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Preface 

Graph theory is a very popular area of discrete mathematics with not only 

numerous theoretical developments, but also countless applications to prac- 

tical problems. As a research area, graph theory is still relatively young, but 

it is maturing rapidly with many deep results having been discovered over 

the last couple of decades. 

The theory of graphs can be roughly partitioned into two branches: the 

areas of undirected graphs and directed graphs (digraphs). Even though both 

areas have numerous important applications, for various reasons, undirected 

graphs have been studied much more extensively than directed graphs. One 

of the reasons is that undirected graphs form in a sense a special class of 

directed graphs (symmetric digraphs) and hence problems that can be for- 
mulated for both directed and undirected graphs are often easier for the 

latter. Another reason is that, unlike for the case of undirected graphs, for 

which there are several important books covering both classical and recent 

results, no previous book covers more than a small fraction of the results 

obtained on digraphs within the last 25 years. Typically, digraphs are consid- 

ered only in one chapter or by a few elementary results scattered throughout 

the book. 

Despite all this, the theory of directed graphs has developed enormously 

within the last three decades. There is an extensive literature on digraphs 

(more than 3000 papers). Many of these papers contain, not only interesting 

theoretical results, but also important algorithms as well as applications. 

This clearly indicates a real necessity for a book, covering not only the basics 

on digraphs, but also deeper, theoretical as well as algorithmic, results and 

applications. 

The present book is an attempt to fill this huge gap in the literature 

and may be considered as a handbook on the subject. It starts at a level 

that can be understood by readers with only a basic knowledge in university 

mathematics and goes all the way up to the latest research results in several 

areas (including connectivity, orientations of graphs, submodular flows, paths 

and cycles in digraphs, generalizations of tournaments and generalizations 

of digraphs). The book contains more than 700 exercises and a number of 

applications as well as sections on highly applicable subjects. Due to the fact 

that we wish to address different groups of readers (advanced undergraduate 
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and graduate students, researchers in discrete mathematics and researchers 

in various areas including computer science, operations research, artificial 

intelligence, social sciences and engineering) not all topics will be equally 

interesting to all potential readers. However, we strongly believe that all 

readers will find a number of topics of special interest to them. 

Even though this book should not be seen as an encyclopedia on directed 

graphs, we included as many interesting results as possible. The book con- 

tains a considerable number of proofs, illustrating various approaches and 

techniques used in digraph theory and algorithms. 

One of the main features of this book is the strong emphasis on algorithms. 

This is something which is regrettably omitted in some books on graphs. 

Algorithms on (directed) graphs often play an important role in problems 

arising in several areas, including computer science and operations research. 

Secondly, many problems on (directed) graphs are inherently algorithmic. 

Hence, whenever possible we give constructive proofs of the results in the 

book. From these proofs one can very often extract an efficient algorithm 

for the problem studied. Even though we describe many algorithms, partly 

due to space limitations, we do not supply all the details necessary in order 

to implement these algorithms. The later (often highly non-trivial step) is a 

science in itself and we refer the reader to books on data structures. 

Another important feature is the vast number of exercises which not only 

help the reader to train his or her understanding of the material, but also 

complements the results introduced in the text by covering even more mate- 

rial. Attempting these exercises (most of which appear in a book for the first 

time) will help the reader to master the subject and its main techniques. 

Through its broad coverage and the exercises, stretching from easy to 

quite difficult, the book will be useful for courses on subjects such as (di)graph 

theory, combinatorial optimization and graph algorithms. Furthermore, it 

can be used for more focused courses on topics such as flows, cycles and 

connectivity. The book contains a large number of illustrations. This will 

help the reader to understand otherwise difficult concepts and proofs. 

To facilitate the use of this book as a reference book and as a graduate 

textbook, we have added comprehensive symbol and subject indexes. It is our 

hope that the detailed subject index will help many readers to find what they 

are looking for without having to read through whole chapters. In particular, 

there are entries for open problems and conjectures. Every class of digraphs 

which is studied in the book has its own entry containing the majority of pages 

on which this class is treated. As sub-entries to the entry ‘proof techniques’ 

we have indexed different proof techniques and some representative pages 

where the technique is illustrated. 

Due to our experience, we think that the book will be a useful teaching 
and reference resource for several decades to come. 
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Highlights 

In this book we cover the majority of the important topics on digraphs rang- 

ing from quite elementary to very advanced ones. Below we give a brief outline 

of some of the main highlights of this book. Readers who are looking for more 

detailed information are advised to consult the list of contents or the subject 

index at the end of the book. 

Chapter 1 contains most of the terminology and notation used in this 

book as well several basic results. These are not only used frequently in other 

chapters, but also serve as illustrations of digraph concepts. Furthermore, 

several applications of directed graphs are based on these elementary results. 

One such application is provided in the last section of the chapter. Basic 

concepts on algorithms and complexity can also be found in the chapter. 

Due to the comprehensive subject and notation indices, it is by no means 

necessary to read the whole chapter before moving on to other chapters. 

Chapters 2 and 3 cover distances and flows in networks. Although the 
basic concepts of these two topics are elementary, both theoretical and al- 

gorithmic aspects of distances in digraphs as well as flows in networks are 

of great importance, due to their high applicability to other problems on di- 

graphs and large number of practical applications, in particular, as a powerful 

modeling tool. 

We start with the shortest path problem and a collection of classical algo- 

rithms for distances in weighted and unweighted digraphs. The main part of 

Chapter 2 is devoted to minimization and maximization of distance parame- 

ters in digraphs. We conclude the chapter by the following applications: the 

one-way street problem, the gossip problem and exponential neighbourhood 

local search, a new approach to find near optimal solutions to combinatorial 

optimization problems. 

In Chapter 3 we cover basic, as well as some more advanced topics on 

flows in networks. These include several algorithms for the maximum flow 

problem, feasible flows and circulations, minimum cost flows in networks and 

applications of flows. We also illustrate the primal-dual algorithm approach 

for linear programming by applying it to the transportation problem. Al- 

though there are several comprehensive books on flows, we believe that our 

fairly short and yet quite detailed account of the topic will give the major- 

ity of readers sufficient knowledge of the area. The reader who masters the 

techniques described in this chapter will be well equipped for solving many 

problems arising in practice. 

Chapter 4 is devoted to describing several important classes of directed 

graphs, such as line digraphs, the de Bruin and Kautz digraphs, series-parallel 

digraphs, generalizations of tournaments and planar digraphs. We concen- 

trate on characterization, recognition and decomposition of these classes. 
Many properties of these classes are studied in more detail in the rest of 

the book. 
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In Chapter 5 we give a detailed account of results concerning the exis- 

tence of hamiltonian paths and cycles in digraphs as well as some extensions 

to spanning collections of paths and cycles, in particular, the Gallai-Millgram 

theorem and Yeo’s irreducible cycle factor theorem. We give a series of nec- 

essary conditions for hamiltonicity which ‘converges’ to hamiltonicity. Many 

results of this chapter deal with generalizations of tournaments. The reader 

will see that several of these much larger classes of digraphs share various nice 

properties with tournaments. In particular the hamiltonian path and cycle 

problems are polynomially solvable for most of these classes. The chapter il- 

lustrates various methods (such as the multi-insertion technique) for proving 

hamiltonicity. 

In Chapter 6 we describe a number of interesting topics related to hamil- 

tonicity. These include hamiltonian paths with prescribed end-vertices, pan- 

cyclicity, orientations of hamiltonian paths and cycles in tournaments and 

the problem of finding a strong spanning subdigraph of minimum size in a 

strong digraph. We cover one of the main ingredients in a recent proof by 

Havet and Thomassé of Rosenfeld’s conjecture on orientations of hamiltonian 

paths in tournaments and outline a polynomial algorithm for finding a hamil- 

tonian path with prescribed end-vertices in a tournament. We conclude the 

chapter with a brief introduction of a new approach to approximation algo- 

rithms, domination analysis. We illustrate this approach by applying results 

on hamiltonian cycles in digraphs to the travelling salesman problem. 

Connectivity in (di)graphs is a very important topic. It contains numerous 

deep and beautiful results and has applications to other areas of graph theory 

and mathematics in general. It has various applications to other areas of 

research as well. We give a comprehensive account of connectivity topics in 

Chapters 7, 8 and 9 which deal with global connectivity issues, orientations 

of graphs and local connectivities, respectively. 

Chapter 7 starts from basic topics such as ear-decompositions and the fun- 

damental Menger’s theorem and then moves on to advanced topics such as 

connectivity augmentation, properties of minimally k-(arc)-strong digraphs, 

highly connected orientations of digraphs and packing directed cuts in di- 

graphs. We describe the splitting technique due to Mader and Lovasz and 

illustrate its usefulness by giving an algorithm, due to Frank, for finding a 

minimum cardinality set of new arcs whose addition to a digraph D increases 

its arc-strong connectivity to a prescribed number. We illustrate a recent ap- 

plication due to Cheriyan and Thurimella of Mader’s results on minimally 

k-(arc)-strong digraphs to the problem of finding a small certificate for k- 

(arc)-strong connectivity. Many of the proofs in the chapter illustrate the 
important proof technique based on the submodularity of degree functions in 
digraphs. 

Chapter 8 covers important, aspects of orientations of undirected and 

mixed graphs. These include underlying graphs of certain classes of digraphs. 

Nowhere zero integer flows, a special case of flows, related to (edge-)colourings 
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of undirected graphs is discussed along with Tutte’s 5-flow conjecture, which 

is one of the main open problems in graph theory. The famous theorem by 

Nash-Williams on orientations preserving a high degree of arc-strong con- 

nectivity is described and the weak version dealing with uniform arc-strong 

connectivities is proved using splitting techniques. Submodular flows form a 

powerful generalization of circulations in networks. We introduce submodu- 

lar flows and illustrate how to use this tool to obtain (algorithmic) proofs 
of many important results in graph theory (including the Lucchesi- Younger 

theorem and the uniform version of Nash- Williams’ orientation theorem). Fi- 
nally we describe in detail an application, due to Frank, of submodular flows 

to the problem of orienting a mixed graph in order to maintain a prescribed 

degree of arc-strong connectivity. 

Chapter 9 deals with problems concerning (arc-)disjoint paths and trees 

in digraphs. We prove that the 2-path problem is V’P-complete for arbitrary 

digraphs, but polynomially solvable for acyclic digraphs. Linkings in planar 

digraphs, eulerian digraphs as well as several generalizations of tournaments 

are discussed. Edmonds’ theorem on arc-disjoint branchings is proved and 

several applications of this important result are described. The problem of 

finding a minimum cost out-branching in a weighted digraph generalizes the 

minimum spanning tree problem. We describe an extension, due to Frank, of 

Fulkerson’s two-phase greedy algorithm for finding such a branching. 

Chapter 10 describes results on (generally) non-hamiltonian cycles in di- 

graphs. We cover cycle spaces, polynomial algorithms to find paths and cycles 

of ‘logarithmic’ length, disjoint cycles and feedback sets, including a scheme of 

a solution of Younger’s conjecture by Reed, Robertson, Seymour and Thomas, 

applications of cycles in digraphs to Markov chains and the even cycle prob- 

lem, including Thomassen’s even cycle theorem. We also cover short cycles in 

multipartite tournaments, the girth of a digraph, chords of cycles and Adam’s 

conjecture. The chapter features various proof techniques including several 

algebraic, algorithmic, combinatorial and probabilistic methods. 

Digraphs may be generalized in at least two different ways, by consider- 

ing edge-coloured graphs or by considering directed hypergraphs. Alternating 

cycles in 2-edge-coloured graphs generalize the concept of cycles in bipartite 

digraphs. Certain results on cycles in bipartite digraphs, such as the charac- 

terization of hamiltonian bipartite tournaments, are special cases of results 

for edge-coloured complete graphs. There are useful implications in the other 

direction as well. In particular, using results on hamiltonian cycles in bi- 

partite tournaments, we prove a characterization of those 2-edge-coloured 

complete graphs which have an alternating hamiltonian cycle. We describe 

an application of alternating hamiltonian cycles to a problem in genetics. 

Generalizations of the classical theorems by Camion, Landau and Rédei to 

hypertournaments are described. 

Chapter 12 contains some topics that were not covered in other chapters. 

These include: an elementary proof of Seymour’s second neighbourhood con- 
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jecture in the case of tournaments, various types of orderings of the vertices 

of digraphs of paired comparisons, kernels, a recent proof by Galvin of the 

Dinitz conjecture on list colourings using kernels in digraphs, and homomor- 

phisms (an elegant generalization of colouring and also a useful vehicle for 

studying the borderline between P and NP-complete problems). We describe 

basic concepts on matroids as well as questions related to the efficiency of ma- 

troid algorithms. We give a brief account on simulated annealing, a broadly 

applicable meta-heuristic which can be used to obtain near optimal solutions 

to optimization problems, in particular, on digraphs. We discuss briefly how 

to implement and tune simulated annealing algorithms so that they may 

produce good solutions. 

Technical remarks 

We have tried to rank exercises according to their expected difficulty. Marks 

range from (—) to (++) in order of increasing difficulty. The majority of 
exercises have no mark, indicating that they are of moderate difficulty. An 

exercise marked (—) requires not much more than the understanding of the 

main definitions and results. A (+) exercise requires a non-trivial idea, or 
involves substantial work. Finally, the few exercises which are ranked (++) 
require several deep ideas. Inevitably, this labelling is subjective and some 

readers may not agree with this ranking in certain cases. Some exercises have 

a header in bold face, which means that they cover an important or useful 

result not discussed in the text in detail. 

We use the symbol 0 to denote the end of a proof, or to indicate that 

either no proof will be given or is left as an exercise. 

A few sections of the book require some basic knowledge of linear program- 

ming, in particular the duality theorem. A few others require basic knowledge 

of probability theory. 

We would be grateful to receive comments on the book. They may be sent 

to us by email to jbj@imada.sdu.dk. We plan to have a web page containing 

information about misprints and other information about the book, see 

http://www.imada.sdu.dk/Research/Digraphs/ 
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1. Basic Terminology, Notation and Results 

In this chapter we will provide most of the terminology and notation used 

in this book. Various examples, figures and results should help the reader to 

better understand the notions introduced in the chapter. The results covered 

in this chapter constitute a collection of simple yet important facts on di- 

graphs. Most of our terminology and notation are standard. Therefore, some 

readers may proceed to other chapters after a quick look through this chapter 

(unfamiliar terminology and notation can be clarified later by consulting the 

indexes supplied at the end of this book). 

In Section 1.1 we provide basic terminology and notation on sets and ma- 

trices. Digraphs, directed pseudographs, subdigraphs, weighted directed pseu- 

dographs, neighbourhoods, semi-degrees and other basic concepts of directed 

graph theory are introduced in Section 1.2. ISomorphism and basic operations 

on digraphs are considered in Section 1.3. In Section 1.4, we introduce walks, 

trails, paths and cycles, and study some properties of tournaments and acyclic 

digraphs. Basic notions and results on strong and unilateral connectivity are 

considered in Section 1.5. Undirected graphs are formally introduced in Sec- 

tion 1.6; in this section we also characterize eulerian directed multigraphs, 

digraphs with out-branchings (in-branchings) and graphs having strong ori- 

entations. Hypergraphs and mixed graphs are defined in Section 1.7. Several 

important classes of directed and undirected graphs are introduced in Sec- 

tion 1.8. Some basic notions on algorithms are given in Section 1.9. The last 

section is devoted to a solution of the 2-satisfiability problem using some 

properties of digraphs. 

1.1 Sets, Subsets, Matrices and Vectors 

For the sets of real numbers, rational numbers and integers we will use Rk, Q 

and Z, respectively. Also, let Z;} ={zE€Z: z>O}and Z={zEZ: z> 

0}. The sets R+, Ro, Q+ and Qo are defined similarly. 
The main aim of this section is to establish some notation and terminology 

on finite sets used in this book. We assume that the reader is familiar with 

the following basic operations for a pair A, B of sets: the intersection ANB, 

the union AU B (if AN B = 9, then we will sometimes use A + B instead 
of AU B), and the difference A\B (often denoted by A — B). Sets A and 
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B are disjoint if AN B = 0. We will often not distinguish between a single 

element set (singleton) {x} and the element z itself. For example, we may 
write AUb instead of AU{b}. The Cartesian product of sets X;, X2,..., Xp 
ISX XeA ex oe Oe (i, Ae apd) Re oo ane Saige oy 

For sets A,B, A C B means that A is a subset of B; A C B stands for 

AC Band A#B. A non-empty set B is a proper subset of a set A if 

BCA. A collection $;,S2,...,5; of (not necessarily non-empty) subsets of 

a set S is a subpartition of S if $;N S; = @ for alll1<iAg<t A 
subpartition $1, 5S2,...,5; is a partition of S if Ul_,5; = S. We will often 
use the name family for a collection of sets. A family F = {X1, Xo,..., Xn} 

of sets is covered by a set S if SMX; 4 @ for every i = 1,2,...,n. We 

say that S is a cover of ¥. For a finite set X, the number of elements in 

X (i.e. its cardinality) is denoted by |X|. We also say that X is an |X|- 
element set (or just an |X|-set). A set S satisfying a property P is a 
maximum (maximal) set with property P if there is no set S’ satisfying P 
and |S’| > |.S| (S C S‘). Similarly, one can define minimum (minimal) sets 
satisfying a property P. . 

In this book, we will also use multisets which, unlike sets, are allowed 

to have repeated (multiple) elements. The cardinality |S| of a multiset M 
is the total number of elements in S (including repetitions). Often, we will 

use the words ‘family’ and ‘collection’ instead of ‘multiset’. 

For an m X n matrix S = [s,;;] the transposed matrix (of S) is the 
n X m. matrix. S? = [t,| such that bg eS lO, CVE) — ol ee and 

j =1,2,...,n. Unless otherwise specified, the vectors that we use are column- 

vectors. The operation of transposition is used to obtain row-vectors. 

1.2 Digraphs, Subdigraphs, Neighbours, Degrees 

A directed graph (or just digraph) D consists of a non-empty finite set 

V(D) of elements called vertices and a finite set A(D) of ordered pairs of 
distinct vertices called arcs. We call V(D) the vertex set and A(D) the 
arc set of D. We will often write D = (V,A) which means that V and A 
are the vertex set and arc set of D, respectively. The order (size) of D is 
the number of vertices (arcs) in D; the order of D will be sometimes denoted 
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6; 

V(D) = {u,v,w,2,y,z}, AWD) = {(u,v), (u,w), (w,u), (z,u), (2, 2), (y, 2)}. 
Often the order (size, respectively) of the digraph under consideration is 
denoted by n (m, respectively). 

For an arc (u,v) the first vertex u is its tail and the second vertex v is its 
head. We also say that the arc (u,v) leaves u and enters v. The head and 
tail of an arc are its end-vertices; we say that the end-vertices are adjacent, 



1.2 Digraphs, Subdigraphs, Neighbours, Degrees 3 

Figure 1.1 A digraph D 

ie. u is adjacent to! v and v is adjacent to u. If (u,v) is an arc, we also say 

that u dominates v (or v is dominated by u) and denote it by uv. We 

say that a vertex u is incident to an arc a if u is the head or tail of a. We 
will often denote an arc (2, y) by zy. 

For a pair X,Y of vertex sets of a digraph D, we define 

(X,Y)p ={zy € A(D): tEX, ye Y}, 

i.e. (X,Y)p is the set of arcs with tail in X and head in Y. For example, for 

the digraph H in Figure 1.2, ({u,v}, {w,z})a# = {uw}, ({w, z}, {u,v})y = 
{wv}, and ({u, v}, {u, v}) 4 = {uv, vu}. 

H H' 

Figure 1.2 A digraph H and a directed pseudograph H’. 

For disjoint subsets X and Y of V(D), XY means that every vertex of 
X dominates every vertex of Y, X=>Y stands for (Y,X)p = 0, and XHY 
means that both XY and X=>Y hold. For example, in the digraph D of 

Figure 1.1, u>{v, w}, {z,y, z}=>{u, v, w} and {z,y}Hz. 
The above definition of a digraph implies that we allow a digraph to have 

arcs with the same end-vertices (for example, wv and vu in the digraph H 

in Figure 1.2), but we do not allow it to contain parallel (also called mul- 
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or 

' Some authors use the convention that x is adjacent to y to mean that there is 
an arc from z to y, rather than just that there is an arc xy or yx in D, as we 
will do in this book. 
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loops (i.e. arcs whose head and tail coincide). When parallel arcs and loops 

are admissible we speak of directed pseudographs; directed pseudographs 

without loops are directed multigraphs. In Figure 1.2 the directed pseu- 

dograph H' is obtained from H by appending a loop zz and two parallel arcs 

from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y )p (for 

every pair X,Y of vertex sets of D) are multisets. (parallel arcs provide re- 

peated elements). We use the symbol wp(z, y) to denote the number of arcs 

from a vertex x to a vertex y in a directed pseudograph D. In particular, 

p(x, y) = 0 means that there is no arc from z to y. 

We will sometimes give terminology and notation for digraphs only, but we 

will provide necessary remarks on their extension to directed pseudographs, 

unless this is trivial. 

Below, unless otherwise specified, D = (V, A) is a directed pseudograph. 

For a vertex v in D, we use the following notation: 

N§(v) = {ue V—v: vue A}, No(v) ={weV—v: we Aj}. 

The sets Nj(v), Np(v) and Np(v) = Nf(v) U Np5(v) are called the 
out-neighbourhood, in-neighbourhood and neighbourhood of v. We 

call the vertices in N#(v), Np5(v) and Np(v) the out-neighbours, in- 
neighbours and neighbours of v. In Figure 1.2, Njj(u) = {v,w}, Ny (u) = 

{v}, Nua(u) = {v, w}, Nip (w) a: {v, 2}, Ny (w) = {u, z}, Nyy (z) = {w}. For 
a set W CV, we let 

NEW) = LU Néw)-W, NEW) = LU Now) - Ww. 
wew wew 

That is, N5(W) consists of those vertices from V — W which are out- 
neighbours of at least one vertex from W. In Figure 1.2, NA ({w, z}) = {v} 
and Nj ({w, z}) = {u}. 

For a set W CV, the out-degree of W (denoted by d5(W)) is the num- 
ber of arcs in D whose tails are in W and heads are in V — W, ice. di (W) = 
|(W, V -W)p|. The in-degree of W, d5(W) = |(V-W, W)p|. In particular, 
for a vertex v, the out-degree is the number of arcs, except for loops, with tail 
v. If D is a digraph (that is, it has no loops or multiple arcs), then the out- 
degree of a vertex equals the number of out-neighbours of this vertex . We call 
out-degree and in-degree of a set its semi-degrees. The degree of W is the 
sum of its semi-degrees, i.e. the number dp(W) = d5(W) + dp(W). For ex- 
ample; in Figure 1.2, dj;(u) = 2,d;,(u) = 1,dxz(u) = 3, hay iE diy (w) = 
4, dpi z= den (2) = 1, di ({u,v, w}) = dzz({u, v,w}) = 1. Sometimes, it is 
useful to count loops in the semi-degrees: the out-pseudodegree of a vertex 
v of a directed pseudograph D is the number of all arcs with tail v. Simi- 
larly, one can define the in-pseudodegree of a vertex. In Figure 1.2, both 
in-pseudodegree and out-pseudodegree of z in H’ are equal to 2. 

The minimum out-degree (minimum in-degree) of D is 

6*(D) = min{d$(z): s€V(D)} (6-(D) = min{d,(xr): 2 € V(D)}). 



1.2 Digraphs, Subdigraphs, Neighbours, Degrees 5 

The minimum semi-degree of D is 

OVC Ds min{d*(D),6~ (D)}. 

Similarly, one can define the maximum out-degree of D, A+(D), and the 

maximum in-degree, A~(D). The maximum semi-degree of D is 

A Oieemaxt 2 (DA ()) 

We say that D is regular if 5°(D) = A°(D). In this case, D is also called 
6°(D)-regular. 

For degrees, semi-degrees as well as for other parameters and sets of di- 

graphs, we will usually omit the subscript for the digraph when it is clear 

which digraph is meant. 

Since the number of arcs in a directed multigraph equals the number of 

their tails (or their heads) we obtain the following very basic result. 

Proposition 1.2.1 For every directed multigraph D, 

Pend ep at oh = ALD), 
z€V(D) zeV(D) 

O 

Clearly, this proposition is valid for directed pseudographs if in-degrees 

and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees. 

A digraph H is a subdigraph of a digraph D if V(H) C V(D), A(A) C 
A(D) and every arc in A(#) has both end-vertices in V(H). If V(H) = V(D), 
we say that H is aspanning subdigraph (or a factor) of D . The digraph L 

with vertex set {u,v,w, z} and arc set {uv, uw, wz} is a spanning subdigraph 

of H in Figure 1.2. If every arc of A(D) with both end-vertices in V(#) is in 
A(H), we say that H is induced by X = V(H) (we write H = D(X)) and 
call H an induced subdigraph of D. If L is a non-induced subdigraph of D, 

then there is an arc ry such that x,y € V(L) and zy € A(D)—A(L). Such an 
arc zy is called a chord of L (in D). The digraph G with vertex set {u,v, w} 

and arc set {uw, wu, vu} is a subdigraph of the digraph H in Figure 1.2; G is 

neither a spanning subdigraph nor an induced subdigraph of H. The digraph 

G along with the arc uv (which is a chord of G) is an induced subdigraph of 

H. For asubset A’ C A(D) the subdigraph arc-induced by A’ is the digraph 

D(A’) = (V', A’), where V’ is the set of vertices in V which are incident with 
at least one arc from A’. For example, in Figure 1.2, H({zw, uw}) has vertex 

set {u,w,z} and arc set {zw, uw}. If H is a subdigraph of D, then we say 
that D is a superdigraph of H. 

It is trivial to extend the above definitions of subdigraphs to directed 

pseudographs. To avoid lengthy terminology, we call the ‘parts’ of directed 

pseudographs just subdigraphs (instead of, say, directed subpseudographs). 
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For vertex-disjoint subdigraphs H, L of a digraph D, we will often 

use the shorthand notation (H,L)p, HL, H>L and HL instead of 

(V(H),V(L))p, V(H)3V(L), V(A)>V(L) and V(A)HV (LZ). 
A weighted directed pseudograph is a directed pseudograph D along 

with a mapping c: A(D)—R. Thus, a weighted directed pseudograph is 

a triple D = (V(D), A(D),c). We will also consider vertex-weighted di- 
rected pseudographs, i.e. directed pseudographs D along with a mapping 

c: V(D)->R. (See Figure 1.3.) If a is an element (i.e. a vertex or an arc) 

of a weighted directed pseudograph D = (V(D), A(D),c), then c(a) is called 
the weight or the cost of a . An (unweighted) directed pseudograph can 

be viewed as a (vertex-)weighted directed pseudograph whose elements are 

all of weight one. For a set B of arcs of a weighted directed pseudograph 

D = (V,A,c), we define the weight of B as follows: c(B) = }),<, c(a). Sim- 
ilarly, one can define the weight of a set of vertices in a vertex-weighted di- 

rected pseudograph. The weight of a subdigraph H of a weighted (vertex- 

weighted) directed pseudograph D is the sum of the weights of the arcs in 

H (vertices in H). For example, in the weighted directed pseudograph D in 

Figure 1.3 the set of arcs {ry, yz, zz} has weight 9.5 (here we have assumed 

that we used the arc zz of weight 1). In the directed pseudograph H in Figure 

1.3 the subdigraph U = ({u, 2, z}, {vz, zu}) has weight 5. 

2 y(2.5) 

y 

5 Shs 

1 

zr Zz 

0.3 a(2) 2(0) u(3) 

D fag 

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex 
weights are given in brackets). 

1.3 Isomorphism and Basic Operations on Digraphs 

Suppose D = (V, A) is a directed multigraph. A directed multigraph obtained 
from D by deleting multiple arcs is a digraph H = (V, A’) where xy € A’ 
if and only if wp(z,y) > 1. Let zy be an arc of D. By reversing the 
arc zy, we mean that we replace the arc zy by the arc yz. That is, in 
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the resulting directed multigraph D’ we have wp (x,y) = wp(xz,y) — 1 and 

up (y,) = up(y, 2) +1. 
A pair of (unweighted) directed pseudographs D and H are isomorphic 

(denoted by D = H) if there exists a bijection ¢ : V(D)>V(H) such that 
Up(z,y) = wx((x), O(y)) for every ordered pair x,y of vertices in D. The 

mapping ¢ is an isomorphism. Quite often, we will not distinguish between 

isomorphic digraphs or directed pseudographs. For example, we may say that 

there is only one digraph on a single vertex and there are exactly three 

digraphs with two vertices. Also, there is only one digraph of order 2 and size 

2, but there are two directed multigraphs and six directed pseudographs of 

order and size 2 (Exercise 1.4). For a set of directed pseudographs W, we say 

that a directed pseudograph D belongs to W or is a member of W (denoted 

D €W) if D is isomorphic to a directed pseudograph in W. Since we usually 

do not distinguish between isomorphic directed pseudographs, we will often 

write D = H instead of D = H for isomorphic D and H. 

In case we do want to distinguish between isomorphic digraphs, we speak 

of labeled digraphs. In this case, a pair of digraphs D and H is indistin- 

guishable if and only if they completely coincide (ie. V(D) = V(H) and 

A(D) = A(H)). In particular, there are four labeled digraphs with vertex set 
{1,2}. Indeed, the labeled digraphs ({1, 2}, {(1, 2)}) and ({1, 2}, {(2,1)}) are 
distinct, even though they are isomorphic. 

The converse of a directed multigraph D is the directed multigraph H 

which one obtains from D by reversing all arcs. It is easy to verify, using 

only the definitions of isomorphism and converse, that a pair of directed 

multigraphs are isomorphic if and only if their converses are isomorphic 

(Exercise 1.9). To obtain subdigraphs, we use the following operations of 

deletion. For a directed multigraph D and a set B C A(D), the directed 

multigraph D — B is the spanning subdigraph of D with arc set A(D) — B. 
If X C V(D), the directed multigraph D — X is the subdigraph induced by 

V(D) —X, i.e. D-— X = D(V(D) — X).For a subdigraph H of D, we define 
D-H = D-V(RH). Since we do not distinguish between a single element set 
{x} and the element z itself, we will often write D — x rather than D — {z}. 
If H is anon-induced subdigraph of D, we can construct another subdigraph 

H' of D by adding a chord a of H; H'= H +a. 
Let G be a subdigraph of a directed multigraph D. The contraction of 

G in Dis a directed multigraph D/G with V(D/G) = {g}U(V(D) —V(G)), 
where g is a ‘new’ vertex not in D, and up/g(2,¥) = uD(z,y), 

upja(t,9)= >> mn(2,v), uojelgy)= > Hv(r,y) 
veV(G) veV(G) 

for all distinct vertices z,y € V(D) — V(G). (Note that there is no loop in 
D/G.) Let G,,G2,...,G be vertex-disjoint subdigraphs of D. Then 

D/{G1, Gay... Gr} = (..- ((D/G1)/G2) -.)/Gi. 
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Clearly, the resulting directed multigraph D/{G1,G2,...,G¢} does not de- 

pend on the order of G,,G2,...,G,;. Contraction can be defined for sets of 

vertices, rather than subdigraphs. It suffices to view a set of vertices X as a 

subdigraph with vertex set X and no arcs. Figure 1.4 depicts a digraph H 

and the contraction H/L, where L is the subdigraph of H induced by the 

vertices y and z. 

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the 

following operation called composition. Let D be a digraph with vertex 

set {v1,U2,.--,Un}, and let G1,G2,...,Gn be digraphs which are pairwise 

vertex-disjoint. The composition D[G),G2,...,Gn] is the digraph LD with 
vertex set V(G,) UV(G2) U... UV(G,,) and arc set (U7_, A(Gi)) U {gi9; : 

9: € V(Gi),9; € V(G;), viv; € A(D)}. Figure 1.5 shows the composition 
T[G,,G1,Gy], where G, consists of a pair of vertices and an arc between 

them, G has a single vertex, G, consists of a pair of vertices and the pair of 

mutually opposite arcs between them, and the digraph T is from Figure 1.4. 

H T = H/L, L= H({y, z}) 

Figure 1.4 Contraction. 

Ge 

Gy 

Figure 1.5 T[Gz, Gz, Gv] 

Let @ be a set of digraphs. A digraph D is -decomposable if D is a 
member of @ or D = H[S},..., Sp] for some H € @ with h = |V(H)| > 2 
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and some choice of digraphs 5), 52,...,S, (we call this decomposition a ®- 

decomposition). A digraph D is called totally 6-decomposable if either 

D € @ or there is a $-decomposition D = H[S),...,S,] such that h > 2, and 

each S; is totally $-decomposable. In this case, if D ¢ 6, a 6-decomposition 

of D, -decompositions S; = H;[Si1,..., Sin; ] of all S; which are not in $, @- 

decompositions of those of 5;; which are not in , and so on, form a sequence 

of decompositions which will be called a total -decomposition of D. If 

D € @, we assume that the (unique) total 6-decomposition of D consists of 
itself. 

To illustrate the last paragraph of definitions, consider ¥ = hs ee D3}, 

where K 1 is the digraph with a single vertex, K 2 is the (complete) digraph 
with two vertices and two arcs, and D2 has two vertices {1,2} and the arc 
(1, 2). Construct the digraph D by deleting from the digraph in Figure 1.5 the 

pair of arcs going from G; to G,. The digraph D is totally Y-decomposable. 

Indeed, D = D2[D2,Q] is a W-decomposition of D, where Q is the sub- 

digraph of D induced by V(G¢) U V(G,). Moreover, Q = Dolione! is 
a W-decomposition of Q. The above two decompositions form a total ©- 

decomposition of D. 

If D = H[Si,...,5,| and none of the digraphs S,,...,S, has an arc, 

then D is an extension of H. Distinct vertices x,y are similar if x,y have 

the same in- and out-neighbours in D — {z,y}. For every 1 = 1,2,...,h, the 

vertices of S; are similar in D. For any set @ of digraphs, $°' denotes the 

(infinite) set of all extensions of digraphs in ®, which are called extended 
@-digraphs. We say that # is extension-closed if = 6°". 

The Cartesian product of a family of digraphs D;, D2,..., D,, denoted 

by Di x Dz x... x Dy or []j_, Di, where n > 2, is the digraph D having 

Vil VDP OV (DD) ebovi(DA) 
STW eee, en Gav (L)), ee ee Oy 

and a vertex (uj, U2,...,Un) dominates a vertex (v1, U2,...,Un) of D if and 

only if there exists an r € {1,2,...,n} such that u,v, € A(D,) and u; = vu; 
for all i € {1,2,...,n} — {r}. (See Figure 1.6.) 

The operation of splitting a vertex v of a directed multigraph D con- 

sists of replacing v by two (new) vertices u,w so that uw is an arc, all arcs 

of the form xv by arcs xu and all arcs of the form vy by wy. The sub- 

division of an arc uv of D consists of replacing uv by two arcs uw, wu, 

where w is a new vertex. If H can be obtained from D by subdividing 

one or more arcs (here we allow subdividing arcs that are already subdi- 

vided), then H is a subdivision of D. For a positive integer p and a digraph 

D, the pth power D? of D is defined as follows: V(D?) = VD), zy 
in D? if ¢ # y and there are k < p—1 vertices z1,22...,2, such that 

E21 29->... >z,—y in D. According to this definition D! = D. For ex- 

ample, for the*digraph H,,='({1,2,..?,n};{@,¢+ Dl) ¢=1,2,2°,n —1}), 
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é : | (2,2) 

1 3 

(1, a) (3, a) 

D H /Bysedal 

Figure 1.6 The Cartesian product of two digraphs. 

we have H2 = ({1,2,...,n},{(i,j): 1<i<j <it2<nj}u{(n—1,n)}). 
See Figure 1.7 for the second power of a digraph. 

UW & 
D Dp 

Figure 1.7 A digraph D and its second power Re 

Let H and L be a pair of directed pseudographs. The union H UL of H 

and L is the directed pseudograph D such that V(D) = V(H) UV(L) and 
Up(2,y) = ba (x,y) + uL(z,y) for every pair z,y of vertices in V(D). Here 
we assume that the function jy is naturally extended, i.e. uy (zr, y) = 0 if at 

least one of x,y is not in V(H) (and similarly for wr). Figure 1.8 illustrates 
this definition. 

1.4 Walks, Trails, Paths, Cycles and Path-Cycle 

Subdigraphs 

In the following, D is always a directed pseudograph, unless otherwise speci- 

fied. A walk in D is an alternating sequence W = 214; 220273... ©p—1 p12 

of vertices x; and arcs a; from D such that the tail of a; is x; and the head 

of a; is 2i41 for every 1 = 1,2,...,k —1. A walk W is closed if z; = zy, 
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b b b 
e c 

a 
a (6 

C Cc f os if 

d d g 
g 

H L HUL 

Figure 1.8 The union D = H UL of the directed pseudographs H and L. 

and open otherwise. The set of vertices {71,22,..., 24} is denoted by V(W); 

the set of arcs {a1,@2,...,@%-1} is denoted by A(W). We say that W is a 

walk from 2; to zz or an (%1, Z%)-walk. If W is open, then we say that the 

vertex 2, is the initial vertex of W, the vertex x, is the terminal vertex 

of W, and x; and z, are end-vertices of W. The length of a walk is the 

number of its arcs. Hence the walk W above has length k—1. A walk is even 

(odd) if its length is even (odd). When the arcs of W are defined from the 
context or simply unimportant, we will denote W by 2,22... 2x. 

A trail is a walk in which all arcs are distinct. Sometimes, we identify 

a trail W with the directed pseudograph (V(W), A(W)), which is a subdi- 
graph of D. If the vertices of W are distinct, W is a path. If the vertices 

U4, 09,---, 2-1 are distinct, k > 3 and 7» = ax,, W is a cycle. Since paths 

and cycles are special cases of walks, the length of a path and a cycle is 

already defined. The same remark is valid for other parameters and notions, 

e.g. an (x, y)-path. A path P is an [z, y]-path if P is a path between x and 

y, e.g. P is either an (z,y)-path or a (y,z)-path. A longest path (cycle) in 

D is a path (cycle) of maximal length in D. 
When W is a cycle and z is a vertex of W, we say that W is a cycle 

through z. In a directed pseudograph D, a loop is also considered a cycle 

(of length one). A k-cycle is a cycle of length k. The minimum integer k for 

which D has a k-cycle is the girth of D; denoted by g(D). If D does not have 
a cycle, we define g(D) = oo. If g(D) is finite then we call a cycle of length 

g(D) a shortest cycle in D. 
For subsets X,Y of V(D), an (z,y)-path P is an (X,Y )-path if x € X, 

y €Y and V(P)N(X UY) = {z, y}. Note that, if X NY # @ then a vertex 
x € X MY forms an (X,Y)-path by itself. Sometimes we will talk about an 
(H, H')-path when H and H’ are subdigraphs of D. By this we mean an 

(V (4), V(H'))-path in D. 
An (21,2,)-path P = 21 %2..., is minimal if, for every (41, 2,)-path 

Q, either V(P) = V(Q) or Q has a vertex not in V(P). For a cycle C = 

£122 ...2p2X1, the subscripts are considered modulo p, i.e. x; = x; for every s 
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and i such that i = s mod p. As pointed out above (for trails), we will often 

view paths and cycles as subdigraphs. We can also consider paths and cycles 

as digraphs themselves. Let P,, (Ca denote a path (a cycle) with n vertices, 

ie. Pal= (f1: duu RYN (1, 2), 230k — 1) )) and Cp oP raid): 
A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cy- 

cle) if V(W) = V(D). A digraph D is hamiltonian if D contains a Hamilton 

cycle; D is traceable if D possesses a Hamilton path. A trail W = 2122...2% 

is an Euler (or eulerian) trail if A(W) = A(D), V(W) = V(D) and 2; = 2x; 

a directed multigraph D is eulerian if it has an Euler trail. 

To illustrate these definitions, consider Figure 1.9. 

x2 L6 

£5 ; CA “27 

Figure 1.9 A directed graph H. 

The walk 21 %2%6%3%4%62724X57, iS a hamiltonian walk in D. The path 

£501 X2T3X426X7 iS hamiltonian path in D. The path 2, 29%3242%6 is an 

(v1, %¢)-path and r22324%673 is an (%2,23)-trail. The cycle 2, 29732747571 

is a 5-cycle in D. The girth of D is 3 and the longest cycle in D has length 6. 

Let W = 2122...0%, Q = yiyo-.- ye be a pair of walks in a digraph D. 

The walks W and Q are disjoint if V(W)MV(Q) = 0 and arc-disjoint if 
A(W) mM A(Q) = @. If W and Q are open walks, they are called internally 

disjoint if {x2, LZ 5.3 : Spay f NV(Q) = ) and V(W) N {yo, UB oions »Ye-1} = 0. 

We will use the following notation for a path or a cycle W = 2122...2% 

(recall that x, = x, if W is a cycle): 

Wits, aa) = UiLj41.-..L;- 

It. is easy to see that W[2;, xj] is a path for x; 4 2; we call it the subpath 
of W from a; to a;. If 1 <i < k then the predecessor of x; on W is the 

vertex 2;_; and is also denoted by 2; . If 1 <i < k, then the successor of 2; 

on W is the vertex 2,41 and is also denoted by x}. Similarly, one can define 

af* = (a})+ and a7~ = (a; )~, when these exist (which they always do if 
W is a cycle). 
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Also, for a set X CV(W), we set Xt = {zt+: rE X},X-={2-: we 
X}, Xt+ = (X7T)*, etc. We will normally use such notation when a vertex 
x under consideration belongs to a unique walk W, otherwise W is given as 
a subscript, for example, Bins 

Proposition 1.4.1 Let D be a digraph and let x,y be a pair of distinct 
vertices in D. If D has an (x,y)-walk W, then D contains an (x, y)-path P 

such that A(P) C A(W). If D has a closed (x,x)-walk W, then D contains 
a cycle C through x such that A(C) C A(W). 

Proof: Consider a walk P from z to y of minimum length among all (z, y)- 
walks whose arcs belong to A(W). We show that P is a path. Let P = 

%1 22 ...%,, where = x; and y = zx. If a; = z; for some 1 <i <j <k, 

then the walk P{z,,2;|P[xzj+41, 7%] is shorter than P; a contradiction. Thus, 

all vertices of P are distinct, so P is a path with A(P) C A(W). 

Let W = 2122...z% be a walk from x = z; to itself (x = z,). Since D 

has no loop, ze-1 4 zx. Let yi y2...yz be a shortest walk from y,; = z; to 

Yt = Zp-1- We have proved above that y;y2... yz is a path. Thus, y1yo... y4y1 

is a cycle through y; = z. oO 

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well- 

studied family of digraphs, in particular, due to the following important prop- 

erties. 

Proposition 1.4.2 Every acyclic digraph has a vertex of in-degree zero as 

well as a vertex of out-degree zero. 

Proof: Let D be a digraph in which all vertices have positive out-degrees. 

We show that D has a cycle. Choose a vertex v; in D. Since d*(v,) > 0, there 
is a vertex v2 such that v; v2. As d*(v2) > 0, vg dominates some vertex v3. 

Proceeding in this manner, we obtain walks of the form v,v2...vg. As V(D) 

is finite, there exists the least k > 2 such that v, = v; for some 1 <i < k. 

Clearly, vjuj41 ...Uz is a cycle. 

Thus an acyclic digraph D has a vertex of out-degree zero. Since the 

converse H of D is also acyclic, H has a vertex v of out-degree zero. Clearly, 

the vertex v has in-degree zero in D. O 

Proposition 1.4.2 allows one to check whether a digraph D is acyclic: if D 

has a vertex of out-degree zero, then delete this vertex from D and consider 

the resulting digraph; otherwise, D contains a cycle. 

Let D be a digraph and let 21,22,...,%p be an ordering of its vertices. 

We call this ordering an acyclic ordering if, for every arc z;z; in D, we 

have 2 < j. Clearly, an acyclic ordering of D induces an acyclic ordering of 

every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph 

with a cycle has an acyclic ordering. On the other hand, the following holds: 

Proposition 1.4.3 Every acyclic digraph has an acyclic ordering of its ver- 

tices. 
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Proof: We give a constructive proof by describing a procedure that generates 

an acyclic ordering of the vertices*in an acyclic digraph D. At the first step, 

we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition 

1.4.2.) Set x; = v and delete z; from D. At the ith step, we find a vertex u 

of in-degree zero in the remaining acyclic digraph, set z; = u and delete z; 

from the remaining acyclic digraph. The procedure has |V(D)| steps. 
Suppose that 2; 2; in D, but i > j. As x; was chosen before 2;, it 

means that x; was not of in-degree zero at the jth step of the procedure; a 

contradiction. O 

The notion of complexity of algorithms is discussed in Section 1.9. In 

Exercise 1.69, the reader is asked to show that the algorithm above can be 

performed in time O(|V(D)| + |A(D)}|). 

Proposition 1.4.4 Let D be an acyclic digraph with precisely one vertex x 

(y) of in-degree (out-degree) zero in D. For every vertex v € V(D) there is 
an (z,v)-path and a (v,y)-path in D. 

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)- 
path (an (z,v)-path). Oo 

An oriented graph is a digraph with no cycle of length two. A tourna- 

ment is an oriented graph where every pair of distinct vertices are adjacent. 

In other words, a digraph T with vertex set {v1,v2,...,Un} is a tournament if 

exactly one of the arcs vjvj and v;v; is in T for every i # j € {1,2,...,n}. In 
Figure 1.10, one can see a pair of tournaments. It is an easy exercise to verify 
that each of them contains a Hamilton path. Actually, this is no coincidence 
by the following theorem of Rédei [625]. (In fact, Rédei proved a stronger 
result: every tournament contains an odd number of Hamilton paths.) 

Figure 1.10 Tournaments. 

Theorem 1.4.5 Every tournament is traceable. 

Proof: Let T be a tournament with vertex set {v1,U2,...,Un}. Suppose that 
the vertices of T are labeled in such a way that the number of backward arcs, 
i.e. arcs of the form v;v;, j > i, is minimum. Then, v1 v2 .. -Un is a Hamilton 
path in T. Indeed, if this is not the case, there exists a subscript i < n such 
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that viviga ¢ A(T). Thus, v;410; € A(T). However, in this case we can switch 

the vertices v; and v;+ in the labelling and decrease the number of backward 

arcs; a contradiction. oO 

A q-path-cycle subdigraph F of a digraph D is a collection of gq paths 

fi;--y.6g oud t Cycles C;,...,Cz such that. all of Py,...,P,,Ci,...,C; are 

pairwise disjoint (possibly, g = 0 or t = 0). We will denote F by F = P,U...U 

P,UC,U...UC; (the paths always being listed first). Quite often, we will 

consider q-path-cycle factors, i.e. spanning g-path-cycle subdigraphs. If 

t = 0, F is a q-path subdigraph and it is a q-path factor (or just a path- 

factor) if it is spanning. If g = 0 we say that F is a t-cycle subdigraph 

(or just a cycle subdigraph) and it is a t-cycle factor (or just a cycle 

factor) if it is spanning. In Figure 1.11, abc U defd is a 1-path-cycle factor, 

and abcea U dfd is a cycle factor (or, more precisely, a 2-cycle factor). 

a d 

H 

Figure 1.11 A digraph H. 

The path covering number pc(D) of D is the minimum positive integer 

k such that D contains a k-path factor. In particular, pc(D) = 1 if and only if 

D is traceable. The path-cycle covering number pcc(D) of D is the min- 

imum positive integer k such that D contains a k-path-cycle factor. Clearly, 

pec(D) < pc(D). The proof of the following simple yet helpful assertion on 
the path covering number is left as an easy exercise to the reader (Exercise 

1.34). 

Proposition 1.4.6 Let D be a digraph, and let k be a positive integer. Then 

the following statements are equivalent: 

() pep. 
(ii) There are k —1 (new) arcs e1,...,€n—-1 such that D + {e1,...,ex-1} is 

traceable, but there is no set of k —2 arcs with this property. 

(iit) k — 1 is the minimum integer s such that addition of s new vertices to 

D together with all possible arcs between V(D) and these new vertices 

results in a traceable digraph. 
oO 
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1.5 Strong and Unilateral Connectivity 

In a digraph D a vertex y is reachable from a vertex z if D has an (x, y)- 

walk. In particular, a vertex is reachable from itself. By Proposition 1.4.1, 

y is reachable from « if and only if D contains an (x,y)-path. A digraph D 

is strongly connected (or, just, strong) if, for every pair x,y of distinct 

vertices in D, there exists an (z,y)-walk and a (y,z)-walk. In other words, 

D is strong if every vertex of D is reachable from every other vertex of D. 

We define a digraph with one vertex to be strongly connected. It is easy to 

see that D is strong if and only if it has a closed Hamilton walk (Exercise 

1.47). As C,, is strong, every hamiltonian digraph is strong. The following 

basic result on tournaments is due to Moon [570]. 

Theorem 1.5.1 (Moon’s theorem) [570] Let T be a strong tournament on 
n > 3 vertices. For every x € V(T) and every integer k € {3,4,...,n}, there 

exists a k-cycle through x in T.-In particular, a tournament is hamiltonian 

if and only if it is strong. 

Proof: Let x be a vertex in a strong tournament 7’ on n > 3 vertices. 

The theorem is shown by induction on k. We first prove that T has a 3- 

cycle through z. Since T is strong, both O = N*(x) and I = N~(z) are 

non-empty. Moreover, (O,/) is non-empty; let yz € (O,J). Then, ryzz is a 

3-cycle through x. Let C = 2021 ...2; be a cycle in T with zg = xp = 2 and 

t € {3,4,...,2—1}. We prove that T has a (t + 1)-cycle through z. 
If there is a vertex y € V(T) — V(C) which dominates a vertex in C 

and is dominated by a vertex in C, then it is easy to see that there exists 

an index i such that x;y and y2j41. Therefore, C[zo, zi]yC[ri41, 24] is a 

(t + 1)-cycle through z. Thus, we may assume that every vertex outside of 

C either dominates every vertex in C or is dominated by every vertex in C. 

The vertices from V(T’) — V(C) that dominate all vertices from V(C) form a 
set R; the rest of the vertices in V(T) —V(C) form a set S. Since T is strong, 
both S and R are non-empty and the set (S,R) is non-empty. Hence taking 

sr € (5, R) we see that zosrC|x2, xo] is a (t+ 1)-cycle throughxz =z. O 

Corollary 1.5.2 (Camion’s theorem) /140] Every strong tournament is 
hamiltonian. : oO 

A digraph D is complete if, for every pair x,y of distinct vertices of D, 

both zy and yz are in D. For a strong digraph D = (V,A), a set S C V 

is a separator (or a separating set) if D — S is not strong. A digraph 
D is k-strongly connected (or k-strong) if |V| > k +1 and D has no 
separator with less than k vertices. It follows from the definition of strong 
connectivity that a complete digraph with n vertices is (n — 1)-strong, but 

is not n-strong. The largest integer k such that D is k-strongly connected 

is the vertex-strong connectivity of D (denoted by «(D)). If D is not 
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strong, we set K(D) = 0. For a pair s,t of distinct vertices of a digraph D, 
a set S C V(D) — {s,t} is an (s,t)-separator if the digraph D — S has 
no (s,t)-paths. For a strong digraph D = (V,A), a set of arcs W C Aisa 

cut (or a cut set) if D — A is not strong. A digraph D is k-arc-strong 
(or k-are-strongly connected) if D has no cut with less than k arcs. The 

largest integer k such that D is k-arc-strongly connected is the arc-strong 

connectivity of D (denoted by \(D)). If D is not strong, we set A(D) = 0. 

A strong component of a digraph D is a maximal induced subdigraph 

of D which is strong. If D;,...,D, are the strong components of D, then 

clearly V(D,) U... UV(Di) = V(D) (recall that a digraph with only one 

vertex is strong). Moreover, we must have V(D;) 1V(D;) = 0 for every i 4 j 
as otherwise all the vertices V(D;) UV(D;) are reachable from each other, 
implying that the vertices of V(D;) UV(D;) belong to the same strong com- 
ponent of D. We call V(D,) U... UV(D;) the strong decomposition of 
D. The strong component digraph SC(D) of D is obtained by contract- 

ing strong components of D and deleting any parallel arcs obtained in this 

process. In other words, if D;,...,D; are the strong components of D, then 

V(sC(D)) ={u7, v2,...,v;} and A(SC(D)) = {ujv; + (V (D;), V(D;)) pb F 
0}. The subdigraph of D induced by the vertices of a cycle in D is strong, 

i.e. is contained in a strong component of D. Thus, SC(D) is acyclic. By 
Proposition 1.4.3, the vertices of SC(D) have an acyclic ordering. This im- 

plies that the strong components of D can be labeled Dj,...,Dz such that 

there is no arc from D; to D; unless j < 7. We call such an ordering an 

acyclic ordering of the strong components of D. The strong components of 

D corresponding to the vertices of SC(D) of in-degree (out-degree) zero are 
the initial (terminal) strong components of D. The remaining strong 

components of D are called intermediate strong components of D. 

Figure 1.12 shows a digraph D and its strong component digraph SC(D). 
Note that s1, $2, $3, $4, $5 is an acyclic ordering of V(SC(D)). 

It is easy to see that the strong component digraph of a tournament T' is 

an acyclic tournament. Thus, there is a unique acyclic ordering of the strong 

components of T, namely, T;,...,7; such that T;-T; for every i < 7. Clearly, 

every tournament has only one initial (terminal) strong component. 
A digraph D is unilateral if, for every pair x, y of vertices of D, either x 

is reachable from y or y is reachable from z (or both). Clearly, every strong 

digraph is unilateral. A path P,, is unilateral; hence, being unilateral is a 

necessary condition for traceability of digraphs. The following is a character- 

ization of unilateral digraphs. 

Proposition 1.5.3 A digraph D is unilateral if and only if there is a 

unique acyclic ordering D,,D2,...,Dz of the strong components of D and 

(V (Dj), V (Di+1)) # O for every 1 = 1,2,...,¢—1. 

Proof: The sufficiency is trivial. To see the necessity, observe that if 

(V (D;), V(Di41)) = 9, then no vertex of V(Dj+1) is reachable from any ver- 
tex of V(D;) and vice versa. Finally, observe that, if (V(Di),V(Di+1)) 4 9 
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$1 

83 

pa - 

82 

D SC(D) 

Figure 1.12 A digraph D and its strong component digraph SC(D). The vertices 

$1, $2, $3, $4, 85 are obtained by contracting the sets {a, b}, {c, d, e}, {f, 9, h, i}, {9, k} 

and {1,m,n} which correspond to the strong components of D. The digraph D has 

two initial components, D;,D2 with V(D1) = {a,b} and V(D2) = {c,d,e}. It has 

one terminal component Ds with vertices V(Ds) = {l,m,n} and two intermediate 
components D3, D4 with vertices V(D3) = {f,g9,h,i} and V(Da) = {j, k}. 

for every i=1,2,...,t—1, then D,, Do,..., D; is the unique acyclic ordering 

of the strong components of D, because SC(D) has a hamiltonian path (see 

Exercise 1.18). 0 

1.6 Undirected Graphs, Biorientations and Orientations 

An undirected graph (or a graph) G = (V,£) consists of a non-empty 

finite set V = V(G) of elements called vertices and a finite set E = E(G) of 
unordered pairs of distinct vertices called edges. We call V(G) the vertex 
set and E(G) the edge set of G. In other words, an edge {x,y} is a 2- 
element subset of V(G). We will often denote {x, y} just by ry. If zy € E(G), 

we say that the vertices x and y are adjacent. Notice that, in the above 

definition of a graph, we do not allow loops (i.e. pairs consisting of the same 

vertex) or parallel edges (i.e. multiple pairs with the same end-vertices). The 
complement G of a graph G is the graph with vertex set V(G) in which 

two vertices are adjacent if and only if they are not adjacent in G. 

When parallel edges and loops are admissible we speak of pseudographs; 

pseudographs with no loops are multigraphs. For a pair u,v of vertices in 

a pseudograph G, wc(u,v) denotes the number of edges between u and v. 

In particular, wg(u,u) is the number of loops at u. For a pseudograph G, a 

directed pseudograph D is called a biorientation of G if D is obtained from 

G by replacing each edge {x,y} of G by either ry or yz or the pair xy and 

yx (except for a loop xx which is replaced by a (directed) loop at x). Note 
that different copies of the edge zy in G may be replaced by different arcs 

in D. Thus if wg(z,y) = 3 then we may replace one edge {x,y} by the arc 
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zy, another by the arc yx and the third by the pair of arcs zy and yx. An 

orientation of a graph G is a biorientation of G which is an oriented graph 

(i.e. digraph having no 2-cycle and no loops). Clearly, every digraph is a bior- 

ientation and every oriented graph an orientation of some undirected graph. 

The underlying graph UG(D) of a digraph D is the unique graph G such 

that D is a biorientation of G. For a graph G, the complete biorientation 
o 

of G (denoted by G) is a biorientation D of G such that ry € A(D) implies 
yx € A(D). A digraph D = (V, A) is symmetric if ry € A implies yx € A. 

Clearly, D is symmetric if and only if D is the complete biorientation of some 

graph. An oriented path (cycle) is an orientation of a path (cycle). 
Vee 

A pseudograph G is connected if its complete biorientation G is strongly 
o 

connected. Similarly, G is k-connected if G is k-strong. Strong components 

in G are connected components, or just components in G. A bridge ina 

connected pseudograph G is an edge whose deletion from G makes G discon- 

nected. A pseudograph G is k-edge-connected if the graph obtained from 

G after deletion of at most k—1 edges is connected. Clearly, a pseudograph is 

bridgeless if and only if it is 2-edge-connected. The neighbourhood Ng(z) 

of a vertex z in G is the set of vertices adjacent to x. The degree d(z) of a 
vertex xz is the number of edges except loops having x as an end-vertex. The 

minimum (maximum) degree of G is 

6(G) = min{d(z): 2 € V(G)} (A(G) = max{d(xz): + € V(G)}). 

We say that G is regular (or 6(G)-regular) if 6(G) = A(G). A pair of 

graphs G and GH is isomorphic if CG and H are isomorphic. 

A digraph is connected if its underlying graph is connected. The notions 

of walks, trails, paths and cycles in undirected pseudographs are analogous 

to those for directed pseudographs (we merely disregard orientations). An 

zy-path in an undirected pseudograph is a path whose end-vertices are x 

and y. When we consider a digraph and its underlying graph UG(D), we 

will often call walks of D directed (to distinguish between them and those 

in UG(D)). In particular, we will speak of directed paths, cycles and trails. 
An undirected graph is a forest if it has no cycle. A connected forest is a 

tree. It is easy to see (Exercise 1.41) that every connected undirected graph 
has a spanning tree, i.e. a spanning subgraph, which is a tree. A digraph 

D is an oriented forest (tree) if D is an orientation of a forest (tree). A 
subgraph T of a (connected) digraph D is a spanning oriented tree of D 

if UG(T) is a spanning tree in UG(D). A subdigraph T of a digraph D is an 
in-branching (out-branching) if T is a spanning oriented tree of D and T’ 

has only one vertex s of out-degree (in-degree) zero. The vertex s is the root 

of T. (See Figure 1.13.) We will often use the notation F;* (F>-) to denote 
an out-branching (in-branching) rooted at s in the digraph in question. 

Since each spanning oriented tree R of a connected digraph is acyclic as 

an undirected graph, R has at least one vertex of out-degree zero and at 
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D lal L 

Figure 1.13 The digraph D has an out-branching with root r (shown in bold); 

H contains an in-branching with root s (shown in bold); L possesses neither an 

out-branching nor an in-branching. 

least one vertex of in-degree zero (see Proposition 1.4.2). Hence, the out- 

branchings and in-branchings capture the important cases of uniqueness of 

the corresponding vertices. The following is a characterization of digraphs 

with in-branchings (out-branchings). 

Proposition 1.6.1 A connected digraph D contains an out-branching (in- 

branching) if and only if D has only one initial (terminal) strong component. 

Proof: We prove this characterization only for out-branchings since the sec- 

ond claim follows from the first one by considering the converse of D. 

Assume that D contains at least two initial strong components, D, and 

Dy. Let T be an arbitrary spanning oriented tree in D. Then each of T'(D;) 
and T'(D2) contains a vertex of in-degree zero. These vertices are of in-degree 

zero in T as well because of the definition of initial strong components. Thus, 

T is not an out-branching and D has no out-branchings. Therefore, if D has 

an out-branching, D contains only one initial strong component. 

Now we suppose that D contains only one initial strong component Dj, 

and r is an arbitrary vertex of D,. We prove that D has an out-branching 

with root r. In SC(D), the vertex x corresponding to D, is the only vertex 
of in-degree zero and, hence, by Proposition 1.4.4, every vertex of SC(D) is 

reachable from x. Thus, every vertex of D is reachable from r. We construct 

an oriented tree T' as follows. In the first step T consists of r. In Step 7 > 2, 

for every vertex y appended to T in the previous step, we add to T' a vertex 

z, such that yz and z ¢ V(T), together with the arc yz. We stop when no 

vertex can be included in T. Since every vertex of D is reachable from r, T 

is spanning. Clearly, r is the only vertex of in-degree zero in T. Hence, T is 

an out-branching. oO 

The oriented tree TJ’ constructed in the proof of Proposition 1.6.1 is a 

so-called BFS tree of D (see Chapter 2). 
The following well-known theorem is due to Robbins. 

Theorem 1.6.2 (Robbins’ theorem) /637] A connected graph G has a 
strongly connected orientation if and only if G has no bridge. 
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Proof: Clearly, if G has a bridge, G has no strong orientation. So assume 

that G is bridgeless. Then every edge uv is contained in some cycle (see 

Exercise 1.38). Choose a cycle C in G. Orient C as a directed cycle T;. 

Suppose that 7), 7>,..., 7% are chosen and oriented in such a way that every 

Ti41 (1 < i < k) is either a cycle having only one vertex in common with 

eT OTe (aT, ora path with only initial and terminal vertices in 

common with T*. If UG(T*) = G, then we are done as a simple induction 

shows that T* is strong. Otherwise, there is an edge zy which is not in 

UG(T*) such that x is in UG(T*). Let C be a cycle containing zy. Orient 
C to obtain a (directed) cycle Z. Let z be a vertex in UG(T*) which is first 
encountered while traversing Z (after leaving x). Then, set 7,41 = Z[z, z]. 

The path (or cycle) 7,41 satisfies the above-mentioned properties. Since L(G) 
is finite, after a certain number of iterations € < m—1 we have UG(T") =G. 

Oo 

We formulate and prove the following well-known characterization of eu- 

lerian directed multigraphs (clearly, the deletion of loops in a directed pseu- 

dograph D does not change the property of D of being eulerian or otherwise). 

The ‘undirected’ version of this theorem marks the beginning of graph theory 

[225] (see the book [240] by Fleischner for a reprint of Euler’s original paper 
and a translation into English, and see the book [119] by Biggs, Lloyd and 

Wilson or Wilson’s paper [737] for a discussion of the historical record). 

Theorem 1.6.3 (Euler’s theorem”) A directed multigraph D is eulerian 

if and only if D is connected and dt (x) = d~ (x) for every vertex x in D. 

Proof: Clearly, both conditions are necessary. We give a constructive proof 

of sufficiency by building an Euler trail T. Let T be initially empty. Choose 

an arbitrary vertex x in D. Since D is connected, there is a vertex y € N*(z). 

Append z to T as well as an arc from z to y. Since d~(y) = dt (y), there is 
an arc yz with tail y. Add both y and yz to T. We proceed similarly: after 

an arc uv is included in JT, we append v to T together with an arc a ¢ T 

whose tail is v. Due to the condition dt(w) = d~(w) for every vertex w, 
the above process can terminate only if the last arc appended to T is an arc 

whose head is the vertex x and the arcs of D with tail z are already in T. If 

all arcs of D are in T, we are done. Assume it is not so. Since D is connected, 

this means that T contains a vertex p which is a tail of an arc pq not in T. 

‘Shift’ cyclically the vertices and arcs of T such that T starts and terminates 
at p. Add the arc pq to T and apply the process described above. This can 

terminate only when the last appended arc’s tail is p and all arcs leaving p 

are already in T. Again, either we are done (all arcs are already in T) or we 
can find a new vertex to restart the above process. Since V(D) is finite, after 
several steps all arcs of D will be included in T. O 

? Buler’s original paper [226] only dealt with undirected graphs, but it is easy to 
see that the directed case generalizes the undirected case (see also Exercise 1.44). 
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The algorithm described in this proof can be implemented to run in 

O(\V(D)| + |A(D)|) time (see Exercise 1.72). A generalization of the last 

theorem is given in Theorem 11.1.2. For eulerian directed multigraphs, the 

following stronger condition on out-degrees and in-degrees holds. 

Corollary 1.6.4 Let D be an eulerian directed multigraph and let @4Wec 

V(D). Then, d*(W) =d-(W). 

Proof: Observe that 

S_ dt(w) =|(W,W)|+d*(W), S$) dw) =|(W,W)| +d (W). (1.1) 
wEew weEew 

By Theorem 1.6.3, > ,,cw 4* (w) = wew @ (w). The corollary follows from 
this equality and (1.1). 0 

A matching M in a directed (an undirected) pseudograph G is a set of 

arcs (edges) with no common end-vertices. We also require that no element 

of M is a loop. If M is a matching then we say that the edges (arcs) of 

M are independent. A matching M in G is maximum if M contains the 

maximum possible number of edges. A maximum matching is perfect if it 

has n/2 edges, where n is the order of G. A set Q of vertices in a directed 
or undirected pseudograph H is independent if the graph H(Q) has no 
edges (arcs). The independence number, a(H), of H is the maximum 
integer k such that H has an independent set of cardinality k. A (proper) 

colouring of a directed or undirected graph H is a partition of V(H) into 

(disjoint) independent sets. The minimum number, x(#), of independent sets 
in a proper colouring of H is the chromatic number of H. 

In Section 1.3, the operation of composition of digraphs was introduced. 

Considering complete biorientations of undirected graphs, one can easily de- 

fine the operation of composition of undirected graphs. Let H be a graph 

with vertex set {v1,v2,...,Un}, and let G1,G2,...,G, be graphs which are 

pairwise vertex-disjoint. The composition H[G),G2,...,Gn] is the graph L 

with vertex set V(G1) UV(G2) U... UV(G,) and edge set 

Ui, E(G;) U {9:93 2 OE VG eeu: Ee VG) Uses E E(H)}. 

If none of the graphs Gj,...,Gy in this definition of H[Gi,...,G,] have 

edges, then H[G,...,G,] is an extension of H. 

1.7 Mixed Graphs and Hypergraphs 

Mixed graphs are useful by themselves as a common generalization of undi- 
rected and directed graphs. Moreover, mixed graphs are helpful in several 
proofs on biorientations of graphs. 
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A mixed graph M = (V,A,£) contains both arcs (ordered pairs of 

vertices in A) and edges (unordered pairs of vertices in £). We do not allow 

loops or parallel arcs and edges, but M may have an edge and an arc with the 

same end-vertices. For simplicity, both edges and arcs of a mixed graph are 

called edges. Thus, an arc is viewed as an oriented edge (and an unoriented 

edge as an edge in the usual sense). A biorientation of a mixed graph 

M = (V,A,£) is obtained from M by replacing every unoriented edge ry 

of EF by the arc zy, the arc yx or the pair zy, yx of arcs. If no unoriented 

edge is replaced by a pair of arcs, we speak of an orientation of a mixed 

graph®. The complete biorientation of a mixed graph M = (V, A, E) isa 

biorientation M of M such that every unoriented edge zy € E is replaced 

in M by the pair ry, yx of arcs. Using the complete biorientation of a mixed 

graph M, one can easily give the definitions of a walk, trail, path, and cycle 

in M. The only extra condition is that every pair of arcs in M obtained in 

replacement of an edge in M has to be treated as two appearances of one 

thing. For example, if one of the arcs in such a pair appears in a trail T, then 

the second one cannot be in T. A mixed graph M is strong if M is strong. 

Similarly, one can give the definition of strong components. A mixed graph 

M is connected if M is connected. An edge @ in a connected mixed graph 

M is a bridge if M — 2@ is not connected. 

Figure 1.14 illustrates the notion of a mixed graph. The mixed graph 

M depicted in Figure 1.14 is strong; u,(u,v),v, {v,u},u is a cycle in M; 

M —< has two strong components: one consists of the vertex y, the other is 

M' = M ({u,v, w}); the edge {v, w} is a bridge in M’, the arc (u,v) and the 
edge {u,v} are not bridges in M’; M is bridgeless. 

Y 

Figure 1.14 A mixed graph. 

Theorem 1.7.1 below is due to Boesch and Tindell [120]. This result is 
an extension of Theorem 1.6.2. We give a short proof obtained by Volkmann 

3 Note that a mixed graph M = (V,A, E) may have a directed 2-cycle in which 
case no orientation of M is an oriented graph (because some 2-cycles remain). 
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[730]. (Another proof which leads to a linear time algorithm is obtained by 

Chung, Garey and Tarjan [157].) 

Theorem 1.7.1 Let e be an unoriented edge in a strong mized graph M. 

The edge e can be replaced by an arc (with the same end-vertices) such that 

the resulting mixed graph M' is strong if and only if e 1s not a bridge. 

Proof: If e is a bridge, then clearly there is no orientation of e that results 

in a strong mixed graph. Assume that e is not a bridge. Let M’ = M — e. 

If M' is strong, then any orientation of e leads to a strong mixed graph; 

thus, assume that M’ is not strong. Since e is not a bridge, M’ is connected. 

Let £1, L2,...,L, be strong components of M’'. Since M is strong, there 

is only one initial strong component, say L,, and only one terminal strong 

component, say L;. Let u (v) be the end-vertex of e belonging to L; (Lx). 
By strong connectivity of L,, L2,...,L, and Proposition 1.4.4 (applied to 

oO 

the strong component digraph of M'), M' + (v,u) is strong. o 

An orientation of a digraph D is a subdigraph of D obtained from D 

by deleting exactly one arc between x and y for every pair x £ y of vertices 

such that both zy and yz are in D. See Figure 1.15 for an illustration of this 
definition. 

a 
D H jag H" 

Figure 1.15 A digraph D and subdigraphs H, H' and H” of D. The digraph H is 
an orientation of D but neither of H’, H” is an orientation of D. 

Since we may transform a digraph to a mixed graph by replacing every 
2-cycle.with an undirected edge, we obtain the following reformulation of 
Theorem 1.7.1. 

Corollary 1.7.2 A strong digraph D has a strong orientation if and only if 
UG(D) has no bridge. Oo 

A hypergraph is an ordered set H = (V,€) such that V is a set (of 
vertices of H) and € is a family of subsets of V (called edges of H ) 
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The rank of H is the cardinality of the largest edge of H. For example, 
Ho = ({1, 2,3, 4}, {{1, 2,3}, {2, 3}, {1, 2,4}} is a hypergraph. The rank of Ho 
is three. The number of vertices in H is its order. We say that H is 2- 

colourable if there is a function f : V—{0,1} such that, for every edge 

E é€ €, there exist a pair of vertices t,y € E such that f(x) # f(y). The 
function f is called a 2-colouring of H. It is easy to verify that Hp is 2- 

colourable. In particular, f(1) = f(2) =0, f(3) = f(4) = 1 is a 2-colouring 
of Ho. A hypergraph is uniform if all its edges have the same cardinality. 

Thus an undirected graph is a 2-uniform hypergraph. 

1.8 Classes of Directed and Undirected Graphs 

In this section, we define certain families of directed and undirected multi- 

graphs which will be used in various chapters of this book. 

A multigraph G is complete if every pair of distinct vertices in G are 

adjacent. We will denote the complete graph on n vertices (which is unique 

up to isomorphism) by Ky. Its complement K, has no edge. 

A multigraph H is p-partite if there exists a partition V;,V2,...,Vp of. 

V (ZH) into p partite sets (ie, V(H) =WU...UV,, Vin V; = @ for every 
i # j) such that every edge of H has its end-vertices in different partite 

sets. The special case of a p-partite graph when p = 2 is called a bipartite 

graph. We often denote a bipartite graph B by B = (Vi, V2; E). A p-partite 

multigraph H is complete p-partite if, for every pair x € Vi, y € V; (i #3), 
an edge zy is in H. A complete graph on n vertices is clearly a complete 

n-partite graph for which every partite set is a singleton. We denote the 

complete p-partite graph with partite sets of cardinalities n1,n2,...,np by 

Kn,,n2,....np- Complete p-partite graphs for p > 2 are also called complete 

multipartite graphs. 

To obtain short proofs of various results on subdigraphs of a directed 

multigraph D = (V, A) the following transformation to the class of bipartite 
(undirected) multigraphs is extremely useful. Let BG(D) = (V',V"; E) de- 
note the bipartite multigraph with partite sets V’ = {v': v EV}, V" = 
{v’ : v € V} such that wgq(p)(u'w") = up(uw) for every pair u, w of ver- 

tices in D. We call BG(D) the bipartite representation of D; see Figure 

6: 
A p-partite digraph is a biorientation of a p-partite graph; see Figure 

1.17 (b). Bipartite (i.e. 2-partite) digraphs are of special interest. It is well- 
known (and was proved already by Konig [497]) that an undirected graph is 
bipartite if and only if it has no cycle of odd length. The obvious extension 

of this statement to cycles in digraphs is not valid (the non-bipartite digraph 

with vertex set {x,y,z} and arc set {ry, xz, yz} is such an example that can 

easily be generalized). However, the obvious extension does hold for strong 

bipartite digraphs. Theorem 1.8.1 can be traced back to the book [404] by 

Harary, Norman and Cartwright. 
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Figure 1.16 A directed multigraph and its bipartite representation. 

Theorem 1.8.1 A strongly connected digraph is bipartite if and only if tt 

has no cycle of odd length. 

Proof: If D is bipartite, then it is easy to see that D cannot have an odd 

cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary 

vertex x in D. We claim that for every vertex y € V(D) — = and every choice 
of an (z,y)-path P and a (y,a)-path Q, the length of P and Q are equal 

modulo 2. 

Suppose this is not the case for some choice of y, P and Q. Then choose y, 

P and Q such that the parity of the lengths of P and Q differ and |V(P)| + 
|V(Q)| is minimum among all such pairs of (2, y)- and (y,x)-paths whose 
lengths differ in parity. If V(P) NV(Q) = {z,y}, then PQ is an odd cycle, 
contradicting the assumption. Hence there is a vertex z ¢ {x,y} in V(P)N 
V(Q). Let z be chosen as the first such vertex that we meet when we traverse 
Q from y towards x. Then Plz, y]QlyS ,z| is a cycle and it is even by our 

assumption. But now it is easy to see that the parity of the paths P[z, z] 
and Q[z,z] are different and we get a contradiction to the choice of y,P 
and @. This proves the claim and, in particular, it follows that for every 

y € V(D) — a, the lengths of all paths from x to y have the same parity. 
Now let 

U={y: the length of every (x, y)-path is even}, 

U'={y: the length of every (z, y)-path is odd}. 

This is a bipartition of V(D) and neither U nor U’ contains two vertices 
which are joined by an arc, since that would imply that some vertex had 

paths of two different parities from z. oO 

An extension of this theorem to digraphs whose cycles are all of length 0 
modulo k > 2 is given in Theorem 10.5.1. 
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Recail that tournaments are orientations of complete graphs. A semicom- 

plete digraph is a biorientation of a complete graph (see Figure 1.17(a)). 

The complete biorientation of a complete graph is a complete digraph 

(denoted by En). The notion of semicomplete digraphs and their special 

subclass, tournaments, can be extended in various ways. A biorientation of a 

complete p-partite (multipartite) graph is a semicomplete p-partite (mul- 

tipartite) digraph; see Figure 1.17(c). A multipartite tournament is 
an orientation of a complete multipartite graph. A semicomplete 2-partite 

digraph is also called a semicomplete bipartite digraph. A bipartite 

tournament is a semicomplete bipartite digraph with no 2-cycles. 

ae 
(a) K4 and a semicomplete digraph of order four. 

Ww W 
(b) A 3-partite graph G and a biorientation of G. 

Ee ~~ 
(c) The complete 3-partite graph K2,1,2 and 

a semicomplete 3-partite digraph D. 

Figure 1.17 Classes of graphs and digraphs. 
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One can use the operation of extension introduced in Section 1.3 to de- 

fine ‘extensions’ of the above classes of digraphs. We will speak of extended 

semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex- 

tended semicomplete multipartite digraphs, etc. Clearly, every ex- 

tended semicomplete digraph is a semicomplete multipartite digraph, which 

is not necessarily semicomplete, and every extended semicomplete multipar- 

tite digraph is a semicomplete multipartite digraph. Therefore, the class of 

semicomplete multipartite digraphs is extension-closed, and the class of 

semicomplete digraphs is not. 

Recall that a digraph D is acyclic if D has no cycle. Obviously, every 

acyclic digraph is an oriented graph. A digraph D is transitive if, for every 

pair of arcs zy and yz in D such that x # z, the arc zz is also in D. It is easy 

to show that a tournament is transitive if and only it is acyclic (see Exercise 

1.46). Sometimes, we will deal with transitive oriented graphs, i.e. transitive 

digraphs with no cycle of length two. A digraph D is quasi-transitive if, 

for every triple x,y, z of distinct vertices of D such that ry and yz are arcs 

of D, there is at least one arc between x and z. Clearly, a semicomplete 

digraph is quasi-transitive. Note that, if there is only one arc between x and 

z, it can have any direction; hence quasi-transitive digraphs are generally not 

transitive. 

ik Q 

Figure 1.18 A transitive digraph T and a quasi-transitive digraph Q. 

1.9 Algorithmic Aspects 

In this book we will often describe and analyze algorithms on digraphs. We 
will concentrate more on graph-theoretical aspects of these algorithms than 
on their actual implementation on a computer. (In particular, we will some- 
times not prove the best possible complexity of an algorithm. However, in 
most such cases, we will provide a reference to a better complexity.) Still 
some very basic notions related to data structures and algorithms are re- 
quired and will be given below. For more details on design and analysis of 
combinatorial algorithms, the reader is addressed to numerous books on the 
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subject, e.g., to Aho, Hopcroft and Ullman [6], Brassard and Bratley [134] 

and Cormen, Leiserson and Rivest [169]. 

1.9.1 Algorithms and their Complexity 

Recall that unless specified otherwise n (m) denotes the number of vertices 
(arcs) in the directed multigraph under consideration. In the following, all 

logarithms whose base is unspecified are of base 2. For a pair of given functions 

f(k), 9(k) of a non-negative integer argument k, we say that f(k) = O(g(k)) 
if there exist positive constants c and ko such that 0 < f(k) < cg(k) for all 

k > ko. If there exist positive constants c and ko such that 0 < cf(k) < g(k) 
for all k > ko, we say that g(k) = 92(f(k)). Clearly, f(k) = O(g(k)) if and 
only if g(k) = Q(f(k)). If both f(k) = O(g(k)) and f(k) = Q(g(k)) hold, 

then we say that f(k) and g(k) are of the same order and denote it by 

f(k) = O(9(k)). 
In the analysis of an algorithm, first of all we will be interested in its time 

complexity which must reflect the running time of the corresponding com- 

puter program on various computers. In order to make the time complexity 

measure sufficiently universal, it is usually assumed that computations are 

performed by some abstract computer. The computer executes elementary 

operations, that is, arithmetical operations, comparisons, data movements 

and control branching, each in constant time. Since we are interested only in 

the asymptotics of the execution time, the number of elementary operations 

of an algorithm will be considered as its time complexity. In the vast majority 

of cases, the time complexity (which will often be called just the complex- 

ity) of an algorithm depends on the size of its input. An algorithm A is an 

O(g(n)) algorithm for some function g(n) of its input size if the running time 
of A on inputs of size n never exceeds cg(n) for some constant c (depending 
only on A). 

Since the typical inputs to the algorithms considered in this book are 

(weighted) directed multigraphs, the size of inputs will be measured by the 

numbers of vertices and arcs, that is, by n and m, and, for digraphs with 

weights on the arcs (vertices), by log |cmax|, where |Cmax| is the maximum of 

the absolute values of the weights of arcs (vertices). An algorithm of com- 

plexity O(p(n, m, log |cmax|)), where p(n, m, log |cmax|) is a polynomial in n, 
m and log|cmax|, is a polynomial-time (or just polynomial) algorithm. 

The notion of equating efficient algorithms with polynomial algorithms is 

due to Edmonds [210] and is at present the most popular formalization for 
the intuitive notion of ‘efficient’ algorithms. Although we would normally not 

call an algorithm of complexity O(n!°), where n is the size of the input, an 
efficient algorithm, it is very rarely the case that polynomial algorithms have 

such a high degree of their associated polynomials. 

There are two well-known and often-used ways to represent a digraph 

D = (V, A) for computational purposes: as a collection of adjacency lists and 
as an adjacency matrix. 



30 1. Basic Terminology, Notation and Results 

For the adjacency matrix representation of a directed multigraph 

D = (V,A), we assume that the vertices of D are labeled v1, v2,.--,Un in 

some arbitrary but fixed manner. The adjacency matrix M (D)c= Traz;] 

of a digraph D is an n x n-matrix such that mij = 1 if uu; and mij = 0 

otherwise. For directed pseudographs we let mi; = (vi, v;), that is, mij is the 

number of arcs from v; to v;. The adjacency matrix representation is a very 

convenient and fast tool for checking whether there is an arc from a vertex 

to another one. A drawback of this representation is the fact that to check 

all adjacencies, without using any other information besides the adjacency 

matrix, one needs {2(n”) time. Thus, the majority of algorithms using the 

adjacency matrix cannot have complexity lower than 2(n?) (this holds in 

particular if we include the time needed to construct the adjacency matrix). 

Figure 1.19 A directed multigraph and a representation by adjacency lists Adjt. 

The adjacency list representation of a directed pseudograph D = 

(V, A) consists of a pair of arrays Adj* and Adj~. Each of Adj* and Adj~ 

consists of |V| (linked) lists, one for every vertex in V. For each x € V, the 
linked list Adj*(x) (Adj~ (a), respectively) contains all vertices dominated 

by x (dominating x, respectively) in some fixed order (see Figure 1.19). Using 
the adjacency list Adj*(x) (Adj~ (x)) one can obtain all out-neighbours (in- 
neighbours) of a vertex x in O(|Adj*(x)|) (O(|Adj~ (x)|)) time. A drawback 
of the adjacency list representation is the fact that one needs, in general, 

more than constant time to verify whether zy. Indeed, to decide this we 

have to search sequentially through Adjt (a) (or Adj~ (x)) until we either find 
y (x) or reach the end of the list. 

To illustrate the concepts described in this section, let us consider the 

Hamilton path problem in tournaments. Theorem 1.4.5 states that every 

tournament is traceable. However, the proof that we have presented is non- 

constructive, i.e. it does not provide us with a polynomial algorithm to find 

a Hamilton path in a tournament. Now we give two constructive proofs of 

Theorem 1.4.5 and show how these lead to polynomial algorithms to construct 

a Hamilton path in a tournament. 
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Inductive Proof of Theorem 1.4.5: Clearly, the one vertex tournament 

has a Hamilton path (the vertex itself). Assume that the theorem holds for 
every tournament with less that n(> 2) vertices. Consider a tournament T 
with n vertices and a vertex x € V(T). By induction, the tournament T — x 

has a Hamilton path, P = yy2...yn_-1. If ry1, then xP is a Hamilton path 

in T; if y,-1—2, then Pz is a Hamilton path in T. Assume that y;->2 and 

L—Yn-1- Then, it is easy to show that there exists an index 1 < n — 1 such 

that yi>x and r>yj41. Thus, Ply1, yi]eP[yi+1, yn—i] is a Hamilton path in 

i O 

This constructive proof gives rise to the following simple algorithm to find 

a Hamilton path in a tournament. One of the reasons for the simplicity of 

this algorithm is that it is recursive (for a discussion of recursive algorithms, 

see e.g. the book [169] by Cormen, Leiserson and Rivest). 

HamPathTour: 

Input: A tournament T on n vertices labelled 71, 72,..., 2p and its adjacency 

matrix M = [m,,]. 
Output: A Hamilton path in T. 

Hewes, and — 2. 

If 2 > n go to Step 7. 

Let P = y:y2...yi—1 be the current path. 

. If z;>y, then P :=2;P. Let 1 :=%1-+ 1 and go to Step 2. 

. If yx12; then P := Px;. Let i:=1i+1 and go to Step 2. 

Om = tO4 — 2:0; I 7-27, 74 then P— Ply, y7\27 by s49, vit 1- 
Let 7 :=7+1 and go to Step 2. 

7. Return the path P. 

OR oN 

The correctness of this algorithm follows from the above proof. To see 

that this algorithm can be implemented as an O(n?) algorithm, observe that 

the algorithm has two nested loops, each of which perform O(n) operations 

(we count queries to the adjacency matrix as constant time) and all other 

steps take constant time. Thus, the complexity is O(n?). 

The reader who is familiar with algorithms for sorting numbers might have 

noticed that HamPathTour is very similar to the algorithm Insertion-Sort 

which sorts numbers by inserting one at a time in a list (see e.g. [169, pp. 2-4]). 

This resemblance is no coincidence. In fact, given any set S = {aj,..., an} 

of n distinct real numbers we can form an acyclic tournament T(S) with 
Vs) es orondaAio)))—" 10,0," Go aGale< 1-7 <i n}) The 
correct (sorted) increasing order on S corresponds to the unique Hamilton 
path a,(1)@_(2) ---@nx(n) of T(S) which again is the unique acyclic ordering of 

V(T(S)) (see also Exercise 1.18). Thus any algorithm for finding a Hamilton 
path in a tournament can be used for sorting numbers (we compare numbers, 

by looking at the orientation of the arc between the corresponding vertices 
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int T(S)). Conversely, several sorting algorithms can be translated into al- 

gorithms for solving the more general problem of finding Hamilton paths in 

tournaments. One such example is the classical Mergesort algorithm (see 

e.g.(169, pp. 12-15]), which we now translate into the language of tourna- 

ments. For simplicity we shall assume that the number of vertices of the 

input tournament is a power of two. The reader can easily extend the al- 

gorithm to the general case, see Exercise 1.70. It is convenient to state the 

algorithm as a recursive algorithm (which is the reason why we specify a 

parameter for the algorithm). We assume that the tournament is available 

through its adjacency matrix. 

MergeHamPathTour(7)): 

1. Split T into two tournaments T; and T2 on the same number of vertices. 

2. P;:= MergeHamPathTour(7;), 2 = 1,2. 

3. P:= MergePaths(P,, P2). 

4, Return P. , 

Here MergePaths is a procedure, which given two disjoint paths P, P’ 

in tournament T merges these two into one path P* such that V(P*) = 

V(P) UV(P’). This can be done in the same way as one would merge two 

sorted lists of numbers into one sorted list. 

Procedure MergePaths(P, P! N: 
Input: Paths P =a{75 .-?2;, and P =yiyo...9;- 

Output: A path P* such that V(P*) = V(P)UV(P’). 

If P’ is empty then P*:=P. 

SifePeisiemptyathensPaca cr 
If x; dominates y, then P*:=r,; MergePaths(P — 2,,P’). 

. If y; dominates x, then P*:=y,; MergePaths(P, P’ — y;). 

. Return P*. 

The classical analysis of the MergeSort algorithm (see e.g. [169]) shows 

that the algorithm uses O(n log n) comparisons to sort n real numbers. Sim- 
ilarly it follows from our description above that the algorithm MergeHam- 

PathTour will find a Hamilton path in a tournament T with n vertices after 

making O(nlogn) queries about adjacencies of vertices in T. Note that to 

implement the algorithm we do not need to construct the adjacency matrices 

of each of the tournaments considered in the recursive calls. Indeed, all adja- 

cencies can be checked using the adjacency matrix of the original tournament. 

Hence, if we only count the number of times we need to check the direction of 

an arc, then MergeHamPathTour is a faster algorithm than HamPathTour. 

4 Note that this is only a virtual description, since we do not need to construct 
the adjacency matrix in this case. We simply compare the two numbers x and y 
and «—y holds if and only if x < y. 
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1.9.2 NP-Complete and MP-Hard Problems 

There are many interesting algorithmic problems concerning (di)graphs for 
which no polynomial algorithm is known. Many of those problems (formulated 
in their decision form) belong to the class NPC of so-called MP-complete 
problems. For a detailed introduction to the class of MP-complete problems, 
see the book by Garey and Johnson [303]. A problem is a decision problem 

if it requires the answer ‘yes’ or ‘no’. By a problem we understand actually a 

family of instances. For example, we will consider the Hamilton cycle prob- 

lem in a digraph: given a digraph, decide whether or not it has a Hamilton 

cycle. Every digraph provides an instance of this problem. The so-called 

travelling salesman problem (TSP) is similar: given a weighted complete 
digraph D and a real number B, decide whether D contains a Hamilton cycle 

of weight at most B. An instance of the last problem consists of a complete 

digraph and a specification of the weights of its arcs. 

A decision problem S belongs to the complexity class P if and only if there 

exists a polynomial algorithm A which, given any instance of S, produces an 

answer in the set {‘yes’,‘no’} such that the answer from A on input z is ‘yes’ 
if and only if z is a ‘yes’ instance for? S. Since A is polynomial, it follows 

that it produces its answer after at most p(|z|) steps, where |z| is the size of 
the input z and p is a fixed polynomial (depending on S). 

A decision problem belongs to the class VP (co-NP) if, for every ‘yes’- 
instance (‘no’-instance) of the problem, there exists a short ‘proof’, called a 

certificate, of polynomial size (in n, m and log |cmaz|) such that, using the 

certificate, one can verify in polynomial time that the instance is indeed a 

‘yes’ (‘no’) instance. The certificate depends on the instance of the problem, 

but it must have the same structure for all instances of the problem. To 

illustrate this definition, let us show that both the Hamilton cycle problem 

and travelling salesman problem are in NP. Given a permutation 7 of the 

vertices in a digraph D (m is the certificate for hamiltonicity of D), it is 
easy to verify whether this permutation corresponds to a Hamilton cycle in 

D (note that this certificate has the same structure for each instance of the 
problem, namely it is a permutation of the vertices). Indeed, assuming that 

V(D) = {1,2,...,n}, we simply have to check that m(i)m(i + 1) is an arc 
of D for every 1 = 1,2,...,n, where the vertex n + 1 is the same as the 

vertex 1. If we also have weights on the arcs, then it is also easy to verify 

that the weight of the proposed Hamilton cycle is no more than B. Notice 

that the situation here is not symmetric: it is unknown if the ‘complement’ 

of the Hamilton cycle problem (given a digraph, check whether it has no 

Hamilton cycle) is in WP. Indeed, it is difficult to imagine what kind of 

certificate will enable a polynomial algorithm to check that a digraph is not 

hamiltonian. Actually, such a certificate would answer in affirmative the well- 

known complexity question: whether NP =co-N’P (see e.g. [303, Theorem 

> Thus a hypothetical polynomial algorithm for the Hamilton cycle problem must 
produce the answer ‘yes’ precisely when the input digraph has a Hamilton cycle. 
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7.2]). A positive answer to this question seems to be unlikely with our current 

knowledge of algorithms. 

Given a pair of decision problems S, T, we say that S is polynomially 

reducible to 7 (denoted S <p 7) if there is a polynomial algorithm A that 

transforms an instance z of S into an instance A(x) of T such that the second 

instance has the same answer as the first one. That is, x is a ‘yes’ instance of 

S if and only if A(z) is a ‘yes’ instance of J. Some polynomial reductions are 

quite easy. For example, we can readily reduce the Hamilton cycle problem 

to the travelling salesman problem: given a digraph D Consider a copy of a 

os such that V(D) = V(Kn); and, for every arc e in en its weight is 1 if 

e € A(D) and 2 otherwise. Let also B = n. Clearly, D is hamiltonian if and 

only if with the prescribed weights ve has a Hamilton cycle of weight not 

exceeding B. Obviously, the as transformation can be carried out by a 

polynomial algorithm. 

A decision problem is MP-hard if all problems in VP can be polynomi- 

ally reduced to this problem. If the problem is ’P-hard and also belongs to 

NP, then it is MP-complete. The class NPC consists of all \/P-complete 
problems. In order to show that a decision problem W is /P-hard, we must 

show that every problem in VP can be polynomially reduced to W — a seem- 

ingly impossible task. However, polynomial transformations are closed under 

composition, that is, S <p J and T <p K implies that S <p K (see Exercise 

1.73). Hence, in order to prove that W is NP-hard, it suffices to prove that 

there is some NP-complete problem which is polynomially reducible to W 

(see Exercise 1.75). Of course this only works if we already have established 

that there is some problem that belongs to the class NPC of M’P-complete 
problems. This extremely important and non-trivial step was provided by 

Cook in 1971 [165] (independently, a similar discovery was made by Levin 

[513]). 
Since there are a huge number of known NP-complete problems, the task 

to prove that a given problem is NP-complete is sometimes not too diffi- 

cult. On the other hand, it is also highly non-trivial in many cases. We will 

give a number of examples of \’P-completeness and MN P-hardness proofs 

throughout this book. It is well-known that the Hamilton cycle problem 

is NP-complete as shown by Karp in his classical paper [474]. From the 

above transformation, it follows that the travelling salesman problem is NP- 
complete as well. 

Quite often we will deal with optimization problems rather than deci- 

sion problems. Since an optimization problem consists of finding an optimal 

solution to a prescribed problem, such a problem very often has a decision 

analogue. For example, in the usual formulation of the travelling salesman 

problem the goal is to find a minimum weight Hamilton cycle in a weighted 

complete digraph. The decision analogue was stated above. If the decision 

analogue of an optimization problem is NP-hard, then we will also say that 

the optimization problem is MP-hard. So, the optimization version of the 
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travelling salesman problem is NP-hard. For a wealth of information on 

NP-hard optimization problems and their approximability properties, see 

the book [33] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela 
and Protasi. 

From a complexity point of view, there is no significant difference between 

a decision problem and its optimization analogue (if it exists). To illustrate 
this statement, let us consider the problem of deciding whether a strong 

digraph has a cycle of length at least k (here k is part of the input). The 

optimization analogue is the problem of finding a cycle of maximum length 

in a strong digraph. If we solve the optimization problem, we easily obtain a 

solution to the decision problem: just check whether the length of the longest 

cycle is at least k. On the other hand, using binary search one can find an 

answer to the optimization problem by solving a number of decision problems. 

In our example, we first check whether or not the digraph under consideration 

has a cycle of length at least n/2. Then, solve the analogous problem with 

n/4 (if D has no cycle of length at least n/2) or 3n/4 (if D has a cycle of 
length at least n/2) instead of n/2, etc. So, we would need to solve O(log n) 
decision problems, in order to obtain an answer to the optimization problem. 

1.10 Application: Solving the 2-Satisfiability Problem 

In this section we deal with a problem that is not a problem on digraphs, but 

it has applications to several problems on graphs, in particular when we want 

to decide whether a given undirected graph has an orientation with certain 

properties. In Chapter 8 we will give examples of this. We will show how to 

solve this problem efficiently using the algorithm for strong components of 

digraphs from Chapter 4. 

A boolean variable z is a variable that can assume only two values 0 

and 1. The sum of boolean variables 7; + 22 +... + 2, is defined to be 1 if 

at least one of the z;’s is 1 and 0 otherwise. The negation 7 of a boolean 

variable z is the variable that assumes the value 1 — x. Hence © = x. Let X 

be a set of boolean variables. For every x € X there are two literals, over z, 

namely z itself and Z. A clause C over a set of boolean variables X is a sum 

of literals over the variables from X. The size of a clause is the number of 
literals it contains. For example, if u,v,w are boolean variables with values 

u=0,v =0 and w = 1, then C = (u+ 0+) is a clause of size 3, its value 

is 1 and the literals in C are u, U and w. An assignment of values to the set 

of variables X of a boolean expression is called a truth assignment. If the 

variables are z1,..., 2%, then we denote a truth assignment by t = (t1,..., tx). 

Here it is understood that x; will be assigned the value ¢; fori =1,...,k. 

The 2-satisfiability problem, also called 2-SAT, is the following prob- 

lem. Let X = {21,..., 2%} be a set of boolean variables and let C1,...,C, be 

a collection of clauses, all of size 2, for which every literal is over X. Decide if 

_ there exists a truth assignment t = (t1,...,¢,) to the variables in X such that 
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the value of every clause will be 1. This is equivalent to asking whether or 

not the boolean expression F = C) *... * Cp can take the value 1. Depending 

on whether this is possible or not, we say that F is satisfiable or unsat- 

isfiable. Here ‘*’ stands for boolean multiplication, that is, 1 * 1 = 1, 

1*0=0«x1=0*0=0. Fora given truth assignment t = (t;,...,t,) and 

literal g we denote by q(t) the value of g when we use the truth assignment 

i.e; if Ges anda = 1, then git) Llp) 

To illustrate the definitions, let X = {r1, 22,23} and let C) = (41 +73), 

Cy = (a2 + 23), C3 = (J + 3) and C4 = (z2 + x3). Then it is not difficult to 

check that F = C, * C2 * C3 * C4 is satisfiable and that taking z; = 0,22 = 

1 .g3.=. li we obtain fr. 1. 

If we allow more than 2 literals per clause then we obtain the more general 

problem Satisfiability (also called SAT) which is NP-complete, even if all 
clauses have size 3, in which case it is also called 3-SAT (see e.g. page 

359 in the book [600] by Papadimitriou and Steiglitz). (In his proof of the 
existence of an NP-complete problem, Cook used the satisfiability problem 

and showed how every other problem in VP can be reduced to this problem.) 

Below we will show how to reduce 2-SAT to the problem of finding the strong 

components in a certain digraph. We shall also show how to find a satisfying 

truth assignment if one exists. This step is important in applications, such 

as those in Chapter 8. 

Let C1,...,C, be clauses of size 2 such that the literals are taken among 

the variables z,,...,2, and their negations and let F = C, *... * C, be 

an instance of 2-SAT. Construct a digraph D- as follows. Let V(D¢) = 
{1,...,Zk,X1,-.., KR} (ie. Dz has two vertices for each variable, one for 

the variable and one for its negation). For every choice of p,q € V(D+) such 
that some C; has the form C; = (p+ q), A(Ds#) contains an arc from p to q 
and an arc from @ to p (recall that Z = x). See Figure 1.20 for examples of 
a 2-SAT expressions and the corresponding digraphs. The first expression is 
satisfiable, the second is not. 

Lemma 1.10.1 If D¢ has a (p,q)-path, then it also has a (G,p)-path. In 
particular, tf p,q belong to the same strong component in Dr, then p,q belong 

to the same strong component in Dr. 

Proof: This follows easily by induction on the length of a shortest (p, q)- 

path, using the fact that (x,y) € A(Ds) if and only if (,z) € A(Dr). a 

Lemma 1.10.2 If D¢ contains a path from p to q, then, for every satisfying 
truth assignment t, p(t) = 1 implies q(t) = 1. 

Proof: Observe that F contains a clause of the form (@+ ) and every clause 
takes the value 1 under any satisfying truth assignment. Thus, by the fact 
that ¢ is a satisfying truth assignment and by the definition of Dz, we have 
that for every arc (a,b) € A(Ds), a(t) = 1 implies b(t) = 1. Now the claim 
follows easily by induction on the length of the shortest (p,q)-path in Dr. O 
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(a) (0) 
Figure 1.20 The digraph D¢ is shown for two instances of 2-SAT. In (a) F = 
(Ti + 3) * (v2 + Z3) * (Z7 + xg) * (v2 + v3) and in (b) F = (x1 + a2) * (Z1 + 22) * 
(Z2 + x3) * (T2 + 73) 

The following is an easy corollary of Lemma 1.10.1 and Lemma 1.10.2. 

Corollary 1.10.3 Ift is a satisfying truth assignment, then for every strong 

component D' of Dz and every choice of distinct vertices p,q € V(D’') we 
have p(t) = q(t). Furthermore we also have p(t) = q(t). Oo 

Lemma 1.10.4 F 1s satisfiable if and only if for every i = 1,2,...,k, no 

strong component of Dy contains both the variable x; and its negation Z;. 

Proof: Suppose t¢ is a satisfying truth assignment for F and that there is 

some variable x; such that x; and 7; are in the same strong component in Dr. 

Without loss of generality z;(t) = 1 and now it follows from Lemma 1.10.2 
and the fact that Dz contains a path from z; to 7; that we also have 7;(t) = 1 

which is impossible. Hence if F is satisfiable, then for every 1 = 1,2,...,k, 

no strong component of D- contains both the variable x; and its negation 
Le 

Now suppose that for every 1 = 1,2,...,k, no strong component of Dr 

contains both the variable xz; and its negation z;. We will show that F is 

satisfiable by constructing a satisfying truth assignment for F. 

Let D,,...,D, denote some acyclic ordering of the strong components of 

Df (i.e. there is no arc from D; to D; if i < j). Recall that by Proposition 

1.4.3, such an ordering exists. We claim that the following algorithm will 

determine a satisfying truth assignment for F: first mark all vertices ‘unas- 
signed’ (meaning truth value still pending). Then going backwards starting 

from D, and ending with D, we proceed as follows. If there is any vertex 
v € V(D;) such that 0 has already been assigned a value, then assign all 
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vertices in D; the value 0 and otherwise assign all vertices in D; the value 1. 

Observe that this means that, for every variable z;, we will always assign the 

value 1 to whichever of x;, Xj belongs to the strong component with the high- 

est index. To see this, let p denote whichever of x;,%; belongs to the strong 

component of highest index j. Let i < 7 be chosen such that p € D;. Suppose 

we assign the value 0 to p. This means that at the time we considered p, 

there was some q € D; such that g € D; for some f > j. But then p € Dy, 

by Lemma 1.10.1, contradicting the fact that i < f. 

Clearly all vertices in V(F) will be assigned a value, and by our previous 
argument this is consistent with a truth assignment for the variables of F. 

Hence it suffices to prove that each clause has value 1 under the assignment. 

Suppose some clause Cy = (p+ q) attains the value 0 under our assignment. 

By our observation above, the reason we did not assign the value 1 to p 

was that at the time we considered p we had already given the value 1 to p 

and p belonged to a component D; with a higher index than the component 

D; containing p. Thus the existence of the arc (p,q) € A(D+) implies that 

q € Dy for some h > j. Applying the analogous argument to q we conclude 

that ¢g is in some component D, with g > h. But then, using the existence 

of the arc (g,p), we get that 7 S g>h>j >i, a contradiction. This shows 

that we have indeed found a correct truth assignment for F and hence the 

proof is complete. oO 

In Chapter 4 we will see that for any digraph D one can find the strong 

components of D and an acyclic ordering of these in O(n +m) time. Since the 
number of arcs in D¢ is twice the number of clauses in D¢ and the number 

of vertices in Dz is twice the number of variables in Dz, it is not difficult 

to see that the algorithm outlined above can be performed in time O(k + r) 
and hence we have the following result. 

Theorem 1.10.5 The problem 2-SAT is solvable in linear time with respect 

to the number of clauses. Oo 

The approach we adopted is outlined briefly in Exercise 15.6 of the book 

[600] by Papadimitriou and Steiglitz, see also the paper [230] by Even, Itai 
and Shamir. 

It is interesting to note that if, instead of asking whether F is satisfiable, 

we ask whether there exists some truth assignment such that at least £ clauses 

will get the value 1, then this problem, which is called MA X-2-SAT, is V’P- 

complete as shown by Garey, Johnson and Stockmeyer [304] (here @ is part 
of the input for the problem). 

1.11 Exercises 

1.1. Let X and Y be finite sets. Show that |X UY|+|XNY|=|X|+]Y|. 

1.2. Let X and Y be finite sets. Show that |X UY|? + |X NY|? > |X|? +|Y|?. 
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Find a mistake in the following ‘definition’ of a subdigraph: H = (V’, A’) is 
a subdigraph of D = (V, A) if and only if V’ C V and A’ C A hold. 

(—) Draw the six non-isomorphic directed pseudographs of order and size 2. 

(—) Prove that the number of vertices of odd degree in a digraph is always 
even. Hint: use Proposition 1.2.1. 

Prove that for every n > 2 there exists a unique tournament T' on n vertices 
for which all out-degrees of the vertices are distinct. 

(—) Prove that every tournament on n > 2k + 2 vertices has a vertex of 
out-degree at least k + 1. 

. Prove that every undirected graph has two vertices with the same degree. 

. (—) Prove that, if D and H are isomorphic directed pseudographs, then their 
converses are also isomorphic. 

. Describe an infinite family F of directed pseudographs such that no D € F 
is isomorphic to its converse. 

. (—) Transitivity of paths. Let D be a digraph and let x,y,z be vertices 
in D, x # z. Prove that, if D has an (z,y)-path and a (y, z)-path, then it 
contains an (2, z)-path as well. 

. (—) Decomposing a closed walk into cycles. Prove that every closed 
walk can be decomposed into a collection of (not necessarily disjoint) cycles. 

. Open walk decomposition. Prove that every open walk can be decom- 
posed into a path and some cycles (not necessarily disjoint). 

. (—) Prove that, if the in-degree of every vertex in a digraph D is positive, 
then D has a cycle. 

. (—) Let x and y be distinct vertices of a digraph D. Suppose that there is a 
sequence of cycles C,...,Cx in D such that z is in Ci, y is in Cy and C; and 
Ci41 have at least one common vertex for every i € {1,2,...,k —1}. Prove 
that there exists an (z, y)-path in D. 

. Prove Proposition 1.4.6. 

. (—) Let G be an (undirected) multigraph. Using Proposition 1.2.1, prove 
that the sum of degrees of vertices in G equals twice the number of edges in 
G. 

. Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a 
unique acyclic ordering if and only if D is traceable. 

. (—) Let D be the digraph in Figure 1.21. 
(a) Determine the set of out-neighbours and the set of in-neighbours for all 

vertices of D. 
(b) Determine the semi-degrees of D. 
(c) Determine 6°(D) and A°(D). 
(d) Is D regular? 

. (—) Let D be the digraph in Figure 1.21. 
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Figure 1.21 A digraph D. 

(a) Draw the subdigraphs induced by the vertex sets {a,b,c,d,e} and 

{a,d, f,9, hy. 
(b) Draw the subdigraphs arc-induced by the arc sets {ab, cd, ed, hc, ha} and 

{ab, bc, dc, fb, bg}. 
(c) Let H be the subdigraph of D with vertex set V(H) = {a,b,c,d,e,h} 

and arc set A(H) = {ab, bc, dc, ed, eh, ae}. List all chords of H in D. 
(d) Let H be as above. Is H induced in D? Is it arc-induced? 

(—) Let D be the digraph from Figure 1.21. Draw the directed multigraphs 
D/{a,b,c,d,e,h} and D/{e, f, h}. 

. (—) Prove that an undirected graph is eulerian if and only if it has an eulerian 
orientation. 

. (—) Let D be the digraph from Figure 1.21. Determine the independence 
number a(D) of D. 

. Let D be the digraph in Figure 1.21. Determine the chromatic number of 
UG(D). 

. Let T = (V,A) be a tournament such that every vertex is on a cycle. Prove 
that for every a € A the digraph T — aa is unilateral. 

. Prove that, if a tournament T has a cycle, then it has two hamiltonian paths. 

. Let D be a semicomplete multipartite digraph such that every vertex of D 
is on some cycle. Prove that D is unilateral. 

. Let G be an undirected graph. Prove that either G or its complement G is 
connected. 

Prove that every strong tournament T’ on at least 4 vertices has two distinct 
vertices z, y such that T — x and T — y are both strong. 

Strong connectivity is equivalent to cyclic connectivity in digraphs. 
A digraph is cyclically connected if for every pair x, y of distinct vertices of 
D there is a sequence of cycles Ci,...,C, such that «x is in Cj, y is in C, and 
C; and Ci+1 have at least one common vertex for every i € {1,2,...,k — 1}. 
Prove that a digraph D is strong if and only if it is cyclically connected. 
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(—) Let D be the digraph from Figure 1.21. Find an out-branching with root 
ain D. 

(—) Prove that a directed multigraph D is strong if and only if it has an 
out-branching rooted at v for every vertex v of D. 

(+) Preserving cycle subdigraphs. Let D be a strong digraph with the 
property that, for every pair xz, y of vertices, the deletion of all arcs between 

x and y results in a connected digraph. Let F = C; UC2U...UC; bea 
cycle subdigraph in D such that every cycle C; has length at least three. 
Prove that D has a strong spanning oriented subgraph containing F. Hint: 
use Corollary 1.7.2 (Volkmann [730]). 

Prove Proposition 1.4.6. 

(—) Show that every digraph D contains a path of length at least 6°(D). 

Show that every oriented graph D on n vertices and with 6°(D) > [(n—1)/4] 
is strong. Show that this is best possible in terms of 6°(D). 

Prove that a connected digraph is strong if and only if every arc is contained 
in a cycle. Hint: use the result of Exercise 1.30. 

Prove that every edge of a 2-edge-connected graph belongs to a cycle. 

(—) Prove that an undirected tree of order n has n — 1 edges. 

Prove that every undirected tree has a vertex of degree one. 

Prove that every connected undirected graph G has a spanning tree. Hint: 
observe that a connected spanning subgraph of G with mimimum number of 
edges is a tree. 

Using the results of the last two exercises, prove that every connected undi- 
rected graph G has a vertex x such that G — x is connected. 

An undirected multigraph G is eulerian if it contains a closed trail T’ such 
that A(T) = A(G). Prove without using Theorem 1.6.3 that G is eulerian if 
and only if G is connected and d(x) is even for every vertex x of G. 

Prove using Exercise 1.43 that, if an undirected graph G = (V, £) has no 
vertex of odd degree, then it has an orientation D = (V, A) such that df(v) = 
dp(v) for all ve V. 

Let G = (V, E) be an eulerian graph. Using Exercise 1.43 and Corollary 1.6.4, 
prove that d(W) is even for every proper subset W of V. 

(—) Prove that a tournament is transitive if and only if it is acyclic. Hint: 
apply Theorem 1.5.1. 

Hamiltonian walks in strong digraphs. Prove that a digraph is strong 
if and only if it has a Hamilton closed walk. 

(—) Prove that every strong digraph H has an extension D = H[Kn,,..., 

Kn,], h = |V(H)|, such that D is hamiltonian. Hint: consider a hamiltonian 
closed walk in H. 
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A transitive triple in a digraph D is a set of three vertices 2, y, z such that 

zy,vz and yz are arcs of D. Prove that, if a 2-strong digraph D contains a 

transitive triple, then D has two cycles whose length differ by one. 

. List all the acyclic orders of the digraph SC(D) in Figure 1.12. 

. (—) Hamiltonian extensions of cycles. Characterize extensions of cycles 
which are hamiltonian. 

. Let D = C,[Kn,,--.,Kn,] be an extension of a cycle. Prove that «(D) = 
IM 7p | Le ee hs 

. (+) Traceable semicomplete bipartite digraph characterization. 
Prove that a semicomplete bipartite digraph B is traceable if and only if 
it contains a 1-path-cycle factor F. Hint: demonstrate that, if F consists of 
a path and a cycle only, then B is traceable; use it to establish the desired 

result (Gutin [355]). (See also Chapter 5.) 

. (+) Let B be a strong semicomplete bipartite digraph containing a cycle 
factor consisting of two cycles. Prove that B is hamiltonian (Gutin [353)). 

(+) Hamiltonian semicomplete bipartite digraph characterization. 
Using the result of Exercise 1.54 prove that a semicomplete bipartite digraph 
B is hamiltonian if and only if B is strong and B contains a cycle factor 
(Gutin [353]). (See also Chapter 5.) 

(—) Show that every orientation of a quasi-transitive digraph is a quasi- 
transitive digraph. 

Prove that every strong quasi-transitive digraph of order n > 3 has a strong 
orientation, and so does every strong semicomplete bipartite digraph with 
every partite set of cardinality at least 2. Hint: use Corollary 1.7.2. 

(—) Prove that, if a bipartite tournament has a cycle then it has a 4-cycle. 

(—) Describe an infinite family of strong bipartite tournaments without a 
6-cycle. 

Characterize 2-connected undirected graphs for which every cycle has odd 
length. 

(—) Show that for every undirected graph G on n vertices we have x(G) > 

[n/a(G)]. 

Show that a digraph D has a cycle factor if and only if its bipartite repre- 
sentation BG(D) contains a perfect matching. 

Describe an infinite family of strong multipartite tournaments, each of which 
have a cycle factor but is not hamiltonian. 

. Describe an infinite family of strong quasi-transitive digraphs, each of which 
have a cycle factor but is not hamiltonian. 

. Give a characterization of hamiltonian complete 3-partite undirected graphs. 

. Give an infinite class of strong extended tournaments, none of which is hamil- 
tonian. 
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4-kings in bipartite tournaments. A vertex v in a digraph D is a k-king, 
if for every u € V(D) — {v} there is a (v, u)-path of length at most k. Prove 
that a vertex of maximum out-degree in a strong bipartite tournament is a 

4-king. For all s,t > 4 construct strong bipartite tournaments with partite 
sets of cardinality s and t which do not have 3-kings. (Gutin [356]) 

(+) A special case of the maximum independent set problem. The 
maximum independent set problem is as follows. Given an undirected graph 
G, find an independent set of maximum cardinality in G. The purpose of 
this exercise is to show that a special case of the maximum independent set 
problem is equivalent to the 2-satisfiability problem and hence can be solved 
using any algorithm for 2-SAT. 

(a) Let G = (V,E) be a graph on 2k vertices and suppose that G has a 
perfect matching (i.e. a collection e1,...,e% of edges with no common 
end-vertex). Construct an instance F of 2-SAT which is satisfiable if 
and only if G has an independent set of k vertices. Hint: fix a perfect 
matching M of G and let each edge in M correspond to a variable and 
its negation. 

(b) Prove the converse, namely if F is any instance of 2-satisfiability, then 
there exists a graph G = (V, E) with a perfect matching such that G has 
an independent set of size |V(G)|/2 if and only if F is satisfiable. 

(c) Prove that it is WP-complete to decide if a given graph has an indepen- 
dent set of size at least @, even if G has a perfect matching. Hint: use a 
reduction from MAX-2-SAT. 

Linear time algorithm for finding an acyclic ordering of an acyclic 
digraph. Verify that the algorithm given in the proof of Proposition 1.4.3 
can be implemented as an O(n + m) algorithm using the adjacency list rep- 
resentation. 

. Show how to extend the algorithm MergeHamPathTour (see Subsection 1.9.1) 
so that it works for tournaments with an arbitrary number of vertices. 

. Based on the proof of Theorem 1.5.1, give a polynomial algorithm to find 
cycles of lengths 3, 4,...,n through a given vertex in a strong tournament T’. 
What is the complexity of your algorithm and how do you store information 
about T and the cycles you find? 

(+) Fast algorithm for Euler trails. Demonstrate how to implement the 
algorithm in the proof of Theorem 1.6.3 as an O(n + m) algorithm. Hint: 
use adjacency lists along with a suitable data structure to store the trail 
constructed so far. 

Suppose S,7, K are decision problems such that S <p 7 and 7 <p K. Prove 
that S <p K. 

The independent set problem is as follows: Given a graph G = (V, E) 
and natural number k, decide whether G has an independent set of size at 
least k. Show that the independent set problem belongs to the complexity 

class NP. 

Suppose W is an NP-complete problem and that 7 is a decision problem 
such that W <p T. Prove that 7 is NP-hard. 

Finding a cycle of maximum weight in a digraph. Show that it is 
an NP-hard problem to find a cycle of maximum weight in a digraph with 
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weights on its arcs. Hint: show how to reduce the Hamilton cycle problem to 

this problem by a polynomial reduction. 

The acyclic subdigraph problem. Let S be the following decision prob- 

lem. Given a digraph D and a natural number k, does D contain an induced 

acyclic subdigraph on at least k vertices? Show that the independent set 
problem polynomially reduces to S (the independent set problem is: given a 
graph G and a number k, does G contain an independent set of size at least 

tye 

Show that if a decision problem S belongs to the complexity class P then it 

also belongs to VP. 

Show that P C NPNco— WNP. 

Show that if there is some decision problem S which belongs to both of the 
classes P and NPC, then P = NP. 

(+) Reducing the Hamilton cycle problem to Satisfiability. Describe 
a polynomial reduction from the Hamilton cycle problem to the Satisfiability 
problem. Hint: model different attributes by different sets of clauses. For 
example you should use one family of clauses to ensure that every vertex is 
the tail of at least one arc. 

Describe a polynomial reduction from the problem of deciding whether an 
undirected graph has a matching of size k to the problem MAX-2-SAT. 

Finding a 1-maximal cycle. A cycle C in a digraph D is 1-maximal if 
D has no cycle C’ such that C — a is a subpath of C’ for some arc a of C. 
Describe a polynomial algorithm for finding a 1-maximal cycle in a strong 
digraph. What is the complexity of your algorithm? Hint: compare it with 
the proof of Theorem 1.5.1. 

Describe a linear time algorithm to check whether a given acyclic digraph 
has more than one acyclic ordering. Hint: use the result of Exercise 1.18. 

Transitive subtournaments in tournaments. Show that every tourna- 
ment on 8 vertices contains a transitive tournament on 4 vertices (as an 
induced subdigraph). Hint: start from a vertex of maximum out-degree. Use 
the idea above to prove that every tournament on n vertices contains a tran- 
sitive tournament of size {2(log n). 



2. Distances 

In this chapter, we study polynomial algorithms which find distances in 

weighted and unweighted digraphs as well as some related complexity re- 

sults. We consider bounds on certain distance parameters of a digraph and 

describe several results on minimizing (and maximizing) the diameter of an 
orientation of a graph. We study some applications of distances in digraphs to 

the travelling salesman problem, the one-way street problem and the gossip 

problem. 

Additional terminology and notation are given in Section 2.1. Some basic 

results on the structure of shortest paths in weighted digraphs are proved in 

Section 2.2. In Section 2.3 we study algorithms to find shortest paths from a 

vertex to the rest of the vertices of weighted and unweighted digraphs. We 

also consider the Floyd-Warshall algorithm to compute distances between all 

pairs of vertices in a weighted digraph. In Section 2.4 we consider bounds 

on the following parameters: out-radius, in-radius, radius and diameter of a 

digraph. The problem of maximizing the diameter of a strong orientation of 

a bridgeless graph is investigated in Section 2.5. The problem of minimizing 

the diameter of an orientation of a bridgeless graph, which has applications to 

the one-way street problem and the gossip problem, is studied extensively in 

Sections 2.6, 2.7, 2.8 and 2.9. Notice that while both the problem of finding an 

orientation of minimum diameter and the problem of finding an orientation 

of maximum diameter are \/P-hard, the former is much more complicated 

from a graph theoretical point of view than the latter. 

So-called kings in various classes of digraphs are investigated in Section 

2.10. The notion of a king is related to the study of domination in biology 

and sociology. The last two sections are devoted to applications of distances 

in digraphs. In Section 2.11 we discuss the one-way street problem and the 

gossip problem as well as their natural extensions to digraphs. Some recent 

results on the topics are described. In particular, we state theorems on sharp 

upper bounds of the minimum diameter orientations of quasi-transitive and 

semicomplete bipartite digraphs. In Section 2.12 we consider a new approach 

to compute near optimal solutions to the travelling salesman problem, the 

exponential neighbourhood local search (ENLS). We show how to utilize the 

notions and results on distances in the study of ENLS. 



46 2. Distances 

2.1 Terminology and Notation on Distances 

Let D = (V, A) be a directed pseudo-graph. Recall that, for a set WoGV. 

Ni(W) = LJ Nt Na (W) sol Je eis 
weEew weEew 

Ker NW) = WaNS (Wh Ni (W), Np’ (W) = Np(W). For every posi- 

tive integer p, we can define the pth out-neighbourhood of W as follows: 

we?(W) = NAUNS?->(W)) — LJ NEW). 
i=0 

Similarly, one can define Np?(W) for every positive integer p. In par- 

ticular, N+2(W) = Nt+(N+(W)) — (WU Nt(W)). Sometimes, N7,?(W) 

(N5°(W)) is called the open pth out-neighbourhood (open pth in- 

neighbourhood) of W. We will also use the closed pth in- and out- 

neighbourhoods of a set W of vertices of D which are defined as follows 

(p> 0): 

P P 

NSW] =W, NSW] = UNSW), Np?W]=U Np'(W). 
1=0 i=0 

To simplify the notation, we set N3[W] = Nj'[W] and Np[W] = Nz‘ [W]. 
See Figure 2.1. 

e€ d 

Figure 2.1 A digraph D. The out-neighbourhoods of the set W = {a,b} are 

N*({a,b}) = {f,9}, N**({a, b}) = fe}, N**({a,b}) = {a}, N**({a, b}) = {c}. 
The closed out-neighbourhoods of W = {a,b} are N*[f{a, ae = fad; f,9}, 

N*({a,b}] = {a,b,e,f,9}, N*°[{a,d}] = {a,b,d,e,f,g}, N*4[{a,0} 
{asib;ie, dy eng Oi: 

Let D = (V,A,c) be a directed multigraph with a weight function c : 
AR on its arcs. Recall that the weight of a subdigraph D' = (V, A’) of D is 
given by c(A’) = >7,<4, c(a). Whenever we speak about the length of a walk 
we mean the weight of that walk (with respect to c). A negative cycle in a 

weighted digraph D = (V, A,c) is a cycle W whose weight c(W) is negative. 
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We assume that D has no negative cycle, for otherwise the following 

definition becomes meaningless. If z and y are vertices of D then the distance 

from zx to y in D, denoted dist(z, y), is the minimum length of a (zx, y)-walk, 

if y is reachable from x, and otherwise dist(xz,y) = co. Since D has no cycle 

of negative weight, it follows that dist(z,x) = 0 for every vertex x € V. It 

follows from Proposition 1.4.1 that there is a shortest (2, y)-walk which is, in 
fact, a path (if D has no cycle of zero weight either, a shortest. walk is always 

a path). Furthermore, by Proposition 1.4.1, the distance function satisfies the 

triangle inequality: 

dist(z, z) < dist(x, y) + dist(y, z) for every triple of vertices x,y,z. (2.1) 

The above definitions are applicable to unweighted directed multigraphs 

as well: simply take the weight of every arc equal to one (then, the length of 

a walk in the ‘weighted’ and ‘unweighted’ cases coincide). 

The distance from a set X to a set Y of vertices in D is 

dist(X, Y) = max({dist(z,y): € X,yeEY}!. (2:2) 

The diameter of D is diam(D) = dist(V,V). Clearly, D has finite diameter 
if and only if D is strong. The out-radius rad‘(D) and the in-radius 

rad (D) of D are defined by 

radt(D) = min{dist(z,V): €V}, rad (D) =min{dist(V,z): 2 € V}. 

Because of the obvious duality between out-radius and in-radius, in many 

cases, we will consider only one of them. The radius of D is 

rad(D) = min{(dist(z, V) + dist(V,z))/2: «eV}. 

To illustrate the definitions above, consider the digraph D in Figure 2.1. 

Here we have dist(a,V) = dist(b,V) = dist(e,V) = 4 and dist(c,V) = 
dist(d, V) = dist(f,V) = dist(g,V) = 3. Furthermore, we have dist(V,c) = 
dist(V, f) = 4, dist(V,a) = dist(V,b) = dist(V,d) = 3 and dist(V,e) 
dist(V, g) = 2. Now we see that rad*(D) = 3, rad (D) = 2, rad(D) = 2.5 
and diam(D) = 4. It is also easy to see that dist({a,c}, {b, f}) = 3. 

The following proposition gives a characterization of weighted digraphs 

D of finite out-radius. 

Proposition 2.1.1 A weighted digraph D has a finite out-radius if and only 

if D has a unique initial strong component. 

Proof: A digraph with two or more initial strong components is obviously 

of infinite out-radius. If D has only one initial strong component, then D 

contains an out-branching (by Proposition 1.6.1). Thus, rad*(D)<oo. O 

1 This definition may seem somewhat unnatural (with max instead of min), but it 

_ simplifies some of the notation in this chapter and also appears quite useful. 
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This proposition implies that a weighted digraph D has a finite in-radius if 

and only if D has a unique terminal strong component. Notice that rad(D) < 

oo if and only if D is strong. 

For an undirected graph G, we can introduce the notions of distance 

between pairs of vertices, vertex sets, radius, etc. by considering G. For an 

integer r, a vertex v is an r-king if dist(v, V) < r. For example, the vertex c 

in Figure 2.1 is a 3-king. 

2.2 Structure of Shortest Paths 

In this section we study elementary, but very important properties of shortest 

paths in weighted digraphs. We also consider some complexity results on 

paths in directed and mixed weighted graphs. 

We assume that D = (V,A,c) is a weighted digraph with no negative 

cycle. 

Proposition 2.2.1 If P=2,22...2, is a shortest (41, 2;%)-path in D, then 

Plg;,2;| 18 a shortest (x;,2;)-path jor alll <4< 7 < k- 

Proof: Suppose that 2;Qa; is an (2;,2;)-path whose length is smaller than 

that of P[z;,z;]. Then the weight of the walk W = Pla, 2;]QP[x;, zx] is 
less than the length of P. However, by Proposition 1.4.1, and the fact that 

D has no negative cycle, W contains an (z;,2;)-path R whose length is at 

most that of W and hence is smaller than that of P, a contradiction. O 

Let s be a fixed vertex of D such that dist(s,V) < oo. Consider spanning 

subdigraphs of D, each of which contains a shortest path from s to every 

other vertex in D. The proof of the following theorem shows that given any 

such subdigraph D’ of D, we can construct an out-branching of D rooted at 

s, which contains a shortest (s,u)-path for every u € V — s. 

Theorem 2.2.2 Let D' and s be as above. There exists an out-branching 

F+ such that, for every u € V, the unique (s,u)-path in F+ is a shortest 
(s,u)-path in D. 

Proof: We will give a constructive proof showing how to build F'+ from any 

collection {P, : v € V—s} of shortest paths from s to the rest of the vertices. 
Choose a vertex u € V — s arbitrarily. Let initially F+ := P,. By Propo- 

sition 2.2.1, for every x € V(F;+), the unique (s,z)-path in F> is a shortest 

(s,a)-path in D. Hence, if V(F;*) = V, then we are done. Thus, we may 
assume that there exists w ¢ V(F;*). Let z be the last vertex on P,, which 
belongs to F;+. Define H as follows: 

V(H) = V(FS)UV(Pylz,w]), A(H) = A(FS) U A(Py[z, w)). 
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We claim that, for every vertex x in P,[z,w], the unique (s,z)-path in H 
is a shortest (s,2)-path in D. By Proposition 2.2.1, P,|[s,z] is a shortest 
(s,z)-path in D. Since z € V(F3*), the unique (s,z)-path Q in H has the 
same length as P,,[s,z]. Therefore, the length of the path QP,,[z,z] is equal 
to the length of the path P,,[s, xz]. Now observe that QP,[z,2] is the unique 
(s,x)-path in H. We set F* := H and use an analogous approach to include 

all vertices of D and preserve the desired property of Fy. O 

Our constructive proof above implies the existence of a polynomial al- 

gorithm to construct the final out-branching, starting from a collection of 

shortest paths from s to all other vertices. We call such an out-branching a 

shortest path tree from s. As we will see in Exercises 2.8 and 2.9, the 

algorithms described in the next section can be easily modified so that they 

construct a shortest path tree directly, while searching for the shortest paths. 

If we allow D to have negative weight cycles, then we obtain the following 

result for shortest paths (recall that in the presence of negative cycles the 

length of a shortest walk may not be defined, whereas the length of a shortest 

path is still well-defined). 

Proposition 2.2.3 It is NP-hard to find a shortest path between a pair of 

vertices of a given weighted digraph. 

Proof: Let D = (V, A) be an (unweighted) digraph and let z # y be vertices 

of D. Set c(wv) = —1 for every arc uv € A. We have obtained a weighted 

digraph D’ = (V,A,c). Clearly, D’ has an (z,y)-path of length 1 — n if 

and only if D has a hamiltonian (2, y)-path. Since the problem of finding 

a hamiltonian (x, y)-path is ’P-complete (see Exercise 6.3) and D’ can be 
constructed from D in polynomial time, our claim follows. oO 

Clearly D' above has a negative cycle if and only if D has any directed 

cycle. As we will show in Subsection 2.3.2, we can find a longest path in an 

acyclic digraph in polynomial time, using a reduction to the shortest path 

problem. 

In Section 2.3, we will see that one can check whether a weighted digraph 

has a negative cycle in polynomial time. However, unless P = NP, this 

result cannot be extended to weighted mixed graphs, because of the following 
theorem by Arkin and Papadimitriou [28]. 

Theorem 2.2.4 Given a weighted mixed graph, it is NP-complete to deter- 

mine whether a negative cycle exists. 0 

It follows from Proposition 2.2.3 that it is MP-hard to find a shortest path 

between a pair of vertices in a weighted mixed graph. More interestingly, 

Arkin and Papadimitriou showed that the same is true even if we restrict 

ourselves to weighted mixed graphs without negative cycles [28]. 
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2.3 Algorithms for Finding Distances in Digraphs 

In this section we describe well-known algorithms to find distances in weighted 

and unweighted digraphs. Almost all algorithms which we describe are for 

finding the distances from a fixed vertex of a digraph to the rest of the ver- 

tices. If the given digraph is unweighted then one can use the very simple and 

fast breadth-first search algorithm, that is introduced in Subsection 2.3.1. If 

the given digraph D is weighted and acyclic, another fast and simple approach 

based on dynamic programming is provided in Subsection 2.3.2. When D is 

an arbitrary digraph, but its weights are non-negative, Dijkstra’s algorithm 

introduced in Subsection 2.3.3 solves the problem. When the weights may be 

negative, but no negative cycle is allowed, the Bellman-Ford-Moore algorithm 

given in Subsection 2.3.4 can be applied. This algorithm has the following 

additional useful property: it can be used to detect a negative cycle (if one 

exists). 
If we are interested in finding the distances between all pairs of vertices of 

a weighted digraph D, we can apply the Bellman-Ford-Moore algorithm from 

every vertex of D. However, there is a much faster algorithm, due to Floyd 

and Warshall. We describe the Floyd-Warshall algorithm in Subsection 2.3.5. 

The reader can find comprehensive overviews of theoretical and practical 

issues on the topic in the papers [153] by Cherkassky and Goldberg and [154] 

by Cherkassky, Goldberg and Radzik. 

2.3.1 Breadth-First Search (BFS) 

This approach allows one to find quickly the distances from a given vertex s 

to the rest of the vertices in an unweighted digraph D = (V, A). BFS is based 
on the following simple idea. Starting at s, we visit each vertex x dominated 

by s. We set dist’(s,z) := 1 and s := pred(z) (s is the predecessor of z). 

Now we visit all vertices y not yet visited and dominated by vertices x of 

distance 1 from s. We set dist’(s,y) := 2 and x := pred(y). We continue 

in this fashion until we have reached all vertices which are reachable from s 

(this will happen after at most n—1 iterations, by Proposition 1.4.1). For the 

rest of the vertices z (not reachable from s), we set dist’(s, z) := oo. In other 

words, we visit the first (open) out-neighbourhood of s, then its second (open) 

out-neighbourhood, etc. A more formal description of BFS is as follows. At 

the end of the algorithm, pred(v) = nil means that either v = s or v is not 

reachable from s. The correctness of the algorithm is due to the fact that 

dist(s,x) = dist’(s,x) for every 2 € V. This will be proved below. 

BFS 

Input: A digraph D = (V, A) and a vertex s € V. 

Output: dist'(s,v) and pred(v) for all v € V. 

1. For each v € V set dist'(s,v) := 00 and pred(v) := nil. 
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2. Set dist'(s,s) := 0. Create a queue Q consisting of s. 

3. While Q is not empty do the following. Delete a vertex u, the head of Q, 

from Q and consider the out-neighbours of u in D one by one. If, for an 

out-neighbour v of u, dist’(s, v) = 00, then set dist’(s,v) := dist'(s,u)+1, 
pred(v) := u, and put v to the end of Q. 

If D is represented by adjacency lists, the complexity of the above algo- 

rithm is O(n + m). Indeed, Step 1 requires O(n) time. The time to perform 

Step 3 is O(m) as the out-neighbours of every vertex are considered only once 
and )°.cy d* (x) =m, by Proposition 1.2.1. 

To prove the correctness of BFS, it suffices to prove that dist(s,z) = 

dist'(s,x) for every x € V. By Steps 2 and 3 of the algorithm, dist(s,r) < 
dist'(s, x). Indeed, vj v2...ug, where v; = s, vy = z and y; = pred(v;41) for 

every i = 1,2,...,k—1, is an (s,z)-path. By induction on dist(s, x), we prove 

that, in fact, the equality holds. If dist(s,z) = 0, then x = s and the result 

follows. Suppose that dist(s,2) = k > 0 and consider a shortest (s,z)-path 
P. Let y be the predecessor of @, i.e., y = tp. By the induction hypothesis, 

dist’(s,y) = dist(s, y) = k — 1. Since x is dominated by y , by the algorithm, 
dist'(s, x) < dist'(s,y) +1 =k = dist(s,r). Combining dist(s, x) < dist’(s, x) 
with dist'(s,z) < dist(s,x), we are done. 

The BFS algorithm allows one to compute the radius, out-radius, in- 

radius and diameter of a digraph in time O(n? + nm). Using the array pred 

one can generate the actual paths. We finish this section with the following 

two important observations which are stated as propositions. Proposition 

2.3.1 follows from the description of BFS. Proposition 2.3.2 has been already 

proved. In both propositions D = (V, 4A) is a directed multigraph with a 

specified vertex s. 

Proposition 2.3.1 Let U be the set of vertices reachable from s. Then 

(U,B), where B = {(pred(v),v) : v € U — 8} is an out-branching in D(U) 
with root s. Oo 

We call the out-branching in the above proposition a BFS tree of D(U) 
with root s, or simply a BFS tree from s. It is instructive to compare 

Proposition 2.3.1 with Theorem 2.2.2. 

Proposition 2.3.2 Let dist(s,V) < oo. For every non-negative integer p < 

dist(s,V), we have Nt?(s) ={v EV: dist(s,v) =p}. Oo 

Given an directed multigraph D = (V, A) and a vertex s we call sets 

N°(s),N*(s),N*9(s),N7*°(s),.-., 

the distance classes from s. By the proposition above, N*t*(s) consists 

precisely of those vertices whose distance from s is 7. See Figure 2.2 for an 

illustration of a BFS tree and the corresponding distance classes. 

Summarizing the discussion above we obtain the following. 
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Theorem 2.3.3 When applied to a directed multigraph D and a verter s in 

D, the BFS algorithm correctly determines a BFS tree T from s in D in time 

O(n+m). Furthermore, the distance classes from s in D are the same as the 

distance classes from s inT. 0 

WwW zr Zz 

Figure 2.2 A digraph D with a BFS tree indicated by the fat arcs. The distance 
classes from s are N°(s) = s; N+(s) = {u,w}, N*?(s) = {v, x,y} and NT°(s) = 

{2}. 

2.3.2 Acyclic Digraphs © 

Let D = (V,A,c) be an acyclic weighted digraph. We will show that the 

distances from a vertex s to the rest of the vertices can be found quite easily, 

using dynamic programming. Without loss of generality, we may assume that 

the in-degree of s is zero. Let LC = v1, V2,...,Un be an acyclic ordering of the 

vertices of D such that v; = s. Clearly, dist(s,v;) = 0. For every i, 2<i<n, 

we have 

dist(s, vj) = ser eap ae + c(vj,vi) = vj € N~(ui)} if N~ (vi) 40 
(oe) otherwise. 

(2.3) 
The correctness of this formula can be shown by the following argument. 

We may assume that v; is reachable from s. Since the ordering CL is acyclic, 

the vertices of a shortest path P from s to v; belong to {v1,v2,..., vi}. Let 

uz be the vertex dominating v; in P. By induction, dist(s,v,%) is computed 

correctly using (2.3). The term dist(s,v,) + c(vz,u;) is one of the terms in 
the right-hand side of (2.3). Clearly, it provides the minimum. 

The algorithm has two phases: the first finds an acyclic ordering, the 

second implements Formula (2.3). The complexity of this algorithm is O(n + 
m) since the first phase runs in time O(n+m) (see Section 4.1) and the second 
phase requires the same asymptotic time due to the formula }),-y d(x) =m 
in Proposition 1.2.1. Hence we have shown the following. 

Theorem 2.3.4 The shortest paths from a fixed vertex s to all other vertices 

can be found in time O(n + m) for acyclic digraphs. Oo 
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We can also find the length of longest (s,x)-paths in linear time in any 

acyclic digraph, by replacing the weight c(uv) of every arc uv with —c(uv). In 

particular, we can see immediately that the longest path problem for acyclic 

digraphs is solvable in polynomial time. In fact, a longest path of an acyclic 

digraph can always be found in linear time: 

Theorem 2.3.5 For acyclic digraphs a longest path can be found in time 

O(n +m). 

Proof: Exercise 2.6. a 

2.3.3 Dijkstra’s Algorithm 

The next algorithm, due to Dijkstra [192], finds the distances from a given 
vertex s in a weighted digraph D = (V,A,c) to the rest of the vertices, 

provided that all the weights of arcs are non-negative. 

In the course of the execution of Dijkstra’s algorithm, the vertex set of D 

is partitioned into two sets, P and Q. Moreover, a parameter 6, is assigned 

to every vertex uv € V. Initially all vertices are in Q. In the process of the 

algorithm, the vertices reachable from s move from Q to P. While a vertex 

v is in Q, the corresponding parameter 6, is an upper bound on dist(s, v). 

Once v moves to P, we have 6, = dist(s,v). A formal description of Dijkstra’s 

algorithm follows. 

Dijkstra’s algorithm 

Input: A weighted digraph D = (V, A,c), such that c(a) > 0 for every a € A, 

and a vertex s € V. 

Output: The parameter 6, for every v € V such that 6, = dist(s, v). 

iwc —).Q -— V0, — 0 and 0,..= co for every uc V —s. 

2. While Q is not empty do the following. 

Find a vertex v € Q such that 6, = min{d,: u € Q}. 
Se) =U, — UY. 

dy, := min{d,, dy + c(v, u)} for every u€E QN NT (v). 

To prove the correctness of Dijkstra’s algorithm, it suffices to show that 

the following proposition holds. 

Proposition 2.3.6 At any time during the execution of the algorithm, we 

have that 

(a) For every v € P, by = dist(s, v). 
(b) For every u € Q, 5, is the distance from s to u in the subdigraph of D 

induced by PUu. 
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Proof: When P = 0, 6, = dist(s, s) = 0 and the estimates 6, = 00, u € V-s, 

are also correct. 

Assume that P = Po and Q = Qo are such that the statement of this 

proposition holds. If Qo = 9, we are done. Otherwise, let v be the next 

vertex chosen by the algorithm. Since Part (b) follows from Part (a) and 

the way in which we update 6, in the algorithm, it suffices to prove Part 

(a) only. Suppose that (a) does not hold for P = Po Uv. This means that 

dy > dist(s,v). Let W be a shortest (s,v)-path in D. Since dy > dist(s,v), W 

must contain at least one vertex from Q = Qo — v. Let u be the first vertex 

on W which is not in Py. Clearly, u # v. By Proposition 2.2.1 and the fact 

that u € W, we have dist(s,u) < dist(s, v). Furthermore, since the statement 

of this proposition holds for Po and Qo, we obtain that dist(s,u) = 6,. This 

implies that 6, = dist(s,u) < dist(s,v) < dy. In particular, 6, < 6,, which 

contradicts the choice of v by the algorithm. O 

Each time a new vertex v is to be chosen we use O(n) comparisons to find 

min{é, : u € Q}. Updating the parameters takes O(n) time as well. Since 

Step 2 is performed n—1 times, we conclude that the complexity of Dijkstra’s 

algorithm is O(n?). In fact, Dijkstra’s algorithm can be implemented (using 

so-called Fibonacci heaps) in time O(nlogn + m) (see the paper [278] by 

Fredman and Tarjan). ; 

Summarizing the discussion above we obtain 

Theorem 2.3.7 Dijkstra’s algorithm determines the distances from s to all 

other vertices in time O(nlogn +m). 0 

Figure 2.3 illustrates Dijkstra’s algorithm. 
It is a challenging open question whether there exists a linear algorithm 

for calculating the distances from one vertex to all other vertices in a given 

digraph with no negative cycles. It is easy to see that Dijkstra’s algorithm 

sorts the vertices according to their distances from s. Fredman and Tarjan 

[278] showed that, if Dijkstra’s algorithm can be implemented as a linear time 

algorithm, then one can sort numbers in linear time. Thorup [715] showed 
that the opposite claim holds as well: if one can sort numbers in linear time, 

then Dijkstra’s algorithm can be implemented as a linear time algorithm. 

Currently, no one knows how to sort in linear time?. 

In the case when D is the complete biorientation of an undirected graph 

G and c(u,v) = c(v,u) holds for every arc uv of D, Thorup [716] recently 
gave a linear algorithm for calculating shortest paths from a fixed vertex to all 

other vertices. Thorup’s algorithm avoids the sorting bottleneck by building a 

hierarchical bucketing structure, identifying vertex pairs that may be visited 

in any order. 

