

has head r,
e A” € ZT, if and only if UG(D(A")) has no cycle.

It follows from the definition of Mz that Mz is the circuit matroid of

UG(D) (see Section 12.7). The fact that M; is a matroid follows from the

observation that all maximal members of Z; have the same size n — 1 (by our

assumption, every vertex in V —r has at least one in-neighbour). Hence M;

is a matroid of rank n — 1.

528 9. Disjoint Paths and Trees

Since r can reach all other vertices, UG(D) is connected and hence the

rank of M> is also n — 1. We claim that every common base of M, and M2

is an out-branching with root r. This follows easily from the definition of an

out-branching and the fact that any common base corresponds to a spanning

tree in UG(D), since M2 has rank n — 1.
Thus we can find an out-branching with root r by applying the algorithm

for matroid intersection of Theorem 12.7.11 to M,, M2. Of course such an

out-branching can be found much easier by using e.g. DFS starting from r.

However the point is that using the weighted matroid intersection algorithm,

we can find a minimum cost out-branching Ft in D. It is easy to see that the
required oracles for testing independence in M,; and M2 can be implemented

very efficiently (Exercise 9.55). In fact, and much more importantly (in the
light of the existence of other and more efficient algorithms for minimum cost

branchings), using matroid intersection algorithms we can even find a mini-

mum cost subdigraph which has k-out branchings with a specified root s in

a directed multigraph with non-negative weights on the arcs (Exercise 9.56).

Furthermore, it is shown in Exercise 9.57 that using matroid intersection we

can also solve the augmentation problem where one is given a directed multi-

graph D = (V, A), aroot s € V and anatural number k and the goal is to find
a cheapest set of new arcs to add to D from an arc-weighted directed multi-

graph D' = (V, A’) on the same vertex set in order to ensure the existence
of k-arc-disjoint out-branchings from s in the resulting directed multigraph.

Hence using matroid intersection formulations one can in fact solve problems

which are much more general than the minimum cost branching problem.

9.10.2 An Algorithm for a Generalization of the Min Cost

Branching Problem

In this subsection we will give a generalization due to Frank [250] of Fulk-
erson’s algorithm [283] for finding a minimum cost out-branching with a
given root. This generalization, also allows one to determine the minimum

cost of new arcs to add to a directed multigraph which has k-arc-disjoint out-

branchings rooted at a vertex s, so as to have k+1 arc-disjoint out-branchings
rooted at s.

To motivate the generalization below, we start with the augmentation
problem above. We are given a directed multigraph D = (V,A) a vertex
s € V and a natural number k such that D has k, but not (k +1) arc-disjoint
out-branchings rooted at s (by Edmonds’ branching theorem and Lemma
7.1.5, this condition can be checked efficiently using flows). Furthermore,
we are given another directed multigraph H = (V, A’) on the same vertex
set and a non-negative weight function w : A’+Rpo on A’. The goal is to
find a minimum cost set of arcs F from A’ so that the directed multigraph
D* = (V, AUF) has (k+1) arc-disjoint out-branchings rooted at s. In order to
make sure that the problem has a solution we assume that D” = (V, AU A’)
does have (k + 1) arc-disjoint out-branchings rooted at s. Note that if we

9.10 Minimum Cost Branchings 529

take H := D and then let D := (V,@) and k := 0, we obtain the minimum
cost branching problem. Hence the augmentation problem generalizes the

minimum cost branching problem.

By (9.2) we have d,(X) > k for all X C V —s and since D does not have
k + 1 arc-disjoint out-branchings from s, there must be some sets for which

equality holds. Call such sets X (with d,(X) =k) tight. Using submodular-

ity of dp, it is easy to see that the family F, = {X C V—s:dp5(X) =k} isan
intersecting family (recall that this means that if X,Y € Fy and XNY 49,
then XNY,X UY € F,). In view of Edmonds’ branching theorem our goal is

to find a minimum cost subset F’ of A’ such that dj;(X) > 1 for each X € Fy
(after doing this we will have d~(X) > k +1 for every X C V —s in the
resulting directed multigraph).

We now see that our problem is a special case of the following more general

problem (we obtain the problem above if we take F = F;,):

Problem 9.10.1 Given a set V, an intersecting family F C 2” and a di-

rected multigraph H = (V,A') together with a weight function w : A'>Ro.

Find a minimum cost subset F C A’ such that dj(X) > 1 for each? X € F.

To ensure the existence of a solution, we must assume that d4,(X) > 1

for each X € F.

We solve this generalization instead of just the minimum cost branching

problem. The motivation for this is to show the reader that often considering

an abstraction of a problem will allow one to solve a more general problem

(see the next subsection). Furthermore the solution for the abstraction can
often be simpler (or at least not more difficult), since we have gotten rid of

the special requirements of the original problems (of course these are still

inherent in the abstraction, but we have more freedom here).

In order to describe the two phase greedy algorithm below for solving

Problem 9.10.1 we let M be a matrix whose rows are indexed by the mem-

bers of F = {X,, X2,...,X,q} and whose columns are indexed by the arcs

€1,€2,---,€m in H. We let Mx, -, = 1 precisely if the arc e; enters the set

X;.
Now we can formulate Problem 9.10.1 as the following linear programming

problem:

i,€j

minimize a w(e)z(e)
ec A!

subject to Mz >1 for all X € F (9.12)

a> 0:

We are only interested in integer solutions, but as we are going to see,

provided all weights are integers, there are integer valued optimum solutions

° That is, we want to cover every member of F by an arc of H.

530 9. Disjoint Paths and Trees

to the system below (this also follows from the fact that the system is a

TDI system (see Schrijver’s book [659]), but we prove the integrality of the

solution directly). Note that, if z is an optimal solution to (9.12), then z < 1.

This follows from the fact that the costs are non-negative. Hence if z is a

function on the arcs of A’ we can say that z(e;) = 1 (x(e;) = 0) corresponds

to including (excluding) e; in the solution.

The dual of (9.12) is

q
maximize S- (Xi)

tal

such that y7.M < w(e) for alle € A’ (9.13)

y= 0.

Here y(X;) denotes the dual variable associated with the set X; of F =

{X1,Xo,...,Xq}. Note that, if we let

m(y,e) = Ss: y(X), (9.14)
{xXeF:e enters x}

then the first constraint in the dual problem says that we must have m(y,e) <

w(e) for every arc e.
The two phase greedy algorithm below works by first finding a feasible

solution to the dual in a greedy way and then solving the primal problem

using the dual solution that we obtained in the first phase.

A pair (2, y) of solutions to (9.12) and (9.13), respectively, are optimal (for

the primal, respectively, the dual) if and only if it satisfies the complementary

slackness conditions, see e.g. [160]:

(I) For every arc e € A’: z(e) > 0 implies m(y, e) = w(e) and
(II) For every X € F: y(X) > 0 implies!°x~(X) = 1.

We now describe the algorithm and show that at termination, the final

vectors z,y are integral and satisfy (1), respectively (2), and hence they

are optimal solutions to the primal, respectively the dual, problems. The

description given here is based on notes by the first author from a lecture

given by Frank in Grenoble, June 1996. See also Frank’s paper [250].

The Frank-Fulkerson algorithm

Phase 1: Start with y = 0. In the initial step we choose A; € F to bea

minimal member of F, that is, no proper subset of A; belongs to F (see

‘© Here x (U) denotes the sum of the « values on all arcs entering the set U. See
also Chapter 8.

9.10 Minimum Cost Branchings 531

Exercise 9.59 for an algorithm to find such a minimal member when F is

the family of tight sets avoiding a fixed vertex s in a directed multigraph).

Choose an arc e; which enters A; (i.e. dz,(Ai) = 1) such that w(e) is
minimum among all arcs of A’ which enter A,. Set y(Ai) := w(e).

In the general step, we assume that (Aj, e1,y(A1)), (Ao, €2, y(A2)),---,
(Ai-1, ei-1, y(Ai-1)) have been determined. Let A” = {e1,€2,...,€;-1}. If

av (X) > 1 for all X € F, then Phase 1 has been completed and we go to

Phase 2. Assume this is not the case and choose A; € F as a minimal member

Ory —{ Ax; Ad}... ,Ai_1} which has d,,,(A;) = 0.

By the assumption that d4,(X) > 1 for every X € F, there is at least

one arc from A’ which enters A;. Choose among all such arcs one, e;, which

minimizes w(e;) — m(y,e;). Let y(A;) := w(ei) — m(y, e;) (possibly y(A;) :=

0). Note that it is easy to find e; since there are currently (at most) i — 1 sets
for which y is non-zero and hence m(y,e) can be calculated easily for every

arc e € A’ which enters A;. Let i :=i+1 and continue the general step. This

completes the description of Phase 1. See Figure 9.17 for an example (for an

instance of the minimum cost branching problem) of an execution of Phase
L,

Before we go on to describe the second phase of the algorithm, we make

some useful observations. Let £ = {Aj,Ag,..., Az} be the family of sets

chosen when Phase 1 terminates (there are only finitely many sets in F, so

termination follows from the assumption that A’ has at least one arc entering

every member of F). Recall that a family H of sets is laminar if A,B € H

and ANB #9 implies AC Bor BCA.

Claim A: C is a laminar family.

Proof: Suppose A; — Aj, A; A;,A; — Ai are all non-empty for some 1 <

i <j < t. Since F is intersecting we have A; A; € F. Recall that A; is

minimal in F — {A;, Ao,..., Aj-1} at the time it is chosen and none of the

arcs €1,€2,...,€;—-1 chosen so far enters A;. Hence there must exist a p < 1

such that e, enters A; A;, but not A; (which means that the tail of ep is
in A; — A;). But now the arc e, enters A;, contradicting the fact that at the
(later) time when we consider A; no previously chosen arc enters that set.
This contradiction implies the claim. 0

Claim B: After Phase 1 the vector y is a feasible solution to (9.13).

Proof: It follows from the way we assign values to y that we will always have

y(X) > 0 for every X € F. Hence it suffices to prove that m(y,e) < w(e) for
all arcs e € A’. Note that y is zero on F — L, so we only have to consider

the contribution from y on the sets in L. Since £ is laminar, those sets from

L which are entered by a given arc e form a chain Aj, C Ai, C ... C Aij,.

Furthermore, it follows from the way we choose the A;’s in Phase 1 that

1 aia et tt:

532 9. Disjoint Paths and Trees

Aj Le

ot c

€2

ae
y(Aj) :=1 y(A2)

e e Ag cmeeb As

A3
€3

c d e

d

A = 1 b y(A3) b y(Aq4) :=0 y(A5) :=1

£ Lg
e f

c
d¥—-———_®

€6 AZ

A6 y(Ag) = 2
e7 y(A7z) :=0

Figure 9.17 An execution of Phase 1 (for the minimum cost branching problem)
on the digraph shown in the upper left corner with root r. Fat arcs show the arc
chosen in that step. Normal arcs are arcs that have already been chosen at this
point in time.

Consider now a fixed arc e. We wish to show that m(y,e) < w(e) remains
true during all of Phase 1. Clearly the initial choice y = 0 satisfies this.

When we consider the first set A;, from £ which contributes to m(y,e),
we choose y(A;,) so as to maintain the inequality m(y,e) < w(e) (because
y(A;,) is assigned the minimum of w(e’) — m(y,e’) over all e’ (including e)
which enter A;,. Then when we choose y(Aj,), the value assigned to y(Ai,)
now contributes to w(e) — m(y,e) and again we can argue that we will have

m(y,e)} < w(e) after assigning the value to y(A;,). Now it is easy to prove

by induction on r (the number of sets in £ which are entered by e) that
m(y,e) < w(e) remains true throughout Phase 1. Since e was an arbitrary
arc, we have proved that y is feasible for the dual (9.13). O

Let e1,€2,...,¢, be the arcs chosen in Phase 1. Call an arc e € A’ tight

if m(y,e) = w(e). Note that each of e1,e2,...,e; are tight by the way we
choose the dual variables (recall how we assign the value to y(A;)).

9.10 Minimum Cost Branchings 533

Hence the complementary slackness condition (I) will be trivially satisfied
if we can find a subset F C {e;,e2,...,e;} such that x is non-zero only on arcs
in F' and z is a feasible solution to the primal. In order to ensure optimality,
we must choose z and F so that (II) also holds, that is, we must have that
y(X) > 0 implies 2~(X) = 1 for every X € F. We are now ready to describe
the second and last phase of the algorithm.

Phase 2:

Let F := 0.

Consider the arcs e¢,€:-1,...,€2,€; in that order. After having considered
€t,€t-1,---, €i+1 we add e; to F if and only if d;(A;) = 0 (that is, the arc e;
is only added to F if no arc with a higher index enters A;). See Figure 9.18

for an illustration of Phase 2 (corresponding to the same example as Figure
9.17).

(a) (0)

Figure 9.18 Phase 2 on the digraph from Figure 9.17. Part (a) shows the input
to phase 2. Part (b) shows the output from Phase 2.

Now set x(e) := 1 if e € F and z(e) := 0 otherwise. This concludes Phase
2

It is easy to see that the choice for z and F made above satisfies (II) since
y is non-zero only on set which belong to CL.

Claim C: z is a feasible solution to (9.12).

By the definition of z our claim is equivalent to saying that d,(Z) > 1
for all Z € F. If no arc e; was disposed of (i.e. not chosen) in Phase 2, then

this follows from the fact that at the termination of Phase 1, every member

of F is entered by at least one of the arcs e1, €2,...,e:. Hence we may assume

534 9. Disjoint Paths and Trees

that at least one arc e; was disposed of in Phase 2 and that some member Z

of F has d;,(Z) = 0. We show that this leads to a contradiction.
Let Z be a maximal member of F such that d;(Z) = 0 holds.
We first prove that there exits an index i such that A; C Z and e; enters

Z. Choose i as small as possible so that e; ¢ F and e; enters Z. Suppose that

A; ¢ Z. Then A; — Z, A; Z, Z — A; are all non-empty (the last set is non-

empty by the minimality of 7 and the definition of A;). Since F is intersecting,

the set A; Z belongs to F. Now the minimality of A; (at the time it was

chosen in Phase 1) implies that there is some j < i such that e; enters A;NZ,

but not A;. This means that the tail of e; belongs to A; — Z (and hence e;

enters Z). However, since d;(Z) = 0 we have e; ¢ F,, contradicting the choice
of 1. Thus we have shown that there exists an index 7 so that A; C Z and e;

enters Z.

Now choose among all pairs (A;,e;) such that A; C Z and e; enters Z,
the one which has the highest index p. Since e, was not added to F in Phase
2, there must exist an index j > p such that e; € F and e; enters Ap. Using

that £ is laminar and j > p we get that A, C A; (we cannot have A; C Ap,
by the way we choose A, in Phase 1).

A;

Figure 9.19 The positions of the sets Aj, Ap and Z and the arcs e;, €p.

Note that A; ¢ Z since otherwise ep would enter A;, contradicting the
fact that 7 > p and A; had in-degree zero when we choose it in Phase 1.
Furthermore, e; does not enter Z since d;(Z) = 0. Thus we must have the
picture in Figure 9.19. Now it follows that the member Z U A; € F is not
entered by any arc from F (recall that e; is the unique arc from F which
enters A;). This contradicts the maximality of Z.

Hence we have shown that the set Z cannot exist and thus z is indeed a
feasible solution to (9.12) and Claim C is proved. Oo

It follows from Claims B and C that the pair (a, y) of primal, respectively
dual, solutions satisfies the complementary slackness conditions (I) and (II)
and hence are optimal solutions to the problems (9.12) and (9.13) respectively.
This proves the correctness of the algorithm.

Let D be a directed multigraph with a special vertex s. By an s-cut we
mean an arc set of the form (U,U) where U C V — s (that is, an s-cut is

9.10 Minimum Cost Branchings 535

the set of all the arcs entering U for some U not containing s). The following
min-max result due to Fulkerson [283] is a consequence of our arguments
above where we proved the existence of optimal integer valued solutions for
both the primal and the dual. It is instructive to check the statement of the
theorem on the example in Figures 9.17 and 9.18.

Theorem 9.10.2 /283] Let D = (V,A) be a directed multigraph with a spe-
cial vertex s € V which can reach all other vertices of V and a non-negative
integer weight function w : A-+Z on the arcs. The minimum weight of an
out-branching with root s is equal to the marimum number of s-cuts (with
repetition allowed) so that no arc a is in more than w(a) of these cuts. 0

9.10.3 The Minimum Covering Arborescence Problem

As we can see from Exercise 9.60 (and Tarjan’s algorithm in [689]), we can find
an optimal branching quite efficiently. It is also easy to decide if a digraph

has some arborescence rooted at a prescribed vertex s which covers (that

is, contains the vertices of) a certain specified subset X of the vertex set

(Exercise 9.54). This makes it natural to consider the following problem which
we call the minimum covering arborescence problem. Given a digraph

D = (V, A) with a non-negative integer valued weight function w on the arcs,
some vertex s € V and a subset X C V. What is the cost of a minimum

out-arborescence F* rooted in s such that X C V(F})?

Theorem 9.10.3 The minimum covering arborescence problem is NP-hard

even when w = 1.

Proof: We show how to reduce the graph Steiner problem to the special

case w = 1 of the minimum covering arborescence problem in polynomial

time. The graph Steiner problem is as follows (this is a special case, but

already this is ’P-complete). Given an undirected graph G = (V, E) anda

subset X C V, find a subtree of G which contains all vertices of X and as

few other vertices as possible.

Let [G, X] be an instance of the graph Steiner problem and construct an
instance [D, X, s] of the minimum covering arborescence problem by letting D

be the complete biorientation of G, taking s as some vertex from X and using

the same X. Every tree T which covers X in G corresponds in the obvious

way to an out-arborescence F;* in D which covers X and vice versa. This
completes the construction which can obviously be performed in polynomial

time. Since the graph Steiner problem is ’P-hard [474] we conclude that so
is the minimum covering arborescence problem. O

It follows from Frank’s results in [265] that, if the cost of all arcs whose
head do not belong to X is zero, then the problem can be solved in polynomial

time. In fact, the model in [265] shows that even the generalization where

536 9. Disjoint Paths and Trees

one is seeking k arc-disjoint arborescences with a common root all of which

cover a prescribed subset X can be solved in polynomial time, provided the

cost of all arcs whose head do not belong to X is zero.

In real-life applications such as telecommunications, one is often interested

in serving only a subset of the customers from a given source and furthermore

not all customers have the same demand. This gives rise to the following

more general problem which is called the directed Steiner problem with

connectivity constraints (DSCC) in [171]. Given a directed graph D =
(V, A) with weights on the arcs, a special vertex s and a number k, associated

with each vertex v € V — s, find a minimum cost subset A’ C A such that

D(A‘) contains k, arc-disjoint (s,v)-paths for all v € V — s. It follows from
our remarks above that this problem is ’P-complete even if we only allow

ky € {0,1} for each v € V—s. In [171] Dahl discusses a cutting plane approach

to solving the DSCC problem. It is also shown in [171] how to formulate
another classical problem from operations research, the uncapacitated facility

location problem, as an instance of the DSCC problem (see Exercise 9.71).

Let us conclude this section with a few remarks on the directed Steiner

problem. The directed Steiner problem is as follows. Given a directed

multigraph D = (V, A) and a subset S of its vertices, find a minimum subset
A' of A such that D’ = (V, A’) contains an (s,t)-path for every choice of
s,t € S. The vertices in S are called terminals. Clearly this problem is VP-

hard as it contains the graph Steiner problem as a special case. In Exercise

9.69 the reader is asked to describe a polynomial algorithm for the case when

|S| = 2. Recently Feldman and Ruhl [233] proved that for every fixed k the
directed Steiner problem with k terminals is solvable in polynomial time.

In fact they proved that the following more general problem is polynomially

solvable for every fixed p. Given a directed multigraph D = (V, A) and p pairs

{(s1,t1),-.+, (Sp, tp)} find a smallest set of arcs A’ in A such that D' = (V, A’)
contains an (s;,t;)-path for 1 = 1,2,...,p. Feldman and Ruhl also showed

that the weighted version is still polynomial (provided p is fixed).

9.11 Increasing Rooted Arc-Strong Connectivity by
Adding New Arcs

The approach in the last section does not allow us to solve the augmentation
problem where one starts with an arbitrary digraph with a special vertex s
and the goal is to add arcs so that the new digraph has k-arc-disjoint out-
branchings rooted at s. Only the case when there are already k—1 arc-disjoint
out-branchings from s in D is covered above.

The following theorem, answering the general case, can be derived from
Theorem 7.6.3 (Exercise 9.73). We give a direct proof below since it is quite
simple and illustrates once again the usefulness of submodularity in proofs.

9.11 Increasing Rooted Arc-Strong Connectivity by Adding New Arcs 537

Theorem 9.11.1 Let D = (V,A) be a digraph with a special vertex s. Let

k be a natural number. The minimum number of new arcs s,4(D) one has
to add to D in order to obtain a new digraph D' = (V, AU F) which has k
arc-disjoint out-branchings rooted at s satisfies ys,.(D) = y, where

7 = max{ De max{0,k — dp(X)}:F is a subpartition of V—s}. (9.15)
X EF

Furthermore, an optimal augmenting set F can always be chosen such that

all new arcs have tails at s.

Proof: Let [D,k,s] be given. By Edmonds’ branching theorem, we must

have dp, (X) > k for all X C V —s. Hence 7;,4(D) > y must hold. We prove
below that there exists a good augmenting set with no more than ¥ arcs. It

is instructive to compare this proof with the proof of Theorem 7.6.3.

Let v1, V2,---,Un—1 be a fixed labeling of V — s. Add k parallel arcs from

s to every other vertex. Clearly the digraph obtained in this way satisfies

(9.2). To distinguish the added arcs from arcs in A we refer to them below
aS new arcs. Starting with i = 1 we delete as many new arcs of the kind

sv; as possible while preserving (9.2) in the current digraph. If i < n— 1 let

i := i+1 and repeat the deleting step; otherwise stop. Let F' be the final

set of new arcs after the deletion phase and let D* = (V, AU F’) denote the

current digraph when this process stops. We will show that |F| < 7. This

will complete the proof and also imply the second claim since all arcs in F’

have tail s.
Since no remaining new arc sv can be removed without violating (9.2),

it must enter a set X such that dp.(X) =k. Call a set X C V — s critical
if d5.(X) = k. Let S := {v : sv € F}, that is, S is the set of all vertices
that are entered by an arc from F’. Choose a family of critical sets F =

{X,,X2,...,Xz} such that F covers S' and ¢ is minimum with respect to

this condition.
We claim that F is a subpartition of V — s. Suppose that this is not the

case. Then F contains two sets X;, X;, i # j such that X;.X; 4 0. However
using the submodularity of dp. we obtain

k+k=d5.(Xi) + dp.(X;) > dp. (XiN Xj) + dp. (Xi U X;)

>k+k.

Hence dp.(X; U X;) = k and we can replace X;,X; by the set X;U X;,

contradicting the choice of ¥ (note that X;UX; C V —s and hence dp, (X;U

X;) > k must hold). Thus F is indeed a subpartition of V — s.

Now we have

11 A collection of sets F covers a set S if every s € S belongs to some member X

of F.

538 9. Disjoint Paths and Trees

since every edge from F enters precisely one set X; € F and each X; has

dp«(X;) = k. Thus
t

|F| = > (& - dp (%i)) <7.
i=1

and the proof is complete. O

The method used to prove Theorem 9.11.1 cannot be extended to the case

when the new arcs have costs and hence we cannot solve the cost version case

of the problem in this way. As we remarked at the end of Subsection 9.10.1 this

problem can be solved using an algorithm for weighted matroid intersection

(Exercise 9.57). Hence weighted matroid intersection algorithms are a quite

powerful tool.

Frank [265] has shown that, using a similar (but more complicated) ap-
proach to that used in Section 9.10, one can also solve the problem in which

the goal is to add a minimum cardinality set of new arcs to a digraph

D = (V,A) with a special vertex s with k(s,v) > k for all v € V — s, so
as to increase K(s,v) to at least k + 1 for every v € V — s. As we mentioned
in Chapter 7 this problem can be solved with the help of submodular flows

[275], but the approach in [265] is simpler, since it does not require the (rather
complicated) algorithms for submodular flows.

9.12 Exercises

9.1. Prove Proposition 9.2.1.

9.2. Prove that problem (P5) of Proposition 9.2.1 for semicomplete digraphs can
be reduced to the 2-path problem for semicomplete digraphs in polynomial
time.

9.3. Prove Proposition 9.2.2.

9.4. Prove Lemma 9.2.4.

9.5. Prove Theorem 9.2.7. Hint: use Lemma 9.2.8.

9.6. Prove Theorem 9.2.9 without using Theorem 9.2.10.

9.7. Let D be the acyclic digraph in Figure 9.20. Show that the digraph D’ defined
as in the proof of Theorem 9.2.14 has a directed path from (x1, 22,23) to
(yi, Y2, y3).

9.8. (+) Argue that we do not really need to construct D’ when searching for a
path from (21, %2,...,2%) to (y1,y2,---, yk). Does that lead to an improve-
ment in the complexity estimate?

9.9.

9.10.

Oi: Lite

9.12.

9.13.

9.14.

9.15.

9.16.

OTs

9.12 Exercises 539

Yy2

¥3

Figure 9.20 An instance of the 3-path problem for acyclic digraphs.

Finding a cheapest collection of k disjoint paths with prescribed
ends in acyclic digraphs. Show that the approach used in the proof of
Theorem 9.2.14 can be modified so that one can find the cheapest collection
of disjoint paths joining x; to y; fori =1,2,...,k.

(+) Prove that under the assumption of Corollary 9.2.16, for every non-
special vertex v, the digraph D contains directed (21, v)-, (42, v)-, (v, y1)-,
(v, y2)-paths such that the only common vertex of any two of these paths is
v (Lucchesi and Giglio [527]). Hint: use Menger’s theorem and the fact that
D is acyclic.

A sufficient condition for digraph to be 2-linked. Let D = (V, A)
satisfy dt(x)-+d~(y) > n+2 whenever D does not contain the arc xy. Prove
that D is 2-linked. Hint: first show that, if ry ¢ A, then there are three
internally disjoint (z,y)-paths of length 2 in D (Heydemann and Sotteau
[426]).

Prove that every k-linked digraph is also k-strong.

Prove that,if a digraph D = (V, A) is 2-linked, then for every choice of distinct
vertices z,y, D contains disjoint cycles Cz,Cy such that c € V(Cz),y €
V(C,). Generalize this to k-linked digraphs and k vertices.

(—) Disjoint cycles containing prescribed vertices in tournaments.
Prove that a tournament T contains disjoint cycles Cz,Cy, such that x €
V(Cz),y € V(C,) if and only if T contains disjoint 3-cycles such that one
contains x and the other contains y.

Describe how to construct the collection Q{,Q>,...,Qj of subpaths in the
proof of Proposition 9.3.1. What is the complexity of your algorithm?

Show how to turn the proof of Proposition 9.3.1 into an algorithm which takes

as input a collection P;, P2,..., Pp» of internally disjoint (x, y)-paths and a

collection Qi, Q2,..., Qq of internally disjoint (u, v)-paths in D — {x,y} and

finds a collection of q (u,v)-paths which intersect no more than 2q vertices

OP PAPI... P..

Let D bea locally semicomplete digraph and let x, y be distinct non-adjacent

vertices. Prove that every minimal (x, y)-path is an induced path (Bang-

Jensen [44]).

540

9.18.

9.19.

9.28.

9.33.

9. Disjoint Paths and Trees

(—) Let D be a locally semicomplete digraph such that a(D) = 2. Prove

that if x and y are non-adjacent vertices of D and D has an (z,y)-path, then

there exists an (x, y)-path P of length at most 3.

(+) Prove the following statement. Let k > 3, let D be a k-strong lo-

cally semicomplete digraph which is round decomposable and let D =
R{Si,...,5,] be the round decomposition of D. Let z and y be vertices
such that « € V(S;) and y € V(S;), where it # j and let P be a minimal
(x, y)-path. Then D — V(P) is (k — 2)-strong (Bang-Jensen [52]). Hint: use
Exercise 9.18

. (+) Prove Lemma 9.3.3. Hint: use Exercise 9.19.

. Prove Lemma 9.3.17.

. (++) Prove Theorem 9.3.13.

. Prove Lemma 9.4.3. Hint: show how to modify a given (z,y)-path which
is not closest to R into one*which is closer by a stepwise (but finite and
polynomially bounded) improvement. For the algorithmic part you can use
that the embedding is with polygonal curves.

. Prove that the graph G4 in Figure 9.10(a) is 5-connected.

. Prove that the digraph D; is Figure 9.10(b) is 5-strong and has no cycle
through x,y. Hint: use Exercise 7.26 and Proposition 9.4.1.

. Show how to derive Menger’s theorem (Theorem 7.3.1) from Edmonds’
branching theorem (Theorem 9.5.1).

. (+) A polynomial algorithm for finding k-arc-disjoint out-
branchings from a specified root. Show how to turn the proof of The-
orem 9.5.1 into a polynomial algorithm which either finds a collection of k
arc-disjoint branchings with root z, or a proof that no such collection of
branchings exists. Hint: use flows.

Greedy branching algorithm. Instead of applying the algorithmic version
of Theorem 9.5.1 to find k arc-disjoint out-branchings with a given root, one
may try a greedy approach: find an out-branching F;* from z. Delete all arcs
of F{. Find a new out-branching, delete its arcs and so on. Give an example
of a digraph D which has 2-arc-disjoint out-branchings with root z, but not
every out-branching F* can be deleted while leaving another with root z.

. (+) Tutte’s theorem on edge-disjoint trees in undirected graphs.
Derive Theorem 9.5.6 from Theorem 8.7.6.

. Generalize the example in Figure 9.11 to digraphs with arbitrarily many
vertices.

. Prove Lemma 9.6.2.

. Show how to use submodular flows to decide in polynomial time whether a
mixed graph M has k edge-disjoint mixed branchings from a given root. Hint:
see Exercise 8.65 and adjust the upper/lower bounds on arcs appropriately.

Give a proof of Theorem 9.6.3 using the reduction you found in the previous
exercise and the feasibility theorem for intersecting submodular flows.

9.34.

9.35.

9.36.

9.37.

9.38.

Seb

9.40.

9.41.

9.42.

9.43.

9.44.

9.45,

9.46.

9.47.

9.48.

9.49.

9.50.

9.12 Exercises 541

(+) Are disjoint out-branchings with possibly different roots. Prove
the following result due to Frank [252]: In a directed graph D = (V, A) there
are k arc-disjoint out-branchings (possibly with different roots) if and only if

> 4 (Xi) SRE -1) (9.16)
al

holds for every subpartition {X1, X2,..., Xz} of V. Hint: add a new vertex
s and a minimal set of new arcs from s to V so that s is the root of k out-
branchings in the new graph. Prove that this minimal set of arcs has precisely
k arcs.

Prove Theorem 9.5.6. Hint: use Edmonds’ branching theorem and Theorem
8.7.6.

Supply the missing details in the proof of Theorem 9.7.1.

Prove Theorem 9.7.3.

(—) Prove Lemma 9.7.6.

Prove Lemma 9.7.19.

Determine the complexity of the algorithm of Corollary 9.7.22

Fill in the missing details of the proof of Theorem 9.7.23. What is the com-
plexity of this recursive algorithm?

Prove Lemma 9.7.9.

Prove the last Claim in the proof of Theorem 9.7.13. Hint: use the same
approach as in the proof of Lemma 9.7.8.

Fan-in, fan-out in eulerian directed multigraphs. Let D be an eulerian
directed multigraph and suppose D has arc-disjoint paths P,, P2,..., P, such
that P; starts at 2; and ends at u fori = 1,2,...,k. Prove that D contains
arc-disjoint paths P{, P),..., Py, such that P; is a (u, v;)-path and P; is arc-
disjoint from P; for all 1 < i,j <k.

(+) Arc-disjoint (x, y)-, (y,z)-paths in quasi-transitive digraphs.
Prove that the characterization in Theorem 9.7.21 can be extended to quasi-
transitive digraphs.

Show that the 3-ST-problem for eulerian digraphs can be reduced in poly-
nomial time to the problem of deciding the existence of arc-disjoint [s1, t1]-,
[s2, t2]-paths in an eulerian digraph with specified vertices s1,t1, $2,t2. Hint:
use Exercise 9.44.

Prove that the arc-version of Problem (P5) of Proposition 9.2.1 is MP-
complete.

Supply the missing details in the proof of Theorem 9.9.2.

Show how to reduce Problem 9.9.1 for the case u # v to the case u = v.

(+) Prove that if any of the conditions (1)-(6) in Theorem 9.9.6 are satisfied,
the T has no pair of disjoint branchings F7, F, .

542

9.51.

9.52.

9.53.

9.54.

9.55.

9.56.

Drom.

9.58.

9. Disjoint Paths and Trees

(+) Extend Theorem 9.9.3 to the case when v is on some 2-cycle. Hint: how

should the sets E,4, Eg and the branchings described be modified?

Prove Theorem 9.9.10. Hint: use Theorem 9.9.3 and Exercise 9.51.

Apply Fulkerson’s minimum cost branching algorithm to the digraph in Fig-

ure 9.21 to find a minimum cost out-branching from r.

Figure 9.21 An instance of the minimum cost out-branching problem

Finding an arborescence which covers a prescribed vertex set. Show
how to decide in polynomial time if a digraph D = (V, A) has an arborescence
with root s which contains all vertices of a prescribed subset X C V (and
possibly other vertices).

Efficient implementation of independence oracles for the matroid
intersection formulation of the minimum cost branching problem.
Show how to implement the necessary oracles for testing independence in the
two matroids M,, M2 which were used in Subsection 9.10.1. Your algorithms
should have complexity around O(m), where m is the number of arcs in the
directed multigraph.

(+) Finding a minimum cost subdigraph which has k-arc-disjoint
out-branchings rooted at s in a directed multigraph. Show how to
formulate this as a matroid intersection problem. Then sketch an algorithm
to find the desired branchings. Hint: modify the matroids M,, M2 from Sub-
section 9.10.1.

(+) Finding a minimum cost set of new arcs to add to a directed
multigraph in order to ensure the existence of k-arc-disjoint out-
branchings with a specified root. Show how to solve this problem using
an algorithm for weighted matroid intersection. Hint: use a similar approach
as that in Exercise 9.56. Compare also with Exercise 8.65.

Formulating the minimum spanning tree problem as a minimum
cost branching problem. Show that the minimum spanning tree problem
(given a connected undirected graph with non-negative weights on the edges,
find a spanning tree of minimum weight) can be formulated and solved as a
minimum cost branching problem.

9.59.

9.61.

9.62.

9.63.

9.64.

9.65.

9.66.

SHOVE

9.68.

9.12 Exercises 543

Suppose D is a digraph which has k but not k+1 arc-disjoint out-branchings
rooted at s and let F = {X C V—s: d,(X) =k}. Explain how to find a
minimal member of F (that is, no Y C X belongs to F). Hint: first show how
to find a member X of ¥ using flows and then show how to find a minimal
member inside X. For the later, see the result of Exercise 3.35

. (+) Efficient implementation of the Frank-Fulkerson algorithm.
Try to determine how efficient the Frank-Fulkerson algorithm can be im-
plemented. I.e. identify places in the algorithm where a seemingly time con-
suming step can be done efficiently.

Reducing the shortest path problem to the minimum cost branch-
ing problem. Show how to reduce the shortest (s,t)-path problem for di-
graphs with non-negative weights on the edges to the min-cost out-branching
problem.

Use your reduction from the previous problem to devise an algorithm for the
shortest (s,t)-path problem in a digraph with non-negative weights on the
edges. That is, specialize the min-cost branching algorithm to the case where
we only want to find a min-cost (s,t)-path. Hint: how many minimal sets are
there to choose from in each step of the algorithm?

Compare your algorithm above to Dijkstra’s algorithm (see Chapter 2) and
other classical shortest path algorithms from Chapter 2.

Simplicity preserving augmentations for rooted arc-connectivity.
Give an argument for the following claim. The Frank-Fulkerson algorithm
can be used to find the cheapest set of new edges to add to a digraph to
increase the maximum number of edge-disjoint out-branchings rooted at a
fixed vertex from k to k + 1, even when we are not allowed to add arcs that
are parallel to already existing ones. Hint: what intersecting family F and
what digraph with the new possible arcs should we consider?

Increasing capacity of arcs to increase rooted arc-connectivity Prove
that the Frank-Fulkerson algorithm also works if all new arcs have to be
parallel to existing ones.

Show that if £ is a laminar family (i.e. X,Y € L implies X NY = O, or
X CY, or Y C X) on a ground set of size n, then the number of sets in L
is at most 2n — 1. Then show that indeed there are digraphs for which the
Frank-Fulkerson algorithm may be run (legally) so that it will find 2n — 1
sets before terminating phase 1.

Comparing the Frank-Fulkerson algorithm with classical minimum
‘spanning tree algorithms. Suppose D = (V, A) is asymmetric digraph (i.e.
zy € E if and only if yx € EZ) and that c: A + Ry satisfies c(xy) = c(yz).
Compare the actions of the min-cost branching algorithm to well-known al-

gorithms for finding a minimum spanning tree in a weighted (undirected)
graph G. Such algorithms can be found in the book by Cormen, Leiserson

and Rivest [169].

A min-max formula for the minimum weight of new arcs to add

to a digraph in order to increase the number of arc-disjoint out-

branchings rooted at a fixed root by one. Use the description and proof

of correctness in Section 9.10 of the Frank-Fulkerson algorithm to derive a

544

9.69.

9.70.

Oiiale

Orlias

9.73.

9. Disjoint Paths and Trees

min-max formula for the minimum weight of such an augmenting set. Hint:
the statement is similar to that of Theorem 9.10.2.

(++) Describe a polynomial algorithm for finding in a given digraph D =
(V,.A) with specified vertices s,t, a minimum size subset A’ C A such that
D' = (V, A’) has s,t in the same strong component (Natu and Fang [589]).

(+) A min-max characterization of shortest paths. Prove the following
theorem due to Fulkerson:

Theorem 9.12.1 /282] Let D = (V, A) be a digraph that contains an (s,t)-
path. Then the length of a shortest (s,t)-path in D equals the mazimum num-
ber of arc-disjoint (s,t)-cuts.

Extend this result to the weigthed case and give a characterization of the
length of a shortest (s,t)-path in terms of (s,t)-cuts. Hint: reduce to a mini-
mum cost branching problem and apply Theorem 9.10.2.

The uncapacitated facility location problem. This is the following prob-
lem. Given a set LD = {l1,l2,...,lp} of possible locations of facilities (each of
unbounded capacity) that shall serve a set C = {c1,c2,...,cq} of customers.
There is a fixed cost w; of locating a facility at location 1; and the cost of
satisfying the demand of customer c; from location 1; is given by d;;. The
problem is to decide which facilities to open and which facilities shall satisfy
the demand of a customer such that the total costs are minimized. Show how
to formulate this problem as an instance of the DSCC problem (see Sub-
section 9.10.3). Hint: since there is unbounded capacity at each facility, no

client needs more than one facility to serve it. How can you model the cost
of opening a facility by the cost of an arc?

Show that if the cost of opening a facility is zero, then there is a very sim-
ple greedy algorithm for solving the uncapacitated facility location problem
(defined in Exercise 9.71).

Show how to derive Theorem 9.11.1 from Theorem 7.6.3.

10. Cycle Structure of Digraphs

In the previous chapters, especially in Chapters 5 and 6, we considered various

properties of cycles in digraphs. The study of cycle structure of digraphs is

one of the most important areas in the theory of digraphs, and since several

very interesting topics in this area have remained uncovered in the previous

chapters, we discuss these topics in this chapter. We will mostly consider

(directed) cycles; in most cases the adjective ‘directed’ is omitted. Sometimes

we will use oriented cycles, i.e. orientations of undirected cycles.

Section 10.1 is devoted to the cycle space of digraphs. We show how

properties of the cycle space imply certain structural results on digraphs. In

Section 10.2, we consider polynomial algorithms by Alon, Yuster and Zwick

to find paths and cycles of length O(log n) in a digraph of order n. In Section
10.3, we study how many vertex- or arc-disjoint cycles a digraph can have as

well as the problems to find the minimum number of vertices or arcs to destroy

all cycles in a graph. In Section 10.4 we will see that the maximum number

of vertex-disjoint cycles in a digraph D is related to the minimum number of

vertices in D needed to eliminate all cycles of D and the same is true for the

corresponding arc version; Younger’s conjecture formally states this mutual

dependence. We give an overview of the proof of Younger’s conjecture by

Reed, Robertson, Seymour and Thomas.
The investigation of cycles of length equal k modulo p is started in Section

10.5, where we show that cycles of length 0 modulo p are very useful in the

study of Markov chains. A number of remarkable results related to the even

cycle problem in digraphs are given in Section 10.6; these include the theorem

by McCuaig, Robertson, Seymour and Thomas that the even cycle problem is

polynomial time solvable, and the theorem by Thomassen that every strong

digraph with minimum out-degree and in-degree at least 3 contains an even

cycle. In Section 10.6, we describe some extensions of these and other results

to cycles of length equal k modulo p. A brief overview of results on short

cycles in semicomplete multipartite digraphs can be found in Section 10.7.

An interesting inequality between the length of a longest path and the length

of a longest cycle in a strong semicomplete multipartite digraph, conjectured

by Volkmann and proved by Gutin and Yeo, is shown in Section 10.8. Results

on the well-known Caccetta-Haggkvist conjecture on the girth of a digraph,

including the one by Chvatal and Szemerédi, are given in Section 10.9. Section

546 10. Cycle Structure of Digraphs

10.10 is devoted to a pair of additional topics: Adadm’s conjecture on the

number of cycles in a digraph, and Marcus’ theorem on chords of cycles and

its applications.

10.1 Vector Spaces of Digraphs

In this section we consider the cycle and cocycle spaces of a connected di-

graph; we will prove some basic properties of these vector spaces and an

interesting result on 2-arc-coloured digraphs whose proof uses the notion and

properties of the cycle space. We will use only the most basic notions and

results on (general) vector spaces (see e.g., Morris [573}).
Let D = (V, A) be a directed graph with arcs e1,...,€m. The are space

A(D) of D is the vector space over the 2-element field GF'(2) = {0, 1} of all
functions A+GF(2). Every vector of A(D) corresponds naturally to a subset
of A, the set of those arcs to which it assigns one. We may think of A(D) as
the set of all subsets of A made into a vector space: the sum of B,C C A,

denoted BAC is their symmetric difference, i.e., BAC = BUC-—BNC.

Observe that the zero vector of A(D) is 0; the sets {e;}, i = 1,2,...,m are
linearly independent and every vector of A(G) is the sum of the corresponding

singletons, thus, {e;}, 7 = 1,2,...,m form a basis of A(D) and dim A(D) =
mM.

Let B,C bea pair of vectors in A(D), where B = 3,e,; ABoe2 A... ABmem
and C = ye1 A 72€24... AYmem, Bi, i € {0,1}. We write the scalar prod-
uct

(B,C) := ys Biri (mod 2).

We say that B and C are orthogonal if (B,C) = 0. Observe that B and
C are orthogonal if and only if |BNC| is even. For a pair of distinct subspaces

S and F of A(D), we say that S and F are orthogonal if every vector of
S is orthogonal to every vector of F. It follows from well-known results in
linear algebra that

dim S + dim F <m (10.1)

for orthogonal subspaces S and F.
In graph theory, some subspaces of A(D) are of special interest: the cycle

space and the cocycle space. The cycle space of a digraph D = (V, A) isa
subspace of A(D) consisting of arc sets B such that the degrees of all vertices
in the subdigraph D(B) are even’. The cycle space is indeed a subspace of
A(D): the sum of two vectors in the cycle space as well as the product of
a coefficient in {0,1} with a vector in the cycle space belongs to the cycle

' Recall that the degree of a vertex x in a digraph D is the sum d}(x) + dp(z),
i.e. the degree of x in UG(D).

10.1 Vector Spaces of Digraphs 547

space. The cycle space is denoted by C(D); its name is justified by the fact
that C(G) is generated by the oriented cycles of G. Indeed, if B is a vector in
C(D), then D(B) contains an oriented cycle Z; B — A(Z) is also a vector of
C(D); it remains to apply the induction on the cardinality of B. Later (see
Theorem 10.1.4) we will show that, if D is strong, then C(D) is generated, in
fact, only by directed cycles of D.

For a connected digraph D = (V, A), a set B of arcs is a cocycle if D—B
is not connected. The cocycle space C*(D) consists of all cocycles of G and
the empty set. We leave as Exercise 10.2 to prove the following proposition

(see Bondy and Murty [127] and Diestel [191]):

Proposition 10.1.1 For a connected digraph D = (V, A), C*(D) is a sub-
space of A(D). The cocycle space is generated by the cocycles of the form

C(z)={zye AsyfAa}U{zre A:zAz}.

Oo

Using the facts that the cycle space of D is generated by oriented cycles of

D and the cocycle space of D is generated by the cocycles C(x) together with

linearity of the scalar product, it is easy to prove the following proposition.

Proposition 10.1.2 For a connected digraph D, the cycle space and the

cocycle space are orthogonal. Oo

Now we are ready to prove the following important theorem on the cycle

space and the cocycle space.

Theorem 10.1.3 For a connected directed graph D, we have dimC(D) =
m—n+1 and dimC*(D) =n-1.

Proof: Let T be a spanning oriented tree of D. Recall that |A(T)| =n — 1.
For an arc e in T, the set C. = A(D) — A(T) + € is a cocycle. Clearly, the
cocycles C, are linearly independent. Hence, dimC*(D) > n — 1. If we add

an arc e not in T to JT, we obtain a digraph T + e with a unique oriented

cycle Z,. Since the set of oriented cycles Z, is a linearly independent set, we

have dimC(D) > m—n+1. Hence, dimC(D) + dimC*(D) > m.
On the other hand, by Proposition 10.1.2 and Formula (10.1), we have

dimC(D) + dimC*(D) < m. Thus, dimC(D) + dimC*(D) = m and the
formulae of this theorem are proved. Oo

Interestingly enough, for strong digraphs some bases consist entirely of
directed cycles as can be seen from the following easy result:

Theorem 10.1.4 For a strong digraph D, the cycle space is generated by

(directed) cycles of D.

548 10. Cycle Structure of Digraphs

Proof: By Theorem 7.2.2 and Corollary 7.2.3, D has an ear decomposition

P,, P2,..., Pm—n4i, where P, is a (directed) cycle, and every P;, 1 > 1,

is either a (directed) path which intersects with Ui_V (Pe) only at its

end-vertices, or a (directed) cycle having only one vertex in common with

Ui V (Px). Clearly, the subdigraph of D induced by Ui_,V (Px) has a cycle

C; containing P;. Observe that the cycles Ci,...,Cm-—n41 are linearly inde-

pendent. Since dim C(D) = m—n+1, the cycles Cy,...,Cm-—n+1 form a basis
of the cycle space. Oo

Recall that a transitive triple in a digraph D is a subdigraph of D, which

is the non-strong tournament of order 3. For special classes of digraphs, one

can find other bases. For example, Thomassen [709] proved the following two

results:

Proposition 10.1.5 If T is a tournament, then C(T) is generated by the

transitive triples together with the hamiltonian (directed) cycles of T.

Proof: Clearly, the cycle space of T is generated by oriented cycles of length

3 (one may apply the result of Exercise 10.1). If T is not strong, but has

a directed 3-cycle, then consider such a 3-cycle C = ryzz. Clearly, there is

a vertex vu such that either v dominates each of x,y,z or is dominated by

eachrot_ 2, y52.In either case, Ca=>| A(7,, \A-Al Ta, NACI.) where ula ais
the transitive triple containing v and the arc uw. Hence, C(T) is generated

by the transitive triples.

Therefore, we may assume that T is strong. By Theorem 10.1.4 it suffices

to prove that every (directed) cycle C = 2122...2%n_-:21 Of T is a sum of

some transitive triples and hamiltonian cycles in T’. We prove it by induction

on t = |V(T)| —|V(C)]. If t = 0, then the claim is trivial. Suppose that t > 0
and v ¢ V(C). If u+C or Cov, then as above we can see that C is a sum of

transitive triples. Otherwise, without loss of generality, we may assume that

r1—+vU-+22. Hence, A(C’) = A(C’)A(A(C')AA(C)), where C’ = C[z2, x1]vz0.
Note that A(C’)AA(C) is a transitive triple. Our proposition now follows by
induction. oO

Theorem 10.1.6 JfT is a 4-strongly connected tournament of order n, then

C(T) is generated by (directed) cycles of lengths n and n — 1.

Proof: Let arcs ry, yz, xz form a transitive triple R of T. By Exercise 6.16,

the 3-strong tournament T — y has a hamiltonian cycle H through zz. We
have’

A(R) = A(H)A[A(H)AA(R)}.
Observe that the term in the brackets is the arc set of a hamiltonian cycle of
T’. Hence, every transitive triple is in the space generated by cycles of length
n —1 and n and the theorem now follows from Proposition 10.1.5. O

We consider the following nice result, also due to Thomassen. This result
is not directly on the cycle space but its proof exploits properties of the cycle

10.2 Polynomial Algorithms for Paths and Cycles 549

space. First we need the definition of a monochromatic subdigraph of a 2-
arc-coloured digraph. Let D = (V, A) be a digraph and let f : A->{1,2}. A
subdigraph D’ = D(A’) of D is monochromatic if f(a) = i for all a € A’,
where 7 = 1 or 2.

Theorem 10.1.7 /709] Let D be a strong digraph whose underlying undi-
rected graph is 2-connected. Let arcs of D be coloured into two colours 1 and
2 such that D has an arc of each colour. Then D has a non-monochromatic
(directed) cycle.

Theorem 10.1.7 follows from Theorem 10.1.4 and the next lemma.

Lemma 10.1.8 [709] Let D be a 2-arc-coloured and non-monochromatic di-
graph such that UG(D) is 2-connected. If a set of oriented cycles Gp gener-
ates C(D), then Gp has a non-monochromatic oriented cycle.

Proof: Suppose that every cycle of Gp is monochromatic. We show that
this leads to a contradiction. Let x be a vertex of D incident to two arcs,

say ry and zz, of different colours. Since UG(D) is 2-connected, D — x has

an oriented (y, z)-path P. Clearly, P together with zy and zz forms a non-

monochromatic oriented cycle C of D. Since Gp generates C(D), we have

C=C,AC2A...AC,,

where each C; is in Gp. Without loss of generality we may assume that each

C;, is monochromatic and only the oriented cycles Ci,...,Cp,0<p<hk, are

of colour 1. Hence the two sets of cycles C},...,Cp and Cp41,...,C, have no

arc in common. Therefore the fact that C = Cj} AC,A...AC, implies that

Q=C,A4...A4C, must be a proper non-empty subdigraph of C. So, Q is a

non-trivial collection of oriented paths and Q € C(D), contradicting the fact
that C(D) is a cycle space (some vertex in Q has odd degree). 0

Applying Theorem 10.1.7, one can easily conclude that the problem to

verify whether a 2-arc-coloured digraph has a non-monochromatic directed

cycle is polynomial time solvable. It is interesting to compare this result with

Theorem 11.2.2 asserting that the problem to verify whether a 2-arc-coloured

digraph has a directed cycle, which alternates in colour, is ’P-complete.

One may speculate that being non-monochromatic is more vague and thus a

weaker property than being alternating.

Several interesting results on tournaments whose proofs are based on the
properties of the cycle space can be found in the paper [709] by Thomassen

(see also [714]).

10.2 Polynomial Algorithms for Paths and Cycles

While it is ’P-complete to decide whether a digraph D,, of order n has a path

or cycle with n vertices, it is not trivial to see for what functions J,(n) and

550 10. Cycle Structure of Digraphs

I,(n), one can verify in polynomial time whether D, contains a path (cycle,

respectively) of length 1,(n) (1.(n), respectively). In particular, Papadimitriou

and Yannakakis [141] conjectured that one can determine in polynomial time

the existence of a path of length p;(n) = O(logn). Alon, Yuster and Zwick

[16, 17] resolved this conjecture in affirmative. They also proved that one

can check whether a digraph of order n has a C, in polynomial time as long

as k = O(logn). In this section we will briefly consider certain elegant ideas

behind algorithms designed in [16, 17]. Further developments on the topic can
be found in [18] and in the references therein. Various algorithmic aspects on
enumeration of short cycles are also discussed there.

We start with a simple technical result on the expectation of a geometric

random variable. This result can be found in many books on probability the-

ory; we include its short proof for the sake of completeness. We use Prob(£)

to denote the probability of the event EL.

Lemma 10.2.1 Let 0 < p < 1 and let 11,22,... be a sequence of random

boolean variables such that x; = 1 with probability p for each j > 1. A random

variable v is defined as follows: for j > 1, v = 9 if and only if x; = 1 and

C= == ee On nen. thevernectution 07 Vets op.

Proof: The expectation of v equals

Co > (2) CO

S > i-Prob(v 0) es S| Prob(v a = Me —p)'-' =1/p.
i=1 i=1 i=1

el

To design algorithms verifying the existence of paths and cycles, Alon,

Yuster and Zwick [16, 17] introduced two methods: the random acyclic sub-
digraph method and the colour-coding method. We consider first the random

acyclic subdigraph method and then the method of colour-coding. In the rest

of this section, we will follow [17].
Let D = (V,A) be a digraph with V = {uj,uo,..., un}. Let M = [mj]

be the adjacency matrix of D, i.e. mj; = 1 if u;i>u; and m;; = 0, otherwise.
It is well known (see Exercise 2.20) that the (2,7)th entry of the kth power
of M is non-zero if and only if there is a (u;, u;)-walk of length k. However,

many of (u;,u,;)-walks of length k can be with repeated vertices (and even
arcs). Thus, one naturally asks how we can get rid of walks that are not

paths or cycles. One such method is the random acyclic subdigraph

method: we choose randomly a permutation 7 on {1,2,...,n} and construct

the corresponding acyclic spanning subdigraph H of D by taking the following

ALCS: Up (i)Un(j7) € A(H) if and only if uz(i)uz(7) € A and m(2) < m(J). Clearly,
every walk of H is a path in D (no vertices can be repeated as H is acyclic).

On the other hand, every path P with k arcs in D has a 1/(k + 1)! chance
to be a path in H as well (Exercise 10.5).

Let O(n”) be the complexity of boolean matrix multiplication (i.e. of
the multiplication of two boolean n x n matrices). Due to Coppersmith and

10.2 Polynomial Algorithms for Paths and Cycles 551

Winograd [168], w < 2.376. Using random acyclic subdigraphs, one can prove
the following:

Theorem 10.2.2 /16, 17] Let D = (V, A) be a digraph that contains a path
(a cycle, respectively) of length k. A path (a cycle, respectively) of length k in

D can be found in expected time O((k +1)!-m) (O(k! log k-n”), respectively).

Proof: To find a path of length k in D one can apply the following algo-

rithm. Choose randomly a permutation 7 of {1,2,...,n} and construct the

corresponding acyclic spanning subdigraph H of D as described above. Using

the O(m)-algorithm of Subsection 2.3.2, find a longest path P in H. If the

length of P is less than k, then repeat the above procedure. Otherwise return

a subpath of P whose length is k.

Since D contains P,, H has a path of length at least k with probability at

least 1/(k + 1)!. Hence, by Lemma 10.2.1, the expected number of iterations
in the above algorithm is at most (k + 1)!. Thus, the expected running time

is O((k + 1)!m) as claimed.
To find a cycle of length k in D one can apply the following algorithm.

Choose randomly a permutation 7 on {1,2,...,n} and construct the corre-

sponding acyclic spanning subdigraph H of D as above. By computing (in

time O(log k-n”), see Exercise 2.21) the (k —1)th power of the adjacency ma-
trix of H, we find all pairs of vertices which are end-vertices of (k — 1)-paths
in H (see Exercise 10.6). If the terminal vertex of one of the paths dominates

the initial vertex of the path in D, we construct the corresponding k-cycle

and stop. If no k-cycle is found we repeat the above procedure.

Clearly, the expected number of iterations in the above algorithm is at

most k!. This implies the expected running time of O(k! log k-n’). O

Now we turn our attention to a more powerful approach, the method of

colour-coding. Let c: V->{1,2,...,k} be a colouring of the vertices of D. A

path P in D is colourful if no pair of vertices of P are of the same colour.

Lemma 10.2.3 Let D = (V,A) be a digraph and let c: V-{1,2,...,k} be

a colouring of the vertices of D. A colourful P, in D, if one exists, can be

found in time 2°(*)-m.

Proof: Add to D a new vertex s of colour 0 that dominates all vertices of D

and is dominated by no vertex. As a result, we obtain a digraph D’, which

has a (k+1)-path starting at s if and only if D contains a path of length k. To

find a path of length k +1 in D’ starting at s we use dynamic programming.

Suppose that we have already found for each vertex v € V the possible sets

of colours on colourful (s,v)-paths of length 7 as well as the corresponding
paths (just one path for every possible set). We call such sets also colourful.
Observe that for every v we have at most fe) colourful sets and (s,v)-paths,
respectively. We inspect every colourful set C that belongs to the collection of

552 10. Cycle Structure of Digraphs

v and every arc vu. Let P(C) be the co: responding colourful path. If c(u) ¢ C,

then we add C'Uc(u) (P(C)u, respectively) to the collection of colourful sets

(paths, respectively) of u of cardinality (length, respectively) 7 + 1. Clearly,

D' contains a colourful (k + 1)-path with respect to the colouring c if and

only if the collection of colourful paths of length k + 1 for some vertex is not

empty. The number of operations of this algorithm is at most

k+1

O (s«(" g ‘) m) = O((k + 1)2***m).
1=0

O

The next lemma follows from Lemma 10.2.3 and is left as Exercise 10.8.

Lemma 10.2.4 Let D = (V, A). be a digraph and let c: V-+{1,2,...,k} be

a colouring of the vertices of D. For all ordered pairs x,y of distinct vertices

colourful (x, y)-paths of length k —1 in D, if they exist, can be found tn total

time 20(*) nm. oO

Actually, for dense digraphs the complexity of this lmma can be improved

to 20(4) .n” [17]. Clearly, Lemma 10.2.4 implies an 2°(*) -nm-algorithm to
find a k-cycle in D.

If P is a path of length k in D whose vertices are randomly coloured from

set of k colours, then P has a chance of k!/k* > e~* to become colourful.

Thus, by Lemma 10.2.1, the expected number of times to randomly generate

k-colouring to detect P is at most |e*|. This fact and Lemmas 10.2.3 and
10.2.4 imply the following:

Theorem 10.2.5 (Alon, Yuster and Zwick) /16, 17] If a digraph D has
a path of length k (k-cycle, respectively), then a path of length k (k-cycle,

respectively) can be found in 20(K) am (2°) .nm, respectively) expected time.

The algorithms mentioned in this theorem are quite simple, but unfortu-

nately not deterministic. Fortunately, one can derandomize these algorithms

to obtain deterministic algorithms with time complexity still linear in m.

Observe that for a path P of length k in D = (V, A) many k-colourings of V

are equally good or bad depending on P being colourful or not. This means

that we do not need to consider all n* k-colourings of V to detect a path of

length k in D; a subset S of colourings such that every k-path is colourful

for at least one colouring of S is sufficient. In other words, we wish that for

every k-set W of vertices there is a colouring from S that assigns vertices of
W different colours.

This is captured in the notion of a k-perfect family of hash functions from

{1,2,...,n} to {1,2,...,k}. Schmidt and Siegel [653] following Fredman,
Komlds and Szemerédi [277] gave an explicit construction of a k-perfect family
from {1,2,...,n} to {1,2,...,k} in which each function is specified by b =

10.3 Disjoint Cycles and Feedback Sets 553

O(k) + 2log, logy n bits. Thus, the size of the family is 26 = 2°(*) log? n.
The value of each of these functions on each specified element of {1,2,...,n}

can be computed in O(1) time. Using this family, the algorithms of Theorem

10.2.5 can be derandomized to obtain deterministic algorithms running in
time O(2°(*)m log? n) and O(22\) mn log? n), respectively. Alon, Yuster and

Zwick [16, 17] pointed out how to decrease each of the above complexities
by the multiplicative factor of logn. They also showed how to derandomize

some versions of algorithms mentioned in Theorem 10.2.2.

10.3 Disjoint Cycles and Feedback Sets

In this section we discuss several interesting non-trivial results on vertex-

disjoint and arc-disjoint cycles. Actually, these results deal with some aspects

of the following problem: given a digraph D, find the maximum number of

vertex-disjoint (arc-disjoint) cycles in D. This problem itself is M’P-hard in

both vertex and arc versions (see below). However, some very interesting

sufficient conditions have been obtained for the existence of a large number

of vertex-disjoint (arc-disjoint) cycles.

We will use some additional notation and terminology. For a digraph D,

the maximum number of vertex-disjoint (arc-disjoint) cycles is denoted by

vo(D) (4(D)). In a digraph D, a set S of vertices (arcs) is a feedback ver-
tex set (an feedback arc set) if D —S is acyclic. The minimum number
of elements in a feedback vertex (arc) set of D is denoted by t9(D) (™(D)).
Notice that the parameters 7)(D) and 7(D) have several practical applica-
tions, one of the most important is testing electronic circuits (see Leiserson

and Saxe [512]). An electronic circuit can be modeled by a directed graph by
letting each (boolean) gate correspond to a vertex and the wires into each

gate be modeled by arcs into the vertex corresponding to that gate. Finding a

small set of arcs whose removal makes the resulting digraph acyclic can help

reduce the hardware overhead needed for testing the circuit using so-called

scan registers (see Kunzmann and Wunderlich [506]).

10.3.1 Complexity of the Disjoint Cycle and Feedback Set

Problems

We start from the following simple, but quite useful result.

Proposition 10.3.1 For every digraph D there exist digraphs D' and D"

Such that 1(D) = %4(D'),7(D) = 71(D’), 1(D) = v(D") and 1(D) =
T(D"). The digraphs D' and D" can be constructed from D in polynomial
time.

Proof: The digraph D” can be defined as D” := L(D). To construct D' sim-
ply apply the vertex splitting procedure (see Subsection 3.2.4) to all vertices

554 10. Cycle Structure of Digraphs

of D. The reader is advised to verify that the equalities of this proposition

indeed hold. Oo

This proposition implies that the following problems are of the same com-

plexity (up to a polynomial factor).

The FVS problem: Given an integer k and a digraph D, verify whether

T9(D) < k.
The FAS problem: Given an integer k and a digraph D, verify whether

™1(D) <k.

Similarly the problem of deciding whether vp(D) > k is polynomially

equivalent to the problem of deciding whether 1; (D) > k.

Karp [474] was the first to prove the following theorem:

Theorem 10.3.2 The FAS problem is NP-complete. o

Gavril [306] proved that the FAS problem remains \VP-complete even for

digraphs D with 5°(D) < 3 or line digraphs.
Proposition 10.3.1 and Theorem 10.3.2 imply immediately that the FVS

problem is NP-complete. Using Theorem 12.6.1 due to Bang-Jensen and

Thomassen, we obtain the following stronger result:

Theorem 10.3.3 /89] The FVS problem is NP-complete even for tourna-

ments. Oo

The FVS problem remains \’P-complete for digraphs D with 6°(D) < 2,

planar digraphs D with 6°(D) < 3 (see Garey and Johnson [303]) and for
line digraphs (see Gavril [306]). This problem, unlike the FAS problem, is

NP-complete even for undirected graphs [303].
It is not surprising that the above mentioned decision problems for the

parameters vp and 1; are also VV P-complete.

Theorem 10.3.4 Given a digraph D and an integer k, it is Ne rarnlete

to decide whether vo(D) > k (™(D) > k).

Proof: By Proposition 10.3.1 it is sufficient to show this claim only for vp.

A scheme of the proof of the assertion for vp is given in Exercise 10.9. oO

10.3.2 Disjoint Cycles in Digraphs with Minimum Out-Degree at
Least k

It turns out that one of the sufficient conditions to guarantee the existence of

a large number of vertex-disjoint cycles in a digraph D is that 6*(D) is large
enough. Let f(k) be the least integer such that every digraph of minimum

out-degree at least f(k) contains k vertex-disjoint cycles. The very existence

10.3 Disjoint Cycles and Feedback Sets 555

of f(k) for every k > 1 is not obvious. Thomassen [700] was the first to
show this fact. He proved that f(k) < (k + 1)!. Bermond and Thomassen
[115] conjectured that, in fact, f(k) = 2k —1.This holds for k = 1 as every
acyclic digraph has a vertex of out-degree zero. This holds also for k = 2 (see
Exercises 10.21 and 10.22). Alon [10] was the first to prove that the function
f(k) is linear. He obtained the following result.

Theorem 10.3.5 There exists an absolute constant C so that f(k) < Ck
for all k. In particular, C = 64 will do. Oo

We will not give a proof of Theorem 10.3.5 as it is somewhat tedious.

However, we will prove a slightly weaker result, Theorem 10.3.8. This proof

shows basic ideas involved in the proof of Theorem 10.3.5 in [10]. We leave
as Exercise 10.23 the proof of the following corollary.

Corollary 10.3.6 /10] Every digraph with minimum out-degree k has at least

k?/128 arc-disjoint cycles. Oo

For k-regular digraphs, the result of this corollary seems far from being

sharp. Alon, McDiarmid and Molloy [13] conjectured the following:

Conjecture 10.3.7 Every k-regular digraph contains (es) arc-disjoint cy-

cles.

This conjecture was verified for k < 3 in [13]. Now we formulate Theorem
10.3.8.

Theorem 10.3.8 /10] For k large enough, f(k) < (3+ 0(1))k log, k.

For technical reasons, we prove this theorem not only for digraphs, but

for directed pseudographs without parallel arcs. However, for shortness we

will still use the term ‘digraphs’ in the rest of this subsection for digraphs

with possible loops.

Clearly, Theorem 10.3.8 holds for k = 1. Assume that Theorem 10.3.8 is

true for all values up to some k and k + 1 is the minimum integer violating
the inequality. Then, f(k + 1) > f(k) +4. Let D = (V, <A) be a digraph of
minimum out-degree r, r = f(k+1)—1, such that D does not have k+1 vertex-
disjoint cycles. We also assume that D has the minimum possible number of

vertices and, subject to this property, the minimum size. By the definition of

D, the out-degree of every vertex of D is exactly r and 6~(D) > 0. Moreover,

D has no loop, since otherwise the digraph obtained from D by deleting

a vertex with a loop cannot contain k vertex-disjoint cycles, showing that

f(k+1) -2 =r-—1< f(k) —1, which is impossible as we saw above that
f(kK+1) > f(k) +4.

We proceed by proving certain properties of D formulated as lemmas. The

proof of Lemma 10.3.11 exploits a probabilistic argument. The first lemma

is due to Thomassen [700] and the next two to Alon [10].

556 10. Cycle Structure of Digraphs

Lemma 10.3.9 [700] For every v € V, the subdigraph D(N~(v)) contains

a cycle.

Proof: Fix an arbitrary vertex v € V. Put H = D(N~(v)). It suffices to
show that 6~(H) > 0. Assume that u € V(H) and d;,(u) = 0. Then, there is
no vertex in D that dominates both u and v. This implies that the digraph

D', obtained from D by first deleting the arcs with tail u except for uv and

then contracting uv, has minimum out-degree r. (Notice that D’ may have

a loop.) By the minimality of D, the digraph D’ has k + 1 vertex-disjoint

cycles. These cycles can easily be transformed into vertex-disjoint cycles of

D, a contradiction. 0

Lemma 10.3.10 /10] We have |V| < k(r? —r +1).

Proof: Put n = |V| and let G be the undirected graph with vertex set
V in which a pair u and v of distinct vertices is adjacent if and only if

there is a vertex in D that dominates both. Define m = n(5) and observe
that the size of G is at most m (since every vertex of D has out-degree r).
Therefore, as it is well known (see, e. 8. Berge [105, page 282]) G has an

independent set of cardinality at least =". If this number is at least k + 1,

then there is a set 21,...,2%%41 of independent vertices of G. This means

that the sets N~(z1),... N ~ (2441) are pairwise disjoint. It now follows from
Lemma 10.3.9 that D has k+1 vertex-disjoint cycles, a contradiction. Hence,

man < k. This implies the inequality of Lemma 10.3.10. Oo

Lemma 10.3.11 /10] We have k(r? —r + 2)(1— 445)" > 1.

Proof: Assume that the inequality of this lemma is false and

2 1 iP k(r* —r+2)(1 peer’ <1

Assign independently to every vertex v € V acolouri € {1,2,...,k+1} with

probability p = Ea Let V; be the set of vertices coloured 7. For each vertex

v € V, let EH, denote the event that all out-neighbours of v are of colours

different than that of v. Since every vertex of D has out-degree r we have

Prob(£y) = (1 — p)". For i = 1,2,...,k +1, let F, denote the event that

V; = 0. Then Prob(F;) = (1 — p)” < (1—p)"*!. Hence, by Lemma 10.3.10,

k+1

>. Prob(Ey) + da Prob(Fi) < n(1 —p)" +(k + 1)(1—p)"#}
veEV

< k(r? —r +1)(1—p)’ + k(1 — p)”
=k(r?—r + 2)(1—p)"

<ul

10.3 Disjoint Cycles and Feedback Sets 557

This implies that with positive probability each D(V;) is non-empty and
has a positive minimum out-degree, and hence possesses a cycle. Thus, there
is a choice of Vj,...,Vk41 giving k + 1 disjoint cycles in D, a contradiction.

O

Conclusion of the proof of Theorem 10.3.8: Lemma 10.3.11 implies that

k(r? —r + 2) > e?/(R+1),

Hence, for k large enough, f(k) < f(k+1)—l=r < (3+0(1))klog, k. Thus,
Theorem 10.3.8 is proved. 0

10.3.3 Feedback Sets and Linear Orderings in Digraphs

We mentioned above that in many applications one wishes to find a minimum

(cardinality) feedback arc set. Observe that, if A’ is an arbitrary feedback arc
set, then by definition D — A’ is acyclic and hence has an acyclic ordering

U1, U2,---,Un- With respect to this ordering every arc vjv; € A — A’ satisfies

a < j. Hence, from the algorithmic point of view, finding a minimum feedback

arc set in D is equivalent to finding an ordering uj, u2,...,Un of V which

maximizes (minimizes) the number of forward arcs (backward arcs); an arc
uju; is forward with respect to the above ordering if i < j, otherwise u;u,;
is backward”. This again is easily seen to be (algorithmically) equivalent
to finding an acyclic subdigraph with the maximum number of arcs in D

(Exercise 10.14). The latter problem is known as the acyclic subdigraph

problem.

To illustrate the definitions above and to gain some understanding of
difficulties in studying the problems above, let us consider the class of tour-

naments.

For a tournament T’, let y(T') be the size of an acyclic subdigraph of T of
maximum size. Fixing an arbitrary ordering u,...,Un of vertices in T, we

see that the number of forward arcs plus the number of backward arcs equals

(ot By replacing the ordering wi, u2,...,Un by Un, Un-1,.-., U1 if needed,

we obtain that 7(T) > n(n—1)/4. One may guess that we can always find an
acyclic subdigraph of T of size exceeding n(n — 1)/4 by a significant number,

say, en(n — 1)/4, where € is an absolute positive constant not depending on
n. However, this is not true due the following:

Theorem 10.3.12 For every n > 3, there exists a tournament T of order n

such that y(T) < n(n — 1)/4+ /n? log, n/2.

Proof: Consider a random tournament T;, on vertices 1,2,...,n, i.e., a tour-

nament chosen randomly from the set of all tournaments on 1,2,...,n. Ob-

serve that for every pair i # j € {1,2,...,n}, 17 € A(T,) with probability

Lj2. |

? Clearly, the set of backward arcs form a feedback arc set.

558 10. Cycle Structure of Digraphs

For every pair i < j € {1,2,...,n}, define the random variable 2;,; by

a1 ize AG)
745 “~) _1 otherwise.

Let N = (3). With respect to the ordering 7 = 1,2,...,n, the number of

forward arcs minus the number of backward arcs equals

Se Lig =: SN.

1<i<j<n

Then, E, := {|Sn| > a} denotes the event that, in one of the two orderings

n = n(1),7(2),...,7(n)(= 1,2,...,n) and m* = x(n), a(n — 1),...,7O)(=

n,n —1,...,1), the number of forward arcs exceeds n(n — 1)/4 + a/2. On

the other hand, Sy is the sum of (3) random independent variables taking

values +1 and —1, each with probability 1/2. By Corollary A.2 in [14],

Prob(|Sy| >a) < 2e7? /24), (10.2)

for every positive number a.

Observe that the event FE that for at least one permutation of 1,2,...,n,

the number of forward arcs exceeds n(n — 1)/4+a/2 equals the union of the
events E, for all permutations of 1,2,...,n, whose total number is n!. Put

a= \/n3 log, n. Applying (10.2) we obtain

Prob(E) < 2n! exp(—n log, n)

<2

<1

for every n > 3. This means that with positive probability the event E does

not hold, i.e. for every permutation of 1,2,...,n, the number of forward arcs

does not exceed n(n — 1)/4+ \/n? log, n/2. By the definition of T;,, it follows
that there exists a tournament of order n with the above-mentioned property.

O

A slightly better result was obtained by de la Vega in [186] who proved
that ,/log, n in the inequality of Proposition 10.3.12 can be replaced by a

constant.