2 Some readers may be confused about this as they may know of a lower bound 
of 2(nlog n) for sorting a set of n numbers. However, this lower bound is only 
valid for comparison based sorting. There are algorithms for sorting n numbers 
that are faster than (2(nlog n), see e.g. the paper [25] by Anderson. 
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(9) 

Figure 2.3 Execution of Dijkstra’s algorithm. The white vertices are in Q; the 
black vertices are in P. The number above each vertex is the current value of the 
parameter 6. (a) The situation after performing the first step of the algorithm. (b)— 
(g) The situation after each successive iteration of the loop in the second step of 
the algorithm. The fat arcs indicate the corresponding shortest path tree found by 
the algorithm if extended as in Exercise 2.8. 

2.3.4 The Bellman-Ford-Moore Algorithm 

This algorithm originates from the papers [102] by Bellman, [245] by Ford 
and [572] by Moore. Let D = (V, A,c) be a weighted digraph, possibly with 

arcs of negative weight. The algorithm described below can be applied to find 

the distances from a given vertex s in D to the rest of the vertices, provided 

D has no negative cycle. 
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Let 6(v,m) be the length of a shortest (s,v)-path that has at most m 

arcs. Clearly, 5(s,0) = 0 and 6(v,0) = co for every v € V —s. Let v€ V. We 

prove that for every m > 0, 

6(v,m + 1) = min{d(v,m), min{d(u,m) + c(u,v): ue N~(v)}}. (2.4) 

We show (2.4) by induction on m. For m = 0, (2.4) trivially holds. For 

m > 1, (2.4) is valid due to the following argument. Assume that there is a 

shortest (s,v)-path P with no more than m+1 arcs. If P has at most m arcs, 

its length is 5(v,m), otherwise P contains m + 1 arcs and, by Proposition 

2.2.1, consists of a shortest (s,u)-path with m arcs and the arc uv for some 

u € N~(v). If every shortest (s,v)-path has more than m + 1 arcs, then there 

is no in-neighbour wu of v such that 6(u,m) < oo. Therefore, Formula (2.4) 

implies correctly that 6(v,m +1) = o. 

Since no path has more’than n — 1 arcs, 6(v,n — 1) = dist(s,v) for every 

v€V-—-s. Thus, using (2.4) for m = 0,1,...,n — 2, we obtain the distances 

from s to the vertices of D. This results in the following algorithm. 

The Bellman-Ford-Moore algorithm 

Input: A weighted digraph D = (V, A,c) with no negative cycle, and a fixed 

vertex s € V. 
Output: The parameter 6, for every v € V such that 6, = dist(s,v) for all 

UeVe 

1. Set 6, := 0 and 6, := 00 for every v € V — s. 

2. Fort =1ton-—1 do: for each vu € A update the parameter 6, by setting 

dy := min{d,, dy + c(v, u)}. 

It is easy to verify that the complexity of this algorithm is O(nm). Hence 

we have 

Theorem 2.3.8 When applied to a weighted directed graph D = (V,A,c) 

with no negative cycle and a fixed verter s € V, the Bellman-Ford-Moore 

algorithm correctly determines the distances from s to all other vertices in D 

in time O(nm).. 0 

Figure 2.4 illustrates the execution of the Bellman-Ford-Moore algorithm. 

Chécking whether D has no negative cycle can be accomplished as fol- 

lows. Let us assume that D is strong (otherwise, we will consider the strong 

components of D one by one; an effective algorithm to build the strong com- 

ponents is described in Chapter 4). Let us append the following additional 

step to the above algorithm: 

3. For every arc vu € A do: if 6, > 6, + c(vu) then return the message 
‘the digraph contains a negative cycle’. 
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Figure 2.4 Execution of the Bellman-Ford-Moore algorithm. The vertex labellings 
and arc weights are given in the first digraph. The values of the parameter 6 are 
given near the vertices of the digraphs (a)-—(f). In the inner loop of the second step 
of the algorithm the arcs are considered in the lexicographic order: ab, ac, ba, bc, 
cb, da, dc, ec, ed, sd, se. (a) The situation after performing the first step of the 
algorithm. (b)-(f) The situation after each of the 5 successive executions of the 
inner loop in the second step of the algorithm. 

Theorem 2.3.9 A strong weighted digraph D has a negative cycle if and 

only if Step 3 returns its message. 

Proof: Suppose that D has no negative cycle. By the description of Step 

2 and Proposition 2.2.1, 6, < dy + c(vu) for every arc vu € A. Hence, the 

message will not be returned. 

Assume that D has a negative cycle Z = vjv2...vgv,. Assume for the 

purpose of contradiction that Step 3 of the Bellman-Ford-Moore algorithm 
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does not return the message. Thus, in particular, 6), < dy,_, + ¢(vj—1v;) for 

every i= 1,2,...,k, where vp = vx. Hence, 

k 

DS thy ss 
oil 4 

Since the first two sums in the last inequality are equal, we obtain 0 < 

ae , C(uj-10;) = c(Z); a contradiction. Oo 
— 

Oper = ye e(vj-101). 

1 

2.3.5 The Floyd-Warshall Algorithm 

The above algorithms can be run from all vertices to find all pairwise dis- 

tances between the vertices of a strong digraph D. However, if D has nega- 

tive weight arcs, but does not contain a negative cycle, we may only use the 

Bellman-Ford-Moore algorithm n times, which will result in O(n?m) time 

(see Exercise 2.19 for a faster method). The Floyd-Warshall algorithm will 
find the required distances faster, in O(n*) time. According to Skiena [674], 
in practice, the algorithm even outperforms Dijkstra’s algorithm applied from 

n vertices (when the weights in D are all non-negative) due to the simplicity 

of its code (and, thus, smaller hidden constants in the time complexity). The 
algorithm originates from the papers [243] by Floyd and [734] by Warshall. 
We assume that we are given a strong weighted digraph D = (V,A,c) that 

has no negative cycle. In this subsection, it is convenient to assume that 

Va 1s te 

Denote by 67? the length of a shortest (i, j)-path in D({1,2,...,m—1}U 

{i,7}), for all 1 < m <n-1. In particular, bi; is the length of the path 77, if 

it exists. Observe that a shortest (i, j)-path in D({1,2,...,m}U {i, j}) either 
does not include the vertex m, in which case jt = 67?, or does include it, 

aj? 

in which case 67?** = 6m + 6™.. Therefore, 

batt = min{dj7, dim + Om; }- (2.5) 

Observe that 67° = 0 for all i = 1,2,...,n, and, furthermore, for all pairs 

i,j such that i # j, dj; = c(i,j) if ij € A and 4}, = oo, otherwise. Formula 
(2.5) is also correct when there is no (i, j)-path in D({1,2,...,m}U {i, j}). 
Clearly, le is the length of a shortest (7, 7)-path (in D). It is also easy to 

verify that O(n?) operations are required to compute opt? for all pairs i, 7. 

The above assertions can readily be implemented as a formal algorithm 
(the Floyd-Warshall algorithm, see Exercise 2.14). The Floyd-Warshall al- 
gorithm allows one to find the diameter and radius of a weighted digraph 
without cycles of negative weight in O(n*) time. Using the algorithm, we 
may check whether D has no negative cycle. For simplicity let us assume, as 
above, that D is strong. Then the verification can be based on the following 
theorem (see, e.g., Lawler’s book [509]) whose proof is left to the interested 
reader as Exercise 2.15. 
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Theorem 2.3.10 A weighted digraph D has a negative cycle if and only if 

O° <0 for some m,i € {1,2,...,n}. Oo 

2.4 Inequalities Between Radius, Out-Radius and 

Diameter 

For a network representing a certain real-world system, it is desirable to have 

a small diameter as it increases the reliability of the system (see e.g., Fiol, 

Yebra and Alegre [236]). Small out-radius means that the system has an ele- 
ment that can quickly reach the rest of the elements (for example, by sending 

a message to them). In-radius and radius have similar interpretations. How- 

ever, networks representing real-world systems normally do not have many 

arcs to avoid too costly constructions. The objectives of minimizing the diam- 

eter or/and radius (or out-radius) and the size of a digraph clearly contradict 
each other. Therefore, it is important for a designer to know what kind of 

trade-off can be achieved. The inequalities of this section give some insight 

into this problem. 

2.4.1 Radius and Diameter of a Strong Digraph 

It is well-known that, in a connected undirected graph G, we have rad(G) < 

diam(G) < 2rad(G). This inequality holds also for strong digraphs (for our 
definition of radius). 

Proposition 2.4.1 For a strong digraph D = (V,A), we have rad(D) < 

diam(D) < 2rad(D). 

Proof: Clearly, rad(D) < diam(D). Let x be a vertex of D such that 
(dist(x, V) + dist(V,z))/2 = rad(D), and let y, z be vertices of D such that 
dist(y, z) = diam(D). Since dist(y, z) < dist(y, 2) + dist(ax, z) < 2rad(D), we 
conclude that diam(D) < 2rad(D). Oo 

The following simple bound (called the Moore bound) on the order of a 
strong digraph is important in certain applications [236]. We leave its proof 

to the reader (Exercise 2.25). 

Proposition 2.4.2 Letn, d andt be the order, the maximum out-degree and 

the diameter, respectively, of a strong digraph D. Thenn < 14+d+d?+...+d'. 
O 

The Moore bound is attained for d = 1 by the cycle Cian and for t = 1 by the 

complete digraph on d+1 vertices. However, it is well-known (see Bridges and 

Toueg [136] and Plesnik and Zndm [609]) that this bound cannot be attained 
for d > 1 andt > 1. Therefore, 
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dt} =]! 

Ur d-1 

for d > 1 and t > 1. After simple algebraic transformations, we obtain the 

following. 

Proposition 2.4.3 Letn, d andt be the order, the: maximum out-degree and 

the diameter, respectively, of a strong digraph D. Ifd > 1 andt > 1, then 

t > |logy(n(d —1) + 1)]. 

0 

The cases d = 2,3 have received special consideration. For d = 2, Miller 

and Fris [566] proved that there is no 2-regular digraph of diameter t > 3 
and order n = d+ d? +... +d‘. Moreover, for most values of k no 2-regular 
digraphs of order n = d+d* +...+d' —1 exists (see Miller [565]). 3-regular 
digraphs of order n = d+ d?+...+d°, with d = 3, have been studied by 
Baskoro, Miller, Plesnik and Zndm [96]. 

2.4.2 Extreme Values of Out-Radius and Diameter 

In this subsection, we will consider results on the following problems: what 

is the minimum (maximum) value of the out-radius and diameter of a strong 
digraph with n vertices and m arcs? 

We start with the minimization problem for the out-radius. Theorem 2.4.4 

is due to Goldberg [327]. 

Theorem 2.4.4 Let D be a strong digraph and let f(n,m) = = ' 

Then rad*(D) > f(n,m). For all integers m > n > 2, there exists a digraph 

D(n,m) (which we call the Goldberg digraph D(n,m)) of order n and size m 
whose out-radius is f(n,m). 

Proof: Let v be a vertex of D such that dist(v, V) = rad*(D), and let T be 
a BFS tree of D with root v. Let also W be the set of vertices w € V such 

that df(w) = 0. For a vertex w € W, let P(w) denote the set of vertices, 
except for v, in the (v, w)-path of T. Then, 

n-1=|Uwew P(w)| < S) |P(w)| < |Wldist(v, V) = |W|rad* (D). 
wew 

Thus, 

|W |radt(D) >n—-1. (2.6) 

Since D is strong, every vertex w € W is the tail of an arc in D — A(T). 
Being a tree, T has n — 1 arcs (see Exercise 1.39). Hence, |W| < m—(n—1). 
Combining this with (2.6), we obtain that radt(D) > f(n,m). 
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Set r= n—1-—(m—n+1)(f(n,m) — 1). It is not difficult to verify that 
0<r<m-—n+l. The digraph D(n,m) is constructed as follows. Take r 

cycles of length f(n,m) +1 and m—n-+1-—r cycles of length f(n,m), mark 

a vertex in each cycle by v, and then identify all m—n-+1 vertices marked by 

v. Since r > 0, at least one of the cycles in D(n,m) has f(n,m) +1 vertices. 

Thus, dist(v, V(D(n,m))) = f(n,m). Hence, rad*+(D(n,m)) = f(n,m). 0 

Figure 2.5 depicts D(10, 14). Clearly, rad*(D(10, 14)) = 2. 

Figure 2.5 The Goldberg digraph D(10,14). 

Being quite simple, the problem of finding a tight upper bound for the 

out-radius of a digraph of order n and size m has not been studied in the 

literature. The following two theorems solve the problems of establishing 
lower and upper bounds for the diameter of a strong digraph. Theorem 2.4.5 

was proved by Goldberg [328]; Theorem 2.4.6 was derived by Ghouila-Houri 
[314]. 

Theorem 2.4.5 Let D be a strong digraph of order n and sizem,m>n-+l, 

and let g(n,m) = [2=2]. Then diam(D) > g(n,m). This bound is the best 
m—n+l1 

possible. O 

Theorem 2.4.6 Let D be a strong digraph of order n and size m. Then 

diam(D) < n—1, ifn < m < (n? +n — 2)/2 and diam(D) < [n+ $ - 

2m —n? —n+ +2], otherwise. | 

Oriented graphs of diameter 2 and minimum size (for fixed order n) were 
discussed by Fiiredi, Horak, Pareek and Zhu [285]. 

2.5 Maximum Finite Diameter of Orientations 

For a connected bridgeless multigraph G, let G’ denote an orientation of G 

having maximum finite diameter. Let Ip(G) stand for the length of a longest 
path of G. The following theorem was obtained by Gutin [366]. 
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Theorem 2.5.1 Let G be a connected bridgeless graph. Then, diam(G') = 

Ip(G). 

Proof: For every strongly connected orientation Go of G we obviously have 

diam(Go) < lp(G). Hence, to prove this theorem it suffices to construct some 

orientation G, of G with the property diam(G1) = lp(G). 

Let P = 2122...2,% be a longest path of G, and associate each vertex 

x; with a label r(z;) = i. Since G has no bridge, the edge rp_17,% is not a 

bridge. Consequently, there exists an ({z1,22,---,£-1},2%)-path R; which 

is different from the path z,_;2,. Let x; be the initial vertex of R1. Define 

r(v) = i for all vertices v € V(Ri) — {xx}. Since z;_17; is not a bridge 

there exists an ({21,22,..-,Zi-1}, {@i, Zi41,---, 7%} UV(R1))-path Re which 

is different from the path z;_12;. If z; is the initial vertex of Rz (observe 

that j <i), then define r(v) = j for all vertices v in Rz besides the terminal 

one. Analogously, we can build paths R3, R4,... and define the label r(.) of 

the vertices of R3, R4,... until we obtain a path R, with the initial vertex 7, 

and set r(v) = 1 for all vertices v in R, but the terminal one. 

Now, we orient the path P from x; to zx (we obtain the directed path Q), 

and each path R; (i = 1,2,...,s) from its end vertex having a bigger label 

to its other end vertex (we derive the path Q;). It is easy to check that the 
oriented graph induced by the arcs of the paths U_, Q; UQ is strong. Define 

X =V(G) — (Ui V (Ri) UV (P)) 

and suppose that X # @ (the case X = @ is easier). Since G has no bridge 

there exists some vertex v € X and a pair of paths from v to vertices in 

V(G) — X with no common vertices (besides v), see Exercise 7.18. We merge 
these two paths to one (path $;). Now orient the last path from its end vertex 

having the bigger label to the one having the smaller label. If the labels of 

the two end vertices coincide then the orientation is arbitrary. The labels of 

all other vertices of the path S; are the same as the label of terminal vertex 

of this path. 

If X — V(S,) 4 @ we will continue the construction of paths S2,S3,... 
passing over the rest of the vertices of X until Uf_,V(S;) = X, where the 

orientations and labels are chosen in the same manner. Finally orient each 

unoriented edge uv from u to v if r(u) > r(v) and from v to u otherwise. 
Let D denote the obtained oriented graph. The digraph D contains a 

strongly connected spanning subgraph. Therefore, D is strongly connected. 

Since all the arcs (u,w) of D, besides those in P, are oriented such that 
r(u) > r(w), there is no path from x; to zz having length less than k — 1. 

Hence, diam(D) = k — 1. Oo 

Since the longest path problem for undirected graphs is W’P-hard (see the 

book [303] by Garey and Johnson), the last theorem implies that the problem 

to find a maximum finite diameter orientation of a graph is V’P-hard as well. 
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2.6 Minimum Diameter of Orientations of Multigraphs 

The same complexity result holds for the following problem: find a minimum 

diameter orientation of a graph. Indeed, the following assertion holds. 

Theorem 2.6.1 (Chvatal and Thomassen) /164] It is NP-complete to 
decide whether an undirected graph admits an orientation of diameter 2. 

For a bridgeless multigraph G, let diammin(G) denote the minimum di- 

ameter of an orientation of G. We will present a minor modification of the 

original proof of Theorem 2.6.1 by Chvatal and Thomassen [164]. The main 
difference is in the use of Lemma 2.6.2 (which is applied to two different 

results in this section). Define a bipartite tournament BT,, with partite 

sets U,W, each of cardinality s, as follows. Let U = {u1,u2,...,us} and 

W = {w1,w2,...,ws}. The vertex u; dominates only vertices w;, wi41,..., 

Wi+|s/2|-1 (the subscripts are taken modulo s) for every i = 1,2,...,s. 

Lemma 2.6.2 Let s > 2. The diameter diam(BT;) equals 3. In particular, 

dist(U, U) = dist(W, W) = 2. 

Proof: Clearly, it suffices to show that dist(U,U) = dist(W,W) = 2. This 
follows from the fact that, for every i # j, we have N*(u;) — Nt(u;) 4 0 
and, hence, there is a vertex w € W such that ujow—u;. 0 

Lovasz [520] proved that it is WP-hard to decide whether a hypergraph of 

rank? 3 is 2-colourable. By the result of Lovdsz, Theorem 2.6.1 follows from 

the next theorem. 

Theorem 2.6.3 Given a hypergraph H of rank 3 and order n, one can con- 

struct in polynomial time (in n) a graph G such that diampin(G) = 2 if and 
only if H is 2-colourable. 

Proof: Let k be the integer satisfying 8 < k < 11 and n+k is divisible by 4. 

Let Ho be a hypergraph obtained from H by adding k new vertices v1,..., Ux. 

Moreover, append three new edges {{v;, vi41} : i = 1,2,3} to Ho if H has an 
odd number of edges, and add four new edges {{u;, vi4i} : 7 = 1,2,3,4} to 

Hp otherwise. Observe that Hp has an even number of edges, which is at least 

four. To construct G, take disjoint sets R and Q such that the elements of R 

(Q) are in a one-to-one correspondence with the vertices (the edges) of Ho. 
Let G(R) and G(Q) be complete graphs, and p € R and q € Q be adjacent if 

and only if the vertex corresponding to p belongs to the edge corresponding 

to q (in Ho). 
Append four new vertices w1, w2,w3,w4 and join each of them to all the 

vertices in RU Q. Finally, add a new vertex x and join it to all the vertices 

3 Recall that the rank of a hypergraph is the cardinality of its largest edge. 
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in R. We show that the obtained graph G has the desired property. (Clearly, 

G can be constructed in polynomial time.) 
Assume that G admits an orientation G* of diameter 2. For a vertex 

u € R, set f(u) = 0 if and only if zu in G*; otherwise, f(u) = 1. Since 
distg- (2, q) = 2 (distg-(q,x) = 2, respectively) for each q € Q, every edge e 

of H contains a vertex y such that f(y) = 0 (f(y) = 1, respectively). Thus 

H is 2-colourable. 
Now assume that H is 2-colourable. Then Ho admits a 2-colouring which 

generates a partition R = R, U R2 such that every edge of Hp has a vertex 

corresponding to an element from R; and |R;| > 4 (for every i = 1,2). An 
orientation G' of G of diameter 2 is defined as follows. Orient the edges in 

each complete graph G(L) € {G(Ri),G(R2),G(Q)} such that the resulting 
tournament contains the bipartite tournament BT\;). Let A;, B; be the par- 

tite sets of the bipartite tournaments in G(R;) (i = 1,2) and let A, B be the 
partite sets of the bipartite tournament in G(Q). The rest of the edges in G 
are oriented as follows: 

z— Ry R22, Ri>Q>Ro, 

(Ay U A2)>w1A, Bow,>(B, U Bo), 

(Ay U A2)>w2>B, A>w2->(B; U Bo), 

(By U Bz)-w3- A, B-w3(A, U Ad), 

(By U B2)>w4B, A>w4-(A1 U A2). 

Using Lemma 2.6.2, it is not difficult to verify that diam(G’) = 2 
example, to show that distg:(A1,V(G’)) < 2 and distg:(V(G'), A1) < 2, it 
suffices to observe that distg/(A,, A,) = 2 and 

By, UR2UQU {w, we} C NT(A)), 

{x,w3,wa} C N*(By UR, UQU {wy, w2}) 

By, U {z, w3, wa} C N7~(Aj), 

N~ (Bi U {z,w3,wa}) C R2 UQU {wy, wo}. 

O 

Chvatal and Thomassen [164] dealt with the following parameter which 
we call the strong radius. The strong radius of a strongly connected digraph 
D = (V, A), srad(D), is equal to 

min{max{dist(v, V), dist(V,v)} : vu € V}. 

Chvatal and Thomassen [164] showed that it is MP-hard to decide whether 
a graph admits a strongly connected orientation of strong radius 2. The 
strong radius is of interest because, in particular, srad(D) < diam(D) < 2srad(D) for every strongly connected digraph D (this follows from the fact that rad(D) < srad(D) for every strong digraph D and Proposition 2.4.1). 
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Following [164], we prove a sharp upper bound for the value of the strong 

radius of a strong orientation of a bridgeless connected multigraph. The first 

part of the proof of Theorem 2.6.4 is illustrated in Figure 2.6. 

Figure 2.6 Constructing the orientation D of H in the proof of Theorem 2.6.4. 
The integers on arcs indicate the step number in the process of obtaining D. 

Theorem 2.6.4 /164] Every bridgeless connected multigraph G = (V, E) ad- 

mits an orientation of strong radius at most (rad(G))? + rad(G). 

Proof: We will show a slightly more general result. Let u € V be arbi- 

trary and let distg(u,V) =r, then there is an orientation L of G such that 

dist, (u,V) <r? +r and dist; (V,u) <r? +r. 
Since G is bridgeless, every edge uv is contained in some undirected cycle; 

let k(v) denote the length of a shortest cycle through wv. It is not difficult to 
prove (see Exercise 2.28) that, for every v € N(u), 

k(v) < 2r +1. (2am) 

We claim that there is a subgraph H of G and an orientation D of H with 

the following properties: 

(a) Ne(u) C V(H). 
(b) For each v € N(u), D has a cycle C, of length k(v) containing either wv 

or vu. 
(c) D is the union of the cycles Cy. 

Observe that by this claim and (2.7), we have 

max{dist p(u, V(D)), distp(V(D), u)} < 2r. (2.8) 

We demonstrate the above claim by constructing H and D step by step. 

Let uv be an edge in G and let Z, be an undirected cycle of length k(v) 

through uv. Orient Z, arbitrarily as a directed cycle and let C, denote the 

cycle obtained this way. Set H := Z,, D := Cy. This completes the first 

step. At step i(> 2), we choose an edge uw such that w ¢ V(H) and an 

undirected cycle Z = wiw2...w,w1 in G such that w; = u, we = w, and 

k = k(w). If no vertex in Z, — u belongs to H, then append the directed 

_ cycle Cy = w, we... ww to D and the cycle Z to H. Go to the next step. 
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Otherwise, there is a vertex w; (2 <i < k) such that w; € V(H) (and 

hence w; € V(D)). Suppose that w; has the least possible subscript with this 

property. Since w; € V(D), there is some neighbour v of u such that w; € Cy 

(Recall that C, is a directed cycle.) Let Cy = viv2...vev1, where u = 01, 

v € {vo,u4}, and w; = v; for some j. By considering the converse of D, if 

necessary, we may assume, without loss of generality, that v = v2. Now we 

consider two cases. 

Case 1: w, # v. In this case, define the directed cycle Cy = uw2w3 

... wiCy[v;41,u] and observe that C,, has length k(w). (Indeed, if C, had 

more than k(w) arcs, the path C,,[w;,u] would be longer than the path 
Py. = wiwij41...wpu. In that case, the walk Z,[u,v;]P2[wi+1, u] containing 

uv would be of length less than k(v); a contradiction.) Let Z, := UG(Cy). 

Add C, to D and Z, to H. Go to the next step. 

Case 2: w; = v. In this case, define the directed cycle C, as follows: Cy = 

Ge [u, v;]wi_1 wie ...wW2u and observe that C,, has length k(w) (the proof of 

the last fact is similar to the one given in Case 1). Let Z,, := UG(C,,). Add 
Cy to D and Z, to H. Go to’the next step. 

Since V(G) is finite and we add at least one new vertex to H at each step, 

this process will terminate with the desired subgraph H and its orientation 

D. Thus, the claim is proved. 

Consider the directed multigraph D. In G, contract all the vertices of D 

into a new vertex u* (the operation of contraction for undirected multigraphs 

is similar to that for directed multigraphs) and call the resulting multigraph 

G*. Note that G* is bridgeless and that by the property (a) of the above 

claim, we obtain distg-(u*,V(G*)) < r—1. By the induction hypothesis, 
there is an orientation L* of G* such that 

distz+(u*, V(L*)) <r? —r and distz-(V(L*),u*) <r? —r. (2.9) 

Consider an orientation L of G obtained by combining L* with D and 

orienting the rest of the edges in G arbitrarily. By (2.8) and (2.9), we have 

dist, (u, V(L)) <r? +r and dist,(V(L),u) <r? +r. 

O 

The sharpness of the bound in Theorem 2.6.4 is proved in [164]. Theorem 
2.6.4 immediately implies the following. 

Corollary 2.6.5 For every bridgeless connected multigraph G of radius r, 
diammin(G) < 2r? + 2r. Oo 

Plesnik [607] generalized Theorem 2.6.4 and Corollary 2.6.5 to orientations 
of weighted multigraphs. 
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Theorem 2.6.6 Let G be a bridgeless connected multigraph in which every 

edge has weight between 1 and W. If the radius of G is r, then G admits 

an orientation of strong radius at most r? +rW and of diameter at most 

2r? + 2rW. 0 

Plesnik [607] showed that the result of the previous theorem regarding 

the strong radius is sharp. 

Chung, Garey and Tarjan [157] generalized Corollary 2.6.5 to mixed 
graphs. They proved the following. 

Theorem 2.6.7 Every bridgeless connected mixed graph G of radius r ad- 

mits an orientation of diameter at most 8r? + 8r. Such an orientation can be 

found in time O(r?(n + m)). Oo 

2.7 Minimum Diameter Orientations of Complete 

Multipartite Graphs 

Many authors consider the following parameter p(G) of a bridgeless graph 
G: p(G) := diammin(G) — diam(G). It turns out that, for many interesting 
graphs G, p(G) = 0, 1 or 2 (a result which is quite different from the ‘pes- 

simistic’ bound proved in Theorem 2.6.4). In this section, we discuss results 

on minimum diameter orientations of complete multipartite graphs. 

Soltés [676] obtained the following result for complete bipartite graphs. 

Theorem 2.7.1 If ny > nq > 2, then p(Kn,n.) = 1 form < ea eis and 

PAL anrers ee, OLLET WISE. 

The original proof of Theorem 2.7.1 is rather long. A shorter proof of 

this result using the well-known Sperner’s lemma’ is given by Gutin [361]. 

We present below an adapted version of the proof in [361]. We start from 
Sperner’s lemma. (We call a family F of subsets of {1,2,...,n} an antichain 

if no set in F is contained in another.) 

Lemma 2.7.2 Let F be an antichain on {1,...,n}. Then 

I< (inyay): 
The bound is attained by taking F to be the family of all subsets of size |n/2]. 

O 

4 For an elegant probabilistic proof of Sperner’s lemma, see Alon and Spencer [14]. 
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Proof of Theorem 2.7.1: Let n1 > n2 > 2. Let O(K) be the set of strongly 

connected orientations of a complete bipartite graph K = Kn,,n2- It is easy 

to see that no digraph in O(K) has diameter 2. Thus, it suffices to show that 

there is an orientation D € O(K) of diameter 3 when nj < (ine72|)) and 

that there is an orientation D € O(K) of diameter 4 but no orientation of 

diameter 3 when ni > (Eeene as 

Let us first assume that nj < (ine/2])" If nj = ne, then the bipartite 

tournament BT;,, defined just before Lemma 2.6.2 provides the required ori- 

entation (see Lemma 2.6.2). Now, consider the case when nj > no. Let V; and 

V> be the partite sets of K, |V;| =i. Let U be a subset of V; of cardinality 

ny. Orient the edges between U and V2 in such a way that the resulting di- 

graph D’ is isomorphic to BT; and d*(v) = |n2/2] for every v € U. Clearly, 

{N+(v) : v € U} is an antichain on V2 (see Lemma 2.7.2). This antichain 

is formed by some subsets of V2 of cardinality |n2/2]. Since |Vi| < (; es ) 

and there are Wee ) subsets of V2 (each of cardinality |n2/2]) forming a 

(maximum) antichain, the out-neighbourhoods of vertices in V; — U can be 

chosen in such a way that the family F = {Nt(v): v € Vi} is an antichain. 

The family F determines an orientation of K which we denote by D. By 

Lemma 2.6.2, dist.p: (V2, V2) = 2 and, thus, dist p(V2, V2) = 2. Since the out- 

neighbourhoods of every pair of vertices in V; are not contained in each other, 

dist p(Vi,Vi) = 2. Thus, diam(D) = 3 as every vertex in D is dominated by 

another vertex. 

Now let us assume that n, > (ine /2]) Let H € O(K) and Vj, V2 be the 

partite sets of K such that n; = |V;|. By Lemma 2.7.2, there is a pair of 
vertices z,y € Vi such that N(x) C N#(y). Therefore, disty(z,y) > 2. 
Hence, by the obvious parity reason, disty(z,y) > 4. Thus, there is no 

orientation of K of diameter 3. To present an orientation H of K of di- 

ameter 4, choose a set W C V, of cardinality lanes ): Orient the edges of 

Kk (W UV.) such that the resulting digraph H' is isomorphic to the digraph 
D defined above. Let w be a fixed vertex of W. For a vertex v € W UVa, set 

Ni (v) = Nz, (v), and for a vertex v € Vi —W set N7#(v) = Nf(w). We have 
proved that diam(H') = 3. It remains to show that dist(Vi — W,V(H)) < 4 
and dist(V(H),V; — W) < 4. Actually, by the definition of H, it suffices to 
demonstrate that dist(w, w’) = 4, where w’ € Vj — W. The last fact follows 
from dist 7 (w,V2) < 3 and Nj (w')NV2 £0. oO 

Let f(ni,...,nx) be the minimum possible diameter of a k-partite tourna- 
ment with partite sets of sizes n1,...,nx. For k = 2 the value of this function 

was determined in Theorem 2.7.1 (if min{n1,n2} = 1, then f(n1,n2) = oo). 

For k > 3 the problem to determine the function f(ni,...,n,) was posed 
independently by Gutin [366] and Plesnik [607]. It is easy to show that 
2< f(mi,...,mx) <3 for every k > 3 and all positive integers n1,..., nz (see 
Proposition 2.7.4 below). Thus, it suffices to find out when f(n1,...,n%) = 2. 
In [366, 487, 607], it was shown that f(m1,...,nz) =2ifny =ng=...=n, 
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exceptifor jk = 4;ingd=ine = ng. = ‘ng = 1 ‘(it is easy) to-secathat 

f(1, 1,1, 1) = 3). This result was extended by Koh and Tan [488] as follows. 
An ordered pair p,q of integers is called a co-pair if 1 < p< q< (p72). 

An ordered triple p,q,r of positive integers is called a co-triple if p,q and 

p,T are CO-pairs. 

Theorem 2.7.3 Jf mj,...,mx can be partitioned into co-pairs when k is 

even and into co-pairs and a co-triple when k is odd, then f(m4,..., mx) = 2. 

0 

Since even this theorem falls short to provide a complete solution to the 

above-mentioned problem, we give only a proof of the most basic result on 

f(ni,...,nx) obtained independently by Plesnik [607] and Gutin [361]. 

Proposition 2.7.4 For every k > 3 and all positive integers nj,...,nz, we 

hover2 < f(ni,ee. 47g) SS: 

Proof: Obviously, f(ni,...,n%) > 2. 

If k is odd, let R(n,,n2,...,n%) stand for a multipartite tournament with 

partite sets V|,..., Ve of cardinalities n1,...,n, such that VV; if and only 

if 7 —i1 = 1,2,...,|k/2] (mod k). If k is even, then R(ni,n2,...,nx) is 

determined as follows: 

Filmy n2,-0; 1h) — Ve = R(ngsm2,5--, Te —2) ; 

VV Gea ek VV = 2s, One RD) 

We show that diamR(n1,72,...,n%) <3 for every k > 3. 

Case 1: k is odd, k > 3. It is sufficient to prove that dist(Vi,Vi) < 3 

for allt = 1,2,...,k. lf 1 < 7 < |k/2| +1, then Vi-V; by the definition. 

If [AJ +1 < j < k, then Vigjoj41 — Vj, hence dist(Vi,V;) = 2. Since 
Vi - Vik/2j+1 = Vik/2j427Ni, we have dist(Vi, Vi) < 3. 

Case 2: k is even, k > 4. Since R(ni,...,nk) — Vk = R(ne,...,K-1), 

we have dist(Vi,V;) < 3 for all 1 <i, 7 < k—1. Moreover, Via>Vi>Vi41 

for i = 1,3,5,...,k —3 and Vy > V,_1. Therefore dist(Vi,Vi) < 2 for 

t = 1,2,...,k —1. Analogously, Vi2Vizi7V;, for i = 1,3,5,...,k —3 and 

Ve-172Vi7VeV;,. Hence dist(Vi, Vz) < 3 for t = 1,2,...,k — 1. Finally, 

Via 9Vi Ve 4V,. Therefore dist(Vz, Vk) < 3. oO 

2.8 Minimum Diameter Orientations of Extensions of 

Graphs 

Proposition 2.7.4 was generalized by Koh and Tay [496, 691] to extensions 
of graphs. We recall the notion of an extension of a graph introduced in 

Chapter 1. Let H be a graph with vertex set {1,...,h} and let m,...,nn 
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be positive integers. Then G = H [Ke , Kn, ] is the graph with vertex set 

{(pi,i): 1<i<h, 1 < pj < ni} such that vertices (p;,t) and (p;,j) are 

adjacent in G if and only if ij € E(H). (We call G an extension of H.) 

Theorem 2.8.1 (Koh and Tay) /496] Let H be a connected graph of order 

h>3. LetG=H[Kn,---)Kn,] with nj > 2, 1<i<h. Then, diam(H) < 
diammin(G) < diam(H) + 2. 

Figure 2.7 An orientation F of G = P3[K3, K2, K2]. Observe that diam(G) = 2 
and diam(F’) = 4. 

This theorem is illustrated by Figure 2.7. The .requirement h > 3 

is important as one can see from Theorem 2.7.1 (diam(K2) = 1, but 
diammin(K2[Kn,,; K2]) = 4 for n, > 3). Clearly, diam(H) < diam(D) for 
every orientation D of G. To prove the more difficult part of the inequality 

in Theorem 2.8.1, we will use the following lemma. 

Lemma 2.8.2 /496] Let ti,ni be integers such that 2 < ti < ni for1 < 

i < h. If the graph G' = H[Kz,,..., Kt] admits an orientation F' in 
which every verter v lies on a cycle Cy of length not exceeding s, then 

G = H[Kn,,.-.,Kn,] has an orientation F whose diameter is at most 
max{s, diam(F’)}. 

Proof: Given an orientation F’ of G’, we define an orientation F' of G as 

follows. We have (p,i)—+(q,j) in F if and only if one of the following holds: 

(a) p<ti,q<t; and (p,i)(q,j) in F’. 

(b) p<ti,q2 tj and (p, i)+(t;,9) in F’. 

(c) p> ti, q <t; and (t;,i)+(q, j) in F’. 
(d) p> tj and q >t; and (t;,i)>(t;,j) in F’. 

Let u = (p,i) and uv = (q,j) be a pair of distinct vertices in F. If i # j, 
then it is clear that dist p(u, v) < diam(F’) (we can use obvious modifications 
of the corresponding paths in F'’). We have the same result if i = j but p < t; 
or q < tj. If i = j, p,q > t;, then using the cycle C, we conclude that 
distr(u,v) < s. 0 
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Proof of Theorem 2.8.1: We prove that there exists an orientation D of G 

such that diam(D) < diam(H) + 2. If diam(H) = 1, then this claim follows 
from Proposition 2.7.4. Thus, we may assume that diam(H) > 2. 

Define an orientation F’ of H[T,,...,T»], where every T; = Ko, as follows: 

(1, i) 4(1, j)+(2, i) (2, 3) 9(1, 2) if and only if ¢ <j. (2.10) 

Let u = (p,i) and v = (q,j) be a pair of distinct vertices in F’. We 
show that dist (u,v) < diam(H) +2. Suppose that iki k2...k,j is a path of 

length s+1 = distz(i,7) in H. Then the path Q = (p,7), (kT, ki), (k3, ke),-.., 

(k3,ks),(9*,j), where x* = 1 or 2, is of length dist (i, 7) in F’. If j* = q, then 

the last inequality follows. Otherwise, i.e. j* # q, the path Q, (3—k*, ks), (q, 7) 

is of length disty(7,j) + 2 in F’. Thus, diste-(u,v) < diam(H) + 2. Thus, 
diam(F’) < diam(H). By (2.10), every vertex of F’ belongs to a cycle of 
length 4. Now this theorem follows from Lemma 2.8.2. 0 

Thus, totally non-trivial extensions (i.e., with at least two vertices in every 

independent set used for the extension) of bridgeless undirected graphs G can 

be divided into three classes according to the difference between the minimum 

diameter of an orientation of the extension (with at least two vertices in every 

independent set used for the extension) and diam(G). Some wide subclasses 
of these three classes have been constructed in [496, 691]. These constructions 

indicate that perhaps the following conjecture is true. 

Conjecture 2.8.3 /496] If H in Theorem 2.8.1 is of diameter at least 3, 

then the upper bound on diammin(G) there can be replaced by diam(H) + 1. 

2.9 Minimum Diameter Orientations of Cartesian 

Products of Graphs 

The Cartesian product of a family of undirected graphs G),G2,...,Gn, 

denoted by G = G, x G2 x... xX Gn or [];_, Gi, where n > 2, is the graph 
Gshaving VV (G)k= (Gi) beV (G2) oe n0V(Gin) = { (wy 20948 - Wn) 
w; € V(G;),i = 1,2,...,n} and a pair of vertices (u1,u2,...,Un) and 

(v1, V2,.-.,Un) of G are adjacent if and only if there exists anr € {1,2,...,n} 

such that u,v, € E(G,) and u; = vu; for alli € {1,2,...,n} — {r}. Let P, 
(C;,, Kn) be the (undirected) path (cycle, complete graph) of order n and let 

T,, stand for a tree of order n. Roberts and Xu [638, 639, 640, 641] and Koh 

and Tan [484] evaluated the quantity p(P, x P,). (We remark that Roberts 
and Xu [638, 639, 640, 641] considered objective functions other than p for 

orientations of the Cartesian products of undirected paths.) Koh and Tay 

[491] proved that most of those results can be extended as follows. 

Theorem 2.9.1 For n > 2, ki > 3, kz > 6 and (ki, k2) 4 (3,6), we have 
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O 

This, in particular, generalizes the main result of McCanna [558] on n- 

cubes, i.e. the graphs []/_, Pe. Koh and Tay [490] have obtained the values 

of g(r, k) = p(C2, x P,) for r,k > 2: 

(a) q(r,k) =Oif k > 4. 
(b) g(r, k) = 2 if k = 2 and r is even. 

(c) g(r, k) = 1, otherwise. 

They have also evaluated p(Km x Px), p(Km X Cor41) and p(Km x Ks) 

[492], p(Km Xx Cor) [495] and p(Im x Tn) [493]. Konig, Krumme and Lazard 

[500] studied the Cartesian products of cycles. They proved the following 

interesting result. 

Theorem 2.9.2 Let p,q be integers with p,q > 6. If at least one of these 

two integers is even, then p(Cp x Cy) = 0. If both p and q are odd, then 

Pi Cpa: 0 

Kénig, Krumme and Lazard [500] evaluated p(Cp x C,) in most cases 
when the minimum of p and q is smaller than 6. They also extended the 

p(Cp xX C,) = 0 part of Theorem 2.9.2 to the Cartesian products of three 
or more cycles. These results are described in more detail in [691]. Some of 
the above results were extended by Koh and Tay [491], where the following 

theorem was proved. 

Theorem 2.9.3 Form > 2,r> 0, ki > 3, ko > 6 and (ki, k2) 4 (3,6), we 

have perce | ea Cre): oO 

This result was further extended by Koh and Tay in [494]. The rest of 

this subsection is based on [494]. 
Let G be the set of all bipartite graphs G such that diam(G) > 3 and G 

admits an orientation (called a G-orientation) of diameter diam(G), in which 
every vertex is contained in a cycle of length at most diam(G). Let G* be the 
set of all bipartite graphs G such that diam(G) > 3 and G admits an ori- 

entation F (called a G*-orientation) of diameter diam(G) with the following 
further properties: every vertex is contained in a cycle of F' of length at most 

diam(G) and if uv in F then there exists a (u, v)-walk of length at least 
three and at most diam(G). 

Let S be the set of all graphs in which every graph G admits an orientation 

H (called an S-orientation) such that for all vertices u,v € V(H) at least 
one of the following holds: 

(a) min{dist 7 (u,v), disty(v, u)} < diam(G). 
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(b) There are vertices y and z such that 

max{dist 7 (u, y) + dist x(v, y), dist 7 (z, u) + dist 7(z,v)} < diam(G). 

Let S* be the set of all graphs in which every graph G admits an orien- 

tation H (called an S*-orientation) such that for all vertices u,v € V(H) at 
least one of the following holds: 

(a) min{disty(u, v), disty(v, u)} < diam(G). 
(b) There is a vertex y such that disty(u, y) + disty(v,y) < diam(G). 
(c) There is a vertex z such that dist q(z,u) + disty(z,v) < diam(G). 

Clearly, G* C G and S C S*. Koh and Tay [494] showed the following: 

(a) Form > 2:and k'> 4) C3, x Pee G*. 

(b) On x C4 S G. 

(c) For m > 2 and n > 3, Cam X Con € G*. 

(d) If T’ and T” are trees of diameter at least four, then T’ x T” € G*. 
eye eee pe sed Cy 9 > SPU Theat PU {4G so(G) 0 he Sfalso 

figg § 2p < GCS) 

(f) If T is a tree which is not a path, then T € S*. 
(g) If G2 is the set of all graphs of diameter two, then G2 C S*. 

Due to the fact that the families G,G*,S,S* of graphs are quite large, the 

following results proved by Koh and Tay [494] are undoubtedly interesting. 

Theorem 2.9.4 IfG € G and A; € S,i =1,2,...,n, then p(Gx]]i_, Ai) = 
0. 

Theorem 2.9.5 If G € G* and A; € S*, i = 1,2,...,n, then p(G x 

Wien, ig t aes O 

We will prove only Theorem 2.9.4 since the proof of Theorem 2.9.5 is 

similar and is left as Exercise 2.32. 

Proof of Theorem 2.9.4: Let diam(G) = k and let U and W be the 
partite sets of G. Let F (H;) be a G-orientation (an S-orientation) of G (Aj, 
i=1,2,...,n). We will orient G x ]j_, A; inductively as follows: 

1. Orient G as F and A; as H;. In G x Aj, orient an edge {(z, 7), (x, 7)} 
from (z,2) to (z,7) if and only if either z € U and ij € A(H;) or rx € W 
and ji € A(Hj); orient an edge {(z,7),(y,7)} from (a,7) to (y,7) if and 
only if zy € A(F). 

2. Suppose that G x (be A;, where 1 < r < n—1, has been oriented. Orient 

A,+1 as H,41. Orient Gx]]j) A; so that the orientation of Gx[]7_, Aix 
{j} is isomorphic to that of G x []j_, Ai for each 7 € V(A,41) and 
Orientwanl ea gens (r,a),eee rst) (2, Qs © Ors) ) OM Tea;y Gr, 4) 

to (z,a1,...,@r,j) if and only if either x € U and ij € A(A,41) or 
xz € W and ji € A(H,41). 
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Let F* be the resulting orientation of G x [[{_, i. Define the following 

sets 

Ry; = {(u,v) € V(Hi x Ay): disty;(u,v) < diam(A;)}, 

Ry = {(u,v) € Vi x H;): (u,v) ¢ Riu, dista,; (v,u) < diam(A;)}, 

Rs; = {(u,v) € V(Hi x Hi): (u,v) ¢ Rui U Rai, Fy, 2 € V(Hi) 
max {dist y7,(u, y) + disty, (v,y), dist, (z, u) + disty, (z,v)} < diam(A;)}.- 

Observe that R1;, Roi, R3; form a partition of VibliocH.). 

Let (r,a@1,-.-,@n) and (y,bi,...,bn) be a pair of distinct vertices of 

F*, We will eoneaniens in F*, a path Pi P)P3P, from (Giese etO 

(y,b1,.--,0n) of length at most ee 1 4d = eee arate ). 

(See Exercise 2.29.) 

Without loss of generality; assume that « € U (the case of z € W can be 

treated similarly). Let x’ be‘the successor of x either on a shortest (z, y)-path 

in F if z # y or on a shortest cycle through z if z = y. Clearly, x’ ew. 

The path P, is a shortest path from (x, @),...,@n) to (Z,¢1,-.-. ,Cn), where 

¢;,1=1,...,n, is defined as follows: 

(a) C7 = Dat (aj, b;) € Rij. 

(b) Cua; ik (Gz, b;) € Raj. 

(c) If (a;,b;) € Rai, we set c; = yi, where y; is a vertex satisfying 

dist 77, (aj, yi) + dist x, (bi, ys) < diam(A;). 

The path P, is a shortest path from (x,ci,...,Cn) to (a',c1,...,¢€n). The 

path P3 is a shortest path from (2',ci,...,Cn) to (z', b1,...,6,) and the path 

P, is a shortest path from (2',b1,...,bn) to (y,b1,...,6n). Observe that the 

total length of P, and P3 does not exceed 5>;_, diam(Aj;) and the total length 
of P, and P, is at most k. oO 

2.10 Kings in Digraphs 

In this section, we study r-kings in tournaments, semicomplete multipartite 

digraphs and other generalizations of tournaments. The main emphasis is on 

4-kings in semicomplete multipartite digraphs. The notion of a 2-king and 

some results on 2-kings in tournaments will be generalized in Section 12.3.2. 

2.10.1 2-Kings in Tournaments 

Studying dominance in certain animal societies, the mathematical sociologist 

Landau [508] observed that every tournament has a 2-king. In fact, in every 
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tournament 7’, each vertex x of maximum out-degree is a 2-king. Indeed, for a 

vertex y € T, y # a, either xy or there is an out-neighbour of x which is an 

in-neighbour of y. In both cases, dist(x, y) < 2. Observe that if a tournament 

T has a vertex of in-degree zero, this vertex is the only r-king in T for every 

positive integer r. Moon [569] proved the following. 

Theorem 2.10.1 Every tournament with no vertex of in-degree zero has at 

least three 2-kings. 

Proof: Exercise 2.35. O 

The following example shows that this bound on the number of 2-kings 

by Moon is sharp. Let T,, be a tournament with vertex set {z1,272,...,¢n} 

and are set A= X UY U{az,_22,,}, where 

5 OS Ce, eas Bee ee 

Y—4jrae Pate 7-1 n—l(j,1)4 en 2). 

It is easy to verify that, for n > 5, tn-3,%n-2,Ln—-1 are the only 2-kings in 

Tn (Exercise 2.37), see Figure 2.8. 

Piette saya omen 
Figure 2.8 An example of a tournament with exactly three 2-kings. The arcs which 
are not shown are oriented from right to left. 

Since the converse of a tournament is a tournament, the above two results 

can be reformulated for 2-serfs. (A vertex x is a 2 serf if dist(V,2) < 2.) The 

concepts of 2-kings and 2-serfs in tournaments were extensively investigated 
by both mathematicians and political scientists (the latter have studied so- 

called majority preferences). The interested reader is referred to Reid [630] 
for a comprehensive recent survey on the topic. 

2.10.2 Kings in Semicomplete Multipartite Digraphs 

It is easy to see that Proposition 2.1.1 implies that a multipartite tourna- 

ment TJ has a finite out-radius if and only if J contains at most one vertex of 

in-degree zero (Exercise 2.38). Moreover, the following somewhat surprising 
assertion holds. If a multipartite tournament has finite out-radius, the out- 

radius is at most four. In other words, every multipartite tournament with 

at most one vertex of in-degree zero contains a 4-king. (Similar results hold 

for quasi-transitive digraphs and a certain class of digraphs that includes 
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multipartite tournaments, see Subsection 2.10.3.) This result was proved in- 

dependently by Gutin [356] and Petrovic and Thomassen [605]. The bound 
is sharp as there exist infinitely many p-partite tournaments without 3-kings 

for every p > 2 [356]. Indeed, bipartite tournaments C4[Kq, Ky, Kq,Kaq] for 
q > 2 do not have 3-kings (dist(u,v) = 4 for distinct vertices u,v from the 

same K,,). It is clear that every multipartite tournament, for which the initial 

strong component is some C4[Ky, Kg, Kq; Ka] (q > 2), has no 3-king either. 
Thus, 4-kings are of particular interest in multipartite tournaments. In 

a number of papers (see, e.g., Gutin [361], Koh and Tan [485, 486, 489], 

Petrovi¢ [604] and the survey paper [630] by Reid) the authors investigate 
the minimum number of 4-kings in multipartite tournaments without vertices 

of in-degree zero. (If a multipartite tournament has exactly one vertex of in- 

degree zero, it contains exactly one 4-king, so this case is trivial.) In our view, 

the most interesting result in this direction was obtained by Koh and Tan in 
[485]. 

Theorem 2.10.2 LetT be ak-partite tournament with no vertex of in-degree 

zero. If k = 2, T contains at least four 4-kings; it has exactly four 4-kings 

if its initial strong component consists of a cycle of length four. If k > 3, T 

contains at least three 4-kings; it has exactly three 4-kings if its initial strong 

component consists of a cycle of length three. O 

This theorem can be considered as a characterization of bipartite (p- 
partite, p > 3) tournaments with exactly k 4-kings for k € {1,2,3,4} 
(K € {1,2,3}). The next theorem by Gutin and Yeo [376] goes further with 
respect to both exact number of 4-kings and the class of digraphs under 
consideration. 

Theorem 2.10.3 Let D = (V,A) be a semicomplete multipartite digraph 
and let k be the number of 4-kings in D. Then 

1. k =1 if and only if D has exactly one vertex of in-degree zero. 
2k = 2,3 or 4 if and only if the initial strong component of D has k 

vertices. 

3. k = 5 if and only if either the initial strong component Q of D has five 
vertices or Q contains at least six vertices and possesses a path “Pes 
PoPip2p3pa such that dist(po,ps) = 4 and {pi, p2, p3,pa}>V — V(P); 

0 

We have seen that a vertex of maximum out-degree in a tournament is 
a 2-king. It is slightly more difficult to show that a vertex of maximum out- 
degree in a bipartite tournament is a 4-king (Exercise 1.67). With 4-kings in 
k-partite tournaments for k > 3, the situation is more complicated as can 
4 oe from the next theorem by Goddard, Kubicki, Oellermann and Tian 
Byalte 
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Theorem 2.10.4 Let T be a strongly connected 3-partite tournament of or- 
der n > 8. If v is a vertex of maximum out-degree in T, then dist(v, V(T)) < 
[n/2] and this bound is best possible. Oo 

In the rest of this subsection, we will prove the following theorem using 
an argument adapted from [376]. 

Theorem 2.10.5 Every semicomplete multipartite digraph with at most one 
vertex of in-degree zero has a 4-king. 

For the proof we need the following lemmas: 

Lemma 2.10.6 Jf P = popi...pe is a shortest path from po to pe in a 

semicomplete multipartite digraph D, and € > 3, then there is a (pe, po)-path 

of length at most 4 in D(V(P)). 

Proof: Since ¢ > 3 and P is a shortest path we have ({po,pi},pe) = 9. If 
Pe—Ppo we are done, so assume that pe and po belong to the same partite set 

of D. This implies that pe—p;. Analogously, (po, {p2, p3}) = 0, which implies 
that either pepip2p3po OF pepip2Po is a (pe, Po)-path of length at most 4 in 

DVite)}. oO 

Lemma 2.10.7 Let D be a semicomplete multipartite digraph and let Q be 

an initial strong component of D. If Q has at least two vertices, then D has 

only one initial strong component. Every verter in Q, which is a 4-king in Q, 

1s a 4-king in D. 

Proof: Assume that |V(Q)| > 2, but D has another initial strong component 

Q'. Since Q contains adjacent vertices, there is an arc between Q and Q’, a 

contradiction. 

Let x be a 4-king in Q and let y € V(D) — V(Q) be arbitrary. If x and y 
are adjacent, then clearly sy. Assume that « and y are not adjacent. Since 

Q is strong, it contains a vertex z dominated by x. Clearly, s+z—y. Hence 

dist(z,y) < 2 and g is a 4-king in D. a) 

Lemma 2.10.8 Let D be a strong semicomplete multipartite digraph and let 

w be a verter in D. Fori > 3, if Nt*(w) £9, then dist(NT*(w), N**[w]) < 4. 

Proof: Let z € N**(w) be arbitrary. Since a shortest path from w to z is 

of length i > 3, by Lemma 2.10.6, dist(z,w) < 4. Let g € N**[w] — {w, z} 
and let ror;...7; be a shortest (w,q)-path in D. If 1 <7 < 3 then, since z 

dominates at least one of the vertices ro,r1, either zror1 ...7j; Or 271 ...7; is 

a (z,q)-path in D of length at most 4. If j > 4 then, since z dominates at 

least one of the vertices r;_3,7j~2, either z27j;-37j-27j-117j OY 27j_-27j-17; is 
a (z,q)-path in D of length at most 4. Oo 

Proof of Theorem 2.10.5: Let D be a semicomplete multipartite digraph 

with at most one vertex of in-degree zero. If D has a vertex x of in-degree zero, 
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then clearly z is a 2-king in D. Thus, assume that D has no vertex of in-degree 

zero. Then, every initial strong component Q of D has at least two vertices. 

By Lemma 2.10.7, Q is unique and every 4-king in Q is a 4-king in D. It 

remains to show that Q has a 4-king. If every vertex in Q is a 4-king, then we 

are done. Otherwise, let w be a vertex in Q which is not a 4-king of Q. Then, 

r = distg(w, V(Q)) > 5. By Lemma 2.10.8, disto(NG"(w), NG" [w]) <4 Ve} 

every vertex in N3"(w) is a 4-king in Q (since NG" [w] = V(Q)). O 

2.10.3 Kings in Generalizations of Tournaments 

Bang-Jensen and Huang [80] considered kings in quasi-transitive digraphs. 

The main result of [80] is the following. 

Theorem 2.10.9 Let D be a quasi-transitive digraph. Then we have 

(1) D has a 3-king if and only if it has a finite out-radius?. 
(2) If D has a 8-king, then the following holds: 

(a) Every vertex in D of maximum out-degree is a 3-king. 

(b) If D has no vertex of in-degree zero, then D has at least two 3-kings. 

(c) If the unique initial strong component of D contains at least three vertices, 

then D has at least three 3-kings. 

QO 

In the following family. of quasi-transitive digraphs, every digraph has a 

3-king but no 2-king: C3[K,,, Kx,, Kx] for every ki, k2,k3 > 2. 

In [605], Petrovic and Thomassen obtained the following. 

Theorem 2.10.10 Let G be an undirected graph whose complement is the 

disjoint union of complete graphs, paths and cycles. Then every orientation 

of G with at most one vertex of in-degree zero has a 6-king. QO 

2.11 Application: The One-Way Street and the Gossip 
Problems 

In this section, we show how (some extensions of) the one-way and gossip 

problems lead one to consider minimum diameter orientations of digraphs. 

Recall that an orientation of a digraph D is a subdigraph of D obtained from 
D by deleting exactly one arc between x and y for every pair z # y of vertices 
such that both zy and yz are in D. Some results are given » minimum diam- 
eter orientations of digraphs from well-known classes, semicumplete bipartite 
digraphs and quasi-transitive digraphs. 

5 See Proposition 2.1.1. 
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2.11.1 The One-Way Street Problem and Orientations of Digraphs 

Graph theoretical modelling of the one-way problem can be traced back to 

the classical paper of Robbins [637]. It is well-known that introduction of 

one-way streets usually decreases the number of car accidents and allows one 

to simplify the traffic control. By Robbins’ theorem (see Theorem 1.6.2) a 

connected graph G has a strongly connected orientation if and only if G has 

no bridge. This theorem shows when the one-way street system can be intro- 

duced. One reason why one-way streets are not used everywhere is that the 

travelling distances after such arrangements will increase. To minimize this 

disadvantage of the one-way traffic system, we may choose certain assign- 

ments of directions that minimize some disadvantage criterion. Three such 

criteria are discussed by Roberts and Xu [638, 639, 640, 641] Most other pa- 

pers on the topic deal only with one criterion: the minimization of the longest 

path that has to be travelled, i.e. the diameter of an orientation of the undi- 

rected graph representing the street configuration. We restrict ourselves to 

this objective function. 

Practically all papers on the topic consider orientations of undirected 

graphs. This corresponds to converting all streets, which were initially two- 

way, into one-way streets (see, e.g., Koh and Tay [492, 493, 495], Konig, 

Krumme and Lazard [500] and Plesnik [608]). This model is quite restricted: 
certain streets may already be one-way. To take such streets into considera- 

tion, one has to study orientations of directed rather than undirected graphs. 

While there are a few papers (see, e.g., Boesch and Tindell [120], Chung, 

Garey and Tarjan [157], and Volkmann [730]) dealing with finite diameter 
orientations of digraphs, we are aware of only one paper [378] devoted to 

minimizing the diameter of an orientation of a digraph. In particular, the 

following results are proved by Gutin and Yeo [378]. For a digraph D, as in 

the case of undirected graphs, let diammin(D) denote the minimum diameter 

of an orientation of D. 

Theorem 2.11.1 Jf D is a strong quasi-transitive digraph of order n > 3, 

then 
diammin(D) < max{3, diam(D)}. 

There is an infinite family Q of strong quasi-transitive digraphs such that for 

every Q € Q, diam(Q) = 2 but no orientation of Q is of diameter® 2. QO 

Theorem 2.11.2 If D is a strong semicomplete bipartite digraph of order 
<7 . . 

n> 4 such that D#Kin-1, then diampin(D) < max{5,diam(D)}. There is 

an infinite family B of strong semicomplete bipartite digraphs such that for 

every B € B, diam(B) = 4 but diammin(B) = 5. Oo 

6 Observe that by Exercise 1.57 every strong quasi-transitive digraph of order 

n > 3 has a strong orientation. So does every strong semicomplete bipartite 

digraph with every partite set of cardinality at least 2. On the other hand, 
$7). 5 

Kin-1, 2 = 2, has no strong orientation. 
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The sharpness of the upper bounds of these theorems can be seen from the 

following examples. Let T,, k > 3, be a (transitive) tournament with vertices 

@1,02,..-,¢, and arcs 2,2; for every 1<i< j <k. Let y be a vertex not in 

T,, which dominates all vertices of T; but zz and is dominated by all vertices 

of T; but 2;. (See Figure 2.9.) The resulting semicomplete digraph D,4+1 has 

diameter 2. However, the deletion of any arc of Dy41 between y and the set 

{r,23,---,Lx~—1} leaves a digraph with diameter 3. Indeed, if we delete yz; 

(ziy), 2<%i<k-—1, then a shortest (xz, 2;)-path ((x;,21)-path) becomes of 

length 3. 

Figure 2.9 A semicomplete digraph of diameter 2 with no orientation of diameter 
2 

Let H be a strong semicomplete bipartite digraph with the following 

partite sets V; and Vo and arc set A: Vj = {21,272,273}, V2 = {y1, y2, y3}, and 

A = {£191 Y1%1, 21Y2, Y321, L2Y1, YoT2, Y3L2, Y1X3, L3Y3, T3Y2}- 

Let H’ = H—2,y, and H" = H —y;2. It is easy to verify that diam(H) = 4 

(in particular, dist(y2, y3) = 4) and that diam(H') = diam(H”) = 5 (a short- 
est (<1, y3)-path in H’ and a shortest (y2,2)-path in H” are of length 5). 
The digraph H can be used to generate an infinite family of semicomplete 

bipartite digraphs with the above property: replace 23, say, by a set of inde- 

pendent vertices. 

2.11.2 The Gossip Problem 

‘There are n ladies, and each one of them knows an item of scandal which 

is not known to any of the others. They communicate by telephone, and 

whenever two ladies make a call, they pass on to each other, as much scandals 
as they know at the time. How many calls are needed before all ladies know 

every scandal?’ This is the way the so-called gossip problem (apparently due 
to A. Boyd) was stated by Hajnal, Milner and Szemerédi [392] in 1972. Since 
then numerous research papers on the topic have been published (see e.g. 
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surveys Fraigniaud and Lazard [248], Hedetniemi, Hedetniemi and Liestman 

[409], Hromkovié, Klasing, Monien and Peine [433]). The main reason of this 
popularity is a high applicability of the gossip problem, especially in computer 

networks. 

Actually the above quotation captures only a special case of the gossip 

problem. In a more general setting, this problem can be formulated as follows. 

Let G be a connected graph of order n. Every vertex v of G holds initially an 

item J(v) (different from the items of other vertices). A vertex v can pass all 
items it currently has to all or some of its neighbours at one step. The aim is 

to calculate the minimum number of steps required to pass to every vertex u 

the set {I(v) : v € V(G)} of all items. 
The problem can be specified by allowing only one-way communications 

(like in radio communications over one frequency or email) when at every 

given step, for every pair u,v of adjacent vertices, either u can pass all items 

it holds to v, or v can pass all items it holds to u, but not both [248]. This 
specification is often called half-duplex. The half-duplex gossip problem is 

NP-hard [248]. On the other hand, this problem is normally of interest, from 

the applications point of view, only for some special families of graphs such 

as the Cartesian products of cycles used in practice to build the Intel A- 

prototype (see Rattner [622]) and many transputer-based machines (see May 
[557]). Several important families of graphs are discussed by Fraigniaud and 

Lazard [248]. The solutions obtained for them are based on an upper bound 
that includes, as the main term, the minimum diameter of an orientation of 

a given undirected graph [248]. 
In the half-duplex gossip problem, we may consider symmetric digraphs 

CG instead of undirected graphs G. The half-duplex model can be extended 

from symmetric to arbitrary digraphs D, where a vertex v can pass all its 

items only to vertices wu such that vu is an arc in D. The use of arbitrary 

digraphs may well be of interest when security concerns dictate that some of 

the directions of communications are forbidden. 

We consider only the half-duplex model for a strong digraph D. Let s(G) 
stand for the minimum number of steps for gossiping in this model. Since the 

minimum number of steps to pass all items of vertex u to another vertex v 

is dist(u, v), we have s(D) > diam(D). 
Gutin and Yeo [378] proved the following simple upper bound on s(D), 

which is an improvement on the similar upper bound in [248] even in the case 

of symmetric digraphs. 

Theorem 2.11.3 Let D = (V, A) be a strong digraph. Then 

s(D) < min{2 rad(D), diammin(D)}. 

Proof: Let H be an orientation of D of minimum diameter. Let every vertex 

in D pass its items to all out-neighbours in H. Repeat this iteration till every 

vertex holds all items. Clearly, the number of iterations required is the length 

of the longest path in H, i.e. s(D) < diam(H) = diammin(D). 
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Let x be a vertex of D such that rad(D) = (dist(x,V) + dist(V, x))/2. 
Let F+ (F>) be a BFS tree of D rooted at x (the converse of a BFS tree of 

the converse of D rooted at x). In the first dist(V,z) steps pass items from 

vertices to their out-neighbours along arcs of F,. Thus, in the end, x holds 

all items. During the next dist(z,V) steps pass items from vertices to their 

out-neighbours along arcs of F’*. Hence, in the end, every vertex holds all 

items. Thus, s(D) < 2rad(D). O 

The bound of Theorem 2.11.3 is of special interest when D satisfies 

diam(D) = diampin(D). In this case, a minimum diameter orientation of 
D provides an optimal solution to the gossip problem. Thus, an orienta- 

tion H of diameter possibly exceeding diam(D) by a small constant leads 
to a good approximate solution for the gossip problem (given H, the up- 

per bound min{2rad(D),diam(H)} for g(D) can be computed in polyno- 
mial time). In the previous subsection, we saw that slight modifications of 

diam(D) = diammin(D) hold for some important families of digraphs. 

2.12 Application: Exponential Neighbourhood Local 
Search for the TSP 

The aim of this section is to introduce a new approach to obtain near optimal 

solutions for the travelling salesman problem (TSP). The main idea is to find, 
in polynomial time, a best solution in a specially constructed set of solutions 
of exponential cardinality. This idea can be applied not only to the TSP, but 
also to other NP-hard combinatorial optimization problems. This general 
idea was used already in the papers by Sarvanov and Doroshko (651, 652] 
and Gutin [354]. 

2.12.1 Local Search for the TSP 

The TSP is stated as follows. Given a weighted complete digraph ( K 7), 
find a hamiltonian cycle in K n Of minimum cost. In this section and some 
others where the TSP is considered, we will often call a hamiltonian cycle 
in Ky a tour; it is also assumed that V(Kn) Sd 2 ee) peg CSP 
is a well-studied N’P-hard problem with numerous applications (see, e.g., 
the books by Cook, Cunningham, Pulleyblank and Schrijver [166], Lawler, 
Lenstra, Rinooykan and Shmoys [511], Reinelt [632] and the paper [466] by 
Johnson and McGeoch). Since the TSP is NV P-hard, no polynomial time 
exact algorithms to solve the problem are known. However, there is a well- 
tested approach (see, e.g., Johnson and McGeoch [466]) that provides near 
optimal solutions (which is sufficient in most applications) in reasonable time 
for large-scale instances of the TSP. The approach consists of two phases. In 
the first phase, a construction heuristic quickly produces a solution which 
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is normally far from optimal but is much better than a random solution’. 
(Some construction heuristics for the TSP are described later in this book.) 
In the second phase, a local search heuristic is used. During every iteration of 
this heuristic, a neighbourhood of a current best solution is considered and 
a better solution (in certain cases, the best solution in the neighbourhood) 
is found. When no better solution in the neighbourhood exists the heuristic 
terminates. (There are several variations of the above description [466].) 

In many cases, so-called 3-Opt is applied. In 3-Opt, the neighbourhood of 

a hamiltonian cycle C consists of all tours in K n Obtained from C’ by deleting 

three arcs and then adding three arcs. (This notion can be easily generalized 

to k-Opt for every fixed k > 3.) The cardinality of this neighbourhood is 

certainly O(n*). Also, O(n?) time is required to completely search this neigh- 
bourhood (i.e., to find the best hamiltonian cycle) if we look at the tours of 

the neighbourhood one by one. Certainly, the cubic time is unacceptable for 

large-scale instances of the TSP. However, 3-Opt is widely used in practice 

since usually only a small fraction of the neighbourhood is searched before a 

better solution is found. Despite the fact that 3-Opt allows one to find quite 

good solutions to large-scale instances of the TSP, the way of looking at the 
solutions one by one seems rather inefficient. 

Therefore, in the 1980’s, Sarvanov and Doroshko [651, 652] and Gutin 
[354] introduced independently some neighbourhoods of exponential size 
where the best solution can be obtained in polynomial time. Recently, var- 

ious neighbourhoods of exponential size for the TSP were suggested and 

investigated (see, e.g., Balas and Simonetti [37], Burkard, Deineko and Woeg- 
inger [137], Glover [318], Glover and Punnen [320], Potts and Velde [611] and 
Punnen [616]). The paper [188] by Deineko and Woeginger is an excellent 
survey on the topic. Balas and Simonetti [37] and Carlier and Villon [448] 
constructed and implemented local search algorithms which use exponential 

neighbourhoods. Their results are very encouraging. They also show the ne- 

cessity of further theoretical research on the topic. 

There are different types of neighbourhoods for the TSP; many of them 

can be found in [188, 466]. The following definition of a neighbourhood struc- 
ture for the TSP is due to Deineko and Woeginger [188]. In this definition, 

we assume that every tour T = m(1)m(2)...a(n)(1) starts from the ver- 
tex 1, ie., (1) = 1. Therefore, we will identify T with the permutation 

m(1)7(2)...2(n). A neighbourhood structure consists of a neighbourhood 
N(T) for every tour T such that the neighbourhood N((1)7(2)...a(n)) = 
m*N(12...n), where 7(1) = 1 and * stands for the permutation product (ap- 
plied from right to left). This definition is somewhat restrictive (for example, 
it requires the cardinality of neighbourhoods to be the same) but reflects the 

very important ‘shifting’ property of neighbourhoods which distinguish them 

7 For certain families of instances of the TSP, some construction heuristics produce 
near optimal tours by themselves; see, e.g., Glover, Gutin, Yeo and Zverovich 
[319]. In such cases local search is perhaps not required. 
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from arbitrary sets of tours. Another important property of neighbourhood 

N(T) of a tour T, which is usually imposed, is that the best tour of N(T) 

can be computed in time polynomial in n. This is necessary to guarantee 

an efficient local search. Neighbourhoods satisfying this property are called 

polynomially searchable. 

The largest known polynomially searchable neighbourhoods are those of 

size 2°("!°") (note that there are (n — 1)! tours in En and (n — 1)! = 

20(nlogn) as well). Such neighbourhoods were introduced independently in 

[354, 616, 652]. Punnen’s neighbourhoods [616] are the most general among 
them. We will consider a special family of these neighbourhoods, which is 

a slight generalization of neighbourhoods in [354, 652]. We call those neigh- 
bourhoods the assignment neighbourhoods. (See Subsection 2.12.3 for the 

definition of these neighbourhoods.) Some features of these neighbourhoods 

were investigated in [369]. Gutin [369] proved that, for every 6 > 0, there is a 
neighbourhood of cardinality 20("'°8™ that can be searched in time O(n1+*). 
Deineko and Woeginger [188] demonstrated that to search a neighbourhood 
of cardinality 2°("!°€™ one needs time 2(n!+*), where 6 > 0. 

Since the diameter of neighbourhood structure digraphs (defined later) is 

of certain importance for local search, this parameter has also been studied. 

We present some recent results on the topic in Subsection 2.12.4. 

2.12.2 Linear Time Searchable Exponential Neighbourhoods for 

the TSP 

In this section, we demonstrate how to use the algorithm from Subsection 

2.3.2 to search some exponential neighbourhoods. We introduce a neighbour- 

hood of exponential size based on one of the approaches described by Glover 
Se 

and Punnen [320]. Assume that n, the order of (Kn,c), equals one modulo 
three (it is easy to see how to modify our Pusce when n does not equal one 
modulo three). Let C = vvPutufugudu2 ...v?utv?u be a hamiltonian cycle of 
K n- Define a neighbourhood of C as follows: 

NB (Cy tutu to mee yop, eee (ORIN jy eel, oer e 

where all superscripts are taken modulo three. Clearly, |NB(C)| = 3!"/3!, 
We show how to find the best hamiltonian cycle in NB(C) in time O(n). 

Construct an auxiliary weighted digraph D = (V, A, w) as follows: 

V = {py.q, tgs tgs Ue tt € {1,2,.-¥, eh}, 
A= {pus ud ul. ak CU Orne © ino eo 

eats w(p,ui) = e(v, vi) + e(vi,vitt) + e(vit} oh for every 7 € 
0,1, 2}, 

2 
Ui) Feud, vitt) + ev DS) 
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for every i € {1,2,...,t-—1}, j,k € {0,1,2}, and w(ut,g) = c(vf*?,v) for 
every k € {0,1, 2}. 

All (p,q)-paths in D are of the form puj!u5? ...uf‘q, where s; € {0, 1,2}, 
1=1,2,...,t. Therefore, the mapping 

8) 82 8 
i 

@: pus us? ...ug'quv} a ee ee eG AY bomU, 

is a bijection from the set of (p, qg)-paths in D into N B(C). Moreover, for every 

(p, q)-path R in D, we have w(R) = c(¢(R)). Hence, to find a minimum weight 
hamiltonian cycle in NB(C), it suffices to compute a shortest (p, q)-path in 

D. This can be done in time O(|A|) = O(n) by the algorithm described in 
Subsection 2.3.2. Moreover, since we can readily give an acyclic ordering of 

vertices in D, we do not need the first phase of the algorithm in Subsection 

25 4 

2.12.3 The Assignment Neighbourhoods 

The purpose of this subsection is to introduce the assignment neighbour- 

hoods. i 

Let C = 2122...2,%2, be a cycle in Ky. The operation of removal of 

a vertex 2; (1 <i < k) results in the cycle 7122... 2%;-12j41... 2421 (thus, 

removal of x; is not deletion of z; from C). Let y be a vertex of K n hot in 

C’. The operation of insertion of a vertex y into an arc 2;Z;+4, results in the 

cycle 21 2%2...2;YLj41 ...2~21. An insertion of y into C is an insertion of y 

into 2;%;41 for some 1 <i <k. For aset Z = {z1,...,2s} (s < k) of vertices 

not in C, an insertion of Z into C means an insertion of z; in C’ followed 

by an insertion of z2 into the obtained cycle, etc. Furthermore, we require 

that, in the cycle obtained after insertion of all vertices of Z into C, no pair 

of vertices from Z is adjacent. 

Let T = 21%72...2721 be a tour in Kn andilet: Zi 1 oo teen, a) Des 

set of pairwise non-adjacent vertices of T. The assignment neighbourhood 

N(T, Z) of T with respect to Z consists of the tours that can be obtained from 
T by removal of the vertices from Z one by one followed by an insertion of Z 

into the cycle derived after the removal. For example, for H = 112223242521, 

(AA 2i6.23)) =) (tot tse 2502, 0oTita lel 0s, Lotel ie i222 ait, J} = 

{1,3}}. Let T = 21 22...2n21 and s = |Z|; then it is easy to verify that 

|N(T, Z)| = (n — s)!/(n — 28)! 

(clearly, we have n — s > s). 
We show that the best tour in N(T, Z) can be found in time O(n?) [369, 

616]. Let C = yiy2..-Yn—sy1 be the cycle obtained from T after removal 
of Z and let Z = {21, z2,...,2s}. Let @ be an injective mapping from Z 

to Y = {y1,y2,---,Yn—s}. If we insert some z; into an arc y;y;41, then the 

weight of C will be increased by c(yjzi) + c(ziyj+1) — c(yjyj4i). Therefore, 
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if we insert every z;,7 = 1,2,...,8, Into Y¥g(i)¥o(i) 41> the weight of C’ will be 

increased by 

s 

f(¢) = S-(c(yaciy 2a) + e(z:yg(s)41) — C(¥e(s)Yo(s)+1))- 
o— 

Clearly, to find a tour of N(T, Z) of minimum weight, it suffices to minimize 

f(@) on the set of all injections ¢ from Z to Y. This can be done using the 

following weighted complete bipartite graph B. The partite sets of B are 

Z and Y, and the weight of an edge zy; is set to be c(yjzi) + c(ziyjti) — 

C(yjYj+1): 
By the definition of B, every maximum matching M of B corresponds to 

an injection ¢y from Z to Y. Moreover, the weights of M and om coincide. 

A minimum weight maximum matching in B can be found by solving the 

assignment problem (see Section 3.12). Therefore, in O(n*) time, we can find 

the best tour in N(T, Z). 

2.12.4 Diameters of Neighbourhood Structure Digraphs for the 

TSP 

Given a neighbourhood N(T) for every tour T in Kn (i.e., some neighbour- 
hood structure), the corresponding neighbourhood digraph (of order 

(n —1)!) is a directed graph with vertex set consisting of all tours in K n and 

arc set of pairs (T’,T”) such that T” € N(T’). When all neighbourhoods 
N(T) are polynomially searchable, the corresponding digraph is polyno- 

mially searchable. The diameter of the neighbourhood digraph is one of 

the most important characteristics of the neighbourhood structure and the 

corresponding local search scheme [188, 318, 448]. Clearly, a neighbourhood 

structure with a neighbourhood digraph of smaller diameter seems to be more 

useful than that with a neighbourhood digraph of larger diameter, let alone 

a neighbourhood structure whose digraph has infinite diameter (in the last 

case, some tours are not ‘reachable’ from the initial tour during local search 

procedure). 
For example, the neighbourhood digraph for polynomially searchable 

‘pyramidal’ neighbourhoods introduced by Carlier and Villon [448] has di- 

ameter d, = O(logn). (In [448], it was proved that d, < logn, the lower 
bound d, = §2(logn) follows from the facts that the cardinality of pyramidal 
neighbourhoods is 2°(") [448] and the total number of tours is 2°(!°8”) .) 

In this subsection, using the assignment neighbourhoods, we construct 

certain polynomially searchable ‘compound’ neighbourhoods whose digraphs 

have diameter bounded by a small constant. We follow the presentation of 
Gutin and Yeo [375]. 

For a positive integer k < n/2, the neighbourhood digraph I'(n, k) has 
> 

a vertex set formed by all tours in K,. In I'(n,k), a tour T dominates a 
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tour R if there exists a set Z of k non-adjacent vertices of T such that 

R€ N(T,Z). Clearly, T dominates R if and only if R dominates T, i.e., 

I'(n,k) is symmetric. We denote by dist, (7, R) the distance from T to R in 
I (nik), 

For a tour T in K n, let Inx denote the family of all sets of k non-adjacent 

vertices in T’. Clearly, the neighbourhood N;(T) of a tour T in I'(n, k) equals 

Uzer,,N(T, Z). 

Thus if, for some k, i(n,k) = |Znx| is polynomial in n, then since N(T, Z) 

is polynomially searchable I['(n,k) is polynomially searchable. Otherwise, 

I(n,k) may be non-polynomially searchable. Since polynomially searchable 

I’(n, k) are our main interest, we start by evaluating i(n, k) in Theorem 2.12.1. 
It follows from Theorem 2.12.1 that, for fixed k, i(n,k) and i(n,n —k) are 

polynomial. 

Theorem 2.12.1 /375] i(n,k) = (Fash) + (fpkst)¢ 0 

Corollary 2.12.2 If p is a non-negative fixed integer (p < |n/2|), then 

I'(n,p+1) and I'(n, |(n — p)/2]) are polynomially searchable. 

Proof: This follows from Theorem 2.12.1 and (77) = (,,",)- Oo 

It can be shown (Exercise 2.47) that for n is even I'(n,n/2) consists of an 
exponential number of strongly connected components and, thus, its diame- 

ter is infinite (for example, 7) 72...@n,2, and 21 ...£%n—-22%nLn—1 2X, belong to 

different strong components of this digraph). Therefore, below we consider 
I'(n,k) for k < n/2 only. 

Theorem 2.12.3 (Gutin and Yeo) /375] diam(I(n, |(n — 1)/2])) <4. 

Proof: We assume that n > 5, as for 2 < n < 4 this claim can be verified 

directly. Let C = 21 22...%n2%, and T = yj yo..-Ynyi be a pair of distinct 

tours in (om Put k = |(n — 1)/2]. We will prove that dist,(T,C) < 4, thus 
showing that diam(I’(n,k)) < 4. 

We call a vertex v even (odd) with respect to C if vu = 2;, where 1 < 

j <nand 7 is even (odd). For a set of vertices X of ee let Xoaa (Xeven) be 

the set of odd (even) vertices in X. 
First we consider the case of even n, i.e. k = n/2—1. The proof in this case 

consists of two steps. At the first step, we show that there exists a tour JT” 

whose vertices alternate in parity and such that dist,(T,T") < 2. Moreover, 

T" has a pair of consecutive vertices which are also consecutive in C. At the 
second step, we will see that dist,(T’,C) < 2 as the odd and even vertices 
of T” (except for the vertices of the above pair) can be separately reordered 

to form C. Thus, we will conclude that dist,(T',C) < 4. Now, we proceed to 

the proof. 
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Clearly, T has a pair y;,yj+1 such that y;+1 is odd and y; is even. Let 

Z = {Yj+2,Yj+4) 
shes Yj+2k } 

and let |Zoaa| = s. Remove the vertices of Z from T and then insert the s odd 

vertices of Z into the arcs yj41Yj+3,-- +) Yj+2s—1Yj+2st1 and k—s even vertices 

of Z into the arcs yj42541Yj+25+3) Yj+2st+3Yj+2s+5) +--+ 1 Yj+2k—-1Yj+2k+1- We 

have obtained a tour 

/ 2 P ' 

T! = YjpYjt1Uj-oyj+3Uj+4ayjts --- YjitQh—1Vj42kYj+2k41 Yj» 

where {v;42,---,Ujtor} = Z. 

Let Z' = {y543,Yj+5)---»Yj+2e¢1} and let |Z,,.,| = t. Since the number 

of odd vertices in V(Kn) —{yj,yj41} is equal to k = |Zoaa|+|Zpqql = st+k—-t, 

we obtain that s = t. Remove Z’ from J” and insert the t even vertices of Z’ 

into the arcs yj41Vj42, Vj+2Uj+45 Vj+6Uj+8,---)Vj+2s—2Uj+2s and the k—s odd 

vertices of Z’ into the arcs, Ujpt2s+2Vj+25+45 ++ +5 VJj+Qk—2WVj4+2k» Vj+2kYj- We 

have derived a tour T” = uju2...tUnuy. Clearly, the vertices of T’’ alternate 

in parity, i.e., for every m, if um is odd, then u+1 is even. 

Now we prove that the processes of insertion of Z and Z' can be performed 

in such a way that T”’ contains a pair of consecutive vertices which are also 

consecutive in C' (i.e. there exist indices p and q such that up = 2, and 
Up+1 = Lq41). Since 1 < |Z'| < n, there exists a pair of distinct indices 7,m 
such that 2;,%m € Z' and 2j41,%m_1 ¢ Z'. Without loss of generality, we 

assume that 7 is odd. We consider two cases. 

Case 1:|Z/,,,| > 2. We prove that we may choose index g = 1. Since x44 ¢ Z' 
ands iMissevyen, either i, — 2:11 Ol fyei CG Semeqtn lt ete Seen tlie cle 

process of insertion of Z, we insert 2j41 into yj+on-1Yj+2K4+1, Le. Zit. = 

vj+2k- In the process of insertion of Z', we insert x; into vj+24y; if 2i41 = Yj 

or into Uj+2k—-2U;+2k, Otherwise (i.e. Ti41 = Vj+2k). 

Case 2: |Z/ ,,| = 1. Thus, m is even. Since n > 6, it follows that |Z!,,.,| > 2. 
Analogously to Case 1, one may take q = m — 1. 

Therefore, without loss of generality, we assume that un_1; = 2j, Un = 

Titi. Since {ug,u4,..., Usk, i41} = Ceven, we can delete {uo,us,..., Uo} 

from T" and insert it into the obtained cycle to get the tour C’ given by 

C" = uj 243g %i45Us -..U2k-12j-1Un—12i41U1. Analogously, we can delete 

{u1,U3,...,U2x-1} from C’ and insert it into the obtained cycle to get C. 
We conclude that dist,(T,C) < 4. 

Now let n be odd; then k = (n — 1)/2. Notice that, without loss of gen- 
erality, we may assume that rp, = yp (to fix the initial labellings of T and 
C). Consider tours X = 21 %2...%n%n4121 and Y = yyo.. -Yn—1YnYn41Y1 in 

Kn41, where Yn = fn, Yn41 = Tn41. If we assume that j =n, j+1l=n+ ig 
we can obtain, analogously to the case of even n, a tour Y” such that the 
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vertices of Y” alternate in parity (with respect to their indices in Xa ee 
follows z, in Y" and dist,(Y,Y") < 2. Now ifi=nandi+l=n+ 1, then 
we can show, similarly to the case of even n, that dist,(Y”, X) < 2 and, thus, 
dist,(Y, X) < 4. Notice that, in the whole process of constructing X from 
Y, we have never removed z,, and Ln41 OF inserted any vertex into the arc 
LnLn+1- Thus, we could contract the arc 2,241 to Zp and obtain C from T 
in four ‘steps’. This shows that dist,(T,C) < 4. O 

We can extend Theorem 2.12.3 using the following. 

Theorem 2.12.4 /375] Let dist,(T,C) =1 for tours T and C and let m be 
any integer smaller than k. Then, distm(T,C) < [k/m]. 

Corollary 2.12.5 For every positive m < |(n —1)/2], 

diam(I'(n,m)) < 4f|(n — 1)/2]/m]. 
In particular, if p is a positive fixed integer, then diam(I'(n, |(n—p)/2|)) < 8 
provided n > 2p +1. 

Proof: The first inequality follows directly from the above two theorems and 

the triangle inequality for distances in graphs. It also implies the second one. 

Indeed, n > 2p + 1 infers 

(n-1)/2 _ m=, 
Gp fa = 9 = Tapa] =” 

Hence, [Q] < 2. Oo 

2.13 Exercises 

2.1. Formulate the shortest (s,t)-path problem as a linear programming problem 
with integer variables. Hint: use a variable for each arc. 

2.2. (—) Show by an example that a minimum weight out-branching with root s 
may not be a shortest path tree from s. 

2.3. (—) Illustrate the shortest path algorithm for acyclic digraphs (Subsection 
2.3.2) on the acyclic digraph in Figure 2.10. 

2.4. Finding the longest paths from a fixed vertex to all other vertices 
in a weighted acyclic digraph. Develop a polynomial algorithm for finding 

the longest paths from a fixed vertex s to all other vertices in an arbitrary 
weighted acyclic digraph. Preferably your algorithm should run in linear time. 

2.5. Find the longest paths from s to all other vertices in the acyclic digraph in 
Figure 2.10, e.g. using the algorithm that you designed in Exercise 2.4. 
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Figure 2.10 A weighted acyclic digraph. 

Finding a longest path in a weighted acyclic digraph in linear time. 
Show how to find a longest path in a weighted acyclic digraph D in linear 
time. Hint: use a variant of the dynamic programming approach taken in 
(2.3), or construct a superdigraph D’ of D such that one can read out a 
longest path in D from a shortest path tree from some vertex s in D’. 

(—) Execute Dijkstra’s algorithm on the digraph in Figure 2.11. 

2 

Figure 2.11 A digraph with non-negative weights on the arcs. 

ff 

1 5 

1 

3 

7 

1 3 

12 

Complete the description of Dijkstra’s algorithm in Subsection 2.3.3 such 
that not only the distances from s to the vertices of D are computed, but 
also the actual shortest paths are found. 

Complete the description of the Bellman-Ford-Moore algorithm in Subsec- 
tion 2.3.4 such that not only the distances from s to the vertices of D are 
computed, but also the actual shortest paths are found. 

(—) Execute the Bellman-Ford-Moore algorithm on the digraph in Figure 
2.12. Perform the scanning of arcs in lexicographic order. 

. Négative cycle detection using the Bellman-Ford-Moore algorithm. 
Prove Theorem 2.3.10. 

- Show how to detect a negative cycle in the digraph in Figure 2.13 using the 
extension of the Bellman-Ford-Moore algorithm. 

Show by an example that Dijkstra’s algorithm may not find the correct dis- 
tances if it is applied to a weighted directed graph D where some arcs have 
negative weights, even if there is no negative cycle in D. 
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a 7 b 

Figure 2.13 A weighted digraph with a negative cycle. 

(—) Show how to implement the Floyd-Warshall algorithm so that it runs in 
time O(n?). 

Prove Theorem 2.3.10. 

Re-weighting the arcs of a digraph. Let D = (V,A,c) be a weighted 
digraph and let 7: V + FR be a function on the vertices of D. Define a new 
weight function c* by c*(u,v) = c(u, v) +(u) — m(v) for all v € V. Let dist* 
be the distance function with respect to D* = (V,A,c"), and let P be an 
(x, y)-path in D. Prove that P is a shortest (x, y)-path in D (with respect 
to c) if and only if P is a shortest (z,y)-path in D* (with respect to c”). 
Hint: consider what happens to the length of a path after the transformation 
above. 

. (—) Consider the weights introduced in Exercise 2.16. Show that the weight 
of a cycle in D is unchanged under the transformation from D = (V, A,c) to 
‘D* =(V,A,c’). 

Getting rid of negative weight arcs by re-weighting. Let D = (V, A,c) 
be a weighted digraph with some arcs of negative weight, but with no negative 
cycle. Let D’ = (V, A’,c’) be obtained from D by adding a new vertex s and 
all arcs of the form sv, v € V, and setting c’(s,v) = 0 for all v € V and 
c'(u,v) = c(u, v) for all u,v € V. Let 1(v) = dist p/(s, v) for all v € V. Define 
c* by c*(u, v) = c(u, v) + 7(u) — m(v) for all u,v € V. Prove that c*(u,v) > 0 
for allu,v EV. 
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Johnson’s algorithm for shortest paths. Show that by combining the 

observations of Exercises 2.16-2.18, one can obtain an O(n“ logn + nm) al- 

gorithm for the all pairs shortest path problem in digraphs with no negative 

cycles (Johnson [463)}). 

. Let M = [mij] be the adjacency matrix of a digraph D = (V, A) with V = 
{1,2,...,n} and let k be a natural number. Prove that there is an (7, 7)-walk 
of length k in D if and only if the (7, 7) entry of the kth power of M is positive. 

. Show how to compute the kth power of the adjacency matrix of a digraph of 
order n in time O(P(n) log n), where P(n) is the time required to compute 
the product of two n x n matrices. 

Finding a shortest cycle in a digraph. Describe a polynomial algorithm 
to find the shortest cycle in a digraph. Hint: use Exercise 2.20. 

(+) The generalized triangle-inequality. An arc-weighted digraph D = 
(V, A,c) satisfies the generalized triangle-inequality if, whenever P and 
Q are (x, y)-paths for some x, y © V(D) we have that |A(P)| < |A(Q)| implies 
that c(P) < c(Q). Describe a polynomial algorithm to check whether a given 
arc-weighted digraph satisfies the generalized triangle-inequality. 

The generalized triangle-inequality was defined above. Show that one can 
find the shortest path from a given vertex to all other vertices in O(n + m) 
time in a weighted digraph which satisfies the generalized triangle-inequality. 

Prove Proposition 2.4.2. : 

(—) Draw the Goldberg digraph D(12, 15) (see the proof of Theorem 2.4.4). 

(—) Derive a formula for the maximum diameter of an orientation of the 
complete k-partite graph Kn, jno,....n,- Hint: apply Theorem 2.5.1. 

Short cycles through an edge. Let G = (V,E) be a 2-edge-connected 
graph and let uv € E. Prove that G has a cycle of length at most 2dist(u, V)+ 
1 through the edge uv. Hint: use the (undirected) distance classes from u and 
v as weli as the fact that uv is not a bridge. 

(—) Let Gi,G2,...,Gp be connected undirected graphs. Prove that 

Pp 

diam(I?_,Gi) = )~ diam(Gi). 
Gal 

- Prove that p(Cp x Cz) > 0 when both p and q are odd (p,q > 3) (West, see 
(500]). 

. Construct orientations of P3 x Ps and P3 x Py of diameter 8. 

. Prove Theorem 2.9.5. 

. (—) For every odd number n > 3, give an example of a tournament T of 
order n, in which all vertices are 2-kings. 

. (—) Let T be a tournament on 4 vertices. Show that T contains a vertex 
which is not a 2-king. 

Prove Theorem 2.10.1 (Moon [571)). 
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(—) Describe an infinite family of semicomplete digraphs, in which every 
member has exactly two 2-kings. 

Prove that the tournament T, in Subsection 2.10.1 has only three 2-kings for 
i) 22 Ws 

Prove that a multipartite tournament T has a finite out-radius if and only if 
T contains at most one vertex of in-degree zero. Hint: use Proposition 2.1.1. 

(—) Characterize 2-kings in multipartite tournaments. 

3-kings in quasi-transitive digraphs. Show that every quasi-transitive 
digraph of finite radius has a 3-king (Bang-Jensen and Huang [80]). 

Prove Theorem 2.9.5. 

Prove Theorem 2.12.1. 

Prove Theorem 2.12.4. 

Prove that, in the half-duplex model of gossiping (see Section 2.11), s(G) < 
diam(G) + 1 for every connected bipartite graph G (Krumme, Cybenko and 
Venkataraman [504)). 

Using the upper bound of the previous exercise, prove that s(C2,) =k+1 
for every integer k > 2. 

(—) Evaluate the cardinality of a neighbourhood in k-Opt for the TSP (k > 
3): 

(—) Poor quality exponential neighbourhoods. Show that, if n is even, 
then I'(n,n/2) (see Subsection 2.12.4) consists of an exponential number of 
strongly connected components and, thus, its diameter is infinite. 

(—) Find the cardinality of the assignment neighbourhood N(T, Z) for the 
TSP with n vertices and k = |Z| (Gutin [369]). 

Maximizing exponential neighbourhoods. Find the value of k = |Z| for 
which the cardinality of the assignment neighbourhood N(T, Z) for the TSP 
with n vertices is maximum (Gutin [369]). 
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3. Flows in Networks 

The purpose of this chapter is to describe basic elements of the theory and 

applications of network flows. This topic is probably the most important 

single tool for applications of digraphs and perhaps even of graphs as a whole. 

At the same time, from a theoretical point of view, flow problems constitute 

a beautiful common generalization of shortest path problems and problems 

such as finding internally (arc)-disjoint paths from a given vertex to another. 

The theory of flows is well understood and fairly simple. This, combined with 

the enormous applicability to real-life problems, makes flows a very attractive 

topic to study. From a theoretical point of view, flows are well understood 

as far as the basic questions, such as finding a maximum flow from a given 

source to a given sink or characterizing the size of such a flow, are concerned. 

However, the topic is still a very active research field and there are challenging 

open problems such as deciding whether an O(nm) algorithm! exists for the 

general maximum flow problem. 

Several books deal almost exclusively with flows see e.g. the books [7] by 

Ahuja, Magnanti and Orlin, [199] by Dolan and Aldous, the classical text 
[246] by Ford and Fulkerson and [578] by Murty. In particular, [7] and [578] 
contain a wealth of applications of flows. In this chapter we can only cover 

a very small part of the theory and applications of network flows, but we 

will try to illustrate the diversity of the topic and show several applications 

of a practical as well as theoretical nature. Many of the results given in this 

chapter will be used in several other chapters such as those on connectivity 

and hamiltonian cycles. 

3.1 Definitions and Basic Properties 

A network is a directed graph D = (V, 4A) associated with the following 

functions on V x V: a lower bound l;; > 0, a capacity uj; > lj; and 

a cost cj; for each (i,j) € V x V. These parameters satisfy the following 
requirement: 

1 Here and everywhere in this chapter n is the number of vertices and m the 
number of arcs in the network under consideration. 
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For every (i,j) €V x V, if ij ¢ A, then li; = wiz = 0. (Sat) 

In order to simplify notation in this chapter we also make the assumption 

that 

Ciy = —CFi V(i,7) EVx’. (a2) 

This assumption may seem restrictive but it is purely a technical con- 

vention to make some of the following definitions simpler (in particular, the 

definition of costs in the residual network in Subsection 3.1.2). When it comes 

to implementing algorithms for various flow problems involving costs, this as- 

sumption can easily be avoided (Exercise 3.2). Finally we assume that if there 

is no arc between i and j (in any direction) then c;; = 0. 

In some cases we also have a function b: V + R called a balance vector 

which associates a real number with each vertex of D. We will always assume 

that 

oy hep d: (3.3) 
vEV 

We use the shorthand notation NV = (V,A,l,u,b,c) to denote a network 
with corresponding digraph D = (V, A) and parameters |, u, b,c. If there are 

no costs specified, or there is no prescribed balance vector, then we omit the 

relevant letters from the notation. Note that whenever we consider a network 

N = (V,A,l, u, b,c) we also have a digraph, namely the digraph D = (V, A) 
that we obtain from N by omitting all the functions 1, u, b,c. 

For a given pair of not necessarily disjoint subsets U,W of the vertex set 

of a network NV = (V,A,l,u) and a function f on V x V we use the notation 

f(U, W) as follows (here f;; denotes the value of f on the pair (i, 7)): 

FORE SS Pe (3.4) 
tEU, JEW 

We will always make the realistic assumption that n = O(m) which holds 
for all interesting networks. In fact, almost always, the networks on which we 

work will be connected as digraphs. 

3.1.1 Flows and Their Balance Vectors 

A flow. in a network N is a function x : A 4 Ro on the arc set of NV’. We 
denote the value of x on the arc ij by x;;. For convenience, we wili sometimes 
think of « as a function of V x V and require that xi; = 0 if ij ¢ A (see e.g. 
the definition of residual capacity in (3.7)). An integer flow in WN is a flow 
x such that x;; € Zp for every arc ij. For a given flow z in N the balance 
vector of z is the following function b, on the vertices: 
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be(v) = >) tw - D> tu We. (3.5) 
vweEA UuveEeA 

That is, b(v) is the difference between the flow on arcs with tail v and the 
flow on arcs with head v. We classify vertices according to their balance values 
(with respect to x). A vertex v is a source if b,(v) > 0, a sink if ba (v) < 0 
and otherwise v is balanced (b,(v) = 0). When there is no confusion possible 
(in particular when there is only one flow in question) we may drop the index 
x on b and say that b is the balance vector of z. 

A flow x in N = (V,A,l,u,6,c) is feasible if l;; < Uj, sts tor all 
aj € A and b;(v) = b(v) for all v € V. If no balance vector is specified for the 
network, then a feasible flow z is only required to satisfy Ij; < 14; < uz; for 
all (1,7) € A. 

The cost of a flow x in N = (V, A,l,u,c) is given by 

cr = Ss Cij7Lij- (3.6) 

ijEA 

See Figure 3.1 for an example of a feasible flow. 

(1, 3, 4, 3) 

(Pat s6ix2) (0, 3, 3, 2) 

(0, 0, 3, 1) 

(5, 6, 8, 4) 
(3, 3, 3, 1) 

(Ole lae: Ful) (yey to) 

(2, 2, 4,1) c e 

Figure 3.1 A network NV = (V,A,l,u,c) with a feasible flow zx specified. The 
specification on each arc 2) is (lij, 2ij, Uiz, Cij). The cost of the flow is 109. 

We point out that whenever the lower bounds are all zero (an assumption 

that is not a restriction of the modeling power of flows as we shall see in 

Section 3.2) we will always assume that if 777 is a 2-cycle of a network NV 
and zx is a flow in N, then at least one of 2;;,2;; is equal to zero. We call 
such a flow a netto flow in NV. The practical motivation for this restriction 

is that very often one uses flows to model items (water, electricity, telephone 

messages, etc.) that move from one place to another in time. Here it makes 

perfect sense to say that sending 3 units from 7 to j and 2 units from j to 

i is the same as sending 1 unit from 7 to j and nothing from j to i (we say 
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that 2 of the units cancel out). In some of the definitions below it is easier 

to work with netto flows. 

The notion of flows generalize that of paths in directed graphs. Indeed, if 

P is an (s,t)-path in a digraph D = (V, A), then we can describe a feasible 

flow x in the network NV = (V,A,/ = 0,u = 1) by taking z;; = 1 if 77 is an 

arc of P and 2;; = 0 otherwise. This flow has balance vector 

iee—es 

bp (iv) =< leit Ut 
0 otherwise. 

We can also see that if there are weights on the arcs of D and we let N inherit 

these weights as costs on the arcs, then the cost of the flow defined above 

is equal to the length (weight) of P. Hence the shortest path problem is a 

special case of the minimum cost flow problem (which is studied in Section 

3.10) with respect to the balance vector described above (here we implicitly 

used Theorem 3.3.1 for the other direction of going from a flow to an (s, t)- 

path in D.) In a very similar way we can also see that flows generalize cycles 

in digraphs. It is an important and very useful fact about flows that in some 

sense one can also go the other way. As we shall see in Theorem 3.3.1, every 

flow in a network with n vertices and m arcs can be decomposed into no 

more than n + m flows along simple paths and cycles. Furthermore, paths 

and cycles play a fundamental role in several algorithms for finding optimal 

flows where the optimality is with respect to measures we define later. 

3.1.2 The Residual Network 

The concept of a residual network was implicitly introduced by Ford and 
Fulkerson [246]. 

For a given flow z in a network N = (V,A,l,u,c), define the residual 
capacity r;; from 7 to j as follows: 

Tig = (uig — Bag) + (tye — Lis). (3.7) 

The residual network N(x) with respect to x is defined as V(r) = 
(V, A(z),l = 0,r,c), where A(x) = {ij : rij > 0}. That is, the cost function 
is the same? as for N and all lower bounds are zero. See Figure 3.2 for an 
illustration. 

The arcs of the residual network have a natural interpretation. If i ZEA 
and zi; = 5 <7 = u;;, then we may increase x by up to two units on the arc 
aj at the cost of cj; per unit. Furthermore, if we also have 1,; = 2 then we can 
also choose to decrease x by up to 3 units along the arc ij. The cost of this 
decrease is exactly cj; = —c;; per unit. Note that a decrease of flow along the 

2 Note that this differs from definitions in other texts such as [7], but we can do 
this since we made the assumption (3.2) 
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(2, —3) 

Figure 3.2 The residual network N(x) corresponding to the flow in Figure 3.1. 
The data on each arc is (r,c). 

arc 17 may also be thought of as sending flow in the opposite direction along 

the residual arc jz and then canceling out. 

3.2 Reductions Among Different Flow Models 

The purpose of this section is to show that one can restrict the general defi- 

nition of a flow network considerably and still retain its modeling generality. 

We also show that one can model networks with lower bounds, capacities and 

costs on the vertices by networks, where all these numbers are on arcs only. 

3.2.1 Eliminating Lower Bounds 

We start with the following easy observation which shows that within the 

general model the assumption that all lower bounds are zero does not limit 

the model. 

Lemma 3.2.1 Let N = (V,A,l,u,6,c) be a network. 

(a) Suppose that the arc ij € A has 1;; > 0. Let N' be obtained from N 

by making the following changes: b(j) := b(j) + lij, b(t) := b(t) — li, 

Uij = Uiz — Liz, lij == 0. Then every feasible flow x in N corresponds to 

a feasible flow z' in N' and vice versa. Furthermore, the costs of these 

two flows are related by cl x = c? 2! + lijci;. 

(b) There exists a network Nj=o in which all lower bounds are zero such 
that every feasible flow x in N corresponds to a feasible flow x' in Ni=o 
and vice versa. Furthermore, the costs of these two flows are related by 

cx = cg! SF jes lj Caz- 
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Proof: Part (a) is left to the reader as Exercise 3.3. Since we may eliminate 

lower bounds one arc at the time, (b) follows from (a) by induction on the 

number of arcs. O 

It is also useful to observe that we can construct NV’ from N in time 

O(n +m) and reconstruct the flow x from z’ in time O(m). Hence the time 

for eliminating lower bounds and reconstructing a flow in the original network 

is negligible since all algorithms on networks need O(n+m) time just to input 

the network. 

3.2.2 Flows with one Source and one Sink 

Let s,t be distinct vertices of a network N = (V, A,! = 0,u,c). An (s, t)-flow 

is a flow z satisfying the following for some k € Ro: 

(k ifv=s 
by) = ek iv Se 

QO otherwise. 

The value of an (s,t)-flow x is denoted by |z| and is defined by 

|| = bz(s). (3.8) 

The next lemma combined with Lemma 3.2.1 shows that using only (s, t)- 
flows, one can model everything which can be modeled via flows in the general 

network model. 

Lemma 3.2.2 Let N = (V,A,l = 0,u,b,c) be a network. Le? M = 

Deseo b(v) and let Ny, be the network defined as follows: Ng = (V U 

{s,t}, A’,l'=0,u’',b',c’), where 

(G) FAN =A Oi sri b(r) > OU rts 6@ 0), 
(b) ui; = us for all ij € A, Usp = B(r) for all r such that b(r) > 0 and 

Ugt = —b(q) for all q such that b(q) < 0, 

(c) ci; = ci for allij € A and c! =0 for all arcs leaving s or entering t, 
(d) b'(v) =0 for allu € V, b'(s) = M, b(t) = —M. 

Then every feasible flow x in N corresponds to a feasible flow z' in N,, and 

vice versa. Furthermore, the costs of x and x' are related by c!x = c'" z'. See 
Figure 3.3. 

Proof: Exercise 3.4. oO 

It follows from Lemma 3.2.2 that. given any network N in which all lower 
bounds are zero, we can check the existence of a feasible flow in N by con- 
structing the corresponding network WV, and check whether this network has 
3 Recall that we also have M = — Daan cor b(v) by (3.3). 
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an (s,t)-flow x such that |z| = M where M is defined in Lemma 3.2.2. This 
latter task is precisely the problem of finding the maximum value of a feasible 
(s, t)-flow in N¢, a problem which we study extensively in Sections 3.5-3.7. 
See also Theorem 3.8.3. 

(1, 0) (4, 0) 

Figure 3.3 Part (a) shows a network N with a feasible flow with respect to the 
balance vector specified at each vertex. The numbers on each arc are (capacity, 
flow). Costs are omitted for clarity. Part (b) shows the network N+ as defined in 
Lemma 3.2.2 and a feasible flow 2’ in Nz. 

3.2.3 Circulations 

A circulation is a flow xz with b,(v) = 0 for all v € V. Combining our next 
result with Lemma 3.2.1 and Lemma 3.2.2 shows that one can also model 

everything that can be modeled in the general (flow) network model by the 

seemingly much more restricted circulations. Note that we cannot completely 

exclude lower bounds in this reduction (see Exercise 3.5). 

Lemma 3.2.3 Let N = (V,A,l = 0,u,6,c) be a network with distinct ver- 
tices s,t and let the balance vector of N satisfy b(v) =0 for allu € V —{s,t}, 
b(s) = M, b(t) = —M, for some M € Ro. Let N* = (V,AU {ts}, 1”, u",c) 
be the network obtained from N by adding a new arc ts with lower bound 

lis = M, capacity uzs = M and cost c/, = 0, keeping the lower bound, ca- 

pacity and cost of each original arc and posing no restriction on the balance 

vector of N*. Then every feasible (s,t)-flow x in N corresponds to a feasible 

circulation x" in N* and vice versa. Furthermore, the costs of x and x' are 

related by cha =cl'T x". 

Proof: Exercise 3.5. oO 

The concept of a circulation is a very useful tool for applications to ques- 

tions concerning sub(di)graphs of (di)graphs as we show in Section 3.11. 
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3.2.4 Networks with Bounds and Costs on the Vertices 

In some applications of flows one is not interested in imposing lower bounds 

and capacities on arcs, but rather on vertices. One such example is when one 

is looking for a cycle subdigraph that contains all vertices of a certain subset 

X and possibly other vertices (see Section 3.11). Another example is when one 

is looking for a path factor which covers all vertices of a digraph (see Section 

5.3). We show below how to model networks with lower bounds, capacities and 

costs on vertices (and possibly also on arcs) by standard networks where all 

functions, other than the balance vectors, are on the arcs. First we introduce 

a useful transformation of any digraph to a bipartite digraph which we will 

use not only for the problem above but also several other places in the book. 

: : 

a, @<———® ,, 

WA Sy by 

a t ) c 

ara 
cs @ ce 

d ds @ dt 

Figure 3.4 The vertex splitting procedure. 

Given a digraph D = (V, A), construct a new digraph Dsr as follows. 
For each vertex v € V, Dsr contains two new vertices Us,Uz~ and the arc 
UpUs. For each arc zy € A(D), A(Dsr) contains the arc x,y;. See Figure 3.4. 
We say that the digraph Ds- is obtained from D by the vertex splitting 
procedure. 

Now suppose that MN = (V, A,l,u,b,c,/*, u*, c*) is a network with a pre- 
scribed balance vector b, lower bounds, capacities and costs l,u,c on the arcs 
(the case when there are no such specifications can easily be modeled by 
taking | = 0,u = oo, c = 0) and lower bounds, capacities and costs [*, u*, c* 
on the vertices. To be precise we have to define the meaning of these new 
parameters. There is some freedom in such a definition, but for the applica- 
tions we will need, it suffices to use the definition that I*(v) is the minimum 
and u*(v) the maximum amount of flow that may pass through v and the 
cost of sending one such unit through v is c*(v). By ‘passing through’ we 
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mean the obvious thing when b(v) = 0 and if b(v) > 0 (b(v) < 0) we think of 
I*(v),u*(v),c*(v) as bounds and costs per unit on the total amount of flow 
out of (in to) v. 

Let Dsr be the digraph obtained from D = (V,A) by performing the 
vertex splitting procedure. Define a new network based on the digraph Dgr 
by adding lower bounds, capacities and costs as follows: 

(a) For every arc i,j; (corresponding to an arc ij of A) we let A'(isj,) = h(ij), 
where h € {l, u, c}. 

(b) For every arc ii, (corresponding to a vertex i of V) we let h’ (isis) = h*(i), 
where h* € {l*,u*,c*}. 

Finally we define the function b’ as follows: 

b(2) =) then b'(7,) = b's) = 0: 
If b(2) > O then b'(i¢) = b(z) and b’(i,) = 0; 
If b(2) < O then b'(2:) = 0 and 0'(i,) = b(#). 

(1, 3, 2) 

(0, 3, 4) 

(0, 3, 0) 

(1, 4, 6) 

Figure 3.5 The construction of N’ from NV. The specification is the balance vector 
and (1, u,c). For clarity only one arc of NV has a description of bounds and cost. 

See Figure 3.5 for an example of the construction. It is not difficult to 
show the following result. 

Lemma 3.2.4 Let N and N' be as described above. Then every feasible flow 

in N corresponds to a feasible flow in N' = (V(Dsr), A(Dsr),l’,u’, b',c’) 
and vice versa. Furthermore, the costs of these flows are the same. 

Proof: Exercise 3.6. Oo 
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3.3 Flow Decompositions 

In this section we consider a network NV = (V,A,/ = 0,u) and denote by 

D = (V,A) the underlying digraph of NV’. By a path or cycle in N we mean 

a directed path or cycle in D. We will show that every flow in a network 

can be decomposed into a small number of very simple flows in the same 

network. Besides being a nice elementary mathematical result, this also has 

very important algorithmic consequences as will be clear from the succeeding 

sections. 

A path flow f(P) along a path P in WN is a flow with the property that 

there is some number k € Ro such that f(P);; = k if ij is an arc of P and 

otherwise f(P);; = 0. Analogously, we can define a cycle flow f (W) for any 

cycle W in D. The arc sum of two flows x, 2’, denoted x + 2’, is simply the 

flow obtained by adding the two flows arc-wise. 

Theorem 3.3.1 Every flow x in N can be represented as the arc sum of 

some path and cycle flows f(P:), f(P2),..-.,f(Po), f(Ci),---,f(Cg) with the 

following two properties: 

(a) Every directed path P;, 1 <i < a with positive flow connects a source 

vertex to a sink verte. 

(b) a+B<n+m and B<m. 

Proof: Let z be a non-zero flow in NV. Suppose first that b,(i9) > O for 

some ig € V. Since bz (io) > 0 it follows from (3.5) that there is some arc 
igi; leaving ig with 2;,;, > 0. If b(t1) < 0 then we have found a path from 

ig to the sink i,. Otherwise b(i,) > 0 and it follows from (3.5) and the fact 
that x4:, > 0 that 2; has some arc 2172 leaving it with 2;,;, > 0. Continuing 

this way, we either find a path P from ip to a sink vertex 7, such that x 

is positive on all arcs on P, or eventually some vertex that was examined 

previously must be reached for the second time. In the later case we have 

detected a cycle C = ipip41...ip—1tpt, such that x is positive on all arcs of 

C’. Now we change the flow z as follows: 

(i) If we detected a path P from ip to a sink 7, then let 6 = min{aj,;,,, : 
igig41 € A(P)} and define uw by uw = min{bz (io), —bz (tx), 6}. Let f(P) be 
the path flow of value yz along P. Decrease x by p units along P. 

(ii) Otherwise we have detected a cycle C. Let w = min{x;,i,,, : igigai € 
A(C)} and let f(C) be a cycle flow of value yz along C. Decrease x by 
units along C. 

If no arc carries positive flow after the changes made above we are done. 

Otherwise we repeat the process above. If every vertex v becomes balanced 
with respect to the current flow z (i.e. bz(v) = 0) before z is identically zero, 
then just start from a vertex ig which has an arc igi; with positive flow. From 
now on only cycle flows will be extracted in the subroutine described above. 
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Since each of these iterations either results in a vertex becoming balanced 
with respect to the current flow, or in an arc ij loosing all its flow, i.e., Lij 
becomes zero, the total number of iterations, extracting either a path flow 
or a cycle flow from the current flow, is at most n +m. It follows from the 
description above that (a) and the first part of (b) holds. The second part of 
(b) follows from the fact that each time we extract a cycle flow at least one 
arc loses all its flow. Oo 

The proof above immediately implies an algorithm for finding such a 

decomposition in time O(m7?) if one uses DFS to find the next path or cycle 

flow to extract. However if we use an appropriate data structure and a little 

care, this complexity can be improved. 

Lemma 3.3.2 Given an arbitrary flow x in N one can find a decomposition 

of x into at most n +m path and cycle flows, at most m of which are cycle 

flows, in time O(nm). 

Proof: Exercise 3.7. O 

The following useful fact is an easy consequence of Theorem 3.3.1. 

Corollary 3.3.3 Let N be a network. Every circulation in N can be decom- 

posed into no more than m cycle flows. oO 

3.4 Working with the Residual Network 

Suppose NV is a network and z, 2’ are feasible flows in NV’. What can we say 

about the relation between x and 2’? Clearly one can be obtained from the 

other by changing the flow along each arc appropriately, but we can reveal 

much more interesting relations as we shall see below. In fact it turns out 

that if z is feasible in NV and z’ is any other feasible flow in NV, then x’ can be 

expressed in terms of x and some feasible flow in the residual network N(z). 

The other direction holds as well: if x is feasible in N and y is feasible in 

N (a) then we can ‘add’ y to x and obtain a new feasible flow in NV. These 
two properties imply that in order to study flows in a network N it suffices 

to find one feasible flow x and then work in the residual network N(x). We 
assume below that all lower bounds are zero. Recall that due to the results 

in Section 3.2 this restriction does not limit our modeling power. 

The first lemma shows that if z is a feasible flow in NV = (V, A,/ = 0,u, b,c) 

and @ is a feasible flow in V(x) then one can ‘add’ & to x and obtain a new 

feasible flow in VV. Here ‘adding’ is arc-wise and should be interpreted as 

defined below. Recall that we may assume we are dealing with netto flows. 

Definition 3.4.1 Let x be a feasible flow in N = (V,A,l = 0,u,c) and let 

z be a feasible flow in N(x). Define the flow x* =x @Z as follows: Start by 

letting xj; := xij for every 17 € A and then for every arc ij in N(x) such 

that £;; > 0 we modify x* as follows (see Figure 3.6). 
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(a) If Lii= 0 then ti = Lig + aie i ’ 

(b) If Gay = 0 and Li < Lij then Ti; = Lij — Lji and £i4= 0. 

(c) lf L5i z= Liz then vi, = Lji — Lij- 

Note that by (3.7), if 0 < 2;; < %; then ij € A. Using that @ is a netto 

flow it is easy to check that the resulting flow <* is also a netto flow. 

iL x £ 

a Geig j a aye (0, A a apes etna a) 
(a) Pal tae e—__——-e OSS 

b) a fea > (0) j G Lii Li; j Q Lig —Zji J 
As —— s o—_—_____-e 

( Bap =U 

© O fre SS J ‘ Lii > Bij J i Lji — Lij j 

Figure 3.6 The three different cases in Definition 3.4.1. The three columns shows 
the flows %, x and x", respectively. An arc between 7 and 7 is shown unless the 
corresponding flow on that arc is zero. 

Theorem 3.4.2 Let z be a feasible flow in N = (V,A,l = 0,u,c) with bal- 
ance vector bz and & is a feasible flow in N(x) = (V, A(z),7r,c) with balance 

vector bz. Then z* = 2 QZ is a feasible flow in N with balance vector bz + bz 
and the cost of x* is given by cla* = cla +c. 

Proof: Let us first show that 0 < Ti; < uiz for every 17 € A. We started 

the construction of x* by letting x}; := 2,; for every arc. Hence it suffices to 
consider pairs (i,j) for which %;; > 0. We consider the three possible cases 

(a)-(c) in Definition 3.4.1. In Case (a) we have z*; = 0 and 

Ore ai, = Fiz + iy S ti + Tig 

= ij + (way — Vij + ji) 
= Uij, 

since we have zj; = 0 in Case (a). In Case (b) we will have z;; = 0 and 
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Taek: 
OS af Sfp — 2H ST — BH 

= (Wig — Big + By) — By 
= Uij; 

since we have 2;; = 0 in Case (b). In Case (c) it is easy to see that we get 
xj, = 0 and that 0 < 25; < uji. 

Consider the balance vector of the resulting flow. We wish to prove that 

x* has balance vector b, + bz, that is, for every i € V, 

ber (t)= > af, — >> at, = be (i) + dg (i): (3.9) 
ijeA jicA 

This can be proved directly from the definitions of the balance expressions 

for x and z. However this approach is rather tedious and there is a simple 

inductive proof using Theorem 3.3.1. If % is just a cycle flow in N(z), then it 

is easy to see (Exercise 3.12) that the balance vector of x* equals that of a. 
Similarly, if Z is just a path flow of value 6 along a (p, q)-path, for some distinct 

vertices p,q € V, then b,+(v) = bz (vu) for vertices v which are either internal 

vertices on P or not on P and b,«(p) = bz(p) + 6, bz+(q) = bz (gq) — 6. In the 
general case, when Z is neither a path flow nor a cycle flow in N(x) we consider 

a decomposition of ¢ into path and cycle flows in NV (z) according to Theorem 
3.3.1. Using the observation above and Theorem 3.3.1 (implying that when 

adding all balance vectors of the paths and cycles in a decomposition, we 

obtain the balance vector of £) it is easy to prove by induction on the number 

of paths and cycles in the decomposition that (3.9) holds. 

We leave it to the reader to prove using the same approach as above that 

the cost of z* is given by c?a* = cx +c’ & (see Exercise 3.12). O 

The next theorem shows that the difference between any two feasible flows 

in a network can be expressed as a feasible flow in the residual network with 

respect to any of those flows. 

Theorem 3.4.3 Let N = (V,A,l = 0,u,c) be a network and let x and z' 
be feasible netto flows in N with balance vectors b, and bz. There exists a 

feasible flow = in N(x) with balance vector bg = bz: — bz such that cz’ = x@z. 

Furthermore, the costs of these flows satisfy c'= = c! a' —c' x. 

Proof: Let x,’ be feasible netto flows in NV = (V,A,l = 0,u,c) and define 

a flow in N(z) as follows. For every arc pg € N (2) we let Zp, := 0 and then 
for every arc ij € A such that either z;; > 0 or x}; > 0 holds, we modify z 

as follows: 

(a) If rij > Zi; then X ji i= Lig — vi; F L's5 

(b) If Li > Xi; then Lig c= Zi; — Lig + Lj. 
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Using that x and 2’ are feasible netto flows in N, one can verify that 

is a feasible netto flow in V(x) (Exercise 3.13). It also follows easily from 

Definition 3.4.1 that 2’ = x @ Z. Now the last two claims regarding balance 

vector and cost follow from Theorem 3.4.2. Oo 

The following immediate corollary of Theorem 3.4.3 and Corollary Diao 

will be useful when we study minimum cost flows in Section 3.10. 

Corollary 3.4.4 If z and a' are feasible flows in the network N = (V,A,l= 

0,u,c) such that by = bz, then there exist a collection of at most m cycles 

W,, We,...,We in N (a) and cycle flows f(Wi),...,f(Wk) in N(x) such that 

the following holds: 

(a) z' = 2@(f(Wi)+...+f(We)) = (.-.((e@f(WMi))@f(W2))e... )OF(We); 
(b) cha! =clxt+ Sais: c! f (W;). oO 

3.5 The Maximum Flow Problem 

In this and the next section we study (s,t)-flows in networks with all lower 
bounds equal to zero. That is we consider networks of the type V = (V, A,l= 

0,u) where s,t € V are special vertices and we are. only interested in flows 

x which satisfy b,(s) = —b,(t) and b,(v) = 0 for all other vertices. We call 
s the source and ¢ the sink of NV’. By Theorem 3.3.1, every (s,t)-flow x 
can be decomposed into a number of path flows along (s,t)-paths and some 

cycle flows whose values do not affect the value of the flow x. Based on this 

observation we also say that z is a flow from s to ft. 

Recall from (3.8) that the value |x| of an (s, t)-flow is |x| = b,(s). We are 
interested in determining the maximum value k for which N has a feasible 

(s, t)-flow of value* k. Such a flow is called a maximum flow in NV. The 
problem of finding a maximum flow from s to t in a network with a specified 

source s and sink t is known as the maximum flow problem [246]. 
An (s, t)-cut is a set of arcs of the form (5, S) where S, 5 form a partition 

of V such that s € S,t € S. The capacity of an (s, t)-cut (5, S) is the number 

u(S, S), that is, the sum of the capacities of arcs with tail in S and head in 

S (recall (3.4)). Cuts of this kind are interesting in relation to the maximum 
flow problem as we shall see below. 

Lemma 3.5.1 For every (s,t)-cut (S,S) and every (s,t)-flow x, we have 

|z| = 2(5,.5) —2(S,S). (3.10) 

Proof: Starting from the definition of || and the fact that b,(v) = 0 for all 
v € S—s we obtain 

“ Observe that there always exists a feasible flow in NV since we have assumed 
l=0. 
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|| = bs (s)+ D> be(i) 
iE€S—s 

pow cpa Say 
i€S ijEA jicA 

= 2(S,V) —2(V,S) 

= 2(5,S) +2(S,S) — 2(5,S) — 2(S, S) 

=n(S,5)= 2595): 

where we also used (3.4). a) 

Since a feasible flow « satisfies x < u, every feasible (s, t)-flow must satisfy 

a(S, S) < u(S,S) for every (s,t)-cut (S,S). (3.11) 

A minimum (s, t)-cut is an (s,t)-cut (S,S) with 

u(S,S) = min{u(S’, S’) : (S’,S’) is an (s, t)-cut in N}. 

It follows from (3.11) and Lemma 3.5.1 that the capacity of any (s, t)- 
cut provides an upper bound for the value |z| for any feasible flow x in the 

network. We also obtain the following useful consequence. 

Lemma 3.5.2 If a flow x has value |z| = u(S,S) for some (s,t)-cut (S,S), 

then x(S,S) =0, x is a mazimum (s,t)-flow and (S,S) is a minimum (s ,t)- 
cut. O 

Suppose z is an (s,t)-flow in N and P is an (s,t)-path in N(z) such that 
rij > € > 0 for each arc 717 on P. Let x" be the (s,t)-path flow of value ¢« 

in N(x) which is obtained by sending € units of flow along the path P. By 
Theorem 3.4.2, we can obtain a new flow 2’ = x @ 2" of value |z| + € in N, 
implying that z is not a maximum flow in NV. We call a path P in N(z) as 
above an augmenting path with respect to z. The capacity 6(P) of an 
augmenting path P is given by 

OUD) a= Mind feat gels tansarciol Wa}: (sal2) 

We call an arc 17 of P for which 2;; < uj; a forward arc of P and an 

arc 17 of P for which z;; > 0 a backward arc of P. 

When we ‘add’ the path flow x” to x according to Definition 3.4.1 we 

say that we augment along P by « units. It follows from the definition of 

6(P) and Theorem 3.4.2 that 6(P) is the maximum value by which we can 
augment zx along P and still have a feasible flow in NV after the augmentation. 

Now we are ready to prove the following fundamental result, due to Ford 

and Fulkerson, relating minimum (s,t)-cuts and maximum (s, t)-flows. 
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Theorem 3.5.3 (Max-flow Min-cut theorem) [246] Let N = (V, A, = 

0,u) be a network with source s and sink t. For every feasible (s, t)-flow x in 

N the following are equivalent: 

(a) The flow x is a maximum (s,t)-flow. 
(b) There is no (s,t)-path in N(x). 
(c) There exists an (s,t)-cut (S,S) such that |x| = u(S, i). 

Proof: We show that (a)=>(b)=(c)=>(a). 

Figure 3.7 Illustration of part (b)=(c) in the proof of Theorem 3.5.3. The set S 
consists of those vertices that are reachable from s in N(x). The left part shows 

the situation in the residual network where we have SS and the right part shows 
the corresponding situation in NV. 

(a)=>(b): Suppose x is a maximum flow in NV and that A(z) contains an 
(s,t)-path P. Let 6(P) > 0 be the capacity of P and let 2’ be the (s, t)- 
path flow in (x) which sends 6(P) units of flow along P. By Theorem 

3.4.2 « @ 2" is a feasible flow in N of value |x|+6(P) > |z|, contradicting 
the maximality of x. Hence (a)=(b). 

(b)=(c): Suppose that M(x) contains no (s, t)-path. Let 

S ={y €V: N(x) contains an (s, y)-path}. 

By the definition of S, there is no arc from S to S in N(x). Thus the 

definition of (x) implies that for every arc ij € (S,S) we have a;; = Uij 
and for every arcij € (S,S) we have x;; = 0 (see Figure 3. 7). This implies 
that we have |r| = «($,S) — 2(S,S) = u(S,S) —0 = u(S,S). Hence we 
have proved that (b)=(c). 

(c)=(a): This follows directly from Lemma 3.5.2. Oo 

3.5.1 The Ford-Fulkerson Algorithm 

The proof of Theorem 3.5.3 suggests the following simple method for finding 
a maximum (s,t)-flow in a network where all lower bounds are zero. Start 
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with x = 0. This is a feasible flow since 0 = 1;; < uj; for all arcs ij € A. Try 
to find an (s,t)-path P in (a). If there is such a path P, then augment x by 
6(P) units along P. Continue this way until there is no (s,t)-path in N (a) 
where x is the current flow. This method, due to Ford and Fulkerson [246], 
is called the Ford-Fulkerson (FF) algorithm. 

Strictly speaking this is not really an algorithm if we do not specify how 
we wish to search for an augmenting (s, t)-path. It can be shown (see Exercise 
3.17) that, when the capacities are allowed to take non-rational values and 
there is no restriction on the choice of augmenting paths (other than that 
one has to augment as much as possible along the current path), then the 
process above may continue indefinitely and without even converging to the 
right value of a maximum flow (see Exercise 3.17). For real-life applications 
this problem cannot occur since all numbers represented in computers are 

rational approximations of real numbers and in this case the algorithm will 
always terminate (Exercise 3.18). 

Theorem 3.5.4 If N = (V,A,l = 0,u) has all capacities integers, then 

the Ford-Fulkerson algorithm finds a maximum (s,t)-flow in time O(m|z*]), 
where x* is a maximum (s,t)-flow. 

Proof: The following generic process called the labelling algorithm will 

find an augmenting path in \(z) in time O(n + m) if one exists®. Start with 

all vertices unlabelled except s and every vertex unscanned. In the general 

step we pick a labelled but unscanned vertex v and scan all its out-neighbours 

while labelling (by backwards pointers showing where a vertex got labelled 

from) those vertices among the out-neighbours of v that are un-labelled. 

If t becomes labelled this way, the process stops and an augmenting path, 

determined by the backwards pointers, is returned. If all vertices are scanned 

and t was not labelled the process stops and the set of labelled vertices S 

and its complement S correspond to a minimum (s,t)-cut (recall the proof 

of Theorem 3.5.3). 

Each time we augment along an augmenting path, the value of the current 

flow increases by at least one, since the capacities in the residual network 

are all integers (this is clear in the first iteration and easy to establish by 
induction for the rest of the iterations of the algorithm). Hence there can be 

no more than |z*| iterations of the above search for a path and the complexity 
follows. Oo 

To see that the seemingly very pessimistic estimate in Theorem 3.5.4 

for the time spent by the algorithm may in fact be realized, consider the 

network in Figure 3.8 and the sequence of augmenting paths specified there. 

The reader familiar with the literature on flows may see that our example is 

different from the classical example in books on flows. The reason for this is 

5 We could also use path finding algorithms such as BFS and DFS, but the original 
algorithm by Ford and Fulkerson uses only the generic labelling approach. See 
also Section 3.6. 
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Figure 3.8 A possibly bad network for the Ford-Fulkerson algorithm. The number 

M denotes a large integer. If we choose augmenting paths of the form sabeft with 

augmenting capacity 1 in odd numbered iterations and augmenting paths of the 

form sdebct with augmenting capacity 1 in even numbered iterations, then a max- 
imum flow x of value 2M will be found only after 2M augmentations. Clearly, if 
instead we augment first along sabct and then along sdeft, each time by M units, 
we can find a maximum flow after just two augmentations. 

that if we interpret the Ford-Fulkerson algorithm precisely as it is described 

in [246, page 18] (see also the proof of Theorem 3.5.4), then the algorithm 
will not behave badly on the usual example, whereas it still will do so on the 

example in Figure 3.8. 

The value of the maximum flow in the example in Figure 3.8 is 2M. This 

shows that the complexity of the Ford-Fulkerson algorithm is not bounded by 

a polynomial in the size of the input (recall from Chapter 1 that we assume 

that numbers are represented in binary notation). It is worth noting though 

that Theorem 3.5.4 implies that if all capacities are small integers then we get 

a very fast algorithm which, due to its simplicity, is easy to implement. The 

following is an easy but very important consequence of the proof of Theorem 
O,080: 

Theorem 3.5.5 (Integrality theorem for maximum (s, t)-flows) /246] 
Let N = (V,A,l =0,u) be a network with source s and sink t. If all capacities 

are integers, then there exists an integer maximum (s,t)-flow in N. 

Proof: This follows from our description of the Ford-Fulkerson algorithm. We 

start with x = 0 and every time we augment the flow we do this by adding an 
integer valued path flow of value 6(P) € Z,. Hence the new (s, t)-flow is also 
an integer flow. It follows from the fact that all capacities are integers that in 
a finite number of steps we will reach a maximum flow (by Lemma 3.5.1 |z| 
cannot exceed the capacity of any cut). Now the claim follows by induction 
on the number of augmentations needed before we have a maximum flow. O 

An (s, t)-flow in a network NV is maximal if every (s,t)-path in NV uses at 
least. one arc pg such that tpg = Upg (such an arc is called saturated). That 
is, either x is maximum or after augmenting along an augmenting path P the 
resulting flow x! has xj, < aj; for some arc®. This is equivalent to saying that 

® Recall that we always work with netto flows. 
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every augmenting path with respect to x contains at least one backward arc 

when P is considered as an oriented path in NV. It is important to distinguish 

between a maximal flow and a maximum flow. An (s,t)-flow xz is maximal if 

it is either maximum, or in order to augment it to a flow with a higher value, 

we must reduce the flow in some arc. See also Figure 3.9. 

(2, 1) 

(1,1) 

Cc Cad 

Figure 3.9 A network N with flow x which is maximal but maximum as the path 
P = sabcdt is an (s,t)-path in V(r). Note that the arc bc is a backward arc of P. 
The data on each arc are (capacity, flow). 

3.5.2 Maximum Flows and Linear Programming 

We digress for a short while to give some remarks on the relation between 

maximum flows and linear programming. First observe that the maximum 

flow problem (with lower bounds all equal to zero) is equivalent to the fol- 

lowing linear programming problem: 

maximize k 

subject to 

ky sifu = 6 

bev) hail vit 

0 otherwise. 

Oia ity for every ij € A. 

The matrix T of the constraints of this linear program is given by T = 

& , where S is the vertex-arc incidence matrix’ of the underlying directed 

graph of the network (recall the definition of b;) and J is the m x m identity 

matrix. The matrix S has the property that every column contains exactly 

’ The vertex-arc incidence matrix S = [s;;] of a digraph D = (V, A) has rows 
labelled by the vertices of V and columns labelled by the arcs of A and the entry 
$y;,a; equals 1 if the arc a; has tail vi, —1 if a; has head v; and 0, otherwise. 
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+1 and exactly one —1. This implies that S is totally unimodular, i.e., each 

square submatrix of S has determinant 0, 1, or —1 (see e.g., the book [166] 

by Cook, Cunningham, Pulleyblank and Schrijver). Hence it follows from 

Exercise 3.19 that the matrix T is also totally unimodular. Therefore the 

integrality theorem for maximum flows (Theorem 3.5.5) follows immediately 

from the Hoffmann-Kruskal characterization of total unimodularity (see [166, 
Theorem 6.25]). 

Since the maximum flow problem is just a linear programming problem, 

it follows that one can find a maximum flow using any method for solving 

general linear programming problems. In particular, by the total unimodular- 

ity of T, the Simplex algorithm will always return an integer maximum flow 

provided that all capacities are integers. However, due to the special nature 

of the problem, more efficient algorithms can be found when we exploit the 

structure of flow problems. Finally, we remark that the Max-flow Min-cut 

theorem can be derived from the duality theorem for linear programming 

(see e.g. the book [600)). 

3.6 Polynomial Algorithms for Finding a Maximum 
(s, t)-Flow 

The Ford-Fulkerson algorithm can be modified in various ways to ensure that 

it becomes a polynomial algorithm. We describe two such modifications (see 
also Exercises 3.25 and 3.26). After doing so we describe a different approach 
in which we do not augment the flow by just one path at the time. For the 
first two subsections we need the following definition. 

Definition 3.6.1 A layered network is a network N = (V,A,l = 0, u) 
with the following properties: 

(a) There is a partition V =Vo UV, UVa U... UYU Viti such that Vo = 
{s},Vi+1 = {t} and 

(b) every arc of A goes from a layer V; to the nezt layer Vi+1 for some 
i=0,1,...,k. 

See Figure 3.10 for an example of a layered network. 

3.6.1 Elow Augmentations Along Shortest Augmenting Paths 

Edmonds and Karp [216] observed that in order to modify the Ford-Fulkerson 
algorithm so as to get a polynomial algorithm, it suffices to choose the aug- 
menting paths as shortest paths with respect to the number of arcs on the 
path. 

Let x be a feasible (s, t)-flow in a network NV. Denote by 5, (s,t) the length 
of a shortest (s,¢)-path in N(x). If no such path exists we let O¢ (Sit) 60, 
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Figure 3.10 A layered network with source s and sink t. The numbers on the arcs 
indicate the capacities. 

Suppose that there is an augmenting path in N’(z) and let P be a shortest 

such path. Let r be the number of arcs in P. Define the network LN (zx) as 

the network one obtains from \/(z) by taking the vertices from the distance 

classes Vo,Vi,...,V;, ie. Vi = {v : distyy(a)(s, uv) =i}, and all arcs belonging 

to (Vi, Viti) (2) for 7 = 0,1,...,r—1 along with their residual capacities r;;. 

Observe that, by the definition of distance classes, CN’(x) contains all the 
shortest augmenting paths with respect to x in N(z). 

The crucial fact that makes augmenting along shortest paths a good ap- 

proach is the following lemma. 

Lemma 3.6.2 /216] Let x be a feasible (s,t)-flow in N and let z' be obtained 
from x by augmenting along a shortest path in N(x). Then 

5z'(8,t) > 52(s,t). (3.13) 

Proof: Suppose this is not the case for some z, x’ where z’ be obtained from z 

by augmenting along a shortest path P in N(x). By the remark above LN (z) 
contains all the shortest augmenting paths (with respect to x) in V(x). Let 

r = 6,(s,t). By our assumption \’(z’) contains an (s,t)-path P’ whose length 
is less than r. Thus P’ must use an arc ij such that 17 ¢ A(NV(z)). However, 
every arc that is in V(2’) but not in CN (z) is of the form ji where ij is an 

arc of P, or is inside a layer of CN (z). It follows that P’ has at least r +1 
arcs, contradicting the assumption. 0 

Note that even if V(x’) contains no (s,t)-path of length 6,(s,t), it may 
still contain a path of length 6,(s,t) +1, since we may use an arc which was 

inside a layer of LN (2). 

Theorem 3.6.3 (Edmonds, Karp) /216] If we always augment along 
shortest augmenting paths, then the Ford-Fulkerson algorithm has complexity 

O(nm?). 

Proof: By Lemma 3.6.2, the length of the current augmenting path increases 

monotonically throughout the execution of the algorithm. It follows from the 
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proof of Lemma 3.6.2 that, if the length of the next augmenting path does 

not go up, then that path is also a path in LN (xr). Note also that at least 

one arc from some layer V; to the next disappears after each augmentation 

(recall that in each augmentation we augment by 6 (P) units along the current 

augmenting path P). Hence the number of iterations in which the length of 

the current augmenting path stays constant is at most m. Since the length 

can increase at most n — 2 times (the length of an (s, t)-path is at least 1 and 

at_ most n — 1) and we can find the next augmenting path in time O(n +m) 

using BFS we obtain the desired complexity. oO 

Zadeh [753] constructed networks with n vertices and m arcs for which the 

Edmonds-Karp algorithm requires 2(nm) augmentations to find a maximum 

flow. Hence the estimate on the worst case complexity is tight. 

3.6.2 Blocking Flows in Layered Networks and Dinic’s Algorithm 

Let £L= (V=VoUV,U.". UY, A,l = 0,u) be a layered network with 

Vo = {s} and V; = {t}. An (s,t)-flow z in CL is blocking if there no (s,t)- 
path of length k in the residual network C(x). Note that a blocking flow is 
also maximal flow (recall the difference between a maximal and a maximum 

flow as explained in the end of Section 3.5). That is, every augmenting path 

with respect to z (if there is any) must use at least one arc pg such that 

DeV;,g € Vitor somey 27: 
We saw above that if we always augment along shortest augmenting paths, 

then the length of a shortest augmenting path is monotonically increasing. 

Hence if we have a method to find a blocking flow in a layered network in 

time O(p(n,m)), then we can use that method to obtain an O(np(n,m)) 
algorithm for finding a maximum (s, t)-flow in any given network. 

The method of Edmonds and Karp above achieves a blocking flow in time 

O(m?). It was observed by Dinic [195] (who also independently and earlier 
discovered the method of using shortest augmenting paths) that a blocking 

flow in a layered network can be obtained in time O(nm), thus resulting in 
an O(n?m) algorithm for maximum flow. 

The idea is to search for a shortest augmenting path in a depth first search 

manner. We modify slightly the standard DFS algorithm (see Section 4.1) as 

shown below. The vector 7 is used to remember the arcs of the augmenting 
path detected if one is found. 

Dinic’s: algorithm (one phase) 

Input: A layered network C= (V=V0UWU... UY, A,l = 0,u). 
Output: A blocking flow z in CL. 

1. Initialization: z;; := 0 for every arc ij in A, let v := s be the current 
vertex and let A’ := A. 
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2. Searching step: If there is no arc with tail v in A’ (from v to the next 
layer among the remaining arcs), then if v = s go to Step 5; otherwise 
go to Step 4; 

If there is an arc vw € A’, then let v := w, let r(w) := v. If v  t repeat 
Step 2. 

3. Augmentation step: Using the 7m labels find the augmenting path P 

detected and augment x along P by 6(P) units. Delete all arcs ij of A’ 
for which 2;; = uj. Erase all labels on vertices (7(i) := nil for alli € V). 
Let v := s and go to Step 2. 

4. Arc deletion step: (The search above has revealed that there is no 

(v,t)-path in the current digraph D' = (V, A’). Furthermore, v # s). 
Delete all arcs with head or tail v from A’, let v := m(v) and go to Step 
2: 

5. Termination: Return the blocking flow z. 

Theorem 3.6.4 Dinic’s algorithm (one phase of) correctly determines a 

blocking flow in a given layered network L in time O(nm). 

Proof: Let £=(V =VoUWU... UVz, A,l = 0,u). Each time the current 

flow is augmented in the algorithm it is changed along an augmenting path 

of length k. We only delete an arc from A’ when it is no longer present in 

the residual network L(x) where z is the current flow. Hence no deleted arc 

could be used in an augmenting path of length k with respect to the current 

flow. Furthermore, when the algorithm terminates there is no (s,t)-path in 

the current digraph D’ = (V, A’). Here A’ consists of those arcs from one 
layer to the next which are still not filled to capacity by the current z. It 

follows that the algorithm terminates with a blocking flow. 

The complexity follows from the fact that we perform at most O(n) steps 
between each deletion of an arc which is either saturated (via the actual 

augmenting path P) or enters a vertex for which we deleted all arcs having 

that vertex as the head or tail (see Step 4). Oo 

3.6.3 The Preflow-Push Algorithm 

The flow algorithms we have seen in the previous sections have the common 

feature that they all increase the flow along one augmenting path at a time. 