One may also consider weighted versions of the problems above. Each

arc is assigned a non-negative real valued weight and the goal is to find a

feedback arc set of minimum total weight (respectively, an acyclic subdigraph

of maximum weight). The weighted version of the acyclic subdigraph problem

is known as the linear ordering problem. It arises naturally in the study

of interactions between various sectors of an economical system (see Reinelt

[631] and also Funke and Reinelt [284] and Grétschel and Jiinger [337]).
For the linear ordering problem there is a very easy way to obtain an

ordering which achieves at least half of the optimum value of an ordering.
The proof of the following proposition is an easy exercise (Exercise 10.15).

10.3 Disjoint Cycles and Feedback Sets 559

Proposition 10.3.13 Given any weighted digraph D = (V,A,w), in time

O(m) one can find an acyclic subdigraph D' = (V, A') of D such that w(A’') >
w(A)/2. Oo

This proposition implies that there exists a polynomial 2-approximation®

algorithm for the linear ordering problem, since w(A)/2 < w(A’) < w(A,) <
w(A), where w(A,) is the optimum weight.

Note that although the linear ordering problem and the feedback arc set

problem are equivalent problems from the algorithmic point of view, the ap-

proximation algorithm above cannot be used as a 2-approximation algorithm

for the feedback arc set problem as well. The reason is that the optimal or-

dering may have all or almost all arcs in the right direction (implying the

number 7, is close to zero) whereas the ordering above may still have as little

as half the arcs in the right direction. In fact, approximating the number 7

seems to be very difficult and so far no c-approximation algorithm is known

for any constant c. The following best known approximation guarantee for

the feedback arc set problem is due to Seymour [665].

Theorem 10.3.14 There exists an O(lognloglogn) approzimation algo-

rithm for the feedback arc set problem. 0

For a detailed account on approximating the number 7; of a directed

multigraph we refer to the chapter [671] by Shmoys. Another approximation

algorithm for a generalization of the feedback arc set problem (as well as the

feedback vertex set problem) is described by Even, Naor, Schieber and Sudan

[227].
While for arbitrary digraphs the feedback arc set problem is W’P-hard (see

Theorem 10.3.2), for planar digraphs the situation is quite different (unless

P =NP) due to the following result by Lucchesi:

Theorem 10.3.15 [526] The feedback arc set problem is polynomially solv-

able for planar digraphs.

We give a proof of Theorem 10.3.15 below. First we need the definition

of the dual of a plane directed multigraph. Let G = (V,E) be a planar

pseudograph and let F be the set of faces of G (with respect to the fixed

planar embedding of G). Let G* be the pseudograph which has a vertex v;

for each face f; € F and for every edge e € E such that e is on the boundary

of faces fi, f;, the two vertices v;,vj; corresponding to fi, f; are joined by an

edge‘. In general G* contains parallel edges and may also contain loops. For

3 For a minimization problem M, an algorithm A is an f(n)-approximation al-

gorithm if, for every instance of M of size n, A finds a solution whose value p

satisfies > < f (n), where p* is the optimum value.

4 Note that, if e is not part of the boundary of a facialcycle, then f; = f; and we

get a loop at uj.

560 10. Cycle Structure of Digraphs

plane directed pseudographs we can also define a dual called the directed

dual. This is the same as above but now the orientation of the arc between v;

and v; is always chosen such that the arc crosses the original arc e from left

to right (here left means the left side when we traverse e from its tail to its

head). See Figure 10.1 for an example of the dual of a directed multigraph.

(a) (b)

Figure 10.1 (a) A plane directed multigraph D; (b) the directed dual D* of D
drawn on top of D. White circles indicate the vertices of D™ and thin arcs are arcs
of D*. Fat arcs indicate arcs of D.

If D = (V, A) is a plane directed multigraph and D* is its directed dual,
then it is easy to see that D* is also planar (Exercise 10.10). In fact, we have
that (D*)* is isomorphic to the converse of D (Exercise 10.11).

Proof of Theorem 10.3.15: Let D be a planar directed multigraph and

assume that D is embedded in the plane with directed dual D*. Clearly we

may assume that UG(D) is connected since otherwise we just consider each

connected component separately.

We prove that the size of a minimum feedback set of D is equal to the

minimum size of a dijoin of D (see the definition of a dijoin in Section 7.15).

Recall from Section 7.15 that this is also the minimum number of arcs whose
contraction results in a strongly connected directed multigraph.

If we delete an arc a of D the effect on the dual will be the same as if

we contract the corresponding dual arc a* (the one crossing a from left to

right). If C is a facial cycle of D, then the vertex v corresponding to C' has

all arcs directed into it or out of it (depending on whether the orientation of

C is clockwise or anti-clockwise). Thus in D* the arcs incident with v form a

directed cut (recall the definition of a directed cut from Section 7.15) in D*
implying that D* is not strong.

Conversely, if D* is not strongly connected then let H be an initial strong

component (that is, there is no arc from V — V(H) to V(H) in D) of D*.
Now it is not difficult to see that the arcs of D corresponding to the directed

10.4 Disjoint Cycles Versus Feedback Sets 561

cut (V(H),V —V(H)) in D* (which is non-empty since D is connected) form
a directed cycle (Exercise 10.12). Thus we have shown that D has a directed
cycle if and only if D* is not strongly connected. Furthermore, deleting arcs of

D until we obtain an acyclic directed multigraph is equivalent to contracting

arcs of D* until we obtain a strong directed multigraph. This shows that

the size of a minimum feedback arc set of D equals the size of a minimum

directed join in D*. Now it follows from Corollary 8.8.10 that we can find

the feedback number (and a minimum feedback arc set) of D in polynomial
time. Oo

Our arguments above imply the following:

Corollary 10.3.16 For a planar digraph D, 4,(D) = ™4(D). oO

10.4 Disjoint Cycles Versus Feedback Sets

In this section, we study relations between the parameters vp and 1;, on one

hand, and parameters 7) and 7 on the other hand. We state the famous

Younger’s conjecture and present an overview of the proof of this conjecture

by Reed, Robertson, Seymour and Thomas. Some (still) open conjectures and

problems are mentioned as well.

10.4.1 Relations Between Parameters v; and 7;

Clearly, for every digraph D, vp(D) < (D) and it is easy to find an infinite
family of digraphs D for which the two parameters are not equal. The same is

true for the parameters 79,71. Furthermore, we obviously have v;,(D) < 7;(D)

for i = 1,2. It is easy to construct an infinite family of digraphs D such that

Yo(D) < t(D) (Exercise 10.19) and thus, by Proposition 10.3.1, an infinite
family of digraphs D such that 1,(D) < ™(D).

On the other hand, there are families of digraphs for which the last two in-

equalities become equalities. Szwarcfiter [686] described a family of digraphs,

D for which vo(D) = 19(D). His family generalizes two families introduced
by Frank and Gyarfas [267] and by Wang, Floyd and Soffa [732]. Szwarcfiter
[686] also provides polynomial algorithms to recognize his family of digraphs
and to find k-cycle factors and feedback vertex sets of cardinality k, where

k = 1o(D) = 70(D). We have already seen that planar digraphs D satisfy
1,(D) = ™(D). Seymour [666] showed that the same result holds for a spe-
cial family of eulerian digraphs. Another class of digraphs with the same

property was considered by Ramachandran [620].

Even though not always v;(D) = 7;(D), i = 0,1, in which case 7;(D)
exceeds v;(D), Younger [750] conjectured that the former is bounded by a
function of the latter®. In other words, he conjectured that for every k, there

® The existence of to(2) was conjectured earlier by Gallai, see [626].

562 10. Cycle Structure of Digraphs

exists a (least) natural number to(k) (t1(k), respectively) such that for ev-
ery digraph D the following holds: either D contains k vertex-disjoint (arc-

disjoint, respectively) cycles or D has a feedback vertex (arc, respectively)

set of cardinality at most to(k) (t1(k), respectively). By Proposition 10.3.1,
the validity of the ‘vertex’ version of Younger’s conjecture implies that the

‘arc’ version holds and vice versa. Moreover, Proposition 10.3.1 implies that,

if the functions to(k) and t,(k) exist, then they are equal (Exercise 10.20).
Younger’s conjecture was completely settled recently by Reed, Robertson,

Seymour and Thomas [626]. We discuss their solution in the next subsection.
In the rest of this subsection we consider the parameters 1, and 7, for the

class of tournaments.

Even for a tournament T, the parameters v;(T) and 7,(7') do not always
coincide. By the proof of Theorem 10.3.12, for every n > 3 a random tour-

nament T;,, with n vertices, with. probability tending to 1 as n-+o0, has at

least n(n — 1)/4 — \/n? log, n/2 arcs in a feedback arc set of T. On the other

hand, it follows from a result by Chartrand, Geller and Hedetniemi [144] that
Tn has at most |#|25+]|] < $($) arc-disjoint cycles (each cycle has at least
three arcs). Isaak conjectured the following:

Conjecture 10.4.1 /446] If T is a tournament which has a minimum feed-

back arc set A such that T(A) is a transitive subtournament of T, then (T)
and 7(T) coincide.

In [446] Isaak posed the following problem. Note that, if the answer to

the problem is yes, then this implies Conjecture 10.4.1.

Problem 10.4.2 Suppose T is a tournament having a minimum feedback

arc set which induces an acyclic digraph with a hamiltonian path. Is it true

that the mazimum number of arc-disjoint cycles in T equals the cardinality

of a minimum feedback arc set of T ?

It is easy to see that a minimum feedback arc set of a given digraph
must induce an acyclic subdigraph of D (Exercise 10.16). The next result
by Barthélémy, Hudry, Isaak, Roberts and Tesman implies that every acyclic
digraph arises as a minimum feedback arc set of some tournament.

Theorem 10.4.3 /95] Let D be an acyclic digraph. Then there exists a tour-
nament T containing D as a subdigraph such that the arcs of D form a min-
imum feedback arc set in T. oO

The following conjecture is due to Bang-Jensen and Thomassen.

Conjecture 10.4.4 /89] The feedback arc set problem is NP-hard for tour-
naments.

We point out that the feedback vertex set problem is ’P-hard for tour-
naments by Theorem 10.3.3.

10.4 Disjoint Cycles Versus Feedback Sets 563

10.4.2 Solution of Younger’s Conjecture

The vertex and arc versions of Younger’s conjecture were proved for various

families of digraphs including the families mentioned above. McCuaig [559]

proved the existence of to(2) by characterizing intercyclic digraphs, i.e.,
digraphs D for which v9(D) < 1. Moreover, he established that to(2) = 3.

Reed and Shepherd [627] proved the vertex version of Younger’s conjecture
for planar digraphs using a result of Seymour [665]. The result of Reed and

Shepherd combined with a result of Goemans and Williamson [323] implies

that t?4(c) = O(c), where t?4(c) is the function to(c) restricted to planar di-

graphs. Finally, Younger’s conjecture was completely settled by Reed, Robert-

son, Seymour and Thomas [626]. In this subsection, we give a scheme of their
proof. In particular, we provide a complete proof of perhaps the most inter-

esting lemma in [626].
One of the important tools in the proof in [626] is the following well-known

Ramsey theorem [621].

Theorem 10.4.5 (Ramsey) For all integers q,l,r > 1 there exists a (min-

imum) integer Ri(r,q) & 0 so that the following holds. Let Z be a set of car-

dinality at least Ri(r,q) and let every l-subset of Z be assigned a colour from

{1,...,q}. Then there exist an r-subset S of Z and a colour k € {1,...,q}
so that every l-subset of S is of colour k. Oo

Some readers may be more familiar with the graph-theoretic special case

of this theorem. For every pair of natural numbers q,r there exists an integer

R2(r,q) > 0 so that every g-edge-coloured complete graph of order at least

R2(r,q) has a monochromatic complete subgraph of order r.

We start describing the scheme of the proof of Younger’s conjecture by

the following lemma whose proof is left as Exercise 10.24.

Lemma 10.4.6 /626] Let c > 1 be an integer such that to(c — 1) ezists. Let

D be a digraph with vo(D) < c and let T be a feedback vertex set of D of

cardinality T9(D). Suppose U,W are disjoint subsets of T both of cardinality

r, where r > 2to(c — 1). Then there is an r-path subdigraph of D from U to

W, which contains no verter in T —- (UUW). Oo

Let CL = P, U...U Py be a k-path subdigraph in a digraph D and let

u; (w;) be the initial (terminal) vertex in Pj, i = 1,...,2. We say that

CL links (u1,...,U%) to (wi,---,w,) and £ is from fata, oes Uh eto

TUG, = => Wk t-

The following lemma was proved by the authors of [626] in joint work with

Alon. Its proof uses Ramsey’s theorem as well as Theorem 5.2.3 of Erdés and

Szekeres.

564 10. Cycle Structure of Digraphs

Lemma 10.4.7 Let c > 2 be an integer such that to(c — 1) exists, and let

k > 1 be an integer. Then there exists an integer t > 0 (depending on k) so

that the following holds. If D is a digraph with vo(D) < ¢ and T(D) > t,

then there are distinct vertices u1,...,Uk,W1,---,Wk Of D and a pair of k-

path subdigraphs L,, £2 of D so that

G) Ly Winks (Uj yt) £0 (Wi, 24 We),
(ii) Lo links (w1,..., Wx) to either (u1,...,UxR) or (uz,---, U1),

(iii) every (directed) cycle of £1 U La meets {uy,..., Uk, Wi,---,Wk}-

Proof: Let | := (k — 1)? +1, r := max{2to(c — 1), (k + Yl}, g:= (+ 1)’,
and t := R,(r,q) +1, where R;(r,q) is as in Theorem 10.4.5. Then r > / and
t > 2r as clearly R;(r,q) > 2r—1. We will show that this choice for t satisfies

the lemma. Let D be a digraph satisfying vo(D) < ¢ and t(D) > t. Choose
a feedback vertex set T of D of cardinality 79(D) and an l-subset U of T. Let

Z = tay, 29). iz} ee Ue Dns AA pee)
For each X C Z, with X = {zj,,..., Zi, } where 11 < ... < t)x); we put

Xm (Zip paces tip) and X (h) = aepfori him ei) 20):
Let X be an I-subset of Z. If there is an l-path, subdigraph £;(X) in

D from U to X containing no vertex in Z — X, then there is a permu-

tation (u;,...,u,) of the vertices of U so that £,(X) links (uwi,...,u) to
X, and we put pi(X) := (w,...,u); if no such path subdigraph exists we

put pi(X) := @. Similarly, if there is an /-path subdigraph £2(X) from X
to U that links X to (w,,...,w ,) containing no vertex in Z — X, we put

p2(X) := (wi,-.., wz); if no such linkage exists we put po(X) := @. We assign
to X the colour (p;(X),p2(X)). Clearly, there are q possible colours (gq is
defined in the beginning of this proof). By Theorem 10.4.5, there exist an

r-subset S of Z and a colour (u,w) such that every l-subset X of S is of
colour (u, w).

We claim that both u and w are non-empty. Indeed, suppose that u = @

and choose an r-set U' such that U C U' C T—S. By Lemma 10.4.6 there is an

r-path subdigraph L' in D from U' to S containing no vertex in T—(U'US).
The path subdigraph CL’ includes a path subdigraph from U to some X C S

having no vertex in T — (UU X). Thus, u = p,(X) # 9. Analogously, one
proves that w # 0.

Let u := (u1,...,u) and w := (wi,...,w;) and let £L1(X), £L2(X) be the
corresponding linkings. We have already established that for every I-subset

X of ,S, £1(X) links u to X and £L3(X) links X to w.
For 1 = 1,...,1 define j; as follows: w;, = uj. By the definition of / and

Theorem 5.2.3 of Erdos and Szekeres, there are 1 < i; < ig <... < ip <

| so that the sequence Jj,,Ji.,---,Ji, either increases or decreases. Define

(i1,..-,%,) to be (9:,,..., Ja,) in the first case and (j;,,...,9:,) in the second.
Hence ty <.tna ite
_ Let G := {S(I),S(2l),...,S(kl)}. Choose an l-subset X of S so that
S(hl) = X (tq) for h ="1)2. ky Since Li (7) links (ay, nae) tor X ait ine

10.5 Application: The Period of Markov Chains 565

cludes a path subdigraph CL, linking (u;,,...,ui,) to G. Moreover, the only
vertices of T in £L, belong to U UG.

Analogously choose an I-subset Y of S so that S(hl) = Y(t.) for h =
1,...,k. Since £2(Y) links Y to (wi,..., wz), it includes a path subdigraph L5
linking G to (wi oe » Wit). Observe that (wy tN: Wit) is either (u;,,..., Ui,)

or (ui,,---,Ui,). Moreover, every (directed) cycle in L; U Lz meets T (since

T is a feedback vertex set), and the only vertices of T in V(L, U L2) are

Ui,,---, Ui, and the elements of G; and so L,, Lo satisfy the lemma. O

A digraph D is bivalent if, for every v € V(D), dt(v) = d~(v) € {1,2}.
The following lemma is the most technically involved basic result in [626].

Lemma 10.4.8 For every integer c > 1 there exists k > 0 such that, for

every bivalent digraph D, if there exists a pair of k-path subdigraphs L, L2

in D so that each path of Li meets each path of Lo and Ly U Le has no

(directed) cycles, then vo(D) > c. Oo

Using this lemma and Theorem 10.4.5, one can prove the following:

Lemma 10.4.9 For every integer c > 1 there exists k > 0 so that the follow-

ing holds. Let D be a digraph and let uy,...,up,Wi,..., Wz be distinct vertices

of D. Let £1, £2 be path subdigraphs in D linking (ui,...,ux) to (wi,..., We)

and (wi,..., Wx) to one of (ui,..., Uk), (UR,---, U1), respectively. If every (di-

rected) cycle of L; UL meets {tu,..., UR, W1,---,We}, then(D)>c. O

Theorem 10.4.10 (Reed, Robertson, Seymour and Thomas) /626/
For every integer c > 1 there exists a (minimum) integer to(c) such that, for
every digraph D with vo(D) <c, we have T(D) < to(c).

Proof: We use induction on c > 1. For c = 1, this theorem is trivially true.

Assume that c > 2 and to(c — 1) exists. Let k be as in Lemma 10.4.9, and let
t be as in Lemma 10.4.7. We prove that there is no digraph D with vop(D) < c

and 7(D) > t — 1 (i.e., to(c) < t — 1). Suppose that D is such a digraph.
By Lemma 10.4.7, there exist uw ,...,uxz,W1,..., We and L;, Ly as in Lemma

10.4.7. This means, by Lemma 10.4.9, that v9(D) > c, a contradiction. O

10.5 Application: The Period of Markov Chains

Markov chains are a special type of stochastic processes, which have numerous

applications in genetics, economics, sport science, etc. We will see in this

section that the corresponding digraph cycle structure is of great importance

to Markov chains.

Let S;,S2,...,S, be all possible states of some system. The system is

initially in a state S; with probability p, i = 1,2,...,n. At every step

566 10. Cycle Structure of Digraphs

the system moves from the state $;, which it is currently in, to a state Sj

with probability p;; depending only on i and j. Clearly, for all 7,7, we have

0.< pi; < 1 and et pij = 1 for every i = 1,2,...)n. The stochastic

process, which we have under these conditions, is called a Markov chain

(for more details on Markov chains, see e.g. Feller [234] and Kemeny and

Snell [476])®. Let 7 = (p,...,p%), let p*” be the probability of the
system to be in state S; after the kth step, and let nk) = (p*), A pe). It

is well-known that the vector 7‘*) can be found as follows: {*) = 1(° PF,
where P = [p;;]. However, this equality is difficult to use directly if we wish

to know the probability distribution 7“) after a large number of steps. In

fact, 7 = limp—oo 1) P¥ is often of interest (if it exists).

To investigate when this limit exists and to see what happens when this

limit does not exist, it is very useful to study directed pseudographs D as-

sociated with Markov chains. The vertex set of D is {v1,...,Un} and the
arc set is {ujv; : pij > 0,1 < i,7 < n}; D has no parallel arcs but may

have loops. It is not difficult to see that for n—oo with probability tending

to 1 the system will be in one of the stages corresponding to the vertices in

the terminal strong components of D (once the system is in such a ‘vertex’

it cannot escape the corresponding terminal strong component.) This shows

that it suffices to study only strong directed pseudographs D correspond-

ing to Markov chains. When D is strong, the following parameter of D is

of interest. The period p(D) of D is the greatest common divisor of the

cycle lengths of D. If p(D) = 1, then it is well-known that the limit above

does exist and, moreover, does not depend on the initial distribution 7). If

p(D) > 2, then the situation is absolutely different since D has a quite special

structure. Actually, if p(D) is even, then by Theorem 1.8.1 we obtain that

D is bipartite. However, the following stronger assertion, which generalizes

Theorem 1.8.1, holds’:

Theorem 10.5.1 Jf a strong digraph D = (V, A) has period p > 2, then V

can be partitioned into sets Vi, V2,...,Vp such that every arc with tail in V;

has tts head in Vi41 for everyi =1,2,...,p, where Vpi1 = Vi.

Proof: Let D = (V, A) have period p > 2. Every closed walk W of D, being

an eulerian digraph, is the union of cycles (see Theorem 6.8.1); hence the
length of W equals 0 modulo p. Let x,y be a pair of distinct vertices of D

and let P,Q be a pair of distinct (x, y)-paths in D. We claim that the lengths

of P and @ are equal modulo p. Indeed, let R be an (y,x)-path in D. Both
P and Q form closed walks with R; hence our last claim follows from the
remark above.

® Some readers may find useful to consider Si,...,Sn as water containers, p) as
the fraction of water in S; initially, and p;; as the fraction of water in S; to be
moved to Sj in one step. We are interested in how the water will be distributed
after a large number of steps.

” We have been unable to trace the first paper, where this result was proved. Our
proof of this theorem makes use of some results considered in previous chapters.

10.6 Cycles of Length k Modulo p 567

Since D is strong, it can be constructed from a cycle using ear composition

(see Section 7.2). We start from a cycle C and in every iteration add to the

current digraph H a path whose vertices apart from the end-vertices do not

belong to H or a cycle with only one vertex in common with H. Initially,

all sets Vj, V2,...,Vp are empty. We choose an arbitrary vertex xz in C and

consider every vertex y in C; we put y in V; if the length of C[z, y] equals i

modulo p. In the first iteration of ear composition, we add a path or cycle R

to C. Let z be the initial vertex of R if R is a path or the only vertex of R in

common with C if R is a cycle, and let z € V;. We consider every vertex y in

R and put y in Vy4; if the length of R[z, y] equals i modulo p. Note that, if R

is a path, then its terminal vertex z' will be put in the same set V;, where it

has been already, since otherwise we could find a pair of (z, z’)-paths, whose

lengths are not equal modulo p. We proceed with ear composition as above

and in the end we will have V partitioned into Vi, V2,..., Vp such that every

arc with tail in V; has its head in V;4; for every 2 = 1,2,...,p (by the way

we have formed V;’s). Oo

Clearly, when the period of the digraph of a Markov chain is larger

than 1, the limit introduced above does not exist; instead the Markov chain

moves ‘cyclically’. Theorem 10.5.1 shows that a strong digraph D of order

n and period p > 2 is a spanning subdigraph of Cp[Kn,,-.-., Kn,], for some
N,N2,...,Np Such that >°?_, n; = n. In particular, in terms of homomor-

phisms, we have DC; (see Section 12.5).

There are two algorithms to compute the period of a strong digraph in

optimal time O(n+m). The first algorithm is by Balcer and Veinott [39] and
based on the following idea. If, for a vertex 2 of d*(x) > 2, we contract all

vertices in N*(x) and delete any parallel arcs obtained, then the resulting

digraph has the same period as the original digraph by Theorem 10.5.1.

Repeating this iteration, we will finally obtain a cycle C’ (see Exercise 10.25).

Clearly, the length of C is the desired period. For example, the digraph H

obtained from a 3-cycle and a 6-cycle by identifying one of their vertices

after five iterations above becomes a 3-cycle (see Figure 10.2). The second
algorithm is due to Knuth (see [29]) and based on DFS-trees.

10.6 Cycles of Length k Modulo p

The linear-time algorithms mentioned in Section 10.5 show that the problem
to verify whether all cycles of a digraph are of length 0 modulo p for some p is

polynomial time solvable. This problem has the natural ‘existence’ analogue:

given a (fixed) integer p > 2, verify whether a digraph D has a cycle of length
equal 0 modulo p. In this section, we consider this and the more general

problem of the existence of cycles of lengths equal k modulo p. In Subsection

10.6.1, we study the complexity results on these problems; Subsection 10.6.2

568 10. Cycle Structure of Digraphs

a
b

c c c

d h ad h ad h

a e 9 e g be 9g

WA
Ji

ad h adg \ h adg

cf cf : cf

Figure 10.2 Illustrating the Balcer-Veinott algorithm.

is devoted to some sufficient conditions for the existence of cycles of lengths

equal k modulo p.

10.6.1 Complexity of the Existence of Cycles of Length k Modulo

p Problems

We start our consideration from the following problem. Given a (fixed) inte-

ger p > 2, verify whether a digraph D has a cycle of length equal 0 modulo

p. The case of p = 2 of this problem is called the even cycle problem.

The even cycle problem has numerous applications (see e.g. Robertson, Sey-

mour and Thomas [643] and Thomassen [711] and the reference to further
literature therein) and is related to several problems on permanents of matri-

ces, so-called Pfaffian orientations of graphs, colouring of hypergraphs, etc.

The complexity of the even cycle problem has been an open problem for quite

some time: Thomassen [712] proved that the even cycle problem is polynomial
time solvable for planar digraphs and Galluccio and Loebl [300] extended this
result to digraphs, whose underlying undirected graphs do not contain sub-

graphs contractible to either Ks or K3,3. Finally, independently McCuaig,

and Robertson, Seymour and Thomas (see [643]) found highly non-trivial
proofs of the following result:

10.6 Cycles of Length k Modulo p 569

Theorem 10.6.1 The even cycle problem is polynomial time solvable. O

We are not aware of any paper determining the complexity of the problem
to check whether a digraph has a cycle of length equal 0 modulo p for fixed
p> 2.

Problem 10.6.2 Is there a polynomial algorithm to check whether a digraph
has a cycle of length equal 0 modulo p for fixed p > 2?

The last problem can be naturally generalized to the problem to verify

whether a digraph D has a cycle of length equal k modulo p for fixed k, p

such that 0 < k < p, p > 2. We have considered the case of k = 0; the

case of k > 0 was studied by Arkin, Papadimitriou and Yannakakis [29], who

proved the following theorem (observe that the case of k = 1 and p = 2 is

polynomial time solvable since one can check whether a digraph is bipartite

in polynomial time):

Theorem 10.6.3 Let k,p be a pair of fixed integers such thatO0 <k <p, p>

2. The problem to verify whether a digraph D has a cycle of length k modulo

p is NP-complete.

Proof: Let D be a digraph and let k > 2. Choose k arbitrary arcs

@,,@2,...,a% in D and replace every arc zy in A(D) — {aj,a2,...,ax} by

an (z,y)-path of length p, whose intermediate vertices do not belong to D
(and the intermediate vertices of all such paths are distinct). Clearly, the
obtained digraph D’ has a cycle of length equal k modulo p if and only if D

has a cycle through all arcs a;,a2,...,a,. For a fixed k > 2, the problem of

the existence of a cycle through k given arcs in a digraph is NP-complete

(see Proposition 9.2.1 and Theorem 9.2.3); hence this theorem is proved for

k > 2. For k = 1, we choose a pair of arcs a, b, replace a by a path of length 2,

b by a path of length p—1, and every c € A(D) — {a,b} by a path of length p

such that all internal vertices of the paths are distinct and distinct from the

vertices of D. Clearly, the obtained digraph D’ has a cycle of length equal 1

modulo p if and only if D has a cycle through a and 0; the last problem is

NP-complete as we remarked above. Oo

Because of this theorem, the following result of Galluccio and Loebl [299]

is of certain interest:

Theorem 10.6.4 Letk, p be a pair of fixed integers such that0 <k < p, p>
2. There is a polynomial algorithm to verify whether a planar digraph D has

a cycle equal k modulo p. Oo

570 10. Cycle Structure of Digraphs

10.6.2 Sufficient Conditions for the Existence of Cycles of Length

k Modulo p

A digraph D = (V, A) is called even if, for every B C A, the subdivision of all

arcs in B results in a digraph with an even cycle. A k-weak-double-cycle

is a digraph which is defined recursively as follows (see Figure 10.3):

\

“eee
Figure 10.3 The 5-double-cycle and a 5-weak-double-cycle.

1. The complete biorientation Ge of a k-cycle is a k-weak-double-cycle.

2. If H is a k-weak-double-cycle and D is obtained form H by subdividing

an arc or splitting a vertex, then D is a k-weak-double-cycle.

It is easy to see that for odd k a k-weak-double cycle is even because it has

an odd number of cycles and every arc is in an even number of distinct cycles

(see Exercise 10.27). The following result is much more difficult to prove.

Theorem 10.6.5 (Seymour and Thomassen) /667] A digraph is even if
and only if it contains a k-weak-double-cycle for some odd k. Oo

Galluccio and Loebl [301] have extended this result. They call a digraph
D = (V,A) (k, p)-odd if, for every B C A, the subdivision of all arcs in B
results in a digraph with cycle of length different from k modulo p.

Theorem 10.6.6 /301] A digraph is (k,p)-odd if and only if it contains a

q-weak-double-cycle, with (q — 2)k #0 (mod p). 0

Using Theorem 10.6.5 and other results, Thomassen [711] proved the fol-
lowing very interesting theorem:

Theorem 10.6.7 (Thomassen’s even cycle theorem) If D is a strong
digraph with 6°(D) > 3, then D is even. Oo

10.6 Cycles of Length k Modulo p 571

Koh [483] constructed an infinite family of digraphs D with 6°(D) > 2 and
with no even cycle. Thomassen [702] strengthened this result by exhibiting,
for every k > 2, a digraph Dx with 6°(D,) > k and with no even cycle.
This implies that the strong connectivity requirement in Theorem 10.6.7 is
necessary. Theorem 10.6.7 implies that every 3-strong digraph has an even
cycle. Thomassen [705] pointed out that there exists a 2-strong digraph of
order 7 that has no even cycle namely, the digraph in Figure 10.4.

Figure 10.4 A 2-strong digraph with no even cycle.

Thomassen [702] constructed infinitely many 2-strong digraphs that are
not even. However, the following question is still open:

Problem 10.6.8 /705] Are there infinitely many 2-strong digraphs with no
even cycle?

Theorem 10.6.7 was extended by Galluccio and Loeb! [301], who proved
that every strong digraph D with 6°(D) > 3 contains a cycle of length dif-
ferent from k modulo p, for every 1<k <p, p>3.

Although we do not provide a proof of Theorem 10.6.7, we will prove

Theorem 10.6.11 which implies a result weaker than Theorem 10.6.7, i.e.

Corollary 10.6.12, but its assertion is not only on even cycles but also on

cycles of length 0 modulo q(> 2). To prove Theorem 10.6.11, we need two

lemmas; the first lemma is the famous Lovasz local lemma (cf. Alon and

Spencer [14] or McDiarmid [560]). For an event E, FE means that E does not
hold.

Lemma 10.6.9 Let E,,...,E, be events in an arbitrary probability space.

Suppose that each event E; is mutually independent of all other events except

for at most d events, and that Prob(E;) < p for every i = 1,2,...,n. If

ep(d+1) <1, where e is the basis of natural logarithms, then Prob(N_, E;) >

0. Oo

Lemma 10.6.10 /12/ Let D be a digraph and let q > 2 be an integer. Suppose
that every vertex x of D is assigned a colour c*(x), an integer in {0,1,...,q—

572 10. Cycle Structure of Digraphs

1}, such that for every u € V(D) there exists an out-neighbour v with c*(v) =

c*(u) +1 (mod q), then D contains a cycle of length 0 (mod q).

Proof: Clearly, choosing an arbitrary vertex uo in V(D), we can find a

sequence Uo,t1,... of vertices such that ujuiz1 € A(D) and c*(uizi) =

c*(u;) + 1 (mod q) for every i > 0. Let s be the least integer such that

uj = Us for some j < s. It remains to observe that the cycle ujuj+41i.-.Us is

of length 0 (mod q). Oo

The following result is due to Alon and Linial:

Theorem 10.6.11 /12] For a digraph D = (V, A), if

e(A{D) 6? (Dy iat fa” Ped (10.3)

or if

e(At(D)6-(D) + 1) - Wo ot a (10.4)

then D contains a cycle of length 0 (mod q).

Proof: Since (10.4) tranforrhs into (10.3) by replacing D by its converse, it
suffices to prove that (10.3) implies that D has a cycle of length 0 modulo q.

For every vertex u, delete dt(u) — 6*(D) arcs with tail u and consider
the resulting digraph D’ = (V, A’). Assign to every vertex u of D’ a colour

c(u), an integer in {0,1,...,qg — 1}, independently according to a uniform

distribution. For each u € V, let E,, denote the event that there is no v € V

with uv € A’ and c(v) = c(u)+1 (mod q). Clearly, Prob(£,) = (1—1/q)*" ©).
It is not difficult to verify that each event E,, is mutually independent of all

the events E,, except for those satisfying

Nt(u)N(vUNt(v)) £0.

The number of such v’s is at most A~ (D)6+(D) and hence, by our assumption

(10.3) and Lemma 10.6.9, Prob(Quev £u) > 0. This means that there is a
colouring c* such that for every u € V there exists av € V with uv € A’ and

c*(v) = c*(u) +1 (mod gq). Now it follows from Lemma 10.6.10 that D has a
cycle of length 0 modulo q. Oo

An easy proof of the following corollary is left as Exercise 10.33.

Corollary 10.6.12 Every k-regular digraph D with k > 8 contains an even

cycle. oO

We have seen above that no constant k can guarantee that a digraph

of out-degree at least k contains an even cycle. This leads to the following

natural question (raised by Erdés, see [702]): what is the smallest integer h(n)
such that every digraph of order n and minimum out-degree h(n) contains
an even cycle? In order to prove an upper bound for h(n) we need a result

on hypergraph colouring. The following lemma is due to Beck [98]?:

® Recently, Radhakrishnan and Srinivasan [618] improved the bound of this lemma

to 0.7-2” ,/m/Inm. Hence, the bound of Lemma 10.6.14 can slightly improved.

10.7 ‘Short’ Cycles in Semicomplete Multipartite Digraphs 573

Lemma 10.6.13 There exists an absolute constant d such that every m-
uniform hypergraph with at most Ldmi/32™ | edges is 2-colourable. 0

Lemma 10.6.14 /12] For every n > 2,

1
h(n) < logy n — 3 log, log, n + O(1).

Proof: Let m > 2 be an integer and let d be a constant satisfying Lemma

10.6.13. Suppose that

n= |dm1/32™| (10.5)

and let D = (V, A) be a digraph of order n and 6+(D) > m—1. Let H be
the hypergraph on the set of vertices V, whose n edges are the sets N*[u] =

N*t(u) Uw. Since every edge of H is of cardinality at least m, Lemma 10.6.13

implies that H is 2-colourable. This means that there exists a vertex colouring

c* : V-+{0,1} such that for every u € V there is v € N*(v) with c*(v) =
c*(u) +1 (mod 2). Hence, by Lemma 10.6.10, D has an even cycle. Solving

for m from (10.5) we obtain that

1
h(n) <m—1 < logy n — 3 log, log, n + O(1).

O

Clearly, if a digraph D contains cycles of length k and k + 1 for some k,
then D has an even cycle. Deciding the existence of such cycles of consecutive

length in a strong digraph as VP-complete (see Exercise 10.37). Furthermore,

it is easy to construct digraphs of arbitrary high vertex-strong connectivity

with no such cycles (Exercise 10.38). It would be interesting to find non-
trival degree conditions (weaker than conditions implying pancyclicity, such

as those in Section 6.5) which guarantee that a non-bipartite digraph has

two cycles of consecutive lengths. See also Exercise 1.49 for another type of

sufficient condition for the existence of two cycles of consecutive lengths.

10.7 ‘Short’ Cycles in Semicomplete Multipartite

Digraphs

As we mentioned in Chapter 5 the hamiltonian cycle problem is NP-complete

for arbitrary digraphs and polynomial time solvable for certain families of

digraphs including semicomplete multipartite digraphs. In this section we

consider the existence of ‘short’ cycles in semicomplete multipartite digraphs.

By short cycles in a semicomplete p-partite digraph we mean cycles of length

at most p.

The cycle structure of semicomplete bipartite digraphs is quite well un-

derstood due to Theorem 5.7.4 and Exercises 6.33, 6.34. The cycle structure

574 10. Cycle Structure of Digraphs

of semicomplete p-partite digraphs, p > 3, is less investigated especially for

cycles of length more than p. In this section, we will consider results on cy-

cles of length at most p. Most of the results on short cycles in semicomplete

multipartite digraphs were actually obtained for multipartite tournaments.

Therefore, we state them for multipartite tournaments. However, all of them

can be immediately extended to semicomplete multipartite digraphs due to

the following theorem of Volkmann.

Theorem 10.7.1 [728] Let D be a strong semicomplete p-partite digraph of

order n, p,n > 2, with a cycle C of length at least 3. Then D contains a
Cad

strong orientation containing the cycle C, if and only if D he nil oO

Interestingly enough the analogue of this theorem does not hold for longest

paths, see Exercise 10.39 (some relaxation of the analogue still holds, see

Exercise 10.40). It is often more convenient to work with the following easy

corollary of this theorem.

Corollary 10.7.2 [728] Every strong semicomplete p-partite digraph, p > 3,

contains a spanning strong oriented subgraph. Oo

One of the most interesting results on the topic is the following theorem.

Theorem 10.7.3 (Guo and Volkmann) /350] Let D be a strong p-partite
tournament, p > 3, with partite sets Vi,...,Vp. For each i € {1,2,...,p},

there exists a verter v € V; belonging to an s-cycle of D for every s €

{3:Anele ph

Proof: It suffices to prove that V; has a vertex v which is on an s-cycle of

D for every s € {3,4,...,p}. We proceed by induction on s.

We will first show that D has a 3-cycle through a vertex in Vj. Let C =

U1 V2 ...UzV, be a shortest cycle through a vertex, say v;, in Vj. Suppose that

k > 4. By the minimality of k, v3 € Vi, since otherwise v3—v; implying the

3-cycle v1 v23v; through a vertex in V,, a contradiction. This means that

v4 ¢ Vi; without loss of generality assume that vg € V2. Since k > 4 is

minimal and v3 € V,, we conclude that v4, i.e. k = 4, and vo € Vo.

If there is a vertex x € V — (V; UV2) which dominates a vertex of C and

is dominated by a vertex in C, then there exists 1 € {1,2,3,4} such that

Vi41 ZY; (indices modulo 4), which implies that there is a 3-cycle through
Vy Or V3, a contradiction.

This’means that the set V(D)—(V,UV2) can be partitioned into sets S,, S2
such that S2,>V(C)—S,. Assume without loss of generality that S, 4 9.
Since D is strong there is a path from S; to C. Let P = 2%2...4%, be a

shortest such path. Clearly, g > 3. If P has no vertex in S2, then one of the

vertices 22,23 belongs to V; and the other to V2 (V —(S1;US2) C Vij UV2). By

the minimality of P, 73-2, implying that 7122732, is a 3-cycle containing

a vertex in V;, a contradiction. Therefore, P has a vertex in S2. By the

10.7 ‘Short’ Cycles in Semicomplete Multipartite Digraphs 575

minimality of P and S.C, it follows that rj-1 € So. If q = 3, then v2, 220;

is a 3-cycle, a contradiction. So, assume that q > 4. Since x,-2 cannot be

in S; U S9, Zg-2 € Vi UVo. If ag-2 € Vi, we have V2—+Zq—2 implying that

Lq—2%q—-1V2Lq-2 is a 3-cycle, a contradiction. Finally, if rJ-2 € V2, then

U1 Lq—2%q-1V) iS a 3-cycle, a contradiction. We have shown that D has a

3-cycle containing a vertex in V;.

Suppose now that 3 < s < p and some vertex u; of V; is contained in a

k-cycle for every k = 3,4,...,s. Assume, on the other hand, that

no vertex of V; is in a k-cycle for any k = 3,4,...,s,s+1. (10.6)

Let uju2...usu; be an s-cycle of D and let S be the union of partite

sets of D not represented in C. We claim that there is no vertex in S, which

dominates a vertex in C' and is dominated by a vertex in C. Indeed, if such

a vertex existed one could insert it into C, a contradiction with (10.6). This
means that S can be partitioned into sets $),52 such that S,+C—S}. As-

sume without loss of generality that S, 4 @. Since D is strong there is a path

from S; to C. Let P = yi y2...Yq be a shortest such path. Clearly, g > 3.

Assume that P has a vertex of S2. Clearly, yg_1 € S2 and no other vertex

of P is in So. If yg_o ¢ Vi, then yg—2yg-1C[usz, uilyg—2 is an (s + 1)-path

containing u,, a contradiction with (10.6). Hence, yg_2 € Vi and u2Yyq-2.

Now we see that u2yg—2Yq-1P[u4, U2] (or uiueyg—2Yqg-1t1, if s = 3) is an

(s + 1)-cycle containing u;, a contradiction with (10.6). Thus, we conclude
that P has no vertex of S».

Assume that P contains a vertex y of Vi. Let | be chosen such that

{y1, y2,---,yi-1} Vi = . Assume that g < s. Due to the facts that every ver-
tex of C dominates y;, for every k = 3,4,...,s +1, and yi {yi, yo, ..., yi-2},

there is a k-cycle Cy containing parts of C and P; C, includes y; € Vi, a

contradiction with (10.6). Therefore, g > s +1. Assume that 1 < s +1. Since

yi—yi, for every i = 3,4,...,8 +1, we obtain that Plyi,y:]y1 is an i-cycle
containing y,, a contradiction with (10.6). Thus, we conclude that | > s + 2.
In the cycle C’ = Plyi, w]yi, the vertex y; dominates every vertex. Hence, for
every i = 3,4,...,5+1 we can construct an i-cycle using part of the vertices

of C’ including y, a contradiction with (10.6).
Thus, P has no vertex in V,. Hence, u; dominates every vertex in P. If g >

k+1, then ui Plyg—x, Yq|C[uk41, ui] would be an (s+1)-cycle containing uj, a

contradiction with (10.6). Therefore, g < k. Since every vertex of C' dominates

y1, PClug+1, Uk—gtily1 is an (s+1)-cycle containing u;, a contradiction with

(10.6).
Thus, the assumption (10.6) resulted in a contradiction. This proves our

theorem. oO

This theorem generalizes several other results on multipartite tourna-

ments and (ordinary) tournaments. Three of them are Moon’s theorem on

vertex pancyclic tournaments, Theorem 1.5.1, and the following extension of

Theorem 1.5.1 by Gutin.

576 10. Cycle Structure of Digraphs

Corollary 10.7.4 [364] Let D be a strong p-partite tournament, p > 3, such

that one partite set of D consists of a single verter v. Then for each k €

{3,4,...,p}, D contains a k-cycle through v. oO

By Theorem 10.7.1, Corollary 10.7.4 can be extended to semicomplete

p-partite digraphs, p > 3. Theorem 10.7.3 generalizes the following assertion,

due to Bondy, which was actually the first non-trivial result on cycles in

multipartite tournaments. Again, Corollary 10.7.5 can be extended to semi-

complete p-partite digraphs, p > 3.

Corollary 10.7.5 [124] A strong p-partite tournament contains an s-cycle

for every s € {3,4,...,p}. Oo

The assertion of this corollary is the best possible in the sense that for

every p > 3 there exists a strong p-partite tournament with no cycle of length

more than p. The following example is due to Bondy [124]. Let H be a p
partite tournament with partite sets Vi = {v},V2,...,Vp such that |V;| > 2

for each 2 <i < p. If Va4u— Ul_, V; and V;>V; for 2<i<j <p, then H
is strong but does not have a k-cycle for every k > p.

Another interesting generalization of Moon’s theorem is due to Goddard

and Oelermann [322].

Theorem 10.7.6 Every vertex of a strong p-partite tournament D belongs

to a cycle that contains vertices from exactly t partite sets of D for each

eae, 62, Di} im

It is left as Exercise 10.41 to show that Theorem 10.7.3 is the best possible

in the following sense: for every p > 3 there exists a strong p-partite tourna-

ment 7 such that some vertex v of T is not contained in a k-cycle for some

3 < k < p. If one wishes to consider only cycles through a given vertex of a

multipartite tournament, one perhaps should sacrifice the exactness. This is

illustrated by the following result due to Guo, Pinkernell and Volkmann.

Theorem 10.7.7 [347] If D is a strong p-partite tournament and v an ar-

bitrary vertex of D, then v belongs to either a k-cycle or a (k + 1)-cycle for
every k € {3,4,...,p}. oO

For regular multipartite tournaments Guo and Kwak proved the following

much stronger result. Observe that the partite sets of a regular multipartite

tournament are of the same cardinality.

Theorem 10.7.8 [346] Let D be a regular p-partite tournament. If the car-
dinality of the partite sets of D is odd, then every arc of D is on a cycle that

contains vertices from exactly k partite sets for each k € {3,4,...,p}. 0

10.8 Cycles Versus Paths in Semicomplete Multipartite Digraphs 577

This theorem generalizes the corresponding result by Alspach [19] on reg-

ular tournaments. The next theorem is another generalization of Alspach’s
theorem.

Theorem 10.7.9 /345] Let D be a regular p-partite tournament. If every arc

of D is contained in a 3-cycle, then every arc of D is on a k-cycle for each

k € {3,4,...,p}. Oo

10.8 Cycles Versus Paths in Semicomplete Multipartite

Digraphs

For a digraph D, the numbers Ip(D) (Ic(D), respectively) denote the number
of vertices in a longest path (cycle, respectively) of D. The existence of an

acyclic semicomplete multipartite digraph containing a Hamilton path and

a hamiltonian semicomplete multipartite digraph suggests that there are no

relations between the lengths of longest paths and cycles apart from trivial

ones. However, the situation becomes quite different when we consider strong
semicomplete multipartite digraphs. Volkmann [730] conjectured that, if D

is a strong semicomplete multipartite digraph then Ip(D) < 2-Ic(D) — 1.

The example of Bondy from Section 10.7 shows that the bound on Ip(D)

is sharp. Volkmann’s conjecture was settled in affirmative by Gutin and Yeo

[382] (see Theorem 10.8.3). The aim of this section is to present an interesting

proof given in [382]. However, we first state a more general conjecture of Volk-

mann. Recall that a(D) denotes the cardinality of a maximum independent
vertex set of D.

Conjecture 10.8.1 /728] Let D be a strongly connected semicomplete mul-

tipartite digraph with k(D) < a(D). Then k(D)lp(D) < (K(D) + 1)lc(D) -
K(D). 0

The condition k(D) < a(D) is given since every semicomplete multipar-

tite digraph D with k(D) > a(D) is hamiltonian by Corollary 5.7.25 and
thus the conjecture is not of interest for K(D) > a(D). Tewes and Volkmann

[693] showed that the conjecture holds for K(D) = a(D) —1>1.
ForjapathuP= xyz3 9-82, welet Pizia;|:= Pia} r;—1).

Lemma 10.8.2 /382] Let D be a semicomplete multipartite digraph. Let

Q1,Q2, ...,Q) be non-empty sets which form a partition of V(D) such that

Qi>Q,; for every1 <i <j <1. Assume that |V(D)| > 1 and D(Q;) has a
Hamilton path qiqi... Gax| for every i =1,2,...,1. Then, D has a (915 iq,))-

path with at least |V(D)| —1+ 1 vertices.

578 10. Cycle Structure of Digraphs

Proof: We use the induction on !. Clearly the theorem holds when / = 1, so

assume that | > 1.

If |V(D) — Qi| > (J — 1) then, by the induction hypothesis, there is a

(41, %9,_,|)-Path, D1P2--Pk, in D — Q; which cortains k > |V(D) — Qi| — (1 -

1) +1 > 2 vertices. Since {px—1, Px}=>g, and pz—1 and px, belong to different

partite sets, pe_1—>gi or py—q}. Therefore, the path pipe ..-psq,% --- qa,\>

where s = k —1 or k, is of the desired type.

If |V(D) — Qi| < (1 — 1), then clearly |Q;| > 1. Since gi=>{qj,q5} and qj

and qi, belong to different partite sets, gi +g} or gig). Therefore, the path

91.95 %5+1 -+- 4a)» Where s € {1, 2}, is of the desired type. Oo

Theorem 10.8.3 [382] Let D be a strong semicomplete multipartite digraph

and let | = lp(D) be the number of vertices in a longest path in D and let

c = Ic(D) be the number of vertices in a longest cycle in D. Thenl < 2c—1.

Proof: Let P = pip2..p) be a path in D of maximum length and let R =

V(D) — V(P). Let zo = p and define S;, x; and y; recursively as follows

Ce eee
First let S} be a (pj, px)-path in D—V(P—{p,, px}), such that k is chosen

as small as possible. Let 21 = px, let y: = p and let S; = S} — {x1, y1} (note

that S; = @, by the maximality of 1). Now for i = 2,3,4,... let Sj be a
(pt, Pe)-path in D({pz, pp} UR — (V(S1) UV (S2) U... UV(S;_1)), such that
pe € V(P[zi-1,pi]) and pp € V(Plpi, z:-1[), and firstly k is chosen as small

as possible, thereafter t is chosen as large as possible. Let also 7; = pr, yi = Pt

and S; = Si — {z;,y;}. (Some paths 5S; can be empty, meaning that Sj is just

an arc.)
We continue the above process until 7; = p,. Let the last value of 7 found

above be denoted by m (i.e. Zm = pi). Observe that the paths S; always
exist as D is strong. Observe also that y; = p, and that T' below is a path in

D:

T= Yisil|[21, yo|O2F |£2,93\o3 5 -f imo Um om ene

Letive: =P lcmytnci 1 orem ea end let Us ly eis) —

{Y¥m—i+1,%m-—i—1} for + = 1,2,..,m — 1. Note that some of the U;’s (i =

0,1,2,..,m—1) can be empty. Observe that V(T), Uo, Ui,..., Um-1 partitions

the set V(P)UV(S,)U...UV(S,). Let Zo, Z1,..., Zm'—1 be the non-empty

sets among Up, Uj,...,Um-1i, where the relative ordering has been kept (i.e.

bie Ae Oo Z; = Uy and <9 then <7) Let By 29 U Ze MRIS

and Bi = Z,;UZ3U...UZ,, where f (g, respectively) is the maximum even

integer (odd integer, respectively) not exceeding m! — 1.

If pip, then we are done (the cycle Pp; is of length /). Thus, we may

assume that p; is not dominated by py. As tm = py, it follows from the way

we constructed the paths above (always going as far back as possible) that

p22 UZ2 U5. Znia1 Ut pi} (10.7)

10.8 Cycles Versus Paths in Semicomplete Multipartite Digraphs 579

Similarly, by the definitions of z;, y; and Sj,

Marie UW 23 UI Zyl {p by t= 0) 1p; 7m" — 2. (10.8)

ASH hoi). <6, Tm pc .V (1) and.m > m', we have

|V(T)| > m' +1. (10.9)

As V(T), Bo, Bi partitions the set V(P) UV(S1) U... UV(Sm),

V(T)| + [Bol + [Bal > 1. (10.10)
All Z;U{z;} are disjoint sets containing at least two vertices. Thus, there

are at most //2 such sets. Hence, we obtain

mo (10.11)
Nl ~~

odd since the case of even m’ can n We only consider the case when m! i

be treated similarly.

If |Bo|+2 > ™++ then, by (10.7), (10.8) and Lemma 10.8.2, there is a path
Wo from p; to p in D({p,,p,} U Bo) containing at least |Bo| + 2 — mitt +1

vertices (to use Lemma 10.8.2 we take V(Qi) = {pi} U Zo, V(Q2) = Za,
tetany V (Q(m'-1)/2) SST Sa: V (Q(m'+1)/2) = Zm-1 U {p;}). Analogously if

|Bi| > mod then there is a path W; from p; to p in D({pi,p,} U By)

containing at least |B,|— m1 +1 vertices (this time we take V(Q1) = {pi},

V(Q2) = Z1, ---; V(Q(m'—1)/2) = Zm'—-2, V(Q(m'41)/2) = {pr}).
We now consider the cases where none, one or two of the paths Wo and

W, exist.

Case 1 Both Wo and W, exist: The cycle Co = WoT contains |V (T)|+

|\V(Wo)| — 2 vertices (as p; and p; are counted twice). The cycle C; = WiT
contains |V(T)| + |V(W,)| — 2 vertices. By (10.9) and (10.10), this implies
the following:

|V(Co)| + |V(C1)| = 21V(T)| + |V(Wo)| + |V(Wi)| — 4
Z| (Mike Bolt 2a Sor 1)
+ (|Bi|- ™=++1)-4
= |V(T)| + (IV (T)| + |Bo| + |Bi|) — m'
> |V(T)|+l-—m'
>1+1.

This implies that the largest cycle of Co and C contains at least [(/+1)/2]
vertices. Thus, we are done.

Case 2 Exactly one of Wo or W, exists: Let j € {0,1} be defined

such that W; exists, but Wi_; does not exist. Using (10.10) and (10.11), and

observing that either |Bo| + 2 — mth +1 <1 or |By| - moi +1< 1, we
obtain the following (C; = W;T, as above):

580 10. Cycle Structure of Digraphs

IV(C;)| > |V(T)| — 2+ (Bol +2- 24 +) +(Al-™-+)-1
> |V(T)| + |Bo| + |Bil-—m' +1
>l-—m'+1

>l-$+1
> He.

This is the desired result.

Case 3 Neither Wo nor W, exists: This means that |Bo|+2—= +4 <0

and |B,| — moat < 0. Thus,

|V(T)| > |V(T)| + (\Bo| + 2 - ™#) + (|Bal - 2)
= |V(T)| + |Bo| + |Bi| + 2 —m'

>l—-m'+2

eee oil

If p; +p, then there is a cycle of length at least [4* +1] (using all vertices

in V(T)). By (10.7), p, does not dominate p;, so we may assume that p; and
p, are in the same partite set. We have S,, = 0 as otherwise S,,P is longer

than P which is impossible, hence y,, and p are in different partite sets. If

pi>Ym then either Plym,pi]ym or Plpi, yml|pi is a cycle with at least jo)

vertices. Therefore, we may assume that y—p;. Then the cycle T[p,, ym|pr

contains at least [42] vertices. We are done. Oo

10.9 Girth

Recall that the girth g(D) of a digraph D is the length of a shortest cycle in

D. The girth is an important parameter of a digraph and has been studied

in a number of papers especially with respect to its extreme values.

Theorem 5.6.10 claims that, if the minimum degree of every vertex in a

strong digraph D is large enough, then the length of a longest cycle in D is

large as well. Caccetta and Haggkvist [139] conjectured a somewhat similar

result for girth (with obvious replacement of upper bound to a lower bound):

Conjecture 10.9.1 (Caccetta and Haggkvist) /139] Every digraph of

minimum out-degree k and order n has a cycle of length at most [n/k].

This conjecture is trivially true for k = 1; it was proved for k = 2 by Cac-

cetta and Haggkvist [139], for k = 3 by Hamidoune [396], and for k = 4 and
5 by Hoang and Reed [430]. Hamidoune [395] proved that the conjecture is
true for digraphs with transitive group of automorphisms. As an application,

he showed in [395] that for a finite group G of order n and a subset S of G
of cardinality s, there is a collection of at most [n/s]| elements of S whose
product equals the unit element of G. For an arbitrary integer k > 1, we have

the following:

10.9 Girth 581

Theorem 10.9.2 (Chvatal and Szemerédi) /163] There is a constant c
such that every digraph of minimum out-degree k > 1 and order n contains

a cycle of length at most [n/k] +c. Moreover, c < 2500. oO

A straightforward refinement of the proof in [163] was used by Nishimura
[593] to show that c < 304. For relatively small values of n/k, the following
result of Chvatal and Szemerédi [163] is of interest.

Theorem 10.9.3 Every digraph of minimum out-degree k and order n has

a cycle of length at most [2n/(k + 1)].

Proof: By induction on n > 2. For n = 2 or 3 and k > 1, the digraph in

question has either a 2-cycle or a 3-cycle and hence the claim holds. Let D be

a digraph of order n > 4 and minimum out-degree k > 1. Since the size of D

is at least kn, D contains a vertex v of in-degree at least k. If D has a 2-cycle,

we are done. So, assume that D is an oriented graph. Let D’ be the digraph

obtained from D by deleting the vertices of N~[v] = N~(v)U{v} and adding
the new arc zy for every ordered pair z,y such that zy ¢ A(D), y € NT(v)
and x dominates an in-neighbour of v. Clearly, D' is of order at most n—k-1

and minimum out-degree at least k. By the induction hypothesis, D’ contains

a cycle C of length at most 2(n — k — 1)/(k +1). Replacing each of the new
arcs zy in C by the path ruvy, we obtain a closed walk C* in D. If C has

precisely s new arcs, then v appears on C* exactly s times, and so C® is the

union (see Exercise 1.12) of at least s cycles, whose total length is at most

2(n —k —1)/(k +1) + 2s. Clearly, the shortest of these cycles has length at
most 2n/(k +1). Oo

Searching for new approaches to the Caccetta-Haggkvist conjecture,
Hoang and Reed [430] came up with the following conjecture that implies

the Caccetta-Haggkvist conjecture (Exercise 10.43).

Conjecture 10.9.4 Every digraph D of minimum out-degree k contains a

sequence C1, Co,..., Cy of cycles such that Wir C; and C; have at most one

verter in common.

In the case of k = 2, the last conjecture was proved by Thomassen [704].

Theorem 10.9.5 Every digraph D of minimum out-degree 2 contains a pair

of cycles with precisely one vertex in common.

Proof: By induction on n, the order of D. If n = 3, the claim trivially holds,

so assume that n > 4. Since the minimum out-degree in the terminal strong

component of D is at least 2, we may assume that D is strong. Moreover, since

6+(D) > 2, D has a vertex x such that D — « is strong (see Exercise 10.44).
If D(N~(x)) contains a cycle C, then the required pair of cycles consists of

C and a cycle formed by a shortest path P from z to C and the arc from

582 10. Cycle Structure of Digraphs

the terminal vertex of P to z. So, we may assume that D(N~(z)) is acyclic,

and, thus, D(N~(z)) has a vertex y of in-degree 0.

If we delete all arcs with tail y and identify z and y, we obtain the digraph

D' of order n — 1 and minimum out-degree at least 2. By the induction

hypothesis, D’ has a pair of cycles with precisely a vertex in common; these

cycles correspond to cycles C, and C2 in D. We may assume that C1 and C2

have yx in common for otherwise they have precisely a vertex in common.

Since D — z is strong, y is in a cycle C3 of D — z. It is not difficult to see

that C, U C2 U C3 contains a pair of cycles having precisely y in common.

Indeed, if C3 has only y in common with C; or C2, then there is nothing to

prove. If C3 intersects with C, U C2 at a vertex distinct from y, then let z be

such a vertex with C3[y, z] being as short as possible (meaning that C3[y, z]

has only y and z in common with V(C,) U V(C2)). Choose 7 such that z is

in C;, where i = 1 or 2. Then C3>,; and C;[z, y]C3[y, z] is the required pair of

cycles. Oo

The density of a digraph D is the ratio of its size and order (i.e. m/n).

Clearly, high density of a strong digraph D guarantees that g(D) is small.
Thomassen (see [112]) asked to determine the least number m(n, k) such that
every strong digraph of order n and size at least m(n,k) contains a cycle of

length at most k. Bermond, Germa, Heydemann and Sotteau [112] solved

this problem by proving the following:

Theorem 10.9.6 Let D be a strong digraph of order n and let k > 2. Then

n? +(3—2k)n+k? —k oS
implies that g(D) < k. Oo

This theorem is best possible since there exist strong digraphs of order n

and size (n? + (3 — 2k)n + k? — k)/2 — 1 with shortest cycle of length k + 1
(Exercise 10.45).

In many questions on properties of (di)graphs, one may ask whether all

(di)graphs satisfying a certain property must have cycles of length at most

a constant. Perhaps the most famous such question is the problem regarding

the chromatic number of an undirected graph: given k > 3 and g > 3, is

there an undirected graph of chromatic number k and of girth at least g?

This problem was resolved in affirmative by Erdds [220] using probabilistic

argument (a simplification of the original proof is given by Alon and Spencer

[14]). Clearly, many digraphs of large vertex-strong connectivity are quite

dense and, thus, of small girth. However, it is not difficult to construct di-

graphs of large vertex-strong connectivity and large girth. The ‘vertex-strong

connectivity’ and ‘girth’ parts of the next result were proved by Ayoub and

Frisch [34] (see Exercise 7.24) and Liu and Zhou [517] (see Exercise 10.42),
respectively.

10.10 Additional Topics on Cycles 583

Proposition 10.9.7 If n = gs, g > 2, then there exists an s-regular round
digraph of order n which is s-strong and has girth g. 0

10.10 Additional Topics on Cycles

10.10.1 Chords of Cycles

The existence of chords of cycles is not only an interesting problem by itself,
it has also several applications. One of these applications is the existence of

kernels in digraphs (see Subsection 12.3.1), another one will be described in
this subsection.

Let D be a directed multigraph with 6°(D) > k. It is not difficult to see
that D has a cycle with at least k — 1 chords. Indeed, let P = pipo... px

be a longest path in D. Clearly, there are k arcs from p, to vertices of P.

These arcs and part of P form the desired cycle with k — 1 chords. While

for k = 1 this result cannot be improved (consider Cy or ‘tree-like’ strong

digraphs obtained from several cycles in such a way that every pair of cycles

has at most one common vertex). Marcus [551] showed that for k > 2 the
above simple result can be improved to the following:

Theorem 10.10.1 (Marcus’ theorem) /551] Let D be a strong directed
multigraph with at least two vertices and 6°(D) > k > 2. Then D contains a
cycle with at least k chords. oO

This result improves and extends the main assertion by Thomassen [713]
that every 2-arc-strong directed multigraph has a cycle with at least two

chords. The proof of Theorem 10.10.1 in [551] is quite involved and lengthy,
and thus is not given here. Instead, we will consider an interesting applica-

tion of Theorem 10.10.1 to the problem of minimum size strong spanning

subgraphs of strong directed multigraphs (often called the minimum equiva-

lent subdigraph problem, see the end of Section 4.3 and Section 6.11).

Lemma 10.10.2 /550] Let k be a positive integer, let a and b be non-negative
real numbers, and suppose that every k-arc-strong directed multigraph with at

least two vertices has a strong subgraph H with at least two vertices and a

strong factor? Ho of H such that

€9 <ae+ b(h-1),

where h is the order of H and e (eo) is the size of H (Ho). Then every k-
arc-strong directed multigraph of order n and size m has a strong factor with

at most am + b(n — 1) arcs.

° Recall that a factor is a spanning subdigraph.

584 10. Cycle Structure of Digraphs

Proof: This holds trivially for directed multigraphs with one vertex since

a > 0. Thus, consider a directed multigraph D of order n > 2 and assume

that the result is true for all directed multigraphs with less than n vertices. By

the assumption, D has a subgraph H as in the lemma. Clearly the contracted

directed multigraph D/H is k-arc-strong and has n —h+1 <n vertices; so

D/H has a factor with a(m—e)+b(n—h) arcs. The corresponding arcs of D,

along with the eo arcs of Ho, form a factor of D of size at most am + b(n — 1).

Oo

Setting a= py a and b = ra in this lemma and using this lemma together

with Theorem 10.10.1, we obtain the following (see Exercise 10.46):

Corollary 10.10.3 /551] For k > 2, every k-arc-strong directed multigraph

of size m and order n > 2 contains a strong factor of size at most (m+k(n—

1))/(K+1). Oo

10.10.2 Addm’s Conjecture

Addm’s conjecture [1, 2] seems one of the most interesting conjectures on

cycles in digraphs.

Conjecture 10.10.4 (Adam) Every digraph has an arc whose reversal de-
creases the total number of cycles.

Originally, Adam formulated the conjecture for directed multigraphs. This

extension was disproved independently by Grinberg and by Thomassen (see

[334, 461, 706]). Thomassen [706] used the following result of Penn and Witte
[601], which is of independent interest and was established with the aid of
knot theory on the torus. Note that this theorem generalizes Theorem 5.11.6.

Theorem 10.10.5 The cartesian product On i Cr has a cycle of length k if

and only if there is a pair a,b of relatively prime natural numbers such that

ap+bq=k. oO

The main idea of Thomassen is to apply the following corollary:

Corollary 10.10.6 /706] Infinitely many digraphs of the type Ge x Gr have
the praperty that the reversal of any arc increases the length of a longest cycle.

Proof: By the above theorem, Ge x Cee k > 0, has no cycle of length

35+ 50k or 34+50k (Exercise 10.47). However, the reversal of any arc creates
a (34 + 50k)-cycle. This is depicted in Figure 10.5 (due to Thomassen [706])
for k = 0 and a similar structure can be used to obtain a cycle of length

34 + 50k when k > 1. (Actually, Figure 10.5 shows a 35-cycle, too, and this

cycle can be generalized for every k > 0.) Oo

10.10 Additional Topics on Cycles 585

Theorem 10.10.7 /706] There is an infinite family of counterexamples to

Adém’s conjecture in the case of directed multigraphs.

Proof: Let D(k, f) be the directed multigraph obtained from Cs x Crater

by replacing each arc by f parallel arcs. Let ¢ denote the maximum number

of cycles through an arc of Ge x Cloer and let s be the length of a longest

cycle in Cs x Cretok: Then no arc of Dk, fi is contained in more than tf*~!

cycles, but if we reverse an arc e of OF x Colas, then e is is contained in a

cycle of length at least s + 1 and hence e is contained in at least f* cycles.

Hence, if f > t, D(k, f) is a counterexample to Addm’s conjecture. O

ee eS
St SA >

ARIAS =

Bs ee ee
Ca area

Figure 10.5 Cs x C7 and (directed) cycles of lengths 34 and 35 when an arc is
reversed. (All arcs represented by vertical or horizontal straight line segments are
directed upwards or to the right.)[706]

Grinberg’s counterexamples are inspired by projective geometry. All the

examples by Thomassen and Grinberg have parallel arcs. At the same time,

Ad&m’s conjecture holds for some families of digraphs. Actually, it holds when

a digraph has a 2-cycle.

Proposition 10.10.8 /462] If a digraph D contains a 2-cycle, then D has

an arc whose reversal decreases the total number of cycles in D.

586 10. Cycle Structure of Digraphs

Proof: Let uvu be a 2-cycle in D and, for every a € A(D), let ca be the

number of cycles in D containing a. Without loss of generality, we may assume

that Cuy < Cyy. Then, the reversal of vu decreases the number of cycles in D

by Cyu — Cuy +1 > 0. oO

Apart from this proposition, Jirdsek [462] proved several other assertions

on families of digraphs that satisfy Ad4m’s conjecture. The most interesting

is the following:

Theorem 10.10.9 Jf, after reversal of at most three arcs a non-acyclic di-

graph D becomes acyclic, then D has an arc whose reversal decreases the total

number of cycles in D.

To the best of our knowledge, Adadm’s conjecture is still open for oriented

graphs. ‘

Problem 10.10.10 /706] Verify Addm’s conjecture for oriented graphs and,

in particular, for tournaments.

10.11 Exercises

10.1. (—) Prove that for a strong digraph D the cycle space is generated by
oriented cycles without chords.

10.2. Prove Proposition 10.1.1.

10.3. (—) Let D be a digraph such that is UG(D) has c connected components.
Prove that the dimension of the cycle space of D is m—n+ ce. Hint: apply
Theorem 10.1.3 to every component of D.

10.4. Prove the following assertion. Let D, H be digraphs and let Gp and Gy be
sets of oriented cycles generating the cycle spaces of D and H, respectively.
Suppose further that f : A(D)—A(A#) is a bijection such that f(Gp) = Gu.
Then f and f~' preserve oriented cycles (Thomassen [709]).

10.5. (—) Let 1 < k < n be integers. Let ai,a2,...,a,% be a sequence of objects
and let c be a colouring that assigns one of the colours {1,2,...,n} to
every object such that no colour is assigned to two objects. Prove that the
probability of the event c(ai) < c(az) <.:. < c(ax) equals 1/k!.

10.6. (—) Let M be an n x n matrix and let k be a natural number. Describe an
_ algorithm that finds the kth power of M using only O(log k) multiplications

of two n X n matrices.

10.7. Prove the first equality in the proof of Lemma 10.2.1.

10.8. Prove Lemma 10.2.4 using Lemma 10.2.3.

10.9. Prove that the following problem is WP-complete. Given a digraph D and
an integer k, decide whether D has at least k disjoint cycles. Hint: use
a reduction from the 3-dimensional matching problem. (Given three sets
X', X?, X° of the same cardinality n and a subset R of X! x X2 x x.

10.10.

10.11.

10.12.

10.13.

10.14.

10.15.

10.16.

10.11 Exercises 587

decide whether the elements of every X’ can be labelled x‘, 7},...,2', so
that (aj, 23, z}) € R for each j = 1,2,...,n. This problem is VP-complete,
see Gary and Johnson (303].) In the reduction you may utilize the gadget L
given in Figure 10.6. We start from the digraph G on vertices X' UX?U X?
and with no arcs. For each (x,y,z) € R, we add L to G. Prove that the
resulting digraph has n + 2|R| cycles (all of which are 3-cycles) if and only
if there exists the required labelling of the elements in X’, X? and X? (A.
Yeo, personal communication).

L

Figure 10.6 The gadget for Exercise 10.9.

The directed dual of a plane directed multigraph is planar. Show
that, if D is a plane directed multigraph, then its directed dual D* is also
planar.

Taking duals repeatedly. Let D be a plane directed multigraph and
let D* be the directed dual of D. Show that the directed dual of D* is
isomorphic to the converse of D.

Let D be a plane directed multigraph and let D* be the directed dual of D.
Show that, if (S,S) is a directed cut in D*, then the corresponding arcs in
D form a directed cycle.

Let D = (V, A) be the plane digraph in Figure 10.1(a). Find two arcs in
A whose deletion leaves an acyclic directed multigraph. Then check that
contracting the corresponding two arcs in D*, the directed dual of D, results
in a strongly connected digraph.

(—) Show that the problem of finding a maximum size acyclic subdigraph of
a directed multigraph D = (V, A) is equivalent to that of finding an ordering
U1, U2,..-,Un of V such that the number of arcs viv; with 7 < 7 is maximum.

Prove Proposition 10.3.13.

Let D be an arbitrary directed multigraph. Prove that every minimum feed-
back arc set of D induces an acyclic subdigraph of D.

588

ORG

10.18.

10.19.

10.20.

Olds

1ON225

10.23.

10.24.

10.25.

10.26.

IMO) PAT-

10.28.

10.29.

10. Cycle Structure of Digraphs

Show that the tournament T in Figure 10.7 has a minimum feedback arc

set which induces a transitive subtournament of T’.

Figure 10.7 A tournament T on 5 vertices.

Show that, if there exists a polynomial approximation algorithm with ap-
proximation guarantee p(n).for the feedback arc set problem, then there also
exists a polynomial approximation algorithm with approximation guarantee

p(n) for the feedback, vertex set problem and vice versa.

(—) Construct an infinite family of digraphs D such that vo(D) < to(D).

(—) Prove that, if the functions to(k) and t;(k) exist, then they are equal.
Hint: apply Proposition 10.3.1.

For every n > 3, construct a digraph of minimum out-degree 2 not having
two disjoint cycles.

Prove that every digraph D with 6*(D) > 3 has a pair of vertex-disjoint
cycles. Hint: use Lemma 10.3.9 (Thomassen [700]).

Prove Corollary 10.3.6 using Theorem 10.3.5. Hint: first observe that every
digraph D with 5*+(D) > k has at least & vertex disjoint cycles. Remove
the arcs of these and continue recursively.

(+) Prove Lemma 10.4.6. Hint: use Menger’s theorem.

(—) Prove that the Balcer-Veinott algorithm (in Section 10.5) terminates
with a cycle, whose length is the period of the input digraph.

(—) Prove that a digraph D is even if and only if, for every assignment of
weights 0 and 1 to its arcs, D contains a cycle of even weight.

Let D be a k-weak-double-cycle for some odd k. Prove that D has an odd
number of cycles and that every arc is in an even number of cycles. Hint:
use the recursive definition of a k-weak-double-cycle.

_Let D be a k-weak-double-cycle for some odd k. Prove that D has an even
cycle. Hint: assume that all cycles in D are odd and use Exercise 10.27 to
obtain a contradiction.

Prove that given an arc e in a digraph D it is NP-complete to decide
whether D has an odd cycle through e (even cycle through e, respectively)
(Thomassen [702]).

10.30.

10.31.

10.32.

10.33.

10.34.

10.35.

10.36.

10.37.

10.38.

10.39.

10.40.

10.41.

10.42.

10.43.

10.44.

10.11 Exercises 589

Digraphs for which all cycles have the same parity. Show that there
is a polynomial algorithm to decide if the length of all cycles of a given
digraph have the same parity.

(—) Give a short direct proof that the problem to verify whether a digraph
D has cycle of length 0 modulo p, where both D and p form an input, is
NP-complete.

(—) Prove that the period of a strong non-bipartite digraph D with 6°(D) >
3 equals 1. Hint: use Theorem 10.6.7.

Prove Corollary 10.6.12.

(—) Prove the following generalization of Lemma 10.6.10. Let D = (V, A, w)
be a weighted digraph and let k > 2 be an integer. If there is a vertex
colouring c*: V-+{0,1,...,k—1} of D such that for every u € V there is
av € N*(u) with c*(v) =c*(u) + w(u,v) (mod k), then D has a cycle of
weight 0 (mod k) (Alon and Linial [12]).

Cycles modulo k in weighted digraphs. Using the result of the previous
exercise and the method of proof of Theorem 10.6.11 prove the following
generalization of Theorem 10.6.11: Let D = (V, A, w) be a weighted digraph
and let k > 2 be an integer. If either (10.3) or (10.4) holds then D contains
a cycle of weight 0 (mod k) (Alon and Linial [12]).

Prove that a 3-weak-double cycle is (k, p)-odd for every pair k, p such that
1<k<p, p> 3 (Galluccio and Loeb! [301]).

Prove that it is WP-complete to decide whether a strong digraph has two cy-
cles whose lengths differ by one. Hint: reduce the hamiltonian cycle problem
to this problem.

Construct for every k an infinite family of k-strong digraphs such that no
digraph in the family has two cycles whose lengths differ by one.

(+) For p > 3, construct an infinite family F, of strong semicomplete p-
partite digraphs such that every digraph D in F, contains a hamiltonian

path, yet, a longest path of any strong orientation of D has n — 2 vertices,
where n is the order of D (Gutin, Tewes and Yeo [372]).

(++) Prove the following theorem. Let D be a strong semicomplete mul-

tipartite digraph of order n such that D er and let | be the length of
a longest path in D. Then D contains a strong spanning oriented subgraph
with a path of length at least / — 2 (Gutin, Tewes and Yeo [372]).

For every p > 3 construct a strong p-partite tournament 7 such that some
vertex v of T is not contained in a k-cycle for some 3 < k < p.

(—) Prove that if n = gs, then the s-regular round digraph of order n is of
girth g.

Prove that Conjecture 10.9.4 implies Conjecture 10.9.1.

Let D be a strong digraph of minimum out-degree 2. Prove that D contains
a vertex z such that D — z is strong. Hint: consider D’, a maximal strong
proper subdigraph of D. Prove thai D’ contains all vertices of D but one.

590 10. Cycle Structure of Digraphs

10.45. For every k > 2, construct strong digraphs on n vertices such that the
2 2

number of arcs is = +(3— 2k nt+k'—k _ 1 and the shortest cycle has length
ke 1,

10.46. Derive Corollary 10.10.3 from Lemma 10.10.2 and Marcus’ theorem (Theo-
rem 10.10.1).

10.47. Prove that Cs x Crvnn, k > 0, has no cycle of length 35 + 50k or 34+ 50k.
Hint: apply Theorem 10.10.5.

11. Generalizations of Digraphs

In this chapter, several results proved for digraphs are extended to edge-

coloured graphs, arc-coloured digraphs and hypertournaments. We will see

that some results remain the same with respect to their formulation, but their

proofs become much more involved. Other results do not hold any more. This

gives an additional insight to the theory of digraphs. In particular, we can

more clearly see which properties of digraphs allow us to obtain various results

on them.

In Section 11.1 we study properly coloured trails (i.e. trails whose con-

secutive edges differ in colour) in edge-coloured undirected multigraphs. In

Subsection 11.1.1 we prove Kotzig’s characterization of edge-coloured multi-

graphs containing properly coloured (PC) Euler trails and Pevzner’s theorem

that shows how to generate all PC Euler trails of an edge-coloured multi-

graph from some initial one. Yeo’s theorem on PC cycles in edge-coloured

graphs, which in a sense characterizes edge-coloured graphs not having PC

cycles, is proved in Subsection 11.1.2. Subsection 11.1.3 is devoted to gener-

alizations of strong connectivity to edge-coloured multigraphs. We consider

various interesting results on hamiltonian and longest PC paths and cycles in

2-edge-coloured multigraphs in Subsection 11.1.4. Many of these results can

be easily obtained from the corresponding results on digraphs using some

transformations also described in this subsection. The characterization of

2-edge-coloured complete graphs containing hamiltonian PC cycles, due to

Bankfalvi and Bankfalvi, is given in Subsection 11.1.5. There we prove Saad’s

theorem characterizing longest PC cycles in 2-edge-coloured complete graphs.

PC paths and cycles in c-edge-coloured complete graphs, c > 3, are studied

in Subsections 11.1.6 and 11.1.7; along with results on the topic, we describe

several interesting open problems.

The somewhat surprising result, due to Gutin, Sudakov and Yeo, that the

problem of checking the existence of a PC directed cycle in a 2-arc-coloured

digraph is MP-complete is proved in Section 11.2. There we also consider the

PC Euler trail problem for arc-coloured directed multigraphs; the complex-

ity of this problem remains unknown. We generalize the classic theorems on

tournaments, Rédei’s theorem, Camion’s theorem and Landau’s theorem, to

hypertournaments in Section 11.3. Despite the existence of elegant character-

ization of hamiltonian hypertournaments proved by Gutin and Yeo, it turns

592 11. Generalizations of Digraphs

out that the hamiltonian cycle problem for hypertournaments, in general, is

NP-complete. We finish this chapter by a short overview of an application of

alternating Hamilton cycles in 2-edge-coloured multigraphs to genetics (see

Section 11.4).

11.1 Properly Coloured Trails in Edge-Coloured

Multigraphs

In this section we consider edge-coloured multigraphs, i.e. undirected

multigraphs such that each edge has a colour and no two parallel (i.e. joining

the same pair of vertices) edges have the same colour. If the number of colours

is restricted by an integer c, we speak about c-edge-coloured multigraphs.

We usually use the integers 1, 2,.:.,c to denote the colours in c-edge-coloured

multigraphs. In case c = 2, we also use the names red and blue for colours 1

and 2, respectively. The red subgraph (blue subgraph, respectively) of a

2-edge-coloured multigraph G consists of the vertices of G and all red (blue,

respectively) edges of G.
Let G be a c-edge-coloured multigraph (c > 2). A trail T in G is properly

coloured (PC) if no two consecutive edges of T have the same colour. A PC
m-path-cycle subgraph f,,, of G is a union of m PC paths and a number of

PC cycles in G, all vertex-disjoint. When m = 0, we will call Fp a PC cycle

subgraph. If G is 2-edge-coloured, then we call a properly coloured trail in G

alternating . To see that the alternating path and cycle structure of 2-edge-

coloured multigraphs generalizes the path and cycle structure of directed

multigraphs, we consider the following simple transformation attributed to

Haggkvist in [548]; see Figure 11.1. Let D be a directed multigraph. Replace

each arc xy of D by two (unoriented) edges rzz, and zzyy by adding a new
vertex Zz, and then colour the edge xz, red and the edge zzyy blue. Let G

be the 2-edge-coloured graph obtained in this way. It is easy to see that each

alternating cycle in G corresponds to a directed cycle in D and vice versa.

Hence, in particular, we obtain the following proposition.

1 2

2 1

1 2

2 1

Figure 11.1 Haggkvist’s transformation.

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 593

Proposition 11.1.1 The following problems on paths and cycles in 2-edge-

coloured graphs are NP-complete:

(a) The alternating Hamilton cycle problem.

(b) The problem to find an alternating cycle through a prescribed pair of

vertices.

Proof: Exercise 11.1. Oo

Clearly, a directed path in D corresponds to an alternating path in G as

well. Thus, we may conclude that the alternating path and cycle structure

in 2-edge-coloured graphs generalizes the (directed) path and cycle structure

of directed multigraphs. In fact, we will see, in this section, that the for-

mer is certainly more complicated than the latter. Still, several methods and

results obtained for directed multigraphs can be adapted to edge-coloured

multigraphs.

Petersen’s famous paper [603] seems to be the first place where one can
find applications of PC trails (cf. [575]). Besides a number of applications in

graph theory and algorithms (cf. the papers [738, p. 58] by Woodall and [386]
by Haggkvist), the concept of PC trails and its special cases, PC paths and

cycles, appears in various other fields including genetics (cf. the papers [200,

201] by Dorninger, [202] by Dorninger and Timischl and [606] by Pevzner; see
also the last section of this chapter) and social sciences (cf. the paper [156]

by Chow, Manoussakis, Megalakaki, Spyratos and Tuza).

Let G be a c-edge-coloured multigraph. The jth degree of v, d;(v), is

the number of edges of colour j incident to v (1 < j < c). The maximum

monochromatic degree of G is defined by

Apon(G = maxi{d;(v) = meEV(G), j 1,2; tog, €}.

The colour of an edge e in G will be denoted by y(e). Let X and Y be two

sets of the vertices of G. Then XY denotes the set of all edges having one

end vertex in X and the other in Y and x(XY) stands for the set of colours
of edges in XY. In case all the edges in XY have the same colour, say 2, we

write x(XY) =i.
Edge-coloured multigraphs G and H are colour-isomorphic if there ex-

ists an isomorphism f : V(G)>V(H) such that x(cy) = x(f(z)f(y)) for

every pair x,y of distinct vertices of G. Let T = pip2...p, be a trail in G.

Then, the trail pjpj_1 ...p1, called the reverse of T’,, will be denoted by T”°”.

Also, if 1 > 2, then

XYena(l) = x(pi-1pr), Xstore(1) = x(pipe).

Let G be a 2-edge-coloured multigraph of even order n; G is alternating-

pancyclic if G has an alternating cycle of length 2k for every k = 2,3,4,...,

n/2; G is vertex alternating-pancyclic if, for every vertex v € V(G) and
every integer k € {2,3,4,...,n/2}, G contains an alternating cycle through

v of length 2k.

594 11. Generalizations of Digraphs

11.1.1 Properly Coloured Euler Trails

In [502], Kotzig proved the following characterization of edge-coloured multi-

graphs which contain properly coloured Euler trails.

Theorem 11.1.2 (Kotzig) /502] An edge-coloured multigraph G has a
properly coloured Euler trail if and only if G is connected, each vertex of G is

of even degree, and for every vertex x and every colour i, d;(x) < Hi aia):

Proof: Obviously, the conditions above are necessary.

Suppose G satisfies the conditions of Theorem 11.1.2. We will first show

that, for every vertex x, the edges of G incident to z can be partitioned into

disjoint pairs of distinct edges so that the colours of the edges in each pair

are different. This guarantees that each time we enter x through an edge e

we can leave it through the edge f forming one of the above pairs with e.

(We will denote f by match, (e).)
In order to determine this partition, for each vertex x we define an aux-

iliary graph G, so that the vertices of G, are the edges incident to x. Two

vertices are connected in G, if their corresponding edges in G have different

colours. It is easy to see that the above partition exists if and only if each

G, has a perfect matching. It remains to prove that each G, indeed has a

perfect matching.
Observe that each G, is a complete multipartite graph with partite sets

of some cardinalities n1,n2,...,nz satisfying the following inequality:

ni Son; (11.1)
j#Ft

for every 1 = 1,2,...,t. Choose an edge b between two largest partite sets of

G,. Delete the vertices of b from G,. Clearly, the partite sets of the obtained

graph satisfy the inequality (11.1). This means we can proceed by choosing

another edge as above. This process will clearly produce a perfect matching

of G,. (One could easily arrive at the same conclusion using Tutte’s theorem

on perfect matchings in multigraphs, see e.g. the book [127] by Bondy and
Murty.)

Fix a perfect matching

{(e,match,(e)) : e € V(Gz)}

in G, for every x in G. We call a PC trail Q of G an M-trail if match,(e) €
E(Q) for every x € V(Q) and every e € E(Q) incident to z. Clearly, every
M-trail is closed. In the obvious way (see the construction of R below), one
can build an M-trail. Let T be an M-trail of G with maximum number of
edges. Assume that E(T) # E(G). Since G is connected, G — E(T) contains
an edge e; incident to a vertex 2, in T. We construct a trail R in G — E(T)
as follows: 21, e€1,%2,€2 = matchz,(€1),£3,e3 = match;,(e2), 24,..., 2k, ek =

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 595

matchz, (€x-1), 2x41, where e; = eer ator revelry tess ND t ee kay b=
x, and e; = match,,(e,). Observe that T and R are edge-disjoint by the
definition of M-trails.

Since x, is in T, we can write down T as... f, X1,g,.... Assume, without
loss of generality, that x(f) = 1, x(g) = 2 and x(e1) # 1. If x(ex) 4 2, then
replace the appearance of x between f and g in T with the trail R obtaining,
as a result, an M-trail of G with more edges than T’,, a contradiction. If
x(ex) = 2, then replace the appearance of x; between f and g in T with the
trail R"® obtaining, as a result, an M-trail (observe that y(e1) > 2) of G
with more edges than T, a contradiction.

Thus, E(T) = E(G), i.e., T is eulerian. Oo

Benkouar, Manoussakis, Paschos and Saad [103] described an O(n? log n)-
algorithm for finding a properly coloured eulerian trail in an edge-coloured
multigraph G on n vertices that satisfies the conditions of Theorem 11.1.2.
Pevzner [606] suggested the following simple and practical algorithm to find

a PC eulerian trail in G. Let P = 2, 22...2,% be a PC trail. A colour y’ is

critical with respect to P if it is the most frequent colour x’ 4 x(xp_12x)
of edges with one end at x, and the other in V(G)—V(P). Pevzner’s algorithm
for an edge-coloured multigraph G satisfying Theorem 11.1.2 proceeds as

follows. Let 2; be an arbitrary vertex in G. Put P,; = 2, and build up

P, = %1%2...2,% by adding an arbitrary edge r,2%41 of colour y(z122), if

this colour is critical with respect to P, or of any critical colour with respect

to P, otherwise. We stop when no critical colour edge is available. Pevzner

[606] proved that this simple algorithm always produces a PC eulerian trail
if one exists (Exercise 11.3).

Using the above transformation by Haggkvist, one can readily obtain the

following result (see a direct proof of it in Theorem 1.6.3):

Corollary 11.1.3 A directed multigraph D is eulerian if and only if D is

connected and d*(x) = d~ (zx) for every vertex x in D. Oo

Fleischner, Sabidussi and Wegner [242] and Pevzner [606] independently
investigated what operations can be used to transform an alternating eulerian

trail of a 2-edge-coloured multigraph to any other one. Interestingly enough,

while the first paper has had a pure theoretical motivation, in the second
paper, the author showed some applications of alternating eulerian trails,

in general, and those transformations, in particular, to an important \’/P-

hard problem in genetics. We discuss below only the characterization of the

transformations in [606].
Let G be 2-edge-coloured multigraph containing an alternating eulerian

trail. In the rest of this subsection, for the sake of convenience, we consider

alternating trails as ordered sets of edges. Let T = 772737475 be an alter-

nating trail (where T; are fragments of T viewed as subsets of E(G)). The
transformation T3T* = 7,7473T2Ts is called an order exchange if T™* is

596 11. Generalizations of Digraphs

an alternating trail. Let T = T,T27T3 be an alternating trail. The transforma-

tion T>T* = T,TZ°’T;3 is an order reflection, if T* is an alternating trail.

Let X and Y be a pair of alternating trails in G. The number of vertices in

the largest common subtrail of X and Y is the index ind(X, Y) of X and Y.

Theorem 11.1.4 (Pevzner) /606] Every pair of alternating eulerian trails
X and Y in a 2-edge-coloured multigraph can be transformed into each other

by means of a sequence of order transformations (exchanges and reflections).

Proof: In the set of alternating eulerian trails 7, which can be obtained

from X by means of a sequence of order transformations, choose an element,

X* = 2122...Zq, having the largest common subtrail with Y = yi yo... yq-

(Clearly, r; = aq and y; = yq.) Let us assume that ind(X*,Y) = @ < q. Due

to the fact that both X* and Y~are closed, without loss of generality, we may

assume that 2; = y; for 1 <7 < 2.

Let e; = xe2e41 and’ eg = yeyeyi1. Clearly, x(e1) = x(e2). Since X*

is eulerian, X* contains eg. There are two possibilities depending on the

direction in which we traverse the edge e2 in X* (going from 2; to z,).

Case 1: In X* the edge e2 is traversed from ye41 to ye. In this
case,

AST REL eT oe UEP ee ee

Let Ty = 21 ...%¢, To = XeXe41... Yeriye and T3 = ye... %q. Since x(e1) =

x(e2), the transformation X*—+X** = T,Ts¢’T3 is an order reflection. But
X** € 7 and ind(X**,Y) > ind(X*, Y), a contradiction to the choice of X*.

Case 2: In X* the edge e2 is traversed from ye to yg41. In this
case,

AO Fi EtG ti «- (Lp = Ye) (Sar = Vee tee

8 Gy entry Gy nye -%p and X3 = TpTpi1-..Zq-

Claim. The trail X3 contains a vertex 2; (j > p) belonging to Xo.
Proof of Claim: Let i > @ be the minimum number fulfilling the following
condition: vertex y; of the trail Y is in Xj. The existence of such an i follows
from the fact that Y contains the edge e, = y:-1y; for some t > &. Due to
the minimality of 7 the edge y;_1y; does not belong to X. Condition i > |
implies that this edge is not in X,. Hence, this edge is in X3 implying that
X2 and X3 have a common vertex. The claim is proved.

Due to the claim, the trail X* can now be rewritten as

X* = By... E141... (LE = Xj)... 6 (Gp = Fe)(A p41 = e431) a SE Aes on

Let Ty = 21...%2, Tz = %¢a41... a4, Ty = ay ...25, T, = Lp-..%5, and
Ts = £j...@q. Consider the edges f; = x,_ 12% and fo = Dee; At Xfi)

x(f2), then x(fo) # x(vere41) and X** = T,T,T3ToTs is the alternating trail

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 597

obtained from X* by means of some order exchange. Clearly, ind(X**,Y) >
ind(X*,Y), a contradiction to the choice of X*.

If x(fi) A x(fe), then X** = T,T, T°’ T2°’Ts is an alternating trail. This

trail is obtained from X* by means of two order reflections:

T,T27T3T4Ts 37,7 (Pada ye aed &

SO AT Te, (Tre Ty
—— Ty A WW isaac wages .

Clearly, ind(X**, Y) > ind(X*,Y), a contradiction to the choice of X*. O

11.1.2 Properly Coloured Cycles

Using Haggkvist’s transformation, we see that the problem to check whether

a c-edge-coloured graph has a properly coloured cycle is more general (even

for c = 2) than the simple problem to verify whether a digraph contains a

directed cycle (see Proposition 1.4.2 and the remark afterwards). In the rest
of this subsection we consider the following:

Problem 11.1.5 Given ac-edge-coloured graph G, check whether G contains

a properly coloured cycle.

Grossman and Haggkvist [335] were the first to study this problem. They
proved Theorem 11.1.6 below in the case c = 2. Yeo [743] showed Theorem
11.1.6 for every c > 2.

Let G be a c-edge-coloured graph and let z, y be arbitrary distinct vertices

of G. We will use the following additional notation:

Xena(z, y) = {Xena(P) :PisaPC (x, y)-path};

Xstart (2, y) = {Vatart(L) : PAs a. PC (x, y)-path}.

Theorem 11.1.6 (Yeo) [743] Let G be a c-edge-coloured graph, c > 2, with

no PC cycle. Then, G has a verter z € V(G) such that no connected compo-

nent of G — z is joined to z with edges of more than one colour.

Proof: Let G = (V,£) be an edge-coloured graph with no PC cycle. Let

pi € V be arbitrary. Set S = {pi} U{s € V — {pi} : |Xena(pi,3)| = 1}.
Now let P = pipo...p, (1 > 1) be a PC path of maximum length such that

p € S, and set T, = {t € V — {pi} : k © Xstart(~,t)} for every colour

k € {1,2,...,c}. If 1 = 1, then let C* be the set of all colours in G, and if
| > 2 then let C* be the set of all colours in G except Yena(P). We will prove

this theorem in three steps.

(hy) VCP) oT; = O.for all ke C*:

598 11. Generalizations of Digraphs

If 1 = 1 then this statement is trivially true (since pe ¢ Ty), so as-

sume that 1 > 2 and that the statement is false, which implies that there

is a PC (pj, p;i)-path R = pirir2..-Tm—=1% mPi (m > 0) with Xstart(R) = &,

i€ {1,2,...,-1} and V(R)NV(P) = {pi, pi}. Clearly x(pipit1) = Xena(R),
since otherwise we would obtain the PC cycle pjpi4i -- -piT1T2 ---Tm—11T mPi-

This implies that Q = pipe.--DiTmTm—1---T1p1 is a PC (pi, p1)-path,

with vena(Q) = Txivie(R) ck) evade) Wet lave *thus shown that

{xend(Q),Xend(P)} © Xena(p1,p1), which implies that |Xena(p1,pP1)| 2 2.
Therefore p, ¢ S, contradicting the definition of P.

(2) Ifzy € E, x € Th, y ¢ Ty for some k € C*, then y = p and (x1) =k.

First we claim that there is a PC (p,x)-path R with Yena(R) # x(zy)

and Xstart (R) =k.

By the definition of T;, there is a PC (py, x)-path Q with Xstart(Q) = k.

If Xena(Q) # x(zy) we set R =Q, so assume that Xend(Q) = x(zy). By (1),

PQ is a PC (pi, 2)-path, which is longer than P. This implies that x ¢ S, so

\Xena(pi,x)| > 2. Thus there is a PC (p1,z)-path L with Yena(L) # x(zy).
Let w € (V(L)NV(PUQ)) — {x} be chosen so that V(L[w, z]) NV (PUQ) =

vate es
Suppose that w € V(P) — {p,}. Then QL"®*[z, w] is a PC (pj, w)-path

whose first edge has colour k. This implies that w € T;, which contradicts

(1). Hence w € V(Q) and Xstart(Q[w, z]) = Xstart(L[w, z]), since otherwise
Q[w, z]L’®’[xz, w] is a PC cycle. This implies that R = Q[p,w]L[w,z] is a
PC (pi, x)-path with ystart(R) = k and Xena(R) # x(xy). Thus, the claim is

proved.

Let R be as guaranteed by the claim. If y # p, then Ry is a PC (py, y)-

path with xstare(Ry) = k, which contradicts the assumption that y ¢ Ty.

Thus y = py. If x(ry) # k, then we obtain the PC cycle Ry, which is also a

contradiction. Thus (zy) = k.

(3) No connected component of G — p; is joined to p, with edges of more

than one colour.

Assume that the statement is false, and let px and py be a pair of distinct

edges in G such that x and y belong to the same connected component of

G —p, and y(pix) # x(pry). Assume without loss of generality that y(pix) €
C* (otherwise interchange x and y). In G — p; there is a (not necessarily PC)

path R =rir2...Tm (m > 2) between z = 7; andy =r. If y € Ty(p,2), then

since py ¢ Ty(p,c), (2) implies that x(pry) = x(~ix), which is a contradiction.

Therefore y ¢ Ty(p,c), which together with x € T\(p,z) implies that there

exists an i (1 < i < m—1) such that r; € Ty(p,2) and riz1 ¢ Typ,2)- This,
however, contradicts (2), since ririz1 € E but py, ¥ rigi.

One can see that Theorem 11.1.6 actually solves Problem 11.1.5. Indeed, if

G has no vertex z such that all edges from z to any of the components of G—z

are of the same colour, then Theorem 11.1.6 implies that G contains a PC

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 599

cycle. If G has such a vertex z, we may consider only G'— z or its components
(if G — z is disconnected), since no PC cycle can contain z. (See also Figure
11.2.) This leads to an obvious polynomial recursive algorithm (for a vertex

x € G, the components of G — z can be found in O(|V(G)| + |E(G)|) time).

Figure 11.2 An edge-coloured graph with no PC cycle. To see this, it suffices to
check that every vertex v; has only edges of the same colour to {v1,..., vi-1}.

Interesting corollaries of Theorem 11.1.6 are given as exercises (Exercises

11.7,11.8) in this chapter. Theorem 11.1.6 also implies:

Corollary 11.1.7 /100, 501, 534] There does not exist a bridgeless graph
that contains a unique perfect matching.

Proof: Exercise 11.6. Oo

Another possibility to solve Problem 11.1.5 is to use the following con-

struction by Bang-Jensen and Gutin [61] illustrated in Figure 11.3. Here, we

can actually find a PC cycle subgraph with maximum number of vertices of

a c-edge-coloured multigraph in polynomial time. This result is very useful,

as a starting point, for a number of problems on PC cycles and paths.

Let G be an arbitrary c-edge-coloured multigraph (with colours 1,2,...,c).

For each vertex v of G we form the a graph H, with vertex set V(H,) =
{v1,...,UV2c-2} and vu; is adjacent to v; (i < j) in Hy if and only if either
both 7,7 € {1,.:.,c} or2 € {1,...,c},j7 € {c+1,...,2e— 2}. Construct a

new graph R = R(G) from the disjoint union of the graphs H, (v € V(G))
as follows. An edge v;u; is in R if and only if 1 = 7 = yq(vu). Let the edges
of R of the form v;v; where both 7,7 € {1,...,c} have the weight 0 and all
other edges have the weight 1. Then, a maximum weight perfect matching

in R corresponds to a PC cycle subgraph F of G with maximum number of
vertices. To see this, it suffices to observe that for any perfect matching of R

and any H, (corresponding to one vertex v of G), all but two of the vertices
V1, U2,-..,Ue will be matched to vertices within H, and with index at least

c+ 1. Hence if the edge between the two remaining vertices in Hy is not in

the matching, then in G this corresponds to v being on a PC cycle and vice

600 11. Generalizations of Digraphs

i R(Go)

Figure 11.3 The left figure shows a 4-edge-coloured graph Go. The right figure
depicts the construction from [61] for Go. The big circle in every H, has c = 4
vertices and the small one c — 2 = 2 vertices. Only edges of R(Go) between the
graphs H, are shown. The fat edges are part of a maximum weight perfect matching
of R(Go), they correspond to PC cycles abca and defd of Go.

versa. This construction implies the existence of a polynomial algorithm for

finding F since a maximum weight perfect matching in a weighted graph on

p vertices can be found in time O(p?) (cf. the book by Papadimitriou and

Steiglitz [600, Chapter 11)).
Sometimes, one needs to find a maximum PC 1-path-cycle subgraph of a

c-edge-coloured multigraph G. We can easily transform the last problem to

the maximum PC cycle subgraph problem as follows. Add an extra-vertex x

to G and join x to every vertex of G by two edges of colour c+1 andc+2

respectively (new colours). Clearly, a maximum PC cycle subgraph of the

new multigraph corresponds to a maximum PC 1-path-cycle subgraph of G.

We formulate the obtained results as a theorem:

Theorem 11.1.8 /61] One can construct a marimum PC cycle subgraph
and a maximum PC 1-path-cycle subgraph, respectively, in a c-edge-coloured

multigraph G on n vertices in time O((cn)*). Oo

Let G be a c-edge-coloured multigraph and let x be a vertex in G. Consider

the following modification R'(G') of R(G): change the weight of the edges
ritj;,1 <%t< Jy <c from 0 to —oo. There is a perfect matching of finite

weight in R'(G) if and only if G has a PC cycle through z. This implies the
next proposition.

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 601

Proposition 11.1.9 Given a c-edge-coloured multigraph G and a verter x
of G, one can verify whether G has a PC cycle through x in polynomial time.

O

This proposition is in sharp contrast with Proposition 11.1.1 (b).

11.1.3 Connectivity of Edge-Coloured Multigraphs

Strong connectivity plays a central role in the study of digraphs. Hence, it

is natural to try to obtain some extensions of strong connectivity to edge-

coloured graphs. Such extensions have been introduced and studied in the

literature. In fact, there are two useful extensions of strong connectivity: one

of them generalizes the usual definition of strong connectivity that refers

to paths between pairs of vertices and the other extends the definition of

cyclic connectivity in digraphs (see Exercise 1.30), which is equivalent to

strong connectivity (for digraphs). However, for edge-coloured graphs these

two generalizations are not equivalent any more.

In this subsection we study the above-mentioned generalizations of strong

connectivity. We restrict ourselves to 2-edge-coloured multigraphs since we

will later use connectivity results only for 2-edge-coloured graphs. Also this

will make our arguments easier to follow. However, the reader should bear in

mind that some of the results below could be generalized to c-edge-coloured

multigraphs, c > 2.

The following notion of colour-connectivity was introduced by Saad [648]
(he used another name for this notion). Let G be a 2-edge-coloured multi-
graph. A pair of vertices z,y of G are colour-connected if there ex-

ist alternating (z,y)-paths P and Q such that Xstart(P) # Xstart(Q) and

Xena(P) # Xena(Q). (Notice that P and Q are paths, not trails.) We define a
vertex x to be colour-connected to itself. We say that G is colour-connected

if every pair of vertices of G is colour-connected.

Clearly, every alternating cycle is a colour-connected graph. This indi-
cates that colour-connectivity may be useful for solving alternating cycle

problems. We can use colour-connectivity more effectively if we know that

this is an equivalence relation on the vertices of the graph under considera-

tion. This leads us to the following definition: a 2-edge-coloured multigraph

G is convenient if colour-connectivity is an equivalence relation on the ver-

tices of G. Unfortunately, there are non-convenient multigraphs. Consider

the graph H in Figure 11.4. It is easy to check that the vertices x and y are

colour-connected to u, but x and y are not colour-connected in H.

The following proposition can be easily proved using only the definition

of colour-connectivity. The following result due to Bang-Jensen and Gutin

provides another way of checking colour-connectivity. Its proof is left to the

reader as Exercise 11.9.

602 11. Generalizations of Digraphs

Figure 11.4 A non-convenient 2-edge-coloured graph.

Proposition 11.1.10 /64] A pair of vertices, 21,22, in a 2-edge-coloured

multigraph G is colour-connected if and only if G has four (not necessar-

ily distinct) alternating (21, 22)<paths, P,, P2,Q1,Qz2, such that Xstart(Pi) =

Vendt@) ee O

Let G be a graph with matching M. A path P in G is augmenting

with respect to M if, for any pair of adjacent edges in P, exactly one of

them belongs to M, and the first and last edges of P do not belong to M.

Let G be a 2-edge-coloured multigraph. The following proposition by Bang-

Jensen and Gutin shows that we can check whether a pair of vertices of G

are colour-connected in polynomial time.

Proposition 11.1.11 /64] Let G = (V,E) be a connected 2-edge-coloured
multigraph and let x and y be distinct vertices of G. For each choice of

i,j € {1,2} we can find an alternating (x,y)-path P with Xstart(P) = i
and Xena(P) = j in time O(|E|) (if one exists).

Proof: Let W = V — {z,y}. Create an uncoloured graph Gz,,i; in the fol-

lowing way: V(Gay,ij) = {z,y}UW' UW?, where W" = {z": z € W}
for’r = 1,2, E(G. 4) = {oziciee CiW andi (az) Uitely sieve
Wand y(zy) = j} U{uku® : u,v € W and x(uv) = k} U {z!2z2: ze WH.

The reader can easily verify that G has the desired path if and only if

there exists an augmenting path in Gz, with respect to the matching M =

{z1z? : z € W}. The latter can be checked, and a path constructed if one
exists, in time O(|E|). From any augmenting path P in G,, we can obtain

the desired path in G, simply by contracting those edges of M which are on

Binw O

Since colour-connectivity is not an equivalence relation on the vertices

of every 2-edge-coloured multigraph, another notion of connectivity, cyclic

connectivity, introduced by Bang-Jensen and Gutin [61], is sometimes more
useful. Let P = {Hj,...,Hp} be a set of subgraphs of a multigraph G.

The intersection graph §2(P) of P has the vertex set P and the edge set
{H;H; : V(Gi) OV(A;) 4 O10 <7 <3 < p}OA pair, a; y, of vertices in a
2-edge-coloured multigraph H is cyclic connected if H has a collection of

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 603

alternating cycles P = {C,...,C,} such that z and y belong to some cycles
in P and §2(P) is a connected graph.

We formulate the following trivial but useful observation as a proposition.

Proposition 11.1.12 Cyclic connectivity is an equivalence relation on the
vertices of a 2-edge-coloured multigraph. 0

This proposition allows us to consider cyclic connectivity components
similar to strong connectivity components of digraphs.

The following theorem due to A. Yeo (private communication, 1998) shows
that cyclic connectivity between a pair of vertices can be checked in polyno-
mial time.

Theorem 11.1.13 For a pair x,y of vertices in a 2-edge-coloured multigraph

H = (V,E), one can check whether x and y are cyclic connected in time

O(/E|(IV| + |E)).

Proof: By Proposition 11.1.11, in time O(|E]), one can check whether H has

an alternating cycle through a fixed edge e € E. This implies that, in time

O(|V |||), one can verify whether H has an alternating cycle through a fixed
vertex v € V.

We now describe a polynomial algorithm to check whether z and y are

cyclic connected. Our algorithm starts by initiating X := {xz}. Then, we find

an alternating cycle through 2; let X' be the vertices except for z of such a
cycle. If y € X’, then we are done. Otherwise, delete the vertices of X from

H, set X := X' and X' := @. Then, for each edge e with one end-vertex in
X and the other not in X find an alternating cycle through the edge (if one

exists). Now append all the vertices, except for those in X, in the cycles we

have found to X' and check whether y € X'. If y ¢ X’, then we continue
as above. We proceed until either y € X’ or there is no alternating cycle

through any edge with one end-vertex in X and the other not in X. Clearly,
if y € X' at some stage, then xz and y are cyclic connected, otherwise they

are not.

The total time required for the operation of deletion is O(|V||E|). By the
complexity bounds above and the fact that we may want to find an alternating

cycle through an edge at most once, the complexity of the described algorithm

is O(|E|(|V| + |E))). a
The following theorem by Bang-Jensen and Gutin shows that cyclic con-

nectivity implies colour-connectivity.

Theorem 11.1.14 /64] If a pair, x,y, of vertices in a 2-edge-coloured multi-

graph G is cyclic connected, then x and y are colour-connected.

Proof: If z and y belong to a common alternating cycle, then they are

colour-connected. So, suppose that this is not the case.

604 11. Generalizations of Digraphs

Since x and y are cyclic connected, there is a collection P = {Ci,..., Cp}

of alternating cycles in G so that x € V(C1), y € V(C,), and, for every

i=1,2,...,p—1 and every j = 1,2,...,p, |i—j| > 1, V(Gi) NV (Cisr) FO,

V (Ci) NV(C;) = 0. (P corresponds to a (Ci, C>)-path in 2(R), where R is
the set of all alternating cycles in G.) We traverse P as follows. We start at

the red (blue, respectively) edge of C, incident to x and go along C; to the

first vertex u that belongs to both C; and C2. After meeting u, we go along

Cz such that the path that we are forming will stay alternating. We repeat

the procedure above when we meet the first vertex that belongs to both C2

and C3 and so on. Clearly, we will eventually reach y. It follows that there is

an (x, y)-path that starts from a red (blue, respectively) edge. By symmetry,

we can construct an (z,y)-path that ends at a red (blue, respectively) edge.

It follows from Proposition 11.1.10 that x and y are colour-connected. O

x

11.1.4 Alternating Cycles in 2-Edge-Coloured Bipartite

Multigraphs ,

The aim of this subsection is to describe two simple approaches which allow

one to obtain results for bipartite 2-edge-coloured multigraphs using results

on directed graphs. ;

Let D be a bipartite digraph with partite sets V,, V2. Define a 2-edge-

coloured bipartite multigraph CM (D) in the following way: CM (D) has the
same partite sets as D; every arc (v1, v2) from V; to V2 is replaced with red

edge vi v2 and every arc (v2, v1) from V2 to V; is replaced with blue edge v1 v2.

Moreover, CM~!(G) = H if CM(H) = G. This simple correspondence which

we call the BB-correspondence leads us to a number of easy and some more

complex results which are described in this and the next subsections. (One

example is the fact that the alternating Hamilton cycle problem for bipartite

2-edge-coloured graphs is ’P-complete.) In many of our results on cycles we

will exploit the following easily verifiable proposition (see Exercise 11.10).

Proposition 11.1.15 The following three claims are equivalent for a bipar-

tite digraph D:

(a) D is strongly connected.
(b) CM(D) is colour-connected.
(c) CM(D) is cyclic connected. 0

The following correspondence which we call the BD-correspondence

is less universal but may allow one to exploit the wider area of results on

arbitrary digraphs. The idea of the BD-correspondence can be traced back to

Haggkvist [386]. Let G be a 2-edge-coloured bipartite multigraph with partite

sets V; and V2 so that |Vi| = |V2| = m and let G’ be the red subgraph of
G. Suppose that G’ has a perfect matching v11v21, V12V22,.--, VimU2m, Where

vig € Vi (i = 1,2 and 1 < j < m). Construct a digraph D = D(G) as follows:

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 605

vi164 V21

V12 U22
2 3

1 4

V13 U23

V14 U24

& D(G)

Figure 11.5 An illustration of BD-correspondence.

P{D) — {1 2,...,m)} and, for 1 <i #3 < m, G,j) is an arc of D if and only

if v1;v2; € E(G) — E(G’) (see Figure 11.5). It is easy to see that, if D has
a Hamilton cycle, then G has a Hamilton alternating cycle including all the

edges of the perfect matching. Using the BD-correspondence and Corollary

5.6.3 Hilton [429] proved the following:

Theorem 11.1.16 Let G be a 2-edge-coloured r-regular bipartite graph such

that each of the partite sets of G has m vertices and let G" be the blue subgraph

of G. Ifr > 2 +1 and G" is s-regular such that 2 <s<r—1, thenG has
an alternating Hamilton cycle.

Proof: Exercise 11.11. Oo

Although the last theorem is the best possible (consider two disjoint copies

of Km/2,m/2 With perfect matchings in both copies in red and all other edges in

blue), Hilton [429] believes that the bound on r could be lowered considerably
if we assume that G is connected. It was noticed by Chetwynd and Hilton [155]
that Theorem 11.1.16 follows easily from the following result by Haggkvist

[386] (using the BB-correspondence).

Theorem 11.1.17 Let G be a bipartite graph so that each of the partite sets

contains m vertices. If d(v) + d(w) > m-+1 for every pair v,w of vertices

from different partite sets, then every perfect matching of G lies in a Hamilton

cycle of G. 0

The BB-correspondence is very useful when we consider 2-edge-coloured
complete bipartite multigraphs. In this case we can use the rich theory of

semicomplete bipartite digraphs (discussed in Chapters 5, 6). By the BB-
correspondence, Proposition 11.1.15 and Theorem 5.7.4, we obtain the fol-

lowing:

Theorem 11.1.18 A 2-edge-coloured complete bipartite multigraph contains

an alternating Hamilton cycle if and only if it is colour-connected and has an

606 11. Generalizations of Digraphs

alternating cycle factor. There is an algorithm for constructing an alternat-

ing Hamilton cycle in a colour-connected 2-edge-coloured complete bipartite

multigraph on n vertices in time O(n?) (if one exists). Oo

Another condition for a 2-edge-coloured complete multigraph to contain

an alternating Hamilton cycle was obtained by Chetwynd and Hilton [155}:

Theorem 11.1.19 A 2-edge-coloured complete bipartite graph B with partite

sets U and W (\U| = |W| =n) has an alternating Hamilton cycle if and only

if B has an alternating cycle factor and, for every k = 2,...,n—1 and every

pair of k-sets X and Y such that X CU, Y CW, we have

min{ 5 di(z) +)> ds_a(y) : 1 = 1,2} > F’.
zEX yeY :

XN
Oo

We point out that the original proof of Theorem 11.1.19 is quite similar

to that of Theorem 5.7.4. (Another proof of Theorem 11.1.19 is given by
Bang-Jensen and Gutin [61]; see also Exercise 11.14.) To see that the set of
inequalities of this theorem is necessary, observe that the number of edges

between X and Y is precisely k?. If B has a Hamilton cycle C, then C

contains an edge e; from U — X to Y as well as an edge eg from X to W —Y

such that y(e1) = x(e2). Precisely one of these edges contributes to the sum
in the corresponding inequality.

Using the corresponding result on longest cycles in semicomplete bipartite

digraphs (Theorem 5.7.6), one can obtain the following:

Theorem 11.1.20 The length of the longest alternating cycle in a colour-

connected 2-edge-coloured complete bipartite multigraph G is equal to the

number of vertices in maximum alternating cycle subgraph of G. There is

an algorithm for finding a longest alternating cycle in a colour-connected 2-

edge-coloured complete bipartite multigraph on n vertices in time O(n?). O

Let B, and Bi are 2-edge-coloured complete bipartite graphs with the

same partite sets {v,...,UVor} and {w,..., wer}. The edge set of the red
(blue) subgraph of B, (Bt) consists of

LUptuge eliseg eer) UL fupw es ml ag or)

The following result is a characterization of vertex-alternating-pancyclic 2-

edge-coloured complete bipartite multigraphs that can be readily obtained

from the corresponding characterization for semicomplete bipartite digraphs
in Theorem 6.13.1.

Theorem 11.1.21 A 2-edge-coloured complete bipartite multigraph is vertex-

alternating-pancyclic if and only if it has an alternating Hamilton cycle and

is not colour-isomorphic to one of the graphs B,, B!. (r = 2,3,...). Oo

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 607

Since none of the graphs B,., B). (r = 2,3,...) is alternating-pancyclic, we
obtain the following:

Corollary 11.1.22 Let G be a 2-edge-coloured complete bipartite multi-

graph. Then G is is alternating-pancyclic if and only if it has an alter-

nating Hamilton cycle and is not colour-isomorphic to one of the graphs

iE fe es Pa 0

This result was obtained by Das [182]. The equivalent (via the BB-
correspondence) claim was proved by Beineke and Little [99] for bipartite
tournaments. (Both results were published in the same year!)

To save the space we will not give any other ‘BB-translations’ of results

obtained for cycles and paths in semicomplete bipartite digraphs (see Chap-

ters 5, 6) into the alternating cycles and paths language.

11.1.5 Longest Alternating Paths and Cycles in 2-Edge-Coloured

Complete Multigraphs

Since the longest alternating path problem for 2-edge-coloured complete

multigraphs is much simpler than the longest alternating cycle problem, we

start our study from the former. Bang-Jensen and Gutin characterized 2-edge-

coloured complete multigraphs which have an alternating Hamilton path (see

Corollary 11.1.24).

Theorem 11.1.23 /61] Let G be a 2-edge-coloured complete multigraph with

n vertices. Then for any 1-path-cycle subgraph F of G there is an alternating

path P of G satisfying V(P) = V(F) (if F is a maximum alternating 1-path-

cycle subgraph of G, then P is a longest alternating path in G); there exists

an O(n*) algorithm for finding a longest alternating path in G.

Proof: Obviously, F is a 1-path-cycle factor of a complete bipartite subgraph

B of G. The factor F corresponds to a directed path together with a collection

of directed cycles, all vertex disjoint, F' of CM~'(B). Therefore, by Theorem
5.7.1 restricted to semicomplete bipartite digraphs, there is a path P’ in

CM~1(B) such that V(P’) = V(F'). This path corresponds to an alternating
path P of B so that V(P’) = V(P). Clearly, P is an alternating path in G

and, moreover, V(P) = V(F).
The complexity result easily follows from the construction above, and

Theorems 5.7.1 and 11.1.8. 0

Corollary 11.1.24 /61] A 2-edge-coloured complete multigraph has an al-
ternating Hamilton path if and only if it contains an alternating 1-path-cycle

factor. Oo

It is not difficult to prove Corollary 11.1.24 directly (see Exercise 11.17).
Clearly, Corollary 11.1.24 implies immediately the first part of Theorem

608 11. Generalizations of Digraphs

11.1.23. Thus, the first part of Theorem 11.1.23 and Corollary 11.1.24 are

in fact equivalent.

In 1968, solving a problem by Erdés, Bankfalvi and Bankfalvi [91] gave

the following characterization of 2-edge-coloured complete graphs which have

an alternating Hamilton cycle.

Theorem 11.1.25 (Bankfalvi and Bankfalvi) /91] A 2-edge-coloured

complete graph G of order 2n has an alternating Hamilton cycle if and only

if it has an alternating cycle factor and, for every k = 2,...,.n—1 and every

pair of disjoint k-subsets X and Y of V(G), Daex A(z) + Vycy ly) > ke.
O

It is easy to see that the conditions of this theorem are necessary (Ex-

ercise 11.13). Saad [648] proved the following more general result, using the

notion of colour-connectivity rather than degree conditions. We provide a

proof of Theorem 11.1.26.in the end of this subsection after some discussion

of implications and generalizations of Theorem 11.1.26.

Theorem 11.1.26 (Saad) /648] The length of a longest alternating cycle

in a colour-connected 2-edge-coloured complete multigraph G is equal to the

number of vertices in a mazimum alternating cycle subgraph of G.

Corollary 11.1.27 /648] A 2-edge-coloured complete multigraph G has an

alternating Hamilton cycle if and only if G is colour-connected and contains

an alternating cycle factor. Oo

Corollary 11.1.27 and the fact that colour-connectivity can be checked in

polynomial time (see Propositions 11.1.10 and 11.1.11) shows that the alter-

nating hamiltonian cycle problem for 2-edge-coloured complete multigraphs

is polynomial time solvable. However, one cannot deduce the analogous re-

sult for the longest alternating cycle problem (for 2-edge-coloured complete

multigraphs) from Theorems 11.1.26 and 11.1.8 and Propositions 11.1.10 and

11.1.11, only. The reason is that we do not know how to obtain all maximal

colour-connected subgraphs of an arbitrary 2-edge-coloured multigraph in

polynomial time. Fortunately, for 2-edge-coloured complete multigraphs G,

colour-connectivity is an equivalence relation on the set of vertices (this was

first proved by Saad [648] and also follows from Proposition 11.1.12 and the
following deeper theorem by Bang-Jensen and Gutin [64]):

Theorem 11.1.28 /64] A 2-edge-coloured complete multigraph G is colour-

connected if and only if G is cyclic connected. oO

Proof: Exercise 11.15.

Thus, we can use Propositions 11.1.10 and 11.1.11 to obtain (vertex-

disjoint) colour-connected components of G. Hence, the longest alternating

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 609

cycle problem for 2-edge-coloured complete multigraphs is also polynomial

time solvable. In [64], Bang-Jensen and Gutin showed the following more

general result. (Clearly, the case f(x) = 1 for every x € V(G) corresponds to
the longest alternating cycle problem.)

Theorem 11.1.29 /64] The following problem is polynomial time solvable.

Given a function f from V(G), the vertex set of a 2-edge-coloured complete

multigraph G, to Zo, find a mazimum size alternating closed trail H in G

such that dy, 7(x) = d2,y(x) < f(x) for every x € V(G). Oo

Das [182] and later Haggkvist and Manoussakis [389] observed that the
alternating hamiltonian cycle problem for 2-edge-coloured complete bipar-

tite multigraphs can be reduced to the same problem for 2-edge-coloured

complete multigraphs using the following simple construction. Consider a

2-edge-coloured complete bipartite multigraph L with bipartition (X,Y).

Add to L the edges {z'x",y'y" : a',2" € X, y',y” € Y} and set

x(XX) = 1, x(YY) = 2. Let K be the 2-edge-coloured complete multigraph
obtained in this way. It is not difficult to verify that K has no alternating

cycle containing any of the edges from XX UYY. Hence, K contains an

alternating hamiltonian cycle if and only if L has one. Moreover, it is easy

to check that K is colour-connected if and only if L is colour-connected. In

the following, we will call the construction above the DHM-construction.

The DHM-construction shows that (the non-algorithmic part of) Theorem
11.1.18 follows immediately from Corollary 11.1.27. This illustrates the fact

that many problems on alternating cycles for 2-edge-coloured complete multi-

graphs are more general than those for 2-edge-coloured complete bipartite

multigraphs.

Consider the following Hamiltonian 2-edge-coloured complete graphs

which are not even-pancyclic (see the proof of this fact below). Let r > 2
be an integer. Each of the graphs H(r), H'(r), H"(r) has a vertex set
AUBUCUD so that the sets A,B,C,D are pairwise disjoint and each

of these sets contains r vertices. Moreover, the edge set of the red subgraph

of H(r) consists of AAUCC UAC U AD UCB. The edge set of the red
(blue) subgraph of H'(r) (H"(r)) consists of AC UCBU BD U DA. By the
DHM-construction, the following result by Bang-Jensen and Gutin [61] is a
generalization of Theorem 11.1.21 (the proof is left as Exercise 11.16).

Theorem 11.1.30 Let G be a 2-edge-coloured complete multigraph. Then G

is vertez-alternating-pancyclic if and only if G has an alternating Hamilton

cycle and is not colour-isomorphic to the graphs H(r), H'(r), H"(r) for
(i Seales 0

Since the graphs H(r), H’(r), H'(r) are not alternating-pancyclic for

r = 2,3,..., we obtain the following characterization first proved by Das

__ [182].

610 11. Generalizations of Digraphs

Corollary 11.1.31 A 2-edge-coloured complete multigraph G is alternating-

pancyclic if and only if G has an alternating Hamilton cycle and is not colour-

isomorphic to the graphs H(r), H'(r), H"(r) for r = 2,3,.... Oo

The rest of this subsection is devoted to the proof of Theorem 11.1.26

adapted from Bang-Jensen and Gutin [64]. In the statements and the proofs

of the rest of this subsection, we use the following notation: G is a 2-edge-

coloured complete multigraph with n vertices, Fp = C, U...UC>p is an

alternating cycle subgraph in G consisting of p ele Cyaan rg 1OF 1eacu

(Se AO io + U94 (4) U1 such that x(vjv3) = 1, X (iggy V4) = s

and Ay = ethos ++ Ubq Gat) Yi = V(Ci) — Xi. We write Cj+C; to denote

that

x(XiXi) = x(XiV(C;)), x(V¥i) = x(ViV (Cj) and x(XiXi) # XN).

We point out that the meaning of C;—C; is that, for any choice of vertices

z € V(C;) and y € V(C;), there exist alternating (2, y)-paths P and P’ such
that the colours of the edges incident with z in P and P’ are distinct, but

for every such choice of paths P and P’, the colours of the edges in P and

P' incident with y are equal. Hence, if C; +C;, then the multigraph induced

by the vertices of these two. cycles is not colour-connected. (See Figure 11.6,

where C2-+C3.)

Lemma 11.1.32 Suppose G has an alternating cycle factor Fz = C,; UC».

Then, G has an alternating Hamilton cycle if and only if neither C;—>C2 nor

Cy>C,. Given a pair C, and C2 of cycles of G, so that neither Cj—-C>2

nor C2z-C\, an alternating Hamilton cycle of G can be found in time

O(\V (Ci) {IV (C2))).

Proof: It is easy to see that, if either C} +C2 or C2—C}, then G is not colour-

connected. Hence, G has no alternating Hamilton cycle. Assume that neither

C\—C>2 nor C2-C;, but G has no alternating Hamilton cycle. Consider the

bipartite digraph T with partite sets Vj = X¥; UX. and V2 = Y, UY> obtained

from G in the following way: delete all edges between vertices both on C; or

on C2 except those edges that are on the cycles and delete all edges between

vertices both in the same partite set. Now make the following orientations

of the edges in the resulting bipartite multigraph. For i = 1,2 and any pair

v1 € Vi, vo € Vo, if there is an edge e between v; and v2, then delete the

colour of the edge e and orient it as the arc (v;,v3_;) if and only if y(e) =i.
Obviously, T has a spanning cycle subgraph consisting of two directed cycles

Z, Z2 which are orientations of the cycles C,, C2, respectively. Similarly we

see that every directed cycle in T corresponds to an alternating cycle in G.

Thus, since G has no alternating Hamilton cycle, T is not hamiltonian. By

Exercise 5.34, this means that T is not strong, i.e. all arcs between Z, and

Z2 have the same orientation. Without loss of generality we may assume that

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 611

all these arcs are oriented from Z, to Zj. Then, by the definition of T, we

obtain that x(Xi1Y2) =1, x(% Xe) =2.
Consider next the bipartite digraph T’ with partite sets V;) = X;UY2 and

Vz = Y1 U X2. The rest of the definition of T’ coincides with that of T. T’

also contains a spanning cycle subgraph consisting of orientations of C and

C2. Since G has no alternating Hamilton cycle, T’ is not hamiltonian. By

Corollary 5.34, this means that JT’ is not strongly connected. This leads us

to the conclusion that either y(X1X2) = 1 and x(Y, Y2) = 2 or x(X1X2) = 2

and (Yi Y2) = 1. The first possibility together with the conclusion of the
previous paragraph implies y(X1;V(C2)) = 1,x(YiV(C2)) = 2. The second
gives x(X2V(C1)) = 2,x(¥Y2V(C1)) = 1. Without loss of generality we may
assume that y(X1V(C2)) = 1,x(%iV(C2)) = 2.

Suppose that, for some i # j, there exists an edge v3; 4109 j+1 Of colour 2.

Then G has the alternating Hamilton cycle

2a kd i 1 1 1 Th 2

Hence, x(X;X1) = 1. Analogously, y(Y¥i1¥1) = 2. Now C2 > C, and we have

obtained a contradiction.

The complexity bound follows from that of Corollary 5.34. oO

An alternating cycle subgraph F of G is irreducible if there is no other

alternating cycle subgraph Q in G so that V(R) = V(Q) and Q has fewer
cycles than R. (See Figure 11.6.)

Ci C2 C3 C4

Figure 11.6 An irreducible PC cycle factor. The number s € {1,2} on the edge
emanating to the left from a vertex on Ci, 2 < i < 2 indicates that the colour of
all edges from that vertex to all the vertices of Cj with j < i is s. The vertices
are partitioned into two equal sized sets indicated by black and white vertices. The

- number r € {1,2} on an edge between two black (white vertices) on the same cycle
indicates that all edges between black (white) vertices on that cycle have the same
colour r.

612 11. Generalizations of Digraphs

Theorem 11.1.33 Let G have an alternating cycle factor F consisting of

p > 2 cycles. F is an irreducible alternating cycle factor of G if and only

if we can label the cycles in F as Ci,...,Cp, such that, with the notation

introduced above, for every1 <i <j <p, x(X;V(Gi)) =1, x(WjV(Gi)) =

2,x(X;X;) = 1,x(Yj¥;) = 2. An irreducible alternating cycle factor of G (if

any) can be found in time O(n?*).

Proof: If the edges have the structure described above, then C;—+C;j for all

i <j and each of the cycles in F form a colour-connected component and F

is clearly irreducible.

To prove the other direction we let F be an irreducible alternating cy-

cle factor of G and let p > 2 be the number of cycles in #. By Lemma

11.1.32, no two cycles in F induce a colour-connected subgraph. Thus, for

alll <i <j <p, either C; Cj; or Cj;-+C;. Therefore, the digraph with

vertex. set {C),...,C,} and arc set {(C;,Cj) © C;-7-G;,) <3 eee a
is a tournament. So, if there exist cycles Cj,C},...,C;, from F such that

CC... +Cj},-+C}, then there also exists such a collection for k = 3 and
the reader can easily find an alternating cycle covering precisely the vertices

of those cycles, contradicting the irreducibility of 7. Hence we can assume

that there is no such cycle. Thus there is a unique way to label the cycles

in F as C\,C2,...,Cp, so that C;-C; if and only if 1 < 7. If there are

three cycles C;,C; and C;, from F such that C;-+Cj;,C, and Cj;—C,, but

x(XEV(Ci)) 4 x(X4V(C;)), then we can easily find an alternating cycle cov-
ering precisely the vertices of C;,C; and C;, contradicting the irreducibility

of F. Hence we may assume that for all 1 <i <j < p, x(Xj;V(Ci)) = 1 and

x(Y;V(C;)) = 2. The fact that x(X;X;) = 1,x(YjY;) = 2 follows from the
proof of Lemma 11.1.32 and the minimality of F.

Using the proof of Lemma 11.1.32, the proof above can be converted into

an O(n?)-algorithm for transforming any alternating cycle factor into an al-

ternating hamiltonian cycle or an irreducible alternating cycle factor. Now the

complexity bound of the lemma follows from a simple fact that one can find a

spanning alternating cycle subgraph (if any) in a 2-edge-coloured multigraph

L in time O(|V(L)|?°). Indeed, find maximum matchings in the red and blue
subgraphs of ZL. Obviously, L has a spanning alternating cycle subgraph if

and only if both subgraphs have perfect matchings. The complexity bound

follows from that of the algorithm for finding a maximum matching in an
arbitrary graph described in the book [231] by Even. 0

We will make use of the following simple lemma.

Lemma 11.1.34 Let P = 2,22...2,% be an alternating path and C an al-

ternating cycle disjoint from P in G. Suppose x(ai1V(C)) = i # x(a 22)
where 1 = 1 ori = 2 and that G contains an edge ryz, where z € V(C) and
X(@e-10%) A X(TKz). If x(xez) =i, then G contains a cycle C' with V(C') =
V(P)UV(C). Otherwise G has a cycle C" with V(C") = V(P)UV(C) —w,
where w is the neighbour of z on C for which x(wz) = 3-1.

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 613

Proof: Exercise 11.18. oO

Proof of Theorem 11.1.26: Let F = C, U...UC, be an alternating

cycle subgraph of G and let F' = C, U...UC,_1. We will show by induction
on p that G has an alternating cycle C* having at least the same number

of vertices as ¥. If p = 1, we are done. So, we may suppose that p > 2. By

Theorem 11.1.33, we may assume, using the (obvious) induction hypothesis,

that, for all l<i<j<p,

x(XGV (Ci)) = 1, x(YGV (Ci) = 2, x(XGX5) = 1,x(VjYj) = 2. (11.2)

Since G is colour-connected there is an alternating (x, y)-path R of min-
imum length such that s € V(C,), {y} = V(R) AN V(F') and x(az') #
x(«V (F')), where z’ is the successor of x in R. We prove that (V(R) —
{z,y}) NV(F) = @. Assume this is not so, that is, R contains at least two

vertices from Cy. Consider a vertex z in (V(R) N V(C,)) — x. Let z’ be the
successor of z in R. Clearly, y(zz') = x(zV(F’)) since the (z,y)-part of R
is shorter than R. On the other hand, by (11.2) z’ is not in C, and by the

minimality of R, x(z2'V(F')) = x(xz'). Then, the alternating path Qv, where
Q is the reverse of the (2’, z)-part of R and v is a vertex in Cp_1, is shorter

than R; a contradiction.

Now consider an alternating (x, y)-path R with the properties above in-

cluding (V(R)—{z, y})NV(F) = 0. We may assume without loss of generality
that « = v? and y(xV(F’)) = x(v8u?). Choose t such that y € V(C;). Apply
Lemma 11.1.34 to the path

Pp Pp P pl V>K(p) Yar(p)—1 °° U2 »

where R’ is the path R without y, and the cycle C;. We get a new alternating

cycle C’, with V(C’) Cc V(R) UV(Ct) U V(C,), covering at least as many
vertices as C; and C, together, so by replacing C; and Cp by C’ in F, we

obtain a new alternating cycle subgraph with fewer cycles which covers at

least as many vertices as F and the existence of C* follows by induction. O

The proof above can be converted into an O(n?)-algorithm for finding
a longest cycle in G, provided we are given a maximum cycle subgraph as

input.

11.1.6 Properly Coloured Hamiltonian Paths in c-Edge-Coloured

. Complete Graphs, c > 3

Let K° denote a c-edge-coloured complete graph with n vertices. The prop-

erly coloured (PC) Hamilton path problem for c-edge-coloured complete

graphs seems to be much more difficult in the case c > 3, than in the case

c = 2 treated above.

614 11. Generalizations of Digraphs

Problem 11.1.35 /61] Determine the complexity of deciding whether a c-

edge-coloured complete graph, c > 3, has a PC Hamilton path. oO

There is a polynomial time algorithm for Problem 11.1.35 if the following

generalization of Corollary 11.1.24 is true.

Conjecture 11.1.36 /61] A KS (c > 2) has a PC Hamilton path if and only
if KS contains a PC spanning 1-path-cycle subgraph. 0

We know that the claim of this conjecture is true when c = 2 (see Corollary

11.1.24). The following weaker result is proved by Bang-Jensen, Gutin and

Yeo [73].

Theorem 11.1.37 If a KS (c > 2) contains a PC spanning cycle subgraph,

then it has a PC Hamilton path.

Proof: Let C;,C2,...,C; be the cycles of a PC spanning cycle subgraph F

of K*. Let F be chosen so that, among all PC spanning cycle subgraphs of

K‘, the number of cycles t is minimum. We say that C; edge-dominates

C; (i # J) if, for every edge ry of Cj, there exists an edge between z and C;

and an edge between y and C; whose colours differ from the colour of zy.

Construct a digraph D as follows. The vertices of D are 1,2,...,¢ and an arc

(i,j) isin D (1<i¥ 7 <t) if and only if C; edge-dominates C;.

First we show that D is semicomplete. Suppose this is not so, i.e. there

exist vertices i and j which are not adjacent. This means that neither C; edge-

dominates C;; nor C; edge-dominates C;. Thus C; has an edge ry such that

x(zV (C;)) = x(zy) and C; has an edge uv such that x(uV(Ci)) = x(uv).
It follows that y(ry) = x(xu) = x(uv) = x(rv) = x(uy). Therefore, we can
merge the two cycles to obtain a new properly coloured one as follows: delete

xy and uv, and append xv and yu. However, this is a contradiction to t being

minimum. Thus, D is indeed semicomplete.

Since D is semicomplete, it follows from Theorem 1.4.5 that D has a

Hamilton directed path: 7,72 ...74. Without loss of generality we may assume

that 7, = k for every k = 1,2,...,t. In other words, C; edge-dominates Cj,

for everyol < i059 1. et CO) = me ns etic tt el eee einem
edge-dominates C2, without loss of generality, we may assume the labellings

of the vertices in C; and Cy» are such that x(z},,21) # x(z}z3). Since the
edges z?z3 and z3z? have different colours, without loss of generality we may
assume that y(z222) # y(zi23). Analogously, for every i = 1,2,...,t—1, we
may assume that x(z‘,.z1) # x(zizst") A x(z5t* zit). Now we obtain the
following PC Hamilton path:

leset L4{ yiN2 2 ving.” ist te 2923 6. 2m, 21 2923 «+s Sng 2] «2 2Q23 vt Sen, 21 «

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 615

The above theorem can be considered as a sufficient condition for an edge-
coloured complete graph to have a PC Hamilton path. We state two other
sufficient conditions. The first theorem is by Barr and has a simple inductive
proof (Exercise 11.19). The proof of the second theorem, due to Manoussakis,
Spyratos, Tuza and Voigt, is much more involved; it is omitted.

Theorem 11.1.38 /94] Every KS without monochromatic triangles has a
PC Hamilton path. Oo

Theorem 11.1.39 /549] Ifc > $(n—3)(n—4)+2, then there is anno = no(c)
such that, for every n > no, each KS has a PC Hamilton path. Oo

11.1.7 Properly Coloured Hamiltonian Cycles in c-Edge-Coloured

Complete Graphs, c > 3

Benkouar, Manoussakis, Paschos and Saad posed the following problem which

is analogous to Problem 11.1.35:

Problem 11.1.40 /103] Determine the complezity of the PC Hamilton cycle
problem for c-edge-coloured complete graphs when c > 3.

Another interesting problem is to find a non-trivial characterization of

c-edge-coloured (c > 3) complete graphs containing PC hamiltonian cycles.

In this subsection, we consider results from [103] related to Problem 11.1.40.
We give an example showing that the obvious analogue of Corollary 11.1.27

is not valid for c > 3. Later we present some conditions which guarantee the

existence of a PC Hamilton cycle in a c-edge-coloured complete graph.

A strictly alternating cycle in K¢ is a cycle of length pc (p is an inte-

ger) so that the sequence of colours (12...c) is repeated p times. Benkouar,
Manoussakis, Paschos and Saad [103] proved the following:

Theorem 11.1.41 /103] Letc > 3. The problem of determining the existence

of a strictly alternating Hamilton cycle in K¢ is NP-complete.

Proof: Exercise 11.20. O

The following result shows that, if we relax the property of colours to be

at strict places, but maintain the number of their appearances in a Hamilton

cycle, then we still have an W’P-complete problem.

Theorem 11.1.42 /103] Given positive integers p and c > 3, the problem

of determining the existence of a PC Hamilton cycle C of K¢, so that each

colour appears p times in C is NP-complete.

Proof: Exercise 11.21. O

The following example shows that the obvious analogue of Corollary

11.1.27 is not valid for c > 3. The graph G¢ is a 3-edge-coloured complete

616 11. Generalizations of Digraphs

graph on vertices 1,2,3,4,5,6. All the edges of Gg has colour 1 except for

the following: the triangles 2342 and 2562 have colours 2 and 3, respectively,

x (36) = y(45) = 2, x(12) = 3. It is easy to check that G¢ is colour-connected
and has the alternating spanning cycle subgraph 1231 U 4564, but Gg» con-

tains no PC Hamilton cycle (Exercise 11.22). Note that alternating paths

showing that Gg is colour-connected may be chosen so that for each choice of

vertices x and y the two paths P and P’ described in the definition of colour-

connectivity are internally disjoint. Hence it will not be enough to change this

definition to require that P and P’ are disjoint, a condition which is obviously

necessary for the existence of a PC Hamilton cycle. For every even n, using

the definition of Gg, one can easily construct a 3-edge-coloured complete

graph on n > 8 vertices which is colour-connected and has a PC spanning

cycle subgraph, but contains no PC Hamilton cycle (see Exercise 11.23).

We start our consideration of sufficient conditions for an edge-coloured

complete graph to contain a PC Hamilton cycle with the following simple

result by Manoussakis, Spyratos, Tuza and Voigt:

Proposition 11.1.43 /549] Ifc > $(n —1)(n—2)+2, then every K< has a

PC Hamilton cycle.

Proof: Exercise 11.24... : oO

To see that the bound of Proposition 11.1.43 is sharp consider the follow-

ing K,. Assign colour 1 to all edges incident to a fixed vertex c € V(K¢).
Each of the remaining edges has a distinct colour not equal 1. Clearly, such

K§ has no PC Hamilton cycle and c = $(n — 1)(n — 2) +1.
In [184] Daykin posed the following interesting problem. Find a positive

constant d such that every K¢ with Amon(KS) < dn has a PC Hamilton
cycle. This problem was independently solved by Bollobds and Erdés [121],

and Chen and Daykin [145]. In [121] (in [145], respectively), it was proved
that, if 69Amon(KS) < n (17Amon(KE) < n, respectively), then K¢ has
a PC Hamilton cycle. Shearer [668] improved the last result showing that
if 7TAmon(KS) < n, then KS has a PC Hamilton cycle. So far, the best
asymptotic estimate was obtained by Alon and Gutin [11].

Theorem 11.1.44 /11] For every € > 0 there exists an no = no(e) so that
for eachn > no, every K< satisfying

§ .
Amon(Kn) $(1- Fe —e)n (= (0.2928...—e)n) (11.3)

contains a PC Hamilton cycle.

However, Theorem 11.1.44 seems to be far from the best possible, at least,

if the following conjecture by Bollobds and Erdés [121] is true.

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 617

Conjecture 11.1.45 Every K¢ with Amon(KS) < |n/2|] —1 has a PC

Hamilton cycle.

The rest of this subsection is devoted to a probabilistic! proof of Theorem

11.1.44. For simplicity we assume first that n = 2m is even, and remark at

the end of the subsection how to modify the argument for the case of odd

n. Fix a positive €, and let K = K¢ be an edge-coloured complete graph on

n = 2m vertices satisfying (11.3). We first prove the following lemma.

Lemma 11.1.46 For all sufficiently large m, K contains a spanning edge

coloured complete bipartite graph K<, _, satisfying m,m

: 1 €
Amon(Kinm) < (1 - V2 + 5)m- (11.4)

Proof: Let ujv;j (1 < i < m) be an arbitrary perfect matching in K and

choose a random partition of the set of vertices of K into two disjoint subsets

A and B of cardinality m each by choosing, for each 7, 1 < i < m, randomly

and independently, one element of the set {u;,v;} to be a member of A and

the other to be a member of B. Fix a vertex w of K and a colour, say red, that

appears in the edge-colouring of kK. The number of neighbours a of w in A so

that the edge wa is red can be written as a sum of m independent indicator

random variables 2),...,£m, where x; is the number of red neighbours of w

in A among u;,v;. Thus each 7; is either 1 with probability one (in case both

edges wu;, wv; are red) or 0 with probability 1 (in case none of the edges
wu;, wv; is red) or 1 with probability 1/2 (in case exactly one of these two

edges is red). It follows that, if the total number of red edges incident with w

is r then the probability that w is adjacent with more than (r+ s)/2 vertices
in A by red edges is equal to the probability that more than (q + s)/2 flips
among g independent flips of a fair coin give ‘heads’, where qg is the number of

nonconstant indicator random variables among the z;’s. This can be bounded

by the well known inequality of Chernoff (cf. e.g. [14, Theorem A.4, page 235])

by e~28'/4 < e—28°/m_ Since the same argument applies to the number of ‘red’

neighbours of w in B, and since there are less than 8m? choices for a vertex w,

a colour in the given colouring of K and a partite set (A or B), we conclude
that the probability that there exists a vertex with more than

Nh €
(1 53 5ym

neighbours of the same colour in either A or B is at most

Biny!?
8me 2€ ye

1 Probabilistic methods have proved to be very powerful for various problems (see
e.g. the book [14] by Alon and Spencer).

618 11. Generalizations of Digraphs

which is (much) smaller than 1 for all sufficiently large m. Therefore, there

exists a choice for A and B so that the above does not occur, completing the

O proof.

The next lemma can be proved by applying a large deviation result for

martingales, i.e., Azuma’s inequality [14].

Lemma 11.1.47 /11] Let U be a subset of M = {1,2,... ,m—1} and suppose

that for each u € U there is a subset S, C M, where |Sy| <1 for all u. Let

f:UWM be a random one-to-one mapping of U into M, chosen uniformly

among all one-to-one mappings of U into M, and define:

B(f) =|{ueU: f(u) € Su}I-

Then the expectation of B(f) is given by

B= B(B(f)) = PM (<
ucU

and the probability that B(f) is larger satisfies the following inequality. For

every A > 0

Prob[B(f) - E> 44V/m— 1] <e".

Corollary 11.1.48 Let Kf, ,, be an edge-coloured complete bipartite graph

on the partite sets A and B, and suppose that (11.4) holds. Then, for all

sufficiently large m, there exists a perfect matching a;b;, 1 <1 <m, in Ky,

so that the following two conditions hold.

(i) For every i the number dt(i) of edges aib; between a; and B whose

colours differ from those of a;b; and of a;b; is at least m/2 +1.

(ii) For every j the number d~(j) of edges ajb; between b; and A whose
colours differ from those of ab; and of a;b; ts at least m/2+ 1.

Proof: Let a,;b;, 1 < «7 < m, be a random perfect matching between A

and B, chosen among all possible matchings with uniform probability. Put

T = Amon(Ky,,m) and notice that by (11.4)

Fix an 7, say i = m, and let us estimate the probability that the condition (i)

fails for 1. Suppose the edge abm has already been chosen for our random

matching, and the rest of the matching still has to be chosen randomly. There

are at most r edges a,,b (b € B) having the same colour as a,b. Let U be

the set of all the remaining elements B. Then |U| > m—r. For each u € U,

11.1 Properly Coloured Trails in Edge-Coloured Multigraphs 619

let S, denote the set of all elements a € A—a,, so that the colour of the edge

au is equal to that of the edge a,,u. The random matching restricted to U

is simply a random one-to-one function f from U to A — aj. Moreover, the

edge au will not be counted among the edges incident with a,, and having

colours that differ from those of a,b, and of the edge matched to u if and

only if the edge matched to u will lie in S,,. It follows that the random variable

counting the number of such edges of the form a,,u behaves precisely like the

random variable B(f) in Lemma 11.1.47. By choosing say, \ = ,/log(4m) we
conclude that the probability that B(f) exceeds |U|r/(m — 1) + 4AV/m—1
is smaller than 1/(4m). Therefore, with probability at least 1 — +

a (m) > U|- A — avin /iog(am)
> (m= Him=r =) Be nein)

>m/2+1,

for all sufficiently large m (using the fact that r < (1 — 3 =e):

Since there are m choices for the vertex a; (and similarly m choices for

the vertex b; for which the computation is similar) we conclude that with

probability at least a half dt(i) > m/2+1, and d~(j) > m/2 +1 for all i
and 7. In particular there exists such a aichine, completing the proof of the

corollary. O

Returning to the proof of Theorem 11.1.44 with n = 2m, and given

an edge-coloured K¢ satisfying (11.3) apply Lemma 11.1.46 and Corollary

11.1.48 to obtain a matching a,b; satisfying the two conditions in the corollary.

Construct a digraph D = (V, E) on the set of vertices V = {v1, v2,...,Um} by
letting v;v; be a directed edge (for i ¥ 7) if and only if the colour of a,b; in Kt

differs from that of a,b; and that of ajb;. By Corollary 11.1.48 the in-degree

and the out-degree of every vertex of D exceeds m/2, implying, by Corol-
lary 5.6.3, that D contains a directed Hamilton cycle v,(1)Uq(2) ---Ux(m)Ux(1)>

where a = 7(1),7(2),...,7(m) is a permutation of {1,2,...,m}. The cycle
bx(1)Ax(1) bx (2) An(2) ne Dam) Ox (m) Ox (1) is clearly a PC Hamilton cycle in KS,

as needed.