Very often, when searching for an augmenting path, one finds a path P con- 

taining an arc rq whose capacity is relatively small compared to the capacity 

of the prefix P[s,r] of that path (see e.g. Figure 3.11). This means that along 

P[s,r] we were able to augment by a large amount of flow, but due to the 

smaller capacity of the arc rq we only augment by that smaller amount and 

start all over again. In Dinic’s algorithm this could be taken into account by 

not starting all over again, but instead backtracking until a new forward arc 
can be found in the layered network. However we are still limited to finding 
one path at a time. Now we present a different approach, due to Goldberg 
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Figure 3.11 A bad example for a standard flow algorithm such as the Edmonds- 
Karp algorithm. The capacities of arcs are either 1, if no number is shown or M, 
where M is a large number. Algorithms such as the Edmonds-Karp algorithm will 
augment M times along the path from s to r each time by just one unit. 

and Tarjan [324, 325], which allows one to work with more than one aug- 

menting path at a time. The algorithm of Goldberg and Tarjan, called the 

preflow-push algorithm, tries to push as much flow towards t as possible, 

by first sending the absolute maximum possible, namely }> srcA Usr, Out of s 

and then trying to push this forward to t. At some point no more flow can be 

sent to t and the algorithm returns the excess flow back to s again. This very 

vague description will be made precise below (the reader should compare this 

with the so-called MKM-algorithm described in Exercise 3.25). 

Let NV = (V, A,l = 0,u) be a network with source s and sink t. A feasible 
flow x in N is called a preflow if b,(v) < 0 for all v € V —s. Note that every 
(s,t)-flow x is also a preflow since we have b,(v) = 0 if v € V — {s,t} and 
b,(t) = —bz(s) < 0. Hence preflows generalize (s, t)-flows, an observation that 
we shall use below. Let x be a preflow in a network NV. A height function 
with respect to x is a function h: V + Zp which satisfies 

AS itn elnth eas 0: (3.14) 

h(p) < h(q) +1 for every arc pq of N(z). 

The following useful lemma is an immediate consequence of Theorem 
Scan (a)y 
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Lemma 3.6.5 Let x be a preflow in a network N = (V,l =0,u) with source 

s and sink t and let v be a vertex such that b,(v) <0. Then N(x) contains a 

(vu, s)-path. 

Proof: By the definition of a preflow, s is the only vertex r for which we have 

b,(r) > 0. Hence, by Theorem 3.3.1(a), every decomposition of x into path 

and cycle flows contains an (s,v)-path P. Now it follows that N(x) contains 
a (v,s)-path, since every arc of P has positive flow in NV and hence give rise 

to an oppositely oriented arc in NV(z). Oo 

Now we are ready to describe the (generic) preflow-push algorithm. Dur- 

ing the execution of the algorithm, a vertex v € V is called active if b,(v) < 0. 

An arc pq of N(x) is admissible if h(p) = h(q) + 1. The algorithm uses two 

basic operations push and lift. 

push(pq): Let p be a vertex with b,(p) < 0 and let pg be an admissible 

arc in N(x). The operation push(pq) changes Zpq tO pq + p, where 

p = min{—b,(p),Tpq}- 
lift(p): Let p be a vertex with b,(p) < 0 and h(p) < h(q) for every arc pq in 

N (a). The operation lift(p) changes the height of p as follows: 

h(p) := min{h(z) + 1: pz is an arc of N(z)}. 

By the remark after the proof of Lemma 3.6.5, the number h(p) is well- 
defined. See Figure 3.12 for an illustration of a lift. 

height height 

e ® 

10 10 

Cd @ 

P 
5 5 

P 

0 0 

(a) (6) 

Figure 3.12 Lifting the vertex p form height 4 to height 7. 

Lemma 3.6.6 Let x be a preflow in N and let h be defined as in (3.14). 

If p € V satisfies bz(p) < 0, then at least one of the operations push(pq), 

lift(p) can be applied. 
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Proof: Suppose b,(p) < 0, but we cannot perform a push from p. Then there 

is no admissible arc with tail p and hence we have h(p) < h(q) for every arc 

pq in N(z). It follows from Lemma 3.6.5 that there is at least one arc out of 

p in N(x) and hence we can perform the operation lift(p). Oo 

The generic preflow-push algorithm 

Input: A network NV = (V,l = 0,u) with source s and sink t. 

Output: A maximum (s, t)-flow in NV. 

Preprocessing step: 

(a) For each p € V let h(p) := dist (p, t); 

(b) Let A(s) := 7; 
(c) Let 2sp := Usp for every arc out of s in N; 

(d) Let aj; := 0 for all other arcs in NV. 

Main loop: 

While there is an active vertex p € V —t do the following: 

if N(x) contains an admissible arc pg then push(pq) else lift(p). 

Theorem 3.6.7 The generic preflow-push algorithm correctly determines a 

mazimum (s,t)-flow in N in time O(n?m). 

Proof: We first show that the function h remains a height function through- 

out the execution of the algorithm. Initially this is the case since we use 

exact distance labels and there are no arcs out of s in N(x) (Exercise 3.20). 

Observe that for every vertex p, h(p) is only changed when we perform the 

operation lift(p) and then it is changed so as to preserve the condition (3.14). 

Furthermore, the operation push(pq) may introduce a new arc gp in N(z), 

but this are will satisfy h(q) = h(p) — 1 and hence does not violate (3.14). 

It follows that h remains a height function throughout the execution of the 

algorithm. 

It is easy to see that x remains a preflow throughout the execution of the 

algorithm, since only a push operation affects the current x and by definition 

a push operation preserves the preflow condition. 

Now we prove that, if the algorithm terminates, then it does so with a 

maximum flow x. Suppose that the algorithm has terminated. This means 

that no vertex v € V has b,(v) < 0. Thus it follows from the definition of a 

preflow that x is an (s,t)-flow. To prove that x is indeed a maximum flow, it 

suffices to show that there is no (s,t)-path in N(x). This follows immediately 
from the fact that h remains a height function throughout the execution of 

the algorithm. By (3.14), every arc pg in N(x) has h(p) < h(q) +1 and we 
always have h(s) = n, h(t) = 0. Since no (s,t)-path has more than n — 1 arcs, 
there is no (s,t)-path in N(x) and hence, by Theorem 3.5.3, z is a maximum 
(s, t)-flow. 

To prove that the algorithm terminates and to determine its complexity, 

it is useful to distinguish between two kinds of pushes. An execution of the 
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operation push(pq) is a saturating push if the arc pq is filled to capacity 

after the push and hence pq is not an arc of N(x) immediately after that 
push. A push which is not saturating is an unsaturating push. 

We now establish a number of claims from which the complexity of the 
algorithm follows. 

(A) The total number of lifts is O(n”): By Lemma 3.6.5, every vertex 
p with b,(p) < 0 has a path to s in N(x). Hence, we have h(p) < 2n—1, 

by (3.14). Since the height of a vertex p increases by at least one every 

time the operation lift(p) is performed, no vertex can be lifted more than 

2n — 2 times the claim follows. 

The total number of saturating pushes is O(nm): Let us consider 

a fixed arc pq and find an upper bound for the number of saturating 

pushes along this arc in the algorithm. When we perform a saturating 

push along pq, we have h(p) = h(q) + 1 and the arc pq disappears from 

the residual network. It can only appear again in the current residual 

network after flow has been pushed from q to p in some later execution 

of the operation push(qp). At that time we have h(q) = h(p) +1. This 

and the fact that h remains a height function and never decreases at 

any vertex, implies that before we can perform a new saturating push 

along pq, h(p) has increased by at least two. We argued above that we 

always have h(p) < 2n — 1 and now we conclude that there are at most 
O(n) saturating pushes along any given arc. Thus the total number of 

saturating pushes is O(nm). 
(C) The total number of unsaturating pushes is O(n?m): Let @ = 

Yo. (v)<o 2(v). Then @ > 0 during the whole execution of the algorithm 

and since h(v) < 2n at any time during the execution we have & < 2n? 
after the preprocessing step. Let us examine what happens to the value 

of & after performing the different kinds of operations. A lift will increase 
® by at most 2n — 1. Hence, by (A), the total contribution to ® from 

lifts is O(n?). A saturating push from p to q can increase @ by at most 

h(q) < 2n —1 (it may also decrease & if p becomes balanced, but we are 
not concerned about that here). Hence, by (B), the total contribution to 

@ from saturating pushes is O(n?m). An unsaturating push from p to 

q will decrease @ by at least one, since p becomes balanced and h(p) = 

h(q) +1 (if q was balanced before, then & decreases by one and otherwise 

it decreases by h(p)). 

It follows from the considerations above that the total increase in & 

during the execution of the algorithm is O(n?m). Now it follows from 

the fact that @ is never negative that the total number of unsaturating 

pushes is O(n?m). o 

(B 4 

It is somewhat surprising that the simple approach above results in an 

algorithm of such a low complexity. The complexity bound is valid no matter 

which vertex we choose to push from or lift. This indicates the power of 
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the approach. However, the algorithm does have its drawbacks. If no control 

is supplied to direct the algorithm (as to which vertices to push from or 

lift), then a large amount of time may be spent without any effect on the 

final maximum flow. The reader is asked in Exercise 3.21 to give an example 

showing that a large amount of useless work may be performed if no extra 

guidance is given to the choice of pushes. There are several approaches which 

can improve the performance of the preflow-push algorithm we mention just 

two of these. For details see e.g. [7]. 

(a) If we examine the active vertices in a first-in first-out (FIFO) order, then 
we obtain an O(n?) algorithm [325]. 

(b) If we always push from a vertex p which has the largest height h(p) among 
all active vertices, then we obtain an O(n?\/m) algorithm [149, 325]. 

Cheriyan and Maheshwari [149] have shown by examples that the worst 
case bounds for the FIFO and maximum height variants are tight. For another 

way to improve the performance of the generic algorithm in practice, see 
Exercise 3.22. 

3.7 Unit Capacity Networks and Simple Networks 

In this section we consider two special cases of networks, both of which occur 
in applications and for which, due to their special structure, one can obtain 
faster algorithms for finding a maximum flow. All networks considered in this 
section are assumed to have a source s and a sink t. 

3.7.1 Unit Capacity Networks 

A unit capacity network is a network NV = (V,A,1=0,u= 1), ice. all arcs 
have capacity equal to one. Unit capacity networks are important in several 
applications of flows to problems such as finding a maximum matching in 
a bipartite graph (Subsection 3.11.1), finding an optimal path cover of an 
acyclic digraph (Section 5.3) and finding cycle subdigraphs covering specified 
vertices (Subsection 3.11.5). 

Lemma 3.7.1 If N is a unit capacity network without cycles of length 2 and 
xr is a feasible (s,t)-flow, then N (zx) is also a unit capacity network. 

Proof: Exercise 3.39. oO 

Leto! (VAs 0ne= 1) be a unit capacity network with source 
s and sink t. Since the value of a minimum (s,t)-cut in N is at most n — 
1 (consider the cut (s,V — s)), we see from Theorem 3.5.4 that the Ford- 
Fulkerson algorithm will find a maximum (s, t)-flow in time O(nm). The 
purpose of this section is to show that one can obtain an even faster algorithm. 
Our exposition is based on an idea due to Even and Tarjan [232] 
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Lemma 3.7.2 Let £=(V =VoUY,U... UY, A,l = 0,u = 1) be a layered 
unit capacity network with Vo = {s} and V, = {t}. One can find a blocking 
(s,t)-flow in L in time O(m). 

Proof: It suffices to see that the capacity of each augmenting path is 1 and 
no two augmenting paths of the same length can use the same arc. Hence it 
follows that Dinic’s algorithm will find a blocking flow in time O(m). O 

Lemma 3.7.3 Let N = (V,A,l = 0,u = 1) be a unit capacity network and 
let x* be a maximum (s,t)-flow in N. Then 

disty(s,t) < 2n/V|x*] (3.15) 

Proof: Let w = disty(s,t) and let Vo = {s},Vi,Vo,...,V. be the first w 
distance classes from s. Since NV contains no multiple arcs, the number of 

arcs from V; to Vi41 is at most |V;||Vizi| for i = 0,1,...,w —1. Since the 
arcs in (V;,Vi;,1) correspond to the arcs across an (s,t)-cut in NV, we have 

la*| < [VillViz.| for i = 0,1,..., I} > Vier for 
7=0,1,...,w—1. Now we easily see that 

w+l1 
n=|Vl>Ml>Ve (ie (3.16) 

1=0 

implying that w < 2n/,/|2*|. Oo 

Theorem 3.7.4 [232] For unit capacity networks the complexity of Dinic’s 

algorithm is O(n? m). 

Proof: Let N be a unit capacity network with source s and sink t. We 

assume for simplicity that MN has no 2-cycles. The case when N does have 
a 2-cycle can be handled similarly (Exercise 3.41). Let q be the number of 
phases performed by Dinic’s algorithm before a maximum (s, t)-flow is found 

in N. Let 0 = 2, 2%),...,2(9 denote the (s,t)-flows in N which have 
been calculated after the successive phases of the algorithm. Thus 2) is the 

starting flow which is the zero flow and 2“) denotes the flow after phase i 

of the algorithm. Let t = [n3] and let K denote the value of a maximum 
(s,t)-flow in NV. 

By Lemmas 3.7.1 and 3.7.2 it suffices to prove that the total number of 

phases, q, is O(n). This is clear in the case when K < 7, since we augment 
the flow by at least one unit after each phase. So suppose that K > r. 

Choose j such that |r| < K —7 and |z%+1)| > K — 7. By Theorem 3.4.2 
and Theorem 3.4.3 the value of a maximum flow in V(2%)) is K — |x| > r. 

yipplying Lemmas 3.7.1 and 3.7.3 to N(x)), we see that dist N(a(3)) (8) t) < 

2n3. Using Lemma 3.6.2 and the fact that each phase of Dinic’s algorithm 

results in a blocking flow, we see that 7 < 2ni. Thus, since at most T phases 

remain after phase 7 we conclude that the total number of phases q is O(n). 
Oo 
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3.7.2 Simple Networks 

A simple network is a network N = (V,A,/ = 0, u) with special vertices s,t 

in which every vertex in V — {s, t} has precisely one arc entering or precisely 

one arc leaving. For an example see Figure 3.13. 

oOo. 

Figure 3.13 A simple network. Capacities are not shown. 

Below we assume that the simple network in question does not have any 

2-cycles. It is easy to see that this is not a serious restriction (Exercise 3.42). 

Lemma 3.7.5 Let N = (V, A,l = 0,u = 1) be a simple unit capacity network 

on n vertices and let x* be a maximum (s,t)-flow in N. Then 

disty(s,t) < n/|z*|. (3.17) 

Proof: Let w = disty(s,t) and Vo = {s},Vi, V2,..., Vu be the first w distance 

classes from s. Every unit of flow from s to t passes through the layer V; for 

2 =1,2,...,w—1. Furthermore, since N is a simple unit capacity network, 

at most one unit of flow can pass through each v € V. Thus |V;| > |2*|, for 
1=1,2,...,w—1 and hence 

ik 

IVi> SoM > w —1)|2"1, 
t=! 

implying that w < |V|/|z*|. Oo 

Lemma 3.7.6 If N is a simple unit capacity network, then N(a) is also a 
simple unit capacity network. 

Proof: Exercise 3.40. oO 

Using Lemma 3.7.5 and Lemma 3.7.6 one can prove the following result 
due to Even and Tarjan. We leave the details as Exercise 3.43. 

Theorem 3.7.7 [232] For simple unit capacity networks Dinic’s algorithm 
has complexity O(.,/nm). Oo 
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We point out that Dinic’s algorithm will also find a maximum (s, t)-flow in 

time O(,/nm) in a simple network even if not all capacities are one, provided 

that the network has the property that at most one unit of flow can pass 

through any vertex v € V — {s,t}. In particular a vertex may be the tail of 

an arc with capacity oo provided that it is the head of at most one arc and 

this arc (if it exists) has capacity one. We use this extension of Theorem 3.7.7 
in Section 3.11. 

3.8 Circulations and Feasible Flows 

We now return to the general flow model when lower bounds are present on 

the arcs. We wish to determine whether a feasible flow exists with respect to 

the given lower bounds and capacities on the arcs and a prescribed balance 

vector. As we showed in Section 3.2, in order to study the general case, it 

suffices to study circulations since we may use Lemmas 3.2.1-3.2.3 to trans- 

form the general case to the case of circulations. Note that in this section we 

always assume that all the data of the network are integers (that is / and u 

are integers). 
We need the following very simple observation. The proof is analogous to 

that of Lemma 3.5.1. 

Lemma 3.8.1 /f x is a circulation in N then for every partition S,S of V 

we have z(S,S) = 2(S, 5S). Oo 

The example in Figure 3.14 gives us a starting point for detecting what 

can prevent the existence of a feasible circulation. 

b 

(3, 5) (0, 2) 

qa, 5) 

Figure 3.14 A network with no feasible circulation. The specification on the arcs 
is (1, u). 

Let NV be the network in Figure 3.14 and let S = {b} and S = {a,c}. 
Then 1(S,S) = 3 > 2 = u(S,S). Now using Lemma 3.8.1 we see that if z is 
a feasible flow in VV we must have 

Pion tS, O) = 219,9) ob, 5) = 3, 
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implying that there is no feasible flow in N. More generally, our argument 

shows that if V = (V,A,1, u) is a network for which some partition Si srory 

satisfies 1(S,S) > u(S,S), then N has no feasible circulation. Hoffman [431] 

proved that the converse holds as well. 

Before we prove Theorem 3.8.2 we remark that Theorem 3.4.2 remains 

valid for networks with non-zero lower bounds provided that we modify the 

definition of x @ Z slightly (see Exercise 3.30). 

Theorem 3.8.2 (Hoffman’s circulation theorem) [431] A network N = 
(V,A,1,u) with non-negative lower bounds on the arcs has a feasible circula- 
tion if and only if the following holds for every proper subset S of V: 

1(5, S) < u(S,3). (3.18) 

Proof: Let N = (V,A,l,u) be a network. We argued above that if x is 
a feasible circulation in NV’, then for every partition (S,S) of V we have 
HGS) aces 

To prove the converse we assume that (3.18) holds for all S C V and give 
an algorithmic proof showing how to construct a feasible circulation starting 

from the all-zero circulation. Clearly x = 0 is a circulation in N and if 1 = 0, 

then we are done. So we may assume that 1;; > 2;; for some 77 € A. 
We try to find a (j,i)-path in N(z). If such a path P exists, then we 

let 6(P) > 0 be the minimum residual capacity of an arc on P. Let € = 
min{6(P),li;—2i;}. By Theorem 3.4.2 (which, as remarked earlier, also holds 

when some lower bounds are non-zero), we can increase the current flow x 
by € units along the cycle iP and obtain a new circulation. 

We claim that we can continue this process until the current circulation 

z has lj; < 24; < us for all arcs 17 € A, that is, we can obtain a feasible 

circulation in NV’ (observe that the procedure above preserves the inequality 

x <u). Suppose this is not the case and that at some point we have x; < Is 

for some arc st and there is no (t, s)-path in V(x). Define T as follows: 

T = {r: there exists a (t,r)-path in N(z)}. 

It follows from the definition of the residual network M(x) (in particular 
(3.7)) that in NV we have 2,; = uj; for all arcs ij with i € T and j € T and 
Lqr < Igr for all arcs gr with q € T andr € T. Using that s € T and xg < et 
we obtain that 

u(T,T) = 2(T,T) =2(T,T) <1(T,T), 

contradicting the assumption that (3.18) holds. This and the fact that all 
data are integers shows that the algorithm we described above will indeed 
find a feasible circulation in NV. Oo 

It is not difficult to turn the proof above into a polynomial algorithm 
which, given a network NV = (V,A,l,w), either finds a feasible circulation x 
in N, or a subset S violating (3.18) (Exercise 3.29). 0 
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We conclude with a remark on finding feasible flows with respect to arbi- 
trary balance vectors in general networks. This problem is relevant as a start- 

ing point for many algorithms on flows. It follows from the results in Section 

3.2 and the fact that the preflow-push algorithm can be turned into an O(n?) 
algorithm (using the FIFO implementation) that the following holds. 

Theorem 3.8.3 There exists an O(n?) algorithm for finding a feasible flow 

in a given network N = (V,A,l,u,b). Furthermore, if l,u,b are all integer 

functions, then an integer feasible flow can be found in time O(n°). O 

Using Lemma 3.2.2 and Theorem 3.8.2 one can derive the following fea- 

sibility theorem for flows by Gale (Exercise 3.44): 

Theorem 3.8.4 /289] There exists a feasible flow in the network N = 
(V, A,l = 0,u, b) if and only if 

S— 0(s) ) < u(S, S) for every S CU. (3.19) 

3.9 Minimum Value Feasible (s, t)-Flows 

Let NV = (V,A,l,u) be a network with source s, sink t and non-negative 

lower bounds on the arcs. A minimum feasible (s, t)-flow in N is a feasible 

(s, t)-flow whose value is minimum possible among all feasible (s, t)-flows. 
Although at first glance this problem may seem somewhat artificial, it turns 

out that for many applications it is actually a minimum feasible flow that is 

sought (see e.g. Section 5.3 and Section 5.9). 
To estimate the value of a minimum (s, t)-flow, let us define the demand, 

7(S,S) of an (s,t)-cut (S,) as the number 

FH) a eT Soy (3.20) 

Let x be a feasible flow. Then, by Lemma 3.5.1, for every (s, t)-cut (5, S) 
we have 

|x| =2(S,5)—2(S;S) 
> 1(S, S) — u(S, S) (3.21) 

= 7(S, 5). 

Hence the demand of any (s,t)-cut provides a lower bound for the value 

of a minimum feasible (s, t)-flow. The next result shows that the minimum 
value of an (s, t)-flow is exactly the maximum demand of an (s, t)-cut. 
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Theorem 3.9.1 (Min-flow Max-demand theorem) Let N = (V, A,l, u) 
be a network with non-negative lower bounds on the arcs. Suppose x 1s a 

minimum feasible (s,t)-flow in N. Then 

|x| = max{y7(S,S):s € S,t € S}. (3.22) 

Furthermore we can find a minimum feasible (s,t)-flow by two applications 

of any algorithm for finding a mazimum (s,t)-flow. 

Proof: Suppose z is a feasible (s,t)-flow in N. If |z| = 0, then z is clearly 

a minimum (s,t)-flow (since all lower bounds are non-negative). Hence we 

may assume that |z| > 0. Suppose that y is a feasible (t, s)-flow in N(z). 
Then x @ y is a feasible flow in N of value |z| — |y|, by Theorem 3.4.2 (as 
we remarked in the last section, this lemma is also valid in the general case 

of non-zero lower bounds). Now suppose that y is a maximum (t, s)-flow in 
N(x). Apply Theorem 3.5.3 to y and A(z) and let (T,T) be a minimum 

(t, s)-cut in N(x). The capacity of (T,T) is by definition equal to r(T,T), 

where r is the capacity function of N(x). By the choice of (JT,T) and the 
definition of the residual capacities we have 

lyl =r(7,T) 
ar De (wij — tig) + oy (ap — lap) 

ij€(T,T) qp€(T,T) 

= u(T,T) —U(T,T) + 2(T,T) — 2(T,T) 

= u(T,T) —U(T,T) + |z\, (3.23) 

by Lemma 3.5.1. Rearranging this, we obtain that |z|—|y| = 1(T,T)—u(T,T). 
This implies that the flow 2@y (whose value is |x|—|y|) is a minimum feasible 
(s, t)-flow and proves (3.22). 

It remains to prove the second claim on how to find a minimum (s, t)-flow. 
It follows from the argument above that once we have any feasible (s, t)-flow, 
we can find a minimum (s,t)-flow by just one max flow calculation. On the 
other hand it follows from Lemma 3.2.1 and Lemma 3.2.2 that we can find a 
feasible (s, t)-flow in NV (if any exists) by performing the two transformations 
suggested in those lemmas and then using a max flow algorithm to check 
whether there is a feasible flow in the last network constructed (now feasibility 
is with respect to the value of b(s) and all lower bounds are zero). O 

3.10 Minimum Cost Flows 

We now turn to networks with costs on the arcs and study the follow- 
ing problem called the minimum cost flow problem: Given a network 
N = (V,A,l,u, b,c) find a feasible flow of minimum cost (recall that the cost 
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of a flow is given by ea 1ij;C;;). By the results in Section 3.2, without loss 
of generality, we may treat the problem only for networks with lower bound 
zero on all arcs and furthermore assume that we are looking for either an 
(s, t)-flow of value 6(s) or a circulation of minimum cost. However, for differ- 
ent applications, different flow models may be more convenient than others. 
Hence, except for always assuming that the lower bounds are zero, we will 

treat the general case, and hence all the special cases also, below. 

We mentioned in Section 3.2 that the shortest path problem is a special 

case of the minimum cost flow problem. To see this, let D = (V,A,c) be an 

arc weighted digraph with special vertices s,t and assume that D has no cycle 

of negative weight. Let V = (V,A,l = 0,u = 1,c) be the network obtained 

from D by adding a lower bound of zero and a capacity of 1 to each arc of D 

and interpreting the weight of an arc in D as its cost in NV. We claim that a 

shortest (s,t)-path in D corresponds to a minimum cost integer (s, t)-flow of 
value 1 in V. Clearly, any (s,t)-path P of weight M in D can be transformed 

into an (s,t)-flow of cost M just by sending one unit of flow along P in N. 

Thus it suffices to prove that every (s,t)-flow x of value one and cost M can 
be transformed into an (s,t)-path in D of weight at most M. By Theorem 

3.3.1 we may decompose z into a path flow of value one along an (s,t)-path 
P' and a number of cycle flows. All these cycles have non-negative cost since 

D has no negative cycle. Hence it follows that P’ has cost at most M. It 

follows from our observations above that every minimum cost (s, t)-flow of 

value 1 in NV can be decomposed into an (s,t)-path of the same cost and 

some cycle flows along cycles of cost zero. 

In Exercise 3.47 the reader is asked to show that the maximum flow 

problem is also a special case of the minimum cost flow problem. However, 

the minimum cost flow problem is interesting not only because it generalizes 

these two problems, but also because a large number of practical applications 

can be formulated as minimum cost flow problems. The very comprehensive 

book by Ahuja, Magnanti and Orlin [7] contains a large number of such 
applications. We will discuss one of these in a reformulated form below. 

A small cargo company uses a ship with a capacity to carry at most r units 

of cargo. The ship sails on a long route (say from Southampton to Alexandria) 
with several stops at ports in between. At these ports cargo may be unloaded 

and new cargo loaded. At each port there is an amount 6;; of cargo which is 
waiting to be shipped from port i to port j > i (ports are numbered after 

the order in which the ship visits them). Let f;; denote the income for the 

company from transporting one unit of cargo from port 2 to port j. The goal 
for the cargo company is to plan how much cargo to load at each port so as 

to maximize the total income while never exceeding the capacity of the ship. 

We illustrate how to model this problem, which we call the ship loading 

problem, as a minimum cost flow problem because it shows not only that 

sometimes it is easier to work with the general model, but also that allowing 

negative costs on the arcs may simplify the formulation. 
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Let n be the number of stops including the starting port and the terminal 

port. Let NV = (V,A,l = 0,u,c) be the network defined as follows: 

Ve = fouvarenatnt U (ema 4 cS 

A = {v1 02, 0203, ---)Un—1Un} U {VigVi, Vig VU] ° 17 <0 

The capacity of the arc vjuj41 is r for 1 = 1,2,...n— 1 and all other arcs have 

capacity oo. The cost of the are u4;u; is —fij for 1 <i <j <n. All other arcs 

have cost zero (including those of the form v;;v;). The balance vector of u;; is 

bi; for 1 <i < j < mand the balance vector of v; is —(b1; + bai +... + 04-11) 

for i = 1,2,...,n. (See Figure 3.15.) 

Figure 3.15 The network for the ship loading problem with 3 intermediate stops. 
For readability vertices are named by numbers only. The costs (capacities) are 
only shown when non-zero (not infinite). The balance vectors are as specified in 
the description in the text, i.e. the balance vector of the vertex 34 is b34 and the 
balance vector of the vertex 4 is —(b14 + boa + b34). 

We claim that this network models the ship loading problem. Indeed, 

suppose that t12,t13,...,tin,t23,.-.,tn-in are cargo numbers, where t,;(< 

b;;) denote the amount of cargo the ship will transport from port 7 to port j 

and that the ship is never loaded above capacity. The total income from these 

cargo loads is I =), << j<n tij fij- Let x be the flow in WV defined as follows. 
The flow on an arc of the form v;;v; is tj;, the flow on an arc of the form 
jj 0; is bj; — ti; and the flow on an arc of the form v;v;41, 1 = 1,2,...,n—1, 

is the sum of those tay for which a < i and b > i+ 1. It follows from the 

fact that tj;, 1 <7 <j <n, are legal cargo numbers that z is feasible with 

respect to the balance vector and the capacity restriction. It is also easy to 

see that the cost of x is —I. 
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Conversely, suppose that x is a feasible flow in NV of cost J. We claim 

that we get a feasible cargo assignment s;;, 1 <i < j < n with income —J 

by letting s;; be the value of x on the arc u,;;v;. This is easy to check and 
we leave the details to the reader. It follows that a minimum cost flow in V 
corresponds to an optimal loading of the ship and vice versa. 

Below we consider the minimum cost flow problem in some detail. Further 

applications are given in Section 3.11. See also Section 3.12 for two important 

special cases of the minimum cost flow problem. 

We use the notion of the cost of a path or a cycle in a network. This is 

simply the sum of the costs of all arcs in the path or cycle. An augmenting 

path (cycle) with respect to a given flow z in a network N is a path (cycle) 
in N(x). Whenever we speak about an augmenting cycle or path P we use 

6(P) to denote the minimum residual capacity of an arc on P in A(z). 

Furthermore, for every 3 < 6(P) we denote by 2’ := x @ GP the flow we 

obtain from x by augmenting along P with 6 units. 

Whenever we say that a flow z is optimal in a network NV, we mean by 

this that z is a minimum cost flow among all flows in NV with balance vector 

i 

3.10.1 Characterizing Minimum Cost Flows 

Recall from Theorem 3.5.3 that, when we consider maximum (s, t)-flows, we 

can verify optimality by showing that there is no (s,t)-path in the residual 

network with respect to the current flow. It turns out that we can also use 

the residual network to check whether a given feasible flow in a network NV = 
(V, A,l,u,c) has minimum cost among all flows with the same balance vector. 

Suppose first that x is feasible in NV and that there is some cycle W in N(z) 

such that the cost c(W) of W is negative. Let 6 denote the minimum residual 
capacity of an arc on W and let 2’ be the cycle flow in N(x) which sends 6 

units around W. Then it follows from Theorem 3.4.2 that r@z’ is a flow in V 
with the same balance vector as x and cost c’r+c? 2! = c!x+dc(W) < ca. 
Thus if (x) contains a cycle of negative cost, then z is not a minimum cost 
feasible flow in VV with respect to the balance vector by. 

The interesting thing is that the other direction holds as well. Indeed, 
suppose z is feasible in V = (V,A,l,u, b,c) and that N(x) contains no cycle 

of negative cost. Let y be an arbitrary feasible flow in NV. Since we have 
specified a balance vector b for N, it follows from Corollary 3.4.4 that there 

exist a collection of at most m cycles Wi, W2,..., Wx in N(z) and cycle flows 

f(Wi),.--, (We) in N(z) such that cy = PI c(W;)6;, where 6; > 0 
is the amount of flow that f(W;) sends along W; in (a). Since N(x) has no 
negative cost cycle, c(W;) > 0 for i = 1,2,...,k and we see that® c’y > ca. 

8 In fact, our argument shows that cly = cz if and only if y can be obtained 
from x by ‘adding’ zero or more cycle flows, each of cost zero, in N(z). 
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Thus we have established the following important optimality criterion for the 

minimum cost flow problem. 

Theorem 3.10.1 Let x be a feasible flow in the network N = (V,A,l, u,b, c). 

Then x is a minimum cost feasible flow in N if and only if N(x) contains 

no directed cycle of negative cost. Oo 

It is natural to ask how useful is this optimality criterion is. First ob- 

serve that using the Bellman-Ford-Moore algorithm (Subsection 2.3.4) we 

can check whether an arbitrary given network contains a negative cycle in 

time O(nm). Thus we obtain the following algorithm, due to Klein [480], for 

finding a minimum cost feasible flow in a network. 

The cycle canceling algorithm 

Input: A network N = (V,A,l,u,),c). 
Output: A minimum cost feasible flow in NV. 

1. Find a feasible flow x in N. 
2. Search for a negative cycle in NV(z). 
3. If such a cycle W is found then augment z by 6(W) units along W and 

go to Step 2. 

4. Return z. 

Just as is the case for the Ford-Fulkerson algorithm, the cycle canceling 

algorithm may never terminate if the capacities are non-rational numbers. It 

is easy to modify the example in Exercise 3.17 to show this. However, if all 

lower bounds and capacities are integers (or just rational numbers) then this 

is indeed an algorithm, although not always a very fast one. See Figure 3.16 

for an illustration of the algorithm. 

Let U and C denote the maximum capacity of NV and the maximum 

numerical value among all costs of NV. 

Theorem 3.10.2 Jf all lower bounds, capacities, costs and balance vectors 

of the input network N are integers, then the cycle canceling algorithm finds 
an optimum flow in time O(nm?CU). 

Proof: By Theorem 3.8.3 we can find a feasible flow x in NV in time O(n’). 
Hence Step 1 can be performed within the promised time bound, since we 

assume that all networks in this chapter have m = 2(n). The maximum 

possible cost of a feasible flow in V is mUC and the minimum possible cost 

is —mUC. Since we decrease the cost of the current flow by at least one 

in Step 3 it follows that after at most O(mUC) executions of Step 3 we 
obtain a minimum cost feasible flow. Now the complexity follows from the 
fact that Step 2 can be performed in time O(nm) using the Bellman-Ford- 
Moore algorithm. Oo 

Furthermore, just as it was the case for maximum flows, we have a nice 
integrality property. 
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Figure 3.16 An illustration of the cycle canceling algorithm. (a) A network NV 
with a feasible flow z with respect to the balance vector (b(1), b(2), (3), b(4)) = 
(2, 3,1, —6). The data on the arcs are (capacity, flow, cost); (b) the residual network 
N (ax). The data on the arcs are (residual capacity, cost); (c) the residual network 
after augmenting by 2 units along the cycle 1421; (d) the residual network after 
augmenting by 2 units along the cycle 2432; (e) the final optimal flow. 

Theorem 3.10.3 (Integrality theorem for minimum cost flows) /f all 
lower bounds, capacities and balance vectors of the network N are integers, 

then there exists an integer minimum cost flow. 

Proof: This is an easy consequence of the proof of Theorem 3.10.2. By 

Theorem 3.8.3 we may assume that the flow x after Step 1 is an integer flow. 

Now the claim follows easily by induction of the number of augmentations 

made by the cycle canceling algorithm since in each augmentation we change 

the current flow by an integer amount along the arcs of the augmenting cycle. 

O 

For arbitrary networks with integer valued data the complexity of the 

cycle canceling algorithm is not very impressive and the algorithm is clearly 

not polynomial since its running time is exponential in both the maximum 

capacity and the maximum (absolute value of the) cost. It is easy to construct 
examples for which the algorithm, without some guidance as to how the next 

negative cycle should be chosen, may use O(mUC) augmentations before it 
arrives at an optimum flow (Exercise 3.52). However, for several applications, 
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such as when we are looking for certain structures in digraphs, both U and 

C are small and then the algorithm is quite attractive due to its simplicity 

(see e.g. some of the results in Section 3.11). 

The problem of finding a strongly polynomial algorithm’? for the mini- 

mum cost flow problem was posed by Edmonds and Karp [216] in 1972 and 

remained open until Tardos [687] found the first such algorithm in 1985. We 

mentioned above that if we use just any negative cycle in Step 3, then the 

cycle canceling algorithm may use a non-polynomial number of iterations. 

Goldberg and Tarjan showed that the following variant of the algorithm is 

already strongly polynomial [326]. The mean cost of a cycle W is the number 

c(W)/|A(W)]. 

Theorem 3.10.4 /326] If we always augment along a cycle of minimum 

mean. cost (as negative mean cost as possible) in Step 3, then the cycle can- 

celing algorithm has complexity O(n?m* logn) even if some arcs have non- 

rational data. 0 

The correctness of the algorithm, provided that it terminates, follows 

from Theorem 3.10.1, since there is no negative cycle in the current residual 

network at termination. Due to space considerations we will not prove the 

complexity part of the theorem here. We refer the interested reader to [7, 578] 
for nice accounts for the complexity of this algorithm. It is interesting to note 

that, although the proof of the complexity statement of Theorem 3.10.4 is 

quite non-trivial, it uses just the basic definitions of flows along with some 

new concepts which are used to make the proof smoother. 

3.10.2 Building up an Optimal Solution 

The cycle canceling algorithm starts from a (generally) non-optimal but fea- 

sible flow and continues through a sequence of feasible flows until an optimal 

flow is found (provided the algorithm ever terminates). In this subsection we 
describe another approach, due to Jewell [460] and Busacker and Gowen [138], 
in which we start from a (generally) in-feasible flow which is optimal’? and 
continue through a sequence of optimal but in-feasible flows until a feasible 

and optimal flow is reached. 

Theorem 3.10.5 (The buildup theorem) /460, 138] Suppose that x is a 

minimum cost feasible flow in a network N = (V,A,l = 0,u,c) with respect 
to the balance vector b = b, and let P be a minimum cost (p, q)-path in N (2). 

Let a < 6(P) and let f(P) be the path flow of value in N(x). Then the flow 

z' := £@ f(P) is a minimum cost feasible flow in N with respect to the 
balance vector b' given by 

i. A graph algorithm is strongly polynomial if (counting each arithmetic opera- 
tion as constant time) the number of operations is bounded by a polynomial in 
n and m. 

1° Recall that optimality is with respect to flows with the same balance vector. 
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b(v) if v ¢ {p,q} 
b'(v) = 4 b(p) +a ifvu=p 

b(q)-a ifu=q. 

Proof: By Theorem 3.10.1 it is sufficient to prove that there is no negative 

cycle in V(2'). Since x is optimal there is no negative cycle in N(x). Suppose 
that N(x’) contains a negative cycle W. By the definition of x’, every arc 
in N(z’) is either an arc of N(x) or the opposite of an arc on P. Consider 
the directed multigraph H that we obtain from A(P) U A(W) considered as 
a multiset by deleting all arcs a such that both a and the opposite arc is in 

A(P)UA(W). It is easy to see that if we add the arc gp to H then we obtain a 
directed multigraph M such that each connected component of M is eulerian. 

Hence, by Exercise 3.8, we can decompose A(H) into a (p,q)-path P’ and a 

number of cycles W,,W2,..., Wx. It follows from our remark above and the 

way we defined H that all arcs of P’,W,,W2,...,W,» are arcs of N(x). By 
(3.2) opposite arcs have costs which cancel and hence, using that c(W) < 0 
we obtain 

= Ci), 

since the cost of each W; must be non-negative because W; is a cycle in 

N (a). Thus we see that P’ is a (p,q)-path with a cost smaller than that of 
P, contradicting the minimality of P. Hence W cannot exist and the proof 

is complete. Oo 

Based on Theorem 3.10.5 we can construct an algorithm, called the 

buildup algorithm [460, 138], for finding an optimal feasible flow in a net- 
work N = (V,A,1 = 0,u,6,c). The algorithm described below only works if 

there are no negative cycles in the starting network. This restriction poses no 

practical problems since, according to Exercise 3.49, we may reduce the gen- 

eral minimum cost flow problem to the case when all costs are non-negative. 

Under the assumption that NV has no negative cycles, the flow z = 0 is an 

optimal circulation in NV. At any time during the execution of the buildup 

algorithm the sets U,, Z, are defined with respect to the current flow z as 

follows: 
Uz = {u|bz(v) < b(v)}, Zz = {v|bz(v) > b(v)}. 

Observe that U, = 0 if and only if Z, = 9. 

The buildup algorithm 
Input: A network NV = (V,A,/ = 0,u, },c). 

Output: A minimum cost feasible flow in N with respect to b or a proof 

that the problem is infeasible. 
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7 Letic;a—10 forkevery.49/er4; 

. If Uz = @ then go to Step 8; 

. If there is no (Uz, Z,)-path in N(x) go to Step 9; ; 
. Let p and g be chosen such that p € U;z,q € Zz and N(z) contains a 

(p, q)-path; 
5. Find a minimum cost (p,q)-path P in N (2); 
6. Let « = min{d(P), b(p) —bz(p), bz (q) —b(q)} (6(P) is the residual capacity 

of P); 
7. Let x := 2 @eP; Modify U,, Z, and go to Step 2; 

8. Return z; 

9. Return ‘no feasible solution’. 

BwN re 

See Figure 3.17 for an illustration of the algorithm. 

(d) (e) 

Figure 3.17 The buildup algorithm performed on the network from Figure 3.16(a). 
Part (a)-(d) show the current residual network with respect to the flow x, starting 
from x = 0 in (a). For each arc (u, c) is specified and in (a) b(v) is specified for each 
vertex. White circles correspond to the set U, and white boxes correspond to Zz. 
Black circles represent vertices that have reached the desired balance value. Part 
(e) shows the final optimal flow. 

Theorem 3.10.6 /460, 138] Let N = (V,A,l =0,u,b, c) have ail data inte- 
gers and no negative costs. The buildup algorithm correctly determines a min- 
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imum cost feasible flow x in N or detects that no feasible flow exists in N. The 

algorithm can be performed in time O(n?mM), where M = maxyey |b(v)|. 
Furthermore, if there is a feasible flow in N, then the algorithm will find an 

integer optimal feasible flow in N. 

Proof: Exercise 3.50. Oo 

The following result shows that, when we consider minimum cost (s, t)- 

flows, the cost of successive augmenting (s,t)-paths form a monotonically 

increasing function. One can make a more general statement (Exercise 3.51), 

but for simplicity we consider only (s, t)-flows here. 

Proposition 3.10.7 Let N be a network with distinct vertices s,t and let x 

be an optimal (s,t)-flow in N. Suppose z' is obtained from x by augmenting 

along a minimum cost (s,t)-path P in N(x) and that x" is obtained from z' 
by augmenting along a minimum cost (s,t)-path P! in N(x’). Then 

ea—cs'>cle’—cls". (3.24) 

Proof: Let z,2’,x" and P, P’ be as described in the proposition. Analogously 

to the way we argued in the proof of Theorem 3.10.5 we can show that the 

directed multigraph H’ obtained from the multiset of arcs from A(P)UA(P’) 
by deleting arcs that are opposite in the two paths can be decomposed into 

two (s,t)-paths @, R and some cycles W,,...,W, such that all arcs of these 

paths and cycles are in V(x). Since z is optimal each cycle W;, i = 1,2,...,p 

has non-negative cost by Theorem 3.10.1. Using that P is a minimum cost 

(s,t)-path in N(x) we conclude that each of R,Q have cost at least c(P) 
implying that c(P’) > c(P). Hence (3.24) holds. Oo 

3.11 Applications of Flows 

In this section we illustrate the applicability of flows to a large spectrum of 

problems both of a theoretical and practical nature. For further applications 

see e.g. Section 3.12 and Chapter 7. Since we will need these results in later 

chapters the main focus is on finding certain substructures in digraphs. 

3.11.1 Maximum Matchings in Bipartite Graphs 

Let G = (V, E) be an undirected graph. Recall that a matching in G is a set 
of edges from E, no two of which share a vertex and a maximum matching of 

G is a matching of maximum cardinality among all matchings of G. Matching 

problems occur in many practical applications such as the following schedul- 

ing problem. We are given a set T = {t1,to,...,t,} of tasks (such as handling 

a certain machine) to be performed and a set P = {p1,p2,...,ps} of persons, 

each of which is capable of performing some of the tasks from T’. The goal 
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is to find a maximum number of tasks such that each task can be performed 

by some person who does not at the same time perform any other task and 

no task is performed by more than one person. This can be formulated as a 

matching problem as follows. Let B = (P,T; E) be the bipartite graph whose 
vertex set is PUT and such that for each 1,7 such that 1<i<s,1<j <r, 

E contains the edge p;t; whenever person p; can perform task t;. Now it is 

easy to see that the answer to the problem above is a matching in B which 

covers the maximum possible number of vertices in T (see also Exercise 3.53). 

For arbitrarily graphs finding a maximum matching fast is quite complicated 

and it was a great breakthrough when Edmonds [210] found a polynomial 
algorithm. For the case of bipartite graphs we describe a simple algorithm 

based on flows. 

Theorem 3.11.1 For bipartite graphs the maximum matching problem is 

solvable in time O(,/nm). 

Proof: Let B = (X,Y; E) be an undirected bipartite graph with bipartition 

(X,Y). Construct a network Vg = (X UY U{s, t}, A,l = 0, u) as follows (see 
Figure 3.18): 

A={ij:i€X,j€Y and ij € E}U{si:ie X}U{jt:j EY}, uz = 00 
for all ij € (X,Y), us; = 1 for alli € X and uj =1 forallj EY. 

———— 

B NB 

Figure 3.18 A bipartite graph and the corresponding network. Capacities are one 
on all arcs of the form sv, ut and oo on all arcs corresponding to edges of B. 

We claim that the value of a maximum (s,t)-flow in Ng equals the size 
of a maximum matching in B. To see this suppose that x is an integer flow 
in N of value k. Let M = {ij :i€ X,je Y and 2; > 0}. For-each 7 € X 
the flow on the arc x; is either zero or one. Furthermore, if z,; = 1, then 
it follows from the fact that x is integer valued and b, (7) = 0 that precisely 
one arc from 7 to Y has non-zero flow. Similarly , for each j € Y, if Zip = 1 
then precisely one arc from X to j has non-zero flow. It follows that M isa 
matching of size k in B and hence, by Theorem 3.5.5, the size of a maximum 
matching in B is at least the value of a maximum flow in N, B- 
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On che other hand; sifei =" fairpieg; eoX,07€ Y,4 = 1,2,...,h} is 

a matching in B, then we obtain a feasible (s,t)-flow of value h in Ng by 

sending one unit of flow along each of the internally disjoint paths sq;rjt, 

7 = 1,2,...,h. This shows that the opposite inequality also holds and the 

claim follows. 

It follows from the arguments above that, given a maximum integer flow 

x, we can obtain a maximum matching M of B by taking precisely those arcs 

of the form u;v;, uy; € X,v; € Y which have flow value equal to 1. Note that 

Np is a simple network. Hence the complexity claim follows from the fact 

that we can find a maximum flow in WN in time O(,/nm), using the algorithm 
of Theorem 3.7.7 (recall that this complexity is also valid for simple networks 

where not all capacities are 1, provided that at most one unit of flow can pass 

through any vertex distinct from s,t). 0 

In the case of dense graphs a slightly faster algorithm of complexity 

O(n'°,/m/logn) was given by Alt, Blum, Mehlhorn and Paul in [23]. It 
is still possible to obtain fast algorithms for finding a maximum matching 

in general graphs, see e.g. Tarjan’s book [690]. However, it does not seem 
possible to formulate the maximum matching problem for an arbitrary graph 

as an instance of the maximum flow problem in some network. In [482] a 
generalization of flows which contains the maximum matching problem for 

general graphs as a special case was studied by Kocay and Stone. 

A vertex cover of an undirected graph G = (V, FE) is a subset U C V 
such that every edge e € E has at least one of its end vertices in U. Since no 

two edges of a matching share a vertex, it follows that for every vertex cover 

U in G, the size of U is at least the size of a maximum matching. For general 

graphs there does not have to be equality between the size of a maximum 

matching and the size of a minimum vertex cover. For instance if G is just 

a 5-cycle, then the size of a maximum matching is 2 and no vertex cover 

has less than 3 vertices. We now prove the following result, due to K6nig 

[498], which shows that for bipartite graphs equality does hold. The proof 

illustrates the power of the Max-flow Min-cut theorem. 

Theorem 3.11.2 (K6nig’s theorem) [498] Let B = (X,Y; E) be an undi- 

rected bipartite graph with bipartition (X,Y). The size of a maximum match- 
ing in B equals the size of a minimum vertex cover in B. 

Proof: Let Ng = (VU{s,t}, A,/ = 0, u) be defined as in the proof of Theorem 

3.11.1. Let z be a maximum flow in Ng and let (S,S) be the minimum cut 

defined as in the proof of Theorem 3.5.3 with respect to x (see Figure 3.19). 
Recall that S is precisely those vertices of V U {s,t} which can be reached 
from s in Np(x). Since the capacity of each arc from X to Y is o, there is 

no edge from SAX to SNY in G. Thus U = (XN S)U(YNS) is a vertex 
cover in B. Furthermore, it follows from the definition of S that we must 

have z,; = 1 for alli € X NS and £j¢ = 1 for all'y € Y NS. This shows 
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xns Ys, 

2 ays! Yio 

Figure 3.19 The situation when a maximum flow has been found. The thick dotted 

arc indicates that there is no arc between the two sets X 1S and YN S. 

that |x| =|XNS|+|Y S|. “We showed in the proof of Theorem 3.11.1 that 
|M*| = |z| = |X N S| +|Y S|, where M* is a maximum matching in B. 
Hence |M*| = |U|, SOG that U is a minimum vertex cover and the proof 
is complete. oO 

Recall that a matching is perfect if it covers all vertices. We saw above that 

the simple proof of Theorem 3.11.1 was easily modified to a proof of Konig’s 

theorem. Not surprisingly we can also derive the following characterization of 

the existence of a perfect matching in a bipartite graph. The result below is a 

slight weakening of a result (dealing with matchings that meet all vertices of 

one bipartition class of bipartite graphs) due to Hall [393]. For an undirected 

graph G = (V, E) and a subset U C V, we denote by N(U) the set of vertices 
in V —U which have at least one edge to a vertex in U. 

Theorem 3.11.3 (Hall’s theorem) /393] A bipartite graph B = (X,Y; E) 
has a perfect matching if and only if |X| = |Y| and the following holds: 

|N(U)| > |U| for everyU C X. (3.25) 

Proof: The necessity of |X| = |Y| and (3.25) is clear since every vertex in U 
has a private neighbour in Y if B has a perfect matching. 

Suppose now that (3.25) holds and let x be an integer maximum flow in 
the network Ng which is defined as in the proof of Theorem 3.11.1. If we can 

prove that |z| = |X| then it follows from the proof of Theorem 3.11.1 that 
B has a perfect matching. So suppose |x| < |X|. By the proof of Theorem 

3.11.2 we have |z| = |X 1S|+|Y NMS], where S is the set of vertices that are 
reachable from s in Ng(a). Since (3.25) holds and we argued in the proof of 
Theorem 3.11.2 that all neighbours of X MS are in Y NS, we also have 

[X| =|XNS|+|XNS| <|YNS|+|XN8S| =|2| < |X, 

a contradiction. Hence we must have |z| = |X| and the proof is complete. O 
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3.11.2 The Directed Chinese Postman Problem 

Suppose a postman has to deliver mail along all the streets in a small!! town. 

Assume furthermore that on one-way streets the mail boxes are all on one 

side of the street, whereas for two-way streets, there are mail boxes on both 

sides of the street. For obvious reasons the postman wishes to minimize the 

distance he has to travel in order to deliver all the mail and return home to 

his starting point. We show below how to solve this problem in polynomial 

time using minimum cost flows. 

We can model the problem by a directed graph D = (V, A) and a weight 
function w : A+R + where V contains a vertex for each intersection of streets 

in the town and the arcs model the streets. A 2-cycle corresponds to a two- 

way street and an arc which is not in a 2-cycle corresponds to a one-way 

street in the obvious way. The weight of an arc corresponds to the length of 

the corresponding street. Now it is easy to see that an optimal route for the 

postman corresponds to a closed walk in D which traverses each arc at least 

once. 

We have seen in Theorem 1.6.3 that if a digraph is eulerian, then it con- 

tains a closed trail which covers all arcs precisely once. Thus if D is eulerian 

the optimalwalk is simply a eulerian trail in D (using each arc exactly once). 

Below we show how to solve the general case by reducing the problem to a 

minimum cost circulation problem. First observe that there is no solution to 

the problem if D is not strongly connected, since any closed walk is strongly 

connected as a digraph. Hence we assume below that the digraph in question 

is strong, a realistic assumption when we think of the postman problem. 

Let D = (V, A) be a strong digraph and let c be a weight function on A. 

The cost c(W) of a walk W is Daje 4cijWi; where W;; denotes the number 

- of times the arc ij occurs on W. Define N as the network NV = (V,A,l = 
1,u = oo,c), that is, all arcs have lower bounds one, capacity infinity and 

cost equal to the weight on each arc. 

Theorem 3.11.4 The cost of a minimum cost circulation in N equals the 

minimum cost of a Chinese postman walk in D. 

Proof: Suppose W is a closed walk in D which uses each arc ij € A Wi; > 1 

times. Then it is easy to see that we can obtain a feasible circulation of cost 
c(W) in N just by sending W;; units of flow along each arc ij € A. 

Conversely, suppose x is an integer feasible circulation in N. Form a 

directed multigraph D' = (V, A’) by letting A’ contain x;; copies of the arc 
ij for each ij € A. It follows from the fact that @ is an integer circulation that 

D’ is an eulerian directed multigraph (see Figure 3.20). Hence, by Theorem 

1.6.3, D' has an eulerian tour T’. The tour T corresponds to a closed walk W 

in D which uses each arc at least once and clearly we have c(W) =c’z. O 

11 This assumption is to make sure that the postman can carry all the mail in his 

backpack, say. Without this assumption the problem becomes much harder. 
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a d a é d 

(a) (0) 

Figure 3.20 Part (a) shows a digraph with cost 1 (not shown) on every arc. Part 
(b) shows the values of a minimum cost circulation in the corresponding network. 
This circulation corresponds to the postman tour abdacdacbda. 

3.11.3 Finding Subdigraphs with Prescribed Degrees 

In some algorithms on directed multigraphs an important step is to decide 

whether a directed multigraph D contains a subdigraph with prescribed de- 

grees on the vertices. One such example is when we are interested in checking 

whether D contains a cycle factor (see Chapter 5). Below we show that such 
problems and more general versions of these problems can be answered using 

flows. See Exercise 3.67 for another application of flows to a similar question 

involving construction of directed multigraphs with specified in- and out- 

degrees. Another application of the techniques illustrated in this subsection 

can be found in Section 7.16. 

Theorem 3.11.5 There ezists a polynomial algorithm for the following prob- 

lem. Given a directed multigraph D = (V,A) with V = {v,v2,...,Un} and 

integers a1,Q2,...,4n, b1,b2,...,bn, find a subdigraph D' = (V,A*) of D 

which satisfies dj, (vi) = a; and dp, (vi) = b; for each i = 1,2,...,n, or show 

that no such subdigraph exists. Furthermore, if there are costs specified for 

each arc, then we can also find in polynomial time the cheapest (minimum 

cost) subdigraph which satisfies the degree conditions. 

Proof: We may assume that a; < d}(vi), bi < d5(vi) for each i = 1,2,...,n 
and that 57, a; = 7j_, bj. Clearly each of these conditions is necessary 
for the existence of D' and they can all be checked in time O(n). Let M = 

> <1 4i and define a network WN as follows: VN = (V'UV"U{s, t}, A’, = 0, u), 

WICKES OCP a, Osean. te Vee a and Al = "480, : a9= 
1,2,...,n}U {ujt : 7 = 1,2,...,n}U {ujul : ujv; € A}. Finally, we let 
Usy, = Aj, Uyt = U10r i 1 aoe es an tf other arcs have capacity one. 

‘Clearly the maximum petane value of an (s,t)-flow in V is M. We claim 
that MV has an (s, t)-flow of value M if and only if D has the desired subdi- 
graph. 

Suppose first that D' = (V, ave is a subdigraph satisfying dp, (vi) = a; 
and dp, (vi) = b; for each i = 1,2,...,n. Then the following is an (s, t)-flow 
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of value M in N: ey = aj, ty~ = bj, for each i = 1,2,...,n and tyyy 

equals one if vjv; € A* and zero otherwise. 
Suppose now that z is an integer (s,t)-flow of value M in N and let 

Afise{ou;:: Lyiyit = 1}. Then D' = (V, A*) is the desired subdigraph. 

It follows from our arguments above that we can find the desired subdi- 

graph D’ in polynomial time using any polynomial algorithm for finding a 

maximum flow in a network. 

Observe also that, if we have a cost function c on the arcs of D and let NV 

inherit costs in the obvious way (arcs incident to s or t have cost zero), then 

finding a minimum cost subdigraph D’ can be solved using any algorithm for 

minimum cost flows. Oo 

It follows from Theorem 3.11.5 that we can decide whether a given digraph 

has a spanning k-regular subdigraph for some specified natural number k in 

polynomial time. In fact, using minimum cost flows we can even find the 

cheapest such subdigraph in the case that there are costs on the arcs. What 

happens if we do not require the regular subdigraph to be spanning? If k = 1, 

then the existence version of the problem is trivial, since such a subdigraph 

exists unless D is acyclic. Yannakakis and Alon observed that already when 

k > 2 the existence version of the problem becomes \’P-complete. For details 

see [279]. 

3.11.4 Path-Cycle Factors in Directed Multigraphs 

We saw in the last subsection that we can use flows to find a cycle factor in 

a given digraph or to prove that none exists. We now show that flows are in 

fact very useful for studying the more general path-cycle factors in digraphs. 

Finding this type of subdigraph is an important ingredient in several polyno- 

mial algorithms for hamiltonian path and cycle algorithms for generalizations 

of tournaments (see Chapter 5). 
We start with three necessary and sufficient conditions for the existence of 

a cycle factor in a digraph. The reason for giving all three is that in certain 

cases one of them provides a better way to deal with the problem under 

consideration than the other two. The first two parts are given in Ore’s book 

[595]; the last is due to Yeo [748]. 

Proposition 3.11.6 Let D = (V,A) be a directed multigraph. 

(a) D has a cycle factor if and only if the bipartite representation BG(D) of 

D contains a perfect matching. 

(b) D has a cycle factor if and only if there is no subset X of V such that 

either |Uyex N+(v)| < [XI or |Upex N-(0)| < |X. 
(c) D has a cycle factor if and only if V cannot be partitioned into subsets 

Y, Z, Ri, Ry such that (Y, Ri) =0, (Ro, Ri UY) =9, |¥| > |Z| and Y 

is an independent set. 
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Proof: (a): The reader was asked to prove (a) in Exercise 1.62, but we give 

the proof here for completeness. Suppose BG(D) has a perfect matching 

consisting of edges v1 ¥; (1), 1+; UnUn (ny Where 7 is a permutation of the set 

{1,...,n}. Then the arcs v1 Vq(1), +.) UnUx(n) form a cycle factor. Indeed, in 

the digraph D’ induced by these arcs every vertex v; has out-degree and in- 

degree equal to one and such a digraph is precisely a disjoint union of cycles 

(Exercise 3.57). 

Conversely, if C; UC2U ... UC, is a cycle factor in D, then for every 

v; € V let (i) be the index of the successor of v; on the cycle containing 

v;. Then 7 induces a permutation of V and {ujv,() : vi € V} is a perfect 

matching in BG(D). 

(b): Clearly D has a cycle factor if and only if the converse of D has a 

cycle factor, so it suffices to show that D has a cycle factor if and only if there 

is no subset X satisfying |U,<x N*(v)| < |X|. Necessity is clear because if 
|Uvex Nt (v)| < |X| holds for some X then there can be no cycle subdigraph 
which covers all vertices of X (there are not enough distinct out-neighbours). 

So suppose |U,cx Nt(v)| > |X| holds for all X C V. Then it is easy to 
see that |N(X')| > |X’'| holds for every subset X' C V' of BG(D) (where 
V(BG(D)) = V' UV", recall Section 1.6). It follows from Theorem 3.11.3 
that BG(D) has a perfect matching and now we conclude from (a) that D 
has a cycle factor. Par 

(c): We first prove the necessity. Suppose D has a cycle factor F and 

yet there is a partition Y, R,, R2, Z as described in (c). By deleting suitable 
arcs from the cycles in F we can find a collection of |Y| vertex-disjoint paths 
such that all these paths start in Y and end at vertices of V — Y each of 

which dominate some vertex in Y (here we used that Y is an independent 

set). However this contradicts the existence of the partition Y, R,, Ro,Z as 

described in (c), since it follows from the fact that |Z| < |Y| that there can 
be at most |Z| such paths in D (all such paths must pass through Z). 

Now suppose that D has no cycle factor. Then we conclude from (b) that 

there exists a set X such that |U,¢. N*(v)| < |X| holds. Let 

Y ={u € X: d5/x,(v) = 0}, Ri = V—X—N*(X), Ro = X-Y, Z=N*(X). 

Then (Y, R:) = 0, (Ro, RiUY) = @ and Y is an independent set. Furthermore, 
since | ,cx N*(v)| < |X| we also have |Z| + |X —Y| = |U,ex Nt(v)| < 
|X| = |X —Y|+]Y¥], implying that |Z| < |Y|. This shows that Y, Z,R1, Ro 
form a partition as in (c). Oo 

It is not difficult to show that Proposition 3.11.6 remains valid for directed 
pseudographs (where we allow loops) provided that we consider a loop as a 
cycle (Exercise 3.58). We will use that extension below. 

Combining Proposition 3.11.6 with Theorem 3.11.1 we obtain 

Corollary 3.11.7 The existence of a cycle factor in a digraph can be checked 
and a cycle factor found (if one exists) in time O(,/nm). Oo 
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Recall that the path-cycle covering number pcc(D) of a directed pseudo- 

graph is the least positive integer k such that D has a k-path-cycle factor. The 

next result (whose proof is left as Exercise 3.68) and Theorem 3.11.1 imply 

that we can calculate pcc(D) in polynomial time for any directed pseudo- 

graph. 

Proposition 3.11.8 Let n be the number of vertices in a directed pseudo- 

graph D and let v be the number of edges in a maximum matching of BG(D). 

Ifv =n, then pcc(D) = 1, otherwise pcc(D) =n — v. 0 

The following result by Gutin and Yeo generalizes Proposition 3.11.6(c). 

Corollary 3.11.9 [377] A digraph D has a k-path-cycle factor (k > 0) if 

and only if V(D) cannot be partitioned into subsets Y, Z, Ri, Ra such that 

(Y, Ri) =9, (Ro, Ri UY) =9, |Y| >|Z| +k and Y is an independent set. 

Proof: Assume that k > 1. Let D' be an auxiliary digraph obtained from D 

by adding & new vertices uj,...,u,% together with the arcs {u;w, wu; : w € 

V(D), i = 1,2,...,k}. Observe that D has a k-path-cycle factor if and only 

if D’ has a cycle factor. By Proposition 3.11.6 (c), D’ has a cycle factor if 

and only if its vertex set cannot be partitioned into sets Y, Z', Ry, Ro that 

satisfy (Y, Ri) = 0, (Ro, R: UY) = 9, |Y| > |Z'| and Y is an independent 
set. Note that if Y,Z', Ri, R. exist in D’ then the vertices uj,...,u, are in 

Z'. Let Z = Z' — {u,...,ux}. Clearly, the subsets Y, Z, Ri, Ro satisfy 

(Y, Ri) =0, (Ro, Ri UY) =90, |Y| >|Z|+k and Y is an independent set. O 

The proof above and Corollary 3.11.7 easily implies the first part of the 

following proposition. 

Proposition 3.11.10 Let D be a directed pseudograph and let k be a fixed 

non-negative integer. Then 

(a) In time O(.,/nm) we can check whether D has a k-path-cycle-factor and 
construct one (if it exists). 

(b) Given a k-path-cycle factor in D, in time O(m), we can check whether 

D has a (k —1)-path-cycle factor and construct one (if it exists). 

Proof: Exercise 3.69. Oo 

3.11.5 Cycle Subdigraphs Covering Specified Vertices 

In the solution of several algorithmic problems, such as finding the longest 

cycle in an extended semicomplete digraphor a semicomplete bipartite di- 

graph, it is an important subproblem to find a cycle subdigraph which covers 

as many vertices as possible. Below we show how to solve this problem using 

a reduction to the assignment problem, due to Alon (see [363]). 
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Theorem 3.11.11 There is an O(n) algorithm which finds, for any given 

digraph D, a cycle subdigraph covering the maximum number of vertices in 

D. 

Proof: Let D be a digraph and let D’' be the directed pseudograph one 

obtains by adding a loop at every vertex. Let B be the weighted bipartite 

graph one obtains from the bipartite representation BG(D’) of D by adding 
the following weights to the edges: the weight of an edge ry’ of B equals 1 if 

x #y and equals 2 if = y. It is easy to see (Exercise 3.63) that, by solving 
the assignment problem for B (in time O(n*), see Section 3.12) and then 
removing all the edges with weight 2 from the solution, we obtain a set of 

edges of B corresponding to some 1-regular subdigraph F of D of maximum 
order. Oo 

Jackson and Ordaz [452] proved the following sufficient condition for the 
existence of a cycle factor in a digraph. (For undirected graphs the analogous 

condition implies that the graph has a hamiltonian cycle [161].) 

Proposition 3.11.12 [452] If D is a k-strong digraph such that the mazi- 

mum size of an independent set in D is at most k, then D has a spanning 
cycle subdigraph. 

We now prove a generalization of this result and discuss its relevance to 

the problem of finding a cycle through a specified set of vertices in certain 

generalizations of tournaments. Deciding whether there is a cycle containing 

all vertices from a prescribed set X in an arbitrary digraph is an VP-complete 
problem already when |X| = 2 (see Theorems 9.2.3 and 9.2.6). Proposition 
3.11.12 corresponds to the special case X = V in the following theorem, due 
to Bang-Jensen, Gutin and Yeo. 

Theorem 3.11.13 /70] Let D = (V,A) be a k-strong digraph and let 
X C V(D) be such that a(D(X)) < k, then D has a cycle subdigraph (not 
necessarily spanning) covering X. 

Proof: This can be proved directly from Theorem 3.8.2 (Exercise 3.65). We 
give a simple proof based on Proposition 3.11.6 which also holds for directed 
pseudographs (see Exercise 3.58). 

Let D and X be as defined in the theorem. Form the directed pseudograph 
D' from D by adding a loop at each vertex not in X. Then D has a cycle 
subdigraph covering X if and only if D’ has a cycle factor, because the new 
arcs cannot contribute to cycles which cover vertices from X. Suppose D’ has 
no cycle factor. Then by Proposition 3.11.6 (c) we can partition the vertices 
of V into sets Ri, R2, Y,Z so that (Y,Ri) = 0, (Ro, Ri UY) =O, yy) > 1) 
and Y is an independent set. Note that no vertex with a loop can be in an 
independent set (see Section 1.6 for the definition of an independent set of 
vertices). Thus we have Y C X. It follows from the description of the arcs 
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between the sets above that there is no path from Y to R; in D—Z. Thus we 
must have |Z| > k since D is k-strong. But now we have the contradiction 

k < Z| <|Y| < a(D(X)) <b. 
Thus D' has a cycle factor, implying that D has a cycle subdigraph covering 
AS Oo 

Theorem 3.11.13 shows that the obvious necessary condition for the exis- 
tence of a cycle covering a specified subset X, namely that there exists some 
collection of disjoint cycles covering X is satisfied in many cases. Indeed, if D 
is k-strong, then we may take X arbitrarily large, provided its independence 
number stays below k + 1. 

We point out that, when |X| = k and D is k-strong, then the existence 
of a cycle subdigraph covering X can also be proved easily using Menger’s 
theorem (Theorem 7.3.1). See Exercise 7.17. 

The proof above combined with that of Theorem 3.11.11 immediately 
implies the following result. 

Theorem 3.11.14 There ezists an O(n*) algorithm for checking whether 

a given digraph D = (V,A) with a prescribed subset X C V has a cycle 

subdigraph covering X. oO 

3.12 The Assignment Problem and the Transportation 
Problem 

In this section we study two special cases of the minimum cost flow problem, 

both of which occur frequently in practical applications. Being special cases 

of the minimum cost flow problem, they can be solved using any of the algo- 

rithms described in Section 3.10. The purpose of this section is to illustrate a 

general approach, the primal dual algorithm, for solving linear programming 

problems while using the transportation problem as an example. In order to 

read parts of this section the reader is supposed to have some basic knowledge 

of linear programming and the duality theorem for linear programming (see 
e.g. the book [600] by Papadimitriou and Steiglitz). 

In the assignment problem, the input consists of a set of persons 

Py, P2,.-.,Pn, a set of jobs Ji, J2,...,J, and an n x n matrix M = [M,,| 

whose entries are non-negative integers. Here M;; is a measure for the skill 

of person P; in performing job J; (the lower the number the better P; per- 

forms job J;). The goal is to find an assignment 7 of persons to jobs so 

that each person gets exactly one job and the sum by at Min(i) 18 mini- 

mized. Note that it is easy to formulate the weighted bipartite matching 

problem (given a complete!” undirected bipartite graph Ky, with weights 

*? Assuming that the graph is complete is no restriction since we can always replace 
non-edges by edges of weight oo. 
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on its edges, find a perfect matching of minimum total weight) as an instance 

of the assignment problem. On the other hand, it is also easy to see that, 

given any instance of the assignment problem, we may form a complete bipar- 

tite graph B = (U,V; E) where U = {Pi, Po,..., Pn}, V = {Ji, Jo,---, In} 

and E£ contains the edge P;J; with the weight M;; for each 1 = 1,2,...,m, 

j =1,2,...,n. This shows that the assignment problem is equivalent to the 

weighted bipartite matching problem. 

It is also easy to see from this observation that the assignment problem is 

a (very) special case of the minimum cost flow problem. In fact, if we think 
of M;; as a cost, then what we are seeking is a flow of minimum cost so that 

the balance vector is one for each P;, 1 = 1,2,...,m and the balance vector 

is minus one for each J;, 7 =1,2,...,n. 

In the transportation problem we are given a set of production plants 

S1,52,...,Sm who produce a certain product to be shipped to a set of re- 

tailers T,,T2,...,T. For each pair (S;,T;) there is a real-valued cost cj; of 

transporting one unit of the product from S; to T;. Each plant produces aj, 

1=1,2,...,m, units per time unit and each retailer needs b;, 7 = 1,2,...,n, 

units of the product per time unit. We assume below that }0;", ai = D05_, by 
(this is no restriction of the model as shown in Exercise 3.71). The goal is to 

find a transportation schedule for the whole production (i.e. how many units 

to send from. 5; to 7; fori = 1,2,...,m, j = 1,2, :..,") im order to minimize 

the total transportation cost. 
Again the transportation problem is easily seen to be a special case of the 

minimum cost flow problem. Consider a bipartite network NV with bipartition 

classes S = {51,52,...,S5m} and T = {T),T2,...,T,} and all possible arcs 

from S to T’ where the capacity of the arc S;T; is co and the cost of sending 

one unit of flow along S;T; is c;;. Now it is easy to see that an optimal trans- 

portation schedule corresponds to a minimum cost flow in NV with respect to 

the balance vectors 

b(Si) = a;,1 =1,2,...,m, and b(T;) = bs 9 ile 2h eee 

The fact that both the assignment problem and the transportation prob- 
lem are special cases of the minimum cost flow problem allows one to use 
any algorithm for finding a minimum cost flow to solve these problems. Be- 
low we are going to describe how to obtain more efficient algorithms for the 
transportation problem and the assignment problem by using the so-called 
primal-dual algorithm approach to linear programming problems. First we 
formulate the transportation problem as a linear programming problem. 

™m nm 

min Dy TE 

i=1 j=1 
n 

Site Dy ieianys rl diceala Dt dim (3.26) 
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The linear programming dual of the transportation problem is 
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a;,; unrestricted for all 2, j. 

Here the dual variables aj,...,@, correspond to the first set of equalities 

and the dual variables (;,...,3, correspond to the second set of equalities 

in the transportation problem. 

Assume that we are given a feasible solution a1,...,@m,1,...,2n to the 

dual (3.27) and define a set Z7 of indices by TJ = {(i,j) : aj + Bj = ci;}. 
Suppose that z is a feasible solution to the transportation problem and that 

zi; = 0 for all (7,7) ¢ Z7. Then we have 
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Combining this with the weak duality theorem for linear programming!* 
shows that z is an optimal solution to the transportation problem. 

In order to study how to use this observation algorithmically, we define the 

restricted primal problem with respect to the given dual solution (a, 3): 

13 When the primal is a minimization problem, then the value of the dual objective 
function is at most the value of the primal objective function for any pair of 
feasible solutions to the dual and the primal. 
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The variables r1,r2,.--,m+n are usually called slack variables. They 

ensure that (3.28) always has a feasible solution. Furthermore, the optimum 

in (3.28) is zero if and only if (3.26) has a feasible solution. The dual of (3.28), 

called the dual of the restricted primal problem, is as follows: 

m n 
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Let x,r be an optimal solution to the restricted primal problem (that is, 

one that minimizes )~’"*" r;). Observe that if r = 0, then z is also a feasible 
solution to the transportation problem and since 2;; = 0 for all (7,7) ¢ ZZ, 

we see from the argument above that z is in fact an optimal solution to the 

transportation problem. Furthermore, it follows from (3.28) that minimizing 
yt" r; is equivalent to the following maximization problem: 

max ) Xi 
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This is just a maximum flow problem. Indeed, let Nog) = (V,A,l = 

0,u) be the network whose vertices are V = X UY U {s,t}, where X = 

PSG aeier atid.) e107, (hus ptqh and whose arcs are A = {ss; : 7 = 

Decca se pul {tbe 2... tt} U4 ste (t, 9) C27}. Lhe capacity of the 

arc 88; is aj,1 = 1,2,...,m, the capacity of the arc t;t is b;, 7 =1,2,...,n and 

the capacity of each arc of the form s;t; is oo. We call N(«,A) the admissible 

network with respect to (a, 3). It is not difficult to show that there is 

a 1-1 correspondence between maximum (s, t)-flows in M(q,g) and optimal 
solutions to (3.30). 

What do we do if the value of the maximum (s, t)-flow in N«,8) is strictly 

smaller than }>." , a; (recall that this is equivalent to saying that the optimum 

value in (3.28) is strictly greater than zero)? In this case zx, restricted to the 
arcs {s;t; : (i,j) € ZZ}, is not a feasible solution to the transportation 

problem. However, this is where the main step in the primal-dual algorithm 

comes into play. We now show that in this case it is always possible to modify 

the current dual solution (a, 3) to a new feasible dual solution (a’, 3’) in such 
a way that the value of a maximum (s,t)-flow in the network M(q a’) is at 

least as large as the corresponding value in M(q,g). Furthermore, if it is the 

same, then after a finite number of repetitions of dual solution changes, the 

value of a maximum flow in the current admissible network will increase. 

Let « be a maximum flow in N(q,g) and suppose that |z| < i", ai. 
Let S be the set of vertices that are reachable from s in N(g,g)(z). Let I = 

age as Medi dD eet and.define IS" by 

YE EM RR eh ee ho Se Ma ae 

As we saw in the proof of Theorem 3.5.3, (5,9) is a minimum (s, t)-cut 

in N(q,a)- In particular, since all arcs of the form s;t; have capacity oo, there 

is no pair (i,j) € ZZ for which i € I* and j € J — J* (compare this with the 

proof of Theorem 3.11.2). Thus, arguing as we did in the proof of Theorem 

3.11.2 and using Theorem 3.5.3 we obtain 

jel ear) yived;: (3.31) 
ieI—I* jeJ* 

Going back to the problem (3.30) and using the fact that |x| is exactly 
the value of an optimal solution to this problem, we see from (3.31) that the 

optimal solution for the current problem (3.28) is given by 

n+m 
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This implies that the following feasible solution (a, 3) is optimal for (3.29): 
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It follows easily from the fact that |r| < >", ai = O4_, 6; that I* 4 0 
and J — J* # @. Furthermore, since there is currently no arc s;t; with (i,j) ¢ 
TJ, we have c;; —a;— 8; > 0 for all such pairs (7, 7). This shows that € exists 

and is strictly greater than zero. 

Lemma 3.12.1 Let a,(,a*,@* be as above. Then the following holds: 

(a) (a*, B*) is a feasible solution to the dual (3.27) of the transportation 
problem. 

(b) For every arc sit; in N(q,g) such that x is non-zero the arc s;t; is also 
an arc of N(a+,a) 

(c) The network N(q+,g+) contains at least one arc s;t; for which i € I* and 
peal — J 

(d) The value of a maximum (s,t)-flow in N(q«,g+) is at least as large as the 
value of the current mazimum flow x in N(q,,)- 
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Proof: Exercise 3.72. oO 

Putting the observations we made above together, we obtain the following 
algorithm for the transportation problem. 

The primal-dual algorithm for the transportation problem 
Input: An instance of the transportation problem. 
Output: An optimal transportation schedule!4. 

1. Initialize the dual variables as follows: 

For 2 := 1 to m let a; := min{¢j7 27 =1,2,! ..jm}; 

Por j :-=1 ton let 6; :-= min{cj; — a; :i = 1,2,...,m)}; 

. Construct the admissible network Na); 
Find a maximum flow z in N(q,g); 
If |z| = }>;~, ai then return z; 

. Update the dual variables according to (3.33) and (3.34); 

. Construct the new admissible network and go to Step 3. Oop ww 

Theorem 3.12.2 The primal-dual algorithm will find an optimum solution 

for any given transportation problem with m plants and n retailers in time 

O(M(n+m)?), where M = Di", ai = 5, by. 

Proof: We give a brief sketch which gives a complexity of O(M(n + m)?). 
In Exercise 3.74 the reader is asked to show how to implement the algorithm 

so that one obtains the desired complexity. 

It is easy to check that the dual variables which are calculated in Step 
1 form a feasible solution and that the admissible network will contain at 

least one arc from X to Y. Forming NM(q,g) can be done in time O((n +m)?) 
and we can find the first maximum flow in time O((n + m)?M) using the 
Ford-Fulkerson algorithm (see Theorem 3.5.4). 

We can easily construct N(q+,g-) from N(q,g) in time O((n + m)*). By 
Lemma 3.12.1(b) we do not have to start all over when we wish to calculate 

a maximum flow in the updated admissible network Na ,p*): In fact, the 

current flow x (interpreted in the obvious way) is a feasible (s,t)-flow in 
Nap ). Thus starting from z and searching for an augmenting path in the 

residual network, we can either find an augmenting path or detect that the 

current 2 is still maximum in time O((n + m)?). This and the fact that we 
always augment by an integer amount of flow implies that, in order to prove 

the complexity O(M(n +m)?) for the algorithm, it suffices to show that the 
number of changes in the dual variables between two consecutive increases 
in the value of the maximum flow in the admissible network is at most m. 

Suppose that the current flow x has value less than )>;", a; and let us 
estimate the number of times we can change the dual variables without en- 

abling an increase in the flow value. Let (a, 3) be the actual dual variables, 
let S be the set of vertices that are reachable from s in N(q,g)(x) and define 

14 Tn the form of an optimal flow, from which the schedule can be read out easily. 
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S* similarly for N(q+,g+). By Lemma 3.12.1(b), no arc which carries flow dis- 

appears when we change from N(q,g) to Na ,gx)- It is easy to show that this 

implies that S Cc S*. By Lemma 3.12.1(c) we add at least one new arc sjt; 

such that s; € S and t; € S (in N(«,g) there is no such arc since they all have 

infinite capacity) and hence we obtain that |S*NY| > |SNY|. Since |Y| =m 

it follows that after at. most m changes of dual variables we can increase the 

flow in the current admissible network. Oo 

For the assignment problem we have n = m and M = n, implying that 

the following holds (see also Exercise 3.76). 

Theorem 3.12.3 The assignment problem on n persons and n jobs is solv- 

able in time O(n3). Oo 

For the assignment problem the O(n?) implementation of the primal-dual 

algorithm above is due to Kuhn [505] and is also known under the name the 
Hungarian method. The interested reader can find more details on the 

implementation of the primal-dual algorithm for the transportation and the 

assignment problems in e.g. the book [578] by Murty. 
In practice it is not necessary to work explicitly on the network N(a,8): 

Suppose we keep a table containing the following information: the cost ma- 

trix, the supplies and demands for the actual instance of the transportation 

problem and the actual values of the dual variables (a, 3). These can all be 
kept compactly as shown below. 

The cost matrix can be found in the upper left part of the diagram. Each 
cell corresponding to an entry in the matrix is divided into an upper and a 
lower part. In the lower part we have specified the cost c;; of sending one unit 
from plant i to retailer 7. No numbers are specified in the upper halves of each 
cell at this point (see below). The values of the supplies and demands are 
specified as the vectors a (in the rightmost column) and 6 (in the bottom row 
of the diagram). There is also a column which specifies the initial value of the 
a vector and a row specifying the initial value of the 6 vector. These have 
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been calculated according to Step 1 of the primal-dual algorithm. Finally, 
shaded cells indicate the set Z,7. 

Equipped with such a diagram we may first find a feasible flow x which 
may or may not be maximum in the current admissible network, e.g. by a 
greedy approach. The search for a new augmenting path with respect to z can 

also be modeled by adding a small amount of information to the diagram. 

Namely, we show labels which indicate how a search might progress. We 

start by labelling those rows i < m for which b,(i) < a; by ‘s, +’. Then we 

search for an augmenting (s,t)-path as follows (compare this with the proof 
of Theorem 3.5.4): 

If a row 2’ is labelled then every column j’ for which the cell i’j' is 

admissible (the corresponding arc is an arc of the admissible network) 

may be labelled (capacity is 00 here). We label such a column by ‘i’, +’. 

If a column j is already labelled and 2;; > 0, then we may label the row 

eby 3; 
If at some point we label a column j for which b,(j) < 6; then we have 

a breakthrough: an augmenting path corresponding to the labels we can 
trace backwards from j has been found. In this case we augment the flow 

as much as possible, delete all labels and start the labelling process again. 

If no more rows or columns can be labelled, the process stops. 

It is easy to see that the description above is merely a specification of the 

Ford-Fulkerson algorithm on the residual network with respect to z and the 

current admissible network. 

When a maximum flow in M(4,g) has been found and it has a value less 

than )°\", a;, the primal-dual algorithm updates the dual variables. Given 

the labels above we can easily identify the sets J*, J* as the set of labeled 

rows and columns and calculate the new dual variables (a*, 6*) according 
to (3.34). Note that in order to avoid fractional values of a*, 6* it is more 

convenient to use the following choice for the new dual variables a*, 3* (here 

€ is as defined in (3.33)). In Exercise 3.77 the reader is asked to show that 
this choice for a*, 3* still gives a feasible solution and one which has a higher 

value for the objective function in (3.27). 

“i @harite Vel 

, Qj ifi e J —I* 

(3.35) 

x Bj 2e if 7 € J* 

Pit Ge ai pel Je 

Below we show a diagram representation of the algorithm on the example 

above, starting from a maximum flow in the network N(q,g). Recall that 
shaded cells indicate the arcs of the current admissible network. 
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No augmenting path found so we make a dual change: 

€, = min{5-2-0,6-2-0,5-2-1,8-2-1,4-2-0} = 2 

€4 = min{6-1-0,8-1-0,10-1-1,4-1-1,3-1-0} = 2 

2e = min {e1,€4} = 2. 

The new diagram, with updated dual variables and admissible arcs 

indicated by shaded cells, together with the new labelling step is 

shown below: . 

Augment along each of the paths ss,t3t and ss jtgt by one unit along 

each. After this columns 4, 5 and 6 can be labelled ‘4,+’ and now we 

can send 5 units along ss4tst and 4 units along ss4tgt. After these aug- 

mentations the next labelling step results in the following labels: 
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No augmenting path found so we make a dual change: 

€; = min{5-4-0} = 1 

ép = 1210-0 = 2 

€e4 = 6-3-0 = 3 

26 = Tan 7,69, 4} =. 

he 
VAVAVA VB 
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A feasible solution to (3.26) has been found. Control for optimality: 

min 

S> eigaig =F +54+644+4404 22412414204 12 = 127 
Oe ilag eal 

Sasa; + > Bjbj = 30+ 66 + 12+ 40 - 4-12 —5 = 127. 
i=1 FN 

Above we have illustrated the primal-dual algorithm when applied to the 

transportation problem. We would like to stress that this approach is quite 

general. It works for any linear programming problem and its dual, provided 

that both problems have feasible solutions: We refer the reader to the book by 

Papadimitriou and Steiglitz [600] for an excellent account of the primal-dual 
algorithm approach. 

3.13 Exercises 

Unless otherwise stated, all numerical data in the exercises below are integers. 

3.1. Find a feasible flow in the network NV of Figure 3.21. 

Figure 3.21 A network N with balance vector b specified at each vertex. All lower 
bounds and costs are zero and capacities are shown on the arcs. 

3.2. Suppose the network N = (V, A,l,u,b,c) has some 2-cycle iji for which 
cij # —cji. Show how to transform N into another network NV’ without 2- 
cycles such that every feasible flow in NV corresponds to a feasible flow in NV’ 
of the same cost. What is the complexity of this transformation? 

3.3. Prove Lemma 3.2.1 (a). 

3.4. Prove Lemma 3.2.2. 
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3.6. 

Bate 

3.8. 

3.9. 
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Prove Lemma 3.2.3. In particular, argue why we need to take I;, = M rather 
than [by ==A()} 

Prove Lemma 3.2.4. 

(+) Fast decomposition of flows. Prove Lemma 3.3.2. 

Decomposing an eulerian directed multigraph into arc-disjoint cy- 
cles. Prove that the arc set of every eulerian directed multigraph can be 
decomposed into arc-disjoint cycles. Hint: form a circulation in an appropri- 
ate network and apply Theorem 3.3.1. 

Find the residual network corresponding to the network and flow indicated 
in Figure 3.22. 

Figure 3.22 A network with a flow x. The notation for the arcs are (I, z, u). 

3.10. 

Spl. 

3.12. 

3.13. 

3.14. 

3.15. 

Find the balance vector b, for the flow z in Figure 3.22. 

Eliminating lower bounds on arcs in maximum flow problems. Show 
how to reduce the maximum (s,t)-flow problem in a network N with some 
non-zero lower bounds on the arcs to the maximum (s’,t’)-flow problem in a 
network NA’ with source s’ and sink t’ and all lower bounds equal to zero. 

Let x be a flow in N = (V,A,/ = 0,u,c) and let f(W) be a cycle flow of 
value 6 in N(x). Show that the flow x* = x @ f(W) has the same balance 

vector as x in NV. Show also that the cost of x” is given by c’ x +c? f(W). 

Prove that the flow z defined in the proof of Theorem 3.4.3 is a feasible flow 
in N(z). 

Let z be a feasible flow in N = (V, A,l = 0, u,c) and let y be a feasible flow in 
N(z). Show that N(x @ y) = N(z)(y), where N(x)(y) denotes the residual 
network of N(x) with respect to y. That is, show that the two networks 
contain the same arcs and with the same residual capacities. 

An alternative decomposition of a flow. Consider the proof of Theorem 
3.3.1 and suppose that, instead of taking w = min{bz(io), —bz (tz), 5}, we let 
p. = 6. What kind of decomposition into path and cycle flows will we get and 
what is the bound on their number? 
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3.16. Structure of minimum (s, t)-cuts. Decide which of the following is true 

or false. In each case either give a counter-example or a proof of correctness. 

(a) If all arcs have different capacities, then there is a unique minimum 

(s, t)-cut. 
(b) If we multiply the capacity of each arc by aconstant k, then the structure 

(as subset of the vertices) of the minimum (s,t)-cuts is unchanged. 

(c) If we add a constant k to the capacity of each arc, then the structure (as 

subset of the vertices) of the minimum (s,t)-cuts is unchanged. 

3.17. (+) The Ford-Fulkerson algorithm may never terminate if capaci- 

ties are real numbers. 

Figure 3.23 A bad network for the generic Ford-Fulkerson algorithm. All arcs 
except the three in the middle have capacity r + 2. Those in the middle have 

capacities 1,r,r”, where r is the golden ratio. 

3.18. 

3.19. 

3.20. 

3.21. 

Let NV be the network in Figure 3.23. Here r is the golden ratio, i.e. r?> = 1—r. 
Observe that r°t? = r™ — r+! for n =1,2,.... 

(a) Show that the value of a maximum flow in N is 1+r+r? =2. 
(b) Devise an infinite sequence of augmentations along properly chosen aug- 

menting paths in the current residual network so that the flow value will 
converge towards 1+ }>°,r’ = 2. This shows that, when the capaci- 
ties are non-rational numbers, the Ford-Fulkerson algorithm may never 
terminate. Hint: first augment by one unit and then by r* units in the 
ith augmentation step, i > 2, along an appropriately chosen augmenting 
path. 

(+) Prove that the Ford-Fulkerson algorithm will always terminate if all 
capacities are rational numbers. 

Let S be a totally unimodular p x q matrix and J the p x p identity matrix. 
Show that the matrix [S J] is also totally unimodular. 

Exact distance labels give a height function for the preflow-push 
algorithm. Let NV be a network with source s and sink ¢t and let « be a 
preflow in NV such that there is no (s,t)-path in N(z). Prove that if we let 
h(i) equal the distance from i to t in N(z) for i € V —s and h(s) = n, then 
we obtain a height function. 

Bad performance of the preflow-push algorithm. Give an example 
which shows that the preflow-push algorithm may use many applications of 
push and lift without sending any extra flow into t or back to s. 
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age some useless work in the preflow-push algorithm. Let 
= (V,A,l=0, u) be a network with source s and sink t. Suppose that we 

rae the generic preflow-push algorithm on NV. Let h be a height function 
with respect to N and z. We say that h has a hole at position i + 1, for 
some 2 < n at some point in the execution of the algorithm if at that time 
the following holds: 

|{u : h(v) = j}| > O for every j <i and 
ante) =. 1}] = 0. 

Let h’ be defined as follows: 
h'(v) = h(w) if h(v) € {1,2,...,c} U{n,n+1,...,2n—-1} 
h'(v) =n4+1 if t < A(v) <n. 

(a) Prove that h’ is a height function, that is, (3.14) is satisfied. 
(b) Describe how to implement this modification of the height function ef- 

ficiently so that it may be used as a subroutine in the preflow-push 
algorithm. 

(c) Explain why changing the height function as above when a hole is de- 
tected may help speed up the preflow-push algorithm. 

Using the height function to detect a minimum cut after termi- 
nation of the preflow-push algorithm. Suppose z is a maximum (s,t)- 
flow that been found by executing the preflow-push algorithm on a network 
N = (V,A,l = 0,u). Describe a method to detect a minimum (s,t)-cut in 
O(n) steps using the values of the height function upon termination of the 
algorithm. 

(+) Re-optimizing a maximum (s,t)-flow. Suppose z is a maximum 
flow in a network NV = (V, A,l = 0, u). Show how to re-optimize x (that is, to 
change it to a feasible flow of maximum value) in each of the following cases: 
(a) Increase the capacity of one arc by k units. Show that the new optimal 

solution can be found in time O(km). 
(b) Decrease the capacity of one arc by k units. Show that new optimal 

solution can be found in time O(km). Hint: use Theorem 3.3.1. 

(+) Pulling and pushing flow, the MKM-algorithm. The purpose of 
this exercise is to introduce another, very efficient, method for finding a block- 
ing (s,t)-flow in a layered network due to Malhotra, Kumar and Maheshwari 
[544]. Let C= (V =VoUWYU... UY, A,] = 0, u) be a layered network with 
Vo = {s} and Vi, = {t}. Let y be a feasible (s,t)-flow which is not blocking 
in £. For each vertex i € V — {s,t} let ai, Gi, pi be defined as follows: 

a= ST Uji — Yji (3.36) 

jiEA 

BEDE 85 95 (3.37) 
ijeA 

pi = min{ai, Bi}. (3.38) 

Let 

= Usj — Ysj» Pt = a Ujt — Yjt- (3.39) 

sjEA jteA 

Finally let p = miniey {pi}. 
Suppose that p > 0 and let i € V be chosen such that p = pi. 
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3.26. 

3. 

(a) 

(b) 

(c) 

(d) 

Flows in Networks 

Prove that it is possible to send an additional amount of p units from a 

to t (called pushing from i to t) and p units of flow from s to 7 in L 

(called pulling from s to 1). Hint: use that the network is layered. 

The observation above leads to the following algorithm A for finding a 

blocking flow in a layered network. Below the p-values always refer to 

the current flow. 

The MKM-algorithm 

1. Start with the zero flow y = 0 and calculate p; for all 1 € V. If some 

i € V has p; = 0 then go to Step 6; 
2. Choose i such that pi = p; 
3. Push p units of flow from i to ¢t and pull p units from s to 7; 
4. Delete all arcs which are saturated with respect to the new flow. If 

this results in some vertex of in- or out-degree zero, then also delete 
that vertex and all incident arcs. Continue this until no more arcs 
can be deleted; 

5. Calculate p; for all vertices in the current layered network. If p; > 0 
for all vertices then go to Step 2. Otherwise go to Step 6. 

6. If ps = 0 or p: = 0, then halt; 
7. If there is a vertex i with p; = 0, then delete all such vertices and 

their incident arcs; 

8. Go to Step 5. 
Prove that the algorithm above correctly determines a blocking flow in 
the input layered network CL. 
The complexity of A depends on how we perform the different steps, 
especially Step 3. Suppose we apply the following rule for performing 
Step 3. We always push/pull p units one layer at a time. If j is the 
current vertex from (to) which we wish to send flow to (from) the next 
(previous) layer, then we always fill an arc with tail (head) 7 completely 
if there is still enough flow left and then continue to fill the next arc as 
much as possible. 
Argue that, using the rule above, we can implement the algorithm to 
run in O(n?) time. Hint: at least one vertex will be deleted between 
two consecutive applications of Step 3. Furthermore, one can keep the 
p-values effectively updated (explain how). 
Illustrate the algorithm on the layered network in Figure 3.10. 

Finding maximum (s, t)-flows by scaling. Let V = (V,A,l=0,u) bea 
network with source s and sink t and let U denote the maximum capacity of 
an arc in NV. 

(a) 
(b) 

(c) 

(—) Prove that the capacity of a minimum (s, t)-cut is at most U| A]. 
Let C be a constant and let x be a feasible (s, t)-flow in NV. Show that in 
time O(|A]) one can find an augmenting path of capacity at least C, or 
detect that no such path exists in N(x). Hint: consider the subnetwork 
of N(x) containing only arcs whose capacity is at least C. 
Consider the following algorithm: 

Max-flow by scaling 
1. U := max{uij : ij € A}; 
2. xij := 0 for every 17 € A; 

3. Cia giles. UI. 
4. while C > 1 do 
5 while N(x) contains an augmenting path of capacity at least C 
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do augment «x along P; 
6. C= C/2 
7. return x 

Prove that the algorithm correctly determines a maximum flow in the 
input network NV. 

(d) Argue that every time Step 4 is performed the residual capacity of every 
minimum (s,t)-cut is at most 2C|A|. 

(e) Argue that the number of augmentations performed in Step 5 is at most 
O(|A|) before Step 6 is executed again. 

(f) Conclude that Max-flow by scaling can be implemented so that its 
complexity becomes O(|A|? log U). Compare this complexity to that of 
other flow algorithms in this chapter. 

3.27. Show how to find a maximum (s, t)-flow in the network of Figure 3.24 using 
(a) The Ford-Fulkerson method. 
(b) Dinic’s algorithm. 
(c) The preflow-push algorithm. 
(d) The MKM-algorithm described in Exercise 3.25. 
(e) The scaling algorithm described in Exercise 3.26. 

Figure 3.24 A network with lower bounds and cost equal to zero on all arcs and 
capacities as indicated on the arcs. 

3.28. (+) Rounding a real-valued flow. Let NV = (V,A,l,u) be a network 
with source s and sink t¢ and all data on the arcs non-negative integers (note 
that some of the lower bounds may be non-zero). Suppose z is a real-valued 
feasible flow in NV such that 2;; is a non-integer for at least one arc. 
(a) Prove that there exists a feasible integer flow x’ in NV with the property 

that |x;; — 2;;| < 1 for every arc ij € A. 
(b) Suppose now that |z| is an integer. Prove that there exists an integer 

feasible flow x” in N such that |z""| = |z|. 
(c) Describe algorithms to find the flows z’,x"’ above. What is the best 

complexity you can achieve? 

3.29. Finding a feasible circulation. Turn the proof of Theorem 3.8.2 into a 
polynomial algorithm which either finds a feasible circulation, or a proof that 
none exists. What is the complexity of the algorithm? 

3.30. Residual networks of networks with non-zero lower bounds. Show 

how to modify the definition of x © z in order to obtain an analogue of 
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Seas le 

3.32. 

3.33. 

3.34. 

3.35. 

3.36. 

3.37. 

3. Flows in Networks 

Theorem 3.4.2 for the case of networks where some lower bounds are non- 

zero. 

Show that a feasible circulation (if one exists) can always be found by just 

one max flow calculation in a suitable network. Hint: transform the network 

into an (s,t)-flow network with all lower bounds equal to zero. 

(+) Flows with balance vectors within prescribed intervals. Let NV = 

(V, Al, u) be a network where V = {1,2,...,n} and let a; <bi,7=1,2...,n 

be integers. Prove that there exists a flow ¢ in N which satisfies 

Src Ug NIfSA (3.40) 

ai <b2(1) <b; Vi EV (3.41) 

if and only if the following three conditions are satisfied: 

Soa <0 (3.42) 
ieV 

yo bao (3.43) 
ieV 

u(X,X) > U(X, X) + max{a(X), —b(X)} VX CV, (3.44) 

where a(X) = }0,.y di. 
Hint: construct a network which has a feasible circulation if and only it (3.40) 
and (3.41) holds. Then apply Theorem 3.8.2. 

Submodularity of the capacity function for cuts. Let N = (V, A,l, u) 

be a network with source s and sink t. Prove that, if ($,S) and (T,T) are 
(s,t)-cuts, then 

u(S,S) + u(T,T) > u(SAT, SAT) +u(SUT,SUT). 

Hint: consider the contribution of each arc in the network to the four cuts. 

Show that, if (S,S) and (T,7) are minimum (s,t)-cuts, then so are (SN 

T, SOT) and (SUT,S UT). Hint: use Exercise 3.33. 

(+) Finding special minimum cuts. Suppose that z is a maximum (s, t)- 
flow in a network N = (V,A,l,u). Let 

U = {i: there exists an (s,i)-path in NV(z)}, 

W ={j: there exists an (j,t)-path in V(zx)}. 

Prove that (U,U) and (W, W) are minimum (s,t)-cuts. Then prove that for 
every minimum (s,t)-cut (S,T) we have U C S and W CT. 

(+) Let x be an (s, t)-flow in a network NV = (V, A,l,u). Explain how to find 
an augmenting path of maximum capacity in polynomial time. Hint: use a 
variation of Dijkstra’s algorithm. 

(+) Augmenting along maximum capacity augmenting paths. Show 
that, if we always augment along an augmenting path with the maximum 
residual capacity, then the Ford-Fulkerson algorithm becomes a polynomial 
algorithm (Edmonds and Karp [216]). Hint: show that the number of aug- 
mentations is O(mlog U), where U is the maximum capacity of an arc. 
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Converting a maximum preflow to a maximum (s, t)-flow. Let NV = 
(V,A,l = 0,u) be a network with source s and sink t. A preflow z in N is 
maximum if |b, (t)| equals the value of a maximum (s, t)-flow in NV. 
(a) Let NV = (V,A,1 = 0,u) be a network with source s and sink ¢ and let y 

be a maximum preflow in NV. Prove that there exists a maximum (s, t)- 
flow xz in N with the property that xi; < yi; for every arc aj € A. Hint: 
use flow decomposition. 

(b) How fast can you convert a maximum preflow to a maximum (s, t)-flow? 

(—) Prove Lemma 3.7.1. 

(—) Prove Lemma 3.7.6. 

Show that the complexity of Dinic’s algorithm for unit capacity networks 

remains O(n3m) even if we allow the network to have 2-cycles. Hint: prove a 
modified version of Lemma 3.7.3 and apply that as we applied Lemma 3.7.3 
in the proof of Theorem 3.7.4. 

Elimination of 2-cycles from simple networks. Suppose that NV = 
(V,A,l = 0,u = 1) is a simple unit capacity network with source s, sink 
t and that uvu is a 2-cycle in NV. Show that we may always delete one of the 
arcs wv or vu without affecting the value of a maximum (s, t)-flow in NV. 

Prove Theorem 3.7.7. Hint: see the proof of Theorem 3.7.4. 

Show how to derive Theorem 3.8.4 from Lemma 3.2.2 and Theorem 3.8.2. 

Scheduling jobs on identical machines. Let J be a set of jobs which are 
to be processed on a set of identical machines (such as processors, airplanes, 
trucks etc). Each job is processed by one machine. There is a fixed schedule 
for the jobs, specifying that job 7 € J must start at time s; and finish at time 
f;. Furthermore, there is a transition time t;; required to set up a machine 
which has just performed job i to perform job 7 (e.g., jobs could be different 
loads for trucks and t;; could be time to drive a truck from the position 
of load 2 to that of load 7). The goal is to find a feasible schedule for the 
jobs which requires as few machines as possible. Show how to formulate this 
problem as a minimum value (s, t)-flow problem. 

(+) Scheduling supervision of projects. This exercise deals with a prac- 
tical problem concerning the assignment of students to various projects in 
a course. All projects which are chosen by at least one student are to be 
supervised by one or more qualified teachers. Each student is supervised by 
one teacher only. There are n students, m different projects and ¢t possible 
supervisors for the projects. 
Let b;, 1 = 1,2,...,m, denote the maximum number of students who may 
choose the same project (they work alone and hence need individual super- 
vision). For each project i, 1 = 1,2,...,m, there is a subset A; C {1,...,t} 
of the teachers who are capable of supervising the ith project. Finally each 
teacher j7, 7 = 1,2,...,¢ has an upper limit of k; on the number of students 
(s)he can supervise. 
Every student must be assigned exactly one project. We also assume that 
each student has ranked the projects from 1 to m according to the order of 
preference. Namely, the project the student would like best is ranked one. 
Denote the rank of project 7 by student 7 by rj;. 
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3.48. 

3.49. 

3.50. 
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The goal is to find an assignment p(1), p(2),...,p(n) of students to projects 

(that is student 7 is assigned project p(i)) which respects the demands above 
and at the same time minimizes the sum )>”"_, rip(i). 

(a) Show how to formulate the problem as a minimum cost flow problem. 
(b) If we only wish to find a feasible assignment (i.e. one that does not violate 

the demands above), then which is the fastest algorithm you can device? 
(c) Which minimum cost flow algorithm among those in Section 3.10 will 

give the fastest algorithm for the problem when formulated as in question 
a)? 

(d) oe p(1), p(2),..., p(n) be an optimal assignment of students to projects. 
Suppose that before the actual supervision of the projects starts, some 
supervisor j € {1,2,...,t} lowers his/her capacity for supervision from 
k; to kj < kj. 
Describe a fast algorithm which either proves that no feasible assignment 
exists or changes the assignment p(1),p(2),...,p(n) to a new optimal 
assignment p’(1), p’(2),...,p’(m) with respect to the new restrictions. 

(e) Suppose now that the change in capacity only happens after the students 
have started working on the projects. The goal now is to find a new 
optimal and feasible solution or show that no feasible solution exists, 
while at the same time rescheduling as few students as possible to new 
projects (we assume that rescheduled students must start all over again). 
Explain briefly how to solve this variant of the problem. Hint: devise 
some measure of cost for rescheduling a student in a minimum cost flow 
model. 

‘ 

(—) Let NV = (V,A,l = 0,u) be a network with source s and sink t and let 
N' = (V,A',l' = 0,u’,c’) be obtained from N by adding a new arc ts with 
Uts = 00 and cs = —1 taking u;; = ui; for all ij € A and c,; = 0 for all 
ij € A. Prove that there is a 1-1 correspondence between the minimum cost 
circulations in NV’ and the maximum (s, t)-flows in NV. 

Let NV = (V, A,l =0,u,b,c) be a network with some arcs of infinite capacity 
and some arcs of negative cost. 
(i) Show that there exists a finite optimal solution to the minimum cost 

flow problem (finding a feasible flow in NV of minimum cost) if and only 
if N has no cycle C of negative cost such that all arcs of C have infinite 
capacity. Hint: study the difference between an arbitrary feasible solution 
and some fixed solution of finite cost. 

(ii) Let K be the sum of all finite capacities and those b-values that are pos- 
itive. Show that, if there exists a finite optimal solution to the minimum 
cost flow problem for A’, then there exists one for which no arc has flow 
value more than K. Hint: use flow decomposition. 

Eliminating negative cost arcs from minimum cost flow problems. 
Suppose NV = (V,A,l = 0,u,b,c) contains an arc uv of negative cost, but 
no cycle of infinite capacity and negative cost (see Exercise 3.48). Derive a 
result similar to Lemma 3.2.1 which can be used to transform W into a new 
network N+ in which all costs are non-negative and such that given any 
feasible flow «* in NV+ we can obtain a feasible flow xz in N and find the 
cost of x efficiently, given the cost of «*. Hint: reverse arcs of negative costs, 
negate the costs of such arcs and update balance vectors. 

Prove Theorem 3.10.6. 
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Try to generalize the statement of Proposition 3.10.7 to the case when the 
paths P, P’ do not necessarily have the same end vertices. Hint: consider the 
network A/.¢ obtained as in Lemma 3.2.2. 

. Show by an example that the cycle canceling algorithm may use 2Q(mUC) 
augmentations before arriving at an optimal flow. 

. (—) Show how to reduce the problem of finding a matching in a bipartite 
graph B = (X,Y, £) which maximizes the number of edges incident vertices 
in X to the problem of finding a maximum matching in a bipartite graph. 

. (+) Prove that, if D is a k-regular semicomplete digraph on n vertices, 
then D contains a spanning tournament T which is regular or almost regular 
(\5+ (LT) — 6- (T)| < 1) depending on whether n is odd or even. Observe that 
every regular tournament has an odd number of vertices (Bang-Jensen [47]). 

. (+) Generalized matchings in undirected graphs. Let G = (V, E) 
be an undirected graph. Recall that for any subset S C V we denote by 
Ne(S) the set of vertices in V — S which have at least one edge to S. Prove 
that every graph G either has a vertex disjoint collection of edges e1,..., ex 
and odd cycles Ci,...,C, covering V, or a set S C V with |Ne(S)| < |S| 
and S is independent. Derive an algorithm from your proof which either 
finds the desired generalized matching, or an independent subset S such that 
|N(S)| < |S|. Hint: use Theorem 3.8.2 on an appropriate network. 

Prove the following theorem due to Konig [499]. Every regular bipartite graph 
has a perfect matching. 

(—) 1-regular digraphs. Prove that, if D is a 1-regular digraph, then D is 
precisely a collection of vertex disjoint cycles C),...,C, for some k > 1. 

Cycle factors of directed pseudographs. Prove that Proposition 3.11.6 
also holds for directed pseudographs provided we consider a loop as a cycle. 

(+) Calculating the path-cycle covering number of a digraph. Show 
how to find in time O(,/nm) the minimum integer k such that a given digraph 
D has a path-cycle factor with k paths. Hint: use minimum value flows in an 
appropriately constructed simple network. 

(+) Path-cycle covering numbers of extensions of digraphs. Let R be 
a digraph on r vertices, and let 1; < wi,l2 < v2,...,l, < ur be 2r non-negative 
integers. Let J, denote an independent set on p vertices. Show how to find 
min{pcec(R[Ip,,--.2p,]) : li < pi < ui, ¢ = 1,...,7} im time O(n*). Hint: 
generalize the network you used in Exercise 3.59 (Bang-Jensen and Gutin 

(65, 365]). 

. Let k € Z,. Show that a directed graph D = (V, A) has a k-path-cycle factor 
if and only if |U,¢x N*(v)| > |X| —& and |U,ex N (v)| = |X| —. 

Show how to decide in time O(,/nm) whether or not a given input digraph 
D with special vertices x, y contains a 1-path-cycle factor such that the path 
is a path between z and y. 

Complete the proof of Theorem 3.11.11. 
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3.68. 
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3.72. 

3.73. 

3.74. 

3.79. 
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Heaviest cycle subdigraphs in digraphs. Describe an O(n?) algorithm to 

find, in a digraph with non-negative weights on the arcs, a cycle subdigraph 

of maximum weight. Hint: use the same approach as in the proof of Theorem 

Sl dahl. 

. (+) Prove Theorem 3.11.13 directly from Theorem 3.8.2. Show that your 

proof implies the existence of an algorithm, which given a k-strong digraph 

D and asubset X C V(D), either finds a collection of disjoint cycles covering 

all the vertices of X, or an independent set X ' C X of size more than k. 

Find a minimum cost Chinese postman walk in the digraph of Figure 3.25. 

Figure 3.25 A digraph with weights on the arcs. 

Show how to formulate the following problem as a flow problem. Given 
two sequences of non-negative integers a1, @2,...,@n and bi, b2,...,bn decide 
whether or not there exists a directed multigraph D = ({v1, v2,.-., Un}, A) 
such that d5(vi) = a; and dp(vi) = b; for each i = 1,2,...,n. Hint: use 
Theorem 3.11.3 or the proof idea of this theorem. 

Prove Proposition 3.11.8. 

Prove Proposition 3.11.10. Hint: use the same network as in Exercise 3.59. 

Every regular directed multigraph has a cycle factor. Prove this claim. 

Show how to reduce the case when } 7", ai # ))"'_, 6; to the case when the 
equality holds for the transportation problem. Hint: introduce new plants or 
retailers. 

Prove Lemma 3.12.1. 

Prove that Lemma 3.12.1 also holds when we consider the dual variables 

a”, 8" which are updated as in (3.35). 

(+) Show that by using appropriate data structures and by keeping labels 
(used in previous searches for augmenting paths) until a new augmenting path 
has been found (implying that the value of the current flow can be increased), 
cne can implement the primal-dual algorithm for the transportation problem 
so that it runs in time O(M(n+™m)’). 

Solve the following assignment problem using the primal-dual method. 
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. Show that the buildup algorithm of Section 3.10 can be applied to solve the 
assignment problem in time O(n?). 

Show that if we update the dual variables according to (3.35) we still obtain 
a feasible solution to (3.27) whose objective function value is strictly higher 
than that of a, (. 

The following table shows an instance of the transportation problem after 
some iterations of the primal-dual method outlined in Section 3.12. Complete 
the algorithm on this example. 

Tree solution to a flow problem. Let N = (V,A,l = 0,u,b,c) be a 
network with n vertices for which there exists a feasible flow and let D = 
(V, A) be the underlying digraph of \. Prove that there exists a feasible flow 
z in N such that the number of arcs on which 0 < xi; < wij is at most n—1. 
We call such a feasible flow a tree solution. Hint: show that, if C is a cycle 
in UG(D) where 0 < xi; < ui; for every arc on the cycle, then we can change 
the current flow such that the resulting flow 2’ is either 0 or ui; for at least 
one arc ij of C and no new arc pq with 0 < x, < upg is created. 

Let NV = (V,A,l = 0,u,b,c) be a network with n vertices for which there 
exists a feasible flow. Prove that there exists an optimal feasible flow which 
is a tree solution. 

Vertex potentials and flows. Let NV = (V,A,l = 0,u,b,c) be a network 
and z a feasible flow in NV. Prove that xz is an optimal flow if and only if there 
exists a function  : V-+R such that cf; > 0 for every arc ij in N(x). Here 
ci; = cij — 7(i) + 1(j) is the reduced cost function and the costs in N(z) 
are with respect to c” instead of c. Hint: see Exercises 2.16-2.18. 
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3. Flows in Networks 

Complementary slackness conditions for optimality of a flow. Let 

N =(V,A,1=0,u,6,c) be a network and z a feasible flow in NV. Prove that 
zx is an optimal flow if and only if there exists a function 7: V-+F such that 

the following holds: 

Ci >0 => «;=0 (3.45) 

Ciy <1) Lij = Wij (3.46) 

0 <a ate ee Be — i. (3.47) 

Here cf; = ci; — m(t) + 7(j) as above. Hint: use Exercise 3.81. 

(+) A primal-dual algorithm for minimum cost flows. Let NV = 
(V, A,l = 0,u,c) be a network with source s and sink t for which the value 
of a maximum (s,t)-flow is K > 0. Let x be an optimal (feasible) (s, t)-flow 
of value k < K and let : V-+R be chosen such that cj; > 0 for every arc 
ij in N(x) (see Exercise 3.81): Define Ao as those arcs ij of N(x) for which 
we have cj; = 0 and let No be the subnetwork of N(x) induced by the arcs 
of Ao. f 

(a) Show that if y is a feasible (s,t)-flow in No of value p then 2’ =x Gy is 
an optimal (s, t)-flow of value k+p in NV. Hint: verify that c7; > 0 holds 
for every arc ij in N(z2’). 

(b) Suppose y is a maximum (s, t)-flow in No, but 2’ = xz Gy has value less 
than K. Let S denote the set of vertices which are reachable from s in 
No(y). Let €, €1,€2 be defined as follows. Here we let €; = oo if there are 
no arcs in the corresponding set, i = 1, 2: 

€1 = min {c7,|i € S,j € S, ci; > 0 and zi; < wij, } 

€2 = min {—ci,|i € S,j € S, ci, < 0 and zi; > 0}. 

Let « = min{e1, €2}. Prove that € < oo. 
(c) Now define 7’ as follows: m'(v) := m(v) + if v € S and x'(v) := m(v) 

if v € S. Let No contain those arcs of N(z') for which we have cf, =o 
and let S’ denote the set of vertices which are reachable from s in Nj. 
Show that S is a proper subset of S’ and that gee > 0 holds for all arcs 
in N(x’). Hint: use Exercise 3.14. 

(d) If t ¢ S’, then we can change 7’ as above (based on the set S’ rather 
than S). Conclude that after at most n — 1 such updates of the vector 
x’, the current network Nj contains an (s,t)-path. 

(e) Use the observations above to design an algorithm that finds a minimum 
cost (s,t)-flow of value K in N by solving a sequence of maximum flow 
problems. What is the complexity of this algorithm? 



4. Classes of Digraphs 

In this chapter we introduce several classes of digraphs. We study these, 

along with the classes of digraphs defined already in Chapter 1, with respect 

to their characterization, recognition and decomposition. We also consider 

some basic properties of these classes. Further properties of the classes are 

studied in the following chapters of this book. 

We start this chapter by introducing Depth-First Search (DFS), an im- 
portant technique in algorithms on graphs. This technique is used in this 

chapter and some other chapters to design fast algorithms. In particular, 

DFS is used in Section 4.2, where we describe a fast algorithm to find an 

acyclic ordering in an acyclic digraph. In Section 4.3, we introduce and study 

the transitive closure and a transitive reduction of a digraph. We use these 

notions in Section 4.7. A linear time algorithm for finding strong components 

of a digraph based on DFS is given in Section 4.4. 

Several characterizations and a recognition algorithm for line digraphs are 

given in Section 4.5. We investigate basic properties of de Bruijn and Kautz 

digraphs and their generalizations in Section 4.6. These digraphs are extreme 

or almost extreme with respect to their diameter and vertex-strong connectiv- 

ity. Series-parallel digraphs are introduced and studied in Section 4.7. These 

digraphs are of interest due to various applications such as scheduling. In the 

study of series-parallel digraphs we use notions and results of Sections 4.3 

and 4.5. 

An interesting generalization of transitive digraphs, the class of quasi- 

transitive digraphs, is considered in Section 4.8. The path-merging property 

of digraphs which is quite important for investigation of some classes of di- 

graphs including tournaments is introduced and studied in Section 4.9. Two 

classes of path-mergeable digraphs, locally in-semicomplete and locally out- 

semicomplete digraphs, both generalizing the class of tournaments, are de- 
fined and investigated with respect to their basic properties in Section 4.10. 

The intersection of these two classes forms the class of locally semicomplete 

digraphs, which are studied in Section 4.11. There we give a very useful clas- 

sification of locally semicomplete digraphs, which is applied in several proofs 

in other chapters. A characterization of a special subclass of locally semicom- 

plete digraphs, called round digraphs, is also proved. 
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Three classes of totally decomposable digraphs forming important gener- 

alizations of quasi-transitive digraphs as well as some other classes of digraphs 

are studied in the above-mentioned sections. We investigate recognition of 

these three classes in Section 4.12. Some properties of intersection digraphs 

are given in Section 4.13. Planar digraphs are discussed in Section 4.14. The 

last section is devoted to an application of digraphs to solving systems of 

linear equations. 

4.1 Depth-First Search 

In this section we will introduce a simple, yet very important, technique in 

algorithmic graph theory called depth-first search. While depth-first search 

(DFS) has certain similarities with BFS (see Section 2.3.1), DFS and BFS 
are quite different procedures, each with its own features. 

Let D = (V, A) be a digraph. In DFS, we start from an arbitrary vertex 
of D. At every stage of DFS, we visit some vertex xz of D. If x has an 
unvisited out-neighbour y, we visit the vertex y! . We call the arc ry a tree 
arc. If x has no unvisited out-neighbour, we call « explored and return to 
the predecessor pred(x) of x (the vertex from which we have moved to 2). 
If x does not have a predecessor, we find an unvisited vertex to ‘restart’ the 
above procedure. If such a vertex does not exist, we stop. 

In our formal description of DFS, each vertex x of D gets two time-stamps: 
tvisit(r) once z is visited and texpl(x) once z is declared explored. 

DFS 
Input: A digraph D = (V, A). 
Output: pred(v), tvisit(v) and texpl(v) for every v € V. 

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0. 
2. set, time := 0. 
3. For each vertex v € V do: if tvisit(v) = 0 then perform DFS-PROC(v). 

DFS-PROC(v): 

1. Set time := time + 1, tvisit(v) := time. 
2. For each u € N*(v) do: if tvisit(u) = 0 then pred(u) := v and perform 

DFS-PROC(u). 
3. Set-time := time + 1, texpl(v) := time. 

Clearly, the main body of the algorithm takes O(n) time. The total time 
for executing the different calls of the procedure DFS-PROC is O(m) (as 
Yecv 4* (x) = m by Proposition 1.2.1). As a result, the time complexity of 
DFS is O(n +m). 

‘If has more than one unvisited out-neighbour, we choose y as an arbitrary 
unvisited out-neighbour. 
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Unlike BFS, in the end of DFS, the tree arcs may form a non-connected 
spanning subdigraph F' of D (recall that we perform BFS from a prescribed 
vertex). The arc set of F' is {(pred(v),v) : v € V, pred(v) # nil}. Since each 
component of UG(F) is a tree, F is a forest. We call F a DFS forest: a 
tree in F' is a DFS tree; the root of a DFS tree is some vertex v used in 
Step 3 of the main body of DFS to initiate DFS-PROC. Clearly, the root r 
of a DFS tree T' is the only vertex of T whose in-degree is zero. According to 
the above description of DFS every vertex in T can be reached from r by a 
path (hence T is an out-branching rooted at r in the subdigraph induced by 
V(T)). We say that a vertex z in T is a descendant of another vertex y in 
T (denoted by x > y) if y lies on the (r,x)-path in T. Note that in general 
there may be many different DFS forests for a given digraph D. 

It is convenient to classify the non-tree arcs of a digraph D = (V, <A) 
with respect to a given DFS forest of D. If we visit a vertex x and consider 

an already visited out-neighbour y of x, then the following possibilities may 
occur. 

1. The vertex y is explored, i.e., texpl(y) # 0. This means that x and y 

belong to different DFS trees. In this case, the arc zy is a cross arc. 

2. The vertex y is not explored. If x > y then zy is a backward arc. If 

y > «x then zy is a forward arc. If none of the above two variants occurs, 

zy is (again) a cross arc. 

We illustrate the DFS algorithm and the above classification of arcs in 

Figure 4.1. The tree arcs are in bold. The non-tree arcs are labeled B,C or 

F depending on whether they are backward, cross, or forward arcs. Every 

vertex u is time-stamped by tvisit(w)/texpl(u) if one or both of them have 
been changed from the initial value of zero. 

Observe that, for every vertex uv € V, we have tvisit(v) < texpl(v). There 
is no pair u, v of vertices such that tvisit(u) = tvisit(v) or tvisit(u) = texpl(v) 
or texpl(u) = texpl(v) due to the fact that before assigning any time to 

tvisit(...) or texpl(...) the value of time is increased. We consider some 
additional simple properties of DFS. We denote the interval from time t to 

time t' > t by [t,t’] and write J C I’ if the interval J is contained in the 
interval I’. 

Proposition 4.1.1 Let D = (V,A) and let the numbers tvisit(v), texpl(v), 
v € V, be calculated using DFS. For every pair of vertices u and v, one of 

the assertions below holds: 

(1) The intervals [tvisit(u), texpl(u)] and [tvisit(v), texpl(v)] are disjoint; 
(2) [tvisit(u), texpl(u)] C [tvisit(v), texpl(v)]; 
(3) [tvisit(v), texpl(v)] C [tvisit(u), texpl(u)]. 

Proof: Without loss of generality, we may assume that tvisit(u) < tvisit(v). 
If texpl(u) < tvisit(v), then the first assertion is valid. So, assume that 
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Figure 4.1 Some steps of DFS on a digraph starting from the vertex v. 

texpl(u) > tvisit(v). This means that v was visited when wu has been al- 
ready visited but u was not explored yet. Thus, there is a directed path from 

u to v in the DFS forest, implying that v > u. Since u cannot become ex- 

plored when v is still unexplored, texpl(v) < texpl(u). This implies the third 

assertion. O 

This proposition implies immediately the following. 

Corollary 4.1.2 For a pair x,y of distinct vertices of D, we have y > x if 

and only if tvisit(x) < tvisit(y) < texpl(y) < texpl(z). 0 

Proposition 4.1.3 Let F be a DFS forest of a digraph D = (V, A) and let 

x, y be vertices in the same DFS tree T of F. Then y > = if and only if, 

at the time tvisit(x), the vertex y can be reached from x along a path all of 
whose internal vertices are unvisited. 

Proof: Assume that y > 2. Let z be an internal vertex of the (zx, y)-path in 
T’. Thus, z > x. By Corollary 4.1.2, tvisit(x) < tvisit(z). Hence, z is unvisited 
at time tvisit(z). 

Suppose that y is reachable from z along a path P of unvisited vertices 
at time tvisit(r), but y 4 «. We may assume that z = yp (the predecessor 
of y on P) is a descendant of x in T, that is, z > x holds. By Corollary 4.1.2, 
texpl(z) < texpl(x). Since y is an out-neighbour of z, y is visited before z is 
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explored. Hence, tvisit(y) < texpl(z). Clearly, tvisit(2) < tvisit(y). Therefore, 
tvisit(z) < tvisit(y) < texpl(x). By Proposition 4.1.1, it means that the 
interval [tvisit(y),texpl(y)] is contained in the interval [tvisit(x), texpl(z)]. 
By Corollary 4.1.2, we conclude that y > x; a contradiction. O 

4.2 Acyclic Orderings of the Vertices in Acyclic 

Digraphs 

Acyclic digraphs play a very important role in both theory and applications 

of digraphs (the reader will see this fact in this and the following chapters 

of the book). Some basic properties of acyclic digraphs have been studied 

in Section 1.4 where we showed that every acyclic digraph D has an acyclic 

ordering of the vertices (Proposition 1.4.3). The purpose of this subsection is 
to show how to find an acyclic ordering fast?. 

Let D be an acyclic digraph and let vj,v2,...,Un be an ordering of the 

vertices in D. We recall that this ordering is acyclic if the existence of an arc 

u,v; in D implies 1 < 7. By Proposition 1.4.3 every acyclic digraph has an 

acyclic ordering of its vertices. Now we demonstrate that using DFS one can 
find an acyclic ordering of the vertices of D in (optimal) linear time. 

Below we assume that the input to the DFS algorithm is an acyclic digraph 

D = (V,A). In the formal description of DFS let us add the following: 7 := 
n+1 in the line 2 of the main body of DFS and i := 7 —1, v; := v in the last 

line of DFS-PROC. We obtain the following algorithm which we denote by 

DFSA): 

DFSA(D) 
Input: A digraph D = (V, A). 
Output: An acyclic ordering v1,...,Un of D. 

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0. 
2. set times=0,2:=n+1. 

3. For each vertex v € V do: if tvisit(v) = 0 then perform DFSA-PROC(v). 

DFSA-PROC(v) 

1. Set time := time + 1, tvisit(v) := time. 
2. For each u € Nt(v) do: if tvisit(u) = 0 then pred(u) := v and perform 

DFSA-PROC(u). 
3. Set time := time + 1, texpl(v) := time, i := 1-1, vj := v. 

? Notice that in the majority of literature an acyclic ordering is called a topological 
sorting. We feel that the name acyclic ordering is more appropriate, since no 
topology is involved. Knuth [481] was the first to give a linear time algorithm for 
topological sorting. 
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Theorem 4.2.1 The algorithm DFSA correctly determines an acyclic order- 

ing of any acyclic digraph in time O(n +m). 

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to 

show that the ordering v1, v2,...,Un is acyclic. Observe that according to our 

algorithm 

texpl(v;) > texpl(v;) if and only if 2 < 9. (4.1) 

Assume that D has an arc vgv, such that k > s. Hence, texpl(v;) > texpl(v,). 

The arc vzvs is not a cross arc, because if it were, then by Proposition 4.1.1 

and Corollary 4.1.2, the intervals for vz and vs would not intersect, i.e., vz 

would be visited and explored before v, would be visited; this and (4.1) make 

the existence of v,gv, impossible. The arc vgvu, is not a forward arc, because if 

it were, texpl(v,) would be smaller than texpl(v,). Therefore, v,gv; must be 

a backward arc, i.e., uy > vs. Thus, there is a (vs, v,)-path in D. This path 

and the arc vgv, form a cycle, a contradiction. a) 

Figure 4.2 illustrates the result of applying DFSA to an acyclic digraph. 

The resulting acyclic ordering is z,w,u, y, Z, v. 

In Section 4.4 we apply DFSA to an arbitrary not necessarily acyclic 

digraph and see that the ordering v1, v2,...,Un obtained by DFSA is very 

useful to determine the strong components of a digraph. 

NOW SD Ae Sie C8 

y C5/6 > TCA. 10/1 w 

Figure 4.2 The result of applying DFSA to an acyclic digraph 

4.3 Transitive Digraphs, Transitive Closures and 
Reductions | 

Recall that a digraph D is transitive if, for every pair zy and yz of arcs in D 
with x # z, the arc zz is also in D. Transitive digraphs form the underlying 
graph-theoretical model in a number of applications. For example, transitive 
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oriented graphs correspond very naturally to partial orders (see Section 5.3 

for some terminology on partial orders, the correspondence between transitive 

oriented graphs and partial orders and some basic results). The aim of this 

section is to give a brief overview of some properties of transitive digraphs as 

well as transitive closures and reductions of digraphs. 

Clearly, a strong digraph D is transitive if and only if D is complete®. We 

have the following simple characterization of transitive digraphs; its proof is 

left as Exercise 4.2. 

Proposition 4.3.1 Let D be a digraph with an acyclic ordering D,,Do2,..., 

Dy, of its strong components. The digraph D is transitive if and only if each 

of D; ts complete and the digraph H obtained from D by contraction of 

D,,...,Dp followed by deletion of multiple arcs is a transitive oriented graph. 

fmother words Die" | Di 3>7 04, 5\: Oo 

The transitive closure TC(D) of a digraph D is a digraph with 
V(TC(D)) = V(D) and, for distinct vertices u,v, the arc uv € A(TC(D)) 
if and only if D has a (u,v)-path. Clearly, if D is strong then TC(D) is 
a complete digraph. The uniqueness of the transitive closure of an arbitrary 

digraph is obvious. To compute the transitive closure of a digraph one can ob- 

viously apply the Floyd-Warshall algorithm in Chapter 2. To obtain a faster 

algorithm for the problem one can use the fact discovered by a number of re- 

searchers (see, e.g., the paper [238] by Fisher and Meyer, or [286] by Furman) 

that the transitive closure problem and the matrix multiplication problem 

are closely related: there exists an O(n*)-algorithm, with a > 2, to compute 

the transitive closure of a digraph of order n if and only if the product of 

two boolean n x n matrices can be computed in O(n) time. Coppersmith 
and Winograd [168] showed that there exists an O(n?:3"°)-algorithm for the 
matrix multiplication. Goralcikova and Koubek [333] designed an O(nmreqa)- 

algorithm to find the transitive closure of an acyclic digraph D with n vertices 

and Mreq arcs in the transitive reduction of D (the notion of transitive re- 

duction is introduced below). This algorithm was also studied and improved 

by Mehlhorn [561] and Simon [672]. 
An arc uv in a digraph D is redundant if there is a (u,v)-path in D 

which does not contain the arc uv. A transitive reduction of a digraph 

D is a spanning subdigraph H of D with no redundant arc such that the 

transitive closures of D and H coincide. Not every digraph D has a unique 

transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each 

of these cycles is a transitive reduction of D. Below we show that a transitive 
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive 

reduction of an acyclic digraph. The intersection of digraphs D,,..., Dx 

with the same vertex set V is the digraph H with vertex set V and arc set 

3 By the definition of a transitive digraph, a 2-cycle zyx does not force a loop at 
xz and y. 
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A(D,) NM... A(Dx). Similarly one can define the union of digraphs with 

the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning 

subdigraphs L of D for which TC(L) = TC(D). 

Theorem 4.3.2 /5] For an acyclic digraph D, there exists a unique digraph 

D!' with the property that TC(D') = TC(D) and every proper subdigraph 

H of D' satisfies TC(H) # TC(D'). The digraph D' is the intersection of 

digraphs in S. 

The proof of this theorem, which is due to Aho, Garey and Ullman, follows 

from Lemmas 4.3.3 and 4.3.4. 

Lemma 4.3.3 Let D and H be a pair of acyclic digraphs on the same vertex 

set such that TC(D) = TC(H) and A(D) — A(H) # 9. Then, for every 
e € A(D) — A(H), we have TC(D —e) =TC(D). 

Proof: Let e = zy € A(D) — A(H). Since e ¢ A(H), H must have an (z, y)- 

path passing through some other vertex, say z. Hence, D has an (2, z)-path 

P,, and a (z,y)-path P_,. If P,, contains e, then D has a (y,z)-path. The 

existence of this path contradicts the existence of P,, and the hypothesis that 

D is acyclic. Similarly, one can show that P,, does not contain e. Therefore, 

D —€¢ has an (2, y)-path. Hence, TC(D — e) = TC(D). Oo 

Lemma 4.3.4 Let D be an acyclic digraph. Then the set S(D) is closed 
under union and intersection. 

Proof: Let G,H be a pair of digraphs in S(D). Since TC(G) = TC(H) = 
TC(D), GUH is a subdigraph of TC(D). The transitivity of TC(D) now 
implies that TC(G U H) is a subdigraph of TC(D). Since G is a subdigraph 
of GU H, we have TC(D) (= TC(G)) is a subdigraph of TC(G U H). Thus, 
we conclude that TC(GU H) = TC(D) and GUH € S(D). 

Now let €1,...,€p be the arcs of G— A(GN H). By repeated application 
of Lemma 4.3.3, we obtain 

TC(G —-e, Goer &p) = ICKG). 

This means that TC(GN H) = TC(G) =TC(D), henceG@NHES(D). O 

Aho, Garey and Ullman [5] proved that there exists an O(n*)-algorithm, 
with a > 2, to compute the transitive closure of an arbitrary digraph D of 
order n if and only if a transitive reduction of D can be constructed in time 
O(n’). Therefore, we have 

Proposition 4.3.5 For an arbitrary digraph D, the transitive closure and a 
transitive reduction can be computed in time O(n?3"°). Oo 
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Simon [673] described an O(n+m)-algorithm to find a transitive reduction 
of a strong digraph D. The algorithm uses DFS and two digraph transforma- 

tions preserving TC'(D). This means that to have a linear time algorithm for 

finding transitive reductions of digraphs from a certain class D, it suffices to 

design a linear time algorithm for the transitive reduction of strong compo- 

nent digraphs of digraphs in D. (Recall that the strong component digraph 

SC(D) of a digraph D is obtained by contracting every strong component 

of D to a vertex followed by deletion of parallel arcs.) Such algorithms are 
considered, e.g., in the paper [385] by Habib, Morvan and Rampon. 

While Simon’s linear time algorithm in [673] finds a minimal subdigraph 

D' of a strong digraph D such that TC(D’) = TC(D), no polynomial algo- 
rithm is known to find a subdigraph D” of a strong digraph D with minimum 
number of arcs such that TC(D") = TC(D). This is not surprising due to the 
fact that the corresponding optimization problem is ’P-hard. Indeed, the 

problem to verify whether a strong digraph D of order n has a subdigraph 

D" of size n such that TC(D") = TC(D) is equivalent to the hamiltonian 
cycle problem, which is P-complete by Theorem 5.0.1. 

A subdigraph D” of a digraph D with minimum number of arcs such 

that TC(D") = TC(D) is sometimes called a minimum equivalent sub- 
digraph of D. By the above discussion, we see that a minimum equivalent 

subdigraph of an acyclic digraph is unique and can be found in polynomial 

time. This means that the main difficulty of finding a minimum equivalent 

subdigraph of an arbitrary digraph D lies in finding such subdigraphs for 

the strong components of D. This issue is addressed in Section 6.11 for some 

classes of digraphs studied in this chapter. For the classes in Section 6.11, 

the minimum equivalent subdigraph problem is polynomial time solvable. 

4.4 Strong Digraphs 

In many problems on digraphs it suffices to consider the case of strong di- 

graphs. For example, if we wish to find a cycle through a given vertex z in a 

digraph D, we need only consider the strong component of D containing z. 

Furthermore, certain properties, such as being hamiltonian, imply that the 

digraph in question must be strong. The aim of this section is to develop a 

fast algorithm for finding strong components in a digraph and in particular 

to recognize strong digraphs. 
Tarjan [688] was the first to obtain an O(n + m)-algorithm to compute 

the strong components of a digraph. We start this section by presenting this 

algorithm, then we discuss its complexity and prove its correctness. Our pre- 

sentation is adapted from the book [169] by Cormen, Leiserson, and Rivest. 
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SCA(D) 
Input: A digraph D. 

Output: The vertex sets of strong components of D. 

1. Call DFSA(D) to compute the ‘acyclic’ ordering v1, V2,---,Un- 

2. Compute the converse D’ of D. 

3. Call DFS(D’), but in the main loop of DFS consider the vertices accord- 

ing to the ordering v1, v2,..-,Un. In the process of DFS(D’) output the 

vertices of each DFS tree as the vertices of a strong component of D. 

Figure 4.3 illustrates the strong component algorithm (SCA). Clearly, the 

complexity of SCA is O(n+m). It is more difficult to establish the correctness 

of SCA. Several lemmas are needed. 

(a) (b) 

Figure 4.3 (a) A digraph D; the order of vertices found by DFSA is shown. (b) 
The converse D’ of D; the bold arcs are the arcs of a DFS forest for D’. 

The proof of our first lemma is simple and left as an exercise, Exercise 

4.3. 

Lemma 4.4.1 If a pair x,y of vertices belongs to the same strong component 

S of a digraph D, then the vertices of every path between x and y are in S. 

oO 

Lemma 4.4.2 In any execution of DFS on a digraph, ail vertices of the same 

strong component are placed in the same DFS tree. 

Proof: Let S be a strong component of a digraph D, let r be the first vertex 

of S visited by DFS and let x be another vertex of S. Consider the time 

tvisit(r) of DFS. By Lemma 4.4.1, all vertices on an (r,z)-path belong to S 
and apart from r are unvisited. Thus, by Proposition 4.1.3, x belongs to the 

same DFS tree as r. Oo 

In the rest of this section tvisit(u) and texpl(u) are the time-stamps cal- 

culated during the first step of SCA (recall that these depends on the order in 

which the DFS routine visits the vertices). The forefather ¢(u) of a vertex 
u is the vertex w reachable from u such that texpl(w) is maximum. 
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Since u is reachable from itself, we have 

texpl(u) < texpl((u)). (4.2) 

Clearly, by the definition of forefather 

if v is reachable from wu, then texpl(¢(v)) < texpl(¢(u)). (4.3) 

The next lemma gives a justification for the term ‘forefather’. 

Lemma 4.4.3 In any execution DFS on a digraph D, every verter u € V(D) 

is a descendant of its forefather ¢(u). 

Proof: If ¢(u) = u, this lemma is trivially true. Thus, assume that ¢(u) 4 u 

and consider the time tvisit(u) of DFS for D. Look at the status of ¢(u). The 
vertex ¢(u) cannot be already explored as that would mean texpl(¢(u)) < 
texpl(u), which is impossible. If ¢(u) is already visited but not explored, then, 
by Corollary 4.1.2, u is a descendant of ¢(w) and the lemma is proved. 

It remains to show that ¢(u) has been indeed visited before time tvisit(w). 

Assume it is not true and consider a (u, ¢(u))-path P. If every vertex of P 

except for u has not been visited yet (at the time tvisit(u)), then by Propo- 

sition 4.1.3 ¢(u) is a descendant of u, i.e. texpl(d(u)) < texpl(u), which is 

impossible. Suppose now that there is a vertex x in P apart from wu which 

has been visited. Assume that z is the last such vertex in P (going from u 

towards ¢(u)). Clearly, has not been explored yet (as x dominates an unvis- 
ited vertex). By Proposition 4.1.3 applied to P[z, 6(u)], @(u) is a descendant 
of x. Thus, texpl(¢(u)) < texpl(z), which contradicts the definition of ¢(u). 

Thus, ¢(u) has been indeed visited before time tvisit(u), which completes 
the proof of this lemma. O 

Lemma 4.4.4 For every application of DFS to a digraph D and for every 

u € V(D), the vertices u and ¢$(u) belong to the same strong component of 

DD. 

Proof: There is a (u, ¢(u))-path by the definition of forefather. The existence 
of a path from ¢(u) to u follows from Lemma 4.4.3. O 

Now we show a stronger version of Lemma 4.4.4. 

Lemma 4.4.5 For every application of DFS to a digraph D and for every 

pair u,v € V(D), the vertices u and v belong to the same strong component 

of D if and only if ¢(u) = g(v). 

Proof: If u and v belong to the same strong component of D, then every 

vertex reachable from one of them is reachable from the other. Hence, ¢(u) = 

¢(v). By Lemma 4.4.4, u and v belong to the same strong components as their 

forefathers. Thus, ¢(u) = (uv) implies that u and v are in the same strong 
component of D. Oo 
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Theorem 4.4.6 The algorithm SCA correctly finds the strong components 

of a digraph D. 

Proof: We prove by induction on the number of DFS trees found in the 

execution of DFS on D’ that the vertices of each of these trees induce a 

strong component of D. Each step of the inductive argument proves that 

the vertices of a DFS tree formed in D’ induce a strong component of D 

provided the vertices of each of the previously formed DFS trees induce a 

strong component of D. The basis for induction is trivial, since the first tree 

obtained has no previous trees, and hence the assumption holds trivially. 

Recall that by the description of SCA, in the second application of DFS, we 

always start a new DFS tree from the vertex which currently has the highest 

value of texp] among vertices not yet in the DFS forest under construction. 

Consider a DFS tree T with root r produced in DFS(D’). By the defini- 
tion of a forefather ¢(r) = r. Indeed, r is reachable from itself and has the 
maximum texpl among the vertices reachable from r. Let S(r) = {v € V(D) : 
o(v) =r}. We now prove that 

V(T) = S(r). (4.4) 

By Lemmas 4.4.2 and 4.4.5, every vertex in S(r) is in the same DFS tree. 
Since r € S(r) and r is the root of T, every vertex in S(r) belongs to T. 
To complete the proof of (4.4), it remains to show that, if u € V(T), then 
u € S(r), namely, if texpl(¢(x)) #4 texpl(r), then z is not placed in T. Suppose 
that texpl(¢(z)) # texpl(r) for some vertex x. By induction hypothesis, we 
may assume that texpl(¢(x)) < texpl(r), since otherwise x is placed in the 
tree with root ¢(x) # r. If x was placed in T, then r would be reachable from 
x. By (4.3) and ¢(r) =r, this would mean texpl(x) > texpl(¢(r)) = texpl(r), 
a contradiction. O 

4.5 Line Digraphs 

For a directed pseudograph D, the line digraph Q = L(D) has vertex set 
V(Q) = A(D) and arc set 

A(Q) = {ab: a,b € V(Q), the head of a coincides with the tail of b}. 

A directed pseudograph H is a line digraph if there is a directed pseudo- 
graph D such that H = L(D). See Figure 4.4. Clearly, line digraphs do not 
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex 
a € A(D) if and only if a is a loop in D. 

The following theorem provides a number of equivalent characterizations 
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor- 
man [403], (iii) to Heuchenne [425], and (iv) and (v) to Richards [634]; con- 
ditions (ii) and (iii) have each been rediscovered several times, see the survey 
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Figure 4.4 A digraph H and its line digraph Q = L(A). 