In case n = 2m+1 is odd we fix a path P = a,c }, of length 2, so that the

edges a,c; and c;b; have distinct colours, choose a random perfect matching

a2b2,...,Qmbm in the rest of the graph and show that with high probability

there is a PC Hamilton cycle containing the path P and the matching by

' applying Corollary 5.6.3 as before. Since the details are almost identical to
the ones for the even case, we omit them. This completes the proof of the

theorem. 0

620 11. Generalizations of Digraphs

11.2 Arc-Coloured Directed Multigraphs

In this section we show that surprisingly the problem to verify whether a

2-arc-coloured digraph has an alternating directed cycle is NP-complete.

We prove some sufficient conditions for a 2-arc-coloured digraph to contain

an alternating directed cycle. These results are due to Gutin, Sudakov and

Yeo [371]. We will obtain an original characterization of weakly eulerian arc-

coloured directed multigraphs (see a definition below) and pose the problem
to find the complexity of the eulerian trail problem for arc-coloured directed

multigraphs.
In this section we assume that the arcs of directed multigraphs are

coloured with c colours: 1,2,...,c. We adapt notation and terminology of

the previous section in the obvious way.

The problem of the existence of an alternating cycle in a 2-arc-coloured

digraph (the ADC problem) generalizes the following two polynomially

solvable problems: the existence of an alternating cycle in a 2-edge-coloured

graph (see the previous section) and the existence of an even length cycle in
a digraph (see Chapter 10). To see that the ADC problem generalizes the
even cycle problem, replace every arc (z,y) of a digraph D by two vertex

disjoint alternating paths of length three, one starting from colour 1 and the

other from colour 2. Clearly, the obtained 2-edge-coloured digraph has an

alternating cycle if and only if D has a cycle of even length. We will prove

that the ADC problem is ’P-complete [371] by providing a transformation
from the well-known 3-SAT problem (see Section 1.10) to the ADC problem.
This is in contrast to the simple fact that the ADC problem restricted to

bipartite 2-arc-coloured digraphs is polynomial time solvable.

To indicate that an arc (z,y) has colour i € {1,2,...,c} we will write
(z,y);- For a vertex v in a c-arc-coloured directed aiieeank OR he (v)
{ ; (uv # denotes the number of arcs of colour i leaving (entering) v, i =

’ Lider C;

bay ul minfd? (v) fda (6). a Soe eee

The following parameter is of importance to us:

Smon(D) = min{Smon(v) : v € V(D)}.
Let f(n) be the minimum integer such that every strongly connected 2-arc-

coloured digraph D with n vertices and 6°,,,(D) > f(n) has an alternat-
ing cycle. Similarly let g(n) be the minimum integer such that every 2-arc-

coloured digraph D with n vertices and 6°,,,,(D) > g(n) has an alternating
cycle. We show below that f(n) = O(logn) and g(n) = O(log n).

By contrast with that, the corresponding function f(n) for the even cycle
problem does not exceed three (see Thomassen’s even cycle theorem in Sec-

tion 8.3). Using Theorem 3.2 in [702], one can show that the corresponding
function g(n) for the even cycle problem equals O(log n). By Theorem 3.2 in
[702], there exists a digraph H,, with n vertices and minimum out-degree at

11.2 Arc-Coloured Directed Multigraphs 621

least + logn not containing even cycles. Let H}, be the converse of H,,. Take
vertex disjoint copies of H, and H}, and add all arcs from H!, to Hy. The
obtained digraph and the upper bound in Theorem 3.2 of [702] provide the
estimate O(log 7).

A directed trail is properly coloured (PC) if its consecutive arcs differ
in colour. In case of two colours, we speak of alternating trails. An arc-
coloured directed multigraph D is weakly eulerian if the arc set of D can
be partitioned into PC closed trails T,,...,7;. If D has a PC closed trail
containing all arcs of D, then D is eulerian.

11.2.1 Complexity of the Alternating Directed Cycle Problem

The proof of the following proposition is left as a simple exercise (Exercise
mir 2 7):

Proposition 11.2.1 The ADC problem restricted to 2-arc-coloured bipartite

digraphs is polynomial time solvable.

In contrast with Proposition 11.2.1, we have the following:

Theorem 11.2.2 (Gutin, Sudakov, Yeo) /371] The ADC problem is NP-
complete.

Proof: To show that the ADC problem is V’P-complete, we transform the 3-

SAT problem to the ADC problem (recall the definition of the 3-SAT problem

from Section 1.10). Let X = {z1,...,2,%} be a set of variables, and let F =

C1 * C2 *...* Cm be an instance of the 3-SAT problem such that every c; has

three literals and all of these are variables or negations of variables from X.

We construct a 2-arc-coloured digraph D which has an alternating cycle if

and only if C is satisfiable. We use the same reduction as in [371], but rather
than giving a formal definition of D, we describe its structure in the caption

of Figure 11.7 and argue using this picture. This can easily be formalized

to a precise description of D (see [371]). Based on the definition of D, it is
not difficult to prove the following lemma which gives important structural

properties of D (Exercise 11.26).

Lemma 11.2.3 let C be an alternating directed cycle in D. Then the follow-

ing holds:

(a) C uses precisely one of the three paths of length two from c; to cj41 for

eT:
(b) For each j = 1,2,...,m, the subpath C[c;,cj+41] has length 2 and contains

precisely one vertex from US_, (V(P;) UV(Q;)).
(c) C contains each of the vertices c1,C2,---,Cm,€m+1 and in that order.

(d) If C uses a path cjuc;41 such that u € V(Pi) (u € V(Qi)), then no
other subpath of C of the type cqvCq+1, ¢ # J, uses a vertex from V(Q;)

(V(P;)) and C contains the whole path Q; (P;) as a subpath.

622 11. Generalizations of Digraphs

C71 C2 C3 C4 C5 Cm-1 Cm Cm+41

2 2

Pr Pi Pj

Deel A ih Sal 2 2 oy Py ale
1 i a! +0-8<-@ 1 a 2} =+0<-8<@ |

= -@ >=

Ne-e-0 -0-0-0'! 1 1 10+@<-@ <6-@6-6@ 1
by. a3 Dr Goad) Scio eer De tee eae AI

Qr QQ; Q1

(a)

cj Ci41

(b)

Figure 11.7 A schematic view of the digraph D. The digraph has one vertex c; for
each clause c; in F¥ and an extra vertex cm41. For each variable z;, i = 1,2,...,k,

D contains two alternating directed paths P;,Q; such that these start and end in
the same vertices but are otherwise disjoint and both paths start and end with
colour 1. Part (a) shows the way these structures are put together to form D.
There is a unique arc from a pair P;,Q; to the next pair P;41, Qi+1 and this arc
has colour 2. For every j = 1,2,...,m, cj is joined to cj41 by three paths of
length 2. Part (b) of the figure shows a detailed picture of the three (c;c;+1)-paths
of length 2 when c; is the clause cj; = 2, + ©; + 2. These paths are cjuc;+1,
where u € V(T;), Ti € {Pi,Qi}. The first arcs of these paths are of colour 1.
Furthermore the paths P;,...,P,Qi,...,Qx are chosen sufficiently long so that
no vertex u € V(P;) UV(Q;) is used on two different paths of the type cj; ucj 41.

(e) C uses precisely one of the alternating directed paths P;,Q; for each i =

1,2,...,k and it uses them in order of increasing 1.

Lemma 11.2.4 The digraph D has an alternating directed cycle if and only
if F is satisfiable.

Proof: Suppose C is an alternating directed cycle in D. By Lemma 11.2.3,

the following is a truth assignment to X = {21,22,...,2,%}. For each i =
1,2,...,k, if C uses P; then put 2; = 0 otherwise (C uses Q; by (e)) put
xz; = 1. We claim that each clause c; is satisfied by this assignment. By

Lemma 11.2.3, the subpath of C from c; to cj41 has the form cjucj41 for

11.2 Arc-Coloured Directed Multigraphs 623

some u € U*_, (V(P;) UV(Q;)). Let @ be the literal of c; corresponding to u

(that is, if w € P;, then by (d) and the definition of D, = 2; and if u € Q,,

then @ = Z;). If u € V(P,), then C uses the path Q; and the truth assignment

above will put €= 2; = 1. Ifu € V(Q;), then C uses P; and 2; is assigned the
value 0, implying that @ = %; = 1 . This shows that the clause c; is satisfied.

Since this argument is valid for all clauses we see that the truth assignment
described above satisfies F.

Suppose now that F has a satisfying truth assignment t = {t1,t2,..., tx}

(see Section 1.10). Then we can fix, for each clause c; one literal 1; which
is true according to this assignment. Let @1,¢2,...,€m denote these fixed

literals. Note that since ¢ is a truth assignment, none of the chosen literals

is the negation of another. By the construction of D there is a unique path

Cj; = cjuj;cj4+1 which corresponds to the choice of @; (that is, uj; € P; if
£; =o and Uz € GF if £; = wel Furthermore if tae = Co for some j; # Ja,

then u;, # u;,. For each i = 1,2,...,k fix one of the paths Pj, Q; as follows:

it — 2; for some. r €{1,2,...,m}, then T; = Q;; otherwise T; = P;. By

the comment above this assignment of subpaths always chooses one subpath

pomeach 7. 11,2,,..,.h:

Now it is easy to see that the following is an alternating directed cycle in

D
C1C2 oltelfe Gatyls pron Ty.

This completes the proof of the lemma. O

To complete the proof of Theorem 11.2.2, it suffices to observe that the

digraph D can be constructed in polynomial time for any given instance of

the 3-SAT problem. QO

We do not know what the complexity of the ADC problem is when re-

stricted to tournaments.

Problem 11.2.5 /371] Does there exist a polynomial algorithm to check

whether a 2-arc-coloured tournament has an alternating cycle?

Figure 11.8 illustrates the difficulty of this problem. In contrast to the ‘un-

coloured’ case, the 2-arc-coloured tournament T in Figure 11.8 has a unique

alternating cycle, which is hamiltonian. Therefore, a reduction to ‘short’ al-

ternating cycles may well be impossible.

Proposition 11.2.6 The cycle C in the tournament T of Figure 11.8 is

hamiltonian and consists of the matching of colour 1 from R to B and the

matching of colour 2 from B to R. If we reverse any arc of colour 1 in Cs

we obtain a tournament with no alternating cycle.

Proof: Exercise 11.31. 0

624 11. Generalizations of Digraphs

Figure 11.8 A 2-arc-coloured tournament with a unique alternating cycle C. All
arcs within R (B) are of colour 1 (2). The cycle C is hamiltonian and consists of
the matching of colour 1 from R to B and the matching of colour 2 from B to R.
If we reverse any arc of colour 1 in C, we obtain a tournament with no alternating
cycle.

x

11.2.2 The Functions f(n) and g(n)

Since f(n) < g(n) we will only prove a lower bound for f(n) in Theorem
11.2.10 and an upper bound for g(n) in Theorem 11.2.11.

Let S(k) be the set of all sequences whose elements are from the set {1, 2}
such that neither 1 nor 2 appears more that k times in a sequence. We assume

that the sequence without elements (i.e. the empty sequence) is in S(k). We

start with three technical lemmas. Their proofs are formulated as Exercises

Wil PAess TEE PA, IU cot):

Lemma 11.2.7 /371] |S(k)| = (7d) —1. Oo

Lemma 11.2.8 /371] For every k > 1,

fA < i (11.5)
k}) Vr JVk

Let d(n) = |Flogn + ; loglogn —a|, where a = a (<0:5):

Lemma 11.2.9 /371] ee) <n, for all n > 24. Oo

Now we are ready to prove the following theorem by Gutin, Sudakov and
Yeo [371].

Theorem 11.2.10 For every integer n > 24, there exists a 2-arc-coloured
strongly connected digraph Gy with n vertices and 6°,,(Gn) > d(n) not
containing an alternating cycle.

11.2 Arc-Coloured Directed Multigraphs 625

Proof: Let the vertex set of a digraph D, be S(2d(n)) and let two vertices

of D, be connected if and only if one of them is a prefix of the other one.

Moreover, if r = (%1,%2,...,%p) and y = (y1,y2,..., Yq) are vertices of Dn,
and z is a prefix of y (namely, 2; = y; for every i = 1,2,...,p), then the arc

a(x,y) between x and y has colour yp; and a(x, y) is oriented from zx to y

if and only if |{j: 7 >p+1 and y; = yp41}| < d(n).
The digraph D,, is strongly connected since the arc between a pair of

vertices Z = (21, 22,...,%p) and y = (21, 22,..., Lp, p41) is oriented from x

to y, and the arc between the empty sequence @ and a vertex v of D,, which

is a sequence with 4d(n) elements is oriented from v to # (every vertex of Dy,

belongs to a cycle containing § and a vertex corresponding to a sequence of

4d(n) elements).
Let x = (11, 22,-.-,%p) be a vertex of D,. It is easy to see that df (zx) >

d(n). Indeed, if x contains at most d(n) elements equal one, then (x, x"); is
in D,, where r = 1,2,...,d(n) and 2” is x followed by r ones. If x contains

t > d(n) elements equal one, then (x,y); is in Dn, where y is obtained from z

by either adding at most 2d(n) —t ones or deleting more than d(n) rightmost
ones, together with 2’s between them, from z.

Analogously, one can show that d; (x) > d(n). By symmetry, 6°,,,,(Dn) >

d(n).
Now we prove that D, contains no alternating cycle. Assume that Dy

contains an alternating cycle C. The empty sequence @ is not in C as @ is

adjacent with the vertices of the form (i,...) by arcs of colour i € {1,2}, but

the vertices of the form (1,...) are not adjacent with the vertices of the form
(2,...). Analogously, one can prove that the vertices (1) and (2) are not in
C. In general, after proving that C’ has no vertex with p elements, we can

show that C has no vertex with p+ 1 elements.

By Lemma 11.2.7, D, has b(n) = ea) — 1 vertices. By Lemma

11.2.9, b(n) < n. Now we append n — b(n) vertices along with arcs to Dy

to obtain a digraph G, with 6°,,,(Gn) > d(n). Take a vertex x € Dy with
4d(n) elements. We add n — b(n) copies of x to Dy such that every copy has

the same out- and in-neighbours of each colour as z. The vertex x and its

copies form an independent set of vertices.

The construction of G, implies that 5°,,,,(Gn) > d(n), Gn is strongly
connected and G,, has no alternating cycle, by the same reason as Dy. oO

Now we are ready to prove an upper bound? for g(n).

Theorem 11.2.11 Let D=(V,A) be a 2-arc-coloured digraph on |V| = n
vertices. If df (v) > logn — 1/3loglogn + O(1) for everyi = 1,2 andve V,

then D contains an alternating cycle.

2 As we mentioned in the footnote just before Lemma 10.6.13 the bound of the

lemma can be slightly improved. Hence the bound for g(n) can also be improved
slightly.

626 11. Generalizations of Digraphs

Proof: Without loss of generality assume that d/(v) = k for all vu € V (k
will be defined later), otherwise simply remove extra arcs. For each vertex

v € V and each colour i = 1, 2, let

Bi ={ueV: (v,u) is an arc of colour i}.

The size of each of the sets B’ is equal to k, thus they form a k-uniform

hypergraph H with n vertices and 2n edges. Let k = logn—1/3loglogn + b,

where b is a constant. Then it is easy to see that by choosing b large enough we

get that ck!/?2* > 2n. By Lemma 10.6.13, our hypergraph H is 2-colourable.
By taking a 2-colouring of H we get a partition V = X UY such that Bi,

intersects both X and Y for every i = 1,2 and v € V. Let D, be asubdigraph

of D which contains only arcs of colour 1 from X to Y and arcs of colour

2 from Y to X. The out-degree of every vertex in Dj is positive, since all

sets B! intersect both X and .Y. Therefore D; contains a cycle, which is

alternating by the construction of D,. 0

11.2.3 Weakly Eulerian Arc-Coloured Directed Multigraphs

Figure 11.9 Weakly eulerian non-eulerian 2-arc-coloured digraph.

The following theorem yields a characterization of weakly eulerian arc-

coloured directed multigraphs. Due to Theorem 11.1.2, every connected

weakly eulerian edge-coloured multigraph is eulerian (the definition of weakly
eulerian edge-coloured multigraphs is analogous to that of arc-coloured di-
rected multigraphs). This is in contrast to the fact that not every connected
weakly eulerian arc-coloured directed multigraph is eulerian. For example,
let C and Z be a pair of 2-arc-coloured alternating directed cycles with only
one common vertex x and 1 = y(xzt) # y(xx}) = 2; see Figure 11.9. The
union H of C' and Z is weakly eulerian, but H has no PC eulerian trail.

The proof of the following theorem is similar to that of Theorem 11.1.2
and left as Exercise 11.34.

Theorem 11.2.12 An arc-coloured directed multigraph D is weakly eulerian
if and only if d+ (x) = d~(a) for every vertex x in D, and for every vertex x
in D and every colour i, we have

diz) Sa: ().
j#t

11.3 Hypertournaments 627

Neither characterization nor complexity is known so far for the eulerian
trail problem in arc-coloured directed multigraphs.

Problem 11.2.13 Find the complexity of checking whether an arc-coloured
directed multigraph is eulerian.

For the case of just two colours the following simple transformation by

Fleischner [240] can be applied. Let D be a 2-arc-coloured directed multi-
graph. Split every vertex v with 6°(v) > 0 into a pair v',v” of vertices such
that v’ ‘inherits’ all red arcs entering v and all blue arcs leaving v, and vu"
‘inherits’ all blue arcs entering v and all red arcs leaving v. By disregarding all

colours in the obtained 2-arc-coloured directed multigraph, we yield the di-

rected multigraph H. Clearly, D is eulerian if and only if H is eulerian. Some

sufficient conditions for an arc-coloured directed multigraph to be eulerian
are given in [240].

11.3 Hypertournaments

Given two integers n and k, n > k > 1, a k-hypertournament T on n

vertices is a pair (V,A), where V is a set of vertices, |V| = n and A isa
set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A

contains exactly one of the k! k-tuples whose entries belong to S. That is, T

may be thought of as arising from an orientation (being a fixed permutation

of vertices) of the hyperedges of the complete k-uniform hypergraph on n

vertices. Clearly, a 2-hypertournament is merely a tournament.

As an example of a 3-hypertournament, let L have vertex set V(L) =

{1,2,3,4} and arc set A(L) = {(1, 2,3), (1,2, 4), (1, 4,3), (4,3, 2)}. The four
arcs of L are orientations of sets {1,2,3}, {1,2,4}, {1,4,3} and {2,3, 4},

respectively.

Hypertournaments have been studied by a number of authors (see, e.g.,

the papers [32] by Assous, [92, 93] by Barbut and Bialostocki, [117] by Bialo-
stocki, [276] by Frankl, [374] by Gutin and Yeo, [552, 553] by Marshall, [599]
by Pan, Zhou and Zhang and [759] by Zhou, Yao and Zhang). Reid [630, Sec-

tion 8] describes several results on hypertournaments obtained by the above

authors and poses some interesting problems on the topic. In particular, he

raises the problem of extending the most important results on tournaments

to hypertournaments.
In this section based on the results of Gutin and Yeo in [374] and Zhou,

Yao and Zhang in [759], we give extensions of three of the most basic theo-
rems on tournaments: every tournament has a Hamilton path (Rédei’s the-
orem), every strong tournament has a Hamilton cycle (Camion’s theorem),

and Landau’s theorem, Theorem 8.7.1, on out-degree sequences of tourna-

ments. It turns out that every k-hypertournament on n (> k) vertices has a

Hamilton path and every strong k-hypertournament on n > k + 2 > 5 ver-

tices contains a Hamilton cycle. We also describe, for every k > 3, a strong

628 11. Generalizations of Digraphs

k-hypertournament on k + 1 vertices which has no Hamilton cycle. We con-

sider the complexity of the Hamilton cycle problem for k-hypertournaments

and note that the problem remains polynomial time solvable when k = 3 and

becomes \VP-complete for every fixed integer k > 4. As follows from The-

orem 11.3.4, deciding strong connectivity for hypertournaments is already

NP-complete. Interestingly enough, Landau’s theorem and the Harary-Moser

theorem, Theorem 8.7.2, on out-degree sequences of all tournaments and all

strong tournaments have direct extension to hypertournaments.

Let T = (V, A) denote a k-hypertournament T on n vertices. A path in T

is a sequence V1 41 V242U3 ...U~_-1 04-1 Uz Of distinct vertices v1, v2,.-.,Vt,t > 1,

and distinct arcs a 1,...,@:—, such that v; precedes vj41 in aj, 1 <i <t—l1.

A cycle in T is a sequence 0141020203... Vt-14¢-1U444U1 Of distinct vertices

V1,V2,--.,U~ and distinct arcs a,,...,a4, t > 1, such that v; precedes v;41

in aj, 1 <i <t (a¢41 = a1). The above definitions of a path and cycle in a
hypertournament are similar to the corresponding definitions of a path and

cycle in a hypergraph. .

For a path or cycle Q, V(Q) and A(Q) denote the set of vertices (v;’s
above) and the set of arcs (a;’s above), respectively. For a pair of vertices

v; and v; of a path or cycle Q, Q[u;,v;] denotes the subpath of Q from

v; to v; (which can be empty). A path or cycle Q in T is hamiltonian if

V(Q) = V(T). The 3-hypergraph L considered in the beginning of this section

has a Hamilton path 1, (1, 2,3), 2, (1,2,4),4, (1,4,3),3. A hypertournament

T is hamiltonian if it has a Hamilton cycle. A path from z to y is an

(z,y)-path. A hypertournament T is strong if T has an (z, y)-path for every

(ordered) pair x,y of distinct vertices in T. The hypertournament L is not

strong, since there is no (2, 1)-path in L. This, in particular, means that L is

not hamiltonian.

We aiso consider paths and cycles in digraphs which will be denoted as

sequences of the corresponding vertices.

The out-degree d*(v) of a vertex v in a hypertournament T is the num-

ber of arcs in T' in which v is the last vertex. The out-degree sequence

of T = (V,A) is the non-decreasing sequence sj, S2,...,5n of non-negative

integers such that {s1, $2,...,8n} = {d*(v): v € V}. For a pair of distinct
vertices x and y in T, Ar(a,y) denotes the set of all arcs of T in which x
precedes y. Clearly, for all distinct 2,y € V(T),

lAr(2,y)| + |Ar(y,2)| = G 3 al (11.6)

11.3.1 Out-Degree Sequences of Hypertournaments

It turns out that Landau’s theorem on out-degree sequences of tournaments

can be directly extended to hypertournaments. Similarly, one can extend the

Harary-Moser theorem on out-degree sequences of strong tournaments. These

extensions were proved by Zhou, Yao and Zhang [759].

11.3 Hypertournaments 629

Theorem 11.3.1 [759] Given two non-negative integers n and k with n >
k > 2, a non-decreasing sequence s1,82,...,8n of non-negative integers 1s
the out-degree sequence of some k-hypertournament if and only if for each j,

Boy <n,

: j
<>

a2 (a
1=1

with equality holding when j = n. 0

Theorem 11.3.2 /759] A sequence s; < s2 < ... < Sy of non-negative

integers with n > k > 2 is the out-degree sequence of some strong k-

hypertournament if and only if for each j, k<j<n-—1,

and

11.3.2 Hamilton Paths

Assume, in this subsection, that k > 2. Clearly, no k-hypertournament with

precisely k(> 3) vertices has a Hamilton path. However, all other hypertour-

naments have Hamilton paths:

Theorem 11.3.3 Every k-hypertournament with n (> k) vertices contains

a Hamilton path.

Proof: Let T = (V, A) be a k-hypertournament T on n vertices 1,2,...,n.

We consider the cases k = n — 1 and k < n —1 separately.

Case 1: k = n —1. We proceed by induction on k > 2. Clearly, this

theorem holds for k = 2. Hence, suppose that k > 3. Assume (by relabelling

the vertices, if necessary) that T contains the arc a = (23...n). Let 6 be
the arc of T whose vertices are 1,2,...,m — 1 (in some order). Consider the

(k — 1)-hypertournament T’ = (V’, A’) obtained from T by deleting the arc
a, deleting n from the arcs in A — {a,b}, and finally deleting 1 from b. So,

Vie, 25 pi) Ale fe’: Sesisne without n;<e €.A.—-{a, b}}.U:{b'},
where 0b’ is b without the vertex 1. By the induction hypothesis, T’ has a

Hamilton path 2,ax%2a4...a),_5%,-1. This path corresponds to the path

Oee Fra; isda sc. Gnesi in: TY Clearly,){2105, 0-1} 6= {160,70 1}
and A — {a;,...,@n—2} consists of the arc a and another arc c.

If tp, # 1, then Qan is a Hamilton path in T. Hence from now on

assume that z,_; = 1. Consider two subcases.

630 11. Generalizations of Digraphs

Subcase 1.1 c $ b: If the last vertex of c is n, then Qen is a Hamilton

path in T. Otherwise, x; is the last vertex of c for some j <n—1. If 7 > 1 we

replace aj_1 by anc in Q in order to obtain a Hamilton path in T. If j = 1,

then ncQ is a Hamilton path in T’.

Subcase 1.2 c = b: If c ~ (fn-12n-2---21) So that x; precedes 2441,

for some i, 1 < i < n— 2, inc, then P = Q[21, xi|cQ[xi+1, Zn_-1] is a path

in T. Since a; # b, one can construct a Hamilton path in T from P as in

Subcase 1.1. If ¢c = (tn_1%n_2-.-21), then Q[x2,tp-1]cx1an is a Hamilton

path in T.

Case 2: k < n — 1. We proceed by induction on n > 4. The case n = 4

(and, hence, k = 2) is easy to verify (it also follows from Rédei’s theorem).
Therefore, suppose that n > 5. Consider the new k-hypertournament T’’

obtained from T by deleting the vertex n along with all arcs in A containing

n. T" has a Hamilton path because of either Case 1 if n = k — 2 or the

induction hypothesis, otherwise. .

Let_P = 2101 2202...Qn22%n_1 be a Hamilton path in JT”. If T has

an arc a € Ar(%p_1,n), then Pan is a Hamilton path in T. Suppose that

Ar(tn-1,n) = 0. Then either Uns! Ar(ai, 7) = @, or there is an 7 so that

Ue Art, n) = @ and T contains an arc b where x; precedes n. In the first
case, ncP is a Hamilton path in T', where c is an arc of T containing both

x, and n. In the second case, P[z1, x;]bndP[xi+1,£n-1] is a Hamilton path

in T, where d is an arc of T containing both z;,; and n and distinct from

b. oO

11.3.3 Hamilton Cycles

Clearly, every hamiltonian hypertournament is strong. However, for every k >

3, there exists a strong k-hypertournament with n = k + 1 vertices which is

not hamiltonian. Indeed, let the (n — 1)-hypertournament H,, have vertex set

{21,...,@n} and arc set {a1,a2,...,Qn}, where a, = (zoz3.. Bo PR he pao

a2 = 3, a3 = (41222425 ...2n), Ag = (4243214526 ...Ln), and

ay = (1122 +++ Uj-42j-37j-12j_27j44T7j42.. pte) for 5 < 1 < nN.

The hypertournament H,, is strong (Exercise 11.35). However, H,, is not
hamiltonian. To prove that, assume that H, has a Hamilton cycle C. We
will try to construct C starting from the vertex z,. Since a; is the only
arc which has a vertex that succeeds z,, C has the form 2,a@,%n_1....
Since ay is the only arc which has a vertex different from z, that suc-
ceeds Zn-1, C = 201 %p-14n%n_-2.... Continuing this process, we obtain
that C = rna,tn_1...24a523.... The only arc where 23 precedes 2 or 2
is a4. Hence, C = rna,%n_1...2405230421 Now we need to include X2,
a3 and ag into C. However, this is impossible because only one of the arcs
a3, @2 contains Xo.

11.3 Hypertournaments 631

In the proof in [374] that every strong k-hypertournament with n vertices,

where 3 < k < n — 2, is hamiltonian the following notion is of great impor-

tance. The majority digraph Dyqj;o,(H) of a k-hypertournament H with

n vertices has the same vertex set V as H and, for every pair 2, y of distinct

vertices in V, the arc ry is in Dmajor(H) if and only if |Ay(z, y)| > |An(y, 2)|
(or, by (11.6), |Ar(z,y)| > $(f73)). Obviously, Dmajor(H) is a semi-
complete digraph. Figure 11.10 shows the majority digraph Dmajor(L) of

the 3-hypertournament L with vertex set V(L) = {1,2,3,4} and arc set

A(L) ={ (1; 2,3); (1)2, 4), (14,3), (453, 2)}

Figure 11.10 The majority graph Dmajor(L) of L.

Since the proof of the following interesting result is rather lengthy, we do

not provide it here.

Theorem 11.3.4 (Gutin and Yeo) /374] Every strong k-hypertournament
with n vertices, where 3 < k <n — 2, contains a Hamilton cycle. Oo

We know that the Hamilton cycle problem for 2-hypertournaments, i.e.

tournaments is polynomial time solvable (see Chapter 5). It turns out that the
k-hypertournament hamiltonicity problem remains polynomial time solvable

for k = 3, but becomes NP-complete for every fixed k > 4.

Let H = (V,A) be a k-hypertournament, A = {a1,...,@m}. Associate
with H the following arc-coloured directed multigraph D(H): the vertex set

of D(H) is V; for distinct vertices z,y € V, D(H) has the arc zy of colour
i if and only if a; € Ay(x,y). Clearly, H contains a path from a vertex x to

another vertex y if and only if D(H) has a path P from z to y such that no
two arcs in P have the same colour.

Theorem 11.3.5 /374] The Hamilton cycle problem is solvable in polyno-

mial time for the class of 3-hypertournaments.

Proof: Let H be a 3-hypertournament. We may assume that n > 5, since

the case when n < 4 can be checked in constant time. By Theorem 11.3.4,

it suffices to prove that one can check the existence of a path, in H, from a

vertex xz to another vertex y in polynomial time. Construct the arc-coloured

directed multigraph D(H) as above. We prove that H has a path from z to

632 11. Generalizations of Digraphs

y if and only if D(H) has some (z,y)-path. Clearly, if H has a path from

z to y, then D(H) contains such a path. Suppose that D(H) has a path

Q=2...%p from x = 2 to y = Zp. If Q has no arcs of the same colour,

then Q corresponds, in the obvious way, to an (z, y)-path of H. Suppose that

Q contains arcs of the same colour. This means that there exist a subscript 2

and an integer j such that the arcs z;_12; and 2;2;41 have the same colour

j (these two are the only arcs of colour j which can be in Q). We can replace

Q by the path Q[21, 2i-1]Q[zi+1, 2p]. Continuing this process, we obtain a

new path, in D(H), from zx to y without repetition of colours. The new path

corresponds to an (z,y)-path in H. Oo

Theorem 11.3.6 (Gutin and Yeo) /374] Let k > 4. The Hamilton cycle
problem for k-hypertournaments is NP-complete. O

The proof of this theorem in [374] is considerably more difficult and lengthy.
It reduces the 3-SAT problem*into the Hamilton cycle problem for 4-

hypertournaments.

11.4 Application: Alternating Hamilton Cycles in

Genetics

In [200, 201] Dorninger considers Bennett’s model (see Bennett’s book [104]
and the papers [423, 424] by Heslop-Harrison and Bennett) of chromosome

arrangement in a cell of an eukaryotic organism. In [201], the case of even
number, n, of chromosomes is studied. We consider here only this case as it is

more interesting. Every individual chromosome consists of a long arm and a

short arm, which are linked at the so-called centromere. At a certain stage of

cell division, which is of interest to biologists, the arms of n chromosomes form

an n-angle star whose internal points are the centromeres (see Figure 11.11)

and external points created by the arms of ‘adjacent’ chromosomes. To find

Figure 11.11 Chromosome arrangement.

out the order of the centromeres, Bennett [104] suggested that the external

11.4 Application: Alternating Hamilton Cycles in Genetics 633

points are formed by the most similar size arms. Bennett and Dorninger

(see [201]) generalized the notion of similarity to so-called k-similarity and

Dorninger [201] analyzed the consistency of this generalized notion. Let us

consider the following graph-theoretic model of this biological system. Let

s; and |; denote the short and long arm of chromosome number 7. Let the

chromosomes be labeled 1,2,...,n in such a way that s; is longer than s; if

i<j, and let 7 be a permutation of 1,2,...,n such that l,(;) is longer than

Le(3) ti <9)

We call two short arms s; and s; (long arms [,(;) and l,(;)), 1 # J, k-

similar if |i —j| < k. In this way, for k = 1, we obtain the original Bennett’s
notion of ‘most similar size’. Let G(n,k,7) be a 2-edge-coloured multigraph

with vertex set {1,2,...,n}. The blue (red) subgraph Gj(n, k, 7) (G2(n, k, 7))
of G(n,k,7) consists of edges pg (p # q) such that sp and sq (lp and /,) are

k-similar. (See Figure 11.12.)

5 6

Figure 11.12 The 2-edge-coloured graph G(6,2,7), where r(1) = 2, 7(2) =

1, 7(3) = 4, 7(4) = 3, 7(5) = 5, 7(6) = 6. The blue edges are shown by ordi-

nary lines. The red edges are indicated by fat lines.

According to one of Bennett’s assumptions, G(n, k, 7) has an alternating

Hamilton cycle. Dorninger [201] analyzed when G(n,k,7) has an alternat-

ing Hamilton cycle for every permutation 7. Clearly, for k = 1, the 2-edge-

coloured multigraph is a collection of t > 1 alternating cycles and, when t > 2,

Bennett’s assumption does not hold. Dorninger [201] proved that G(n, 2,7)

has an alternating Hamilton cycle for every 7 provided n < 12. He [201] also

showed that for every n > 14 there exists a permutation 7 such that G(ni2)m)

has no alternating Hamilton cycle. Yeo (private communication, April, 1999)

proved that the alternating Hamilton cycle problem for the graphs G(n, 2, 7)

is NP-hard. Interestingly enough, G(n, 3,7) contains an alternating Hamil-

ton cycle for every permutation 7. Thus, the notion of 3-similarity seems to

be most consistent with Bennett’s assumptions.

In the rest of this section we will prove the following two results:

Theorem 11.4.1 /201] For every even positive integer n < 12 and every

permutation 7 of 1,2,...,n, the 9-edge-coloured multigraph G(n, 2,7) has an

alternating Hamilton cycle. :

634 11. Generalizations of Digraphs

Theorem 11.4.2 (Dorninger) [201] For every even positive integer n and
every permutation m of 1,2,...,n, the 2-edge-coloured multigraph G(n, 3,7)

has an alternating Hamilton cycle.

11.4.1 Proof of Theorem 11.4.1

In this subsection, which contains certain proofs suggested by Yeo (private

communication, April, 1999), we consider multigraphs G = G(n,2,7). We

recall that V(G) = V(G1) = V(G2) = {1,2,:..,n}, H(Gi) = {a7 : [t—G| <
2}, and E(G2) = {x(t)m(j) : |t — Z| < 2} (see Figure 11.12). Clearly, every
alternating cycle factor F of G is the union of a perfect matching F\ of G;

and a perfect matching F) of G2. We write F = C(F,, Fo).
Suppose that e = 17 and f = pq are in F; and e and f belong to two

distinct cycles X and Y of ¥. Suppose also that 7 < 7, p < q and edges ip

and jq are in G,. If we delete e and f in F, and add edges ip and jq, we

obtain a new perfect matching F’ of G,. Observe that C(Fj, F2) has one less
cycle than C(F,, F2) since the vertices of X and Y form a new alternating
cycle Z. We call F{ the (e, f)-switch of F,; the operation to obtain F{ from
F, is a switch (or, the (e, f)-switch).

LetiSo=t{{2t 11, 2t) tis 2 9- to 2 andl = (tee 1 al eee
t = 1,2,...,n/2}. Clearly, S and L are perfect matchings in G, and Go,
respectively.

Lemma 11.4.3 Let C(S,L) contain m cycles. There is a sequence of switches

of edges in S, such that the resulting perfect matching F of G,, has the prop-

erty that C(F,L) has at most |(m+1)/2]| cycles. Furthermore, given any
cycle C, in C(S,L) we may choose F, such that all cycles in C(F,L), except
possibly Cp, have length at least 4.

Proof: Let C(S, L) consist of cycles C),C2,..., Om. Let e; = {2r;—1, 2r;} be

an edge of C;,, such that r; is minimum. Assume that the cycles C, C2,...,Cm

are labelled such that 1 = 1] < rg <...< rm. Define q; to be the maximum

number such that {2r; — 1, 2r;}, {2r; + 1, 2r; + 2},..., {2q; — 1,2q;} belong

to G;, for every t= 1. 273,01. Observe thatel 2— ti Giee Ponm Gone

Tm S Im = N.

Fix h € {1,2,...,m}. We will now prove that by doing switches every

cycle, except possibly C;,, can be merged with another cycle. We perform the

switches recursively in the following way. While there is a cycle, C; withi < h,

which has not been merged to another cycle do the following: choose i to be

the minimum such index and perform the ({2q; — 1, 2q:}, {2q: + 1, 2q; + 2})-
switch. While there is some cycle, C; with i > h, which has not been merged
to another cycle do the following: choose i to be the maximum such index
and perform the ({2r; — 3, 2r; — 2}, {2r; — 1, 2r;})-switch. Note that all the
above switches use distinct edges.

Since every cycle, except possibly C,, is merged to another cycle, we
must have performed at least |m/2| merges. Therefore there are at most

11.4 Application: Alternating Hamilton Cycles in Genetics 635

m — |m/2} = |(m + 1)/2] cycles left, which proves the first part of the
theorem. The second part follows immediately from the above construction.

O

Theorem 11.4.1 follows from the next lemma.

Lemma 11.4.4 If C(S,L) has at most six cycles, then G has an alternating
Hamilton cycle.

Proof: By the previous lemma, the alternating cycle factor C(F,L) has at

most three cycles. Furthermore we may assume that all cycles in C(F,L)

have length at least 4, except possibly the cycle containing the vertex 7(1).

If C(F, L) consists of a unique cycle, then we are done. Assume that C(F, L)
has three or two cycles. Label them D;, Dz, D3 (or D,, D2) similarly to that

in the proof of Lemma 11.4.3. Let f; = m(2r; — 1)m(2r;) be an edge of Dj,
such that r; is minimum. Assume that the cycles D,, D2, D3 are labelled such

that l=r; < ro <r3. Let f} = 2(2r; — 3)a(2r; — 2) for i > 2.

Note that all cycles except possibly D, have length at least 4. If C(F, L)
has two cycles (D; and D2), then construct the (f%, f2)-switch M of L.
Clearly, C(F, M) consists of a unique cycle. Assume that C(F,L) has three
cycles, D,,D2,D3. Perform the (f3, fo)-switch. If ff # fo then perform

the (f3, f3)-switch, which gives the desired cycle. If ff = fz then let
g = m(2j — 1)7(27) be the edge of minimum 7 > r3 which does not lie in
D3, and let g' = (27 — 3)m(2j — 2). Now perform the (g’, g)-switch, which
gives the desired cycle. oO

11.4.2 Proof of Theorem 11.4.2

In this subsection, we follow [201]. We consider multigraphs G = G(n, 3,7).
Werren! thats (G)o= Vidi) eV (Ga) a lees hye Gre tf
|i —j| < 3}, and E(G2) = {(i)a(y) : |i-—g| < 3}. We use the same notation
as in the previous subsection, in particular, the notation C1,C2,...,Cm and

€1,€2,...,€m remain valid. Let G* be the subgraph of G induced by the

vertices of the cycles C;,C2,...,Cz. Let L* = LN E(G§).
We show that, for every k > 1, there is a perfect matching F* of Gt

such that C(F*, L*) consists of a single cycle. Clearly, the assertion implies

Theorem 11.4.2. Trivially, the assertion is true for k = 1. So let us assume

that the assertion holds for every i < k — 1. Let e, = {s +1,s +2}, where s

is an appropriate even integer. Consider the following three cases.

Case 1: The edge e = {s,s — j}, where j = 1 or 2, is in F*~?.

Then, the desired F* is the (ex, e)-switch of F*-! + e,. Indeed, C(F*, L*)

consists of a single cycle.

Case 2: The edges e’ = {s,s — 3} and e” = {s — 1,8 — 2} are in

F*-1, Let M, (Mz) be a perfect matching of G{~’ obtained from F*~* by

replacing edges e’,e” with {s,s — 1}, {s— 3, s— 2} ({s,s — 2}, {s—3,s—1}).

636 11. Generalizations of Digraphs

Clearly, for some i € {1,2}, C(M;,L*~*) consists of a single cycle H. Since

either {s,s —1} or {s,s —2} is in H, we can apply the transformation of Case

1 to the appropriate matching Mj.

Case 3: The edges e’ = {s,s — 3} and e” = {s —1,s — 4} are in

F*-1, Then e = {s —2,s —5} must be in F*~'. Let H be the single cycle of

C(F*-1, L¥-). Consider the following two subcases.

Subcase 3.1: The vertices of e and e’ are in the cyclic order

3 — 5,8 — 2,8 — 3,s in H. Replacing e and e’ with {s—5, s—3} and {s, s—

2}, we obtain a perfect matching M of G*~* such that C(M, L*-') consists
of a single cycle. Since {s,s — 2} € M, we can apply the transformation of

Case 1 to M.

Subcase 3.2: The vertices of e and e’ are in the cyclic order

s —2,s —5,s — 3,s in H. Ife” belongs to H[s—5, s—3], then by replacing

e,e’,e"’ with three edges, one of which is {s,s — 1}, we obtain a perfect
matching M of Gk~! such that C(M, L*—!) consists of a single cycle. Since
{s,s—1} € M, we can apply the transformation of Case 1 to M. If e” belongs

to H[s, s—2], then by replacing e, e’, e” with three edges, one of which is {s, s—

2}, we obtain a perfect matching M of G{~* such that C(M, L*~') consists
of a single cycle. Since {s,s — 2} € M, we can apply the transformation of
Case 1 to M. 0

11.5 Exercises

11.1. Prove Proposition 11.1.1. Hint: use Haggkvist’s transformation as well as
Theorem 5.0.1, Proposition 9.2.1 and Theorem 9.2.3.

11.2. (—) Deduce from Theorem 11.1.2 that an undirected multigraph G has an
eulerian trail if G is connected and each vertex of G is of even degree.

11.3. Prove that Pevzner’s algorithm described after Theorem 11.1.2 is correct.

11.4. (—) Every eulerian digraph has a cycle (unless it is the trivial digraph with
one vertex). Show that the corresponding claim is not valid for alternating
trails and cycles in 2-edge-coloured graphs.

11.5. Let G be a connected 2-edge-coloured graph. Let V(G) = X + Y such that
d,(“) = do(x) for every € X, and di(y) = d2(y) —1 for every y € Y. What
is the minimum number of edge-disjoint alternating trails to cover E(G)?

11.6. Prove Corollary 11.1.7.

11.7. Every bridgeless graph G has an M-alternating cycle for a given
perfect matching M of G. Let M be a perfect matching in a graph G.
Using Theorem 11.1.6 prove that, if no edge of M is a bridge of G, then
G has a cycle whose edges are taken alternatively from M and G — M
(Grossman and Haggkvist [335]).

1233

11.24.

11°25;

11.26.

I PA

11.28.

11.29.

11.5 Exercises 637

. (+) Let G be a 2-edge-coloured eulerian graph so that all monochromatic
degrees are odd. Using Theorem 11.1.6 demonstrate that G has an alternat-
ing cycle (Grossman and Haggkvist [335]).

Prove Proposition 11.1.10.

. Prove Proposition 11.1.15. Hint: see Exercise 1.30.

. Prove Theorem 11.1.16 using the BD-correspondence and Corollary 5.6.3.

. Deduce Theorem 11.1.16 from Theorem 11.1.17.

. Show that the conditions of Theorem 11.1.25 are necessary. Hint: it is similar
to the remark after Theorem 11.1.19.

. Derive Theorem 11.1.19 from Theorem 11.1.25. Hint: you may use the DHM-
construction.

(+) Prove Theorem 11.1.28.

. (+) Prove Theorem 11.1.30.

. Give a direct proof of Corollary 11.1.24 (Bang-Jensen, Gutin and Yeo [73]).

. Prove Lemma 11.1.34.

. Prove Theorem 11.1.38.

. Prove Theorem 11.1.41.

. Prove Theorem 11.1.42.

. Check that Gg introduced after Theorem 11.1.42 is colour-connected and has

the alternating spanning cycle subgraph 1231 U 4564, but does not contain
a PC Hamilton cycle.

Using the definition of Gg given after Theorem 11.1.42, construct, for ev-
ery even n, a 3-edge-coloured complete graph on n > 8 vertices which is
colour-connected and has a PC spanning cycle subgraph, but contains no
PC Hamilton cycle.

Prove Proposition 11.1.43. Hint: consider the complete biorientation of a
maximum spanning subgraph G of Ky, such that no pair of edges in G is of

ete

the same colour. Apply Exercise 5.22 to see that G is hamiltonian.

(—) Prove that the alternating hamiltonian directed cycle problem is VP-
complete for bipartite 2-arc-coloured digraphs.

Prove Lemma 11.2.3.

(—) Prove Proposition 11.2.1.

Prove Lemma 11.2.7.

(+) Using the well-known inequality (see e.g. Feller’s book [234, page 54])

Vian? ti/2e-ne(lant1)—! ee Jamn®t/2——n (130)

prove Lemma 11.2.8.

638

11.30.

eS

es 28

e383:

11.34.

11.35.

1136:

WS i

11.38.

11.39.

11. Generalizations of Digraphs

(+) Prove Lemma 11.2.9.

(—) Prove Proposition 11.2.6.

Let H be the 4-hypertournament with vertices {1,2,3,4,5} and arcs

{(2, 3, 4, 5), (3, 1, 5, 4), (2, 1, 4, 5), (1, 5, 3, 2), (1, 2, 3, 4)}.

Find a hamiltonian path in H.

Let H the 4-hypertournament defined above. Does H have a hamiltonian
cycle?

Prove Theorem 11.2.12.

Prove that the hypertournament H,, introduced in the beginning of Subsec-
tion 11.3.3 is strong.

Prove directly that for every fixed k > 4 and n large enough every k-
hypertournaments is traceable. Hint: use the fact that the majority digraph
of T is semicomplete.

(+) Prove that every strong 3-hypertournament on n > 5 vertices is hamil-
tonian (Gutin and Yeo [374]).

Show that every hypertournament T has a 2-king, i.e. a vertex x such that
for every y € V(T) — 2 there is an (z, y)-path of length at most two. Hint:
see the hint for Exercise 11.36.

(—) Construct an alternating hamiltonian cycle in the 2-edge-coloured
graph of Figure 11.12.

12. Additional Topics

The purpose of this chapter is to discuss briefly some topics that could not
be covered in other chapters in the book and which we feel should still be
mentioned. Depending on taste, several of these (and other topics which have
been completely left out due to space limitations) could have taken up a whole
chapter by themselves. Yet we think that our modest coverage will still show
the flavour and.potential usefulness of these topics. This applies in particular
to the sections on matroids and heuristics for obtaining good solutions to
NP-hard problems.

12.1 Seymour’s Second Neighbourhood Conjecture

Recall that for a vertex x in a digraph D, N*?(z) is the set of vertices of
distance two from x. Seymour posed the following conjecture (see [187] and
Problem 325, page 804 in volume 197/198 (1999) of Discrete Mathematics).

Conjecture 12.1.1 Every oriented graph D = (V,A) has a verter x such
that

[Noh (=) lila (a). (12.1)

Note that, if we allow 2-cycles, then the conjecture is no longer true as can

be seen by taking the complete digraph K n- Note also that, if the oriented

graph has a vertex of out-degree zero, then this vertex satisfies the conjecture.

This observation implies that it is sufficient to consider the conjecture for

oriented graphs that are strongly connected.

The truth of Conjecture 12.1.1 in the case of tournaments was also conjec-

tured by Dean [187]. This special case of the conjecture was proved by Fisher

[237] using an analytic approach. Fisher’s argument is non-trivial and in-

volves the use of a probability distribution on the vertices along with Farkas’

Lemma and several other tools. Moreover, Fisher’s method does not explicitly

identify a vertex which satisfies (12.1). Note that given any oriented graph
D, such a vertex, or a proof that D is a counter-example to the conjecture,

can be found in time O(nm) (Exercise 12.1).
Below we give an elementary proof, due to Havet and Thomassé [407], of

Conjecture 12.1.1 for the case of tournaments. The proof uses the concept

640 12. Additional Topics

of a median order of the vertex set of a tournament. A median order of a

tournament T is an ordering L = v1, v2,...,Un of the vertices, such that the

cardinality of the set of backwards arcs (namely arcs of the form v;v;, 7 > 7)
is minimum. In other words if H is an acyclic subdigraph of T whose size is

maximum among all acyclic subdigraphs of T, then any acyclic ordering of

H induces a median order on T’.

By definition, if £ = v1, v2,...,Un is a median order of T = (V, A), then

A' = {ujv; : 1 > j} is a minimum feedback arc set in T’ (see Section 10.3).
Hence, in the light of Conjecture 10.4.4, finding a median order of a tourna-

ment seems to be a difficult problem and the weighted version (where we seek

an order which minimizes the total weight of the backwards arcs) is WV P-hard

since it is easy to formulate the feedback arc set problem this way (Exercise

Peale

The following relaxation of a median order, called a local median or-

der in [407], is still a powerful tool as we shall see later. An ordering
L = U4,U2,.--,Un Of the vertices of a tournament T = (V, 4A) is a local

median order if the following holds for all 1 <i < 7 < n. (Here and below

we use the notation [v;, vj] = {vi, vigi,...,v;} for all 1 <<i<j <n.)

IN* (vi) 1 [vi v9]] > [IN (vi) 2 [vi v5]] and (12.2)

IN~ (us) 0 [vss gl] 2 LN (v3) 9 [ui 95]. (12.3)
Note that, if (12.2) does not hold, then the number of forward arcs in

3 Lo 099 - Bay Ui Aas Vea, G1 Uaioe IA

is larger than in £. Similarly if (12.3) does not hold, then we can obtain
a better ordering (with respect to the number of forward arcs) by moving
vj just after v;. Thus a local median order is precisely a local optimum,
which cannot be improved by moving just one vertex in the ordering. Such
an ordering can be found in polynomial time for any given digraph by using
the 1-OPT procedure in Section 12.8 below.

The following is a direct consequence of the definition of a local median
order:

Lemma 12.1.2 Let L = v,0v2,...,Un be a local median order of a tourna-
ment T’. Then for every 1 <i <j <n the ordering Liz = Vj, Vi41,...,0; is
a local median order of T({v;,vi+41,...,v;}). oO

Lemma 12.1.2 provides us with a powerful inductive tool as we shall see
below. Let T be a tournament and let £L = v1, v,... ,Un be a local median
order of T. We define a partition Gz, Bc of N ~ (vn) as follows:

Gc = {vj : ¥jUn and there exists i < j such that un—v;—0;};

Be=WN (vn) — Ge.

12.1 Seymour’s Second Neighbourhood Conjecture 641

The vertices of Gz are called good and those in Be bad vertices. Note that
|N*?(un)| > |Gc|. The following result by Havet and Thomassé implies that
Conjecture 12.1.1 holds for tournaments.

Theorem 12.1.3 [407] Let T be a tournament and let L = U1,V2,...,Un be
a local median order of T. Then the vertex Un has |N*?(un)| > |N+(vn)I.

Proof: Let £ = v1, v2,...,Un be a local median order of T. We prove by
induction on n that

IN*+ (vn) < [Gcl- (12.4)
If n = 1 the claim is trivially true so suppose that n > 1. If Bre = 0

then we have |Gc| = |N~(vn)| > |N*(vn)|, where the equality holds by the
definition of the good vertices and the inequality holds by the definition of a
local median order. Hence we may assume that there is a bad vertex. Choose
tas small as possible so that vj is bad. Define the sets GL,G, N', N* as
follows:

G'. = GcN[v1,uj] and G2 =G.n [vir1, Un,

N' = Nt (vp) A [v1, vi] and N* = Nt+(u,)N [vi+1,Un]-

Note that, if a vertex is good with respect to the pair (T({vis1,-..,Un}),
L"), where L’ = vi41,...,Un, then it is also good with respect to (T,L).
Hence, by the induction hypothesis (applied to T({vj41,...,Un}) and the
ordering £"), we have |N"| < |G%|. The minimality of i implies that every
vertex in {v,,...,Uj-1} is either in G. or N’. Furthermore, since v; is bad
we have N! C N+(v;) N[u1, v4-1] and N~(v%) N [ur, vs—1] C G',. Now using
(12.3) we obtain

IG] > |N~ (vi) 9 [vr, vi-a]] > [NF (v4) (vr, vi-1]| > |N" |.

Thus we have

IGc| = |GL| + |G2| > |N'| + |N*| = |N*(un)I,

implying that (12.4) holds for all positive integers n. Oo

If a tournament has a vertex of out-degree zero, then this vertex satisfies

(12.1) and the transitive tournament on n vertices shows that this vertex
may be the only vertex satisfying (12.1). Using median orders Havet and
Thomassé [407] proved that unless there is a vertex of out-degree zero, a

tournament has at least two vertices satisfying (12.1).

Havet and Thomassé showed by an example that their method (just as

Fisher’s method [237]) will not suffice to prove Conjecture 12.1.1 in full.
However, as an illustration of the power of median orders as a tool for proofs
of results (on tournaments), Havet and Thomassé proved the following result.
Recall that an oriented tree is an orientation of an undirected tree.

642 12. Additional Topics

Theorem 12.1.4 [407] Every tournament of order at least in contains

every oriented tree on n vertices as a subdigraph. oO

This is a significant step towards proving the following conjecture due to

Sumner (see [740]). Previous results on the conjecture (including a proof that

every tournament on at least (4+ 0(1))n vertices contains every oriented tree

on n vertices) were obtained by Haggkvist and Thomason [390].

Conjecture 12.1.5 (Sumner) Every tournament on at least 2n—2 vertices

contains every oriented tree on n vertices.

12.2 Ordering the Vertices of a Digraph of Paired

Comparisons

In this section we consider, several methods for ordering the vertices of a

weighted digraph. Even though all the methods we study can be applied to

arbitrary weighted digraphs, we concentrate on so-called paired comparison

digraphs (PCDs), a graph-theoretical model for the method of paired com-

parisons [183], which are defined in Subsection 12.2.1. In that subsection,
we consider also the score method and the feedback set ordering method to

order the vertices of PCDs. Limitations of these two methods imply the ne-

cessity to introduce and study other methods of ordering. In the main part

of this section we consider three methods of ordering that are due to Kano

and Sakamoto, and were introduced in 1983. These methods are described in

Subsection 12.2.2; several results on these methods are given in the following

subsections.

12.2.1 Paired Comparison Digraphs

The method of paired comparisons is an approach to ordering a group of

objects. In the framework of this method, objects are considered in pairs, a

pair at a time, and the decision is made of which of the two is better. This

procedure is repeated with all or some other pairs. This method is normally

applied when objects are characterized by many parameters and/or some

parameters are unknown or vague (of non-numerical nature). The method of
paired comparisons is usually carried out by a team of experts. In general,

the experts will have different views and thus an object M will be favoured

over an object N by some experts, while others will prefer N over M. (Notice

that in general some pairs will not be compared at all.) Hence, the results

of the use of the method of paired comparisons often have to be analyzed to
find an ‘average’ ordering.

To carry out such an analysis, a paired comparison digraph D is initially

constructed. The vertices of D correspond to the objects and, for an ordered

12.2 Ordering the Vertices of a Digraph of Paired Comparisons 643

pair x,y of vertices (i.e. objects) in D, the arc zy is in D if and only if
some experts prefer y to z. The weight of zy is the fraction of the experts
that favour x over y. Formally, following Kano and Sakamoto [472, 473], we
introduce a digraph of paired comparisons as follows. Let D = (V,A,€) bea
weighted digraph in which every arc zy has a positive real weight e(zy). A
digraph D is called a paired comparison digraph (abbreviated to PCD)
if D satisfies the following conditions:

(a) 0 < €(ry) <1 for every ry € A;

(b) (xy) + (yx) = 1 if both zy and yz are arcs;
(c) e(zy) = 1if cy € A but yz ¢ A.

Figure 12.1 A paired comparison digraph H.

See Figure 12.1 for an example of a paired comparison digraph. An (un-

weighted) digraph D = (V, A) can be viewed as a PCD by setting the weight
of each arc of D as follows:

(i) e(zy) = e(yx) = 0.5 if ry, yx € A;
(ii) e(zy) = lif cy € A but yz ¢ A.

We call the PCD D’ = (V, A,e) with the weight function € determined by (i)
and (ii) the uniform PCD corresponding to D. The positive (negative)
score of a vertex z € V is

ot (x)= Do (zy), (0 (@) = DO e(yz).)
zycA yreEA

In Figure 12.1, 0+ (u) = 0.5 and o~ (u) = 1.5.
A PCD D is not always semicomplete (some pairs of vertices may not be

compared). If D is a tournament, then usually the vertices of D are ordered

according to their positive score, with the first vertex being of highest positive

score. This approach, the score method, is justified by a series of natural ax-
ioms (see the paper [647] by Rubinstein). The score method can be naturally
used for semicomplete PCDs. When a PCD is not semicomplete, the score

644 12. Additional Topics

method may produce results that are not justified from the practical point of

view. For example, consider the digraph R = (V,A) with V = {1,2,.. .,n},

n>5,and A = {12,13}U {41,51,...,n1}. Let R' =(V,A, €) be the uniform

PCD corresponding to R. Even though the positive score of the vertex 1 is

maximum, it is against our intuition to order in R’ the vertex 1 first (i.e. the

winner). This raises the question of finding a method of ordering the vertices

of an arbitrary PCD, which agrees with the score method for semicomplete

PCDs.

In Subsection 10.3.3, we studied a method of ordering of the vertices of a

weighted digraph D = (V, A, €), the feedback set ordering (FSO). Recall that,

for an ordering a = (v1, V2,---,Un), where n = |V| and {v1,v2,...,Un} = V,

an arc (uj,vj) € A is forward (backward) if i < j (i > j). In Figure 12.1,

for the ordering 6 = (u,v,w,2), wv, uz and wa are (all) forward arcs; vu

and rw are backward arcs. An ordering a = (v1,v2,.--,Un) can be viewed

as a bijection from V to {1,2,...,n}. Thus, for a vertex z € V, a(x) =7 if
x = v;. An ordering a of V is FSO-optimal if the number of backward arcs

is minimum. Let OR(D) denote the set of all FSO-optimal orderings of V.
In many cases, OR(D) has more than one element. In these cases, the final
objective is to calculate the proper FSO-rank of every vertex z of D, i.e.

il
trso(2) = ORD) ya: (12.5)

a€OR(D)

The final ordering is carried out according to the proper FSO-ranks; the best

vertex has the smallest FSO-rank.
Although the FSO method is of definite importance for some applica-

tions, it does not agree with the score method for semicomplete digraphs:

Let T be the digraph with vertices 1,2,3,4,5, in which there is a pair

of opposite arcs between any pair of distinct vertices except for the pairs

{i,i +1}, «1 = 1,2,3,4, and {1,3}. Moreover, i471 + 1 for = 1,2,3,4 and

3-1. Let T’ be the uniform PCD corresponding to the semicomplete di-

graph T. According to the score method, the set of optimal orderings is

{(3,%,j,k,5) : {t,j,k} = {1,2,4}}. This implies that the proper ranks

of the vertices according to the score method (by an obvious analogue of

(12.5)) are m5(3) = 1, wg(1) = ms(2) = ag(4) = 3 and ws5(5) = 5, At the
same time, the orderings that are optimal according to FSO form the set
ORT) = {(1,:2,3..4,5)31 2.0) 1¢45 0), (35.1, 28d) 5A aaah) a sa late)

(3, 4,5,1,2)}. (To see this, first observe that the contribution from 2-cycles
is independent on the ordering and hence can be ignored. Secondly, observe

that in an FSO-optimal ordering, which actually has only one backward or-

dinary arc, 3 must be before 4 and 5, 4 before 5, and the vertices 1,2,3 must

appear in this order, or as either 2,3,1 or 3,1,2.) By (12.5), we obtain that

TFrS0(3) < trso(1) = Trso(2) < trso(4) < mrso(5).

‘ Recall that an arc xy is ordinary if the opposite arc yx does not exist.

12.2 Ordering the Vertices of a Digraph of Paired Comparisons 645

We leave it to the reader to construct other examples of semicomplete PCDs,

for which F'SO and the score method produce different results (Exercise 12.4).

12.2.2 The Kano-Sakamoto Methods of Ordering

In this subsection we describe three methods (forward, backward and mutual)
of ordering introduced by Kano and Sakamoto [472, 473]. Notice that, for

semicomplete digraphs, all these methods agree with the score method. In

Subsection 12.2.3, we prove this important result. In Subsection 12.2.4, we

characterize orderings that are optimal with respect to the mutual method.

In Subsection 12.2.5, we study the complexity of the problems to find forward

and backward optimal orderings as well as some ways to obtain polynomial

algorithms for these problems restricted to semicomplete multipartite PCDs

and PCDs close to them.

Although the reader may find examples of PCDs for which the methods

of Kano and Sakamoto, especially the mutual one, produce counter-intuitive

orderings, these methods seem to give adequate results for PCDs close to

semicomplete, which are perhaps of the main interest for the method of paired

comparisons.

Let D = (V, A,€) be a PCD. Let z and y be a pair of distinct vertices in D

and let a be an ordering of D. Then az, denotes an ordering of D as follows:

Qzy(z) = a(z) for every z ¢ {z,y}, and azy(z) = a(y), @zy(y) = a(x). The
length of an arc vu € A is e(vu)|a(v) — a(u)|. The forward (backward)
length fp(a) (bp(a)) of a is the sum of the lengths of all forward (backward)
arcs. The mutual length of a is mp(a) = fp(a)—bp(q@). In Figure 12.1, the
ordering 3 = (u,v, w, x) has forward length fy(@) = (0.21+0.33+0.91) = 2,
backward length by(@) = (0.8-1+1-1+0.1-1+0.7-3) = 4, and mutual length
my(8) = —2. Clearly, (z,w,v,u) is a better ordering (with respect to all

three criteria) than 6. Even fa(Guv) = 2-3 > fx().
An ordering a is forward (backward, mutual) optimal if the corre-

sponding parameter fp(a) (bp(a), mp(a)) is maximum (minimum, maxi-

mum) over all orderings of D. The set of all forward (backward, mutual)

optimal orderings of D is denoted by FOR(D) (BOR(D), MOR(D)). The

final objective is to calculate the proper forward rank (proper back-

ward rank, proper mutual rank) of every vertex x of D. They are ob-

tained by replacing OR(D) with FOR(D) (BOR(D),MOR(D)) in (12.5).

Clearly, the best vertex of D has the lowest proper rank in each case. In

Figure 12.1, BOR(H) = {(w,v,2x,u),(w,2,v,u)} (we will see how to find

BOR(D) for a semicomplete multipartite PCD in Subsection 12.2.5). Thus,

p(w) = 1,7p(2) = 7p(v) = 2.5 and mp(u) = 4.

12.2.3 Orderings for Semicomplete PCDs

Lemma 12.2.1 /472, 473] Let K = (V,A,€) be a semicomplete PCD with n

vertices, and let a be an ordering of V. Then

646 12. Additional Topics

f(a) = 47 (n? — 1) ~Soot(a
zEV

= a ot (x)a(z) — oo —1).

rEeV

Proof: The equality for fx (a) can be proved by induction on n (Exercise
12.5). The equality for b% (a) can be easily obtained from that for fx (a) by
using the fact that fx (a) + bx (a) = n(n? — 1)/6, the proof of which is left
as Exercise 12.6. Oo

This lemma implies the following:

Theorem 12.2.2 /472, 473] Let K = (V,A,€) be a semicomplete PCD with

n vertices, and let a be an ordering of V. Then a = (v1, 2,---,Un) is forward

(backward) optimal if and only if ot (v;) > o* (vi4i) for everyi = 1,2,...,n—
ie 2

Proof: Let a = (v1,v2,..-,Un) be a forward (backward) optimal ordering.

Suppose that ot (vj) < at hol for some i. By Lemma 12.2.1,

f(a) =e IK (Quaza) = ot (v;) = ot (vi41) <a)

Hence, a is not forward optimal, a contradiction. Analogously, we can show

that a is not backward optimal, a contradiction. So, we may conclude that

ot(uj) > ot (vi4i1) for every i = 1,2,...,n — 1. On the other hand, let
GB = (wi, W2,...,Wn) be an ordering such that ot (w;) > o* (wi41) for every
1 =1,2,...,n—1. By the formula for fx (a) in Lemma 12.2.1, fx(a@) = fx({).
Hence, 8 € FOR(K). Analogously, we see that 6 € BOR(K). O

It is easy to see that this theorem allows one to compute the proper

forward and backward ranks of a semicomplete PCD in polynomial time.

Clearly, Theorem 12.2.2 is also valid for the mutual orderings of the semi-

complete PCDs. However, for the mutual orderings, a more general assertion

is true. We prove it in the next subsection.

For a vertex x of a PCD, let o*(x) = ot (x) —o (x). Since for a semicom-
plete PCD D of order n, ot (x) +07 (x) = n—1, we have that ot (x) > o*(y)
if and only if o*(x) > o*(y). Therefore, THesree 12.2.2 can be reformulated
using o* instead of oF.

12.2.4 The Mutual Orderings

Kano and Sakamoto proved the following characterization of the mutual
length of an ordering a:

Lemma 12.2.3 [4/72] Let D = (V,A,e) be a PCD and let a be an ordering
of V. Then the mutual length of a satisfies

mp(a) = - > o*(2)a(z).
zEV

12.2 Ordering the Vertices of a Digraph of Paired Comparisons 647

Proof: Define

AINE e(u,v) if (u,v) is an arc of D
; 0 otherwise (in particular, if u = v).

Let F(a) (B(a)) be the set of forward (backward) arcs for a. We have

mp(a)= DS) e(a,y)(aly)-a(z))- > e(e,y)(a(z) - aly)
(z,y)E F(a) (z,y)€B(a)

= >> (2,y)(a(y) - a(z))
(z,y)EA

a5 (x 2 ja) = 5m pe coat)
yEV \rEV zEV \yEeV

= Soo (jay) — > ot (z)a(x) = - S> o*(2)a(z).
yEeV rEV zEV

O

Analogously to Theorem 12.2.2, but using the previous lemma instead of
Lemma 12.2.1, we can prove the following:

Theorem 12.2.4 [472] Let D = (V,A,e) be a PCD with n vertices, and let

a be an ordering of V. Then a = (v1, v2,...,Un) is mutual optimal if and

only if o* (uj) > o* (vi4i) for every i =1,2,...,n—1. 0

This theorem shows that the proper mutual ranks of vertices depend only

on o*, not on the structure of a PCD. This indicates that perhaps mutual

orderings are not sound for non-semicomplete PCDs.

12.2.5 Complexity and Algorithms for Forward and Backward

Orderings

We saw in the previous subsection how to find a mutual optimal ordering
(simply order according to the values of o*); this obviously can be done in

polynomial time. The time complexity of the same problems for forward and

backward optimal ordering are significantly more difficult (unless P = NP)

as we see below.

Theorem 12.2.5 /473] The problem of finding a backward optimal ordering

of a PCD is NP-hard.

Proof: The following problem, called the optimal linear arrangement prob-
lem (OLAP), is ’P-completes see [303, page 200].

Instance: A graph G = (V, E) and a positive integer k.

648 12. Additional Topics

Question: Is there an ordering a of \’ so that

S> Ja(z) — aly)| <k.
{x,y}EE

Let G = (V,E) be a graph and let D a¢ be the complete biorientation

of G. Let also e(zy) = 0.5 for every zy € A(D). Then for every ordering a

>= a(x) — a(y)| = 2fr(a).
{z,y}EE

Hence, the OLAP is polynomially reducible to the problem of finding a back-

ward optimal ordering of the vertices of a PCD. oO

A similar but slightly longer proof in [373] shows that the problem to
find a forward optimal ordering*of the vertices of a PCD is NP-hard too

(Exercise 12.7). This means that, in order to design polynomial algorithms

to compute forward and backward optimal orderings, we need to restrict our-

selves to special classes of PCDs. Since the method of paired comparisons is

of main interest when a PCD is quite dense, it is useful to consider PCDs

close to semicomplete. For semicomplete multipartite PCDs, characteriza-

tions of forward backward (forward) orderings were obtained by Kano [471]
(Gutin and Yeo [373], respectively). In this subsection, we describe only the
main result of [471]; the characterization in [373] is more complicated. Us-
ing the above-mentioned characterizations, Gutin [360] and Gutin and Yeo

[373] constructed polynomial algorithms to find proper backward ranks and
proper forward ranks, respectively, of the vertices of semicomplete multipar-

tite PCDs. We will also discuss the method of multipartite completion (see

[471, 473]), which allows one to find effectively all forward and backward
optimal orderings in PCDs close to semicomplete multipartite PCDs.

Let D = (V,A,€) be a semicomplete multipartite PCD and let a be an

ordering of V. Then, for a vertex x € V, we define w(a,z) = ot (x) + |{y €
U : a(y) > a(z)}|, where U is the partite class of D containing z. The
following lemma is proved in [471]; we give a much shorter proof adopted
from [373].

Lemma 12.2.6 Let a be an ordering of the vertices of a semicomplete mul-

tipartite PCD D = (V,A,e), n=|V|. Then

bp(a) = > ¥(a,2)a(2) — n(n? ~ 1).
rEV

Proof: For every partite set U of D, add the set of arcs {uw : v,w €

U,a(w) > a(v)} (all of weight one) to A. The new PCD H is semicomplete.
Observe that the positive score of a vertex x in H equals w(a,z). Now the

formula of this lemma follows from the equality for bk (a) in Lemma 12.2.1

12.2 Ordering the Vertices of a Digraph of Paired Comparisons 649

and the fact that bp(a@) = by(a) (which holds since all new arcs in H are
forward). Oo

This lemma implies the following result (Exercise 12.9):

Lemma 12.2.7 /471] Suppose that B is an ordering of the vertices of a semi-
complete multipartite PCD D, and X and Y are distinct partite sets of D.
We have the following:

(a) Ifz,y eX andm= B(y) — B(x) > 0, then

bp(Bry) a bp(f) = m(at (x) —ot (y)).

(b) Ifxe X,ye€Y, m= By) — B(x) > 0 and there is no verter z € X UY
such that B(x) < B(z) < Bly), then

bp(Bry) =a bp(G) = mB, x) = v(B, y)).

O

Using this lemma one can prove the following (the actual proof is left as
Exercise 12.10):

Theorem 12.2.8 [471] Let D be a semicomplete multipartite PCD of order

n. An ordering a = (v1,V2,...,Un) ts backward optimal if and only if the
following two conditions hold.

(a) w(a, v1) Pa w(a, V2) a one 2 W(a, Un).

(b) For every pair x,y of vertices in the same partite set of D, a(x) < a(y)
implies o* (x) > ot (y).

O

We illustrate this theorem by the semicomplete bipartite PCD H in Figure

12.1. Wei have o~ (u),, =..0.5,.07°(v) = o7(#) =.0.8, ah (w)'=)1.9..Letra
be backward optimal. Then, by (b), a(w) is less than a(u) implying that
W(a,w) = 2.9,Y(a,u) = 0.5. Since the positive scores of v and x coincide,

there are two backward optimal orderings a’,a” and w(a',v) = ¥(a",r) =

0.8, W(a",v) = Y(a',z) = 1.8. By (a), BOR(H) = {(w,z,v,u), (w,v,2,u)}.
Hence, mg(w) = 1, me(x) = 7pB(v) = 2.5 and mg(u) = 4. Another example
to illustrate this theorem is given in Exercise 12.11.

Applying Theorem 12.2.8, it is not difficult to construct a polynomial

algorithm to find proper backward ranks of the vertices of a semicomplete

multipartite PCD [360] (Exercise 12.12).

Let £(D) be the backward length of a backward optimal ordering of a
digraph D. Let D be a non-semicomplete multipartite PCD with partite

sets Vj, V2,...,V~. The semicomplete multipartite PCD obtained from D

by adding exactly one arc between every pair of non-adjacent vertices from

distinct partite sets is called a multipartite completion of D. Let C(D) be

the set of multipartite completions of D. The TEES of this set is given

in the following theorem:

650 12. Additional Topics

Theorem 12.2.9 [473] Let D be a non-semicomplete multipartite PC

Then

€(D) = min{@(H): H €C(D)}.

Moreover, if H = {H €C(D): &(H) = €(D)}, then

BOR(D) = UnenBOR(H).

Proof: Exercise 12.13. oO

Clearly, if the cardinality of C(D) is not large, this theorem allows one to

list backward optimal orderings of D..

12.3 (k,l)-Kernels

Galeana-Sdnchez and Li [293] introduced the concept of a (k,l)-kernel in
a digraph. This concept generalizes several well-known notions of special

independent sets of vertices such as a kernel and a quasi-kernel. In this section,

we discuss (k,1)-kernels and their special important cases, kernels and quasi-
kernels, and study some basic properties of kernels and quasi-kernels. The

notion of a (k,/)-kernel has various applications, especially that of a (2, 1)-

kernel.

Let k and | be integers with k > 2,1 > 1, and let D = (V, A) bea digraph.
A set J CV is a (k,l)-kernel of D if

(a) for every ordered pair x, y of distinct vertices in J we have dist(z, y) > k,
(b) for each z € V — J, there exists x € J such that dist(z, x) < l.

A kernel is a (2, 1)-kernel and a quasi-kernel is a (2, 2)-kernel. Galeana-
Sanchez and Li [293] proved some results which relate (k,1/)-kernels in a di-
graph D to those in its line digraph. In particular, they proved the following:

Theorem 12.3.1 Let D be a digraph with 6-(D) > 1. Then the number of

(k,1)-kernels in L(D) is less than or equal to the number of (k,1)-kernels in
D; O

12.3.1 Kernels

We start with an equivalent definition of a kernel. A set K of vertices in

a digraph D = (V,4A) is a kernel if K is independent and the first closed
neighbourhood of K, N~[K], is equal to V. This notion was introduced by von
Neumann in [731]; kernels have found many applications, for instance in game
theory (a kernel represents a set of winning positions, cf. [731] and Chapter 14
in the book by Berge [108]), in logic [109] and in list edge-colouring of graphs
(see Section 12.4). Chvatal (see [303], p. 204) proved that the problem to
verify whether a given digraph has a kernel is WP-complete. Several sufficient

12.3 (k,l)-Kernels 651

conditions for the existence of a kernel have been proved. Many of these

conditions can be trivially extended to kernel-perfect digraphs, i.e. digraphs

for which every induced subdigraph has a kernel. The notion of kernel-perfect

digraphs allows one to simplify certain proofs (due to the possibility of using

induction, see the proof of Theorem 12.3.2) and is quite useful for applications
(see Section 12.4).

Clearly, every symmetric digraph, i.e. digraph whose every arc belongs to

a 2-cycle, is kernel-perfect (every maximal independent set is a kernel). It was

proved by von Neumann and Morgenstern [731] that every acyclic digraph is

kernel-perfect. Richardson [635] generalized this result as follows:

Theorem 12.3.2 Every digraph with no odd cycle is kernel-perfect.

The proof of Theorem 12.3.2, which we present here, is an adaptation of

the one by Berge and Duchet [110]. A digraph which is not kernel-perfect
is called kernel-imperfect. We say that a digraph D is critical kernel-

imperfect if D is kernel-imperfect, but every proper induced subdigraph of

D is kernel-perfect.

Lemma 12.3.3 Every critical kernel-imperfect digraph is strong.

Proof: Assume the converse and let D = (V,A) be a non-strong critical
kernel-imperfect digraph. Let T be a terminal strong component of D and

let S, be a kernel of T. Since D has no kernel, the set M = V — N~[S;j]
is non-empty. Hence the fact that D is critical kernel-imperfect implies that

D(M) has a kernel Sj. The set S; US» is independent since no arc goes from
S; to S2 (by the definition of a terminal strong component) and no arc goes
from Sz to S; (by the definition of M). Clearly, N~[S; U S2] = V. Hence,

S, U Sp is a kernel of D, a contradiction. Oo

Proof of Theorem 12.3.2: Let D be a kernel-imperfect digraph with

no odd cycle and let D’ be a critical kernel-imperfect subdigraph of D. By

the lemma above, D’ is strong. Since D' is strong and has no odd cycles,

by Theorem 1.8.1, D’ is bipartite. Let K be a partite set in D’. Since D’ is

strong, K is a kernel of D', a contradiction. Oo

This theorem has been strengthened in a number of papers. The condi-

tions (a) and (b) of the following theorem are due to Duchet (see the papers by
Berge [110]), and Galeana-Sdnchez and Neumann-Lara [294], respectively).

Galeana-Sdénchez showed that for every k > 2, there are non-kernel-perfect

digraphs for which every odd cycle has at least k chords [291].

Theorem 12.3.4 A digraph D is kernel-perfect if at least one of the follow-

ing conditions holds:

(a) Every odd cycle has two arcs belonging to 2-cycles;

(b) Every odd cycle has two chords whose heads are consecutive vertices of

the cycle.

652 12. Additional Topics

0

There were other attempts to strengthen Richardson’s Theorem 12.3.2. In

particular, Duchet (see [132]) conjectured that every digraph D, which is not
an odd cycle and which does not have a kernel, contains an arc e such that

D —e has no kernel either. Aparsin, Ferapontova and Gurvich [26] found a
counterexample to this conjecture which we describe below. For an integer

n>2andaset W C {1,2,...,n—1}, acircular digraph C,,(W) is defined

as follows: V(C,(W)) = {1,2,...,n} and

A(Cn(W)) = {(i,i +7 (mod n)): 1<i<n,j€ W}.

In particular, C,({1,2,...,n — 1}) =Kn and C,,({1}) = G,
Aparsin, Ferapontova and Gurvich proved that the circular digraph

C'43({1,7,8}) has no kernel, but after deletion of any arc in this digraph
a kernel will appear. Observe that by the symmetry of C43({1,7,8}) one

needs only to show that C43({1,7,8}) — (1,2), Ca3({1, 7, 8}) — (1,8) and
C'43({1, 7, 8}) — (1, 9) have kernels. This task is left as Exercise 12.16. We note
that C43({1,7,8}) is the only known counterexample to the Duchet conjec-
ture; Gurvich (private communication, December 1999) suspects that there

is an infinite such family of circular digraphs. It was also proved in [26] that

Cr({1,7,8}) has a kernel if and only if n = 0 (mod 3) or n = 0 (mod 29).
The following problem seems quite natural:

Problem 12.3.5 Characterize circular digraphs with kernels.

A biorientation D of a graph G is called normal, if every subdigraph of

D which is a semicomplete digraph has a kernel. An undirected graph G is

kernel-solvable if every normal biorientation of G has a kernel. Boros and

Gurvich [132] showed that a slight modification of the above conjecture of
Duchet holds. They proved the following:

Theorem 12.3.6 Let G be a connected non-kernel-solvable graph, which is

not an odd cycle of length at least 5. Then there exists an edge e in G such

that G — e is not kernel-solvable either. Oo

Berge and Duchet (see [543]) conjectured that a graph G is perfect? if and
only if G is kernel-solvable. Boros and Gurvich [131] proved one direction of
this conjecture, namely:

Theorem 12.3.7 Every perfect graph is kernel-solvable. oO

? A graph G is perfect if, for every induced subgraph H of G, the chromatic number
of H is equal to the order of the largest clique of H.

12.3 (k,1)-Kernels 653

The two original proofs of Theorem 12.3.7 are quite involved and lengthy.
Using the notion of a fractional kernel, Aharoni and Holzman [3] found a
much shorter proof of Theorem 12.3.7. Many special cases of the above con-
jecture had been proved before, see [543] and references therein. In particular,
Maffray [543] proved the following result:

Theorem 12.3.8 A biorientation of a line graph is kernel-perfect if and only
if it 1s normal.

This result was extended to line multigraphs by Borodin, Kostochka and
Woodall [130].

12.3.2 Quasi-Kernels

We start with an equivalent definition of a quasi-kernel. A set Q of vertices

in a digraph D = (V, A) is a quasi-kernel if Q is independent and the second

closed in-neighbourhood of Q, N~?[Q], is equal to V. The two results on 2-

kings (or, more precisely, 2-serfs) in tournaments mentioned in the beginning

of Section 12.3.2 have been extended to quasi-kernels in arbitrary digraphs

as follows. The first theorem is by Chvatal and Lovdsz [162] (see also [524]).
It has a surprisingly short proof.

Theorem 12.3.9 Every digraph D has a quasi-kernel.

Proof: The proof is by induction on the order of D. The base case when the

number of vertices is 1 is trivial. Let D be a digraph of order n and assume

(as the induction hypothesis) that all digraphs with less than n vertices have

a quasi-kernel. If D has a kernel, we are done. Assume D has no kernel. Let

x be a vertex in D. Consider D' = D — (x U N~(a)). By induction, D’ has
a quasi-kernel Q’. If Q' Uz is an independent set, then, clearly, this set is a

quasi-kernel in D.

Suppose now that Q’ Uz is not independent. Then there exists a vertex
z € Q! which is adjacent to z. As z ¢ N~ (x), xz. Now it follows that Q’ is

a quasi-kernel in the whole digraph D. 0

The second theorem is by Jacob and Meyniel [454].

Theorem 12.3.10 /f a digraph D = (V,A) has no kernel, then D contains

at least three quasi-kernels.

Proof: By Theorem 12.3.9, D has a quasi-kernel Q,. Since D has no kernel,

we have V # N~[Q,]. Let Q2 be a quasi-kernel of D— N~[Q,]. We will prove
that Q5 = Q2U(Q; — N~(Q2)) is a quasi-kernel of D. It is straightforward
to see that Q4 is independent and

V=(V—N-[Qi1]) UN -[Q1NN(Q2)} UN -[Q1 — N (Q2)].

654 12. Additional Topics

By the definition of Q2, every vertex of V — N~[Q,] is the initial vertex of

a path of length at most two terminating in Q2. Since N~[Qi NM N~(Q2)| ©

N-?[Qo], every vertex of N~[Qi N N~(Q2)] is the initial vertex of a path of

length at most two terminating in Q2. Since N~ [Qi — N~(Q2)] © N~ [Qi],

a vertex of N~[Q, — N~(Qz2)] either belongs to Q, or is the tail of an arc

whose head is in Q; — N~(Qz2). Hence, Q2 is a quasi-kernel.

Observe that Q; NQ2 =@ and Q2 # . Thus, Q5 # Q1.

As Qj is not a kernel of D, we have V # N~[Q)]. Let Q3 be a quasi-

kernel of D — N~[Q}] and let Q5 = Q3 U (Q5 — N~(Q3)). As above, we

can demonstrate that Q5 is a quasi-kernel distinct from Q). It remains to

show that Qs # Qi. Observe that Q3 C V — N~[Q4] and Qi C N7[Q)].

Thus, Q1NQ3 = 0. By this fact and since Q3 is nonempty, we conclude that

Q3 # Q1. O

12.4 List Edge-Colourings of Complete Bipartite Graphs

The topic of this section may seem to have nothing to do with directed graphs,

but as we will see, directed graphs have been a useful tool for solving the so-

called Dinitz problem which we now describe. Our discussion in this section

is inspired by the book [8] by Aigner and Ziegler and Galvin’s paper [302].
An n X n matrix M over the integers {1,2,...,n} is a Latin square

(of size n) if no two entries in the same row and no two entries in the same
column are equal. It is an easy exercise to show that for every integer n > 1

there exists a Latin square (Exercise 12.17).

A proper edge-colouring of an undirected graph G = (V,£) is an

assignment of integers to the edges in such a way that no two edges with a

common end-vertex receive the same colour. The smallest k such that a graph

G has a proper edge-colouring using only colours from the set {1,2,...,k}

is called the chromatic index of G. Thus it is easy to see that there is a

1-1 correspondence between the set of Latin squares of size n and the set

of proper edge-colourings of the complete bipartite graph Ky, using colours

NG ee ward fa
Proper edge-colourings are useful for various practical applications such

as time table construction, see e.g. the book by Jensen and Toft [459]. In rest
of this section we omit the word ‘proper’ since only proper edge-colourings

will be considered.

In 1979 Dinitz raised the following problem (see e.g. [221, 222]): suppose
we are given an mn X n matrix whose (7,7) entry is a set C(7,7) of n integers,

1 <1,j <1, is it always possible to choose from each set C(i, 7) one element

cj in such a way that the elements in each row are distinct and the elements
in each column are distinct?

The Dinitz problem can be reformulated in terms of edge-colourings of
complete bipartite graphs. Suppose that we are given, for each edge ij of the

complete bipartite graph Ky n, a set C(i, 7) of possible colours for that edge.

12.4 List Edge-Colourings of Complete Bipartite Graphs 655

Does there always exist an edge-colouring of Ky, so that for each edge ij

the colour c;; of 77 belongs to C(i, 7)? In this formulation the Dinitz problem

is just a special case of the more general list colouring conjecture (see e.g.

the book by Jensen and Toft [459]) which states that, if a graph G has an
edge-colouring with k colours, then no matter how we assign to each edge e

of G a set C, of k arbitrary colours, G has an edge colouring such that. the
colour of the edge e belongs to the set C, for each e € E. Such a colouring is

called a list edge-colouring of G. An important step towards settling the

Dinitz conjecture was made by Jansen [458] who proved that, if all lists have

length n + 1 (instead of n) then a solution always exists.

In order to apply results on kernel in digraphs we study the line graph of

Kn n- The definition of a line graph is analogous to that of a line digraph:

L(G) contains a vertex for each edge of G and two vertices in L(G) are
joined by an edge if and only if the corresponding edges have an end-vertex in

common. It is easy to see that every list edge-colouring of Ky, corresponds to

a list vertex colouring (in short a list colouring) of L(K,,,,) using the same
sets (lists). Hence, in order to solve the Dinitz problem, it suffices to prove

that no matter which sets C11, Cj2,..., Cnn, each of size n, we associate with

the n? vertices of L(Kn.n), there exists a proper vertex colouring of L(Kn,n)

such that the colour of the vertex 7 is chosen from the corresponding set Cj.

Now we return to digraphs. The following lemma is attributed to Bondy,

Boppana and Siegel in [15, Remark 2.4, p. 129] (see also [302]).

Lemma 12.4.1 Let D = (V, A) be a digraph and suppose that for each vertex
v €V we are given a prescribed set C(v) of colours satisfying |C(v)| > dt (v).
If D is kernel perfect (i.e. every induced subdigraph of D has a kernel), then

there exists a list colouring of UG(D) which uses a colour from C(v) for each

eee Vas

Proof: The proof is by induction on n, the case n = 1 being trivially true.

Fix a colour c which belongs to at least one of the sets C(v), v € V and let

X(c) := {v € Vc € C(v)}. By the assumption of the lemma the induced

subdigraph D(X(c)) has a kernel Y. Now colour each vertex of V which

belongs to Y by colour c (which is a proper choice by the definition of X(c))

and consider the digraph D' = D — Y with colour sets C'(v) = C(v) — {c}.

Notice that for each vertex v € X(c) — Y the out-degree of v in D’ is at least

one smaller than the out-degree of v in D and hence we have |C’(v)| > di, (v)

for all v € V(D'). Furthermore, every vertex u that does not belong to

X(c) has |C(u)| = |C’(u)|. Thus, by the induction hypothesis, there is a list

colouring of D’ which uses a colour from C"(v) for each v € V(D’). Using

that colouring along with the colour c for vertices in Y we achieve the desired

colouring. -

From Lemma 12.4.1 we see that, if we can establish the existence of an

orientation D of L(Ky,n) such that every induced subgraph of D has a kernel

656 12. Additional Topics

and d}(v) <n —1 for each vertex v, then we have proved that L(Kn,n) has

list chromatic number at most n as desired.

We show below that in order to obtain such an orientation we can use any

n-edge-colouring of Ky, and orient appropriately. To prove the existence of

a kernel in each induced subgraph we use the concept of stable matchings

which we discuss below.
Below we assume that we are given a bipartite graph B = (X UY, E) and

that for each vertex u € X UY there is a fixed ordering >, on the neighbours

of u. That is, >, induces an ordering v1 >y V2 >u--. >u Vdg(u) On Np(u).

A matching M in B = (X UY, E) is stable with respect to the family of
orderings {>, |u € X UY} if the following holds for all uv € E — M: either
uy € M for some y such that y >, v or zu € M for some z with z >, u.

Stable matchings have an amusing real-life interpretation. Consider X

as a set of men and Y as a set of women and let the existence of an edge

zy € E,x € X,y € Y mean that.person z and y might marry. As we saw in

Theorem 3.11.2, given B we can determine in polynomial time the maximum

number of men and women that can marry without anybody committing

bigamy. However, in practice the fact that a man xz and a woman y might

marry does not mean that this particular choice is the optimal one for z or

y. Hence, in a more realistic setting each person has a list of possible spouses

and some ranking among these as to who would be the favourite choice down

to the least wanted spouse (but still a possible choice). Now we see that

this description corresponds to the orderings described above. Furthermore,

stability of a given matching corresponds to saying that among the men and

women that are paired for marriage there is no pair xy for which z prefers

some other woman y’ to y and at the same time woman y prefers some other

man z’ to z. So in some sense a stable matching corresponds to a situation

where no pair is highly likely to split up.

The concept of stable matchings was introduced by Gale and Shapley who

proved the following slightly surprising fact. We leave the proof as Exercise
NPR Altes,

Theorem 12.4.2 [290] For every bipartite graph B = (X UY, E) and every

family of orderings {>y |w € X UY} which arises from a local linear ordering

of the neighbours of each vertex in B, there exists a stable matching with

respect to { >y thenx UY Y Oo

In Exercise 12.19 the reader is asked to show by an example that it is not

always: true that there exists a maximum matching which is stable.

For more information about stable matchings see e.g. the papers [40, 41]

by Balinski and Ratier. Now we are ready to describe Galvin’s proof of the
Dinitz conjecture.

Theorem 12.4.3 [302] For every n > 1 the complete bipartite graph (ashen
has list chromatic index n.

12.4 List Edge-Colourings of Complete Bipartite Graphs 657

Proof: Denote the vertices of L(Ky) by (i,j), 1 < i,j <n, where (i,j) is
adjacent to (7’, 7’) if and only if ¢ = i’ or j = 7’, but not both. Let Q be any
Latin square of size n (recall that this corresponds to a proper edge-colouring
of Kn,n) and denote by Q;; the ijth entry of Q. Let D,, be the oriented graph
obtained from L(K;,,,) by orienting the edges as follows:

(1,7) >(v,j) if and only if Qi; > Qi; (see Figure 12.2).

Figure 12.2 The orientation of L(K3,3) based on a Latin square of size 3.

It is easy to see that D is (n—1)-regular (Exercise 12.20). Thus, by Lemma
12.4.1 we just have to prove that every induced subdigraph of D has a kernel.

To prove this wé use Theorem 12.4.2.

Let D’ be an arbitrary induced subdigraph of D and let B = (X,Y, EF)
be the corresponding bipartite subgraph of K,,,, induced by those edges for

which the corresponding vertex (7,7) belongs to D’. For each vertex i € X we
define an ordering >; of the neighbours of 7 in B by letting 7’ >; 7 whenever

(7,7)—>(t, 97’) in D. Similarly, for each 7 € Y we define the ordering >; of the

neighbours of 7 in B by letting 1’ >; i whenever (7,7)—(2’, 7) in D.
According to Theorem 12.4.2 B has a stable matching M with respect

to {>, |u € X UY}. Since M is also a matching in Kp,» the corresponding
vertices are independent in D. Furthermore, it follows from the fact that M is

stable with respect to {>, |u € X UY} that for every (7,7) such that 77 ¢ M,

either there exist 7/ € Y such that ij’ € M and 7’ >; j or there exists an

i! € X such that i’7 € M and i’ >; 1. In the first case we have (i, j7)>(#, 7’)
and in the second case we have (i, 7)—>(2', 7) in D. Thus we have shown that

every vertex of D’ which is not in M dominates a vertex in M. Hence M is

a kernel and the proof is complete. 0

The idea of orienting L(Kn,) as we did above is due to Maffray [543).

658 12. Additional Topics

12.5 Homomorphisms — A Generalization of Colourings

Let D and H be digraphs. A mapping f : V(D)>V(H) is a homomor-

phism if it preserves arcs, that is, zy € A(D) implies f(x)f(y) € A(#f).

We will always write f : D-H or just DH (when the actual homomor-

phism is not important). If there is no homomorphism from D to H, then

we write D/H. See an illustration in Figure 12.3. We say that G is homo-

morphic to H if GH. Similarly, for undirected graphs a homomorphism

is an edge preserving map. To motivate what follows, we start our discussion

from undirected graphs.

1
1

2 Y 2 2

3 2
3 2 1 3

1 DZ

(a) (6) | (c)

Figure 12.3 Illustrating the concept of a homomorphism; (a) A 3-cycle C3; (b)

and (c) show digraphs with homomorphisms to C3 indicated by the labelling.

Recall that an undirected graph is k-colourable if we can assign numbers

1,2,...,k to its vertices such that adjacent vertices receive distinct numbers

(colours). It is easy to see that an undirected graph G is k-colourable if and

only if G-+K, (the complete graph on k vertices). Based on this observa-
tion we say that a (di)graph G is H-colourable for some (di)graph H if

G—H and we call the mapping itself an H-colouring of G. Thus, if both

G and H are given as part of the instance, the decision problem ‘Is there a

homomorphism of G to H”’ properly includes k-colouring, and is therefore

NP-complete [474].
It is interesting to consider the same question when the graph H is fixed

in advance. The H-colouring problem is formally defined as follows:

H-colouring

Instance: A finite graph G.

Question:: Is there a homomorphism of G to H?

It is not difficult to see that a graph G has a homomorphism to a bipartite

graph B if and only if G is 2-colourable (and hence is homomorphic to K2).

As we know this last question is the same as checking whether G is bipartite

12.5 Homomorphisms ~ A Generalization of Colourings 659

and hence easy (since this can be done using BFS or DFS). However in the
case when the target graph (that is, the graph to which we want to map the
given graph) H is not bipartite, the H-colouring problem is always difficult
as shown by Hell and NeSetfil.

Theorem 12.5.1 /412] If H is a fired finite non-bipartite graph, then H-

colouring is NP-complete. If H is a fixed bipartite graph, then H-colouring

is polynomial. oO

So, for undirected graphs the division between easy and hard problems is

very clear: bipartite versus non-bipartite. For directed graphs the situation

is much less clear. In the next pages we give some results and conjectures

which illustrate the topic and interesting open problems.

First observe that, if H-H' for some induced subdigraph H' of H, then

D-H if and only if DH" (i.e. homomorphisms compose). Let H' be a

subdigraph of H. A homomorphism r : H-+H' is called a retraction if the

restriction of r to H' is the identity map on H’. If there exists a retraction

H-H', then H' is called a retract of H. A digraph is a core if and only if it

has no proper retracts. The above observation shows that it suffices to study

the H-colouring problem for those digraphs that are cores. Up to isomorphism

every digraph has a unique core (see Exercise 12.21). Unfortunately deciding

whether a digraph is indeed a core is a difficult problem.

Theorem 12.5.2 /413] It is NP-complete to decide whether a given input
digraph is not a core?. oO

However for some classes of digraphs it is easy to tell whether they are

cores or not. It is an easy exercise to show that every semicomplete digraph

is a core (Exercise 12.22). It is slightly more difficult to characterize those
semicomplete bipartite digraphs that are cores (Exercise 12.23).

Our first results deal with directed paths and cycles. The proof of the fol-

lowing easy observation by Maurer, Sudborough and Welzl is left as Exercise

12325:

Proposition 12.5.3 /556] There is a polynomial algorithm which decides if

a given input digraph is homomorphic to the directed path P,. 0

When H is an arbitrary orientation of a path, Gutjahr Welzl and Woeg-

inger proved that it is still polynomial (although much less trivial) to decide

whether a given digraph is homomorphic to H.

Theorem 12.5.4 [384] Let H be an arbitrary orientation of a path on k

vertices. Then H-colouring is polynomial. O

3 Here the certificate showing that D is not a core is a mapping of D to a proper

subdigraph of D.

660 12. Additional Topics

Since homomorphisms compose it follows that, if D-H then every di-

graph which is homomorphic to D is also homomorphic to H. Thus one way

of proving that D is not homomorphic to H would be to show a graph which

is homomorphic to D but not to H. Using this approach Hell and Zhu [417]

proved the following:

Theorem 12.5.5 /417] Let D be a digraph on n vertices and P an ortented

path on k vertices. Then D/P if and only if there exists an oriented path P'

on at most 2*n +1 vertices such that P'+D and P'AP. oO

It is easy to check whether D-+C;, holds for a given strong digraph D =

(V, A) and a given integer k > 2. Indeed, let the vertices of Cy be labelled

{1,2,...,k}. Now to check whether D-+Cy we pick an arbitrary vertex v € V

and map it to the vertex 1. After this the mapping of all other vertices in V

fixed and it is easy to check whether this (unique) mapping is arc preserving.

This can all be done in time O{n + m) by using DFS from v to label and
check whether each arc is preserved by the mapping at the same time. When

D is not strongly connected it is a little more cumbersome to check whether

D-C;,, but it can still be done in time O(n +m) (Exercise 12.26). Hence we
have the following result ude to Maurer, Sudborough and Welzl:

Theorem 12.5.6 /556] For every k > 2, C,-colouring is polynomial. Oo

The following easy observation is merely a restatement of the definition

of a homomorphism (recall that, by definition, digraphs have no loops):

Proposition 12.5.7 Let D and H be digraphs. Then D-H if and only if

there exists an extension Hz = H[Koa,,Kaz,---,Ka,], h = |V(H)| of H
such that D is a subdigraph (not necessarily induced) of Hest. 0

Let D be a digraph and C an oriented cycle of D. The net length of C is

the absolute value of the difference between the number of forward arcs and

the number of backward arcs with respect to an arbitrary fixed traversal of

C (as an undirected cycle). Using Proposition 12.5.7 it is easy to prove the

following characterization due to Haggkvist, Hell, Miller and Neuman-Lara

of those digraphs which are homomorphic to a k-cycle (see also [556}):

Theorem 12.5.8 [388] A digraph D is homomorphic to Cy if and only if
the net length of every oriented cycle in D is divisible by k.

Proof: Exercise 12.27. Oo

When H is an oriented cycle of a cycle, the corresponding H-colouring

problem may not be polynomial. Gutjahr showed in [383] that there are

oriented cycles for which the corresponding H-colouring problem is MWP-

complete. Hell and Zhu proved that, if H is an oriented cycle with net length

different from zero, then a statement similar to Theorem 12.5.5 holds (neces-
sity of these conditions is clear):

12.5 Homomorphisms — A Generalization of Colourings 661

Theorem 12.5.9 [418] Let C be an oriented cycle whose net length is not

zero. A digraph D is homomorphic to C if and only if every oriented path

homomorphic to D is also homomorphic to C, and the net length of every

cycle of D is a multiple of the net length of C. Oo

It was shown in [384] by Gutjahr, Welzl and Woeginger and in [414] by
Hell, NeSetril and Zhu that the H-colouring problem may be NP-complete

even for orientations of trees. Hence classifying the complexity of the H-

colouring problem for arbitrary digraphs seems almost hopeless.

When the target H has 6°(H) > 0 the picture seems clearer. If the core

of H is a directed cycle, then H-colouring is polynomial by Theorem 12.5.6.

In all other cases the problem seems to be difficult. In fact, the existence of

two directed cycles in the core is often sufficient for the ’P-completeness of

H-colouring as is illustrated by the next three results. The first result is an

easy consequence of Theorem 12.5.1 (Exercise 12.28).

Theorem 12.5.10 /412] Let H be the complete biorientation of an undi-
rected graph G. If G is bipartite then H-colouring 1s polynomial and if G is

not bipartite, then H-colouring is NP-complete. Oo

The next two results due Bang-Jensen, Hell and MacGillivray, respec-

tively, Bang-Jensen and Hell show that for some classes of digraphs, the

number of cycles play an important role on the complexity of the H-colouring

problem.

Theorem 12.5.11 /77] Let H be a semicomplete digraph. If H has two or

more directed cycles, then H-colouring is NP-complete. If H has at most one

directed cycle, then H-colouring is polynomial. Oo

Theorem 12.5.12 /74] Let H be a semicomplete bipartite digraph which is a
core. If H has two or more directed cycles, then H-colouring is NP-complete.

If H has at most one directed cycle, then H-colouring is polynomial. 0

These results spurred further study [74, 85]. Based on the results in [74],

Bang-Jensen and Hell made the following conjecture, which postulates a clas-

sification of the complexity of the H-colouring problem for all digraphs with

6°(H) > 0 and whose core is not a cycle. Note that a digraph H with

6°(H) > 0 is homomorphic to a directed cycle C, if and only if its core

is C, for some r which is a multiple of k.

Conjecture 12.5.13 /74] Let H be a digraph with 6°(H) > 0 and connected

underlying graph. If H is homomorphic to a directed cycle, then H -colouring

is polynomial. Otherwise H-colouring 1s NP-complete.

Since C;,-colouring is polynomial as we mentioned above, the first state-

ment is easy to see. Conjecture 12.5.13 has been verified for many classes of

digraphs, see e.g. [74, 77, 78, 85, 383, 384, 412, 530, 531].

662 12. Additional Topics

The main techniques for proving ’P-completeness H-colouring problems

for directed graphs are described in [74, 77, 412]. These include the following

two constructions both of which are due to Hell and Neéetiil [412]. We show

how to use these tools below.

The indicator construction. Let J be a fixed digraph and let i, 7 be distinct

vertices of J. The indicator construction (with respect to (I,i,7j)) transforms

a given digraph H = (V,A) into the directed pseudograph H* = (V, A*)

where for every choice of (not necessarily distinct) h,h' € V, the arc hh’ is in

A* precisely when there exists a homomorphism f : +H such thatf(7)—= fh

and f(j) = h’. See Figure 12.4.

Lemma 12.5.14 [412] If the H*-colouring problem is NP-complete, then

so is the H-colouring problem. 0

=

(a) (0) (c)

Figure 12.4 Illustrating the indicator construction: (a) A digraph H; (b) An in-
dicator IJ with special vertices 7,7; (c) The result H* of applying the indicator
construction with respect to (J,i,j) to H. Undirected edges are used to indicate
2-cycles.

Note that H* may have loops, in which case the H*-colouring problem is

trivial, since we can map every vertex to a vertex with a loop in H*. Hence

the construction is only useful if H* has no loops. In this case H* is always

a digraph.

The sub-indicator construction. Let J be a fixed digraph with spec-

ified vertices j,v1,V2,...,v¢. The sub-indicator construction with respect

to (J,j,U1,U2,-..,Ue) transforms a core H = (V, A) with specified vertices
hy, h2,..-, he into the subdigraph H of H which is induced by the vertex set

V CV where V is defined as follows. Let W be the digraph obtained from

the disjoint union of H and J by identifying v; with h; fori = 1,2,...,t. A

vertex vu € V belongs to V if and only if there exists a retraction f : W>H
which maps 7 to v. See Figure 12.5.

12.5 Homomorphisms — A Generalization of Colourings 663

Lemma 12.5.15 /412] Let H be a core. If the H-colouring problem is NP-
complete, then so is the H-colouring problem. O

(2)

(a) (0) (c)

Figure 12.5 Illustrating the sub-indicator construction; (a) a digraph H with a

special vertex h; (b) the sub-indicator J with special vertices j,v; (c) the result H
of applying the sub-indicator construction with respect to (J,j,v) to (H,h).

To illustrate how to use the indicator and the sub-indicator construction,

let us show that, if H is the digraph in Figure 12.4(a), then the H-colouring
problem is ’P-complete. First apply the indicator construction with respect

to the indicator shown in Figure 12.4(b) to H. This gives us the digraph
H™* in Figure 12.4(c). By Lemma 12.5.14, H-colouring is ’P-complete if
and only if H*-colouring is ’P-complete. Now let J be the sub-indicator

consisting of the complete biorientation of a 3-cycle with one vertex labelled

j and an isolated vertex v,. Let H’' be the result of applying the sub-indicator

construction with respect to (J, 7, v1) to H*. Since v, is isolated, a vertex from

H* will be in H' precisely when it is itself on a complete biorientation of a 3-

cycle in H*. Hence H' is the complete biorientation of a 3-cycle. By Theorem

12.5.10 H’-colouring is P-complete and now we conclude by Lemma 12.5.15

that H*-colouring and hence also H-colouring is ’P-complete.

Although the sub-indicator and the indicator constructions are very useful

tools for proving the W’P-completeness of many H-colouring problems, there

are digraphs H for which another approach such as a direct reduction from a

different type of ’P-complete problem is needed. Such reductions are often

from some variant of the satisfiability problem (see Section 1.10). The reader

is asked to give such a reduction in Exercise 12.29.

For examples of other papers dealing with homomorphisms in digraphs

see [135] by Brewster and MacGillivray, [416] by Hell, Zhou and Zhu, [590]
by NeSetil and Zhu, [680] by Sophena and [761, 762] by Zhou.

664 12. Additional Topics

12.6 Other Measures of Independence in Digraphs

The definition of independence of vertex subsets in digraphs used in this book

is by no means the only plausible definition of independence in digraphs. One

may weaken the definition of independence in directed graphs in at least two

other ways, both of which still generalize independence in undirected graphs.

(1) By considering induced subdigraphs which are acyclic. This gives rise to

the acyclic independence number, Qg-y-(D), which denotes the size

of a maximum set of vertices X such that D(X) is acyclic.
(2) By considering induced subdigraphs which contain no 2-cycles. This gives

rise to the oriented independence number, a,,(D), which denotes the

size of a maximum set of vertices Y such that D(Y) is an oriented graph.

Both of these generalize the definition of independence in undirected graphs:

if G is an undirected graph with independence number k then Qacyc(D) =
Qor(D) = k, where D is the complete biorientation of G. Note that we always

have ;

@(D) <cee. (Do (Dy,

Furthermore, by our remark above, each of these parameters is at least as

hard to calculate as a(D). In fact they seem much harder as they are NP-
hard already for tournaments, respectively semicomplete digraphs. The fact

that a,,(D) is hard to calculate for semicomplete digraphs is left to the reader
as Exercise 12.31. We prove below that calculating Qacyc(D) is NP-hard even

for tournaments. This result is due to Bang-Jensen and Thomassen and to
Speckenmeyer.

Theorem 12.6.1 /89, 681] The problem of finding a largest transitive sub-
tournament in a tournament is NP-hard.

Proof: We show how to reduce the independent set problem for undi-
rected graphs to our problem by a polynomial time reduction. This will im-
ply the claim, since the independent set problem is W’P-hard, see e.g. [303].
Let G = (V, #) be an undirected graph with vertex set {v1,9,U2,0,... 5 Ute
We form a tournament T as follows. We add, for each i = 1,2,...,n a set
of n+1 new vertices {v;.1,0;.9,..- ,Vin+1}. Now T contains the directed arc
Ui,kUj,m Whenever 7 > j ori = 7 and k > m unless k = m = 0 and Vi,0, 5,0
are adjacent in G. In the last case T contains the arc U;,0Vi,o. Now a vertex
set S in G is a largest independent set if and only if T — (V — S) is a largest
transitive subtournament of T. oO

Jackson made the following conjecture:

Conjecture 12.6.2 [453] Every digraph D with ao,(D) < K(D)+1 contains
a hamiltonian path.

12.7 Matroids 665

As pointed out in Section 6.10.2, Conjecture 12.6.2 is not true if we replace

Qor(D) by a(D).
A famous result due to Chvatal and Erdés [161] says that, if the vertex

connectivity of an undirected graph G is at least as high as the size of a largest
independent set, then G is hamiltonian. This is not true for digraphs, but as
we pointed out in Proposition 3.11.12, at least there is a cycle factor in D if it

is a(D)-strong. Jackson proved that, if we consider the oriented independence
number ao,(D), then an analogue of the Chvatal-Erdés theorem does exist.

Theorem 12.6.3 [450] Let D be a digraph which is k-strong where k =

2%r(P) (a,,(D) + 2)!. Then D has a hamiltonian cycle. Oo

12.7 Matroids

In this section we give a very short introduction to matroids. The motivation

for this is that algorithms for matroids are a useful tool for solving various

graph theoretical problems. For an example of this we refer to Section 9.10

and Exercise 12.46. Unfortunately, due to lack of space we will not be able

to describe in detail the algorithms for 2-matroid intersection and matroid

partition (those are the ones used in the applications mentioned above). We

refer the reader to the books [166] by Cook, Cunningham, Pulleyblank and
Schrijver and [623] by Recski for detailed descriptions of these algorithms.

Definition 12.7.1 Let S be a finite set and let Z be a collection of subsets

of S. The pair M = (S,T) is a matroid if the following holds:

(I1) 0 € TZ.
Geary € Land X CY, then Xe T.
(13) If X,Y € TZ and |X| < |Y], then there exists an element y € Y —X such

that X U {y} € I.

Let M = (S,Z) be a matroid. A set X C S such that X € T is called
independent. All other sets are dependent. A base of M is a maximal

independent set. A circuit is a minimal dependent set. Let B denote the set

of bases of M and C the set of circuits of M.

It follows directly from (13) and the definition of a base that

all bases of a matroid have the same size. (12.6)

There are several equivalent sets of axioms which define matroids. In

particular it is easy to see that we may replace (I3) by (13’) (Exercise T2733)

(13’) All maximal elements of Z have the same size.

Below we list some important properties of the bases of a matroid. (B1)

follows from (I1). (B2) follows from (I3) and (B3) is left to the reader as

Exercise 12.32.

666 12. Additional Topics

Proposition 12.7.2 Let M = (S,Z) be a matroid. The set B of bases of M

satisfy the following:

(B1) B#9.
(B2) For all B, B' € B we have |B| = |B’.

(B3) Let B,B' € B. For every b € B there exists an element b' € B’ such

that (B — b)U {b'} € B. Oo

The other direction holds as well (see Exercise 12.35)

Proposition 12.7.3 Let S be a finite set and B a collection of subsets of

S which satisfies (B1)-(B3) above. Then there exists a matroid M = (S,T)

whose set of bases is precisely B. 0

If M = (S,Z) is a matroid and X C S, then we say that a subset Y C X

is a maximal independent subset of X if Y € Zand Y Cc Z CX implies

Z ET.

Lemma 12.7.4 Let M = (S,Z) be a matroid and let X C S. All mazimal

independent subsets of X have the same size.

Proof: Exercise 12.34. a)

By Lemma 12.7.4, the following function is well:defined for all subsets of

S.

r(X) = maxt|VileYaC X, andeYeql} (2%)

The rank of a matroid M = (S,T) is the number r(S), the size of a base

in M.

Examples of matroids:

(1) Let G = (V, E) be an undirected graph. Define M(G) as M(G) = (£,T),
where E’ € TZ if and only if Gm = (V,£’) has no cycle. Then M(G) is
a matroid (called the circuit matroid of G). To see this, it suffices to
check (I3), since (I1),(12) trivially hold. Let X,Y be subsets of E such
that none of G(X) and G(Y) has a cycle and |X| < |Y]. It is easy to
show that, if Z is independent in M(G), then the number of connected
components in G(Z) is n — |Z|, where n is the number of vertices in
G. Thus |X| < |Y| implies that the number of connected components
of G(X) is larger than that of G(Y). Hence Y contains an edge y such
that y joins two vertices which are in distinct components of G(X). This

implies that G(X U {y}) is acyclic and hence X U {y} € TZ.
The bases of M(G) are the (sets of edges of) maximal forests of G and
a cycle of M(G) is a fundamental cycle of G with respect to a maximal
forest of G. The rank of M(G) is |V| minus the number of connected
components of G.

12.7 Matroids 667

(2) Let S be a set on n elements, and define U,, for k < n as follows:

Unk = (S,{X CS: |X| < k}). This trivially gives a matroid called a

uniform matroid. If k = n we obtain a very special case in which all

subsets are independent. This matroid is called the free matroid on n

elements.

(3) Let D = (V, A) be a digraph such that 6~(D) > 0 and define B as those
subsets A’ of A for which every vertex v € V has in-degree precisely

one in D(A’). We show that B satisfies (B1)-(B3) of Proposition 12.7.2
and hence, by Proposition 12.7.3, B forms the set of bases of a matroid

M~(D). Indeed, (B1) holds since 6~(D) > 0 and (B2) holds by the
definition of B. To see that (B3) is true consider sets A’, A” € B and let
a’ € A’. The arc a’ enters a vertex x and in A” there is exactly one arc
a” with head x. Now we see that (A’ — a’) U {a"} € B.
Similarly, if 6*(D) > 0, then we may define a matroid M*(D) whose

bases are those subsets X of the arcs for which every vertex v € V has

out-degree precisely one in D(X). This follows from the argument above

by considering the converse of D.

The next result shows, in particular, that the rank function of a matroid

is submodular. This is one of the reasons for the usefulness of matroids.

Proposition 12.7.5 The rank function of M = (S,T) satisfies the following:

(R1) 0< r(X) < |X| for every X ES.
(R2) X CY implies r(X) <r(Y).
(RS). For all X,Y-G Sor(X)+r(¥) > r(X AY) +r(XUV):

Proof: (R1) and (R2) follow from the definitions. To see that (R3) holds
consider two subsets X,Y of S. We may assume that X # Y. Let A bea

maximal independent subset of X MY and let B be an extension of A to a

maximal independent subset of X U Y. Now using (R2) we have

r(X)+r(Y) >|BNX|+|BNY|

= |Bi- 1Al (12.8)

=i Olen AraC. Gan ae

12.7.1 The Dual of a Matroid

The dual of a matroid M = (S,Z) is the pair M* = (S,Z*), where Z* =

{X CS: XN B =O for some base B of M}. In Exercise 12.37 the reader

is asked to prove that M* is a matroid. Note that the bases of M* form

precisely the set B* = {S — B: B is a base of M}.

668 12. Additional Topics

Proposition 12.7.6 For any matroid M we have

(i) (M*)*=M.
(tt) r*(X) = |X| +7r(S — X) —r(S).

Proof: Exercise 12.38. O

A circuit in M* is called a cutset or a cocircuit in M. It follows from

the definition of M* that a cocircuit of M is a minimal subset of S which

has a non-empty intersection with all bases of M.

12.7.2 The Greedy Algorithm for Matroids

Let M = (S,Z) be a matroid. For every X € T we define the set ext(X) by

ext(X) ={yeS—-X:XU{y} €T}. (12.9)

That is, ext(X) are precisely those elements y in S — X such that y can

be added to X without creating a dependent set.

Suppose we are given a weight function w : S + R+U{0} on the elements
of S. We let w(X) = >0,<-x w(x). Our goal is to find an independent subset
of S with maximum weight. Since w(s) > 0 for every s € S it follows that
a maximum weight independent subset can always be assumed to be a base

(using (13), we may add extra elements of weight zero to X if X has maximum
weight and is not a base). An optimal base is a base B such that w(B) >
w(B’) for every B’ € B.

The following simple algorithm GA is known as the greedy algorithm

for matroids:

Input: A matroid M = (S,Z) and a weight function w : S > Ri U {0}.
Output: an optimal base of M.

1 Let Aa:

2. If ext(X) = 0 go to Step 5;
3. Choose an element x € ext(X) such that w(x) = max{w(y) : y €

ext(X)};
4. Let X := X U {x} and go to Step 2;
5. Return X;

Since the only maximal independent sets in M are bases, it follows that

the greedy algorithm returns a base X of M. Such a base is called a greedy
base of M. The following result due to Rado shows that the greedy algorithm
works nicely for matroids:

Theorem 12.7.7 /619] The greedy algorithm for matroids always finds an
optimal base.

12.7 Matroids 669

Proof: Suppose there exists a matroid M = (S,Z) and weight function w
such that the greedy algorithm does not find an optimal base of M. Let B,
be the greedy basis which is returned by the algorithm. By assumption, M
has another base B such that

w(B,) < w(B). (12.10)

Since 0 C BN B, and B, # B, there is a well-defined first iteration of the
while loop in which GA chooses an element x which is not in B. Let A be
the current independent subset found by the algorithm just before GA adds
x (to A). Consider the independent set A’ = AU z. By (I3), we can extend
A’ to a base B' of M by adding elements from B. It follows from this and
(B2) that B’ = (B—y)U {zx} for some y € B— B,. Since AUy C B' we have
y € ext(A). Now it follows from that fact that GA chose x and not y when it
extended A that we have w(y) < w(x). However this means that

w(By) = w(B) — w(y) + w(x) > w(B),

contradicting (12.10). Oo

It can be shown that, if we have a collection F of subsets of a set S

such that (I1) and (I2) hold, but (I3) does not, then there exists a non-
negative real-valued weight function so that applying the algorithm GA to

this collection of sets we never find an optimal basis (Exercise 12.39).
The reader who knows Kruskal’s classical algorithm for finding a mini-

mum weight spanning tree in a connected undirected graph G with weights

on the arcs (see e.g. [169]) will have noticed the strong similarity between
that algorithm and the algorithm GA above. In fact Kruskal’s algorithm is

precisely GA for the case when the input is the circuit matroid M(G) of G.

12.7.3 Independence Oracles

What is a fast algorithm for matroids? How do we represent a matroid effi-

ciently? These are important questions. In particular, it should be clear that

in general it is infeasible to store information about a given matroid by a list

of its independent sets. For example, if M is the uniform matroid Un,4, we

would have to store all subsets of size at most k of {1,2,...,n}. On the other

hand for U,,, it is very easy to decide whether a given subset of {1,2,...,n}

is independent: simply calculate its size and check whether this is at most k.

This illustrates that what is important is not having a list of all independent

sets, but rather to be able to determine whether a given subset X of the

ground set S is independent in M.

We shall assume that our matroids are always given in terms of the ground

set S and a subroutine Oy which given X C S decides whether X is indepen-

dent in M or not. Such a subroutine Oy is called an independence oracle

for M = (S,Z). We say that a matroid algorithm A for a matroid M = (5,7)

670 12. Additional Topics

with independence oracle Oy is fast if the number of steps of A is polyno-

mial in |S| and any other inputs (such as a weight function), provided that

we consider each call to Oy as taking constant time. With this assumption,

the greedy algorithm is a fast matroid algorithm.

In order for a fast matroid algorithm to be useful in practice, we must

be able to supply an independence oracle which works in polynomial time

(and preferably very fast) In the case of Kruskal’s algorithm above such an

oracle exists, since a subset X C FE is independent in the circuit matroid

of G = (V,E) if and only if X induces a forest in G, something which can

be checked in linear time by DFS, say (Exercise 12.41). Similarly, checking

whether a subset is independent in U,,, can be done in linear time.

12.7.4 Union of Matroids

Let M; = (S,Z;), i = 1,2,...,k ke matroids on the same ground set S. Define

vk_, M; = (S, VE, 7;) as follows. A set X C S is independent in V#_, M; if
and only if X can be decomposed as X = X; UX2U...U Xx, where X; € T;

for i = 1,2,...,k. It is a non-trivial exercise (Exercise 12.42) to prove the

following:

Proposition 12.7.8 Let M; = (S,Z;), i = 1,2,...,% be matroids on the

same ground set S. Then VE; is a matroid. ° O

Note that, if X is independent in V*_, Mi, then X has a partition into sets

X,,Xo,...,X, such that X; (which might be empty) is independent in Mj,

i =1,2,...,k. Thus deciding whether X is independent in V*_, M; is equiva-

lent to deciding whether X can be partitioned into k subsets Xj, X2,...,Xx

Such thatan @G. i tOlst onal dob a, he

The matroid partition problem: Let M; = (S,7;), i = 1,2,...,k be
matroids on the same ground set S and a subset X € S. Does there exist

subsets X15X%,...,Xe of S such that X = UE,X; and X; € J; for? =
TD itowk sh

In Exercise 12.45 the goal is show that the question of deciding whether

an undirected graph has k edge-disjoint spanning trees can be formulated as a

matroid partition problem. Hence the following theorem implies the existence

of a polynomial algorithm for deciding whether an undirected graph has k

edge-disjoint spanning trees (see Exercise 12.46).

Theorem 12.7.9 The matroid partition problem can be solved in polynomial

time, provided we are given polynomial time realizable independence oracles

for each of the matroids M;, i =1,2,...,k. oO

We refer the reader to Recski’s book [623] for a description of a fast
algorithm for the matroid partitioning problem. Note that, if M = (S,Z) isa

matroid and X is a subset of S, then M(X) = (X,Zx), whereZx ={Y €T:

12.7 Matroids 671

Y C X} is also a matroid (Exercise 12.43). Hence, the matroid partitioning
problem is equivalent to the problem of deciding whether the ground set S$

is independent in V‘_, M;. This is the problem which is solved in [623].

12.7.5 Two Matroid Intersection

Another very useful topic on matroids is matroid intersection. By this we

do not mean that, if 4), M2 are matroids on the same ground set S, then

M = (S,7, N72) is also a matroid. This is false as the reader can easily show

by an example (Exercise 12.47). Instead we are interested in the following

problem.

The matroid intersection problem: Given matroids M, = (S,Z,), M2 =

(S,Z2) such that r1(S) = ro(S). Find a maximum cardinality subset T C S
which is independent in each of M,, M2.

The next result shows that the matroid intersection problem and the

matroid partition problem are closely related.

Theorem 12.7.10 Let M, = (S,7,), Mz = (S,Z2) be matroids on the same
ground set S with r,(S) = ro(S) =r and let n = |S|. There is a common
base of My, M2 if and only if M, V MZ = Up.

Proof: If X is a base of M, and of M2, then S — X is independent in Mz

and hence S = X U(S — X) is independent in M, V Mj, implying that this
is the free matroid on n = |S| elements.

To prove the converse, suppose S is independent in M, V M3. Then S can

be partitioned as S = S; US_ where 5; € Z;, Sz € Tj.

Now we obtain

|S| = [Si] + |S2] = ri(Si) + 73 (S2)
< ri(S) + 73(S)
=r-+(|S|—re(S)) (12.11)

=r+({S|—r)

alt

This implies that r1($1) =r and r3(S2) = |S| —1r2(S). Thus S; is a base

of M, and S;(= S — S,) is a base of Mj. Now we see that S; is a common

base of M, and Mo. oO

The following result is due to Edmonds:

Theorem 12.7.11 [212] The matroid intersection problem can be solved in

polynomial time, provided we are given polynomial time realizable indepen-

dence oracles for M,, M2. Furthermore, under the same assumptions, one

672 12. Additional Topics

can find in polynomial time a maximum (or minimum) weight common in-

dependent subset with respect to any given real-valued weight function w on

S. 0

For a description of a polynomial algorithm for (weighted) matroid inter-

section see e.g. [166, 623].
Matroid intersection is a very useful tool for modeling (and solving) many

combinatorial optimization problems.

For instance the problem to find a minimum weight cycle factor in an arc

weighted digraph can be formulated as a weighted two matroid intersection

problem. Consider the intersection of the matroids M~(D),M*(D) which
were defined in the beginning of this section. There is a common base of these
matroids if and only if D has a cycle factor and furthermore, the minimum

weight of a common base equals the minimum weight of a cycle factor. Two

more example are given in Section 9.10 and Exercise 12.48.

12.7.6 Intersections of Three or More Matroids

If we consider three or more matroids all on the same ground set and ask

for a common base of these, then this problem contains quite a few difficult

problems as special cases as we shall see below.
The k-matroid intersection problem: Given matroids M; = (S,Z;), i=
1,2,...,k on the same ground set. Does there exist a set X C S such that
Xis.a base of MM, fort = 192k

Theorem 12.7.12 The k-matroid intersection problem is NP-complete for
kee)

Proof: It suffices to prove the theorem for k = 3 since the proof can easily
be extended to higher k by using several copies of the same matroid. We will
prove that the NP-complete problem of deciding the existence of a hamil-
tonian path which starts in a prescribed vertex u and ends in a prescribed
vertex v in a digraph (see Exercise 6.3) can be reduced to the 3-matroid
intersection problem in polynomial time.

Let D = (V,A) be a digraph with specified vertices u,v € V. Define
M; = S,J;)-2= 12,3 as follows:

S =A;

M, = M(UG[D));
X € I, if and only if there is no arc entering u in Dy = (V, X) and every
other vertex has at most one arc entering it in Dx.
Y € T; if and only if there is no arc leaving v in Dy = (V,Y) and every
other vertex has at most one arc leaving it in Dy.

We argued in Section 9.10 that Mz = (A,Z2) is a matroid and similarly
M3 = (A,T3) is seen to be a matroid. It is easy to see that D has a Hamilton

12.8 Finding Good Solutions to MP-Hard Problems 673

path P from u to v if and only if M,, M2, M3 have a common base (the arcs
of a Hamilton path correspond to a common base of M;, M2, M3).

Note that the reduction above is a polynomial one because given an in-
stance [D, u,v] of the hamiltonian path problem with prescribed initial and
terminal vertices, we can easily extract the arc set of A and hence the ground
set of the 3 matroids above. 0

12.8 Finding Good Solutions to WP-Hard Problems

In this book we have encountered many problems which are NP-hard. Sev-
eral of these such as the feedback arc set problem (denoted FAS below for
convenience) are of significant practical interest. Part of our discussion below
will focus on the feedback arc set problem, but most of the discussion is valid

for the majority of NP-hard problems we know of.

Clearly we could solve the FAS problem if we simply try all subsets of

the arc set and take the smallest feedback arc set we find. Of course this

would take exponential time and even for digraphs with at most 100 arcs

this process would be extremely time consuming if not infeasible, even on the

fastest computers available today and in the near future.

A better approach is to try to solve the problem at hand by a clever way

of examining those among the set of all possible solutions which could be

a candidate for an optimal solution. If we already know a feedback arc set

with 20 arcs and we have a (preferably fast) way of detecting that among all
subsets from a certain collection of subsets of arcs, no feedback arc set with

less than 20 arcs exists, then we do not have to consider these subsets any

more, since no optimal solution can be found here. This idea, which we will

not describe in detail here, is one of the two main ingredients in a general

method called branch and bound, (see e.g. the book [600] by Papadimitriou
and Steiglitz). Branch and bound can be used to solve small instances of the
FAS problem, but already for digraphs with 100 vertices it becomes very time

consuming to find an optimal solution.

In the rest of this section we describe methods that do not give us any

guarantee on the quality of the solution and sometimes not even on the

running time of an implementation of the method. But experimental evidence

suggests that in practice some of these so-called heuristics do give solutions

which are close to the optimum solution. Furthermore, they often run very

fast when implemented carefully on a PC. Such methods may not seem very
_ interesting to the theoretician who may only consider methods that provably

obtain the optimum or some approximation guarantee for the solution as

worth studying. However, in practice the situation is entirely different: the

engineer who has been asked to find a reasonable solution to an instance of the

FAS problem, say, cannot really use this attitude. What (s)he needs is a way
to get a good solution and some indication that this solution is better than

a random solution and cannot be easily improved on (recall the discussion

674 12. Additional Topics

concerning the domination number of algorithms for the TSP problem in

Section 6.12). Certainly such a solution will often be much better than one

that could be found at hand by the engineer.

We start with a very simple method for finding a feedback arc set which

is locally optimal. We assume that we are given a directed multigraph D =

(V, A) and an ordering s = v1, V2,...,Un of V. Given this ordering we can

easily determine the set of forward arcs Ay (as those arcs vjv; for which i < 7)

and clearly A — Ay is a feedback arc set of D. Now suppose that there are

indices i,7 such that by deleting the vertex v; and reinserting it between v;

and‘ v;4; we obtain a smaller feedback arc set. The effect on the value of

the feedback arc set can be calculated easily without reconsidering all arcs

(Exercise 12.49).
By a solution s we mean an ordering of the vertices of D. The value

v(s) of a solution s is the number of backwards arcs with respect to s. We
say that two solutions s, s’ are neighbours if we can obtain one from the

other by deleting one vertex and reinserting it somewhere else in the ordering

of the remaining vertices. With respect to this definition of a neighbour of a

solution s we can define the neighbourhood NV(s) of s as the set of solutions
that are neighbours of s. Now we can describe a very simple heuristic which

we call 1-OPT for the FAS problem:

1-OPT .
Input: A directed multigraph D = (V, A);
Output: An ordering of V (for which the backwards arcs form a feedback

arc set in D).

1. Start with a solution s corresponding to a random permutation of V;

2. If there exists a neighbour s’ of s such that v(s’) < v(s); then take s := s’
as the new current solution and repeat this step;

3. Output the locally optimal solution s and halt.

It is easy to show (Exercise 12.50) that the 1-OPT algorithm will halt
after finitely many steps with a solution that is locally optimal. Here locally

optimal means that the number of backwards arcs cannot be decreased by

moving a single vertex.

There are several other ways of defining sensible neighbourhoods of a so-

lution to the FAS problem. For example, one could consider all solutions that

can be obtained by interchanging the positions of two vertices in the given or-

dering (see Exercise 12.52 and Exercise 12.53). Experimental evidence found
by Olsen [594] suggests that this last way of choosing the neighbourhood does
not produce as high quality solutions as the one above.

Although 1-OPT produces solutions that are in general much better than

a random choice, it only guarantees that the final solution found is locally

4 We allow i = n and i = 0 with the obvious meaning of v;41 and vp.

12.8 Finding Good Solutions to VP-Hard Problems — 675

optimal. Furthermore, since a new solution is only taken if it improves the

objective function, the algorithm cannot escape a local minimum.

This can be remedied somewhat by restarting the algorithm several times,

each time starting from a new random permutation of the vertices. Since the

algorithm is usually very fast it is possible to restart it many times (from

different random solutions) and then take the best solution among the local

optima which were found.

Another method to escape local minima would be to allow a neighbour s’

of the current solution s with u(s’) > v(s) to be chosen with some positive
probability. However, unless this probability decreases as the number of steps

increases the method may never converge towards a local minimum.

This problem is handled in the next method which we briefly describe.

In the method called simulated annealing the basic idea is to allow a

neighbouring solution s’ with v(s') > v(s) to be chosen with a probability p
which depends both on 7 = v(s’) — v(s) and the number of steps taken by
the algorithm so far.

Below we describe the generic simulated annealing method for a minimiza-
tion problem over the set S of possible solutions and with objective function

f and neighbourhood structure N. Note that this is a meta-heuristic, i.e. it

is a scheme that can be applied to many types of combinatorial optimization

problems rather than just one specific problem.

Generic Simulated Annealing

1. Select an initial solution so;

2. Initialize control parameter t to a value to;

3. Select a reduction method M for the control parameter ¢;

4. Repeat K(n) times:
5. Choose randomly a neighbour s € N(so);

6. Let 7 := f(s) — f (80);
CG If r <0 then so :=s

8. Else let so := s with probability exp (—7/t);

oP Lett W(t);
10. If the stopping condition is satisfied then return the best solution en-

countered and halt. Otherwise go to Step 4.

Although we did not write it above, it is understood that the algorithm

also keeps track of the best solution found so far (note that this may not

coincide with the current solution s9.).
It is evident from the (loose) description above that any implementation

of the method involves making several choices about how to perform the

various steps. We discuss briefly the general idea below and refer to the survey

[203] by Dowsland and the experimental evaluation of simulated annealing by
Johnson, Aragon, McGeoch and Schevon described in [464] for more details. It

is important to note that finding a good set of values/methods to implement

the algorithm is by no means always a trivial task. Part of this process consists

676 12. Additional Topics

of tuning the parameters to,K(n), the method M for decreasing t and the

stopping criterion. This is done by performing a number of runs with all

but one parameter fixed and then selecting values that look promising. After

some stages of this process, one may arrive at a choice for the parameters

which does not seem easy to improve (based on the test data used). See also

Exercise 12.51. However, experimental evidence reported by Hansen [397] and

Olsen [594] indicate that for a problem such as FAS it is not too hard to make

a set of choices which will make the algorithm perform quite well.

The initial solution can be chosen arbitrarily or it may be a local optima

found by 1-OPT, say. The control parameter t should be initialized so that in

the beginning there is a fair chance that the algorithm will accept a neighbour

with a higher f value than the current solution s9. Normally this is done

by starting from a random solution and then performing, say, 1000 steps

of the algorithm while keeping track of the number of neighbours who are

accepted as the new current solution’. The initial acceptance rate is the

fraction of accepted solutions over the total number of neighbours tested

(1000 above). Experiments reported in e.g. [464] suggest that acceptance
rates in the interval [0.3,0.9] all work well (these experiments were not for
the FAS problem, but the conclusion also seems to hold for FAS [594]).

Experiments show that the actual reduction method used to reduce t after

every cycle of K'(n) steps is not as important as the,rate at which t is reduced.

This rate should be as slow as possible (that is, as time allows) [464]. In fact,
whereas in general no theoretical guarantee exists for the quality of a solution

found by local search heuristics such as 1-OPT, it can actually be shown (see

e.g. the book [30] by Arts and Korst) that under ideal conditions (such as
reducing the parameter t infinitely slowly, taking a very large number of steps

for each value of ¢t and using a neighbour structure that allows one to reach

some optimal solution from an arbitrary solution) simulated annealing will

in fact find an optimal solution. Of course such a result is only of theoretical

interest, but the nice thing is that, since some of these results are based

on Markov chains, the results suggest that the slower one reduces t and

the higher K(n) (as a function of the size of the neighbourhood), the better
results one should obtain. This thesis seems to be true for several applications

of simulated annealing (see e.g. [203, 464]).

It is common to use a simple geometric reduction method where we set

t := rt for some fixed number 0 < r < 1 which is close to one. Experiments

suggests that r = 0.95 is generally a good choice [464]. The number of steps

K(n) for each value assumed by t should be at least a linear function in
the size of the neighbourhood of an arbitrary solution. Finally it is common

to use as a stopping condition that there has been no improvement in the

current solution for some number N of moves. Another possibility is to use

the current acceptance rate (calculated similarly as the initial acceptance

° This includes those that have a better (or equal) value than the current solution
as well as those that are worse, but are chosen in the probabilistic step 8.

12.9 Exercises 677

rate by keeping track of the number of accepted moves over the last, say,

1000 steps) as a measure and stop when this rate gets below, say 1 percent.

One may also decide to stop when the control parameter becomes smaller

than a prescribed value t,. Note that in the last case, the number of steps

performed by the algorithm is always the same (for K(n) and M fixed).

Due to space limitations we will not go into further details of the method.
The interested reader is encouraged to work out the programming projects of

Exercises 12.51 and 12.52. The success of the simulated annealing algorithm

on various combinatorial optimization problems varies of course (and also

depends strongly on the ingenuity of the persons who experiment with it,

in particular in the tuning phase). For a problem like the linear ordering

problem, the algorithm seems to perform very well. Hansen showed [397]

that when applied to real-world instances of the linear ordering problem of

sizes up to 75 vertices, the simulated annealing algorithm very often finds the

optimal solution within a few minutes on a standard PC and the ones that

were not optimal were within one percent of the optimal values.

For a very thorough discussion on how to tune simulated annealing algo-

rithms as well as a comparison of simulated annealing with other methods on

various combinatorial problems we refer to the experimental papers (464, 465]

by Johnson, Aragon, McGeoch and Schevon. There are several other meta-

heuristics which work quite well for many types of combinatorial optimiza-

tion problems. For a detailed discussion we refer the reader to the book [628]
edited by Reeves.

12.9 Exercises

12.1. Show that given an oriented graph D one can check whether D satisfies Con-
jecture 12.1.1 in time O(nm). Which representation of the oriented graph
may we assume to obtain this complexity?

12.2. Show that finding a median order of an arc weighted tournament (that is, an

order which minimizes the total weight of the backwards arcs) is NP-hard

by giving a polynomial reduction of the feedback arc set problem to this

problem.

12.3. (+) Give a short and direct argument which shows that there exists a

function f(n) so that every tournament on f(n) vertices contains every

oriented tree on n vertices. Hint: consider removing a leaf from a tree and

then applying induction.

12.4. Construct your own examples of semicomplete PCDs, for which FSO and

the score method produce different results.

12.5. Prove by induction on n the formula for fx (a) in Lemma 12.2.1.

12.6. Prove the following. Let K = (V,A,€) be a complete PCD with n vertices,

and let a be an ordering of K. Then fx(a) + bx (a) = n(n* — 1)/6. Hint:

use induction on n.

678

P22

2lse

12.14.

12.15.

RG

elie

T2083

12,19:

12.20.

125215

12522:

12. Additional Topics

. Prove that the problem to find a forward optimal ordering of a PCD is

NP-hard (Gutin and Yeo [373)) .

. (—) Formulate and prove a lemma for forward orderings analogous to

Lemma 12.2.6.

Prove Lemma 12.2.7 using Lemma 12.2.6.

. Prove Theorem 12.2.8.

. (—) Compute the proper backward ranks of the vertices of the uniform PCD
corresponding to the digraph D in Figure 12.6.

Figure 12.6 A semicomplete 3-partite digraph D.

Using Theorem 12.2.8 construct a polynomial algorithm to find proper back-
ward ranks of the vertices of a semicomplete multipartite PCD.

Prove Theorem 12.2.9.

(—) Find the proper backward ranks of the vertices of the uniform PCD
corresponding to the digraph D — vz, where the digraph D is depicted in
Figure 12.6.

Give a direct proof that every acyclic digraphis kernel-perfect. Prove that an
acyclic digraph has a unique kernel (von Neumann and Morgenstein [731]).

Prove that C43({1, 7,8}) — (1, 2), Ca3({1, 7, 8}) — (1,8) and C43({1, 7, 8}) —
(1,9) have kernels, where C43({1, 7, 8}) is a circular digraph.

(—) Give a construction of a Latin square of size n for each integer n > 1.

(+) Prove Theorem 12.4.2.

‘Construct a bipartite graph B = (X UY, E) with a family {>, |u € X UY}
of orderings induced from local orderings of the neighbours of each vertex,
such that no maximum matching of B is stable.

(—) Argue that the oriented graph D in the proof of Theorem 12.4.3 is
(n — 1)-regular.

(+) Prove that every digraph has a unique core (up to isomorphism).

(—) Prove that every semicomplete digraph is a core.

12°23.

12.24.

12.25.

12.26.

12227.

12.28.

12229:

12.30.

12.9 Exercises 679

Characterizing core semicomplete bipartite digraphs. Prove the fol-
lowing theorem due to Bang-Jensen and Hell:

Theorem 12.9.1 /74] Let B be a semicomplete bipartite digraph with ver-
ter partition X,Y. Then B is a core if and only uf
(a) B is a 2-cycle, or
(b) For allx,y € X such that x # y, either y € Nt?(x) ora € Nt?(y) and

for allu,v € Y such that u# v, either u € Nt?(v) or ve Nt?(u).

Show that there is a polynomial algorithm which transforms a given semi-
complete bipartite digraph into its core. Hint: use Theorem 12.9.1.

Prove Proposition 12.5.3. Hint: first show that you can assume that the
input digraph is acyclic and then use the acyclic ordering.

A polynomial algorithm for C,-colouring. Complete the description
from the text to an O(n + m) algorithm which, given an arbitrary digraph
D of order n and size m, either finds a homomorphism DC, or a proof
that DAC.

Prove Theorem 12.5.8.

(—) Prove Theorem 12.5.10.

(+) Reducing 3-SAT to an H-colouring problem. Let H be the di-
graph in Figure 12.7(a) and let Y be the digraph in Figure 12.7(a).

1
u

a

lek D) Yancy) ie)

Ay
w

3 4

(a) (6) (c)

Figure 12.7 (a): the digraph H; (b) the digraph Y; the digraph X.

(i) Prove that for every H-colouring of Y, at least one of the vertices wu, v, w
is not mapped to 1.

(ii) Prove that every partial H-colouring of Y in which at most two of the
vertices u,v, w is mapped to 1 can be extended to an H-colouring of Y.

(iii) (—) Prove that in every H-colouring of X, either z is coloured 1 and
& is coloured 2 or vice versa. ect

(iv) (+) Use (i)-(iii) to construct in polynomial time for a given instance
F = Ci * Co *... * Cm of 3-SAT a directed graph D[F] such that
D|F|—H if and only if F is satisfiable. Hint: use a copy of X for each
variable and a copy of Y for each clause and piece together according
to the formula F.

(++) Prove, using a similar reduction to that outlined in Exercise 12.29 that,
if H is the strong tournament on four vertices, then the H-colouring problem
is NP-complete.

680

12kS

WPA V2,

12.33.

12.34.

P223o.

12.36.

12.37.

12.38.

12°39:

12.40.

12.41.

12.42.

12.43.

12.44.

12.45.

12. Additional Topics

Prove that calculating ao; 1s N-hard, even for semicomplete digraphs.

Hint: reduce the independence number problem for undirected graphs to

this problem.

Prove that (B3) holds for any matroid.

(—) Prove that M = (S,Z) is a matroid if and only if it satisfies (11), (12)

and (I3’).

(—) Prove Lemma 12.7.4.

Prove Proposition 12.7.3.

Circuit axioms for a matroid. Prove the following Proposition. Hint: use
(R3) and the fact that C — x is independent for every circuit C and every
weGiCa

Proposition 12.9.2 Let C be the set of circuits of the matroid M = (S,T).
Then the following holds: <
(Cl) 1fC,C €¢ and. C CC, then C=C:
(C2) IfC,C’ €C, C#C' anduE CNC’, then there exists a circuit Z EC

such that ZC CUC’ —u.

Prove that, if M is a matroid, then the dual M™ is also a matroid.

Prove Proposition 12.7.6.

(+) Fooling the greedy algorithm for families of subsets which
are not matroids. Suppose F is a collection of subsets of a set S which
satisfies (I1), (12), but not (13). Construct a weight function w such that
the algorithm G.A will not find an optimal basis (Edmonds [213]).

(+). Prove the following result:

Theorem 12.9.3 Let M = (S,T) satisfy (I1),(I2). The greedy algorithm
GA finds an optimal base for M for every choice of non-negative real-valued
weight function w on S if and only if M is a matroid.

Hint: show that, if A = {a1,...,a,} and B = {bi,..., bg, bx41} both belong
to Z, then one can choose a weight function w on the elements of S so that
GA will always choose A as the first k elements and unless there is a b; € B
such that AU {bj} € Z, GA will not reach an optimal base.

Describe an O(n + m) algorithm for deciding whether an undirected graph
on n vertices and m edges has a cycle.

(+) Prove Proposition 12.7.8. Hint: it suffices to prove the claim for two
matroids. Consider a counterexample X,Y to (I3) with X = X; U X2 and
ie Vaio, XG Al E TB). X2,Y2 € To and |X1 NY2|+|Xe2 NY | is maximum.

‘Prove that M(X) defined in Section 12.7 is a matroid.

Let D = (V, A) be a digraph with two vertices s,t such that \(s,t) > k for
some k. Define J by J = {X C A: Ap_x(s,t) > k}. Show by an example
that (A, Z) is not always a matroid. (+) Can you characterize those digraphs
for which (A, 7) is actually a matroid?

(+) Testing for k edge-disjoint spanning trees in graphs. Show how
to formulate the problem of deciding whether an undirected graph G has k
edge-disjoint spanning trees as a matroid partition problem.

12.46.

12.47.

12.48.

12.49.

12.50.

2c 1

12.9 Exercises 681

(+) An algorithm for deciding the existence of k edge-disjoint
spanning trees. Use the formulation in Exercise 12.45 to derive a polyno-

mial algorithm for deciding whether an undirected graph has k edge-disjoint
spanning trees. Remember to justify that the needed oracles can be imple-
mented as polynomial algorithms.

Give an example of two matroids M;, M2 on the same ground set S for
which M = (S,Z,; NZ) is not a matroid.

(+) Formulating the maximum (weight) matching problem for a
bipartite graph as a (weighted) matroid intersection problem.
(a) Show how to formulate the question of deciding the existence of a

matching of size n in a bipartite graph G = (U,V, E) on 2n vertices
as a matroid intersection problem.

(b) Show how to solve the problem of finding a maximum weight matching
of size n in the graph G above if we are given nonnegative weights on
the edges of G.

(c) Argue that one can in fact find a maximum matching in any bipartite
graph in polynomial time, using an algorithm for the matroid intersec-
tion problem.

Consider the 1-OPT method for the FAS problem. Describe how to de-
termine, in linear time, the number of backwards arcs with respect to the
ordering we obtain from vj, v2,...,Un after removing one vertex from posi-
tion j and reinserting it between v; and v;+1.

Prove that the 1-OPT algorithm applied to the feedback arc set problem
will always halt. Then give a good bound on the number of steps taken by
the algorithm.

(+) Project: Implementing a simulated annealing algorithm for
the feedback arc set problem. The purpose of this project is to imple-
ment a version of simulated annealing which will allow one to obtain good
solutions for moderately sized instances of the feedback arc set problem
(n < 500). Use the details described in Section 12.8 along with the neigh-
bourhood structure which we used in the 1-OPT algorithm. Perform test
on various test data (such a randomly generated data and data for which a
good feedback arc set is already known) in order to investigate the following
issues’ :
1. How much does the initial value of t (measured in terms of the resulting

initial acceptance rate) influence the quality of the solution?
2. Is there a clear dependence of the value of the final solution on the value

of the initial solution? Is is better to start from a good solution than a
random one?

3. How important is it to decrease t slowly?
4. How many iterations should be performed between two consecutive re-

ductions of t? Try to find a good estimate and see how it depends on
the size of the input graph.

5. Try to combine the simulated annealing algorithm and 1-OPT by ei-
ther rounding off a calculation by simulated annealing by an execution
of 1-OPT, or by using 1-OPT at every step of the simulated annealing

® It is understood that as you vary one parameter, all other parameters are fixed
at values which have either been found to be good experimentally already, or are

as described in Section 12.8.

682

2so2

12.53.

12. Additional Topics

algorithm and using the value of resulting solution s’ (based on the cur-
rent solution s) as the (modified) objective function for the algorithm,
i.e. take f(s) to be the number of backwards arcs in the locally optimal
solution s’ and accept a new proposed neighbour of its f-value is better
than f(s), or it passes the test in Step 8 of the algorithm.