[419] by Beineke and Hemminger. The proof presented here is adapted from 
[419]. For an n x n-matrix M = [mx], a row i is orthogonal to a row j if 
yo e-1 MikMjx = 0. One can give a similar definition of orthogonal columns. 

Theorem 4.5.1 Let D be a directed pseudograph with vertex set {1,2,...,n} 

and with no parallel arcs and let M = [mj,,;] be its adjacency matriz (i.e., the 

nx n-matriz such that mj; = 1, ifij € A(D), and mij =0, otherwise). Then 

the following assertions are equivalent: 

(i) D is a line digraph; 

(ii) there exist two partitions {A;}ier and {B;}ier of V(D) such that A(D) = 

Uier A; x B;*; 
(iii) if vw,uw and uz are arcs of D, then so is vz; 

(iv) any two rows of M are either identical or orthogonal; 
(v) any two columns of M are either identical or orthogonal. 

Proof: We show the following implications and equivalences: (i) < (ii), (ii) 
Piya (ti er (iV), (iv) <> (vy), (iv) = (il), 

(i) > (ii). Let D = L(A). For each v; € V(H), let A; and B; be the sets 
of in-coming and out-going arcs at v;, respectively. Then the arc set of the 

subdigraph of D induced by A; U B; equals A; x B;. If ab € A(D), then there 

is an i such that a = v;v; and b = v;vz. Hence, ab € A; x B;. The result 

follows. 

(ii) => (i). Let Q be the directed pseudograph with ordered pairs (A;, B;) 
as vertices, and with |A;  B;| arcs from (A;, B;) to (Aj, B;) for each 7 and 
j (including i = j). Let o4; be a bijection from A; N B; to this set of arcs 
(from (A;,B;) to (A;,B,;)) of Q. Then the function o defined on V(D) by 
taking o to be oj; on A; MB; is a well-defined function of V(D) into V(L(Q)), 
since {A;  Bi}i,j;er is a partition of V(D). Moreover, a is a bijection since 

every oj; is a bijection. Furthermore, it is not difficult to see that o is an 
isomorphism from D to L(Q) (this is left as Exercise 4.4). 

* Recall that X x Y = {(z,y): 2 € X,yeEY}. 
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(ii) => (iii). If vw, uw and uz are arcs of D, then there exist 7,7 such that 

{u,v} C A; and {w,z} C B;. Hence, (u,z) € A; x B; and uz € D. 

(iii) > (iv). Assume that (iv) does no hold. This means that some rows, 

say i and j, are neither identical nor orthogonal. Then there exist k,h such 

that mix = Mjx = 1 and min = 1,mj, = 0 (or vice versa). Hence, ik, 7k, ih 

are in A(D) but jh is not. This contradicts (iii). 

(iv) = (v). Both (iv) and (v) are equivalent to the statement: 

for all i,7,h,k, if min = Mig = mzx = 1, then mj, = 1. 

(iv) = (ii). For each 7 and j with m,; = 1, let Ajj = {h: maj = 1} and 
Bij = {k: mi = 1}. Then, by (iv), Aij is the set of vertices in D whose 

row vectors in M are identical to the ith row vector, whereas B;; is the set 
of vertices in D whose column vectors in M are identical to the jth column 

vector (we use the previously proved fact that (iv) and (v) are equivalent). 
Thus, Ai; x By; C A(D), and moreover A(D) = U{Ai; x Bij : mij = 1}. By 
the orthogonality condition, A;; and Ap, are either equal or disjoint, as are 

Bj; and Bnx. For zero row vector 7 in M, let A;; be the set of vertices whose 

row vector in M is the zero vector, and let Bj; = 0. Doing the same with the 
zero column vectors of M completes the partition as in (ii). Oo 

The characterizations (ii)-(v) all imply polynomial algorithms to verify 

whether a given directed pseudograph is a line digraph. This fact is obvious 

regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to 
construct a very effective polynomial algorithm. We actually design such an 

algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam- 

ple) just after Proposition 4.5.3. The criterion (iii) also provides the following 

characterization of line digraphs in terms of forbidden induced subdigraphs. 

Its proof is left as Exercise 4.5. 

Corollary 4.5.2 A directed pseudograph D is a line digraph if and only D 

does not contain, as an induced subdigraph, any directed pseudograph that can 

be obtained from one of the directed pseudographs in Figure 4.5 (where dotted 

arcs are missing) by adding zero or more arcs (other than the dotted ones). 

Observe that the digraph of order 4 in Figure 4.5 corresponds to the 

case of distinct vertices in Part (iii) of Theorem 4.5.1, and the two directed 
pseudographs of order 2 correspond to the cases tz =u #vu=wandu=wF 

Uv = @, respectively. 

Clearly, Theorem 4.5.1 implies a set of characterizations of the line di- 
graphs of digraphs (without parallel arcs and loops). This can be found in 
[419]. Several characterizations of special classes of line digraphs and iterated 
line digraphs can be found in surveys by Hemminger and Beineke [419] and 
Prisner [614]. 

Many applications of line digraphs deal with the line digraphs of special 
families of digraphs, for example regular digraphs, in general, and complete 
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Figure 4.5 Forbidden directed pseudographs. 

digraphs, in particular, see e.g., the papers [207] by Du, Lyuu and Hsu and 

[236] by Fiol, Yebra and Alegre. In Section 4.7, we need the following charac- 

terization, due to Harary and Norman, of the line digraphs of acyclic directed 

multigraphs. It is a specialization of Parts (i) and (ii) of Theorem 4.5.1. The 
proof is left as (an easy) Exercise 4.6. 

Proposition 4.5.3 [403] A digraph D is the line digraph of an acyclic di- 

rected multigraph if and only if D is acyclic and there exist two partitions 

{Aj}ier and {Bi}ier of V(D) such that A(D) = Uje, A; x B;. Oo 

We will now show how Proposition 4.5.3 can be used to recognize very 

effectively whether a given acyclic digraph R is the line digraph of another 

acyclic directed multigraph H, i.e., R = L(H). The two procedures, which 

we construct and illustrate by Figure 4.8 can actually be used to recognize 

and represent (that is, to construct H such that R = L(H)) arbitrary line 
digraphs (see Theorem 4.5.1(i) and (ii)). 

We first use Proposition 4.5.3 to check whether H above exists. The follow- 

ing procedure Check-H can be applied. Initially, all arcs and vertices of R are 

not marked. At every iteration, we choose an arc uv in R, which is not marked 

yet, and mark all vertices in N*(u) by ‘B’, all vertices in N~(v) by ‘A’ and all 
arcs in (N~(v), N*(u))R by ‘C’. If (N~(v), NT(u))r 4 N7(v) x N*(u) or if 
we mark a certain vertex or arc twice (starting from another arc u'v') by the 
same symbol, then this procedure stops as there is no H such that L(H) = R. 

(We call these conditions obstructions.) If this procedure is performed to 

the end (i.e. every vertex and arc received a mark), then such H exists. It is 
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not difficult to see, using Proposition 4.5.3, that Check-H correctly verifies 

whether H exists or not. 

To illustrate Check-H, consider the digraph Ro of Figure 4.8(a). Suppose 

that we choose the arc ab first. Then ab is marked, at the first iteration, 

together with the arcs af and ag. The vertex a receives ‘A’, the vertices 

b, f,g get ‘B’. Suppose that fi is chosen at the second iteration. Then the 

arcs fh, fi,gh,gi are all marked at this iteration. The vertices f,g receive 

‘A’, the vertices h,i ‘B’. Suppose that bc is chosen at the third iteration. 

We see that this arc is the only arc marked at this iteration. The vertex b 

receives ‘A’, the vertex c ‘B’. Finally, say, ce is chosen. Then both cd and ce 

are marked. The vertex c gets ‘A’, the vertices d,e receive ‘B’. Thus, all arcs 

became marked with no obstruction happened. This means that there exists 

a digraph Ho such that Hp = L(Ro). 

Suppose now that H does exist. The following procedure Build-H con- 

structs such a directed multigraph H. By Proposition 4.5.3, if H exists, 

then all arcs of R can be partitioned into arc sets of bipartite tournaments 

with partite sets A; and B; and arc sets A; x B;. Let us denote these di- 

graphs by T),...,7%. (They can be computed by Check-H if we mark every 

(N~(v), N*(u))p not only by ‘C’ but also by a second mark ‘i’ starting from 
1 and increasing by 1 at each iteration of the procedure.) We construct H 

as follows. The vertex set of H is {to,t1,...,tk, tii}. The arcs of H are 

obtained by the following procedure. For each vertex v of R, we append one 

arc a, to H according to the rules below: 

(a) If dr(v) = 0, then a, := (to, te+1); 
(b) If dR(v) > 0,dz(v) = 0, then a, := (to,t;), where i is the index of T; 

such that v € Aj; 

(c) If df(v) = 0,dp(v) > 0, then ay := (tj,tk41), where j is the index of T; 
such that v € B;; 

(d) If dp(v) > 0,dR(v) > 0, then a, := (t;, t;), where 2 and j are the indices 
of T; and T; such that v € A; B,. 

It is straightforward to verify that R = L(H). Note that Build-H always 
constructs H with only one vertex of in-degree zero and only one vertex of 
out-degree zero. 

To illustrate Build-H, consider Ro of Figure 4.8 once again. Earlier we 
showed that there exists Ho such that Ro = L(Ho). Now we will con- 
struct Ho. The previous procedure applied to verify the existence of Ho 
has implicitly constructed the digraphs T, = ({a, 6, f,g}, {ab, af,ag}), Tz = 
(Cs 9, h, i}, {fh, fi, gh, gt}), T3 = ({b, c}, {bc}), Ts = ({c, d, e}, {cd, ce}). 
Thus, Ho has vertices to,...,ts. Considering the vertices of Ro in the lex- 
icographic order, we obtain the following arcs of Hp (in this order): 

toti, tit3, t3t4, tats, tats, tite, tite, tots, tots. 
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The directed multigraph Ho is depicted in Figure 4.8(c). It is easy to check 
that Ro a L(A). 

The iterated line digraphs are defined recursively: L1(D) = L(D), 
L¥*1(D) = L(L*(D)), k > 1. It is not difficult to prove by induction (Ex- 
ercise 4.8) that L*(D) is isomorphic to the digraph H, whose vertex set 

consists of walks of D of length k and a vertex vou; ...vx (which is a walk 

in D) dominates the vertex v)v2...ux%Vg41 for every Up41 € V(D) such that 

UgUR4+1 € A(D). New characterizations of line digraphs and iterated line di- 

graphs are given by Liu and West [518]. 
The following proposition can be proved by induction on k > 1 (Exercise 

4.10). 

Proposition 4.5.4 Let D be a strong d-regular digraph (d > 1) of order n 

and diameter t. Then L*(D) is of order d*n and diameter t + k. Oo 

4.6 The de Bruijn and Kautz Digraphs and their 

Generalizations 

The following problem is of importance in network design. Given positive in- 

tegers n and d, construct a digraph D of order n and maximum out-degree at 

most d such that diam(D) is as small as possible and the vertex-strong con- 
nectivity «(D) is as large as possible. So we have a 2-objective optimization 

problem. For such a problem, in general, no solution can maximize/minimize 

both objective functions. However, for this specific problem, there are solu- 

tions, which (almost) maximize/minimize both objective functions. The aim 
of this section is to introduce these solutions, the de Bruijn and Kautz di- 

graphs, as well as some of their generalizations. For more information on the 

above classes of digraphs, the reader may consult the survey [204] by Du, Cao 

and Hsu. For applications of these digraphs in design of parallel architectures 

and large packet radio networks, see e.g. the papers [113] by Bermond and 

Hell, [114] by Bermond and Peyrat and [649] by Samatan and Pradhan. 
Let V be the set of vectors with ¢t coordinates, t > 2, each taken from 

{0,1,...,d—1}, d > 2. The de Bruijn digraph Dz(d, t) is the directed pseu- 
dograph with vertex set V such that (11, %2,...,2¢) dominates (yi, y2,..-, yt) 

if and only if zz = y1,23 = Y2,---,2t = Yyt-1- See Figure 4.6 (a). Let Dg(d, 1) 
be the complete digraph of order d with loop at every vertex. 

These directed pseudographs are named after de Bruijn who was the 

first to consider them in [185]. Clearly, Dg(d,t) has d‘ vertices and the 
out-pseudodegree and in-pseudodegree of every vertex of Dg(d,t) equal d. 

This directed pseudograph has no parallel arcs and contains a loop at every 

vertex for which all coordinates are the same. It is natural to call Dg(d,t) 
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(b) 
Figure 4.6 (a) The de Bruijn digraph Dg(2, 2); (b) The Kautz digraph Dx (2, 2). 

d-pseudoregular (recall that in the definition of semi-degrees we do not 

count loops). 
Since Dp(d,t) has loops at some vertices, the vertex-strong connectivity 

of Dg(d,t) is at most d—1 (indeed, the loops can be deleted without the 
vertex-strong connectivity being changed). Imase, Soneoka and Okada [444] 
proved that Dg(d,t) is (d — 1)-strong, and moreover, for every pair x # y 
of vertices there exist d — 1 internally disjoint (x, y)-paths of length at most 
t+ 1. To prove this result we will use the following two lemmas. The proof 

of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 4.11. 

Lemma 4.6.1 /236] For t > 2, Dg(d,t) is the line digraph of Dp(d,t — 1). 
O 

Lemma 4.6.2 Let x,y be distinct vertices of Dp(d,t) such that ry. Then, 

there are d—2 internally disjoint (x, y)-paths different from xy, each of length 
at most t+ 1. 

Proof: Let z = (21,22,...,2¢) and y = (22,...,24, yz). Consider the 

walk W;, given by Wy = (21, %2,-...,%+), (@2,.-., 24, k), (@3,...,2t,k,22),..., 
(k,22,...,2t),(%2,...,2t, Yt), Where k # 2}, yz. For each k, every internal ver- 
tex of W, has coordinates forming the same multiset My = {x2,..., 24, k}. 
Since for different k, the multisets M, are different, the walks W; are inter- 
nally disjoint. Each of these walks is of length t + 1. Therefore, by Propo- 
sition 1.4.1, Dg(d,t) contains d — 2 internally disjoint (x, y)-paths P, with 
A(P,) € A(W,). Since k # 21,44, we may form the paths P; such that none 
of them coincides with zy. Oo 

Theorem 4.6.3 [444] For every pair x,y of distinct vertices of Dp(d,t), 
there exist d—1 internally disjoint (x,y)-paths, one of length at most t and 
the others of length at most t +1. 
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Proof: By induction on t > 1. Clearly, the claim holds for t = 1 since 
Dara 

Dp(d,1) contains, as spanning subdigraph, Kg. For t > 2, by Lemma 4.6.1, 

we have that 

Dp(d,t) = L(Dp(d,t — 1)). (4.5) 

Let x,y be a pair of distinct vertices in Dg(d,t) and let e,,e, be the arcs 

of Dp(d,t — 1) corresponding to vertices z,y due to (4.5). Let u be the head 

of e, and let v be the tail of ey. 

If uw # v, by the induction hypothesis, Dg(d,t — 1) has d — 1 internally 

disjoint (u,v)-paths, one of length at most t — 1 and the others of length at 

most t. The arcs of these paths together with arcs e; and e, correspond to 

d—1 internally disjoint (x, y)-paths in Dg(d,t), one of length at most t and 
the others of length at most t+ 1. 

If u = v, we have ry in Dg(d,t — 1). It suffices to apply Lemma 4.6.2 

to see that there are d — 1 internally disjoint (z, y)-paths in Dg(d,t), one of 

length one and the others of length at most ¢ + 1. Oo 

By this theorem and Corollary 7.3.2, we conclude that «(Dp(d,t)) = 
d—1. From Theorem 4.6.3 and Proposition 2.4.3, we obtain immediately the 

following simple, yet important property. 

Proposition 4.6.4 The de Bruijn digraph Dg(d,t) achieves the minimum 

value t of diameter for directed pseudographs of order d' and maximum out- 

degree at most d. O 

For t > 2, the Kautz digraph Dx(d,t) is obtained from Dg(d + 1,t) 
by deletion of all vertices of the form (x1,%2,...,24) such that 2; = 241 

for some i. See Figure 4.6 (b). Define Dx (d, 1) Sion. Clearly, Dx (d,t) 
has no loops and is a d-regular digraph. Since we have d+ 1 choices for the 

first coordinate of a vertex in Dx(d,t) and d choices for each of the other 
coordinates, the order of Dx (d,t) is (d+1)d'~! = d' +d‘. It is easy to see 
that Proposition 4.6.4 holds for the Kautz digraphs as well. 

The following lemmas are analogous to Lemmas 4.6.1 and 4.6.2. Their 

proofs are left as Exercises 4.12 and 4.13. 

Lemma 4.6.5 For t > 2, the Kautz digraph Dx(d,t) is the line digraph of 

Dx(d,t — 1). oO 

Lemma 4.6.6 Let ry be an arc in Dx(d,t). There are d—1 internally dis- 

joint (x, y)-paths different from xy, one of length at most t+ 2 and the others 

of length at most t +-1. Oo 

The following result due to Du, Cao and Hsu [204] shows that the Kautz 
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex- 

strong connectivity point of view. This theorem can be proved similarly to 

Theorem 4.6.3 and is left as Exercise 4.14. 
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Theorem 4.6.7 /204] Let x,y be distinct vertices of Dx(d,t). Then there 

are d internally disjoint (x, y)-paths in Dx (d,t), one of length at most t, one 

of length at most t + 2 and the others of length at mostt +1. oO 

This theorem implies that Dx (d,t) is d-strong. 

The de Bruijn digraphs were generalized independently by Imase and 

Itoh [441] and Reddy, Pradhan and Kuhl [624] in the following way. We 

can transform every vector (z1,2,-..,2¢) with coordinates from Zq = 

{0,1,...,d — 1} into an integer from Z4 = {0,1,...,d° — 1} using the poly- 

nomial P(21,22,.--,2:) = 21d°-1 + xod'~? +... + 24. It is easy to see that 

this polynomial provides a bijection from Z', to Za. Moreover, for 1,7 € Za, 

ij in Dp(d,t) if and only if 7 = di + k (mod d‘) for some k € Za. 

Let d,n be two natural numbers such that d < n. The generalized de 

Bruijn digraph Dg(d,n) is a directed pseudograph with vertex set Z, and 

arc set 

{(i,di +k (mod n) ): i,k € Zag}. 

For example, V(Dg(2,5)) = {0,1,2,3,4} and A(De(2,5)) = {(0,0), (0, 1), 

(1,2), (1,3), (2,4), (2,0), (3, 1), (3,2), (4,3), (4,4)}. 
Clearly, Dg(d,n) is d-pseudoregular. It is not difficult to show that 

diam(Dg(d,n)) < flog,n]. By Proposition 2.4.3, a digraph of maximum out- 
degree at most d > 2 and order n has a diameter at least |logyn(d—1) +1). 
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal 

diameter. It was proved, by Imase, Soneoka and Okada [443], that De(d,n) 

is (d — 1)-strong. It follows from these results that the generalized de Bruijn 

digraphs have almost minimum diameter and almost maximum vertex-strong 

connectivity. 

The Kautz digraphs were generalized by Imase and Itoh [442]. Let n,d be 
two natural numbers such that d < n. The Imase-Itoh digraph D;(d, 7) is the 

digraph with vertex set Z, such that i) if and only if 7 = —d(i+1)+k (mod 
n) for some k € Zq. It has been shown (for a brief account, see the paper 
[204]) by Du, Cao and Hsu, that D;(d,n) are of (almost) optimal diameter 
and vertex-strong connectivity. 

Du, Hsu and Hwang [206] suggested a concept of digraphs extending both 

generalized the de Bruijn digraphs and the Imase-Ito digraphs. Let d,n be 

two natural numbers such that d < n. Given q € Z, — {0} and r € Z,, 
consecutive-d digraph D(d,n,q,r) is the directed pseudograph with vertex 
set Z, such that ij if and only if 7 = gi+r+k (mod n) for some k € Zq. 

Several results on diameter, vertex- and arc-strong connectivity and other 

properties of consecutive-d digraphs are given in [204]. In Section 5.11, we 

provide results on hamiltonicity of consecutive-d digraphs. 
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4.7 Series-Parallel Digraphs 

In this section we study vertex series-parallel digraphs and arc series-parallel 

directed multigraphs. Vertex series-parallel digraphs were introduced by 

Lawler [510], and Monma and Sidney [568] as a model for scheduling prob- 
lems. While vertex series-parallel digraphs continue to play an important role 

for the design of efficient algorithms in scheduling and sequencing problems, 

they have been extensively studied in their own right as well as in relations 

to other optimization problems (cf. the papers [36] by Baffi and Petreschi, 
[116] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [633] by Rendl 

and [682] by Steiner). Arc series-parallel directed multigraphs were intro- 

duced even earlier (than vertex series-parallel digraphs) by Duffin [209] as a 
mathematical model of electrical networks. 

For an acyclic digraph D, let Fp (Ip) be the set of vertices of D of 

out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first 

introduce minimal vertex series-parallel (MVSP) digraphs recursively. 

The digraph of order one with no arc is an MVSP digraph. If D, = 

(V, A), D2 = (U, B) is a pair of MVSP digraphs, so are the acyclic digraphs 

constructed by each of the following operations (see Figure 4.7): 

(a) Parallel composition: P = (V UU, AUB); 
(b) Series composition: S = (V UU, AUBU (Fp x Iy)). 

It is interesting to note that we can embed every MVSP digraph D into 

the Cartesian plane such that if vertices u,v have coordinates (ry, yy) and 

(Zy, Yv), respectively, then there is a (u,v)-path in D if and only if rz, < ry 

and yy, < yy. The proof of this non-difficult fact is given in the paper [726] 

by Valdes, Tarjan, and Lawler; see Exercise 4.15. See also Figure 4.9. 

An acyclic digraph D is a vertex series-parallel (VSP) digraph if the 

transitive reduction of D is an MVSP digraph (see Subsection 4.3 for the 

definition of the transitive reduction). See Figure 4.8. 
The following class of acyclic directed multigraphs, arc series-parallel 

(ASP) directed multigraphs, is related to VSP digraphs. The digraph P» 

is an ASP directed multigraph. If D,, D2 is a pair of ASP directed multi- 

graphs, then so are acyclic directed multigraphs constructed by each of the 

following operations (see Figure 4.10): 

(a) Two-terminal parallel composition: Choose a vertex u; of out-degree 

zero in D; and a vertex v; of in-degree zero in D; for i = 1,2. Identify u; 

with u2 and v, with v9; 

(b) Two-terminal series composition: Choose u € Fp, and v € Ip, and 
identify u with v. 
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Figure 4.7 (De)construction of an MVSP digraph Ro by series and parallel 
(de)compositions. 

We refer the reader to the book [97] by Battista, Eades, Tamassia and 
Tollis for several algorithms for drawing graphs nicely, in particular drawing 

of ASP digraphs. 

The next result shows a relation between the classes of digraphs intro- 

duced above. 
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() (c) 
Figure 4.8 Series-parallel directed multigraphs: (a) an MVSP digraph Ro, (b) a 
VSP digraph Ri, (c) an AVSP directed multigraph Ho. 

z 

Figure 4.9 The MVSP digraph Ro of Figure 4.7 embedded into the Cartesian 
plane such that for every (u,v)-path in Ro we have ry < xy and yu < yy (and vice 
versa). 

Theorem 4.7.1 An acyclic directed multigraph D with a unique verter of 

out-degree zero and a unique vertex of in-degree zero is ASP if and only if 

L(D) is an MVSP digraph. 

Proof: This can be proved easily by induction on |A(D)| using the following 
two facts: 

(i) L(P2) = P,, which is an MVSP digraph; 
(ii) The line digraph of the two-terminal series (parallel) composition of D; 

and Dz is the series (parallel) composition of L(D,) and L(D2). Oo 
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Figure 4.10 (De)construction of an ASP directed multigraph Ho by two-terminal 
series and parallel (de)compositions. 

It is easy to check that L(Ho) = Ro for directed multigraphs Ho and Ro 

depicted in Figure 4.8. The following operations in a directed multigraph D 

are called reductions: 

(a) Series reduction: Replace a path www, where dh(v) = dp(v) = 1 by 
the arc uw; 

(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just 
one arc from u to v. 

The following proposition due to Duffin (see also the paper [726] by 
Valdes, Lawler and Tarjan) gives a characterization of ASP directed multi- 
graphs. Its proof is left as Exercise 4.16. 

Proposition 4.7.2 [209] A directed multigraph is ASP if and only if it can 

be reduced to Pp by a sequence of series and parallel reductions. oO 

The reader is advised to apply a sequence of series and parallel reductions 

to the directed multigraph Ho of Figure 4.8 to obtain a digraph isomorphic to 
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P;. From the algorithmic point of view, it is important that every sequence of 

series and parallel reductions transforms a directed multigraph to the same 

digraph. Indeed, this implies an obvious polynomial algorithm to verify if a 

given directed multigraph is ASP. The proof of the following result, due to 

Harary, Krarup and Schwenk, is left as Exercise 4.17. 

Proposition 4.7.3 [401] For every acyclic directed multigraph D, the result 

of application of series and parallel reductions until one can apply such re- 

ductions is a unique digraph H. 0 

In [726], Valdes, Tarjan and Lawler showed how to construct a linear- 
time algorithm to recognize ASP directed multigraphs, which is based on 

Propositions 4.7.2 and 4.7.3. They also presented a more complicated linear- 

time algorithm to recognize VSP digraphs. Since we are limited in space, 

we will not discuss the details of the linear-time algorithms. Instead, we 

will consider the following simplified polynomial algorithm to recognize VSP 

digraphs. 

VSP recognition algorithm: 

Input: An acyclic digraph D. 

Output: YES if D is VSP and NO, otherwise. 

1. Compute the transitive reduction R of D. 

2. Try to compute an acyclic directed multigraph H with |I[p| = |Fp| = 1 
such that L(H) = R. If there is no such H, then output NO. 

3. Verify whether H is an ASP directed multigraph. If it is so, then YES, 

otherwise, NO. 

We prove first the correctness of this algorithm. If the output is YES, 

then, by Theorem 4.7.1, R is MVSP and thus D is VSP. If H is Step 2 is not 

found, then, by Theorem 4.7.1, R is not MVSP implying that D is not VSP. 

If H is not ASP, then R is not MVSP by the same theorem. 

Now we prove that the algorithm is polynomial. Step 1 can be performed 

in polynomial time by Proposition 4.3.5. Step 2 can be implemented using 

Procedure Build-H described in the end of Section 4.5. This procedure implies 

that if there is an H such that L(H) = R, then there is such an H with 
additional property that |Ip| = |Fp| = 1. The procedure is polynomial. 
Finally, Step 3 is polynomial by the remark after Proposition 4.7.2. 

4.8 Quasi-Transitive Digraphs 

Quasi-transitive digraphs were introduced in Section 1.8. The aim of this 
section is to derive a recursive characterization of quasi-transitive digraphs 

- which allows one to show that a number of problems for quasi-transitive 
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digraphs including the longest path and cycle problems are polynomial time 

solvable (see Theorem 5.10.2). The characterization implies that every quasi- 

transitive digraph is totally Y-decomposable, where Y is the union of all 

transitive digraphs and all extended semicomplete digraphs. Our presentation 

is based on [79]. 

Proposition 4.8.1 Let D be a quasi-transitive digraph. Suppose that P = 

@12Q...L,% 18 a minimal (21, z%)-path. Then the subdigraph induced by V (P) 

is a semicomplete digraph and x;—2; for every2 <i1+1<j<k, unless 

k =4, in which case the arc between x; and x, may be absent. 

Proof: The cases k = 2,3,4,5 are easily verified. As an example, let us 

consider the case k = 5. If 2; and z; are adjacent and 2<i1+1<j <5, 

then x;—>z; since P is minimal. Since D is quasi-transitive, x; and 2j+2 

are adjacent for 1 = 1,2,3. This and the minimality of P imply that 

23—21,04—X2 and z5-—>23. From these arcs and the minimality of P we 

conclude that 75;—>2,. Now the arcs 2425 and 252, imply that 24-37. Sim- 

ilarly, 75 -4+2,—Z2 implies 75-72. 

The proof for the case k > 6 is by induction on k with the case k = 5 as the 

basis. By induction, each of D({x1,2%2,...,%-1}) and D({x2,23,...,r%}) is 

a semicomplete digraph and z;—>2; for any 1 < 7 —i < k — 2. Hence z3 

dominates z; and rz, dominates x3 and the minimality of P implies that zr, 

dominates 21. oO 

Corollary 4.8.2 If a quasi-transitive digraph D has an (zx, y)-path but x does 

not dominate y, then either ya, or there exist vertices u,v € V(D) —{z,y} 
such that r>uv—-y and youve. 

Proof: This is easy to deduce by considering a minimal (z,y)-path and 
applying Proposition 4.8.1. O 

Lemma 4.8.3 Suppose that A and B are distinct strong components of a 
quasi-transitive digraph D with at least one arc from A to B. Then AGB. 

Proof: Suppose A and B are distinct strong components such that there 
exists an arc from A to B. Then for every choice of z € A and y € B there 
exists a path from z to y in D. Since A and B are distinct strong components, 
none of the alternatives in Corollary 4.8.2 can hold and hence ry. oO 

Lemma 4.8.4 /79] Let D be a strong quasi-transitive digraph on at least two 
vertices. Then the following holds: 

(a) UG(D) is disconnected; 
(b) If S and S' are two subdigraphs of D such that UG(S) and UG(S") are 

distinct connected components of UG(D), then either Si3S' or S'S, 
or both SS" and S'+S in which case |V(S)| = |V(S')| = 1. 
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Proof: The statement (b) can be easily verified from the definition of a 
quasi-transitive digraph and the fact that S and S’ are completely adjacent 

in D (Exercise 4.18). We prove (a) by induction on |V(D)|. Statement (a) is 
trivially true when |V(D)| = 2 or 3. Assume that it holds when |V(D)| <n 
where n > 3. 

Suppose that there is a vertex z such that D — z is not strong. Then there 

is an arc from (to) every terminal (initial) component of D — z to (from) 
z. Since D is quasi-transitive, the last fact and Lemma 4.8.3 imply that 

X-—Y for every initial (terminal) strong component X (Y) of D — z. Similar 
arguments show that each strong component of D — z either dominates some 

terminal component or is dominated by some initial component of D — z 

(intermediate strong components satisfy both). These facts imply that z is 

adjacent to every vertex in D — z. Therefore, UG(D) contains a component 
consisting of the vertex z, implying that UG(D) is disconnected and (a) 
follows. 

Assume that there is a vertex v such that D — v is strong. Since D is 

strong, D contains an arc vw from v to D — v. By induction, UG(D — v) is 
not connected. Let connected components S and S' of UG(D — v) be chosen 
such that w € S, S++S' in D (here we use (b) and the fact that D — v is 
strong). Then v is completely adjacent to S’ in D (as v>w). Hence UG(S’) 
is a connected component of UG(D) and the proof is complete. QO 

The following theorem completely characterizes quasi-transitive digraphs 

in recursive sense (see also Figure 4.11). 

Theorem 4.8.5 (Bang-Jensen and Huang) /79]/ Let D be a digraph 

which is quasi-transitive. 

(a) If D is not strong, then there exist a transitive oriented graph T with ver- 

tices {u1,U2,...,ut} and strong quasi-transitive digraphs H,, H2,..., At 

such that D = T[Hj, Ho,..., Hi], where H; is substituted for uj, 1 = 

Nt seg 
(b) If Dis strong, then there exits a strong semicomplete digraph S with 

vertices {v,V2,...,Us} and quasi-transitive digraphs Q1,Q2,..-,Qs such 

that Q; is either a vertex or is non-strong and D = S[Qi,Q2,.-.,Qs]; 

where Q; is substituted for vij,1=1,2,...,8. 

Proof: Suppose that D is not strong and let Hi, H2,...,H; be the strong 

components of D. According to Lemma 4.8.3, if there is an arc between 

H;, and H;, then either Hj+A; or H;+H;. Now if H;>H;5H, then, by 

quasi-transitivity, H;H;. So by contracting each H; to a vertex h;, we get 

a transitive oriented graph T with vertices hi,h2,...,h¢. This shows that 

DM igs toe oli g|: 
Suppose now that D is strong. Let Q1,Q2,...,Qs be the subdigraphs of 

D such that each UG(Q;) is a connected component of UG(D). According 
to Lemma 4.8.4(a), each Q; is either non-strong or just a single vertex. By 
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Figure 4.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs 
between different boxed sets indicate that there is a complete domination in the 
direction shown. 

Lemma 4.8.4(b) we obtain a strong semicomplete digraph S if each Q; is 
contracted to a vertex. This shows that D = S[Q1, Q2,...,Qs]- Oo 

4.9 The Path-Merging Property and Path-Mergeable 
Digraphs 

A digraph D is path-mergeable, if for any choice of vertices x,y € V(D) 
and any pair of internally disjoint (x, y)-paths P, Q, there exists an (z, y)-path 

Rin D, such that V(R) = V(P)UV(Q). We will see, in several places of this 
book, that the notion of a path-mergeable digraph is very useful for design 
of algorithms and proofs of theorems. This makes it worth while studying 

path-mergeable digraphs. The results presented in this section are adapted 

from [50}, where the study of path-mergeable digraphs was initiated by Bang- 
Jensen. 

We prove a characterization of path-mergeable digraphs, which implies 

that path-mergeable digraphs can be recognized efficiently. 

Theorem 4.9.1 A digraph D is path-mergeable if and only if for every 

pair of distinct vertices x,y € V(D) and every pair P = x2...2,ry, 

P!=cy..-Ysy, 7,8 > 1 of internally disjoint (x, y)-paths in D, either there 
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U1 U2 U3 U4 U5 U6 

V1 V2 U3 U4 U5 V6 

Figure 4.12 A digraph which is path-mergeable. The fat arcs indicate the path 
LU U2V1VIVZ3UZU4U5U4U5UEUEYy from zx to y which is obtained by merging the two 

2, y)-paths LU1U2UZU4US UGYy and LV1V2UZ3 V4 U5 VEY. 

exists ani € {1,...,r}, such that 2,1, or there exists a j € {1,...,8}, 
such that yj. 

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s = 

1, so suppose that r+ s > 3. If there is no arc between {z1,...,2,} and 

{yi,-.-,ys}, then clearly P,P’ cannot be merged into one path. Hence we 

may assume without loss of generality that there is an arc x;y; for some 

1,J9,1<t<7,1< 9 < s.Ifj = 1 then the claim follows. Otherwise apply 

induction to the paths P[x, x;]y;, «P’[y1, yj]. 

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition 

4.9.3 below. O 

The proof of the following result is left as Exercise 4.23. 

Corollary 4.9.2 Path-mergeable digraphs can be recognized in polynomial 

time. oO 

The next result shows that, if a digraph is path-mergeable, then the merg- 

ing of paths can always be done in a particularly nice way. 

Proposition 4.9.3 Let D be a digraph which is path-mergeable and let P = 

£21...2py, P!’ = ry... ysy, 7,8 > 0 be internally disjoint (x, y)-paths in 

D. The paths P and P’ can be merged into one (x,y)-path P* such that 
vertices from P (respectively, P') remain in the same order as on that path. 
Furthermore the merging can be done in at most 2(r +s) steps. 

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or 
s = 0, so suppose that r,s > 1. By Theorem 4.9.1 there exists an i such that 

either x;y, or y;->21. By scanning both paths forward one arc at a time, we 

can find 7 in at most 27 steps; suppose without loss of generality x;-y,. By 

applying the induction hypothesis to the paths P[z;,z,]y and 2;P'[y, ysly, 

we see that we can merge them into a single path @ in the required order- 

__ preserving way in at most 2(r+s—i) steps. The required path P* is obtained 
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by concatenating the paths 7P{z,,x;] and Q, and we have found it in at most 
2(r +s) steps, as required. Oo 

4.10 Locally In-Semicomplete and Locally 

Out-Semicomplete Digraphs 

A digraph D is locally in-semicomplete (locally out-semicomplete) if, 

for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semi- 

complete digraph. Clearly, the converse of a locally in-semicomplete digraph 

is a locally out-semicomplete digraph and vice versa. A digraph D is locally 

semicomplete if it is both locally in- and locally out-semicomplete. See 

Figure 4.13. Clearly every semicomplete digraph is locally semicomplete. A 

locally in-semicomplete digraph with no 2-cycle is a locally in-tournament 

digraph. Similarly, one can define locally out-tournament digraphs and 

locally tournament digraphs. For convenience, we will sometimes re- 

fer to locally tournament digraphs as local tournaments and to locally 

in-tournament (out-tournament) digraphs as local in-tournaments (local 
out-tournaments). 

Ps 
(a) (0) 

Figure 4.13 (a) A locally out-semicomplete digraph which is not locally in- 
semicomplete; (b) A locally semicomplete digraph. 

Proposition 4.10.1 by Bang-Jensen shows that locally in-semicomplete 
and locally out-semicomplete digraphs form subclasses of the class of path- 
mergeable digraphs. In particular, this means that every tournament is path- 
mergeable. In many theorems and algorithms on tournaments this property 
is of essential use. In some other cases, the very use of this property allows 
one to simplify proofs of results on tournaments and their generalizations or 
speed up algorithms on those digraphs. 

Proposition 4.10.1 /50] Every locally in-semicomplete (out-semicomplete) 
digraph is path-mergeable. 

Proof: Let D be a locally out-semicomplete digraph and let P = Y1Y2---Yk, 
Q = 2122...2 be a pair of internally disjoint (x, y)-paths (ie., y, =z) =z 
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and yx = z¢ = y). We show that there exists an (z, y)-path R in D, such that 

V(R) = V(P)UV(Q). Our claim is trivially true when |A(P)| +|A(Q)| = 3. 
Assume now that |A(P)| + |A(Q)| > 4. Since D is out-semicomplete, either 
Y2—>Z2 OY Z2—Y2 (or both) and the claim follows from Theorem 4.9.1. 

The proposition holds for locally in-semicomplete digraphs as they are 

the converses of locally out-semicomplete digraphs. O 

The path-mergeability can be generalized in a natural way as follows. A di- 

graph D is in-path-mergeable if, for every vertex y € V(D) and every pair 

P,Q of internally disjoint paths with common terminal vertex y, there is a 

path R such that V(R) = V(P)UV(Q), the path R terminates at y and starts 
at a vertex which is the initial vertex of either P or Q (or, possibly, both). 

Observe that, in this definition, the initial vertices of paths P and Q may coin- 

cide. Therefore, every in-path-mergeable digraph is path-mergeable. However, 

it is easy to see that not every path-mergeable digraph is in-path-mergeable 

(see Exercise 4.19). A digraph D is out-path-mergeable if the converse of D 

is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable) 

digraph is locally in-semicomplete (locally out-semicomplete). The converse is 

also true (hence this is another way of characterizing locally in-semicomplete 

digraphs). The proof of Proposition 4.10.2 is left as Exercise 4.20. 

Proposition 4.10.2 Every locally in-semicomplete (out-semicomplete, re- 

spectively) digraph is in-path-mergeable (out-path-mergeable, respectively). 

O 

Some simple, yet very useful, properties of locally in-semicomplete di- 

graphs are described in the following results (in [81], by Bang-Jensen, Huang 
and Prisner, these results were proved for locally tournament digraphs only, 

so the statements below are their slight generalizations first stated by Bang- 

Jensen and Gutin [65]). Observe that a locally out-semicomplete digraph, 

being the converse of a locally in-semicomplete digraph, has similar proper- 

ties (see Exercise 4.26). The claim of Theorem 4.10.4 is illustrated in Figure 

4.14. 

Lemma 4.10.3 Every connected locally in-semicomplete digraph D has an 

out-branching. 

Proof: By Proposition 1.6.1, it suffices to prove that D has only one ini- 

tial strong component. Assume that D has a pair D;, D2 of initial strong 

components (i.e. no arc enters D; or D2). Let y; € V(D;), 1 = 1,2, and let 

P=2,22...2, be ashortest path between V(D,) and V(D2) in the underly- 
ing graph G of D. Since no arc enters D,; or Do, there is an index k < s such 

that 2122 ...2,—1 is a path in D, but x,—z,_1. Since D is in-semicomplete, 

the vertices x,_2 and zx, are adjacent. However, this contradicts the fact that 

P is a shortest path between V(D;) and V(Dz2) in G. Oo 
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Theorem 4.10.4 Let D be a locally in-semicomplete digraph. 

(i) Let A and B be distinct strong components of D. If a vertexra € A 

dominates some verter in B, then a+B. 

(ii) If D is connected, then SC(D) has an out-branching. 

Proof: Let A and B be strong components of D. for which there is an arc 

(a,b) from A to B. Since B is strong, there is a (b’,b)-path in B for every 

b' € V(B). By the definition of locally in-semicomplete digraphs and the fact 

that there is no arc from B to A, we can conclude that ab’. This proves (i). 
Part (ii) follows from the fact that SC'(D) is itself a locally in-tournament 

digraph and Lemma 4.10.3. oO 

Figure 4.14 The strong decomposition of a non-strong locally in-semicomplete 
digraph. The big circles indicate strong components and a fat arc from a component 
A to a component B between two components indicates that there is at least one 
vertex a € A such that a B. 

4.11 Locally Semicomplete Digraphs 

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [44]. 
As shown in several places in our book, this class of digraphs has many nice 
properties in common with its proper subclass, semicomplete digraphs. The 
main aim of this section is to obtain a classification of locally semicomplete 
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digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [55]. In 

the process of deriving this classification, we will show several important 

properties of locally semicomplete digraphs. We start our consideration from 

round digraphs, a nice special class of locally semicomplete digraphs. 

4.11.1 Round Digraphs 

A digraph on n vertices is round if we can label its vertices v1, v2,...,Un 
so that for each i, we have N*(u;) = {vi41,-..,Vizat(v,)} and N~(vj) = 

{Uj—ad-(v;)>-»+)Vi-1} (all subscripts are taken modulo n). We will refer to 

the ordering v1, v2,...,Un as a round labelling of D. See Figure 4.15 for 

an example of a round digraph. Observe that every strong round digraph 

D is hamiltonian, since vjv2...Unv; form a hamiltonian cycle, whenever 

U1,UV2,+.+,Un is a round labelling. Round digraphs form a subclass of lo- 

cally semicomplete digraphs. We will see below that round digraphs play an 

important role in the study of locally semicomplete digraphs. 

2 3 

R 

Figure 4.15 A round digraph with a round labelling. 

Proposition 4.11.1 [438] Every round digraph is locally semicomplete. 

Proof: Let D be a round digraph and let v;, v2,..., Un, be a round labelling of 

D. Consider an arbitrary vertex, say v;. Let x,y be a pair of out-neighbours 

of v;. We show that z and y are adjacent. Assume without loss of generality 

that vj,v,y appear in that circular order in the round labelling. Since v;>y 

and the in-neighbours of y appear consecutively preceding y, we must have 

x—y. Thus the out-neighbours of v; are pairwise adjacent. Similarly, we can 

show that the in-neighbours of v; are also pairwise adjacent. Therefore, D is 

locally semicomplete. 0 

In the rest of this subsection, we will prove the following characterization 

of round digraphs due to Huang [438]. This characterization generalizes the 

corresponding characterizations of round local tournaments and tournaments, 

due Bang-Jensen [44] and Alspach and Tabib [22], respectively. 
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soe ( (c) (d) 

Figure 4.16 Some forbidden digraphs in Huang’s characterization 

An arc zy of a digraph D is ordinary if yz is not in D. A cycle or path 

Q of a digraph D is ordinary if all arcs of Q are ordinary. 

To prove Theorem 4.11.4 below, we need two lemmas due to Huang [438]. 

Lemma 4.11.2 Let D be a round digraph then the following is true: 

(a) Every induced subdigraph of D is round. 

(b) None of the digraphs in Figure 4.16 is an induced subdigraph of D. 

(c) For each x € V(D), the subdigraphs induced by N*(x) — N~ (a) and 

N~(ax) — N* (a) are transitive tournaments. 

Proof: Exercise 4.29. , oO 

Lemma 4.11.3 Let D be a round digraph. Then, for each vertex x of D, the 

subdigraph induced by Nt+(x) N~(a) contains no ordinary cycle. 

Proof: Suppose the subdigraph induced by some N*(r)MN~ (a) contains an 
ordinary cycle C. Let v1, v2,...,Un be a round labelling of D. Without loss 

of generality, assume that x = v;. Then C must contain an arc v;v; such that 

vju; ¢ A(D) andi > j. We have 1; € N~(v,) but vj ¢ N~(v;), contradicting 
the assumption that v,,v2,...,Un is a round labelling of D. oO 

Theorem 4.11.4 (Huang) /438] A connected locally semicomplete digraph 
D is round if and only if the following holds for each vertex x of D: 

(a) N*(x) — N~(a) and N~(x) — N* (x) induce transitive tournaments and 
(b) N*(x) A N~(x) induces a (semicomplete) subdigraph containing no or- 

dinary cycle. 

Proof: The necessity follows from Lemmas 4.11.2(c) and 4.11.3. To prove 

the sufficiency, we consider two cases. 

Case 1: D has an ordinary cycle. We start by proving that D contains an 

ordinary Hamilton cycle. Let C = 2122 ...2,~2, be a longest ordinary cycle 

in D. Assume that k # n, the number of vertices in D. Since D is connected 

there is a vertex v € V(D) — V(C) such that v is adjacent to some vertex of 
Or 

Suppose that there is an ordinary arc between v and some vertex, say 

x1, of C. We may without loss of generality assume that the ordinary arc 
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is 2,v (indeed, if necessary, we may consider the converse of D instead of 
D). The vertices v and £2 are adjacent since they are out-neighbours of 7}. 
The arc between v and xz» must be ordinary since D does not contain as 
induced subdigraph the digraph depicted in Figure 4.16 (a). Since C is a 
longest ordinary cycle, v cannot dominate x2. Thus, r2++v. Similarly, we can 
prove that x;++v for every i = 3,4,...,k. Hence, N~(v) — N+(v) contains all 
vertices of C’', which contradicts the assumption that N~(v) — N+(v) induces 
a transitive tournament. 

Since there is no ordinary arc between v and C, we may assume that vr,v 

is a 2-cycle of D. Using the fact that D is locally semicomplete, it is easy to 

derive that V(C) C Nt(v) M N~(v). This contradicts the assumption that 
Nt(v) A N~(v) contains no ordinary cycle. 

Thus, we have shown that D contains an ordinary Hamilton cycle. This 

implies that N*+(x) — N~(x) #0 for every x € V(D). 

We apply the following algorithm to find a round labelling of D. Start with 

an arbitrary vertex, say y,, and, for each 7 = 1,2,..., let y;+1 be the vertex 

of in-degree zero in the (transitive) tournament induced by Nt (y;) — N~ (y;). 
Let y1,y2,.--,Yr be distinct vertices produced by the algorithm such that the 

vertex w of in-degree zero in the tournament induced by N*(y,) — N~(y,) 

is in {y1,Y2; ORT S1oYS 

We show that w = y. If w = y; with j > 1, then {yj_1,y,}Hy;- 

Thus, yj-1 and y, are adjacent by an ordinary arc (since the digraph 

in Figure 4.16(b) is forbidden). But either y;-14+y, or y;++y;-1 contra- 
dicts the fact that y; is the vertex of in-degree zero in the tournament in- 
duced by Nt (yj;-1) — N~(yj-1) or N*(y-) — N~(y,). Thus, w = y, and 
C' = yi y2-.-.Yry1 is an ordinary cycle. 

We next show that r = n. Suppose r < n. Then, there is a vertex u, 

which is not in C’ and is adjacent to some y; of C’. Suppose first that u € 

N*(y;) — N~(y;). Then, being out-neighbours of y;, the vertices y;+; and 

u are adjacent. Since D contains no induced subdigraph isomorphic to the 

digraph in Figure 4.16 (a) and y,41 is the vertex of in-degree zero in the 
subdigraph induced by Nt (y;) —N~ (yi), we have u € Nt (yi41) — N7 (yi41)- 
This implies that wu and yij+2 are adjacent. Similarly, we must have u € 

N+ (yi42)—N~(yi+2). Continuing this way, we see that u € N* (yx) —N7 (yx) 
for every k = 1,2,...,r. Hence, C’ is contained in the subdigraph induced 

by N~(u) — N*(u), a contradiction. 
A similar argument applies for the case u € N~ (yi) - NT (yi). So, we may 

assume that u € N*(y;)QN (y;) and there is no ordinary arc between u and 
C’. Using the fact that D is locally semicomplete, it is easy to see that C’ 
is contained in the subdigraph induced by Nt(u)M N~(u), a contradiction. 
Thus, r = n, i.e., the algorithm labels all vertices of D. To complete Case 1, 

it suffices to prove that y1, y2,---, Yn is a round labelling. Suppose not. Then, 

there are three vertices Yq, Ys, Yc listed in the circular order in the labelling 

such that, without loss of generality, we have 



206 4. Classes of Digraphs 

YaYc and ya Yo- 

Assume that the tree vertices were chosen such that the number of vertices 

from yp to ye in the circular order is as small as possible. This implies that 

c= b+1. Since yg and y, are both in-neighbours of y-, they are adjacent. 

Thus, ysya- Since we also have yp++yc (recall that ye € Nt (ys) — N~ (yo) 

by the definition of the labelling) and D contains no induced subdigraph 

isomorphic to the digraph given in Figure 4.16 (a), yat*Yc- So, yc is not the 

vertex of in-degree zero in the tournament induced by N*(yo) — N~ (ye), 

contradicting the choice of ye. 

Case 2: D contains no ordinary cycle. If D has no ordinary arc, D is 

complete. Thus, any labelling of V(D) is round. So assume that D has an 

ordinary arc. Since D has an ordinary arc, but has no ordinary cycle, we 

claim that there is a vertex z; with 

N~(z1) — N*(e:) =@ and N* (zi) —N (21) £9. 

Indeed, let w2w; be an ordinary arc in D. We may set z; = we unless 

N~(w2) — N+ (we) # @. In the last case there is an ordinary arc whose head 
is W2. Let w3w2 be such an arc. Again, either we may set z; = w3 or there is 

an ordinary arc w4w3. Since D is finite and contains no ordinary cycle, the 

above process cannot repeat vertices and hence terminates at some vertex wj 

such that we may set 21 = wj. 

We apply the following algorithm to find a path in D. Begin with 2, 

and, for each i = 1,2,..., let z;4; be the vertex of in-degree zero in the 

(transitive) tournament induced by N*t(z;)— N~(z;) unless this set is empty. 
Since D has no ordinary cycle, this produces a path P = 2,22...z5 with 

N*(z,) - N~ (zs) = @. Applying an argument similar to that used above, we 
can show that z}, 22,...,2s is a round labelling of the subdigraph induced by 

V(P). Thus, if P contains all vertices of D, then a round labelling of D is 
established. So assume that there is a vertex v not in P, which is adjacent 

to some vertex of P. It is easy to see that there is no ordinary arc between v 

and P. This implies that v € N*+(z;)N.N7(z;) for each i = 1,2,...,s. In fact, 

it is not hard to see that the same is true for every vertex v € V(D) —V(P). 
Therefore, if we apply the above algorithm starting from an appropriate (‘z1- 

type’) vertex not in P, we obtain a new ordinary path Q and V(Q)NV (P) = @. 
By applying the above algorithm as many times as possible, we obtain a 

collection of vertex-disjoint ordinary paths P* = zk 2k .. Sg Rice Le Dost, te 

Let z;**,...,2h "1 be the remaining vertices (these form a complete digraph). 
It is easy to verify that labelling the vertices according to the ordering 

NE th, eee 2 By 22 +48) Zande Oy ea aes Aaepias CeMey | eee, me 

results in a round labelling of D. In fact the proof above implies that if 

we let D;, 1 = 1,2,...,¢+ 1, be the subdigraph induced by the vertices 
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Figure 4.17 An example of a round digraph containing 2-cycles. Undirected edges 
are used to indicate 2-cycles and fat edges between two boxes indicate a complete 
connection in both directions between the corresponding vertices. 

with superscript i above, then we have D ee) [Di, Do,..., De, Di41] (see 

Figure 4.17). Oo 

It is left as an exercise to show that this proof implies a polynomial algo- 

rithm to decide whether a digraph D is round and to find a round labelling 

of D if D is round. 

Corollary 4.11.5 (Bang-Jensen) //4] A connected local tournament D is 
round if and only if, for each verter x of D, Nt (x) and N~ (2) induce tran- 

sitive tournaments. 0 

4.11.2 Non-Strong Locally Semicomplete Digraphs 

The most basic properties of strong components of a connected non-strong 
locally semicomplete digraph are given in the following result, due to Bang- 

Jensen. 

Theorem 4.11.6 /44] Let D be a connected locally semicomplete digraph 

that is not strong. Then the following holds for D. 

(a) If A and B are distinct strong components of D with at least one arc 

between them, then either AXB or BHA. 

(b) If A and B are strong components of D, such that AB, then A and B 

are semicomplete digraphs. 
(c) The strong components of D can be ordered in a unique way D;, Do,..., 

D, such that there are no arcs from D; to D; for j > 1%, and D; dominates 

LS Ore eh 2D tL. 
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Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete 

digraph as well as a locally out-semicomplete digraph. Part (a) of this theo- 

rem follows immediately from Part (i) of Theorem 4.10.4 and its analogue for 
locally out-semicomplete digraphs. Part (b) can be easily obtained from the 

definition of a locally semicomplete digraph. Finally, Part (c) follows from the 

fact proved in Theorem 4.10.4 (and its analogue for locally out-semicomplete 

digraphs) that SC(D) has an out-branching and an in-branching. Indeed, a 

digraph which is both out-branching and in-branching is merely a hamilto- 

nian path. O 

A locally semicomplete digraph D is round decomposable if there exists 

a round local tournament R on r > 2 vertices such that D = R[S,...,S;], 
where each S; is a strong semicomplete digraph. We call R[S,...,5,] a 

round decomposition of D. The following consequence of Theorem 4.11.6, 

whose proof is left as Exercise 4:30, shows that connected, but not strongly 

connected locally semicomplete digraphs are round decomposable. 

Figure 4.18 A round decomposable locally semicomplete digraph D. The big cir- 
cles indicate the sets that correspond to the sets Wi, W2,...,We in the decompo- 
sition D = R[Wi, W2,..., We], where R is the round locally semicomplete digraph 
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there 
is a complete domination in the direction shown. 

Corollary 4.11.7 /44] Every connected, but not strongly connected locally 
semicomplete digraph D has a unique round decomposition R[D,, Do,..., De, 
where Di, Dz,...,Dpy is the acyclic ordering of strong components of D and 
R is the round local tournament containing no cycle which one obtains by 
taking one vertex from each Dj. oO 
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Now we describe another kind of decomposition theorem for locally semi- 

complete digraphs due to Guo and Volkmann. The proof of this theorem is 

left as Exercise 4.31. The statement of the theorem is illustrated in Figure 

4.19. 

Theorem 4.11.8 /349, 351] Let D be a connected locally semicomplete di- 
graph that is not strong and let D,,...,D, be the acyclic ordering of strong 

components of D. Then D can be decomposed into r > 2 induced subdigraphs 

DD, D,... Dts follows: 

D,=D,, 1 =D, 

Aisi = min{ j | N+(Dj) NV(D!) 4 0}, 
andy = OV (Ds OV (Dyan 7) Were UV (Dy a). 

The subdigraphs D}, Ds,...,D} 
ie satisfy the properties below: 

(a) Di consists of some strong components of D and is semicomplete for 

etal fe? eer ee 

(b) Di,, dominates the initial component of Di and there exists no arc from 
D102. fOr 1, 2,...,7 — 1 

(c) ifr > 3, then there is no arc between Di and Di; for i,j satisfying |j -1| > 

Dh Oo 

For a connected, but not strongly connected locally semicomplete digraph 

D, the unique sequence D}{, D},...,D} defined in Theorem 4.11.8 is called 

the semicomplete decomposition of D. 

4.11.3 Strong Round Decomposable Locally Semicomplete 

Digraphs 

In the previous subsection we saw that every connected non-strong locally 

semicomplete digraph is round decomposable. This property does not hold 

for strong locally semicomplete digraphs (see Lemma 4.11.14). The follow- 

ing assertions, due to Bang-Jensen, Guo, Gutin and Volkman, provide some 

important properties concerning round decompositions of strong locally semi- 

complete digraphs. 

Proposition 4.11.9 /55] Let R[H,, Ho,...,Hq| be a round decomposition of 

a strong locally semicomplete digraph D. Then, for every minimal separating 

set S, there are two integers i and k > 0 such that S = V(H;)U...UV (His). 

Proof: We will first prove that 

if V(Hi) NS #0, then V(H,) CS. (4.6) 
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toy Di, ia) Dl 

Figure 4.19 The semicomplete decomposition of a non-strong locally semicomplete 

digraph with 16 strong components (numbered 1-16 corresponding to the acyclic 

ordering). Each circle indicates a strong component and each box indicates a semi- 
complete subdigraph formed by consecutive components all of which dominate the 
first component in the previous layer. For clarity arcs inside components as well 
as some arcs between components inside a semicomplete subdigraph Dj (all going 

from top to bottom) are omitted. 

Assume that there exists H; such that V(H;)N S #4 0 # V(d;) — S. 
Using this assumption we shall prove that D — S is strong, contradicting the 

definition of S. 

Let s’ € V(H;) NS. To show that D — S is strong, we consider a pair 

of different vertices x and y of D — S and prove that D — S has an (z, y)- 

path. Since S is a minimal separating set, D' = D — (S — s’) is strong. 

Consider a shortest (x, y)-path P in D’ among all (z, y)-paths using at most 
two vertices from each H;. The existence of such a path follows from the fact 
that R is strong. Since the vertices of H; in D' have the same in- and out- 

neighbourhoods, P contains at most one vertex from H;, unless 2, y € V(H;) 
in which case P contains only these two vertices from H;. If s’ is not on 

P, we are done. Thus, assume that s’ is on P. Then, since P is shortest 

possible, neither x nor y belongs to H;. Now we can replace s’ with a vertex 

in V(H;) — S. Therefore, D — S has an (2, y)-path, so (4.6) is proved. 
Suppose that S consists of disjoint sets T;,...,7 such that 

T; = V (H;,) U...U V (Aj;+k;) and (VU 4) U V (Aj, +4:41)) nS=0 

fori € {1,...,¢}. If € > 2, then D—T; is strong and hence it follows from the 

fact that R is round that H;,-, dominates H;,4%,41 for every i = 1,...,2. 

Therefore, D — S is strong; a contradiction. O 

Corollary 4.11.10 /55) If a locally semicomplete digraph D is round decom- 

posable, then it has a unique round decomposition D = R[D,, Do,..., Dal. 
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Proof: Suppose that D has two different round decompositions: D = 
TUR se, Dawend D = RH, ,...,f1,]. 

By Corollary 4.11.7, we may assume that D is strong. By the definition 
of a round decomposition, this implies that a,3 > 3. Let S be a minimal 

separating set of D. By Proposition 4.11.9, we may assume without loss of 

generality that S = V(D, U...UD;) = V(H, U...U4;) for some i and j. 

Since D — S is non-strong, by Corollary 4.11.7, Di+1 = Hj41,..., Da = He 

(in particular, a - i = G — j). Now it suffices to prove that 

ee ai ain particular. 2 = 7). (4.7) 

If D(S) is non-strong, then (4.7) follows by Corollary 4.11.7. If D(S) is 
strong, then first consider the case a = 3. Then S = V(D}), because D—S is 

non-strong and a = 3. Assuming that j > 1, we obtain that the subdigraph of 

D induced by S has a strong round decomposition. This contradicts the fact 

that R’ is a local tournament, since the in-neighbourhood of the vertex Thad 
in R’ contains a cycle (where rj, corresponds to Hp, p= 1,...,). Therefore, 

(4.7) is true for a = 3. If a > 3, then we can find a separating set in D(S) 
and conclude by induction that (4.7) holds. O 

Proposition 4.11.9 allows us to construct a polynomial algorithm for 

checking whether a locally semicomplete digraph is round decomposable. 

Proposition 4.11.11 /55] There exists a polynomial algorithm to decide 
whether a given locally semicomplete digraph D has a round decomposition 

and to find this decomposition if it exists. 

Proof: We only give a sketch of such an algorithm. Find a minimal separating 

set S in D starting with S’ = N*(a) for a vertex x € V(D) and deleting 
vertices from S’ until a minimal separating set is obtained. Construct the 

strong components of D(S) and D—S and label these D;, D2,..., Da, where 

D,,...,Dp, p > 1, form an acyclic ordering of the strong components of 

D(S) and Dy+1,...,Dq form an acyclic ordering of the strong components 
of D — S. For every pair D; and D; (1 <i #j <a), we check the following: 
if there exist some arcs between D; and Dj, then either Dj ~D; or Dj Dj. 

If we find a pair for which the above condition is false, then D is not round 

decomposable. Otherwise, we form a digraph R = D({z1,22,...,%q}), where 

xz; € V(D;) for i = 1,2,...,a. We check whether R is round using Corollary 
4.11.5. If R is not round, then D is not round decomposable. Otherwise, D 

is round decomposable and D = R[Dj,..., Dal. 

It is not difficult to verify that our algorithm is correct and polynomial. 
O 

4.11.4 Classification of Locally Semicomplete Digraphs 

We start this subsection with a lemma on minimal separating sets of locally 
-semicomplete digraphs. It will be shown in Lemma 7.13.4 that for a strong 
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locally semicomplete digraph D and a minimal separating set S in D, we 

have that D — S is connected. 

Lemma 4.11.12 /55] If a strong locally semicomplete digraph D 1s not semi- 

complete, then there exists a minimal separating set S C V(D) such that 

D—S is not semicomplete. Furthermore, if D,,D2,...,Dp is the acyclic 

ordering of the strong components of D and D{,D,...,D), is the semicom- 

plete decomposition of D—S, thenr > 3, D(S) is semicomplete and we have 

Doo D1. 

Proof: Suppose D — S is semicomplete for every minimal separating set S. 

Then D — S is semicomplete for all separating sets S. Hence D is semicom- 

plete, because any pair of non-adjacent vertices can be separated by some 

separating set S. This proves the first claim of the lemma. 

Let S be a minimal separating set such that D — S is not semicomplete. 

Clearly, if r = 2 (in Theorem 4.11.8), then D — S is semicomplete. Thus, 

r > 3. By the minimality of S every vertex s € S dominates a vertex in D, 

and is dominated by a vertex in Dp. Thus if some z € D, was dominated by 

s € S, then, by the definition of a locally semicomplete digraph, we would 

have D,++D,, contradicting the fact that r > 3. Hence (using that D, is 
strongly connected) we get that D,++S and similarly S++D,. From the last 

observation it follows that S is semicomplete. oO 

Now we consider strongly connected locally semicomplete digraphs which 

are not semicomplete and not round decomposable. We first show that the 

semicomplete decomposition of D—S has exactly three components, whenever 

S is a minimal separating set such that D — S is not semicomplete. 

Lemma 4.11.13 /55] Let D be a strong locally semicomplete digraph which 

is not semicomplete. Either D is round decomposable, or D has a minimal 

separating set S such that the semicomplete decomposition of D — S has 
exactly three components D}, D5, D3. 

Proof: By Lemma 4.11.12, D has a minimal separating set S such that the 

semicomplete decomposition of D — S has at least three components. 

Assume now that the semicomplete decomposition of D — S has more 

than three components D},...,D/, (r > 4). Let D1, D2,..., Dp be the acyclic 
ordering of strong components of D — S. According to Theorem 4.11.8 (c), 
there is no arc between D; and D’ if |i — | > 2. It follows from the definition 
of a locally semicomplete digraph that 

N*+(Dj)NS =0 for i > 3 and N~(D§j)NS = for j <r -2. (4.8) 

By Lemma 4.11.12, D(S) is semicomplete and S = N+(D,). Let Dp41,.-., 
Dp+q be the acyclic ordering of the strong components of D(S). Using (4.8) 
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and the assumption r > 4, it is easy to check that if there is an arc be- 

tween D; and D; (1 < i # j < p+q), then Dj»~D; or Dj D,. Let 
Py Ooch eg |) wither nee (Ds \efor. tess 1 2nnneptpigh Now 
it suffices to prove that R is a round local tournament. 

Since R is a subdigraph of D and no pair D;, D; induces a strong di- 

graph, we see that R is a local tournament. By Corollary 4.11.7 each of 

EbeveWbdigraphsnlG—mly =i Topi Ge, Spee hy lt ese (A) MVD.) 
and R!” = R—V(R)NV(DS5) is round. Since Nt(v) NV(R) (as well as 
N~(v)NV(R)) is completely contained in one of the sets V(R’), V(R") and 
V(R'") for every v € V(R), we see that R is round. 

Thus if r > 4, then D is round decomposable. oO 

Our next result is a characterization of locally semicomplete digraphs 

which are not semicomplete and not round decomposable. This character- 

ization was proved for the first time by Guo in [341]. A weaker form was 
obtained earlier by Bang-Jensen in [49]. Here we give the proof of this result 

from [55]. 

Lemma 4.11.14 Let D be a strong locally semicomplete digraph which is not 

semicomplete. Then D is not round decomposable if and only if the following 

conditions are satisfied: 

(a) There is a minimal separating set S such that D —S is not semicom- 

plete and for each such S, D(S) is semicomplete and the semicomplete 

decomposition of D —S has exactly three components D},, D5, D3; 
(b) There are integers a, B, u,v with A.» <a<B<p-landp+1l<p< 

vy <p+q such that 

N (D2) MV (D,) 4 0 and (N* (Da) OV (DAY, 

or N~(D,)NV(Da) #0 and N+(D,)NV(Dg) #9, 

where D,,Do,...,Dp and Dp41,...,Dp+q are the acyclic orderings the 

strong components of D—S and D(S), respectively, and D), is the initial 

component of D5. 

Proof: If D is round decomposable and satisfies (a), then we must have D = 

R[D,,D2,...,Dp+q], where R is the digraph obtained from D by contracting 
each D; into one vertex. This follows from Corollary 4.11.7 and the fact that 

each of the digraphs D — S and D — V(D4) has a round decomposition that 
agrees with this structure. Now it is easy to see that D does not satisfy (b). 

Suppose now that D is not round decomposable. By Lemmas 4.11.12 and 

4.11.13, D satisfies (a), so we only have to prove that it also satisfies (b). 
If there are no arcs from S to D$, then it is easy to see that D has a 

round decomposition. If there exist components D+; and D; with V(D;) C 

V(D3), such that there are arcs in both directions between Dp; and Dj, 
then D satisfies (b). So we can assume that for every pair of sets from the 
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collection D,, D2,...,Dp+q, either there are no arcs between these sets, or 

one set completely dominates the other. Then, by Corollary 4.11.5, D is 

round decomposable, with round decomposition D = R[D,, D2,..., Dp+q] as 

above, unless we have three subdigraphs X,Y, Z € {Di, Do,..., Dp+q} such 

that XK YHZHX and there exists a subdigraph W € {Dj, Do,..., Dp+q}— 

{X,Y, Z} such that either WHX,Y, Z or X,Y, ZW. 

One of the subdigraphs X,Y,Z, say without loss of generality X, is a 

strong component of D(S). If we have V(Y) C S also, then V(Z) C V(D$) 
and W is either in D(S) or in D4 (there are four possible positions for W 
satisfying that either WH+X,Y,Z or X,Y,Z+4W). In each of these cases 

it is easy to see that D satisfies (b). For example, if W is in D(S) and 

W'+X,Y, Z, then any arc from W to Z and from Z to X satisfies the first part 

of (b). The proof is similar when V(Y) C V(D$). Hence we can assume that 
V(Y) C V(D3). If Z = Dp, then W must be either in D(S) and X,Y, ZHW, 

or V(W) C V(Dj) and W++X,Y, Z (which means that W = D; and Y = D; 
for some 2 <i < j < p). In both cases it is easy to see that D satisfies (b). 

The last case V(Y),V(Z) C V(D3) can be treated similarly. Oo 

We can now state a classification of locally semicomplete digraphs. 

Theorem 4.11.15 (Bang-Jensen, Guo, Gutin, Volkmann) /55] Let D 
be a connected locally semicomplete digraph. Then exactly one of the following 
possibilities holds. 

(a) D is round decomposable with a unique round decomposition given by 
D = R[D,, D2,...,Da]|, where R is a round local tournament on a > 2 
vertices and Dj is a strong semicomplete digraph for i= 1,2,...,a; 

(b) D is not round decomposable and not semicomplete and it has the struc- 
ture as described in Lemma 4.11.14; 

(c) D is a semicomplete digraph which is not round decomposable. Oo 

We finish this section with the following useful proposition, whose proof 
is left as Exercise 4.35. 

Proposition 4.11.16 /55] Let D be a strong non-round decomposable locally 
semicomplete digraph and let S be a minimal separating set of D such that 
D —S is not semicomplete. Let Dj,...,Dp be the acyclic ordering of the 
strong components of D—S and Dp+1,...,Dp+q be the acyclic ordering of 
the strong components of D(S). Suppose that there is an arc s > v from $ 
to Dy with s € V(D;) and v € V(D;), then 

D;U fF ees Dp4gD34D), Shere s U Ds. 
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4.12 Totally 6;-Decomposable Digraphs 

Theorem 4.8.5 is a very important starting point for construction of poly- 

nomial algorithms for hamiltonian paths and cycles in quasi-transitive di- 

graphs (see Chapter 5) and solving more general problems in this class of 
digraphs. This theorem shows that quasi-transitive digraphs are totally #- 

decomposable, where @ is the union of extended semicomplete and transitive 

digraphs. Since both extended semicomplete digraphs and transitive digraphs 

are special subclasses of much wider classes of digraphs, it is natural to study 

totally é-decomposable digraphs, where @ is a much more general class of 

digraphs than the union of extended semicomplete and transitive digraphs. 

However, our choice of candidates for the class & should be restricted in such 

a way that we can still construct polynomial algorithms for some important 

problems such as the hamiltonian cycle problem using properties of digraphs 

in @, 

This idea was first used by Bang-Jensen and Gutin [62] to introduce the 
following three classes of digraphs: 

(a) ®o is the union of all semicomplete multipartite digraphs, all connected 

extended locally semicomplete digraphs and all acyclic digraphs, 

(b) #, is the union of all semicomplete bipartite digraphs, all connected ex- 

tended locally semicomplete digraphs and all acyclic digraphs, and 

(c) #2 is the union of all connected extended locally semicomplete digraphs 

and all acyclic digraphs. 

The aim of this section is to show that totally ;-decomposable digraphs 

can be recognized in polynomial time for i = 0,1,2. (If these recognition 

problems were not polynomial, then the study of the properties of totally 

@;-decomposable digraphs would be of much less interest.) 

A set ® of digraphs is hereditary if D € @ implies that every induced 

subdigraph of D is in &. Observe that every $;, 1 = 0,1, 2 is a hereditary set. 

Lemma 4.12.1 Let & be a hereditary set of digraphs. If a given digraph D 

is totally -decomposable, then every induced subdigraph D' of D is totally 

@-decomposable. In other words, total -decomposability is a hereditary prop- 

erty. 

Proof: By induction on the number of vertices of D. The claim is obviously 

true if D has less than 3 vertices. 

If D € @, then our claim follows from the fact that @ is hereditary. So 

we may assume that D = R[Hj,...,H,], r > 2, where R € © and each of 

H,,...,H, is totally 6-decomposable. 

Let D’ be an induced subdigraph of D. If there is an index 7 so that 

V(D') c V(H;), then D’ is totally é-decomposable by induction. Otherwise, 
D = Aili. 1,)|, wheres > 2.and Re ©, is the subdigraph of A 

induced by those vertices i of R, whose H; has a non-empty intersection with 
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V(D’') and the T;’s are the corresponding H;’s restricted to the vertices of 

D'. Observe that ’R' € ®, since @ is hereditary. Moreover, by induction, each 

T; is totally 6-decomposable, hence so is Oke O 

Lemma 4.12.2 There ezists an O(mn + n?)-algorithm for checking if a di- 

graph D with n vertices and m arcs has a decomposition D = Bits steppldchs 

r > 2, where H; is an arbitrary digraph and the digraph R 1s either acyclic 

or semicomplete multipartite or semicomplete bipartite or connected extended 

locally semicomplete. 

Proof: If D is not connected and D,,...,D, are its components, then D = 

K.[Di,...,D-]. Hence, in the rest of the proof we may assume that D is 

connected. We consider the different possibilities for R we are interested in, 

one by one. 

Check whether R can be acyclic: First find the strong components 

D,,...,D, of D. If k = 1 then R cannot be acyclic and we can stop ver- 

ifying that possibility. So suppose k > 2. 

If we find two strong components D; and D; such that there is an arc 
between them but there are non-adjacent vertices x € D; and y € Dj, then 

we replace D; and D; by their union. This is justified because D; and D; 

cannot be in different sets H, and H; in a possible decomposition. Repeat 

this step but now check also the possibility for a pair D' and D” of new 

‘components’ to have arcs between D’ and D” in different directions. In the 

last case we also replace D' and D" by their union. Continue this procedure 
until all remaining sets satisfy that either there is no arc between them, or 

there are all possible arcs from one to the other. Let V1,...,V,, 7 > 1 denote 

the distinct vertex sets of the obtained ‘components’. If r = 1, then we cannot 

find an acyclic graph as R. Otherwise D = R[V\,...,V;], r > 2, and we obtain 

R by taking one vertex from each Vj. 

Check whether R can be a semicomplete multipartite digraph: Find 

the connected components Gj,...,G,., c > 1, of the complement of the un- 

derlying graph UG(D) of D. If c = 1, then R cannot be semicomplete mul- 

tipartite. So we may assume that c > 2 below. Let G; be the subgraph of 

UG(D) induced by the vertices V; of the jth component G; of the comple- 

ment of UG(D). Furthermore, let Gj1,...,Gjn;, mj > 1, be the connected 
components of G';. Denote Vj, = V(Gjx). 

Starting with the collection W = {V,,...,V-}, we identify two of the sets 
V, and V; if there exist Vj, and Vj, a € {1,..., ni}, b € {1,...,n;} such that 
we have none of the possibilities Vig-tVjp, Vjs-+Via or Via >Vjp and V3, Via. 

Clearly the obtained set V; UV; induces a connected subdigraph of D. Let 
Qi,...,Q, denote the sets obtained, by repeating this process until no more 
changes occur. If r = 1, then R cannot be semicomplete multipartite. Other- 
wise, F is the semicomplete multipartite digraph obtained by set-contracting 
each connected component of Q; into a vertex. 
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Checking whether R can be a semicomplete bipartite digraph or a con- 
nected extended locally semicomplete digraph is left as Exercise 4.38. 

It is not difficult to see that, for every R being either acyclic or semicom- 
plete multipartite, the procedures above can be realized as an O(nm + n*)- 
algorithm. The same complexity is proved for semicomplete bipartite digraphs 
and extended locally semicomplete digraphs in Exercise 4.38. 0 

Theorem 4.12.3 /62] There exists an O(n?m-+n°*)-algorithm for checking if 
a digraph with n vertices and m arcs is totally $;-decomposable for i = 0,1, 2. 

Proof: We describe a recursive algorithm to check 4;-decomposability. We 

have shown in Lemma 4.12.2 how to verify whether D = R[Hj,..., H,, 
r > 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite 

or connected extended locally semicomplete. Whenever we find an R that 

could be used, the algorithm checks total ;-decomposability of H,,...,H, 

in recursive calls. 

Notice how the algorithm exploits the fact that total ;-decomposability 

is a hereditary property (see Lemma 4.12.1): if some R is found appropriate, 

then R can be used, because if D is totally };-decomposable, then each of 

H,,...,H, (being an induced subdigraph of D) must also be totally $;- 

decomposable. Since there are O(n) recursive calls, the complexity of the 

algorithm is O(n?m + n?). Oo 

4.13 Intersection Digraphs 

Let U and V be sets and let F = {(S,,T,) : Sy,Ty C U and vu € V} be 

a family of ordered subsets of U (one for each v € V). The intersection 
digraph corresponding to F is the digraph Dz = (V, A) such that vw € A 
if and only if S$, NT,, # @. The set U is called the universal set for D-=. 

The above family of pairs form a representation of D. The concept of an 

intersection digraph is a natural analogue of the notion of an intersection 

graph and was introduced by Beineke and Zamfirescu [101] and Sen, Das, 

Roy and West [661]. Since an arc is an ordered pair of vertices, every line 

digraph L(D) is the intersection digraph of the family A(D'), where D’ is the 

converse of D. It follows from the definition of an intersection digraph that 

every digraph D is the intersection digraph of the family {(At(v), A~(v)) : 
v € V(D)}, where At(v) (A~(v)) is the set of arcs leaving v (entering v). 
Here the universal set is A(D). 

Clearly, a digraph can be represented as the intersection digraph of various 

families of ordered pairs. It is quite natural to ask how large the universal set 

U has to be. For a digraph D the minimum number of elements in U such 
that D = Dg for some family F of ordered pairs of subsets of U is called 

the intersection number, in(D) of D. Sen, Das, Roy and West [661] prove 

_ the following theorem for the intersection number of an arbitrary digraph D. 



218 4. Classes of Digraphs 

For a digraph D = (V, A), a set B C A is one-way if there is a pair of sets 

X,Y CV (called a generating pair) such that B = (X,Y)p, that is, B is 

the set of arcs from X to Y. 

Theorem 4.13.1 [661] The intersection number of a digraph D = (V, A) 

equals the minimum number of one-way sets required to cover A. 

Proof: Let B,,...,B, be a minimum collection of one-way sets covering 

A and let (X1,Y1),...,;(Xz, Y~) be the corresponding generating pairs. Let 

Sy = {i: v © Xj}, and T, = {i: v € Y;}. Then S,N Ty F O if and only if 
vw € A, showing that in(D) < k. 

Now let U be a universal set of cardinality u = in(D) such that D has 
a representation by a set of ordered pairs (S,,T,) of subsets of U. We may 

assume that U = {1,2,...,u}. Define u one-way sets covering A as follows: 

v € X; if and only if i € S, and v € Y; if and only if i € T,. Then vw € A if 

and only if v € X;, w € Y; for some 7. Thus, k < in(D). Oo 

A subtree intersection digraph is a digraph representable as the inter- 

section digraph of a family of ordered pairs of subtrees in an undirected tree. 

A matching diagram digraph is digraph representable as the intersection 

digraph of a family of ordered pairs of straight-line segments between two par- 

allel lines. An interval digraph is a digraph representable as the intersection 

digraph of a family of ordered pairs of closed intervals on the real line. Sub- 

tree intersection digraphs, matching diagram digraphs and interval digraphs 

are ‘directed’ analogues of chordal graphs, permutation graphs and interval 

graphs, respectively, where subtrees, straight-line segments and real line in- 

tervals are also used for representation (see the book [331] by Golumbic). 
While chordal graphs form a special family of undirected graphs, Harary, 

Kabell and McMorris showed that every digraph is a subtree intersection 

digraph. 

Proposition 4.13.2 [400] Every digraph is a subtree intersection digraph. 

Proof: Let D = (V, A) be an arbitrary digraph. Let G = (U, E), U = Vu{z}, 

E = {{z,v}: v € V}, a ¢ V. Clearly, G is an undirected tree. Setting 

Sy = G({v}) and T, = G({x} U{w : wv € A}) provides the required 
representation. 0 

The following construction by Miiller shows that every interval digraph 

is a matching diagram digraph [576]. Let {({a,, by], [cv,dy] : vu € V(D)} 
be a representation of an interval digraph D. To obtain a representation 

{(Sy,Ty) : v € V(D)} of D as a matching diagram digraph we set S, to be 
the line segment between points (a,,0) and (by, 1) in the plane, and T, to be 
the line segment connecting the points (cy, 1) and (d,,0). 

There are several characterizations of interval digraphs, see, e.g., the pa- 
pers [650] by Sanyal and Sen and [736] by West. We restrict ourselves to just 
one of them. 
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Theorem 4.13.3 /661] A digraph D is an interval digraph if and only if 
there exist independent row and column permutations of the adjacency matrix 

M(D) of D which result in a matrix M' satisfying the following property: the 

zero entries of M' can be labeled R or C such that every position above and 

to the right of an R is an R and every position below and to the left of a C 

is aC. 0 

None of the characterizations given in [650, 736] implies a polynomial 

algorithm to recognize interval digraphs. Miiller [576] obtained such an algo- 

rithm. A polynomial algorithm is also given in [576] to recognize unit interval 

digraphs, i.e., interval digraphs who have interval representations, where all 

intervals are of the same length. 

4.14 Planar Digraphs 

We now discuss planar (di)graphs, i.e. (di)graphs that can be drawn without 
crossings between (arcs) edges (except at endpoints). Clearly this property 
does not depend on the orientation of the arcs and hence we can ignore the 

orientation below when we give a formal definition. Furthermore, most of the 

results and definitions in this section are for undirected graphs, but are valid 
also for planar digraphs as far as their underlying graphs are concerned. 

An undirected graph G = (V, £) is planar if there exists a mapping f 
which maps G to RR? in the following way: 

Each vertex is mapped to a point in R? and distinct vertices are mapped 

to distinct points. 

Each edge uv € E is mapped to a simple (that is, not self-intersecting) 

curve Cy, from f(u) to f(v) and no two curves corresponding to distinct 

edges intersect, except possibly at their endpoints. 

For algorithmic purposes as well as for arguing about planar graphs, it is 

inconvenient to allow arbitrary curves in the embeddings of planar graphs. 

A polygonal curve from uw to v is a piecewise linear curve consisting of 

finitely many lines such that the first line starts at u, the last line ends at v 

and each other line starts at the last point of the previous line. Since we can 

approximate any simple curve arbitrarily well by a polygonal curve we may 

assume that the curves used in the embedding are always polygonal curves. 

A planar graph G may have many different embeddings in the plane (each 

embedding corresponds to a mapping f as above). Sometimes we wish to refer 

to properties of a specific embedding f of G. In this case we say that G is 

plane (that is, already embedded) with planar embedding f. A plane graph G 

partitions R? into a finite number of (topologically) connected regions called 
faces. Precisely one of these faces is unbounded and we call this the outer 

face. It is easy to see that, for any fixed face F of G, we may reembed G in 
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R2 in such a way that F becomes the outer face. The boundary of a face F 

is denoted by bd(F’) and we normally describe a face by listing the vertices in 

clockwise order around the face (for the unbounded face this corresponds to 

listing the vertices on the boundary in the anti-clockwise order). See Figure 

4.20 for an illustration of the definitions. 

4 4 

(a) (b) (c) 

Figure 4.20 (a) shows a non-planar embedding of a graph H; (b) shows a planar 
embedding of H; (c) shows a planar embedding of H where all curves are polygonal. 
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543. 
The outer face is 36543. 

Observe that, if we add the edge 25 to the graph H in Figure 4.20, then 

the resulting graph, which is isomorphic to K3,3, is no longer planar. In fact 

planar graphs have a famous characterization, due to Kuratowski: 

Theorem 4.14.1 (Kuratowski’s theorem) /507] A graph has a planar 
embedding if and only if it does not contain a subdivision® of Ks or K33. O 

Based on this it is possible to show that planar graphs (and hence also 

planar digraphs) can be recognized efficiently. In fact Hopcroft and Tarjan 

[432] showed that it can be done in linear time and if the graph is planar, 

one can find a planar embedding in the same time. 

The following relation between the number of vertices, edges and faces in 

a plane graph, known as Euler’s formula, is easy to prove by induction on 

the number of faces. 

Theorem 4.14.2 If G is a connected plane graph on n vertices and m edges, 
then 

nm—m+o= 2, 

where @ denotes the number of faces in the embedding on G. In particular 

the number of faces is the same in every embedding of G. oO 

° A subdivision H’ of a graph H is any graph that can be obtained from H by 
replacing each edge by a path all of whose internal vertices have degree 2 in H’. 
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We leave it to the reader to derive the following easy consequence of 
Theorem 4.14.2 (see Exercise 4.42): 

Corollary 4.14.3 For every planar graph on n > 3 vertices and m edges we 

have m < 3n —6. 0 

If we allow multiple edges, then we cannot bound the number of edges 

as we did above. However for planar digraphs we have the following easy 

consequence: 

Corollary 4.14.4 No planar digraph on n > 3 vertices has more than 6n—12 

arcs. O 

For much more information about drawings of graphs (in particular em- 

beddings of planar graphs) we refer the reader to the recent book [97] by 
Battista, Eades, Tamassia and Tollis. This book also contains a number of 

results on how to use digraph techniques (in particular network flows) to 
obtain nice drawings of (di)graphs. 

4.15 Application: Gaussian Elimination 

In many applications, such as modeling a problem by a system of differential 

equations and then solving this system by numerical methods (cf. the book 

[208] by Duff, Erisman and Reid), the final step of the solution of the problem 

under consideration consists of solving a system of linear equations: Ax = b, 

where A = [a;;] is an n x n matrix of coefficients, b is a given vector of 
dimension n and z is a vector of unknowns. In a considerable number of 

applications the matrix A is sparse, i.e., most entries of A are zero. The 

system Az = b is often solved by the Gaussian elimination method. To use 

this method, the only requirement is that all diagonal elements a,; of matrix 

A can be made non-zero row and column permutations. 

In many cases in practice, a sparse matrix A has some special structure, 

which allows one to solve the system much faster than just using Gaussian 

elimination directly. One of the most important such structures is block- 

triangular structure. Let ni,n2,...,n% be natural numbers such that 1 < 

nt <n <... < ng =n and let no = 0. We call the submatrices A’) = 

[ai,,j,], With np_1 +1 < tp, jp < Np, the main (n1,...,p)-blocks (or just 
main blocks). We say that A has (n1,..., p)-block-triangular structure 
(or just block-triangular structure) if all entries of A below the main blocks 

are zero. (More precisely, one should call this structure upper block-triangular 

[208], but since we do not consider lower block-triangular structure here, we 
will omit the word ‘upper’.) The matrix 

3241 
5600 
SU sgo 
0003 
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has (3, 1)-block-triangular structure. See also Figure 4.21. 

n_0 

= _N 
=~ bes = n_2 

iN =<" 
Deas 

Figure 4.21 An (mi, n2, 73, 74)-block-triangular structure. White space consists of 

entries equal zero. 

If A has block-triangular structure, we solve first the system Al?) z(?) = 

b(?), where x?) (b(?)) is the vector consisting of np last coordinates of x (0). 

The values of coordinates of x), which we found, equal the values of the 

corresponding unknowns in the system Az = 6 since in the last np rows of A 

all coefficients except for some in the last np columns are zero. Taking into 
consideration that the values of coordinates of x‘) are already found, we can 

compute the values of coordinates of r°—!) using the block A‘?—)). Similarly, 
using all blocks of A (in the decreasing order of their indices) we can compute 
all coordinates in z. 

However, quite often the block-triangular structure of A is hidden, i.e. 

A has no block-triangular structure, but A can be transformed into a matrix 

with block-triangular structure after certain permutations a and 7 of its 

rows and columns, respectively. Here we are interested in using the Gaussian 

elimination method and thus we assume that all diagonal entries of A are 

non-zero (when it is possible, one can find permutations of rows and columns 

of A, which bring non-zero diagonal to A using perfect matchings in bipartite 

graphs, see [208]). Therefore, we do not wish to change the diagonal entries 
of A. This can be achieved by using only simultaneous permutations of rows 

and columns of A, i.e. 7 = T. 

To reveal hidden block-triangular structure of A, the following approach 

can be used. Let us replace all non-zero entries of A by 1. We obtain matrix 

B = [bj;], which can be viewed as the adjacency matrix of some directed 

pseudograph D with vertex set {v1,...,Un}, ie. bj; = 1 if and only if uv; 0; 

in D. (Clearly, D has no parallel arcs, but due to the assumption on the 

diagonal elements it has a loop at every vertex.) Suppose that D is not 

strong, D;,..., Dp is the acyclic ordering of the strong components of D (i.e. 

there is no arc from D; to D; if j > i) and the vertices of D are ordered 
Un (1) > Un(2)1 +++) Un(n) such that 
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V(Di) = HOR Pre rely cee yy 0G A reg h hhc 

It is easy to see that B has (n1,...,np)-block-triangular structure. This im- 
plies that A has block-triangular structure. The above observation suggests 

the following procedure to reveal hidden block-triangular structure of A. 

1. Replace every non-zero entry of A by 1 to obtain a (0, 1)-matrix B. 

2. Construct a directed pseudograph D with vertex set {v1,...,Un} such 

that B is the adjacency matrix of D. 

3. Find the strong components of D. If D is strong, then B (and thus A) 
does not have hidden block-triangular structure®. If D is not strong, let 

D,,...,Dp be the strong components of D (in acyclic order). Find a 
permutation 7 on {1,...,n} such that 

V (Di) = Uninet Un(ni+2)>°°- RU eda 

This permutation reveals hidden block-triangular structure of B (and 

thus A). Use m to permute rows and columns of A and coordinates of z 
and 0b. 

To perform Step 3 one may use Tarjan’s algorithm in Section 4.4. 

We will illustrate the procedure above by the following example. Suppose 

we wish to solve the system: 

ais Hots 4 OL4 — 2; 

22 + Or4e= 1, 

22; + 2x2 + 423 + 924 = 6, 

329 ao Thigh = a) 

We first construct the matrix B and the directed pseudograph D. We 

have V(D) = {v1, v2, v2, v4} and 

A(D) = {v1 V3, 014, V2V4, UZU1, U3V2, U3 V4, V4V2} U {uju;: 7 = 1, 2,3, 4}. 

The digraph D has strong components D) and D), which are subdigraphs 
of D induced by {v1, v3} and {v2, v4}, respectively. These components suggest 

the following permutation 7, m(i) =i for i = 1,4, 7(2) = 3 and 7(3) = 2, of 
rows and columns of A as well as elements of x and J, the right-hand side. 

As a result, we obtain the following: 

x, + 32} + 824, = 2, 
2a, +425 +22, 92, =6, 

Cote. — a, 
325 + 224 = 3, 

® Provided we do not change the set of entries of the diagonal of A 
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where x! = 2; fori =1,4, 7) = 23 and 23 = 22. 

a sivas the last two equations separately, we obtain 7, = 1, Ti gene 

Now solving the first two equations, we see that r; = 2, ao UP ience, 

2, fp eee — ay = 0: 

A discussion on practical experience with revealing and exploiting block- 

triangular structures is given in [208]. 

4.16 Exercises 

4.1. 

4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

4.7. 

4.8. 

4.9. 

4.10. 

4.11. 

4.12. 

4.13. 

4.14. 

Let 6(u) be the forefather of a vertex u as defined in Section 4.4. Combining 

(4.2) and (4.3), prove that ¢(¢(u)) = o(u). 

Prove Proposition 4.3.1. 

Prove Lemma 4.4.1. 

In part (ii) > (i) of Theorem 4.5.1, prove that o(D) = L(Q). 

Derive Corollary 4.5.2 from Theorem 4.5.1 (iii). 

(—) Prove Proposition 4.5.3 using Theorem 4.5.1 (i) and (ii). 

Prove the aa simple properties of line digraphs: 

G)SECD) = Pr-1 if and only if D = Py; 

(ii) L(D) = C, if and only if D = cx 

Let D be a digraph. Show by induction that L*(D) is isomorphic to the 
digraph H, whose vertex set consists of walks of D of length k and a vertex 
vov1...Ug dominates the vertex v1 v2...UkUk+1 for every ve4i1 € V(D) such 

that v,ve+i € A(D). 

Using the results in Exercise 4.7, prove the following elementary properties 
of iterated line digraphs: Let D be a digraph. Then 
(i) L*(D) is a digraph with no arcs, for some k, if and only if D is acyclic; 
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then 

lime; = 008 
k—oo 

where nx is the order of L*(D); 
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large 

values of k, each connected component of L* (D) has at most one cycle. 

Prove by induction on k > 1 Proposition 4.5.4. 

Prove Lemma 4.6.1. 

Prove Lemma 4.6.5. 

Prove Lemma 4.6.6. 

Prove Theorem 4.6.7. 



4.15. 

4.16. 

4.17. 

4.18. 

4.19. 

4.20. 

4.21. 

4.22. 

4.23. 

4.24. 

4,25. 

4.26. 

4,27. 

4.28. 

4.29. 

4.30. 

4.31. 
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Upwards embeddings of MVSP digraphs. Prove that one can embed 
every MVSP digraph D into the Cartesian plane such that, if vertices u,v 
have coordinates (ru, yu) and («,, yy), respectively, and there is a (u, v)-path 
in D, then ry < zy and yz < yy. Hint: consider series composition and 
parallel composition separately. 

Prove Proposition 4.7.2. Hint: use induction on the number of reductions 
applied for the ‘if’ part and the number of arcs for the ‘only if’ part. 

Prove Proposition 4.7.3. 

Prove part (b) of Lemma 4.8.4. Hint: if w and v are in S then there is a 

path from u to v in UG(S). Similarly, if z and y are in S’. Use these paths 
(corresponding to sequences of non-adjacent vertices in D) to show that if 
ru and vy are arcs, then u = v and x = y must hold if D is quasi-transitive. 

(—) Construct an infinite family of path-mergeable digraphs, which are not 
in-path-mergeable. 

Prove Proposition 4.10.2. 

(—) Show that the following ‘claim’ is wrong. Let D be a locally in- 
semicomplete digraph and let D contain internally disjoint paths P,, P2 such 
that P; is an (z;, y)-path (¢ = 1,2) and x1 # x2. Then 2; and zp are adjacent. 

Orientations of path-mergeable digraphs. Prove that every orientation 
of a path-mergeable digraph is a path-mergeable oriented graph. 

(+) Prove Corollary 4.9.2. 

Path-mergeable digraphs which are neither locally in-semicomplete 
nor locally out-semicomplete. Show by a construction that there ex- 
ists an infinite class of path-mergeable digraphs, none of which is locally 
in-semicomplete or locally out-semicomplete. Then extend your construction 
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions. 

(—) Path-mergeable transitive digraphs. Prove that a transitive digraph 
D = (V, A) is path-mergeable if and only if for every x,y € V and every pair 
ruy, cvy of (x, y)-path of length 2 either uv or v—u holds. 

Reformulate Lemma 4.10.3 and Theorem 4.10.4 for locally out-semicomplete 
digraphs. 

Orientations of locally in-semicomplete digraphs. Prove that every 
orientation of a digraph which is locally in-semicomplete is a locally in- 
tournament digraph. 

Strong orientations of strong locally in-semicomplete digraphs. 
Prove that every strong locally in-semicomplete digraph has a strong ori- 
entation. 

Prove Lemma 4.11.2. 

Prove Corollary 4.11.7. 

Prove Theorem 4.11.8. 
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4.32. 

4.33. 

4.34. 

4.35. 

4.36. 

4.37. 

4.38. 

4.39. 

4.40. 

4.41. 

4.42. 

4.43. 

4. Classes of Digraphs 

Recognition of round digraphs. Show that the proof of Theorem 4.11.4 

implies a polynomial algorithm to decide whether a digraph D is round and 

to find a round labelling of D (if D is round). 

(+) Using Lemma 4.11.13, show that, if D is a non-round decomposable 

locally semicomplete digraph, then the independence number of UG(D) is at 

most two. 

(—) Give an example of a locally semicomplete digraph on 4 vertices with 
no 2-king. 

Prove Proposition 4.11.16. 

Prove the assertion stated in Exercise 4.33 using Lemma 4.11.14 and Propo- 
sition 4.11.16. 

Extending in-path-mergeability. Prove that, if P,Q are internally dis- 
joint (x, z)- and (y, z)-paths in an extended locally in-semicomplete digraph 
D and no vertex on P — z is similar to a vertex of Q — z, then there is a path 
R from either x or y to z,in D such that V(R) = V(P) UV(Q). 

Prove that there exists an O(mn+n7)-algorithm for checking if a digraph D 
with n vertices and m arcs has a decomposition D = R[Mi,...,H,], r > 2, 
where H; is an arbitrary digraph and the digraph R is either semicomplete 
bipartite or connected extended locally semicomplete. 

(—) Let D be a connected digraph which is both quasi-transitive and locally 
semicomplete. Prove that D is semicomplete. 

(—) Let D be a connected digraph which is both quasi-transitive and locally 
in-semicomplete. Prove that the diameter of UG(D) is at most 2. 

(—) Prove that the intersection number in(D) < n for every digraph D of 
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [661]). 

Prove Corollary 4.14.3. Hint: use that each edge is on the boundary of pre- 
cisely two faces and that each face has at least 3 edges. 

(—) Check which of the following 4 x 4-matrices A = [a;;] have hidden block- 
triangular structure (the entries not specified equal zero). Only simultaneous 
permutations of rows and columns are allowed. 

(a) a4; = i+'1 for i = 1,2,3, aay = as; = 7 for i = 2,3, and aaj'="2 for 
SS Aah, ake 

(b) Q12 = @21 = Q14 = A411 = A034 = A43 = 2 and aAayi = 1 for — ee Shee 



5. Hamiltonicity and Related Problems 

In this chapter we will consider the hamiltonian path and cycle problems for 

digraphs as well as some related problems such as the longest path and cycle 

problems and the minimum path factor problem. We describe and prove a 

number of results in the area as well as formulate several open questions. 

We recall that a k-path factor of a digraph D is a collection of k vertex- 

disjoint paths covering V(D). Recall that the minimum positive integer k 
such that D has a k-path factor is the path covering number of D, denoted 

by pc(D). A pce(D)-path factor of D is also called a minimum path factor 
of D. Recall also that a digraph is traceable if it contains a hamiltonian path. 

For arbitrary digraphs the hamiltonian path and hamiltonian cycle prob- 

lems are very difficult and both are \’P-complete (see, e.g. the book [303] 
by Garey and Johnson). For convenience of later referencing we state these 

results as theorems. 

Theorem 5.0.1 The problem to check whether a given digraph has a hamil- 

tonian cycle is NP-complete. 0 

Theorem 5.0.2 The problem to check whether a given digraph has a hamil- 

tonian path is NP-complete. Oo 

It is worthwhile mentioning that the hamiltonian cycle and path problems 

are NP-complete even for some special classes of digraphs. Garey, Johnson 

and Tarjan showed [305] that the problem remains VP-complete even for 
planar 3-regular digraphs. It follows easily from Theorems 5.0.1 and 5.0.2 

that the problem to determine the minimum path factor as well as the longest 

path and cycle problems are NP-hard as optimization problems for arbitrary 

digraphs. This is also true for several special classes of digraphs. However, 

for some important special classes of digraphs these problems are polynomial 

time solvable. One such class is the class of acyclic digraphs (see Theorem 

2.3.5 and Section 5.3). The reader will see in this chapter that many more 
such classes can be found. 

In Section 5.1, some powerful necessary conditions, due to Gutin and Yeo, 

are considered for a digraph to be hamiltonian. These conditions can be used 
for the hamiltonian path problem due to the following simple observation: 
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Proposition 5.0.3 A digraph D has a Hamilton path if and only if the di- 

graph D*, obtained from D by adding a new vertex x* such that x* dominates 

every vertex of D and is dominated by every vertex of D, is hamiltonian. O 

In Section 5.2 we prove that the path covering number of an arbitrary 

digraph is never more than its independence number. In Section 5.3 we show 

that the minimum path factor problem for acyclic digraphs can be solved 

quite efficiently. Furthermore, we show that algorithms for finding minimum 

path factors in acyclic digraphs are useful in a number of applications. 

In Section 5.4, we obtain necessary and sufficient conditions by Bang- 

Jensen for a path-mergeable digraph to be hamiltonian. Since locally in- 

semicomplete and out-semicomplete digraphs are proper subclasses (see 

Proposition 4.10.1) of path-mergeable digraphs, we may use these condi- 

tions, in Section 5.5, to derive a characterization of hamiltonian locally in- 

semicomplete and out-semicomplete digraphs. As corollaries, we obtain the 

corresponding results for locally semicomplete digraphs. Digraphs with re- 

stricted degrees are considered in Section 5.6. There, a number of degree- 

related sufficient conditions for a digraph to be hamiltonian are described. In 

that section, we also consider a recently introduced and powerful proof tech- 

nique, called multi-insertion, that can be applied to prove many theorems on 

hamiltonian digraphs. 

In the last decade quite a number of papers were devoted to studying the 

structure of longest cycles and paths of semicomplete multipartite digraphs. 

In Section 5.7, we consider the most important results obtained in this area 

so far including some striking results by Yeo. The proofs in that section 

provide further illustrations of the multi-insertion technique. In Section 5.8, 

we discuss generalizations of characterizations of hamiltonian and traceable 

extended semicomplete digraphs to extended locally semicomplete digraphs. 

Sections 5.9 and 5.10 are devoted to quasi-transitive digraphs. We present 
two interesting methods to tackle the hamiltonian path and cycle problems, 
and the longest path and cycle problems, respectively, in this class of di- 
graphs. The second method by Bang-Jensen and Gutin allows one to find 
even vertex-heaviest paths and cycles in quasi-transitive digraphs in polyno- 
mial time (where the weights are on the vertices). The last section is devoted 
to results on hamiltonian paths and cycles in some classes of digraphs not con- 
sidered in the previous sections. The proof of Theorem 5.11.2 by Thomassen 
illustrates how the properties of tournaments can be used to prove results on 
more general digraphs. 

For additional information on hamiltonian and traceable digraphs, see 
e.g. the surveys [61, 66] by Bang-Jensen and Gutin, [126] by Bondy, [368] by 
Gutin and [728, 729] by Volkmann. 
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5.1 Necessary Conditions for Hamiltonicity of Digraphs 

An obvious condition for a digraph to be hamiltonian is to be strong. Another 
obvious and, yet, quite powerful necessary condition for a digraph to be 
hamiltonian is the existence of a cycle factor!. Both conditions can be verified 
in polynomial time (see Sections 4.4 and 3.11.4). The purpose of this section is 

to describe a series of more powerful conditions, called k-quasi-hamiltonicity, 

which were recently introduced by Gutin and Yeo in [379]. An equivalent 
form of 1-quasi-hamiltonicity, pseudo-hamiltonicity, was actually investigated 

earlier by Babel and Woeginger in [35] for undirected graphs. 
We prove that every (k + 1)-quasi-hamiltonian digraph is also k-quasi- 

hamiltonian (however, there are digraphs which are k-quasi-hamiltonian, but 

not (k + 1)-quasi-hamiltonian). We introduce an algorithm that checks k- 
quasi-hamiltonicity of a given digraph with n vertices and m arcs in time 

O(nm*). Hence, these conditions can be efficiently verified for small values 
of k. Thus, they can be incorporated in software systems which investigate 

properties of digraphs (or graphs); one such system is described by Delorme, 

Ordaz and Quiroz in [189]. We prove that (n — 1)-quasi-hamiltonicity coin- 

cides with hamiltonicity and 1-quasi-hamiltonicity is equivalent to pseudo- 

hamiltonicity. 

5.1.1 Path-Contraction 

In this section we consider, for technical reasons, directed multigraphs. We use 

a variation of the operation of contraction of a set of vertices in a directed 

multigraph. This operation is called path-contraction and is defined as 

follows. Let P be an (zx, y)-path in a directed multigraph D = (V, A). Then 
D//P stands for the directed multigraph with vertex set V(D//P) = VU 
{z}—V(P), where z ¢ V, and ups/p(uv) = up(ur), ups;p(uz) = up(uz), 
Lp//p(2v) = up(yv) for all distinct u,v € V — V(P). In other words, D//P 

is obtained from D by deleting all vertices of P and adding a new vertex 

z such that every arc with head z (tail y) and tail (head) in V — V(P) 
becomes an arc with head (tail) z and the same tail (head). Observe that 
a path-contraction in a digraph results in a digraph (no parallel arcs arise). 

We will often consider path-contractions of paths of length one, i.e. arcs e. 

Clearly, a directed multigraph D has a k-cycle (k > 3) through an arc e if 
and only if D//e has a cycle through z. Observe that the obvious analogue of 

path-contraction for undirected multigraphs does not have this nice property 

which is of use in this section. The difference between (ordinary) contraction 
(which is also called set-contraction) and path-contraction is reflected in 

Figure 5.1. 

" Haggkvist [387] posed a problem to find classes of digraphs for which strong 
connectivity and the existence of a cycle factor are sufficient for hamiltonicity. 
In this chapter we consider some classes with this property. 
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ib d 
z y 

c 

D a 
a 

2 

b d b Zz d 

3 

c c 

D/{z,u,v,y} D//P, P =czuvy 

Figure 5.1 The two different kinds of contraction, set-contraction and path- 
contraction. The integers 2 and 3 indicate the number of corresponding parallel 

arcs. 

As for set-contraction, for vertex-disjoint paths P,, P2,...,P; in D, the 

path-contraction D//{P,,...,P,} is defined as the directed multigraph 
(...((D//P1)//P2) ...)// Ps; clearly, the result does not depend on the order 

Of Ps otek ie 

5.1.2 Quasi-Hamiltonicity 

The results in the remainder of this section are due to Gutin and Yeo. Let 

D = (V,A) be a directed multigraph. Let QH;(D) = (V, A1) be the directed 

multigraph with arc set 

A, = {e € A: e is contained in a cycle factor of D}. 

For k > 2, QH;(D) = (V, Ax) is the directed multigraph with arc set A, = 

{e€ A: QH,-1(D//e) is strong}. For k > 1, a directed multigraph D is 
k-quasi-hamiltonian, if QH;,(D) is strong. We assume (by definition) that 
every directed multigraph is 0-quasi-hamiltonian. The quasi-hamiltonicity 

number of a directed multigraph D of order n, qhn(D), is the maximum 
integer k(< n) such that D is k-quasi-hamiltonian. 

Figure 5.2 illustrates the notion of quasi-hamiltonicity. The directed multi- 

graph H is 0-quasi-hamiltonian, but not 1-quasi-hamiltonian (QH,(H) = 
H — {(3,4), (4,3)} is not strong). Hence, qhn(H) = 0. The directed multi- 
graph D is 1-quasi-hamiltonian as QH,(D) = D is strong (every arc of D 
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belongs to a cycle factor of D). However, D is not 2-quasi-hamiltonian since 
Q@H2(D) is not strong (indeed, QH\(D//(3,4)) = QH;i(L) is not strong). 
Thus, qhn(D) = 1. 

6 5 Ta 6 5 

H D ib 

Figure 5.2 Digraphs. 

We start with some basic facts on k-quasi-hamiltonicity. 

Proposition 5.1.1 [379] Let D be a directed multigraph of order n(> 2) and 
let k € {2,3,...,2—1}. Then A(QH,(D)) C A(QHx-1(D)). In particular, 

if D is k-quasi-hamiltonian, it is (k — 1)-quasi-hamiltonian. 

Proof: We prove the claim by induction on k. Let e € A(QH2(D)). Thus, 
QH,(D//e) is strong which, in particular, means that D//e has a cycle factor. 
Hence, e € A(QHi(D)). Let now k > 3 and let e € A(QH,(D)). Then, 
QH,-1(D//e) is strong. By the induction hypothesis, QH,~-2(D//e) is also 
strong. Hence, e € A(QH,x_-1(D)). Oo 

Theorem 5.1.2 [379] A directed multigraph is hamiltonian if and only if it 

is (n — 1)-quasi-hamiltonian. 

Proof: Clearly every hamiltonian directed multigraph of order 2 is 1-quasi- 

hamiltonian. Now assume that all hamiltonian directed multigraphs of order 

n — 1 are (n — 2)-quasi-hamiltonian, and let D be a hamiltonian digraph of 
order n. Whenever we contract an arc belonging to a hamiltonian cycle we 

obtain a hamiltonian digraph of order n — 1, which therefore is (n — 2)-quasi- 
hamiltonian. Hence, every arc on a Hamilton cycle lies in QHn_-1(D), which 
implies that QH,-1(D) is strong, i.e. D is (n — 1)-quasi-hamiltonian. Thus, 

the ‘only if’ part is proved. 

We prove the ‘if’ part. Let D be a directed multigraph, such that 

QH,-1(D) is strong. Let e) be an arc in QH,_1(D). Since QHn-2(D//e1) is 
strong there exists an arc e2 in QHn_2(D//e1). Since QHn_3((D//e1)//e2) 
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is strong there exists an arc e3 in QH,_3((D/e1)//e2). Continuing this pro- 

cedure we obtain arcs €1,€,...,€n—2, such that the directed multigraph 

QH,((((D//e1)//e2).--)//en—2) is strong. Let 

D' = (((D//e1)//e2) ---)//en-25 

and observe that, since QH,(D’) is strong and D’ has order 2, D’ must be 

hamiltonian. By inserting the arcs e€1,€2,...,@n—2 into a Hamilton cycle in 

D', we obtain a Hamilton cycle in D. Oo 

We leave the proof of the following theorem as a non-trivial exercise (Ex- 

ercise 5.1). 

Theorem 5.1.3 /379] For every k > 0, there exists a digraph D such that 

Ghn( Diji— keen: . Oo 

5.1.3 Pseudo-Hamiltonicity and 1-Quasi-Hamiltonicity 

For a positive integer h, a sequence of vertices Q = v1 U2... Vani in a directed 

multigraph D of order n is an h-pseudo-hamiltonian walk if every vertex 

of D appears h times in the sequence v102...Uan and v;vji41 € A(D) for 

every i = 1,2,...,hn (vangi = vi). A directed multigraph D possessing 

such a sequence is called h-pseudo-hamiltonian and the minimum /h for 

which D is h-pseudo-hamiltonian is the pseudo-hamiltonicity number 

ph(D) of D. If D has no h-pseudo-hamiltonian walk for any positive integer 

h, then ph(D) = oo. A directed multigraph D is pseudo-hamiltonian if 
ph(D) < oo. 

For example, in Figure 5.2, the digraph D is 2-pseudo-hamiltonian: 

1212346565431 is a 2-pseudo-hamiltonian walk of D. This digraph is not 

1-pseudo-hamiltonian as D is not hamiltonian. Thus, ph(D) = 2. It is not 
difficult to see that the digraph H in Figure 5.2 is not pseudo-hamiltonian. We 

have already seen that D is 1-quasi-hamiltonian, but H is not. The above 

conclusions on pseudo-hamiltonicity of D and H can actually be obtained 

from Theorem 5.1.5. 

Lemma 5.1.4 follows from the fact that every regular directed multigraph 

has a cycle factor (see Exercise 3.70), which implies that every h-regular 

directed multigraph can be decomposed into h cycle factors. 

Lemma 5.1.4 Every arc of a regular directed multigraph is included in a 
cycle factor. oO 

Theorem 5.1.5 /379] A directed multigraph is pseudo-hamiltonian if and 

only if it is 1-quasi-hamiltonian. 
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Proof: Let D be a pseudo-hamiltonian directed multigraph, let Q be an 

h-pseudo-hamiltonian walk in D, and let A(Q) = (v1, v2, v2U3,-.-,Uan—1Uhns 

Unni) be the sequence of arcs in Q. Construct a new directed multigraph 

H(D,Q) from D by replacing, for every pair x,y with up(ry) > 0, all arcs 

from x to y in D by t(> 0) parallel arcs from z to y, where t is the number 

of appearances of zy in A(Q). By the definition of an h-pseudo-hamiltonian 

walk, H(D,Q) is an h-regular directed multigraph. Thus, by Lemma 5.1.4, 

every arc zy in H(D,Q) is in a cycle factor. Therefore, y(p,Q) (ry) > 0 
implies 4gH,(p)(ry) > 0. Since H(D,Q) is strong, we obtain that QH,(D) 
is also strong, i.e. D is 1-quasi-hamiltonian. 

Now let D be a 1-quasi-hamiltonian directed multigraph, i.e. QH;(D) is 
strong. For each arc e in QH,(D) let F. be a cycle factor in D including e. 
Let D’ = Ueea(qu,(p))Fe- As the union of cycle factors, D’ is regular. Since 

QH,(D) is strong, D’ is also strong. Therefore, D’ has a eulerian trail, which 
corresponds to a pseudo-hamiltonian walk in D. oO 

The following theorem provides a sharp upper bound for the pseudo- 

hamiltonicity number of a digraph. 

Theorem 5.1.6 [379] For a pseudo-hamiltonian digraph D, ph(D) < (n — 
1)/2. For every integer n > 3, there exists a digraph H,, of order n such that 

ph(Hn) = [(n — 1)/2]. 

Proof: Exercise 5.2. Oo 

5.1.4 Algorithms for Pseudo- and Quasi-Hamiltonicity 

It is easy to check whether a digraph is 1-quasi-hamiltonian (i.e., by Theorem 

5.1.5 is pseudo-hamiltonian). Indeed, checking whether Q H,(D) is strong can 
be done in time O(n + m) (see Section 4.4). Hence, it suffices to show how 
to verify for each arc ry if this arc is on some cycle factor. We can merely 

replace xy by a path xrzy, where z is not in D, and check whether the new 

digraph has a cycle factor. This can be done in time O(,/nm) by Corollary 

3.11.7. Thus, we obtain the total time of O(./nm?). This complexity bound 
was improved by Gutin and Yeo [379] as follows. 

Theorem 5.1.7 We can check whether a directed multigraph D is pseudo- 

hamiltonian in O(nm) time. 

Proof: Exercise 5.3. O 

The following theorem implies that one can check k-quasi-hamiltonicity 

for a constant k in polynomial time. 

Theorem 5.1.8 [379] In O(nm*) time, one can check if a directed multi- 
graph is k-quasi-hamiltonian. 
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Proof: In this proof, we describe an algorithm A that, in time T (k), checks 

whether a directed multigraph D is k-quasi-hamiltonian. We will show that 

T(k) = O(nm*). 

If k = 1, the algorithm A uses the algorithm B of Theorem 5.1.7. Thus, 

T(1) = O(nm). If k > 2 then, for each arc e in D, A verifies whether D//e 

is (k — 1)-quasi-hamiltonian. The algorithm A forms QH;,(D) from all arcs 

e such that D//e is (k — 1)-quasi-hamiltonian. Finally, A checks whether 

QH;,(D) is strong (in time O(m)). This implies that, for k > 2, 

T(k) < mT(k—1)+O(m). 

Since T'(1) = O(nm), we obtain that T(k) = O(nm*). Oo 

5.2 Path Covering Number 

The following attainable lower bound for the path covering number of a 

digraph D is quite trivial: pcc(D) < pc(D). We will see later in this chapter 

that pcc(D) = pc(D) for acyclic digraphs and semicomplete multipartite 
digraphs D. The aim of this short section is to obtain a less trivial attainable 

upper bound for pc(D). This bound is of use in several applications (see, e.g., 

Section 5.3). 
Recall that the independence number a(D) of a digraph D is the cardi- 

nality of a maximum independent set of vertices of D (a set X C V(D) is 

independent if no pair of vertices in X is adjacent). Rédei’s theorem (Theo- 

rem 1.4.5) can be rephrased as saying that every digraph with independence 

number 1 has a hamiltonian path and hence path covering number equal 1. 

Gallai and Milgram generalized this as follows. 

Theorem 5.2.1 (Gallai-Milgram theorem) /298] For every digraph D, 

pe(D) < a(D). 
This theorem is an immediate consequence of the following lemma by 

Bondy [126]: 

Lemma 5.2.2 Let D be a digraph and let P = P, UP2U...UP, be an s-path 

factor of D. Let i(P) (t(P)) denote the set of initial (terminal) vertices of the 
paths in P. Suppose that s > a(D). Then there exists an (s — 1)-path factor 

P' of D such that i(P') C i(P) and t(P') Cc t(P). 

Proof: The proof is by induction on n, the order of D. The case n = 1 
holds vacuously. Let P be as described in the lemma. Let the path P; in P 
be denoted by 2j1252...%jr;, j =1,2,...,8. Since s > a(D) the subdigraph 
D(i(P)) must contain an arc r,12;1 for some k # j (1 <k,j <s). 

If r, = 1, then we can replace P,, P; by the path pi P; and obtain the 
desired path factor. So suppose that r, > 1. Now consider D* = D —2,, and 
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the path factor P* which we obtain from P by deleting x,; from the path Py. 

Clearly a(D*) < a(D) and we have i(P*) = i(P) — te1 + pa, t(P*) = t(P). 
Thus it follows by the induction hypothesis that D* has an (s—1)-path factor 

Oisuch thatet(Q) e t(P*))4(Q) Gi(P*). 
If reo € i(Q), let Q, be the path of Q whose initial vertex is 7,2. Replacing 

Q, with r%1Q, we obtain a path factor in D with the desired properties. So 

suppose that x, is not an initial vertex of any of the paths in Q. Then 251 

must belong to i(Q) and we obtain the desired path factor by replacing the 

path Q, of Q which starts at 2j; by the path 2,%1Q,. Oo 

The following theorem due to Erdés and Szekeres [596] follows easily from 
Theorem 5.2.1. 

Theorem 5.2.3 Let n,p,q be positive integers with n > pq, and let I = 

(i1,22,...,%n) be a sequence of n distinct integers. Then there exists either 

a decreasing subsequence of I with more than p integers or an increasing 

subsequence of I with more than q integers. 

Proof: Let D = (V,A) be the digraph with V = {i1,%2,...,in} and A = 

{imiz : m< k and im < ix}. Observe the obvious correspondence between 

independent sets of D and decreasing subsequences of J (respectively, paths 

of D and increasing subsequences of J). Let F = P, U...U P, be a minimal 

path factor of D. By Theorem 5.2.1, s < a(D). Hence, a(D)-max$_, |P;| > 

n > pq. Thus, either a(D) > p, i.e., there exists a decreasing subsequence 

with a(D) > p integers, or max#_, |P;| > q, i-e., there exists an increasing 
subsequence with more than q integers. O 

Very recently, the following improvement on Theorem 5.2.1 in the case of 

strong digraphs was proved by Thomassé. This was originally conjectured by 

Las Vergnas (see [107]). 

Theorem 5.2.4 /695/ If a digraph D is strong, then pc(D) < max{a(D) — 

1a}: 

Las Vergnas (see [106]) proved the following generalization of Theorem 
Deel). 

Theorem 5.2.5 Every digraph D of finite out-radius has an out-branching 
with at most a(D) vertices of out-degree zero. Oo 

Theorem 5.2.5 implies Theorem 5.2.1 (Exercise 5.7). 

5.3 Path Factors of Acyclic Digraphs with Applications 

For acyclic digraphs it turns out that the minimum path factor problem can 

be solved quite efficiently. This is important since this problem has many 

practical applications. One such example is as follows. 
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A news agency wishes to cover a set of events Fy, H2,...,H, which take 

place within the coming week starting at a prescribed time T;. For each event 

E; its duration time t; and geographical site O; is known. The news agency 

wishes to cover each of these events by having one reporter present for the 

full duration of the event. At the same time it wishes to use as few reporters 

as possible. Assuming that the travel time t,; from O; to Oj; is known for 
each 1 < 1,7 <n, we can model this problem as follows. Form a digraph 

D = (V,A) by letting V = {v1,v2,...,Un} and for every choice of i 4 j put 

an arc from v; to v; if T; > 7; +t, +t. It is easy to see that D is acyclic. 

Furthermore, if the events can be covered by k reporters then D has a k-path 

factor (just follow the routes travelled by the reporters). It is also easy to see 

that the converse also holds. Hence having an algorithm for the minimum 

path factor problem for acyclic digraphs will provide a solution to this and a 

large number of similar problems (such as airline and tanker scheduling, see 
Exercise 5.8). 

Clearly, pc(D) = pcc(D) for every acyclic digraph D. Using flows in 
networks, we can effectively find a pcc(D)-path-cycle factor in any digraph D 

(see Exercises 3.59 and 3.7). Since a k-path-cycle factor in an acyclic digraph 
has no cycles, this implies that the minimum path factor problem for acyclic 
digraphs is easy (at least from an algorithmic point of view). 

Theorem 5.3.1 For acyclic digraphs the minimum path factor problem is 
solvable in time O(./nm). Oo 

Another application of the path covering number of acyclic digraphs is 
for partial orders. A partial order consists of a set X anda binary relation 
‘ < ' which is transitive (that is, x < y,y < z implies x < z). Let P = (X, x) 
be a partial order. Two elements x,y € X are comparable if either x ~ y 
or y < x holds. Otherwise z and y are incomparable. A chain in P is 
a totally ordered subset Y of X, that is, all elements in Y are pairwise 
comparable. An antichain on P is a subset Z of X, no two elements of 
which are comparable. Dilworth proved the following famous min-max result 
relating chains to antichains: 

Theorem 5.3.2 (Dilworth’s theorem) /193] Let P = (X,~<) be a partial 
order. Then the minimum number of chains needed to cover X equals the 
mazimum number of elements in an antichain. 

Proof: Given P = (X, x), let D = (X, A) be the digraph such that ryEA 
for « # y € X if and only if x < y. Clearly, D is transitive. Furthermore, 
a path (an independent set) in D corresponds to a chain (antichain) in P. 
We need to show that pc(D) = a(D). By Theorem 5.2.1, pe(D) < a(D). 
Let F =P, UP2U...UP be a minimum path factor of D. By transitivity 
of D, each V(P;) induces a complete subgraph in UG(D). Hence, a(D) = 
a(UG(D)) < k = pce(D). Thus, pc(D) = a(D). Oo 
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The last theorem can obviously be reformulated as follows: a(D) = pc(D) 
for every transitive oriented graph D. We conclude this section with an ex- 

tension of the analogous result to extended semicomplete digraphs. Lemma 

5.3.3 will be used in Section 6.11. 

Lemma 5.3.3 Let D be an acyclic extended semicomplete digraph with 

a(D) =k, then the following holds: 

{a} pelt D)= k. 
(b) One can obtain a minimum path factor of D as follows: choose a longest 

path P in D, remove V(P) and continue recursively. 

(c) One can find a minimum path factor using the greedy algorithm in (b) in 
total time O(nlogn) (using the adjacency matrix). 

Proof: By Theorem 5.2.1 pc(D) < k. On the other hand no path can contain 

two vertices from the same independent set as that would imply that D 

contains a cycle. Hence pc(D) = k. To prove (b), let P be a longest path 

of D. By the argument above a(D — P) > k —1. On the other hand D can 
be written as D = S[Ka,, Ka,,.--, Ka,], where S is a semicomplete digraph 
and s = |V(S)|. By Rédei’s theorem (Theorem 1.4.5), S has a hamiltonian 
path P’. In D this path corresponds to a path Q which contains precisely 

one vertex from each maximal independent set. Hence Q is a longest path 

in D by the remark above and we have a(D — Q) = k — 1. Now the second 

claim follows by induction on k. The third claim follows from the description 

of procedure MergeHamPathTour in Section 1.9.1, assuming that we have an 

adjacency matrix representation of D. Note that we delete the paths as we 

find them and hence the total complexity is still O(n logn). Oo 

5.4 Hamilton Paths and Cycles in Path-Mergeable 

Digraphs 

The class of path-mergeable digraphs was introduced in Section 4.9, where 

some of its properties were studied. In this section, we prove a characteriza- 

tion of hamiltonian path-mergeable digraphs due to Bang-Jensen [50]. 

We begin with a simple lemma which forms the basis for the proof of 

Theorem 5.4.2. For a cycle C, a C-bypass is a path of length at least two 

with both end-vertices on C and no other vertices on C’. 

Lemma 5.4.1 [50] Let D be a path-mergeable digraph and let C' be a cycle in 

D. If D has a C-bypass P, then there exists a cycle in D containing precisely 

the vertices V(C) UV(P). 

Proof: Let P be an (x, y)-path. Then the paths P and C[z, y] can be merged 
into one (zx, y)-path R, which together with C[y, z] forms the desired cycle. 

O 
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Theorem 5.4.2 (Bang-Jensen) [50] A path-mergeable digraph D of order 

n > 2 is hamiltonian if and only if D is strong and UG(D) is 2-connected. 

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D) 

is 2-connected and D is not hamiltonian. Let C = uju2...upui be a longest 

cycle in D. Observe that, by Lemma 5.4.1, there is no C-bypass. For each 

i € {1,...,p} let X; (respectively Y;) be the set of vertices of D— V(C) that 

can be reached from u; (respectively, from which u; can be reached) by a 

path in D — (V(C) — u;). Since D is strong, 

Xp UGA R= Yh ONO eee 

Since there is no C-bypass, every path starting at a vertex in X; and ending 

at a vertex in C must end at u;. Thus, X; C Yj. Similarly, Y; C X; and, 

hence, X; = Y;. Since there is no C-bypass, the sets X; are disjoint. Since 

we assumed that D is not hamiltonian, at least one of these sets, say Xj, is 

non-empty. Since UG(D) is-2-connected, there is an arc with one end-vertex 

in X, and the other in V(D) — (Xj Uu;), and no matter what its orientation 

is, this implies that there is a C-bypass, a contradiction. 0 

Using the proof of this theorem, Lemma 5.4.1 and Proposition 4.9.3, it is 

not difficult to show the following (Exercise 5.10): 

Corollary 5.4.3 /50] There is an O(nm)-algorithm to decide whether a 
given strong path-mergeable digraph has a hamiltonian cycle and find one 

of it exists. 

Clearly, Theorem 5.4.2 and Corollary 5.4.3 imply an obvious characteriza- 

tion of longest cycles in path-mergeable digraphs and a polynomial algorithm 

to find a longest cycle. Neither a characterization nor the complexity of the 

hamiltonian path problem for path-mergeable digraphs is currently known. 

The following problem was posed by Bang-Jensen and Gutin: 

Problem 5.4.4 /65/ Characterize traceable path-mergeable digraphs. Is there 

a polynomial algorithm to decide whether a path-mergeable digraph is trace- 

able? 

For a related result, see Proposition 6.3.2. This result may be considered 

as a characterization of traceable path-mergeable digraphs. However, this 

characterization seems of not much value from the complexity point of view. 

5.5 Hamilton Paths and Cycles in Locally 

In-Semicomplete Digraphs 

According to Proposition 4.10.1, every locally in-semicomplete digraph is 

path-mergeable. By Exercise 5.12, every strong locally in-semicomplete di- 



5.5 Hamilton Paths and Cycles in Locally In-Semicomplete Digraphs 239 

graph has a 2-connected underlying graph. Thus, Theorem 5.4.2 implies the 

following characterization of hamiltonian locally in-semicomplete digraphs?. 

Theorem 5.5.1 (Bang-Jensen, Huang and Prisner) /81] A locally in- 
semicomplete digraph D of order n > 2 is hamiltonian if and only if D is 

strong. Oo 

This theorem generalizes Camion’s theorem on strong tournaments (The- 

orem 1.5.2). Bang-Jensen and Hell [75] showed that for the class of locally 
in-semicomplete digraphs Corollary 5.4.3 can be improved to the following 

result. 

Theorem 5.5.2 /75] There is an O(m + nlogn)-algorithm for finding a 
hamiltonian cycle in a strong locally in-semicomplete digraph. 

In Section 5.4, we remarked that the Hamilton path problem for path- 

mergeable digraphs is unsolved so far. For a subclass of this class, locally 

in-semicomplete digraphs, an elegant characterization, due to Bang-Jensen, 

Huang and Prisner, exists. 

Theorem 5.5.3 /81] A locally in-semicomplete digraph is traceable if and 

only if it contains an in-branching. 

Proof: Since a Hamilton path is an in-branching, it suffices to show that 

every locally in-semicomplete digraph D with an in-branching T is traceable. 

We prove this claim by induction on the number b of vertices of T of in-degree 

zero. 

For b = 1, the claim is trivial. Let b > 2. Consider a pair of vertices x, y 

of in-degree zero in T’. By the definition of an in-branching there is a vertex 

z in T such that T contains both (z,z)-path P and (y,z)-path Q. Assume 

that the only common vertex of P and Q is z. 

By Proposition 4.10.2, there is a path R in D that starts at x or y and 

terminates at z and V(R) = V(P) UV(Q). Using this path, we may replace 
T with an in-branching with b — 1 vertices of in-degree zero and apply the 

induction hypothesis of the claim. Oo 

Clearly, Theorem 5.5.3 implies that a locally out-semicomplete digraph is 

traceable if and only if it contains an out-branching. By Proposition 1.6.1, 

we have the following: 

Corollary 5.5.4 A locally in-semicomplete digraph is traceable if and only 

if it contains only one terminal strong component. 0 

? Actually, this characterization, as well as the other results of this section, were 
originally proved only for oriented graphs. However, as can be seen from Exercises 
4.27 and 4.28, the results for oriented graphs immediately imply the results of 
this section. 
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Using Corollary 5.5.4, Bang-Jensen and Hell [75] proved the following: 

Theorem 5.5.5 A longest path in a locally in-semicomplete digraph D can 

be found in time O(m + nlogn). Oo 

Corollary 5.5.4 and Lemma 4.10.3 imply the following: 

Corollary 5.5.6 (Bang-Jensen) //4] A locally semicomplete digraph has 

a hamiltonian path if and only if it 1s connected. oO 

Notice that there is a nice direct proof of this corollary (using Proposition 

4.10.2), which is analogous to the classical proof of Rédei’s theorem displayed 

in procedure HamPathTour in Section 1.9.1. See Exercise 5.14. 

5.6 Hamilton CS and Paths in Degree-Constrained 

Digraphs 

In Subsection 5.6.1 we formulate certain sufficient degree-constrained condi- 

tions for hamiltonicity of digraphs. Several of these conditions do not follow 

from the others, i.e. there are certain digraphs that can be proved to be 

hamiltonian using some condition but none of the others. (The reader will be 

asked to show this in the exercises.) 
In Subsection 5.6.3 we provide proofs to some of these conditions to illus- 

trate the power of a recently introduced approach, which we call the multi- 

insertion technique. (This technique can be traced back to Ainouche [9] for 
undirected graphs and to Bang-Jensen [48] for digraphs, see also the paper 

[68] by Bang-Jensen, Gutin and Huang). The technique itself is introduced 

in Subsection 5.6.2. The strength of the multi-insertion technique lies in the 

fact that we can prove the existence of a hamiltonian cycle without actually 

exhibiting it. Moreover, our hamiltonian cycles may have quite a complicated 

structure. For example, compare the hamiltonian cycles in the proof of The- 

orem 5.6.1 to the hamiltonian paths constructed in the inductive proof of 

Theorem 1.4.5. The multi-insertion technique is used in some other parts of 

this book, see e.g. Section 5.7. 

Let x,y be a pair of distinct vertices in a digraph D. The pair {z, y} is 
dominated by a vertex z if zz and z—>y; in this case we say that the 

pair {x,y} is dominated. Likewise, {x,y} dominates a vertex z if r>z 
and y—>z; we call the pair {x,y} dominating. 

5.6.1 Sufficient Conditions 

Considering the converse digraph and using Theorem 5.5.1, we see that a 

locally out-semicomplete digraph is hamiltonian if and only if it is strong. 
This can be generalized as follows. We prove Theorem 5.6.1 in Subsection 
5.6.3. 
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Theorem 5.6.1 (Bang-Jensen, Gutin and Li) /69/ Let D be a strong di- 
graph of order n > 2. Suppose that, for every dominated pair of non-adjacent 

vertices {x,y}, either d(x) > n andd(y) > n—1 ord(x) > n—-1 and d(y) > n. 
Then D is hamiltonian. 

The following example shows the sharpness of the conditions of Theorem 

5.6.1 (and Theorem 5.6.5), see Figure 5.3. Let G and H be two disjoint 

transitive tournaments such that |V(G)| > 2,|V(H)| > 2. Let w be the vertex 
of out-degree 0 in G and w’ the vertex of in-degree 0 in H. Form a new digraph 

by identifying w and w’ to one vertex z. Add four new vertices z,y,u,v 

ana*the arcs {rv yo.ux, uy} U-{e2z,27 yz, zy} 'Uirg = re {2, 7,0}, 9 © 
V(G) —w}Uf{hs : h € V(A) - w',s € {u,x,y}}. Denote the resulting 
digraph by Qn, where n is the order of Q,. It is easy to check that Q, 

is strong and non-hamiltonian (Exercise 5.17). Also x,y is the only pair of 
non-adjacent vertices which is dominating (dominated, respectively). An easy 

computation shows that 

d(x) =d(y) =n—1l=d*(a) +d (y) =d (2) +d*(y). 

Figure 5.3 The digraph Qn. The two unoriented edges denote 2-cycles. 

Combining Theorem 5.6.1 with Proposition 5.0.3 one can obtain sufficient 

conditions for a digraph to be traceable (see also Exercise 5.16). Theorem 

5.6.1 also has the following immediate corollaries. 

Corollary 5.6.2 (Ghouila-Houri) /315/ If the degree of every vertex in a 

digraph D of order n is at least n, then D is hamiltonian. 0 

Corollary 5.6.3 Let D be a digraph of order n. If the minimum semi-degree 

of D, 6°(D) > n/2, then D is hamiltonian. oO 

It turns out that even a slight relaxation of Corollary 5.6.3 brings in non- 

_ hamiltonian digraphs. In particular, Darbinyan [177] proved the following: 
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Proposition 5.6.4 Let D be a digraph of even order n > 4 such that the 

degree of every vertex of D is at least n —1 and 6°(D) > n/2—1. Then 

either D is hamiltonian or D belongs to a non-empty finite family of non- 

hamiltonian digraphs. QO 

By Theorem 5.5.1, a locally semicomplete digraph is hamiltonian if and 

only if it is strong [44]. This result was generalized by Bang-Jensen, Gutin 

and Li [69] as follows. 

Theorem 5.6.5 Let D be a strong digraph of order n. Suppose that D sat- 

isfies min{d*(x) + d~(y), d~ (x) + d*(y)} > n for every pair of dominating 

non-adjacent and every pair of dominated non-adjacent vertices {x,y}. Then 

D is hamiltonian. 

We prove this theorem in Subsection 5.6.3. Theorem 5.6.5 implies Corol- 

lary 5.6.3 as well as the following theorem by Woodall [739]: 

Corollary 5.6.6 Let D be a strong digraph of order n > 2. If dt (x) + 

d~(y) > n for all pairs of vertices x and y such that there is no arc from 

xz toy, then D is hamiltonian. O 

The following theorem generalizes Corollaries 5.6.2,5.6.3 and 5.6.6. The 
swe 

inequality of Theorem 5.6.7 is best possible: Consider Ky—2 (n > 5) and fix 

a vertex u in this digraph. Construct the digraph H, by adding to pam a 
oo 

pair v,w of vertices such that both v and w dominates every vertex in Ky_2 

and are dominated by only u, see Figure 5.4. It is easy to see that Hy is 

strong and non-hamiltonian (H,, — u is not traceable). However, v,w is the 

only pair of non-adjacent vertices in H, and d(v) + d(w) = 2n — 2. 

Figure 5.4 The digraph H,. 

Theorem 5.6.7 (Meyniel’s theorem) /564] Let D be a strong digraph of 
order n > 2. If d(x) + d(y) > 2n —1 for all pairs of non-adjacent vertices in 
D, then D is hamiltonian. oO 
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Short proofs of Meyniel’s theorem were given by Overbeck-Larisch [597] 
and Bondy and Thomassen [128]. The second proof is slightly simpler than 
the first one and can also be found in the book [735] by West (see Theorem 
8.4.38). Using Proposition 5.0.3 one can easily see that replacing 2n — 1 by 
2n — 3 in Meyniel’s theorem we obtain sufficient conditions for traceability. 
(Note that for traceability we do not require strong connectivity.) Darbinyan 
[180] proved that by weakening the degree condition in Meyniel’s theorem 

only by one, we obtain a stronger result: 

Theorem 5.6.8 /180] Let D be a digraph of order n > 3. If d(x) + d(y) > 
2n — 2 for all pairs of non-adjacent vertices in D, then D contains a hamil- 

tonian path in which the initial verter dominates the terminal vertez. Oo 

Berman and Liu [111] extended Theorem 5.6.7 as formulated below. For 
a digraph D of order n, a set M C V(D) is Meyniel if d(x) + d(y) > 2n-1 

for every pair x, y of non-adjacent vertices in M. The proof of Theorem 5.6.9 

is based on the multi-insertion technique. 

Theorem 5.6.9 /111] Let M be a Meyniel set of vertices of a strong digraph 

D of order n > 2. Then D has a cycle containing all vertices of M. O 

Another extension of Meyniel’s theorem was given by Heydemann [428]. 

Theorem 5.6.10 [4/28] Let h be a non-negative integer and let D be a strong 

digraph of order n > 2 such that, for every pair of non-adjacent vertices x 

and y, we have d(x) + d(y) > 2n —2h+1. Then D contains a cycle of length 
greater than or equal to [5+] +1. oO 

Manoussakis [547] proved the following sufficient condition that involves 
triples rather than pairs of vertices. Notice that Theorem 5.6.11 does not 

imply either of Theorems 5.6.1, 5.6.5 and 5.6.7 [69]. 

Theorem 5.6.11 /547] Suppose that a strong digraph D of order n > 2 

satisfies the following conditions: for every triple x,y,z € V(D) such that x 

and y are non-adjacent 

(a) If there is no arc from x to z, then d(x) +d(y)+d*t(x)+d-(z) >3 
(b) If there is no arc from z to x, then d(x) +d(y) +d (x) + dt (z) > 3n— 

Then D is hamiltonian. oO 

The next theorem resembles both Theorem 5.6.5 and Theorem 5.6.7. How- 

ever, Theorem 5.6.12 does not imply any of these theorems. The sharpness of 

the inequality of Theorem 5.6.12 can be seen from the digraph H,, introduced 

before Theorem 5.6.7. 
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Theorem 5.6.12 (Zhao and Meng) [758] Let D be a strong digraph of 

order n > 2. If 

d+(x)+d*(y)+d-(u)+d (v) > 2n-1 

for every pair x,y of dominating vertices and every pair u,v of dominated 

vertices, then D is hamiltonian. ; Oo 

Theorems 5.6.5 and 5.6.12 suggest that the following conjecture by Bang- 

Jensen, Gutin and Li, may be true. 

Conjecture 5.6.13 /69] Let D be a strong digraph of order n > 2. Suppose 

that d(x)+d(y) > 2n—1 for every pair of dominating non-adjacent and every 

pair of dominated non-adjacent vertices {x,y}. Then D is hamiltonian. 

Bang-Jensen, Guo and_, Yeo [57] proved that, if we replace the degree 

condition d(x) + d(y) > 2n — 1 with d(x) + d(y) > 3n — 4 in Conjecture 
5.6.13, then D is hamiltonian. They also provided additional support for 

Conjecture 5.6.13 by showing that every digraph satisfying the condition of 

Conjecture 5.6.13 has a cycle factor. 

Perhaps Conjecture 5.6.13 can even be generalized to the following which 

was conjectured by Bang-Jensen, Gutin and Li: 

Conjecture 5.6.14 /69] Let D be a strong digraph of order n > 2. Suppose 

that, for every pair of dominated non-adjacent vertices {x,y}, d(x) + d(y) > 
2n—1. Then D is hamiltonian. 

Let F' be the digraph obtained from the complete digraph Kane’ by 

adding three new vertices {z, y, z} and the following arcs {ry, yx, yz, zy, zz}U 

{ru, ut, yu: ue Vika see Figure 5.5. Clearly F is strongly connected 
and the underlying undirected graph of F is 2-connected. However, F is not 

hamiltonian as all hamiltonian paths in F'— 2 start at z, but x does not dom- 

inate z. The only pairs of non-adjacent vertices in D are z and any vertex 

we Vic Ken and here we have d(z) + d(u) = 2n — 2. Thus both conjectures 
above would be the best possible. 

One of the oldest conjectures in the area of hamiltonian digraphs is the 
following conjecture by Nash-Williams. 

Conjecture 5.6.15 /586, 587] Let D be a digraph of order n > 3 satisfying 
the following conditions: 

(i) For every positive integer k less than (n —1)/2, the number of vertices of 
out-degree less than or equal to k is less than k. 

(ii) The number of vertices of out-degree less than or equal to (n — 1)/2 is 
less than or equal to (n — 1)/2. 
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z 

Figure 5.5 The digraph F. 

(iii) For every positive integer k less than (n — 1)/2, the number of vertices 
of in-degree less than or equal to k is less than k. 

(iv) The number of vertices of in-degree less than or equal to (n—1)/2 is less 

than or equal to (n — 1)/2. 

Then D is hamiltonian. 

Conjecture 5.6.15 seems to be very difficult (see comments by Nash- 

Williams in [587, 588]). This conjecture was inspired by the corresponding 

theorem by Pésa [610] on undirected graphs. Pdsa’s result implies that the as- 

sertion of this conjecture is true at least for symmetric digraphs, i.e. digraphs 

D such that zy € A(D) implies yz € A(D). 

One may also try to obtain digraph analogues of various other sufficient 

degree conditions for graphs, such as Chvatal’s theorem [159], which asserts 
that, if the degree sequence dj < dz < ... < d, of an undirected graph 

satisfies the condition dy < k < }=>dn_~ > n—k for each k, then the graph 

is hamiltonian. Similarly, one may ask whether every strong digraph whose 

non-decreasing degree sequence d; < dz < ... < dy satisfies the following 
condition is hamiltonian: 

dps 2h end, pant Sh), ben — LL. (5.1) 

For a digraph D we can obtain the non-decreasing out-degree and in- 

degree sequences: df < dj <...< dt andd; < dy <...<d> (orderings 
of vertices of D in these two sequences are usually different). Using the two 
sequences, one may suggest conditions similar to (5.1): 

dj <k< > dt_,>n—kand 
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dp <k<>>d_,20-k, p21 ee ee 

It is not difficult to construct an infinite family of non-hamiltonian strong 

digraphs that satisfy both (5.1) and (5.2) (Exercise 5.25). However, if we 

‘mix’ the out-degrees with the in-degrees in (5.2), we obtain the following 

conjecture due to Nash-Williams: 

Conjecture 5.6.16 /588] If the non-decreasing out-degree and in-degree se- 

quences of a digraph D satisfy the conditions 

df <k<5>d,_,>n—k and 

dj <k<5 dt, >n-k, petite © ahs 

then D is hamiltonian. 

One may expect that for oriented graphs (i.e., digraphs with no 2-cycles) 

a result much stronger than Corollary 5.6.3 holds. Haggkvist [387] proved 
the following theorem and. made a much stronger conjecture. Notice that 

Haggkvist [387] constructed non-hamiltonian oriented graphs D with 6°(D) > 
n/3 (these oriented graphs do not even contain cycle factors). 

Theorem 5.6.17 /387] Let D be an oriented graph of order n and let 

6°(D) > (§ —2718)n. Then D is hamiltonian. Oo 

Conjecture 5.6.18 /387] Let D be an oriented graph of order n and let 
6+ (D) > (8n — 2)/8. Then D is hamiltonian. 

Jackson conjectured that for regular oriented graphs an even stronger 

assertion holds. 

Conjecture 5.6.19 [449] Every k-regular oriented graph of order at most 
4k +1, where k £ 2, contains a Hamilton cycle. 

5.6.2 The Multi-Insertion Technique 

Let P = uju2...us be a path in a digraph D and let Q = v1 v2...u; be a 
path in D—V(P). The path P can be inserted into Q if there is a subscript 
1 € {1,2,...,t-—1} such that visu, and u,—v;41. Indeed, in this case the 
path Q can be extended to a new (v1, v¢)-path Q[u, vi]PQ[vi41, ve]. The path 
P can be multi-inserted into Q if there are integers i; = 1 < in <...< 
im = 8+1 such that, for every k = 2,3,...,m, the subpath P[ui,_,, ui, —1] can 
be inserted into Q. The sequence of subpaths P[u;,_,,ui,—1], k = 2,...,m, 
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is a multi-insertion partition of P. Similar definitions can be given for the 
case when Q is a cycle. 

The complexity of algorithms in this subsection is measured in terms of 

the number of queries to the adjacency matrix of a digraph. In this subsection 

we prove several simple results, which are very useful while applying the 

multi-insertion technique. Some of these results are used in this section, others 

will be applied in other parts of this book. The following lemma is a simple 

extension of a lemma by Bang-Jensen, Gutin and Li [69]. 

Lemma 5.6.20 Let P be a path in D and let Q = v1 v2...v4 be a path (a 

cycle, respectively) in D—V(P). If P can be multi-inserted into Q, then there 

is a (v1, v¢)-path R (a cycle, respectively) in D so that V(R) = V(P)UV(Q). 
Given a multi-insertion partition of P, the path R can be found in time 

O(\V (PIV (Q)]). 

Proof: We consider only the case when Q is a path, as the other case (Q is a 

cycle) can be proved analogously. Let P = u,u2...us. Suppose that integers 

43 = 1 < 1o,< ... <tm = 5 +1 are such that. the subpaths P[u;,_,, wi,-], 
k = 2,3,...,m, form a multi-insertion partition of P. 

We proceed by induction on m. If m = 2 then the claim is obvious, hence 

assume that m > 3. Let zy € A(Q) be such that the subpath P[u;,, u;,—1] 

can be inserted between xz and y on Q. Choose r as large as possible such that 

Ui,-1—y. Clearly, P[u;,,ui,—1] can be inserted into Q to give a (v1, v;)-path 

Q*. Thus, if r = m we are done. Otherwise apply the induction hypothesis 

to the paths P[u;,,us] and Q* (observe that by the choice of r none of the 

subpaths of the multi-insertion partition of P[u;,,us] can be inserted between 
x and y in Q, and thus every such subpath can be inserted into Q*). 

If we postpone the actual construction of R till we have found a new 

multi-insertion partition M of P and all (distinct) pairs of vertices between 

which the subpaths of M can be inserted, then the complexity claim of this 

lemma follows easily. O 

The next two corollaries due to Bang-Jensen, Gutin and Huang, respec- 

tively, Yeo can easily be proved using Lemma 5.6.20; their proofs are left as 

an easy exercise (Exercise 5.21). 

Corollary 5.6.21 /68] Let D be a digraph. Suppose that P = uju2...Ur is a 

path in D andC is a cycle in D—P. Suppose that for eachi = 1,2,...,r—1, 

either the arc ujui41 or the vertex u; can be inserted into C’, and, in addition, 

assume that u, can be inserted into C. Then D contains a cycle Z with the 

vertex set V(P) UV(C) and Z can be constructed in time O(|V (P)||V(C)|). 
Oo 

Corollary 5.6.22 /744] Let D be a digraph. Suppose that P = uju2...Ur 18 
a path in D and C is a cycle in D— P. Suppose also that for each odd index 

4 the arc ujuj41 can be inserted into C, and if r is odd, u, can be inserted 
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into C. Then D contains a cycle Z with the verter set V(P) UV(C) and Z 
can be constructed in time O(|V(P)||V(C)]). Oo 

Corollary 5.6.23 /68] Let D be a digraph. Suppose that C is a cycle of even 

length in D and Q is a cycle in D—C. Suppose also that for each arc uv of 

C either the arc uv or the vertex u can be inserted into Q. Then D contains 

a cycle Z with the verter set V(Q) UV(C) and Z can be constructed in time 

OV (Q)IIV(C)]). 

Proof: If there is a vertex x on C' that can be inserted into Q then apply 

Corollary 5.6.21 to C[zt,z] and Q. Otherwise, all the arcs of C can be in- 

serted into Q and we can apply Corollary 5.6.22 to C[yt,y] and Q, where y 

is any vertex of C. oO 

5.6.3 Proofs of Theorems 5.6.1 and 5.6.5 

The following lemma is a slight modification of a lemma by Bondy and 

Thomassen [128]; its proof is not too difficult and is left as an exercise to 
the reader (Exercise 5.18). 

Lemma 5.6.24 Let Q = v1 v2...v4 be a path in D.and let w,w! be vertices 
of V(D) — V(Q) (possibly w = w'). If there do not exist consecutive vertices 
Vi, Vit1 ONG such that v;w, w'v;41 are arcs of D, then d> Q(w w)+d6 (w’) <t+é, 
where € = 1 if uw and 0, otherwise. oO 

In the special case when w’ = w above, we get the following interpretation 
of the statement of Lemma 5.6.24. 

Lemma 5.6.25 Let Q = v;v2...v¢ be a path in D, and let w € V(D)—V(Q). 
If w cannot be inserted into Q, hen dg(w) <t+1. If, in addition, v; does 
not dominate w, then dg(w) < t. Oo 

Let C be a cycle in D. Recall that an (x,y)-path P is a C- bypass if 
|V(P)| > 3, 2 #y and V(P)NV(C) = {z,y}. The length of the path Cla, y] 
is the gap of P with respect to C. 

Proof of Theorem 5.6.1: Assume that D is non-hamiltonian and C — 
©1X2...XLmX is a longest cycle in D. We first show that D contains a C- 
bypass. Assume D does not have one. Since D is strong, D must contain a 
cycle Z such that |V(Z) MN V(C)| = 1. Without loss of generality, we may 
assume that V(Z) V(C) = {x1}. Let z be the successor of 21 on Z. Since D 
has no C-bypass, z and x2 are non-adjacent. Since z and T2 are a dominated 
pair, d(z) +d(x2) > 2n—1. On the other hand, since D has no C- bypass, we 
have dc_z,(z) = dz_2, (22) = 0 and |({z, x9}, v) U (y, {z, 2})| < 2 for every 
y € V(D) —-(V(C) UV(Z)). Thus, d(z) + d(a2) < 2(n — 1); a contradiction. 
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Let P = uyuzg...us be a C-bypass (s > 3). Without loss of generality, 
let uy = 21, Us = £141, 0 < y < m. Suppose also that the gap y of P is 
minimum among the gaps of all C-bypasses. 

Since C’ is a longest cycle of D, y > 2. Let C’ = Clave |i Ca 
C[z7+41, 2%], R = D—V(C), and let az; be any vertex in C’ such that 2; 2;. 
Let also x, be an arbitrary vertex in C’. 

We first prove that 

don (xj) > |V(C")| +2. (5.3) 
Since C is a longest cycle and P has the minimum gap with respect to C, 

uz is not adjacent to any vertex on C’, and there is no vertex y € V(R)—{uz} 
such that either uzp>y—z, or T,4y— U2. Therefore, 

de: (tp) + der (uz) < 2(|V(C")| — 1) (5.4) 
and 

dr(rz) ae dr(u2) < 2(n a) ee 1). (5.5) 

By the maximality of C’, u2 cannot be inserted into C”, so by Lemma 
5.6.25, 

don (ua) < |V(C")| +1. (5.6) 
The fact that the pair of non-adjacent vertices {x;,u2} is dominated by 

x, along with (5.4), (5.5) and (5.6), implies that 

2n —1 < d(zj) + d(u2) < don (xj) + 2n — |V(C")| — 3. 

This implies (5.3). 

By (5.3) and Lemma 5.6.25, z2 can be inserted into C”. Since C is a 
longest cycle, it follows from Lemma 5.6.20 that there exists 3 € {3,...,y} 

so that the subpath C[x2, zg_1] can be multi-inserted into C", but C[x2, xg] 
cannot. In particular, xg cannot be inserted into C”. Thus, by (5.3) and 
Lemma 5.6.25, x; does not dominate xg and de (rg) < |V(C")|. This along 
with (5.4)-(5.6) gives d(xg) + d(u2) < 2n — 3. Since u2 forms a dominated 
pair with z2, we have that d(u2) > n — 1. Hence, 

d(xg) <n—2. (5.7) 
By the definition of multi-insertion, there are a € {2,3,...,6 —1} and 

i € {y+1,...,m} such that z;9z2q and rg_1-2;41. Observe that the 

pair {zg,zi41} is dominated by xg_1. Thus, by (5.7) and the assumption 
of the theorem, either rg—2i41 or %441-2g. If tg—7;41, then the path 

P|z2,2g] can be multi-inserted into C” which contradicts our assumption. 
Hence, 2;41—+2g. Considering the pair rg, x;+2, we conclude analogously that 
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Li42—2g. Continuing this process, we finally conclude that x;+xg, contra- 

dicting the conclusion above that the arc z;xg does not exist. 0 

Proof of Theorem 5.6.5: Assume that D is not hamiltonian and C = 

Z1LQ...L£2mZ, is a longest cycle in D. Set R = D—V(C). We first prove that 

D ee a C-bypass with 3 vertices. 

Since D is strong, there is a vertex y in R Aa a vertex xz in C’ such 

that yz. If y dominates every vertex on C, then C is not a longest cycle, 

since a path P from a vertex xz; on C' to y such that V(P) NV(C) = {2;} 
together with the arc y2;4; and the path C[z:41,2;] form a longer cycle 

in D. Hence, either there exists a vertex x, € V(C) such that 2,3y—2,41, 

in which case we have the desired bypass, or there exists a vertex 2; € 
V(C) so that y and z; are non-adjacent, but yz;+1. Since the pair {y, z;} 

dominates z;41, d+(x;) + d~(y) =n. This implies the existence of a vertex 
z € V(D) — {x;,2;41,y} such that 1;z-y. Since C is a longest cycle, 

z€V(C). So, B = zyx;41 is the desired bypass. 

Without loss of generality, assume that z = x, and the gap 7 of B with 

respect to C' is minimum among the gaps of all C-bypasses with three vertices. 

Clearly, 7 > 2. 

Let C’ = C[z2,2;] and C” = C[xj41,2:]. Since C is a longest cycle, 
C” cannot be multi-inserted into C”. It follows from Lemma 5.6.24 that 
dé (xj) + dou (x2) < |V(C")| +1. By Lemma 5.6.25 and the maximality 
of C, den (y) < |V(C")| + 1. Analogously to the way we derived (5.4) in the 
previous proof, we get that dr(y) + dp(x;) + dz(r2) < 2(n —m—1). Clearly, 
dé, (2;) + do. (x2) < 2|V(C")| — 2. Since do: Ge = 0, the last four inequalities 
imply 

d(y) + dt (aj) +d (a2) < 2n—-2. (5.8) 

Since y is adjacent to neither x2 nor x;, the assumption of the theorem 
implies that dt (y) + d~(r2) > n and d~(y) + d+(zx;) > n, which contradicts 
(5.8). Oo 

5.7 Longest Paths and Cycles in Semicomplete 
Multipartite Digraphs 

While both Hamilton path and Hamilton cycle problems are polynomial time 
solvable for semicomplete multipartite digraphs (the latter was a difficult 
open problem for a while and was proved recently by Bang-Jensen, Gutin and 
Yeo [72] using several deep results on cycles and paths in semicomplete mul- 
tipartite digraphs, see also [746]), only a characterization of traceable semi- 
complete multipartite digraphs is known. In Subsection 5.7. 1, we give basic 
results on hamiltonian and longest paths and cycles in Site, multi- 
partite digraphs. Several results of Subsection 5.7.1 are proved in Subsection 
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5.7.3 using the most important assertion of Subsection 5.7.2. In Subsection 

5.7.4, we formulate perhaps the most important known result on Hamilton 

cycles in semicomplete multipartite digraphs, Yeo’s Irreducible Cycle Sub- 

digraph Theorem, and prove some interesting consequences of this powerful 

result. Due to the space limit our treatment of hamiltonian semicomplete 

multipartite digraphs is certainly restricted. The reader can find more infor- 

mation on the topic in the survey papers [65, 66] by Bang-Jensen and Gutin 

[368] by Gutin and [728] by Volkmann, the theses [345, 362, 692, 745], by 

Guo, Gutin, Tewes and Yeo respectively and the papers cited there. 

5.7.1 Basic Results 

We start by considering the longest path problem for semicomplete multipar- 

tite digraphs. The following characterization is proved in Subsection 5.7.3. 

Theorem 5.7.1 (Gutin) /358, 363] A semicomplete multipartite digraph 

D is traceable if and only if it contains a 1-path-cycle factor. One can verify 

whether D is traceable and find a hamiltonian path in D (if any) in time 
O(n), 

This theorem can be reformulated as pc(D) = 1 if and only if pcc(D) = 1 
for a semicomplete multipartite digraph D. Using the result of Exercise 3.59, 

the last statement can be easily extended to the following result by Gutin: 

Theorem 5.7.2 /362] For a semicomplete multipartite digraph D, pc(D) = 

pcec(D). The path covering number of D can be found in time O(n?:*). Oo 

The non-complexity part of the next result by Gutin follows from Theorem 

5.7.1. The complexity part is a simple consequence of Theorem 3.11.11. 

Theorem 5.7.3 /363] Let D be a semicomplete multipartite digraph of order 

n. 

(a) Let F be a 1-path-cycle subdigraph with maximum number of vertices in 

D. Then D contains a path P such that V(P) = V(F). 
(b) A longest path in D can be constructed in time O(n*). 

O 

We see from Theorem 5.7.1 that the hamiltonian path problem for semi- 

complete multipartite digraphs turns out to be relatively simple. The hamilto- 

nian cycle problem for this class of digraphs seems to be much more difficult. 

One could guess that similarly to Theorem 5.7.1, a semicomplete multipar- 

tite digraph is hamiltonian if and only if it is strong and has a cycle factor. 

Even though these two conditions (strong connectivity and the existence of a 

cycle factor) are sufficient for semicomplete bipartite digraphs and extended 

_ semicomplete digraphs (see Theorems 5.7.4 and 5.7.5), they are not sufficient 
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for semicomplete k-partite digraphs (k > 3) (see, e.g., an example later in 

this subsection). The following characterization was obtained independently 

by Gutin [353] and Haggkvist and Manoussakis [389]. 

Theorem 5.7.4 A semicomplete bipartite digraph D is hamiltonian if and 

only if D is strong and contains a cycle factor. One can check whether D 

is hamiltonian and construct a Hamilton cycle of D (if one exists) in time 

O(n? ). 

Some sufficient conditions for the existence of a hamiltonian cycle in a 

bipartite tournament are described in the survey paper [368] by Gutin. 

Theorem 5.7.5 [359] An extended semicomplete digraph D 1s hamiltonian 

if and only if D is strong and contains a cycle factor. One can check whether 

D is hamiltonian and construct a Hamilton cycle of D (if one exists) in time 
O(n25). 

These two theorems can be generalized as follows. 

Theorem 5.7.6 (Gutin) /357, 362] Let D be strong semicomplete bipartite 

digraph. The length of a longest cycle in D is equal to the number of vertices 

in a cycle subdigraph of D of maximum order. One can find a longest cycle 

in D in time O(n’). 

Theorem 5.7.7 [362] Let D be a strong extended semicomplete digraph and 
let F be a cycle subdigraph of D. Then D has a cycle C which contains all 

vertices of F. The cycle C can be found in time O(n*). In particular, if F is 

mazimum, then V(C) = V(F), i.e., C is a longest cycle of D. 

Proofs of the last two theorems are given in Subsection 5.7.3. One can see 

that the statement of Theorem 5.7.7 is stronger than Theorem 5.7.6. In fact, 

the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs does not 

hold [362], see Exercise 5.29. The following strengthening of Theorem 5.7.7 
is proved in [82]: 

Theorem 5.7.8 (Bang-Jensen, Huang and Yeo) /82] Let D = (V, A) 

be a strong extended semicomplete digraph with decomposition given by D = 

([H,,H2,...,H,], where s = |S| and every V(H;) is a maximal independent 
set in V. Let mj, 1 = 1,2,...,8, denote the mazimum number of vertices 

from H; which are contained in a cycle subdigraph of D. Then every longest 

cycle of D contains precisely m; vertices from each H;, i =1,2,...,t. oO 

One may ask whether there is any degree of strong connectivity, which 

together with a cycle factor is sufficient to guarantee a hamiltonian cycle 

in a semicomplete multipartite digraph (or a multipartite tournament). The 
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answer is negative. In fact, there is no s such that every s-strong multipartite 

tournament with a cycle factor has a Hamilton cycle. Figure 5.6 shows a non- 

hamiltonian multipartite tournament T which is s-strong (s is the number of 

vertices in each of the sets A, B,C, D and X,Y, Z), and has a cycle factor. We 

leave it to the reader to verify that there is no Hamilton cycle in T (Exercise 

5,28). 

Figure 5.6 An s-strong non-hamiltonian multipartite tournament T with a cycle 
factor. Each of the sets A,B,C,D and X,Y,Z induces an independent set with 
exactly s vertices. All arcs between two sets have the direction shown. 

We conclude the description of basic results on hamiltonian semicomplete 

digraphs by the following important result which we mentioned above. 

Theorem 5.7.9 (Bang-Jensen, Gutin and Yeo) /72] One can verify 
whether a semicomplete multipartite digraph D has a hamiltonian cycle and 

find one (if it exists) in time O(n"). Oo 

Very recently Yeo [746] proved that the problem can be solved in time 

O(n*). 

5.7.2 The Good Cycle Factor Theorem 

The purpose of this subsection, based on the paper [68] by Bang-Jensen, 

Gutin and Huang, is to prove some sufficient conditions for a semicomplete 

multipartite digraph to be hamiltonian. 

Let F = C,; UC, be a cycle factor or a 1-path-cycle factor in a digraph 

D, where C, is a cycle or a path in D and C2 is a cycle. A vertex v € 

V(C;) is called out-singular (in-singular) with respect to C3_; if vu=>C3_; 

(C3_;=>v); v is singular with respect to C3_; if it is either out-singular or 

in-singular with respect to C3_;. 
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Lemma 5.7.10 /68] Let QUC be a cycle factor in a semicomplete multi- 

partite digraph D. Suppose that the cycle Q has no singular vertices (with 

respect to C) and D has no hamiltonian cycle, then for every arc xy of Q 

either the arc zy itself can be inserted into C,, or both vertices x and y can 

be inserted into C. 

Proof: Assume without loss of generality that there is some arc ry on Q 

such that neither x nor zy can be inserted into C. Since D is a semicom- 

plete multipartite digraph and z is non-singular and cannot be inserted into 

C, there exists a vertex v on C which is not adjacent to z and v2. 

Furthermore, v is adjacent to y since x and y are adjacent. Since ry can- 

not be inserted into C, we have vy. Then D contains a Hamilton cycle 

Q[y, z]C[vt, vjy, which contradicts the assumption. a) 

Lemma 5.7.11 /68] Let D be a semicomplete multipartite digraph contain- 

ing a cycle factor Cy UC, such that C; has no singular vertices with respect 

to C3_;, for both i = 1,2; then D is hamiltonian. Given C, and C2, a hamil- 

tonian cycle in D can be found in time O(|V(C1)||V (C2)|)- 

Proof: If at least one of the cycles C,, C2 is even, then by Corollary 5.6.23 and 

Lemma 5.7.10 we can find a Hamilton cycle in D in time O(|V(C1)||V (C2)]). 
Thus, assume that both of C), C2 are odd cycles. If some vertex in C; can be 

inserted into C3_; for some 7 = 1 or 2, then by Corollary 5.6.21 and Lemma 

5.7.10, we can construct a Hamilton cycle in D in time O(|V(C1)||V(C2))). 
Thus, we may also assume that no vertex in C; can be inserted into C3_; for 

both 7 = 1,2. So, by Lemma 5.7.10, every arc of C; can be inserted into C3_,;. 

Now we show that either D is hamiltonian or we may assume that every 

arc of C; can be inserted between two different pairs of vertices in C3_; 

(i = 1,2). Consider an arc £122 of Cy. Since both 2; and z2 are non-singular 

and cannot be inserted into C2, there exist vertices v; and v2 on C2 such that 

vu; is not adjacent to 2; and Vv, 22; , 1 = 1,2. If vx} 422, then we obtain 

a Hamilton cycle. So we may assume that the only arc between x2 and vj is 

X£2v,. For the same reason, we may assume that v2 dominates x; but is not 

dominated by z;. Now the arc 2,22 can be inserted between v; and v; and 

between v2 and up : 

Hence, 2; Z2 cannot be inserted between two pairs of vertices only in the 

case that vj = v2 and v; = vf. We show that in this case D is hamiltonian. 
Construct, at first, a cycle C* = C,[x2,21]C2[vj', v5 Jaa which contains all 

the vertices of D but v; ,v1. The arc v; v, can be inserted into C;, by the 

remark at the beginning of the proof. But v; v; cannot be inserted between 

zr; and 2, since v; does not dominate z2 and v; = v2 is not dominated by 

r,. Hence, the arc v; v; can be inserted into C* to give a hamiltonian cycle 
of D. This completes the proof that either D is hamiltonian or every arc on 

C; can be inserted between two different pairs of vertices in C3_.;. 

Assume without loss of generality that the length of C2 is not greater 
than that of C,;. Then C; has two arcs z;y; (i = 1,2) that can be inserted 
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between the same pair u, v of vertices in C2. Since C, is odd, one of the paths 

Q = Cilyf, xz] and Ci[y{, 27] has odd length. Without loss of generality, 
suppose that Q is odd. Obviously, C* = C2[v, u]Ci[x2, y:]v is a cycle of D. 

By the fact shown above each arc of the path Q can be inserted into Cy 

between a pair of vertices different from u,v. Therefore, each arc of Q can 

be inserted into C*. Hence, by Corollary 5.6.22 we conclude that D has a 

hamiltonian cycle H. It is not difficult to verify that H can be found in time 

O(IV(Cr)IIV (C2))). a 
Let D be a semicomplete multipartite digraph and let C UC’ be a cycle 

subdigraph of D. We write that C=>C’ if C contains singular vertices with 
respect to C” and they all are out-singular, and C’ has singular vertices with 

respect to C’ and they all are in-singular. A cycle factor F = CyUC,U...UC; 

is good if for every pair i,j, 1<i<j <t, neither C;~>C; nor Cj~>C;. 

Since this definition and the proof of Lemma 5.7.12 are quite important, 

we illustrate them in Figure 5.7. Observe that if C,C’ are a pair of disjoint 

cycles in a semicomplete multipartite digraph D, then (up to switching the 

role of the two cycles) at least one of the following four cases apply (see Figure 

Dat)i 

(a) Every vertex on C has an arc to and from C”. 
(b) There exist vertices x € V(C),y € V(C’) such that z>V(C") and 

y=>V(C), or V(C')=>2 and V(C)>y. 
(c) C contains distinct vertices z,y such that r>V(C") and V(C’)>y. 
(d) CSC" 

The alternatives (a)-(c) are covered by the definition of a good cycle factor 
(for cycle factors containing only two cycles); the alternative (d) is not. 

SA OmGLOn GLOne.o 
(a) (b) (c) (d) 

Figure 5.7 The four possible situations (up to switching the role of the two cycles or 
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite 
digraph. In (a) every vertex on C has arcs to and from C’. In (b)-(d) a fat arc 
indicates that all arcs go in the direction shown from or to the specified vertex (i.e. 
in (b) all arcs between xz and C’ leave z). 

The following lemma gives the main result for a good cycle factor con- 
taining two cycles. 

Lemma 5.7.12 /68] If D is a semicomplete multipartite digraph containing 

a good factor Cy UC2, then D is hamiltonian. A Hamilton cycle in D can be 

constructed in time O(|V(C;1)||V(C2)|). 
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Proof: The first case is that at least one of the cycles C, and C2 has no 

singular vertices (Situation (a) in Figure 5.7). If both C, Cz have no singular 

vertices then D is hamiltonian by Lemma 5.7.11 and we can find a Hamilton 

cycle in D in time O(|V(C1)||V (C2)|). Assume now that only one of them has 
no singular vertices. Suppose without loss of generality that C; contains an 

out-singular vertex « and C2 has no singular vertices. Since C2 contains no 
singular vertices, C has at least one vertex which is not out-singular. Suppose 

that « € V(C) was chosen such that zt is not out-singular. Hence there is 

a vertex y on C2 dominating x7. If ry, then y can be inserted into C; and 

hence, by Lemma 5.7.10 and Corollary 5.6.21, D is hamiltonian (consider 

C2[yt, y] and C,). Otherwise, x is not adjacent to y. In this case, ryt and 

D has the hamiltonian cycle C,[x*, z]C2[y*, y]z. The above arguments can 
be easily converted into an O(|V (C;1)||V (C2)|)-algorithm. 

Consider the second case: each-of C), C2 has singular vertices with respect 

to the other cycle. Assume without loss of generality that C; has an out- 

singular vertex z,. If C2 also contains an out-singular vertex r2 (Situation 

(b) in Figure 5.7), then x is not adjacent to 2 and z;2x3_, for both i = 1,2. 

Hence D is hamiltonian. If C2 contains no out-singular vertices then it has in- 

singular vertices. Since C; UC? is a good factor, C, contains both out-singular 

and in-singular vertices (Situation (c) in Figure 5.7). Since both Cy and C2 
have in-singular vertices, the digraph D’ obtained from D by reversing the 

orientations of the arcs of D has two cycles C and C} containing out-singular 
vertices. We conclude that D' (and hence D) is hamiltonian. Again, the above 
arguments can be converted into an O(|V(C;1)||V (C2)|)-algorithm. 0 

The main result on good cycle factors is the following theorem by Bang- 
Jensen, Gutin and Huang. This theorem can be proved by induction on t, the 
number of cycles in a good cycle factor. We leave the details to the reader 
(see Exercise 5.39). 

Theorem 5.7.13 (Bang-Jensen, Gutin and Huang) /68/] If D is a 
strong semicomplete multipartite digraph containing a good cycle factor F = 
Cy, UC2U...UC; (t > 1), then D is hamiltonian. Furthermore, given F one 
can find a hamiltonian cycle in D in time O(n?). Oo 

5.7.3 Consequences of Lemma 5.7.12 

In this subsection mostly based on [68], we will show that several important 
results on semicomplete multipartite digraphs are consequences of Lemma 
On lel 

Proof of Theorem 5.7.1: It is sufficient to prove that if P is a path and 
C is a cycle of D such that V(P) 1 V(C) = 9, then D has a path P’ with 
V(P') = V(P)UV(C). Let P and C be such a pair, and let u be the initial and 
v the terminal vertex of P. If u is non-singular or in-singular with respect 
to C, then obviously the path P’ exists. Similarly if v is non-singular or 



5.7 Longest Paths and Cycles in Semicomplete Multipartite Digraphs 257 

out-singular with respect to C. Assume now that u is out-singular and v is 
in-singular with respect to C. 

Add a new vertex w to D and the arcs zw, for all z # u and the arc wu to 
obtain the semicomplete multipartite digraph D'. Then w forms a cycle C’ 
with P in D’ and C UC" is a good cycle factor of D'. Therefore, by Lemma 
5.7.12, D’ has a hamiltonian cycle. Then D contains a hamiltonian path. 

It is easy to see that the proof above supplies a recursive O(n?)-algorithm 
for finding a hamiltonian path in D given a 1-path-cycle factor F. Thus, 
the complexity result of this theorem is due to the fact that we can either 

construct a 1-path-cycle factor in a digraph or discover that it does not exist 

in time O(n?°): see Exercise 3.59. Oo 

To obtain the rest of the proofs in this subsection, we need the following: 

Lemma 5.7.14 /68] Let D be a strong semicomplete multipartite digraph 

containing a cycle subdigraph F = Cy UCgU...UC; such that for every 

pair i,j (l<i<j<t) Cj>C; or Cj>C; holds. Then D has a cycle C 

of length at least |V(F)| and one can find C in time O(n?) for a given F. 

If D is an extended semicomplete digraph, then we can choose C' such that 

V(F) CV(C). 

Proof: Define a tournament T(F) as follows: {C,,...,C:} forms the vertex 
set of T(F) and C;C; in T(F) if and only if C;>C; in D. Let H be the 
subdigraph of D induced by the vertices of F and let W be a partite set of 

D having a representative in C. 

First consider the case that T(F) is strong. Then it has a hamiltonian 
cycle. Without loss of generality assume that C,C2...C;C is a hamilto- 

nian cycle in T(F). If each of C; (i = 1,2,...,t) has a vertex from W 
then for every 1 = 1,2,...,¢ choose any vertex w; of V(C;) A W. Then 

C7i[wi, wy |Co[we, wy]... Cr[we, wy ]wi is a hamiltonian cycle in H. If there 

exists a cycle C; containing no vertices of W, then we may assume (shifting 

the cyclic order if needed) that C; has no vertices from W. Obviously, H has 

a hamiltonian path starting at a vertex w € WNV(C;) and finishing at some 

vertex uv of C;. Since vw, H is hamiltonian. 

Now consider the case where T(F) is not strong. Replacing in F every 
collection X of cycles which induce a strong component in T'(F) by a hamilto- 
nian cycle in the subdigraph induced by X, we obtain a new cycle subdigraph 

L of D such that T(L) has no cycles. The subdigraph T(L) contains a unique 

hamiltonian path Z,Z2...Z;, where Z; is a cycle of £. Since D is strong 

there exists a path P in D with the first vertex in Z, and the last vertex in 

Zq (1 <q <s) and the other vertices not in £. Assume that q is as small as 
possible. Then we can replace the cycles Z,,...,Zs by a cycle consisting of 

all the vertices of PUZ,U...UZ, except maybe one and derive a new cycle 

subdigraph with less cycles. Continuing in this manner, we obtain finally a 

single cycle. . 
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In the case of an extended semicomplete digraph D, if D(V(F)) is not 

strong, then T(F) is not strong. Also, C;=>C; implies that C;-+C;. This, 

combined with the above argument on semicomplete multipartite digraphs, 

allows one to construct a cycle C such that V(F) C V(C). 
Using the above proof together with an O(n”)-algorithm for constructing 

a hamiltonian cycle in a strong tournament (see Theorem 5.5.2 or Exercise 

5.15) and obvious data structures one can obtain an O(n?)-algorithm. 0 

Lemma 5.7.15 /68] Let C UC" be a cycle factor in a strong semicom- 
plete multipartite digraph D of order n. Then D has a cycle Z of length 

at least n — 1 containing all vertices of C. The cycle Z can be found in time 

O(IV(C)IIV(C")]). 
Proof: Suppose that the (existence) claim is not true. By Lemma 5.7.12, this 
means that each of C' and C’ has singular vertices with respect to the other 

cycle, and all singular vertices on one cycle are out-singular and all singular 

vertices on the other cycle are in-singular. Assume without loss of generality 

that C’ has only out-singular vertices with respect to C’. Since D is strong 

C has a non-singular vertex x. Furthermore we can choose x such that its 

predecessor z~ on C is singular. Let y be some vertex of C’ such that yz. 

If z~ is adjacent to y*, the successor of y on C’, then D has a hamiltonian 

cycle. Otherwise z~—y** and D has a cycle of length n — 1 containing all 
vertices of C’. The complexity result easily follows from the above arguments. 

O 

The next two results due to Gutin are easy corollaries of Lemma 5.7.15: 

Corollary 5.7.16 /353] Let CUC" be a cycle factor in a strong semicomplete 

bipartite digraph D. Then D has a hamiltonian cycle Z. The cycle Z can be 

found in time O(|V(C)||V(C’)]). 

Proof: Since D is bipartite, it cannot have a cycle of length n — 1. 0 

Corollary 5.7.17 /359] Let CUC' be a cycle factor in a strong extended 
semicomplete digraph D. Then D has a hamiltonian cycle Z. The cycle Z 

can be found in time O(|V(C)||V(C’)|). 

Proof: If C and C’ have a pair x, y of non-adjacent vertices (x € V(C), y € 
V(C")) then obviously s>y*, ya* and D has a Hamilton cycle that can 
be found in time O(|V(C)|V(C’)|). Assuming that any pair of vertices from 
C and C" is adjacent, we complete the proof as in Lemma 5.7.15. Oo 

Corollaries 5.7.16 and 5.7.17 imply immediately the following useful result. 

Proposition 5.7.18 If F = C,UC2U... UC, is a cycle factor in a digraph 
which is either semicomplete bipartite or extended semicomplete and there is 
no F' = C,{UC,U... UC) such that for every i = 1,2,...,k, V(Ci) C V(C}) 
for some j € {1,2,,...,r}, then without loss of generality Ci=>C; for every 
Vag 
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Lemma 5.7.15 implies immediately the following result first proved by 
Ayel (see [449]). 

Corollary 5.7.19 If C is a longest cycle in a semicomplete multipartite di- 

graph D, then D—V(C) is acyclic. QO 

Proof of Theorem 5.7.6: Let F = C, U...UC; be a cycle subdigraph of 

maximum order in a strong semicomplete bipartite digraph D. We construct 

a semicomplete digraph S, a generalization of the tournament T in Lemma 

5.7.14, as follows. The vertices of S are the cycles in F, C;-+C; in S if and 
only if there is an arc from C; to C; in D. Cycles of length two in S indicate 

what cycles in F¥ can be merged together by Corollary 5.7.16. Therefore, we 

can merge cycles in F till S becomes oriented, i.e. without 2-cycles. Now we 

can apply Lemma 5.7.14. 

Complexity details are left. to the reader. Oo 

Proof of Theorem 5.7.7: The proof is similar to that of Theorem 5.7.6, 

applying Corollary 5.7.17 instead of Corollary 5.7.16. Details are left to the 

reader as Exercise 5.35. oO 

5.7.4 Yeo’s Irreducible Cycle Subdigraph Theorem and its 
Applications 

While Lemma 5.7.12 is strong enough to imply short proofs of results on 

longest cycles in some special families of semicomplete multipartite digraphs 

such as semicomplete bipartite graphs and extended semicomplete digraphs, 

this lemma does not appear strong enough to be used in proofs of longest cycle 
structure results for other families of semicomplete multipartite digraphs. 

In this subsection based on Yeo’s paper [744], we formulate the very deep 

theorem of Yeo on irreducible cycle subdigraphs in semicomplete multipartite 

digraphs, the main theorem in [744], that is more powerful than Lemma 

5.7.12. We give a proof of the main lemma (Lemma 5.7.20) in the original 
proof of Yeo’s theorem, but do not provide the rest of the lemmas since these 

would require significant space. We provide short proofs of some important 

consequences of this theorem. 

Recall that for two subdigraphs X,Y of D, a path P is an (X,Y)-path 

if P starts at a vertex x € V(X), terminates at a vertex y € V(Y) and 

V(P)N(V(X)UV(Y)) = {z, y}. 

Lemma 5.7.20 [744] Let D be a semicomplete multipartite digraph, and let 
C, and C2 be a pair of disjoint cycles in D, such that Cy>>C2 and Ci) $C. 

Assume that there is no cycle in D, with verter set V(C,) UV (C2). Then there 
exists a unique partite set V of D such that for every (V(C2), V(Ci))-path 
P starting at verter u and terminating at verter v either {ué,,vG, } EW AUE 

there exists a cycle C* in D, with V(C*) = V(C1) UV(C2) UV (P). 
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Proof: Since C;~>C, and C,#C2, there is a vertex © E€ V(Ci), with 

r=>Cz and x+#C3. Let V be the partite set containing the vertex z. Let 

y € V(C2) be chosen such that y~2t. Then y € V, since otherwise 

C = C,[y,y7]Ci[zt, 2]y is a cycle with V(C) = V(Ci) UV(C2). We will 

now show the following assertion: 

V(Ci)>y. (5.9) 

Label the vertices in Cz such that Cz = y1y2---Ymy1, where yi = y, and 

assume that (5.9) is not true, i.e. V(C1)#y1. Define the statements ax and 

Br as follows. 

ax: The vertex y, € V and V(C,)#-yx, for every k = 1,3,5,...,K. 

Bx: The arc yrye41 can be inserted into Ci[xt,2], for every k = 

Leo eee : 

We will now show that’ax and Gx are true for every odd K, with 1 < 

K < ™m. Clearly a, holds, so if we prove the following two implications, we 

are done by induction. 

ax and Bx_2 imply Bx (when K = 1, ax implies Gx): If we can insert yx 

into C;, then it can be inserted into Ci [zt , z], since yx cannot be inserted 

between z and xt (by ax, yx € V). Also, by Bx—2 and Corollary 5.6.22 

we can insert the path C2[y1, yx] into the cycle Ci [zt , z]C2[yh, ym)z*. So 
we may assume that yx cannot be inserted into C). Since Cj} #yx, there 

must bea zK € V(C;1) such that zx € V and ZR YK 2b. Now YpzK, 

since there otherwise would be a cycle, C = Colyt, yx]Ci[zk, zKlyz, in 

D with V(C) = V(C1) UV(C2). Thus yxy} can be inserted between z7 

and zx, which implies that YKYK can be inserted into C\[zt, x], since 

zg #0 (rR EV). 
axK—2 and Bx_-2 imply ax: yx € V, since otherwise by Gx_2 and Corollary 

5.6.22 we can insert the path P = y;y2...yK_1 into the cycle 

Ci[z*, 2]Colyx, Ymlx* 

and obtain a cycle in D with vertex set V(C,) UV(C2). 
If V(C,)>yx, then z;_»—7yx, where zx ~2 was defined when we proved 

Br—2. When we defined z%_2, we found that Yp_»72K-2- The cycle 

Ce iClear ss: ZK _2|C2 [yK; Vie_-2l@K-2 

has V(C) = V(C,) UV(C3), a contradiction. This completes the proof 
that ax holds. 

Since ym can be inserted into C; (namely between x and zt), Corollary 

5.6.22 implies that we can insert the path C2[y1, ym] into C, to obtain a new 

cycle in D with vertex set V(C,) UV(C 2). This is a contradiction, which 
implies that (5.9). 
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Let ut = UG, and v- = vg,. To complete the proof of this lemma it 

suffices to consider the following two cases. 

Case 1: {ut,v-} NV =9. The cycle 

C* = Ci[x*, v7 |Coly, u]P[ub, vp]Ci[v, 2]Co[u*, y~]at 

has V(C*) = V(C,) UV (Cs) UV(P). 
Case 2: The vertices ut and v~ are in different partite sets. 

We claim that D contains a cycle C*, with V(C*) = V(P) UV(C,) UV(C2). 
Assume that C* does not exist. According to Case 1, we have that either ut € 

V orv € V, but not both. Now we may assume that ut—v— , since otherwise 

C* = C,[v, v-]C2[ut,ug,]P would have V(C*) = V(P) UV(C;) U V(C)). 
Now according to Case 1, used for the path P’ = utv—, we have that either 

ut+ € V or uv € V, but not both, since either ut € V or v~ € V. 
Continuing this process and using the fact that D has no cycle with vertex 

set V(P)UV (C,)UV (C2) we obtain that utu7, utt-u-—, ... which clearly 
is impossible since C; has an out-singular vertex with respect to C2. This is 

a contradiction, and thus C* exists. O 

Lemma 5.7.20 and several other results in [744] imply the following pow- 
erful theorem. Notice that, in fact, Yeo [744] proved three sets of properties 

of irreducible subdigraph. We include only the two most important ones. 

Theorem 5.7.21 (Yeo’s irreducible cycle subdigraph theorem) [7/4] 

Let D be a semicomplete multipartite digraph with partite sets Vi}, V2,..., Ve. 

Let X C V(D) and let F be a cycle subdigraph of D consisting of t cycles 

that covers X, such that t is minimum. Then the following holds. 

(a) We can label the cycles C),C2,...,C, of F, such that C;~>C;, whenever 

L<i<j<t. 
(b) Assume that C,,C2,...,C, are ordered as stated in (a), then there are 

Cycles} Crs s Cra ae-e , Case. (no = pret it), anduntegens!qrjq2, ta dakG 

{1,2,...,c}, such that the following is true. For every (Cj,C;)-path P 
starting at u and terminating at v with V(P)NV(F) = {u,v} and1< 

i<j <t, there exists an integer k € {1,2,...,m}, such that ngp_-1 <1 < 

FeStty and {ug,,0c,} CVn, VX. Oo 

By a careful analysis of the complete proof of Theorem 5.7.21 in [745] one 

can obtain the following: 

Theorem 5.7.22 [745] Let D be a semicomplete multipartite digraph, and 

let X C V(D) be arbitrary. Let F be a cycle subdigraph of D that covers 

X. Then in O(|V(D)|?) time we can find a new cycle subdigraph, F', of D, 
that covers X, such that F' has the properties (a) and (b) given in Theorem 
5.7.21. Furthermore we can find F', such that for every cycle C' in F, the 

_ vertices X NV(C) are included in some cycle of F'. Oo 
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Theorems 5.7.21 and 5.7.22 are very important starting points of [72], 

where polynomial solvability of the Hamilton cycle problem for semicomplete 

multipartite digraphs is established. We will prove some important conse- 

quences of Theorem 5.7.21 and state several more of them. 

Theorem 5.7.23 [744] Every regular semicomplete multipartite digraph 1s 

hamiltonian. 

Proof: Let D be a regular semicomplete multipartite digraph. By Exercise 

3.70, D contains a cycle factor F = Cy UC2U...UC;. We may assume that * 

is chosen, such that t is minimum. If t = 1 then D is hamiltonian, so assume 

that t > 1. 
Lewy X. = V (D). Let’ C2,} Ca, 2Cn and qi, 25 -- 2, Im. be rdelined as 

in Theorem 5.7.21. Let yx € A(D) be an arc from y € V(C;), with i € 
{2,3,...,t} to z € V(C,). Part (b) of Theorem 5.7.21 implies that z~,y* € 
V,,- Now we define the two distinct arcs ai;(yx) = zy* and ag(yr) = zy. 

By Theorem 5.7.21, a;(yx) and a2(yz) are arcs in D. Indeed, x and yt (a~ 

and y) are adjacent. If y‘—a then yt* € V,,, which is impossible. 
If y'x' and yz are distinct arcs from V(D) —V (C1) to V(C1), then we see 

that a,(yx), a2(yx), ai(y'z') and a2(y'z’) are four distinct arcs from V (C1) 
to V(D) —V(C;). We have now shown that the number of arcs leaving V(C;) 
is at least twice as large as the number of arcs entering V(C,). However this 

contradicts the fact that D is an eulerian digraph (see Corollary 1.6.4). O 

Theorem 5.7.24 (Yeo) /744] Let D be a (|k/2] + 1)-strong semicomplete 
multipartite digraph, and let X be an arbitrary set of vertices in D such that 

X includes at most k vertices from each partite set of D. If there is a cycle 

subdigraph F = C1 U...UC;, which covers X, then there is a cycle C in D, 

such that X CV(C). 

Proof: We may clearly assume that F has the properties described in The- 

orem 5.7.21, and t > 2, since otherwise we are done. Let Cy,,Cn,,.--;Cn,, 

and q1,42,---,Qm be defined as in Theorem 5.7.21. Since X contains at 

most k vertices from each partite set, we have that min{|V,, 9 V(C1) N 
X|,|Va. AV(Ch,) A X|} = r < |k/2]. Assume without loss of generality 
that |Vg, ANV(Ch,) A X| =r. Since D is (|k/2| + 1)-strong we get that there 
exists a (V(Ch,) — (Van V(Cay) O 4), VCs. U VC 7) path in 
D—(VyNV (Cn, )OX)~, P =p, ... py. Assume that p, € V(C;) (1 <i < nj). 
By Theorem 5.7.21, the (Cp,,Ci)-path P contradicts the minimality of Ff, 

since no <i <n, and pj} ¢g X NV. Oo 

A family of semicomplete multipartite digraphs described in [744] shows 
that one cannot weaken the value |k/2| + 1 of strong connectivity in this 
theorem. Using the fact that every k-strong digraph of independence number 

at most k has a cycle factor (see Proposition 3.11.12) and applying Theorem 
5.7.24, we obtain the following two corollaries: 
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Corollary 5.7.25 [744] If a k-strong semicomplete multipartite digraph D 
has at most k vertices in each partite set, then D contains a Hamilton cycle. 

0 

Corollary 5.7.26 /744] A k-strong semicomplete multipartite digraph has a 

cycle through any set of k vertices. Oo 

Theorem 5.7.23 was generalized by Yeo [748] as follows (its proof also 
uses Theorem 5.7.21). Let i,(D) = max{|d*(z) — d~(z)|: x € V(D)} and 
ig(D) = A°(D) — 6°(D) for a digraph D (the two parameters are called the 
local irregularity and the global irregularity, respectively, of D [748}). 

Clearly, i;(D) < ig(D) for every digraph D. 

Theorem 5.7.27 [748] Let D be a semicomplete c-partite digraph of order n 

with partite sets of cardinalities nj, n2,...,N¢ such that ny < no <...< Ne. 

If ig(D) < (n — ne-1 — 2n-)/2+4+1 or i(D) < min{n — 3n, +1, (n — ne_i — 
2n-)/2+1}, then D is hamiltonian. Oo 

The result of this theorem is best possible in a sense: Yeo [748] constructed 
an infinite family D of non-hamiltonian semicomplete multipartite digraphs 

such that every D € D has i;(D) = i,(D) = (n — ne_-1 — 2ne + 1)/2+1< 
n—3n.4+2. 

Another generalization of Theorem 5.7.23, whose proof is based on The- 

orem 5.7.21, was obtained by Guo, Tewes, Volkmann and Yeo [348]. For a 

digraph D and a positive integer k, define 

GER y= So (dt (a) -k) + Syme, ea 
zEV(D),d+(r)>k xweEV(D),d-(«)<k 

Theorem 7.5.3 in Ore’s book [595] on the existence of a perfect matching in 
a bipartite graph can easily be transformed into a sufficient condition for a 

digraph to contain a cycle factor. This condition is as follows. If, for a digraph 

D and positive integer k, we have f(D,k) < k—1, then D has a cycle factor. 

For a positive integer k > 2, let Gi, be a semicomplete 3-partite digraph with 

thempartie sete Vy. — 4 x}, Ve"=—{ 41, yo, Yeo} ) and Ve = {z1;2ay ty ze} 

and arc set 

{yx,xz,zy,yv: y € Vo,z € V3,u € V3 — a} U {zz}. 

The digraph Gi! is the converse of G),. We observe that f(G,,k) = k-1 
(Exercise 5.43), but G, is not hamiltonian, as a hamiltonian cycle would 
contain the arc rz, and every second vertex on the cycle would belong to the 

partite set V3. Since x has no in-neighbour in V3 — 2}, this is not possible. 

Clearly, Gi is not hamiltonian either. 

Theorem 5.7.28 /348] Let D be a semicomplete multipartite digraph such 

that f(D,k) < k-—1 for some positive integer k. If D is not isomorphic to 
Gi, or Gy, then D is Hamiltonian. Oo 
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The authors of [348] introduced the following family of semicomplete mul- 

tipartite digraphs. Let D be a semicomplete multipartite digraph with par- 

tite sets Vi,Vo, ...,Ve. If min{|(2x:, V;)|,|(Vj,%4)|} > $|Vj| for every ver- 

tex; i€. Vieand for every 1. < 4,7. < k,. 9 F'4,.then DAs. called a 

semi-partitioncomplete digraph. Several sufficient conditions to guar- 

antee hamiltonicity of semi-partitioncomplete digraphs were derived in [348]. 

In particular, the following result was proved. 

Theorem 5.7.29 If a strong semi-partitioncomplete digraph D of order n 

has less than n/2 vertices in every partite set, then D is hamiltonian. oO 

5.8 Longest Paths and Cycles in Extended Locally 

Semicomplete Digraphs 

From Section 5.5, we know that characterizations of hamiltonian and trace- 

able locally semicomplete digraphs are practically the same as those of semi- 

complete digraphs: every strong locally semicomplete digraph is hamiltonian 

and every connected locally semicomplete digraph is traceable. In the pre- 

vious section, we derived characterizations of hamiltonian and traceable ex- 

tended semicomplete digraphs. The reader may suspect that similar charac- 

terizations hold for extended locally semicomplete digraphs. This is indeed 

true. Moreover, the hamiltonicity characterization can be generalized even 

to extended locally in-semicomplete digraphs. However, the traceability one 

does not hold for extended locally in-semicomplete digraphs. In this section 

we briefly consider these characterizations and their generalizations to the 

longest path and cycle problems. We start from the following characteriza- 

tion by Bang-Jensen and Gutin [62]. 

Theorem 5.8.1 An eztended locally semicomplete digraph is hamiltonian if 

and only if it is strongly connected and has a cycle factor. Given a cycle factor 

of a strong extended locally semicomplete digraph D, a hamiltonian cycle of 

D can be found in time O(n”), where n is the number of vertices in D. O 

This theorem can be generalized to extended locally in-semicomplete di- 

graphs [59]. Theorem 5.8.2, whose proof is left as Exercise 5.44, shows that 

extended locally semicomplete digraphs are still ‘nicer’ with respect to the 

longest cycle than semicomplete bipartite digraphs (see the remark after The- 
orem 5.7.7). 

Theorem 5.8.2 /62] Let D be a strongly connected extended locally semi- 
complete digraph. Given a cycle subdigraph F = Cy U...UCG; of D of 

mazimum order, one can find a (longest) cycle C of D such that V(C) = 

V(Ci)U... UV(C,) in time O(n?). Oo 
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Theorem 5.8.3 /62] A connected extended locally semicomplete digraph D 
has a hamiltonian path if and only if it contains a 1-path-cycle factor. Given 

a 1-path-cycle factor of D, one can construct a hamiltonian path of D in time 

O(n?). 

Proof: Exercise 5.45. oO 

4 

Figure 5.8 The digraph L. 

Unlike Theorem 5.8.1, Theorem 5.8.3 cannot be generalized to extended 

locally in-semicomplete digraphs as one can see from the following example 

[59]. The extended locally in-semicomplete digraph L in Figure 5.8 contains 

a 1-path-cycle factor consisting of path 1234 and cycle 565 (and even an in- 

branching rooted in the vertex 6), but has no hamiltonian path. It is natural 

to pose the following problem: 

Problem 5.8.4 /65]/ 

(a) Find a characterization of traceable extended locally in-semicomplete di- 

graphs. 

(b) Establish the complexity of the problem of deciding whether an extended 

locally in-semicomplete digraph has a hamiltonian path. 

Theorem 5.8.3 can easily be generalized to longest paths. 

Theorem 5.8.5 [62] The order of a longest path in an extended locally semi- 

complete digraph D equals to the mazimum order of a 1-path-cycle subdigraph 

of D. Moreover, given a 1-path-cycle subdigraph F of an extended locally 

semicomplete digraph D, a path P such that V(P) = V(F) can be found in 
time O(n?). Oo 

5.9 Hamilton Paths and Cycles in Quasi-Transitive 

Digraphs 

The methods developed in [79] by Bang-Jensen and Huang and [365] by Gutin 
_ to characterize hamiltonian and traceable quasi-transitive digraphs as well as 
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to construct polynomial algorithms for verifying the existence of Hamilton 

paths and cycles in quasi-transitive digraphs can be easily generalized to 

much wider classes of digraphs [65]. Thus, in this section, along with quasi- 

transitive digraphs, we consider totally $-decomposable digraphs for various 

sets @ of digraphs. 

By Theorem 4.8.5, every strong quasi-transitive digraph D has a decom- 

position D = S[Q,,Q2,...,Qs], where S is a strong semicomplete digraph, 

s=|V(S)|, and each Q;,1 = 1,2,...,s, is either just a single vertex or a non- 

strong quasi-transitive digraph. Also, a non-strong quasi-transitive digraph 

D with at least two vertices has a decomposition D = T[Hj, Ho,..., Ht], 

where T is a transitive oriented graph, t = |V(T)|, and every H; is a strong 
semicomplete digraph. These decompositions are called canonical decomposi- 

tions. The following characterization of hamiltonian quasi-transitive digraphs 

is due to Bang-Jensen and Huang [79]. 

Theorem 5.9.1 /79] A strong quasi-transitive digraph D with canonical de- 

composition D = S[Q1, Q2,...,Qs] is hamiltonian if and only if it has a cycle 

factor F such that no cycle of F is a cycle of some Q;. 

Proof: Clearly, a Hamilton cycle in D crosses every Q;. Thus, it suffices to 

show that, if D has a cycle factor F such that no cycle of F is a cycle of some 

Qi, then D is hamiltonian. Observe that V(Q;) NF is a path factor F; of Q; 

for every 1 = 1,2,...,s. For every i = 1,2,...,s, delete the arcs between end- 

vertices of all paths in F; except for the paths themselves, and then perform 

the operation of path-contraction for all paths in F;. As a result, one obtains 

an extended semicomplete digraph S’ (since S is semicomplete). Clearly, S' 
is strong and has a cycle factor. Hence, by Theorem 5.7.5, S’ has a Hamilton 
cycle C’. After replacing every vertex of S’ with the corresponding path from 
F, we obtain a Hamilton cycle in D. Oo 

Similarly to Theorem 5.9.1, one can prove the following characterization 
of traceable quasi-transitive digraphs (see Exercise 5.47). 

Theorem 5.9.2 [79] A quasi-transitive digraph D with at least two vertices 
and with canonical decomposition D = R[G,,G2,...,G,] is traceable if and 
only if it has a 1-path-cycle factor F such that no cycle or path Of 8S 
completely in some D(V(G;)). O 

It appears that Theorems 5.9.1 and 5.9.2 do not imply polynomial al- 
gorithms to verify hamiltonicity and traceability, respectively (see Exercise 
5.46). The following characterization of hamiltonian quasi-transitive digraphs 
is given implicitly in the paper [365] by Gutin: 

Theorem 5.9.3 (Gutin) /365] Let D be a strong quasi-transitive digraph 
with canonical decomposition D = S[Qi,Q2,...,Qs5 ]. Let ny,...,n5 be the 
orders of the digraphs Qi, Q2,...,Qs, respectively. Then D is hamiltonian 
if and only if the extended semicomplete digraph S' = Sl Kau wines es, 
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has a cycle subdigraph which covers at least pc(Q;) vertices of ie for every 

fe hori 258: 

Proof: Suppose that D has a Hamilton cycle H. For every j = 1,2,...,s, 

V(Q;)N4 is a kj-path factor F; of Q;. By the definition of the path covering 

number, we have k; > pc(Q,;). For every j = 1,2,...,8, the deletion of the 

arcs between end-vertices of all paths in F; except for the paths themselves, 

and then path-contraction of all paths in ¥; transforms H into a cycle of 9’ 

having at least pc(Q;) vertices of K,, for every j = 1,2,...s. 

Suppose now that S’ has a cycle subdigraph £ containing p; > pc(Q;) 

vertices of en for every j = 1,2,...s. Since S’ is a strong extended semicom- 

plete digraph, by Theorem 5.7.7, S’ has a cycle C' such that V(C) = V(L). 
Clearly, every Q; has a p;-path factor F;. Replacing, for every j = 1,2,...8, 

the p; vertices of Ky, in C with the paths of F;, we obtain a hamiltonian 
cycle in D. O 

Theorem 5.9.3 can be used to show that the Hamilton cycle problem for 

quasi-transitive digraphs is polynomial time solvable. 

Theorem 5.9.4 (Gutin) /365] There is an O(n*) algorithm which, given a 
quasi-transitive digraph D, either returns a hamiltonian cycle in D or verifies 

that no such cycle ezists. oO 

The approach used in the proofs of Theorems 5.9.3 and 5.9.4 in [365] 
can be generalized to a much wider class of digraphs as was observed by 

Bang-Jensen and Gutin [65]. We follow the main ideas of [65]. 

Theorem 5.9.5 Let & be an extension-closed set of digraphs, i.e. &°*' = @, 

including the trivial digraph K, on one vertex. Suppose that for every digraph 

H € © we have pcc(H) = pc(A). Let D be a totally S-decomposable digraph. 

Then, given a total -decomposition of D, the path covering number of D can 

be calculated and a minimum path factor found in time O(n‘). 

Proof: We prove this theorem by induction on n. For n = 1 the claim is 

trivial. 

Let D be a totally $-decomposable digraph and let D = R[Hj,..., H,| 

be a -decomposition of D such that R € #, r = |V(R)| and every H; (of 
order n;) is totally $-decomposable. A pc(D)-path factor of D restricted to 
every H; corresponds to a disjoint collection of some p; paths covering V (H;). 

Hence, we have pc(H;) < p; < n;. Therefore, arguing similarly to that in the 

proof of Theorem 5.9.3, we obtain 

Pepe mini pc Rice... Kge|)i DCU) <Pirarts, 2 — 1,-0.7} 

Since @ is extension-closed, and since, for every digraph Q € ©, pc(Q) = 

_ pcc(Q), we obtain 



268 5. Hamiltonicity and Related Problems 

pe(D) = min{ pcc( R[K », ,<++546 pal) oe PCa), = Pete — eee tee 
(5.10) 

By the result of Exercise 3.60, given the lower and upper bounds pc(H;) 

and nj (i =1,...,r), we can find the minimum in (5.10) and thus pc(D) in 

time O(n?). Let T'(n) be the time needed to find the path covering number 

of a totally 6-decomposable digraph of order n. Then, by (5.10), 

T(n) = O(n?) + DT (ni). 

Furthermore, T(1) = O(1). Hence T(n) = O(n’). Oo 

Recall (see Section 4.12) that 9 (2) is the family of all semicomplete 
multipartite, extended locally semicomplete and acyclic digraphs (semicom- 

plete bipartite, extended locally semicomplete and acyclic digraphs). Clearly, 

both families of digraphs are extension-closed. As we know, pc(D) = pcec(D) 
for every semicomplete multipartite digraph D (see Theorem 5.7.2), for ev- 
ery extended locally semicomplete digraph D (by Theorem 5.8.3) and every 

acyclic digraph D (which is trivial). Notice that one can check whether a 

digraph D is totally $p-decomposable (totally 2-decomposable) and, if this 

is the case, find a total y-decomposition (@2-decomposition) in time O(n*) 

(see Section 4.12). Therefore, Theorem 5.9.5 implies the following theorem 
by Bang-Jensen and Gutin: 

Theorem 5.9.6 /66] The path covering number of a totally £j)-decomposable 

digraph can be calculated in time O(n*). Oo 

Corollary 5.9.7 [66] One can verify whether a totally )-decomposable di- 
graph is hamiltonian in time O(n‘). 

Proof: Let D = R[M,,...,H;,], r = |R|, be a decomposition of a strong 
digraph D (r > 2). Then, D is hamiltonian if and only if the following family 
S of digraphs contains a hamiltonian digraph: 

Ste RECs |e pel Ay pee tH en ee ine 

Now suppose that D is a totally )-decomposable digraph. Then, every 
digraph of the form R[Kp,,...,Kp,] is in 2. We know (see Theorems 5.7.4 
and 5.8.1) that every digraph in $2 is hamiltonian if and only if it is strong 
and contains a cycle factor. Thus, all we need is to verify whether there is a 
digraph in S containing a cycle factor. It is easily seen that there is a digraph 
in S containing a cycle factor if and only if there is a circulation in the network 
formed from R by adding lower bounds pc(H;) and upper bounds |V (H;)| 
to the vertex v; of R for every i = 1,...,r. Since the lower bounds can be 
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found in time O(n‘) (see Theorem 5.9.5) and the existence of a circulation 

checked in time O(n?) (see Exercise 3.31), we obtain the required complexity 

O(n‘). Oo 

Since every quasi-transitive digraph is totally $-decomposable this theo- 

rem immediately implies Theorem 5.9.4. Note that the minimum path factors 

in Theorem 5.9.5 can be found in time O(n*). Also, a hamiltonian cycle in 

a hamiltonian totally ®2-decomposable digraph can be constructed in time 

O(n*). 

5.10 Vertex-Heaviest Paths and Cycles in 

Quasi-Transitive Digraphs 

The approach described in the previous section seems to be of not sufficient 

power to allow us to construct polynomial time algorithms for longest paths 

and cycles in quasi-transitive digraphs and their generalizations. A more pow- 

erful method that leads to such algorithms was first suggested by Bang-Jensen 

and Gutin [63]. In this section, we describe the method in [63]. 
From now on, assume that every digraph D we consider has non-negative 

weights w(.) on the vertices. Recall that the (vertex-)weight w(H) of a sub- 
digraph of D is the sum of the weights of its vertices. For a positive integer 

k, the symbol w;(D) denotes the weight of a heaviest k-path subdigraph of 

D, i.e. one with the maximum weight among all k-path subdigraphs. For 

convenience we define wo(D) = 0. We consider the following problem which 
we call the HPS problem. Given a digraph D on n vertices, find a heaviest 

k-path subdigraph of D for every k = 1,2,...,n. 

Theorem 5.10.1 /63] Let be a set of digraphs including the digraph on 

one vertex. Suppose that 6 = $°*' and, for every D € © on n vertices, 

wrri(D) — we(D) < we(D) — we-1(D), (5:11) 

where k = 1,2,...,n —1. If there ts a constant s > 2 so that, for every 

L € ©, the HPS problem can be solved in time O(|V(L)|°), then, for every 
totally. &-decomposable digraph D, the HPS problem can be solved in time 

O(|V (D)|§*1), provided we are given a total -decomposition of D. 

Proof: Let D = R[H;,...,H,] be a decomposition of D, where R € & 

and H; is totally -decomposable and has n,; vertices (i = 1,...,r). Set 
Do = R[Fi,..., E,-], where E; is the digraph with n; vertices and no arcs. 

Assign new weights to the vertices of Do as follows. The ith vertex of E; is 

assigned the weight 

ew H;) —wiei( Hy), j= 1,...5% t= 1,---, 73. 
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We show that, given solutions of the HPS problem for H,,...,H, and Do, 

one can easily construct a solution of the HPS problem for D. This will lead 

to a recursive algorithm as desired. 

Let F, be a heaviest k-path subdigraph of Do and let m; be the number 

of vertices in F,, which belong to E; (j = 1,...,r). By (5.11), Wij > Way 

whenever g > 7. Therefore, using that all vertices in Ej are similar, we can 

always change the vertices of F, so that 7, contains precisely the first m; 

vertices of EF; for each 7 = 1,...,r. Assume now that this is the case. Now, 

for each 7 = 1,...,r, replace the vertices of E; in F, by a heaviest mj-path 

subdigraph of H;. This replacement provides a k-path subdigraph 7; of D. 

It is easy to check that 

A= me = do wm; (H;) = w(Te) < we(D). 
j=1 4=1 

So, the weight of a heaviest k-path subdigraph of Do is at most w,;(D). 

Analogously, starting with a heaviest k-path subdigraph of D, one can prove 

that the weight of a heaviest k-path subdigraph of Do is at least w,(D). 
Therefore, 7; is a heaviest k-path subdigraph of D. 

The arguments above lead to the following recursive algorithm called 

Aups. 

1. Use the total $-decomposition of D to find the decomposition D = 
Ri weete dd al: 

2. Solve the HPS problem for H,,...,H, using Ayps. 
3. Form Do (with the weights ,;) and solve the HPS problem for Do using 

an O(|V(D)|*)-time algorithm. Change the solutions F; (if it is neces- 
sary) so that each of F; contains the first vertices of E; without ‘blanks’, 
fon Cachsy zal oe 

4. Using the solutions obtained in Step 2, transform every F; into a k-path 
subdigraph 7; of D as in the discussion above. 

It is easy to check that the complexity of Algorithm Ayps¢ is O(|DI#t*). 

O 

Using Theorem 5.10.1, we will prove the following: 

Theorem 5.10.2 (Bang-Jensen and Gutin) /63] For a quasi-transitive 
digraph D on n vertices, the following two problems can be solved in time 
O(n?): 

(1) For every k = 1,2,...,n, find a heaviest k-path subdigraph of D. 
(2) Find a heaviest cycle of D. 

Let W be the class of all transitive oriented graphs and all extended semi- 
complete digraphs. It follows from Theorem 4.8.5 that every quasi-transitive 
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digraph is totally Y-decomposable. Thus, to prove the first part of Theorem 
5.10.2, it suffices to show that every digraph D € W satisfies the conditions 
of Theorem 5.10.1 with s = 4. 

Proof of Part (a) of Theorem 5.10.2: Consider a digraph D € W¢** on 
n vertices. We show that D satisfies the conditions of Theorem 5.10.1 with 
s = 4. A total Y-decomposition of D can be found in O(n‘), see Section 
4.12. For a non-negative integer k, let w;,(D) denote the weight of a heaviest 
k-path-cycle subdigraph of D. 

Let D' be the digraph obtained from D by the vertex splitting procedure. 

In other words, we replace every vertex v of D by the arc v'v" such that vu" 
dominates a vertex u’ if and only if vu. Also, we define w(v'v") = w(v) for 
every v € V(D) and w(v"'u’) = 0 for every pair u,v of distinct vertices of D. 

Construct a network Np as follows. Add a pair s,t of new vertices to D’. For 

each vertex uv of D, we add the arcs (s,v’) and (v",t) to D’. Assign capacity 
one to each arc of Np. Finally, assign cost zero to every arc adjacent to either 

s or t and cost c(a) = —w/(a) for each arc a € A(D’). 

By Exercise 3.64, we can find a maximum weight cycle subdigraph CL in 
D’ in time O(n?). Since s and ¢ cannot be on any cycle in Np, the digraph £L 

corresponds to the minimum cost circulation fo in Np (see Theorem 3.3.1). 

Starting from fp and using the buildup algorithm introduced in Section 3.10 

we can construct, in time O(n*), minimum cost flows f,,..., fn of values 

1,...,n in Np. By Theorem 3.3.1, every f, is the sum of k flows of value 

1 along paths from the source s to the sink t and a number of cycle flows. 

Hence, f;, provides a collection 7, of k paths and a number of cycles such 

that the paths and the cycles have no common vertices, except the source 

and the sink of the network. Moreover, by the definition of Np, none of the 

cycles contain the source or the sink. It follows from the definition of Np and 

the fact that f, is a minimum cost flow in Np that the paths and the cycles 

in {Q — {s,t}: Q € F,} form a heaviest k-path-cycle subdigraph L; in D. 
In particular, c(f,) = —w,(D) for every k=1,...,n. 

If D is an extended semicomplete digraph then, by Theorem 5.7.1, for 

every k = 1,...,n, we can construct a k-path subdigraph Q; so that V(Q;,) = 
V(L,). If D is acyclic then just let QO, = £,. Obviously, Q; is a heaviest k- 
path subdigraph of D. Note that Q1,...,Q, can be found in time O(n*). 

Since w,(D) = w),(D) = —c(fx), it follows from Proposition 3.10.7 that 
(5.11) holds. 

The proof that the complexity bound of O(n’) is left as Exercise 5.50. O 

Proof of Part (b) of Theorem 5.10.2: Let D be a strong quasi-transitive 
digraph on n > 2 vertices and let D = R[Hi,...,H,], where R is semicom- 

plete, H,,...,H, are quasi-transitive digraphs and r > 2. (If D is not strong, 

then we consider the strong components of D one by one.) We claim that D 

has a heaviest cycle C containing vertices from more than one of the digraphs 
H,,...,H,. Indeed, let C’ be a heaviest cycle of D completely contained in 

a H;. Since D is strong, there is a path in D, of length at least 2, starting 
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at. a vertex x of C’, terminating at a vertex y of C’ and containing no other 

vertices from H;. Hence, by the definition of R[H,,...,H,], there is a path 

of length at least 2, starting at x, terminating at the successor zx’ of x (in 

C’) and containing no other vertices from H;. Clearly, the last path and C’ 
minus the arc (x, 2’) form a cycle as desired. 

Now it is easy to see the correctness of the following algorithm for finding 

a heaviest cycle of D. Note that our approach finds a heaviest cycle C' which 

contains vertices from at least two H;’s. By the remark above this is also a 

heaviest cycle of D. 

1. Solve the HPS problem for H,,...,H, using Algorithm Ayps. 

2. Form Do with the weights w;;, as in the proof of Theorem 5.10.1, and 

the network Np,. 

3. Construct a minimum cost circulation fo in Np,. Deleting the source and 

sink of Np,, form a heaviest cycle subdigraph Z of Do. 

4. Using Theorem 5.7.7, construct a heaviest cycle C of Do by merging the 

cycles in Z. 

5. Using the solutions of Step 1 and the cycle C, form a heaviest cycle of D 

(analogously to what we did in the proof of Theorem 5.10.1). 

The proof that the complexity bound is O(n*) is left as Exercise 5.50. O 

Theorem 5.10.2 implies the following: 

Corollary 5.10.3 /63] For a quasi-transitive digraph D on n vertices, the 
following problems can be solved in time O(n°). 

(a) Find a longest path of D. 

(b) Find a longest cycle of D. 
(c) For a set X C V(D), check if D contains a cycle through X and construct 

one (if it exists). 

Proof: Exercise 5.51. oO 

Theorem 5.10.2 can be generalized to the following result by Bang-Jensen 
and Gutin (see the definitions of 6;-decomposable digraphs in Section 4.12): 

Theorem 5.10.4 /62] Let D be a digraph of order n with non-negative 
weights on the vertices. Then 

(a) If D is totally y-decomposable, then for allk =1,... ,n, some maximum 
weight k-path subdigraphs of D can be found in time O(n°). 

(b) If D is totally y)-decomposable and X C V(D), then we can check if D 
has ae covering all the vertices of X and find one (if it exists) in time 
O(n°). 

(c) If D is totally 2-decomposable, then a mazimum weight cycle of D can 
be found in time O(n°). 

(d) If D is totally j-decomposable and X C V(D), then a cycle of D con- 
taining all vertices of X can be found in time O(n°) (if it exists). 
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(e) If D is totally $;-decomposable, then a longest cycle of D can be found 
in time O(n°). 

O 

5.11 Hamilton Paths and Cycles in Various Classes of 

Digraphs 

Grdétschel and Harary [336] showed that only very few bridgeless graphs have 
the property that every strong orientation is hamiltonian. 

Theorem 5.11.1 /336] Let G be a bridgeless graph. If G is neither a cycle 

nor a complete graph, then G contains a strong non-hamiltonian orientation. 

O 

However, there are quite a number of graphs with the property that every 

strong orientation is traceable. 

Theorem 5.11.2 (Thomassen) /699] Let G be a 2-edge-connected undi- 
rected graph such that every connected component of G is either bipartite 

or an odd cycle of length at least 5. Also assume that G has at most one 

non-bipartite component. Then every strong orientation of G is traceable. 

To prove Theorem 5.11.2, we need the following lemma whose proof is left 

as Exercise 5.49. 

Lemma 5.11.3 Let L be the complement of an odd cycle uju2...U2~41U1, 

k > 2, and let F be an orientation of L. Then, there arei # j € {1,2,...,2k+ 
1} such that ujujuiz1 or Uiziuju; is a path in F. Oo 

Proof of Theorem 5.11.2: Let Gj,...,G, be bipartite connected com- 

ponents of G such that A;,B; are partite sets of Gj, i = 1,...,r. Let 

Z = UjU2...U2k4+1U1 be the odd cycle in G, if one exists. 

Let H be a strong orientation of G. Define a partition A,B of V(G) as 
follows:.Let, A* = A; U...U.A, and B* = B, U...UB,. If Z does not exist 

(in G), then A = A*, B = B*. Otherwise, by Lemma 5.11.3, without loss of 
generality, we have that there exists a j such that u,u;u2 is a directed path 

ind =LetyA:= A*\U {u3, Us, - ae ,Urk+1}, Iape— Jar) {u2, U4, - aC , Urk} U {uy}. 

By this construction, H(A) is a tournament and H (B) is either a tournament 
(if Z does not exist) or H has a path xzy such that z,y € B and zy ¢ G(B). 

We now show that H has a cycle C including all vertices of A. If H(A) 
is strong, then C exists by Camion’s theorem (see Theorem 1.5.2). If H(A) 
is not strong, then there is a shortest path P in H from the terminal strong 

component of H(A) to its initial strong component. Let P start at u and 
terminate at w. (Clearly, P does not have vertices other than u and w in 
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these two components.) It is easy to check that H((A — V(P)) U {u, w}) has 

a hamiltonian (w,u)-path Q. The paths P and Q form a cycle containing As 

Let C be a longest cycle containing A. 

If H —V(C) is a tournament, then some vertex of C dominates a vertex v 

of the initial strong component of H — V(C). The tournament H — V(C) has 

a hamiltonian path starting at v; this path can be extended to a hamiltonian 

path in H. Thus, we may assume that H — V(C) is not a tournament. In 

particular, z,y € V(H) — V(C). Let C = vv2...Umvi1. We consider two 

cases. 

Case 1: z € V(C). We first prove that C contains vertices v;,vi+; such 

that v; dominates one of z,y and v;+; is dominated by the other one and 

1 <j <m-1. Since G has no triangles, each of z* and z~ is adjacent to at 

least one of z,y. By the maximality of C, if z* and y are adjacent, we must 

have zt—y and then z,z* is the desired pair. Hence, we may assume that 

zt is adjacent to x and, hence, either z, z* is the desired pair or z* 2. Now 
considering z~ one can prove that either z~,z is the desired pair or z~, zt 

is the desired pair. 

Among all pairs v;,v;+,; satisfying the above property choose one such 

that j is the smallest possible. We may assume (by interchanging z and y if 

needed) that vji>x and yv;,;. We show that 7 = 1. Assume that j > 1. 
Because of the minimality of j7, x is not dominated by vj4, when 1 < s <j 

and because of the maximality of C, x does not dominate vj. Hence, z is 

not adjacent to vj41. Similarly, we can see that y is not adjacent to vj+j-1 

and none of the vertices uj+;, 1 < s < j, is dominated by y. Since G has no 

triangle, j > 3 and vj41-y and zv;4;~-1; a contradiction to the minimality 

of 7. Thus, we may assume that v;92, yvi41. 

We add to the oriented graph H—V(C) the arc yx obtaining a tournament 

T. Let v be a vertex in the initial strong component of T dominated by a 

vertex u in C’. By Camion’s theorem, T has a hamiltonian path P starting 

at v and terminating at some vertex w. If yz is not on P, then C[u*,u]P 

is a hamiltonian path of H. If yx is on P, then P[{v, y]C[vi4i, vi] Plz, w] is a 
hamiltonian path of H. 

Case 2: z ¢ V(C). If H — V(C) is strong, then we consider any arc of 
H between «x and C (such an arc exists as the degree of x in G equals 2). If 

this arc starts (terminates) at x, we add to H — V(C) the arc ry (yx) and 

consider a hamiltonian cycle in the resulting tournament. Using this together 

with C and the arc between x and C, it is easy to find a hamiltonian path 

in Hy 

So we assume that H — V(C) is not strong. Let Hi, H2,...,H, be an 

acyclic ordering of strong components of H — V(C). We may assume without 

loss of generality (consider the converse of H if needed) that at most one of 
z,y belongs to V(H;). Clearly, some vertex v in H is dominated by a vertex 
in C’. We can find a hamiltonian path in H as in the case when H — V(C) 
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is a tournament unless for some 7, V(H;) = {x} and V(Hi+1) = {y} or 
V(Ai_-1) = {y}. But this is impossible due to the existence of xzy. 0 

In this theorem it is important that G does not contain a 3-cycle. Indeed, 

let M be a multipartite tournament consisting of a strong tournament T 

with fixed vertex y and triple x2,,22,23 of independent vertices such that 

N* (ai) = {y} for every i = 1, 2,3. Since |N+({a1, 22, 23})| < 2 (see Exercise 
3.61), M has no 1-path-cycle factor. (Recall that a multipartite tournament 
is traceable if and only if it has a 1-path-cycle factor, see Theorem 5.7.1.) 

However, Thomassen [699] remarks that Theorem 5.11.2 is perhaps far from 
being the best possible. He claims that by using the method of the proof 

of this theorem, it is not difficult to show that any strong orientation of a 

graph, whose complement is a disjoint union of two 5-cycles and independent 

vertices, has a hamiltonian path. 

Problem 5.11.4 Find a non-trivial extension of Theorem 5.11.2. 

We recall that a digraph D is unilateral if for every pair z,y of distinct 

vertices of D there is a path between x and y (not necessarily both (2, y)-path 

and (y,z)-path). For some of the graphs in Theorem 5.11.2 not only all strong 

orientations are traceable, but also all unilateral ones satisfy this property. 

This was shown by Fink and Lesniak-Foster in the following theorem. 

Theorem 5.11.5 /235] Let G be a graph and let F = Q,U...UQ, be a path 
subgraph of G in which every path Q; is of length 1 or 2. Then an orientation 

of G — Uk_, E(Q;) is traceable if and only if it is unilateral. Oo 

Erdés and Trotter [223] investigated when the Cartesian product of two 
directed cycles is hamiltonian. They proved the following (below gcd means 
the greatest common divisor): 

Theorem 5.11.6 Let d = gcd(k,m). The Cartesian product Gppe On is 
hamiltonian if and only if d > 2 and there exist positive integers d,,d2 such 

that d, + dz =d and gcd(k, d,) = gcd(m, d2) = 1. Oo 

For a generalization of Theorem 5.11.6, see Theorem 10.10.5. 

In Section 4.6, we introduced de Bruijn digraphs Dg(d, t), Kautz digraphs 

Dx(d,t) as well as their generalizations: Dg(d,n), D;(d,n), D(d,n,q,r). 

(The digraphs D(d,n,1,r) are special circulant digraphs.) The consecutive-d 

digraphs D(d,n,q,r) are the most general among the digraphs listed above. 

Thus, we restrict our attention to these digraphs. Du, Hsu and Hwang [206] 
proved the following result for digraphs D(d,n,q,r). 

Theorem 5.11.7 If gcd(n,q) > 2, or gcd(n,q) = 1 and q > 5, then 

D(d,n,q,r) is hamiltonian. a 
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Hwang [439] as well as Du and Hsu [205] characterized hamiltonian di- 
graphs D(d,n,q,r) for gcd(n,q) = 1 and d=1 (d = 2, respectively). Chang, 

Hwang and Tong [143] showed that every digraph D(4,n,q,r) is hamiltonian. 

They also gave examples of digraphs D(3,n,q,r), which are not hamiltonian 

[142]. 

We finish this chapter by the following result by Cooper, Frieze and Mol- 

loy. For a fixed integer r and a property P, we say that almost all r-regular 

digraphs satisfy P if the fraction of r-regular digraphs of order n with P 

(among all r-regular digraphs of order n) tends to 1 when noo. 

Theorem 5.11.8 /167] For a fixed integer r > 3, almost all r-regular di- 

graphs are hamiltonian. O 

It is easy to show that almost all 1-regular digraphs are non-hamiltonian 

(Exercise 5.54). The fact that almost all 2-regular digraphs have no hamilto- 

nian cycle follows directly from the fact that the expected number of hamil- 

tonian cycles in a randomly and uniformly chosen 2-regular digraph tends 

to zero (for details see Section 3 of Chapter 4 in the book [14] by Alon and 
Spencer). 

5.12 Exercises 

5.1. (+) Let G, be an undirected graph with vertex set X UZUY, where X = 
{01,%2,..., tn), ¥ = {yi, yo, o=-,depi} and Z = (21,205. 4. 2691} sand edee 
set 

LOU EEX Ue YR Ul yas et 1 eke 
o 

Let D, =Gx. Prove that ghn(D;,) = k (Gutin and Yeo [379]). 

5.2. Prove Theorem 5.1.6. 

5.3. Prove Theorem 5.1.7. 

5.4. Let a digraph Z have V(Z) = {1,2,...,6} and A(Z) = {i7: j-i=2o0r3 
(mod) 6}. Find qhn(Z). Is Z hamiltonian? 

5.5. (+) Prove without using Theorem 5.2.1 that every acyclic digraph D has an 
a(D)-path factor. Hint: use Theorem 3.8.2. 

5.6. A refinement of the Gallai-Milgram theorem. We say that a path P 
from z to y is end-extendable if there exists another path P’ such that 
P = P'{x,y}. If no such path P’ exists then P is non-end-extendable. 
Prove the following slight strengthening of the Gallai-Milgram theorem. 

Proposition 5.12.1 Every digraph D with independence number a(D) =o 
has a path factor P\, P2,..., Pt, t <a, such that P, is a non-end-extendable 
path in D and P; is a non-end-extendable path in D—V(P,)U...U VIPs) 
Or 2 Se Sith 

Hint: show how to modify a given path factor into one with the property 
above. 
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5.8. 

5.15. 

5.16. 

5.17. 

5.18. 

5.19. 

5.20. 

5.21, 

5.22. 

5.23. 

5.24. 
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Show that Theorem 5.2.5 implies Theorem 5.2.1. 

Scheduling airplanes. An airport has a certain number of runways that 
can be used for landing of airplanes. How would you schedule airplanes to use 
the minimum number of the runways (in order to possibly have some spare 
ones permanently ready for emergency landings) if every use of a runway can 
be determined as a fixed time interval ? 

(—) Show by examples that property (1) and (2) of Lemma 5.3.3 need not 
hold for arbitrary acyclic digraphs. 

. Using the proof of Theorem 5.4.2, Lemma 5.4.1 and Proposition 4.9.3, prove 
Corollary 5.4.3. 

. Prove Theorem 5.2.4 for path-mergeable digraphs. 

. Prave that every strong locally in-semicomplete digraph has a 2-connected 
underlying graph. 

. Give a direct proof of the following result. A locally semicomplete digraph 
has a hamiltonian cycle if and only if it is strong (Bang-Jensen [44]). 

. Give a direct proof of the following result. A locally semicomplete digraph 
has a hamiltonian path if and only if it is connected (Bang-Jensen [44]). Hint: 
use Lemma 4.10.2. 

Give a direct proof of the following result. One can find a longest cycle is a 
semicomplete digraph in time O(n“) (Manoussakis [546]). 

(—) Using Proposition 5.0.3 and Theorem 5.6.1 prove the following: 

Proposition 5.12.2 Let D be a digraph of order n. Suppose that, for every 
dominated pair of non-adjacent vertices {x,y}, either d(x) > n—1 and d(y) > 
n—2 or d(x) > n—2 and d(y) > n—1. Then D is traceable. 

Prove that the digraph Q, introduced before Theorem 5.6.1 is strong and 
non-hamiltonian. 

Prove Lemma 5.6.24. 

Find an infinite family of hamiltonian digraphs that satisfy the conditions 
of both Theorem 5.6.1 and Theorem 5.6.5, but do not satisfy the conditions 
of Theorem 5.6.7 and are neither locally out-semicomplete nor locally in- 
semicomplete (Bang-Jensen, Gutin and Li [69}). 

Find an infinite family of hamiltonian digraphs that satisfy the conditions 
of Theorem 5.6.12, but do not satisfy the conditions of Theorem 5.6.7 (Zhao 
and Meng [758]}). 

Prove Corollaries 5.6.21 and 5.6.22. 

Using Meyniel’s theorem, prove that if a strong digraph D has at least n? — 
3n +5 arcs, then D is hamiltonian (Lewin [514)). 

Prove that every digraph with more than (n—1)? arcs is hamiltonian (Lewin 
[514]). 

Prove that, if the minimum semi-degree of a digraph D of order n is at least 
(n + 1)/2, then every arc of D is contained ina Hamilton cycle of D. 
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5.30. 

5.31. 

5.32. 

5.33. 

5.34. 

5.35. 

5.36. 

5. Hamiltonicity and Related Problems 

. Construct an infinite family of non-hamiltonian strong digraphs that satisfy 
both (5.1) and (5.2) (Bermond and Thomassen [115]). 

. Prove that every vertex of a semicomplete multipartite digraph D belongs to 
a longest path in D (Volkmann [729)). 

. (+) Give a direct proof of the first (non-algorithmic) part of Theorem 5.7.1 
(Gutin [358, 363]). 

. Show that the multipartite tournament in Figure 5.6 is non-hamiltonian. 

. Show that the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs 
does not hold, i.e., there are a strong semicomplete bipartite digraph D and 
a maximum cycle subdigraph F in D such that D(V(F)) is not hamiltonian 
(Gutin [362]). 

An oriented graph D = (V, A) is an arc-locally tournament digraph if it 
has the following two properties: 
(i) Whenever z,y are distinct vertices and there exists an arc uv € A such 

that ru, yv € A, there is at least one arc between z and y in D. 

(ii) Whenever z, y are distinct vertices and there exists an arc zw € A such 
that zz, wy € A, there is at least one arc between z and y in D. 

Prove that, if D = (V, A) is a connected arc-local tournament digraph and C 
is a cycle, then every vertex of V — C is adjacent to a vertex of C. 

(+) Hamiltonian paths and cycles in arc-locally tournament di- 
graphs. Prove the following two theorems by Bang-Jensen [48]: 

Theorem 5.12.3 An arc-locally tournament digraph is hamiltonian if and 
only tf tt 1s strong and has a cycle factor. 

Theorem 5.12.4 An arc-locally tournament digraph is traceable if and only 
if it has a 1-path-cycle factor. 

Hint: use Exercise 5.30 and study the structure of the arcs between disjoint 
cycles. 

(—) Arc-local tournament digraphs were defined above. Prove that every 
bipartite tournament is an arc-local tournament digraph. 

Prove Theorem 5.7.13 by induction on t. 

By inspecting all intermediate steps in the proof of Corollary 5.7.16, show 
that the following statement holds. Let D be a bipartite digraph obtained 
by taking two disjoint even cycles C = wju2...u2K-1U2%u1 and Z = 
V1U2...U2r—1V2rv1 and adding an arc between v2;-1 and u2; and between 
voi and u2j-1 (in any direction, possibly one in each direction) for all 
1=1,2,...,k andj =1,2,...,r. D is hamiltonian if and only if it is strong. 
Moreover, if D is strong, then, given cycles C and Z as above, a hamiltonian 
cycle of D can be found in time O(|V(C)||V(Z)|) (Gutin [362]). 

Prove Theorem 5.7.7. 

Prove the following generalization of Lemma 5.7.15. If a strong semicomplete 
multipartite digraph D has a cycle subdigraph F = C,U...UC; with p(< n) 
vertices, then, for every i, D has a cycle of length at least p—t+1 covering 
all vertices of C; (Bang-Jensen, Gutin and Huang [68]). 
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5.38. 

5.39. 

5.40. 

5.41. 

5.47. 

5.48. 

5.49. 

5.50. 

5.51. 

5.52. 
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Construct an infinite family of semicomplete multipartite digraphs showing 
that the result of Exercise 5.36 is best possible (Bang-Jensen, Gutin and 
Huang [68]). 

Using the result of Exercise 5.36, prove that every strong semicomplete mul- 
tipartite digraph D with 1-path-cycle subdigraph F = PUC, U...UC; of 
order p has a path of length at least p —t — 1 starting at the initial vertex of 
P (Bang-Jensen, Gutin and Huang [68]). 

Prove Theorem 5.7.13. 

Prove the following proposition. Let D be a strong semicomplete multipartite 
digraph of order n and let r be the cardinality of minimum partite set of 
D. If for each pair of dominated non-adjacent vertices z,y, d(x) + d(y) > 
min{2(n — r) + 3,2n — 1}, then D is hamiltonian (Zhou and Zhang [760]). 

(—)Prove that every oriented graph of minimum in-degree and out-degree 
k > 2, on at most 2k + 2 vertices, is a multipartite tournament with at most 
two vertices in each partite set. 

. Prove the following theorem due to Jackson: 

Theorem 5.12.5 [449] Every oriented graph of minimum in-degree and out- 
degree k > 2, on at most 2k +2 vertices, is hamiltonian. 

. (—) Check that f(G,,k) =k —1, where the digraph G', and the function f 
are introduced after Theorem 5.7.27. 

. Prove Theorem 5.8.2. 

. Characterization of traceable extended locally semicomplete di- 
graphs. Prove Theorem 5.8.3. 

. (—) Prove that the following problem is NP-complete: Given a digraph 
D = (V,A) and a partition V = Vi U...UV,, check whether D has a 
cycle factor C; U... UC, such that no cycle C; is contained in a set Vj, 
ED. Ep: 
Hint: consider an arbitrary vertex x in D and let V; = V(D) — {x}, V2 = {x}. 

(—) Characterization of traceable quasi-transitive digraphs. Prove 
Theorem 5.9.2 using Theorem 5.7.1. 
Hint: see the proof of Theorem 5.9.1. 

(—) Another characterization of traceable quasi-transitive digraphs. 
Formulate and prove a characterization of traceable quasi-transitive digraphs 
similar to Theorem 5.9.3. 

Prove Lemma 5.11.3. 

Prove the complexity bound for both parts of Theorem 5.10.2. 

(—) Deduce the results of Corollary 5.10.3 from Theorem 5.10.2. 

Prove that if D is a strong oriented graph of order at least three and D does 
not contain, as induced subdigraph, any digraph in Figure 5.9, then D is 
hamiltonian (Kemnitz and Greger [477]). 
Hint : show that D is locally out-semicomplete and use the characterization 
of hamiltonian locally out-semicomplete digraphs (Gutin and Yeo [380]). 
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We seni ameaae 
Figure 5.9 Forbidden digraphs. Unoriented arcs can be oriented arbitrarily. 

5.53. 

5.04. 

5.55. 

5.56. 

5.07. 

A counterexample to a conjecture from [477]. Consider the tournament 

D with V(D) => {x1, 2,3, 04,25} and 

A(D) = {v122, £223, 0304, 0405, 15L1, L113, (204,135, L421, r5r2} 

and any 2-strong tournament J’, containing three vertices y1, y2, y3 such that 

— {yry2, yoys, ysyi} C A(T). 

Let us construct an oriented graph T* with vertex set V(D) UV(T) and arc 
set 

A(D)U A(T) U {yize, vay1, yot2, Layo, y3t4, T2y3}. 

Prove that 

(a) T™ is strong. ; 
(b) T* does not contain, as induced subdigraph, any orientation of Ki,3. 
(c) For every vertex v in T*, T*(N(v)) is strong. 
(d) T* is not hamiltonian. 

(Gutin and Yeo [380]) 

(—) Prove that almost all 1-regular digraphs are non-hamiltonian. 

Connected (g,f)-factors in some semicomplete multipartite di- 
graphs. Given a digraph D and two positive integers f(r), g(x) for every 

x € V(D), a subgraph H of D is called a (g, f)-factor if g(x) < dj (zr) = 

d(x) < f(x) (g(x) < du(x) < f(x), respectively) for every c € V(D). If 
f(x) = g(x) = 1 for every x, then a connected (g, f)-factor is a hamiltonian 
cycle. Prove the following result by Gutin: 

Theorem 5.12.6 /370] Let D be a semicomplete bipartite digraph or an ex- 
tended locally in-semicomplete digraph. Then D has a connected (g, f)-factor 
if and only if D is strongly connected and contains a (g,f)-factor. One can 
check whether D has a connected (g, f)-factor in O(n*) time. Oo 

Connected (g, f)-factors in quasi-transitive digraphs. The additional 
terminology used in this exercise are introduced in the previous exercise. 
Prove the following assertion. The connected (g, f)-factor problem is polyno- 
mial time solvable for quasi-transitive digraphs (Gutin [370]). 

Let G be the complete graph on 5 vertices with one edge deleted. Find a 
strong orientation of G which is not hamiltonian. 
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In this chapter we discuss results which in one way or another generalize the 

notion of hamiltonicity. As can be seen from the content of the chapter, there 

are quite a number of such topics. In fact many more could be added, but we 

feel that the ones included here are representative. 

We start by studying hamiltonian paths with one or more end vertices 

prescribed, that is, we study paths which start in a prescribed vertex, paths 

which connect two prescribed vertices and finally paths which start and end in 

prescribed vertices. Not surprisingly, the level of difficulty of these problems 

increase when we fix more and more end vertices. Even for tournaments the 

last problem is still not completely solved. 

The next topic is pancyclicity, which may be seen as a generalization 

of hamiltonicity. We first study digraphs of order n which have cycles of 

all lengths from 3 to n and subsequently digraphs in which every vertex is 

in a k-cycle for every k € {3,4,...,n}. After that we discuss briefly arc- 

pancyclicity where we want cycles of all possible lengths from 3 to n through 

each arc. These problems are very hard and almost all known results deal with 

tournaments, generalizations of tournaments or digraphs which are almost 

complete. 

Another topic covered is hamiltonian cycles which either avoid or contain 

certain prescribed arcs. These problems are very difficult even for tourna- 

ments. As we will show in Section 6.7, some of these results imply that the 

problem of deciding the existence of a hamiltonian cycle in a digraph ob- 

tained from a semicomplete digraph by adding just a few new vertices and 

some arcs is already very difficult. In fact the problem is highly non-trivial 

even if we add just one extra vertex. We also discuss various results concern- 

ing arc-disjoint hamiltonian paths and cycles, in particular the conjecture 

by Kelly that the arcs of every regular tournament can be decomposed into 

arc-disjoint hamiltonian cycles. 

We then move on to orientations of hamiltonian cycles. We discuss in 

some detail one of the main tools in a recent proof by Havet and Thomassé 

of the deep result that every tournament on at least 8 vertices contains every 

orientation of a hamiltonian undirected path. 

After this we briefly discuss another relative of the hamiltonian cycle 
problem; the problem of finding a set of few cycles that cover all vertices of a 
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digraph. We study both the case when these cycles are allowed to intersect, 

pairwise but only in a path, and the case when we want the cycles to be 

disjoint. 

The last two sections deal with applications. First we show that for every 

strong digraph D belonging to one of several classes of generalizations of 

tournaments, one can find a spanning subgraph which is strongly connected 

and has the minimum number of arcs among all such subdigraphs of D in 

polynomial time. For general digraphs this problem is NP-complete since 

it generalizes the hamiltonian cycle problem. Finally we address the ibs? 

problem and show that some widely used heuristics for the problem find tours 

which are better than a fraction (depending on 7) of all possible tours, thus 

indicating that the solutions they find may be expected to be of reasonable 

quality. 

~ 

6.1 Hamiltonian Paths with a Prescribed End-Vertex 

We begin with hamiltonian paths starting or ending at a prescribed vertex. 

Besides being of independent interest, results of this type are also useful in 

connection with results on hamiltonian paths with both end vertices pre- 

scribed (but not necessarily the direction of the path). 
To get a feeling for arguing with extended tournament structure, we start 

with the following easy result. 

Proposition 6.1.1 Suppose that a strong extended tournament D has an 

(x, y)-path P such that D—P has a cycle factor. Then D has a hamiltonian 

path starting at x and a hamiltonian path ending at y. 

Proof: Choose a path P’ starting at x as long as possible so that D — P’ 

has a factor which consists of minimal number of cycles C1, C2,..., Cg. Then, 

by Proposition 5.7.18, we may assume that Cj>C,; when i < 7. Let P’ = 

UjU2...U, Where u; = 2. If g # 0, then, by the assumption on P’, u, is 

completely dominated by C;. Since D is strong, there is an arc from P’ to 

C,. Let u; be the vertex of P’ with largest index i < r such that there is an 

arc u;z from u; to C;. Let z~ be the predecessor of z on C;. Since uj+1 has no 

arc to C,, we obtain z~ u;+1. Here we used the property that nonadjacent 

vertices of an extended semicomplete digraph are similar (defined in Chapter 

1). Hence C[z,z~] can be inserted between u; and uj41, contradicting the 
choice of P’. So gq = 0 and P’ is a hamiltonian path starting at x. A similar 

argument can be applied to show that D has a hamiltonian path ending at 

y. Oo 

The following result, due to Bang-Jensen and Gutin, shows that, for di- 

graphs that are either semicomplete bipartite or extended locally semicom- 

plete, there is a nice necessary and sufficient condition for the existence of a 
hamiltonian path starting at a prescribed vertex. 
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Theorem 6.1.2 /66] Let D = (V,A) be a digraph which is either semicom- 
plete bipartite or extended locally out-semicomplete and let x € V. Then D 
has a hamiltonian path starting at « if and only if D contains a 1-path-cycle 
factor F of D such that the path of F starts at x, and, for every vertex y of 
V —{a}, there is an (x,y)-path' in D. Moreover, if D has a hamiltonian path 

starting at x, then, given a 1-path-cycle factor F of D such that the path of 

F starts at x, the desired hamiltonian path can be found in time O(n’). 

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose 

that F = PUC,U...UC; is a 1-path-cycle factor of D that consists of a path 

P starting at x and cycles Ci, i = 1,...,t. Suppose also that every vertex 

of D is reachable from x. Then, without loss of generality, there is a vertex 

of P that dominates a vertex of C,. Let P= 2,29.. Zp, C1 = Yiyo--- Yai; 

where z = 2; and x,y, for some k € {1,2,...,p}, s € {1,2,...,q}. We 

show how to find a new path starting at 2 which contains all the vertices of 

V(P) UV(C;). Repeating this process we obtain the desired path. Clearly, 
we may assume that k < p and that z, has no arc to V(C}). 

Assume first that D is an extended locally out-semicomplete digraph. If P 

has a vertex z; which is similar to a vertex y; in Cy, then rjy;+41, yjtit1 € A 

and using these arcs we see that P[x1,2;|Clyj;41, y;|P[zi+1, tp] is a path 
starting from z and containing all the vertices of PU Cj. If P has no vertex 

that is similar to a vertex in C,, then we can apply the result of Exercise 

4.37 to P[z,, Zp] and z~Ci[ys, ys—1] and merge these two paths into a path 

R starting from x, and containing all the vertices of P[z,,2,] UC. Now, 
P[z1,2,%—-1]R is a path starting at z and containing all the vertices of PUC}. 

Suppose now that D is semicomplete bipartite. Then either y,_1 72,441, 

which implies that P[r1,2%]Cilys, ys—i]P[t%41,2p] is a path starting at x 

and covering all the vertices of P U C4, or 2441—Ys-1. In the latter case, 

we consider the arc between x42 and ys—2. If ys-272442 we can construct 

the desired path, otherwise we continue to consider arcs between 2443 and 

Ys—3 and so on. If we do not construct the desired path in this way, then we 

find that the last vertex of P dominates a vertex in C,, contradicting our 

assumption above. 

Using the process above and breadth-first search, one can construct an 

O(n?)-algorithm for finding the desired hamiltonian path starting at z. O 

Just as the problem of finding a minimum path factor generalizes the 
hamiltonian path problem, we may generalize the problem of finding a hamil- 

tonian path starting at a certain vertex to the problem of finding a path factor 

with as few paths as possible such that one of these paths starts at a specified 

vertex z. We say that a path factor starts at z if one of its paths starts at 
z and denote by pc,(D) the minimum number of paths in a path factor that 

' This is equivalent to saying that D has an out-branching with root 2. 
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starts at z. The problem of finding a path factor with pc,(D) paths which 

starts at x in a digraph D is called the PFx problem?. 

Let &, be the union of all semicomplete bipartite, extended locally semi- 

complete and acyclic digraphs. Using an approach similar to that taken in 

Section 5.10, Bang-Jensen and Gutin proved the following. 

Theorem 6.1.3 /66] Let D be a totally $,-decomposable digraph. Then the 

PFr problem for D can be solved in time O(\|V(D)|*). 0 

6.2 Weakly Hamiltonian-Connected Digraphs 

Recall that an [z,y]-path in a digraph D = (V,A) is a path which ei- 

ther starts at z and ends at y or oppositely. We say that D is weakly 

hamiltonian-connected if-it has a hamiltonian [z, y]-path (also called an 

[z, y|-hamiltonian path) for every choice of distinct vertices z, y € V. Ob- 
viously deciding whether a digraph contains an [z, y]-hamiltonian path for 
some z, y is not easier than determining whether D has any hamiltonian path 

and hence for general digraphs this is an M’P-complete problem by Theorem 

5.0.2 (see also Exercise 6.3)..In this section we discuss various results that 

have been obtained for generalizations of tournaments. All of these results 

imply polynomial algorithms for finding the desired paths. 

6.2.1 Results for Extended Tournaments 

We start with a theorem due to Thomassen [698] which has been generalized 
to several classes of generalizations of tournaments as will be seen in the 
following subsections. 

Theorem 6.2.1 /698] Let D = (V,A) be a tournament and let 21,22 be 

distinct vertices of D. Then D has an [x1,22]-hamiltonian path if and only 
if none of the following holds. 

(a) D is not strong and either none of x1, 22 belongs to the initial strong com- 

ponent of D or none of x1, 22 belongs to the terminal strong component 
(or both). 

(b) D is strong and fori = 1 or 2, D—12; is not strong and x3_; belongs to 

neither the initial nor the terminal strong component of D — 2;. 

(c) D is isomorphic to one of the two tournaments in Figure 6.1 (possibly 
after interchanging the names of x, and x2). 

The following easy corollary is left as Exercise 6.4: 

? Observe that pc,(D) < pc(D) +1 holds for every digraph D. 
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? 

Figure 6.1 The exceptional tournaments in Theorem 6.2.1. The edge between 21 
and x2 can be oriented arbitrarily. 

Corollary 6.2.2 /698] Let D be a strong tournament and let x,y,z be dis- 
tinct vertices of D. Then D has a hamiltonian path connecting two of the 

vertices in the set {x,y,z}. a) 

Thomassen [698] used a nice trick in his proof of Theorem 6.2.1 by using 

Corollary 6.2.2 in the induction proof. We will give his proof below. 

Proof of Theorem 6.2.1: Let x), z2 be distinct vertices in a tournament 

D. It is easy to check that if any of (a)-(c) holds, then there is no [, 22]- 
hamiltonian path in D. 

Suppose now that none of (a)-(c) hold. We prove by induction on n that D 
has an [z1, Z2]-hamiltonian path. This is easy to show when n < 4 so assume 

now that n > 5 and consider the induction step with the obvious induction 

hypothesis. If D is not strong then let D,, Do2,...,Ds, s > 2 be the acyclic 

ordering of the strong components of D. Since (a) does not hold, we may 
assume without loss of generality that x; € V(D,) and zz € V(D,). Observe 
that D,; has a hamiltonian path P, starting at x, (Exercise 6.1) and D, has 

a hamiltonian path P, ending at r2. Let P; be a hamiltonian path in D; for 

each i = 2,3,...,s—1. Then P,P)... P,_1P; is an (21, £2)-hamiltonian path. 
If D — z; is not strong for i = 1 or 2, then we may assume without loss 

of generality that i = 1. Let Dj,...,D,, p = 2 be the acyclic ordering of the 

strong components of D — 21. Since (b) does not hold we may assume, by 
considering the converse of D if necessary, that rz belongs to Ds Let y be 

any out-neighbour of x; in D,. Our argument for the previous case implies 

that there is a (y, z2)-hamiltonian path P in D—<, implying that 2; P is an 

(x1, £2)-hamiltonian path in D. Hence we may assume that D — 2; is strong 
Glatt 2, 

If D — {x1,z2} is not strong, then it is easy to prove that D has an 

(x;,23_;)-hamiltonian path for i = 1,2 (Exercise 6.2). Hence we only need 
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to consider the case when D’ = D — {21,22} is strong. Let uju2...Un—2U1 

be a hamiltonian cycle of D’. By considering the converse if necessary, we 

may assume that x, dominates u;. Then D has an (21, 72)-hamiltonian path 

unless x2 dominates un_2 so we may assume that is the case. By the same 

argument we see that either the desired path exists or z; dominates un—3 and 

x2 dominates un—s. Now it is easy to see that either the desired path exists, 

or n — 2 is even and we have 21+>{u1,U3,.--,Un—3}, To {U2, U4,--- he ancy A 

If x; or z_ dominates any vertex other than those described above, then by 

repeating the argument above we see that either the desired path exists or 

{x1,Z2}++V(C), which is impossible since D is strong. Hence we may assume 

that 

{u,U4,---,Un—2}r> £1 +4{u1, U3,.--,Un—3}, 

{u1,U3,---,Un—3}> To >{u2, U4,..-,Un—2} (6.1) 

If n = 6, then using that (c) does not hold, it is easy to see that the desired 
path exists. So we may assume that n > 8. By induction, the theorem and 

hence also Corollary 6.2.2 holds for all tournaments on n — 2 vertices. Thus 

D' has a hamiltonian path P which starts and ends in the set {u1,u3, us} 
and by (6.1), P can be extended to an (x1, 22)-hamiltonian path of D. O 

We now turn to extended tournaments. An extended tournament D does 

not always have a hamiltonian path, but, as we saw in Theorem 5.7.1, it 

does when the following obviously necessary condition is satisfied: there is 

a 1-path-cycle factor in D. Thus if we are looking for a sufficient condition 

for the existence of an [z, y]-hamiltonian path, we must require the existence 

on an [z,y]-path P such that D — P has a cycle factor (this includes the 

case when P is already hamiltonian). Checking for such a path factor in an 
arbitrary digraph can be done in polynomial time using flows, see Exercise 

3.62. 

The next result is similar to the structure we found in the last part of the 

proof of Theorem 6.2.1. 

Lemma 6.2.3 /67] Suppose that D is a strong extended tournament con- 
taining two adjacent vertices x and y such that D — {x,y} has a hamilto- 
nian cycle C' but D has no hamiltonian [x, y|-path. Then C is an even cycle, 

N*t(z)NV(C) = N-(y)NV(C), N-(z)NV(C) = Nt+(y) NV(C), and the 
neighbours of x alternate between in-neighbours and out-neighbours around 
CG. 

Proof: Exercise 6.5. oO 

Bang-Jensen, Gutin and Huang obtained the following characterization 
for the existence of an [z, y]-hamiltonian path in an extended tournament. 
Note the strong similarity with Theorem 6.2.1. 
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Theorem 6.2.4 [67] Let D be an extended tournament and 11,22 be distinct 

vertices of D. Then D has an (x1, £2|-hamiltonian path if and only if D has 

an [21,22]-path P such that D—P has a cycle factor and D does not satisfy 

any of the conditions below: 

(a) D is not strong and either the initial or the terminal component of D 

(or both) contains none of x, and 22; 
(b) D ts strong and the following holds fori = 1 ori = 2: D—2; is not strong 

and either x3_; belongs to neither the initial nor the terminal component 

of D—2,, or x3_; does belong to the initial (terminal) component of D—2; 

but there is no (x3_;,2;)-path ((2;,23_;)-path) P' such that D — P' has 
a cycle factor. 

(c) D, D—2,, and D— 22 are all strong and D is isomorphic to one of the 

tournaments in Figure 6.1. Oo 

The proof of this theorem in [67] is constructive and implies the following 
result (the proof is much more involved than that of Theorem 6.2.1). We point 

out that the proof in [67] makes explicit use of the fact that the digraphs have 

no 2-cycles. Hence the proof is only valid for extended tournaments and not 

for general extended semicomplete digraphs, for which the problem is still 

open. 

Theorem 6.2.5 /67] There exists an O(,/nm) algorithm to decide if a given 
ettended tournament has a hamiltonian path connecting two specified vertices 

xz and y. Furthermore, within the same time bound a hamiltonian [z, y|-path 

can be found if it exists. 0 

Theorem 6.2.4 implies the following characterization of extended tourna- 

ments which are weakly hamiltonian-connected (see Exercise 6.7). 

Theorem 6.2.6 /67] Let D be an extended tournament. Then D is weakly 
hamiltonian-connected if and only if it satisfies each of the conditions below. 

(a) D is strongly connected. 
(b) For every pair of distinct vertices x and y of D, there is an [z,y|-path 

P such that D — P has a cycle factor. 

(c) For each vertex x of D, D—« has at most two strong components and 

if D—« is not strong, then for each vertex y in the initial (respectively 
terminal) strong component, there is a (y,x)-path (respectively an (x, y)- 

path) P' such that D — P' has a cycle factor. 
(d) D is not isomorphic to any of the two tournaments in Figure 6.1. O 

The following result generalizes Corollary 6.2.2. Note that we must assume 
the existence of the paths described below in order to have any chance of 

having a hamiltonian path with end vertices in the set {x,y,z}. The proof 

below illustrates how to argue with extended tournament structure. 
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Corollary 6.2.7 [67] Let x,y and z be three vertices of a strong extended 

tournament D. Suppose that, for every choice of distinct vertices u,v € 

{x,y,z}, there is a [u,v]-path P in D so that D — P has a cycle factor. 

Then there is a hamiltonian path connecting two of the vertices in { ha) cele 

Proof: If both D — xz and D — y are strong, then, by Theorem 6.2.4, either 

D has a hamiltonian path connecting z and y, or D is isomorphic to one 

of the tournaments in Figure 6.1, in which case there is a hamiltonian path 

connecting x and z. There is a similar argument if both D — z anduD.— z, 

or D —y and D — z are strong. So, without loss of generality, assume that 

neither D — x nor D — y is strong. Let $,S2,...,5; be an acyclic ordering 

of the strong components of D — z. Note that S; has an arc to z, since D is 

strong. 

Suppose first that y € V(S;) for some 1 < i < t. We show that this implies 

that D — y is strong, contradicting our assumption. Consider an [z, y]-path 

P and a cycle factor F of D —P. It is easy to see that P cannot contain 

any vertex of S;41,...,5. Hence each of these strong components contains a 

cycle factor consisting of those cycles from F that are in S; for 7 =i+1,...,t. 

In particular (since it contains a cycle), each S; has size at least 3 for 7 = 

i+1,...,t. It also follows from the existence of P and ¥ that every vertex in 

S; is dominated by at least one vertex from U = V(S1)U...UV (S;-1). Indeed, 

if some vertex z € V(S;) is not dominated by any vertex from U, then using 

that S,=>S, for all 1 <r < p < t we get that z is similar to all vertices in 

U. However, this contradicts the existence of P and ¥. Now it is easy to see 

that D — y is strong since every vertex of S;—y is dominated by some vertex 

from V(S,)U...UV(S;_1) and dominates a vertex in V(Sj41) U...UV(S¢). 

Hence we may assume that y belongs to 5; or S;. 

By considering the converse of D if necessary, we may assume that y € 

V(S,). By Theorem 6.2.4(b) we may assume that there is no (y, z)-path W 

such that D — W has a cycle factor. Thus it follows from the assumption of 

the corollary that there is an (x, y)-path P’! = v)v2...vp, vy = LZ, Up = y Such 

that D — P' has a cycle factor F'. Since P’ — x is contained in S,, we can 

argue as above that each S;, i > 1, has a cycle factor (inherited from F') and 
hence each S; contains a hamiltonian cycle C;, by Theorem 5.7.7. 

Note that every vertex of S; which is not on P’ belongs to some cycle 

of F' that lies entirely inside S,. Hence, if r = 2 (that is, P’ is just the 

arc zy), then it follows from Proposition 6.1.1 (which is also valid when 
the path in question has length zero) that S$; contains a hamiltonian path 

starting at y. This path can easily be extended to a (y,z)-hamiltonian path 

in D, since each S;, 7 > 1, is hamiltonian. Thus we may assume that r > 3. 

If 5S; —y is strong then D—y is strong, contradicting our assumption above. 

Let T),72,...,7's, s > 2, be an acyclic ordering of the strong components of 

5S, —y. Note that each V(T7;) is either covered by some cycles from the cycle 
factor F' of D — P’ and hence T; has a hamiltonian cycle (by Theorem 
5.7.5), or is covered by a subpath of P’[v2,v,—i] and some cycles (possibly 
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zero) from F' and hence T; has a hamiltonian path (by Theorem 5.7.1). Note 

also that there is at least one arc from y to T; and at least one arc from T, 

to y. If J; contains a portion of P'[v2,v,_1], then it is clear that T, contains 

v2. But then D — y is strong since z-v2, contradicting our assumption. So 

T; contains no vertices of P’[v,,v,;—1] and hence, by the remark above, 7; 

has a hamiltonian cycle to which there is at least one arc from y. Using the 

structure derived above, it is easy to show that D has a (y,z)-hamiltonian 

path (Exercise 6.6). 0 

It can be seen from the results above that, when we consider weak 

hamiltonian-connectedness, extended tournaments have a structure which is 

closely related to that of tournaments. To see that Theorem 6.2.4 does not 

extend to general multipartite tournaments, consider the multipartite tour- 

nament D obtained from a hamiltonian bipartite tournament B with classes 

X and Y, by adding two new vertices x and y along with the following arcs: 

all arcs from x to X and from Y to g, all arcs from y to Y and X to y and an 

arc between z and y in any direction. It is easy to see that D satisfies none 

of the conditions (a)-(c) in Theorem 6.2.4, yet there can be no hamiltonian 

path with end vertices x and y in D because any such path would contain a 

hamiltonian path of B starting and ending in X or starting and ending in Y. 

Such a path cannot exist for parity reasons (|X| = |Y |). Note also that we can 
choose B so that the resulting multipartite tournament is highly connected. 

Bang-Jensen and Manoussakis [86] characterized weakly hamiltonian- 
connected bipartite tournaments. In particular, they proved a necessary and 

sufficient condition for the existence of an [z, y]|-hamiltonian path in a bipar- 

tite tournament. The statement of this characterization turns out to be quite 

similar to that of Theorem 6.2.4. The only difference between the statements 

of these two characterizations is in Condition (c): in the characterization for 

bipartite tournaments the set of forbidden digraphs is absolutely different 

and moreover infinite. 

6.2.2 Results for Locally Semicomplete Digraphs 

Our next goal is to describe the solution of the [x, y]-hamiltonian path prob- 

lem for locally semicomplete digraphs. Notice that this solution also covers 
the case of semicomplete digraphs and so, in particular, it generalizes Theo- 

rem 6.2.1 to semicomplete digraphs. 

We start by establishing notation for some special locally semicomplete 

digraphs. Up to isomorphism there is a unique strong tournament with four 

vertices. We denote this by T}. It has the following vertices and arcs: 

V(T}) = {a1, a2, 03,04}, A(Ty) = {a1@2, a203, 0304, 2401, 4103, 2204}. 

The semicomplete digraphs T?, T?, and Tj are obtained from T} by adding 
some arcs, namely: 
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A(T?) = A(TY) U {aga1, asa2}, 

A(T?) = A(Tq) U {a3ai}, A(Ti) = A(Ly) U {14s}. 
Let 74 = {T},T?,T?, T?}. It is easy to see that every digraph of 74 has a 

unique hamiltonian cycle and has no hamiltonian path between two vertices 

which are not consecutive on this hamiltonian cycle (such two vertices are 

called opposite). 

Let 7¢ be the set of semicomplete digraphs with the vertex set {1, 22, 1, 

@2,a3,a4}, each member D of 7@ has a cycle a,;a2a3a4a,; and the digraph 

D({a1,@2,a3,a4}) is isomorphic to one member of 74, in addition, 7; — 

{a,,a3} > 23-; > {a2,a4} > 2; for i = 1 or i = 2. It is straightforward 

to verify that 7g contains only two tournaments (denoted by Tj and T;,’), 
namely the ones shown in Figure 6.1, and that |7¢| = 11. Since none of the 

digraphs of 74 has a hamiltonian path connecting any two opposite vertices, 

no digraph of 7g has a hamiltonian path between x; and 79. 

For every even integer m > 4 there is only one 2-strong, 2-regular locally 

semicomplete digraph on m vertices, namely the second power C?, of an 

m-cycle (Exercise 6.8). We define 

T* = { C2, | mis even and m > 4}. 

It is not difficult to prove that every digraph of 7* has a unique hamilto- 

nian cycle and is not weakly hamiltonian-connected (Exercise 6.9, see also 

[47]). For instance, if the unique hamiltonian cycle of C? is denoted by 

U1U2UZU4U5UgU1, then ujyuzgus5u, and upU4ugu2 are two cycles of Ce and 

there is no hamiltonian path between any two vertices of {uj,u3,us} or of 
{u2, U4, us}. 

Let Tj be the digraph consisting of Ge together with two new vertices x 
and x2 such that 2; + {uj,u3,us} > to > {u2, us, ug} 4 2). Furthermore, 

Tg (Tg, respectively) is defined as the digraph obtained from T2? by adding 
the arc 2122 (the arcs 2122 and x22}, respectively). Let 7g = {T?,T?,T3}. 
It is easy to see that every element of 7g is a 3-strong locally semicomplete 
digraph and has no hamiltonian path between 2 and zo. 

Before we present the main result, we state the following two lemmas that 
were used in the proof of Theorem 6.2.10 by Bang-Jensen, Guo and Volkmann 
in [56]. The first lemma generalizes the structure found in the last part of the 
proof of Theorem 6.2.1. 
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Lemma 6.2.8 /56/ Let D be a strong locally semicomplete digraph on n > 4 
vertices and x1,22 two distinct vertices of D. If D — {21,22} is strong, and 
N*(21) Nt (a2) #0 or N~(21) NN~(a2) £0, then D has a hamiltonian 
path connecting 2, and x2. 

Proof: Exercise 6.10. Oo 

Another useful ingredient in the proof of Theorem 6.2.10 is the following 

linking result. An odd chain is the second power, P73, 41 for some k > 1, of 

a path on an odd number of vertices. 

Lemma 6.2.9 /56] Let D be a connected, locally semicompletedigraph with 

p = 4 strong components and acyclic ordering D,, D2,..., Dp of these. Suppose 

that V(D,) = {ui} and V(D,) = {vi} and that D — x is connected for 
every verter x. Then for every choice of uz € V(D2) and v2 € V(D,-1), D 
has two vertex disjoint paths P, from uz to v; and Pz from u, to v2 with 

V(Pi) UV(P2) = V(D) if and only if D is not an odd chain from u, to v;. 

Proof: If D is an odd chain, it is easy to see that D has no two vertex disjoint 

(u;, v3_;)-path for 2 = 1,2 (Exercise 6.11). We prove by induction on p that 

the converse is true as well. Suppose that D is not an odd chain from wu, to 

v,. Since the subdigraph D —z is connected for every vertex x, |N*(D;)| > 2 
for alli < p— 2 and |N~(D;)| > 2 for all j > 3. If p = 4, then it is not 

difficult see that D has two vertex disjoint paths P,; from uz to v; and P» 

from u; to v2 with V(P,) UV(P2) = V(D) (Exercise 6.13). If p = 5, it is 

also not difficult to check that D has the desired paths, unless D is a chain 

on five vertices. So we assume that p > 6. Now we consider the digraph D’, 

which is obtained from D by deleting the vertex sets {u,,vi}, V(D2 — u2) 

and VDs-1 = U2). 

Using the assumption on D, it is not difficult to show that D’' is a con- 

nected, but not strongly connected locally semicompletedigraph with the 

acyclic ordering {u2}, D3, D4,..., Dp—2, {v2} of its strong components. Fur- 

thermore, for every vertex y of D’, the subdigraph D’‘ — y is still connected. 
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of Dp_2. Note 
that there is a (u,u)-hamiltonian path P in D({u1,u}UV(D2 — u2)) and 
similarly there is a (v, v; )-hamiltonian path Q in D({v, v1} UV(Dpy-1 — v2)). 
Hence if D’ has disjoint (u2,v)-, (u, v2)-paths which cover all vertices of D’, 

then D has the desired paths. So we can assume D' has no such paths. By 

induction, D’ is an odd chain from uz to v2. Now using that D is not an odd 

chain from u, to v1 it is easy to see that D has the desired paths. We leave 

the details to the reader. 0 

A weaker version of Lemma 6.2.9 was proved in [47, Theorem 4.5]. 

Below we give a characterization, due to Bang-Jensen, Guo and Volkmann 

for the existence of an [x, y]-hamiltonian path in a locally semicomplete di- 
graph. Note again the similarity to Theorem 6.2.1. 
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Theorem 6.2.10 /56] Let D be a connected locally semicomplete digraph 

on n vertices and x1; and x2 be two distinct vertices of D. Then D has no 

hamiltonian [x1,22|-path if and only if one of the following conditions 1s 

satisfied: 

(1) D is not strong and either the initial or the terminal component of D (or 

both) contains none of x1, 22. 

(2) D is strongly connected, but not 2-strong, 
(2.1) there is ani € {1,2} such that D—z; is not strong and x3_; belongs 

to neither the initial nor the terminal component of D — z;; 

(2.2) D — 2x, and D — a2 are strong, s is a separating vertex of D, 

D,,Do,...,Dp is the acyclic ordering of the strong components of 

D-s, x; € V(Da) and z3_; € V(Dg) with a < B — 2. Further- 
more, V(Da4+i) U V(Da+42) U... UV(Dg-1) contains a separating 
verter of D, or D' = D(V(Da) UV(Da41) U... UV(Da)) is an odd 
chain from x; to 13; with N~(Da+2) N V(D — V(D')) = @ and 
N*(Dg8s) 0 Vib AV (BD) = 03 

(3) D is 2-strong and is isomorphic to T? or to one member of Tg UTg UT * 

and x1, 22 are the corresponding vertices in the definitions. 0 

As an easy consequence of Theorem 6.2.10, we obtain a characterization 

of weakly hamiltonian-connected locally semicomplete digraphs. The proof is 

left to the interested reader as Exercise 6.12. 

Theorem 6.2.11 /56] A locally semicomplete digraph D with at least three 

vertices is weakly hamiltonian—connected if and only if it satisfies (a), (b) and 
(c) below: 

(a) D is strong, 
(b) the subdigraph D — x has at most two components for each verter x of 

D, 
(c) D is not isomorphic to any member of Tg U Tg UT*. Oo 

6.3 Hamiltonian-Connected Digraphs 

We now turn to hamiltonian paths with specified initial and terminal vertices. 
An (x, y)-hamiltonian path is a hamiltonian path from z to y. Clearly, 
asking for such a path in an arbitrary digraph is an even stronger require- 
ment than asking for an [z,y]-hamiltonian path?. A digraph D = (V, A) 
is hamiltonian-connected if D has an (z,y)-hamiltonian path for every 
choice of distinct vertices 2, y € V. 

* We know of no class of digraphs for which the [z, y]-hamiltonian path problem is 
polynomially solvable, but the (x, y)-hamiltonian path problem is ’P-complete. 
For arbitrary digraphs they are equivalent from a complexity point of view (see 
Exercise 6.3). 
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No characterization for the existence of an (z,y)-hamiltonian path is 
known even for the case of tournaments*. Note however, that we sketch a 

polynomial algorithm for the problem in the next section, so in the algorith- 

mic sense a good characterization does exist. The following very important 

partial result due to Thomassen will be used in the algorithm of the next 

section. 

Theorem 6.3.1 (Thomassen) /698] Let D = (V,A) be a 2-strong semi- 
complete digraph with distinct vertices x,y. Then D contains an (zx,y)- 

hamiltonian path if either (a) or (b) below is satisfied. 

(a) D contains three internally disjoint (x,y)-paths each of length at least 
two, 

(b) D contains a verter z which is dominated by every vertex of V —x and D 

contains two internally disjoint (x, y)-paths each of length at least two. 

Oo 

In his proof Thomassen explicitly uses the fact that the digraph is allowed 

to have cycles of length 2. This simplifies the proof (which is still far from 

trivial), since one can use contraction to reduce to a smaller instance and 

then use induction. 

An important ingredient in the proof of Theorem 6.3.1 as well as in several 

other proofs concerning the existence of an (x, y)-hamiltonian path in a semi- 

complete digraph D is to prove that D contains a spanning acyclic graph in 

which z can reach all other vertices and y can be reached by all other vertices. 

The reason for this can be seen from the following result which generalizes 

an observation by Thomassen in [698]. 

Proposition 6.3.2 /50] Let D be a path-mergeable digraph. Then D has a 

hamiltonian (x, y)-path if and only if D contains a spanning acyclic digraph 

H in which dy(x) = di(y) = 0 and so that, for every vertex z € V(D), H 
contains an (x, z)-path and a (z,y)-path. 

Proof: Exercise 6.15. O 

Theorem 6.3.1 and Menger’s theorem (see Theorem 7.3.1) immediately 
imply the following result. For another nice consequence see Exercise 6.16. 

Theorem 6.3.3 [698] If a semicomplete digraph D is 4-strong, then D is 

hamuiltonian-connected. O 

Thomassen constructed an infinite family of 3-strongly connected tour- 
naments with two vertices x,y for which there is no (z, y)-hamiltonian path 

[698]. Hence, from a connectivity point of view, Theorem 6.3.3 is the best 

possible. 

4 By this we mean a structural characterization involving only conditions that can 

be checked in polynomial time. 
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Theorem 6.3.3 is a very important result with several consequences. 

Thomassen has shown in several papers how to use Theorem 6.3.3 to ob- 

tain results on spanning collections of paths and cycles in semicomplete di- 

graphs. See e.g. the papers [699, 701] by Thomassen and also Section 6.7. 

The following extension of Theorem 6.3.3 to extended tournaments has been 

conjectured by Bang-Jensen, Gutin and Huang: 

Conjecture 6.3.4 /67] If D is a 4-strong extended tournament with an 

(x,y)-path P such that D — P has a cycle factor, then D has an (x, y)- 

hamiltonian path. 

Extending Theorem 6.3.3 to locally semicomplete digraphs, Guo [342] 

proved the following: 

Theorem 6.3.5 (Guo) /342] Let.D be a 2-strong locally semicomplete di- 

graph and let x,y be two distinct vertices of D. Then D contains a hamilto- 

nian path from x to y if (a) or (b) below is satisfied. 

(a) There are three internally disjoint (x,y)-paths in D, each of which ts of 
length at least 2 and D is not isomorphic to any of the digraphs Tz and 

T; (see the definition in the preceding section). 

(b) The digraph D has two internally disjoint (x,y)-paths P,,P2, each of 
which is of length at least 2 and a path P which either starts at x, or 

ends at y and has only x or y in common with P,, Py such that V(D) = 

V(P,\) UV(P2) UV(P). Furthermore, for any verter z ¢ V(P;) UV(P2), 
z has a neighbour on P; — {x,y} if and only if it has a neighbour on 

P, — {x,y}. 0 

Since neither of the two exceptions in (a) is 4-strong, Theorem 6.3.5 im- 

plies the following: 

Corollary 6.3.6 /342)] If a locally semicomplete digraph is 4-strong, then it 

is hamiltonian-connected. O 

In [341] Guo used Theorem 6.3.5 to give a complete characterization of 
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo- 

cally tournament digraphs with no hamiltonian path from z to y for specified 

vertices x and y. In particular this characterization shows that there exist in- 

finitely many 3-strongly connected digraphs which are locally tournament di- 

graphs (but not semicomplete digraphs) and are not hamiltonian-connected. 
Thus, as far as this problem is concerned, it is not only the subclass of semi- 

complete digraphs which contain difficult instances within the class of locally 

semicomplete digraphs. It should be noted that Guo’s proof does not rely on 

Theorem 6.3.3. However, due to the non-semicomplete exceptions mentioned 

above, it seems unlikely that a much simpler proof of Corollary 6.3.6 can be 

found using Theorem 6.3.3 and Theorem 4.11.15. 

Not surprisingly, there are also several results, such as the following by 

Lewin, on hamiltonian-connectivity in digraphs with many arcs. 
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Theorem 6.3.7 [514] Every digraph on n > 3 vertices and at least (n — 
1)? +1 arcs is hamiltonian-connected. 0 

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since 
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows 
that we only need a slight strengthening of the degree condition in Theorem 
5.6.3 to get a sufficient condition for strong hamiltonian-connectivity. 

Theorem 6.3.8 [108] Every digraph D onn vertices which satisfies 5°(D) > 
ntl is hamiltonian-connected. Oo 

If we just ask for weakly hamiltonian-connectness then Overbeck-Larisch 

showed that we can replace the condition on the semi-degrees by a condition 
on the degrees: 

Theorem 6.3.9 [597] Every 2-strong digraph on n vertices and minimum 

degree at least n+ 1 is weakly hamiltonian-connected. O 

Thomassen asked whether all 3-strong digraphs D = (V, A) on n vertices 
with d*(x) + d~(x) > n+1 for all x € V are necessarily hamiltonian- 
connected. However, this is not the case, as was shown by Darbinyan [179]. 

6.4 Finding a Hamiltonian (z, y)-Path in a 
Semicomplete Digraph 

In this section we discuss algorithmic aspects of the (x, y)-hamiltonian path 
problem for semicomplete digraphs. The main result is the following by Bang- 
Jensen, Manoussakis and Thomassen: 

Theorem 6.4.1 /87] The (z,y)-hamiltonian path problem is polynomially 
solvable for semicomplete digraphs. Oo 

We will not give the proof of this difficult result here, but rather outline 
the most interesting ingredients in the non-trivial proof in [87]. As usual, we 
will always use n to denote the number of vertices of the digraph in question. 

The first lemma is quite simple to prove, but it turns out to be very useful 

for the design of the algorithm of Theorem 6.4.1. 

If x,w,z are distinct vertices of a digraph D, then we use the notation 

Qz,z, Q.w to denote two disjoint paths such that the first path is an (z, z)- 

path, the second path has terminal vertex w, and V(Qz,z)UV(Q..w) = V(D). 
Similarly Q,,, and Qy,. denote two disjoint paths, such that the first path is 

a (z,z)-path, the second path has initial vertex w, and V(Q.,2) UV (Qw,.) = 

V(D). 

Lemma 6.4.2 /87] Let x,w,z be distinct vertices in a semicomplete digraph 
T, such that there exist internally disjoint (x,w)-, (£,z)-paths P,, Po in T. 

_ Let R=T —V(P,)UV(P). 
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(a) There are either Qzw, Q..z OT Qz,z, Q.w in T, unless there is no arc 

from R,; to V(P,\) UV(P2) — 2, where R; is the terminal component of 

WOES), 

(b) In the case when there is an arc from R;, to V(P\) UV(P2) —& we can 

find one of the pairs of paths, such that the path with only one end verter 

specified has length at least one, unless V(P;) UV(P2) = {w, 2, z}. 
(c) Moreover there is an O(n”) algorithm to find one of the pairs of paths 

above if they exist. 

Proof: If R = @ then both pairs of paths exist. Hence we may assume that 

R# 9. Assume there is an arc uv where u € R; and v € (V(P,) UV (P2)) —2. 

Assume without loss of generality that v € P;. Since u € Ri, T(R) has a 

hamiltonian path Q ending at u and starting at some vertex y. By Proposition 

4.10.2, the semicomplete digraph T (RU V(P,) — x) has a hamiltonian path 
starting either at y or the successor of x on P; and ending in w. This path 

together with P: forms the desired pair of paths Q,,-,Q.w. This proves (a). 

It is easy to verify (b) by the same argument. As the strong components of 

T(R) and a hamiltonian cycle in each of them can be found in O(n?) time 
(Theorem 5.5.2), we can find Q and Q,.-,Q.w in O(n?) time. Oo 

We point out that the proof above shows that Lemma 6.4.2 is valid also 

for digraphs that are locally in-semicomplete. 

The following lemma allows one to use symmetry and thereby reduces the 

number of cases to consider when looking for an (z, y)-hamiltonian path. 

Lemma 6.4.3 Let T be a semicomplete digraph and x,y vertices of T, such 

that there exist 2 internally disjoint (x, y)-paths and an (x, y)-separator {u,v} 

in T’. Suppose that u,v do not induce a 2-cycle, say, vAu. Let T' denote the 

semicomplete digraph obtained from T, by adding the arc vu. Then T has 

an (x,y)-hamiltonian path if and only if T' has an (x,y)-hamiltonian path. 

Proof: Exercise 6.18. oO 

The next result shows that either T is 2-strong or we can reduce the 

problem to smaller instances. 

Lemma 6.4.4 [87] If T is not 2-strong then either the desired path exists in 
T’, or we can reduce the problem to one or two smaller problems, such that 

in the latter case the total size of the subproblems is at most n + 1. oO 

We now outline the major steps of the algorithm in [87] for the (z,y)- 
hamiltonian path problem. First we make some assumptions which do not 
change the problem. 

We assume that there is no arc from z to y and that neither z nor y are 
contained in a 2-cycle (if there is such a cycle containing x (y), then delete 
the arc entering x (leaving y)). It is easy to see that the new semicomplete 
digraph has an (z, y)-hamiltonian path if and only if the original digraph has 
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one. So we assume that the input is a semicomplete digraph T which has 
the form above. In order to refer to smaller versions of the same problem we 

refer to the problem as the hamiltonian problem. Note that by Lemma 

6.4.4 we may assume that T is 2-strong (otherwise we just consider smaller 
subproblems). 

With the assumptions above it follows from Theorem 6.3.1 that, if there 

are three internally disjoint (2, y)-paths in 7, then the desired hamiltonian 

path exists. Thus, by Lemma 6.4.4, the interesting part is when T' is 2-strong 

and there are two but not three internally disjoint (x, y)-paths. By Menger’s 
theorem (which we study in Chapter 7) we may thus assume that there exists 

an (x, y)-separator of size two in T. 

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener- 

alizes Theorem 6.3.1. It is very important for the proof of Theorem 6.4.1, 

because it corresponds to a case when no reduction is possible (see the de- 

scription of the algorithm below) and hence one has to prove the existence 

of the desired path directly. Recall that for specified distinct vertices s,t, an 

(s, t)-separator is a subset S C V — {s,t} such that D—S has no (s,t)-path. 

An (s,t)-separator is trivial if either s has out-degree zero or t has in-degree 

zero in D—S. 

Theorem 6.4.5 /87] Let T be a 2-strong semicomplete digraph on at least 10 

vertices and let x,y be vertices of T such that ya. Suppose that T—xz,T—y 

are both 2-strong. If all (x,y)-separators consisting of two vertices (if any 

exist) are trivial, then T has an (x, y)-hamiltonian path. Oo 

Besides the results mentioned above the algorithm uses the following re- 

sults: ; 

Lemma 6.4.6 [87] Suppose T is 2-strong and there exists a non-trivial sep- 
arator {u,v} of x,y. Let A,B denote a partition of T — {u,v} such that 

weA.,e € Band AGB. Let T’ = T(AU{u,v}),T" = T(BU {u,v}). We 
can reduce the hamiltonian problem to at most four hamiltonian problems 

such that one has size max{|A|,|B|} +2 or max{|A|,|B|}+3 and the others 
(if any) have size at most min{|A|,|B|} +3. Oo 

Lemma 6.4.7 [87] Suppose that T is 2-strong, n > 6, and all (z,y)- 

separators of size 2. x,y are trivial. If T —x or T — y is not 2-strong, then 

either the desired path exists in T, or we can reduce the problem to one or 

two smaller problems, such that in the latter case, the total size of the sub- 
problems is at most n+ 2. Oo 

The hamiltonian algorithm 

1. If n < 9, then settle the problem in constant time. 

2. If T is not 2-strong, then using Lemma 6.4.4 we settle the problem, or 

reduce to smaller instances of the hamiltonian problem. 
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3. If there are no (z,y)-separators of size 2, then T has the desired path, 

by Theorem 6.3.1. 
4. If all (x, y)-separators of size 2 are trivial, we check if T— az and T —y 

are 2-strong. Then we settle or reduce the problem using Theorem 6.4.5 

or Lemma 6.4.7. 

5. Let {u,v} be a non-trivial (x, y)-separator and let A, B form a partition 

of T— {u,v}, such that y € A,x € B and A++B. (Such a partition can be 

found in time O(n?), by letting B be the vertices which in T — {u,v} can 
be reached from z by a directed path and then taking A = V—B—({u, v}.) 

Also, if necessary, add an arc to make u,v induce a 2-cycle. This does 

not change the problem, by Lemma 6.4.3. 

6. Use the algorithmic version of Lemma 6.4.2 to find Qz.u, Q..» or Qz, 

Quin T” = T(BU {u, v}), and use an analogous algorithm to find Q,, y, 

Qo ae Oa incl GON vo} ey These’ pathistexistsincow ies 

2-strong, and the paths with one end vertex unspecified can be chosen 

of length at least one, since A, B both have size at least 2 (here we used 

that {u,v} is a non-trivial separator). 
7. If these paths match then T has the desired (z, y)-hamiltonian path. So 

suppose (by renaming uw, v if necessary) that we find Qz,u, Q..» in T” and 

Qu,ys Q»,. ite 

8. Using Lemma 6.4.6 we can now reduce the problem to smaller instances 

of the hamiltonian problem. 

In Step 7 we say that the two sets of paths in T” and T’ match if the 

following holds: the paths are P; from x to w and P, from p to z in T” and 

R, from r to y and R2 from s to q in T' where {w, z} = {r,s} = {u,v} and 

w = sand z=r. In this case the path P,; Rp PR, is the desired hamiltonian 

path since g—p by the definition of B in Step 5. 

The complexity of the algorithm outlined above is O(n°) (in fact, it is 
O(n‘) for every « > 0). No attempt was made in [87] to improve the 
complexity, but it seems quite difficult to improve it very much. 

It is interesting to note that the algorithm described above cannot be 
easily modified to solve the problem of finding the longest path with specified 
initial and terminal vertex in a semicompletedigraph. In several places we 
explicitly use that we are searching for a hamiltonian path. There also does 
not seem to be any simple reduction of this problem to the problem of deciding 
the existence of a hamiltonian path from z to y. 

Conjecture 6.4.8 /65] There exists a polynomial algorithm which, given a 
semicomplete digraph D and two distinct vertices x and y of D, finds a longest 
(x, y)-path. 

Note that, if we ask for the longest [x, y]-path in a tournament, then this 
can be answered using Theorem 6.2.1 (see Exercise 6.19). 
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Conjecture 6.4.9 /65] There exists a polynomial algorithm which, given 

a digraph D that is either extended semicomplete or locally semicomplete, 

and two distinct vertices x and y of D, decides whether D has an (x, y)- 

hamiltonian path and finds such a path if one exists. 

6.5 Pancyclicity of Digraphs 

A digraph D of order n is pancyclic if it has cycles of all lengths 3,4,...,n 

We say that D is vertex-pancyclic if for any v € V(D) and any k € 

{3,4,...,n} there is a cycle of length k containing v. We also say that D 

is (vertex-)m-pancyclic if D contains a k-cycle (every vertex of D is on 
a k-cycle) for each k = m,m+1,...,n. Note that some early papers on 

pancyclicity in digraphs require that D is (vertex-)2-pancyclic in order to be 

(vertex-)pancyclic (see e.g. the survey [115] by Bermond and Thomassen). We 
feel that this definition is too restrictive, since often one can prove pancyclicity 

results for much broader classes of digraphs when the 2-cycle is omitted from 

the requirement. 

6.5.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs 

The following claim is due to Alon and Gutin: 

Lemma 6.5.1 /11] Every directed graph D = (V, A) on n vertices for which 
6°(D) > n/2+1 is verter-2-pancyclic. 

Proof: Let v € V be arbitrary. By Corollary 5.6.3 there is a Hamilton cycle 

UjU2...Un—1U1 in D — v. If there is no cycle of length k through v then 

for every i, |Nt(v) M {ui}| + |N~(v) N {uizn-2}| < 1, where the indices are 
computed modulo n — 1. By summing over all values of 7, 1 <1 <n—1, we 

conclude that |N~(v)|+|N*(v)| <n —1, contradicting the assumption that 
all in-degrees and out-degrees exceed n/2. O 

Thomassen [696] proved that just by adding one to the degree condition 

for hamiltonicity in Theorem 5.6.7 one obtains cycles of all possible lengths 

in the digraphs satisfying the degree condition. 