Instead of defining the neighbourhood of a solution s (an ordering of the
vertices) to the FAS problem as we did in Section 12.8, we may also say that
two solutions (orderings) s,s’ are neighbours if we can obtain one from the
other by interchanging the positions of two vertices v;,v; in the ordering.
Try to work out Exercise 12.51 with this choice of neighbourhood instead
and compare the results. Which neighbourhood choice would you think is
the best and why? Carry out computation experiments to check this.

Project: comparing various local search algorithms for the feed-
back arc set problem. Consider the following heuristics for the FAS prob-
lem.

(a) 1-OPT. .
(b) 2-OPT which uses the neighbourhood defined in Exercise 12.52 and

swaps two vertices as long as there is a pair such that swapping these
will improve the objective function.

(c) Steepest descent 1-OPT: Same as 1-OPT, except now we look at all
neighbours of the current solution s and take the one whose objective
function is the best if any has a lower value. Otherwise we stop.

(d) Steepest descent 2-OPT: Same as above, but for 2-OPT.
Implement each of these and compare them on various test data to see which
one finds the best solution and compare their running times. Then try the
same with probabilistic versions where the heuristics are restarted a number
of times from random starting solutions.

References

Ie

18.

A. Adam. Problem. In ‘Theory Graphs Applications’, Proc. Coll. Smolenice,
pages 12-18, Czech. Acad. Sci. Publ., 1964.

A. Adam. Bemerkungen zum graphentheoretischen Satze von I. Fidrich. Acta
Math. Acad. Sci. Hungar., 16:9-11, 1965.

R. Aharoni and R. Holzman. Fractional kernels in digraphs. J. Combin. Theory
Ser. B, 73(1):1-6, 1998.
R. Aharoni and C. Thomassen. Infinite, highly connected digraphs with no
two arc-disjoint spanning trees. J. Graph Theory, 13(1):71-74, 1989.
A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed
graph. SIAM J. Computing, 1(2):131-137, 1972.

. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of com-
puter algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-
Amsterdam, 1975.

. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows. Prentice Hall Inc.,
Englewood Cliffs, NJ, 1993. Theory, algorithms, and applications.

. M. Aigner and G. Ziegler. Proofs from the book. Springer Verlag, Berlin
Heidelberg New York, 1998.

. A. Ainouche. An improvement of Fraisse’s sufficient condition for hamiltonian
graphs. J. Graph Theory, 16:529-543, 1992.

. N. Alon. Disjoint directed cycles. J. Combin. Theory Ser. B, 68(2):167-178,
1996.

. N. Alon and G. Gutin. Properly colored Hamilton cycles in edge colored
complete graphs. Random Structures and Algorithms, 11:179-186, 1997.

. N. Alon and N. Linial. Cycles of length 0 modulo k in directed graphs. J.
Combin. Theory Ser. B, 47(1):114-119, 1989.
N. Alon, C. McDiarmid, and M. Molloy. Edge-disjoint cycles in regular directed
graphs. J. Graph Theory, 22(3):231-237, 1996.
N. Alon and J.H. Spencer. The probabilistic method. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York,

1992. With an appendix by Paul Erdés, A Wiley-Interscience Publication.

N. Alon and M. Tarsi. Colourings and orientations of graphs. Combinatorica,
12:125-134, 1992.
N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding sim-
ple paths, cycles and other small subgraphs within large graphs. In Proc. 26th
Annual ACM Symp. Theory Computing, pages 326-335, Montreal, Canada,

1994. ACM Press.

N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42:844—

856, 1995.

N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.

Algorithmica, 17:209-223, 1997.

684

119;

20.

Dll

MD

23.

24.

25.

26.

21.

28.

29:

30.

ol.

32.

33.

34.

35.

36.

37.

38.

39.

40.

References

B. Alspach. Cycles of each length in regular tournaments. Canad. Math. Bull.,

10:283-285, 1967.
B. Alspach, J.-C. Bermond, and D. Sotteau. Decomposition into cycles. I.

Hamilton decompositions. In Cycles and rays (Montreal, PQ, 1987), pages
9-18. Kluwer Acad. Publ., Dordrecht, 1990.
B. Alspach and M. Rosenfeld. Realization of certain generalized paths in
tournaments. Discrete Math., 34:199-202, 1981.
B. Alspach and C. Tabib. A mote on the number of 4-circuits in a tournament.
In Theory and practice of combinatorics, volume 60 of North-Holland Math.
Stud., pages 13-19. North-Holland, Amsterdam, 1982.
H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinal-

ity matching in a bipartite graph in time O(n’ \/m/logn). Inform. Process.

Lett., 37(4):237-240, 1991.
D. Amar and A. Raspaud. Covering the vertices of a digraph by cycles of
prescribed length. Discrete Math., 87:111-118, 1991.
A. Andersson. Sublogarithmic Searching without Multiplications. In Pro-
ceedings of the 36th Sympostum on Foundations of Computer Science, pages
655-663. IEEE Computer Society Press, 1995.
A. Apartsin, Ferapontova E., and V. Gurvich. A circular graph - counterex-
ample to the Duchet kernel conjecture. Discrete Math., 178:229—231, 1998.
K. Appel and W. Haken. Every planar map is four colorable. Bull. Amer.
Math. Soc., 82(5):711-712, 1976.
E.M. Arkin and C.H. Papadimitriou. On negative cycles in mixed graphs.
Operations Research Letters, 4:113-116, 1985.
E.M. Arkin, C.H. Papadimitriou, and M. Yanndkakis. Modularity of cycles
and paths in graphs. J. Assoc. Comput. Mach., 31:255—-274, 1991.
E.H.L. Arts and J.H.M. Korst. Simulated Annealing and Boltzmann Machines.
Wiley, Chicester, 1989.
A.A. Assad. Multicommodity network flows—A survey. Networks, 8:37-91,
1978.
R. Assous. Enchainabilité et seuil de monomorphie des tournois n-aires. Dis-
crete Math., 62(2):119-125, 1986.
G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approrimation. Springer-Verlag, Berlin, 1999.
J. N. Ayoub and I.T. Frisch. Optimally invulnerable directed communication
networks. JEEE Trans. Comm. Technol., 18:484—489, 1970.

L. Babel and G.J. Woeginger. Pseudo-Hamiltonian graphs. In Graph-theoretic
concepts in computer science (Berlin, 1997), pages 38-51. Springer, Berlin,
1997.
L. Baffi and R. Petreschi. Parallel maximal matching on minimal vertex series
parallel digraphs. In Algorithms, concurrency and knowledge (Pathumthani,
1995), pages 34-47. Springer, Berlin, 1995.
E. Balas and N. Simonetti. Linear time dynamic programming algorithms for
some new Classes of restricted travelling salesman problems. In Proceedings
of IPCO V, volume 1084 of Lecture Notes in Comput. Sci., pages 316-329.
Springer Verlag, Berlin, 1996.

M.C. Balbuena, A. Carmona, J. Fabrega, and M.A. Fiol. Connectivity of large
bipartite digraphs and graphs. Discrete Math., 174(1-3):3-17, 1997. Combina-
torics (Rome and Montesilvano, 1994).
Y. Balcer and A.F. Veinott. Computing a graph’s period quadratically by node
condensation. Discrete Math., 4:295-303, 1973.

M. Balinski and G. Ratier. On stable marriages and graphs, and strategy and
polytopes. SIAM Rev., 39(4):575-604, 1997.

References 685

. M. Balinski and G. Ratier. Graphs and marriages. Amer. Math. Monthly,
105(5):430-445, 1998.

. E. Bampis, P. Hell, Y. Manoussakis, and M. Rosenfeld. Finding an antidi-

rected hamiltonian path starting with a forward arc from a given vertex in a
tournament. Lect. Notes Comp. Sci., 1120:67—73, 1996.

. J. Bang-Jensen. On the 2-linkage problem for semicomplete digraphs. In
Graph theory in memory of G. A. Dirac (Sandbjerg, 1985), volume 41 of Ann.
Discrete Math., pages 23-37. North-Holland, Amsterdam, 1989.

. J. Bang-Jensen. Locally semicomplete digraphs: a generalization of tourna-
ments. J. Graph Theory, 14(3):371-390, 1990.

. J. Bang-Jensen. A note on a special case of the 2-path problem for semi-
complete digraphs. In Graph theory, combinatorics, and applications, Vol. 1
(Kalamazoo, MI, 1988), Wiley-Intersci. Publ., pages 77-86. Wiley, New York,
1991.

. J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and re-
lated path problems. J. Combin. Theory Ser. B, 51(1):1-23, 1991.

. J. Bang-Jensen. On the structure of locally semicomplete digraphs. Discrete
Math., 100(1-3):243-265, 1992. Special volume to mark the centennial of Julius
Petersen’s “Die Theorie der regularen Graphs”, Part I.

. J. Bang-Jensen. Arc-local tournament digraphs: a generalization of tourna-
ments and bipartite tournaments. Technical report 2, Department of Mathe-
matics and Computer Science, Odense University, Denmark, 1993.

. J. Bang-Jensen. A reformulation of Huang’s structure theorem for local tour-
naments with some consequences. Technical report 13, Department of Mathe-
matics and Computer Science, Odense University, Denmark, 1994.

. J. Bang-Jensen. Digraphs with the path-merging property. J. Graph Theory,
20(2):255-265, 1995.

. J. Bang-Jensen. Disjoint Paths with Prescribed Ends and Cycles through Given
Arcs in Locally Semicomplete Digraphs and Quasi-Transitive Digraphs. Tech-
nical Report 22, Dept. of Math. and Comp. Sci., Odense University, Technical
report, 1996.

. J. Bang-Jensen. Linkages in locally semicomplete digraphs and quasi-transitive
digraphs. Discrete Math., 196(1-3):13-27, 1999.

. J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local
edge-connectivity in mixed graphs. SIAM J. Discrete Math., 8:155-178, 1995.

. J. Bang-Jensen and Y. Guo. A note on vertex pancyclic oriented graphs. J.
Graph Theory, 31:313-318, 1999.

. J. Bang-Jensen, Y. Guo, G. Gutin, and L. Volkmann. A classification of locally
semicomplete digraphs. Discrete Math., 167/168:101-114, 1997. 15th British
Combinatorial Conference (Stirling, 1995).

. J. Bang-Jensen, Y. Guo, and L. Volkmann. Weakly Hamiltonian-connected
locally semicomplete digraphs. J. Graph Theory, 21(2):163-172, 1996.

. J. Bang-Jensen, Y. Guo, and A. Yeo. A new sufficient condition for a digraph
to be Hamiltonian. Discrete Applied Math., 95:61—72, 1999.

. J. Bang-Jensen, Y. Guo, and A. Yeo. Complementary cycles containing pre-

scribed vertices in tournaments. Discrete Math., 214:77-87, 2000.

. J. Bang-Jensen and G. Gutin. Longest paths and cycles in extended locally

semicomplete digraphs. Technical Report 53, Department of Mathematics and

Computer Science, Odense University, Denmark, 1993.

. J. Bang-Jensen and G. Gutin. Paths, trees and cycles in tournaments. Congr.

Numer., 115:131-170, 1996. Surveys in graph theory (San Francisco, CA, 1995).

. J. Bang-Jensen and G. Gutin. Alternating paths and cycles in edge-coloured

multigraphs: a survey. Discrete Math., 165-166:39-60, 1997.

686

62.

63.

64.

65.

66.

67.

68.

69.

70.

.

1

03.

74.

75.

76.

77.

ifs

eh

80.

81.

82.

83.

References

J. Bang-Jensen and G. Gutin. Paths and cycles in extended and decomposable

digraphs. Discrete Math., 164(1-3):5-19, 1997. The Second Krakow Conference

on Graph Theory (Zgorzelisko, 1994).

J. Bang-Jensen and G. Gutin. Vertex heaviest paths and cycles in quasi-

transitive digraphs. Discrete Math., 163(1-3):217-223, 1997.
J. Bang-Jensen and G. Gutin. Alternating cycles and trails in 2-edge-coloured
complete multigraphs. Discrete Math., 188:61-72, 1998.
J. Bang-Jensen and G. Gutin. Generalizations of tournaments: A survey. Jour-

nal of Graph Theory, 28:171—202, 1998.
J. Bang-Jensen and G. Gutin. On the complexity of hamiltonian path and
cycle problems in certain classes of digraphs. Discrete Applied Math., 95:41—

60, 1999.
J. Bang-Jensen, G. Gutin, and J. Huang. Weakly Hamiltonian-connected or-
dinary multipartite tournaments. Discrete Math., 138(1-3):63-74, 1995. 14th
British Combinatorial Conference (Keele, 1993).
J. Bang-Jensen, G. Gutin, and J. Huang. A sufficient condition for a semicom-
plete multipartite digraph to.be Hamiltonian. Discrete Math., 161(1-3):1-12,
1996.
J. Bang-Jensen, G. Gutin, and H. Li. Sufficient conditions for a digraph to be
Hamiltonian. J. Graph Theory, 22(2):181-187, 1996.
J. Bang-Jensen, G. Gutin, and A. Yeo. On k-strong and k-cyclic digraphs.
Discrete Math., 162(1-3):1-11, 1996.
J. Bang-Jensen, G. Gutin, and A. Yeo. Hamiltonian cycles avoiding prescribed
arcs in tournaments. Combin. Probab. Comput., 6(3):255-261, 1997.
J. Bang-Jensen, G. Gutin, and A. Yeo. A polynomial algorithm for the Hamil-
tonian cycle problem in semicomplete multipartite digraphs. J. Graph Theory,
29:111-132, 1998.

J. Bang-Jensen, G. Gutin, and A. Yeo. Properly coloured Hamiltonian paths
in edge-coloured complete graphs. Discrete Applied Math., 83:267—270, 1998.

J. Bang-Jensen and P. Hell. The effect of two cycles on the complexity of
colourings by directed graphs. Discrete Appl. Math., 26(1):1-23, 1990.
J. Bang-Jensen and P. Hell. Fast algorithms for finding Hamiltonian paths and
cycles in in-tournament digraphs. Discrete Appl. Math., 41(1):75-79, 1993.
J. Bang-Jensen, P. Hell, and J. Huang. Optimal recognition of local tourna-
ments. Congressus Numerantium, 100:141-146, 1994.

J. Bang-Jensen, P. Hell, and G. MacGillivray. The complexity of colouring by
semicomplete digraphs. SIAM J. Discrete Math., 1(3):281-298, 1988.

J. Bang-Jensen, P. Hell, and G. MacGillivray. On the complexity of colouring
by superdigraphs of bipartite graphs. Discrete Math., 109(1-3):27-44, 1992.
Algebraic graph theory (Leibnitz, 1989).
J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. J. Graph Theory,
20(2):141-161, 1995.

J. Bang-Jensen and J. Huang. Kings in quasi-transitive digraphs. Discrete
Math., 185(1-3):19-27, 1998.
J. Bang-Jensen, J. Huang, and E. Prisner. In-tournament digraphs. J. Combin.
Theory Ser. B, 59(2):267—287, 1993.
J. Bang-Jensen, J. Huang, and A. Yeo. Strongly connected spanning subgraphs
with the minimum number of arcs in quasi-transitive digraphs. Technical Re-
port 5, Department of Mathematics and Computer Science, Odense University,
Denmark, 1999.

J. Bang-Jensen and T. Jordan. Spanning 2-strong subtournaments in 3-strong
semicomplete digraphs . Unpublished manuscript, November 1995. Depart-
ment of Mathematics and Computer Science, Odense University, Denmark.

100.

102.

104.

105.

106

References 687

. J. Bang-Jensen and T. Jordan. Adding and reversing arcs in semicomplete
digraphs. Combin. Probab. Comput., 7(1):17-25, 1998.

. J. Bang-Jensen and G. MacGillivray. Further effects of two directed cycles on
the complexity of H-colouring. J. Combin. Math. Combin. Comput., 10:33-50,
1991.

. J. Bang-Jensen and Y. Manoussakis. Weakly Hamiltonian-connected vertices
in bipartite tournaments. J. Combin. Theory Ser. B, 63(2):261-280, 1995.

. J. Bang-Jensen, Y. Manoussakis, and C. Thomassen. A polynomial algo-
rithm for Hamiltonian-connectedness in semicomplete digraphs. J. Algorithms,
13(1):114-127, 1992.

. J Bang-Jensen and S. Poljak. Eulerian trails through a set of terminals in
specific, unique and all orders. Contemporary Mathematics, 147:247-258, 1993.

. J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path
problem for semicomplete digraphs. STAM J. Discrete Math., 5:366-376, 1992.

. J. Bang-Jensen and A. Yeo. Strongly connected spanning subgraphs with the
minimum number of arcs in semicomplete multipartite digraphs. Technical re-
port 4, Department of Mathematics and Computer Science, Odense University,
Denmark, 1999.

. M. Bankfalvi and Zs. Bankfalvi. Alternating hamiltonian circuit in two-
coloured complete graphs. In Proceedings of Collog. Tihany 1968, pages 11-18.
Academic Press, New York, 1968.

. E. Barbut and A. Bialostocki. A generalization of rotational tournaments.
Discrete Math., 76(2):81-87, 1989.

. E. Barbut and A. Bialostocki. On regular r-tournaments. Ars Combin., 34:97—
106, 1992.

. O. Barr. Properly coloured Hamiltonian paths in edge-coloured complete

graphs without monochromatic triangles. ARS Combinatoria, 50:316-318,

1998.
. J.-P. Barthélémy, O. Hudry, G. Isaak, F.S. Roberts, and B. Tesman. The
reversing number of a digraph. Discrete Appl. Math., 60(1-3):39-76, 1995.
ARIDAM VI and VII (New Brunswick, NJ, 1991/1992).

. E.T. Baskoro, M. Miller, J. Plesnik, and §S. Znam. Digraphs of degree 3 and

order close to the Moore bound. J. Graph Theory, 20:339-349, 1995.
. G. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing. Prentice

Hall, Englewood Cliffs, NJ, 1999.
. J. Beck. On 3-chromatic hypergraphs. Discrete Math., 24(2):127-137, 1978.
_ L.W. Beineke and C.H.C. Little. Cycles in bipartite tournaments. J. Combin.

Theory Ser. B, 32(2):140-145, 1982.
L.W. Beineke and M.D. Plummer. On the 1-factors of a nonseparable graph.

J. Combin. Theory Ser. B, 2:285-289, 1967.

_ L.W. Beineke and C.M. Zamfirescu. Connection digraphs and second order

line graphs. Discrete Math., 39:237-254, 1982.

R.E. Bellman. On a routing problem. Quart. Appl. Math., 16:87-90, 1958.

_ A. Benkouar, Y. Manoussakis, V. Paschos, and R. Saad. On the complexity of

finding alternating Hamiltonian and Eulerian cycles in edge-coloured graphs.

In , volume 557 of Lecture Notes in Comput. Sct., pages 190-198. Springer

Verlag, Berlin, 1991. |

M.D. Bennett. Nucleotypic basis of the spacial ordering of chromosomes in eu-

cariotes and the implications of the order for genome and phenotypic variation.

In Genome Evolution, pages 239-261. Academic Press, London, 1982.

C. Berge. Graphs and Hypergraphs. North-Holland Publishing Co., Amster-

dam, 1976. Second edition.

. C. Berge. Diperfect graphs. Combinatorica, 2(3):213-222, 1982.

688

107.

108.

109.

110.

IL,

1.

113.

114.

1S:

116.

Lia

118.

119}

120.

121.

22:

123.

124.

125.

126.

12

128.

129,

130.

References

C. Berge. Path partitions in directed graphs. In Combinatorial Mathematics
(Marseille-Luminy, 1981), pages 59-63. North-Holland, Amsterdam, 1983.

C. Berge. Graphs. North-Holland Publishing Co., Amsterdam, 1985. Second
revised edition of part 1 of the 1973 English version.
C. Berge and Rao A.R. A combinatorial problem in logic. Discrete Math.,
1723-26919 in
C. Berge and P. Duchet. Recent problems and results about kernels in directed
graphs. Discrete Math., 86(1-3):27-31, 1990.
Kk.A. Berman and X. Liu. Cycles through large degree vertices in digraphs:
a generalization of Meyniel’s theorem. J. Combin. Theory, Ser. B, 74:20—-27,

1998.
J.-C. Bermond, A. Germa, M.-C. Heydemann, and D. Sotteau. Girth in di-

graphs. J. Graph Theory, 4(3):337-341, 1980.
J.-C. Bermond and P. Hell. On even factorizations and the chromatic index
of the Kautz and de Bruijn digraphs. J. Graph Theory, 17:647-655, 1993.

J.-C. Bermond and C. Peyrat. De Bruijn and Kautz networks: A competitor
for the hypercube? In Hypercube and distributed computers, André, F. and
Verjus, J. P. (eds.), pages 279-493. Elsevier, North-Holland, 1989.
J.-C. Bermond and C. Thomassen. Cycles in digraphs—a survey. J. Graph
Theory, 5(1):1-43, 1981.
P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis. How
to draw a series-parallel digraph. Internat. J. Comput. Geom. Appl., 4(4):385-
402, 1994.
A. Bialostocki. An application of the Ramsey theorem to ordered r-
tournaments. Discrete Math., 61(2-3):325-328, 1986.
W. Bienia, L. Goddyn, P. Gvozdjak, A. Seb6, and M. Tarsi. Flows, view
obstructions, and the lonely runner. J. Combin. Theory Ser. B, 72(1):1-9,
1998.
N.L. Biggs, E.K. Lloyd, and R.J. Wilson. Graph Theory 1736-1936. Clarendon
Press, 1976.

F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. Amer.
Math. Monthly, 87(9):716-719, 1980.

B. Bollobds and P. Erdés. Alternating Hamiltonian cycles. Israel J. Math.,
23:126-13151976:
B. Bollobas, D.L. Goldsmith, and D.R. Woodall. Indestructive deletions of
edges from graphs. J. Combin. Theory Ser. B, 30(3):263-275, 1981.
B. Bollobas and R. Haggkvist. Powers of Hamilton cycles in tournaments. J.
Combin. Theory Ser. B, 50(2):309-318, 1990.
J.A. Bondy. Diconnected orientations and a conjecture of Las Vergnas. J.
London Math. Soc. (2), 14(2):277-282, 1976.
J.A. Bondy. A short proof of the Chen-Manalastas theorem. Discrete Math.,
146(1-3):289-292, 1995.
J.A. Bondy. Basic graph theory: paths and circuits. In Handbook of combina-
torics, Vol. 1, 2, pages 3-110. Elsevier, Amsterdam, 1995.
J.A. Bondy and U.S.R. Murty. Graph theory with applications. American
Elsevier Publishing Co., Inc., New York, 1976.
J.A. Bondy and C. Thomassen. A short proof of Meyniel’s theorem. Discrete
Math., 19(2):195-197, 1977.
J.A. Bondy and A. Vince. Cycles in a graph whose lengths differ by one or
two. J. Graph Theory, 27(1):11-15, 1998.
O.V. Borodin, A.V. Kostochka, and D.R. Woodall. On kernel-perfect orien-
tations of line graphs. Discrete Math., 191(1-3):45-49, 1998. Graph theory
(Elgersburg, 1996).

131

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

References 689

. E. Boros and V. Gurvich. Perfect graphs are kernel-solvable. Discrete Math.,
159:35-55, 1996.
E. Boros and V. Gurvich. A corrected version of the Duchet kernel conjecture.
Discrete Math., 179(1-3):231-233, 1998.
A. Brandstadt. Graphen und Algorithmen. B. G. Teubner, Stuttgart, 1994.

G. Brassard and P. Bratley. Fundamentals of algorithmics. Prentice Hall Inc.,
Englewood Cliffs, NJ, 1996.

R.C. Brewster and G. MacGillivray. The homomorphism factoring problem.
J. Combin. Math. Combin. Comput., 25:33-53, 1997.

W.G. Bridges and S. Toueg. On the impossibility of directed Moore graphs.
J. Combin. Theory, Ser. B, 29:339-341, 1980.

R.E. Burkard, V.G. Deineko, and Woeginger G.J. The travelling salesman
problem and the PQ-tree. In Proceedings of IPCO V, volume 1084 of Lecture
Notes in Comput. Sct., pages 490-504. Springer Verlag, Berlin, 1996.

R.G. Busacker and P.J. Gowen. A procedure for determining a family of
minimal cost network flow patterns. Technical Report 15, ORO Tech. report,
John Hopkins University, 1961.

L. Caccetta and R. Haggkvist. On minimal digraphs with given girth. Con-
gressus Numerantium, 21:181—-187, 1978.

P. Camion. Chemins et circuits hamiltoniens des graphes complets. C. R.
Acad. Sct. Paris, 249:2151-2152, 1959.

Papadimitriou C.H. and M. Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. In Proc. 8th Annual Symp. Structure in
Complezity Theory, pages 12-18, San Diego, Ca., 1993.

G.J. Chang, F.K. Hwang, and L.D. Tong. The Hamiltonian property of the
consecutive-3 digraphs. Math. Comp. Mod., 25:83-88, 1997.

G.J. Chang, F.K. Hwang, and L.D. Tong. The consecutive-4 digraph are
Hamiltonian. J. Graph Theory, 31:1-6, 1999.

G. Chartrand, D. Geller, and S. Hedetniemi. Graphs with forbidden sub-
graphs. J. Comb. Theory Ser. B, 10:12-41, 1971.
C.C. Chen and D.E. Daykin. Graphs with Hamiltonian cycles having adjacent
lines of different colors. J. Combin. Theory, Ser. B, 21:135-139, 1976.

C.C. Chen and Jr. Manalastas, P. Every finite strongly connected digraph of
stability 2 has a Hamiltonian path. Discrete Math., 44(3):243-250, 1983.
G.-T. Chen, R.J. Gould, and H. Li. Partitioning Vertices of a Tournament
into Independent Cycles. Technical report 1158, LRI, Universite Paris-sud,
1998.
E. Cheng and T. Jordan. Successive edge-connecitity augmentation problems.
Mathematical Programming, Series B, 84:577-593, 1999.

J. Cheriyan and S.N. Maheshwari. Analysis of preflow push algorithms for
maximum network flow. SIAM J. Computing, 18:1057-1086, 1989.

J. Cheriyan and J.H. Reif. Directed s-t numberings, rubber bands, and testing
digraph k-vertex connectivity. Combinatorica, 14(4):435-451, 1994.

J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching (extended abstract). In 37th Annual Sym-
posium on Foundations of Computer Science (Burlington, VT, 1996), pages
292-301. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

J. Cheriyan and R. Thurimella. Approximating minimum size k-connected
spanning subgraphs via matching. Electronic Colloquium on Computational

Complezity, Report no. 25:36 pages, 1998. :

B.V. Cherkassky and A.V. Goldberg. Negative-cycle detection algorithms.

Mathematical Programming, 85:277-311, 1999.

690

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

OF

Wal

172.

173.

174.

175.

176.

(Tes

References

B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms:

theory and experimental evaluation. Mathematical Programming, 73:129-174,

1996.

A.G. Chetwynd and A.J.W. Hilton. Alternating Hamiltonian cycles in two

colored complete bipartite graphs. J. Graph Theory, 16:153-158, 1992.

W.S. Chow, Y. Manoussakis, O. Megalakaki, M. Spyratos, and Zs. Tuza. Paths

through fixed vertices in edge-colored graphs. Math. Informatique et Sciences

Humaines, 127(32):49-58, 1994.
F.R.K. Chung, M.R. Garey, and R.E. Tarjan. Strongly connected orientations

of mixed multigraphs. Networks, 15(4):477-484, 1985.
F.R.K. Chung, W. Goddard, and D.J. Kleitman. Even cycles in directed

graphs. SIAM J. Discrete Math., 7(3):474-483, 1994.
V. Chvatal. On Hamilton’s ideals. J. Combin. Theory, Ser. B, 12:163-168,

1972.
V. Chvatal. Linear programming. W. H. Freeman and Company, 1983.

V. Chvatal and P. Erdés. A note on Hamiltonian circuits. Discrete Math.,

9111-113, 1972. poly
V. Chvatal and L. Lovdsz. Every directed graph has a semi-kernel. Lecture

Notes in Mathematics, 411:175, 1974.
V. Chvatal and E. Szemerédi. Short cycles in directed graphs. J. Combin.
Theory Ser. B, 35(3):323-327, 1983.
V. Chvatal and C. Thomassen. Distances in orientations of graphs. J. Combin.
Theory Ser. B, 24(1):61-75, 1978.
S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 8rd Ann. ACM Symp. on Theory of Computing, pages 151-158, 1971.

W.J. Cook, W.H. Cunninghan, W.R. Pulleyblank, and A. Schrijver. Combi-
natorial Optimization. John Wiley & Sons, New York, 1998.

C. Cooper, A. Frieze, and M. Molloy. Hamilton cycles in random regular
digraphs. Combin. Probab. Comput., 3(1):39-49, 1994.
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proceedings of the 19th Ann. ACM Symp. on Theory of Compu-
tation, pages 1-6, ACM Press, 1987.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms.

The MIT Electrical Engineering and Computer Science Series. MIT Press,
Cambridge, MA, 1990.

W.H. Cunningham and A. Frank. A primal-dual algorithm for submodular
flows. Math. Oper. Res., 10(2):251-262, 1985.

G. Dahl. Directed Steiner problems with connectivity constraints. Discrete
Appl. Math., 47:109-128, 1193.

M. Dalmazzo. Nombre d’arcs dans les graphes k-arc-fortement connexes min-
imaux. C.R.Acad. Sci. Paris A, 2853:341-344, 1977.

P. Dankelmann and L. Volkmann. Degree sequence conditions for maximally
edge-connected graphs and digraphs. J. Graph Theory, 26(1):27-34, 1997.

S.K. Darbinyan. Cycles of any length in digraphs with large semidegrees.
Akad. Nauk Armyan. SSR Dokl., 75(4):147-152, 1982.
S.K. Darbinyan. Pancyclicity of digraphs with large semidegrees. Akad. Nauk
Armyan. SSR Dokl., 80(2):51-54, 1985.

S.K. Darbinyan. Pancyclicity of digraphs with the Meyniel condition. Studia
Sci. Math. Hungar., 20(1-4):95-117, 1985.

S.K. Darbinyan. A sufficient condition for the Hamiltonian property of di-
graphs with large semidegrees. Akad. Nauk Armyan. SSR Dokl., 82(1):6-8,
1986.

178

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

IGN).

196.

Gite

198.

199:

200.

201.

References 691

. 8.K. Darbinyan. On the pancyclicity of digraphs with large semidegrees. Akad.
Nauk Armyan. SSR Dokl., 83(3):99-101, 1986.
S.K. Darbinyan. Hamiltonian and strongly Hamilton-connected digraphs.
Akad. Nauk Armyan. SSR Dokl., 91(1):3-6, 1990.
S.K. Darbinyan. On hamiltonian bypasses in digraphs satisfying Meyniel-like
conditions (in Russian). Math. Problems in Computer Science, 20:7-19, 1998.
M. Darrah, Y.-P. Liu, and C.-Q. Zhang. Cycles of all lengths in arc-3-cyclic
semicomplete digraphs. Discrete Math., 173(1-3):23-33, 1997.

P. Das. Pan-alternating cyclic edge-partitioned graphs. ARS Combinatoria,
14:105-114, 1982.

H.A. David. The method of paired comparisons. Oxford Univ. Press, London,
second edition, 1988.

D.E. Daykin. Graphs with cycles having adjacent lines of different colors. J.
Combin. Theory, Ser. B, 20:149-152, 1976.

N.G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensh. Proc.,
49:758-764, 1946.

W.F. de la Vega. On the maximum cardinality of a consistent set of arcs in a
random tournament. J. Comb. Theory Ser. B, 35:328-332, 1983.

N. Dean and B.J. Latka. Squaring the tournament—an open problem. Con-
gressus Numerantium, 109:73-80, 1995.

V.G. Deineko and Woeginger G.J. A study of exponential neighbourhoods
for the traveling salesman problem and the quadratic assignment problem.
Technical Report Woe05, Tech. University Graz, Austria, 1997.

C. Delorme, O. Ordaz, and D. Quiroz. Tools for studying paths and cycles in
digraphs. Networks, 31:125-148, 1998.
X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM J. Computing,
25(2):390-403, 1996.
R. Diestel. Graph theory. Springer-Verlag, New York, 2000. 2nd edition, first
edition 1997.
E.W. Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1:269-271, 1959.
R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51:161-166, 1950.

G. Ding, A. Schrijver, and P.D. Seymour. Disjoint paths in a planar graph —
a general theorem. SIAM J. Discrete Math., 5(1):112-116, 1992.
E.A. Dinic. An algorithm for the solution of the problem of maximal flow in a
network with power estimation. Dokl. Akad. Nauk SSSR, 194:754-757, 1970.

E.A. Dinits and A.V. Karzanov. On the existence of two edge-disjoint chains
in multi-graph connecting given pairs of its vertices. Graph Theory Newsletters,

8:2-3, 1979.
E.A. Dinits and A.V. Karzanov. On two integer flows of value 1. In Combina-

torial methods for network flow problems, A.V. Karzanov, ed., pages 127-137.

Institute for System Studies, Moscow, 1979.

G.A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc.,

2(3):69-81, 1952.

A. Dolan and J. Aldous. Networks and algorithms. John Wiley & Sons Ltd.,

Chichester, 1993. An introductory approach.

D. Dorninger. On permutations of chromosomes. In Contributions to General

Algebra, volume 5, pages 95-103. Teubner-Verlag, Stuttgart, 1987.

D. Dorninger. Hamiltonian circuits determining the order of chromosomes.

Discrete Applied Math., 50:159-168, 1994.

692

202

203.

\

205.

206.

207.

208.

209.

210.

2A

212.

213.

214.

215.

216.

2A fis

218.

219:

220.
221%

222.

223.

224.

References

. D. Dorninger and W. Timischl. Geometrical constraints on Bennett’s predic-

tions of chromosome order. Heredity, 58:321—325, 1987.

K. Dowsland. Simulated annealing. In Modern heuristic techniques for combi-

natorial problems, C.R.Reeves ed., pages 20-69. McGraw-Hill Book Company,

1995.
D.-Z. Du, F. Cao, and D.F. Hsu. De Bruijn digraphs, and Kautz digraphs,

and their generalizations. In Combinatorial network theory, Du, D.-Z. and

Hsu, D.F. (eds), pages 65-105. Kluwer Acad. Publ., Dordrecht, 1996.

D.-Z. Du and D.F. Hsu. On Hamiltonian consecutive-d digraphs. Banach

Center Publ.; 25:47-55, 1989.
D.-Z. Du, D.F. Hsu, and F.K. Hwang. Hamiltonian property of d-consecutive
digraphs. Math. and Comput. Modeling, 17:61-63, 1993.
D.Z. Du, Y.-D. Lyuu, and D.F. Hsu. Line digraph iterations and the spread
concept—with application to graph theory, fault tolerance, and routing. In
Graph-theoretic concepts in computer science (Fischbachau, 1991), pages 169—

179. Springer, Berlin, 1992.
I.S. Duff, A.M. Erisman, and. J.K. Reid. Direct methods for sparse matrices.
Oxford University Press, 1997.
R.J. Duffin. Topology of series-parallel networks. J. Mathematical Analysis
and Applications, 10:303-318, 1965.
J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449-467, 1965.
J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards Sect. B,
71B:233-240, 1967.
J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Com-
binatorial Structures. and their Applications (Prot. Calgary Internat. Conf.,
Calgary, Alta., 1969), pages 69-87. Gordon and Breach, New York, 1970.
J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127—
136, 1971.
J. Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms
(B. Rustin, ed.) , pages 91-96. Academic Press, New York, 1973.
J. Edmonds and R. Giles. A min-max relation for submodular functions on
graphs. In Studies in integer programming (Proc. Workshop, Bonn, 1975),
pages 185-204. Ann. of Discrete Math., Vol. 1. North-Holland, Amsterdam,
1977.
J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM, 19:248-264, 1972.
A. Ehrenfeucht, H.N. Gabow, R.M. McConnell, and S.J. Sullivan. An
O(n) divide-and-conquer algorithm for the prime tree decomposition of two-
structures and modular decomposition of graphs. J. Algorithms, 16(2):283-294,
1994.
S. Enni. A note on mixed graphs and directed splitting off. J. Graph Theory,
27(4):213-221, 1998.
S. Enni. A 1-ST-edge-connectivity augmentation algorithm. Mathematical
Programming Ser. B, 84:529-535, 1999.

P. Erdés. Graph theory and probability. Canad. J. Math., 11:34-38, 1959.
P. Erdés. Some old and new problems in various branches of combinatorics.
Congressus Numerantium, 23:19-37, 1979.

P. Erdés, A.L. Rubin, and R.W. Irwing. Choosability in graphs. Congressus
Numerantium, 26:122-157, 1980.

P. Erdés and W.T. Trotter. When the Cartesian product of directed cycles is
Hamiltonian. J. Graph Theory, 2:137-142, 1978.

A.H. Esfahanian and S.L. Hakimi. On computing the connectivities of graphs
and digraphs. Networks, 14(2):355-366, 1984.

225.

226.

D2 ie

228.

229.

230.

231.

232%

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

References 693

L. Euler. Solutio problematis ad geometriam situs pertinentis. Comment.
Academiae Sci. Petropolitanae, 8:128-140, 1736.

L. Euler. Solutio problematis as geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128-140, 1736.

G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feed-
back sets and multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998.
S. Even. An algorithm for determining whether the connectivity of a graph is
at least k. SIAM J. Computing, 4(3):393-396, 1975.

S. Even. Graph algorithms. Computer Science Press Inc., Woodland Hills,
Calif., 1979. Computer Software Engineering Series.
S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-
commodity flow problems. SIAM J. Computing, 5(4):691-703, 1976.

S. Even and O. Kariv. An O(n?*)-algorithm for maximum matchings in
general graphs. In Proceedings of the 16th Annual Symp. Foundations of CS,
Berkley, 1975, pages 100-112. IEEE Comput. Soc. Press, Los Alamitos, CA,
1975.

S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM
J. Computing, 4(4):507-518, 1975.

J. Feldman and M. Ruhl. The directed Steiner network problem is tractable for
a constant number of terminals. In Proceedings of the 40th annual Symposium
on Foundations of Computer Science, pages 299-308. IEEE Computer Society
Press, 1999.

W. Feller. An introduction to probability theory and its applications. Vol. I.
John Wiley & Sons Inc., New York, third edition, 1968.
J.F. Fink and L. Lesniak-Foster. Graphs for which every unilateral orientation
is traceable. ARS Combinatoria, 9:113-118, 1980.

M.A. Fiol, J.L.A. Yebra, and I. Alegre. Line digraph iteration and the (d, k)
digraph problem. [EEE Transections on Computers, C-33:400—403, 1984.

D.C. Fisher. Squaring a tournament: a proof of Dean’s conjecture. J. Graph
Theory, 23(1):43-48, 1996.
M.J. Fisher and A.R. Meyer. Boolean matrix multiplication and transitive clo-
sure. In Proceedings of the 12th Ann. ACM Symp. on Switching and Automata
Theory, pages 129-131. ACM Press, 1971.

H. Fleischner. Eine gemeinsame Basis fiir die Theorie der Eulerschen Graphen
und den Satz von Petersen. Monatsh. Math., 81(4):267-278, 1976.
H. Fleischner. Eulerian graphs and related topics. Part 1. Vol. 1. North-
Holland Publishing Co., Amsterdam, 1990.
H. Fleischner. Eulerian graphs and related topics. Part 1. Vol. 2. North-
Holland Publishing Co., Amsterdam, 1991.

H. Fleischner, G. Sabidussi, and E. Wegner. Transforming eulerian trails.
Discrete Math., 109:103-116, 1992.
R.W. Floyd. Algorithm 97, shortest path. Comm. ACM, 5:345, 1962.
R. Forcade. Parity of paths and circuits in tournaments. Discrete Math.,
6:115-118, 1973.

Jr. Ford, L.R. Network flow theory. Technical Report P-923, The Rand Corp.,

1956.

Jr. Ford, L.R. and D.R. Fulkerson. Flows in networks. Princeton University

Press, Princeton, N.J., 1962.

S. Fortune, J.E. Hopcroft, and J. Wyllie. The directed subgraph homeomor-

phism problem. Theoretical Computer Science, 10:111-121, 1980.

P. Fraigniaud and E. Lazard. Methods and problems of communication in

usual networks. Discrete Applied Math., 53:79-133, 1994.

694

249

250.

251.

252.

253.

204.

250.

256.

207.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

References

_ P. Fraisse and C. Thomassen. Hamiltonian dicycles avoiding prescribed arcs

in tournaments. Graphs Combin., 3(3):239-250, 1987.

A. Frank. Kernel systems of directed graphs. Acta Sci. Math. (Szeged), 41(1-

2):63-76, 1979.

A. Frank. On the orientation of graphs. J. Combin. Theory Ser. B, 28(3):251—

261, 1980.

A. Frank. On disjoint trees and arborescences. In Algebraic methods in graph

theory, Vol. I, II (Szeged, 1978), pages 159-169. North-Holland, Amsterdam,

1981.

A. Frank. A note on k-strongly connected orientations of an undirected graph.

Discrete Math., 39(1):103-104, 1982.
A. Frank. An algorithm for submodular functions on graphs. In Bonn Work-

shop on Combinatorial Optimization (Bonn, 1980), volume 16 of Ann. Discrete

Math., pages 97-120. North-Holland, Amsterdam, 1982.

A. Frank. Finding feasible vectors of Edmonds-Giles polyhedra. J. Combin.
Theory Ser. B, 36(3):221-239, 1984. —
A. Frank. Submodular flows. In Progress in combinatorial optimization (Wa-
terloo, Ont., 1982), pages 147-165. Academic Press, Toronto, Ont., 1984.

A. Frank. On connectivity properties of Eulerian digraphs. In Graph theory in
memory of G. A. Dirac (Sandbjerg, 1985), volume 41 of Ann. Discrete Math.,
pages 179-194. North-Holland, Amsterdam, 1989.

A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
J. Discrete Math., 5(1):25-53, 1992.

A. Frank. Applications of submodular functions. In Surveys in combinatorics,
1993 (Keele), volume 187 of London Math. Soc. Lecture Note Ser., pages 85-
136. Cambridge Univ. Press, Cambridge, 1993.

A. Frank. Submodular functions in graph theory. Discrete Math., 111(1-
3):231-243, 1993. Graph theory and combinatorics (Marseille-Luminy, 1990).

A. Frank. Connectivity augmentation problems in network design. In Mathe-
matical Programming: State of the art (J. R. Birge, K. G. Murty eds.), pages
34-63. The University of Michigan, 1994.

A. Frank. Connectivity and network flows. In Handbook of combinatorics,
Vol. 1, 2, pages 111-177. Elsevier, Amsterdam, 1995.

A. Frank. Orientations of graphs and submodular flows. Congr. Numer.,
113:111-142, 1996. Festschrift for C. St. J. A. Nash-Williams.

A. Frank. Applications of relaxed submodularity. Documenta Mathematica,
Extra Vol. III:343-354, 1998.

A. Frank. Increasing the rooted-connectivity of a digraph by one. Mathemat-
ical Programming, Series B, 84:565-576, 1999.

A. Frank. Finding minimum edge-coverings of pairs of sets. manuscript 1998.

A. Frank and A. Gyarfas. Directed graphs and computer programs. In
Problémes Combinatoires et Théorie des Graphes, Colloque Internationaux
C.N.R.S., 260, pages 157-158, 1976.

A. Frank and A. Gyarfds. How to orient the edges of a graph? In Combina-
torics (Proc. Fifth Hungarian Collog., Keszthely, 1976), Vol. I, volume 18 of
Colloq. Math. Soc. Jdnos Bolyai, pages 353-364. North-Holland, Amsterdam,
1978.

A. Frank, T. Ibaraki, and H. Nagamochi. On sparse subgraphs preserving
connectivity properties. J. Graph Theory, 17(3):275-281, 1993.

A. Frank, T. Ibaraki, and H. Nagamochi. Two arc-disjoint paths in Eulerian
digraphs. SIAM J. Discrete Math., 11(4):557—589 (electronic), 1998.

271

Bites

273.

274.

275.

276.

PT fe

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

References 695

. A. Frank and T. Jordan. How to make a strongly connected digraph two-
connected. In Integer programming and combinatorial optimization (Copen-
hagen, 1995), volume 920 of Lecture Notes in Comput. Sci., pages 414-425.
Springer, Berlin, 1995.

A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. J. Combin.
Theory Ser. B, 65(1):73-110, 1995.
A. Frank and T. Jordan. Directed vertex-connectivity augmentation. Mathe-
matical Programming, Series B, 84:537-553, 1999.

A. Frank and E. Tardos. Generalized polymatroids and submodular flows.
Mathematical Programming Series B, 42(3 (Ser. B)):489-563, 1988. Submod-
ular optimization.

A. Frank and E. Tardos. An application of submodular flows. Linear Algebra
Appl., 114/115:329-348, 1989.
P. Frankl. What must be contained in every oriented k-uniform hypergraph.
Discrete Math., 62(3):311-313, 1986.
M.L. Fredman, J. Komlds, and E. Szemerédi. Stroring a sparse table with
O(1) worst case access time. Journal of the ACM, 31:538-544, 1984.
M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. Assoc. Comput. Mach., 34(3):596-615,
1987.
S. Friedland. Every 7-regular digraph contains an even cycle. J. Combin.
Theory Ser. B, 46(2):249-252, 1989.
S. Fujishige. Submodular functions and optimization. North-Holland Publish-
ing Co., Amsterdam, 1991.
S. Fujishige, H. Rock, and U. Zimmermann. A strongly polynomial algorithm
for minimum cost submodular flow problems. Math. Oper. Res., 14(1):60-69,
1989.
D.R. Fulkerson. Networks, frames and blocking systems. In Mathematics of
the decision sciences, part I (eds: G.B.Danzig and A.F.Veinott), pages 303-
334. Amer. Math. Soc., Providence, R.I., 1968.
D.R. Fulkerson. Packing rooted directed cuts in a weighted directed graph.
Math. Programming, 6:1—-13, 1974.
M. Funke and G. Reinelt. A polyhedral approach to the feedback vertex set
problem. In Integer programming and combinatorial optimization (Vancouver,
BC, 1996), pages 445-459. Springer, Berlin, 1996.

Z. Fiiredi, P. Horak, C.M. Pareek, and X. Zhu. Minimal oriented graphs of
diameter 2. Graphs and Combinatorics, 14:345-350, 1998.
M.E. Furman. Application of a method of fast multiplication of matrices in
the problem of finding the transitive closure of a graph. Sov. Math. Dokl.,
11:1252, 1970.
H.N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. System Sct., 50(2):259-273, 1995. 23rd Symposium
on the Theory of Computing (New Orleans, LA, 1991).
H.N. Gabow and T. Jordan. Bipartition constrained edge-splitting in directed
graphs. Discrete Applied Math., to appear.
D. Gale. A theorem on flows in networks. Pacific Journal of Mathematics,

7:1073-1082, 1957.
D. Gale and L.S. Shapley. College admissions and the stability of marriage.
Amer. Math. Monthly, 69:9-15, 1962.

H. Galeana-Sdnchez. A counterexample to a conjecture of Meyniel on kernel-

perfect graphs. Discrete Math., 41:105-107, 1982.

H. Galeana-Sdnchez. A characterization of normal fraternally orientable per-

fect graphs. Discrete Math., 169(1-3):221-225, 1997.

696

293.

294.

295.

296.

2976

298.

299:

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

S74,

313. °

314.

315.

316.

References

H. Galeana-Sdnchez and X. Li. Semikernels and (k,/)-kernels in digraphs.

SIAM J. Discrete Math., 11(2):340-346, 1998.

H. Galeana-Sdnchez and V. Neuman-Lara. On kernels and semikernels of

digraphs. Discrete Math., 48:67—76, 1984.

Z. Galil. Finding the vertex connectivity of graphs. SIAM J. Computing,

9(1):197-199, 1980.
T. Gallai. Problem 15, in: M. Fiedler ed., Theory of Graphs and its Applica-

tions, page 161. Czech. Akad. Sci. Prague, 1964.
T. Gallai. On directed paths and circuits. In Theory of Graphs (Proc. Colloq.,
Tihany, 1966), pages 115-118. Academic Press, New York, 1968.

T. Gallai and A.N. Milgram. Verallgemeinerung eines graphentheoretischen
Satzes von Rédei. Acta Sci. Math. Szeged, 21:181-186, 1960.

A. Galluccio and M. Loebl. Cycles of prescribed modularity in planar digraphs.
J. Algorithms, 21(1):51-70, 1996.
A. Galluccio and M. Loebl. Even directed graphs in H-free digraphs. J.

Algorithms, 27, 1996.

A. Galluccio and M. Loebl. (p,q)-odd digraphs. J. Graph Theory, 23(2):175-
184, 1996.
F. Galvin. The list ¢hromatic index of a bipartite multigraph. Journal of
Combin. Theory. Series B, 63:153-158, 1995.

M.R. Garey and D.S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoret. Comput. Sct., 1(3):237-267, 1976.
M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar hamiltonian circuit
problem is NP-complete. SIAM J. Computing, 5:704-714, 1976.

F. Gavril. Some NP-complete problems on graphs. In Proc. 11th Conf. on
Information Sciences and Systems, pages 91-95, John Hopkins University, Bal-
timore, MD, 1977.

F. Gavril. Intersection graphs of proper subtrees of unicyclic graphs. J. Graph
Theory, 18(6):615-627, 1994.

F. Gavril, V. Toledano Laredo, and D. de Werra. Chordless paths, odd holes,
and kernels in graphs without m-obstructions. J. Algorithms, 17(2):207-221,
1994.

F. Gavril and J. Urrutia. Intersection graphs of concatenable subtrees of
graphs. Discrete Appl. Math., 52(2):195-209, 1994.

A.M.H. Gerards. Homomorphisms of graphs into odd cycles. J. Graph Theory,
12(1):73-83, 1988.

A.M.H. Gerards. Graphs and polyhedra. Binary spaces and cutting planes.
Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica,
Amsterdam, 1990.

A.M.H. Gerards. An orientation theorem for graphs. J. Combin. Theory Ser.
B, 62(2):199-212, 1994.

A.M.H. Gerards and F.B. Shepherd. Strong orientations without even directed
circuits. Discrete Math., 188(1-3):111-125, 1998.

A. Ghouila-Houri. Diametre maximal d’un graphe fortement connexe. C.R.
Acad. Sci. Paris, 250:254-256, 1960.

A. Ghouila-Houri. Une condition suffisante d’existence d’un circuit hamil-
tonien. C.R. Acad. Sci. Paris, 25:495-497, 1960.
A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut
orienter les arétes de maniére 4 obtenir le graphe d’une relation d’ordre. C. R.
Acad. Sci. Paris, 254:1370-1371, 1962.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

References 697

P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, and R. Tarjan. Transitive
compaction in parallel via branchings. J. Algorithms, 12(1):110-125, 1991.
F. Glover. Ejection chains, reference structures, and alternating path algo-
Ae for traveling salesman problem. University of Colorado-Boulder, April

F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuristics and
domination analysis for the asymmetric TSP. European J. Oper. Res., to
appear.
F. Glover and A.P. Punnen. The travelling salesman problem: new solvable
cases and linkages with the development of approximation algorithms. J. Oper.
Res. Soc., 48:502—510, 1997.

W.D. Goddard, G. Kubicki, O-R. Oellermann, and S.L. Tian. On multipartite
tournaments. J. Combin. Theory Ser. B, 52(2):284-300, 1991.

W.D. Goddard and O.R. Oellermann. On the cycle structure of multipartite
tournaments. In Graph Theory Combin. Appl. 1, pages 525-533. Wiley, New
York, 1991.
M.X. Goemans and Williamson D. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18:37—-59, 1998.

A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow prob-
lem. In Proceedings of the 18th ACM Symposium on the Theory of Computing,
pages 136-146. ACM Press, 1986.

A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow prob-
lem. J. Assoc. Comput. Mach., 35(4):921-940, 1988.
A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circulations by can-
celing negative cycles. J. Assoc. Comput. Mach., 36(4):873-886, 1989.
M.K. Goldberg. Some applications of the operation of contraction to strongly
connected graphs. Uspehi Mat. Nauk, 20(5 (125)):203-205, 1965.
M.K. Goldberg. The diameter of a strongly connected graph. Dokl. Akad.
Nauk SSSR, 170:767-769, 1966.
D.L. Goldsmith and A.T. White. On graphs with equal edge-connectivity and
minimum degree. Discrete Math., 23(1):31-36, 1978.
M.C. Golumbic. The complexity of comparability graph recognition and col-

oring. Computing, 18(3):199-208, 1977.
M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press

[Harcourt Brace Jovanovich Publishers], New York, 1980. With a foreword by

Claude Berge, Computer Science and Applied Mathematics.

M. Gondran and M. Minoux. Graphs and algorithms. John Wiley & Sons

Ltd., Chichester, 1984. Translated from the French by Steven Vajda, A Wiley-

Interscience Publication.

A. Goralcikova and V. Koubek. A reduct-and-closure algorithm for graphs.

In Proceedings of the 8th Symp. on Math. Foundations of Computer Science,

volume 74 of Lecture Notes in Computer Science, pages 301-307. Springer-

Verlag, Berlin, 1979. ;

E.Y. Grinberg. Examples of non-Adém multigraphs. Latu. Mat. Ezhegodnik,

31:128-138, 253, 1988.

J.W. Grossman and R. Haggkvist. Alternating cycles in edge-partitioned

graphs. J. Combin. Theory Ser. B, 34:77-81, 1983.

M. Grétschel and F. Harary. The graphs for which all strong orientations are

hamiltonian. J. Graph Theory, 3:221-224, 1979.

M. Grdtschel, M. Jiinger, and G. Reinelt. A cutting plane algorithm for the

linear ordering problem. Oper. Res., 32(6):1195-1220, 1984. ‘

M. Grétschel, L. Lovdsz, and A. Schrijver. The ellipsoid method and its con-

sequences in combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

698

339.

340.

341.

342.

343.

344,

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

References

M. Grétschel, L. Lovdsz, and A. Schrijver. Geometric algorithms and combi-
natorial optimization. Springer-Verlag, Berlin, 1988.
B. Griinbaum. Antidirected Hamiltonian paths in tournaments. J. Combin.
Theory Ser. B, 11:249-257, 1971.
Y. Guo. Locally semicomplete digraphs. PhD thesis, RWTH Aachen, Germany,

1995.
Y. Guo. Strongly Hamiltonian-connected locally semicomplete digraphs. J.

Graph Theory, 22(1):65-73, 1996.
Y Guo. Path-connectivity in local tournaments. Discrete Math., 167/168:353-
372, 1997. 15th British Combinatorial Conference (Stirling, 1995).
Y. Guo. Spanning local tournaments in locally semicomplete digraphs. Dis-
crete Appl. Math., 79(1-3):119-125, 1997. 4th Twente Workshop on Graphs
and Combinatorial Optimization (Enschede, 1995).
Y. Guo. Semicomplete Multipartite Digraphs: A Generalization of Tourna-
ments. German Habilitation Thesis, RWTH Aachen, Germany 1998.

Y. Guo and J.H. Kwak. The cycle structure of regular multipartite tourna-

ments. Aachen, submitted.
Y. Guo, A. Pinkernell, and L. Volkmann. On cycles through a given vertex
in multipartite tournaments. Discrete Math., 164(1-3):165-170, 1997. The
Second Krakow Conference on Graph Theory (Zgorzelisko, 1994).
Y. Guo, M. Tewes, L. Volkmann, and A. Yeo. Sufficient conditions for semi-
complete multipartite digraphs to be hamiltonian. Discrete Math., to appear.

Y. Guo and L. Volkmann. Pancyclic locally semicomplete digraphs. Unpub-
lished manuscript. 1992.

Y. Guo and L. Volkmann. Cycles in multipartite tournaments. J. Combin.
Theory Ser. B, 62(2):363-366, 1994.
Y. Guo and L. Volkmann. On complementary cycles in locally semicomplete
digraphs. Discrete Math., 135(1-3):121-127, 1994.
Y. Guo and L. Volkmann. Locally semicomplete digraphs that are comple-
mentary m-pancyclic. J. Graph Theory, 21(2):121-136, 1996.
G. Gutin. Criterion for complete bipartite digraphs to be Hamiltonian. Vestst
Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1984(1):109-110, 1984.
G. Gutin. On an approach to solving the traveling salesman problem. In Pro-
ceedings of the USSR Conference on System Research, pages 184-185. Nauka,
Moscow, 1984. (in Russian).
G. Gutin. Effective characterization of complete bipartite digraphs that have
a Hamiltonian path. Kibernetika (Kiev), 4:124-125, 1985.
G. Gutin. The radii of n-partite tournaments. Mat. Zametki, 40(3):414-417,
430, 1986.
G. Gutin. Finding the largest contour in a complete bipartite digraph. Kiber-
netika, (2):117-118, 1987.

G. Gutin. Characterization of complete n-partite digraphs that have a Hamil-
tonian path. Kibernetika (Kiev), (1):107-108, 136, 1988.
G. Gutin. Characterization of vertex pancyclic partly oriented k-partite tour-
naments. Vestst Acad. Navuk BSSR Ser.Fiz.-Mat., (2):41-46, 1989.
G. Gutin. Determining the ranks of vertices in a complete multipartite graph
of paired comparisons. Automation and Remote Control, (10):139-147, 1989.
G. Gutin. m-sources in complete multipartite digraphs. Vestst Akad. Navuk
BSSR Ser. Fiz.-Mat. Navuk, 5:101-106, 128, 1989.
G. Gutin. Cycles and paths in directed graphs. PhD thesis, School of Mathe-
matics, Tel Aviv University, 1993.
G. Gutin. Finding a longest path in a complete multipartite digraph. SIAM
J. Discrete Math., 6:270-273, 1993.

364

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

319:

380.

381.

382.

383.

384.

385.

386.

References 699

. G. Gutin. On cycles in multipartite tournaments. J. Combin. Theory Ser. B,
58(2):319-321, 1993.
G. Gutin. Polynomial algorithms for finding Hamiltonian paths and cycles
in quasi-transitive digraphs. Australas. J. Combin., 10:231-236, 1994.

G. Gutin. Minimizing and maximizing the diameter in orientations of graphs.
Graphs Combin., 10(3):225-230, 1994.

G. Gutin. Characterizations of vertex pancyclic and pancyclic ordinary com-
plete multipartite digraphs. Discrete Math., 141(1-3):153-162, 1995.

G. Gutin. Cycles and paths in semicomplete multipartite digraphs, theorems,
and algorithms: a survey. J. Graph Theory, 19(4):481-505, 1995.

G. Gutin. Exponential neighbourhood local search for the travelling salesman
problem. Computers and Operations Research, 26:313-320, 1999.

G. Gutin. Connected (g, f)-factors and supereulerian digraphs. ARS Combi-
natoria, 54:311-317, 2000.

G. Gutin, B. Sudakov, and A. Yeo. Note on alternating directed cycles .
Discrete Math., 191:101-107, 1998.

G. Gutin, M. Tewes, and A. Yeo. Longest paths in strong spanning ori-
ented subgraphs of strong semicomplete multipartite digraphs. Discrete Math.,
222:269-274, 2000.

G. Gutin and A. Yeo. Ranking the vertices of a complete multipartite paired
comparison digraph. Discrete Appl. Math., 69(1-2):75-82, 1996.

G. Gutin and A. Yeo. Hamiltonian paths and cycles in hypertournaments. J.
Graph Theory, 25(4):277-286, 1997.
G. Gutin and A. Yeo. Small diameter neighbourhood graphs for the traveling
salesman problem: at most four moves from tour to tour. Computers and
Operations Research, 26:321—327, 1999.

G. Gutin and A. Yeo. Kings in semicomplete multipartite digraphs. J. Graph
Theory, 33:177-183, 2000.

G. Gutin and A. Yeo. Note on the path covering number of a semicomplete
multipartite digraph. J. Combin. Math. and Combin. Computing., 32:231-237,

2000.
G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter and
the one-way street and gossip problems. Technical Report 4, Brunel University,

2000.
G. Gutin and A. Yeo. Quasi-hamiltonicity: a series of necessary conditions for
a digraph to be hamiltonian. J. Combin. Theory Ser. B, 78:232—242, 2000.

G. Gutin and A. Yeo. Remarks on hamiltonian digraphs. submitted:4 pp.,

2000.
G. Gutin and A. Yeo. Polynomial approximation algorithms for the TSP
and the QAP with factorial domination number. Discrete Applied Math., To

appear.
G. Gutin and A. Yeo. Solution of a conjecture of Volkmann on the number
of vertices in longest paths and cycles of strong semicomplete multipartite
digraphs. Graphs and Combinatorics, to appear.

W. Gutjahr. Graph Colourings. PhD thesis, Freie Universitat Berlin, Berlin,

1991.

W. Gutjahr, E. Welzl, and G. Woeginger. Polynomial graph-colorings. Dis-

crete Appl. Math., 35(1):29-45, 1992.

M. Habib, M. Morvan, and J.-X. Rampon. On the calculation of transitive

reduction-closure of orders. Discrete Math., 111:289-303, 1993.

R. Haggkvist. On F-Hamiltonian graphs. In Graph Theory and Related Topics,

pages 219-231. Academic Press, New York, 1979.

700

387.

388.

389.

390.

391.

392.

393.
394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.
407.

408.

409.

410.

411.

412.

References

R. Haggkvist. Hamilton cycles in oriented graphs. Combin. Probab. Comput.,
2(1):25-32, 1993.
R. Haggkvist, P. Hell, D.J. Miller, and V. Neumann Lara. On multiplicative
graphs and the product conjecture. Combinatorica, 8(1):63-74, 1988.
R. Haggkvist and Y. Manoussakis. Cycles and paths in bipartite tournaments
with spanning configurations. Combinatorica, 9(1):33-38, 1989.
R. Haggkvist and A. Thomason. Trees in tournaments. Combinatorica,
11(2):123-130, 1991. .
R. Haggkvist and C. Thomassen. On pancyclic digraphs. J. Combin. Theory

Ser. B, 20(1):20-40, 1976.
A. Hajnal, E.C. Milner, and E. Szemerédi. A cure for the telephone disease.
Canad. Math. Bull., 15:447-450, 1972.
P. Hall. On representation of subsets. J. London Math. Soc., 10:26-30, 1935.
Y.O. Hamidoune. Contribution a l’ étude de la connectivité d’un graphe. PhD
thesis, 1980.

Y.O. Hamidoune. An application of connectivity theory in graphs to factor-
izations of elements in finite groups. Hurop. J. Combin., 2:349-355, 1981.

Y.O. Hamidoune. A note on minimal directed graphs with given girth. J.
Combin. Theory Ser. B, 43:343-348, 1987.
S. Hansen. Heuristic and exact methods for solving the feedback arc set
problem (Masters Thesis University of Southern Denmark, Odense), 1999.

J. Hao and J.B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. J. Algorithms, 17(3):424-446, 1994. Third Annual ACM-SIAM
Symposium on Discrete Algorithms (Orlando, FL, 1992).
F. Harary. The maximum connectivity of a graph. Proc. Nat. Acad. Sct.
U.S.A., 48:1142-1146, 1962.
F. Harary, J.A. Kabell, and F.R. McMorris. Bipartite intersection graphs.
Comment. Math. Univ. Carolin., 23:739-745, 1982.
F. Harary, J. Krarup, and A. Schwenk. Graphs suppressible to an edge. Cana-
dian Math. Bull., 15:201—204, 1971.

F. Harary and L. Moser. The theory of round robin tournaments. Amer.
Math. Mon., 73:231—-246, 1966.
F. Harary and R.Z. Norman. Some properties of line digraphs. Rend. Circ.
Mat. Palermo, 9(2):161-168, 1960.
F. Harary, R.Z. Norman, and D. Cartwright. Structural Models. John Wiley
and Sons, 1965.

F. Havet. Finding an oriented hamiltonian path in a tournament. submitted,
1999.
F. Havet. Hamiltonian cycles in tournaments. Submitted, 1999.
F. Havet and S. Thomassé. Median orders of tournaments: a tool for the
second neighbourhood problem and Sumner’s conjecture. submitted, 1999.
F. Havet and S. Thomassé. Oriented hamiltonian paths in tournaments: a
proof of Rosenfeld’s conjecture. J. Comb. Theory, Ser B, 78:243-273, 2000.
S.M. Hedetniemi, S.T. Hedetniemi, and A. Liestman. A survey of gossiping
and ‘broadcasting in communication networks. Networks, 18:129-134, 1988.
P. Hell, J. Bang-Jensen, and J. Huang. Local tournaments and proper circular
arc graphs. In Algorithms (Tokyo, 1990), volume 450 of Lecture Notes in
Comput. Sci., pages 101-108. Springer, Berlin, 1990.

P. Hell and J. Huang. Lexicographic orientation and representation algo-
rithms for comparability graphs, proper circular arc graphs, and proper interval
graphs. J. Graph Theory, 20(3):361-374, 1995.
P. Hell and J. NeSetril. On the complexity of H-coloring. J. Combin. Theory
Ser. B, 48(1):92-110, 1990.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

References 701

P. Hell and J. NeSetiil. The core of a graph. Discrete Math., 109(1-3):117-126,
1992. Algebraic graph theory (Leibnitz, 1989).

P. Hell, J. NeSetiil, and X. Zhu. Duality and polynomial testing of tree ho-
momorphisms. Trans. Amer. Math. Soc., 348(4):1281-1297, 1996.

P. Hell and M. Rosenfeld. The complexity of finding generalized paths in
tournaments. J. Algorithms, 4(4):303-309, 1983.

P. Hell, H.S. Zhou, and X.D. Zhu. On homomorphisms to acyclic local tour-
naments. J. Graph Theory, 20(4):467—471, 1995.
P. Hell and X.D. Zhu. Homomorphisms to oriented paths. Discrete Math.,
132(1-3):107-114, 1994.

P. Hell and X.D. Zhu. The existence of homomorphisms to oriented cycles.
SIAM J. Discrete Math., 8(2):208-222, 1995.
R.L. Hemminger and L.W. Beineke. Line graphs and line digraphs. In Selected
Topics in Graph Theory (Beineke and Wilson, eds.), pages 271-305. Academic
Press, London, 1978.

G.R.T. Hendry. Extending cycles in directed graphs. J. Combin. Theory Ser.
B, 46(2):162-172, 1989.

G.R.T. Hendry. Extending cycles in graphs. Discrete Math., 85(1):59-72,
1990.

M.R. Henzinger, S. Rao, and H.N. Gabow. Computing vertex connectivity:
new bounds from old techniques. In 37th Annual Symposium on Foundations
of Computer Science (Burlington, VT, 1996), pages 462-471. IEEE Comput.
Soc. Press, Los Alamitos, CA, 1996.

J.S. Heslop-Harrison and M.D. Bennett. Prediction and analysis of spacial
order in haploid chromosome complements. Proc. Roy. Soc. London, B:211-
223, 1983.

J.S. Heslop-Harrison and M.D. Bennett. The spacial order of chromosomes in
root-tip metaphases of Aegilops umbellulata. Proc. Roy. Soc. London, B:225-
239, 1983.
C. Heuchenne. Sur une certaine correspondance entre graphs. Bull. Soc. Roy.
Sci. Liége, 33:743-753, 1964.
M.-C. Heydemann and D. Sotteau. About some cyclic properties in digraphs.
J. Combin. Theory Ser. B, 38(3):261—-278, 1985.

M.-C. Heydemann, D. Sotteau, and C. Thomassen. Orientations of Hamilto-
nian cycles in digraphs. Ars Combin., 14:3-8, 1982.

M.C. Heydemann. On cycles and paths in digraphs. Discrete Math., 31:217-
219, 1980.
A.J.W. Hilton. Alternating Hamiltonian circuits in edge-coloured bipartite
graphs. Discrete Applied Math., 35:271-273, 1992.

C.T. Hoang and B. Reed. A note on short cycles in digraphs. Discrete Math.,

66(1-2):103-107, 1987.
A.J. Hoffmann. Some recent applications of the theory of linear inequalities to
extremal combinatorial analysis. In Combinatorial Analysis, edited by R. Bell-
man and M. Hall, pages 113-128. American Mathematical Society, Providence,

RI, 1960.
J.E. Hopcroft and R.E. Tarjan. Efficient planarity testing. Journal of the
Association for Computing Machinery, 21:549-568, 1974.

J. Hromkovié, R. Klasing, B. Monien, and R. Peine. Dissemination of informa-
tion in interconnection networks (broadcasting & gossiping). In Combinatorial
network theory, pages 125-212. Kluwer Acad. Publ., Dordrecht, 1996.

H.T. Hsu. An algorithm for finding a minimal equivalent graph of a digraph.
J. Assoc. Comput. Mach., 22:11-16, 1975.

702

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449,

450.

451.

452.

453.

454,

455.

456.

457.

458.

459.

460.

References

J. Huang. Tournament-like oriented graphs . PhD thesis, School of Computing

Science, Simon Fraser University, Burnaby B.C. Canada, 1992.

J. Huang. On the structure of local tournaments. J. Combin. Theory Ser. B,

63(2):200-221, 1995.
J. Huang. A note on spanning local tournaments in locally semicomplete

digraphs. Discrete Applied Math., 89:277-279, 1998.
J. Huang. Which digraphs are round? Au etnereaan J. Combinatorics, 19:203-
208, 1999.
ne K. Hwang. The Hamiltonian property of linear Ba ional Oper. Res. Letters,

6:125-127, 1987.
T. Ibaraki and S. Poljak. Weak three-linking in Eulerian digraphs. SIAM J.
Discrete Math., 4(1):84-98, 1991.
M. Imase and M. Itoh. Design to monimize a diameter on Building block
networks. IEEE Trans. on Computers, C-30:439-443, 1981.
M. Imase and M. Itoh. Design for directed graphs with minimum diameter.
IEEE Trans. on Computers, C-32:782—784, 1983.
M. Imase, I. Soneoka, and K. Okada. Connectivity of regular directed graphs
with small diameter. [IEEE Trans. on Computers, C-34:267-273, 1985.
M. Imase, I. Soneoka, and K. Okada. A fault tolerant processor interconnection
network. Systems and Computers in Japan, 17:21-30, 1986.
M. Imori, M. Matsumoto, and H. Yamada. The line digraph of a regular and
pancircular digraph is also regular and pan circular. Graphs and Combina-
torics, 4:235-239, 1988.

G. Isaak. Tournaments as feedback arc sets. Electronic J. Combinatorics,
2:19pp, 1995. ’

S. Iwata, L. Fleischer, and S. Fujishige. A strongly polynomial time algorithm
for minimizing submodular functions. manuscript 1999.

Carlier J. and P. Villon. A new heuristic for the travelling salesman problem.
RAIRO, Recherche Operationelle, 24:245-253, 1990.

B. Jackson. Long paths and cycles in oriented graphs. J. Graph Theory,
5(2):145-157, 1981.
B. Jackson. A Chvatal-Erdés condition for Hamilton cycles in digraphs. J.
Combin. Theory Ser. B, 43(3):245-252, 1987.
B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orienta-
tion in graphs and digraphs. J. Graph Theory, 12(3):429-436, 1988.
B. Jackson and O. Ordaz. A Chvatal- Erdés condition for (1,1)-factors in
digraphs. Discrete Math., 57(1-2):199-201, 1985.
B. Jackson and O. Ordaz. Chvatal-Erdés conditions for paths and cycles in
graphs and digraphs. A survey. Discrete Math., 84(3):241-254, 1990.
H. Jacob and H. Meyniel. About quasi-kernels in a digraph. Discrete Math.,
154(1-3):279-280, 1996.
F. Jaeger. On nowhere-zero flows in multigraphs. Congressus Numerantium,
15:373-378, 1976.

F. Jaeger. On five-edge-colorings of cubic graphs and nowhere-zero flow prob-
lems. Ars Combin., 20(B):229-244, 1985.
F. Jaeger. Nowhere -zero flow Probleme In Selected topics in graph theory, 3
pages 71-95. Academic Press, San Diego, CA, 1988.
J. Janssen. The Dinitz erebleut solved for rectangles. Bull. Amer. Math. Soc.,
29:243-249, 1993.
T.R. Jensen and B. Toft. Graph coloring problems. John Wiley & Sons, Inc.,
New York, 1995. A Wiley-Interscience Publication.
W.S. Jewell. Optimal flow through networks. Technical Report 8, OR center,
MIT, Cambridge, Mass., 1958.

t}

461

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

477.

478.

479.

480.

481.

482.

References 703

. J. Jirasek. On a certain class of multidigraphs, for which reversal of no arc de-
creases the number of their cycles. Comment. Math. Univ. Carolinae, 28:185—
189, 1987.

J. Jirések. Some remarks on Addm’s conjecture for simple directed graphs.
Discrete Math., 108:327-332, 1992.

D.B. Johnson. Efficient algorithms for shortest paths in sparse networks.
Journal of the Association for Computing Machinery, 24:1-13, 1977.
D.S. Johnson, C.R. Aragon, L. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part 1, Graph partitioning.
Operations Research, 37:865-892, 1989.
D.S. Johnson, C.R. Aragon, L. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part 2, Graph coloring and
number partitioning. Operations Research, 39:378—406, 1991.

D.S. Johnson and L.A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215-310. John Wiley &Sons, New
York, 1997.
T. Jordan. Increasing the vertex-connectivity in directed graphs. In
Algorithms—ESA ’93 (Bad Honnef, 1993), volume 726 of Lecture Notes in
Comput. Sci., pages 236-247. Springer, Berlin, 1993.