Theorem 6.5.2 /696] Let D be a strong digraph on n vertices such that 

d(x) + d(y) > 2n whenever x and y are nonadjacent. Then either D has 

cycles of all lengths 2,3,...,n, or D is a tournament (in which case tt has 
Oo 

cycles of all lengths 3,4,...,n) orn is even and D is isomorphic to K2,2. 
O 

The following example from [696] shows that 2n cannot be replaced by 

~-2n —1 in Theorem 6.5.2. For some m < n let Dnjm = (V, A) be the digraph 
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with vertices V = {v1,v2,---,Un} and arcs A = {ujv;|t <j ort = J+ 1} - 

{vivi-m—1|l <i <n—m+]1}. We leave it as Exercise 6.20 to show thatwW, fn 

is strong, has no m-cycle and if m > (n+1)/2, then Dn,m satisfies Meyniel’s 

condition for hamiltonicity (Theorem 5.6.7). In [176] Darbinyan characterizes 

those digraphs which satisfy Meyniel’s condition, but are not pancyclic. 

Theorem 6.5.2 extends Moon’s theorem (Theorem 1.5.1) and Corollaries 

5.6.2 and 5.6.6. However, as pointed out by Bermond and Thomassen in 

[115], Theorem 6.5.2 does not imply Meyniel’s theorem (Theorem 5.6.7). The 

following result is due to Haggkvist: 

Theorem 6.5.3 /391] Every hamiltonian digraph on n vertices and at least 
1 5n(n + 1) — 1 arcs is pancyclic. Oo 

Song [679] generalized the result of Jackson given in Theorem 5.12.5 and 

proved the following theorem. 

Theorem 6.5.4 [679] Let D = (V, A) be an oriented graph on n > 9 vertices 

with minimum degree n — 2. Suppose that D satisfies the following property: 

sy A> d*(z)+d (y) >n-3. (6.2) 

Then D is pancyclic. oO 

Song [679] pointed out that, if the minimum degree condition in Theorem 

6.5.4 is relaxed, then it is no longer guaranteed that D is hamiltonian. 

Using Theorem 6.5.4 and Theorem 10.7.3, Bang-Jensen and Guo proved 

that under the same conditions as in Theorem 6.5.4 the digraph is in fact 

vertex-pancyclic. 

Theorem 6.5.5 [54] Let D be an oriented graph on n > 9 vertices and 

suppose that D satisfies the conditions in Theorem 6.5.4. Then D is verter 

pancyclic. O 

It should be noted that every digraph which satisfies the condition of 

Theorem 6.5.4 is a multipartite tournament with independence number at 

most 2. 

There are several other results on pancyclicity of digraphs with large 

minimum degrees, see e.g. the papers [174, 175, 178] by Darbinyan. 

6.5.2 Pancyclicity in Extended Semicomplete and 

Quasi-Transitive Digraphs 

In this subsection we show how to use the close relationship between the class 

of quasi-transitive digraphs and the class of extended semicomplete digraphs 

to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs 

from analogous results for extended semicomplete digraphs. 
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A digraph D is triangular with partition Vo, Vi, V2, if the vertex set of 
D can be partitioned into three disjoint sets Vo, Yi, V2 with Voi Viva V. 
Note that this is equivalent to saying that D = C’3[D(Vo), D(Vy), D(V2)). 

Gutin [367] characterized pancyclic and vertex- -pancyclic extended semi- 
complete digraphs. Clearly no extended semicomplete digraph of the form 
De C5 Ree] with at least 3 vertices is pancyclic since all cycles are 
of even length. Hence we must assume that there are at least 3 partite sets 
in order to get a pancyclic extended semicomplete digraph. It is also easy 
to see that the (unique) strong 3-partite extended semicomplete digraph on 
4 vertices is not pancyclic (since it has no 4-cycle). These observations and 
the following theorem completely characterize pancyclic and vertex-pancyclic 
extended semicomplete digraphs. 

Theorem 6.5.6 /367] Let D be a hamiltonian extended semicomplete di- 
graph of ordern > 5 with k partite sets (k > 3). Then 

1. (a) D is pancyclic if and only if D is not triangular with a partition 
Vo,Vi,V2, two of which induce digraphs with no arcs, such that either 

Vo] = |Vi] = |Va| or no D(V;) (i = 0,1,2) contains a path of length 2. 
2. (b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3 

or k = 3 and D contains two cycles Z,Z' of length 2 such that ZU Z' 
has vertices in the three partite sets. 0 

It is not difficult to see that Theorem 6.5.6 extends Theorem 1.5.1, since 

no semicomplete digraph on n > 5 vertices satisfies any of the exceptions 

from (a) and (b). 
The next two lemmas by Bang-Jensen and Huang [79] concern cycles 

in triangular digraphs. They are used in the proof of Theorem 6.5.9 which 

characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs. 

Lemma 6.5.7 [79] Suppose that D is a triangular digraph with a partition 

Vo,Vi, V2 and suppose that D is hamiltonian. If D(V,) contains an arc ry 

and D(V2) contains an arc uv, then every verter of Vo U {x,y,u,v} is on 

cycles of lengths 3,4,...,n 

Proof: Let C be a hamiltonian cycle of D. We construct an extended semi- 

complete digraph D’ from D in the following way. For each of i = 0,1, 2, first 

path-contract® each maximal subpath of C' which is contained in D(V;) and 
then delete the remaining arcs of D(V;). It is clear that D' is a subdigraph of 
D, and in this process, C' is changed to a hamiltonian cycle C’ of D'. Hence D' 

is also triangular with a partition Vj, V;, V; such that |Vj| = |V| = |V3| =r, 
for some r (the last fact follows from the existence of a hamiltonian cycle in 
D'). Then each vertex of D is on a cycle of length k with 3r < k < |V(D)| 
(to see this, just use suitable pieces of the r subpaths of C in each Vj). 

° Recall the definition of path-contraction from Subsection 5.1.1. 
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Now we may assume that r > 2 and we show that each vertex of Vo U 

{x,y,u,v} is on acycle of length k with 3 < k < 3r—1. To see this, we modify 

D' to another digraph D” as follows. If x and y are in distinct maximal 

subpaths P,, Py of C in D(Vj), then we add (in D') an arc from the vertex to 
which P, was contracted to the vertex to which P, was contracted. If x and 

y are in the same maximal subpath P of C in D(V;), then we add (in D’) an 

arc from the vertex to which P was contracted to an arbitrary other vertex of 

V{. For the vertices u and v we make a similar modification. Hence we obtain 
a digraph D" which is isomorphic to a subdigraph of D. The digraph D” is 

also triangular with a partition Vo’, V;’, V2’ such that |Vo’| = |Vj"| = |V2'| =r. 
Moreover D'(V,") contains an arc z’y' and D"(V;') contains an arc u’v’. It 

is clear now that each vertex of Vg’ U {z', y’,u’,v’} is on a cycle of length k 
where 3 < k < 3r—1. Using the same structure as for these cycles we can 

see that in D each vertex of VoU {z,y,u,v} is on a cycle of length k with 

3 Shor le O 

Lemma 6.5.8 /79] Suppose that D is a triangular digraph with a partition 

Vo,Vi, V2 and D has a hamiltonian cycle C. If D(Vo) contains an are of C 

and a path P of length 2, then every verter of V; UV2UV(P) is on cycles of 
LEN OU Si aan 1D 

Proof: Exercise 6.24. ; Oo 

It is easy to check that a strong quasi-transitive digraph on 4 vertices is 
pancyclic if and only if it is a semicomplete digraph. For n > 5 we have the 
following characterization due to Bang-Jensen and Huang: 

Theorem 6.5.9 [79] Let D = (V,A) be a hamiltonian quasi-transitive di- 
graph onn > 5 vertices. 

1. (a) D is pancyclic if and only if it is not triangular with a partition 
Vo,Vi, V2, two of which induce digraphs with no arcs, such that either 
[Vo] = |Vi| = |Val, or no D(V;) (i =0,1,2) contains a path of length 2. 

2. (b) D is not verter-pancyclic if and only if D is not pancyclic or D is 
triangular with a partition Vo, V1, V2 such that one of the following occurs: 

(b1) |Vi| = |Vo|, both D(V,) and D(V2) have no arcs, and there exists a 
vertex x € Vo such that x is not contained in any path of length 2 in 
D(Vo) (in which case x is not contained in a cycle of length 5). 

(62) one of D(Vi) and D(V2) has no arcs and the other contains no path of 
length 2, and there exists a vertex x € Vo such that x is not contained 
in any path of length 1 in D(Vo) (in which case x is not contained in 
a cycle of length 5). 

Proof: To see the necessity of the condition in (a), suppose that D is trian- 
gular with a partition Vo, Vi, V2, two of which induce digraphs with no arcs. 
If |Vo| = |Vi] = |V2|, then D contains no cycle of length n — 1. If no D(V;) 
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(i = 0, 1,2) contains a directed path of length 2, then D contains no cycle of 
length 5. 

Now we prove the sufficiency of the condition in (a). According to Theo- 
rem 4.8.5, there exists a semicomplete digraph T on k vertices for some k E25) 
such that D is obtained from T by substituting a quasi-transitive digraph H, 
for each vertex v € V(T) (here H, is non-strong if it has more than one 
vertex). Let C be a hamiltonian cycle of D. We construct an extended semi- 
complete digraph D’ from D in the following way: for each H,,v € V(T), first 
path-contract each maximal subpath of C which is contained in H, and then 
delete the remaining arcs of H,. In this process C is changed to a hamiltonian 
cycle C" of D’. 

Suppose D is not pancyclic. Then it is easy to see that D’ is not pancyclic. 

By Theorem 6.5.6, D’ is triangular with a partition Vj, V), V3. Let V; C V be 

obtained from V;', i = 0,1, 2, by substituting back all vertices on contracted 

subpaths of C. Then D is triangular with partition Vo, V;, V2. Moreover each 

D(V;) is covered by r disjoint subpaths of C for some r. 

By Lemma 6.5.7, two of Vo,Vi, V2, say Vi and V2, induce subdigraphs 

with no arcs in D. If |Vo| = |Vi| = |V2| we have the first exception in (a). 
Hence we may assume that |Vo| > |Vi] = |V2|. Then D(Vo) contains an arc of 
C. From Lemma 6.5.8, we see that D(Vo) contains no path of length 2. This 
completes the proof of (a). 

The proof of (b) is left to the reader as Exercise 6.25. Oo 

6.5.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete 

Digraphs 

We saw in the last subsection how the structure theorem for quasi-transitive 

digraphs (i.e., Theorem 4.8.5) was helpful in finding a characterization for 

(vertex-) pancyclic quasi-transitive digraphs. Now we show that the structure 

theorem for locally semicomplete digraphs (Theorem 4.11.15) is also very 

useful for finding a characterization of those locally semicomplete digraphs 

which are (vertex-)pancyclic. Our first goal (Lemma 6.5.13) is a characteri- 
zation of those round decomposable locally semicomplete digraphs which are 

(vertex-)pancyclic. 

Lemma 6.5.10 Let R be a strong round local tournament and let C be a 

shortest cycle of R and suppose C has k > 3 vertices. Then for every round 

labelling vp,v1,...,Un—1 of R such that vo € V(C) there exist indices 0 < 
ee oad < Ope 1 Sonat G = U9Ug, Va «6+ Va,-9 U0» 

Proof: Let C be a shortest cycle and let L = v9,U1,...,Un—1 be a round 

labelling of R so that vp € V(C). If the claim is not true, then there exists a 

iambper2. <1 < k—1.so that.C = voVa,VagwanVayas Von Where 0 <a) <1... < 

aj; and q < aj_;. Now the fact that CL is a round labelling of R implies 

that vj_1— vo, contradicting the fact that C' is a shortest cycle. Oo 
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Recall that the girth g(D) of a digraph is the length of a shortest cycle in 

D = (V,A). For a vertex v € V we let g,(D) denote the length of a shortest 

cycle in D that contains v. The next lemma shows that every round local 

tournament R is g(R)-pancyclic. 

Lemma 6.5.11 A strong round local tournament digraph R on r vertices 

has cycles of length k,k +1,...,r, where k = g(R). 

Proof: By Lemma 6.5.10 we may assume that RA contains a cycle of the 

form Vj, Vig ---Vi,Vi;, Where 0 = 11 < 12 <... < iz <r. Because D is strong, 

v;,, dominates all the vertices v;,,41,---;Vim4i for m = 1,2,..., k. Now it is 

easy to see that D has cycles of lengths k,k + 1,...,r through the vertices 

Viz Vigs +++) Vix: O 

There is also a very nice structure on cycles through a given vertex in a 

round local tournament digraph. We leave the proof as Exercise 6.26. 

Lemma 6.5.12 If a strong round locally tournament digraph with r vertices 

has a cycle of length k through a verter v, then it has cycles of all lengths 

k,k+1,...,r through v. O 

Lemma 6.5.13 [55] Let D be a strongly connected round decomposable lo- 
cally semicomplete digraph with round decomposition D = R[S,,..., Sp]. Let 

V(R) = {ri,7T2,---,Tp}, where r; is the vertex of R corresponding to S;. Then 

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) < 

Max1<i<p lV (S;)| +1. 

(2) D is vertex-pancyclic if and only if, for eachi = 1,...,p, either g,,(R) =3 

or gr(R) < |V(Si)| + 1. 

Proof: As each S; is semicomplete, it has a hamiltonian path P;. Further- 

more, since FR is a strong locally semicomplete digraph, it is hamiltonian by 

Theorem 5.5.1. Thus, starting from a p-cycle with one vertex from each Sj, 

we can get cycles of all lengths p+ 1,p+2,...,n, by taking appropriate pieces 

of hamiltonian paths Pye ro, ..), Pp moi, -.<, op. Las. it g (it) —"s sen 

is pancyclic by Lemma 6.5.11. If g(R) < maxi<i<,|V(S;)| + 1, then D is 
pancyclic by Lemma 6.5.11 and the fact that (by Moon’s theorem) every S; 

has cycles of lengths 3,4,...,|V(S;)|. If g(R) > 3 and, for every i = 1,...,r, 
g(R) > |V(S;)| +1, then D is not pancyclic since it has no (g(R) — 1)-cycle. 
The second part of the lemma can be proved analogously by first proving 

that for each 1 = 1,2,...,p, every vertex in S; is on cycles of all lengths 

gr;(R), gr,(R) + 1,...,n (using Lemma 6.5.12) and then applying Theorem 
L531; QO 

The main part of the characterization of (vertex-)pancyclic locally semi- 
complete digraphs is to prove the following lemma (recall Theorem 4.11.15). 
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Lemma 6.5.14 /55] Let D be a strong locally semicomplete digraph on n 
vertices which is not round decomposable. Then D is vertex-pancyclic. 

Proof: If D is semicomplete, then the claim follows from Moon’s theorem. So 

we assume that D is not semicomplete. Thus, D has the structure described 

in Lemma 4.11.14. 

Let S be a minimal separating set of D such that D —S is not semi- 

complete and let D;, D2,..., Dp be the acyclic ordering of the strong compo- 

nents of D — S. Since the subdigraph D(S) is semicomplete, it has a unique 
acyclic ordering Dp4+1,..., Dp4+q with q > 1 of its strong components. Recall- 
ing Lemma 4.11.14 (a), the semicomplete decomposition of D — S contains 

exactly three components D{, D5,D%. Recall that the index of the initial 
component of D4 is \2. From Theorem 4.11.8 and Lemma 4.11.12, we see 

that D, = Di > S => Dy, and there is no arc between D} and D3. 
We first consider the spanning subdigraph D* of D which is obtained by 

deleting all the arcs between S and D). By Lemma 4.11.14, D* is a round 
decomposable locally semicompletedigraph and D* = R*[Dj, Dz,..., Dp+q|; 

where R* is the round locally semicomplete digraph obtained from D* by 

contracting each D; to one vertex (or, equivalently, R* is the digraph obtained 

by keeping an arbitrary vertex from each D; and deleting the rest). It can 

be checked easily that g,(R*) < 5 for every v € V(R*). Thus D* is vertex 
5-pancyclic by the remark in the proof of Lemma 6.5.13 (in the case when 

n = 4, D is easily seen to be vertex-pancyclic so we may assume n > 5). Thus, 

it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle. 

We define 

t = max{i|N*(S)NV(Di) £0, A2 <i <p}, 

A= V(D),) LB) sce, V(D), 

t’ =min{ j |N*(Dj)NV(D3) #0,p+1<j<ptq} 
and B = V(Dy) U...UV(Dp4q). 

It follows from Proposition 4.11.16 that B+D34A. 
Since we have St+>D,;+D),++ DHS, every vertex of S is in a 4-cycle 

and since we have B++D3H+A+>D{+S, each vertex of V(D3) U AUV(D}) is 
contained in a 4-cycle. 

By the definition of t' and A, there is an arc sa from D, to A. It follows 

from Lemma 4.11.14 (b) that there is an arc a's’ from A to B. Let v € V(D}) 
and w € V(D4) be arbitrarily chosen. Then savs and s'wa’s’ are 3-cycles. 

Suppose D}, contains a vertex x that is not in A, then At+z. We also have 
z,s' € N*(a’) and this implies that rs’. From this we get that z-+Dy»,, in 
particular, zs. Hence xsaz is a 3-cycle and xvsaz is a 4-cycle. Thus, there 

only remains to show that every vertex of S U A is contained in a 3-cycle. 

Let u be a vertex of S and let D, be the strong component containing u. 

If Dy has at least three vertices, then u lies on a 3-cycle by Theorem 1.5.1. 
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So we assume |V(Dyz)| < 2. If £ < t’, then u and a’ are adjacent because 
D, dominates the vertex s’ of B. If £ > t', then either wu = s or s > u (if 

V (De) = {s,u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore, 

in any case, u is adjacent to one of {a,a’}. Assume without loss of generality 

that a and u are adjacent. If u > a, then wavu is a 3-cycle. If a > u, then 

uwau is a 3-cycle because of D5 — A. Hence, every vertex of S has the 

desired property. 

Finally, we note that S' = N*(D34) is a subset of V(D3) and it is also a 
minimal separating set of D. Furthermore, D — S’ is not semicomplete. From 

the proof above, every vertex of S’ is also in a 3-cycle. So the proof of the 

theorem is completed by the fact that A C S$’. 0 

Combining Lemmas 6.5.13 and 6.5.14 we have the following characteriza- 

tion of pancyclic and vertex-pancyclic locally semicomplete digraphs due to 

Bang-Jensen, Guo, Gutin and Volkmann: 

Theorem 6.5.15 /55] A strong locally semicomplete digraph D is pancyclic 

if and only if it is not of the form D = R[S1,..., Sp], where R is a round local 
tournament digraph on p vertices with g(R) > max{2,|V(S1)|,...,|V(Sp)|} + 
1. D ts vertez-pancyclic if and only if D is not of the form D = R[{Si,..., Sp], 
where R is a round local tournament digraph with g,,(R) > max{2,|V(S;)|}+ 
1 for some i € {1,...,p}, where r; is the verter of R corresponding to S;. O 

6.5.4 Further Pancyclicity Results 

To characterize pancyclic locally in-semicomplete digraphs seems a much 
harder problem than that of characterizing pancyclic locally semicomplete 
digraphs. Tewes [692] studied this problem and obtained several partial re- 
sults of which we will state a few below. 

Theorem 6.5.16 /692, Theorem 4.4] Let D be a locally in-tournament di- 
graph on n vertices and let 3 < k < n be an integer such that 6~ (Dee 
AEM] — 4. Furthermore, let D be strong if k > 2d-(D) +2. Then D has a 
cycle of length k. Fork > ./n +1 this bound is sharp. oO 

Let the function f(k) be defined as follows for fixed n: 

n k=1 ; : FOR) = 4 ote ade if k is even 

ni? + 5 if k is odd. 

Theorem 6.5.17 /692, Theorem 4.13] Let D be a strongly connected locally 
in-tournament digraph on n vertices such that 6-(D) > f(k) for some integer 
3<k<Vn+1. Then D has cycles of all lengths Se Se alice dp O 
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Since every regular tournament is strong (Exercise 6.23) it is also pancyclic 
by Moon’s theorem. Note that by Theorem 5.7.23, every regular multipartite 
tournament is hamiltonian. This motivated Volkmann to make the following 
conjecture. 

Conjecture 6.5.18 /728] Every regular p-partite tournament with p > 4 is 
pancyclic. 

Note that in the 3-partite tournament D = C3[K,, Kx, Kg] all cycles 
have length some multiple of 3. Hence the condition p > 4 above is necessary. 

For p > 5 Conjecture 6.5.18 follows from the following stronger result due 

to Yeo [747] (For an outline of Yeo’s proof see [728]). 

Theorem 6.5.19 /747] Every regular multipartite tournament with at least 

5 partite sets is vertex-pancyclic. oO 

Using a probabilistic approach, Yeo [749] also proved that all, except pos- 
sibly a finite number of exceptions, regular 4-partite tournaments are vertex- 

pancyclic (in particular, every regular 4-partite tournament on at least 488 

vertices is vertex-pancyclic). The infinite family of regular and non-pancyclic 

3-partite tournaments described above shows that no such result holds for 

3-partite tournaments. 

Clearly, the results above give strong support for the following conjecture 

by Yeo: 

Conjecture 6.5.20 /749] If a 4-partite tournament is regular, then it is 

vertex-pancyclic. 

We conjecture that the only non-vertex-pancyclic regular 3-partite tour- 

naments are the triangular ones: 

Conjecture 6.5.21 Every 3-regular _semicomplete multipartite digraph D 

which is not of the form D = C3[Kx, Kz, Kx] for any k is verter-pancyclic. 

There are also many results on sufficient conditions in terms of the num- 

ber of arcs for a digraph to contain a cycle of length precisely k. We refer 

the reader to the survey of Bermond and Thomassen [115] for a number of 
references to such results. 

Recall that for a given directed pseudograph D = (V, A), the line digraph 
L(D) of D has vertex set A and a-+a’ is an arc in L(D) precisely when the 
head of a equals the tail of a’ in D (note that a loop in D gives rise to a 
loop in L(D)). Let D = (V, A) be a directed pseudograph; D is pancircular 

if it contains a closed trail of length q for every g € {3,4,...,|A]}. Due to a 
natural bijection between the set of closed trails in D and the set of cycles 

in L(D), we obtain the following: 

_ Proposition 6.5.22 L(D) is pancyclic if and only if D is pancircular. O 
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Imori, Matsumoto and Yamada [445], who introduced the notion of pan- 

circularity, proved the following theorem. 

Theorem 6.5.23 Let D be a regular and pancircular directed pseudograph. 

Then, L(D) is also regular and pancircular. Oo 

This theorem was used in [445] to show that de Bruijn digraphs are pan- 

cyclic and pancircular. 

Theorem 6.5.24 [445] Every de Bruijn digraph Dp(d,t) is pancyclic and 

pancircular. 

Proof: de Bruijn digraphs Dg(d,t) were introduced for d > 2 and t > 1. Let 

Dp(d,0) be the directed pseudograph consisting of a singular vertex and d 

loops. Clearly, Dg(d,1) = L(Dp(d,0)). Since 

Da(d,t + 1) = L(Da(d,t)) (6.3) 

for t > 1 by Proposition 4.6.1, we conclude that (6.3) holds for all t > 0. We 

prove the theorem by induction on t > 0. Clearly, Dg(d,0) is pancyclic and 

pancircular. Assume that Dg(d,t) is pancyclic and pancircular. By Theorem 

6.5.23, L(Dp(d,t)) is pancircular. By Proposition 6.5.22, L(Dp(d,t)) is pan- 

cyclic. By (6.3), Dg(d,t + 1) = L(Dpa(d,t)). Thus, Dg(d,t + 1) is pancyclic 
and pancircular. 0 

6.5.5 Cycle Extendability in Digraphs 

The following definitions are due to Hendry [420]. A non-hamiltonian cycle 

C in a digraph D is extendable if there is some cycle C’ with V(C’) = 
V(C)U{y} for some vertex y € V—V(C). A digraph D which has at least one 
cycle is cycle extendable if every non-hamiltonian cycle of D is extendable. 

Clearly a cycle extendable digraph is pancyclic if and only if it contains a 

3-cycle and vertex-pancyclic if and only if every vertex is in a 3-cycle. 

The following is an easy consequence of the proof of Theorem 1.5.1: 

Theorem 6.5.25 /571] A strong tournament T = (V, A) is cycle extendable 
unless V can be partitioned into sets U,W, Z such that WU Z and T(U) 
is strong. 0 

Hendry [420] studied cycle extendability in digraphs with many arcs and 

obtained the next two results. 

Theorem 6.5.26 [420] Every strong digraph on n vertices and at least n? — 

3n +5 arcs is cycle extendable. Oo 



6.6 Arc-Pancyclicity 309 

Hendry showed that digraphs may have very large in- and out-degree and 
still not be cycle extendable. This contrasts to the situation for undirected 

graphs. Hendry has shown in [421, Corollary 8] that, apart from certain excep- 

tions, every graph satisfying Dirac’s condition for hamiltonicity (d(x) > n/2 

for every vertex [198]) is also cycle extendable (with the obvious analogous 
definition of cycle extendability for undirected graphs). The main result of 
[420] is the following. 

Theorem 6.5.27 [420] Let D be a digraph on n > 7 vertices such that 
6°(D) > ees Then D is cycle extendable unless n = 3r for some r and 

D contains F,, as a spanning subdigraph and D is a spanning subdigraph of 

G,,. See Figure 6.2 for the definition of Fn,Gn. Oo 

F 3, G3k 

Figure 6.2 The digraphs F,, and G,. All arcs indicate complete domination in the 
direction shown. 

6.6 Arc-Pancyclicity 

A digraph D of order n is arc-k-cyclic for some k € {3,4,...,n} if each arc of 

D is contained in a cycle of length k. A digraph D = (V, A) is arc-pancyclic 

if it is arc-k-cyclic for every k = 3,4,...,n. Demanding that a digraph is 

arc-pancyclic is a very strong requirement, since in particular every arc must 

be in a hamiltonian cycle. Hence it is not surprising that most results on arc- 

pancyclic digraphs are for tournaments and generalizations of tournaments. 

However, Moon proved that almost all tournaments are arc-3-cyclic [571], so 

for tournaments this is not such a hard requirement, in particular in the light 

of Theorem 6.6.1 below. 

Tian, Wu and Zhang characterized all tournamentsthat are arc-3-cyclic 

but not arc-pancyclic. See Figure 6.3 for the definition of the classes Dg, Dg. 

Theorem 6.6.1 /718] An arc-3-cyclic tournament is arc-pancyclic unless it 
belongs to one of the families Dg, Dg (in which case the arc yx does not belong 

to a hamiltonian cycle). QO 
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De Dg 

Figure 6.3 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each 
of the sets U and W induce an arc-3-cyclic tournament. All edges that are not 
already oriented may be oriented arbitrarily, but all arcs between U and W have 
the same direction. 

It is not difficult to derive the following two corollaries from this result: 

Corollary 6.6.2 [718] At most one arc of every arc-3-cyclic tournament is 

not in cycles of all lengths 3,4,...,n. 

Proof: Exercise 6.31. Oo 

Corollary 6.6.3 [741] A tournament is arc-pancyclic if and only if it is arc- 
3-cyclic and arc-n-cyclic. 

Proof: Exercise 6.32. Oo 

The following result due to Alspach is also an easy corollary: 

Corollary 6.6.4 /19] Every regular tournament is arc-pancyclic. Oo 

Finally, observe that since each tournament in the infinite family Dg is 

2-strong and the arc yz is not in any hamiltonian cycle we have the following 
result due to Thomassen: 

Theorem 6.6.5 /698] There exist infinitely many 2-strong tournaments con- 
taining an arc which is not in any hamiltonian cycle. oO 
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In [341, 343] Guo studied arc-pancyclic locally tournament digraphs and 
obtained several results which generalize those above. In particular he made 
the important observation that one can in fact get a more general result by 
studying paths from zx to y for all such pairs where the arc xy is not present 
rather than just those for which the arc yx is present (which is the case for 
tournaments of course). 

Theorem 6.6.6 /343] Let D be an arc-3-cyclic local tournament and let x,y 
be distinct vertices such that there is no arc from x to y. Then D contains 

an (x,y)-path of length k for every k such that 2 <k <n-—1 unless D is 

isomorphic to one of the local tournaments T;,T? (from Section 6.2) or D 

belongs to one of the families Dg or Dg, possibly with the arc from y to x 

missing. oO 

The proofs of Theorems 6.6.1 and 6.6.6 are very technical and consist of 

a long case analysis. Hence it makes no sense to give any of these proofs here. 

However, we will finish the section with a proof of the following partial result 

which Guo used in his proof of Theorem 6.6.6. 

Theorem 6.6.7 [343] Let D be a connected, arc-3-cyclic local tournament 

which is not 2-strong. Then D is isomorphic to C3[T,,T2,{s}] where T; is 
an arc-3-cyclic tournament for i = 1,2 and s is a vertex. Furthermore, D is 

arc-pancyclic. 

Proof: First observe that D is strongly connected since it is connected 

and arc-3-cyclic. Since D is not 2-strong, it has a separating vertex s. Let 

T),T2,...,T; denote the acyclic ordering of the strong components of D — s. 

If there is an arc zs from V(T;) to s, then no arc from x to V(T2) can be in 

a 3-cycle. Hence we must have s++V (7) and similarly V(T;,)Hs. Since D is 
arc-3-cyclic, each of T;, 7}; must be an arc-3-cyclic tournament. 

If k > 3 then for every vertex u € V(T>), either no arc from V(T;) to u 
or no arc from u to V(T3) can be in a 3-cycle, contradicting our assumption. 

Thus we must have k = 2 and we have proved that D = C3[T;,To, {s}}. 
It remains to prove that D is arc-pancyclic. Since T; and T2 have hamil- 

tonian paths, it is easy to see that each arc which does not belong to either 

T; or T2 is on cycles of all possible lengths. So we just have to consider arcs 

inside T,,T>. If |V(T,)| = |V(Z2)| = 1 there is nothing more to prove. So 
suppose without loss of generality that |V(T;)| > 3. Let uu2...u,-ui, r > 3, 

be a hamiltonian cycle of T;. Let uju; be an arbitrary arc of T;. If T, — u; is 

strong, then T; — u; has a hamiltonian cycle and hence T; has a hamiltonian 

path starting with the arc uju;. Using this and a hamiltonian path in Tz we 

can easily obtain cycles of all lengths 3,4,...,n through u;u; in D. Suppose 

now that T; — u; is not strong. Then 7; — u; satisfies the assumption of the 

theorem, so by induction it has the same structure as D and u; must belong 

to the initial component of T, — u;. Hence again we find a hamiltonian path 
- starting with the arc u,u; in T; and finish as above. 
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Similarly, if |V(T2)| > 3 the same proof as above can be applied to every 

arc of T). Thus we have shown that D is arc-pancyclic. oO 

It is interesting to note that the problem of characterizing arc-pancyclic 

semicomplete digraphs is still open and seems quite difficult. A partial result 

was obtained by Darrah, Liu and Zhang [181]. 

6.7 Hamiltonian Cycles Containing or Avoiding 

Prescribed Arcs 

We now turn our attention to hamiltonian cycles in digraphs with the ex- 

tra condition that these cycles must either contain or avoid all arcs from a 

prescribed subset A’ of the arcs..Not surprisingly, problems of this type are 

quite difficult even for semicomplete digraphs. If we have no restriction on the 

size of A’, then we may easily formulate the hamiltonian cycle problem for 

arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence 

the avoiding problem without any restrictions is certainly ’P-complete. Be- 

low, we study both types of problems from a connectivity as well as from a 

complexity point of view. We also show that when the number of arcs to be 

avoided respectively, contained in a hamiltonian cycle is some constant, then, 

from a complexity point of view, the avoiding version is no harder than the 

containing version. Finally, we show that for digraphs which can be obtained 

from a semicomplete digraph by adding a few new vertices and some arcs, 

the hamiltonian cycle problem is very hard and even if we just added one 

new vertex, the problem is highly non-trivial. 

6.7.1 Hamiltonian Cycles Containing Prescribed Arcs 

We start by studying the problem of finding a hamiltonian cycle that contains 

certain prescribed arcs €), €2,..., ex. This problem, which we call the k-HCA 

problem, is clearly very hard for general digraphs. We show below that 

even for semicomplete digraphs this is a difficult problem. For k = 1 the 

k-HCA problem is a special case of the (x, y)-hamiltonian path problem and 

it follows from the result in Section 6.4 that there is a polynomial algorithm 

to decide the existence of a hamiltonian cycle containing one prescribed arc 
in a semicomplete digraph. 

Based on the evidence from Theorem 6.4.1, Bang-Jensen, Manoussakis 

and Thomassen raised the following conjecture. As mentioned above, when 

k = 1 the conjecture follows from Theorem 6.4.1. 

Conjecture 6.7.1 /87] For each fixed k, the k-HCA problem is polynomially 
solvable for semicomplete digraphs. 

When k = 2 the problem already seems very difficult. This is interesting, 
especially in view of the discussion below concerning hamiltonian cycles in 
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digraphs obtained from semicomplete digraphs by adding a few new vertices. 

Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA 

problem becomes \VP-complete even for tournaments [89]. The proof of this 
result in [89] contains an interesting idea which was generalized by Bang- 

Jensen and Gutin in [60]. Consider a digraph D containing a set W of k 

vertices such that D — W is semicomplete. Construct a new semicomplete 

digraph Dy as follows. First, split every vertex w € W into two vertices 

W 1, W2 such that all arcs entering w now enter w, and all arcs leaving w now 

leave w2. Add all possible arcs from vertices of index 1 to vertices of index 2 

(whenever the arcs in the opposite direction are not already present). Add all 

edges between vertices of the same index and orient them randomly. Finally, 

add all arcs of the kind w;z and zw2, where w € W and z € V(D) —W. See 

Figure 6.4. It is easy to show that the following holds: 

W 

S 

D Dw 

Figure 6.4 The construction of Dw from D and W. The fat arc from W; to W2 

indicates that all arcs not already going from W2 to W; (as copies of arcs in D) go 

in the direction shown. The four other fat arcs indicate that all possible arcs are 

present in the direction shown. 

Proposition 6.7.2 /60] Let W be a set of k vertices of a digraph D such 

that D — W is a semicomplete digraph. Then D has a cycle of length ce > k 

containing all vertices of W, if and only if the semicomplete digraph Dw has 

a cycle of length c+k through the arcs {wi wz: w € W}. 

Proof: Exercise 6.36. O 

Let D = (V,A) be a semicomplete digraph and A’ = {u101,...,UkUE} 

be a subset of A. Let D’ be the digraph obtained from D by replacing each 
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arc ujv; € A’ by a path ujw,v;, 1 = 1,2,...,k, where w; is a new vertex. 

Then every cycle C in D that uses all arcs in A’ corresponds to a cycle C" 

in D’ which contains all vertices of W = {wi,w2,..-,wx} and conversely. 

This observation and Proposition 6.7.2 allows us to study cycles through a 

specified set W of vertices in digraphs D such that D — W is semicomplete 

instead of studying cycles containing k = |W| fixed arcs in semicomplete 

digraphs. 

Note that, if k is not fixed, then it is ’P-complete to decide the existence 

of a cycle through k given vertices in a digraph which can be obtained from a 

semicomplete digraph by adding k new vertices and some arcs. Indeed, take 

k = |V(D)|, then this is the Hamilton cycle problem for general digraphs. 
This proves that the k-HCA is NP-complete for semicomplete digraphs. 

Now we can reformulate Conjecture 6.7.1 to the following equivalent state- 

ment: , 

Conjecture 6.7.3 /60] Let k be a fixed natural number. There exists a poly- 

nomial algorithm to decide if there is a hamiltonian cycle in a given digraph 

D which is obtained from a semicompiete digraph by adding at most k new 

vertices and some arcs. 

The truth of this conjecture when k = 1 follows from Proposition 6.7.2 

and Theorem 6.4.1. Surprisingly, when |W| = 2 the problem already seems 

very difficult (recall from Section 6.4 and the remark above that even the 
case |W| = 1 is highly non-trivial). 

We conclude this subsection with some results on the k-HCA problem 

for highly connected tournaments. Thomassen [701] obtained the following 

theorem for tournaments with large strong connectivity (the function f(k) is 

defined recursively by f(1) = 1 and f(k) = 2(k —1)f(k —1) +3 for k > 2). 
The proof is by induction on k and uses Theorem 6.3.3 to establish the case 

k = 1 (this is another illustration of the importance of Theorem 6.3.3). 

Theorem 6.7.4 [701] If {21,y1,...,2k, yx} is a set of distinct vertices in an 
h(k)-strong tournament T, where h(k) = f(5k)+12k+9, then T has a k-path 
factor P; UP2U...U Py such that P; is an (%;,y;)-path for i = 1,...,k. 0 

Theorem 6.7.4 implies the following: 

Theorem 6.7.5 [701] If ay,...,a% are arcs with no common head or tail in 

an h(k)-strong tournament T, then T has a hamiltonian cycle containing 

Q1,...,a% tm that cyclic order. oO 

Combining the ideas of avoiding and containing, Thomassen proved the 
following: 

Theorem 6.7.6 [701] For any set A; of at most k arcs in an h(k)-strong 
tournament T and for any set Az of at most k independent arcs of T — Aj, 
the digraph T — A, has a hamiltonian cycle containing all arcs of Ag. oO 
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6.7.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle 

How many arcs can we delete from a strong tournament and still have a 

hamiltonian cycle no matter what set of arcs is deleted? This is a difficult 

question, but it is easy to see that for some tournaments the answer is that 

even one missing arc may destroy all hamiltonian cycles. If some vertex has 

in- or out-degree 1, then deleting that arc clearly suffices to destroy all hamil- 

tonian cycles. On the other hand, it is also easy to construct for every p an 

infinite set S of strong tournaments in which 6°(T) > p for every T € S and 

yet there is some arc of T which is on every hamiltonian cycle of T' (see Ex- 

ercise 6.35). It follows from Theorem 6.7.7 below that all such tournaments 
are strong but not 2-strong. 

We can generalize the question to k-strong tournaments and again it is 

obvious that if some vertex v has in- or out-degree k (this is the smallest 

possible by the connectivity assumption), then deleting all k arcs out of or 

into v, we can obtain a digraph with no hamiltonian cycle. Thomassen [699] 
conjectured that in a k-strong tournament, k is the minimum number of arcs 

one can delete in order to destroy all hamiltonian cycles. The next theorem 

due to Fraisse and Thomassen answers this in the affirmative. 

Theorem 6.7.7 [249] For every k-strong tournament D = (V, A) and every 
set A’ C A such that |A| < k—-1, there is a hamiltonian cycleC in D-—A'. O 

The proof is long and non-trivial; in particular it uses Theorem 6.3.3. 

Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [71]. 

The authors proved Theorem 6.7.8 using results on irreducible cycle factors in 

multipartite tournaments, in particular Yeo’s irreducible cycle factor theorem 

(Theorem 5.7.21). This is just one more illustration of the power of Theorem 

oereoie 

Theorem 6.7.8 [71] Let T = (V, A) be ak-strong tournament on n vertices, 

and let X,,X2,...,Xp (p > 1) be a partition of V such that 1 < |X,| < 
|X| <...<|X,|. Let D be the digraph obtained from T by deleting all arcs 

which have both head and tail in the same X; (i.e. D=T —Uf_, A(T(Xi))). 

If |Xp| < n/2 and k > |X,| + Po) ||Xi|/2], then D is hamiltonian. In other 
words, T has a hamiltonian cycle which avoids all arcs with both head and 

tail in some X;. 0 

We will not give the proof here since it is quite technical, but we give 

the main idea of the proof. The first observation is that D is a multipartite 

tournament, which follows from the way we constructed it. Our goal is to 

apply Theorem 5.7.21 to D. Hence we need to establish that D is strong (see 

Exercise 6.40) and has a cycle factor (Exercise 6.41). Now we can apply The- 

orem 5.7.21 to prove that every irreducible cycle factor in D is a hamiltonian 

cycle. This last step is non-trivial (Exercise 6.42). 

The following result shows that the bound for k in Theorem 6.7.8 is sharp: 
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Theorem 6.7.9 [71] Let2<1y <1ro<...< 1p be arbitrary integers. Then 

there exists a tournament T and a collection X,,X2,...,Xp of disjoint sets of 

vertices in T such that 

(a) T is (rp —1+ 0?) [ri/2] )-strong; 
(Oya Aga (Ona Loa ony 
(c) D=T —UP_, A(T(X;)) is not hamiltonian. Oo 

In fact, the paper [71] is concerned with aspects of the following more 

general problem: 

Problem 6.7.10 /71] Which sets B of edges of the complete graph K,, have 

the property that every k-strong orientation of K, induces a hamiltonian 

digraph on K, — B? 

The Fraisse-Thomassen theorem says that this is the case whenever B con- 

tains at most k—1 edges. Theorem 6.7.8 says that a union of disjoint cliques of 

sizes T1,...,Tp has the property whenever ae Lri/2| +maxi<icr{[ri/2]} < 
k. By Theses 6.7.9, this is the best possible result for unions of cliques. 

Let us show that Theorem 6.7.8 implies Theorem 6.7.7. Let T be a k- 

strong tournament on n vertices and let A’ = {e,€2,...,ex-1} be a given 

set of k — 1 arcs of T. In UG(T) these arcs induce a number of connected 
components, X4;Xo753.;X,) 1 pe k=" 1. Denote by a; 42— 4s 2)2 sp 

the number of arcs form A’ which join two vertices from X;. Then we have 

ye as = K-11 and |X;| <a; +1,i=1,2,...,p. We may assume that the 
numbering is chosen so that |X1| < |Xo| < ... < |Xp|. Note that |X,| <k < 
n/2. Furthermore, since each a; > 1 we also have |X,| < (k—1)—(p—1)+1= 
k —p+1. Now we can make the following calculation: 

oo + Se = = (Hel Le 

< (Mey 2 5 x 

Now it follows from Theorem 6.7.8 that T has a hamiltonian cycle which 
avoids every arc with both head and tail in some X; and in particular it 
avoids all arcs in A’. This shows that Theorem 6.7.8 implies Theorem 6.7.7. 
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Note that if A’ induces a tree and possibly some disjoint edges in UG(T), 
then Theorem 6.7.8 is no stronger than Theorem 6.7.7. This can be seen 
from the fact that in this case we have equality everywhere in the calculation 
above. In all other cases Theorem 6.7.8 provides a stronger bound. 

In relation to Problem 6.7.10, it seems natural to investigate bounds for 
k in different cases of the set B. In particular, what are sharp bounds for k 
when B is a spanning forest of K’, consisting of m disjoint paths containing 

11, ---, Tm vertices, respectively ? The same question can be asked if we replace 

‘paths’ by ‘stars’ or by ‘cycles’ (in the last case ‘spanning forest’ should also 

be replaced by ‘spanning cycle subdigraph’). 

How easy is it to decide given a semicomplete digraph D = (V, A) and 

a subset A’ C A whether D has a hamiltonian cycle C which avoids all 

arcs of A’? As we mentioned earlier, this problem is NP-complete if we 

pose no restriction on the arcs in A’. In thecase when A’ is precisely the 

set of those arcs that lie inside the sets of some partition X,, X2,...,X, of 

V, then the existence of C’ can be decided in polynomial time. This follows 

from the fact that D(A — A’) is a semicomplete multipartite digraph and, by 
Theorem 5.7.9, the hamiltonian cycle problem is polynomially solvable for 

semicomplete multipartite digraphs. The same argument also covers the case 

when k = 1 in the conjecture below. 

Conjecture 6.7.11 For every k there exists a polynomial algorithm which, 

for a given semicomplete digraph D = (V, A) and a subset A' C A such that 
|A'| = k, decides whether D has a hamiltonian cycle that avoids all arcs in 
7 

At first glance, cycles that avoid certain arcs seem to have very little to do 

with cycles that contain certain specified arcs. Hence, somewhat surprisingly, 

if Conjecture 6.7.1 is true, then so is® Conjecture 6.7.11. 

Suppose that Conjecture 6.7.1 is true. Then it follows from the discussion 

of Subsection 6.7.1 that also Conjecture 6.7.3 holds. Hence, for fixed k, there 

is a polynomial algorithm A; which, given a digraph D = (V, A) and a subset 

W CV for which D — W is semicomplete and |W| < k, decides whether or 
not D has a hamiltonian cycle. Let k be fixed and D be a semicomplete 

digraph and let A’, |A’| < k, be a prescribed set of arcs in D. Let W be the 
set of all vertices such that at least one arc of A’ has head or tail in W. Then 

|W| < 2|A’| and D has a hamiltonian cycle avoiding all arcs in A' if and only 
if the digraph D — A’ has a hamiltonian cycle. By the remark above we can 
test this using the polynomial algorithm A,, where r = |W]. 

6.7.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles 

Recall from Chapter 4 that we call an arc ry ordinary if it is not contained in 

a 2-cycle. Deciding whether a given digraph has a hamiltonian cycle C such 

® We thank Thomassen for pointing out this consequence to us (private commu- 
nication, August 1999). 
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that all arcs of C are ordinary is of course an NP-complete problem since the 

hamiltonian cycle problem for oriented graphs is NP-complete. This implies 

that the problem is ’P-complete even for semicomplete digraphs. 

Tuza [724] studied this problem for semicomplete digraphs and posed the 

following conjecture: 

Conjecture 6.7.12 [724] Let s be a positive integer and suppose that D = 

(V, A) is a semicomplete digraph such that for every Vic MealVicusyathe 

induced semicomplete digraph D(V —Y) is strong and has at least one or- 

dinary arc. Then there exists a hamiltonian cycle in T which has at least s 

ordinary arcs. 

The following result shows that it is enough to prove that there is a cycle 

of length at least s + 1 with this property. 

Proposition 6.7.13 [724] If a strong semicomplete digraph T has a cycle 

of length at least s +1 which contains at least s ordinary arcs, then T has a 

hamiltonian cycle with at least s ordinary arcs. 

Tuza has proved the existence of such a cycle for s = 1,2, see [724]. It is 

easy to see that s+ 1 cannot be replaced by s in Proposition 6.7.13 (Exercise 

6.43). 

6.8 Arc-Disjoint Hamiltonian Paths and Cycles 

From Euler’s theorem (Theorem 1.6.3) one easily derives the following result 

attributed to Veblen in [115] (see also Exercise 6.44). 

Theorem 6.8.1 The arcs of a digraph can be partitioned into cycles if and 

only if, for each vertex x, we have dt (x) = d (2). Oo 

The proof of the following strengthening of Theorem 6.8.1 for regular 

digraphs by Kotzig is left as Exercise 6.46. 

Theorem 6.8.2 /503] If D is a regular digraph, then the arc set of D can 

be partitioned into cycle factors. oO 

We.now consider decompositions of the arc set of a digraph into hamil- 

tonian cycles. Deciding whether such a decomposition exists for an arbitrary 

digraph is an extremely hard problem. Even for complete digraphs this is 

non-trivial. It is an old result due to Walecki (see [20]) that the edge set 
of the complete undirected graph K,, has a decomposition into hamiltonian 

cycles if and only if n is odd (if n is even then each vertex has odd degree 
and no decomposition can exist). Using this result we easily conclude that 

+ 

the arc set of K, can be decomposed into hamiltonian cycles when n is odd. 

However for even n another approach is needed by the remark above. 
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It is easy to check that the arcs of K 4 cannot be decomposed into hamil- 
tonian cycles. Indeed, without loss of generality, the first cycle in such a 

decomposition is 12341 where the vertices of K4 are labeled 1,2,3,4. After re- 
moving these arcs one obtains a strong semicomplete digraph with a unique 
hamiltonian cycle 14321 and hence the desired decomposition cannot exist. 

With a little more effort one can also prove that the arc set of K 6 cannot 
be decomposed into 5 hamiltonian cycles (Exercise 6.45). On the other hand 
Tillson proved that for all other values of n such a decomposition does indeed 
exist. 

Theorem 6.8.3 (Tillson’s decomposition theorem) /719] The arcs of 
oe 

K,, can be decomposed into hamiltonian cycles if and only if n # 4,6. Oo 

Theorem 6.8.3 will be used in Section 6.12. Answering a question of 

Alspach, Bermond and Sotteau, Ng [591] extended Theorem 6.8.3 to the 
following: 

Srey 

hamiltonian cycles if and only if (r,s) # (4,1) and (r,s) 4 (6,1). 0 

The following conjecture, due to Kelly (see [571]), is probably one of the 
best known conjectures in tournament theory: 

Conjecture 6.8.5 (Kelly’s conjecture) The arcs of a regular tournament 

of order n can be partitioned into (n — 1)/2 hamiltonian cycles. 

This conjecture was verified for n < 9 by Alspach [115, page 28]. Jack- 

son [449] proved that every regular tournament of order at least 5 contains 

a hamiltonian cycle C and a hamiltonian path arc-disjoint from C. Zhang 

proved in [754] that there are always two arc-disjoint hamiltonian cycles for 

n > 5. A digraph D is almost regular if A°(D) — 6°(D) < 1. Thomassen 
[699] proved the following: 

Theorem 6.8.6 /699] Every regular or almost regular tournament of order 

n has at least |,/n/1000| arc-disjoint hamiltonian cycles. 0 

This result was improved by Haggkvist to the following: 

Theorem 6.8.7 [387] There is a positive constant c (in fact c > 2718) such 
that every regular tournament of order n contains at least cn arc-disjoint 

hamiltonian cycles. Oo 

Thomassen [703] proved that the arcs of every regular tournament of order 
n can be covered by 12n hamiltonian cycles. 
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So far the Kelly conjecture remains unsettled as far as a published proof 

goes. Thus it remains a serious challenge to find a proof of this long standing 

and very interesting conjecture. 

For further results on decompositions into hamiltonian cycles we refer the 

reader to the paper [20] by Alspach, Bermond and Sotteau and the paper 

[592] by Ng. 

Let T be the tournament on n = 4m+2 vertices obtained from two regular 

tournaments 7; and T>, each on 2m +1 vertices, by adding all arcs from the 

vertices of T; to T2 (i.e. V(T1)H4V(T2) in T). Clearly T is not strong and so 
has no hamiltonian cycle. The minimum in-degree and minimum out-degree 

of T is m which is about 7. Bollobds and Haggkvist [123] showed that if we 
increase the minimum in- and out-degree slightly, then, not only do we obtain 

many arc-disjoint hamiltonian cycles, we also obtain a very structured set of 

such cycles. 

Theorem 6.8.8 /123] For every « > 0 and every natural number k there is 
a natural number n(e,k) with the following property. If T is a tournament of 

order n > n(e,k) such that 6°(T) > (4 +.)n, then T contains the kth power 
of a hamiltonian cycle. O 

It is easy to prove that every tournament on n vertices with minimum in- 

and out degree at least + is strongly connected (see Exercise 1.36). 

We now turn our attention to other results concerning arc-disjoint hamil- 
tonian paths and cycles in tournaments. Thomassen [699] completely char- 
acterized tournaments having at least two arc-disjoint hamiltonian paths. A 
tournament is almost transitive if it is obtained from a transitive tourna- 
ment with acyclic ordering uj, u2,...,Un (ie. uj u; for alll <i < j <n) by 
reversing the arc ujUn. Let T be a non-strong tournament with the acyclic 
ordering T;,T2,...,T, of its strong components. Two components De, lees 
are called consecutive for i =1,2,...,k—1. 

Theorem 6.8.9 /699] A tournament T fails to have two arc-disjoint hamil- 
tonian paths if and only if T has a strong component which is an almost 
transitive tournament of odd order or T has two consecutive strong compo- 
nents of order 1. oO 

Deciding whether a given tournament JT has a hamiltonian path P and 
a hamiltonian cycle C such that P and C are arc-disjoint seems to be a 
difficult problem. Thomassen found the following partial solution involving 
arc-3-cyclic tournaments: 

Theorem 6.8.10 /699] Let T be an arc-3-cyclic tournament of order at least 
3. Then T has a hamiltonian path P and a hamiltonian cycle arc-disjoint 
from P, unless T is a 3-cycle or the tournament of order 5 obtained from a 
3-cycle by adding two vertices x,y and the arc xy and letting y (respectively 
x) dominate (respectively, be dominated by) the vertices of the 3-cycle. 0 
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It is easy to see that regular tournaments are arc-3-cyclic (Exercise 6.47). 
Hence Theorem 6.8.10 generalizes the result of Jackson above. But Theorem 

6.8.10 goes much further since, as we mentioned in Section 6.6, almost all 

tournaments satisfy the assumption of the theorem (see [571]). The following 
conjecture in some sense generalizing Kelly’s conjecture was proposed by 

Thomassen: 

Conjecture 6.8.11 /699] For any « > 0 almost all tournaments of order n 

have |(0.5 — €)n| arc-disjoint hamiltonian cycles. 

Erdos (see [699]) raised the following problem: 

Problem 6.8.12 Do almost all tournaments have 6°(T) arc-disjoint hamil- 
tonian cycles? 

As we mentioned in the beginning of Section 6.7 there is no degree con- 

dition which guarantees that a strong tournament contains two arc-disjoint 

hamiltonian cycles. In fact one can easily show that even high arc-strong con- 

nectivity does not exclude the existence of one arc which is in all hamiltonian 

cycles (see Exercise 6.35). Thomassen posed the following conjecture. 

Conjecture 6.8.13 /699] For each integer k > 2 there exists an integer a(k) 

such that every a(k)-strong tournament has k arc-disjoint hamiltonian cycles. 

Thomassen [699] showed by an example that a(2) > 2 and conjectured that 
a(2) = 3. His example also shows that a is not bounded by any linear func- 

tion. 

6.9 Oriented Hamiltonian Paths and Cycles 

Since every tournament has a hamiltonian directed path, it is natural to 

ask whether every tournament contains every orientation of a hamiltonian 

undirected path. This is not true, as one can see from the examples in Figure 

6.5. 

Figure 6.5 The unique tournaments with no anti-directed hamiltonian path. 
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A path is anti-directed if the orientation of each arc on the path is op- 

posite to that of its predecessor. The reader can easily verify that none of the 

three tournaments in Figure 6.5 contains an anti-directed hamiltonian path 

(Exercise 6.48). Griinbaum [340] proved that, except for the three tourna- 
ments of Figure 6.5, every tournament contains an anti-directed hamiltonian 

path. Rosenfeld [644] strengthened this to the following statement: 

Theorem 6.9.1 /644] In a tournament on at least 9 vertices, every vertex 

is the origin of an anti-directed hamiltonian path. Oo 

Rosenfeld conjectured that there exists a natural number N such that ev- 

ery tournament on at least N vertices contains every orientation of a hamilto- 

nian undirected path. Griinbaum’s examples show that we must have N > 8. 

Rosenfeld’s conjecture has been studied extensively and many partial results 

were obtained until it was proved by Thomason [694] (see also Theorem 
6.9.3). We will mention one of these partial results here (see also the papers 

[21] by Alspach and Rosenfeld and [683] by Straight). 
Forcade found the following beautiful result which generalizes Redei’s 

theorem for tournaments whose number of vertices is a power of two. 

Theorem 6.9.2 /244] If T is a tournament on n = 2” vertices for some 

r, then for every orientation P of a path on n vertices, T contains an odd 

number of occurrences of P. 0 

Thomason [694] proved Rosenfeld’s conjecture by showing that N is less 

than 2128. He also conjectured that N = 8 should be the right number. This 
was confirmed very recently by Havet and Thomassé [408]. 

Theorem 6.9.3 (Havet-Thomassé theorem) [408] Every tournament on 
at least 8 vertices contains every orientation of a hamiltonian path. oO 

The proof of Theorem 6.9.3 in [408] is very long (involving a lot of cases), 
but it uses a very nice partial result which we shall describe below. First 
we need some new notation. Let P = uju2...un be an oriented path. The 
vertex u; (Un) is the origin (terminus) of P. An interval of P is a maximal 
subpath P’ = P[uj,u,]’ such that P’ is a directed path (i.e. either a (uj, uU;)- 
path or a (u;,u;)-path). See an illustration in Figure 6.6. The intervals are 
labeled J), J2,..., J,(p) starting from u;. The length @;(P) of the ith interval 
is the number of arcs in the directed subpath corresponding to J;. If the 
first interval of P is directed out of u;, then P is an out-path, otherwise 
P is an in-path. Now we can describe any oriented path P by a signed 
sequence sgn(P)(¢;,2,...,lp)), where sgn(P) is ‘+’ is P is an out-path 
and otherwise sgn(P) is ‘—’. We also use the notation *P to denote the 
subpath P[ug, un]. 

” We use the same notation here as for directed paths, i.e. Plug, uj] = weuspa... tj 
when i < 7. 
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1 2 3 4 5 6 7 8 9 10 11 12 

Figure 6.6 An oriented path with intervals [1, 3], [3, 6], [6, 7], [7, 8], [8, 10], [10, 11], 
(11, 12]. 

For every set X C V in a tournament T = (V,A), we define the sets 

R*(X) (R~(X)) to be those vertices that can be reached from (can reach) 

the set X by a directed path. By definition X C Rt(X)NR(X). A vertex u 
is an out-generator (in-generator) of T if R*(u) = V (R~(u) = V). Recall 

that by Theorem 1.4.5, every tournament T has at least one out-generator 

and at least one in-generator. In fact, by Proposition 4.10.2, a vertex is an 

out-generator (in-generator) if and only if it is the initial (terminal) vertex 
of at least one hamiltonian path in T’. 

The next result, due to Havet and Thomassé, deals with oriented paths 

covering all but one vertex in a tournament. It plays an important role in the 

proof of Theorem 6.9.3 in [408]. 

Theorem 6.9.4 [408] Let T = (V,A) be a tournament on n+ 1 vertices. 
Then 

(1) For every out-path P on n vertices and every choice of distinct vertices 

x,y such that |Rt({z,y})| > 4:(P) +1, either x or y is an origin of (a 

copy of) P inT. 

(2) For every in-path P on n vertices and every choice of distinct vertices 

z,y such that |R~({z,y})| > 4(P) +1, either x or y is an origin of (a 

copy of) P inT. 

The following is an easy corollary of Theorem 6.9.4. We state it now since 

we shall use it in the inductive proof below. 

Corollary 6.9.5 /694] Every tournament T on n vertices contains every 

oriented path P onn—1 vertices. Moreover, every subset of €;(P)+1 vertices 

contains an origin of P. In particular, there are at least two distinct origins 

id mame oO 

Proof of Theorem 6.9.4: (We follow the proof in [408]). The proof is by 
induction on n and clearly holds for n = 1. Now suppose that the theorem 

holds for all tournaments on at most n vertices. It suffices to prove (1) since 
(2) can be reduced to (1) by considering the converses of T and P. 

Let P = u,u2...un be given and let x,y be distinct vertices such that 

|R*({x,y})| > &(P) +1. We may assume that xy and hence Rt(x) = 
Rt ({z,y}). We consider two cases. 



324 6. Hamiltonian Refinements 

Case 1 £;(P) > 2: If |N*(z)| > 2, let z € N*(x) be an out-generator of 
T(R* (x) — x) and let t € N*(z) be distinct from z. By the definition of z 
we have that |Rf_,({t,z})| = |R*(z)| —1 > &(*P). Note that *P is an 
out-path, since ¢;(P) > 1. By the induction hypothesis, either z or t is the 
origin of *P in T — z, implying that z is an origin of P in T’. 

Thus we may assume that Nt (xr) = {y}. Since |R*({z, y})| > 4(P)+1> 
3 we see that N*(y) 4 @. Let q be an out-generator of T(NT(y)). Then qg 
is also an out-generator of T(R*({z,y}) —y), qx and |Rz_,({z, a})| = 

|R*({x, y})| —1 > €:(*P). By induction, either z or q is the origin of *P in 
T — y and since x has no out-neighbour in T — y it must be gq that is the 

origin. Now we see that y is the origin of P in T. 

Case 2 €;(P) = 1: We consider first the subcase when |N*(x)| > 2. Let 
X := Rp_,(N*(a)) and consider the partition (X,Y, {xz}) of V, where Y = 
V — X —@. By the definition of these sets we have Yor, XHY and y € X. 

If |X| > €.(P) +1, then we claim that z is an origin of P in T; indeed, let 
p € Nt(q) be an in-generator of T(X) and take u € N*(zx) — p. By the 
induction hypothesis, either p or wu is an origin of xP in T —z and hence z is 

an origin of P in T. 

So we may assume that |X| < :(P). Note that £.(P) < n —2 holds 
always (remember we count arcs). Hence |Y| > 1, since T has n +1 vertices. 
Let s be an in-generator of T(Y). Since dt(r) > 1 and XHKY we have 
Ry_,(s) = V —y. Let w € Y —s be arbitrary. By the induction hypothesis 

either w or s is an origin of P in T — y and hence y is an origin of P in T. 

Now consider the case when N*(x) = {y}. Suppose first that |Nz_,(y)| > 
n — 2. By induction, Theorem 6.9.4 and hence Corollary 6.9.5 holds for T — 
{x,y}. Thus some vertex in Nj (y) is an origin of **P. Hence z is an origin 
of P in T (using xy and an arc into y from the origin of ««P in T— {z, y}). 
So we may assume that |Nt(y)| > 2. Let U = Rr_,(N*(y)) and W = 
V—U — {z,y}. Then W+{z,y} and UW U {2}. If |U| > €:(P) +1, then 
by the same proof as we used above (beginning of Case 2), we get that y 
is an origin of P. So suppose |U| < é(P). This implies in particular that 
fo(P) 2 |N*(y)| > 2. 

If |W| > 2 then we let w € W be an in-generator of T — {x,y} and take 
w' € W —w arbitrary. By induction either w or w’ is an origin of the in-path 
**P (recall that ¢2(P) > 2 and hence **P is an in-path). Thus using the arc 
zy and an arc into y from the origin of **P in W we see that z is the origin of 
P. Finally consider the case when |W| = 1 (note that |W| =n—1- (Gi cant, 
since |U| < £:(P) <n — 2). Then |U| =n —2 and &(P) =n—-2 (since we 
assumed above that ¢)(P) > |U|). Thus *P is a directed in-path. Using that 
y is an in-generator of T — x, we get that a is an origin of P. This completes 
the proof of the theorem. O 

If the path in Theorem 6.9.4 has n+1 vertices instead of n, then the state- 
ment is no longer true. However, the exceptions (to the n+1,n+1 version of 
Theorem 6.9.4) can be characterized [408] and based on this characterization 
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Havet and Thomassé were able to prove that the tournaments in Figure 6.5 
are indeed the only tournaments that do not contain every orientation of a 
hamiltonian path. 

In [408] Havet and Thomassé also proved the following nice result which 
is of independent interest. 

Proposition 6.9.6 /408] Let P be an out-path on n, vertices and Q an in- 
path on n vertices. Let T = (V, A) be a tournament onn =n, + No vertices. 
Ifx € V is the origin of a copy of P and of Q in T, then we may choose 
copies of P and Q such that V(P)NV(Q) = {x} and x is the origin of both 
copies. 

How easy is it to find an occurrence of a prescribed orientation of a hamil- 
tonian path P in a tournament? If P is a directed path, then this can be done 
in time® O(nlogn) (see Section 1.9.1). Some patterns can be found faster: 
Bampis, Hell, Manoussakis and Rosenfeld [42] showed that one can find an 
anti-directed hamiltonian path in O(n) time. This is the best possible as 
shown in [415]. The following somewhat surprising result by Hell and Rosen- 

feld shows that finding distinct patterns requires quite different complexities: 

Theorem 6.9.7 [415] For every 0 < a <1 there exists an orientation P of 

a path on n vertices so that every algorithm which checks for an occurrence 

of P in a tournament T with n vertices must make 2(nlog%n) references to 

the adjacency matriz of T in the worst case. O 

Based on Theorem 6.9.3 Havet proved the following result: 

Theorem 6.9.8 [405] There is an O(n?) algorithm that takes as input a 
tournament on n > 8 vertices and an oriented path P on at most n vertices 

and returns an occurrence of P inT. 0 

It is not known whether there are orientations of paths that in the worst 

case need (2(n'**) references (for some € > 0) to the adjacency matrix to be 
found in a tournament. By this we mean that in some cases one needs that 

many steps to either find the desired path or conclude that no such path 

exists. 

Instead of considering orientations of hamiltonian paths in tournamenis, 

one may just as well consider orientations of hamiltonian cycles in tourna- 

ments. However, one particular cycle, namely the directed hamiltonian cycle, 

can only be found in strong tournaments. Rosenfeld [645] conjectured that 
the directed hamiltonian cycle is the only orientation of a hamiltonian cy- 

cle that can be avoided by tournaments on arbitrarily many vertices. This 

conjecture was settled by Thomason who proved the following: 

8 We remind the reader that in measuring the complexity, we only count how many 
times we have to ask about the orientation of a given arc. 



326 6. Hamiltonian Refinements 

Theorem 6.9.9 /694] Every tournament on n > 21” vertices contains every 

oriented cycle of length n except possibly the directed hamiltonian cycle. 

Thomason also conjectured that the correct value of the lower bound on n 

is 9. One easily obtains a tournament with 8 vertices having no anti-directed 

hamiltonian cycle by adding a new vertex v to the tournament on 7 vertices 

in Figure 6.5 and joining v arbitrarily to the other 7 vertices. Hence 9 would 

be best possible if true. 

Using the methods developed in [408] along with a number of new ideas, 
Havet [406] proved the following result. Recall that every strong tournament 
has a hamiltonian cycle. 

Theorem 6.9.10 /406] Every tournament T on n > 68 vertices contains 

every oriented cycle of length n, except possibly the directed hamiltonian cycle. 

O 

Not surprisingly, if a digraph is almost complete, then it will contain all 

orientations of a hamiltonian undirected path. The following result is due to 
Heydemann, Sotteau and Thomassen: 

Theorem 6.9.11 [427] Let D be a digraph on n vertices and at least (n — 
1)(n — 2) +3 arcs and let C be an arbitrary orientation of a cycle of length 
n. Then D contains a copy of C, except for the case when D is not strong 
and C' ts a directed hamiltonian cycle. oO 

6.10 Covering All Vertices of a Digraph by Few Cycles 

Now we discuss another analogue of the hamiltonian cycle problem, namely 
that of covering the vertices of a digraph with few cycles. In some cases 
we insist that these are disjoint and that there is a prescribed number of 
cycles, whereas in other cases we allow the cycles to intersect, but only ina 
prescribed pattern. 

6.10.1 Cycle Factors with a Fixed Number of Cycles 

Two cycles X,Y in a digraph D = (V, A) are complementary if V(X) N 
V(Y) =@ and V(X) UV(Y) = V, that is, these cycles form a 2-cycle factor 
in D. 

Since every strong tournament has a hamiltonian cycle, a tournament T 
contains a 2-cycle factor if and only if T can be partitioned into two strong 
subtournaments. Thomassen posed the following problem which generalizes 
the problem of the existence of a 2-cycle factor in a tournament. 
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Problem 6.10.1 (Thomassen) /629] Is it true that for all natural num- 
bers r,s, there exists a natural number f(r,s) with the following property: 
except for finitely many exceptions for each r,s, every f(r, s)-strong tourna- 
ment T can be partitioned into an r-strong tournament T;, and an s-strong 
tournament T> ? 

Considering the case r = s = 1, Reid proved the following (see also 
Exercise 6.52): 

Theorem 6.10.2 /629] Every 2-strong tournament on at least 8 vertices has 
a 2-cycle factor consisting of a 3-cycle and an (n — 3)-cycle. 

This was extended by Song to all pairs of cycle lengths k,n — k, where 

k = 3,4,...,n — 3 [678]. It follows from these results that f(1,1) = 2. It 
is worth noticing that the problem of determining the analogue f'(1,1) of 
f(1, 1) for semicomplete digraphs is open. Since every 3-strong semicomplete 

digraph contains a spanning 2-strong tournament (Proposition 7.14.5), we 
obtain that 2 < f’(1,1) < 3 holds for semicomplete digraphs. 

There are a number of results on 2-cycle factors in bipartite tournaments. 
One of these is the following due to Song: 

Theorem 6.10.3 /677] Let R be a bipartite tournament with 2k +1 vertices 
in each partite set (k > 4). If every vertex of R has out-degree and in-degree 

at least k, then for any verter x in R, R contains a 2-cycle factor CUC' such 

that C includes x and the length of C is at most 6 unless R is isomorphic to 

Calhpri ten, Khe, Kel O 

For further results on 2-cycle factors in semicomplete bipartite digraphs 

see e.g. the paper [757] by Zhang and Wang and [756] by Zhang, Manoussakis 
and Song. 

It seems that the problem deciding the existence of a 2-cycle factor in 

semicomplete p-partite digraphs with p > 3 is quite difficult and we do not 

know any non-trivial partial results about that. The following conjecture has 

been proposed by Volkmann. For a semicomplete multipartite digraph D with 

p partite sets V;,V2,...,Vp, the independence number a(D) is equal to the 
size of a largest set among the V;,’s. 

Conjecture 6.10.4 /728] Let D be a p-partite tournament with partite sets 

Vi, V2,...,Vp and let a=a(D). If D is (a+ 1)-strong, then D has a 2-cycle 

factor, unless D is a member of a finite family of multipartite tournaments. 

In fact Conjecture 6.10.4 is just one instance of the following meta- 

conjecture due to Volkmann (private communication, 1997). Several results 

which hold for k-strong tournaments should also hold for every semicomplete 

multipartite digraph D provided that D is (a(D) + k — 1)-strong. One in- 

stance where this is known to be true is for the hamiltonian cycle problem 

(see Theorem 5.7.25). 
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An obvious necessary condition for a digraph D to contain a 2-cycle factor 

is that the girth of D is at most n/2. The second power D = C3,,, of an 

odd cycle has girth k + 1 and D is a 2-strong locally semicomplete digraph. 

This shows that Theorem 6.10.2 cannot be extended to locally semicomplete 

digraphs. Confirming a conjecture by Bang-Jensen [47],Guo and Volkmann 

proved that powers of odd cycles are the only exceptions when n > 8. 

Theorem 6.10.5 /351] Let D be a 2-strong locally semicomplete digraph on 

n > 8 vertices. Then D has a 2-cycle factor such that both cycles have length 

at least 3 if and only if D is not the second power of an odd cycle. oO 

Guo and Volkmann have shown that, although Theorem 6.10.2 cannot be 

extended to locally semicomplete digraphs, there is still enough structure to 

allow 2-cycle factors with many different lengths. We refer the reader to [352] 
for details. 

The next conjecture by Bang-Jensen, Guo and Yeo goes further than 

Problem 6.10.1. It may be seen as a first step towards studying partitions 

into subtournaments containing prescribed vertices in highly connected tour- 
naments. 

Conjecture 6.10.6 /58] For all natural numbers r,s there exists a natural 

number g(r, s) such that the following is true with no more than finitely many 

exceptions for each choice of r,s: for every tournament T which is g(r, s)- 

strong and every choice of distinct vertices x,y € V(T), there exist vertex- 

disjoint subtournaments T,,Ty of T such that V(T) = V(Tz) UV (Ty), Tz is 
r-strong, Ty is s-strong and x € V(Tz), y € V(Ty). 

Note that it is easy to decide in polynomial time whether a tournament 

T contains two disjoint cycles C; and Cy such that r € V(C,) and y € 

V(C,). This follows from the fact that, by Moon’s theorem, every strongly 

connected tournament is vertex-pancyclic. Hence C, and Cy exist if and 
only if T’ contains disjoint 3-cycles, one containing x and the other y. It 

follows from this that every 4-strong tournament contains cycles Cz, Cy as 
above. Bang-Jensen, Guo and Yeo proved that this already holds for 3-strong 
tournaments and an infinite family of 2-strong counter examples was given 
[58]. Hence g(1, 1) = 3. 

The existence of a 2-cycle factor such that each cycle contains a prescribed 
vertex and has a prescribed length in a bipartite graph has been studied in 
the papers [516, 733] by Little, Teo and Wang. 

We now turn to cycle factors with more than two cycles. Bollobds (see 
[678]) posed the following problem: 

Problem 6.10.7 Let k be a positive integer. What is the least integer g(k) 
so that all but a finite number of g(k)-strong tournaments contain a k-cycle 
factor? 
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Chen, Gould and Li [147] answered this problem by proving that g(k) < 
3k? +k. In relation to Problem 6.10.7 Song made the following much stronger 
conjecture: 

Conjecture 6.10.8 /678] For any k integers ny, no,...,.ng with ny > 3 for 

Qe lao a, Roan SDE ni =n, all but a finite number of k-strong tourna- 

ments on n vertices contain a k-cycle factor such that the k cycles have the 

lengths n1,n2,...,Nz, respectively. 

If, instead of tournaments, we consider digraphs which are almost com- 

plete, then, by the following result, due to Amar and Raspaud, we may almost 

completely specify the lengths of the cycles in a cycle factor. 

Theorem 6.10.9 /24] Let D be a strong digraph on n vertices and at least 
(n —1)(n— 2) +83 arcs. For every partitionn =n, +n2+... +ng such that 
nm >3,1=1,2,...,k, D contains a k-cycle factor C; UCU... UC, such 

that C; has length n; fori =1,2,...,k except in two cases: 

MOA 1s — o.ond a 2) 3,. oF. 

PO wi — > Ne = Sand a(.D)= 4, 0 

6.10.2 The Effect of a(D) on Spanning Configurations of Paths 
and Cycles 

Since semicomplete digraphs have a lot of structure, it is natural to believe 

that some of this structure is present in digraphs with small independence 

number, in particular for digraphs of independence number two. 

Two cycles C,C’ are consistent if they are either disjoint or their in- 

tersection is a subpath in both cycles. Chen and Manalastras proved the 

following: 

Theorem 6.10.10 /146] If D is strong and a(D) < 2, then D is either 

hamiltonian or it has a pair of consistent cycles which is spanning. Oo 

Bondy [125] gave a short proof of this theorem based on Lemma 5.2.2. 
In Chapter 7 we introduce the concept of an ear decomposition of a strong 

digraph. Using this concept we see that, if D has a pair of consistent cycles 

C,C' which are spanning and not disjoint, then these along with all remaining 
arcs of D (not on C,C’) form an ear decomposition with precisely two non- 

trivial ears. Clearly the converse also holds. 

Theorem 6.10.10 immediately implies the following result, which implies 

Theorem 5.2.4 in the case a(D) = 2: 

Corollary 6.10.11 /146] If D is strong and a(D) < 2, then D is traceable. 
O 
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It is tempting to ask whether one can generalize Corollary 6.10.11 to the 

statement that every k-strong digraph D with a(D) < k +1 is traceable. 

However, the example in Figure 6.7 by Bondy [125] shows that such a gener- 

alization is not possible. See Conjecture 12.6.2 for a weaker conjecture which 

may still be true. 

Figure 6.7 A 2-strong digraph D with a(D) = 3 and no hamiltonian path. The 
vertical edges correspond to directed 2-cycles. 

Note that, if a digraph D = (V, A) has a hamiltonian path, then pc(D — 

X) < |X|+1 for every X C V (see also Proposition 1.4.6). In the digraph 
in Figure 6.7 we have pc(D — X) = 3 = |X|+ 1 when X consists of the two 
left vertices. Hence, the example in Figure 6.7 also shows that the condition 

above is not always sufficient to guarantee a hamiltonian path in a digraph. 

Gallai posed the following conjecture. For a = 2 the conjecture follows 

from Theorem 6.10.10. 

Conjecture 6.10.12 /296] Every strong digraph D has a spanning collection 

of a(D) not necessarily disjoint cycles. 

The cyclomatic number of an (un)directed graph D = (V,4A) is the 

parameter |A| — |V| + c(D), where c(D) denotes the number of connected 
components of UG(D). A digraph is cyclic if every vertex belongs to a cycle. 

The following conjecture, which Bondy [125] attributes to Chen and Man- 
alastras [146], generalizes Gallai’s conjecture above and Theorem 5.2.4: 

Conjecture 6.10.13 /125, 146] Every strong digraph D contains a cyclic 

spanning subdigraph with cyclomatic number at most a(D). 

The example below due to Favaron (see {125]) shows that one cannot hope 
to find, for every strong digraph D, a strong spanning subdigraph of D with 

cyclomatic number at most a(D). Let r > 2 and take r copies T;,T>,...,T> 



6.11 Minimum Strong Spanning Subdigraphs Boll 

of the strong tournament on four vertices. Let the vertices be labelled so that 

the unique hamiltonian cycle in the ith copy is ujxjujyjuj, 1 = 1,2,...,r. 

Let D, be the digraph obtained from the disjoint union of T,,T2,...,T> by 

adding the arcs ujuj41 and vj;410; for all odd i, respectively, uji,u; and vjvj44 

for all even i, 1 <i < r. Then D, is strong, a(D) = r and it can be shown 

that D, has no strong spanning subdigraph with cyclomatic number less than 

2r—1 (Exercise 6.53). Moreover, every cyclic spanning subdigraph of D with 

cyclomatic number r consists of r disjoint 4-cycles. 

6.11 Minimum Strong Spanning Subdigraphs 

We consider the following problem, which we call the MSSS problem (MSSS 

stands for Minimum Spanning Strong Subdigraph): given a strongly con- 

nected digraph D, find a strongly connected spanning subdigraph D’ of 

D such that D' has as few arcs as possible. This problem, which gener- 

alizes the hamiltonian cycle problem and hence is NP-hard, is of prac- 

tical interest and has been studied extensively in the literature, see e.g. 

[5, 317, 434, 478, 479, 673]. We will address this problem again in Section 

7.16, where we also discuss the related problem for higher connectivities. 

Since the MSSS problem is \P-hard, it is natural to study the problem 

under certain extra assumptions. In order to find classes of digraphs for which 

we can solve the MSSS problem in polynomial time, we have to consider 

classes of digraphs for which we can solve the hamiltonian cycle problem 

in polynomial time. This follows from the fact that the hamiltonian cycle 

problem can be solved in polynomial time if we can solve the MSSS problem 

in polynomial time. 

6.11.1 A Lower Bound for General Digraphs 

Recall that pec(D), the path-cycle covering number of D, is the smallest 

(positive) number of paths in a k-path-cycle factor of D. Define, for every 

digraph D, the number pcc*(D) by 

*(D) = 0 if D has a cycle factor 

pec D) = pec(D) otherwise. 

Proposition 6.11.1 For every strongly connected digraph D = (V,A) of 

order n, every spanning strong subdigraph of D has at least n+pcc*(D) ares. 

Proof: Let D be strong and let D’ be a spanning strong subdigraph with 

n+k arcs. We may assume (by deleting some arcs if necessary) that no proper 

subdigraph of D’ is spanning and strong. It is easy to prove, by induction on 

-.k, that D’ can be decomposed into a cycle Po = C and k arc-disjoint paths 
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or cycles P;, Po,...,P, with the following properties (here D; denotes the 

digraph with vertices U;_) V(P;) and arcs? U5 A(Pj)): 

1. For each 1 = 1,...k, if P; is a cycle, then it has precisely one vertex 

in common with V(D;_1). Otherwise the end-vertices of P; are distinct 

vertices of V(D;_;) and no other vertex of P; belongs to V(Dj;-_1). 

2p Uiag ALP) = Al D): 

By the minimality assumption on D’, each P; has length at least two. 

It follows that D has a k-path-cycle factor consisting of C and k paths P/, 

i = 1,2,...,k, where P! is the path one obtains from P; by removing the 

vertices it has in common with V(D,_1) (defined above). It follows that 
pees (Dik: O 

We prove in the next subsection that the inequality of Proposition 6.11.5 

is in fact an equality for extended semicompletedigraphs. It was shown in [90] 

that this is also the case for semicomplete bipartite digraphs. The inequality 

of Proposition 6.11.5 is not always an equality for general semicomplete mul- 

tipartite digraphs, as such digraphs can have a cycle factor and still not be 

hamiltonian (see Section 5.7). 

Figure 6.8 A quasi-transitive digraph D with pcc*(D) = 0 and no hamiltonian 
cycle. 

Even for quasi-transitive digraphs strict inequality may hold in Proposi- 
tion 6.11.5. The quasi-transitive digraph D in Figure 6.8 has a cycle factor 
consisting of two 3-cycles and hence pcc*(D) = 0, but D is not hamiltonian 
and it is easy to see that the minimum spanning strong subdigraph has 7 
arcs. 

6.11.2 The MSSS Problem for Extended Semicomplete Digraphs 

The next result by Bang-Jensen and Yeo shows that the inequality in Propo- 
sition 6.11.1 is actually an equality for digraphs that are extensions of a 

° This coincides with the definition of an ear decomposition in Section 7.2. 
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semicomplete digraph. The main tool in the proof below is the character- 
ization of the longest cycle in an extended semicomplete digraph given in 
Theorem 5.7.8. 

Theorem 6.11.2 /90] Let D = (V, A) be an extended semicomplete digraph 
and let D = (V, A) be a minimum strong spanning subdigraph of D. Then 
|A| =n + pec*(D). 

Proof: (Sketch) Let D = S[H), H2,..., Hs], s = |V(S)|, be a strong extended 
semicomplete digraph, where the decomposition is such that S is semicom- 
plete. For each i = 1,2,...,s we let m; denote the maximum number of 
vertices from H; that can be covered by any cycle subdigraph of D. Let C 
be a longest cycle of D. By Theorem 5.7.8, C contains precisely m,; vertices 
from H; for each i = 1,2,...,s. If D is hamiltonian, then pecs (2D) =" Osand 
there is nothing to prove. Hence we may assume below that pcc*(D) > 0. By 
Corollary 5.7.19, the extended semicomplete digraph D' = D — C is acyclic. 

Let k = a(D'). By Lemma 5.3.3, D' has a path-factor P, UP, U... UP, 

where P, is a longest path in D', P2 is a longest path in D’ — P, and so on. 

Start by letting H:=(V(C), A(C)). Since P, is a longest path in D’, its 
initial (terminal) vertex x (y) has no arc entering (going out) in D’. Thus, 
since D is strong there exist arcs uz,yv such that u,v are vertices of H. 

Change H by adding the vertices of P and all arcs of P along with the arcs 

uz, yv to H. Now consider the path P) in D’ — P,. Using that P2 is a longest 

path in D’ — P;, we again conclude that there must exist an arc from V(H) 
to the initial vertex of P; and an arc from the terminal vertex of P, to H. 

Now it is easy to see how to continue and end up with a subdigraph H which 

is strong, spanning and has n+ k arcs. 

It remains to prove that this is optimal. By the remark above pcc*(D) > 0, 
so by Proposition 6.11.1 it suffices to prove that k = pcc(D). Let p = pcec(D) 

and let R,, R2,..., Rp, Q be an arbitrary p-path-cycle factor of D where Q 

consists of one or more cycles and R; is a path for 1 = 1,2,...,p. If some 

R; contains two vertices from the same H;, then we can replace it with a 

new path Rj and a cycle C; (Exercise 6.54). Doing this for all the paths 

R,, Ro,..., Rp until none of these contains two independent vertices we end 

up with a collection of paths R,, Ro,...,R,, where R; is the result of remov- 

ing zero or more cycles from DIR, Wels Nou or the cycle subdigraph Q' 

we obtain by taking Q and all the cycles we extracted above. By the defini- 
tion of m;, Q' contains at most m; vertices from H;. Thus a(D—V(Q')) >k 

and since no R; contains two independent vertices, it follows that p > k must 

hold. * 
Corollary 6.11.3 /90] The minimum spanning strong subdigraph of an ez- 

abhe 5 
tended semicomplete digraph can be found in time O(n2). 

Proof: Exercise 6.55. 0 

1° Observe that by the definition of p, no R; is empty. 
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6.11.3 The MSSS Problem for Quasi-Transitive Digraphs 

We first give a lower bound for the number of arcs in any minimum span- 

ning strong subdigraph of an arbitrary given strong quasi-transitive digraph. 

This bound can be calculated in polynomial time using Gutin’s algorithm for 

finding a hamiltonian cycle in a quasi-transitive digraph (Theorem 5.9.4) as 

well as the algorithm of Theorem 5.9.5. We prove that this lower bound is 

also attainable for quasi-transitive digraphs. The proof of this uses Theorem 

Dt cor 

Definition 6.11.4 Let D be a strong quasi-transitive digraph and define 

pe*(D) by pc*(D) =0 if D is hamiltonian and pc*(D) = pc(D) otherwise. 

Lemma 6.11.5 For every strongly connected quasi-transitive digraph D, ev- 

ery spanning strong subdigraph of D has at least n + pc*(D) arcs. 

Proof: Exercise 6.57. oO 

In fact Lemma 6.11.5 holds for arbitrary digraphs. This is not in contradic- 

tion with Theorem 6.11.2 since pcc*(D) = pc*(D) for every strong extended 
semicomplete multipartite digraph by Theorems 5.7.2 and 5.7.5. Below we 

characterize the optimal solution to the MSSS problem for quasi-transitive 

digraphs and show that the problem is polynomially solvable. 

Theorem 6.11.6 /82) Every minimum spanning strong subdigraph of a 

quasi-transitive digraph has precisely n + pc*(D) arcs. Furthermore, we can 

find a minimum spanning strong subdigraph in time O(n‘). 

Proof: Let D = S[W1,W2,...,Ws], s = |S| > 2, be the decomposition of 

a strong quasi-transitive digraph D according to Theorem 4.8.5. Using the 

algorithm of Theorem 5.9.4 we can check whether D is hamiltonian and find 

a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian 

cycle is the optimal spanning strong subdigraph. Suppose below that D is 

not hamiltonian. Then in particular we have pc*(D) = pc(D) by Definition 
6.11.4. 

Let Do = S[Hi, H2,...,Hs] be the extended semicomplete digraph one 

obtains by deleting all arcs inside each W; (that is, |V(H;)| = |V(W;)| and 
H; is obtained from W; by deleting all arcs). 

For each i = 1,2,...,8, let m; denote the maximum number of vertices 

which can be covered in H; by any cycle subdigraph of Do. According to 

Theorem 5.7.8 every longest cycle C in Do contains exactly m; vertices from 

H;,i=1,2,...,s. By Theorem 5.7.8 we can find C in time O(n). Let 

k = max{pc(W,) — m;:t = 1,2,-, 3,8}. (6.4) 

Note that by Theorem 5.9.3, k > 1 since D has no hamiltonian cycle. 

Let m?} = max{pc(W;i),m;}, i = 1,2,...,s and define the extended semi- 

complete subdigraph D* of D by D* = S[H}, H},...,H3], where H} is an 
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independent set containing m} vertices for i = 1,2...,s. Since vertices in- 
side an independent set of D have the same in- and out-neighbours, we may 
think of C’ as a longest cycle in D* (i.e. C contains precisely m; vertices from 
Ws 4—1,2,...,8). By Corollary 5.7.19, D* is acyclic and by Lemma5.3.3, 
i Cy can be'covered by.k. paths P*, Py,.).. , Pf such that P* is a longest 
Porn (VPs) UV iP* ,)) for’ =1;2,...,k. 

It follows from the proof of Theorem 6.11.2 that we can glue P¥ onto C 
and then P; onto the resulting graph etc., until we obtain a spanning strong 
subdigraph D** of D* with |V*| +k arcs. 

Now we obtain a spanning strong subdigraph of the quasi-transitive di- 
graph D as follows. Since m* > pc(W;) for i = 1,2,...,s, each W; contains 
a collection of t; = m? paths Pj, Pj2,..., Piz; such that these paths cover all 

vertices of W;. Such a collection of paths can easily be constructed from a 

given collection of pc(W;) paths which cover V(W;). Let xi, 242,..., Zit, be 
the vertex set of Hj‘, i = 1,2,...,s. Replace x;; in D** by the path Deter 

each 7 = 1,2,...,¢;,7 =1,2,...,5. We obtain a spanning strong subdigraph 

D' of D. The number of arcs in D’ is 

A(D') = Y>(IWil = mf) + (V1 + 8) 
= (pea oh) or AI lei) 
=n+k (6.5) 

It remains to argue that D’ is the smallest possible. By Lemma 6.11.5, it 

suffices to prove that pc*(D) > k. 

Since this part is similar to the proof of Theorem 6.11.2 we only sketch 

how to prove it. Let P,, Po,...,P, be an optimal path cover of D. Path- 

contract all subpaths that lie inside some W; and let P;,...,P, denote the 

resulting paths. Delete all arcs that still remain inside each W; after this 
contraction. That way we obtain a path cover of an extended semicomplete 

digraph which we may consider as a subdigraph of Do. 

As in the proof of Theorem 6.11.2 we can continue replacing paths in 

the current collection by a cycle or a path until every path in the current 

collection contains at most one vertex from H;. Let P;', P;’...,P!’ be the 
final collection after removing all such cycles. Using an argument analogous 

to the last part of the proof of Theorem 6.11.2, we now conclude that r >k 

implying that the subdigraph D’ is optimal. Oo 

6.11.4 The MSSS Problem for Decomposable Digraphs 

In fact the proof of Theorem 6.11.6 is valid for a much larger class of digraphs 

as we show below. For every natural number f¢, let WY, be the class of all 

digraphs for which a minimum path-factor can be found in polynomial time 
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O(n‘). For every natural number t, let (2; be the class of all digraphs of the 

form D = S[M,, H2,...,Hs], s = |S| > 2, where S is a strong semicomplete 

digraph and H; € %, i =1,2,...,s. By Theorem 5.9.5 the class (24 contains 

all quasi-transitive digraphs. 

The next result is an extension of Theorem 5.9.3 to a much larger class 

of digraphs. 

Theorem 6.11.7 Let t be a natural number and let D be a strong digraph 

from the class 2; with decomposition D = S[W,,W2,...,Ws], where s = |S|, 

W;, €%,71=1,2,...,8s and S is a strong semicomplete digraph. Let Do = 

S|H,, H2,...,Hs]| be the extended semicomplete digraph obtained by deleting 

all arcs inside each W, (that is, |V(H;)| = |V(W;)|). Then D is hamiltonian 
if and only if Do has a cycle subdigraph which covers at least pc(W;) vertices 

Ofel yet =i 2A es : 

Proof: Exercise 6.58. : oO 

Gutin’s approach to solving the hamiltonian cycle problem for quasi- 

transitive digraphs can be extended to a proof of the following result. 

Theorem 6.11.8 For every natural number t, the:hamiltonian cycle problem 

is solvable in time O(n'*!) for digraphs that belong to 2¢. 

Proof: Exercise 6.59. O 

Let D = S[M, H2,..., Hs] be a digraph in (;. To find a minimum strong 
spanning subdigraph in D, let D' be the extended semicomplete digraph 
obtained from D by deleting all arcs within each H; for i = 1,2,...,s. By 
Theorem 5.7.7, we can find a longest cycle C in D’. Let m; = |V(Hi)NV(C)| 
forg = le ee sand let 

k= max{pe(H;) —m;: 4 =1,2,...,s}. 

Using a proof analogous to that of Theorem 6.11.6, we can show that the 
minimum strong spanning subdigraph of D contains n + k arcs when k > 1 
and is a hamiltonian cycle when k < 0. Combining this with Theorems 6.11.7 
and 6.11.8 we obtain the following result: 

Theorem 6.11.9 For every natural number t, the MSSS problem is solvable 
in time O(n't") for all digraphs in Q. Oo 

We close this section with the following conjecture by Bang-Jensen and 
Yeo: 

Conjecture 6.11.10 /90] There exists a polynomial algorithm for the MSSS 
problem in the case of semicomplete multipartite digraphs. 
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6.12 Application: Domination Number of TSP 
Heuristics 

The (asymmetric) travelling salesman problem (TSP) is formulated in Section 
1.9. Here, the word asymmetric simply refers to the fact that in a 2-cycle the 

costs of the two arcs may be different. 

A heuristic for an optimization problem R is an algorithm which given 

an instance R of R finds some solution s to R for which there is generally 

no guarantee on the quality of s compared to an optimal solution s* to R. 

So for the TSP problem a heuristic is any algorithm which returns some 

permutation of the vertices of the input complete graph K n- For more on 
heuristics see Section 12.8. 

An equivalent of the following notion of the domination number of an 

algorithm was introduced by Glover and Punnen [320]. The domination 

number, domn(A,7), of a heuristic A for the TSP is the maximum integer 

d = d(n) such that, for every instance Z of the TSP on n cities, A produces 

a tour 7’ which is not worse than at least d tours in Z including T itself. 

Clearly, every exact TSP algorithm has domination number (n — 1)!. Thus, 
the domination number of an algorithm close to (n — 1)! may be taken as an 
indication that the algorithm is of high quality. 

Glover and Punnen [320] asked whether there exists an algorithm A 
whose running time is polynomial in n and which has domination number 

domn(A,n) > n!/p for some p being a constant or even polynomial in n. 

They conjectured that, unless P = NP, the answer to this question is nega- 

tive. In [381], Gutin and Yeo proved that the answer to the Glover-Punnen 
question is, in fact, positive. They showed the existence of such an algorithm 

for p = n—1. The proof of the main result in [381] (see Theorem 6.12.1) uses 
Tillson’s Theorem 6.8.3. 

Using Theorem 6.12.1, Punnen and Kabadi [615] proved that several well- 
known and widely used TSP construction heuristics, such as various vertex 

insertion algorithms and Karp’s cycle patching algorithm, have domination 

number at least (n — 2)!. 
In this section, we prove Theorem 6.12.1 and the Punnen-Kabadi result 

on vertex insertion algorithms, Theorem 6.12.2. 

Let (K n Cc) denote a complete digraph on n vertices whose arcs are 

weighted according to a weight function c. The total cost of all Hamilton 

cycles in (K n,C) is denoted by o(n,c). Denote the sum of the costs of all 

arcs in (KnsC) by (Kn). The average cost of a Hamilton cycle in 

(Kn, is denoted by r(n,c). As every arc of Fe is contained in (n — 2)! 

Hamilton cycles, +(n,c) = o(n,c)/(n — 1)! = (n — 2)!c(Kn)/(n — 1)!, hence, 
TKO 0) = .01 K n)/(n — 1). This formula can also be shown using linearity of 

_ expectation (see [14]). Recall that by a tour we mean a Hamilton cycle in 
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ne An automorphism of a digraph D is a bijection @ : V(D)>V(D) such 

that cy € A(D) if and only if ¢(z)d(y) € A(D). 

Theorem 6.12.1 /381] Let H be a tour in iG, such that c(H) < r(n,c). If 
> 

n £ 6, then there are at least (n—2)! tours in Kn whose cost is at least c(H). 

Proof: The result is trivial for n = 2,3. If n = 4, the result follows from the 
<7 

simple fact that the most expensive tour T in Kn has cost c(T’) > c(H). 

Assume that n > 5 and n # 6. Let D, = {Ci,...,Cn-1} be a decom- 

position of the arcs of K n into tours (such a decomposition exists by The- 
o 

orem 6.8.3). Given a tour T in Kn, clearly there is an automorphism of 

im n that maps C, into T. Therefore, if we consider D; together with the 
Dara 

decompositions (Dj, ..., D(n—1):) of Kn obtained from Dj using all automor- 

phisms of ves which map the vertex 1 into itself, we will have every tour 
o> 

of K, in one of the D,’s. Moreover, every tour is in exactly n — 1 of the 

decompositions D,, D2,...,D(n—1): (by mapping a tour C; into a tour C; 

(1,7 € {1,2,...,n — 1}) we fix the automorphism). 

Choose the most expensive tour in each of D; and form a set € from 
all distinct tours obtained in this manner. Clearly, |E| > (n — 2)!. As 

Ate 

See c(C;) = c(Kn), every tour T of € has cost c(T) > 7(n,c). There- 

fore, c(H) < c(T) for every T € E. oO 

Vertex insertion algorithms for the TSP work as follows. First, we find 
<a 

some ordering 1}, ...,Un of vertices of (Kn,c). Then, we perform n — 1 steps. 

On the first step we form the cycle vj v2v,;. On step k, 2< k <n-—1, given 

the k-cycle U_(1)Un(2)-+-Un(k)Um(1) from the previous step, we find jo, which 

minimizes the expression 

Cun) Upel) CORP Uae) Cag) Urges 

1 <j <k, and insert vz41 between vz (j;,) and vz(j.41) forming a (k+1)-cycle. 

The fastest such algorithm is the random insertion algorithm, in which the 

initial vertex ordering is random (see the paper [319] by Glover, Gutin, Yeo 

and Zverovich for computational experiments with this and other heuristics 

for the (asymmetric) TSP). 
Now we can prove the Punnen-Kabadi result: 

Theorem 6.12.2 /615] Let H, be a tour constructed by a vertex insertion 
byad 

algorithm A for the TSP on (Kn,c). Then c(Hn) < T(n,c). 

Proof: We prove this result by induction on n. The theorem is trivially true 

for n = 2. Let Hn—1 = Un(1)Un(2)---Un(n—1)Un(1) be the cycle constructed in 

Step n — 2 of the algorithm and assume that in Step n — 1, it was decided to 

insert Up between v,z(j,) and Vz(j.41) in order to obtain H,. Then, we have 
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CHn) = c(Hn—1) + C(Yn(jo)Un) + C(Un%n(jo41)) — C(Un(jo)Ym(jo-+1)) 
m—1 

gE iit Liat [C(Yn(iyn) + C(UnUm(i+1)) = C(Um(HPm(i41))] S 
n—-1 

rie c(V — Un, Un) + e(vn, V — un) — e(Hn-1) 

n—1 

a (n aad 2)T(n ma 1,c) is c(V a Onda as ChUna me Up) 

+7 n—-1l 
com 

z CKn =n) + (VV — Un, Un) + c(tn, V — Un) 

n—-1l 
“ints 

_ c(Kn) 

1 

1g ,.C), 

where 7(n — 1,c) is the average cost of a tour in Kn —Un. Oo 

Theorems 6.12.1 and 6.12.2 imply the following result by Punnen and 

Kabadi: 

Theorem 6.12.3 /615] For every vertex insertion algorithm A we have 

domn(A,n) > (n — 2)!. 0 

6.13 Exercises 

6.1. 

Or2: 

6.3. 

(—) Prove that a strong semicomplete digraph D has a hamiltonian path 
starting at x for every x € V(D). 

Prove that, if D is a strong semicomplete digraph with distinct vertices x, y 
such that D — x and D — y are strong but D — {z, y} is not strong, then D 
has an (z, y)-hamiltonian path and a (y,z)-hamiltonian path. 

(—) Prove that, from a complexity point of view, the hamiltonian path prob- 
lem, the [z, y]-hamiltonian path problem and the (z,y)-hamiltonian path 
problem are all equivalent. That is, each of them can be reduced in polyno- 
mial time to each of the two others. 

. Derive Corollary 6.2.2 from Theorem 6.2.1. 

. Prove Lemma 6.2.3. 

). Prove the last claim in the proof of Corollary 6.2.7. 

. Derive Theorem 6.2.6 from Theorem 6.2.4. 
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6.8. 

6.15. 

6.16. 

6.22. 

6.23. 

6.24. 

6.25. 

6. Hamiltonian Refinements 

2-regular 2-strong locally semicomplete digraphs. Prove that for every 

n > 5 there exists (up to isomorphism) precisely one 2-strong and 2-regular 

locally semicomplete digraph, namely the second power ce of an n-cycle. 

. Prove that, if D is the second power of an even cycle, then D contains a unique 

hamiltonian cycle. Next, prove that D is not weakly hamiltonian-connected. 

. Prove Lemma 6.2.8. 

. Prove that if D is the second power Pele of an odd path P = uj u2... U2k+1, 

then there is no pair of disjoint (wi, u2e)-, (v2, U2k+1)-paths in D. 

. Prove Theorem 6.2.11. 

. Suppose D = (V, A) is a non-strong locally semicomplete digraph with strong 

decomposition D:, D2, D3, D4 such that D — a is connected for every x € V. 

Let ui € V(D;) be specified for each i = 1,2,3,4. Prove that D contains 

disjoint (ui, u3)-,(u2, us)-paths P,Q so that V = V(P) UV(Q). 

. (+) Prove the following. Let T be a 2-strong semicomplete digraph and z, y 
vertices of T’, such that T — x and T — y are both 2-strong, r/y, and neither 
x nor y is contained in a 2-cycle. If T — {x,y} is not 2-strong then T has 
an (,y)-hamiltonian path.Hint: consider a minimal separator of the form 

{u, x,y}. 
(+) Prove Proposition 6.3.2. 

(—) Hamiltonian cycles containing a prescribed arc in semicomplete 
digraphs. Use Theorem 6.3.1 to show that every 3-strong semicomplete di- 
graph D = (V,A) has a cycle containing the arc a for any prescribed arc 
a€éA. 

. (++) Prove Theorem 6.4.5. 

. Prove Lemma 6.4.3. 

. Longest [x,y]-paths in tournaments. Find a characterization for the 
length of a longest [x, y]-path in a tournament. Hint: use Theorem 6.2.1. 

. Non-pancyclic digraphs satisfying Meyniel’s condition. Prove that if 
m > (n+1)/2, then the digraph Dy, described after Theorem 6.5.2 satisfies 
Meyniel’s condition for hamiltonicity but has no m-cycle. 

. Pancyclic digraphs satisfying Woodall’s condition for hamiltonicity. 
Prove that, if D satisfies the condition in Corollary 5.6.6, then either D is 

> 

pancyclic, or n is even and D=K2z,2. Hint: use Theorem 6.5.2. 

Prove the following result due to Overbeck-Larisch [598]. If a digraph D = 
(V, A) satisfies d(x) + d(y) > 2n +1 for every pair of non-adjacent vertices 
x,y € V, then D is pancyclic. Hint: use Theorem 6.5.2. 

(—) Prove that every regular tournament is strong. 

(+) Prove Lemma 6.5.8. Hint: use a similar approach as that taken in the 
proof of Lemma 6.5.7. 

(+) Vertex-pancyclic quasi-transitive digraphs. Prove part (b) of The- 
orem 6.5.9. Hint: use a similar approach as taken in the proof of (a) to reduce 



6.26. 

6.27. 

6.28. 

6.29. 

6.30. 

6.31. 

6.32. 

6.33. 

6.34. 

6.35. 

6.36. 

6.37. 
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the problem to one for extended semicomplete digraphs and then apply The- 
orem 6.5.6. 

Prove Lemma 6.5.12. Hint: consider a shortest cycle through v (which by the 
assumption has length at most k). 

[420] Prove the following: let C = vi v2...vzv1 be a non-extendable cycle in a 
digraph D = (V, A) on n vertices where 2 < k <n—1and let u€ V—V(C). 
Then 

(a) for every 1 <i <k, D contains at most one of the arcs uju and uvji41. 

(b) |(u, V(C))| + |(V(C), u)| < k, 
(c) for every 1 <i<k, |(ui,V —V(C))| + |(V —V(C), vi41)| <n —k, and 
(d) if vj—1u, wvi41 € A, then for 1 <h<i-—2ori+1<h<k, D contains 

at most one of the arcs vp_v; and vjvp~4i and hence |(vi,V(C) — v;)| + 

(V(C) — vi, ui) Sk. 

Cycle extendable regular tournaments. Characterize these. 

Cycle extendable locally semicomplete digraphs. Characterize cycle 
extendable locally semicomplete digraphs. 

(+) Weakly cycle extendable digraphs. Call a digraph D weakly cycle 
extendable if every cycle C which is not a longest cycle of D is contained 
in some larger cycle C’, i.e. V(C) C V(C’). For each of the following classes 
characterize weakly cycle extendable digraphs: 
e Extended semicomplete digraphs. 
e Path-mergeable digraphs. 
e In-semicomplete digraphs. 

Prove Corollary 6.6.2. 

Prove Corollary 6.6.3. 

(+) A bipartite digraph D = (V, A) on an even number n of vertices is even 
(vertex-)pancyclic if it has cycles of all lengths 4,6, 8,...,n (through every 
vertex v € V). Prove the following theorem due to Zhang [755]: 

Theorem 6.13.1 A bipartite tournament D 1s even vertexz-pancyclic if and 

only if D is hamiltonian and is not isomorphic to CalK2,K2,Ka, Ka). 

Extend Theorem 6.13.1 to semicomplete bipartite digraphs (Gutin [367]). 

For every p > 1, construct an infinite family S of strong tournaments which 
satisfy that 6°(T) > p for each T € S and there is some arc a € A(T) which 
belongs to every hamiltonian cycle of T. Extend your construction to work 
also for arbitrary high arc-strong connectivity. 

Prove Proposition 6.7.2. 

(+) Hamiltonian cycles in almost acyclic digraphs. Prove that for 
every fixed k there is a polynomial algorithm to decide whether there is a 
hamiltonian cycle in a given digraph D, which is obtained from an acyclic 
digraph H = (V, A) by adding a set S of k new vertices and some arcs of 
the form st where s € S andt € V US. Hint: use the fact that the k-path 
problem is polynomial for acyclic digraphs (see Theorem 9.2.14). 
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6.38. 

6.39. 

6.40. 

6.41. 

6.42. 

6.43. 

6.44. 

6.45. 

6.46. 

6.47. 

6.48. 

6.49. 

6.50. 

6.51. 

6.52. 

6. Hamiltonian Refinements 

Let D be constructed as in Exercise 6.37. Show that, if k is not fixed (that 

is, k is part of the input), then the problem above is NP-complete. 

Let T be a tournament, let Yi, Y2,..., Ys (s > 1) be disjoint sets of vertices in 

T and let x and y be arbitrary distinct vertices in V(T) — (Yi UY2U...UYs). 
Prove that, if there exist k disjoint (x, y)-paths in T, then there exist at least 
k — >°_, L¥il/2] disjoint (2, y)-paths in T — Uj, A(T(¥i)). 

(+) Let X1, X2,...,Xp and D be defined as in Theorem 6.7.8. Prove that D 
is strong. Hint: first prove the following two claims and then combine them 
into a proof that D is strong: 

(a) Ifa € X; andy € X; (1<i#j <1), then there are [|X;|/2]+||X;|/2]+ 
[|X1|/2] disjoint (x, y)-paths in D;,;. 

(b) If z,y € X; (xc # y), then there are |X;| disjoint (z,y)-paths in D;. 
Furthermore there is an (z,y)-path in D (Bang-Jensen, Gutin and Yeo 

[71]). . 

(+) Prove that the digraph D in Theorem 6.7.8 has a cycle factor [71]. Hint: 
let D’ be obtained from D by the vertex-splitting technique (Section 3.2). 
Form a network from D’ by putting lower bound 1 on arcs of the kind vzvs, 
v € V(D) and zero elsewhere. Put capacity 1 on arcs of the kind vv; and oo 
on all other arcs. Now apply Theorem 3.8.2 and deduce the result from the 
structure one can derive using a presumed bad cut (S,S). 

(+) Prove that the digraph D in Theorem 6.7.8 is hamiltonian [71]. Hint: 
consider any irreducible factor. Apply Theorem 5.7.21 and conclude that the 
cycle factor is a hamiltonian cycle. 

Show by an example that s+1 cannot be replaced by s in Proposition 6.7.13. 

Show that Theorem 6.8.1 follows from Theorem 1.6.3. 

Prove that the arcs of K 6 cannot be decomposed into 5 hamiltonian cycles. 

(—) Prove Theorem 6.8.2. Hint: use Exercise 3.70. 

(—) Prove that every regular tournament is arc-3-cyclic. Show that this is 
not always true for regular semicomplete digraphs. 

(—) Verify that none of the three tournaments in Figure 6.5 contain an anti- 
directed hamiltonian path. 

Prove Theorem 6.8.9. 

Orientations of paths in strong tournaments. Prove the following state- 
ment. Let T be a strong tournament on n vertices and P an out-path on n—1 
vertices. Then 
(a) every vertex of T except possibly one is an origin of P and 
(b) if €:(P) > 2, then every vertex of out-degree at least 2 is an origin of P. 

Orientations of paths in 2-strong tournaments. Let T be a 2-strong 
tournament on n vertices and let P be an oriented path on n — 1 vertices. 
Prove that every vertex of T is an origin of P. 

Show that there is only one 2-strong tournament on 7 vertices which has no 
2-cycle factor. 



6.53. 

6.54. 

6.55. 

6.56. 

6.58. 

6.59. 
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Let D, be the digraph which is defined in the end of Subsection 6.10.2. 
Show that every strong spanning subdigraph of D, has cyclomatic number 
at least 2r — 1. Next show that every cyclic spanning subdigraph of D, with 
cyclomatic number r is an r-cycle factor in which all cycles are 4-cycles. 

Prove that if a path P in an extended semicomplete digraph D contains two 
vertices from an independent set J of D, then there exists a path P’ and a 
cycle C’ in D with V(P) = V(P’)UV(C’). 

(+) Prove Corollary 6.11.3. Hint: the proof is algorithmic. Identify the sub- 
routines needed to do the different steps. See also Exercise 3.59. 

Show that the proof of Theorem 6.11.6 can be turned into an O(n*) algo- 
rithm for finding a minimum strong spanning subdigraph of a quasi-transitive 
digraph. 

. (+) Prove Lemma 6.11.5. Hint: consider the way we argued in the proof of 
Proposition 6.11.1. 

(+) Prove Theorem 6.11.7. Hint: use the same approach as in the proof of 
Theorem 5.9.1. 

(+) Prove Theorem 6.11.8. Hint: use the same approach as in the proof of 
Theorem 5.9.4. 
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7. Global Connectivity 

The concept of connectivity is one of the most fundamental concepts in (di- 
rected) graph theory. There are numerous practical problems which can be 

formulated as connectivity problems for digraphs and hence a significant part 

of this theory is also important from a practical point of view. Results on con- 

nectivity are often quite difficult and a deep insight may be required before 

one can obtain results in the area. The purpose of this chapter is to con- 

vey some of that insight by illustrating several important topics as well as 

techniques that have been successful in solving global connectivity problems. 

Several of these problems, such as the connectivity augmentation problems in 

Sections 7.6 and 7.7, are of significant practical interest. Because of the very 

large number of important results on connectivity, we will devote this chapter 

as well as Chapters 8 and 9 to this area. This chapter will mainly deal with 

global connectivity aspects. That is, the directed multigraph in question is 

k-(arc)-strong for some k > 0, or we want to make it k-(arc)-strong by adding 
new arcs. 

We will often consider directed multigraphs rather than directed graphs, 

since several results on arc-strong connectivity hold for this larger class and 

also it becomes easier to prove many results. However, when we consider 

vertex-strong connectivity, multiple arcs play no role and then we may as- 

sume that. we are considering digraphs. Note that, unless we explicitly say 

otherwise, we will assume that we are working with a directed graph (i.e 

there are no multiple arcs). 
After introducing some new terminology and an efficient way of repre- 

senting a directed multigraph as a network we proceed to ear-decompositions 

of strong directed multigraphs. We show how to use this useful concept to 

obtain short proofs of several basic connectivity results. Then we state and 

prove Menger’s theorem which is one of the most fundamental results in 

graph theory. Based on Menger’s theorem, we describe various algorithms to 

determine the arc-strong and vertex-strong connectivity of a directed multi- 

graph. In Section 7.5 we introduce the operation of splitting off a pair of 

arcs incident with a vertex. We prove Mader’s splitting theorem which allows 

one to give inductive proofs for several important results on directed multi- 
graphs. Using Mader’s theorem we describe a solution due to Frank for the 

-problem of finding a minimum set of new arcs to add to a directed multigraph 
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such that the result is a k-arc-strong multigraph. In Section 7.7 we describe 

a solution by Frank and Jordan of the analogous problem for vertex-strong 

connectivity. 

Another way of increasing the arc-strong or vertex-strong connectivity of 

a digraph is by reversing the orientation of certain arcs. In Section 7.9 we 

discuss this approach and describe an interesting result for semicomplete di- 

graphs by Bang-Jensen and Jordan. In Section 7.10 we study the structure of 

directed multigraphs which are k-(arc)-strong but removing any arc destroys 

that property. We prove deep results by Mader on the structure of such di- 

rected multigraphs. Section 7.11 deals with digraphs which are k-strong but 

no vertex can be deleted without decreasing the vertex-strong connectivity. 

In Section 7.12 we briefly discuss directed multigraphs for which the degree 

of arc-strong connectivity is as large as possible, that is, equal to the mini- 

mum degree. In Section 7.13 we show that decomposable digraphs have an 

interesting connectivity structure. 

In Section 7.14 we study an interesting problem due to Jackson and 

Thomassen concerning the existence of highly connected orientations of di- 

graphs with high connectivity. We show that such orientations exist in the 

case of locally semicomplete digraphs and quasi-transitive digraphs. In Sec- 

tion 7.15 we give a proof due to Lovasz of the Lucchesi- Younger theorem con- 

cerning arc-disjoint dicuts in directed multigraphs. Finally, in Section 7.16 

we consider the problem of finding a small spanning subdigraph of a directed 

multigraph D with the same degree of arc-strong, respectively vertex strong, 
connectivity as D. 

7.1 Additional Notation and Preliminaries 

Let D = (V,A) be a directed multigraph and let X,Y C V be subsets 

of V. We denote by dt(X,Y) the number of arcs with tail in X — Y and 

head in Y — X, ie dt(X,Y) = |(X — Y,Y — X)p|. Furthermore we let 
d(X,Y) = d+(X,Y)+dt(Y, X). Hence we have d+(X) = d+(X,V — X) and 
d~(X) =dt(V — X,X). An arc zy leaves a set X if € X andyEeV—X. 
The sets X,Y are intersecting if each of the sets X —Y,XNY,Y — X is 
non-empty. If also V— (X UY) #9, then X and Y are crossing. 

Let F be a family of subsets of a set S. We call a set 4 € F a member of 
F. The'family ¥ is an intersecting family (a crossing family) if A,B € F 
implies AUB, ANB € F whenever A, B are intersecting (crossing) members 
of F. A family F of subsets of a set S is laminar if it contains no two 
intersecting members. That is, if A,B € F and ANB #0 then either A C B 
or B C A holds. A family of sets is cross-free if it contains no two crossing 
members. 

For an arbitrary directed multigraph D = (V, A) and vertices x,y € V we 
denote by A(z,y) («(z,y)) the maximum number of arc-disjoint (internally 
disjoint) (x, y)-paths in D. The numbers \(z, y), «(x,y) are called the local 
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arc-strong connectivity, respectively, the local vertex-strong connec- 
tivity from x to y. Furthermore we let 

X'(D) = min X(zx, y) 
z,yeEV 

OB) = : : : 

« (D) aa oe) (7.1) 

Analogously to the way we defined a cut with respect to an (s,t)-flow 
in Chapter 3 we define an (s,t)-cut to be a set of arcs of the form (U,U), 
where U = V —U and s € U,t € U. Recall that an (s,t)-separator is a 
subset X C V(D) — {s,t} with the property that D — X has no (s,t)-path. 
We also say that X separates s from t. Thus a separator of D is a set of 

vertices S such that S is an (s,t)-separator for some pair s,t € V(D) (recall 
the definition of a separator from Subsection 1.5). A minimum separator 
of D is a minimum cardinality separator X of D. 

The following simple observation plays a central role in many proofs of 

connectivity results. 

Proposition 7.1.1 Let D = (V,A) be a directed multigraph and let X,Y be 

subsets of V. Then the following holds: 

GT OX) a tY ) ds (CUY) Pd? (XA Yt a XGY) 

da eda Wa dal XU) dat iY yd ala) (7.2) 

Furthermore, if d~(X NY) =dt(X NY), then we also have 

d*(X)+d*(Y) =d*(X -Y)+dt(Y —X)+e 

Gy ayy ad (Kk SY) Pan(eaix) He) (7.3) 

wheree=d(X NY,V —(XUY)). 

Proof: Each of these equalities can easily be proved by considering the con- 

tribution of the different kinds of arcs that are counted on at least one side 

of the equality. For example Figure 7.1 shows the possible edges contributing 

to at least one side of the first equality. 0 

A set function f on a groundset S is submodular if f(X)+ f(Y) > 
f(X UY) + f(X NY) for all X,Y C S. The next corollary which follows 
directly from Proposition 7.1.1 is very useful, as we shall see many times in 

this chapter. 

Corollary 7.1.2 For an arbitrary directed multigraph D, dvds are sub- 

modular functions on V(D). O 

Recall that for a proper subset X of V(D) we denote by N+(X) the set of 
_out-neighbours of X. The next result shows that the functions |N~|,|N*| 
are also submodular. 
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Figure 7.1 The various types of arcs contributing to the out-degrees of the sets 

2G EY awaeh XC We. 

Proposition 7.1.3 Let D = (V, A) be a digraph and let X,Y be subsets of 

V. Then the following holds: 

IN*(X)[+INF(Y)| > INT (X NY) + |NT(XUY)| 
IN~(X)| + IN (Y)| 2 IN (XY) +|N-(XUY)]. 

Proof: These inequalities can easily be checked by considering the contribu- 

tions of the different kind of neighbours of the sets X,Y, X NY and X UY 

(Exercise 7.1). Oo 

7.1.1 The Network Representation of a Directed Multigraph 

In many proofs and algorithms concerning directed multigraphs, it is con- 

venient to think of a directed multigraph as a (flow) network. Here we will 
formalize this and prove an elementary result which will be applied in later 

sections. 

Definition 7.1.4 Let D = (V,A) be a directed multigraph. The network 
representation of D, denoted N(D), is the following network: N(D) = 

(V,A',£ = 0,u) where A’ contains the arc ij precisely when D contains at 

least one arc from i to j. For every arc ij € A’ ui; is equal to the number of 

arcs from i to j in D. See Figure 7.2. 

The next lemma shows a useful connection between arc-disjoint paths in 

D and flows in N(D). 

Lemma 7.1.5 Let D = (V, A) be a directed multigraph and let s,t be distinct 

vertices of V. Then X(s,t) equals the value of a maximum (s,t)-flow in N(D). 

Proof: Let P,,...,P, be a collection of pairwise arc-disjoint (s,t)-paths in 

D. These paths may use different copies of an arc between the same two 
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D N(D) 

Figure 7.2 A directed multigraph D and its network representation V/(D). Num- 
bers on arcs indicate capacity in N(D). 

vertices 7 and j, but, since the paths are arc-disjoint, in total they use no 

more than u;; copies of the arc 17. Hence we can construct a feasible (s, t)- 
flow of value r in N(D) just by sending one unit of flow along each of the 

paths P,,..., P,. Conversely, if z is any integral (s, t)-flow of value k in N(D) 

(recall Theorem 3.5.5), then by Theorem 3.3.1, x can be decomposed into k 

(s,t)-path-flows f(P,),...,f(P,) of value 1 (those that have a higher value 

r > 1 can be replaced by r (s,t)-path-flows of value 1 along the same path) 

and some cycle flows. By the capacity constraint on the arcs, at most u;; of 

these path flows use the arc 77. Hence we can replace the arcs used by each 

f(P;) by arcs in D in such a way that we obtain k arc-disjoint (s,t)-paths in 
D. This completes the proof of the lemma. oO 

7.2 Ear Decompositions 

In this section we study the structure of strongly connected digraphs by 

introducing the concept of an ear decomposition (see Figure 7.3) and derive 

a number of interesting results from this definition. Among other things, we 

reprove some of the results from Chapter 1. 

Definition 7.2.1 An ear decomposition of a directed multigraph D = 

(V, A) is a sequence € = {Po,P,,Po,..., Pr}, where Po is a cycle! and each 
P; is a path, or a cycle with the following properties: 

(a) P, and P; are arc-disjoint when 1 # j. 

1 Some authors take Pp to be just a vertex, but it is easy to see that the two 

definitions are equivalent for strong directed multigraphs with at least one arc. 
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(b) For each i = 1,...t: If P; is a cycle, then it has precisely one vertex 

in common with V(D;-1). Otherwise the end-vertices of P; are distinct 

vertices of V(Dj-1) and no other verter of P; belongs to V(Di-1)- Here 

D; denotes the digraph with vertices Uj=o V(P;) and arcs Uj-o A(P;). 

(c) Uso A(R;) = 4. 
Each P;, 0 < i < t is called an ear of €. The number of ears in E 4s 

the number t +1. An ear P; is trivial if |A(P;)| = 1. All other ears are 

non-trivial. 

Figure 7.3 An ear decomposition € = {Po,Pi,..., Pe} of a digraph. The num- 
ber on each arc indicates the number of the ear to which it belongs. The ears 
Po, Pi, P2, P3 are non-trivial and the ears P4, Ps, Pe are trivial. 

Theorem 7.2.2 A directed multigraph is strong if and only if it has an ear 

decomposition. Furthermore, if D is strong, then for every vertex v, every 

cycle C containing v can be used as starting cycle Po for an ear decomposition 

of D. 

Proof: We may assume that |V(D)| > 3 since otherwise the claim is trivial. 

Suppose first that D has an ear decomposition € = {Po, Pi, Po,..., Pi}. Note 

that the digraph Po is strong. Now it is easy to prove, by induction on the 

number of ears in €, that D is strong. If D; is strong, then D;+, is also strong 

since it is obtained by adding a path with two end-vertices x, y in D; and all 

other vertices outside of V (Dj). 

Conversely, assume that D is strong and let v be an arbitrary vertex in 

V(D). Since |V(D)| > 3 and D is strong, there is some cycle C = uju2... Ur, 
where u; = u, = v, through v. Let Po := C, 1 := 0 and execute phase 1 and 

2 below: 
Phase 1: 

1. If every vertex of V(D) is in V(D;), then go to Phase 2. 
2. Let i := i+ 1 and let u be a vertex not in V(D;_1) such that there is 

some arc zu from V(Dj;_1) to u. 
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3. Let P; be a shortest path from u to V(Dj_1). 

4. Take xP; as the next ear and repeat Phase 1. 

Phase 2: 

1. For each remaining arc vw of D which was not included in A(D,) (i is 
the counter above) do the following: 

2. Let 7 :=7+ 1 and let P; = vw (that is, include all these arcs as trivial 
ears). 

To see that the algorithm above finds an ear decomposition of D, it suffices 

to check that we can always find an arc ru and a path from u to V(D;) as 

claimed in Phase 1. This follows easily from the fact that D is strong. Oo 

There are several interesting consequences of Theorem 7.2.2 and its proof. 

Corollary 7.2.3 Every ear-decomposition of a strong digraph on n vertices 

and m arcs has m—1n+1 ears. 

Proof: Exercise 7.2. Oo 

Corollary 7.2.4 Every strong directed multigraph D on n vertices contains 

a spanning strong subgraph with at most 2n — 2 arcs. Furthermore, there are 

directed multigraphs for which every spanning strong subgraph has at least 

2n — 2 arcs. 

Proof: First observe that we can remove all trivial ears in any ear decomposi- 

tion of D without destroying strong connectivity. Thus it suffices to estimate 

the number of arcs in the non-trivial ears. Let € = Po, Py,..., Pr, Pr4i,..-, Pt 

be an ear decomposition of D where Po, P;,...,P, are the non-trivial ears. 

Let. P! be the path P; — V(D;_1). Since each P,;, i =1,2,...,r adds at least 

one new vertex, there can be no more than n—|V(Po)| of these. Each new ear 
P;, adds |V (P/)| + 1 new arcs and hence we can make the following estimate: 

|A(D-)| = |[V(Po)| + DIV (P| + Y) 
4=1 

: 

=|V(Po)l+r+ > (IV (Pi) 
i=!) 

=n+r 
<n+n-—|V(Pp)| 

< 2n -2, (7.4) 

where equality only holds if |V(Po)| = 2 and each P;, i = 1,2,...,r, has 
length 2. To see that the estimate 2n —2 is best possible, it suffices to consider 

the complete biorientation of a path on n vertices. 0 

_ Corollary 7.2.5 There is a linear algorithm to find an ear decomposition of 

a strong directed multigraph D. 
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Proof: This can be seen from the proof of Theorem 7.2.2. The proof itself is 

algorithmic and it is not too hard to see that if we use breadth first search 

(see Section 2.3.1) together with a suitable data structure to find the path 

from u to V(Dj-_1), then we can obtain a linear algorithm. Details are left to 

the interested reader as Exercise 7.21. O 

Corollary 7.2.6 It is an NP-complete problem to decide whether a given 

digraph D has an ear decomposition with at most r non-trivial ears. It 1s 

NP-complete to decide if a given digraph D has an ear decomposition with 

at most q arcs in the non-trivial ears. 

Proof: Note that in both cases the numbers r (respectively g) are assumed 

to be part of the input to the problem. A strong digraph D has an ear 

decomposition with only one non-trivial ear (respectively, precisely n arcs in 

the non-trivial ears) if and only if D has a Hamilton cycle. Hence both claims 

follow from Theorem 5.0.1. — Oo 

The next two Corollaries were proved in Chapter 1, but we reprove them 

here to illustrate an application of ear-decompositions. Recall that a bridge 

of an undirected graph G is an edge e such that G — e is not connected. 

Corollary 7.2.7 [637] A strong digraph D contains a spanning oriented sub- 

graph which is strong if and only if UG(D) has no bridge. 

Proof: If UG(D) has a bridge, zy, then D contains the 2-cycle ryz, since 

D is strong. Observe that no matter which of these two arcs we delete we 

obtain a non-strong digraph. Suppose conversely that UG(D) has no bridge. 

Consider again the proof of Theorem 7.2.2. If we can always choose the path 

from u to V(D;-1) in such a way that it does not end in z, or contains at 
least one inner vertex, then it follows from the fact that we use shortest paths 

that no ear P;, 1 > 1 contains a 2-cycle. In the remaining case, the only path 

from u to V(Dj_1) is the arc ux and hence the 2-cycle ruz is a bridge in 

UG(D). It remains to avoid using a 2-cycle as starting point (that is, as the 
cycle Po). This can be done, unless all cycles in D are 2-cycles. If this is the 

case then UG(D) is a tree and every edge of UG(D) is a bridge, contradicting 
the assumption. oO 

Corollary 7.2.8 [120] A mized graph M has a strong orientation if and only 
if M is‘strongly connected and has no bridge. 

Proof: This follows from Corollary 7.2.7, since we may associate with any 

mixed graph M = (V,A, E) the directed graph D one obtains by replacing 

each edge in M by a 2-cycle. Clearly deleting an arc of a 2-cycle in D corre- 

sponds to orienting the corresponding edge in M. QO 

Ear decompositions of undirected graphs can be similarly defined. These 
play an important role in many proofs on undirected graphs, in particular in 
Matching Theory; see e.g. the book by Lovdsz and Plummer [525]. 
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7.3 Menger’s Theorem 

The following theorem, due to Menger [562], is one of the most fundamental 
results in graph theory. 

Theorem 7.3.1 (Menger’s theorem) /562] Let D be a directed multigraph 
and let s,t € V(D) be a pair of distinct vertices. Then the following holds: 

(a) The maximum number of arc-disjoint (s,t)-paths equals the minimum 

number of arcs covering all (s,t)-paths and this minimum is attained for 

some (s,t)-cut (U,U). 

(b) If the arc st is not in A(D), then the mazimum number of internally 
disjoint (s,t)-paths equals the minimum number of vertices in an (s,t)- 
separator. 

Proof: First let us see that version (b) involving vertex disjoint paths can 
be easily derived from the arc-disjoint version (a). First recall that multiple 
arcs play no role in questions regarding (internally) vertex disjoint paths and 

hence we can assume that the directed multigraph in question is actually a 

digraph. Given a digraph D = (V,A) and u,v € V construct the digraph 

Dsr by the vertex splitting procedure (see Section 3.2.4). Now it is easy to 

check that arc-disjoint (us, v;)-paths in D’ correspond to internally disjoint 

(u,v)-paths in D (if an (us,v¢)-path in Ds contains the vertex 2; (x,) for 

some x # u,v, then it must also contain x, (z;)). Furthermore, for any set of 

é arcs that cover all (u;,v;)-paths in Dsr, there exists a set of @ arcs of the 

form w}w},..., ww with the same property and such a set corresponds to 
an (s,t)-separator X = {w!,...,w*} in D. Hence it suffices to prove (a). 

Because of the similarity between Menger’s theorem (in the form (a)) and 
the Max-flow Min-cut theorem (Theorem 3.5.3), it is not very surprising that 

we can prove Menger’s theorem in version (a) using Theorem 3.5.3. We did 
part of the work already in Section 7.1.1 where we showed that A(s, t) equals 
the value of a maximum (s, t)-flow in N(D). Similarly it is easy to see that 
every (s,t)-cut (U,U) in D corresponds to an (s,t)-cut (U,U) in N(D) of 
capacity |(U,U)| and conversely. Now (a) follows from Theorem 3.5.3. Oo 

As we shall see in Exercise 7.16, for networks where all capacities are 

integers, we can also derive the Max-flow Min-cut theorem from Menger’s 

theorem. 

In order to illustrate the use of submodularity in proofs concerning con- 

nectivity for digraphs we will give a second proof of Theorem 7.3.1 (a) due to 
Frank [260] (note that this proof requires no prerequisites other than Propo- 

sition 7.1.1): 

Second proof of Menger’s theorem part (a): 
Clearly the maximum number of arc-disjoint (s,t)-paths can be no more 

than the minimum size of an (s, t)-cut. 
The proof of the other direction is by induction on the number of arcs in 

 D. Let k denote the size of a minimum (s, t)-cut. The base case is when D has 
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precisely k arcs. Then these all go from s to ¢t and thus D has k arc-disjoint 

(s,t)-paths. Hence we can proceed to the induction step. Call a vertex set 

U tight if s € U,t g U and d*+(U) = k. If some arc zy does not leave any 

tight set, then we can remove it without creating an (s,t)-cut of size (k — 1) 

and the result follows by induction. Hence we can assume that every arc in 

D leaves a tight set. 

Claim: If X and Y are tight sets, then so are X NY and X UY. 

To see this we use the submodularity of d*. First note that each of X NY 

and X UY contains s and none of them contains t. Hence, by our assumption, 

they both have degree at least k in D. Now using (7.2) we conclude 

k+k=dt(X)+dt(Y) >dt(XUY)+dt(XNY)>k+h, (7.5) 

by the remark above. It follows that each of X UY and X NY is tight and 

the claim is proved. 
If every arc in D is of the from st, then we are done, so we may assume 

that D has an arc su where u # t. Let T be the union of all tight sets that do 

not contain u. Then T # 9, since the arc su leaves a tight set. By the claim, 

T is also tight. Now consider the set T U {u}. If there is no arc from u to 
V —T, then dt (TU {u}) < k-1, a contradiction since TU{u} contains s but 
not t. Hence there must be some v € V —T'—u such that uv € A(D). Now let 

D' be the digraph we obtain from D by replacing the two arcs su, uv by the 

arc sv. Suppose D’ contains an (s, t)-cut of size less than k. That means that 

some set X containing s but not t has out-degree at most k — 1 in D’. Since 

dp (X) > k it is easy to see that we must have s,v € X and u ¢ X. Hence 
d7,(X) = k and now we get a contradiction to the definition of T (since we 
know that v ¢ T). Thus every (s,t)-cut in D’ has size at least k. Since D’ 
has fewer arcs than D it follows by induction that D’ contains k arc-disjoint 

(s,t)-paths. At most one of these can use the new arc sv (in which case we 
can replace this arc by the two we deleted). Thus it follows that D also has 

k arc-disjoint (s,t)-paths. Oo 

Corollary 7.3.2 Let D = (V, A) be a directed multigraph. Then the following 
holds: 

(a) D is,k-arc-strong if and only if it contains k-arc-disjoint (s,t)-paths for 
every choice of distinct vertices s,t EV. 

(b) D is k-strong if and only if |V(D)| >k+1 and D contains k internally 
vertex disjoint (s,t)-paths for every choice of distinct vertices s,t € V. 

Proof: Recall that, by definition, a directed multigraph D = (V, A) is k-arc- 

strong if and only if D — A’ is strong for every A’ C A with |A'| < k—1. Now 
we see that (a) follows immediately from Theorem 7.3.1(a). To prove (b) we 
argue as follows: By definition (see Chapter 1) D is k-strong if and only if 
|V(D)| > k+1 and D — X is strong for every X C V such that |X| < k—-1. 
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Suppose that D has at least k + 1 vertices but is not k-strong. Then we can 

find a subset X C V of size at most k — 1 such that D — X is not strong. 

Let D,,...,D,, r > 2 be any acyclic ordering of the strong components in 

D—X. Taking s € V(D,) and t € V(D}) it follows that there is no arc from 
s tot and that X is an (s, t)-separator of size less than k. Now it follows from 

Theorem 7.3.1(b) that D does not contain k internally vertex disjoint paths 
from s to t. 

Suppose conversely that there exists s,t € V(D) such that there are no 

k internally disjoint (s,t)-paths in D. If there is no arc from s to t, then it 

follows from Theorem 7.3.1(b) that D contains an (s,t)-separator X of size 
less than k. Then D — X is not strong and, by definition, D is not k-strong. 

Hence we may assume that there is an arc st in D. Let r be the number of 

arcs from s to t in D (i.e. (s,t) = r). If r > k, then k of these arcs form 
the desired (s,t)-paths, so by our assumption on s,t we have r < k. Now 

consider the digraph D’ obtained from D by removing all arcs from s to t. In 

D’ there can be no k—r internally disjoint (s,t)-paths (since otherwise these 

together with the r arcs from s to t would give a collection of k internally 
disjoint (s,t)-paths). Thus, by Theorem 7.3.1(b), there exists a set X' C V 
of size less than k — r which forms an (s,t)-separator in D’. 

Let A,B denote a partition of V — X' in such a way thats Ee B,tE A 

and there is no arc from B to A in D’. Since |V| > k +1, at least one of the 
sets A, B contains more than one vertex. Without loss of generality we may 

assume that A contains a vertex v distinct from t. Now we see that X' U {t} 
is an (s,v)-separator of size less than kK -r +1 < k in D and there is no 
arc from s to v in D. Applying Theorem 7.3.1(b) to this pair we conclude as 

above that D is not k-strong. O 

Recall the numbers A’(D), «'(D) which were defined in (7.1). 

Corollary 7.3.3 Let D be a directed multigraph. The number X'(D) equals 
the mazimum number k for which D is k-arc-strong. The number k'(D) equals 
the mazimum number k for which k < |V|—1 and D is k-strong. Hence we 
have X'(D) = X(D) and k'(D) = K(D). Oo 

7.4 Application: Determining Arc- and Vertex-Strong 

Connectivity 

In applications it is often important to be able to calculate the degree of 

arc-strong or vertex-strong connectivity of a directed multigraph. We can re- 

duce the problem of finding Kp(z,y) to that of finding the local arc-strong 
connectivity from x, to y; in the digraph Dsr which we obtain by applying 

the vertex splitting procedure to D (see the proof of Theorem 7.3.2). Thus 

it is sufficient to consider arc-strong connectivity. It follows from Menger’s 



356 7. Global Connectivity 

theorem and Lemma 7.1.5 that A(D) can be found usingO(n”) flow calcula- 

tions. Namely, determine \(z, y) for all choices of x,y € V(D). However, as 

we shall see below we can actually find A(D) with just O(n) flow calculations. 

For a similar result see Exercise 7.7. 

Proposition 7.4.1 [654] For any directed multigraph D = (V, A) with V = 

{vU1,V2,---,Un} the arc-strong connectivity of D satisfies 

dD) = min {A(v1, v2), ---; A(Un—1, Un) A(Un; v1)}. 

Proof: Let k = \(D). By (7.1) and Corollary 7.3.3, A(D) is no more than the 

minimum of the numbers A(v1, v2), ---; A(Un—1, Un); A(Un, V1). Hence it suffices 

to prove that k = A(v;,i41) for some i = 1,2,...,n (where Un41 = vi). By 

Corollary 7.3.3 and Theorem 7.3.1, some X C V has out-degree k. If there is 

an index i < n —1 such that v; € X and vi41 € V — X, then, by Menger’s 

theorem, A(v;,vi41) < & and the claim follows. If no such index exists, then 

we must have X = {v,p,Ur4i,---,Un} for some 1 <r <n. Now we get by 

Menger’s theorem that A(vn,vi1) < k and the proof is complete. Oo 

Combining this with Lemma 7.1.5, we get the following result due to 

Schnorr [654]: 

Corollary 7.4.2 We can calculate the arc-strong connectivity of a directed 

multigraph by O(n) mazimum flow calculations in N(D). 0 

If D has no multiple arcs, then its network representation \V(D) has all 

capacities equal to 1 and it follows from Theorem 3.7.4 that we can find a 

maximum flow in N(D) in time O(n3m) and hence we can calculate \(D) 

in time O(n3m). 
Esfahanian and Hakimi [224] showed that the bound, n, on the number of 

max-flow calculations that is needed can be improved by a factor of at least 

2: 

Note that, if we are only interested in deciding whether \(D) > k for 
some value of k which is not too big compared to m, then it may be better 

to use the simple labelling algorithm of Ford and Fulkerson (see Chapter 3). 

In that case it is sufficient to check for flows of value at least k, which can be 

done with k flow-augmenting paths and hence in time O(km) per choice of 
source:and terminal. Thus the overall complexity of finding \(D) is O(knm) 
(see also the book by Even [229]). This can be improved slightly; see the 
paper [295] by Galil. For other connectivity algorithms based on flows, see 

e.g. [228, 232]. 
One may ask if there is a way of deciding whether a given directed multi- 

graph D is k-(arc)-strong without using flows. Extending work by Linial, 
Lovasz and Wigderson [515] (see also [523]), Cheriyan and Reif [150] gave 
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Monte-Carlo and Las Vegas” type algorithms for k-strong connectivity in di- 
graphs. Both algorithms in [150] are based on a characterization of k-strong 

digraphs via certain embeddings in the Euclidean space R‘~!. The algorithms 

are faster than the algorithms described above, but the price is the chance 

of an error (for the Monte Carlo algorithm), respectively only the expected 

running time can be given (for the Las Vegas Algorithm). We refer the reader 
to [150] for details. 

The currently fastest algorithm to determine the arc-strong connectivity 

uses matroid intersection (see Section 12.7 for the definition of the matroid 

intersection problem) and is due to Gabow [287]. This algorithm finds the arc- 
strong connectivity of a digraph D in time O(A(D)mlog (n?/m)). It is based 
on Edmonds’ branching theorem (Theorem 9.5.1). In Chapter 9 we discuss the 
relation between arc-strong connectivity and arc-disjoint branchings, which 

is used in Gabow’s algorithm. Gabow’s approach also works very efficiently 

for the case when we want to decide if \(D) > k for some number k. 
The currently fastest algorithm to determine k(D) is due to Henzinger, 

Rao and Gabow [422]. This algorithm is based on flows and combines ideas 
from [228, 232, 295, 398]. The complexity of the algorithm is O(min{«(D)? + 
n,k(D)n}m). 

For undirected graphs Ibaraki and Nagamochi [579] found a very elegant 
and effective way to calculate the edge-connectivity without using flow algo- 

rithms. We describe their method briefly below (see also [269, 580]). 
A maximum adjacency ordering of an undirected: graph G = (V, E) 

is an ordering v1,V2,...,Un of its vertices, satisfying the following property 

d(vi+1, Vi) 2 d(v;, Vi) for 1 = Dainty t Si) < nN, (7.6) 

where V; = {v1,v2,...,v;} and d(X,Y) denotes the number of edges with 

one end in X —Y and the other in Y — X. 

Theorem 7.4.3 [579] 

(a) Given any undirected graph G on n vertices, one can find a maximum 
adjacency ordering of G starting at a prescribed vertex v, in time O(n + 

m). 
(b) For every mazimum adjacency ordering V1,V2,-.-,Un of G we have 

Corollary 7.4.4 [579] There is an O(nm + n”) algorithm to determine the 
edge-connectivity of a graph with n vertices and m edges. 

2 A Monte-Carlo algorithm always terminates, but may make an error with some 
small probability, whereas a Las Vegas algorithm may (with some small proba- 
bility) never terminate, but if it does, then the answer it provides is correct; see 
the book [134] by Brassard and Bratley. 
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Proof: This is an easy consequence of (b) and the fact that for every choice 

of z,y € V(G): 

A(G) = min{A(z, y), A(G/{z, y})}, (7.7) 

where G/{z,y} is the graph we obtain from G by contracting the set {z, y}. 
The equality (7.7) follows from the fact that \(G) equals the size of a mini- 
mum cut (X,V — X) in G. If this cut separates x,y, then A(G) = A(z, y) by 
Menger’s theorem, and otherwise X is still a cut in G/{z,y}, implying that 

A(G) = A(G/{z, y}) (contractions do not decrease edge-connectivity). Hence 
we can start from an arbitrary maximum adjacency ordering v),v2,..-,Un- 

This gives us A(Un—1, Un). Save this number, contract {vn_1, vn} and continue 

with a maximum adjacency ordering of G/{vun_i, Un}. The edge-connectivity 

of G is the minimum of the numbers saved. We leave the remaining details 

to the interested reader (see also the paper [581] by Nagamochi and Ibaraki). 
O 

D D/{zx,y} 

Figure 7.4 A digraph D with \(D) = 0, A(z, y) = 2 and (D/{z, y}) = 1. 

It is an interesting open problem whether some similar kind of ordering 
can be used to find the arc-strong connectivity of a directed multigraph. 
Note that (7.7) does not hold for arbitrary directed multigraphs. To see this 
consider Figure 7.4. 

7.5 The Splitting off Operation 

In Frank’s proof of Menger’s theorem in Section 7.3, we saw how one could ap- 
ply the idea of replacing two arcs incident to some vertex by one and thereby 
apply induction. In this section we shall see yet another indication that this 
type of operation can be very useful. We consider a directed multigraph D 
with a special vertex s. We always assume that 

d}(s) = dp(s). (7.8) 
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To emphasize that s is a special vertex we specify D as D = (V + 8, A) or 

D = (V + s,E UF) where F is the set of arcs with one end-vertex in s. 

Furthermore we will assume that the local arc-strong connectivity between 

every pair x,y of vertices in V is at least k. By Menger’s theorem this is 

equivalent to 

d*({U),d-(U)>k forall @AU CY. (7.9) 

Whenever a digraph D = (V + s, A) satisfies (7.9) for some k we say that 
D is k-arc-strong in V. 

We consider the operation of replacing a pair (us, sv) of arcs incident with 

s by one new arc uv. The operation of performing this replacement is called 

splitting off or just splitting the pair (us,sv) and the resulting directed 
multigraph is denoted by D,,,. The splitting of a pair (ws, sv) is admissible 

if (7.9) holds in D,,,. If this is the case we will also say that the pair (us, sv) 
is an admissible pair (or an admissible splitting). 

A set @ #4 X C V is k-in-critical (k-out-critical) if d~(X) = k 
(d*(X) = k). When we do not want to specify whether X is k-in-critical 

or k-out-critical, we say that X is k-critical. 

The following useful lemma is due to Frank: 

Lemma 7.5.1 /258] If X and Y are intersecting k-critical sets then one of 

the following holds: 

(a) X UY is k-critical, 
(b) Y —X is k-critical and d(X NY,V +s—(XUY)) =0. 

Proof: We consider three cases: 
Case 1: X UY $ V and X,Y are either both k-out-critical or both 

k-in-critical. 
Assume that X,Y are both k-out-critical. It follows from (7.9) that 

d+(X UY),d+(X NY) > k. Using the submodularity of dp, we obtain: 

k+k=d*(X)+d'(Y) 

> d*(X UY) +d*(XnY) 

>k+k, (7.10) 

and from this we get that X UY is k-critical and hence (a) holds. The same 

conclusion is reached if X,Y are both k-in-critical. 

Case 2: X UY = V and X,Y are either both k-out-critical or both 

k-in-critical. 

We will assume that X,Y are both k-out-critical, the proof is analogous in 

the other case. Let S = V+s—X andT = V+s—Y. Then d-(S) =d-(T) =k 

and SNT = {s}. Since S-T = Y —X and T-—S = X —Y we get from (7.9) 

that d~(S —T),d~(T —S) > k. Since d~(s) = d*(s), we can apply (7.3) and 

obtain: 
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k+k=d (S)+d (T) 

=d-(S—T)+d-(T-S)+d(SNT,V +s—(SUT)) 

>k+k+d(V —-S,T), laava 

from which we see that Y —X = S—T is k-in-critical and that d(SNT, V +s— 

(SUT)) = 0. Since XNY =V+s—(SUT) and V+s—(XUY) = {s} = SOT 

we also see that d(X NY,V +s —(X UY)) =0. Thus (b) holds. 

Case 3: One of X,Y is k-in-critical and the other is k-out-critical. 

We consider the case when X is k-in-critical and Y is k-out-critical, the 

other case is analogous. Let Z = V+s—X. Then we have dt (Y) = d*(Z) =k, 

YNZ =Y—X and YUZ = V+s—(X-Y). Hence dt(YNZ) =d*(Y-X) >k 
and d+(Y UZ) =d-(V+s—(YUZ)) =d (X —Y) > k. Now we can apply 
(7.2) and we get . 

k+k=d*t(Y)+d*(Z) 
=d+(YnNZ)+d*t(YUZ)+d(¥,Z) 
>kt+k+d(Y,Z), (7.12) 

implying that d™(Y — X) = d'*(Y NZ) = k and that d(Y, Z) = 0. Since 
Z-Y=V+s—-(XUY) and Y —-Z=XNY, the last equality shows that 
d(x NY,V +s—(X UY)) =0. Thus (b) holds. Oo 

We are now ready to prove the following important result by Mader. 

Theorem 7.5.2 (Mader’s directed splitting theorem) /537] Suppose 

that D = (V +s, EUF) satisfies (7.9) and that d*(s) = d~(s). Then for 
every arc sv there is an arc us such that the pair (us, sv) is an admissible 

splitting. 

Proof: The proof we give is due to Frank [258]. First note that a pair (us, sv) 
can be split off preserving (7.9) if and only if there is no k-critical set which 
contains both u and v. Hence if there is no k-critical set containing v, then 

we are done. If X and Y are intersecting k-critical sets containing v, then 

only alternative (i) can hold in Lemma 7.5.1, because the existence of the 
arc su implies that d(V +s —(X UY), X NY) > 1. Hence the union T of all 
k-critical sets containing v is also k-critical. If we can find an in-neighbour u 

of s in V —T’,, then we are done, since by the choice of T’, there is no k-critical 

set which contains u and v. So suppose that all in-neighbours of s are in T. 

If T is k-out-critical then 

ds (Vi EY) dP ead (Ton) (6) Vn) 

< k —(d-(s) —d*(s) +1) 
=k-1, 
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since s has no in-neighbour in V — T and sv is an arc from s to T’ (we also 
used d~(s) = d*(s)). This contradicts (7.9) so we cannot have that T' is 
k-out-critical. But if T is k-in-critical, then 

GV —T)=d ss) =d-(1) = dar) at (Vv —7 38) 

<K—al-0 < k; 

a contradiction again. Hence we have shown that (us, sv) is an admissible 
pair and the proof is complete. oO 

Ss 

Figure 7.5 A digraph D = (V + 8, A) which is 2-arc-strong in V and has no 
admissible splitting at s. Note that d-(s) = 2 #1=dt(s). 

Note that the assumption that d~(s) = d*(s) in Theorem 7.5.2 cannot 
be removed. Figure 7.5 shows an example of a digraph D = (V + s, A) with 
no admissible splitting at s. 

Corollary 7.5.3 Suppose that D = (V +s,E+ F) satisfies (7.9) and that 
d*(s) = d~(s). Then there exists a pairing ((u1S, $v1),..-,(UrS, 8Ur)), T = 
d~(s), of the arcs entering s with the arcs leaving s such that replacing all 

arcs incident with s by the arcs u,v1,...,Urv,r and then deleting s, we obtain 

a k-arc-strong directed multigraph D'. Oo 

See Figure 7.6 for an example of a complete splitting in a digraph. 

Frank and Jackson showed that for eulerian directed multigraphs one can 

get a stronger result. Namely, it is possible to split off all arcs incident with 

the special vertex s in such a way that all local arc-strong connectivities 

within V are preserved. 

Theorem 7.5.4 /257, 451] Let D = (V + s,A) be an eulerian directed 
multigraph. Then for every arc us € A there exists an arc sv € A such that 

ADu» (x, y) = Ap(z, y) for all ZY S Ve O 
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Figure 7.6 A digraph D = (V +s,A) which is 2-arc-strong in V. A complete 
splitting of the arcs is shown in the right figure after removal of s. The set X shows 
that we cannot split off both of the pairs (as, sb), (cs, sa), since that would leave X 
with out-degree one. 

A similar result concerning local connectivity preserving splittings holds 

for general undirected graphs. This very powerful result was proved by Mader 

[536]. Such a similarity between eulerian digraphs and general undirected 
graphs with respect to certain properties seems to be quite common. To 

say it popularly: Eulerian digraphs often behave like undirected graphs. For 

another example of this phenomenon see Section 9.7.2. 

Bang-Jensen, Frank and Jackson showed that it is possible to give a com- 

mon generalization of Theorem 7.5.4 and Mader’s directed splitting theorem 

(Theorem 7.5.2) to mixed graphs. Since the statement of this result is rather 

technical, we refer the interested reader to the paper [53]. 
It was pointed out by Enni in [218] that Theorem 7.5.4 cannot be extended 

to arbitrary digraphs, not even if one only wants to preserve the minimum 

of A(z, y) and A(y, xz). For two other generalizations of Theorem 7.5.2 see the 
papers [684] by Su and [288] by Gabow and Jordan. 

7.6 Increasing the Arc-Strong Connectivity Optimally 

We will consider the following problem. Given a directed multigraph D = 

(V, E) which is not k-arc-strong, find a minimum cardinality set of new arcs 

F to add to D such that the resulting directed multigraph D'’ = (V,EU 
F) is k-arc-strong. This D' is called an optimal augmentation of D. We 
will present a solution to this problem due to Frank [258]. Frank solved the 
problem by supplying a min-max formula for the minimum number of new 
arcs as well as a polynomial algorithm to find such a minimum set of new 
arcs. First let us make the simple observation that such a set F indeed exists, 
since we may just add k parallel arcs in both directions between a fixed vertex 
v € V and all other vertices in V (it is easy to see that the resulting directed 
multigraph will be k-arc-strong). 
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Definition 7.6.1 Let D = (V,A) be a directed multigraph. Then y4(D) is 
the smallest integer y such that 

>) (k-d7(Xi)) <7 and 
Xi EF 

>, dt (X) <% 
Xi€F 

for every subpartition F = {X,...,X+} of V. 

We call y,(D) the subpartition lower bound for arc-strong con- 
nectivity. By Menger’s theorem, D is k-arc-strong if and only if y,(D) < 0. 

Indeed, if D is k-arc-strong, then dt(X),d~(X) > k holds for all proper 

subsets of V and hence we see that +,,(D) < 0. Conversely, if D is not k-arc- 

strong, then let X be aset with d~(X) < k. Take F = {X}, then we see that 

yn(D) > k—d-(X) > 0. 

Lemma 7.6.2 /258] Let D = (V,A) be a directed multigraph and let k be 
a positive integer such that y,(D) > 0. Then D can be extended to a new 

directed multigraph D' = (V +s, AUF), where F consists of y~(D) ares 
whose head is s and yx(D) arcs of whose tail is s such that (7.9) holds in D'. 

Proof: We will show that, starting from D, it is possible to add y,(D) arcs 
from V to s so that the resulting graph satisfies 

di (Xie ator alls. G4 (7.13) 

Then it will follow analogously (by considering the converse of D) that it is 

also possible to add y,(D) new arcs from s to V so that the resulting graph 

satisfies 

d-(X)>k forall OA XCV. (7.14) 

First add k parallel arcs from v to s for every v € V. This will certainly 

make the resulting directed multigraph satisfy (7.13). Now delete as many 
new arcs as possible until removing any further arc would result in a digraph 

where (7.13) no longer holds (that is, every remaining new arc vs leaves a 
k-out-critical set). Let D denote the current directed multigraph after this 

deletion phase and let S be the set of vertices v which have an arc to s in 

D. Let F = {X1,...,X,} be a family of k-out-critical sets such that every 

uv € S is contained in some member X; of F and assume that F has as few 

members as possible with respect to this property. Clearly this choice implies 

that either F is a subpartition of V, or there is a pair of intersecting sets 

X. iy ox j mF: 
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Case 1: F is a subpartition of V. 

Then we have 

t=1 

=) (dp(X) + dp (Xi, 8)) 
ail 

=) dh(Xi) + d5V(s), 
—/ 

implying that d=(s) = yo (k — d§(Xi)) < ve(D), by the definition of 

yn (D). 

Case 2: Some pair X;, X; € F is intersecting. 

If X;,Xj are crossing, then the submodularity of dz and (7.9) imply 

that X;U X; is also k-out-critical and hence we could replace the two sets 

X;,Xj; by the set X;U X; in F, contradicting the choice of F. Hence we 

must have X;U X; = V and F = {X1, X2}, where without loss of generality 

sip 0745 Let X = V —X = X,-—X, and Y = V,— X2 = X, — X_. Then 

dp (X) = dp (41) and dp (VY) = dj,(X2) and hence we get 

yn(D) > (k — dp(X)) + (k - dp(Y)) 
= k—d5(X1) +k — d}(X) 
> k — dp (X1) +k — d5(X2) + d5(s) 

= d,,(s), 

since X,, X2 are k-out-critical in D. Thus d=(s) < ye(D) as claimed. 0 

Theorem 7.6.3 (Frank’s arc-strong connectivity augmentation the- 

orem) /258] Let D = (V,A) be a digraph and k a natural number such that 
y~(D) > 0. The minimum number of new arcs that must be added to D in 

order to give a k-arc-strong digraph D' = (V, AU F) equals y;,(D). 

Proof: To see that we must use at least y,(D) arcs, it suffices to observe 

that if X and Y are disjoint sets then no new arc can increase the out-degree 

(in-degree) of both sets. Hence a subpartition ¥ realizing the value of yx in 

Definition 7.6.1 is a certificate that we must use at least y,(D) new arcs. 

To prove the other direction we use Mader’s splitting theorem and Lemma 

7.6.2. According to this lemma we can extend D to a new digraph D by adding 

a new vertex s and y,(D) arcs from V to s and from s to V. Note that we 

may not need 7,(D) arcs in both directions, but we will need it in one of 

the directions by our remark in the beginning of the proof. In the case where 
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fewer arcs are needed, say from V to s we add arbitrary arcs from V to s so 
that the resulting number becomes 7;(D). 

Now it follows from Corollary 7.5.3 that all arcs incident with s can be 
split off without violating (7.9). This means that, if we remove s, then the 

resulting graph D’ is k-arc-strong. Oo 

See Figure 7.7 for an example illustrating the theorem. 

ee NEN, 
D D' 

=) 

Figure 7.7 A digraph D with y2(D) = 5. The big circles indicate a subpartition 
which realizes y2(D). The right part of the figure shows an optimal 2-arc-strong 
augmentation D’ of D obtained by adding 5 new arcs. Compare this with Figure 
7.6. Here the digraph in the right part is the same as the augmented digraph D’. 

The reader may have noticed that in the proof of Lemma 7.6.2, we never 

used exactly how we obtained the minimal set of arcs from V to s so that 

(7.13) held. The proof is valid for every such set of arcs that is minimal 

with respect to deletion of arcs. This means in particular that we can use 

a greedy approach to find such a set of arcs starting from the configuration 

with k parallel arcs from every vertex v € V to s. This gives rise to the fol- 

lowing algorithm, by Frank [258], for augmenting the arc-strong connectivity 

optimally to k for any digraph D which is not already k-arc-strong: 

Frank’s arc-strong connectivity augmentation algorithm 

Input: A directed multigraph D = (V, A) and a natural number k such that 

Vk (D) > 0: 

Output: A k-arc-strong optimal augmentation D* of D. 

1. Let v1, v2...,Un be a fixed ordering of V and let s be a new vertex. 

2. Add k parallel arcs from v; to s and from s to v; for each 1 = 1,2,...,n. 

3. Starting from i := 1, remove as many arcs from v; to s as possible without 

violating (7.13); If i < nm then let i :=1-+ 1 and repeat this step; 

Let y—~ denote the number of remaining arcs from V to s in the resulting 

digraph. 
4. Starting from i := 1, remove as many arcs from s to v; as possible without 

violating (7.14); If 1 <n then i :=17+ 1 and repeat this step; 
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Let y+ denote the number of remaining arcs from s to V in the resulting 

digraph. 
5. Let y = max{y~, 7}. If y~ < yt, then add yt — y~ arcs from v, to 5; 

If y+ <y~, then add y~ — * arcs from s to v1. 
6. Let D’ denote the current digraph. In D’ we have dj,(s) = dp,(s) and 

(7.9) holds. Split off all arcs incident with s in D’ by applying Theorem 
7.5.2 7 times. Let D* denote the resulting directed multigraph. 

7. Return D*. 

Using flows this algorithm can be implemented as a polynomial algorithm 

for augmenting the arc-strong connectivity of a given digraph [258]. See Ex- 
ercises 7.28 and 7.30. 

Frank [258] pointed out that his algorithm also works for the so-called 

vertex-weighted arc-strong connectivity augmentation problem. 

Here there are weights c(v) on the vertices and the cost of adding an arc 

from u to v is equal to c(u) + c(v). The only change needed in the al- 
gorithm above is that now the ordering of the vertices should be so that 

c(v1) < c(v2) < ... < c(vn). The reason why this greedy approach works 

is outlined in [258] and comes from the fact that a certain polymatroidal 
structure is present [258, 274]. 

If instead we allow weights on the arcs and ask for a minimum weight 

(rather than just minimum cardinality) set of new arcs to add to D in order 

to obtain a k-arc-strong digraph D’, then we have the weighted arc-strong 

connectivity augmentation problem. 

Theorem 7.6.4 The weighted arc-strong connectivity augmentation problem 

is NP-hard. 

Proof: We show that the Hamilton cycle problem can be reduced to the 

weighted arc-strong connectivity augmentation problem in polynomial time. 
This will imply the claim by Theorem 5.0.1. 

Let D = (V,A) be a digraph on n vertices V = {1,2,...,n}. Define 
o 

weights c(ij) on the arcs of the complete digraph K,, with vertex set V as 
follows: 

ses 1 ifijeA 
ctl) as fe if ij ¢ A. cen 

Let-Do = (V,@) (that is, the digraph on V with no arcs). Since every vertex 
of a strong digraph is the tail of at least one arc, we need at least n arcs to 
make Do strong. Now it is easy to see that Do can be made strongly connected 
using arcs with total weight at most n if and only if D has a Hamilton cycle. 
Thus we have reduced the Hamilton cycle problem to the weighted arc-strong 
connectivity augmentation problem. Clearly our reduction can be carried out 
in polynomial time. Oo 
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We complete this section with an interesting result by Cheng and Jordan. 
It implies that the so-called successive augmentation property holds for 
arc-strong connectivity. 

Theorem 7.6.5 /148] Let D be a directed multigraph with \(D) = €. Then 
there exists an infinite sequence D = Do, D,,D2,... of directed multigraphs 
such that, for every i > 0, Di41 is a superdigraph of D;, V(Di) = V(D) and 
Dj; is an optimal (+ %)-arc-strong augmentation of D. Oo 

It is shown by an example in [148] that a similar property does not hold 
for the vertex-strong connectivity augmentation problem which we consider 
below. 

7.7 Increasing the Vertex-Strong Connectivity 
Optimally 

We now turn to the vertex-strong connectivity augmentation problem: 

given a digraph D = (V, A) on at least k +1 vertices, find a smallest set F 

of new arcs for which D’ = (V, AU F) is k-strong. 

Note that when it comes to studying vertex-strong connectivity, multiple 

arcs play no role and hence we shall always consider digraphs (knowing that 

our results extend to directed multigraphs). In particular, in this section 

d},(v) =|Np(v)| for any vertex v in a digraph D. 
Let us first observe that, even if we do not allow multiple arcs, we cannot 

bound the number of arcs we need to add to make a digraph D k-strong 

by some function of y,(D) (recall Definition 7.6.1). To see this, it suffices 
to note that there are k-arc-strong digraphs which are not k-strong and one 

can construct such digraphs where the number of new arcs one needs to add 

in order to obtain a k-strong superdigraph is arbitrarily high (see Exercise 

Gal). 

Suppose X is a set of vertices in a digraph D such that Nt[X] 4 V 
and |N*(X)| < k (recall that N*[X] = X UN*(X)). Then it follows from 
Menger’s theorem that D is not k-strong because the set N+(X) separates 
every vertex in X from every vertex in V — Nt[X]. Furthermore, in order 

to obtain a k-strong digraph by adding arcs to D we must add at least 
k —|N*t(X)| new arcs with tail in X and head in V — X. 

Similarly to the definition of y,(D) in Definition 7.6.1 we can define 7; (D) 

as follows: 

Definition 7.7.1 Let D = (V,A) be a directed graph. Then y;,(D) is the 

smallest integer y such that 
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Do (R= IN-(X))) <7 and 
YEA E 

> (k= INT (X))) $1, 
XEFt 

for every choice of subpartitions F~,Ft of V with the property that every 

X €F- satisfies N~[X] #4 V and every X € Ft satisfies N*[X] AV. 

As with arc-strong connectivity it is not hard to see that y;(D) is a lower 

bound for the number of new arcs we must add to D to obtain a k-strong 

digraph. This follows from the fact that the sets in F~ are disjoint and hence 

no new arc can increase the in-neighbourhoods (out-neighbourhoods) of two 
sets from F- (Ft). We call the number yj(D) the subpartition lower 
bound for vertex-strong connectivity. 

Let ax(D) denote the minimum number of new arcs that must be added 
to a digraph D = (V, A) in order to obtain a k-strong digraph. It is easy to 
see that a,(D) is well-defined provided that D has at least k+1 vertices. We 
also call a,(D) the k-strong augmentation number of D. 

7.7.1 One-Way Pairs 

First we point out that for vertex-strong connectivity augmentation, the sub- 

partition lower bound is no longer sufficient, that is, it may not be possible to 

make D k-strong by adding y;(D) arcs. An example illustrating this is given 

in Figure 7.8(a). Here k = 2 and it is not difficult to check that y;(D) = 2. 
However, it is not possible to make D 2-strong by adding just two new arcs. 

In order to explain this, we need a few new definitions. Let X,Y be disjoint 

non-empty proper subsets of V. The ordered pair (X,Y) is a one-way pair 

in D = (V, A) if D has no arc with tail in X and head in Y (that is, YX). 
This definition is due to Frank and Jordan [272]. For such a pair (X,Y) we 
refer to X (Y) as the tail (head) of the pair. Let h(X,Y) = |V—X—Y|. The 
deficiency of a one-way pair (X,Y) with respect to k-strong connectivity is 

ne(X,Y) = max{0, k — h(X,Y)}. (7.16) 

For instance, if N+[X] # V then the pair (X, V — N+[X]) is a one-way 
pair with deficiency n,(X,V — Nt[X]) = max{0,k — |N*+(X)|}. One-way 
pairs are closely related to k-strong connectivity. 

Lemma 7.7.2 [272] A digraph D = (V, A) is k-strong if and only if we have 
h(X,Y) > k for every one-way pair (X,Y) in D. 

Proof: Suppose first that D is k-strong. By Corollary 7.3.2, there are k 
internally disjoint (s,t)-paths for every choice of distinct vertices s,t € V. 
Now let (X,Y) be a one-way pair and take s € X,t € Y. For every collection 
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Figure 7.8 An example, due to Jordan [468, Figure 3.9.1], showing that the subpar- 
tition lower bound is not always attainable. The desired connectivity is k = 2 and 
the value 72(D) is 2 and it is realized by the subpartitions {{d}, {e}}, {{a}, {f}}, 
respectively (see (a)). Part (b) shows three pairwise independent one-way pairs 
(T,, H1), (T2, H2), (T3, H3) (tails are indicated by boxes). This shows that a2(D) > 
3. In fact a2(D) = 3, since adding the arcs af, ed, da will result in a 2-strong digraph. 

of the k internally disjoint paths from s to t, each such path must use a vertex 

in V —X —Y and hence h(X,Y) > k. Conversely, assume that h(X,Y) >k 

for every one-way pair (X,Y). Let S be a minimal separator of D. By the 

definition of a separator, V — S can be divided into two sets X,Y so that 

there is no arc from X to Y in D—S (namely let s,t be separated by S$ 

and let X denote those vertices that can be reached from s in D — S and 

Y =V —X —S). Thus (X,Y) is a one-way pair and h(X, Y) = |S| showing 
that |S| > k and hence D is k-strong. Oo 

Two one-way pairs (X,Y), (X', Y') are independent if either their heads 

or their tails are disjoint. Hence one-way pairs that contribute to the sums in 

Definition 7.7.1 are always independent since either all heads or all tails are 

disjoint for those pairs. As we saw in Figure 7.8, the sum of deficiencies over 

one way pairs for which either all tails are disjoint or all heads are disjoint 

does not always provide the right lower bound for the number of new arcs 

needed in order to make the digraph k-strong. 

By Lemma 7.7.2, in order to obtain a k-strong superdigraph of D, we 

must add enough new arcs to eliminate all one-way pairs with nx(X,Y) > 0 
(we must add at least n,(X,Y) arcs from X to Y). Clearly, if (X,Y), (X’, Y') 

are independent one-way pairs, then no new edge can decrease both nx (X, Y) 

and n,x(X', Y'). This shows that, if F is any family of pairwise independent 

one-way pairs in D, then we must add at least 

(Ce. Eee (7.17) 
(X,Y)EF 

new arcs to D in order to obtain a k-strong digraph. We call the number 7;,(F) 
the deficiency of ¥. Now consider Figure 7.8(b). Here we have indicated one- 

way pairs (T;, H;), i = 1, 2,3. These are pairwise independent and have total 
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deficiency 3. Thus it follows from our arguments above that we need at least 

3 new arcs to make D k-strong. In fact 3 arcs are sufficient in this case as 

pointed out in the caption of the figure. 

7.7.2 Optimal k-Strong Augmentation 

The following theorem, due to Frank and Jordan, shows that the maximum 

deficiency over families of independent one-way pairs gives the right lower 

bound for the vertex-strong connectivity augmentation problem. 

Theorem 7.7.3 (The Frank-Jordan vertex-strong connectivity aug- 

mentation theorem) /272] For every digraph D on at least k + 1 vertices 

we have 

ax(D) = max{np(F) : F is a family of independent one-way pairs in D}. 
(7.18) 

In Section 7.8 we will show how to derive Theorem 7.7.3 from a more 

general result concerning a generalization of arc-connectivity augmentation. 

Theorem 7.7.4 [272] There exists a polynomial algorithm which, given a 

digraph D = (V, A) and a natural number k, finds a minimum cardinality set 

F of new arcs to add to D so that the resulting graph is k-strong. Oo 

This algorithm relies on Theorem 7.7.3 and the ellipsoid method*and 

hence it is not a combinatorial algorithm. In [273] a combinatorial polynomial 

algorithm was found for fixed k. It is beyond the scope of this book to describe 

any of these algorithms here. The combinatorial algorithm in [273] relies on 

a detailed study of the structure of one-way pairs. We refer to the proof of 

Lemma 7.10.6 for an example of a proof that uses the structure of one-way 

pairs. 

Although we may have a,(D) > y;(D) as we saw in Figure 7.8, Frank 
and Jordan proved (see below) that the difference cannot be arbitrary large. 

A family F of independent one-way pairs is subpartition-type if either all 

the tails in F are pairwise disjoint, or all the heads in F are pairwise disjoint. 

It is easy to see that if F is subpartition-type, then n.(F) < y;(D). 

Proposition 7.7.5 [273] For any digraph D = (V,A) and any target con- 

nectivity k there exists a family F of independent one-way pairs such that the 

deficiency, nx(F), of F equals a,(D) and F is either subpartition-type or the 

disjoint union of two families of subpartition-type. Thus ax(D) < 2y;(D). 

The next result shows that if we need to add many arcs to D (in terms 

of k) to make it k-strong, then the subpartition lower bound is attainable. 

3 For a thorough treatment of the ellipsoid method and its consequences for Com- 
binatorial Optimization, see the book [339] by Grétschel, Lovdsz and Schrijver. 
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Proposition 7.7.6 [273] If F is a family of independent one-way pairs and 

n(F) > 2k? —1, then F is subpartition-type. Hence if a,(D) > 2k? —1, then 

7 (D) = ax(D). 

Now let us consider the special case of the vertex-strong connectivity 

augmentation problem when we want to increase «(D) from k tok +1. The 
following result is due to Frank and Jordan: 

Theorem 7.7.7 [273] If K(D) =k and ax41(D) > 2k + 2, then ag41(D) = 

Vel (D). 

Frank and Jordan also showed that when we augment the connectivity by 

just one, then we can restrict the structure of the set of new arcs. 

Theorem 7.7.8 [272] If k(D) =k, then D can be optimally augmented to 

a (k+1)-strong digraph by adding disjoint cycles and paths. In particular if 

D is a k-strong and k-regular digraph, then there are disjoint cycles covering 

V whose addition to D gives a (k + 1)-strong and (k + 1)-regular digraph. 

It is instructive to compare this result with Theorem 7.10.7. 

Recently, Frank has shown that the problem of augmenting the connec- 

tivity by one can be solved in polynomial time without using the ellipsoid 

method. 

Theorem 7.7.9 [266] There exists a combinatorial polynomial algorithm for 

increasing the vertez-strong connectivity of a digraph by one. 

7.7.3 Special Classes of Digraphs 

For general digraphs one cannot say much about the structure of families 

of independent one-way pairs, but as we are going to see, there are (non- 

trivial) classes of digraphs for which nice structure can be found and hence 

a good estimate on the value of a,(D) can be given. The first result, due to 

Masuzawa, Hagihara and Tokura, deals with in-branchings. 

Theorem 7.7.10 /555] Let B = (V,A) be an in-branching. Then ax(B) is 

given by 

Gp(.B) = SS max{0,k — dt (v)}. 
veEV 

O 

The proof of this result in [555] is long, but Frank and Jordan found a short 
proof based on Theorem 7.7.3, see [273]. 

For an arbitrary digraph we define n,~,7«* by 



372 7. Global Connectivity 

ny (D) = )_ max{0,k — d~(v)}, (7.19) 
vEV 

nt (D) = }_ max{0,k — d*(v)}. (7.20) 
vEV 

Frank made the following conjecture, which would imply that we have 

ax (D) = yx(D) for every acyclic digraph D: 

Conjecture 7.7.11 [261] For any acyclic digraph D on at least k+1 vertices 

ax(D) = max{nx (D),ne*(D)}- 

A partial result was obtained by Frank and Jordan in [273]. 

Lemma 7.7.12 [273] Let D = (V,A) be an acyclic digraph for which 

ax(D) = ¥i(D). Then a,(D) = max{nx~ (D),ne*(D)}- 

Proof: Since a,(D) = yj(D) there exists some family F of independent 

one-way pairs with ,(F) -= ax,(D) such that all tails, or all heads, in F 

are pairwise disjoint. By considering the converse of D if necessary, we may 

assume that the tails {T,...,7;} of F are pairwise disjoint. 
Because D is acyclic, the subgraph induced by T; is acyclic for each i = 

1,2,...,t. Hence each T; contains a vertex 2; of out-degree zero in D(T;). 

Thus N+(a,;) C N+(T;) and hence k— d*(x;) > k—|N*(T;)| > k—h(Ti, Hi) 
for each i = 1,2,...,¢. Now we obtain 

showing that a,(D) = n,*+(D). Oo 

Bang-Jensen made the following conjecture at a meeting in Budapest in 

1994: 

Conjecture 7.7.13 For every semicomplete digraph D on at least k + 1 

vertices 
k(k + 1) 
ee 

If true this would be the best possible since a transitive tournament T 

on n > k +1 vertices needs this many arcs. To see this it suffices to observe 

that, if v1, v2,...,Un is the unique acyclic ordering of the vertices in T’,, then 

the first k vertices need k,k —1,...,2,1 new arcs entering them in order to 

satisfy the condition that the in-degree is at least k. It is not difficult to check 

Qk (D) < 



7.7 Increasing the Vertex-Strong Connectivity Optimally 373 

(Exercise 7.20) that one can always make a transitive tournament k-strong 

by adding eet 1) new arcs. The following partial result follows from the work 

of Frank and Jordan [273]: 

Proposition 7.7.14 For every semicomplete digraph D on at least k + 1 

vertices we have ax(D) < k?. 

Proof: We prove this by showing that if D is an r-strong semicomplete 

digraph which has at least r + 2 vertices, then we need at most 2r + 1 new 

arcs to make it (r + 1)-strong. This will imply that we need at most k? arcs 
to make any semicomplete digraph k-strong. 

Suppose first that D is not strongly connected. Since every semicomplete 

digraph has a Hamilton path (by Theorem 1.4.5), it follows that we can make 

D strong by adding one arc. 

Suppose now that r > 1 and that there is some r-strong semicomplete 

digraph D for which we need at least 2r + 2 arcs to obtain an (r + 1)-strong 

semicomplete digraph from D. Thus a,41(D) > 2r+2 and then we conclude 

from Theorem 7.7.7 that a-41(D) = y71,(D). Hence, by the definition of 
741(D), there exist 2r + 2 pairwise disjoint sets X1,X2,...,Xar+2, such 

that either each of these has |N+(X;)| = r or each has |N~(X;)| = r. By 
considering the converse of D if necessary, we may assume that |N*(X;)| =r 
for each X;. Let X’ be obtained by taking one vertex 2; from each X; and 

let D’ = D(X’). Since D’ is semicomplete and has 2r + 2 vertices, it is easy 

to see that some 2; has at least r + 1 out-neighbours in D’. However each of 

these contributes to |N5(X;)|, contradiction. Oo 

7.7.4 Splittings Preserving k-Strong Connectivity 

In Section 7.5 we saw that, with respect to arc-strong connectivity, it is 

always possible to split off all arcs incident to a vertex v without decreasing 

the arc-strong connectivity of the resulting directed multigraph provided that 

d*(v) =d~(v). To see that this does not extend to vertex-strong connectivity, 
consider the digraph D in Figure 7.8. If we add a new vertex s and arcs 

ds,es, sa, sf, then we obtain a 2-strong digraph D'. However, it follows from 

the fact that a2(D) = 3 (as we argued previously, see Figure 7.8) that there 
cannot exist a complete splitting off at s in D’ such that the resulting digraph 

(after removing s) is 2-strong. 
Below we prove a splitting result for vertex-strong connectivity, due to 

Frank and Jordan. We do this to illustrate some of the proof techniques that 

can be used in this area. The reader will notice that they are different from the 

arc-strong connectivity proofs, although they do have common ingredients. 

An arc a in a k-strong digraph D is k-critical if it cannot be deleted 

without destroying the property of D being k-strong. Note that if an arc is 

k-critical then it enters a set X with |Np(X)| =k and |Np_,(X)|=k-1 

and leaves a set Y with |Nj(Y)| =k and |Nj_,(Y)| =k -1. 



374 7. Global Connectivity 

A subset U C V ina k-strong digraph D = (V, A) is out-tight (in-tight) 

if |V —U| >k+1 and |NZ(U)| =k (\Np5(U)| = &)- 

Lemma 7.7.15 [84] Let D = (V, A) be a k-strong digraph and let e = ry be 

a k-critical arc in D. Then there exists a unique minimal out-tight set K in 

D—e and a unique minimal in-tight set B in D—e. There is no are from K 

to B in D —e, and in addition, (D — e) + f is k-strong for any arc f = wv 

withué€ K andve€ B. 

Proof: Since e is k-critical, K(D — e) = k — 1. Suppose that there exist two 

different minimal out-tight sets K, and K2 in D —e. Let Hy = V — Ki - 

Np_.(K1) and Hy = V — Ky — N$_,(K2). Then (Ki, Hi) and (K2, H2) 

are one-way pairs in D — e with hp_-(Ki, Hi) = k — 1, 1 = 1,2. Since we 

can make D — e k-strong by adding the arc e, these one-way pairs cannot 

be independent. This implies that c € K, 1 Ko and y € Hi 2 Ab. Thus 

in D —e we have Nz_.(y) C V — Ki U Ke. Hence, by Menger’s theorem, 

|V ae (ky U K2)| = k and [N+ (Ky N K2)|, |N* (iy U K2)| > k- i since D—e 

is (k — 1)-strong. Thus, using Proposition 7.1.3 and the fact that D — e is 

(k — 1)-strong, 

k-1+k-1=|N}_,(K1)|+|N5_.(K2)| 

> |Nb_.(K1 9 Ke)| + |Np_.(Ki U K2)| 
>k-1+k-1. 

This gives |Nt+(K,M K2)| = k — 1, contradicting the minimality of K,. The 

uniqueness of B follows similarly. 

To see the second statement, observe that for any out-tight set L and the 

unique minimal out-tight set K we have K C L and BC (V -L—N*(L)). 
(In particular, ANB = @.) Hence, adding any arc from K to B will eliminate 
all one-way pairs (X,Y) with h(X,Y)=k-1. O 

The following splitting result for vertex-strong connectivity is due to 

Frank and Jordan: 

Theorem 7.7.16 /271] Let D = (V +s,AUF) be a k-strong digraph for 

which |N*(s)| = |N~(s)| = d > 2k—1 holds and every arc e incident with s 
is k-critical. Then the arcs incident to s can be split off completely such that 

the resulting digraph D' obtained by deleting s is k-strong. oO 

Proof: If k = 1, then d5(s) = df(s), since D has no multiple arcs, and the 
claim follows from Theorem 7.5.2. Hence we may assume that k > 2. 

Let N~(s) = {u1,...,ua} and N*(s) = {v,,..., va}. Since each arc inci- 
dent with s is k-critical, it follows from Lemma 7.7.15 that there exist unique 

out-tight sets O;,O2,...Oq4 and unique in-tight sets [,,Io,...,Iq such that 

u; € O; and O; is the unique minimal out-tight set in D — u;s, respectively, 

uv; € I; and J; is the unique minimal in-tight set in D—sv;, fori = 1,2,...,d. 

We claim that O;NO; = @forl<i<j<dandI,N1l; =QOforl<i<j<d. 
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Suppose this is not true. Then without loss of generality O;:1O; 4 @ for some 

i # j. Note that u,s is the only arc from O, to s in D for r = 1,2,...,d, since 

O, has only k—1 out-neighbours in D—u,s. Hence it follows that uj; € O;-O; 

and u; € O; — Oj and O;NO; has no arc to s. Since |N~(s)| > 2k-1>k 
(because k > 2), we have |V —(O;UO;)| > k—1. This and Menger’s theorem 

imply that |NB_,(O: N.0;)|,|Nj_,(Oi U O;)| > k — 1. However, applying 

Proposition 7.1.3 to O;,O; in D — s (which is (k — 1)-strong) we conclude 

(k —1) + (k—1) =|N5_,(0:)| + |N5_,(0;)| 

> |Np-,(0:9.0;)|+|NB_,(0;U0;)| (7.21) 
> (k—1)+ (k—1). 

It follows from (7.21) that |Nj_,(O;O;)| = k—1 and since O; NO; has no 
arc to s we get the contradiction |N5(O;NO;)| = k—1. Thus we have shown 
that O,,O2,...Og are disjoint and similarly [,, I2,..., Iq are all disjoint. 

This implies that yj(D — s) > d = 2k —1 and hence, by Theorem 7.7.7 

ax(D — s) = ¥;,(D — s). Since D is k-strong it follows that y;(D — s) cannot 
be greater than d, since the d arcs to and from s eliminate all sets with fewer 

than k neighbours. Thus a,(D-—s) = d. It remains to prove that we can make 

D—s k-strong by adding a set of d arcs which form a pairing of {u1,..., ua} 
with: {t),:-. ,va}- 

Let F be any optimal augmenting set consisting of d arcs so that adding 

these arcs to D — s results in a k-strong digraph D*. Then F' must contain 

exactly one arc whose tail is in O; and exactly one arc whose head is in J;, 

i= 1,2,...,d, since O,,O2,...Og are disjoint and I,, I2,...,Iq are disjoint. 

This gives a pairing (O1,I,(1)),---,(Oa,Jn(a)), where 7 is a permutation of 

{1,2,...,d}. Note that the set O; = V — (O; UN#_,(O;)) is in-tight in 
D — s. Let e; be the unique arc in F' which has tail in O; and head in J,(;). 

Then e; must have its head in O; (because after adding F, O; has an in- 

neighbour in O;). Then the minimality of [,(;) and Proposition 7.1.3 implies 

that T,(%) e O;. 

Clearly the arc e; is k-critical in D*, since it is the only arc from F’ which 

leaves O;. Thus, by Lemma 7.7.15, there is a unique minimal out-tight set 

O containing the tail of e; and a unique minimal in-tight set J containing 

the head of e; in D* — e;. We claim that O = O; and I = I,(;). Clearly 

O; is out-tight in D* — e;, so O C Oj. If we do not have equality, then this 

would contradict the minimality of O; in D — us (here we used that s has 

precisely one in-neighbour in O;). Now it follows from Lemma 7.7.15 that 

we can replace the arc e; by any arc from Oj; to J,,;), in particular, the arc 

U;Vz(i), and still have an optimal augmenting set F’. This shows that we can 

replace the arcs in F' one by one, until we get the optimal augmenting set 

F* = {uUq(1),--+,UdUz(p) } and the proof is complete. oO 
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For further results on splittings that preserve vertex-strong connectivity 

the reader is referred to the papers [271, 272] by Frank and Jordan, the paper 

[467] by Jorddn and Jordén’s PhD thesis [468]. 

7.8 A Generalization of Arc-Strong Connectivity 

Below we show how to reduce the vertex-strong connectivity augmentation 

to a generalization of the arc-strong connectivity augmentation problem. 

Let D = (V, A) be a directed multigraph with two specified (not necessar- 
ily disjoint) subsets S,T of vertices. We say that D is k-(S,T)-arc-strong 

if there are k arc-disjoint (s,t)-paths in D for every choice of s € S,t € T. 

Thus if S = T = V this corresponds to D being k-arc-strong. 

Recall that in the proof of Menger’s theorem (Theorem 7.3.1) we re- 

duced local vertex-strong connectivity to local arc-strong connectivity via 

the vertex-splitting technique (recall Figure 3.4). It follows from the proof of 

Theorem 7.3.1 that a digraph D = (V, A) is k-strong if and only if Dsr is 
k-(S,T)-arc-strong, where S = {v,: v € V},T = {u;: v € V}. Two subsets 
X,Y are (S,T)-independent if XNYOT = 96, orS Cc XUY. A fam- 
ily F of subsets of V is (S,T)-independent if the sets in F are pairwise 
(S,T)-independent. A set X C V is essential if XMT#@QandS—-XF9. 

Frank and Jordan [272] characterized the size of a minimum cardinality 
set of new arcs to add to a digraph D = (V, A) with specified subsets S,T C V 

in order to make the resulting digraph k-(.S, T)-arc-strong. 

Theorem 7.8.1 [272] Let D = (V, A) be a digraph with a pair of non-empty 

(not necessarily distinct) subsets S,T C V. Then D can be made k-(S,T)- 
arc-strong by adding at most y arcs with tails in S and heads in T if and only 

if 

So (k-d-(Z)) <7 (7.22) 
ZEH 

holds for every (S,T)-independent family H of essential subsets of V. oO 

To see that we really need to consider deficiencies of (S,T')-independent 
families (and not just a kind of subpartition lower bound), consider the di- 
graph with four vertices {s1,s2,t1,t2} and no arcs. If we take k = 1, then 
it is easy to see that, if we can add arcs from S to T only, we need four 
arcs sitj, 1,7 = 1,2 to obtain a 1-(S,T)-are-strong digraph. The only (S,T)- 
independent family with four members is {{s;,t;}: 7,7 = 1,2}. 

So far no combinatorial polynomial algorithm is known for the (S,T)- 
arc-strong connectivity augmentation problem for general k. For k = 1 Enni 
described such an algorithm in [219]. 

Theorem 7.8.1 is not only a generalization of the arc-strong connectivity 
augmentation result in Theorem 7.6.3 (and hence implies Theorem 7.6.3 as 



7.8 A Generalization of Arc-Strong Connectivity SHG 

can be verified by solving Exercise 7.39). Theorem 7.8.1 also implies Theorem 
7.7.3 as we shall see below. 

Proof of Theorem 7.7.3 [273]: 

Let D = (V,A) be a digraph with «(D) < k which we want to make 
k-strong. We first construct the digraph D’ = (S UT, 4A‘) by the vertex 

splitting procedure (splitting each v into v,, vz, see Figure 3.4). By the remark 

in the beginning of this section D’ is I-(S,T)-arc-strong if and only if D 
is l-strong. Let y,5,r(D') denote the k-(S,T)-arc-strong connectivity 
augmentation number of D, that is, the minimum number of new arcs 

with tails in S and heads in T, one has to add to Dsr in order to make it k- 

(S,7)-arc-strong. Furthermore let 7x(D) (7x,s,r(D’)) denote the maximum 
deficiency, with respect to k, over all independent families of one-way pairs 

in D (respectively, (S,7)-independent families of essential sets in D‘). 
From the construction of D’ and the proof of Theorem 7.3.1, it follows 

easily that, if F is a new set of arcs all with tails in S and heads in T such 

that adding F' to D’ makes the resulting digraph k-(S,T)-arc-strong, then 
the corresponding set of arcs added to D will result in a k-strong digraph. 

Hence we have 

an(D) < Ye,8,7(D’). (7.23) 

Below we will demonstrate that nx(D) > mx,s,r(D'). We show that 
there is some family F' of (S,T)-independent essential sets with deficiency 

nk,s,v(F') = nk,s,r(D') from which we can construct an independent fam- 
ily F of one-way pairs in D with nx(F) = ne,s,r(F'). For this choose 
F' = {Z,,...,Z,} with deficiency nx,s,r(D’) to satisfy the following prop- 

erty: 

ie 

|F'| is minimal and with respect to this Syd — Z;|+|SN Z;|) is maximal. 
i—" 

; (7.24) 
Claim A: For every Z; € F' there is no arc from S — Z; to TN Z;. 
Proof of Claim A: Suppose there is some j with 1 < j <r for which there 

is an arc st from S— Z; toTNZ;. If |TZ,| > 2, then replacing 2; by 2; —t 

we obtain a new (S,7')-independent family F" of essential sets and since 

dj, (t) = 1 it follows that the deficiency of F" is at least that of F’. But now 

F" contradicts the choice of F' so as to satisfy (7.24). Hence TN Z; = {t}. 

Since v; € T dominates v, € S for each v € V, we have |S — Z;| > 2, (as 

otherwise d~(Z;) > |T|—1=|V|-—12> k and we could have deleted Z; from 

F' without decreasing the deficiency, contradicting (7.24)). Now replace Z; 

by Z; U {s} in F'. The new family F* still consists of essential sets and has 

at least the same deficiency. This contradiction to (7.24) completes the proof 

of the claim. O 

Note that by Claim A, 
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dp (Z;) = |{ve: ve € Zj and vs € Z;}I. (7.25) 

Claim B: For every Z; € F’ there is some v € V so that both v, and vy; 

belong to Z;. 

Proof Claim B: Suppose some Z; does not satisfy this property. Choose 

vs ¢ Z; so that y% € Z;. If S— Z; # {vs}, then replace Z; by Z; U{s} in F’. 
The new family F* still consists of essential sets and has at least the same 

deficiency. This contradicts (7.24). Hence we may assume that S — Z; = 
{vs}. By the assumption that Z; does not contain any pair vs,uz, we get 

that TM Z; = {v4} and as above we see that Z; can be deleted from F’, 
contradicting (7.24). Oo 

Now we can finish the proof of Theorem 7.7.3: Let 

Ap={vEV June ZV, = 10 6 V3 Us. 2, dud, © 2a), 0 sy ie 

It follows from the fact that each Z; is essential and Claim B that X;,Y; 4 0. 
Furthermore, by Claim A, (X;,;Y;) is a one-way pair and, by (7.25), it has 

deficiency k — dj, (Z;). Let 

F = {G5 ¥1) 22 (Ars Yr) }- 

Since F’ is (S,T)-independent, F consists of independent one-way pairs and 

by the remark above, the deficiency of F equals n,,5,r(D'). This shows that 

nx(D) > nx,s,r(D’). Combining this with (7.23), we get 

nk,s,T(D') < nk(D) < ax(D) < Ye,5,7(D’). 

By Theorem 7.8.1 equality holds everywhere and Theorem 7.7.3 follows. O 

7.9 Arc Reversals and Vertex-Strong Connectivity 

Suppose now that we want to increase the vertex-strong connectivity of a 
digraph by re-orienting arcs rather than adding new ones. This gives rise to 
the following problem. 

Problem 7.9.1 Given natural number k and a digraph D = (V,A) on at 
least k + 1 vertices, find a minimum set F C A of arcs in D such that the 
digraph D' obtained from D by reversing every arc in F is k-strong. 

If such a subset exists, then we let r,(D) = |F|, where F is a minimum 
cardinality subset of A, whose reversal makes the resulting digraph k-strong. 
Otherwise we let r,.(D) = o0. 

For arbitrary digraphs it is not clear how we can decide whether such a 
reversal even exists, let alone find an optimal one (unless we try all possibili- 
ties which clearly requires exponential time). Indeed, this seems to be a very 
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difficult problem (see also Conjecture 8.6.7). Clearly, if r,(D) < oo, then we 
have 

ax(D) < rx(D), (7.26) 

since, instead of reversing in D we may add exactly those new arcs we would 

obtain by reversing and keep the original ones. 

We will now show that for semicomplete digraphs D, the function r;(D) 
behaves nicely. 

Lemma 7.9.2 /84] If a semicomplete digraph D has at least 2k +1 vertices 

then rx(D) is finite and is bounded by a function depending only on k. 

Proof: To see this it suffices to use the following two simple observations, 

the proofs of which are left to the reader as Exercises 7.26 and 7.36. 

(a) If D is a k-strong digraph and D’ is obtained from D by adding a new 

vertex x and arcs from x to every vertex in a set X of k distinct vertices 

of D and arcs from every vertex of a set Y of k distinct vertices of D to 

x, then D’ is also k-strong. 

(b) If T is a semicomplete digraph on at least 4k —1 vertices, then T contains 

a vertex with in-degree and out-degree at least k. 

By observations (a) and (b), for every semicomplete digraph T, r;,(T) < 

rz(ZI’) for some subgraph T’ of T with |V(T")| < 4k — 2. Continue removing 
vertices as long as we can find a vertex of in- and out-degree at least k, 

or the current graph has 2k + 1 vertices. When this process stops we have 

2k +1 < |V(T")| < 4k — 2 in the current semicomplete digraph T’. Then 
we can make T’ k-strong by reversing some arcs and add back each of the 

removed vertices in the reverse order of the deletion. This provides a simple 

upper bound for r;,(7') (and hence for a;,(T)) as a function of k: we need to 

reverse at most {En 2) (EE = 8) arcs. O 

Note that the process above may not lead to an optimal reversal for the 

original semicomplete digraph(in terms of the number of arcs to reverse), not 

even if we reverse optimally in T’ (see also Exercise 7.40). Bang-Jensen and 
Jordan showed that, somewhat surprisingly, as soon as the number of vertices 

in the given semicomplete digraph D is sufficiently high (depending only on 

k), the minimum number of arcs in D we need to reverse in order to achieve 

a k-strong semicomplete digraph equals the minimum number of new arcs we 
need to add to D to obtain a k-strong semicomplete digraph. 

Theorem 7.9.3 /84] If D is a semicomplete digraph on at least 3k — 1 ver- 

tices for some k > 2 then ax(D) = rx(D). 

The idea is to show that r,(D) < a,(D), by demonstrating that a certain 

optimal augmenting set F of D has the property that, if we reverse the 
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existing (opposite) arcs of F' in D, then we obtain a k-strong semicomplete 

digraph. As we point out later, even for semicomplete digraphs, it is by no 

means the case that just an arbitrary optimal augmenting set will have this 

property. It was shown in [84] that 3k—1 is the best possible for semicomplete 

digraphs. However, in the case when D is tournament, the question as to 

whether or not the bound is best possible was left open and the following 

conjecture was implicitly formulated. 

Conjecture 7.9.4 /84] For every tournament D on at least 2k +1 vertices, 

we have ax(D) = rz(D). 

One may argue that perhaps if we restrict ourselves to only adding arcs 

between adjacent vertices, then we could have a,(D) = rz,(D) for arbitrary 
digraphs D, provided both numbers are finite and the number of vertices in 

D is large enough. This is not true, however, as can be seen from the following 
example: 

Figure 7.9 A digraph with a2(D) = 1 and r2(D) = 2. The digraphs T; and T> are 
2-strong. Fat arcs between sets of vertices indicate that all arcs between these sets 
are present and have the direction shown. 

Let T) and T> be disjoint 2-strong digraphs, let u € V(Ti), v € V(T2) be 
fixed vertices and let D be the digraph obtained from T, and T by adding 
new vertices x,y, z and the following arcs (see Figure 7.9): 

{roy:r EV(Ti)} U {ys : 8s € V(T2)} U {sr: 3 € V(Te),r €V(T1)} U 
{rox:reEV(T1) —u}U {soz:8 € V(T2) — v} U {2-5u, 20, z2} 
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It is not difficult to see that a2(D) = 1 and that any arc whose addition to 
D results in a 2-strong digraph has tail 2 and head in T) U z. On the other 

hand it is also easy to see that r2(D) > 2 (Exercise 7.34). This example can 
be modified to work for any k > 1 (Exercise 7.35). 

If we add arcs to the digraph D described above without increasing the 

number of out-neighbours of 2 and of z, we can construct a semicomplete 

digraph D' of any given size for which xz is an optimal augmentation but 

reversing xz does not make D’ 2-strong.This — and similar constructions for 

higher connectivity — show that even for semicomplete digraphs we cannot 

reverse along an arbitrary optimal augmenting set for k > 2. 

The following conjecture which is stronger than Conjecture 7.7.13 was 

made by Bang-Jensen at a meeting in Budapest in 1994. Again the transitive 

tournament on n > 2k +1 vertices shows that the bound would be best 

possible if true. 

Conjecture 7.9.5 For every tournament T on n vertices and every positive 

integer k such that n > 2k+1 we have rz(T) < RAED 

The problem of determining the optimal number of arcs to be reversed to 

make an arbitrary digraph k-arc-strong was shown by Frank to be polynomi- 

ally solvable in [254]. We will return to this in Section 8.8.4, where we shall 

see how to solve this problem using submodular flows. 

We complete this section with the following useful observation, which we 

use in Section 7.14. 

Lemma 7.9.6 [44, 344] Let D = (V, A) be a k-strong digraph and let xy be 
an arc of D. If D has at least (k + 1)-internally disjoint (x, y)-paths each of 

length at least 2, then the digraph D' obtained from D by replacing the arc 

zy by the arc yx (or just deleting xy if yx € A) is k-strong. Furthermore, if 

D' is not (k +1)-strong, then every minimum separating set S' of D' is also 

separating in D. 

Proof: Suppose that D’ is not (k+1)-strong. Let S’ be a minimum separator 

of D'. Then |S’| < k and there is some pair a, b of vertices separated by S’ in 

D’'. It follows from the assumption on k(x, y) that either S’'N {x,y} 4 0, or 

S' does not separate xz, y. From this we get that {a,b} 4 {x,y} and that a,b 
are also separated by S’ in D. This shows that every minimum separating 

set of D’ is also separating in D. Since D is k-strong we have |S'| = k and 

hence D’ is k-strong. 0 

7.10 Minimally k-(Arc)-Strong Directed Multigraphs 

A directed multigraph D = (V, A) is minimally k-(arc)-strong if D is k- 

(arc)-strong, but for every arc e € A, D — e is not k-(arc)-strong. From an 
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application point of view it is very important to be able to identify a small 

subgraph of a k-(arc)-strong directed multigraph which is spanning and still 
k-(arc)-strong. The reason for this could be as follows. If many arcs of D 

are redundant, then it may make sense to discard these. If one is writing 

an algorithm for finding a certain structure that is based on k-(arc)-strong 

connectivity, then working with the smaller subgraph could speed up the 

algorithm, especially if k is relatively small compared to n. 

Note however that, if we are given a k-(arc)-strong directed multigraph 
D = (V,A) and ask for the smallest number of arcs in a spanning k-(arc)- 

strong subgraph of D, then this is an NP-hard problem. Indeed, a strong 

digraph D on n vertices has a strong spanning subgraph on n arcs if and only 

if D has a hamiltonian cycle. Hence, we must settle for finding spanning sub- 

graphs with relatively few arcs. Since every k-arc-strong directed multigraph 

on n vertices has at least kn arcs, the proof of Theorem 7.10.1 together with 

Exercise 9.27 implies that there is a polynomial algorithm to find a spanning 

k-arc-strong subgraph with no more than twice the optimum number of arcs. 

We discuss this topic in more detail in Section 7.16. 

7.10.1 Minimally k-Arc-Strong Directed Multigraphs 

We present some important degree results by Mader [535]. Combining these 

results with Theorem 7.5.2 we obtain a construction method (also due to 

Mader) to generate all k-arc-strong directed multigraphs. We start with a 

result by Dalmazzo which gives an upper bound on the number of arcs in 

any minimally k-arc-strong directed multigraph of order n. 

Theorem 7.10.1 /172] A minimally k-arc-strong directed multigraph has at 

most 2k(n — 1) arcs and this is the best possible. 

Proof: Let D = (V, A) be k-arc-strong and let s be a fixed vertex of V. By 
Theorem 7.3.2 d*(U),d~(U) > k for every 0 4 U C V. Hence, by Edmonds’ 
branching theorem (Theorem 9.5.1), D contains k-arc-disjoint in-branchings 
Hetracs ,f,, rooted at s and k arc-disjoint out-branchings Fe ie es EF, k 

rooted at s. Let A’ = A(F,,)U...UA(Fy,)U A(F3) U...UA(F%,) and let 
D' = (V,A’'). Then D’ is k-arc-strong and has at most 2k(n — 1) arcs. Thus 
if D is minimally k-arc-strong, then A = A’. To see that this bound cannot 
be sharpened it suffices to consider the directed multigraph obtained from a 
tree T. (as an undirected graph) and replacing each edge uv of T by k arcs 
from u to v and k arcs from v to u. Oo 

It it easy to see that, if D = (V, A) is minimally k-arc-strong, then every 
arc uv leaves a k-out-critical set* and enters a k-in-critical set. Applying 
(7.2) we obtain Lemma 7.10.2 below which implies that every arc wv leaves 

* Recall that this means that there is some X C V such that u ExX,veV-X 
and d*(X) =k. 
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precisely one minimal k-out-critical set X,, and enters precisely one minimal 
k-in-critical set Y,,. Here minimal means with respect to inclusion. 

Lemma 7.10.2 If X,Y are crossing k-in-critical sets in D, then XNY and 
X UY are also k-in-critical sets and d(X,Y) = 0. 

Proof: Suppose X,Y are crossing and k-in-critical. Using (7.2) we get 

k+k=d (X)+d (Y) 

=d (XUY)+d (XNY)+d(X,Y) 

>k+k, 

implying that X NY and X NY are both k-in-critical and d(X,Y) =0. O 
Intuitively, Lemma 7.10.2 implies that minimally k-arc-strong directed 

multigraphs have vertices of small in-degree and vertices small out-degree. 

The next result by Mader shows that this is indeed the case. In fact, a much 

stronger statement holds. 

Theorem 7.10.3 /535] Every minimally k-arc-strong directed multigraph 

has at least two vertices x,y with d* (x) = d(x) =dt(y) =d-(y) =k. 

Proof: We give a proof due to Frank [260]. Let R be a family of k-in-critical 
sets with the property that 

every arc in D enters at least one member of 7. (7.27) 

By our remark above such a family exists since D is minimally k-arc-strong. 

Our first goal is to make R cross-free (that is, we want to replace R 
by a new family R* of k-in-critical sets such that 7* still satisfies (7.27) 
and no two members of #* are crossing). To do this we apply the so-called 

uncrossing technique which is quite useful in several proofs. If there are 

crossing members X,Y in R, then by Lemma 7.10.2, XNY and XUY are k-in- 

critical and d(X, Y) = 0. Hence every arc entering X or Y also enters X UY, 
or X MY. Thus we can replace the sets X,Y by X NY, X UY in FR (we only 

add sets if they are not already there). Since |XNY|?+|XUY/? > |X|?+|Y/? 
and the number of sets in R does not increase, we will end up with a family R 

which is cross-free. Note that we could have obtained such a family directly by 

choosing the members in FR as the unique minimal k-in-critical sets entered by 

the arcs of A. However, this choice would make the proof more complicated, 

since we lose the freedom of just working with a cross-free family satisfying 

(7.27). We shall use this freedom in Case 2 below. Assume below that 

R is cross-free. (7.28) 

Now the trick is to consider an arbitrary fixed vertex s and show that 

V —s contains a vertex with in-degree and out-degree k. This will imply the 

_ theorem. 
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Let s be fixed and define the families S and U as follows 

S={XER:8¢X}, V={V—-Xis EX ER}: (7.29) 

Let. f= LU) = o.U UU, 
Claim A: The family C is laminar. 

Proof of Claim A: We must show that no two members of £ are inter- 

secting. Suppose X,Y € CL are intersecting. Then X and Y cannot both be 

from S since then they are crossing and this contradicts (7.28). Similarly X 

and Y cannot both be from U, since then V — X,V — Y are crossing mem- 

bers of R, a contradiction again. Finally, if X ¢ S and Y €U, then X and 

V —Y are crossing members of R, contradicting (7.28). This proves that £ 

is laminar. O 

By the choice of S and U we have the following property: 

Every arc either enters a member of S or leaves a member of U (or both). 
(7.30) 

Suppose R is chosen such that (7.27) and (7.28) hold and furthermore 

S—> |X| is minimal. (7.31) 
“XEL 

To complete the proof of the theorem we consider two cases. 

Case 1 Every member of C has size one: 

Let X =dr GV —s: {zr} €.o} and Y = (y-e Vi—s - 1y) ei. 
Then X cannot be empty, since every arc leaving s enters X. Similarly Y is 

non-empty. Now if X MY = @, then there can be no arc leaving X, by the 

definition of X and (7.30). However d*(X) > k, since D is k-arc-strong and 
hence we have shown that X NY # 0. Let t be any element in X NY, then 

we have d*(t) = d-(t) =k. 

Case 2 Some member Z of CL has size at least two: 

Choose Z such that |Z| is minimal among all members of C of size at 
least two. 

Note that, if we consider the converse D* of D and let R* = {V—-—X: 

X € R} and then define S*,U/* as we defined S and U from R, then S* =U 

and U* = S. Furthermore, the corresponding family £* satisfies (7.30) and 
(7.31). This shows that we may assume without loss of generality that Z € S. 
We claim that 

the directed multigraph D(Z) is strongly connected. Whey) 

Suppose this is not the case and let Z,, Z2 be a partition of Z with the 

property that there are no arcs from Z2 to Z;. Then we have k < d7(Z;) < 
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d~(Z) =k, implying that Z, is k-in-critical and that every arc that enters 
Z also enters Z,. Let R’ = R — {Z} + {Z,}, S’' = S —{Z} + {Z,} and let 
L'=S'UU. Then £’ still satisfies (7.30) and 

peri Sa 
XEL! XEL 

However, this contradicts the choice of R. Thus we have shown that D(Z) is 
strongly connected. This establishes (7.32). 

We return to the proof of the theorem. Let 

A={zeZ:{z}EeS},B={zEZ:{z} eu}. 

If AN B # @ then any vertex t € AN B has d*(t) = d~(t) and we are done. 
Suppose AM B = @. Then we claim that 

A=0. (7.33) 

Suppose A # @. By the choice of R so that CL satisfies (7.31), we cannot 
leave out any set without violating (7.30). Hence we cannot have A = Z, be- 
cause then we could leave out Z without violating (7.30). Now (7.32) implies 
that there is an arc uv from A to Z — A. Since C satisfies (7.30), the arc 
uv either enters some member of S or leaves a member of U. If it enters a 

member M of S, then by the definition of A, M cannot be of size one. On 

the other hand, by the fact that C is laminar and the minimality of Z, M 

also cannot have size at least two. Hence wv must leave a member W of U. 

Since we have assumed AN B = 9, this must be a set of size more than one. 

Using that C is laminar it follows that W C Z, contradicting the choice of 

Z. Hence we must have A = @ and (7.33) is established. Next we claim that 

B=Z. (7.34) 

Since A = @ and Z is minimal among all members of CL of size at least 

2, every arc with both ends in Z must leave a member of B (using the same 

arguments as above). Hence B # @ and we must have B = Z, since otherwise 

(7.32) would imply the existence of an arc from Z — B to B, contradicting 

what we just concluded. 

Now we are ready to complete the proof of the theorem. Since B = Z, 

every vertex in Z has out-degree k. Thus we have 

RZ| =) d"(o) 
vEZ 

= d*(Z) + |A(D(Z))| 
>k+|A(D(Z))| 
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=k+()/d-(v))-d (2) 
vEZ 

= Do al (v) 

vEZ 

> k|ZI. 

Hence equality holds everywhere, in particular, every vertex in Z has in- 

and out-degree k. O 

2 2 2 

oe ee ek 
1 ei 

; 1 

Figure 7.10 A construction of a 2-arc-strong directed multigraph starting from a 
single vertex. 

Using Theorem 7.5.3 and Theorem 7.10.3 one can obtain the following 

complete characterization of k-arc-strong directed multigraphs, due to Mader 

[537]. 

Theorem 7.10.4 /537] A directed multigraph D is k-arc-strong if and only 

if it can be obtained starting from a single vertex by applying the following 

two operations (in any order): 

Operation A: Add a new arc connecting existing vertices. 

Operation B: Choose k distinct arcs uj,v,,...ugvzp and replace these by 2k 

NEW ATCS U1S,...,UkS,$8V1,...,8U~, Where s is a new verter. 

Proof: Clearly Operation A preserves the property of being k-arc-strong. To 

see that this also holds for Operation B we apply Menger’s theorem. Suppose 

D is k-arc-strong and D' is obtained from D by one application of Operation 

B but D’ is not k-arc-strong. Let U C V(D"') be some subset such that 
d},(U) < k —1. Then we must have U # {s} and U # V(D), since clearly s 
has in- and out-degree k in D'. Now it is easy to see that the corresponding set 

U-—s has out-degree less than k in D, a contradiction. From these observations 

it is easy to prove by induction on the number of vertices that every directed 

multigraph that can be constructed via operations A and B is k-arc-strong. 

Here we assume by definition that every directed pseudograph having just 

one vertex is k-arc-strong. 

The other direction can be proved using induction on the number of arcs. 

If D is k-arc-strong and not minimally k-arc-strong, then we can remove an 

arc and apply induction. Otherwise it follows from Theorem 7.10.3 that D 
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contains a vertex s such that d+(s) = d~(s) = k. According to Theorem 7.5.3 
this vertex and the 2k arcs incident with it can be replaced by k new arcs 

in such a way that the resulting directed multigraph D’ is k-arc-strong. By 

induction D' can be constructed via operations A and B. Since we can go 

from D’ back to D by using operation B once, D can be constructed using 

operations A and B. Oo 

See Figure 7.10 for an illustration of the theorem. 

7.10.2 Minimally k-Strong Digraphs 

In this section D = (V, A) is always a digraph (i.e. no multiple arcs) and 

hence we know that dt(v) = |Nt(v)| for each v € V. 
We saw in the last section that every minimally k-arc-strong directed 

multigraph has at least two vertices with in- and out-degree equal to k. 

Mader conjectures that this is also the case for vertex-strong connectivity in 

digraphs. 

Conjecture 7.10.5 /538] Every minimally k-strong digraph contains at least 

two vertices such that both have in- and out-degree k. 

This conjecture is still open and seems very difficult. For k = 1 the truth 

of Conjecture 7.10.5 follows from Theorem 7.10.3. Mader [541] has proved 
the conjecture for k = 2. For all other values of k the conjecture is open. 

Examples by Mader [535] show that one cannot replace two by three in the 

conjecture. 

Recall (from Subsection 7.7.4) that an arc e of a k-strong digraph is k- 

critical if D —e is not k-strong. By Lemma 7.7.2, for each k-critical arc uv we 

can associate sets Tyy, Hyy such that (Ty,, Huy) is a one-way pair in D — uv 

and h(Ty,», Huv) = k—1. This one-way pair may not be unique, but below we 

always assume that we have chosen a fixed one-way pair for each k-critical 

arc in D. Compare this with Lemma 7.7.15. 

Lemma 7.10.6 Let D = (V, A) be a k-strong digraph. Then the following is 

true: 

(a) If D has two k-critical arcs ux, uy, such that d+(u) > k+1, then |Tuy| > 

LH gel 2 
(b) If D has two k-critical arcs xu, yu, such that d~(u) > k+1, then |Hzu| > 

[Tyul. 

Proof: Since (b) follows from (a) by considering the converse of D, it suffices 
to prove (a). Hence we assume that uz, uy are k-critical arcs of D and that 

d*(u) >k+1. Let (Tuc, Hux), (Tuy; Huy) be the pairs associated with uz, uy 
above. Note that these are not one-way pairs in D, since there is a (unique) 
arc, namely ux (uy) which goes from Tyz (Tuy) to Hue (Huy). Let also Syz = 

V —(Tuz UHyz) and Suy = V — (Tuy U Huy). Then |Suz| = |Suy| = *—1 and 
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(A) | (B) 

Figure 7.11 Illustration of the proof of Lemma 7.10.6. Part (A) illustrates the case 

when HuzM Huy # @. Part (B) illustrates the case when Hus Huy = @. The first 

row of each 3 x 3 diagram corresponds to the set Tyz. The first column corresponds 

to Tuy and so on. The positions of x,y indicate that they can be in either of the 
two neighbouring cells. The numbers a,b,c,d,e denote the cardinality of the sets 

corresponding to their cell. 

zt € Hur — Huy, y € Huy — Huz. It will be useful to study Figure 7.11 while 

reading the proof. 
Let a,b,c, d,e be defined as in Figure 7.11. Since each of the sets Suz, Suy 

has size k — 1 we see that 

atb+2c+d+e=2k-2. (7.35) 

We claim that Hu; N Huy = ~. Suppose this is not the case and let 

z € Huz 1 Hwy be arbitrarily chosen. Now it follows from the fact that 

(Tur, Hux) is a one-way pair in D — ux and (Tuy, Huy) is a one-way pair in 

D-—uy, that the set C7, indicated by the line I in Figure 7.11, separates u from 

zin D. Hence c+d+e > k, since D is k-strong. Now (7.35) implies that the 

set C;, indicated by the line II, has size at most k — 2. Since d*(u) >k+1 

and u has precisely two arcs, namely uz,uy out of Ty; Ty, in D — Cy,, 

we see that there is some out-neighbour w of u inside Ty; N Tyy. But now 

it is easy to see that Cy; U {u} separates w from z, contradicting that D is 
k-strong. Hence we have shown that Hy; Huy = 0. 

To complete the proof, we only need to show that a > d. Suppose this 

is not the case. Then in particular d > 1 and the size of the set Cy; is at 

most |Sy,| + a—d < k — 2. Thus as above we can argue that u has an out- 
neighbour w inside Tyz 1 Tuy. Now Cz; U {u} separates w from z in D, a 

contradiction. 0 
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An anti-directed trail is the digraph T one obtains from a closed undi- 

rected trail T’ of even length by fixing a traversal of T and orienting the edges 

so that every second vertex v has in-degree zero when we consider just the 

two arcs between v and its successor and predecessor on T. We denote the 

anti-directed trail T by T = v,0,v202...v,0;v1, where 0; indicates that the 
vertex 0; is dominated by both its successor and its predecessor on the trail 

T. A vertex which dominates (is dominated by) both its successor and its 

predecessor on T' is a source (sink) of T. Note that if a vertex v is repeated 

on T then v may be both a source and a sink. An anti-directed cycle is 

an anti-directed trail in which no vertex occurs twice (that is, the underlying 

graph is just a cycle). See Figure 7.12 for an illustration of the definitions. 

V1 V1 

V2 = U3 

U3 v2 

Figure 7.12 An anti-directed trail v1 01 v202v303v1 on 6 vertices. The vertex v2 = v3 
is both a source and a sink of T’. Note that T contains no anti-directed cycle. 

Now we can prove the following important result due to Mader: 

Theorem 7.10.7 [538] Let D be a k-strong digraph containing an anti- 

directed trail T = v1 01,0202... Vr0,v1,. Then at least one of the following holds: 

(a) Some arc e € A(T) is not k-critical in D. 
(b) Some source v; of T has out-degree k in D. 

(c) Some sink 0; of T has in-degree k in D. 

Proof: If (b) or (c) holds there is nothing to prove so suppose that d*(v;) 2 

k +1 for each source and d~(0;) > k +1 for each sink of T’. We shall prove 

that (a) holds. - 

Suppose to the contrary that every arc e on T is k-critical. Applying 

Lemma 7.10.6 (a) to the arcs v1 0,, 7101, we obtain |Ty,o,.| > |Hv,o;|- Similarly, 

we get from Lemma 7.10.6 (b) that |Hy,o,| > |Tv2s,|. Repeating this argument 

around the trail we reach the following contradiction 

[Tur0.] > |Hoyo.| > [Tora| > |Hvotal > --. > |Hv-a,| > [Tore 

Hence we have shown that (a) holds. Oo 

The following is an easy consequence (see Exercise 7.48). 
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Corollary 7.10.8 /538] Every minimally k-strong digraph contains a vertex 

x of in-degree k, or a vertex y of out-degree k. O 

Using Theorem 7.10.7, Mader proved the following much stronger state- 

ment. 

Theorem 7.10.9 /538] Every minimally k-strong digraph contains at least 

k vertices of out-degree k and at least k vertices of in-degree k. O 

Theorem 7.10.7 has many other nice consequences. Here is one for undirected 

graphs. 

Corollary 7.10.10 /533] Let C be a cycle of a k-connected undirected graph 

G. Then either C contains an edge e which can be removed without decreasing 

the connectivity of G, or some verter v € V(C) has degree k inG. 

Proof: To see this, it suffices to consider the complete biorientation D of G 

and notice that D — zy is k-strong if and only if D — {ry, yr} is k-strong 

(Exercise 7.25) which happens if and only if G — e is k-connected, where 

e = ry. Next, observe that in D, the cycle C either corresponds to one anti- 

directed trail C’, obtained by alternating the orientation on the arcs taken 

twice around the cycle C, when |C| is odd, or to two anti-directed cycles 

C’,C" when |C| is even. Now the claim follows from Theorem 7.10.7. a) 

One reason why Corollary 7.10.10 is important is the following easy con- 

sequence concerning augmentations of undirected graphs, which was pointed 

out by Jordan. 

Corollary 7.10.11 /469] Let G = (V,E) be an undirected graph which is 

k-connected, but not (k + 1)-connected. Then every minimal set of edges F 

which augments the connectivity of G to (k +1) induces a forest. Oo 

For directed graphs one obtains the following result, due to Jordan, on 

augmentations from k-strong to (k + 1)-strong connectivity. Compare this 

with Theorem 7.7.8. 

Corollary 7.10.12 [467] Let D = (V,A) be a directed graph which is k- 

strong, but not (k +1)-strong and let F be a minimal set of new arcs, whose 

addition to D gives a (k+1)-strong digraph. Then the digraph induced by the 

arcs in F’ contains no anti-directed trail. oO 

One can also apply Theorem 7.10.7 to questions like: how many arcs can 

be deleted from a k-strong digraph, so that it still remains (k—1)-strong [540] 
(for undirected graphs see [122]). One easy consequence is the following. 

Corollary 7.10.13 /540] If D = (V,A) is minimally k-strong and D' = 

(V, A’) is a spanning (k — 1)-strong subgraph of D, then the difference Do = 
(V, A — A’) contains no anti-directed trail. 
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Proof: Suppose T = v1 0, v202...v,0,v; is an anti-directed trail in Do. Since 
D is minimally k-strong, (a) cannot hold in Theorem 7.10.7. Suppose without 
loss of generality that (b) holds, then some source v; has d},(v;) = k. However, 
since dp (v;) = 2, this implies that dp,(v;) = k — 2, dontvedictics the fact 
that D’ is (k — 1)- -strong. 0 

Theorem 7.10.7 has many other important applications. We illustrate one 
such application 1 in Section 7.16. We finish this section with a conjecture by 
Mader. 

Conjecture 7.10.14 /540] Every minimally k-strong digraph on n vertices 
contains at least nok +k vertices with out-degree equal to k. 

Mader has proved [540, page 437] that there are at least 4 such Eq 
vertices. For more on the topic see the very informative survey [540] by Mader. 

7.11 Critically k-Strong Digraphs 

In this section we always consider directed graphs (no multiple arcs). A vertex 

uv of a digraph D is critical if k(D — v) < K(D). The goal of this section is 
to illustrate some conditions under which we can always find a non-critical 

vertex in a digraph D. First observe that there can be no function f(k) with 

the property that every k-strong digraph D with at least f(k) vertices has 

a vertex uv such that D — v is still k-strong. This is not even the case for 

tournaments. To see this consider the example due to Thomassen (private 

communication, 1985) in Figure 7.13. 
The example in Figure 7.13 can easily be generalized to arbitrary degrees 

of vertex-strong connectivity, by replacing each of the tournaments on seven 

vertices (right and left side of the figure) by the kth power of a (2k + 1)-cycle 
and replacing the three long paths by k long paths starting at the top k 

vertices in the left copy and ending at the top k vertices in the right copy. 

Below we discuss some results by Mader on sufficient conditions for a 

k-strong digraph to contain a non-critical vertex. 

Definition 7.11.1 Let D have k(D) = k. A fragment in D is a subset 
X CV with the property that either |N*+(X)| =k and X UN*(X) #V, or 
LVa(Aj)=—k and XUN -(X) #V. 

Thus a fragment X corresponds to a one-way pair (X,Y) with A(X, Y) = 
. k. Mader proved the following important result: 

Theorem 7.11.2 [539] Every critically k-strong digraph contains a fragment 

of size at most k. 
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Figure 7.13 A family 7 of 3-strong tournaments (the three paths from left to 
right can be arbitrary long). The big arc indicates that all arcs not explicitly shown 
go from right to left. It can be verified (Exercise 7.46) that each tournament in 7 
is 3-strong and has the property that every vertex other than z, y is critical. Thus 
after removing at most two vertices we obtain a 3-strong tournament in which every 
vertex is critical. ‘ 

This was conjectured by Hamidoune [394, Conjecture 4.8.3] who also con- 

jectured the next two results, both of which are easy consequences of Theorem 

al Wed 

Corollary 7.11.3 [539] Every critically k-strong digraph contains a vertex 

x with in-degree, or out-degree less than 2k. 

Proof: Let D = (V, A) be a critically k-strong digraph. By Theorem 7.11.2, 

D contains a fragment X with |X| < k. By considering the converse of D if 
necessary, we may assume that |N*(X)| = k. We prove that every vertex of 
X has out-degree at most 2k—1. Let  € X be arbitrary. Note that every out- 

neighbour of x outside X contributes to |N*(X)|, implying that there are at 
most k of these. Now the claim follows from the fact that dj} ( x) (2) <k-1. 

O 

We leave the proof of the next easy consequence as Exercise 7.41. 

Corollary 7.11.4 [539] Every critically k-strong oriented graph contains a 

vertex x with in-degree, or out-degree less than [SA]. 0 

7.12 Arc-Strong Connectivity and Minimum Degree 

Let D = (V, A) be a digraph and let 5(v) = min{dt(v),d~(v)} for uv € V. 

Obviously, the highest arc-strong connectivity a digraph can possibly have 

is 6°(D). It is not easy to classify those digraphs for which the equality \(D) = 
6°(D) actually holds. However, since we can calculate \(D) in polynomial 
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time (see Subsection 7.4), it is easy to verify whether a given digraph D 
satisfies \(D) = 6°(D). 

In this section we will give two sufficient conditions for this equality. The 

first result is due to Dankelmann and Volkmann. 

Theorem 7.12.1 /173] Let D = (V,A) be a directed graph on n vertices 
without multiple arcs and let v1, v2,...,Un be ordered so that 5(v1) > 5(v2) > 

... > 6(Un) = 6°(D). If 6°(D) > |n/2], or 6°(D) < |n/2] and there exists a 
k, 1<k<6°(D) such that 

k 

S—(6(vi) + 5(Un4i-6(D)-1)) > k(n — 2) + 26°(D) — 1, 

then (D) = 6°(D). 

Theorem 7.12.1 implies the following result by Xu which is a generaliza- 

tion of a result for undirected graphs in [329]. 

Corollary 7.12.2 /742] Let D be a digraph on n vertices. If there are |n/2| 
disjoint pairs of vertices (v;,w;) with 

O(u;) 4 0(w,; > mn. foralli = 1,2 6.51/22 

then \(D) = 6°(D). 

For further results on the relation between A(D) and 6°(D) see [38, 173]. 

7.13 Connectivity Properties of Special Classes of 

Digraphs 

In this section we describe a few results on the connectivity of various classes 

of digraphs introduced in Section 1.8 and Chapter 4. Some of these results 

will be used in other sections and chapters in this book. 

The next lemma implies that almost all minimally k-strong decomposable 

digraphs are subdigraphs of extensions of digraphs. 

Lemma 7.13.1 /52] Let D = F[S,S2,...,55] where F is a strong digraph 
on f > 2 vertices and each S; is a digraph with n; vertices and let Do = 

Gap oe a ly ,| be the digraph obtained from D by deleting every arc 

which lies inside some S; (recall that Kp, is the digraph on n; vertices and 
no arcs). Let S be a minimal (with respect to inclusion) separating set of Do. 
Then S is also a separating set of D, unless each of the following holds: 

foto = V (5) U0 V(S5)...UV (Ss) \ V(S;). for some 2 € {1,2,..., f}, and 
(b) D(S;) is a strong digraph, and 



394 7. Global Connectivity 
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H, H3 K2 K3 

Hy, K;3 

Figure 7.14 A 2-strong digraph D with decomposition D = Q[Mi, H2, Hs, Ha). 
Fat arcs indicate that all possible arcs are present and have the direction shown. 
The right figure shows the 2-strong digraph Do = Q[K2, K3, Ks, Ks] obtained from 
D by deleting all arcs inside each Hj. 

(c) D=C,[S, Si]. 

In particular, if F has at least three vertices, then D is k-strong if and only 

if Do is k-strong. 

Proof: Let S be a minimal separating set of Do and assume S is not sep- 

arating in D. It is easy to see that, if z and y with z,y ¢ S belong to 

different S;, then D — S has an (z,y)-path if and only if Do — S has such 

a path. Thus, since S is separating in Dp but not in D, we must have 

Sav (Sr)ULV (So)ee6 UM(Ss) \V(S;) oor someit- Ginl le oee oy eeNote 
that here we used the minimality of S to get that SMS; = 0 for some j. 

Now it follows trivially that D(S;) must be a strong digraph, since D — S is 

strong and the minimality of S implies that D = C2[S, Sj] (if some S$; C S 

does not have arcs in both directions to S;, then S — S; is also separating, 

contradicting the choice of S). 0 

See Figure 7.14 for an example illustrating the lemma. 

Combining Lemma 7.13.1 with Theorem 4.8.5 we obtain. 

Corollary 7.13.2 If D is a k-strong quasi-transitive digraph with decompo- 

sition D = Q[Wi,...,Wiqi], then the digraph Do = Q[Kiwi,--- : Kiwi] 

(that is, the digraph Agathe by deleting all arcs inside each W;) is also k- 

strong. oO 

Another easy consequence of Lemma 7.13.1 is the following result by 

Bang-Jensen, Gutin and Yeo: 
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Lemma 7.13.3 [70] Suppose that D is a digraph which can be decomposed 

as D = F[S;, S2,..., Sz], where f = |V(F)| > 2, and let Do = D— Ul {uv 
u,v € V(S;)}. Then D is strong if and only if Do is strong. 

Here is a useful observation on locally semicomplete digraphs due to Bang- 

Jensen. The proof is left as Exercise 7.38. 

Lemma 7.13.4 /44] Let D be a strong locally semicomplete digraph and let 

S be a minimal (not necessarily minimum) separating set of D. Then D—S 

is connected. QO 

Lemma 7.13.5 Let D = (V, A) be ak-strong digraph and let D' be obtained 
from D by adding a new set of vertices X and joining each vertex of X to 

V in such a way that |N4,(v)|,|Np(v)| > &k +1 for each v € X. Then D' is 
k-strong. If D' is not also (k +1)-strong, then every minimum separating set 
of D' is also a minimum separating set of D. 

Proof: Suppose D’ is not (k +1)-strong and let S’ be a minimum separating 

set of D’. Then |S'| < k. Let S = S’MV(D). Since every vertex of X — S' 
has an in-neighbour and an out-neighbour in V — S we get that D —S is 

not strong and hence S = S’ must hold and S’ is also separating in D. This 

implies that |S'| = k, D’ is k-strong and every minimum separating set of D’ 
is also a minimum separating set of D. O 

7.14 Highly Connected Orientations of Digraphs 

We saw in Corollary 7.2.7 that every strong digraph without a bridge has 

a strong orientation. In this section we investigate how much of the degree 

of arc-strong or vertex-strong connectivity of a digraph D comes from its 2- 

cycles. More precisely, suppose we must delete one arc of every 2-cycle (thus 

obtaining an orientation of D), can we always maintain a high arc-strong, 

respectively vertex-strong, connectivity if the starting digraph has high arc- 

strong, respectively vertex-strong, connectivity? It is not difficult to see that 

we may not be able to preserve the same degree of arc-strong, respectively 

vertex-strong, connectivity, not even if D is semicomplete. See Figure 7.15 
for an example. So the question is whether there exist functions f(k), g(k) 

with the property that every f(k)-strong ((g(k)-arc-strong) digraph contains 
a spanning k-strong (k-arc-strong) subgraph without cycles of length 2. 

Let us first consider arc-strong connectivity. Note that every k-arc-strong 

oriented graph D must have UG(D) 2k-edge-connected. In particular, if G 

is an undirected graph with edge-connectivity A(G) = 2k — 1 and G is the 

complete biorientation of G, then D does not contain a spanning k-arc-strong 

subgraph. Hence the following result due to Jackson and Thomassen implies 

that g(k) = 2k and this is the best possible by the remark above. 
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Figure 7.15 A 2-strong semicomplete digraph which has no 2-arc-strong spanning 

subtournament. Undirected edges correspond to directed 2-cycles. 

Theorem 7.14.1 /[451, 708] Every 2k-arc-strong digraph has a k-arc-strong 

orientation. , oO 

Since we may convert a digraph to a mixed graph by replacing each 2-cycle 

with an undirected edge, Theorem 7.14.1 follows from Theorem 8.9.1. 

The vertex-strong connectivity case seems much harder. Jackson and 

Thomassen posed the following conjecture (see [708]): 

Conjecture 7.14.2 Every 2k-strong digraph has a k-strong orientation. 

If true this would be the best possible (meaning that we cannot weaken 

the vertex-strong connectivity demand by one, without adding further re- 

quirements). To see this let G be the k’th power of an undirected cycle 

C = vyv2q...V2rV, On 2r, r > k vertices. It is not difficult to prove that 

G is 2k-connected and that the only separating sets of size 2k in G are those 

obtained by taking two sets of k consecutive vertices on C’, each separated 

by at least one vertex on both sides. From this it follows that, if we add 

the diagonals v,U;-41, V2Ur42,--+)UrV2r, then we obtain a (2k + 1)-connected 

graph H. Now let D be the complete biorientation of H. Then «(D) = 2k+1 

and it is clear that D cannot have a (k + 1)-strong orientation, since UG(D) 
is not 2(k + 1)-edge-connected. See Figure 7.16 and Exercise 7.43. 

Note that, if an oriented graph D is k-strong, then UG(D) is k-connected 

and 2k-edge-connected. However, the converse is not true, that is, it is not 

enough to require that D is k-strong and that UG(D) is 2k-edge-connected 

in order to guarantee that D has a k-strong orientation. The semicomplete 

digraph in Figure 7.15 shows this and the example can be generalized to an ar- 

bitrary odd number of vertices by taking the second power on an odd cycle C 

and orienting the original edges as in Figure 7.15. This shows that Conjecture 

8.6.7 can neither be extended to mixed graphs, nor to digraphs. Another ex- 

ample, due to Alon and Ziegler [708, page 406]-showing that UG(D) may be 

k-connected and 2k-edge-connected and still D has no k-strong orientation—is 

obtained from the complete biorientation of the graph constructed by taking 

two large complete graphs G1, G2 sharing just one vertex uv and adding k — 1 

independent edges with one end in V(G) — v and the other in V(G2) — v. 
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Figure 7.16 A 7-connected 7-regular graph obtained from the third power of a 
10-cycle by adding longest diagonals 

Very little progress has been made on Conjecture 7.14.2 and it is not even 

known if there is some function f(k) so that every f(k)-strong digraph has a 
k-strong orientation. Below we shall describe some results on special classes 
of digraphs. 

Using the structure theorem (Theorem 4.11.15) for locally semicomplete 
digraphs Guo proved that every (2k—1)-strong locally semicomplete digraph 

which is not semicomplete can be oriented as a k-strong local tournament. 

This was improved by Huang [437] who proved that the following much 

stronger statement holds: 

Theorem 7.14.3 [437] Every k-strong locally semicomplete digraph which 

is not semicomplete can be oriented as a k-strong local tournament. oO 

Bang-Jensen and Thomassen [44] proved that for semicomplete digraphs 

the function f(k) indeed exists. The value of this function was later improved 
by Guo. 

Theorem 7.14.4 /344] For every natural number k, every (3k—2)-strong lo- 

cally semicomplete digraph has an orientation as a k-strong local tournament 

digraph. 

We will not prove the bound 3k — 2 here, but instead give the proof by Bang- 

Jensen and Thomassen that f(k) < 5k for semicomplete digraphs. That proof 

illustrates the main ideas and Guo’s proof is a refinement of the proof we give. 
Note that by Theorem 7.14.3 it is enough to consider semicomplete digraphs. 

We prove by induction on k that every 5k-strong semicomplete digraph 

D contains a spanning k-strong tournament. The case k = 1 is easy, since 

_ by Theorem 1.5.1, every strong semicomplete digraph has a Hamilton cycle. 

Let C be a Hamilton cycle in D. For every 2-cycle of D delete an arbitrary 

arc of that 2-cycle, unless one of its arcs is used by C. In the latter case 

we delete one arc of the 2-cycle so as to preserve C’. We obtain a spanning 

strong tournament T of D. Note that the case k = 1 also follows easily from 

Corollary 7.2.7. 
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Suppose we have proved the statement for all r < k — 1, that is, every or- 

strong semicomplete digraph contains a spanning r-strong tournament. Let 

D be a 5k-strong semicomplete digraph and suppose D does not contain a 

spanning k-strong tournament. We derive a contradiction to this assumption. 

First observe that we must have |V(D)| > 5k + 2 since otherwise D is the 

complete digraph on 5k + 1 vertices and this clearly contains a k-connected 

spanning tournament. 

By induction D contains a (k — 1)-strong spanning tournament. Let T be 

chosen among all (k — 1)-strong spanning tournaments of D such that the 

following holds: 

(i) The number s of separating sets of size k — 1 in T is minimum over all 

k — 1-strong spanning subtournaments of D. 

(ii) T has a separating set S of size k — 1 such that the number m of strong 

components of T — S is minimum taken over all separating sets of size 

k—1lof T. 

Let S be some separating set of T such that T — S has precisely m strong 

components 7T},..., 7m (written in the unique acyclic order). Let U = V(Z})U 

... UV(Im-1) and W = V(T,,). Since D is 5k-strong it follows easily from 
Menger’s theorem (Corollary 7.3.2) that in D there are 5k internally disjoint 

paths from W to U (see Exercise 7.19). At most k — 1 of these can pass 

through S. Thus in D — S there are at least 4k + 1 arcs from W to U. Let 

U' CU (W' C W) be those vertices v of U (W) for which some arc in D 
from W to U has v as its head (tail). Since D—S has at least 4k +3 vertices, 

either U or W has size at least 2k + 2. Using this and the fact that D—S 

has 4k + 1-internally disjoint (w,wu)-paths for every choice of u € U,w € W, 

we get from Corollary 7.3.2 that either |U'| > 2k +1 or |W'| > 2k +1. By 
considering the converse of D if necessary, we may assume |U'| > 2k + 1. 

The digraph T(U') is a tournament on at least 2k + 1 vertices and hence 

it has a vertex x with at least k out-neighbours in U'. Let y be a vertex in 

W' such that yx is an arc of D (y exists since x € U’). In T we have the 

arc xy (since every vertex in U dominates every vertex in W) and since x 

has out-degree at least k in T(U'), there are at least k (x, y)-paths of length 
2 in T. Let T’ be the spanning tournament in D that we obtain from T by 

replacing the arc zy by the arc yx. Applying Lemma 7.9.6 we get that T" 

has no more than s minimum separating sets. However, it is easy to see that 

T'—S is either strong (if  € V(T;)), or it has fewer strong components than 

T — S and hence we obtain a contradiction to the choice of T according to 

(i), (ii). 0 
It can be seen by inspecting Guo’s proof in [344] that (3k — 2)-strong 

connectivity is the best bound one can prove using his approach. However, 

at least for k = 2 this is not sharp when we have more than 2k vertices: 

Proposition 7.14.5 /83] Every 3-strong semicomplete digraph on at least 5 
vertices contains a spanning 2-strong tournament. 0 
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Figure 7.17 A k-strong semicomplete digraph D. All arcs between H and T go 
from H to 7’, except the 2-cycle xyr shown as an edge. All other arcs not shown 
are in 2-cycles. A, B, C represent arbitrary complete digraphs on at least one vertex 
each. The set C has k — 3 vertices and hence k is defined as |C| + 3. The one-way 
pair T, H (in D—zy) shows that we cannot delete ry and the one-way pair (T’, H’) 
with T’ = AU {y,t}, H’ = BU {h, x} shows that we cannot delete yz. 

It is perhaps worthwhile to notice that it does not seem easy to con- 

struct k-strong semicomplete digraphs with many vertices such that both 

arcs of some 2-cycle are critical with respect to k-strong connectivity (that 

is, deleting any of these arcs, the digraph is no longer k-strong). In order 

to obtain such a semicomplete digraph we must construct it so that we can 

prove that it is k-strong and that some 2-cycle zyz has the property that 

none of D — {xy} and D — {yz} is k-strong. Here the concept of one-way 

pairs and Lemma 7.7.2 is a useful tool. Suppose that none of D — {xy} and 

D — {yx} are k-strong. Then each of these must be (k — 1)-strong and there 
must exist one-way pairs (71, Hi), (T2, H2) in D — zy, respectively D — yx 

with A(T,,H,) = h(T2,H2) = k-—1 and zg € %N Ho,y € T2N HM. Based 

on these findings one can construct a semicomplete digraph with the desired 

property. See Figure 7.17. We leave it to the reader to verify that D is indeed 

k-strong (Exercise 7.42). 
Let us call a 2-cycle zyx in a semicomplete digraph D critical if we 

cannot delete any of the arcs ry,yx without decreasing the vertex-strong 

_ connectivity of D. 

Problem 7.14.6 Investigate the structure of the critical 2-cycles in semi- 

complete digraphs. 
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As an illustration of the usefulness of the structural characterization of 

quasi-transitive digraphs in Theorem 4.8.5 we show how Theorem 7.14.4 im- 

plies the same statement for quasi-transitive digraphs. 

Corollary 7.14.7 For every natural number k, every (3k — 2)-strong quasi- 

transitive digraph has an orientation as a k-strong quasi-transitive digraph. 

Proof: Let D be a (3k — 2)-strong quasi-transitive digraph and let D = 

Q[Wi,...,Wa], ¢ = |Q|, be a decomposition of D according to Theorem 

4.8.5. By Corollary 7.13.2, the digraph Do obtained from D by deleting all 

arcs inside each W; is also (3k — 2)-strong. By Theorem 4.8.5, if Q con- 

tains a 2-cycle qiqjqi, then each of W;,W; have size one. Now let H be a 

semicomplete digraph obtained from Do by adding an arbitrary arc between 

every pair of vertices inside each V(W;). Clearly H is (at least) (3k — 2)- 
strong and hence, by Theorem 7.14.4, it contains a spanning k-connected 

tournament T' (which is obtained from H by deleting one arc from every 

2-cycle, that is, T is an orientation of H). By the way we constructed H, 

we have T = Q'(T),...,T,] for some choice of tournaments T),...,T7\g; on 

|W1|,...,|W,| vertices respectively. Here Q’ is a spanning tournament in 
Q. Applying Corollary 7.13.2 to T = Q’[T1,...,T,], we get that the quasi- 

transitive digraph D' = Q'[Kiwi) o- Ky, |] is k-strong and by the remark 

above on 2-cycles in Q we see that D’' is a spanning subgraph of D. It is 

easy to see that, if we delete an arc from every 2-cycle of a quasi-transitive 

digraph, then the result is a quasi-transitive digraph. Let W/ be obtained 

from W; by deleting one arc from every 2-cycle in W, for 1 = 1,2,..., Wg. 

Now we see that D” = Q'[W{, W3,..-, W,] is the desired k-strong orientation 

of D. 0 

Note that it also follows from the proof above that every (3k — 2)-strong 

quasi-transitive digraph contains a spanning k-strong extended tournament. 

7.15 Packing Cuts 

In this section we consider directed multigraphs. Let D = (V, A) be a directed 

multigraph which is connected, but not strongly connected. A directed cut 

(or just a dicut) in D is a set of arcs of the form (X, V — X), where X isa 
non-empty proper subset of V such that there are no arcs from V — X to X 

(ie. (X,V — X) is a one-way pair with h(X,V — X) = 0). Two directed cuts 
are arc-disjoint if they do not share an arc. Note that two dicuts (X,V — X) 

and (Y,V — Y) may be arc-disjoint but still X NY # @. As an example 

consider a directed path-a,29...2,. Here {({21,...,2;},{%i+1,.-.,2¢}) ; 

1<i<k-—1)} isa family of k ~1 arc-disjoint cuts (each having precisely one 

arc). Clearly these cuts overlap considerably when we consider their vertex 

sets. For simplicity we will sometimes denote a dicut (X,V — X) just by the 
set X. 
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A dijoin is a subset A’ C A which covers all dicuts. Define Q(D) and 
T(D) as follows 

§2(D) = the maximum number of arc-disjoint dicuts in D. 

T(D) = min {|A’| : A’ is a dijoin}. (7.36) 

Suppose D = (V,4A) is connected but not strongly connected. Then it is 
clear that we can obtain a strong directed multigraph by contracting certain 
arcs. It is also clear that, if we contract an arc a which is not an arc of a 
dicut (X,V — X), then in the resulting directed multigraph D’ = (V', A’), 
the corresponding pair (X', V — X‘) is still a dicut. On the other hand, if A’ is 

a dijoin and we contract all arcs of A’, then the resulting directed multigraph 

is strong. Let p(D) denote the minimum number of arcs whose contraction in 
D leads to a strong directed multigraph. Then it follows from the discussion 
above that 

QD) < p(D) < 7(D). (7.37) 
Note that, if D is a directed (x,y)-path on r vertices, then a,;(D) = 1, 

since we may add a new arc yz and get a strong digraph. However, in order 

to obtain a strong directed multigraph by contracting arcs, we must contract 

r —1 arcs, showing that p(D) =r —1. This proves that p(D) and a,(D) may 
be arbitrarily far apart. 

Let D be a directed multigraph. Recall that the operation of subdividing 

an arc consists of replacing the arc zy in question by the path ruy of length 

two, where u is a new vertex. If several arcs are subdivided, then all the new 

vertices (used to subdivide these arcs) are distinct. 

Lemma 7.15.1 Let D = (V,A) be a directed multigraph and let D' be ob- 

tained from D by subdividing each arc once. If D has k arc-disjoint dicuts, 

then D' has 2k arc-disjoint dicuts. 

Proof: Let D’ = (V', A’) be obtained from D by subdividing each arc once. 

Let X,,..., X, be chosen such that the dicuts (X1,V —X1),..., (Xz, V —Xx) 

are arc-disjoint in D. For each dicut (X;, V — X;) we denote by X; the set we 
obtain in D' by taking the union of X; and the new vertices that subdivide 
the arcs leaving X;. Now it is easy to see that each of the dicuts (X1,V’ — 

X1), (Xj, V' — X}f),.--, (Xe, V' — Xk), (X;,,V' — X;,) are arc-disjoint. Oo 

The next theorem, due to Lucchesi and Younger shows that in fact equal- 

ity holds everywhere in (7.37). 

Theorem 7.15.2 (the Lucchesi-Younger theorem) /528/ Let D = 
(V, A) be a directed multigraph which is connected and either D has just one 

vertex, or it is not strongly connected. Then §2(D) = 7(D). 

Proof: We give a proof due to Lovadsz [521]. The proof is by induction on 

the number of arcs in A. If A = 0, then D has precisely one vertex and there 

are no dicuts. Hence the statement of the theorem is vacuously true. 
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Now let a € A be an arbitrary arc. Contract a and consider the resulting 

directed multigraph D/a. Note that the dicuts of D/a are exactly those in 

D which do not contain the arc a. By induction, r(D/a) = 2(D/a). Hence if 
2(D/a) < Q(D)—1, then we can cover all dicuts in D by r(D/a)+1 < Q(D) 

arcs and the theorem is proved. Hence we may assume that 

2(D/a) = Q(D) for every arca € A. (7.38) 

By Lemma 7.15.1, if we subdivide all arcs in A, then the resulting digraph 

has at least 2(D) + 1 arc-disjoint dicuts (with equality only if 2(D) = 1). 
Hence, starting from D and subdividing arbitrary (not previously subdivided) 

arcs, we will get a sequence of directed multigraphs Dp = D,Dj,...,Dh, 

where §2(D;) = 2(D) for each i < h — 1 and 2(D,) = 2(D) +1. Let f be 
the last arc we subdivided in this process and let H = D;,_1. Now H contains 

(2D) lV idicuts! Xy, 457-5“ a(pjaa such that only two of them have an 

arc in common and that arc is f. 

Observe that H/f arises from G/f by subdivision. Hence, by the as- 

sumption (7.38), Q(H/f) = Q(D) and so H contains 2(D) arc-disjoint di- 
cuts Y1, Y2,...,¥cp) none of which contains the arc f. This implies that 

X1,X2,.--,Xa(p)41, V1, Ye,-.., Yacp) is a collection of 22(D) + 1 dicuts in 
H such that no arc belongs to more than two of these. Thus the following 

lemma will give us a contradiction, implying that (7.38) cannot hold and 
hence the theorem follows. 

Lemma 7.15.3 Jf a digraph D contains at most k arc-disjoint dicuts, and 

C is any collection of dicuts in D such that no arc belongs to more than two 

dicuts in C, then |C| < 2k. 

Proof of Lemma 7.15.3: Call two dicuts (X, V — X), (Y, V —Y) crossing 

if X and Y are crossing as sets. The first step is to uncross crossing dicuts in 
the family. 

It follows from (7.2) that, if (X,V—X), (Y, V—Y) are crossing dicuts, then 
each of (XUY,V —(XUY)), (XNY,V—(XNY)) are dicuts and d(X,Y) = 0. 
Furthermore, the dicuts (X UY, V —(X UY)) and (XNY,V —(XNY)) cover 
each arc of D the same number of times as the dicuts (X, V — X), (Y,V —Y) 
(here we used that d(X,Y) = 0). Let C' = C — {(X,V — X),(Y,V -Y)} + 
{(XUY,V —(XUY)),(X NY,V —(XNY))}. Then C’ has the same property 
as C that no arc covers more than two dicuts in C and furthermore we have 

SE lide), Ona (7.39) 
(X, VER ec (Z,V=Z)ee? 

because |X UY|? + |X NY|? > |X|? + |¥|?. when X,Y cross. Hence, if we 
replace crossing dicuts pairwise as we did above, then we will eventually reach 
a new family C* of size |C| such that the dicuts in C* are pairwise non-crossing 
and no arc of D belongs to more than two dicuts in C*. Hence it suffices to 
prove that C* contains at most 2k dicuts. 



7.15 Packing Cuts 403 

Betty A p2ay Zu Farid letAy = (2), V— Zp 1) 2) Be 
the corresponding arc sets. Construct an undirected graph GIG" =n VRE tas 
follows: V = {v,v2,...,Ua¢} and there is an edge between v,; and v; if and 
only if A; A; # @. Since D contains at most k arc-disjoint dicuts, it follows 
that G(C*) has at most k independent vertices. Hence it suffices to show that 
G(C*) is a bipartite graph since then we get |C = Feel Rea 

Let vj, v3 ...v,v;, be an arbitrary cycle in G(C*). Note that the arc sets of 
the corresponding dicuts Aj,..., A must be different, since if (Ai VitZ)) = 
(Z;,V — Z;) for some 1 <i <j < s, then every arc in (Zi, V — Z}) is covered 
twice (by (Z;, V — Zj) and by (Z;,V — Z)) and hence the vertices v}, v; each 
have degree one in G(C*), contradicting the fact that they are on a cycle. 
Note also that if two dicuts (X,V — X) and (Y,V — Y) have X UY =V, 
then they are arc-disjoint and hence are not adjacent in G(C*). 

OFcr 
©) ©O 

Figure 7.18 Illustration of the definition of being to the right and left for cuts. In 
the two situations in part (a) (part (b)) the dicut (X,V — X) is to the left (right) 
of the dicut (Y, V — Y). In the right part of (a) we have X UY =V. 

Since A,jN Aj,, # @ fori =0,1,...,s—1, where Aj = Af, it follows from 

our remarks above that we have either Z; C Zj,, or Zj,, C Zj. We prove 
that the two possibilities occur alternatingly and hence s is even. Suppose 

not, then without loss of generality we have Z§ C Z, C Z}. Let us say that a 

dicut A’ is to the left of another dicut A; if either Z; C Zs or ZiUZ; Ve 

(which is equivalent to V — Zj C Zj) and that Aj is to the right of Ai 
if Z;N Z; = @ (which is equivalent to Z; C V — Z;), or Z; C Zi (which is 
equivalent to V—Zj C V — Z;). See Figure 7.18. Since C* contains no crossing 
members, each A; # A’ is either to the right or to the left of Aj. Since A} 
is to the right of A) and Aj = A is to the left of A}, it follows that there 
is some 2 < j < s—1 such that Aj is to the right of Aj and Aj, , is to the 

left of Ai. Suppose first that 7; Z| = 0, then we cannot have Z;,, C Z| as 
Aj,, and A’, have a common arc. So we must have 2 U Za =V, Shy then 
any arc a common to A; and Aj,, enters Z;, contradicting that d~(Z}) = 0. 
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Hence we must have Z{ C Zj. The fact that Aj, Aj,,, have a common arc a 

(and hence either Z; C Zj,, or Z\ 41, © Z;) implies that, by the choice of 7, 

we have Zi, C Z| C Zj,,. But now the arc a belongs to three dicuts Aj, A’ 

and A’,,,, a contradiction. This completes the proof of the lemma and, by 

the remark above, also the proof of the theorem. O 

Combining (7.37) and Theorem 7.15.2, we obtain: 

Corollary 7.15.4 Let D be a non-strong directed multigraph whose under- 

lying graph is connected. Then p(D) = 7(D), that is, D can be made strongly 

connected by contracting t(D) ares. 

The proof of Theorem 7.15.2 is not constructive but using submodular 

flows one can find a minimum dijoin A’ C A of D in polynomial time. See 

Corollary 8.8.10. 
x 

7.16 Application: Small Certificates for k-(Arc)-Strong 
Connectivity 

We complete the chapter with a topic that is, of practical interest and at the 

same time illustrates important applications of several of the concepts from 

the chapter. 

Let D = (V,A) be a directed multigraph which is k-(arc)-strong. What 
is the cost (measured in the number of arcs, or the sum of arc costs if these 

are present) of a minimum cost spanning subgraph D! = (V, A’) of D such 
that D’ is k-(arc)-strong? A spanning k-(arc)-strong subgraph D’ of D is 

called a certificate for k-(arc)-strong connectivity of D. Finding an optimal 
certificate (that is, one with the smallest cost) for k-(arc)-strong connectivity 
is a difficult problem, even when k = 1. Namely, if all costs are 1 (that is, 

we only count the number of arcs), then the optimal D’ has n arcs if and 

only if D has a Hamilton cycle. Thus the problem is W’P-hard already when 

k = 1 and we have uniform costs. By the remark above, the Hamilton cycle 

problem is a special case of the problem of finding an optimal certificate for 

strong connectivity. This makes it interesting to consider classes of digraphs 

for which we know that the Hamilton cycle problem is polynomially solvable 

and to see what we can say about the complexity of finding the optimal 

certificate for vertex-strong connectivity. This was done in Section 6.11 for 

some classes of generalizations of tournaments. 

In practical applications, e.g. to speed up algorithms, it is often important 

to work with a small certificate for k-(arc)-connectivity. This means that one 

is interested in finding polynomial algorithms which find a certificate D’ for 
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k-(arc)-strong connectivity with the property that the cost of D’ is not more 

than some constant (larger than 1) times the cost of the optimal certificate®. 

In this section we present some recent results by Cheriyan and Thurimella 

[151] which show that we can approximate the size of a smallest k-(arc)-strong 
spanning subgraph better, the higher k is. 

7.16.1 Finding Small Certificates for Strong Connectivity 

For k = 1, the 2-approximation algorithm sketched in the proof of Theorem 

7.10.1 could be used since D is 1-strong if and only if it is 1-arc-strong. 

However, one can do better than this. When k = 1 the problem of finding a 

small certificate for strong connectivity is a special case® of a problem which 

is also called the problem of finding the minimum equivalent subdigraph 

of a directed multigraph. That is, given D, find a spanning subgraph D’ with 

as few arcs as possible such that D’ contains an (z,y)-path if and only if 

D does for every choice of z,y € V(D) (it is clear that D’ will not contain 
multiple arcs and hence must be a digraph). This problem, which has many 

practical applications, has been considered several times in the literature, see 

e.g. [5, 317, 434, 478, 479, 554, 636, 673]. See also Section 4.3. 

Now let D be a strongly connected digraph (recall that we may assume 

that D has no multiple arcs since multiple arcs will not be present in a min- 

imally strong directed multigraph). Khuller, Raghavachari and Young [478] 
gave a 1.65-approximation algorithm for the size of a smallest strongly con- 

nected subgraph of any strongly connected digraph. The idea in the algorithm 

from [478] is to find a long cycle, contract it and continue recursively. The 

authors were able to show that this approach can be performed in such a way 

that one obtains a solution in polynomial time with no more than 1.65 times 

the size of an optimum solution. This was later improved to about 1.61 using 

results from [479]. 
Khuller, Raghavachari and Young also considered the restriction when the 

digraph in question has no cycle with more than r arcs. Then the problem 

is known under the name SCCS, [478]. In [479] it is shown that if one only 
considers digraphs with no cycle longer than 3, then the optimal certificate 

can be found in polynomial time. The algorithm is based on the following 

result. 

®° Such an algorithm which is polynomial and finds a solution (for a minimization 
problem) whose cost is at most pz times the value of an optimal solution (y > 1) 
is called an y-approximation algorithm for the problem. 

6 Tt is in fact the most important ingredient since once we know the best subgraph 
inside each strong component, we can contract each strong component to a vertex 

and consider the problem of finding a minimum equivalent subdigraph of an 
acyclic directed multigraph. That problem is solvable in polynomial time by 

Proposition 4.3.5. 
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Theorem 7.16.1 [479] The SCCS3 problem reduces in time O(n”) to the 

problem of finding a minimum edge-cover’ in a bipartite graph. 

This gives an O(n? +m,/n) time algorithm for the SCCS3 problem, since 
the problem of finding a minimum edge cover in a bipartite graph is equivalent 

to the problem of finding a maximum matching in such a graph [497]. The 

latter problem can be solved in time O(,/nm) (see Theorem 3.11.1). 
However, already the SCCS; problem is \’P-hard and the SCCSj7 is 

even MAX SN P-hard, implying that there cannot exist a polynomial time 

approximation scheme for this problem, unless P = NP [478]. Khuller, 
Raghavachari and Young posed the following problem concerning the weighted 

version. Here the goal is to find a spanning strong subdigraph of minimum 

weight. 

Problem 7.16.2 [478] Does there exist a y-approzimation algorithm for 

minimum weight strong connectivity certificates with p < 2? 

The existence of a polynomial algorithm with approximation guarantee 

2 follows from the fact that finding a minimum cost in-branching (out- 

branching) with a given root can be done in polynomial time (see Section 
9.10). Indeed, if F~ (F*) is a minimum cost in-branching (out-branching) 
rooted at r, then D' = (V, A(F-) U A(F‘*)) is strong and clearly has cost at 
most twice the optimum. In Exercise 7.49 the reader is asked to show that 

the approximation guarantee of this approach cannot be lower than 2. 

Once again we remind the reader that in Section 6.11 we showed that an 

optimal strong subdigraph of a digraph D can be found in polynomial time 

in case D belongs to one of several classes of generalizations of tournaments. 

7.16.2 Finding k-Strong Certificates for k > 1 

Cheriyan and Thurimella recently gave an approximation algorithm with a 

very good approximation guarantee by combining some fairly elementary 

results on subgraphs of (di)graphs with Mader’s powerful result on anti- 
directed trails and k-critical arcs (Theorem 7.10.7). We start with the two 
subgraph results and then describe the simple algorithm from [151]. 

Proposition 7.16.3 /151] Let B = (V,E) be a bipartite graph with mini- 
mum degree k. Let E' C E be a minimum cardinality subset of E with the 
property that B' = (V, E') has minimum degree k—1. Then |E'| < |E|—|V|/2 
and this bound is best possible. oO 

Proposition 7.16.4 There exists a polynomial algorithm A which, given a 
directed multigraph D = (V, A) with minimum semi-degree 6(D) > r, returns 
a minimum cardinality subset A’ C A such that the directed multigraph D' = 
(V, A’) has 6(D’) > r. 

” An edge-cover of an undirected graph G = (V, E) is a set of edges E’ C E such 
that every uv € V is incident with at least one edge from E’. 
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Proof: This (as well as the more general minimum arc cost version) can be 

solved using a minimum value (minimum cost) flow algorithm on a suitable 

network constructed from D (see Exercise 7.47). 0 

Theorem 7.16.5 /151] There exists a polynomial algorithm which, given a 

digraph D = (V,A) which is k-strong, returns a spanning k-strong subgraph 

D" = (V,A") of D such that |A"| < (1+ ;)|A3,:|, where AS,, denotes a 
minimum cardinality arc set At,, C A such that D* = (V, A%,,) is k-strong. 

Proof: Let & be the following algorithm: 

Input: A directed graph D = (V, A) and a number k such that D is k-strong. 

Output: A small certificate D = (V, A) for k-strong connectivity of D. 

1. Use the algorithm A of Proposition 7.16.4 to find a minimum cardinality 

subset A’ C A such that the digraph D' = (V, A’) has 6(D’) > k — 1; 
Dabo AA — A’ 

3. Find a minimal (with respect to inclusion) subset A” C A with the prop- 

erty that D = (V, A’ U A") is k-strong; 

4. Return D. 

Clearly D = (V, A’ U A") is k-strong, so we can concentrate on the ap- 

proximation factor and the running time. 

To see that the approximation factor is as claimed, let D* = (V, A3,,) 

denote an arbitrary optimal certificate for k-strong connectivity of D. Clearly 

we have 

IA'| < [Abpl- (7.40) 
To bound the size of A” we use Theorem 7.10.7. We claim that D” = 

(V,A") has no anti-directed trail. Suppose it does and let T be an anti- 
directed trail in D”. Note that T is a subdigraph of D. Hence we can apply 

Theorem 7.10.7 to D. Now it follows from the fact that every arc of A” is 

k-critical in D that only (b) or (c) can hold in Theorem 7.10.7 when applied 
to D. However by the choice of A’, neither (b), nor (c) can hold in D since 
every source (sink) of T has out-degree (in-degree) at least k + 1 in D. Thus 
T cannot exist and D” has no anti-directed trail. From this it follows, by 

considering the bipartite representation BG(D"), that 

|A"| < 2|V| —1. (7.41) 

We leave the proof of this as Exercise 7.48 (recall the definition of BG(D) in 

Chapter 1). 
Combining (7.40) and (7.41), it is easy to see that the approximation 

guarantee of B is at least as good as (1 + 2). However, using Proposition 
7.16.3 we can do a little better. Let A** be a minimum cardinality subset of 

Aj pt 80 that the spanning subgraph D** = (V, A**) has 6(D**) > k—1. 
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Consider BG(D*) and the edge sets E*, E** corresponding to Aj,, and A 

By Proposition 7.16.3 

|A™| = |B" | < |B"| -|V(BG(D"))|/2 
= |Acel IVI: (7.42) 

By the choice of A’ we have |A’| < |A**| and combining (7.41) and (7.42) 

gives 

AL. pl = 11+ @IVI- 0) 
[Aco a |AS rt 

<1 = (7.43) 

since clearly |A%,,| > k|V|. 
It remains to prove that B can actually be performed in polynomial time. 

Step 1 is performed by the polynomial algorithm A whose existence is proved 

in Exercise 7.47. Step 3 can be implemented by starting from D and deleting 

arcs of A one by one until every remaining arc from A is k-critical. Clearly 

this part can be done in polynomial time, using any algorithm for checking 

whether a digraph is k-strong. oO 

The authors claimed in [151] that the running time of the algorithm can 
be made O(k|A|?). 

7.16.3 Certificates for k-Arc-Strong Connectivity 

In Theorem 7.10.1 we saw that for k-arc-strong connectivity one can ap- 

proximate the size (measured in number of arcs) of an optimal certificate 
for k-arc-strong connectivity within a factor of 2, using arc-disjoint in- and 

out-branchings. In Chapter 9 we shall see that one can even handle the case 

when there are costs on the arcs and still get a 2-approximation algorithm. 

Since D is 1-arc-strong if and only if it is strong, we covered the case k = 1 

in the discussion above for vertex-strong connectivity. 

Cheriyan and Thurimella showed that also for arc-strong connectivity 

one can approximate the size of an optimal certificate better the higher the 
arc-strong connectivity is. 

Theorem 7.16.6 /151] There exists a polynomial algorithm which given a 
digraph D = (V,A) which is k-arc-strong returns a spanning k-arc-strong 
subgraph D! = (V,A') of D such that |A'| < (1+ 4/Wk)|Aopt|, where |Aopt| 
denotes the number of arcs in an optimal certificate for k-arc-strong connec- 
tivity. The running time of the algorithm is O(k°|V |? + |A|*> (log (|V|)2). 
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Proof: The idea is similar to the vertex-strong connectivity case so we will 
only sketch the proof here. Let D = (V, A) be k-arc-strong. First find, using 
the algorithm A, a minimum cardinality subset U C A such that H = (V,U ) 
has 6(H) > k. Then find an inclusion-wise minimal subset U’ C (A—U) such 
that H = (V,U UU’) is k-arc-strong. As in the proof of Theorem 7.16.5, the 
key step is to estimate the size of U’, since |U| is clearly at most the size of 
an optimal solution. 

To estimate |U'| we use the following definition. An arc uv of a k-arc- 
strong digraph W is special if W — wv is not k-arc-strong and furthermore 
dy (u), dy (v) => k+1. Clearly each arc in the set U' is special in the digraph 
H. Hence we can apply the following estimate. 

Theorem 7.16.7 /151] Let k > 1 be an integer and let W = (V,A) be k- 
arc-strong. The number of special arcs in W is at most 4V/k|V]. oO 

Combining this with the fact that |A’| is no more than the size of an 
optimal certificate the theorem follows. For the complexity bound we refer 

to [151]. O 
See also [152] for an expanded version of [151]. 

7.17 Exercises 

7.1. Submodularity of |N~| and |N*|. Prove Proposition 7.1.3. 

7.2. (—) Prove Corollary 7.2.3. 

7.3. Complexity of converting between a directed multigraph and its 
network representation. Show that given a directed multigraph D one 
can construct its network representation M’(D) in polynomial time. Show 
that converting in the other direction cannot always be done in a time which 
is polynomial in the size of the network representation. Hint: recall that we 
assume that capacities are represented as binary numbers. 

7.4. Prove that, if D = (V, A) is an eulerian directed multigraph and X is a proper 
non-empty subset of V, then d*(X) = d7(X). 

7.5. Show that every k-regular tournament is k-arc-strong. 

7.6. (—) Prove that every eulerian directed multigraph is strong. 

7.7. Let D be a digraph, let s be a vertex of D and let k be a natural number. 
Suppose that min{X(s, v), A(v, s)} > k for every vertex v € V(D) — s. Prove 
that A(D) > k. 

7.8. (—) Vertex-strong connectivity of planar digraphs. In a planar undi- 
rected graph G on n vertices and m edges we always have m < 3n — 6 by 
Buler’s formula (see Corollary 4.14.3). Conclude that no planar digraph is 
6-strong. 

7.9. (—) Let D be a k-strong digraph and let a be an arbitrary arc of D. Prove 
that D — a is (k — 1)-strong. 
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(—) Let D be a k-strong digraph and let a be an arbitrary arc of D. Let by 

be obtained from D by reversing a. Prove that D’ is (k — 1)-strong. 

Connectivity of powers of cycles. Recall that the kth power of a cycle 

C =v1...Unv1 is the digraph with vertex set {v1,..., Un} and arc set {viv; : 

i+1<j<it+k,i=1,2,...,n}. Prove that the kth power of a cycle on 

n >k+1 vertices is k-strong. 

(—) For every natural number k describe a k-strong digraph D for which 

reversing any arc of D results in a digraph with vertex-strong connectivity 

less than k. 

(+) Finding k arc-disjoint (x, y)-paths of minimum total weight. Let 
D =(V,A,w) be a directed multigraph with weights on the arcs, let x,y € V 
be distinct vertices and let k be a natural number. Describe a polynomial 
algorithm which either finds a minimum weight collection of k arc-disjoint 
(x, y)-paths, or demonstrates that D does not have k arc-disjoint (x, y)-paths. 
Hint: use flows. Argue that you can find k internally disjoint (z,y)-paths of 
minimum total weight using a similar approach. 

(+) Minimum augmentations to ensure k arc-disjoint (s, ¢)-paths. 
Let D = (V,A,w) be a directed multigraph, let s,t be special vertices of 
D and let k be a natural number such that D does not have k arc-disjoint 
(s,t)-paths. Prove that it is possible to augment D optimally so that the new 
directed multigraph has k arc-disjoint (s,t)-paths and all new arcs go from 
s to t. Now consider the same problem when there are weights on the arcs. 
Devise an algorithm to find the cheapest set of new arcs whose addition to 
D gives a directed multigraph with k arc-disjoint (s,t)-paths. Hint: use min 
cost flows. 

(+) Minimum number of new edges to add so that the new digraph 
has k arc-disjoint out-branchings at s. Show how to reduce this problem 
to the general k-arc-connectivity augmentation. Try to derive a min-max 
formula for the optimal number of new arcs. 

Equivalence of Menger’s theorem and the Max Flow Min Cut the- 
orem. Prove that Menger’s theorem implies the Max-flow Min-cut theorem 
for network in which all capacities are integer valued. 

Refining Menger’s theorem. Let D be a k-strong directed multigraph. 
Let 21, 22,...,2r, Yi, Y2,---, Ys be distinct vertices of D and let ai, a2,...,ar, 
bi, b2,...,b; be natural numbers such that 

Saat Sa = 1), 

j=l t=1 

Prove that D contains k internally disjoint paths P;, P2,...,P, with the 
property that precisely a; (bj) of these start at x; (end at y;). Argue that 
the analogous statement concerning arc-disjoint paths is true if we replace 
vertex-strong connectivity by arc-strong connectivity. 

. Refining Menger’s theorem for undirected graphs. Prove the analo- 
gous statement of Exercise 7.17 for undirected graphs. 

. Menger’s theorem for sets of vertices. Let D be k-strong and let X,Y 
be distinct subsets of V(D). Prove that D contains k internally disjoint paths 
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which start in X and end in Y and have only their starting (ending) vertex 
in X (Y). 

Augmenting acyclic tournaments to k-strong connectivity. Prove 
that an acyclic tournament on n > k +1 vertices can be made k-strong by 

adding tet) arcs. Hint: use Exercise 7.11. 

(+) Ear decomposition in linear time. Supply the algorithmic details 
missing in the proof of Corollary 7.2.5. In particular, describe how to store 
the arcs in such a way that the ear decomposition can be found in linear 
time. 

(+) Strong orientations of mixed multigraphs in linear time. Give 
an O(n+m) algorithm for finding a strong orientation of a mixed multigraph 
or a proof that no such orientation exists (Chung, Garey and Tarjan [157)]). 

(+) Cycle subdigraphs containing specified arcs. Prove the following. 
Suppose D is k-strong (respectively, k-arc-strong) and e€1,¢€2,...,€% are arcs 
of D such that no two arcs have a common head or tail. Then D has a cycle 
subgraph (respectively, a collection of arc-disjoint cycles) F = {Ci,...,C;}, 
1 <r<k such that each arc e; is an arc of precisely one of the cycles in F. 
Hint: add two new vertices s,t, connect these appropriately to D and then 

apply Menger’s theorem to s and t. 

Prove the following: Every s-regular round digraph has strong vertex- and 
arc-connectivity equal to s (Ayoub and Frisch [34)]). 

Connectivity of complete biorientations of undirected graphs. Let G 
be a k-connected undirected graph for some k > 1 and let D be the complete 
biorientation of G. Prove that for every arc ry of D the digraph D — zy is 
k-strong if and only if D — {ry, yx} is k-strong. 

Obtaining new k-strong digraphs by adding vertices. Let D be a k- 
strong digraph, let z be a new vertex and let D’ be obtained from D and x 
by adding k arcs from z to distinct vertices of D and k arcs from distinct 
vertices of D to x. Prove that D’ is k-strong. 

Obtaining new k-arc-strong directed multigraphs by adding new 
vertices. Let D be a k-arc-strong directed multigraph, let x be a new vertex 
and let D’ be obtained from D and z by adding k arcs from z to arbitrary 
vertices of D and k arcs from arbitrary vertices of D to x. Prove that D’ is 

k-arc-strong. 

(+) Greedy deletion of arcs in Frank’s algorithm. Show how to imple- 
ment Steps 2 and 3 of Frank’s algorithm in Section 7.6 by using flows to find 
the maximum number of arcs that can be deleted for each vertex v; (Frank 
[258]). Hint: let t be a vertex of V — vi, identify s and t to one vertex t’ and 
then calculate X(v;,t’) in the resulting directed multigraph. Do this for all 
t € V—v; and let p be the smallest of the numbers calculated. Using Menger’s 

theorem, show that we may delete precisely min{p(v;, 8), @ — k} arcs from v; 

to s without violating (7.9). 

Perform Frank’s algorithm on the digraph in Figure 7.19 when the goal is to 

obtain a 2-arc-strong directed multigraph. 
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7. Global Connectivity 

AE DIG 
Figure 7.19 A directed graph H. 

(+) Finding an admissible split. Show that Step 5 of Frank’s algorithm 
in Section 7.6 can be implemented using flows. That is, show how to decide 
if a given splitting (ws, sv) is admissible, that is, it preserves k-arc-strong 
connectivity in V (Frank [258]). Hint: we need to decide if there is a set 
U CV such that u,v € U and d*(U) =k or d (U) =k. This can be done 
using flows in a way similar to that outlined in the hint above. 

(+) Let D= (eis Vasu hed et, bt bE aT where J, denotes the digraph, that 
is, just an isolated vertex and n is an even number. Prove that y,(D) = k. 
Try to determine a;(D). 

Let H be the digraph in Figure 7.19. Determine a2(H) and a set of a2(H) 
arcs whose addition to H results in a 2-strong digraph. Use one-way pairs to 
verify optimality. 

Let D be a digraph with «(D) = k and suppose that y,,,(D) = 2k +1. 
Prove that ax4i1(D) = yk41(D). 

Let D be the digraph illustrated in Figure 7.9. Prove that r2(D) > 2. 

Generalize the example in Figure 7.9 to obtain a set of digraphs D = 
{Di pDowl.+, Visuchithat 6,.(De) Sa, (Dz) Kia Se 

Vertices with high in- and out-degree in semicomplete digraphs. 
Prove that every semicomplete digraph on at least 4k — 1 vertices has a 
vertex x with d*(a),d~ (x) > k. Show that this is the best possible. 

Minimal k-out-critical sets are strongly connected. Prove that, if D is 
a directed multigraph and X is a minimal k-out-critical set, then the directed 
multigraph D(X) is strongly connected. 

Removing a minimal separating set from a locally semicomplete 
digraph. Prove Lemma 7.13.4. 

Deriving Theorem 7.6.3 from Theorem 7.8.1. Show that Theorem 7.6.3 
follows from Theorem 7.8.1. Hint: use (7.22) and the two ways of being (S, T)- 
independent to derive Theorem 7.6.3. 

Let T’ be the tournament on 7 vertices shown in Figure 7.20. Show that 
r2(T) = 1 and that ro(T —v) =3. 

Derive Corollary 7.11.4 from Theorem 7.11.2. 

Semicomplete digraphs with a k-critical 2-cycle. Prove that the semi- 
complete digraph D in Figure 7.17 is k-strong, but that neither D — ry nor 
D — yz is k-strong. 

Constructing k-(strongly)-connected k-regular (di)graphs. Prove that 
the rth power of an undirected cycle is (2r)-connected. Prove that, if n is even 
and G is obtained from an even cycle v1 v2...v2%v1 by taking the rth power 
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xX Me 

Figure 7.20 A strong tournament T on 7 vertices. The fat arcs indicate that all 
arcs between the sets indicated have the directions shown. 

7.44, 

7.45. 

7.46. 

7.47. 

7.48. 

and then adding longest diagonals (v1v%+41, v2vk42 etc), then G is (2r + 1)- 
connected. These graphs are due to Harary [399], see also the book [717, page 
202-205] by Thulasiraman and Swamy. 

Bi-submodularity of the function h(X,Y) on one-way pairs. Let 
D = (V,A) be a digraph. Recall that a pair (X,Y), where X,Y CV, isa 
one-way pair if there are no edges from X to Y and that h(X, Y) is defined by 
h(X,Y) := |V—(XUY)|. Prove that the function h(X, Y) is bi-submodular, 
ie. for every choice of one-way pairs (X,Y), (X’,Y’) the following holds: 

WAXY TAX) ou Uy Oe hs OX UY, ) 

Hint: consider the contribution of a vertex v € V to each side of the inequality. 

Let D be a digraph that is k-strong but not (k + 1)-strong. Call a one-way 
pair (X,Y) critical if h(X, Y)=k. By Lemma 7.7.2 the family 

F = {(X,Y) : (X,Y) is a critical one-way pair} 

is non-empty. Prove that F is a crossing family of pairs of sets, i.e. if 
(X,Y), (X’, Y’) € F satisfy XN X'’ AP and YNY’ #9, then (XUX’',YN 
Y’), (XN X', Y UY’) € F. Hint: use Exercise 7.44. 

Large 3-strong tournaments with every vertex critical. Prove that 
every tournament in the class 7 from Figure 7.13 is 3-strong and that every 
vertex different from z, y is critical. 

Finding subgraphs with specified bounds on degrees. Describe a poly- 
nomial algorithm which takes as input a digraph D = (V, A) on n vertices 
and non-negative integers a1, @2,...,@n, 61, b2,...,bn such that d§(v;) > a; 
and d5(vi) > b; for i= 1,2,...,n and returns a minimum cardinality subset 

A’ of A such that the digraph D’ = (V, A’) satisfies that df, (vi) > a; and 
d>, (vi) > b; for i = 1,2,...,n. Hint: use flows and use a similar network to 
that used in the proof of Theorem 3.11.5. 

Prove that if a digraph D = (V,A) contains no anti-directed trail, then 
|A| < 2|V| — 1. Hint: consider the bipartite representation BG(D) of D and 
show that this has no cycle. 
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7.49. (+) Show that for every p with 1 < p < 2 there exists a weighted digraph 
D = D(p) for which the weight of D’ = (V, A(F,)UA(F;*)), where F, (F;*) 
is a minimum cost in-branching (out-branching) rooted at r in D is at least 
p times the weight of a minimum cost strong spanning subdigraph of D. 

7.50. (—) Let D be a k-arc-strong semicomplete digraph on at least 2k +2 vertices. 
Prove that there exists an arc a of D such that D — a is k-arc-strong. Hint: 
prove that D cannot be minimally k-arc-strong. 

7.51. (—) Describe a polynomial algorithm which given a directed multigraph D 
decides whether \(D) = 6°(D). 



8. Orientations of Graphs 

The purpose of this chapter is to discuss various aspects of orientations of 

(multi)graphs. There are many ways of looking at such questions. We can ask 

which graphs can be oriented as a digraph of a certain type (e.g. a locally 

semicomplete digraph). We can try to obtain orientations containing no di- 

rected cycles of even length, or no long paths. We can try to relate certain 

parameters of a graph to the family of all orientations of this graph (e.g. 

what does high chromatic number imply for orientations of a graph). We can 

also look for conditions which guarantee orientations with high arc-strong 

connectivity or high in-degree at every vertex, etc. There are hundreds of 

papers dealing with orientations of graphs in one way or another and we can 

only cover some of these topics. Hence we have chosen some of those men- 

tioned above. Finally we also study briefly the theory of submodular flows 

which generalizes standard flows in networks and turns out to be a very use- 

ful tool (not only theoretically, but also algorithmically) for certain types of 
connectivity questions as well as orientation problems. We illustrate this by 

applying the submodular flow techniques to questions about orientations of 

mixed graphs as well as to give short proofs of the Lucchesi- Younger Theo- 

rem and Nash-Williams’ orientation theorem. We recall that n and m usually 

stand for the number of vertices and arcs (edges) of the (di)graph in question. 

8.1 Underlying Graphs of Various Classes of Digraphs 

In this section we discuss the underlying undirected graphs of several gener- 

alizations of tournaments. As can be seen, these include classes of undirected 

graphs that are very interesting in practical applications such as compara- 

bility graphs, proper circular arc graphs and chordal graphs. For much more 

information about these classes and their relations to each other, the reader 

is encouraged to consult the books [133] by Brandstadt, [331] by Golumbic, 
and [613] by Prisner. Here we will just define those classes that we need. A 

graph G is a circular arc graph if there exists a family of circular arcs 

indexed by the vertices of the graph such that two vertices are adjacent if 
and only if the two corresponding arcs intersect. This family of circular arcs 

form a representation of G. A proper circular arc graph is a circular arc 

_ graph which has a representation by circular arcs, none of which is properly 
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contained in another. A graph G is chordal if every cycle of length at least 

4 has achord, that is, G has no induced cycle of length four or more. Finally, 

G is a comparability graph if it has a transitive orientation (that is, there 

exists a transitive oriented graph T such that UG(T) is isomorphic to G). 

We will always use A to denote the maximum degree of the undirected 

graph in question. 

8.1.1 Underlying Graphs of Transitive and Quasi-Transitive 

Digraphs 

Since every transitive digraph is also quasi-transitive, every comparability 

graph has a quasi-transitive orientation. The next theorem by Ghouila-Houri 

shows that the other direction also holds. 

Theorem 8.1.1 /316] A graph G has a quasi-transitive orientation if and 

only if it has a transitive orientation. 

Proof: To illustrate the usefulness of the decomposition theorem for quasi- 

transitive digraphs (Theorem 4.8.5), we give a proof which is quite different 

from the one in [316]. We prove the non-trivial part of the statement by 
induction on the number of vertices. The claim is easily verified when n < 3 

so we proceed to the induction step, assuming n > 4. Suppose D is a quasi- 

transitive orientation of G and that D is not transitive. If D is not strongly 

connected then it follows from Theorem 4.8.5 that we can decompose D as 

D =T[W,, W2,...,W:z], t= |V(T)| > 2, where T is transitive and each W; 

is a strong quasi-transitive digraph. As t > 2 it follows by induction that 

we can reorient each UG(W;) as a transitive digraph T;, 1 = 1,2,...,t. This 

gives a transitive orientation D’! = T[T,,T2,...,T;] of G. 

Suppose now that D is strong. By Theorem 4.8.5, D can be decomposed 

as D = S[W,,W2,...,Ws], s = |V(S)| > 2, where S is a strong semicomplete 

digraph and each W; is either a single vertex or a non-strong quasi-transitive 

digraph. It follows by induction (as above) that we can orient each UG(W;) as 
a transitive digraph T/, 7 = 1,2,...,s. Let TT, be the transitive tournament 

on s vertices. Then D' = TT;[T{,T3,...,T!] is a transitive orientation of G. 

O 

The following construction is due to Ghouila-Houri [316]. Let G = (V, E) 
be an undirected graph. Construct a graph G'g¢q from G as follows: V(Gyia) = 
Uuwex(ay {tu Tyy} and there is an edge from ry, to Zyz precisely if w = vu 
and uz ¢ E, or u = z and vw ¢ E. In particular there is an edge tyy2yy 
for each uv € E. See Figure 8.1 for an illustration of this construction. Note 
that, if tuyTyw is an edge of Gaga, then so is Tyyyy. Every edge of Gota 
corresponds to a forbidden pair of oriented edges of G. The interest in this 
construction lies in the following very useful fact. 

Theorem 8.1.2 /316] A graph G is a comparability graph (and hence has a 
transitive orientation) if and only if Gta is bipartite. 
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Agta 

Figure 8.1 An illustration of the construction of Gyta for two graphs. Due to space 
considerations we have dropped the «’s in the name of the vertices of Gyta, Hata. 

The graph G is a comparability graph. The graph H is not a comparability graph. 
Note that bf, cb, dc, ed, fe, bf is a 5-cycle in Hygta. 

Proof: Suppose G = (V, £) is a comparability graph and let T = (V, A) be 

a transitive orientation of G. In Gygta the vertices X; corresponding to the 

arcs of T (that particular orientation of the edge uv for each uv € E) form 
an independent set. By symmetry of the definition of the edges of Ggta, the 

remaining vertices X2 of Ggtq also induce an independent set. Hence Gytq is 

bipartite with bipartition (X1, X2). 

Conversely, suppose that G,zq is bipartite with bipartition (X,Y). Be- 
cause Ggiq contains a perfect matching consisting of edges of the form LyyTyu 

it follows that |X| = |Y| and X contains precisely one of the vertices Tuy, Zyu 

for each uv € E. It follows from the definition of Ggzq that orienting the 
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edges corresponding to the vertices in X (Y) results in a quasi-transitive ori- 

entation D of G. (If zy, € X, then orient uv from u to v, otherwise orient it 

from v to u.) By Theorem 8.1.1, G has a transitive orientation. oO 

Corollary 8.1.3 Comparability graphs can be recognized in time O(Am), 

where m is the number of edges in the input graph. 

Proof: This follows from Theorem 8.1.2 and the fact that the number of 

edges in Ggta is O(A|E|). Note that we can check whether a given undirected 

graph is bipartite in linear time using BFS (Exercise 8.2). Oo 

For various results on recognition of comparability graphs see the papers 

[330] by Golumbic, [411] by Hell and Huang, [574] by Morvan and Viennot 

and [577] by Muller and Spinrad. 

Consider the comparability graph G in Figure 8.1 and suppose that our 

goal is to obtain a quasi-transitive orientation of G. If we choose the orienta- 

tion ad, then this forces the edge between d and e to be oriented as e—d. 

This in turn forces the orientations c+d and b-d and each of these force 

f—d. Similarly it can be seen that the five edges ad, bd, cd, de, df force each 

other. It is easy to see that the corresponding ten vertices in Gygtq form one 

connected component of Geta. 

It is not difficult to see that this observation holds for arbitrary compa- 

rability graphs, i.e. if r,, and 2», are in the same connected component of 

Gata and wz # vu, then once we decide on an orientation for the edge uv 

in G, that orientation forces one on the edge wz. An implication class for 

G = (V, E) is a maximal set of edges E’ with the property that in every 

orientation of G as a quasi-transitive digraph the choice of an orientation of 

one edge e € E’ forces the orientation of all other edges in E’. 
By our remark above the implication classes for G coincide with the con- 

nected components of Gg:q. More precisely the connected component C’ of 

Gata corresponds to the implication class E’ = {uv € E : tuy € V(C)}. 

It is not difficult to see that the implication classes form a partition of E. 

Given Ggtq we can obtain the implication classes of G just by finding the 

connected components of G'gzq. Hence we can find the implication classes in 

time O(Am) (recall that Ggrq has O(Am) edges). 
Let G be a comparability graph and suppose we want to find a transitive 

orientation of G. We can obtain a quasi-transitive orientation just by picking 

an arbitrary edge from each implication class, choosing an orientation for 

this edge and then orient the remaining edges in that class the way they are 

forced to be oriented. The problem is that this orientation will in general not 

be transitive. Consider for example the graph G in Figure 8.1. Since each of 

the edges ab, bc and ac form an implication class of size one, there is nothing 

that prevents us from orienting these three edges as the 3-cycle a>b-c—a. 

We now describe a simple and very useful technique, due to Hell and 

Huang [411], for obtaining a transitive orientation of a given comparability 
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graph G. Let 1,2,...,n be a fixed labelling of the vertices of G. We say that 

a vertex xj; Of Gata is lexicographically smaller than a vertex 2, if either 

ea Or ti='r' and 7 <is; 

The lexicographic 2-colouring of Ga is the unique 2-colouring (on 

colours A,B) which is obtained as follows. Mark all vertices of Ggta non- 

coloured. Next, as long as there are uncoloured vertices, choose the lexico- 

graphically smallest vertex 2;; which is not coloured yet and colour it A. 

Colour all other vertices in the same connected component as they are forced 

(that is, by A if the distance from 2;; is even and by B otherwise). When all 
vertices of Gq are coloured the process stops. 

The usefulness of lexicographic 2-colourings comes from the following re- 

sult (see also Theorem 8.1.9). 

Theorem 8.1.4 [411] Let G be a comparability graph with vertices 1,2,...,n 

and let f : V(Gqgta) > {A, B} be the lexicographic 2-colouring of V(Ggta). De- 
fine an orientation D of G such that an edge ij is oriented as ij precisely 

when xj; receives colour A by the colouring f. Then D is a transitive orien- 

tation of G. 

Proof: Exercise 8.4. oO 

Note that, if we apply the lexicographic 2-colouring procedure to a non- 

comparability graph, then this will be discovered after Gjzq has been formed 

when we try to 2-colour a non-bipartite connected component H of Gag. The 

algorithm will discover that H is not bipartite and hence G does not have 

any orientation as a quasi-transitive digraph. Thus we have obtained another 

proof of Theorem 8.1.1 (the lexicographic 2-colouring algorithm either finds 

a transitive orientation of G, or concludes that G has no quasi-transitive 

orientation). 
The whole algorithm (including the construction of Gia) can be per- 

formed in time O(Am), where m is the number of edges of G, since we can 

find the connected components of Ggzq using BFS. 