T. Jordan. Connectivity augmentation problems in Graphs. PhD thesis, De-
partment of Computer Science, Edtvés University, Budapest, 1994.
T. Jordan. On the optimal vertex-connectivity augmentation. J. Combin.
Theory Ser. B, 63:8-20, 1995.

H.A. Jung. Eine Verallgemeinerung des n-fachen zusammenhangs fir
Graphen. Math. Ann., 187:95-103, 1970.
M. Kano. Ranking the vertices of an r-partite paired comparison digraph.
Discrete Appl. Math., 17(3):245-253, 1987.
M. Kano and A. Sakamoto. Ranking the vertices of a weighted digraph using
the length of forward arcs. Networks, 13(1):143-151, 1983.
M. Kano and A. Sakamoto. Ranking the vertices of a paired comparison
digraph. SIAM J. Algebraic Discrete Methods, 6(1):79-92, 1985.
R.M. Karp. Reducibility among combinatorial problems. In Complexity of
computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), pages 85-103. Plenum, New York, 1972.

A.V. Karzanov. The problem of finding the maximal flow in a network by the
method of preflows. Dokl. Akad. Nauk SSSR, 215:49-52, 1974.

J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, New
York, 1976.
A. Kemnitz and B. Greger. A forbidden subdigraph condition implying an
oriented graph to be Hamiltonian. Congr. Numer., 130:127-131, 1998.
S. Khuller, B. Raghavachari, and N. Young. Approximating the minimum

equivalent digraph. SIAM J. Computing, 24(4):859-872, 1995.
S. Khuller, B. Raghavachari, and N. Young. On strongly connected digraphs
with bounded cycle length. Discrete Appl. Math., 69(3):281-289, 1996.
M. Klein. A primal method for minimum cost flows with applications to the
assignment and transportation problems. Management Science, 14:205-220,
1967.
D.E. Knuth. The art of computer programming. Vol. 1: Fundamental algo-
rithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont, 1968. Second printing.
W. Kocay and D. Stone. An algorithm for balanced flows. J. Combin. Math.
Combin. Comput., 19:3-31, 1995.

704

483.

484.

485.

486.

487.

488.

489.

490.

491.

492.

493.

494.

495.

496.

497.

498.

499.

500.

501.

502.

503.

504.

505.

506.

507.

References

K.-M. Koh. Even circuits in directed graphs and Lovasz’s conjecture. Bull.

Malaysian Math. Soc., 7(3):47-52, 1976.

K.M. Koh and B.P. Tan. The diameters of a graph and its orientations. Tech-

nical report, Department of Mathematics, National University of Singapore,

1992.
K.M. Koh and B.P. Tan. Kings in multipartite tournaments. Discrete Math.,

147:171-183, 1995.
K.M. Koh and B.P. Tan. Number of 4-kings in bipartite tournaments with no
3-kings. Discrete Math., 154(1-3):281-287, 1996.
K.M. Koh and B.P. Tan. The diameter of an orientation of a complete mul-

tipartite graph. Discrete Math., 149(1-3):131-139, 1996.
K.M. Koh and B.P. Tan. The minimum diameter of orientations of complete
multipartite graphs. Graphs Combin., 12(4):333-339, 1996.
K.M. Koh and B.P. Tan. The number of kings in a multipartite tournament.
Discrete Math., 167/168:411—418, 1997.
K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of

even cycles and paths. Networks, 30(1):1-7, 1997.
K.M. Koh and E.G. Tay. Optimal orientations of products of paths and cycles.
Discrete Appl. Math., 78(1-3):163-174, 1997.
K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
graphs (I). Discrete Math., 190:115-136, 1998.
K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
trees. Graphs and Combinatorics, to appear, 1999.
K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products with
a bipartite graph. Discrete Applied Math., 98:103~120, 1999.
K.M. Koh and E.G. Tay. On optimal orientations of Cartesian products of
graphs (II): complete graphs and even cycles. Discrete Math., 211:75-102,
2000.
K.M. Koh and E.G. Tay. On optimal orientations of G vertex-multiplications.
Discrete Math., 219:153-171, 2000.

D. Konig. Uber Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre. Math. Ann., 77:454—465, 1916.

D. Konig. Graphs and matrices (in Hungarian). Mat. Fiz. Lapok, 38:116-119,
1931.
D. Konig. Theorie der endlichen und unendlichen Graphen. Akademische
Verlagsgesellschaft, 1936.

J-C. Konig, D.W. Krumme, and E. Lazard. Diameter preserving orientation
of the torus. Networks, 32:1—-11, 1998.

A. Kotzig. On the theory of finite graphs with a linear factor II. Math. Fyz.

Cazopis, 9:73-91, 1959.
A. Kotzig. Moves without forbidden transitions in a graph. Math. Fyz.

Cazopis, 18:76-80, 1968.

A. Kotzig. The decomposition of a directed graph into quadratic factors
consisting of cycles. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ.,
22:27-29, 1969.
D.W. Krumme, G. Cybenko, and K.N. Venkataraman. Gossiping in minimal
time. SIAM J. Computing, 21(1):111-139, 1992.
H.W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83-97, 1955.
A. Kunzmann and Wunderlich H.J. An analytical approach to the partial scan
problem. J. Electronic Testing: Theory and Applications, 1:163-174, 1990.
C. Kuratowski. Sur le probléme des courbes gauches en topologie. Fund.
Math., 15:271-283, 1930.

508.

509.

510.

o1t.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

527.

528.

529.

530.

531.

References 705

H.G. Landau. On dominance relations and the structure of animal societies
ne The condition for a score structure. Bull. Math. Biophys., 15:143-148,
1953.
E.L. Lawler. Combinatorial Optimization: Networks and Mathroids. Holt,
Rinehart and Winston, New York, 1976.
E.L. Lawler. Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Ann. Discrete Math. 2:75-90, 1978. Algo-
rithmic aspects of combinatorics (Conf., Vancouver Island, B.C., 1976).
E.L. Lawler, J.K. Lenstra, A-H.G. Rinooykan, and D.B. Shmoys, editors. Trav-
elling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley & Sons, New York, 1985.
C.E. Leiserson and J.B Saxe. Retiming synchronous circuitry. Algoritmica,
6:5-35, 1991.
L.A. Levin. Universal sorting problems. Problems of Information Transmis-
ston, 9:265-266, 1973.
M. Lewin. On maximal circuits in directed graphs. J. Combin. Theory, Ser.
B, 18:175-179, 1975.
N. Linial, L. Lovdsz, and A. Wigderson. Rubber bands, convex embeddings
and graph connectivity. Combinatorica, 8(1):91-102, 1988.
C. Little, K. Teo, and H. Wang. On a conjecture on directed cycles in a
directed bipartite graph. Graphs Combin., 13(3):267-273, 1997.
J. Liu and H.S. Zhou. Graphs and digraphs with given girth and connectivity.
Discrete Math., 132(1-3):387-390, 1994.
X. Liu and D.B. West. Line digraphs and coreflexive vertex sets. Discrete
Math., 188(1-3):269-277, 1998.

L. Lovasz. Connectivity in digraphs. J. Combin. Theory Ser. B, 15:174-177,
1973.

L. Lovdsz. Coverings and coloring of hypergraphs. volume 8, pages 3-12,
Winnipeg, Man., 1973. Utilitas Math.

L. Lovasz. On two min-max theorems in graph theory. J. Combin. Theory
Ser. B, 21:26-30, 1976.
L. Lovasz. Combinatorial problems and exercises. North-Holland Publishing
Co., Amsterdam, 1979.
L. Lovasz. Connectivity algorithms using rubber bands. In Foundations of
software technology and theoretical computer science (New Delhi, 1986), pages
394-411. Springer, Berlin, 1986.

L. Lovasz. Combinatorial problems and exercises. North-Holland Publishing
Co., Amsterdam, second edition, 1993.

L. Lovasz and M.D. Plummer. Matching theory. North-Holland Publishing
Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.

C.L. Lucchesi. A minima equality for directed graphs. PhD thesis, University
of Waterloo, Ontario, Canada, 1976.

C.L. Lucchesi and M.C.M.T. Giglio. On the connection between the undi-
rected and the acyclic directed two disjoint paths problem. Ars Combin.,
47:191—200, 1997.
C.L. Lucchesi and D.H. Younger. A minimax theorem for directed graphs. J.
London Math. Soc. (2), 17(3):369-374, 1978.
J.F. Lynch. The equivalence of theorem proving and the interconnection prob-
lem. (ACM) SIGDA Newsletter, 5(3):31-36, 1975.
G. MacGillivray. The complexity of generalized colouring. PhD thesis, Simon
Fraser University, Burnaby, B.C. Canada, 1990.
G. MacGillivray. On the complexity of colouring by vertex-transitive and
arc-transitive digraphs. SJAM J. Discrete Math., 4(3):397-408, 1991.

706

532.

533.

534.
535.

536.

537.

538.

539.

540.

541.

542.

543.

544.

545.

546.

547.

548.

549.

550.

551.

552.

553.

554.

555.

556.

References

W. Mader. Minimale n-fach kantenzusammenhangende Graphen. Math. Ann.,

191:21—28, 1971.
W. Mader. Ecken vom Grad n in minimalen n-fach zusammenhangenden

Graphen. Arch. Math. (Basel), 23:219-224, 1972.
W. Mader. 1-factoren von Graphen. Math. Ann., 201:269-282, 1973.

W. Mader. Ecken vom Innen- und Aussengrad n in minimal n-fach kanten-

zusammenhangenden Digraphen. Arch. Math. (Basel), 25:107-112, 1974.

W. Mader. A reduction method for edge-connectivity in graphs. Ann. Discrete
Math., 3:145-164, 1978. Advances in graph theory (Cambridge Combinatorial
Conf., Trinity College, Cambridge, 1977).
W. Mader. Konstruktion aller n-fach kantenzusammenhangenden Digraphen.

European J. Combin., 3(1):63-67, 1982.
W. Mader. Minimal iach zusammenhangende Digraphen. J. Combin. The-
ory Ser. B, 38(2):102-117, 1985.
W. Mader. Ecken von kleinem Grad in kritisch n-fach zusammenhangenden
Digraphen. J. Combin. Theory Ser. B, 53(2):260-272, 1991.
W. Mader. On vertices of degree n in minimally n-connected graphs and
digraphs. In Combinatorics, Paul Erdés is eighty, Vol. 2 (Keszthely, 1993),
pages 423-449. Janos Bolyai Math. Soc., Budapest, 1996.
W. Mader. On vertices‘of out-degree n in minimally n-connected digraphs.
manuscript 1999.
H. Maehara. A digraph represented by a family of boxes or spheres. J. Graph
Theory, 8(3):431-439, 1984.
F. Maffray. Kernels in perfect line graphs. Journal of Combin. Theory. Series
B, 55:1-8, 1992.
V.M. Malhotra, M.P. Kumar, and S.N. Maheshivart An O(n?) algorithm for
finding maximum flows in networks. Information Processing Letters, 7:277—
278, 1978.
Y. Manoussakis. k-linked and k-cyclic digraphs. J. Combin. Theory Ser. B,
48(2):216-226, 1990.
Y. Manoussakis. A linear-time algorithm for finding Hamiltonian cycles in
tournaments. Discrete Appl. Math., 36(2):199-201, 1992.
Y. Manoussakis. Directed Hamiltonian graphs. J. Graph Theory, 16(1):51-59,
1992.
Y. Manoussakis. Alternating paths in edge-coloured complete graphs. Discrete
Applied Math., 56:297-309, 1995.
Y. Manoussakis, M. Spyratos, Zs. Tuza, and M. Voigt. Minimal colorings for
properly colored subgraphs. Graphs and Combinatorics, 12:345-360, 1996.
D.A. Marcus. Spanning subgraphs of k-connected digraphs. J. Combin. The-
ory Ser. B, 30(1):21-31, 1981.
D.A. Marcus. Directed cycles with chords. J. Graph Theory, 31(1):17-28,
1999.
S. Marshall. On the existence of k-tournaments with given automorphism
group. Discrete Math., 152(1-3):259-268, 1996.
S. Marshall. Representing posets with k-tournaments. Order, 13(2):147-158,
1996.
S. Martello and P. Toth. Finding a minimum equivalent graph of a digraph.
Networks, 12:89-100, 1982.

T. Masuzawa, K. Hagihara, and N. Tokura. An optimal time algorithm for the
k-vertex-connectivity unweighted augmentation problem for rooted directed
trees. Discrete Appl. Math., 17(1-2):67-105, 1987.
H.A. Maurer, J.H. Sudborough, and E. Welzl. On the complexity of the general
coloring problem. Inform. and Control, 51(2):128-145, 1981.

References 707

. D. May. The next generation transputers and beyond. In Distributed Memory
Computing, volume 487 of Lecture Notes in Comput. Sci., pages 7-22. Springer
Verlag, Berlin, 1991.

. J.E. McCanna. Orientations of the n-cube with minimum diameter. Discrete

Math., 68(2-3):309-310, 1988.

. W. McCuaig. Intercyclic digraphs. In Graph structure theory (Seattle, WA,
1991), volume 147 of Contemp. Math., pages 203-245. Amer. Math. Soc., Prov-
idence, RI, 1993.

. C. McDiarmid. Probability. In Graph connections. Relationships between
graph theory and other areas of mathematics (eds: Beineke, L.W. et al.), pages
194-207. Oxford University Press, Oxford, UK, 1997.

. K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-
completeness. Springer-Verlag, Berlin, 1984.

. K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96-115, 1927.

. A. Metzlar. Disjoint paths in acyclic digraphs. J. Combin. Theory Ser. B,
57(2):228-238, 1993.

. H. Meyniel. Une condition suffisante d’existence d’un circuit hamiltonien dans
un graphe orienté. J. Combin. Theory Ser. B, 14:137-147, 1973.

. M. Miller. Digraph covering and its application to two optimizatio problems
for digraphs. Australas. J. Combinatorics, 3:151-164, 1991.

. M. Miller and I. Fris. Maximum order digraphs for diameter 2 or degree 2.
In Pullman Volume of Graphs and Matrices, volume 139 of Lecture Notes in
Pure and Applied Math., pages 269-278. Pullman, New York, 1992.

. G.J. Minty. A theorem on n-colouring the points of a linear graph. American
Mathematical Monthly, 69:623-624, 1962.

. C.L. Monma and J.B. Sidney. A general algorithm for optimal job sequencing
with series-parallel constraints. Math. of Operations Research, 4:215—224, 1977.

. J.W. Moon. Solution to problem 463. Math. Mag., 35:189, 1962.

. J.W. Moon. On subtournaments of a tournament. Canad. Math. Bull., 9:297-

301, 1966.
. J.W. Moon. Topics on tournaments. Holt, Rinehart and Winston, New York,

1968.
. E.F. Moore. The shortest path through a maze. In Proc. of the Int. Symp.
on the Theory of Switching, pages 285-292. Harward University Press, 1959.

. A.O. Morris. Linear Algebra: an Introduction. Van Nostrand Reinhold, Work-
ingham, England, second edition edition, 1982.

. M. Morvan and L. Viennot. Parallel comparability graph recognition and mod-
ular decomposition. In STACS 96 (Grenoble, 1996), pages 169-180. Springer,
Berlin, 1996.

. H.M. Mulder. Julius Petersen’s theory of regular graphs. Discrete Math.,
100:157-175, 1992.

. H. Miiller. Recognizing interval digraphs and interval bigraphs in polynomial
time. Discrete Appl. Math., 78:189-205, 1997.

. J.H. Muller and J. Spinrad. Incremental modular decomposition. J. Assoc.
Comput. Mach., 36(1):1-19, 1989.

. K.G. Murty. Network programming. Prentice Hall Inc., Englewood Cliffs, NJ,
1992.

. H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5-
6):583-596, 1992.

. H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM J. Discrete Math., 5(1):54-66, 1992.

708

581

582.

583.

584.

585.

586.

587.

588.

589.

590.

591.

592.

593.

594.

595.

596.

597.

598.

599.

600.

601.

602."

603.

604.

605.

606.

References

. H. Nagamochi and T. Ibaraki. Deterministic O(nm) time edge-splitting in

undirected graphs. J. Comb. Optim., 1(1):5—46, 1997.
H. Nagamochi and T. Ibaraki. A note on minimizing submodular functions.
Inform. Process. Lett., 67(5):239-244, 1998.
C.St.J.A. Nash-Williams. On orientations, connectivity and odd-vertex-
pairings in finite graphs. Canad. J. Math., 12:555-567, 1960.
C.St.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J.
London Math. Soc., 36:445—450, 1961.

C.St.J.A. Nash-Williams. Decomposition of finite graphs into forests. J. Lon-
don Math. Soc., 39:12, 1964.

C.St.J.A. Nash-Williams. Problem 47. In Proceedings of Collog. Tihany 1966,
page 366. Academic Press, 1968.
C.St.J.A. Nash-Williams. Hamilton circuits in graphs and digraphs. In The
many facets of graph theory, Springer Verlag Lecture Notes 110, pages 237-243.

Springer Verlag, 1969.
C.St.J.A. Nash-Williams. Hamilton circuits. In Studies in Graph Theory Part
II, Studies in Mathematics 12, pages 301-360. M.A.A., Washington, 1975.
M. Natu and S.-C. Fang. The point-to-point connection problem—analysis and
algorithms. Discrete Applied Math., 78:207-226, 1997.

J. NeSetril and X.D. Zhu. Path homomorphisms. Math. Proc. Cambridge
Philos. Soc., 120(2):207-220, 1996.
L.L. Ng. Hamiltonian decomposition of complete regular multipartite di-
graphs. Discrete Math., 177(1-3):279-285, 1997.

L.L. Ng. Hamiltonian decomposition of lexicographic products of digraphs. J.
Combin. Theory Ser. B, 73(2):119-129, 1998.
T. Nishimura. Short cycles in digraphs. Discrete Math., 72(1-3):295-298, 1988.
C. Olsen. Heuristics for combinatorial optimization problems (course project
in Danish University of Southern Denmark, Odense), 1998.

O. Ore. Theory of graphs. American Mathematical Society, Providence,
R.I., 1962. American Mathematical Society Colloquium Publications, Vol.
XXXVI.

Erdos P. and G. Szekeres. A combinatorial problem in geometry. Compositio
Math., 2:463-470, 1935.

M. Overbeck-Larisch. Hamiltonian paths in oriented graphs. J. Combin.
Theory Ser. B, 21(1):76-80, 1976.
M. Overbeck-Larisch. A theorem on pancyclic-oriented graphs. J. Combin.
Theory Ser. B, 23(2-3):168-173, 1977.
L. Pan, G. Zhou, and K.-M. Zhang. A note on hypertournaments. Chinese
Science Bull., 44:1460-1463, 1999.

C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms
and complezity. Prentice-Hall Inc., Englewood Cliffs, N.J., 1982.

L.E. Penn and D. Witte. When the Cartesian product of two directed cycles
is hypohamiltonian. J. Graph Theory, 7:441-443, 1983.

Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of
vertices in a graph. J. Assoc. Comput. Machin., 25:1-9, 1978.

J. Petersen. Die Theorie der regularen graphs. Acta Math., 15:193-220, 1891.
V. Petrovié. Kings in bipartite tournaments. Discrete Math., 173(1-3):187-
196, 1997.

V. Petrovi¢é and C. Thomassen. Kings in k-partite tournaments. Discrete
Math., 98(3):237-238, 1991.
P.A. Pevzner. DNA physical mapping and alternating eulerian cycles in col-
ored graphs. Algorithmica, 13, 1995.

607

608.

609.

610.

611.

612.

613.
614.

615.

616.

617.

618.

619.

620.

621.

622.

623.

624.

625.
626.

627.

628.

629.

630.

References 709

J. Plesnik. Remarks on diameters of orientations of graphs. Acta Math. Univ.
Comenian., 46/47:225-236 (1986), 1985.

J. Plesnik. Remarks on diameters of orientations of graphs. Acta Math. Univ.
Comenian., 46/47:225-236 (1986), 1985.

J. Plesnik and S. Zndm. Strongly geodetic directed graphs. Acta F. R. N.
Univ. Comen.-Mathe., 29:29-34, 1975.

L. Pésa. A theorem concerning Hamiltonian lines. Publ. Math. Inst. Hungar.
Acad. Sci., 7:225-226, 1962.
C.N. Potts and S.L. van de Velde. Dynasearch — iterative local improve-
ment by dynamic programming: Part I, the traveling salesman problem. Univ.
Southampton, UK, November 1995.
E. Prisner. Familien zusammenhangender Teilgraphen eines Graphen und thre
Durchschnittsgraphen. PhD thesis, University of Hamburg, 1988.
E. Prisner. Graph dynamics. Longman, Harlow, 1995.

E. Prisner. Line graphs and generalizations—a survey. Congressus Numeran-
tium, 116:193-229, 1996. Surveys in graph theory (San Francisco, CA, 1995).
A. Punnen and S. Kabadi. Domination analysis of some heuristics for the
asymmetric traveling salesman problem. April 1999.
A.P. Punnen. The traveling salesman problem: new polynomial approximation
algorithms and domination analysis. University of New Brunswick-St. John,
December 1996.
M. Queyranne. Minimizing symmetric submodular functions. Math. Pro-
gramming, 82(1-2, Ser. B):3-12, 1998. Networks and matroids; Sequencing
and scheduling.
J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for
hypergraph 2-colouring. Random Structures and Algorithms, 16:4-32, 2000.
R. Rado. Note on independence functions. Proc. London Math. Soc., 7:300-
320, 1957.
V. Ramachandran. A minimax arc theorem for reducible flow graphs. SIAM
J. Discrete Math., 3:554—-560, 1990.
F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264-

286, 1930.
J. Rattner. The new age of supercomputing. In Distributed Memory Comput-
ing, volume 487 of Lecture Notes in Comput. Sci., pages 1-6. Springer Verlag,

Berlin, 1991.
A. Recski. Matroid theory and its applications in electric network theory and
in statics. Springer-Verlag, Berlin, 1989.
S. M. Reddy, D.K. Pradhan, and J. G. Kuhl. Directed graphs with minimal
diameter and maximal connectivity. Tech. rep., School of Engineering Oakland

Univ., 1980.
L. Rédei. Ein kombinatorischer Satz. Acta Litt. Szeged, 7:39-43, 1934.
B: Reed, N. Robertson, P.D. Seymour, and R. Thomas. Packing directed
circuits. Combinatorica, 16(4):535-554, 1996.
B.A. Reed and F.B. Shepherd. The Gallai-Younger conjecture for planar

graphs. Combinatorica, 16(4):555-566, 1996.

C.R. Reeves (editor). Modern heuristic techniques for combinatorial problems.

McGraw-Hill Book Company, 1995.

K.B. Reid. Two complementary circuits in two-connected tournaments. In

Cycles in graphs (Burnaby, B.C., 1982), volume 115 of North-Holland Math.

Stud., pages 321-334. North-Holland, Amsterdam, 1985.

K.B. Reid. Tournaments: scores, kings, generalizations and special topics.

Congressus Numerantium, 115:171-211, 1996. Surveys in graph theory (San

Francisco, CA, 1995).

710

631

632.

633.

634.

635.

636.

637.

638.

639.

640.

641.

642.

643.

644.

645.

646.

647.

648.

649.

650.

651.

652.

References

G. Reinelt. The linear ordering problem: algorithms and applications. Helder-

mann Verlag, Berlin, 1985.
G. Reinelt. The Travelling Salesman: Computational Solutions for TSP Ap-

plications. Springer-Verlag, Berlin, 1994.
F. Rendl. Quadratic assignment problems on series-parallel digraphs. Z. Oper.

Res. Ser. A-B, 30(3):A161—-A173, 1986.
P.I. Richards. Precedence constraints and arrow diagrams. SIAM Rev., 9:548-
553, 1967.
M. Richardson. Solution of irreflective relations. Ann. Math., 58:573-580,

1953.
M.B. Richey, R.G. Parker, and R.L. Rardin. An efficiently solvable case of
the minimum weight equivalent subgraph problem. Networks, 15(2):217-228,

1985.
H.E. Robbins. A theorem on graphs with an application to a problem on
traffic control. American Mathematical Monthly, 46:281-283, 1939.

F.S. Roberts and Y. Xu. On.the optimal strongly connected orientations of
city street graphs I: Large grids. SIAM J. Discrete Math., 1:199-222, 1988.

F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of
city street graphs II: Two east-west avenues or north-south streets. Networks,

19:221-233, 1989.
F.S. Roberts and Y. Xu. On the optimal strongly connected orientations of city
street graphs III: Three east-west avenues or north-south streets. Networks,
22:109-143, 1992.
F.S. Roberts and Y.. Xu. On the optimal strongly connected orientations of
city street graphs IV: Four east-west avenues or north-south streets. Discrete
Applied Math., 49:331-356, 1994.
N. Robertson and P.D. Seymour. Graph minors. XIII: The disjoint paths
problem. J. Comb. Theory, Ser. B, 63:65-110, 1995.

N. Robertson, P.D. Seymour, and R. Thomas. Permanents, Pfaffian orienta-
tions, and even directed circuits. Ann. Math., 150:929-975, 1999.

M. Rosenfeld. Antidirected Hamiltonian paths in tournaments. J. Comb.
Theory, Ser. B, 12:93-99, 1971.

M. Rosenfeld. Antidirected Hamiltonian cycles in tournaments. J. Comb.
Theory, Ser. B, 16:234—242, 1974.

B. Roy. Nombre chromatique et plus longs chemins d’un graphe. Rev.
Frangaise Informat. Recherche Opérationnelle, 1(5):129-132, 1967.

A. Rubinstein. Ranking the participants in tournaments. SIAM J. Applied
Math., 38:108-111, 1980.

R. Saad. Finding a longest alternating cycle in a 2-edge-coloured complete
graph is in RP. Combinatorics, Probability and Computing, 5:297-306, 1996.

M.R. Samathan and D.K. Pradhan. The de Bruijn multiprocessor network:
a versatile parallel processing and sorting network for VLSI. IEEE Trans. on
Computers, C-38:567—581, 1989.

B.K. Sanyal and M.K. Sen. New characterization of digraphs represented by
intervals. J. Graph Theory, 22:297-303, 1996.

V.I. Sarvanov and N.N. Doroshko. The approximate solution of the traveling
salesman problem by a local algorithm that searches neighborhoods of expo-
nential cardinality in quadratic time. In Software: Algorithms and Programs,
volume 31, pages 8-11. Math. Institute of the Belorussian Acad. Sci., Minsk,
1981. (in Russian).

V.I. Sarvanov and N.N. Doroshko. The approximate solution of the travel-
ing salesman problem by a local algorithm with scanning neighborhoods of

653.

654.

655.

656.

657.

658.

659.

660.

661.

662.

663.

664.

665.

666.

667.

668.

669.

670.

671.

672.

673.

674

References a

factorial cardinality in cubic time. In Software: Algorithms and Programs, vol-
ume 31, pages 11-13. Math. Institute of the Belorussian Acad. Sci., Minsk,
1981. (in Russian).

J.P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Computing, 19(5):775-786, 1990.

C.-P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks.

SIAM J. Computing, 8(2):265-274, 1979.
A. Schrijver. Total dual integrality from directed graphs, crossing families, and
sub- and supermodular functions. In Progress in combinatorial optimization
(Waterloo, Ont., 1982), pages 315-361. Academic Press, Toronto, Ont., 1984.

A. Schrijver. A group-theoretical approach to disjoint paths in directed graphs.
CWI Quarterly, 6(3):257-266, 1993.
A. Schrijver. Finding k disjoint paths in a directed planar graph. SIAM J.
Computing, 23(4):780-788, 1994.
A. Schrijver. Paths in graphs and curves on surfaces. In Joseph, A. (ed.) et

al., First European congress of mathematics (ECM), Paris, France, July 6-10,
1992. Volume II: Invited lectures (Part 2). Basel: Birkhaeuser.[ISBN 3-7643-
2799-5/hbk], pages 381-406, 1994.
A. Schrijver. Polyhedral combinatorics. In Handbook of combinatorics, Vol.
1, 2, pages 1649-1704. Elsevier, Amsterdam, 1995.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. manuscript 1999.

M. Sen, S. Das, A.B. Roy, and D.B. West. Interval digraphs: an analogue of
interval graphs. J. Graph Theory, 13(2):189-202, 1989.
P.D. Seymour. Disjoint paths in graphs. Discrete Math., 29:293-309, 1980.

P.D. Seymour. Nowhere-zero 6-flows. J. Combin. Theory Ser. B, 30(2):130-
135, 1981.
P.D. Seymour. Nowhere-zero flows. In Handbook of combinatorics, Vol. 1, 2,
pages 289-299. Elsevier, Amsterdam, 1995. Appendix: Colouring, stable sets
and perfect graphs.

P.D. Seymour. Packing directed circuits fractionally. | Combinatorica,
15(2):281-288, 1995.
P.D. Seymour. Packing circuits in Eulerian digraphs. Combinatorica,

16(2):223-231, 1996.
P.D. Seymour and C. Thomassen. Characterization of even directed graphs.
J. Combin. Theory Ser. B, 42(1):36-45, 1987.
J. Shearer. A property of the colored complete graph. Discrete Math., 25:175—

178, 1979.
Y. Shiloach. Edge-disjoint branching in directed multigraphs. Inform. Process.
Lett., 8(1):24-27, 1979.
Y. Shiloach. A polynomial solution to the undirected two paths problem. J.

Assoc. Comput. Mach., 27:445-456, 1980.

D. Shmoys. Cut problems and their application to divide and conquer. In

Approximation algorithms for NP-hard problems, D. Hochbaum ed., pages 192—

235. PWS publishing company, Boston, 1997.

K. Simon. An improved algorithm for transitive closure on acyclic digraphs.

Theoret. Comput. Sci., 58:325-346, 1988.

K. Simon. Finding a minimal transitive reduction in a strongly connected

digraph within linear time. In Graph-theoretic concepts in Computer Sci-

ence (Kerkrade, 1989), Lecture Notes in Computer Science, pages 245-259.

Springer-Verlag, Berlin, 1990.

S.S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1997.

712

675

676.

677.

678.

679.
680.

681.

682.

683.

684.

685.

686.

687.

688.

689.
690.

691.

692.

693.

694.

695.

696.

697.
698.

699.

700.

References

. D.J. Skrien. A relationship between triangulated graphs, comparability

graphs, proper interval graphs, proper circular-arc graphs, and nested interval

graphs. J. Graph Theory, 6(3):309-316, 1982.

L. Soltés. Orientations of graphs minimizing the radius or the diameter. Math.

Slovaca, 36(3):289-296, 1986.
Z.M. Song. Complementary cycles in bipartite tournaments. J. Nanjing Inst.

Tech., 18:32-38, 1988.
Z.M. Song. Complementary cycles of all lengths in tournaments. J. Combin.
Theory Ser. B, 57(1):18-25, 1993.
Z.M. Song. Pancyclic oriented graphs. J. Graph Theory, 18(5):461—468, 1994.

E. Sopena. The chromatic number of oriented graphs. J. Graph Theory,
25(3):191-205, 1997.
E. Speckenmeyer. On feedback problems in digraphs. In Proceedings of the
15th WG , volume 411 of Lecture Notes in Comput. Sci., pages 218-231.

Springer, Berlin, 1989.
G. Steiner. A compact labeling scheme for series-parallel graphs. Discrete
Appl. Math., 11(3):281-297, 1985.
H.J. Straight. The existence of certain type of semi-walks in tournaments.
Congressus Numerantium., 29:901-908, 1980.
X.Y. Su. Paths, cycles, and arc-connectivity in digraphs. J. Graph Theory,
19(3):339-351, 1995.
J. Szigeti and Z. Tuza. Generalized colorings and avoidable orientations. Dis-
cuss. Math. Graph Theory, 17(1):137-145, 1997.
J.L. Szwarcfiter. On minimum cuts of cycles and maximum disjoint cycles. In
Graphs and algorithms (Boulder, CO, 1987), volume 89 of Contemp. Math.,
pages 153-166. Amer. Math. Soc., Providence, RI, 1989.

E. Tardos. A strongly polynomial minimum cost circulation algorithm. Com-
binatorica, 5(3):247-255, 1985.
R.E. Tarjan. Depth-first search and linear graph algorithms. SJAM J. Com-
puting, 1(2):146-160, 1972.
R.E. Tarjan. Finding optimum branchings. Networks, 7(1):25-35, 1977.
R.E. Tarjan. Data structures and network algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, Pa., 1983.
E.G. Tay. Optimal orientations of graphs. PhD thesis, National University of
Singapore, Department of Mathematics, 1999.

M. Tewes. In-tournaments and Semicomplete Multipartite Digraphs. PhD
thesis, Lehrstuhl II fir Mathematik, RWTH Aachen, 1998.

M. Tewes and L. Volkmann. The ratio of the longest cycle and longest path
in semicomplete multipartite digraphs. RTWH Aachen.

A. Thomason. Paths and cycles in tournaments. Trans. Amer. Math. Soc.,
296(1):167-180, 1986.
S. Thomassé. Covering a strong digraph by a — 1 disjoint paths. A proof of
Las Vergnas’s conjecture. manuscript 2000.

C. Thomassen. An Ore-type condition implying a digraph to be pancyclic.
Discrete Math., 19(1):85-92, 1977.
C. Thomassen. 2-linked graphs. European J. Combinaterics, 1:371-378, 1980.

C. Thomassen. Hamiltonian-connected tournaments. J. Combin. Theory Ser.
B, 28(2):142-163, 1980.

C. Thomassen. Edge-disjoint Hamiltonian paths and cycles in tournaments.
Proc. London Math. Soc. (3), 45(1):151-168, 1982.
C. Thomassen. Disjoint cycles in digraphs. Combinatorica, 3(3-4):393-396,
1983.

References 713

701. C. Thomassen. Connectivity in tournaments. In Graph theory and combina-

702.

703.

704.

705.

706.

torics (Cambridge, 1983), pages 305-313. Academic Press, London, 1984.
C. Thomassen. Even cycles in directed graphs. European J. Combin., 6(1):85-
89, 1985.
C. Thomassen. Hamilton circuits in regular tournaments. In Cycles in graphs
(Burnaby, B.C., 1982), volume 115 of North-Holland Math. Stud., pages 159-
162. North-Holland, Amsterdam, 1985.

C. Thomassen. The 2-linkage problem for acyclic digraphs. Discrete Math.,
55(1):73-87, 1985.
C. Thomassen. Sign-nonsingular matrices and even cycles in directed graphs.
Linear Algebra Appl., 75:27—41, 1986.
C. Thomassen. Counterexamples to Addm’s conjecture on arc reversals in
directed graphs. J. Combin. Theory Ser. B, 42(1):128-130, 1987.

707. C. Thomassen. Paths, circuits and subdivisions. In Selected topics in graph
theory Vol. 3, pages 97-131. Academic Press Limited, 1988.

708. C. Thomassen. Configurations in graphs of large minimum degree, connec-
tivity, or chromatic number. Annals of the New York Academy of Sciences,
555:402—412, 1989.

709. C. Thomassen. Whitney’s 2-switching theorem, cycle spaces, and arc map-

710.

Wi

qi2:

713.

pings of directed graphs. J. Combin. Theory Ser. B, 46(3):257-291, 1989.
C. Thomassen. Highly connected non-2-linked digraphs. Combinatorica,
11(4):393-395, 1991.
C. Thomassen. The even cycle problem for directed graphs. J. Amer. Math.
Soc., 5(2):217-229, 1992.
C. Thomassen. The even cycle problem for planar digraphs. J. Algorithms,
15:61-75, 1993.
C. Thomassen. Directed cycles with two chords and strong spanning directed
subgraphs with few arcs. J. Combin. Theory Ser. B, 66(1):24-33, 1996.

714. C. Thomassen. Parity, cycle space and K4-subdivisions in graphs. In Surveys

715.

716.

Tits

TAS:

719:

720.

721.

hed:

1C-2¥

724.

in Combinatorics, J.D. Lamb and D.A. Preece, eds., London Math. Soc. Lect.
Note Series, 267, pages 223-237. Cambridge Univ. Press, Cambridge, UK, 1999.
M. Thorup. On RAM priority queues. In Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 59-67, New York, 1996.
ACM Press.
M. Thorup. Undirected single-source shortest paths with positive integer
weights in linear time. Journal of the Association for Computing Machinery,
46:362-394, 1999.
K. Thulasiraman and M.N.S. Swamy. Graphs: theory and algorithms. John
Wiley & Sons Inc., New York, 1992.
F. Tian, Z.S. Wu, and C.Q. Zhang. Cycles of each length in tournaments. J.
Combin. Theory Ser. B, 33(3):245-255, 1982.

T.W. Tillson. A Hamiltonian decomposition of PGi 2m > 8. J. Combin.
Theory Ser. B, 29(1):68-74, 1980.
W.T. Tutte. A contribution to the theory of chromatic polynomials. Canadian

J. Math., 6:80-91, 1954.
W.T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99-
116, 1956.
W.T. Tutte. On the problem of decomposing a graph into n connected factors.
J. London Math. Soc., 36:221-230, 1961.
Z. Tuza. Graph coloring in linear time. J. Combin. Theory Ser. B, 55(2):236-
243, 1992. é
Z. Tuza. Characterization of (m,1)-transitive and (3, 2)-transitive semi-
complete directed graphs. Discrete Math., 135(1-3):335-347, 1994.

714

725

726.

ila

728.

129.

730.

731.

732.

733.

734.
735.
736.

137.

738.

739.

740.

7Al.

742.

743.

744.

745.

746.

747.

748.

749.

750.

751

References

. J. Urrutia and F. Gavril. An algorithm for fraternal orientation of graphs.

Inform. Process. Lett., 41(5):271-274, 1992.

J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel

digraphs. SIAM J. Computing, 11(2):298-313, 1982.

L.M. Vitaver. Determination of minimal coloring of vertices of a graph by

means of Boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR,

147:758-759, 1962.
L. Volkmann. Cycles in multipartite tournaments: results and problems. Dis-

crete Math., to appear.
L. Volkmann. Longest paths in semicomplete multipartite digraphs. Dzscrete

Math., 199:279-284, 1999.
L. Volkmann. Spanning multipartite tournaments of semicomplete multipar-
tite digraphs. ARS Combinatoria, to appear.
J. von Neumann and O. Morgenstern. Theory of Games and Economic Be-
haviour. Princeton University Press, Princeton, 1944.
C. Wang, E.L. Floyd, and M.L. Soffa. Feedback vertex sets and cyclically

reducible graphs. J. AC'M, 32;296-313, 1985.
H. Wang, C. Little, and K. Teo. Partition of a directed bipartite graph into
two directed cycles. Discrete Math., 160(1-3):283-289, 1996.
S. Warshall. A theorem on boolean matrices. J. ACM, 9:11-12, 1962.
D.B. West. Introduction to graph theory. Prentice-Hall, 1996.

D.B. West. Short proofs for interval digraphs. Discrete Math., 178(1-3):287-
292, 1998.
R.J. Wilson. An Eulerian trail through Konigsberg. J. Graph Theory, 8:265-
275, 1986. ‘
D. Woodall. Improper colourings of graphs. In Graph Colourings, volume 218
of Pitman Research Notes in Math. Series, pages 45-63. Longman, 1990.

D.R. Woodall. Sufficient conditions for cycles in digraphs. Proc. London Math.
Soc., 24:739-755, 1972.
N.C. Wormald. Subtrees of large tournaments. Lecture Notes in Mathematics,
1036:417—419, 1983.
Z.S. Wu, K.M. Zhang, and Y. Zou. A necessary and sufficient condition for
arc-pancyclicity of tournaments. Sci. Sinica Ser. A, 25:249-254, 1982.
J.M. Xu. A sufficient condition for equality of arc-connectivity and minimum
degree of a digraph. Discrete Math., 133(1-3):315-318, 1994.
A. Yeo. A note on alternating cycles in edge-coloured graphs. J. Combin.
Theory Ser. B, 69:222-225, 1997.

A. Yeo. One-diregular subgraphs in semicomplete multipartite digraphs. J.
Graph Theory, 24(2):175-185, 1997.
A. Yeo. Semicomplete Multipartite Digraphs. PhD thesis, Department of
Mathematics and Computer Science, Odense University, Denmark, 1998.
A. Yeo. A polynomial time algorithm for finding a cycle covering a given set of
vertices in a semicomplete multipartite digraph. J. Algorithms, 33(1):124-139,
1999.

A. Yeo. Diregular c-partite tournaments are vertex-pancyclic when c > 5. J.
Graph Theory, 32:137-152, 1999.

A. Yeo. How close to regular must a semicomplete multipartite digraph be to
secure Hamiltonicity? Graphs Combin., 15:481-493, 1999.
A. Yeo. Large diregular 4-partite tournaments are vertex-pancyclic.
manuscript 1999.

D.H. Younger. Graphs with interlinked directed circuits,. In Proceedings of
the Midwest symposium on circuit theory 2, pages XVI 2.1 — XVI 2.7, 1973.

. D.H. Younger. Integer flows. J. Graph Theory, 7(3):349-357, 1983.

752

753.

754.

755.

756.

797.

758.

759.

760.

761.

762.

References ap

. D.A. Youngs. Minimal orientations of colour critical graphs. Combinatorica,
15(2):289-295, 1995.
N. Zadeh. Theoretical efficiency of the Edmonds-Karp algorithm for comput-
ing maximal flows. J. Assoc. Comput. Mach., 19:184-192, 1972.

C.Q. Zhang. Every regular tournament has two arc-disjoint hamiltonian cy-
cles. J. Qufu Normal College, Special Issue Oper. Res.:70-81, 1980.
K.-M. Zhang. Vertex even-pancyclicity in bipartite tournaments. J. Nanjing
Univ. Math. Biquarterly, 1:85-88, 1981.
K.M. Zhang, Y. Manoussakis, and Z.M. Song. Complementary cycles con-
taining a fixed arc in diregular bipartite tournaments. Discrete Math., 133(1-
3):325-328, 1994.
K.M. Zhang and J.-Z. Wang. Complementary cycles containing a fixed arc
and a fixed vertex in bipartite tournaments. Ars Combin., 35:265-269, 1993.
L.-C. Zhao and J.-H. Meng. A sufficient condition for hamiltonian cycles in
digraphs. Australasian J. Combin., 32:335-338, 1991.
G. Zhou, T. Yao, and K.-M. Zhang. On score sequences of k-
hypertournaments. Europ. J. Combin., to appear, 2000.
G. Zhou and K. Zhang. A sufficient condition for a semicomplete multipartite
digraph to be hamiltonian. Australas. J. Combin., 19:231-234, 1999.
H. Zhou. Multiplicativity of acyclic digraphs. Discrete Math., 176(1-3):263—
271, 1997.
H.S. Zhou. Characterization of the homomorphic preimages of certain oriented
cycles. SIAM J. Discrete Math., 6(1):87-99, 1993.

ern ay Vy, segue. ha eicere
Stiff sey)
(ra" Joa (4 j

¢ e, ’ ron borusag pat

a rei h-eoswantod ialireney sted rai) Cbs

a0 r

é f 0c)? vv hyo & bat :

‘ te nied 2 - paw ive atl had air ;

ah 221 De,, Madan .. Hhegtatay i edgriadh
iat 4° ' Lie) i Vule oe f T savas Gated

v' - WA ahs im vs 1 u L #Ue ea dashes) a '

RAR MITEL Oneteaee 4, Liter. rep es ms! o1 dqniih <

Pate hl pobadd iy @ Upenes ial ; “ecupity ras ow ro eal! da acl “is ho ips y

: i aie oa a ae ¥
\. {- ; J ;

jolidi aia wen a 7 Mb Pera mii tu ee ti aiteaan ' ney 4 - ie

Cre Ol 20-711) Apo, give A Mate ost

: rte. |; Mim, As Ranties, tet] cy vi és ter ie . re i
7 y re, Th _ _

hae SAS ‘Te ves f aw aaen i 7S » th cell o cane

7 ‘Gas Fem feemath (Cher) ee # puter Cosby Cae
ee ae .) jut det ote Ji

a FETT
S re 7; a! 9° : ul: roe) es ae Sit :

hed ri, 900d, fonds tary
nol aS Me, Hah Dheb, Xs Baas

ned

Symbol Index

To shorten and unify notation, in this index we use the following convention:

B denotes a bipartite (di)graph.

C, C; denote cycles (directed, undirected, edge-coloured, oriented).
D, D; denote digraphs, directed multigraphs and directed pseudographs.

G, G; denote undirected graphs and undirected multigraphs.

H denotes a hypergraph.

M denotes a mixed graph or a matroid.

P, P; denote path (directed, undirected, edge-coloured, oriented).

S denotes a matrix or a multiset.

X, X; denote abstract sets or sets of vertices.

Y, Y; denote sets of arcs.

(Di, D2)p: set of arcs with tails in
V(D,) and heads in V(D2),
6

(X, <): partial order on X, 236
(X1, X2)p: set of arcs with tail in X)

and head in X2, 3

(I, +): an additive group, 438

(K nC): weighted complete digraph,
82

(F,b): pair of a family F and a sub-
modular function b on Ff,
452

*P: P minus the first vertex on P,

322
>u: ordering of neighbours of u, 656

A(D): arc set of D, 2
A(z): arc set of residual network w.r.t

2, 98

B= (Xi, X2;E): specification of a
bipartite graph with bipar-
tition X1, X2, 25

BG(D): bipartite representation of
D, 25

BOR(D): proper backward rank of
D, 645

Bre: bad vertices with respect to the
local median order L, 641

CM(D): the 2-edge-coloured bi-
partite multigraph corre-
sponding to the bipartite

digraph D, 604

CM~'(B): the bipartite digraph cor-
responding to the 2-edge-

coloured bipartite multi-
graph B, 604

C[x;,2;]: subpath of C from z; to x;,
pe

Ci>>C2: Ci contains singular ver-
tices with respect to C2 and
they all are out-singular,
and C2 has singular ver-
tices with respect to Ci and
they all are in-singular, 255

D(G): digraph obtained from G via
BD-correspondance, 604

D(d,n,q,7): consecutive-d digraph,
190

D—X: deleting the vertices of X
from D, 7

D—Y: deleting the arcs of Y from
Dai

D//P: path-contraction, 229
D/D,: contracting the subdigraph

dD, in 1D. 7

D=(V+s,A), D=(V+s,EUF):
specification of D with spe-
cial vertex s, 358

D=(V,A): specification of D, 2
D=(V,A,e): specification of a

paired comparison digraph,
645

D = (V,A,c): specification of weight-
ed D, 6

D[D1,D2,...,Dn]: composing D
with Di, D2,-..,Dn, 8

D?: pth power of D, 9

718 Symbol Index

D, = D2: no arc from V(D2) to
V(D;), 6

D, = Dz, D=H: Dy, is isomorphic

to Do, 7

D; U D2: union of D; and D2:, 10

D,— Dz»: D; is homomorphic to D2,

658
dD, aA Do: V(D1) dominates V(D2)

and no arc from V(D2) to
V(D1), 6

D,ADz2: D; is not homomorphic to
D2, 658

Dy, —7 Do: V(D1) dominates V(D2),

6
ID SS IDES 55 OS IBY, a pe IDR:

Cnn product x di-
graphs, 9

Dz(d,t): the de Bruijn digraph, 187
De(d,n): generalized de Bruijn di-

graph, 190
Dx/(d,t): the Kautz digraph, 189
Dsr: digraph obtained from D by the

vertex splitting procedure,
102

Dr: digraph associated with a 2- SAT
expression, 36

Dmajor(T): majority digraph of the
hypertournament T’, 631

D(X): subdigraph of D induced by
X,5

E(G): edge set of the graph G, 18
FOR(D): proper forward rank of D,

645
Fy, F >: out- and in-branching

rooted at s, 19

G =(V +s, E): specification of undi-
rected graph with special
vertex s, 443

F(2): Gallois field on 2 elements,
546

Gi x G2 x... X G,: Cartesian prod-
ucts of graphs, 71

Gc: good vertices with respect to the
local median order £, 641

Gita: graph corresponding to ori-
entability as a locally in-
tournament digraph, 426

Gita: graph corresponding to ori-

entability as a locally tour-
nament digraph, 420

Gata: graph corresponding to ori-
entability as a quasi-
transitive digraph, 416

H =(V,€): specification of the hy-
pergraph H, 24

K&: c-edge-coloured complete graph
of order n, 613

K,,: complete graph of order n, 25
: complete multipartite

graph, 25
L(D): line digraph of D, 182

L*(D): iterated line digraph of D,
187

M = (S,T): specification of matroid,
665

M =(V,A,£E): specification of the
mixed graph M, 23

MOR(D): proper mutual rank of D,
645

M™*: dual of the matroid M, 667
M, V M2: union of matroids M; and

Mo, 670
N(T, X): assignment neighbourhood

Obl wert) Xe, 65

Ni?(X), N5?(X): pth out- and in-
ea Mes of X, 46

N3?[X], N5?[X)]: closed pth out- and
Bohannon of X, 46

Np(v): neighbourhood of v, 4

Nd (X), N5(X): out-neighbourhood,
in-neighbourhood of X, 4

Nx(v), Np (v): out-neighbourhood
and in-neighbourhood of v,
4

Ne(a): neighbourhood of x in G, 19
O(f(k)): O-notation, 29
OR(D): set of all FSO-optimal order-

ings of V, 644
P(x;, xj]: subpath of P from 2; to z;,

i<j, 12
Qz,z, Q.w: path factor with two

paths such that the first is
an (x, z)-path and the sec-
ond path has terminal ver-
tex w, 295

Q:z,2, Qw,.: path factor with two
paths such that the first is
a (z,x)-path and the sec-
ond path has initial vertex
w, 295

R*(X): vertices that can be reached
from X, 323

R(X): vertices that can reach X,
323

Ri(r,q): Ramsey number for I[-
uniform hypergraphs, 563

S = (s,;]: matrix, 2
SC(D): strong component digraph of

D 1%
S*: transpose of matrix S, 2
TC(D): transitive closure of D, 177
TT;: transitive tournament on s ver-

tices, 416

T’*”: reverse of T, 593

UG(D): underlying graph of D, 19
Un,~: uniform matroid, 666

V(D): vertex set of D, 2
V(G): vertex set of the graph G, 18
X*,X7~: successors and predecessors

of vertices in X, 12

X, => X2: no arc from X2 to Xj, 3

X14 Xo: Xi > Xo ANG 24 = X2, 3

X, — X2: X; dominates Xo, 3

X, x X2 x... xX Xp: Cartesian prod-
uct of sets, 2

X,AX2: symmetric difference, 546
A(G): maximum degree of G, 19
At(D), A~(D): maximum out- and

in-degree of D, 5
A°(D): maximum semi-degree of D,

Amon(G): maximum monochromatic
degree of G, 593

I'(F): intersection graph of the fam-
ily F of sets, 426

Q(F): catch digraph of the family F
of pointed sets, 426

2(f(k)): Q-notation, 29
Q(P): intersection graph of the fam-

ily P of subgraphs, 602

Q(D): maximum number of arc-
disjoint dicuts in D, 400

**': set of extended @-digraphs, 9
@o: union of semicomplete multipar-

tite, connected extended
locally semicomplete di-
graphs and acyclic di-
graphs, 215

#;: union of semicomplete bipartite,
connected extended locally
semicomplete and acyclic
digraphs, 215

@2: union of connected extended
locally semicomplete and
acyclic digraphs, 215

WY: union of transitive and ex-
tended semicomplete di-
graphs, 196

Symbol Index 719

W,: class of all digraphs for which
a minimum path-factor can
be found in polynomial
time O(n‘), 335

O(f(k)): O-notation, 29

a(D): independence number of D, 22

Qacyc(D): acyclic independence num-
ber of D, 664

Qor(D): oriented independence num-

ber of D, 664

TJ: admissible cells for transporta-
tion, 149

x(X1X2): colour of edges between X
and X2, 593

x(e): colour of edge e, 593

Xena(P): colour of last edge of P, 593
Xstart(P): colour of first edge of P,

593

x(H): chromatic number of D, 22
6(G): minimum degree of G, 19
6*(D), 6- (D): minimum out- and in-

degree of D, 4

6°(D): minimum semi-degree of D, 5
67: length of a shortest (7, 7)-path

using only internal vertices
from {1,2,...,m— 1}, 58

6°.on(D): minimum monochromatic
semi-degree of the arc-
coloured digraph D, 620

6o.on(v): minimum monochromatic
semi-degree of v in an arc-
coloured digraph, 620

6(P): capacity of augmenting path P,
109

6x(s,t): length of a shortest (s,t)-
path in NV (a), 114

e(xy): weight of the arc ry in a paired
comparison digraph, 643

nz(F): deficiency of the family F of
one-way pairs, 369

nk(X,Y): deficiency of the one-way
pair (X,Y), 368

k,s,r(D'): k-(S,T)-arc-strong con-
nectivity augmentation
number of D, 377

(5,5): flow demand of the (s,t)-cut
(SS) 127

7;,(D): subpartition lower bound
for augmenting the vertex-
strong connectivity of D to
k, 367

720 Symbol Index

yx(D): subpartition lower bound for
augmenting the arc-strong
connectivity of D to k, 362

Ys,:(D): minimum number of new
arcs one has to add to
D in order to obtain a
new digraph D’ =(V,AU
F) which has k arc-disjoint
out-branchings rooted at s,
537

k(D): vertex-strong connectivity of
D, 16

k(x, y): local vertex-strong connectiv-
ity from x to y, 346

A(D): arc-strong connectivity of D,
19

A(z, y): local arc-strong connectivity
from x to y, 346

(Yi, Y2): scalar product of ¥; and Y2,
546 ‘

dim S: dimension of the vector space
S, 546

+

G: complete biorientation of G, 19

K n: complete digraph of order n, 27
p(x, y): number of arcs with tail x

and head y, 4
lic(u, v): number of edges between u

and v in G, 18
vo(D): maximum number of vertex-

disjoint cycles in D, 553
,(D): maximum number of vertex-
ae disjoint cycles in D, 553
G: complement of G, 18
Kn: graph of order n with no edges,

25
Z: negation of boolean variable x, 35
d(u): forefather of u, 180
™rso(a): proper FSO rank of x, 644
p(G): diammin(G) — diam(G), 67
p(D): minimum number of arcs

whose contraction in D
leads to a strong directed
multigraph, 401

o*(x): ot (x) — a (a), 646
at(x), ¢ (x): positive and negative

scores of x, 643
To(D): size of a minimum feedback

vertex set of D, 553
7(D): size of a minimum feedback

arc set of D, 553
T(D): size of a minimum dijoin of D,

400
Cn: directed cycle on n vertices, 12

P,,: directed path on n vertices, 12
a,(D): k-strong augmentation num-

ber of D, 368
ay: the number of edges, oriented

or not, which enter some

XE EDO.
b(v): balance prescription for the ver-

tex vu, 96

bp(q@): backward length of the order-
ing alpha, 645

bz: balance vector of the flow x, 96

bd(F’): boundary of face F’, 220
c(G): the number of connected com-

ponents of G, 447
c(Y): sum of costs/weights of arcs in

c(a): cost/weight of the arc a, 6
d(X,Y): d+(X,Y) +dt(Y, X), 346
ae degree of x, 19
d* (X,Y): number of arcs with tail in

X —Y and head in Y — X,

346
d}(X), p(X): number of arcs from

F that leave, respectively
enter, X, 476

dp(X): degree of X, 4

d}(X), d5(X): out- and in-degree of
Geer

d}(v),d; (v): ith out- and in-degree
of v in an arc-coloured di-
graph, 620

d;(v): jth degree of of v, 593
e(X1,X2): number of edges between

XK and X2, 504

eq(X): number of edges of G with at
least one end in X, 447

ey: number of edges connecting dif-
ferent sets of partition F,
451

f(X1, X2): sum of f-values over arcs
with tail in X, and head in
X2, 96

fp(q): forward length of the ordering
alpha, 645

g(D): girth of D, 11
g.(D): length of a shortest cycle

through v in D, 304
h(X,Y): number of vertices not in

the one-way pair (X,Y),
368

h(p): height of vertex p, 118
ig(X): number of edges of G with

both ends in X, 447

ig(D): global irregularity of D, 263
t,(D): local irregularity of D, 263

1(S, S): lower bound of the cut (5, S),
126

I;;: lower bound of the arc ij, 95
m(y, e): sum of values of y on sets sets

entered by the arc e, 530

mp(q): mutual length of ordering a,
645

p(D): period of D, 566
r(X): rank of X, 666
r*(X): dual rank of X, 668
r+(U): sum of function values of r on

arcs in (U,U), 451
r~(U): sum of function values of r on

arcs in (U,U), 451
rx(D): minimum number of arcs to

reverse in D to obtain a k-
strong digraph, 378

rij: residual capacity of the arc 77, 98

s(G): minimum number of steps for
gossiping in G, 81

sgn(P): — if P is an in-path and + if
P is an out-path, 322

u(S,S): capacity of the (s,t)-cut

(5,5), 108
uij: Capacity of the arc 77, 95

z(S,5): flow across the (s,t)-cut

(S,S), 109
z(uv): value of integer flow x on the

arc wv, 437

xz +2’: arc-sum of flows x and 2’, 104
x —y: x dominates y, 3

x > y: z is a descendant of y ina DFS
tree, 173

x* =x @z: adding the residual flow
£ to x, 105

a} ,x;: successor and predecessor of
Ti, 12

xij: flow value on the arc 17, 96
A(D): arc space of D, 546
C(D): cycle space of D, 546
C*(D): cocycle space of D, 547
De, Dg: classes of non-arc-pancyclic

arc-3-cyclic tournaments,

309
A= Pi ee UPC, UU Ge: q-

path-cycle subdigraph, 15

N(D): network representation of D,
348

N (a): residual network w.r.t x, 98

Symbol Index 721

N =(V,A,l,u,b,c): specification of
the flow network NV, 96

Ng: network corresponding to the bi-
partite graph B, 138

Ns = (V,A, f, 9, (B,b),c): submodu-
lar flow network, 457

Nag): admissible network with re-
spect to (a, @), 151

Q: set of rational numbers, 1

OQ: set of positive rational numbers,

Qo: set of non-negative rational num-

bers, 1

R: set of reals, 1

R-+: set of positive reals, 1

Ro: set of non-negative reals, 1

S <p T: S polynomially reducible to
T, 34

T*: set of second powers of even cy-
cles of length at least 4, 290

Ta, Je: classes of semicomplete di-
graphs, 290

Z: set of integers, 1

Z4: set of positive integers, 1

Zo: set of non-negative integers, 1

Prob(£): probability of the event EF,
550

diam(D): diameter of D, 47
diammin(G): minimum diameter of an

orientation of G, 63

dist (X1, X2): distance from X, to X2,
47

dist(z, y): distance from zx to y, 47

domn(A,n): domination number of
heuristic A for TSP prob-
lem of order n, 337

ext(X): set of elements each of which
can extend X to an inde-
pendent set, 668

in(D): intersection number of D, 217
Ic(D): length of a longest cycle of D,

577
Ip(D): length of a longest path in D,

435
Ip(G): longest path in G, 61
pcec(D): path-cycle covering number

pec*(D): 0 if D has a cycle factor and
pcc(D) otherwise, 331

pc(D): path covering number of D,
15

22 Symbol Index

pc,,(D): minimum number of paths in
a path factor which starts
at x, 283

pe*(D): 0 if D is hamiltonian and
pc(D) otherwise, 334

ph(D): pseudo-hamiltonicity number
of D, 232

pred(x): predecessor of x w.r.t a DFS
search, 172

qhn(D): quasi-hamiltonicity number
of D, 230

rad(D): radius of D, 47
rad" (D): out-radius of D, 47
rad (D): in-radius of D, 47

srad(D): strong radius of D, 64
texpl(z): time when z is explored by

a DFS search, 172
tvisit(x): time when z is visited in a

DFS search, 172
|D|: the order of the digraph D, 2
|S|: cardinality of the multiset S, 2
|z|: value of flow z, 100

co-N P: class of co-N’P decision prob-
lems, 33

NP: class of NP decision problems,
33

Author Index

Adam, A., 584
Aharoni, R., 503, 653

Aho, A.V., 29, 178

Ahuja, R.K., 95, 129

Aigner, M., 654

Ainouche, A., 240

Aldous, J., 95

Alegre, I., 59, 184, 188

Alon, N., 67, 143, 145, 276, 299, 396,

550-552, 555, 563, 571, 572,

582, 589, 616, 617

Alspach, B., 203, 310, 319, 322, 577

Alt. H., 139

Amar, D., 329

Anderson, A., 54

Apartsin, A., 652

Appel, K., 436

Aragon, C.R., 675

Arkin, E.M., 49, 569

Arts, E.H.L., 676

Assad, A.A., 521

Assous, R., 627

Ausiello, G., 35

Ayel, J., 259

Ayoub, J.N., 411, 582

Béhme, T., 500

Babel, L., 229

Baffi, L., 191
Balas, E., 83

Balcer, Y., 567

Balinski, M., 656

Bang-Jensen, J., 78, 93, 146, 167,

196-198, 200, 201, 203,

207-215, 217, 228, 237-240,

242, 244, 247, 250-256, 258,

264-270, 272, 277-279, 283,

284, 286-306, 312-317, 328,

331-336, 342, 362, 372, 379,

381, 394, 397, 420, 424,

427-430, 432, 468, 488-

497, 503, 509, 515, 518-

520, 522-527, 539, 554, 562,

599-603, 606-610, 614, 637,

661, 664, 679

Bankfalvi, M., 608

Bankfalvi, Z., 608

Barbut, E., 627

Barr, O., 615

Barthélémy, J.-P., 562

Baskoro, E. T., 60

Battista, G., 192, 221

Beck, J., 572

Beineke, L.W., 183, 184, 217, 607

Benkouar, A., 595, 615

Bennett, M.D., 632

Berge, C., 556, 650-652

Berman, K.A., 243

Bermond, J.-C., 187, 277, 295, 300,

307, 319, 500, 555, 582

Bertolazzi, P., 191

Bialostocki, A., 627

Bienia, W., 442

Boesch, F., 23, 352

Bollobas, B., 320, 328, 616

Bondy, J.A., 228, 234, 243, 248, 329,

435, 436, 547, 576, 577, 594

Boppana, R., 655

Borodin, O. V., 653

Boros, E., 652

Boyd, A., 80

Brandstadt, A., 415

Brassard, G., 29, 357

Bratley, P., 29, 357

Brewster, R.C., 663

Bridges, W.G., 59

Burkard, R.E., 83

Busacker, R.G., 134

Caccetta, L., 580

Camion, P., 16

Cao, F., 187, 189, 190

Carlier J., 83, 86

Cartwright, D., 25

Chang, G.J., 276

Chartrand, G., 562

Chen, C.C., 329, 330, 616

Chen, G.T., 329

Cheng, E., 367

Cheriyan, J., 122, 356, 405-407, 409

Cherkassky, B.V., 50

Chetwynd, A.G., 605, 606

Chow, W.S., 593

Chung, F.R.K., 23, 67, 411, 434

Chvatal, V., 63, 64, 249, 580, 650,

653, 665

724 Author Index

Cohen, R. F., 191
Cook, S.A., 34
Cook, W.J., 82, 113, 665
Cooper, C., 276
Coppersmith, D., 177, 551
Cormen, T.H., 29, 31, 32, 179, 543

Crescenzi, P., 35
Cunningham, W.H., 82, 113, 457, 665
Cybenko, G., 93

Dahl, G., 536
Dalmazoo, M., 382

Dankelmann, P., 393
Darbinyan, S.K., 241, 243, 295, 300
Darrah, M., 312
Das, P., 607, 609
Das, S., 217, 226
Daykin, D.E., 616
de Bruijn, N. G., 187
de la Vega, W.F., 558
de Werra, D., 424

Dean, N., 639
Deineko, V.G., 83, 84, 86
Delorme, C., 229
Deng, X., 421, 468
Di Battista, G., 191
Diestel, R., 442, 547

Dijkstra, E.W., 53
Dilworth, R.P., 236
Ding, G., 498
Dinic, E.A., 116, 515
Dinitz, J., 654
Dolan, A., 95
Dorninger, D., 593, 632, 634
Doroshko, N.N., 82-84

Dowsland, K., 675
Du, D.-Z., 184, 187, 189, 190, 275, 276
Duchet, P., 651, 652
IDYouat, MN, Sho, CPA, PAP, 2A
Duffin, R. J., 191, 194

Eades, P., 192, 221
Edmonds, J., 29, 114, 134, 138, 164,

451, 452, 460, 500-506, 527,
_ 671, 680

Ehrenfeucht, A., 422
Enni, S., 362, 376, 463
Erdos, 'P.7°235,° 275,321, 5725) 582.

608, 616, 665
Erisman, A. M., 221, 222, 224

Esfahanian, A.H., 356
Euler, L., 21
Even, G., 559

Even, S., 38, 122, 356, 503, 521, 612

Favaron, O., 330
Feldman, J., 536

Feller, W., 566, 637
Ferapontova E., 652

Fink, J:E., 270
Fiol, M.A., 59, 184, 188
Fisher, D.C., 639
Fisher, M.J., 177
Fleischer, L., 455
Fleischner, H., 21, 441, 442, 471, 595,

627
Floyd, E.L., 561
Floyd, R.W., 58
Forcade, R., 322
Ford, L.R., 95, 98, 109, 111, 356, 449
Fortune, S., 478, 485, 508, 510
Fraigniaud, P., 81

Fraisse, P., 315
Frank, A., 353, 359-374, 376, 377,

381, 383, 411, 412, 444 446,
448-467, 472, 503, 506, 507,
509, 516, 527-538, 541, 561

Frankl, P., 627
Fredman,'M.L., 54, 552
Frieze, A., 276
Fris, I., 60
Frisch, I.T., 411, 582
Fujishige, S., 453, 455, 457, 459, 461
Fulkerson, D.R., 95, 98, 109, 111, 356,

449, 527, 535, 544
Funke, M., 558
Furman, M.E., 177
Furedi, Z., 61

Gabow, H.N., 357, 362, 422
Gale, D., 127, 656

Galeana-Sanchez, H., 424, 650, 651
Galil, Z., 356
Gallai, T., 234, 330, 435, 561
Galluccio, A., 568-571, 589
Galvin, F., 656
Gambosi, G., 35
Garey, M:Ri* 235°33,738, 62, 01.0176.