8.1.2 Underlying Graphs of Locally Semicomplete Digraphs 

For a given proper circular-arc graph G with a prescribed circular-arc rep- 

resentation we get a natural order on the vertices of G by fixing a point on 

the circle and labeling the vertices v1,v2,...,Un according to the clockwise 

ordering of the right endpoints of their intervals (circular arcs) on the circle 

with respect to this point. Since every proper circular-arc graph has a repre- 

sentation in which no two arcs cover the whole circle [331], we may assume 
that we are working with such a representation. Now it is not difficult to 

see that the following process leads to a round local tournament orientation 

of G (see Chapter 4 for the definition of a round local tournament’): orient 

1 Hell and Huang use the name local transitive tournament instead of round 
local tournament [411]. 
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the edge between v; and v; from vu; to v; just if the left endpoint of the jth 

interval is contained in the ith interval. Thus we have the following result 

due to Skrien (see also [44, 410, 436}): 

Proposition 8.1.5 /675] Every proper circular-arc graph has an orientation 

as a round local tournament. Oo 

In fact, Hell and Huang showed that the other direction holds as well. 

Theorem 8.1.6 [411] A connected graph is a proper circular arc graph tf 

and only if it is orientable as a round local tournament. 

Proof: We proved one direction above. To prove the other direction assume 

that D is a round local tournament and that v1,v2,...,Un is a round enu- 

meration of V(D). If no such labelling is given, then we can find one in time 
O(n + m) (Exercise 8.6). Now represent UG(D) by circular arcs as follows. 
Let € be a fixed number such that 0 < € < 1. Make an n-scale-clock on a cycle 

and associate with the vertex v; the circular arc from i to i+ dp(i) +€ in the 
clockwise order for i = 1,2,...,n (indices modulo n). It is easy to check that 

this gives a proper circular arc representation of UG(D). Note that here we 
use the fact that the out-neighbours of every vertex of D induce a transitive 

tournament (see Chapter 4) to see that no arc is properly contained in any 
other arc. oO 

By Theorem 8.1.6, the class of underlying graphs of locally semicomplete 

digraphs contains the class of proper circular arc graphs. The next result, 

due to Skrien [675] (see also [410, 436]) says that there are no other graphs 
that can be oriented as locally semicomplete digraphs. 

Theorem 8.1.7 [675] The underlying graphs of locally semicomplete di- 

graphs are precisely the proper circular arc graphs. 0 

Bang-Jensen, Hell and Huang [410] showed that, just as in the case of 
comparability graphs, there is a useful auxiliary graph Gizq related to orien- 

tations as a local eeeee digraph: Let G = (V, E) be given and define 
Gita as follows: V(Gua) = UuweEe {Xuy,lyu} and there is an edge from ry, 

tO Zwz precisely if v = z and uw dE, or u = w and vz ¢ E. Furthermore, 

the edge ZuyXyu is in E(Giza) for each uv € E. The proof of the following 
result is left as Exercise 8.7. 

Theorem 8.1.8 [410] The graph G has an orientation as a local tournament 
digraph if and only if the graph Gita is bipartite. 0 

Suppose G is a proper circular arc graph. Then it follows from Theorem 

8.1.7 and Theorem 8.1.8 that Gig is bipartite. Again each connected compo- 

nent of Gjzq corresponds to an implication class E’ of edges of G. Hence we 

can find a local tournament orientation of G by fixing the orientation of one 
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arc from each implication class arbitrarily and then giving all remaining arcs 
the forced orientation. 

If our goal is to find a representation of G as a proper circular arc graph, 

then we are not interested in just any local tournament orientation of G, but 

we need an orientation as a round local tournament (compare with Theorem 

8.1.6). Again we can use the lexicographic method which was defined in 

Section 8.1.1 for this. Since Gig is bipartite, we can apply the lexicographic 

2-colouring procedure which was defined in Section 8.1.1. It follows from the 

next theorem and the proof of Theorem 8.1.6 that the lexicographic method 

is also of use in recognition of proper circular arc graphs. 

Theorem 8.1.9 /411] Let G be a proper circular arc graph and let f : 

V (Gita) {A, B} be the lexicographic 2-colouring of V(Giza). Define an ori- 
entation D of G such that an edge ij is oriented as ij precisely when z;; 

receives colour A by the colouring f. Then D is a round local tournament 

orientation of G. 0 

This shows that using the lexicographic method one can obtain an O(Am) 

algorithm for recognizing and representing proper circular arc graphs. 

In fact an even faster and optimal algorithm for recognizing proper circu- 

lar arc graphs has been found by Deng, Hell and Huang [190]. This algorithm 

also uses the fact that a graph is a proper circular arc graph if and only if it 

has an orientation as a round local tournament. 

Theorem 8.1.10 /190] There is an O(n +m) algorithm to find a local tour- 
nament orientation of a graph G or to report that G does not admit such an 

orientation. Moreover, if a local tournament orientation exists, the algorithm 

also identifies all balanced arcs. O 

We will define the notion of a balanced arc in the next subsection. 

8.1.3 Local Tournament Orientations of Proper Circular Arc 

Graphs 

In this subsection we describe a deep result by Huang [435, 436] which gives 

a complete characterization of all the possible local tournament orientations 

of a given proper circular arc graph. In order to state Theorem 8.1.12 below 

we need several definitions. 

Let G = (V, E) be an undirected graph. An edge zy of G is balanced if 

every vertex z € V — {z,y} is adjacent to both or none of x and y. An edge 

is unbalanced if it is not balanced. If all edges of G are unbalanced, then 

G is reduced and otherwise G is reducible. It follows from this definition 

that a graph which is not reduced can be decomposed as described in the 

next lemma. See Figure 8.2 for an illustration. 
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e 

G G’ H 

Figure 8.2 A reduced graph G and a reducible graph G’. The graph G’ can be 
reduced to the graph H by identifying the pairs {a,b}, {c, f} and {d, e}. 

Lemma 8.1.11 Jf G is not a reduced graph, i.e. it has a balanced edge, then 

there exist a reduced subgraph H of G and complete subgraphs Ka,,Ka,,---; 

K., of G such that G = H[Ka,,Ka,;---,Ka,], h = |V(H)| *. Furthermore 
we can find this (unique) decomposition in time O(n?*). 

Proof: We leave the easy proof to the reader. oO 

Actually such a decomposition can be found even faster in O(n”) time, 

see the paper [217] by Ehrenfeucht, Gabow, McConnell, and Sullivan. 

Let G = (V, E) be a proper circular arc graph. As we mentioned in the 

last subsection one can partition E into disjoint non-empty subsets £),..., E, 

with the property that, if we fix the orientation of one edge in each £;, then 

there is precisely one way to orient all the remaining edges in FE so that 

the resulting digraph is a local tournament digraph. In other words, the 

orientation of one edge in E; implies the orientation of all other edges in E;. 

As in the last section we call the sets F£,,...,#, the implication classes of G 

(see Theorem 8.1.12 and Theorem 8.1.13 below). 

Theorem 8.1.12 /436, Huang] Let G be a connected proper circular arc 

graph and let Cy,...,Cy be the connected components of G. Then one of 

the following two statements holds. 

(a) G is bipartite, the set of all unbalanced edges of G with both ends in a 

fized C; form an implication class and the set of all unbalanced edges of 

G between two distinct C; and C; form an implication class (see Figure 
Side 

(b) G is not bipartite, k = 1, and all unbalanced edges of G form one impli- 

cation class. oO 

Observe that an edge forms an implication class by itself if and only if it 

is balanced. Hence Theorem 8.1.12 can be reformulated as follows. 

? Here the composition H[Gi, G2,..., Gv 1)\] is defined analogously to the com- 
position of digraphs in Section 1.3. 
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a Cj Cy 

Figure 8.3 Implication classes for orientations of a graph G as a local tournament 
digraph.The sets C;,C;,Cp denote distinct connected components of G. For each 
component a bipartition A,,B, is shown. The edges shown inside C; form one 
implication class and the edges shown between C; and C> form another implication 
class. 

Theorem 8.1.13 (Huang) /436] Let G be a proper circular-arc graph which 

is reduced (that is, every edge ts unbalanced), let G denote the complement 

graph of G and let Ci,...,C, denote the connected components of G. 

(a) If G is not bipartite, then k = 1 and (up to a full reversal) G has only 

one orientation as a locally tournament digraph, namely the round ori- 

entation. 

(b) If G is bipartite then every orientation of G as a locally tournament 

digraph can be obtained from the round locally tournament digraph ori- 

entation D of G by repeatedly applying one of the following operations: 

(I) reverse all arcs in D that go between two different C;’s, 
(II) reverse alli arcs in D that have both ends inside some C;: Oo 

It is also possible to derive a similar result characterizing all possible 

orientations of G as a locally semicomplete digraph. We refer the reader to 

[436] for the details. 
As an example of the power of Huang’s result (Theorems 8.1.12 and 

8.1.13) we state and prove the following corollary which was implicitly stated 

in [436] (see also Exercise 4.33). 

Corollary 8.1.14 If D is a locally tournament digraph such that UG(D) is 
not bipartite, then D = R[S\,...,5,], where R is a round locally tournament 

digraph on r vertices and each S; ts a strong tournament. 

Proof: If UG(D) is reduced, then this follows immediately from Theorem 

8.1.13, because according to Theorem 8.1.13, there is only one possible lo- 

cally tournament digraph orientation of UG(D). So suppose that UG(D) 

is not reduced. By Lemma 8.1.11, UG(D) = H[Ka,,---,Ka,], h = |V(A)I, 

where H is a reduced proper circular arc graph, each Ka, is a complete graph, 
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and some a; > 2. Because we can obtain an isomorphic copy of H as a sub- 

graph of UG(D) by choosing an arbitrary vertex from each K,;, we conclude, 

from Theorem 8.1.12, that in D all arcs between two distinct Ka,, Ka; have 

the same direction (note that H is non-bipartite). Thus D = R[S},..., Sr], 

where (up to reversal of all arcs) R is the unique round locally tournament 

digraph orientation of H and each S; is the tournament D(V(Ka;)). Note 

that D(V(K,;)) may not be a strong tournament, but according to Corol- 

lary 4.11.7 we can find a round decomposition of D so that this is the case. 
O 

8.1.4 Underlying Graphs of Locally In-Semicomplete Digraphs 

The structure of the underlying graphs of locally in-tournament digraphs is 

more complicated than in the case of local tournaments and quasi-transitive 

digraphs. In [725] Urrutia and Gavril studied locally in-tournament digraphs 
under another name fraternally oriented graphs. This name, although 

used in several papers (e.g. [292] by Galeana-Sanchez, [307] by Gavril, [308] 
by Gavril, Toledano Laredo and de Werra and [309, 725] by Gavril and Urri- 

tia), is somewhat misleading, since it may easily be confused with the name 

fraternally orientable which is used for an undirected graph with an ori- 

entation as a fraternally oriented graph. 

In [725] an algorithm for recognizing graphs orientable as locally in- 
tournament digraphs (as well as finding a locally in-tournament digraph ori- 

entation if one exists) is given. The complexity is O(nm) which is worse than 

the simple algorithm based on 2-satisfiability given in Proposition 8.1.15 be- 

low. 

In the paper [725] Urrutia and Gavril also gave a characterization in 
terms of forbidden subgraphs of graphs orientable as locally in-tournament 

digraphs. Unfortunately, the characterization is not in terms of minimal for- 

bidden subgraphs. In fact, the characterization is merely a structural obser- 

vation of what happens when the algorithm of [725] fails to find a locally 
in-tournament digraph orientation. 

In Section 1.10 we mentioned that algorithms for the 2-SAT problem 

are useful for certain orientation problems. The proposition below gives one 

example of this. 

Proposition 8.1.15 /81] Graphs that are orientable as locally in-tournament 
digraphs can be recognized in O(Am) time. 

Proof: Let a graph G = (V, E) be given, and let D = (V, A) be an arbitrary 
orientation of the edges of G, where A = {a1,a2,...,@m}. If a; is an orienta- 

tion of an edge yz of G, fen the reverse renin of that edge is denoted 

by a;. We now construct an instance of the 2-SAT problem as follows. The set 

of variables is X = {21,...,%m}. The variables are interpreted as follows. If 
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osey 1; then we keep the orientation a;, otherwise we take the opposite orien- 

tation a;. The clauses consist of those pairs of literals (€; + €;) for which &;, é; 
correspond to arcs with the same terminal vertex and nonadjacent initial 

vertices in D. It is easy to see that G is orientable as a locally in-tournament 

digraph if and only if the above-defined instance of 2-SAT is satisfiable. By 

Theorem 1.10.5 the complexity of 2-SAT is O(K’) where K is the number of 

clauses. Hence, it follows from the way we construct the clauses above that 

we can recognize graphs orientable as locally in-tournament digraphs in time 

O(Am). 0 

The construction used in the proof above is illustrated in Figure 8.4. Part 

(a) shows an undirected graph G; part (b) an arbitrary orientation D of G. 
The instance of 2-satisfiability corresponding to this orientation contains one 

variable for each arc of D and the following clauses: 

(256 =F Bet); (fea te agi: (teh al Tee), (Sra st Gees (ihe a Dro) 

eek a nes (ZFe ot Te) (ay, a apy (Zée ot eels 

Part (c) shows an orientation of G as an in-tournament digraph corresponding 

MemeBertritn ascieument (lap, lad) 2cb, led, lcesLdb, Leg, Lye, Lig, thes the) = 

(0,0, 1, 1,0, 1, 1,0,0,0,0). 

b if b f 

a g a g 

d h d h 
(b) (c) 

Figure 8.4 An undirected graph G and two orientations of G. 

In Exercise 1.68 a useful correspondence between the 2-SAT problem and 

the problem of deciding the existence of an independent set of size n/2 in 
graphs with a perfect matching was indicated. Using this correspondence, it 

is no surprise that for graphs which are orientable as in-tournament digraph 
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there is a construction similar to the one used in Theorem 8.1.2 for compa- 

rability graphs. (In Theorem 8.1.8 we saw a similar one for the underlying 

graphs of locally semicomplete digraphs.) 

Let G = (V,E) be an undirected graph and define the undirected graph 

Gita as follows: V(Gita) = Uuvex(a) {fu Tyu} and there is an edge from Fy 

tO Lz precisely if w =v and z = u, or v = z and ww ¢ E. 

The proof of the following lemma is left to the reader as Exercise 8.1. As 

mentioned above, it is useful to compare this lemma with Exercise 1.68. 

Lemma 8.1.16 A graph G = (V,E) of order n is orientable as a locally 

in-tournament digraph if and only if the graph Gita has an independent set 

of size n. Oo 

abe 
Figure 8.5 The digraphs Bi, B2, B3 

Let B be the family of the three digraphs shown in Figure 8.5 and let F 

be any subset of B other than {B,} or {Bo}. Skrien [675] characterized the 
classes of those graphs which can be oriented without a member of F' as an 

induced subdigraph. These are the classes of complete graphs, comparability 

graphs, proper circular arc graphs, and nested interval graphs. Since each 

of the forbidden configurations contains just two arcs, 2-SAT could be used 

to solve the recognition problem for each of these four classes, all in time 

O(Am). 

The intersection graph I(F") of a family F’ = {S, : x € V} of sets has 
vertex set V and two distinct vertices x,y are adjacent whenever S;M Sy # 

#. A graph G is representable in the graph H if G is isomorphic to the 

intersection graph of a family of connected subgraphs {H; : x € V(G)} of 
H. It seems interesting that three of the four classes above can be defined by 

representability. In the case of the underlying graphs of locally in-tournament 

digraphs, we do not know of a similar characterization (see Theorem 8.1.19 
for a partial result). 

If we consider another kind of representability involving pointed sets, 

then such a representation does indeed exist. A pointed set is a pair (X, p) 
consisting of a set X and one element p € X. Maehara [542] defines the 
catch digraph (2(F) of a family F = {(Sz,p,) : x € V} of pointed sets 
as the digraph with vertex set V and an arc from z to y if py € Sz, for 

z #y € V. Obviously the underlying graph of ({(Sz,pr) : x € V}) isa 
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spanning subgraph of I'({S, : 2 € V}) for any family of pointed sets. The 
converse only holds in special cases: 

Lemma 8.1.17 /81, 725] If D is a locally in-semicomplete digraph, then 

Q({(Np[2],z) : 2 € V}) = D and P({Np [a] : « € V}) =UG(D). 

Proof: The first statement is obvious. Let now x and y be distinct vertices 

of D such that N5[x]N Nd[y] 4 0. Then x > y or y 3 @ or z and y have 
some common successor z. In the last case again x > y or y > 2, since D is 

locally in-semicomplete. Then UG(D) = I'({Nj[z] : x € V}) by the remarks 
above. oO 

Gavril and Urrutia found the following characterization of locally in- 

semicomplete digraphs in terms of catch digraphs and representability: 

Theorem 8.1.18 /725] A digraph D = (V, A) is locally in-semicomplete if 
and only if it is the catch digraph of a family ({(Sz,pz) : x € V}) such that 
UG(D) equals I'({S,:2 € V}). 

Proof: Let D be the catch digraph of ({(Sz, pz) : z € V}) such that UG(D) 
is the intersection graph G of ({S, : x € V}). Choose any predecessors z, z 
of a vertex y. Then p, € S; Sz, which implies rz € E(G). But then x > z 
or z + z in D. The converse follows from Lemma 8.1.17. O 

An undirected graph is unicyclic if it has precisely one cycle. The next 

result, due to Prisner, and the corollaries below show that the class of graphs 

orientable as in-tournament digraphs is quite large. 

Theorem 8.1.19 /612] Every graph G that is representable in a unicyclic 

graph is orientable as a locally in-tournament digraph. 

Proof: We give a proof due to Bang-Jensen, Huang and Prisner [81]. Let 

{H, : x € V(G)} be a representation of G in a unicyclic graph H with cycle 
C = 2, 21,---,2¢—-1,20- The numbering is done clockwise around the cycle 

(the reader should think of this as drawn in the plane). We may assume that 

H is connected. For vertices x of G whose representative H, contains all 

vertices of the cycle C, we define p; := zo. If H; contains some but not all 

of the vertices of C’, then it contains just a subpath, since H, is connected. 

For such vertices x we take p, as the first vertex of this path in the clockwise 

orientation. If H, 7 C = @, then there is a unique vertex of H, separating 

the rest of H, from C’ and we let p, be that vertex. 

By Theorem 8.1.18, it suffices to show that the catch digraph D of the 

family {(V(H,),pz) : z € V(G)} is an orientation of G. Let ry be an edge of 
G, that is, H, Hy # 9. Let z be a vertex of H, 1 Ay. If Hz NC and H,NC 

are nonempty, then it is easy to see that py € V(HzNC) or pz € V(Ay NC). 

Thus « > y ory > z in D. 
So suppose without loss of generality that Hz MC = @. Then there is 

exactly one path from z to C. The vertex p, must lie on this path, and if 
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H,C = O, then so must the vertex py. We may assume without loss of 

generality that p, lies on the (py, z)-subpath. Now pz € V(H,) andy > x 

in D. If Hy NC # O, then the whole path from z to C must lie inside Hy, 

whence y > « in D. O 

—@ <___9-_____®- 

Figure 8.6 A locally in-tournament digraph whose underlying graph is not repre- 

sentable in a unicyclic graph 

The converse is not true: Figure 8.6 shows a locally in-tournament di- 

graph whose underlying graph is not representable in any unicyclic graph. It 

can be easily shown that in any graph G representable in an unicyclic graph 

the following must hold. Any vertex x of an induced cycle of length at least 4 

must be adjacent to at least one vertex from any other induced cycle in G—z 

(Exercise 8.12). But this property is certainly not obeyed by the underlying 

graph of the digraph of Figure 8.6. 

A cactus is a connected graph in which every block® is a cycle or an edge 

(see Figure 8.7). The following conjecture was stated implicitly by Bang- 

Jensen, Huang and Prisner in [81]. 

Conjecture 8.1.20 /81] Every graph orientable as a locally in-tournament 
digraph is representable in a cactus. 

Note that the opposite is not true: no cactus with at least two induced cycles 

of length > 4 can be oriented as a locally in-tournament digraph. This implies 

the claim since every graph can be represented in some subdivision of itself. 

Just subdivide each edge once and take the set representing a vertex v as the 

star at that vertex in the subdivided graph. 

Theorem 8.1.19 has several consequences. We list some of them below. 

° A block of an undirected graph G is a maximal connected subgraph without a 
cut-vertex. 



8.2 Fast Recognition of Locally Semicomplete Digraphs 429 

Figure 8.7 A cactus. 

Corollary 8.1.21 Every chordal graph and every circular arc graph is ori- 

entable as a locally in-tournament digraph. 

Proof: Chordal graphs are representable in trees (see [331, page 82]) and 
hence in unicyclic graphs. By definition, every circular arc graph is repre- 

sentable in some unicyclic graph. Now the claim follows from Theorem 8.1.19. 

O 

Another (non-trivial) corollary is the following by Bang-Jensen, Huang 
and Prisner. For a proof see [81]. 

Corollary 8.1.22 /81] Every graph with exactly one induced cycle of length 

greater than 3 is orientable as a locally in-tournament digraph. oO 

We close this subsection with a characterization, due to Bang-Jensen, 

Huang and Prisner, of those line graphs which are orientable as locally in- 

tournament digraphs (a graph G is a line graph if there exists an undirected 

graph H such that G is the intersection graph of the edges in H (considered 

as subsets of V(H) of size two). We write G = L(H) if G is the line graph of 
ioe 

DEP! SE, D1 niet, TlH 1) 20 «Dea CYCle~ A Chordet 74. With 2.9 © 

{0,1,...,€ —1},i < j, is called a p-chord for p = min{j — i,i + £— j}. 
Two chords 2;z; and x,2m are crossing if without loss of generality0 <1 < 

ma <n < £ — 1. 

Theorem 8.1.23 /81] For any connected graph G, the following are equiva- 

lent: 
(i) L(G) is orientable as a locally in-tournament digraph, 

(ii) With at most one exception, every block of G is Kz or K3, and the ez- 
ception is either K4 or a cycle with (possibly) non-crossing 2-chords. Oo 

8.2 Fast Recognition of Locally Semicomplete Digraphs 

In this section we study the recognition of locally semicomplete digraphs. We 

show how to obtain an O(n?) algorithm using the structural characterizations 
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of Theorems 8.1.12 and 8.1.13 as well as the linear algorithm of Theorem 

8.1.10 for recognizing and representing proper circular arc graphs. We include 

this section to show another application of the main results from Subsection 

8.1.3. 

We will concentrate on local tournaments, but the results can be extended 

to general locally semicomplete digraphs (see Exercise 8.10 and [76)). 

It is easy to see that local tournaments can be recognized in polynomial 

time. Given an oriented graph D, to test whether D is a local tournament 

it is enough to verify the following property for each arc (x,y) of D: the 

vertex x must be adjacent to every vertex which dominates y and the vertex 

y must be adjacent to every vertex which is dominated by z. If the property 

is satisfied for each arc of D, then D is a local tournament; otherwise D is 

not a local tournament. It is easy to see that this verification can be done in 

O(A(D)m) time, where A(D) is the maximum degree of D. 
Below we shall show how to obtain an O(n”) algorithm to recognize local 

tournaments. The description follows [76]. We point out that in [76] it was 
claimed that the algorithm is linear. This is not quite true, since we use the 

transformation to the complement graph as an important subroutine and the 

size of the complement graph is generally not linear in the size of the original 

graph. 
In our algorithms, we assume that digraphs D are represented by the lists 

of in-neighbours and out-neighbours. This allows us to get all in- and out- 

neighbours of a vertex v with O(d(v)) operations, where d(v) is the degree of 

v in UG(D). We also need additional information suitable to decide, in time 

O(1), whether, for given vertices u and v, it is the case that u dominates v, 

or v dominates u, or neither. It is possible to obtain, in time O(m), a version 

of the adjacency matrix of D (with valid entries certified by the means of an 

additional stack), which allows us to do this, cf. [6, Exercise 2.12]. If we ignore 
the complexity of taking the complement graph, then this representation is 

needed to give a linear algorithm. 

Suppose that D is a local tournament. If D' is obtained from D by re- 

versing a balanced arc‘, then D' is also a local tournament. Thus we can 

arbitrarily and independently reverse any balanced arc and still have a local 

tournament. We can also reverse unbalanced arcs, in suitable combinations. 

Let Cy,C2,...,C be the components of UG(D). We define a partial re- 

versal of D to be an operation which reverses all unbalanced arcs within 

some C;, or reverses all unbalanced arcs between two fixed C; and C;. Par- 

tial reversals also preserve the property of being a local tournament. This 

follows from Theorem 8.1.13, but to see it directly, suppose that D” is ob- 

tained from D by performing a partial reversal. If D” is not a local tour- 

nament, then D” contains three vertices x,y,z such that y and z are two 

non-adjacent in-neighbours or out-neighbours of z. Assume that y and z are 

non-adjacent in-neighbours of x. (A similar discussion applies when y and z 

* An arc is balanced if the corresponding edge is balanced in UG(D). 
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are non-adjacent out-neighbours of x.) Note that both (y,a) and (z,) are 

unbalanced and y and z are in the same component of:G(D). Thus a partial 

reversal either reverses both or neither of the arcs (y, x) and (z, x). Hence D 

contains either both (y,x) and (z,x) or both (z,y) and (z, z), contradicting 
the fact that D is a local tournament. 

It follows from Theorem 8.1.13 that the two operations described above 

are sufficient to obtain all local tournament orientations of a fixed proper 

circular arc graph G, starting from any one fixed local tournament orientation 
of G. 

Our strategy to obtain an O(n?) algorithm to recognize local tournaments 
combines Theorems 8.1.13 and 8.1.10. 

Suppose that D is the input oriented graph. We assume that D is con- 

nected as otherwise we can consider each component of D separately. Let 

G =UG(D). By Theorem 8.1.7, G is a proper circular arc graph if and only 

if it can be oriented as a local tournament. Thus we first test whether G ad- 

mits a local tournament orientation. This can be done in time O(n +m), by 
Theorem 8.1.10. If G does not admit a local tournament orientation, then we 

simply report that D is not a local tournament. Otherwise the algorithm of 

Theorem 8.1.10 finds a local tournament orientation D' of G, and identifies 

all balanced arcs. 

We mark an edge by T if it has the same direction in both D and D’ and 

by F if it has opposite orientations in D and D’. By the earlier observation 

that balanced arcs can be reversed arbitrarily, we only need to check the 

T — F assignment for the unbalanced edges of G. If there are two unbalanced 

edges of G in one component or between two fixed components of G, such 

that one is marked by T and the other is marked by F’, then D is a not local 

tournament by Theorem 8.1.12. Otherwise D is a local tournament because, 

according to the observations made above, D can be obtained from D’ by 

performing partial reversals and changing directions of some balanced arcs. It 

is easy to see that the above verifications can be implemented in time O(n”) 

(again we stress that the only reason why the algorithm is not of complexity 

O(n+m) is that we need to find the connected components of the complement 

graph). Summarizing, we have the following algorithm: 

Local tournament recognition algorithm 

Input: An oriented graph D. 

Output ‘yes’ if D is a local tournament digraph and ‘no’ otherwise. 

1. If the underlying graph G of D does not admit a local tournament ori- 

entation, then D is not a local tournament. Return the answer ‘no’. 

2. Find a local tournament orientation D' of G. 

3. For every edge e of UG(D) mark e by T if it has the same orientation in 

both D and D’ and by F if it has opposite orientations in D and D’. 

4. Construct the complement graph UG(D) of UG(D) and find the con- 

nected components of UG(D). 
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6. Find the set of unbalanced edges in ally 

7. If there are two unbalanced edges e,e’ of G such that e is marked by 

T and e’ is marked by F and end vertices of e,e’ are all within one 

component or both edges go between two fixed SN of UG(D), 

then D is not a local tournament. Return the answer ‘no’. 

8. Otherwise D is a local tournament. Return the answer ‘yes’ 

In the case of digraphs that are not strongly connected one can obtain a 

simpler O(n + m) algorithm to decide whether the given digraph is locally 

semicomplete based on Theorem 4.11.6. We leave this as an exercise (Exercise 

8.11), see also [76]. 

8.3 Orientations With no Even Cycles 

It can be seen from Section 10.6 that the problem of deciding whether a given 

digraph has an even cycle is’ polynomially solvable, but very complicated. The 

corresponding problem for undirected graphs is easy (see Exercise 8.17). Here 

we will consider a somewhat opposite orientation problem where we wish to 

achieve orientations with no even cycles. Since we can concentrate on strong 

components when looking for even cycles, we only consider strong orientations 

without even cycles. Clearly we can also concentrate on graphs that are non- 

bipartite since otherwise every cycle will be even and the answer is trivial. It 

is also clear that it suffices to consider graphs which are 2-connected. 

Let G be an undirected graph and let us call an orientation D of G odd 

if there is no directed cycle of even length in D. The following problem was 

posed by Bang-Jensen in 1992 (see e.g. {313]). 

Problem 8.3.1 Is there a polynomial algorithm which given an undirected 

graph G either returns a strong odd orientation D of G or a proof (in the 

form of a certificate that can be checked in polynomial time) that G has no 

such orientation? 

This seems to be a very hard problem and so far only a partial answer 

(Theorem 8.3.3 below) is known. In order to state Theorem 8.3.3, we need 

the following definitions. An odd-Kq is an undirected graph which is a sub- 

division of the complete graph on four vertices in which each of the four 

3-cycles of K'4 become odd cycles (see Figure 8.8 (a)). An odd necklace is 
any undirected graph which can be obtained from an odd number t of odd 

cycles C1, C2,...,C; by identifying one vertex of C; with one vertex of Cj41 

(modulo ¢) in such a way that |V(C;) NV (C;)| = 1 if |i -—j] = 1 (mod k) and 
|\V(C;) AV (C;)| = 0 otherwise (see Figure 8.8(b)). 

The proof of the following lemma is left as Exercise 8.16. 

Lemma 8.3.2 /313] Let G be a graph which is either an odd-K4, or an odd 
necklace. Then every strong orientation of G has an even cycle. oO 
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(a) (0) 

Figure 8.8 Illustration of an odd-K,4 and an odd necklace. Each of the six dashed 
lines in the odd-K4 in part (a) correspond to internally disjoint paths and the word 
odd inside a cycle in part (b) indicates that the length of the bounding cycle is odd 

However graphs that contain odd-K4’s may have strong odd orientations 

as shown in Figure 8.9. Note that in this orientation the 2-connected subgraph 

corresponding to the odd-K,4 is not oriented as a strong digraph. 

Figure 8.9 A strong odd orientation of a graph with an odd-K, (shown as fat 
arcs). 

Gerards and Shepherd proved the following result: 

Theorem 8.3.3 [313] Let G be 2-connected and non-bipartite. If G contains 

neither an odd-K4 nor an odd necklace as a subgraph, then G has a strong 

odd orientation. 0 

By Lemma 8.3.2, Theorem 8.3.3 can be reformulated as 

Theorem 8.3.4 /313] Let G be an undirected graph. Then each 2-connected 

non-bipartite subgraph of G has a strong odd orientation if and only if G 

contains neither an odd-K,4 nor an odd necklace as a subgraph. oO 

The proof of Theorem 8.3.3 is based on a constructive characterization of 

graphs with no odd-K4’s and no odd necklaces [313, Theorem 7, Corollary 8] 

_ (see also [311]). 
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It is shown in [313] that graphs which contain no odd-k’4 and no odd 

necklace can be recognized in polynomial time. Furthermore the proof of 

Theorem 8.3.3 in [313] is constructive and implies that there is a polynomial 

algorithm for Problem 8.3.1 for graphs with no odd-K4 and no odd chain. 

For further results on orientations of graphs with no odd-K‘4 see the papers 

[310, 312] by Gerards. 

How many edges can a graph G have before every strong orientation of 

G has an even cycle? Since every strong orientation of a complete graph on 

n vertices is pancyclic by Theorem 1.5.1 it is clear that there is some upper 

bound on the number of edges (as a function on n) for graphs which have 

strong orientations without even cycles. 

Let A and B be disjoint sets of size |(n—1)/2| and [(n—1)/2] respectively. 

Form a graph H, by taking V(H,) = AU BU, where v is a new vertex 

and E(H,) = {ab: a € A,b €.B}U {vc : c € AUB}. Then |E(H,)| = 
|(n +1)?/4| — 1 and we can orient H,, so that it is strong and all cycles are 
3-cycles just by orienting all arcs from v to A, from A to B and from B to v. 

Let C,, = VoU1 .--Un—2Un—1V0 be a cycle. Let L, be obtained from Cy, by 

adding all chords v;v; such that i — j is a positive even number. It is not 

difficult to check that each graph L,, has |E(Ln)| = |(n+1)?/4] —1 and that 
Ly has a strong orientation with no even cycles (Exercise 8.18). 

These two classes show that the following result, due to Chung, Goddard 

and Kleitman, is best possible in terms of the number of edges. We formulate 

it as a theorem for oriented graphs. 

Theorem 8.3.5 [158] Every strong oriented graph for which the number of 

arcs is at least |(n + 1)?/4| = f(n) +1 contains an even cycle. Furthermore 

every strong oriented graph D with f(n) arcs which has no even cycle consists 

of a maximal hamiltonian arc-critical subdigraph H of D on an odd number 

(2r +1, for some r) of vertices and an acyclic bipartite tournament B on the 

remaining vertices, having the partite sets as equal in size as possible, each 

vertex of which is joined tor +1 vertices of H. O 

By a maximal hamiltonian arc-critical subdigraph of D we mean a sub- 

digraph on, say, n’ vertices which has f(n') edges, is hamiltonian, and is 

maximal with respect to these conditions (that is, every subdigraph of D 
with n” > n' vertices is either non-hamiltonian or has less than f(n”) arcs). 

Although Theorems 8.3.3 and 8.3.5 do give some information as to which 

graphs. have strong orientations without even cycles, there are large classes of 
graphs for which they give no information. One such class is the cubic graphs 

one can obtain by joining two odd cycles of the same length by a perfect 

matching. The Petersen graph® is one of these graphs. It is easy to see that 

the Petersen graph (an orientation of which is shown in Figure 8.10) contains 

° The Petersen graph, due to the Danish pioneer of graph theory, Julius Petersen 
(1839-1910), is very important in several problems on undirected graphs (see e.g. 
[735]). 
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an odd-K‘4 and hence is not covered by Theorem 8.3.3. In Exercise 8.15 the 
reader is asked to prove that every strong orientation of the Petersen graph 
contains an even cycle. 

Obviously an oriented graph has an even cycle if it has two cycles whose 
length differ by one. Hence the following problem may be interesting to study. 
The analogous problem was considered for undirected graphs by Bondy and 
Vince in [129]. 

Problem 8.3.6 Is there a polynomial algorithm to decide whether a given 

2-connected graph has a strong orientation without two cycles whose length 

differ by one? 

8.4 Colourings and Orientations of Graphs 

In this section we discuss connections between a very important parameter of 

an undirected graph G, its chromatic number, and properties of orientations 

of G. 

Recall that the chromatic number of an undirected graph G = (V, £), 

denoted x(G) is the smallest natural number k for which V can be partitioned 
into disjoint independent sets Vj, V2,...,V%. A more popular and obviously 

equivalent definition is that x(G) is the smallest number k such that we 

can assign each vertex v € V a colour from the set {1,2,...,k} without 
ever using the same colour for vertices that are adjacent (joined by an edge) 

in G. A k-colouring of an undirected graph G is any function mapping 

V(G) to {1,2,...,k}. A k-colouring is proper if f(u) # f(v) for every edge 
uv € E(G). For convenience we also define x(D) for every digraph as x(D) = 

x(UG(D)). 
For an arbitrary digraph lp(D) denotes the length of a longest path in D. 

The first relation we will discuss is between the number lp(D) and x(G) for 

an arbitrary orientation D of G. 
If y(G) = k, then we can obtain an acyclic orientation D of G with 

Ip(D) = k — 1 just by orienting all edges between V; and V; from V; to V; 

for all 1 <i <j <k, where Vi, V2,...,V% is a partition of V into k disjoint 

independent sets. Hence if y(G) is small then G has an orientation without 
long directed paths. The interesting thing is that the opposite direction also 

holds as was discovered independently by Gallai, Roy and Vitaver. 

Theorem 8.4.1 (The Gallai-Roy-Vitaver theorem) /297, 646, 727] For 

every digraph D, x(D) < \p(D) +1. 

Proof: Let D = (V, A) be given and let T = (V, A’) be a maximal acyclic 
subdigraph of D. Define the function f : V > Zo by letting f (v) equal the 

number of vertices in a longest path starting in v in T. Since T is acyclic, f 
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is well-defined. Assume that f takes values in the set {1,2,...,k} (it is easy 

to see that all values in this set are taken by f). Let Vi = {u € V: f(v) =1%}. 

We claim that V; is an independent set in D for each i = 1,2,...,k. 

Clearly this will imply that y(D) < Ip(D) + 1. Suppose u,v € V; for some 2 

and that there is an arc from u to v in D. Let P be a path with 7 vertices 

starting at v in T. Clearly, the arc wv does not belong to T,, since otherwise 

uP is a path with i+ 1 vertices, contradicting the fact that f(u) = 7 (here we 

used that T is acyclic to see that uP is indeed a path). By the maximality of 

T we get that T + uv contains a cycle consisting of a path P’ from v to u in 

T and the arc uv. Let P” be a path with i vertices starting at u in T. Since 

T is acyclic the paths P’ and P” have only u in common. But now P’P" is 

a path starting in v in T with more than 7 vertices, a contradiction. Oo 

Gallai asked [297] whether every graph G has an orientation with precisely 

one path of length y(G). This is not true, as shown by an example by Youngs 

[752]. For a detailed discussion of this topic and related problems see the book 

by Jensen and Toft [459]. - 
An alternative formulation of Theorem 8.4.1 is that the chromatic number 

of a graph is given by 

x(G) = min{lp(D) + 1: D is an orientation of G}.° 

For any orientation D of an undirected graph G, we obtain an upper 

bound k on x(G) from Theorem 8.4.1. It follows from the fact that the 
problem of finding the minimum & such that an undirected graph has a k- 

colouring is WP-hard (as shown by Karp [474]) that it is an ’P-hard problem 

to find an orientation D of a given undirected graph G which minimizes lp(D). 

The next theorem by Tuza shows that given an orientation D of G one can 

find a colouring using at most lp(D) + 1 colours fast. 

Theorem 8.4.2 [723] If D is a digraph such that lp(D) < k, then a proper 

k-colouring of UG(D) can be found in time O(n +m). Oo 

Bondy obtained the following generalization of Theorem 8.4.1 to strong 

digraphs. Note that Camion’s theorem is a direct consequence of Theorem 
8.4.3. 

Theorem 8.4.3 [124] Every strong digraph contains a directed cycle of 

length.at least x(D). 0 

Minty showed that one can also measure the chromatic number of a graph 

by how much one can balance oriented cycles in orientations. 

° Combining this with the famous 4-Colour Theorem by Appel and Haken [27] 
which says that every planar graph has chromatic number at most four, we see 
that the 4-Colour Theorem is equivalent to the statement that every planar graph 
has an orientation such that no directed path has length more than 3. 
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Theorem 8.4.4 [567] If G has an orientation such that every oriented cycle 
contains at least |V(C)|/k arcs in each direction, then y(G) < k. 0 

This was strengthened by Tuza as follows. 

Theorem 8.4.5 /723] If G has an orientation such that every cycle of length 

|\V(C)| =1 (modulo k) contains at least |V(C)|/k arcs in each direction, then 

x(G) < k. oO 

For more relations between chromatic number and paths and cycles in di- 

graphs see Bondy’s survey [126, Section 4.4] and the paper [685] by Szigeti 
and Tuza. 

8.5 Orientations and Nowhere Zero Integer Flows 

In this section, unless otherwise stated, we assume that all undirected multi- 

graphs in question are connected. 

Let G = (V, £) be an undirected multigraph. A k-flow on G is an assign- 
ment of an orientation a to each edge e € E as well as an integer x(a) from 
the set {1,2,...,4 — 1} such that for each vertex v the sum of the values of 

x on arcs into v equals the sum of the values of z on arcs leaving v. That 

is, x is a circulation in the resulting oriented multigraph D. Hence we can 

think of a k-flow on a multigraph G as a pair (D,xz) where D = (V, A) is an 
orientation of G and z is an integer circulation in D with the property that 

x(a) € {1,2,...,4 —1} for each a € A. Below we use this notation. The flow 

z is sometimes called a nowhere-zero k-flow to stress the fact that 2 never 

takes the value zero on an arc. We say that G has a k-flow if there exists 

a k-flow on G. It is easy to see that a multigraph G has a k-flow for some 

k if and only if each connected component of G has a k-flow. Furthermore, 

it is easy to show that a connected multigraph with a cut-edge (A(G) = 1) 
cannot have a k-flow for any k (see Exercise 8.22). It is easy to see that a 
pseudograph G has a k-flow if and only if the multigraph H that we obtain 
by deleting all loops from G has a k-flow. This is why we assume that we are 
working with a multigraph rather than a pseudograph below. 

For convenience, we will always specify the value of a flow z on an arc uv 

by x(uv), rather than ry, as we did in Chapter 3. We start with a very easy 

result on 2-flows. 

Proposition 8.5.1 A multigraph G has a 2-flow if and only if all degrees of 

G are even. 

Proof: Clearly, if G has a 2-flow z then all degrees are even, since z is a 
circulation which only takes the value 1. Suppose now that all degrees of 

G are even. We may assume that G is connected as otherwise we consider 
each component in turn. By Euler’s theorem, G has a closed walk W = 
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WoW] W2W3 ...Wm—1Wm, where wo = Wm which uses each edge precisely once. 

Let D be the orientation obtained by orienting the edge w;w;+1 from w; to 

wi41 fori =0,1,...,m—1. Then (D,z = 1) is a 2-flow in G. 0 

For any abelian’ group (I’,+) we can define a flow in a multigraph G = 

(V, E) as follows. A I’-flow in G is a pair (D,xz) where D is an orientation 
of G, x maps A(D) to the non-zero elements {91,92,---,9)rj-1} of I and 

satisfies 
ey ACE 3 x(vw) for all v € V, (8.1) 

uve A(D) vwe A(D) 

where addition is in the group I’ and |I'| denotes the number of elements in 
the group I’. That is, x is a circulation which takes values from I" — go, where 

go is the neutral element of (I’, +). 
Tutte proved the following important theorem, relating k-flows on a multi- 

graph G to arbitrary group valued circulations on orientations of G. 

Theorem 8.5.2 (Tutte) [720] If (',+) is a finite abelian group, then an 

undirected multigraph G has a I'-flow if and only if it has a k-flow, where 

jew hb O 

An important step in proving Theorem 8.5.2 is to demonstrate the fol- 

lowing theorem by Tutte. Although we do not prove Theorem 8.5.2, we still 

prove Theorem 8.5.3 and then use it below. The group Z, is the additive 

group of integers modulo k. 

Theorem 8.5.3 [720] Let G = (V, E) be an undirected multigraph and k > 1 
an integer. Then G has a k-flow if and only if G has a Z,-flow. 

Proof: If (D, x) is a k-flow in G, then z(a) € {1,2,...,k—1} for eachae A 
and 

ye x(uv) — a z(vw) =0=0 (modulo k). 
uvE A(D) vwEA(D) 

Hence (D,z) is also a Z,-flow in G. 

Suppose now that (D’,2’) is a Z,-flow in G. Since all calculations are 
modulo k, we may assume that 2'(a) € {1,2,...,k — 1} for each a € A. By 
the definition of a Z,-flow we also have 

Sy z'(uv) — Se z'(vw) = 0 (modulo k). 
uve A(D’‘) vweA(D') 

For a given Z,-flow (D = (V,A),2), we let the balance vector b, be 
defined as in (3.5), that is, 

” Recall that an additive group (I’,+) is abelian if a +6 = 6+ a holds for all 
elements a,b of I. 
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SD as 0 x(vw) — S- x(uv). 

vwEA(D) uve A(D) 

Now assume that (D’, 2’) is chosen among all Z,-flows in G such that the 

g(D',z')= > |ber(v)| (8.2) 
vEV(D’) 

is minimized. We show that ¢(D',x') = 0, implying that (D’,z’) is a k-flow 
in G. Suppose this is not the case. Then let 

P= {ve V* bz (v) > 0}, M = {v € V : ba (v) < O}. 

It follows from standard flow considerations (compare with Section 3.1) 
that P,M # 0. By Theorem 3.3.1 we conclude that there is a path Q from P 

to M in D’. Let (D", 2") be obtained by reversing all arcs of Q and changing 

the flow of each arc a € A(Q) to k — 2'(a) while leaving the flow on all arcs 
not on Q unchanged. It is easy to see that (D”, x") is a Z;,-flow in G and that 
o(D" x2") = ¢(D',2') — 2k (which is still at least zero since every vertex in 

P (M) contributes a positive (negative) multiple of k to the balance vector). 
This contradicts the choice of (D'‘, x’) and hence we must have ¢(D', x’) = 0 
implying that (D’, 2’) is a k-flow. Oo 

The usefulness of Theorem 8.5.2 is illustrated several times below. The 

point is that, as we shall see below, it is sometimes considerably easier to 

establish that a multigraph has a I’-flow than it is to prove directly that it 

has a |I’|-flow. 
A multigraph is cubic if every vertex has degree 3. 

Proposition 8.5.4 A cubic multigraph G has a 3-flow if and only if G is 

bipartite. 

Proof: Suppose first that G is cubic and bipartite with bipartition (X,Y). 

Let D be the orientation obtained by orienting all edges from X to Y. Let 

x = 1, then (D,z) is a Z3-flow in G. By Theorem 8.5.3, G has a 3-flow 

(D!, ="). 
Suppose now that G is cubic and has a 3-flow (D, 2). Since the only values 

of x are 1 and 2, it is easy to see that taking X (Y) as those vertices which 

are the tail (head) of an arc whose z-value is 2, we obtain a partition of V(G) 
into two independent sets. Thus G is bipartite with bipartition (X,Y). QO 

A multigraph G is r-edge-colourable if one can assign each edge a 

number from the set {1,2,...,7} in such a way that all edges incident to the 

same vertex receive different numbers. Such an assignment is also called an 

r-edge-colouring of G. By Exercise 3.56, every cubic bipartite multigraph 

is 3-edge-colourable. For general 3-edge-colourable cubic multigraphs it may 

not be possible to find a 3-flow (see Exercise 8.29), but one can always find 
a 4-flow as the next result shows. 
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Theorem 8.5.5 A cubic multigraph G has a 4-flow if and only if G 1s 3- 

edge-colourable. 

Proof: By Theorem 8.5.2, G has a 4-flow if and only if it has a Z2 x Zo- 

flow® . Observe that the non-zero elements of Z x Z2 are their own inverses. 

Furthermore these three elements sum up to the zero element in Z2 x Zo. 

This shows that at every vertex of G precisely one edge has flow equal to 

(1,0), (0,1) and (1,1) respectively. Thus if (D,x) is a Z2 x Z2-flow in G, 
then we can consider the elements (0,1), (1,0), (1,1) as edge colours and we 
obtain that G is 3-edge-colourable. This argument works the other way also 

and hence the claim is proved. 0 

Theorem 8.5.6 A multigraph G has a 4-flow if and only if it contains two 

eulerian subgraphs Gi,G2 such that E(G) = E(G,) U E(G2). 

Proof: Exercise 8.28. 

Theorem 8.5.7 [455] Evéry 4-edge-connected multigraph G has a 4-flow. 

Proof: Let G = (V, EF) be 4-edge-connected. By Theorem 9.5.5, G has two 

edge-disjoint spanning trees T,, T>. Every edge e € E — E(T;) forms a unique 
cycle C. with E(T,). Let E,; be the modulo 2 sum of the edge sets of all 

cycles of the form C., e. € E — E(T,). Then the subgraph G; of G induced 

by F; is eulerian and contains all edges of E — F(T). Similarly there is an 

eulerian subgraph G2 which contains all edges of E — E(T2). Hence E(G) = 
E(G) U E(G2), because T; and T» are edge-disjoint, and the claim follows 

from Theorem 8.5.6. O 

Figure 8.10 The Petersen graph with a 5-flow (D,2) indicated. Notice that the 
value 4 is only used once. 

By Theorem 8.5.5 and the existence of 2-edge-connected cubic multi- 
graphs which are not 3-edge-colourable (the most famous example being the 

® The additive group (Z2 x Z2,+) has elements {(0,0), (1,0), (0, 1), (1, 1)} and 
addition is coordinate-wise. 
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Petersen graph, see Figure 8.10 for an orientation of the Petersen graph) we 

conclude that not all 2-edge-connected multigraphs have a 4-flow. However 

Tutte conjectured that 4 can be replaced by 5. 

Conjecture 8.5.8 (Tutte’s 5-flow conjecture) /720] Every multigraph 
which is 2-edge-connected has a 5-flow. 

The next lemma (described as a folklore result by Seymour in [663]) shows 

that it is sufficient to prove the conjecture for multigraphs which are cubic 

and 3-connected. 

Lemma 8.5.9 If k > 3 and G = (V,E) is a 2-edge-connected multigraph 

which does not have a k-flow, but every 2-edge-connected multigraph H = 

(V"", EB") with |V"|+ |E"| < |V| + |E| has a k-flow, then G is cubic and 
3-connected. 

Proof: Suppose first that G has a cut-vertex z such that V —z has connected 

components H;,...,H,, p > 2. By the minimality of G, each of the multi- 

graphs H; + z,i=1,...,p have a k flow and using these we easily obtain a 

k-flow for G. Hence we may assume that G is 2-connected. 

Suppose {e,e’} is a 2-edge-cut in G. Let e = st and let U' UW' bea 
bipartition of V such that s € U', t € W’' and there is no edge between U' 

and W' in G — {e,e’}. Let U = U'— 8 and W = W' —t. By the definition 
of U,W and the fact that G has no cut-vertex there is precisely one edge 

between U and W in G, namely e’. Now let the multigraph G’ = (V', E’) be 

obtained from G by contracting e into one vertex v, and deleting the loop 

created this way. Since |V'|+|E’| < |V|+|£| and contraction cannot decrease 
edge-connectivity, it follows from the assumption on G that there is a k-flow 

Co er anG’. 
In D' we may assume without loss of generality that e’ is oriented as an 

arc a’ from W to U. Let r = 2'(a’). Since 2’ is a circulation the following 

must hold: 

> a'(vew)— > 2'(w've) = 39 
wEew w' ew 

ys x'(veu) — Se z'(u've) =— 1. 

uceU u' EU 

In G—e the vertex s (t) is adjacent only to vertices in U (W). Let D” be 

the orientation obtained by using the orientations prescribed by D’ on the 

edges of G and orienting the edge st from s to t. Define x” by x(a) = z'(a) 

for all arcs except st where we take 2’"(st) =r. Then (D”, 2’) is a k-flow in G, 

contradicting the assumption. Hence it follows that G is 3-edge-connected. 

If G has a vertex s of degree at least 4, then it follows from a result of 

Fleischner [239] (see Exercise 8.38) that s has neighbours wu, v so that replacing 
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the edges su, sv by the edge uv we obtain a 2-edge-connected multigraph (Css 

By the minimal choice of G, there is a k-flow (D*,z*) in G* and it is easy 

to obtain a k-flow in G from this (just replace the arc between u and v in 

D* by a path of length 2 via s in G, using the two edges su, su and send the 

appropriate amount of flow along that path). This contradicts the choice of 

G and hence we conclude that G is cubic. It follows from Exercise 8.23 that 

G is 3-connected. Oo 

A major breakthrough on Tutte’s 5-flow conjecture came when Jaeger 

[455] proved that every 2-edge-connected multigraph has an 8-flow. His proof 

was surprisingly short and elegant. The reader is asked to give a proof of 

Jaeger’s result in Exercise 8.31. 

The strongest result so far is due to Seymour. 

Theorem 8.5.10 /663, Seymour] Every 2-edge-connected multigraph has a 

nowhere zero 6-flow. oO 

Since the proof is based on arguments that do not involve directed graphs, 

we will not give the proof in detail here (see Seymour’s original paper [663] 
or the books by Diestel [191] and Fleischner [241]). It follows from Lemma 
8.5.9 that it suffices to prove the result for 3-connected cubic multigraphs. 

Seymour proves that the edge set of such a multigraph G can be covered by 

two multigraphs G),G2 such that G; is eulerian and G2 has a 3-flow z’. It 

follows from Theorem 8.5.1 that G; has a 2-flow. Since E(G) = E(G,)UE(G2) 
it is easy to obtain a Zz x Z3-flow in G using z,z2’ and hence, by Theorem 

8.5.2, G has a 6-flow. 

An algorithmic version of Seymour’s proof, leading to a polynomial algo- 

rithm for finding a 6-flow in any 2-edge-connected multigraph, was given by 

Younger [751]. 
Recently, Bienia, Goddyn, Gvozdjak, Seb6 and Tarsi proved the following 

interesting result. The case when k > 5 is an obvious consequence of Theorem 

8.5.10. 

Theorem 8.5.11 /118] If G has a nowhere-zero flow with at most k — 1 
distinct values, then G has a k-flow. oO 

For much more information on nowhere-zero flows we refer the reader to 

the books by Fleischner [241] and Jensen and Toft [459], the papers [456, 457] 
by Jaeger as well as [664] by Seymour. In particular Chapter 13 in the book by 

Jensen’ and Toft [459] contains a lot of useful information about the subject 
and the important open problems. 

° In the language of Section 7.5 the result says that there is a feasible splitting 
su, sv (with respect to 2-edge-connectivity) for some pair of neighbours u, v of s. 
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8.6 Orientations Achieving High Arc-Strong 
Connectivity 

Let us recall that an orientation D of a multigraph G = (V, E) is obtained by 

assigning one of the two possible orientations to each edge of G (in particular 

two parallel edges may receive opposite orientations). By Robbins’ theorem, 

an undirected multigraph G = (V, F) has a strongly connected orientation if 

and only if G is 2-edge-connected. 

Below we describe two generalizations of Robbins’ theorem, due to Nash- 

Williams, both of which are much deeper than Robbins’ theorem, especially 

the one in Theorem 8.6.4. 

In order to illustrate to usefulness of the splitting technique which was 

discussed in Chapter 7, we prove Theorem 8.6.3 below using a splitting result 

for undirected graphs. This theorem, due to Lovasz, is analogous to Theorem 

7.5.2. The reader is asked to prove this theorem in Exercise 8.37. Analogously 

to the directed case, we denote by \(z,y) the maximum number of edge- 

disjoint ry-paths in G and we say that a graph G = (V +s, E) with a special 

vertex s is k-edge-connected in V if A(z, y) > k holds for all z,y EV. 

Theorem 8.6.1 (Lovasz’s splitting theorem) /522] Let G = (V + s, E) 
be a multigraph with a designated verter s of even degree and suppose that G 

is k-edge-connected in V , for some k > 2. Then for every edge st there exists 

an edge su such that after splitting off the pair st,su the new graph is still 

k-edge-connected in V?°. O 

An undirected multigraph G = (V, £) is minimally k-edge-connected 
if G is k-edge-connected (\(G) = k), but A(G — e) = k — 1 for every edge 
e € E. The following theorem by Mader is analogous to Theorem 7.10.3. The 

proof is left to the reader as Exercise 8.36. 

Theorem 8.6.2 [532] Every minimally k-edge-connected multigraph has a 

vertex of degree k. O 

Now we can prove the following famous result of Nash-Williams: 

Theorem 8.6.3 (Nash-Williams’ orientation theorem) /583] An undi- 

rected multigraph G = (V, E) has a k-arc-strong orientation D if and only if 

G is 2k-edge-connected. 

Proof: The proof idea used below is due to Lovasz [522]. Suppose G has a 

k-arc-strong orientation D. By Menger’s Theorem (in the version of Corollary 

7.3.3), for every non-empty proper subset X of V we have dt (X),d~(X) > k. 

10 As for directed graphs (see Section 7.5), splitting off the pair (su, sv) means 

that we replace the edges su, suv by a new edge uv (or a copy of that edge if it 

already exists). 
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This implies that in G we have d(X) > 2k and hence, applying Menger’s The- 

orem for undirected multigraphs, we conclude that G is 2k-edge-connected. 

To prove the other direction we proceed by induction on the number of 

edges in G. Let G = (V, E) be 2k-edge-connected. If |E| = 2k, then G is just 

two vertices x,y joined by 2k copies of the edge zy. Clearly this multigraph 

has a k-arc-strong orientation. Thus we may proceed to the induction step. 

Since adding arcs to a directed multigraph cannot decrease its arc-strong 

connectivity, it suffices to consider the case when G is minimally 2k-edge- 

connected. 
By Theorem 8.6.2, G contains a vertex s such that dg(s) = 2k. Ap- 

ply Lovasz’s splitting theorem to G with s as the special vertex and con- 

clude that we can pair off the 2k edges incident to s in G in k pairs 

(su ,,8V1),..., (Sug, Uz) in such a way that deleting s and adding the edges 
U1U1,...,URUR to G —s results in a 2k-edge-connected graph H. Since H 

has fewer edges than G it follows by induction that H has an orientation D’ 

which is k strong. ; 
By Exercise 7.27, we can obtain a k-arc-strong orientation of G by adding 

the arcs u1S,u2S,...,ugs and the arcs sv1, Sv2,..., sv, to H. Oo 

Actually, Nash-Williams proved the following much stronger result which 

clearly contains Theorem 8.6.3 as a special case. 

Theorem 8.6.4 (Nash- Williams’ strong orientation theorem) /583/] 
An undirected graph G has an orientation D such that there are |5Aq(z,y)| 

arc-disjoint (x, y)-paths in D for every pair of vertices x,y EV. Oo 

It is beyond the scope of this book to give a complete proof here. The 

original proof by Nash-Williams [583] is quite complicated and so are alter- 

native proofs by Mader (using a local edge-connectivity version of Theorem 

8.6.1 [536]) and Frank [259]. It remains a real challenge to find a short and 
transparent proof for this important theorem. 

We will outline the main idea of Nash-Williams’ proof (the two other 

proofs use the same approach). The first observation is that, if G is eulerian, 

then the statement is easy to prove (Exercise 8.34). So we may assume that 

G is not eulerian. We can make it eulerian by adding any matching on the 

odd degree vertices!!. If we could add a matching M on the odd vertices in 
such a way that after orienting G + M as an eulerian digraph D' and then 

removing the arcs corresponding to M we still have 

1 
Xp(z,y) ae LsAc(z,9)] for all Liye 19 (8.3) 

where D = D' — M!”, then we would have obtained the desired orientation. 

™ Recall that by Exercise 1.5, every graph has an even number of vertices of odd 
degree. 

‘2 By this we mean the oriented graph obtained from D by removing the arcs 
corresponding to M. 



8.6 Orientations Achieving High Arc-Strong Connectivity 445 

Let us see which conditions the matching M should satisfy in order to 
give rise to the desired orientation D as above. Following Frank [259] we use 
the notation f = 2|f/2] whenever f is an integer valued function. Let R 
be defined as follows: R(@) = R(V) = 0 and for every 6 4 X 4 V we let 
R(X) = max{Ag(a,y) : « € X,y € V — X}. We call R the requirement 
function for G. By Menger’s Theorem for undirected edge-connectivity (8.3) 
is equivalent to requiring that 

d5(X) > Re(X)/2 for all X°c V, (8.4) 

A matching M on the odd vertices of G is a good odd-vertex pairing 
if 

du(X) < dg(X) — Rg(X) for all X CV. (8.5) 

Here dyy(X) denotes the number of edges from M with precisely one end 
in X. Suppose M is a good odd-vertex pairing for G. Let D’ be an eulerian 

orientation of G+ M and let D = D' — M. Then we have 

dp(X) = dp. (X) — du(X) 

= (dg(X) + du(X))/2 — du(X) 

= (de(X) — du(X))/2 
> Re(X)/2, 

(8.6) 
implying that (8.4) and hence (8.3) holds. 

Thus if we can find a good odd-vertex pairing, then we get the desired 

orientation easily. The main point then is to prove the next theorem. 

Theorem 8.6.5 /583, Nash-Williams] Every undirected graph has a good 

odd-vertex pairing. Oo 

Instead of trying to find orientations where Ap(z,y) and Ap(y, xz) are 
as close as possible for all pairs of vertices, one may also look for different 

measures for the quality of an orientation. Pekéc (private communication, 

October 1997) posed the following problem: 

Problem 8.6.6 Let G be an undirected graph and define Mopt as 

Mopt = max{ 1D Ap(2,y) : D is an orientation of G}. 

z,yEV(D) 

Is there a nice characterization for Mopt? In particular, can Mop be calculated 

in polynomial time? 

Not much is known about orientations that achieve high vertex-strong 

connectivity. The following conjecture by Frank is still open. Note that for 

k = 1 the conjecture follows from Robbins’ theorem. Compare also with 
_ Section 7.14. 
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Conjecture 8.6.7 [262, Frank] A graph G = (V,E) has a k-strong orten- 

tation if and only if G — X is 2(k — j)-edge-connected for every set X ofj 

vertices (0<j <k). 

8.7 Orientations Respecting Degree Constraints 

In this section we first consider orientations of multigraphs which satisfy 

prescribed constraints on their semi-degrees. Then we consider the more gen- 

eral case when we have restrictions on certain subsets of the vertices (pos- 

sibly all proper subsets of the vertex set). A set function f on a ground- 

set S is supermodular if f(X) + f(Y) < f(X NY) + f(X UY) holds 
for every choice of sets X,Y C S. Recall that f is submodular on S if 

f(X)+f(Y) > F(X NY) + f(XUY) holds for every choice of sets X,Y CS. 
The function f is modular if it is both submodular and supermodular!? 

8.7.1 Orientations with Prescribed Degree Sequences 

We saw in Section 3.11.3 that given a directed multigraph D = (V, A) and 

numbers a1, 4@2,...,@, such that }>y_, a; < |Al, we can use algorithms for 

maximum flows to decide whether D has an spanning subdigraph D’ such 

that dp)v;) =a 10l = 4,2, 

We start by showing that we can also solve a similar orientation prob- 

lem using flows. Namely, given an undirected multigraph G = (V,£), 

V = {1,2,...,n}, and numbers aj, a2,...,@, such that 7, aj = |E|, does 
G have an orientation D for which dp (i ie SSR NO 

First, form the reference orientation H = (V, A) of G i bate an edge 

ij from i to 7 whenever i < j. Form the network N = (V, A,l = 0,u = 1) by 
giving each arc of A capacity one and lower bound zero. Let us interpret a 

feasible integer flow z in N as an orientation D’ = (V, A’) of G as follows. 
If z;; = 1 then A’ contains the arc ij and otherwise it contains the arc ji. 

Then for a given flow x we see that for each 7 = 1,2,...,n, the vertex 7 will 

satisfy 

dp (i) = D0 tj + (dh @ — SO 245). 
jic A ijeA 

Since we want D’ to have in-degree a; at vertex i, for i = 1,2,...,n, we 

obtain the following restriction on the balance vector b, of z: 

)-a, = S> aij - > a3 =balt), fort. 282s ees) 
ijEA jicA 

*S Note that a modular function f with f(@) =0 satisfies f(X) = De PET (&)! 
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Thus we have reduced the orientation problem to that of deciding whether 

there exists a feasible flow x in N which has balance vector b, as in (8.7). 

Hence, by Lemma 3.2.2, we can use any polynomial algorithm for maximum 

flow to solve the orientation problem and find the desired orientation if one 

exists. 

Based on the reduction above and the feasibility theorem for flows (The- 

orem 3.8.4) one may derive necessary and sufficient conditions for the exis- 

tence of an orientation with a prescribed in-degree sequence (or equivalently, 

out-degree sequence). One such feasibility theorem which is particularly well- 

known is for orientations of complete graphs as tournaments. The score of a 

vertex in a tournament is its out-degree. Landau proved the following char- 

acterization for score sequences of tournaments (the reader is asked to give a 

proof in Exercise 8.41): 

Theorem 8.7.1 (Landau’s theorem) /508] A sequence (si, 82,..-,8n) of 
integers satisfying 0 < s; < so <... < Sp ts the score sequence of some 

tournament on n vertices if and only if 

k 

8 5; ee (5) : b= 2eeen,) with equality when kn: 

i=1 

O 

For a very nice collection of different proofs of Landau’s theorem we refer 

the reader to the survey paper [630] by Reid. 
Harary and Moser [402] characterized score sequences of strong tourna- 

ments. 

Theorem 8.7.2 [402] A sequence 8; < 82 < ... < Sn of non-negative inte- 

gers with n > 3 is the out-degree sequence of some strong tournament if and 

only tf for each j, 1<j <n—1, 

and 

Below we denote for an undirected graph G = (V, £) and asubset X CV, 

the number of edges of E with at least one end (both ends) in X by ec(X) 

(ig(X)). Furthermore we denote by c(G) the number of connected compo- 

nents of G. Frank proved the following theorem which deals with bounds on 

__ the in-degrees of an orientation: 
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Theorem 8.7.3 [268] Let G = (V,E) be an undirected graph. Let f: V > 

Z andg:V -> 2, U {oo} be modular functions on V such that f <g. Then 

the following holds: 

(a) There exists an orientation D of G such that 

dp(v) > flv) for allvEV (8.8) 

if and only if 
eg(X) > f(x) for all X CV. (8.9) 

(b) There exists an orientation D' of G such that 

dp. (v) < g(v) for allu EV (8.10) 

if and only if ‘ 
ig(X) < g(X) for all X CV. (8.11) 

(c) There exists an orientation D* of G satisfying both (8.8) and (8.10) if 

and only if there is one satisfying (8.8) and one satisfying (8.10 Lae 

Proof: We consider (a) first. If D satisfies (8.8) then (8.9) follows easily from 

the following calculation 

fa f(a) < dain) 
vex vEx 

= eg(X) — d*(X) < eg(X). (8.12) 

Suppose now that (8.9) holds but there is no orientation which satisfies 

(8.8). Choose D among all possible orientations of G as one which minimizes 

5 (f(v) — d5(v)). (8.13) 
{veV:f(v)>dp(v)} 

Let x be a vertex for which f(x) > dp(z). Let X consist of those vertices 

u € V for which there is a directed (x,u)-path in D. Note that by the 
definition of X we have d§(X) = 0 or X = V. Since f(X) < eg(X) it is 
easy to see (using that z € X) that there is some vertex u € X such that 
d~(u) > f(u). Let P be any (z,u)-path in D. Let D’ be obtained from D 
by reversing the orientation of every arc on P. Now it is easy to see that D’ 

either satisfies (8.8) or achieves a smaller count for (8.13). This contradiction 
completes the proof that (8.8) holds. 

“ Frank calls the phenomenon formulated in part (c) of the theorem the linking 
principle [259, 263]. 
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To prove (b) we do as follows. Let g' be modular on V such that g/(v) = 
min{dg(v),g(v)}. It is easy to see that G has an orientation D satisfying 
dp(X) < g'(X) if and only if it has one satisfying d5(X) < g(X). On the 

other hand G has an orientation satisfying (8.10) with respect to g’ if and only 
if it has an orientation satisfying (8.8) with respect to f(v) = dq(v) — g'(v), 
v € V (just consider the converse of such an orientation). By (a) such an 
orientation exists if and only if eg(X) > f(X) for each X C V. Using that 
Veeex da(x) = eg(X) + ig(X) we conclude that eg(X) > f(X) if and only 
if ig(X) < g'(X). This proves (b). 

To prove that (c) holds, we choose among all orientations satisfying (8.10) 

an orientation D which minimizes (8.13). If the sum for this D is zero, then we 

are done. Otherwise observe that the only vertex whose in-degree is increased 

by reversing the path P (as in the proof of (a)) is the vertex x for which we 
have dp(x) < f(v) < g(v) and hence we still have dp, (x) < g(v) and get the 
same contradiction as in the proof of (a). Oo 

The non-constructive proof above can easily be turned into a polynomial 

algorithm which finds the desired orientations or a proof that none exists 

(Exercise 8.42). 
We also point out that using the approach from the beginning of this 

subsection, Theorem 8.7.3 can be proved using flows (Exercise 8.43). 

Although Theorem 8.7.3 is fairly simple to prove, it has several conse- 

quences. One of these is Hall’s theorem which characterizes the existence of 

a perfect matching in a bipartite graph (Theorem 3.11.3). To see that The- 

orem 8.7.3 implies Hall’s theorem, it suffices to see that a bipartite graph 

B = (U,V, E) has a perfect matching if and only if it has an orientation D 

in which every vertex in U has in-degree one and every vertex in v € V has 

in-degree dg(v) — 1. We leave the details to the reader as Exercise 8.44. The 
next result, due to Ford and Fulkerson, can also be derived from Theorem 

8.7.3. The proof of this is left as Exercise 8.40. 

Corollary 8.7.4 [246] Let M = (V,A,E) be a mized graph. Let G = (V, E) 

be the undirected part and let D = (V, A) be the directed part of M. The edges 

from G can be oriented so that the resulting directed multigraph!* is eulerian 
if and only if dg(v) +dp(v) +dp(v) is even for each v € V and the following 

holds: | 
dg(X) > d~(X) — dt (X) for all X CV. (8.14) 

oO 

The following common generalization of Robbins’ theorem (Theorem 
1.6.2) and Theorem 8.7.3 was obtained by Frank in [268]. 

© Recall that a mixed graph may have an edge and an arc with the same end 
vertices. 
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Theorem 8.7.5 [268] Let G = (V,E) be an undirected graph which is 2- 

edge-connected. Let f : V + Zo andg:V — Z,U{oo} be modular functions 

on V such that f < g. Then the following holds: 

(a) There exists a strong orientation D of G such that 

dp(v) = f(v) for allu EV (8.15) 

if and only if 

eq(X) > f(X)+c(G-X) for all X CV. (8.16) 

(b) There exists a strong orientation D' of G such that 

dp (v) < g(v) for allueV (8.17) 

if and only if 

ig(X)+c(G— X) < 9(X) for allQ@#X CY. (8.18) 

(c) There exists a strong orientation D* of G satisfying both (8.15) and 

(8.17) if and only if there is one satisfying (8.15) and one satisfying 

(8.17). 0 

8.7.2 Restrictions on Subsets of Vertices 

The purpose of this subsection is to study more general problems on ori- 

entations with degree conditions on subsets of vertices rather than just the 

vertices themselves. 
Let G = (V, E) be an undirected graph and let h: 2” + Z,U {0} satisfy 

h(0) = h(V) = 0. The function h is fully G-supermodular’® if 

h(X) + A(Y) < h(X NY) + h(X UY) + de(X,Y) (8.19) 

holds for all pairs of subsets of V (recall that dg(X,Y) denotes the number 

of edges in G with one end in X — Y and the other in Y — X). If (8.19) 
is required to hold only for intersecting (crossing) sets, then we say that h 

is intersecting (crossing) G-supermodular. A set function h on G is 
symmetric if h(X) = h(V — X) for every X C V. The following quite 
general theorem was proved in [251]. It allows one to find conditions for the 
existence of k-arc-strong orientations satisfying certain degree constraints on 

the vertices (see e.g. [259, page 98]). 

'® This strange looking definition will be easier to understand when one consid- 
ers the relation between orientations of mixed graphs and submodular flows in 
Section 8.9. In particular, see (8.43). 
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Theorem 8.7.6 (Frank’s orientation theorem) /251] Let G be an undi- 
rected graph and let h be a non-negative crossing G-supermodular function 

on subsets of V. There exists an orientation D of G which satisfies 

dp(X) > A(X) for all X CV (8.20) 

if and only if both 

en > filV;) (8.21) 
ViEF 

and 

er > )) MV —Vi) (8.22) 
ViEF 

hold for every partition F = {V,,V2,...,Vi} of V, where ex denotes the 

number of edges connecting different V;’s. If h is intersecting G-supermodular, 

then (8.21) alone is necessary and sufficient. If h is fully G-supermodular, or 

h 1s symmetric and crossing supermodular, then it suffices to require (8.21) 

and (8.22) only for partitions of V into two sets. Oo 

It is an easy exercise (Exercise 8.51) to show that Frank’s orientation 

theorem implies Nash-Williams’ orientation theorem. 

Frank shows in [259] how to derive Theorem 8.7.6 from the theory of 
submodular flows discussed in Section 8.8. See also Exercise 8.66. 

8.8 Submodular Flows 

In all of this section we consider set functions which are integer valued and 

zero on the empty set. The purpose of this section is to introduce a very useful 

generalization of flows, due to Edmonds and Giles [215] and to show how 
many important theorems in graph theory and combinatorial optimization 

are special cases of this theory. 

Let D = (V, A) be a directed multigraph and let r: A > R be a function 

on A. We use the notation 

POS Se rr(a), FP CFD ra): (8.23) 
a€(U,U) a€(U,U) 

That is, r*(U) (r~(U)) is the sum of the r values on arcs leaving (entering) 
and = 7 — Ui 

In Chapter 3 it is shown that every feasible flow in a network NV = 

(V, A,l, u, b) can be modeled as a circulation in an augmented network. Recall 
that for a circulation z in a network N we require that for every vertex v, 

17 Note that the function r+ is a generalization of d* for any directed multigraph 
D, since taking r = 1 we obtain d*. 
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the flow into v equals the flow out of v. This easily translates to non-empty 

proper subsets of the vertex set V, i.e. for every circulation r and every non- 

empty proper subset U of V, z~(U) = xt(U). The flows we will consider 

below do not in general satisfy this property, but there is a bound b(U) on 

the difference between the flow into U and the flow out of U. 

Let F be a family of subsets of S and let b: F + ZU {oo} be a function 

defined on F. The function b is fully submodular on F if the inequality 

b(X) + B(Y) > (X NY) +0(X UY) (8.24) 

holds for every choice of members X,Y of F. If (8.24) is only required to hold 

for intersecting (crossing) members of Ff, then 6 is intersecting (crossing) 

submodular on Ff. By an intersecting (crossing) pair (F,b) we mean a family 
F which is intersecting (crossing) and a function b which is submodular on 

intersecting (crossing) subsets of F. 

8.8.1 Submodular Flow Models 

Let f : A ZU{-—oco} and g: A + ZU {oo} be functions on the arc set of a 
directed multigraph D = (V, A). Let F be a family of subsets of V such that 

0,V € F and let b: F + ZU {ov} be fully submodular on ¥. A function 
z:A-—® is asubmodular flow with respect to F if it satisfies 

a (U) — 2+ (U) < W(U) for all U € F. (8.25) 

A submodular flow z is feasible with respect to f,g if f(a) < x(a) < g(a) 

holds for all a € A. The set of feasible submodular flows (with respect to given 

f,g and (Ff, b) form a polyhedron called the submodular flow polyhedron) 

Q(f,9;(F,b)) [259]. 
Submodular flows were introduced by Edmonds and Giles in [215]. In that 

paper it was only required that the function 6 is crossing submodular on a 

crossing family F, something which gives much more flexibility in applications 

(see Subsection 8.8.4). However, as remarked in [259] the crossing submodular 
functions define the same class of polyhedra as do fully submodular functions. 

Submodular flow polyhedra have very nice properties which makes sub- 

modular flows a very powerful tool in combinatorial optimization (see e.g. 

Subsection 8.8.4). 

Theorem 8.8.1 (The Edmonds-Giles theorem) /215] Let D = (V, A) 
be a directed multigraph. Let F be a crossing family of subsets of V such 

that 0,V € F, letb: F 4 ZU {—oo} be crossing submodular on F with 

b(0) = b(V) =0, and let f < g be modular functions on A such that f : A+ 
ZU{-co} and g: A- ZU {oo}. The linear system 

{f <2<gandzx (U) —2t(U) < WU) for all U € F} (8.26) 
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is totally dual integral. That is, if f,g,b are all integer valued, then the lin- 

ear program min {c! x : x satisfies (8.26)} has an integer optimum solution 

(provided it has a solution). Furthermore, if c is integer valued, then the dual 

linear program has an integer valued optimum solution (provided it has a so- 

lution). Oo 

In the definition of a submodular flow, we have followed Frank [254, 255, 

259, 263, 264, 274] and Schrijver [655]. Sometimes the definition of a sub- 
modular flow is slightly different (see e.g. the original paper by Edmonds and 

Giles [215] or the book by Fujishige [280]), namely x is required to satisfy 

f <a<gand zt(U) —2z (VU) < KU) for all U € F. (8.27) 

There is really no difference in these two definitions, since we see that if x 

satisfies (8.26), then —2 satisfies (8.27) with respect to the same submodular 
function b and the bounds —g < — f. 

One can also use supermodular functions in the definition as shown in the 

next lemma. Hence there are several models to choose from when one wants 

to model a problem as a submodular flow problem. Depending on the problem 

at hand, one model may be easier to use than another. For an illustration of 

this see Section 8.8.4, where we use several different definitions. 

Lemma 8.8.2 Let D = (V, A) be a directed multigraph and let F be a cross- 

ing family of subsets of V such that 0,V € F. If p is a crossing supermodular 

function on F with p(@) = p(V) =0, then any x: A— R which satisfies 

2-(U) — 2*(U) > pV) for allU EF (8.28) 
is a submodular flow. 

Proof: To see this, observe that the function b(U) = —p(U) is crossing 
submodular on the crossing family F defined as the complements of sets in 

F. Furthermore, by (8.23), (8.28) is equivalent to «~ (U) —a*(U) < —p(U) = 
b(U) for all U € F. O 

8.8.2 Existence of Feasible Submodular Flows 

The following theorem, characterizing when a feasible submodular flow exists 
with respect to functions f,g and b, is due to Frank: 

Theorem 8.8.3 (Feasibility theorem for fully submodular flows) 

[254] Let D = (V,A) be a directed multigraph, let f < g be modular func- 

tions on A such that f : A + ZU{-—oo} andg: A > ZU {oo} and let b 
be a fully submodular function on 2”. There exists an integer valued feasible 

submodular flow if and only if 

f~(U) — gt (U) < BU) for allU CV. (8.29) 

In particular there exist a feasible integer valued submodular flow if and only 

_ if there exists any feasible submodular flow. 
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Proof: We follow the proof by Frank in [259]. Suppose first that there exists a 

feasible submodular flow z. Then we have f~(U)—gt(U) < a (U)—a2t(U) < 

b(U), showing that (8.29) holds. 

Suppose now that (8.29) holds. Define the set function p as follows 

p(U) = f-U) — 9" (U). (8.30) 

Claim: The function p is fully supermodular, that is, p(U) + p(W) < p(tUN 

W)+p(U UW) for all U, W C V. Furthermore, equality only holds if f(a) = 

g(a) for all arcs with one end in U — W and the other in W — U. 

Proof of Claim: Since f and g are modular as set functions, we get, by 

considering the contribution of each arc in A: 

p(U) + p(W) = (f- (U) — gt (U)) + (f- (W) - 9 (W)) 

= (f~(U) + f-(W)) - (97 U) + 97 (W)) 

=(f-(UNW) +f (UUW) + fU,W)) 
—(g*(UNW)+gt(UUW) + 9(U,W)) 

= (p(UUNW) + p(UUUW)) — (g(U,W) — f(U,W)), 

where f(U,W) counts the f values on arcs with one end in U — W and the 

other in W —U18 
From this it (Silws that p is supermodular datas f <q) and that equality 

only holds if f(a) = g(a) for all arcs with one end in U — W and the other in 
W —U. This completes the proof of the claim. 

An arc a € A is tight if f(a) = g(a) and a subset U C V is tight if 
p(U) = b(U). Suppose that there is no feasible flow with respect to f,g and 
b in D and that f,g are chosen so that the number of tight arcs plus the 

number of tight sets is maximum. 

If every arc a € A is tight, then take z(a) = f(a) = g(a) for every a € A. 
Now we have 2 (U) —at(U) = f~(U) — gt(U) < b(U) and hence z is a 
feasible submodular flow in D, a poder 

Hence we may assume that there is some arc ao such that f(ao) < g(ao). 
Suppose that there is no tight set which is entered by ag. Then we can increase 

f (ao), until either the new value f'(ao) equals g(ao), or we find a tight set U 
(with respect to f', g) which is entered by ao. It follows that the new functions 

f',g have a higher count of tight arcs plus tight sets. Hence, by the choice of 

f,g, there exists a feasible submodular flow x with respect to f’,g. Obviously 

x is also feasible with respect to f,g, contradicting the assumption. Hence 

the arc ap must enter a tight set U. 

Similarly we can prove (by lowering g otherwise) that the arc ag must 

also leave some tight set W. Now we have, using the Claim, (8.29) and the 
fact that p(U) = b(U), p(W) = b(W): 

'8 Again this definition generalizes the corresponding definition of d(X,Y) in Chap- 
ter 7. 
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P(UUNW) + p(UUW) > p(U) + p(W) 
= b(U) + b(W) 

> bUUNW)+bUUW) 

> pPUNW) + p(UUW), 

implying that equality holds everywhere above. However this contradicts the 

second part of the Claim since f(a9) < g(ao) and we have argued that the 
arc dao leaves U and enters W. This contradiction completes the proof. O 

Note that the special case of Theorem 8.8.3 when b = 0 says that z~ (U) — 

z*(U) = 0 for all subsets U C V. In particular z~(v) = x+(v) for all v € 
V. That is, every feasible submodular flow with respect to f,g and b = 

0 is circulation and conversely. It is easy to see that the characterization 

in Theorem 8.8.3 in the case b = 0 is exactly the condition in Hoffman’s 

circulation Theorem (Theorem 3.8.2). 
In fact, the proof of Theorem 8.8.3 in some sense resembles that of The- 

orem 3.8.2. Thus it is natural to ask how easy it is to find a feasible solu- 

tion, or detect that none exists. This can be read out of the proof above: 

the essential step is to decide whether an arc enters or leaves a tight set 

(or both). This requires that we can find min{b(U) — p(U) : a € (U,U)} 
and min{b(U) — p(U) : a € (U,U)} for every arc a of the directed multi- 
graph D. This is a special case of the problem of minimizing a submodular 

function, that is, finding the minimum value of the submodular function in 

question over a prescribed family of sets. This can be done in polynomial time 

for arbitrary submodular functions using the ellipsoid method as shown by 

Grétschel, Lovasz, and Schrijver [338]. However, the ellipsoid method, though 

polynomial, is not of practical use, since it is highly inefficient. 

It was an open problem for several decades whether there exists a poly- 

nomial combinatorial algorithm for minimizing a submodular function b over 

a family F, that is, to find min{b(U) : u € F}. For submodular functions 

which are symmetric (that is, b(X) = b(V — X)) Queyranne [617] has given 
such a polynomial algorithm (Nagamochi and Ibaraki proved a slightly more 

general result [582]). Queyranne’s algorithm is a generalization of the algo- 
rithm by Nagamochi and Ibaraki [580] for finding the edge-connectivity of 
a graph via maximum adjacency orderings which was mentioned in Section 

7.4. Recently Schrijver [660] solved the problem completely by describing a 

strongly polynomial time algorithm for minimizing an arbitrary submodular 

function given by a value-giving oracle. Schrijver’s algorithm does not use the 
ellipsoid method or any other linear programming method. A similar result 

was obtained independently by Iwata, Fleischer and Fujishige [447]. 
It should be noted that even though the special problem we described 

above of finding the minimum of b(U) over those U € ¥ that contain either 
the head or the tail, but not both, of a fixed arc a € A, and 0 is fully 
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submodular seems to be a very special case of the problem of minimizing an 

arbitrary submodular function, it is in fact equivalent to that problem. Let 

F be a crossing family on a ground-set S and let b be a crossing submodular 

function on ¥. Let D be the complete directed multigraph on the vertex set 

S. Let Fuy = {X € F: ue Xu ¢ X}. Then F,, is a crossing family and 

clearly 

min{b(X) : X € F} =min{min{b(Y) :€ Fuy}: u,v € S}. (8.31) 

Hence if we have a polynomial algorithm to minimize arbitrary submodular 

functions over families of the type Fy, then there is one for arbitrary crossing 

families. 

As mentioned earlier, one can also define submodular flows for functions 

b that are intersecting, respectively crossing, submodular functions (defined 

on a family of subsets of the directed multigraph D which is intersecting, 

respectively crossing). In the case of intersecting and in particular for cross- 

ing submodular flows the feasibility theorem is much more complicated. A 

collection U;,U2,...,Ux of subsets of a ground set S are co-disjoint if their 

complements are pairwise disjoint (that is, U; JU; = S for all i # 7). Frank 

proved the following two feasibility theorems ee rapier and crossing 

submodular flows: 

Theorem 8.8.4 (Feasibility theorem for intersecting submodular 

flows) /255] Let D = (V,A) be a directed multigraph and let f,g be real 
valued modular functions such that f < g. Let F' be an intersecting family 

of subsets of V such that 0,V € F' and let b' be an intersecting submodular 

function on F'. Then there exists a feasible submodular flow with respect to 

f,g and b! if and only if 

F(Y Xi) - 9 (UX) < DUH) (8.32) 
a i 

holds whenever X1,X2,...,Xt are disjoint members of F'. Furthermore, if 

f,g,0' are all integer valued functions and (8.32) holds, then there exists a 

feasible integer valued submodular flow with respect to f,g and b'. oO 

Theorem 8.8.5 (Feasibility theorem for crossing submodular flows) 
[255] Let D = (V,A) be a directed multigraph and let f,g be real valued 
modular functions such that f <g. Let F" be a crossing family of subsets of 
V such that 0,V € F" and let b" be a crossing submodular function on F". 
Then there exists a feasible submodular flow with respect to f,g and b" if and 
only if 

rc eke no Xi) < Sox nif (8.33) 
2=1 Gasil ies 
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holds for every subpartition {X,,X2,...,Xz} of V such that each X; is the 

intersection of co-disjoint members Xj, Xi2,...,Xig, of F". Furthermore, if 

f,g,6" are all integer valued functions and (8.33) holds, then there exists a 

feasible integer valued submodular flow with respect to f,g and b". 0 

Finding a feasible submodular flow or a configuration which shows that 

none exists is much more difficult than finding a feasible circulation in a 

network (recall Section 3.8). Frank [255] gave a combinatorial algorithm for 
finding a feasible integer valued submodular flow with respect to bounds f,g 

and a pair (F,b) which is either intersecting or crossing submodular. The 

algorithm is polynomial provided one has an algorithm for minimizing the 

involved submodular functions. For this task we can apply the recent algo- 

rithms of Schrijver and Iwata, Fleischer and Fujishige which we mentioned 

above. 

8.8.3 Minimum Cost Submodular Flows 

Let D = (V,A) be a directed multigraph and let f : A ~ ZU {-oo}, 
g: A— ZU {oo} be functions on the arc set of D. Let c: A > R be a cost 
function on the arcs of D. Let B C 2” be a crossing family with 0,V € B. Let 

b: 2” —, ZU{oo} be crossing submodular on B with b(0) = b(V) = 0. Denote 
the network defined by D and these functions by Ns = (V, A, f, 9, (B, 6), c). 

The minimum cost submodular flow problem is as follows: 

Minimize yh c(a)z(a) 
acA 

subject to 

a (U) —2*(U) < BU) for allU € B 

f(a) < z(a) < g(a) for alla € A. 

A feasible submodular flow with respect to f,g and b which achieves this 

minimum is called an optimal submodular flow in Ns. 

This problem, which again generalizes the minimum cost circulation prob- 

lem from Chapter 3, is very interesting because it forms a common extension 

of many problems on (di)graphs as well as problems from other areas (see 
e.g. the book [280] by Fujishige). Recall also Theorem 8.8.1. 

Fujishige proved the following (see also the papers [170] by Cunningham 
and Frank and Frank’s paper [254)): 

Theorem 8.8.6 [281] The minimum cost submodular flow problem can be 
solved in polynomial time provided a polynomial algorithm for minimizing the 

relevant submodular functions is available. oO 
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8.8.4 Applications of Submodular Flows 

In this section we will illustrate the usefulness of submodular flows as a tool 

to obtain short proofs of important results as well as algorithms for various 

connectivity problems. 

We start with Nash-Williams’ orientation theorem (Theorem 8.6.3). The 
approach taken is due to Frank [256] (the same idea was used by Jackson 

[451]). Let G = (V, E) be an undirected graph. Let D be an arbitrary ori- 
entation of G. Clearly G has a k-arc-strong orientation if and only if it is 

possible to reorient some arcs of D so as to get a k-arc-strong directed multi- 

graph. Suppose we interpret the function z : A + {0,1} as follows: z(a) = 1 

means that we reorient a in D and z(a) = 0 means that we leave the orien- 
tation of a as it is in D. Then G has a k-arc-strong orientation if and only if 

we can choose z so that the following holds: 

_ 

d,(U) + 2*(U) -—z-(U) >k for al @AUCY. (8.34) 

This is equivalent to 

2~(U)—2*(U) < (d5(U) —k) = WU) for all UU CV,U £0,V, (8.35) 

a9) = B(V) =0. (8.36) 
Observe that the function 6 is crossing submodular on F = 2” (it is not 

fully submodular in general, since we have taken 6(0) = b(V) = 0). Thus we 
have shown that G has a k-arc-strong orientation if and only if there exists 
a feasible integer valued submodular flow in D with respect to the functions 
f =0,g=1 and b. 

Suppose now that G is 2k-edge-connected, that is, dg(X) > 2k for all 
proper non-empty subsets of V (by Menger’s theorem). We claim that x = $ 
is a feasible submodular flow. This follows from the following calculation: 

dp(U) + 2*(U) ~2-(U) = dg (U) + 545 (U) - 550) 
1s. 1 545 (U) + 545 (U) 
nu 1 

2 
k. 

(2k ~ a5 (U)) + £ab(v) 

Hence it follows from the integrality statement of Theorem 8.8.5 and the 
equivalence between (8.34) and (8.35) that there is a feasible integer valued 
submodular flow x in D with respect to f,g and b. As described above this 
implies that G has a k-arc-strong orientation where the values of x prescribe 
which arcs to reverse in order to obtain such an orientation from D. 
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Notice that by formulating the problem as a minimum cost submodular 

flow problem, we can also solve the weighted version where the two possible 

orientations of an edge may have different costs and the goal is to find the 

cheapest k-arc-strong orientation of the graph (Exercise 8.64). By Theorem 

8.8.6, the optimal (minimum cost feasible) submodular flow in D with respect 

to the functions f = 0,g = 1 and b (as defined in (8.35)) can be found in 
polynomial time (see Exercise 8.63). 

The following useful result, mentioned by Frank in [254], follows from the 

discussion above and Theorem 8.8.6 

Corollary 8.8.7 [254] There is a polynomial algorithm for finding the min- 

imum number of arcs to reverse in a directed multigraph D in order to obtain 

a k-arc-strong reorientation of D. O 

Similarly, combining the discussion above with Frank’s algorithm for find- 

ing a feasible submodular flow (or deciding that none exists) with respect to 
a crossing submodular function, we obtain the following result (see Exercise 

8.39 for a different proof based on Lovasz’s splitting theorem): 

Corollary 8.8.8 /254] There is a polynomial algorithm for finding a k-arc- 

strong orientation of a given undirected multigraph G or verify that G has no 

such orientation. 0 

The following theorem by Frank can also be derived from the formulation 

of the k-arc-strong orientation as a submodular flow problem (see Fujishige’s 

book [280]). 

Theorem 8.8.9 /253] If D and D' are k-arc-strong orientations of an undi- 

rected graph G, then there exists a sequence of k-arc-strong orientations 

min, e, 1),-— 01) oo; G such that for each? — 1,2)6..,%, 7,18 
obtained from D;_, by reversing all arcs in a directed path or a directed cy- 

cle. O 

Frank [253] gives a direct and short proof of this without using submodular 
flows, but his proof uses submodular arguments (see Exercises 8.47-8.50). 

In [275] Frank and Tardés showed how to reduce the following problem to 
a submodular flow problem. Given a directed graph D = (V, A) and a special 

vertex s, find a minimum set of new arcs to add to D such that the resulting 

directed multigraph contains k internally disjoint paths from s to v for every 
v € V —s. The similar problem where we only want arc-disjoint (s, v)-paths 

is solvable via matroid intersection algorithms (see Exercise 9.57). In the 
special case when D has already k — 1 arc-disjoint (s,v)-path for all v € V 
the problem can also be solved by the Frank-Fulkerson algorithm, which is 

discussed in Section 9.11. 
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As another prominent illustration of the generality of submodular flows, 

let us now show how the Lucchesi-Younger theorem on coverings of arc- 

disjoint directed cuts!? (Theorem 7.15.2 ) can be proved using a formulation 
of the problem as a minimum cost submodular flow problem and the duality 

theorem for linear programming. This application of submodular flows was 

first pointed out by Edmonds and Giles [215]. 
We wish to find a minimum set of arcs which cover all directed cuts in 

D. We assume that D is connected, since otherwise some dicut has no arcs 

at all and clearly no cover exists (recall Section 7.15). Let z : A + {0,1} and 
let us interpret the value of x(a) as follows. If x(a) = 1 then we choose a to 
be in the cover and otherwise (if x(a) = 0) a is not chosen. Since the set of 

chosen arcs must cover all directed cuts, we have the requirement 

a (W)>1 for all W C V such that d5(W) = 0. (8.37) 

Let F = {W:04W #V and d}(W) = 0}. Since d5(W) = 0 for all 
W € fF, (8.37) is equivalent to 

zt (W)—2-(W) <-1=)(W) for all W € F. (8.38) 

By our remark on different formulations of submodular flow problems, we see 

that this (having the form of (8.27)) is indeed a submodular flow formulation. 
It follows from the remarks above that assigning cost one to each, we can 

formulate the problem of finding an optimal cover of the directed cuts as the 

following minimum cost submodular flow problem (in the form of (8.27)). 

LY: Minimize SS x(a) 
ac€A 

subject to 

rar) b for all U € F — {0,V} 

WES Fal ery pee for alla € A. 

Taking dual variables yyw for each member W of F and e(a) for each arc 
a € A, we get that the dual of LY is 

LY* : Maximize SS yw - >? €(a) 

WeF-{0,V} acA 

subject to 

—e(a) + Dis yw <1 for allac A 

ac(W,W) 

yw > 0 for all W EF 

*? Recall from Chapter 7 that a directed cut is a set of arcs of the form (U,V —U) 
where d (U) = 0. 
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€(a) > 0 for all a € A. 

Eliminate the variables e(a) from £Y* and notice that, if yw = 0 for all 
members W € ¥ which are entered by a, then the optimal choice for €(a) is 
e(a) = 0. We get that CY* is equivalent to the problem 

LY** : Maximize > ywt do min{0,f1- > yw] }(8.39) 
WeF—{0,V} acA ac(W,W) 

subject to 

yw > 0 for all W € F. 

(8.40) 

By the Edmonds-Giles theorem, there exist an integer valued optimum 

solution {yw : w € F}U {e(a) : a € A} to LY* and hence to L**. Notice 
that, if some variable yw in such a solution is 2 or more, then we can decrease 

its value to 1 without changing the value of the objective function in (8.39). 

Hence there exists an optimal solution to £** in which all values are 0 or 1. 

It follows from the optimality of the solution that, if yw = yw = 1, then we 

can assume that no arc enters both of W, W’ (otherwise we may put yyw = 0 

without changing the value of the objective function). This shows that the 

cuts corresponding to the non-zero values of y are arc-disjoint and hence we 

have shown that the size of an optimal cover equals the maximum number of 

arc-disjoint directed cuts, which is exactly the statement of Theorem 7.15.2. 

Furthermore, by Theorem 8.8.6, we obtain the following corollary: 

Corollary 8.8.10 There exists a polynomial algorithm which given a di- 

rected multigraph D = (V, A) finds a minimum dijoin A' C A of D. Oo 

Note that we can minimize the function b from (8.38) over a given collec- 
tion of sets in polynomial time (using flows). Namely, the minimum value is 

-1 if the collection contains a member of F and 0 otherwise. 

It follows from the formulation of the minimum directed cut covering 

problem as a submodular flow problem and Theorem 8.8.6 that we can also 

solve the minimum cost version of the problem even if there are non-uniform 

costs on the arcs and we want to find a minimum cost cover of the directed 

cuts. Furthermore, we can also solve the problem of finding a set of arcs which 

cover each directed cut at least k times for each k (simply replace the number 

—1 by —k in (8.38)). 
For much more material on submodular flows the reader is referred to 

the papers [254, 255, 259, 263, 264] by Frank, [274] by Frank and Tardos, 

Fujishige’s book [280] and the paper [655] by Schrijver. In particular [274] 
and [280] give a lot of interesting results on the structure of submodular 
flows and the relation between submodular flows and other models such as 

independent flows and polymatroidal flows. Finally Schrijver’s paper [655] is 

a very useful overview of the various models and their interrelations. 
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8.9 Orientations of Mixed Graphs 

We conclude this chapter with some remarks on the orientation of mixed 

graphs where the goal is to satisfy degree and/or connectivity requirements. 

Note that in this section a mixed graph may contain multiple edges and/or 

arcs. Also recall that when we speak of orienting a mixed (multi)graph this 

means that we assign an orientation to every edge and leave the original arcs 

unchanged (implying that the result may not be an oriented graph). 

Orientation problems for mixed graphs are generally much harder than 

for undirected graphs. One illustration of this is displayed in Figure 8.11. This 

example, due to Tardos (see [263]), shows that the linking principle for strong 

connectivity orientations does not hold for general mixed graphs (compare 
this with Theorem 8.7.5). 

(0,1] (0, 0} 

[1,1] (0, 1] 
Cc d 

Figure 8.11 A mixed graph M with prescribed lower and upper bounds on the 
desired in-degrees in the directed multigraph induced by the arc between a and c 
and the arc between b and d in an orientation D of M. It is easy to see that by 
orienting the edges ac, bd as a—c,d—b we obtain a strong orientation satisfying 
the lower bounds on the directed multigraph induced by the newly oriented arcs. 
Similarly if we orient the same edges as ca, b—+d we obtain a strong orientation 
which satisfies the upper bounds on the directed multigraph induced by the newly 
oriented arcs. However, there is no strong orientation which satisfies the lower and 
upper bounds simultaneously on the directed multigraph induced by the newly 
oriented arcs. 

Not every 2k-arc-strong mixed graph has a k-arc-strong orientation (Ex- 
ercise 8.54) but Jackson proved the following extension of Theorem 8.6.3. 
The proof is left to the reader as Exercise 8.53. 

Theorem 8.9.1 /451] Let M = (V,A,E) be a mized graph. Let G = (V, E) 
and D = (V, A) denote the undirected, respectively the directed part of M and 
define k by 

ene 
(ie min{ 5de(X) + dj,(X) : X is a proper, non-empty subset of V}. 

Then the edges of E can be oriented in such a way that the resulting directed 
multigraph is k-arc-strong. oO 
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It is not difficult to see that one can formulate the problem of orienting a 
mixed graph so as to get a k-arc-strong directed multigraph as a submodular 

flow problem. We can use the same approach as in Subsection 8.8.4. The only 

change is that we insist that x(a) = 0 for original arcs (Exercise 8.53). 
Jackson [451] conjectured that Theorem 8.9.1 could be extended to local 

connectivities and hence providing a generalization of Nash-Williams’ strong 

orientation theorem (Theorem 8.6.4). However, examples by Enni [218] show 

that this conjecture is false. In the case when the directed part of M = 

(V, A, B) is eulerian such an extension is indeed possible. In [218] Enni shows 
how to extend Theorem 8.6.5 to the case of mixed graphs when the directed 

part D = (V, A) is eulerian. 
We remark that there seems to be no easy way of formulating orientation 

problems concerning local connectivities as submodular flow problems. 

When we consider orientation problems where the input is a mixed graph 

M = (V,A, E) which we wish to orient so as to satisfy a certain lower bound 

h(X) on the in-degree of every subset X of vertices, then we cannot in general 
apply a theorem like Frank’s orientation theorem (Theorem 8.7.6). The reason 

for this is that even if the function h(X) ‘behaves nicely’, we have to take into 
account the arcs in A because these will contribute to the in-degree of the final 

oriented graph D’. To give an example, consider a mixed graph M = (V, A, E) 

and let h(X) = k for all non-empty proper subsets of V and h(@) = h(V) = 0. 
That is, we are looking for a k-arc-strong orientation of //. When we want to 

apply a theorem like Theorem 8.7.6 we have to consider the revised in-degree 

lower bound h’ given by h'(X) = k—dp(X), where D = (V, A) is the directed 
graph induced by the arcs already oriented in M. The function h' is easily 

seen to be crossing G-supermodular, where G = (V, F) is the undirected part 

of M (Exercise 8.62). However h’ is typically negative on certain sets and 

hence Theorem 8.7.6 cannot be applied. 

As we mentioned above, for the particular lower bound h(X) = k, when- 

ever 0 # X # V, the problem can be formulated as a submodular flow 

problem. This is no coincidence as we show below. 

Let G = (V,E) be an undirected graph. Let h : 2” + ZU {-oo} be 
crossing G-supermodular with h(@) = h(V) = 0. Let D = (V,A) be an 
arbitrary but fixed orientation of G. Let x : A(D)—{0,1} be a vector and 

define an orientation D’ = (V, A’) of G by taking A’ = {a: a € A,a(a) = 

O}U {a: mesa wa) —1)}) Here @ denotes the opposite orientation of the arc 
a (compare with Section 8.8.4). Then D’ will satisfy 

dp, (U) > h(U) for all U CV (8.41) 

if and only if dj(U) —«~ (U) + xt (U) > h(U) for all U C V, or equivalently 

a~(U) —a2*(U) <d5(U) -—h(U) =b"(U) for all U CV. (8.42) 
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Since dp satisfies (7.2) and h is crossing G-supermodular”°, we conclude 
that whenever U, W are crossing sets the following holds: 

b"(U) +b" (W) = (dp(U) — h(U)) + (dp(W) — h(W)) 
= d,(UNW) +d5(UUW) +de(U, W) — (h(U) + h(W)) 

> d5(UNW)+d,5(UUW) +dc(U, W) — (h(UNW) 

+ h(UUW) +dc(U,W)) 

= b'(UNW) +b" (UUW). (8.43) 

Thus the function b” is crossing submodular on F" = 2 — {0, V} and the 
equivalence of (8.41) and (8.42) shows that there is a one to one correspon- 
dence between orientations satisfying (8.41) and integer valued solutions to 

the submodular flow problem defined by (8.42) and 0 < x < 1. This shows 

that we can use submodular flow algorithms to solve the orientation prob- 

lem. We can also derive a characterization of the existence of an orientation 

satisfying (8.41) from Theorem 8.8.5. We do this below as an illustration of 
how to use the feasibility theorem for crossing submodular flows (Theorem 

8.8.5). 
Suppose there exists an integer valued feasible submodular flow with re- 

spect to the crossing submodular function b” defined above. By (8.33) this 
means that 

t t 

PU x) -st(U Xs Sey) (8.44) 
it 1=1 2 

holds for every subpartition P = {X1, X2,..., Xz} of V such that each X; is 

the intersection of co-disjoint subsets Xj;1, Xj2,... Aig, Ol. 

We derive an expression that relates only to G and h using (8.44). To do 
so, it is helpful to study Figure 8.12. 

Using that f = 0 and g = 1 and the definition of b” we see that (8.44) is 
equivalent to 

-45(U Xi) < eS (dp (Xiz) — A(Xi;)). (8.45) 

For fixed i the sum on dp(Xi;) counts the following arcs: 

(1) Those arcs which enter X; (the common intersection of all X;;’s) from 
its complement, plus 

2° Note how we use the definition of a crossing G-supermodular function here to 
get rid of the contribution from edges with one end in X — Y and the other in 
a. © 
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Figure 8.12 The situation when deriving Theorem 8.9.2 from Theorem 8.8.5. The 
set X; is part of a subpartition P of V and X; is the intersection of the five co- 
disjoint sets Xi1,...,Xis whose complements (which form a partition of X;) are 

indicated in the figure. The arcs shown are those between different sets Ke ES 

(which are the same as those arcs that go between different X;;’s!) and those arcs 
that enter X;. 

(2) those arcs which go between different X;;’s (which is the same as arcs that 
go from some X;; to some other X;,). This is the same as the number of 

edges in G that go between two X;;’s. Denote the total number of edges 

of this kind in G by e;. 

Using this observation we conclude that (8.45) is equivalent to 

t aE 

dp (UL, X)) + Yd) = TOT ACG) - (8.46) 
i=1 i=1 j=1 

Finally, observe that the left hand side of (8.46) counts precisely those 

edges of G which enter some X; € P. Now we have proved the following 

orientation theorem due do Frank: 

Theorem 8.9.2 (Frank’s general orientation theorem) [259] Let G = 
(V,E) be an undirected graph. Let h : 2” -+ ZU {co} be crossing G- 
supermodular with h(0) = h(V) = 0. There exists an orientation D of G 
satisfying 

dp(X) = h(X) for all X CV (8.47) 

if and only if 
qi 

ep > > o() (Xi) — e1) (8.48) 
i 

holds for every subpartition P = {X1,X2,...,Xt} of V such that each X; 

is the intersection of co-disjoint sets Xi1,Xi2,...,Xig;. Here ep counts the 
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number of edges which enter some member of P and e; counts the number of 

edges which go between different sets Xi;, Xir- oO 

By our previous remark on the function k — dp, Theorem 8.9.2 can be 

used to derive a necessary and sufficient condition for the existence of a k-arc 

strong orientation of a mixed graph. This is left to the reader as Exercise 

8.56. 

One might ask whether such a complicated condition involving partitions 

and copartitions is really necessary in Theorem 8.9.2. The following example 

due to Frank [263] shows that one cannot have a condition which only involves 

partitions or subpartitions. 

x va xX 

Figure 8.13 Frank’s example showing that no (sub)partition type condition for 
the existence of an orientation satisfying (8.47) exists. 

Let G = (V,£E) be the graph in Figure 8.13 and let the sets X;, X2, X3 

be as defined there. Define h by h(@) = A(V) = 0, h(X1) = A(X3) = 1, 
h(X2) = 2 and A(X) = —oo for all other subsets of V. Then h is crossing 

G-supermodular since no two crossing sets X,Y have h(X),h(Y) > —oo. It 
is easy to check that G has no orientation satisfying (8.47) with respect to 

h. On the other hand, if we decrease h(X;) by one for any i = 1,2,3, then 

there exists a feasible orientation with respect to the new h;. This shows 

that every certificate for the non-existence of an orientation with respect to 

h must include all the sets X,, X2, X3. It is easy to see that these three sets 

neither form a subpartition nor do they form a co-partition. 

The example from Figure 8.13 also shows that there is no 2-arc-strong 

orientation of the mixed graph in Figure 8.14. Hence even for orientations of 

mixed graphs to obtain a uniform degree of arc-strong connectivity we cannot 

hope for a much simpler condition. 

Since we derived Theorem 8.9.2 from Theorem 8.8.5, it is possible to get 
a simpler characterization if one can find such a characterization of feasibility 

of submodular flows with respect to a crossing pair (F",b’’). This was done 
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Cc d 

Figure 8.14 A mixed graph which has no 2-arc-strong orientation and for which 
every certificate for the non-existence of such an orientation must involve the three 
sets {a}, {b, d}, {a,b,c} (263, Figure 2.3]. 

recently by Frank in [263] where a somewhat simpler (but still far from easy) 
characterization was found. 

8.10 Exercises 

8.1. 

8.2. 

8.3. 

8.4. 

8.5. 

8.6. 

Gholfe 

8.8. 

8.9. 

Prove Lemma 8.1.16. 

Show how to check whether an undirected graph is bipartite in linear time 
using BFS. Does your method extend to strongly connected digraphs? That 
is, can you check whether a strong digraph is bipartite using BFS? Hint: 
consider the proof of Theorem 1.8.1. 

Show that, if a locally semicomplete digraph D contains a 2-cycle xyz, then 
the edge ry is balanced in UG(D). 

(+) Lexicographic 2-colouring gives a transitive orientation of com- 
parability graphs. Prove Theorem 8.1.4. 

Prove that, if G is a reduced proper circular-arc graph, then, up to revers- 

ing the orientation of all arcs, G has a unique orientation as a round local 
tournament. 

(+) Linear algorithm for recognizing round local tournaments. 
Prove that there is an O(n+m) algorithm which either finds a round labelling 
of an oriented graph D or decides that D is not a round local tournament 
(Huang [436]). 

Prove Theorem 8.1.8. 

Using the same approach as in the proof of Proposition 8.1.15 formulate the 
instance of 2-SAT which corresponds to the oriented graph D in Figure 8.15. 
Show that UG(D) has no orientation as a locally in-tournament digraph. 

An orientation characterization of proper interval graphs. A straight 
enumeration of an oriented graph is a linear ordering v1, v2,...,Un such 
that for each i the vertex v; is dominated by v;_4¢-(v;),Vi-d-(v;)41) +++) Vi-1 
and dominates vj+41, Vit2,---,Vita+(v;)- Here indices are not modulo n, that 

is, 1 < i—d-(v;) and i+d*(v;) < n for each i = 1,2,...,n. A digraph 
is straight if it has a straight enumeration (Deng, Hell and Huang [190]). 
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8.10. 

Solely 

8.13. 

8.14. 

8.15. 

8.16. 

Saliie 

8. Orientations of Graphs 

(o>) 2 
tL 

\ 5 
1 Mi: 7 

4 

Figure 8.15 An oriented graph D. 

A graph is a proper interval graph if it is the intersection graph of an 
inclusion-free family of intervals on the real line. 
(a) Prove that, if D has a straight enumeration, then D is an acyclic round 

local tournament digraph. 
(b) Prove that an undirected graph G is a proper interval graph if and only 

if it has a straight orientation. Hint: compare this with Theorem 8.1.6. 

(+) Recognizing locally semicomplete digraphs in O(n?) time. Ex- 
tend the results from Section 8.2 to locally semicomplete digraphs. Hint: use 
Exercise 8.3.(Bang-Jensen, Hell and Huang [76]). 

Recognizing non-strong locally semicomplete digraphs in linear 
time. Give a simple linear algorithm to recognize non-strong locally semi- 
complete digraphs based on Theorem 4.11.6 (Bang-Jensen, Hell and Huang 
(76]). 

. (+) Adjacencies between induced cycles in graphs that are rep- 
resentable in unicyclic graphs. Suppose that the undirected graph G is 
representable in the unicyclic graph H. Prove that, if C is an induced cycle 
of length at least 4 in G, then every vertex x of C is adjacent to at least one 
vertex from every induced cycle of length at least 4 in G— <a. 

Derive Theorem 8.4.1 from Theorem 8.4.3. 

(+) Acyclic orientations such that every vertex is on an (s, t)-path. 
Let G = (V, E) be an undirected graph. Let s,t be special vertices and assume 
that, if G has a cut-vertex, then every cut-vertex v of G separates G — v into 
two connected components, one containing s and one containing t. Prove that 
G has an acyclic orientation D such that every vertex of D is on an (s,t)-path 
(Gerards and Shepherd [313}). 

Strong orientations of the Petersen graph contain an even cycle. 
Prove that every strongly connected orientation of the Petersen graph has an 
even cycle. 

Strong orientations of odd-K4’s and odd necklaces contain even 

cycles. Prove Lemma 8.3.2. 

Undirected graphs without even cycles. Describe the structure of those 
connected undirected graphs that have no even cycle. 
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. Graphs with strong orientations without even cycles and with the 
maximum number of vertices. Prove that the graph L, defined in Section 
8.3 has a strong orientation without even cycles. 

. (—) Prove that Theorem 8.4.3 implies that every strong tournament has a 
hamiltonian cycle. 

. 3-colouring the Petersen graph. Find an orientation of the Petersen 
graph which has no directed path of length 3. Use this to find a 3-colouring 
of the Petersen graph by colouring as in the proof of Theorem 8.4.1. 

Figure 8.16 shows a graph G known as the Grétzsch graph. Prove that every 
orientation of G has a path of length 3. Find an orientation D of G such 
that lp(D) = 3. Finally, show that, if e is any edge of G, then we can find an 
orientation of G — e with no path of length 3. 

Figure 8.16 The Groétzsch graph. 

. Prove that, if a connected graph G has a k-flow (D, x) for some k, then D is 
strongly connected. 

. Prove that a cubic graph is 3-edge-connected if and only if it is 3-connected. 

. (+) Prove that the Petersen graph has no 4-flow. 

. Hamiltonian graphs have a 4-flow. Prove that every hamiltonian graph 
has a 4-flow. Hint: use Theorem 8.5.6. 

. Find a 4-flow in the cubic graph in Figure 8.17. 

. Converting a Z;-flow to a k-flow. The proof of Theorem 8.5.3 gives rise 
to a polynomial algorithm to convert a given Z;-flow to a k-flow. Describe 
such an algorithm and illustrate it by converting the Z5-flow in the Petersen 
graph in Figure 8.18 to a 5-flow. 

. (+) Prove Theorem 8.5.6. Hint: define a Z2 x Z2-flow from G1, G2 and vice 
versa. 

Show that that the complete graph on 4 vertices is 3-edge-colourable and has 
no 3-flow. 

(+) Three spanning trees with no common edges in graphs which 
are 3-edge-connected. Prove that every 3-edge-connected graph has 3 
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Figure 8.17 A hamiltonian cubic graph 

Figure 8.18 A Z;-flow in the Petersen graph. 

spanning trees 71,72, T3 with the property that E(T1) N E(T2)N E(T3) = @. 
Hint: use Theorem 9.5.5. 

(+) Jaeger’s 8-flow theorem. Prove, without using Theorem 8.5.10, that 
every 2-edge-connected graph G has an 8-flow. Hint: first observe that it 
suffices to prove the statement for 3-edge-connected graphs. By Exercise 8.30, 
G has three spanning trees such that no edge lies in all of these. Use this to 
construct a Z2 xX Z2 x Z2-flow in G (compare this with the proof of Theorem 
8.5.7). 

A minimum counterexample to Tutte’s 5-flow conjecture has no 3- 
cycle. Show that, if G is cubic 3-edge-connected and C is a 3-cycle of G, then 
the graph H obtained by contracting C to one vertex v in G and deleting 
the loops created is also cubic and 3-edge-connected. Show that every 5-flow 
in H can be extended to a 5-flow in G. 

Show by an example that the idea of Exercise 8.32 does not always work for 
cycles longer than 5. 

(—) Nash-Williams’ strong orientation theorem for eulerian multi- 
graphs. Prove Theorem 8.6.4 for eulerian graphs. Hint: consider an eulerian 
tour. 

Almost balanced k-arc-connected orientations. Prove the following 
slight extension of Nash-Williams’ orientation theorem. If G = (V, E) is 2k- 
connected, then it has a k-arc-strong orientation D such that max{|d} (x) — 
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d,(x)|: « € V(D)} < 1. Hint: follow the proof of Theorem 8.6.3 and change 
it appropriately when needed. 

(+) Vertices of degree k in minimally k-edge-connected graphs. 
Prove that every minimally k-edge-connected graph contains a vertex of de- 
gree k. Hint: use the results analogous to Proposition 7.1.1 for undirected 
graphs. 

(+) Lovasz’s splitting theorem for undirected edge-connectivity. 
Prove Theorem 8.6.1. Hint: define a set of vertices X not containing the 
special vertex s to be k-dangerous if d(X) < k +1. Clearly a splitting 
(su, sv) preserves k-edge-connectivity unless there is some k-dangerous set 
X C V with u,v € X. Observe that the degree function of an undirected 
graph has properties analogous to Proposition 7.1.1. Use this to show that 
there are at most two distinct maximal k-dangerous sets X,Y which contain 
a given neighbour ¢ of s. Let X,Y be distinct maximal k-dangerous sets 
containing ¢ but not s if such sets exist. Otherwise, either let X be the 
unique maximal k-dangerous set containing t but not s and Y = 0 or, if 
no k-dangerous sets containing t but not s exists, then take X = Y = @. 
Conclude that s has a neighbour t’ in V — (X UY) and show that (st, st’) is 
an admissible splitting. 

(+) Splittings that do not create cut-edges. Prove the following result 
due to Fleischner [239]. If G is a 2-edge-connected undirected graph and s 
is a vertex of degree at least 4, then there exist neighbours u,v of s such 
that replacing the edges su, sv by one edge wv results in a graph which is 
2-edge-connected. Hint: this follows from Theorem 8.6.1 if dg(s) is even. If 
dg(s) is odd, then study maximal 2-dangerous sets containing neighbours of 
s (see also the hints for Exercise 8.37). 

(+) A polynomial algorithm for finding a k-arc-strong orientation 
of a 2k-edge-connected multigraph. Convert the proof of Theorem 8.6.3 
into a polynomial algorithm which finds a k-arc-strong orientation of an ar- 
bitrary input multigraph, or outputs a proof that none exists. 

Prove Corollary 8.7.4. 

(+) Show how to derive Theorem 8.7.1 from Theorem 3.8.4. 

Show how to convert the proof of Theorem 8.7.3 into a polynomial algorithm 
which either finds an orientation with the desired property, or a set violating 
the corresponding necessary condition. 

Show how to derive Theorem 8.7.3 using the approach taken in the beginning 
of Subsection 8.7.1 and Exercise 3.32. 

Prove that Theorem 8.7.3 implies Hall’s theorem (Theorem 3.11.3). 

Prove that the condition in Conjecture 8.6.7 is necessary in order to have a 

k-strong orientation. 

Reversing the orientation of a cycle preserves arc-strong connectiv- 

ity. Prove that, if D is k-arc-strong and C is a cycle in D, then the digraph 
obtained by reversing the orientation of all arcs on C is also k-arc-strong. 

(+) Converting one k-strong orientation into another via reversal 
of cycles. Suppose that D and D’ are k-arc-strong orientations of a graph 
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G = (V,E) and that d5(v) = d5,(v) for every v € V. Prove that one can 

obtain D’ from D by successive reversals of the orientation of a cycle in the 

current digraph. 

Reversal of a path while preserving k-arc-strong connectivity. Sup- 

pose that D and D’ are k-arc-strong orientations of a graph G and that there 

exists a vertex u such that d5(u) < d5,(u). Show that D’ contains a vertex 

v such that d5(v) > dz,(v) and a (u,v)-path P. Under what conditions can 

we obtain a new k-arc-strong orientation of G by reversing the arcs of P? 

(+) Finding a good path to reverse. Suppose that D and D’ are k- 

arc-strong orientations of a graph G and that there exists a vertex u such 

that d5(u) < d5,(u). Prove that there is always a vertex v such that 

d;(v) > d>,(v) and a (u,v)-path P such that one can reverse all arcs of 
P without destroying the k-arc-strong connectivity. Hint: use your obser- 

vation in Exercise 8.48. Assume that all paths are bad. Use submodularity 
of d, to show that the maximal sets X1,X2,...,Xn containing v but not 
u and which have in-degree k in D are pairwise disjoint. Count those arcs 
that have at most one end vertex in Un_, X; in both D and D’ and obtain a 

contradiction (Frank [253]). 

Proof of Theorem 8.8.9. Combine your observations in Exercises 8.47, 
8.48 and 8.49 into a proof of Theorem 8.8.9. 

Show that Theorem 8.6.3 is a special case of Theorem 8.7.6. 

Let D = (V, A) be a digraph and z : A > R a function on the arc set of D. 
Show that the function x (U) — 2+ (U) is a modular function. 

(+) Prove Theorem 8.9.1. Hint: use a similar approach to that used in Section 
8.8.4 to prove Theorem 8.6.3 via submodular flows. 

Construct 2k-arc-strong mixed graphs with no k-arc-strong orientation. Hint: 
they must violate the condition in Theorem 8.9.1. 

Prove directly that the condition (8.48) is necessary for the existence of an 
orientation satisfying (8.47). Hint: assume that D is an orientation which 

satisfies (8.47) and study which edges are counted by the sum } 7", dp(Xij). 

(+) Orienting a mixed graph to be k-arc-strong. Use Theorem 8.9.2 to 
derive a necessary and sufficient condition for a mixed graph M = (V, A, E) 
to have a k-arc-strong orientation (Frank [259, 263]). 

. (+) Orientations containing k-arc-disjoint out-branchings from a 
given root. Let G = (V,£) be an undirected graph with a special vertex 
s € V and let k be a natural number. Prove without using Theorem 8.7.6 
that G has an orientation such that d~(X) > k for every X C V — s if and 
only if (9.5) holds (Frank [260]). 

(+) Orienting a mixed graph in order to obtain many arc-disjoint 
branchings. Consider the problem of finding an orientation of a mixed graph 
M = (V,A, £) so that it has k arc-disjoint out-branchings rooted at a speci- 
fiedvertex s or concluding that no such orientation exist. Show how to reduce 
this problem to a submodular flow problem. Argue that you can also solve the 
minimum cost version where there may be different costs on the two possible 
orientations of an edge e € E. 
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(+) Arc-disjoint in- and out-branchings with a fixed root in orienta- 
tions of graphs. Describe an algorithm to decide whether a given undirected 
graph G = (V, £) has an orientation D such that there exist arc-disjoint in- 
and out-branchings F,+, F; where u,v € V are specified (not necessarily dis- 
tinct) vertices of V. Prove that the corresponding problem for mixed graphs 
is NP-complete. Hint: use Theorem 9.9.2. 

(—) Characterize when an undirected graph G = (V, Z) has an orientation 
so that x,y are in the same strong component for specified distinct vertices 
mye Vi 

. Orienting a mixed graph so as to get a closed trail containing two 
specified vertices. Show that the following problem is NP-complete: Given 
a mixed graph M = (V, 4A, E) and two distinct vertices s,t. Decide if M has 
an orientation that contains are-disjoint (s,t)-, (t, s)-paths. 

Let M = (V, A, E) be a mixed graph and let D = (V, A) be the directed part 

of M. Prove that for every k the function k — dj, is crossing G-supermodular. 

Hint: use the fact that dj, is submodular. 

Show how to minimize the submodular function b defined by (8.35) and 
(8.36) over a given collection of subsets in polynomial time. Hint: use flows 
to determine the in-degrees of the relevant sets. 

Let k be a natural number and let G = (V,E) be a graph with a cost 
function c that for every edge e € E assigns a cost to each of the two possible 
orientations of e. Show how to formulate the problem of finding a k-arc- 
strong orientation of G of minimum cost with respect to c as a minimum cost 
submodular flow problem. 

Reversing arcs in order to get many arc-disjoint out-branchings 
from a fixed root. Show how to solve the following problem using sub- 
modular flows. Given a directed multigraph D = (V, A), a vertex s € V and 
a natural number k. Determine whether it is possible to reverse the orien- 
tation of some arcs in A such that the resulting directed multigraph has k 
arc-disjoint out-branchings rooted at s. Argue that one can also solve the 
minimum cost version of the problem in polynomial time. 

Derive Theorem 8.7.6 from the feasibility theorem for crossing submodular 
flows (Theorem 8.8.5). 
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9. Disjoint Paths and Trees 

In this chapter we concentrate on problems concerning (arc)-disjoint paths or 

trees (arborescences). We embark from the 2-path problem which concerns 

the existence of two disjoint paths with prescribed initial and terminal ver- 

tices. We give a proof by Fortune et al. showing that the 2-path problem 

is NP-complete. We proceed by studying the more general k-path problem 

for various classes of digraphs. We show that for acyclic digraphs, the k- 

path problem is polynomially solvable when k is not a part of the input. 

Then we describe several results on the k-path problem for generalizations 

of tournaments. Among other results, we show that the 2-path problem is 

polynomially solvable for digraphs that can be obtained from strong semi- 

complete digraphs by substituting arbitrary digraphs for each vertex of the 

semicomplete digraph. We briefly discuss the k-path problem for planar di- 

graphs and indicate how to use the topological concept of planarity in proofs 

and algorithms for disjoint path problems in planar digraphs. 

The next major topic is arc-disjoint branchings. We prove Edmonds’ fa- 

mous branching theorem and show many consequences of this very important 

and useful result. After discussing some related problems on branchings, we 

move on to arc-disjoint path problems. We show that the arc-disjoint version 

of the k-path problem is also VP-complete as soon as k is at least 2. Using a 

nice observation due to Shiloach we show that, if a digraph does not contain 

two arc-disjoint paths, one from wu to v and the other from z to y, for every 

choice of u,v,z,y, then D is not 2-arc-strong. Results on arc-disjoint paths 

in generalizations of tournaments as well as eulerian digraphs are described. 

We point out how the structural characterizations for non-2-linked eulerian 

digraphs resemble those for the analogous problems for undirected graphs. 

We consider arc-disjoint in- and out-branchings and show that the prob- 

lem to decide whether a digraph has arc-disjoint branchings F*,F such 

that F> is an in-branching rooted at v and Ft is an out-branching rooted at 
v is NP-complete. We describe a complete solution, due to Bang-Jensen, of 

this problem for tournaments and indicate how the complexity version of the 

problem (for tournaments) is closely related to problems concerning weak 

linkings in tournaments. Namely, there is a polynomial algorithm for the 
branching problem which uses polynomial algorithms for two weak linking 

problems as subroutines. 



476 9. Disjoint Paths and Trees 

Finally, we discuss the problem of finding a minimum cost branching 

with a given root in a weighted digraph. We describe a generalization of this 

problem which also covers the case when one starts from a digraph which has 

k but not k + 1 arc-disjoint branchings from a given root s and the goal is 

to add as few new arcs as possible in order to obtain a new digraph which 

has k +1 arc-disjoint out-branchings rooted at s. Then we give an algorithm 

due to Frank and Fulkerson for solving this more general version and show 

how the algorithm works when we apply it to the minimum cost branching 

problem. 

9.1 Additional Definitions 

Recall that an out-branching (in-branching) rooted at a vertex s in a digraph 

D is a spanning oriented tree T' which is oriented in such a way that every 

vertex z # s has d(x) > 1 (dt(z) > 1). In this chapter we will also consider 
the following generalization of a branching. An out-arborescence rooted at 

s is an oriented tree T which is not necessarily spanning such that s € V(T) 

and every vertex « € V(T) — s has d;(z) > 1. An in-arborescence with root 
s is defined analogously. 

Recall from Chapter 7 that for a digraph D = (V,'A) with distinct vertices 
x,y we denote by kp(z,y) the largest integer k such that D contains k 
internally disjoint (z, y)-paths. By Menger’s theorem «kp(z, y) equals the size 

of a minimal (z, y)-separator. 

When discussing intersections between paths P,Q we will often use the 

phrase ‘let u be the first (last) vertex on P which is on Q’. By this we mean 

that if, say, P is an (z,y)-path, then uw is the only vertex of P[z, u] (P[u, y]) 
which is also on Q. 

In some sections it is also convenient to use the notation that for a given 

set of arcs F’ and a set of vertices X of a digraph D we denote by d;(X), 

respectively d(X), the number of arcs from F that enter, respectively leave, 
X (hence d;(X) is shorthand for qn (RY (X)). 

Let 21,%2,...,2k,Y1,Y2,-+-, yk be (not necessarily distinct) vertices of 
a directed multigraph D. A (weak) k-linking from (21,22,...,2,%) to 
(¥1,Y2,---,Yk) in D is a system of (arc-)disjoint paths P,, P2,...,P, such 
that P; is an (a;,y;)-path in D. By ‘disjoint’? we mean that no P; con- 
tains any of the vertices x;,y; as internal vertices for 7 # i (but paths 
may share one of both of their end-vertices). Note that in a weak k-linking 
the only restriction is that the paths are arc-disjoint. A directed multigraph 
D = (V,A) is (weakly) k-linked if it contains a (weak) k-linking from 
(v1, %2,-..,2) to (yi, y2,-.-,Y%) for every choice of not necessarily distinct 
vertices £1, %2,..-,k,Y1,Y2,---, yk. A digraph D is k-(arc)-cyclic if it has 
a cycle containing the vertices (arcs) 71,22,...,% (@1,@2,...,@%) for every 
choice of k vertices (arcs). 
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Recall that an [x, y]-path in a directed multigraph is a path which is either 
an (x, y)-path or a (y, x)-path. 

9.2 Disjoint Path Problems 

The general problem we will consider here is the existence of certain paths 
which are (arc)-disjoint and have specified or contain specified internal ver- 
tices. There is a close relation between path and cycle problems as can be 
seen from the following complexity statement. The proof is left to the reader 
as Exercise 9.1. 

Proposition 9.2.1 For general digraphs the following problems are equiva- 

lent from a computational point of view (that is, if one is polynomially solvable 

or NP-complete, then so are each of the others). 

(P1) Given four distinct vertices u,, U2, V1, V2 in a digraph D. Decide whether 

or not D has disjoint paths connecting u, to v1 and ug to v2. We call 

this the 2-path problem. 

(P2) Given two distinct arcs e,,e2 in a digraph D. Decide whether or not D 

has a cycle through e, and e2. 

(P3) Given two distinct vertices u and v in a digraph D. Decide whether or 

not D has a cycle through u and v. 

(P4) Given two distinct vertices u and v in a digraph D. Decide whether or 

not D has disjoint cycles C,,Cy such that x € Cz andy € Cy. 

(P5) Given three distinct vertices x,y,z. Decide whether D has an (zx, z)-path 
which also contains the vertex y. 

We prove in Theorem 9.2.3 that the 2-path problem is NP-complete. 

Hence it follows from Proposition 9.2.1 that all the problems mentioned in 

Proposition 9.2.1 are W’P-complete. 
It is interesting to note that although problems (P1)-(P5) are all very 

hard for general digraphs, the difficulty of these problems may vary consid- 

erably for some classes of digraphs. For instance problem (P3) is trivial for 

tournaments (and the more general locally semicomplete digraphs) since such 

a cycle exists if and only if x and y are in the same strong component of D. 

Problem (P4) is also easy for semicomplete digraphs, since such cycles exist 

if and only if there exist disjoint 3-cycles C,C’ one containing x and the 

other containing y (Exercise 9.14). However problems (P1) and (P2) are con- 
siderably more difficult to prove polynomial for tournaments (see Theorem 

9.3.12). Note that (P2) and also (P5) may be considered as special cases of 
(P1) if we drop the requirement that the vertices must be distinct in (P1). 

The following generalization of the 2-path problem is known as the k-path 
problem. Given a digraph D and distinct vertices 21, 2%2;...,0%,Y1,Y2,---; 

yr. Does D have a collection of disjoint paths P,, P:,...,P, such that P; is 
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an (2;,y;)-path, 1 = 1,2,...,k? The result below shows that it suffices to 

consider distinct vertices when proving that a digraph is k-linked (the proof 

is left as Exercise 9.3). 

Proposition 9.2.2 For every k > 1 a digraph D = (V,A) is k-linked if 

and only if it contains disjoint (x;,yi)-paths P,, Po,...,P for every choice 

of distinct vertices £1, %2,-.-,Lk,Y1,Y2,--+s Yk: Oo 

Below we study the k-path problem. We start by showing that the problem 

is NP-complete already when k = 2. We show that there is no degree of 

vertex-strong connectivity which guarantees the existence of such paths. Then 

in succeeding sections we go on to special classes of graphs such as acyclic 

digraphs and generalizations of tournaments. There the reader will see that 

quite a lot can be said about the problem and that it still is not trivial for 

these classes of digraphs. 

9.2.1 The Complexity of the k-Path Problem 

We start with the following result by Fortune, Hopcroft and Wyllie show- 

ing that already for k = 2 the k-path problem is very difficult for general 

digraphs. 

Theorem 9.2.3 [247] The 2-path problem is NP-complete. 

Since this theorem is very important and the gadget construction’ used 

in the proof is quite illustrative, we give the proof in detail below. We follow 

the proof in [247]. 
First we need a lemma whose proof is left as Exercise 9.4. 

Lemma 9.2.4 [247] Consider the digraph S shown in Figure 9.1 (a). Sup- 

pose there are two disjoint paths P,Q passing through S such that P leaves 

S at A and Q enters S at B. Then P must enter S at C and Q must leave 

S at D. Furthermore, there exists exactly one more path R passing through 

S which is disjoint from P,Q and this is either 

(8,9, 10, 4, 11) or (8 9'F 10! 74 Tt): 

depending on the actual routing of P. O 

The digraph S in Figure 9.1 is called a switch. We can stack arbitrarily 

many switches on top of each other and still have the conclusion on Lemma 

9.2.4 holding for each switch. The way we stack is simply by identifying the 

C and D arcs of one switch with the A and B arcs of the next (see Figure 
9.2). A switch can be represented schematically as in Figure 9.1(c), or, when 
we want to indicate stacking of switches, as in Figure 9.1(b). 

’ Quite often ’P-completeness proofs are constructed by piecing together certain 
gadgets about which one can prove certain properties. Based on these properties 
one then shows that the whole construction has the desired properties. For other 
instances of this technique, see e.g. Chapter 11. 
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(b) 

(a) (ec) 

Figure 9.1 Part (a) shows a switch S. Part (b) and (c) show schematic pictures 
of a switch ((247, Fig. 1]). In (c) the two vertical arcs correspond to the paths 
(8,9,10,4,11), respectively , (8’,9’,10’,4’,11’). Note that for convenience, we label 
the arcs, rather than the vertices in this Figure. 

Proof of Theorem 9.2.3: The reduction is from 3-SAT (recall the definition 
from Section 1.10). Let F = C, * C) *... * C, be an instance of 3-SAT 

with variables 71, 2%2,...,2,. For each variable z; we let H; be the digraph 

consisting of two internally disjoint (u,v)-paths of length r (the number of 
clauses in F). We associate one of these paths with the literal 2; and the 
other with the literal %;. We are now ready to explain the construction of. 

the digraph D[F] and show that it contains disjoint (ui, v1)-, (u2, v2)-paths 
if and only if F is satisfiable. 

See Figure 9.3. We form a chain H,+H2—...—H, on the subdigraphs 

corresponding to each variable (see the middle of the figure, H; corresponds 

to the variable x;). With each clause C; we associate three switches, one for 

each literal it contains. The left paths of these switches (that is, the paths in 

the left hand part of the figure) all start at the vertex n;_; and end at n;. The 

right path of each switch is substituted for a (private) arc of H; such that 
the arc is taken from the path which corresponds to 7; if the literal is 7; and 

from the path which corresponds to 7; if the literal is 7;. The substitution 

is shown for the clause C; = x, + £2 + Zs in the figure. By the choice of the 

lengths of the paths in H; we can make this substitution so that different arcs 

in H; are substituted by different switches corresponding to several clauses, 

all of which contain the literal x; or ;. The switches corresponding to the 
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Figure 9.2 Stacking 3 switches on top of each other. 

clause C; are denoted Sj, Si,2,5i,3. We stack these switches in the order 

$1151,251,3.--Sr,1, Sr,25r,3 as Shown in the right part of the figure. A two 

way arc between a clause and some H; (shown only for C;) indicates a switch 

that is substituted for these arcs. Note that this is the same switch which is 

shown in the right hand side of the figure! Finally, we join the D arc of the 

switch S,.3 to the vertex z, of H;, add an arc from w,; in Hy to no and choose 

vertices U1, U2, U1, V2 aS Shown (that is, uw is the tail of the C arc for S,3, ui 

is the tail of the B arc of S|; and v2 is the head of the A arc of S;,;). This 

completes the description of D[F]. 
We claim that D[F] contains disjoint (u1,v1)-, (u2, v2)-paths if and only 

if F is satisfiable. 

Suppose first that D[F] has disjoint (u1,v1)-, (u2,v2)-paths P,Q. It fol- 

lows from the definition of D[¥] that the paths P and Q will use all the 
arcs that go between two switches (i.e. those arcs that are explicitly shown 

in the right hand side of Figure 9.3). Hence, by Lemma 9.2.4, after removing 

the arcs of Q and the arcs of P from uj, to the first vertex z, of H,, the 

only remaining way to pass through a switch S;; is to use either the right 

path or the left path of S;,; but not both! By the construction of D[F], P 
must traverse the subdigraphs corresponding to the variables in the order 

Hy, H2,...,H, and each time P uses precisely one of the two paths in H; 
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Figure 9.3 A schematic picture of the digraph D[F]. 

(recall again that some of the arcs in H; in Figure 9.3 correspond to the right 

path of some switch). Let T be the truth assignment which sets 2; := 1 if P 
uses the path corresponding to 7; and let x; := 0 in the opposite case. We 

show that this is a satisfying truth assignment for F. 

It follows from the construction of D[¥] and the remark above on arcs 
used by Q and the first part of P from u, to H, that the path P contains 

all the vertices n9,m1,...,m, in that order. Since each of the paths from n; 

to nj;41 are part of a switch for every 7 = 0,1,...r — 1, we must use the left 

path of precisely one of these switches to go from n; to nj41. By Lemma 

9.2.4, every time we use a left path of a switch, the right path cannot also be 

used. From this we see that for each clause C;, 7 = 1,2,...r, it must be the 

case that at least one of the literals y (in particular the one whose left path 

we could use) of C; becomes satisfied by our truth assignment. This follows 

because P must use the path corresponding to y in the middle. Thus we have 
shown that F is satisfiable. 

Suppose now that TJ” is a satisfying truth assignment for ¥. Then for 
every variable x; which is true (false) we can use the subpath corresponding 

to Z; (z;) in H;. For each clause C; we can fix one literal which is true and 
use the left path of the switch that corresponds to that literal (that path 
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cannot be blocked by the way we chose subpaths inside the H;’s). By Lemma 

9.2.4 we can find disjoint paths P,Q such that P starts in u; and ends in 

the initial vertex z; of H; and Q is a (u2,v2)-path in the right part of D[F]. 

Furthermore, by the same lemma, after removing the vertices of P and Q, 

we still have the desired paths corresponding to each literal available. This 

shows that we can route the disjoint (ui, v1)-, (u2, v2)-paths in D[F]. D 

The digraph D[¥] above is not strongly connected and one may ask 

whether the problem becomes easier if we require high vertex-strong con- 

nectivity. However, using Theorem 9.2.3 Thomassen [710] proved that the 

2-path problem remains \VP-complete even for highly connected digraphs. 

Lynch proved that for undirected graphs the k-path problem is NP- 

complete when k is part of the input [529].The case k = 2 was proved to 

be polynomially solvable by Seymour [662], Shiloach [670] and Thomassen 

[697] and a complete characterization was obtained by Seymour [662] and 
Thomassen [697]. The results in [662, 697] (see also Jung’s paper [470]) im- 
ply that every 6-connected undirected graph is 2-linked (see also the remark 

at the end of Section 9.4). For fixed k > 3 the k-path problem is also poly- 

nomially solvable [642]. This is just one of many important consequences of 
the deep work of Robertson and Seymour on Graph Minors. The interesting 

thing is that [642] only proves the existence of an O(n?) algorithm for fixed k 
(the constant depending heavily on k). To date no actual algorithm has been 
given, even in the case k = 3. 

The following result due to Thomassen shows that for directed graphs 

the situation is quite different from the undirected case. Namely, there is no 

degree of vertex-strong connectivity which will guarantee a directed graph to 

be 2-linked. 

Theorem 9.2.5 [710] For every natural number k there exists an infinite 
family of k-strong and non-2-linked digraphs D,. oO 

In fact, Thomassen proved that even for the special case of cycles through 

two fixed vertices (Problem (P3) of Proposition 9.2.1) no degree of vertex- 
strong connectivity suffices to guarantee such a cycle. Recall that a digraph 

D = (V,A) is 2-cyclic if it has a cycle containing x,y for every choice of 
distinct vertices z,y € V. 

Theorem 9.2.6 /710] For every natural number k there exists an infinite 
family of k-strong digraphs Dj, which are not 2-cyclic. O 

9.2.2 Sufficient Conditions for a Digraph to be k-Linked 

In this section we briefly discuss some sufficient conditions for a digraph to be 

k-linked for some (prescribed) k. Not surprisingly, if a digraph has sufficiently 

many arcs then it is k-linked. The next result due to Manoussakis shows that 

digraphs which are close to being complete are k-linked. The proof is left as 
Exercise 9.5. 
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Theorem 9.2.7 /545] Let D = (V, A) be a digraph of order n and let k be an 
integer such that n > 2k > 2. If |A| > n(n — 2)+2k then D is k-linked. O 

The proof of Theorem 9.2.7 in [545] is based on the following lemma. 

Lemma 9.2.8 /545] If D—x is k-linked for some verter x € V which satisfies 

d*(x),d~(x) > 2k —1, then D is k-linked. 

Proof: Let 21, 22,...,2%,Y1,Y2,---, yk € V(D) be an arbitrary collection 

of terminals. We wish to prove that D contains internally disjoint paths 

P,, Po,...,P, where P; is an (x;,y;)-path for i = 1,2,...,k. By the assump- 

tion that D—z is k-linked, it suffices to consider the case when x = x; for some 

1 or x = y; for some j. Since z is one of the terminals, it follows that among 

the 2k terminals at most 2k — 1 of these are out-neighbours (in-neighbours) 

of x. 

Since a path from x to an out-neighbour u of z can be taken to be just the 

arc zu and hence cannot interfere with the other paths we wish to find, we 

may assume that, if ¢ = 2; for somei, then y; ¢