227, 411, 554, 586
Gavril, F., 424, 427, 554
Geller, D., 562
Gerards, A.M.H., 433, 434, 468
Germa, A., 582
Ghouila-Houri, A., 61, 241, 416
Giglio, M.C.M.T., 487, 539
Giles, R., 451, 452, 460
Glover, F., 83, 84, 86, 337, 338

Goddard, W.D., 76, 434, 576

Goddyn, L., 442

Goemans, M.X., 563
Goldberg, A.V., 50, 118, 134

Goldberg, M.K., 60, 61

Golumbic, M.C., 218, 415, 418

Gondran, M., 521

Goralcikova, A., 177

Gould, R., 329

Gowen, P.J., 134
Grotschel, M., 273, 370, 455

Grotzsch, H., 469

Griinbaum, B., 322

Greger, B., 279

Grinberg, B.Y., 584
Grossman, J.W., 597, 636
Grétschel, M., 558
Guo, Y., 203, 209-214, 244, 251, 263,

289-294, 300, 303-306, 311,
328, 397, 574, 576

Gurvich, V., 652
Gutin, G., 42, 61, 67-69, 76, 79, 81-

84, 86, 87, 93, 145, 146,
167, 201, 203, 209-215, 217,

228-233, 238, 240, 242, 244,
247, 250-256, 258, 264-270,
272, 276-280, 283, 284, 286,
287, 294, 299, 301, 303-
306, 312-317, 337, 338, 341,
342, 394, 526, 575, 577, 589,
599-603, 606-610, 614, 616,
620, 621, 624, 627, 631, 637,
638, 648, 678

Gutjahr, W., 659, 660
Gvozdjak, P., 442
Gydarfas, A., 561

Hagekvist, R., 229, 246, 252, 300,
319, 320, 580, 592, 593, 597,
604, 605, 609, 636, 642, 660

Habib, M., 179
Hagihara, K., 371
Hajnal, A., 80
Haken, W., 436
Hakimi, S.L., 356
Hall, P, 140
Hamidoune, Y.O., 392, 580
Hansen, S., 676, 677
Harant, J., 500
Harary, F., 25, 182, 185, 195, 218,

273, 413
Havet, F., 322-326, 639
Hedetniemi, S.M., 81

Author Index 725

Hedetniemi, $.T., 81, 562
Hell, P., 187, 239, 240, 325, 418, 420,

421, 468, 659-663, 679
Hemminger, R.L., 183, 184
Hendry, G.R.T., 308, 309, 341
Henzinger, M.R., 357
Heslop-Harrison, J.S., 632
Heuchenne, C., 182
Heydemann, M.-C., 243, 326, 483,

539, 582
Hilton, A.J.W., 605, 606
Hoang, C.T., 580, 581
Hoffman, A.J., 126

Holzman, R.., 653

Hopcroft, J.E., 29, 220, 478, 485, 508,
510

Horak, P., 61

Hromkovié, J., 81

Hsu, D.F., 18455187, 189; 190, 275;
276

Huang, J., 78, 93, 196, 197, 201, 203,

204, 239, 240, 247, 252-256,
258, 265, 266, 278, 279, 286,
287, 294, 301-303, 334, 397,
418-432, 467, 468, 523, 526

Hudry, O., 562
Hwang, F.K., 190, 275, 276

Ibaraki, T., 357, 358, 455, 513, 514,
516

Imase, M., 188, 190

Imori, M., 308
Isaak, G., 562
Itai, A., 38
Itoh, M., 190
Iwata, S., 455

Jackson, B., 146, 246, 279, 319, 361,
395, 458, 462, 503, 509, 664

Jacob, H., 653
Jaeger, F., 440, 442
Janssen, J., 655
Jensen, T.R., 436, 442
Jewell, W.S., 134
Jirdsek, J., 586
Johnson, D.B., 91
Johnson, D.S., 33, 38, 62, 82, 227,

554, 586, 675
Johnson, T., 517
Jordan, T., 362, 367-374, 376, 377,

379, 390
Jung, H.A., 482
Jiinger, M., 558

726 Author Index

Konig, D., 25, 139, 167
Konig, J-C., 72, 79
Kabadi, S., 337

Kabell, J. A., 218
Kann, V., 35

Kano, M., 643, 645-649
Karp, R.M., 34, 114, 134, 164, 436,

554
Karzanov, A.V., 515
Kelly, P.J., 319
Kemeny, J.G., 566

Kemnitz, A., 279
Khuller, S., 405, 406
Klasing, R., 81
Klein, M., 132
Kleitman, D., 434
Knuth, D.E., 175

Kocay, W., 139
Koh, K.M., 69, 71-73, 76, 79, 571
Komlos, J., 552 5

Korst, J.H.M., 676

Kostochka, A. V., 653
Kotzig, A., 318, 594
Koubek, V., 177
Krarup, J., 195

Krumme, D.W., 72, 79, 93
Kubicki, G., 76
Kuhl, J. G., 190
Kuhn, W.H., 154

Kumar, M.P., 161
Kunth, D.E., 567
Kunzmann, A., 553
Kuratowski, C., 220
Kwak, J.H., 576

Landau, H.G., 74, 447

Las Vergnas, M., 235

Lawler, E.L., 58, 82, 191, 194, 195
Lazard, E., 72, 79, 81

Leiserson, C.E., 29, 31, 32, 179, 543,
553

Lenstra, J.K., 82
Lesniak-Foster, L., 275

Levin, L.A., 34
Lewin, M., 277, 294
Li, H., 240, 242, 244, 247, 277, 329
Li, X., 650
Liestman, A., 81
Linial, N., 356, 572, 589
Little, C.H.C., 328, 607
Lius J, 582
Liu, X., 187, 243
i eYe- ol

Lloyd, E.K., 21
Loebl, M., 568-571, 589
Lovasz, L., 63, 352, 356, 370, 401,

443, 455, 501, 653
Lucchesi, C.L., 401, 487, 539, 559
Lynch, J.F., 482, 498

Lyuu, Y.-D., 184

Miller, H., 218, 219
MacGillivray, G., 661, 663
Mader, W., 360, 362, 382, 383, 386,

387, 389-391, 443, 444
Maehara, H., 426

Maffray, F., 653, 657
Magnanti, T.L., 95, 129

Maheshwari, S.N., 122, 161
Malhotra, V.M., 161
Manalastras, P., Jr., 329, 330
Manoussakis, Y., 243, 252, 277, 289,

295, 297, 312, 327, 483, 593,
595, 609, 615, 616

Marchetti-Spaccamela, A., 35

Marcus, D.A., 583
Mashall, S., 627
Masuzawa, T., 371
Matsumoto, M., 308
Maurer, H. A., 659, 660
May, D., 81
McCanna, J.E., 72
McConnell, R.M., 422
McCuaig, W., 563, 568
McDiarmid, C., 555, 571
McGeoch, L.A., 82, 675
McMorris, F. R., 218
Megalakaki, O., 593
Mehlhorn, K., 139, 177
Meng, J.-H., 243, 277
Menger, K., 353
Metzlar, A., 487
Meyer, A.R., 177
Meyniel, H., 242, 653
Milgram, A.N., 234
Miller, D., 660
Miller, M., 60
Milner, E. C., 80
Minoux, M., 521
Minty, G.J., 436
Molloy, M., 276, 555
Monien, B., 81
Monma, C.L., 191
Moon, J.W., 16, 75, 92, 309
Morgenstein, O., 651, 678
Morris, A.O., 546
Morvan, M., 179, 418

Muller, J.H., 418
Murty, K.G., 95
Murty, U.S.R., 547, 594

Nagamochi, H., 357, 358, 455, 516
Naor, J., 559

Nash-Williams, C.St.J.A., 244-246,
443-445, 504, 505

NeSetril, J., 659, 661-663
Neuman-Lara, V., 651, 660

Ng, L.L., 319
Nishimura, T., 581
Norman, R.Z., 25, 182, 185

Oellermann, O.R., 76, 576
Okada, K., 188, 190
Olsen, C., 674, 676
Ordaz, O., 146, 229
Ore, O., 143
Orlin, J.B; 95) 129
Overbeck-Larisch, M., 243, 295, 340

Pan, L., 627
Papadimitriou, C.H., 36, 38, 49, 158,

550, 569, 600, 673
Pareek, C.M., 61
Paschos, V., 595, 615

Paul, M., 139
Peine, R., 81

Pekéc, A., 445
Penn, L.E., 584
Perl, Y., 484
Petersen, J., 434, 593

Petreschi, R., 191
Petrovic, V., 76, 78

Pevzner, P.A., 593, 595
Peyrat, C., 187
Pinkernell, A., 576

Plesnik, J., 59, 60, 66, 68, 69, 79
Plummer, M., 352
Poljak, S., 513-515
Potts, C.N., 83
Pradhan, D.K., 187, 190
Prisner, E., 184, 201, 239, 415, 424,

427-429
Protasi, M., 35
Pulleyblank, W.R., 82, 113, 665
Punnen, A.P., 83, 84, 337
Poésa, L., 245

Queyranne, M., 455
Quiroz, D., 229

Rédei, L., 14

Author Index 727

Radhakrishnan, J., 572

Rado, R., 668

Radzik, T., 50
Raghavachari, B., 405, 406
Ramachandran, V., 561

Rampon, J.-X., 179
Ramsey, F.P., 563

Raowomoor

Raspaud, A., 329

Ratier, G., 656
Rattner, J., 81

Recski, A., 665, 670
Reddy, S. M., 190
Reed, B., 562, 563, 565, 580, 581
Reeves, C.R., 677
Reidw Kerr 2 1a 222224
Reidy KeBey(onOsd20-n44 ie Olm
Reif, J.H., 356
Reinelt, G., 82, 558
Rendl, F., 191
Richards, P.I., 182
Richardson, M., 651

Rinooykan, A.H.G., 82
Rivest, R.L., 29, 31, 32, 179, 543
Robbins, H.E., 20, 79, 352
Roberts, F.S., 71, 79, 562
Robertson, N., 482, 562, 565, 568
Rosenfeld, M., 322, 325
Roy, A.B., 217, 226
Roy, B., 435
Rubinstein, A., 643
Ruhl, M., 536

Saad, R., 595, 601, 608, 615
Sabidussi, G., 595
Sakamoto, A., 643, 645-647
Samathan, M. R., 187
Sanyal, B.K., 218
Sarvanoy, V.I., 82-84
Saxe, J.B, 553
Schevon, C., 675
Schieber, B., 559
Schmidt, J.P., 552
Schnorr, C.-P., 356
Schrijver, A., 82, 113, 370, 453, 455,

461, 498, 508, 510, 665
Schwenk, A., 195
Sebé, A., 442
Sen, M.K., 217, 218, 226
Seymour, P.D., 441, 442, 482, 498,

515, 517, 559, 561-563, 565,
568, 570, 639

Shamir, A., 38

728 Author Index

Shapley, L.S., 656
Shearer, J., 616
Shepherd, F.B., 433, 468, 563

Shiloach, Y., 482, 484, 508
Shmoys, D.B., 82, 559
Sidney, J.B., 191
Siegel, A., 552, 655
Simon, K., 177, 179
Simonetti, N., 83

Skiena, S.S., 58
Skrien, D., 420, 426
Snell, J.L., 566
Soffa, M.L., 561
Soltés, L., 67
Soneoka, I., 188, 190
Song, Z.M., 300, 327, 329
Sopena, E., 663 ;
Sotteau, D., 319, 326, 483, 539, 582
Speckenmeyer, E., 664
Spencer, J.H., 67, 276, 571, 582, 617
Spinrad, J., 418
Spyratos, M., 593, 615, 616
Srinivasan, A., 572
Steiglitz, K., 36, 38, 158, 600, 673
Steiner, G., 191
Stockmeyer, L., 38
Stone, D., 139
Straight, H.J., 322
SW kedlog LON.
Sudakov, B., 620, 621, 624

Sudan, M., 559
Sudborough, J. H., 659, 660
Sullivan, $.J., 422
Sumner, D.P., 642
Szekeres, G., 235
Szemerédi, E., 80, 552, 580
Szigeti, J., 437
Szwarcfiter, J.L., 561

Tabib, C., 203
Tamassia, R., 191, 192, 221

enn, 13327, CRS), Yo
Tardés, E., 134, 459
Tarjan, R.E., 23, 54, 67, 118, 122,

134, 139, 179, 191, 194, 195,
220, 227, 411, 527

Tarsi, M., 442

Tay, E.G., 69, 71-73, 79
Teo, K., 328

Tesman, B., 562
Tewes, M., 251, 263, 306, 577, 589
Thomas, R., 562, 565, 568
Thomason, A., 322, 326, 642

Thomassé, S., 235, 322-325, 639
Thomassen, C., 63, 64, 76, 78, 243,

DIES PMs CIMA, PAT, PASE
293, 295, 297, 299, 300, 307,
SIO nsI2nS LAR lipolOSo zi,
326, 327, 391, 395, 397, 482,
485-490, 493, 500, 503, 515,
522, 526, 548, 549, 554, 555,
562, 568, 570, 571, 581-584,
586, 588, 620, 664

Thorup, M., 54
Thurimella, R., 405-407, 409

Tian, F., 309
Tien, Seibe. 74s,
Tillson, T.W., 319
Timischl, W., 593
Tindell, R., 23, 352
Toft, B., 436, 442
Tokura, N., 371
Toledano Laredo, V., 424
Tollis, I.G., 191, 192, 221
Tong, L.D., 276
Toueg, S., 59

Mrotter lea Dio
Tutte, W.T., 438, 441, 500, 504
Tuza, Z., 318, 436, 437, 593, 615, 616

Ullman, J.D., 29, 178
Urrutia, J., 424, 427

Valdes, J., 191, 194, 195
van de Velde, S.L., 83
Veblen, O., 318

Veinott, A.F., 567
Venkataraman, K. N., 93
Viennot, L., 418
Villon, P., 83, 86
Vince, A., 435
Vitaver, L.M., 435

Voigt, M., 615, 616
Volkmann, L., 23, 41, 203, 209-214,

228, 251, 263, 278, 289-292,
303-307, 327, 328, 393, 574,
576, 577

von Neumann, J., 650, 678

Wang, C., 561
Wang, H., 328
Wang, J.Z., 327
Warshall, S., 58
Wegner, E., 595
Welzl, E., 659-661
West;sD.B:y 92187, 217.- 2185 226,

243

Wigderson, A., 356
Williamson D., 563
Wilson, R.J., 21
Winograd, S., 177, 551
Witte, D., 584
Woeginger, G.J., 83, 84, 86, 229, 659,

661
Woodall, D.R., 242, 593, 653
Wu, Z.S., 309
Wunderlich H.J., 553
Wyllie, J., 478, 485, 508, 510

Xu, J.M., 393
Xu, Y., 71, 79

Yamada, H., 308
Yannakakis, M., 143, 550, 569
VAG ler O2
Yebra, J.L.A., 59, 184, 188
Yeo.A:, 76; 79, 61,83, 86,87, 143,

145, 146, 229-233, 244, 247,
250-253, 259, 261-263, 276,
Paes). PEe\N), BG Seal, SP Aey

Author Index 729

331-339, 342, 394, 577, 586,
589, 597, 603, 614, 620, 621,
624, 627, 631, 633, 634, 637,
638, 648, 678

Young, N., 405, 406

Younger, D.H., 401, 442, 561

Youngs, D.A., 436
Yuster, R., 550-552

Zadeh, N., 116

Zamfirescu, C.M., 217
Zhang, C.Q., 309, 312, 319
Zhang, K.-M., 279, 327, 341, 627
Zhao, L.-C., 243, 277
Zhou, G., 279, 627
Zhou, H.S., 582, 663
Zhu, X., 61
Zhu, X.D., 660, 663
Ziegler, G., 396, 654
Znam, S., 59, 60
Zverovich, A., 83, 338
Zwick, U., 550-552

om oot. Ta alhedi¥
Jj Ty?) AG ave

4 : i0/® Hodet=sbasW
aS We he ‘Te t jruly dé

D tise Tan, Be aE
$M gant. a 2) fit

nots 7 . » a ite wal
i whew soul

f 7th Oy

ea. eT : of} O35 A At ds
ete me, ek 5 ap 1 4 all Pa, oa a +1

' = we “ ~ Rx ~~ »’ = 2 Af ; et a =— ’ nz ¢ z

2.1) be, & abahecunr’t. ee irene be a
af eee oblek-- Lo) Tig- nye fue oar

as

,

oJ
> . 5 * i

ey ees Pa | | an, Xe St
é eo» of : B a. ‘Ath: y? By au “ey,

_ aa Oe ; m _« ’ = 7 .

_ Dea a tid at *_ 7 ‘

; ee: Se : a | w

Subject Index

abelian group, 438

acyclic digraph, 13, 52, 89, 122, 175,

OM Orel O lomealione 22 fs
235-237, 259, 276, 277, 284,
293, 335, 341, 372, 405, 411,
434, 484-487, 510, 640, 651,
664, 678, 679

acyclic independence number, 664

acyclic ordering, 13, 175, 176, 179,
285, 291, 640

unique, 39

acyclic ordering of strong compo-
nents, 17

acyclic orientation, 468

acyclic spanning subdigraph, 551

acyclic subdigraph, 558

acyclic subdigraph problem, 44, 557,
587

Adém’s conjecture, 584

ADC problem, 620

adjacency list, 30

adjacency list representation, 30, 43

adjacency matrix, 30

adjacency matrix representation, 30

adjacent vertices, 2, 18

admissible network with respect to
primal/dual solutions, 151

admissible pair, 359

algorithms and their complexity, 29-
32

all trail problem, 512

almost all, 276

almost balanced orientation, 470

almost regular digraph, 319

almost transitive tournament, 320

alternating cycle in a 2-edge-coloured
graph, 620

alternating cycle in an arc-coloured
directed multigraph, 625

alternating cycle subgraph

irreducible, 611
alternating cycle through a pair of

vertices, 592

alternating directed trail, 621
alternating Hamilton cycle, 605, 606,

608, 609

alternating Hamilton cycle in a 2-
edge-coloured complete bi-
partite multigraph, 605

alternating Hamilton cycle problem
in 2-edge-coloured graphs,
592

alternating Hamilton cycles in genet-
ics, 632-636

alternating Hamilton path, 607

alternating trail in a 2-edge-coloured
multigraph, 592

alternating-pancyclic 2-edge-colou-
red multigraph, 593

anti-directed cycle, 389
anti-directed path, 321

anti-directed trail, 389, 407
sink of, 389

source of, 389

antichain of a partial order, 236
antichain of family of sets, 67
application of flows, 137-158, 236,

271, 286, 342, 348, 355-357,
366, 407, 410, 411, 413, 446,
449, 471, 473, 528

approximation algorithm, 405, 406,
558

feedback arc set problem, 559
for MSSS problem, 405

f(n)-approximation algorithm, 559
arborescence, 476
arc, 2

k-critical, 373, 389
backward with respect to an or-

dering, 557
cost, 6
forward with respect to an or-

dering, 557
head, 2
leaving a set, 346
of a hypertournament, 627

ordinary, 317
tail, 2

tight, 454
weight, 6

arc reversal, 6
effect on vertex-strong connec-

tivity, 378-381
semicomplete digraph, 379

732 Subject Index

increasing arc-strong connectiv-

ity, 381, 459
partial, 430
tournament, 381

versus augmentation, 380
arc space of a directed graph, 546
arc-k-cyclic, 309
arc-3-cyclic tournament, 309

arc-disjoint hamiltonian path
and cycle, 320

2-arc-coloured digraph, 549
arc-coloured directed multigraph,

620-627
2-arc-coloured tournament, 623

k-arc-cyclic, 476
2-arc-cyclic

locally tournament digraph, 493
semicomplete digraph, 493

arc-disjoint
(s,t)-paths, 353

(x, y),-(y, z)-paths, 519
branchings, 357
cycles, 12
hamiltonian cycles, 318
hamiltonian path and hamilto-

nian cycle, 320

paths, 12, 348
arc-disjoint (ti,t2)-linking problem,

509
arc-disjoint k-path problem, 507-521
arc-disjoint 2-path problem, 522

semicomplete digraphs, 519
arc-disjoint branchings, 500-506, 540
arc-disjoint in- and out-branchings,

522-527
effect of arc-strong connectivity,

526, 527
polynomial algorithm for tour-

naments, 525
root s adjacent to all of V(D) —

8, 523

tournaments, 524

k-arc-disjoint out-branchings
orienting a graph to have, 472
orienting a mixed graph to have,

472
arc-disjoint paths, 476, 507-521

acyclic digraphs, 510
eulerian directed multigraphs,

511-517
generalizations of tournaments,

517-521
arc-induced subdigraph, 5

arc-locally tournament digraph, 278
arc-pancyclic digraph, 309-312

locally tournament digraph, 311
regular tournament, 310

tournament, 310
k-(S,T)-arc-strong, 376
k-arc-strong, 17
arc-strong connectivity, 17, 345-414

algorithms, 355
certificate, 408
versus minimum degree, 392

arc-strong connectivity augmenta-

tion algorithm, 365
k-arc-strong in V, 359
k-arc-strong orientation

converting between two orienta-
tions, 471

of a mixed graph, 472
arms of chromosome, 632

ASP digraph, see arc series-parallel
digraph

assignment neighbourhood, 85
assignment problem, 147-158

complexity, 154
AT-minimial, 515
AT-problem, 512

augmenting, 390
(S,T)-are-strong connectivity,

376
algorithm for, 376

(s,t)-flow along a path, 109
arc-strong connectivity, 362-367

with vertex-weights, 366
with weights, 366

connectivity of a graph, 390
set of arcs, 362

strong connectivity, 367
by one, 371

strong connectivity optimally
algorithm for, 370

successive arc-connectivity aug-
mentation property, 367

the number of arc-disjoint out-
branchings from a root s,
410, 528, 536

at minimum cost, 542
vertex-strong connectivity

of acyclic tournaments, 411
of an acyclic digraph, 372
of an in-branching, 371
semicomplete digraphs, 373
tournaments, 372

augmenting cycle, 131

augmenting path, 109
capacity of, 109
maximum capacity, 164

augmenting path with respect to a
matching, 602

augmenting set of arcs, 380
automorphism of a digraph, 338
average cost of a hamiltonian cycle,

337

backward arc on an augmenting path,
109

backward arc with respect to an or-
dering, 14, 557, 674

backward length of an ordering, 645
backward optimal ordering, 645, 648
bad vertex with respect to a local me-

dian order, 641
balance vector of a flow, 96, 438
balance vector of a network, 96

balanced edge, 421
Balcer-Veinott algorithm, 567, 588
base of a matroid, 665

BB-correspondence, 604

BD-correspondence, 604
Bellman-Ford-Moore algorithm, 55-

58, 90
BFS, see also breadth-first search
BFS tree, 82
BFS tree from a root s, 51
bi-submodular function, 413
biorientation of a mixed graph, 23
bipartite, 659
bipartite digraph, see also semicom-

plete bipartite digraph, 25
versus bipartite 2-edge-coloured

graph, 604
bipartite graph, 25, 417, 420

matching, 137
maximum matching, 137
perfect matching, 140, 143
regular, 167
vertex cover in, 139

bipartite representation, 25, 143, 407,

413
bipartite tournament, see also semi-

complete bipartite digraph,
27, 63, 64, 68, 252, 289, 327,
341, 434, 607

bivalent digraph, 565

block, 428
(n1,...,Np)-block-triangular — struc-

ture, 222

Subject Index 733

blocking flow, 116
boolean matrix multiplication, 550

boolean multiplication, 36
boolean variable, 35
branching, 19
branchings

arc-disjoint, 357, 500-506

arc-disjoint in- and _ out-
branchings, 522-527

minimum cost branchings, 527—
535

breadth-first search, 50-52

bridge of a graph, 19, 273, 352

bridgeless graph, 599, 636
buildup algorithm for minimum cost

flows, 135, 271
buildup theorem for minimum cost

flows, 135
C-bypass, 237

Caccetta-Haggkvist conjecture, 580
cactus, 428

Camion’s theorem, 16, 239
capacity

of an (s,t)-cut, 108
of an arc, 95

of an augmenting path, 109
Cartesian product of digraphs, 9, 275
Cartesian product of sets, 2
catch digraph, 426
certificate

for k-(arc)-strong connectivity,
404—409

for an instance of a decision
problem, 33

for strong connectivity, 351
via contraction, 405

for vertex-strong connectivity,
407

chain of a partial order, 236
Chinese postman problem, 141
chord of a subdigraph, 5
chordal graph, 218, 416, 428
chromatic index, 654

chromatic number of a (di)graph, 22,
435, 652

chromosome arrangement, 632
circuit axioms for a matroid, 680
circuit matroid, 666

circuit of a matroid, 665
circular arc graph, 415, 428
circular digraph, 652
circulation, 101, 437, 451

734 Subject Index

decomposition into cycle flows,
105

feasible, 125
reducing (s,t)-flow to, 101

clause, 35

size, 35
closed pth in-neighbourhood, 46
closed pth out-neighbourhood, 46
closed walk, 10
closeness among polygonal paths, 499

co-NVP, 44
co-disjoint sets, 456
co-pair, 69

co-triple, 69

cocircuit of a matroid, 668
cocycle, 547
cocycle space of a digraph, 547 €

dimension, 547

colour-coding, 551 !
colour-connected 2-edge-coloured

multigraph, 601, 606, 608
colour-connected pair of vertices, 601
colour-connectivity

checking in polynomial time,
601

colour-isomorphic edge-coloured
multigraphs, 593

k-colourable graph, 658
colourful path, 551
colourful set, 551
colouring, 22
k-colouring, 435
colourings and orientations, 435
comparability graph, 416

recognition, 416
comparable elements with respect to

a partial order, 236
complement of a proper circular arc

graph, 422
complement of an undirected graph,

18
complementary cycles, 326

bipartite tournaments, 327
containing prescribed vertices in

- tournaments, 328

locally semicomplete digraph,
328

multipartite tournaments, 327
tournaments, 327

complementary slackness condition,
530, 532

complete p-partite graph, 25
complete biorientation, 19, 395, 570

vertex-strong connectivity of,
411

complete biorientation of a mixed
graph, 23

complete bipartite graph, 654

complete digraph, 16, 27

complete graph, 25
complete multipartite graph, 25

composition of digraphs, 8
composition of graphs, 22, 422

Conjecture, 244-246, 294, 298, 299,
307, 312, 314, 317-319, 321,
327-330, 336, 372, 380, 381,
387, 391, 396, 428, 441, 446,
492, 493, 514, 526, 527, 555,
614, 617, 639, 642, 661, 665

connected (g, f)-factor, 280
connected component, 19
connected digraph, 19
connected graph, 19
k-connected graph, 19
consecutive-d digraph, 190
consistent cycles, 329

spanning pair of, 329
construction heuristic for TSP, 83

contraction, 229, 515
of a subdigraph, 7
of an arc, 401, 486, 513, 515
of an edge, 358
of cycles, 405

convenient multigraph, 601

converse of a digraph, 201, 384
converse of a directed multigraph, 7
core of a digraph, 659, 662, 679

cost

of a path/cycle, 131
of an arc, 6, 95

cover of a family of sets, 2
covering a set by a family of sets, 537
covering by out-arborescences, 506
covering vertices by cycles, 326-331
critical 2-cycle, 399
critical colour with respect to a PC

trail, 595
critical kernel-imperfect, 651
critical set, see k-critical set, 537
k-critical set, 359

critical vertex
in a digraph, 391
in a tournament, 391

critically k-strong digraph, 391-392
degrees of vertices in, 392

cross-free family, 346

crossing

dicuts, 402

family, 346
crossing G-supermodular function,

450, 463
crossing chords of a cycle, 429
crossing dicuts, 402
crossing family of pairs of sets, 413
crossing pair, 452

crossing paths, 499
crossing submodular function, 452,

458
cubic graph, 469
cubic multigraph, 439
cut), 17

s-cut, 534

(s,t)-cut in a graph, 347
(s,t)-cut in a network, 108

minimum, 109

cut set, 17

(t1,t2)-cut condition, 509
cutset of a matroid, 668
cycle, see also walk, closed, 11

1-maximal, 44

algorithm for finding a cycle of
prescribed length, 551

alternating, 592
augmenting, 131
chord, 583
disjoint, see disjoint cycles in a

digraph
even, 11

even cycle problem, 568
extendable, 308
length, 11
longest, 11
mean cost of a cycle, 134
modulo k, 589

negative, 46
odd, 11
odd through a fixed arc, 588
of length O(log n), 550
of length k Modulo p, 567-573
of length 0 (mod q), 572
of minimum mean cost, 134

ordinary, 203
oriented, 19
shortest, 11, 92

through a vertex, 11
k-cycle, 11

finding one fast, 550
cycle canceling algorithm, 132, 167
cycle extendable digraph, 308

Subject Index 735

almost complete digraph, 308

locally semicomplete, 341
regular tournament, 341
round digraph, 341
weakly, 341

cycle factor, 15, 244, 250-269, 331,
665

complexity of finding, 145
existence of, 143

good, 255-259
in regular directed multigraph,

168
sufficient condition in terms of

independence number, 146
k-cycle factor, 328

with prescribed cycle lengths,
329

2-cycle factor, see complementary cy-
cles

cycle flow, 104
cycle space of a digraph, 546, 586

dimension, 547
strong digraph, 547

cycle space of a tournament, 548
cycle subdigraph, 15

covering a prescribed vertex set,
146, 147

covering specified arcs, 411
of maximum cardinality, 145

t-cycle subdigraph, 15
cycles avoiding prescribed arcs

versus cycles containing pre-
scribed arcs, 317

cyclic connectivity of a 2-edge-
coloured multigraph, 602

cyclic digraph, 330

k-cyclic digraph, 263, 476

cyclically connected digraph, 40
cyclomatic number, 330

Dag, see acyclic digraph
k-dangerous set, 471
de Bruijn digraph, 187-190, 308
decision problem, 33
decomposable digraph, 284

connectivity properties of, 393

MSSS problem, 336
@-decomposable digraph, 8
decomposition

into arc-disjoint hamiltonian cy-
cles, 318

of A(Kn) into arc-disjoint
hamiltonian cycles, 319

736 Subject Index

of the arc set of regular tourna-
ments, 319

é-decomposition of a digraph, 9
decomposition of a graph into cliques,

422
decreasing subsequence, 235
deficiency

of a family of one-way pairs, 369
of a one-way pair, 368

degree of a vertex
in a digraph, 4
in a graph, 19

jth degree of a vertex, 593
degree-constrained digraphs and

hamiltonian cycles, 240-
250

degrees ms
digraphs with bounds on de-

grees, 413

deleting multiple arcs, 6
deletion

of a subdigraph from a digraph,
7

of arcs from a digraph, 7
of vertices from a digraph, 7

demand arc, 512
demand directed multigraph, 512
density of a digraph, 582

dependent set of a matroid, 665
depth-first search, 172-176

explored vertex, 172
tree arc, 172

unvisited vertex, 172

visiting a vertex, 172
derandomizing, 552
descendant in a DFS tree, 173
DFS, see also depth-first search, 179,

180
DFS forest, 173
DFS tree, 173

backward arc, 173
cross arc, 173

descendant of a vertex in, 173
root of, 173

DHM-construction, 609

diameter, 47, 59-74, 79

maximum finite diameter, 61
minimum in orientation, 63

Moore bound on number of ver-
tices, 59

diameter versus degree, 187
dicut, 400

arc-disjoint, 401

crossing dicuts, 402

difference between to sets, 1

digraph, 2

digraph corresponding to instance of
2-SAT, 36

Dijkstra’s algorithm, 53-54, 90
dijoin, 401
Dilworth’s theorem, 236

dimension
cocycle space of a digraph, 547

cycle space of a digraph, 547
3-dimensional matching problem, 586
Dinic’s algorithm, 116

for simple networks, 125

on unit capacity networks, 123

Dinitz conjecture, proof using ker-
nels, 654-657

directed cut, see dicut

directed dual of a planar digraph,
560, 587

directed graph, see also digraph, 2
directed multigraph, 4
directed pesudograph associated with

a Markov chain, 566
period, 566

directed pseudograph, 4, 555

directed Steiner problem with con-
nectivity constraints, 536

disjoint cycles, 553-565, 588

in digraphs of high minimum
out-degree, 554

versus feedback sets, 561
disjoint cycles containing specified

vertices, 539

disjoint path problem, 477-500
acyclic digraph, 341

disjoint paths, 476
disjoint sets, 1

distance classes from a vertex, 51
distance from a set to another, 47

distance from a vertex to another, 47
distances

acyclic digraphs, 52

algorithms for finding, 50-59
Bellman-Ford-Moore algorithm,

55-58
Dijkstra’s algorithm, 53-54
in complete biorientations, 54

dominated, 3

dominated pair of vertices, 240
dominates, 3

dominating pair of vertices, 240

domination number of a heuristic for
ANSE, Sei

dual of a matroid, 667

dual of the restricted primal problem
of transportation problem, 150

dynamic programming, 551

ear composition, 566

ear decomposition, 332, 349, 547

linear algorithm for, 351
non-trivial ear, 350

trivial ear, 350

edge of an undirected graph, 18
2-edge-coloured bipartite multigraph,

604-607
2-edge-coloured complete multi-

graph, 607-613

edge-coloured multigraph, 592
c-edge-coloured multigraph, 592
edge-colouring, 439

of a cubic multigraph, 439
k-edge-connected, 19, 443
k-edge-connected in V, 443
edge-connectivity, 357

algorithm to determine, 357
edge-cover, 406
edge-disjoint 2-path problem, 516
edge-disjoint mixed branchings, 506
edge-disjoint spanning trees, 504
edge-disjoint trees, 540
edge-dominates, 614
Edmonds’ branching theorem, 357,

382, 501-506, 508, 509, 528,
540, 541

generalization of, 503
Edmonds-Giles theorem, 452

electronic circuit design, 553
element of a directed pseudograph, 6
elementary operation, 29
ellipsoid method, 370, 455
embedding of a planar (di)graph in

the plane, 219
end-extendable path, 276

end-vertex of a walk, 11
end-vertex of an arc, 2

entering arc, 2
essential set, 376
Euler trail, see eulerian trail

properly coloured, 594
Euler’s formula, 220
Euler’s theorem, 21
eulerian arc-coloured directed multi-

graph, 621, 627

Subject Index (faith

eulerian arc-disjoint k-linking prob-
lem, 512

eulerian arc-disjoint linking problem,
512

eulerian directed multigraph, see also
regular digraph, 12, 21,
135, 141, 159, 262, 362, 409,
511-517, 541, 555

decomposition into cycles, 159
eulerian graph, 444

eulerian multigraph, 442
eulerian orientation of a mixed graph,

449
eulerian subgraph, 440

eulerian trail, 12, 43
even cycle, 11, 25, 432, 620

in a k-regular digraph, 572
oriented graphs with many arcs,

434
even cycle problem, 568
even digraph, 570
even pancyclic, 341
even pancyclic bipartite tournament,

341
even vertex with respect to a cycle,

87
even vertex-pancyclic digraph, 341
extended -digraph, 9
extended locally in-semicomplete di-

graph, 226, 264, 265, 518,

519
extended locally out-semicomplete

digraph, 283
extended locally semicomplete di-

graph, 215, 264-265, 279,
282, 284

extended semicomplete digraph, 28,
196, 215, 237, 252, 257, 258,
282, 287, 299-301, 332-336,
341, 343, 496

hamiltonian cycle, 252
longest cycle, 252
MSSS problem, 333

polynomial algorithm, 333
extended tournament, 282, 286-288,

294, 400
hamiltonian [z, y]-path, 286

algorithm, 287
proof using the structure of, 282
weakly hamiltonian-connected,

287
extension closed class of digraphs, 9
extension of a digraph, 9

738 Subject Index

extension of a graph, 22
extension-closed class of digraphs, 28

face of a plane (di)graph, 219
facial cycle, 486, 559
factor of a digraph, 5
family

(S,T)-independent, 376
cross-free, 346, 383

crossing, 346
intersecting, 346
laminar, 346, 384

family covering a set, 537
family of sets, 2
fan-in, fan-out in eulerian directed

multigraphs, 541
feasibility theorem x

for circulations, 126
for crossing submodular flows,

456
for flows, 127
for fully submodular flows, 453
for intersecting submodular

flows, 456
feasible k-commodity flow, 521

feasible flow
with balance vectors within in-

tervals, 164
feasible submodular flow, 452

existence of, 453-457
feedback arc set, 553, 587, 640
feedback arc set problem, 554, 673-

677, 681
6°(D) < 3, 554
approximation algorithm, 559,

588
line digraph, 554
planar digraph, 559

feedback set ordering (FSO), 644
feedback sets, 553-565

versus (arc)-disjoint cycles, 561
feedback vertex set, 553
feedback vertex set problem, 554

tournament, 554

Fibonacci heap, 54
flow, 96

adding a residual flow, 106
application, see application of

flows
arc sum of two flows, 104
augmenting path with respect

to, 109
balance vector of, 96

blocking, 116
circulation, 101

cost of, 97

cycle flow, 104
decomposition into path and cy-

cle flows, 104
difference between two flows,

107
feasibility theorem, 127

feasible, 97, 125, 164, 446
integer, 96

maximal, 112

maximum, see maximum flow
problem

minimum cost, see minimum

cost flow problem

netto flow, 97

optimal, 131

path flow, 104
residual network with respect

to, 98

(s,t)-flow, 100
(s,t)-cut, 108
minimum value, 127

reducing general flows to, 100
relation to arc-strong connectiv-

ity in directed multigraphs,
348

value of, 100

T-flow, 438
k-flow, 437-442
Z,-flow, 438

flow across a cut, 108
flow decomposition, 104

(s,t)-flow, 108
fast algorithm, 159

flow demand of a cut, 127

Floyd-Warshall algorithm, 58, 177

Ford-Fulkerson aigorithm, 110, 155,
356

on real valued instances, 160

forefather, 180
forest, 19

forward arc on an augmenting path,
109

forward arc with respect to an order-
ing, 557

forward length of an ordering, 645
forward optimal ordering, 645, 648
fragment, 391
Frank’s arc-strong connectivity aug-

mentation algorithm, 365

Frank’s arc-strong connectivity aug-
mentation theorem, 364

Frank’s general orientation theorem,
465

Frank’s orientation theorem, 450
Frank-Fulkerson algorithm, 459, 528-

535
Frank-Jordén vertex-strong connec-

tivity augmentation theo-
rem, 370

fraternately orientable graph, see un-
derlying graph, of an in-
tournament digraph

fraternately oriented graph, see in-
semicomplete digraph

free matroid, 666

FSO optimal ordering, 644
fully G-supermodular function, 450
fully submodular function, 452

gadget for MP-completeness proof,
478

Gallai-Milgram theorem, 234, 276
Gallai-Roy-Vitaver theorem, 435
game theory, 650
gap of a C-bypass, 248
Gaussian elimination, 221
generalized de Bruijn digraph, 190
generalized matching, 167
generating pair, 218
genetics, 632
geometric random variable, 550
girth, 11, 92, 304, 580-583

in digraphs of high minimum
out-degree, 580

global irregularity, 263
good cycle factor, 255-259
good cycle factor theorem, 256
good odd-vertex pairing, 445
good vertex with respect to a local

median order, 641

gossip problem, 80
Groétzsch graph, 469
graph, see also undirected graph, 18
graph representable in a unicyclic

graph, 427
graph Steiner problem, 535
greedy algorithm, 237, 540
greedy algorithm for matroids, 668,

680
greedy base of a matroid, 668
group flow, 438

H-colourable, 658

Subject Index 739

H-colouring, 658
complexity for undirected

graphs, 659

H-colouring problem, 658
Haggkvist’s transformation of a di-

graph to a 2-edge-coloured
graph, 592

half-duplex gossip problem, 81
Hall’s theorem, 140, 449, 471
Hamilton cycle, see hamiltonian cy-

cle
Hamilton cycle problem, 33, 179, 366
Hamilton path, see hamiltonian path
Hamilton walk, see hamiltonian walk
hamiltonian (z, y)-path

locally semicomplete digraph,
294

polynomial algorithm for semi-
complete digraphs, 295

semicomplete digraph, 293
hamiltonian [z, y]-path

algorithm for extended tourna-
ments, 287

extended tournament, 286
in tournament, 284

locally semicomplete digraph,
289, 291

hamiltonian connected, 292-299
almost complete digraph, 294
locally semicomplete digraph,

294
semicomplete digraph, 293

hamiltonian cycle, 12, 82, 143, 177,
203, 227, 237, 238, 264, 266,
267, 275, 278, 300-302, 307,
309, 310, 312-321, 329, 331,
332, 334, 336, 337, 340-342,
382, 665

almost acyclic digraph, 341
alternating in 2-edge-coloured

multigraph, 592
arc-disjoint hamiltonian cycles,

318
avoiding k —1 arcs in k-strong

tournament, 315

avoiding arcs in 2-cycles, 317
avoiding arcs in cliques in tour-

naments, 315

avoiding prescribed arcs, 315-
318

decomposable digraph, 336
in almost semicomplete digraph,

313

740 Subject Index

in semicomplete bipartite di-
graph, 42

multipartite tournament, 315
necessary conditions, 229-234

power of, 320
quasi-transitive digraph, 265—

269, 334
regular semicomplete multipar-

tite digraph, 262
semicomplete multipartite di-

graph, 250-264
sufficient conditions in terms of

degrees, 240-250
through a fixed arc in a semi-

complete digraph, 312

through a prescribed set of arcs,
314 :

through a set of arcs arc in a
semicomplete digraph, 312

hamiltonian cycle in undirected
graph, 245

hamiltonian digraph, 12
hamiltonian path, 12, 49, 143, 208,

227, 238, 239, 251, 266, 278,
279, 282-299, 304, 318-321,
330, 339, 340, 665

alternating in 2-edge-coloured
multigraph, 592

between two prescribed vertices,
284

in a tournament, 30

in semicomplete bipartite di-
graph, 42

one end vertex prescribed, 282—
284

oriented, 321

hamiltonian problem, 297
hamiltonian walk, 12

Havet-Thomassé theorem, 322
k-HCA problem, 312, 314

for highly connected tourna-
ments, 314

head
of a one-way pair, 368
of and arc, 2

heaviest k-path subdigraph, 269
height function

finding a minimum cut via, 161
height function with respect to a pre-

flow, 118
hereditary set of digraphs, 215
heuristic, 337

for TSP;'337

heuristics for MP-hard problems,
33% 613-0 i

Hoffman’s circulation theorem, 126
homomorphic digraphs, 658
homomorphism, 658-663

to a directed cycle, 660
to a directed path, 659
to a semicomplete bipartite di-

graph, 661
to a semicomplete digraph, 661
to an oriented cycle, 660
to an oriented path, 659
to an oriented tree, 661

HPS-problem, 269
hypergraph, 24, 63, 572

2-colourable, 25

2-colouring of, 25
edge of, 24
order of, 25
rank of, 25
uniform, 25
vertex of, 24

hypertournament, 627-632
arc, 627

cycle in, 628
hamiltonian path/cycle, 628,

631
out-degree of a vertex, 628
out-degree sequence, 628
path in, 628

strong, 628

immersion of one 2-regular directed
multigraph in another, 517

implication class, 418, 420, 422

in-arborescence, 476
in-branching, 19, 239

minimum cost, 406
in-critical set, see k-in-critical set
k-in-critical set, 359, 383
in-degree of a vertex, 4
in-generator of a digraph, 323
in-neighbour, 4
in-neighbourhood, 4
pth in-neighbourhood, 46

closed, 46
open, 46

in-path, 322
in-path-mergeable digraph, 201, 226
in-pseudodegree of a vertex, 4
in-radius, 47
in-singular vertex with respect to a

cycle, 253
in-tight set, 374

incident to an arc, 3

incomparable elements with respect

to a partial order, 236

increasing capacity of arcs to increase
rooted arc-connectivity,
543

increasing rooted arc-strong connec-
tivity by adding new arcs,
536-538

increasing subsequence, 235
independence in digraphs, 664

independence number, 22, 226, 234,
262, 276

effect on cycle factors, 329
independence oracle for a matroid,

528, 669
independent arcs (edges), 22
independent set, 43, 426

independent set of a matroid, 665

independent set problem, 43, 664

independent vertices, 22

index of a pair of alternating trails,

596
indicator, 662

indicator construction, 662

induced subdigraph, 5
initial strong component, 17
initial vertex of a walk, 11

inserting one path into another, 246

insertion of a vertex into a cycle, 85

instance of a problem, 33

integer multicommodity flow prob-
lem, 521

integrality theorem for maximum
flows, 112

Intel A-prototype, 81
intercyclic digraph, 563

intermediate strong component, 17
internally disjoint

(s,t)-paths, 353
internally disjoint paths, 12, 410, 476

intersecting G-supermodular func-
tion, 450

intersecting family, 346, 529
covering all members by arcs,

529-535
intersecting pair, 452
intersecting submodular function,

452
intersection digraph, 217

intersection graph
of a family of sets, 426

Subject Index 741
*

of a set of subgraphs of a graph,
602

intersection number of a digraph,

217, 226
intersection of digraphs, 177
interval digraph, 218
interval graph, 218
interval of an oriented path, 322

length, 322
2-irreducible instance of k-ST prob-

lem, 514
irreducible alternating cycle sub-

graph, 611
isomorphic directed pseudographs, 7
isomorphic graphs, 19
isomorphism, 7
iterated line digraphs, 187

Jordan curve theorem, 498

Konig’s theorem, 139
Kautz digraph, 189
Kelly’s conjecture, 319
kernel of a digraph, 650-653
(k, l)-kernel, 650
kernel-imperfect digraph, 651
kernel-perfect digraph, 651, 655
kernel-solvable graph, 652
king, 74-78

k-king, 42
r-king, 48
2-king in a hypertournament,

638
2-king in a multipartite tourna-

ment, 93

2-kings in tournaments, 74
3-kings in quasi-transitive di-

graphs, 78
4-kings in semicomplete multi-

partite digraphs, 75
Kruskal’s algorithm for minimum

spanning trees, 527, 669
Kuratowski’s theorem, 220

labelled digraph, 7
labelling algorithm for maximum

flow, 111
laminar family, 346, 384

maximum size of, 543
Landau’s theorem, 447, 471, 628
large packet radio network, 187
largest transitive subtournament in a

tournament, 664

Las Vegas algorithm, 357

742 Subject Index

Latin square, 654
layer in a network, 114

layered network, 114
leaving arc, 2
legal ordering, see max-back ordering
length

of a walk, 11
of a cycle, 11
of a path, 11
of an arc w.r.t. an ordering, 645

lexicographic 2-colouring, 419, 421
lexicographically smaller vertex, 419
line digraph, 182-187, 307, 650

feedback arc set problem, 554

iterated, 187
recognition, 184

line graph, 429, 653
linear independence, 546
linear ordering problem, 558 ,

2-approximation, 558
linear programming, 89, 113, 147,

149, 158, 452, 455, 459, 529
linear time searchable exponential

neighbourhoods for the
TSP, 84

k-linked, see also k-path problem
k-linked digraph, 476, 478, 482-500,

539
k-linking, 476
linking from one k-set to another, 563
linking principle, 448, 462

list chromatic index, 657
list colouring, 655
list colouring conjecture, 655
list edge-colouring, 651, 654-657
literal, 35

local arc-strong connectivity, 347
local edge-connectivity, 444
local in-tournament, see locally in-

tournament digraph
local irregularity, 263
local median order, 640

local out-tournament, see locally out-
tournament digraph

local tournament, see locally tourna-
ment digraph

local transitive tournament, see

round local tournament
local vertex-strong connectivity, 347
locally in-semicomplete digraph,

200-202, 225, 226, 238-
240, 277, 296, 306, 307,
424-429

strong decomposition, 202
structure of non-strong, 202

locally in-tournament digraph, 200
locally optimal solution of an opti-

mization problem, 674
locally out-semicomplete digraph,

200-202, 225, 240, 279
locally out-tournament digraph, 200

locally semicomplete digraph, 200,
202-214, 240, 289-292, 294,
299, 303-306, 328, 339-341,
395, 397, 412, 419, 420, 423,
477, 490-492, 524, 526, 539,
540

classification theorem, 214

extended
hamiltonian path with one

end vertex specified, 282
generalization, 242
hamiltonian (z, y)-path, 294
hamiltonian [z, y]-path, 289, 291
hamiltonian connected, 294
independence number, 226
minimal separating set in, 412

non-round decomposable, 213
orientation of, 397
round decomposable, 208
semicomplete decomposition,

209
structure of non-strong, 207
weakly hamiltonian-connected,

292
locally tournament digraph, see also

locally semicomplete di-
graph, 200, 294, 303, 304,
306, 311, 397, 419-421, 423,
430, 431, 467, 468, 493

characterization through orien-
tations, 422

round, 207

longest (x, y)-path problem
semicomplete digraph, 298

longest [z, y]-path problem
semicomplete digraph, 298

longest alternating cycle, 608
longest alternating cycle in 2-edge-

coloured complete bipar-
tite multigraph, 606

longest cycle, 264
extended semicomplete digraph,

333, 334
relation to chromatic number,

436

longest cycle problem, 196
longest path, 240, 265

relation to chromatic number,
435

longest path problem, 196
acyclic digraph, 89
weighted acyclic digraph, 53

loop, 4
Lovasz’s local lemma, 571

Lovasz’s splitting theorem, 443, 471
lower bound

on an arc, 95

removing from a network, 99
Lucchesi- Younger theorem, 401

proof using submodular flows,
459

Mader’s directed splitting theorem,
360

main (m1,...,p)-blocks, 221
majority digraph of a hypertourna-

ment, 631

Marcus’ theorem, 583
Markov chain, 565
matching, 22, 444

perfect, 22
matching diagram digraph, 218
matrix multiplication, 177
matroid, 527, 665-673

base, 665
circuit, 665

cocircuit, 668
cutset, 668
dependent set, 665
dual, 667
examples of, 666
fast algorithm, 669
greedy algorithm, 668, 680
greedy base, 668
independence oracle, 669
independent set, 665
intersection, 671

optimal base, 668
rank, 666
union, 670

matroid intersection, 459
matroid intersection problem, 527,

671, 681
k-matroid intersection problem, 672
matroid partition problem, 670, 680
MAX-2-SAT, 38, 44
Max-flow Min-cut theorem, 109

application to vertex cover in bi-
partite graphs, 139

Subject Index 743

relation to Menger’s theorem,
353

1-maximal cycle, 44

maximal flow, 112

maximal hamiltonian arc-critical
subdigraph, 434

maximal independent subset of a set
in a matroid, 666

maximal with respect to property P,
2

maximum adjacency ordering, 357
determining edge-connectivity

via, 358
maximum capacity augmenting path

method, 164

maximum finite diameter orientation,

61
maximum flow algorithms, 110-125

capacity scaling algorithm, 162
Dinic’s algorithm, 116
for unit capacity networks, 123

Ford-Fulkerson algorithm, 110
maximum capacity augmenting

path method, 164
MKM algorithm, 161
on simple networks, 125

preflow push algorithm, 119
shortest augmenting paths, 114

maximum flow problem, 108-125
and arc-strong connectivity, 355
in unit capacity networks, 123

integrality theorem, 112

re-optimizing after small pertur-
bation, 161

maximum in-degree of a digraph, 5

maximum matching in _ bipartite
graphs, 137

algorithm, 138
reduction to flow problem, 137

maximum monochromatic degree,
593

maximum out-degree of a digraph, 5

maximum semi-degree of a digraph, 5
maximum with respect to property

PP
mean cost of a cycle, 134
median order, 640
member of a family of digraphs, 7
member of a family of sets, 346
Menger’s theorem, 147, 293, 297,

353-356, 358, 362, 367, 374,
376, 386, 398, 410, 411, 444,

744 Subject Index

445, 458, 476, 500, 502, 503,
519, 520, 539, 540, 588

applied to sets of vertices, 410

refinement of, 410
relation to the Max-flow Min-

cut theorem, 410

Mergesort, 32
merging paths in a digraph, see path-

mergaeble digraph
meta-heuristic, 675
Meyniel set, 243

Min-flow Max-demand theorem, 127

minimal (z, y)-path, 11
minimal vertex series-parallel di-

graphs, 191
minimally k-arc-strong directed

multigraph, 381-387
characterization of, 386
degree of vertices in, 383
number of arcs in, 382

minimally k-edge-connected multi-
graph, 443, 471

minimally k-strong digraph, 387-391
degrees of vertices in, 390, 391

minimizing a submodular function,
455, 457, 473

minimum

separator, 347
minimum (s,t)-cut in a network

structure of, 159, 164
minimum cost

in-branching, 406
out-branching, 406
submodular flow, 457

minimum cost branching problem,
527

minimum cost cover of directed cuts,
461

minimum cost flow, see minimum
cost flow problem

minimum cost flow problem, 128-137

assignment problem, see assign-
ment problem

buildup algorithm, 135
-complexity of, 136

buildup theorem, 135
cycle canceling algorithm, 132
integrality theorem, 132

strongly polynomial algorithm,
134

transportation problem, see

transportation problem
minimum cost flows

application to Chinese postman
problem, 141

applied to a branching problem,

410
characterization, 132

minimum cost out-branching
min-max formula for, 535

minimum cost submodular flow prob-

lem, 457, 460, 473
minimum covering arborescence

problem, 535
minimum diameter orientation, 63—

74
Cartesian products of graphs, 71
complete multipartite graph, 67

extensions of graphs, 69
minimum diameter versus degree,

187
minimum dijoin, 461

minimum equivalent subdigraph, see
also MSSS problem, 179,
405

minimum feedback arc set, 640
minimum flow, 127

minimum in-degree of a digraph, 4
minimum out-degree of a digraph, 4
minimum path factor, 227
minimum path factor in acyclic di-

graph
application, 236

minimum path factor problem, 235
minimum semi-degree of a digraph, 5
minimum spanning strong subgraph

problem, see MSSS prob-
lem

minimum spanning tree, 527, 542

mixed branchings, 506
edge-disjoint, 506

mixed graph, 23, 449

arc of, 23

biorientation of, 23
bridge of, 23
complete biorientation of, 23
connected, 23
edge of, 23
orientation of, 23, 411
strong, 23

mixed multigraph, 506
mixed out-branching, 506
modular function, 446

monochromatic complete subgraph,
563

monochromatic subdigraph, 549

monochromatic triangle, 615
Monte-Carlo algorithm, 357
Moon’s theorem, 16

Moore bound, 59

MSSS problem, 331-336, 404, 583
approximation algorithm for,

405
decomposable digraph, 336
extended semicomplete digraph,

333
lower bound, 331, 334

polynomial algorithm

extended semicomplete di-
graph, 333

quasi-transitive digraph, 334
quasi-transitive digraph, 332,

334
semicomplete multipartite di-

graph, 336
multi-inserting one path into an-

other, 246

multi-insertion partition of a path,

247
multi-insertion technique, 246

multicommodity flow, 520
multigraph, 18
multipartite completion, 649
multipartite tournament, see also

semicomplete multipartite
digraph, 27, 68, 69, 75-77,
93, 253, 275, 278, 279, 307,
315, 327, 574

multiple arcs, 3
multiset, 2

mutual length of an ordering, 645
mutual optimal ordering, 645
MVSP digraph, see minimal vertex

serie-parallel digraph

Nash-Williams’ orientation theorem,
443

extension to mixed graphs, 462
proof using submodular flows,

458
Nash-Williams’ strong orientation

theorem, 444
proof for eulerian multigraphs,

470
negation, 35
negative cycle, 46

detection, 56

effect on shortest path problems,

49

Subject Index 745

in residual network, 132
negative score of a vertex, 643
neighbour, 4
neighbourhood, 4, 19
neighbourhood digraph of a neigh-

bourhood structure, 86
polynomially searchable, 86

neighbourhood of a solution, 674
neighbourhood structure for TSP, 83
neighbouring solutions, 674
nested interval graph, 426
net length of an oriented cycle, 660
network, 95

augmenting path in, 109
balance vector of, 96
balanced vertex in, 97
capacity of arcs, 95
circulation in, 101

cost of arcs, 95

flow in, 96

layered, 114
lower bound on arcs, 95

maximum flow in, 108
residual with respect to a flow,

98
simple, 124
sink vertex in, 97

source vertex in, 97

unit capacity, 122

with bounds/costs on vertices,
102

network design, 187
network representation, 348, 353

non-monochromatic directed cycle,

549
non-monochromatic oriented cycle,

549
normal biorientation, 652
nowhere-zero k-flow, see k-flow
NP-complete problem, 33, 34, 49, 63,

143, 146, 179, 279, 282, 284,
292, 312-314, 317, 318, 342,
352, 436, 473, 475, 477, 478,
482, 496, 498, 508, 514, 521,
522, 535, 536, 541, 592, 604,
615, 621, 632, 637, 647, 650,
658-663, 679

NP-hard problem, 34, 49, 62-64, 81,
82, 179, 331, 366, 382, 404,
406, 436, 535, 536, 633, 640,
647, 648, 664, 672, 673, 677,
678, 680

NP-hard optimization problem, 34

746 Subject Index

2-objective optimization problem,

187
obstruction for line digraph, 185

odd chain, 291
locally semicomplete digraph,

291
odd cycle, 11, 25
odd cycle through a fixed arc, 588
(k, p)-odd digraph, 570
odd necklace, 468
odd orientation, 432

strongly connected, 433
odd vertex with respect to a cycle, 87

odd-K4, 432, 468
one-way communication, 81

one-way pair, 368, 387
deficiency of, 368 .

head of, 368

tail of, 368
one-way pairs, 371, 374, 412

family of
subpartition type, 370

independent, 369
independent family of, 370

one-way set of arcs, 218
one-way street problem, 79
O, 2, O-notation, 29
open pth in-neighbourhood, 46
open pth out-neighbourhood, 46
open problem, 83, 238, 265, 275, 287,

312; 315, 316, 318, 321, 327,
329, 378, 399, 406, 432, 435,
445, 482, 484, 508, 522, 524,
573, 597, 614, 615, 623, 627,
652, 654

opposite vertices, 290

1-OPT, 674, 681
optimal augmentation, 362
optimal base of a matroid, 668
optimal flow, 131
optimal linear arrangement problem,

647
optimal submodular flow, 457
optimization problem, 34

order exchange, 595
order of a digraph, 2
order of functions, 29

order reflection, 596
ordering the vertices of a digraph of

paired comparisons, 642-
650

ordinary arc, 203, 317, 644
ordinary cycle, 203

ordinary path, 203
orientation

acyclic, 468
aS a quasi-transitive digraph,

416
as a round local tournament,

419
as a transitive digraph, 416
as an in-tournament digraph,

426
eulerian multigraph, 470
odd, 432
of a mixed graph, 449
respecting degree constraints,

446-450
respecting degree constraints on

subsets, 450-451

strong, 20
of mixed graph, 352

G-orientation, 72

G*-orientation, 72

S-orientation, 72
S*-orientation, 73
orientation of a digraph, 24, 79, 225

with high arc-strong connectiv-
ity, 396

with high vertex-strong connec-
tivity, 395, 396

orientation of a graph, see also ori-
entation, 19, 273, 275, 316,
352, 415-451, 458, 459, 467,
468, 470-473, 504, 505, 507,
610, 641, 652, 653, 656, 657,
659-661

maximum finite diameter, 61
minimum diameter, 63, 81
with high arc-strong connectiv-

ity

algorithm, 471
with small strong radius, 65

orientation of a locally semicomplete
digraph

with high strong connectivity,
397

with high vertex-strong connec-
tivity, 397

orientation of a mixed graph, 23, 462—
467

with small diameter, 67
orientation of a mixed multigraph,

411
orientation of a multigraph, 443
oriented cycle, 19

homomorphisms to, 660
oriented forest, 19
oriented graph, 14
oriented hamiltonian cycle in a tour-

nament, 325-326
oriented hamiltonian path, 321-325
oriented hamiltonian path in a tour-

nament

finding a prescribed orientation,
325

oriented independence number, 664
oriented path, 19

interval of, 322
origin of, 322
terminus of, 322

oriented tree, 19, 641

origin of an oriented path, 322
orthogonal rows in a matrix, 183
orthogonal subspaces, 546
out-arborescence, 476, 501
out-branching, 19, 201, 235

arc-disjoint, 410
BFS tree, 51
minimum cost, 406

of shortest paths, 48
out-critical set, see k-out-critical set

k-out-critical set, 359
out-degree of a vertex, 4
out-generator of a digraph, 323
out-neighbour, 4
out-neighbourhood, 4
pth out-neighbourhood, 46

closed, 46

open, 46
out-path, 322
out-path-mergeable digraph, 201
out-pseudodegree of a vertex, 4
out-radius, 47

finite in a weighted digraph, 47
minimizing, 60

out-singular vertex with respect to a
cycle, 253

out-tight set, 374
outer face of a plane (di)graph, 219

P, 33
packing cuts, 400
paired comparison digraph, 642
pancircular digraph, 307

de Bruijn digraph, 308
pancyclic digraph, 299-308, 340

m-pancyclic, 299
de Bruijn digraph, 308

Subject Index 747

degree conditions, 299
extended semicomplete digraph,

301
line digraph, 307
locally in-tournament digraph,

306
locally semicomplete digraph,

306
quasi-transitive digraph, 302
regular semicomplete multipar-

tite digraph, 307
round decomposable digraph,

304
parallel architectures, 187
parallel arcs, 3
parallel composition of digraphs, 191
parallel reduction, 194
partial order, 236
partial reversal, 430
p-partite digraph, 25
p-partite graph, 25
partite sets, 25

partition, 2
path, see also walk, open, 11

algorithm for finding a path of
prescribed length, 551

anti-directed, 321

arc-disjoint, 353, 476
colourful, 551
crossing, 499
even, 11
finding a colourful path of pre-

scribed length, 551
good reversal, 472
internally disjoint, 476
length, 11
longest, 11
odd, 11
of length O(log n), 550
ordinary, 203
oriented, 19
vertex-disjoint, 353, 476

(X, Y)-path, 11

(x, y)-path, 11
[x, y]-path, 11

xy-path, 19
path covering, 335
path covering number, 15, 227, 234,

237, 251, 267
path cycle covering number, 251
path factor, 15, 235, 335

starting at a prescribed vertex,
283

748 Subject Index

path factor with longest paths, 237
path flow, 104
path mergeable digraph

hamiltonian (z, y)-path, 293
k-path problem, 477, 484-500

acyclic digraphs, 538
planar digraphs, 498

2-path problem, 477, 492-497
NP-completeness proof, 478-

482
acyclic digraph, 484, 486
decomposable digraph, 495
generalizations of tournaments,

493-497
quasi-transitive digraph, 495,

496
semicomplete digraph, 492, 493

g-path subdigraph, 15

path-contraction, 229, 301

versus set-contraction, 229

path-cycle covering number, 15, 234,
331

path-cycle factor, 333
with k paths, 145

with minimum number of paths,
145

with prescribed initial/terminal
vertex, 167

q-path-cycle factor, 15
q-path-cycle subdigraph, 15
path-mergeable digraph, 198-200,

225, 237, 238, 277, 293
recognition, 199

(s, t)-paths
arc-disjoint, 353

internally disjoint, 353
PC, see also proper coloured

PC m-path-cycle subgraph, 592
PC 1-path-cycle subgraph with max-

imum number of vertices,
600

PC cycle subgraph, 592
with maximum number of ver-

tices, 599

PC cycle through a specified vertex,
600

PC Hamilton path/cycle in KS, c>
3, 613-619

PC spanning cycle subgraph, 614
PCD, see paired comparison digraph
k-perfect family of hash functions,

552
perfect graph, 652

perfect matching, 22, 167, 449, 594,
599, 634, 636

contained in a Hamilton cycle,
605

in a bipartite graph, 140
of minimum weight in a bipar-

tite graph, 147
random, 618

period of a directed pesudograph
associated with a Markov
chain, 566

permutation graph, 218
Petersen graph, 440, 469

3-colouring of, 469
5-flow in, 440
even cycle in strong orientation,

468
PFx problem, 284

for totally ;-decomposable di-
graph, 284

planar digraph, 219-221, 227, 409,
475, 486, 497-500, 508, 509,
511, 513, 516, 517, 540

feedback arc set problem, 559
recognition, 220

vertex-strong connectivity of,
409

planar graph, 219
plane (di)graph, 219
pointed set, 426
polygonal curve, 219
polynomial algorithm, 29
polynomial reduction, 34

polynomially searchable neighbour-
hood for TSP, 84

positive score of a vertex, 643
power of a cycle, 290, 328, 340, 410

connectivity of, 410
power of a digraph, 9
power of a hamilton cycle, 320
power of a matrix

kth power of a matrix, 586
power of a path, 340
predecessor of a vertex on a

path/cycle, 12
preflow, 118, 503

maximum, 164

converting to a maximum
flow, 164

preflow directed multigraph, 503
preflow push algorithm, 119

active vertex, 119

admissible arc, 119

complexity, 120

improving performance of, 160
lifting a vertex, 119
pushing along an arc, 119

saturating push, 121
unsaturating push, 121
using exact distance labels, 160

primal-dual algorithm
for the transportation problem,

148-158
problem, 33
proof technique

BB-correspondence, 605
BD-correspondence, 637

colour-coding, 551
contraction, 401

DHM-construction, 609

divide and conquer, 32

gadgets for A P-completeness
proofs, 478, 621, 679

indicators, 662

insertion method, 30

matroid intersection, 459, 681

matroid partition, 680
multi-insertion, 246-250
one-way pairs, 371, 372, 374,

377, 387, 399
probabilistic method, 555, 557,

572, 617-619
random acyclic subdigraph

method, 550

reduction from 3-SAT, 621, 679
reduction to a flow problem, 411
reduction to minimum cost flow

problem, 407
reversing arcs, 398
splitting off arcs, 364
splitting off edges, 443
submodular flows, 458-467, 507
uncrossing, 383, 402
using orientations of undirected

graphs, 505

using recursive formulas, 189
using submodularity, 353, 359,

374, 536
using the bipartite representa-

tion of a directed multi-
graph , 25

vertex splitting procedure, 353
proper backward rank, 645
proper circular arc graph, 415

orientation as a round local
tournament, 420

Subject Index 749

recognition in linear time, 421
proper colouring, 22, 435

proper edge-colouring, 654
proper forward rank, 645
proper interval graph, 467
proper mutual rank, 645
proper subset, 2

properly coloured cycle in an edge-
coloured multigraph, 597

properly coloured directed trail, 621
properly coloured Euler trail, 594
properly coloured trail, 592
h-pseudo-hamiltonian directed multi-

graph, 232
pseudo-hamiltonian directed multi-

graph, 232
h-pseudo-hamiltonian walk, 232
pseudo-hamiltonicity

algorithm, 233
pseudo-hamiltonicity number, 232
pseudograph, 18
pseudoregular directed pseudograph,

188, 190

k-quasi-hamiltonian, 230
quasi-hamiltonicity, 230-234

algorithm, 233
quasi-kernel, 650, 653
quasi-transitive digraph, 28, 78, 79,

195-198, 266, 267, 270, 279,
0), KO» SUP Sib). okey.
334-336, 340, 343, 400, 416,
418, 419, 495, 496, 526, 541

hamiltonian cycle, 265-269
highly connected orientation of,

400
longest cycle, 272
MSSS problem, 332
recursive characterization, 197
vertex-heaviest paths and cy-

cles, 269-272
quasi-transitive orientation, 416
queue, 51

Rédei’s theorem, 14, 322, 627
radius, 47, 59-61
Ramsey’s theorem, 563
random acyclic subdigraph method,

550
rank of a matroid, 666
re-weighting the arcs of a digraph, 91

eliminating negative arcs, 91
reachable from a vertex, 16
recognition

750 Subject Index

interval digraphs, 219
line digraph, 184
local tournament, 431
path-mergeable digraph, 199
planar digraph, 220
round decomposable locally

semicomplete digraph, 211

round local tournament di-
graphs, 467

totally &-decomposable di-
graph, 216

vertex series-parallel digraph,
195

red/blue subgraph of a 2-edge-
coloured multigraph, 592

reduced graph, 421
reducible graph, 421 .
reduction among flow models, 99
redundant arc of a digraph, 177
reference orientation, 446

regular digraph, 5, 189, 227, 262
arc-disjoint cycles in, 555
immersion, 517

6°(D)-regular digraph, 5
regular graph, 19
removal of a vertex from a cycle, 85
reorienting arcs, 458
representable in a graph, 426
representation of a digraph, 217
representation of a graph, 415
residual capacity

of an arc, 98

residual network, 98
using to update flow, 105

restricted primal problem
of transportation problem, 149

retract of a digraph, 659
reversal of a path, 472
reverse of a trail, 593
reversing an arc, 6

reversing arcs, see arc reversal
reversing arcs to obtain arc-disjoint

branchings, 473
Robbins’ theorem, 20, 352, 443, 449
root of a branching, 19
root of a DFS tree, 173

round decomposable digraph, see
also locally semicomplete
digraph

round decomposable locally semi-
complete digraph, 208-211

recognition, 211
round decomposition, 208

round digraph, 203-207
s-regular, 583

round labelling, 203
routing problems, 521

2-SAT, 35-38
application to orientability as

in-tournaments, 424

3-SAT, 36, 621
reduction to an A-colouring

problem, 679

Satisfiability, see also SAT, 36
satisfiable boolean expression, 36
saturated arc, 112

scalar product, 546
_ scaling algorithm for maximum flow,

162
scan register, 553
scheduling jobs on identical ma-

chines, 165

scheduling problems, 191
scheduling reporters, 236
score method, 643

score of a vertex, 447
score sequence, 447
semi-degree of a vertex, 4
semi-partitioncomplete digraph, 264
semicomplete p-partite digraph, see

semicomplete multipartite
digraph

semicomplete bipartite digraph, 27,
42, 79, 145, 252, 258, 278,
282-284, 327, 341, 605-607,
649, 661, 678, 680

even pancyclic, 341
hamiltonian cycle, 252
hamiltonian path with one end

vertex specified, 282
longest cycle, 252

semicomplete decomposition of a
locally semicomplete di-
graph, 209, 213

semicomplete digraph, 27, 74, 92,
145, "167; “1967" 1078" 277,
290, 293-298, 306, 312-314,
317-319, 327, 339, 340, 342,
373, 379, 381, 397, 399, 412,
414, 487, 489, 490, 492-497,
517, 520, 524, 538, 614, 631,
638, 643-646, 652, 659, 661,
664, 678

2-path problem, 492
critical 2-cycle in, 412

hamiltonian (2, y)-path, 293

polynomial algorithm, 295
hamiltonian connected, 293

highly connected orientation of,

397
semicomplete multipartite digraph,

Zip-T hy Lise 200" 201,
253, 255, 257, 259, 261-263,
218-280, 30is SLT, Sale oo2,
336, 645, 648, 649

‘short’ cycles, 573-577

cycles versus paths, 577-580
hamiltonian cycle, 250-264
hamiltonian path, 251
longest path, 251
MSSS problem, 336
path covering number, 251
regular, 262
relation between longest path

and cycle, 577
separates, see separator

separating set, see separator

separator, 16

(s,t)-separator, 17
minimum, 347

trivial, 297, 493
(s,t)-separator, 17, 347
sequencing problems, 191
2-serf, 75
series composition of digraphs, 191
series reduction, 194

series-parallel digraph, 191-195
k-set, 2
set-contraction, see contraction

Seymour’s second neighbourhood
conjecture, 639

ship loading problem, 129
short cycle in a digraph, 550
shortest cycle, see also girth, 92
shortest path problem, 544

formulated as a minimum cost
flow problem, 98

shortest path tree form s, 49
shortest paths

from a vertex s, 49
structure of, 48

k-similar arms of chromosomes, 633
similar size arms of chromosomes, 632

similar vertices, 9

simple network, 124
simplicity preserving augmentations

for rooted arc-connectivity,

543
simulated annealing, 675-677

Subject Index 751

current acceptance rate, 677

initial acceptance rate, 676
parameter tuning, 675
programming project, 681

singular vertex with respect to a cy-
cle, 253

sink
of a network, 97
of an anti-directed trail, 389

vertex with respect to a flow, 97
size of a clause, 35
size of a digraph, 2
solution of an optimization problem,

674
sorting m numbers faster than

2(nlogn), 54
sorting versus distances in digraphs,

54
source

of a network, 97

of an anti-directed trail, 389

vertex with respect to a flow, 97
spanning strong subgraph, 351
spanning tree, 19
special families of digraphs

Po, 215, 268, 272
@,, 215, 272, 284
2, 215, 268, 272
W, 196, 270

specific trail problem, 511
Sperner’s lemma, 67
splitting, 359, 471

admissible, 359

complete, 361
for vertex-strong connectiv-

ity, 374
finding an admissible splitting,

412
in eulerian directed multigraphs,

361
in mixed graphs, 362
in undirected graphs, 443
preserving

local arc-strong connectivity,
361

vertices, see vertex splitting pro-
cedure

splitting a vertex, 9
splitting off arcs, 358-367, 387
splitting off edges, 443
ST-problem, 511
k-ST-problem, 514
stable matching, 656

752 Subject Index

straight digraph, 467
straight enumeration, 467
strictly alternating cycle, 615
k-strong, 16
k-strong augmentation number of a

digraph, 368, 370
strong component, 17, 36, 239

algorithm for finding, 179
strong component digraph, 17
strong components

application to finding block-
triangular structure in ma-

trices, 223
strong decomposition of a digraph,

iti 202
strong digraph, 16, 179-182

cycle space of, 547 .
strong orientation, 20, 352

respecting degree constraints,
449

strong radius, 64
strongly connected, see strong

strongly polynomial algorithm
for minimum cost flow, 134

sub-indicator, 662
sub-indicator construction, 662

subdigraph, 5
spanning, see also factor, 5

with prescribed degrees, 142
minimum cost, 142

subdivision, see also subdividing an
arc

subdivision of a digraph, 9
subdivision of an arc, 9, 402, 570
submodular flow, 381, 404, 451-467

applications, 458-467
feasible, 452

minimum cost, 457

submodular flow models, 452
submodular flow polyhedron, 452
submodular function, 347

minimizing, 455
submodular proof technique, see

_ proof technique, submodu-
lar

submodularity
of (s,t)-cuts, 164
of matroid rank functions, 667

subpartition, 2
subpartition lower bound, 370

for arc-strong connectivity, 363
subpartition lower bound for vertex-

strong connectivity, 368

subpath, 12
subtree intersection digraph, 218
successive arc-connectivity augmen-

tation property, 367
successor of a vertex on a path/cycle,

ie
sum of boolean variables, 35

superdigraph, 5
supermodular function, 446, 453
G-supermodular function, 450
switch, 478
(e, f)-switch, 634
symmetric digraph, 19
symmetric function, 450

tail
of a one-way pair, 368
of an arc, 2

TDI system, 530
telecommunications, 521, 536
terminal strong component, 17
terminal vertex of a walk, 11
terminals of a trail in eulerian di-

rected multigraph, 511
terminus of an oriented path, 322
the hamiltonian algorithm, 297
Thomassen’s even cycle theorem, 570
tight arc, 454, 532
tight set, 354, 374, 454, 529, 531
Tillson’s decomposition theorem, 319
time complexity of an algorithm, 29
topological obstruction for disjoint

paths, 497
topological sorting, see acyclic order-

ing
total é-decomposition of a digraph, 9
totally @-decomposable digraph, 9,

196; 215-217, 272
hamiltonian cycle, 268
hamiltonian path, 268
recognition, 216

totally unimodular matrix, 114
tournament, see also semicomplete

digraph, 14, 30, 41, 64,
74-76, 92, 167, 284-286,
293, 298, 308-310, 313-316,
319-323, 325-329, 340-342,
372, 380, 391, 395, 397,
398, 409, 411-413, 447, 469,
477, 487, 492, 494, 495, 517,
523-527, 539, 623, 639-643,
653, 664, 677, 679

feedback vertex set problem, 554
hamiltonian [z, y]-path, 284

weakly hamiltonian-connected,
284

traceable, see also hamiltonian path,
12, 14, 30, 243, 329

trail, 11

alternating, 592
M-trail, 594
transitive closure, 177, 178

relation to matrix multiplica-
tion, 177

versus transitive reduction, 178

transitive digraph, 28, 176, 197, 225

transitive reduction, 177, 191

transitive tournament, 41, 44, 562
transitive triple, 41, 548

transportation problem, 148-158
primal-dual algorithm, 153

transputer-based machine, 81
travelling salesman problem, see TSP

problem
tree, 19

spanning, 19
tree solution to a flow problem, 169
triangular digraph, 301, 302
trivial (s,t)-separator, 297
trivial separator, 493
truth assignment, 35
TSP problem, 33, 82-89, 337-339

assignment neighbourhood, 85
heuristic

domination number, 337

linear time searchable exponen-
tial neighbourhoods, 84

neighbourhood digraph, 86
polynomially searchable neigh-

bourhoods, 84
pyramidal neighbourhood, 86
vertex insertion algorithm, 338

k-tuple, 485
Tutte’s 5-flow conjecture, 441

structure of a minimal coun-
terexample, 441, 470

two-terminal parallel composition,
191

two-terminal series composition, 191

unbalanced edge, 421
uncapacitated facility location prob-

lem, 544

uncrossing technique, 383, 402
underlying graph

edge-connectivity of, 395
in-semicomplete digraph, 427

Subject Index 753

locally in-semicomplete digraph,
424-429

locally in-tournament digraph
recognition, 424

locally semicomplete digraph,
419-424

non-bipartite, 423

quasi-transitive digraph, 416—
419

transitive digraph, 416
underlying graph of a digraph, see

also underlying graph, 19,
173, 196-198, 216, 225, 226,
238, 316, 330, 352, 395, 396,
404, 415-432, 435, 436, 467,
468, 487, 499, 504, 516, 527,
528, 655, 672

undirected graph, 18
non-critical edge of, 390

unicyclic graph, 427
uniform matroid, 666
uniform PCD corresponding to a di-

graph, 643
unilateral digraph, 17
union of digraphs, 10, 178
union of matroids, 670
unique alternating cycle, 623
unique trail problem, 512
unit capacity network, 122
universal set, 217
upward embedding, 224
UT-minimal instance, 513
UT-problem, 512

value of a flow, 100
value of a solution, 674
vector space, 546
vertex, 2

vertex cover of a bipartite graph, 139
vertex even pancyclic digraph

bipartite tournament, 341
vertex insertion algorithm for TSP,

338
vertex series-parallel digraph, 191

recognition algorithm, 195
vertex splitting, 353
vertex splitting procedure, 102, 353,

377, 553
vertex-alternating pancyclic

2-edge-coloured complete bipar-
tite multigraph, 606

vertex-alternating-pancyclic
2-edge-coloured complete multi-

graph, 609

754 Subject Index

2-edge-coloured multigraph, 593
vertex-arc incidence matrix, 113

vertex-heaviest cycle, 269
vertex-pancyclic digraph, 299

extended semicomplete digraph,
301

locally semicomplete digraph,
306

quasi-transitive digraph, 302
round decomposable digraph,

304
vertex-m-pancyclic, 299

vertex-strong connectivity, see also
strong connectivity, 16,

345-414
algorithms, 355
certificate, 407
of complete biorientations, 411
of extensions of digraphs, 393
of special classes ‘of digraphs,

393
reduction to (S,T)-arc-strong

connectivity, 376

vertex-weighted directed pseudo-
graph, 6

Volkmann’s meta-conjecture, 327
VSP digraph, see vertex series-

parallel digraph

walk, 10
arc-disjoint walks, 12
Chinese postman walk, 141
closed, 11

disjoint walks, 12
even, 11

internally disjoint walks, 12
length, 11
odd, 11

open, 11

(x, y)-walk, 10
weak-k-linking, 476
k-weak-double-cycle, 570, 588
weakly k-linked digraph, 507, 508
weakly cycle extendable, 341
weakly eulerian arc-coloured directed

multigraph, 621, 626

weakly hamiltonian-connected, 284—
292

degree condition, 295
extended tournament, 287

locally semicomplete digraph,
292

tournament, 284

weakly-k-linked directed multigraph,
476

weight of a subdigraph, 6, 269
weight of an arc, 6
weighted arc-strong connectivity aug-

mentation problem, 366
weighted directed pseudograph, 6

Yeo’s irreducible cycle subdigraph
theorem, 261

Younger’s conjecture, 561
proof of, 563-565

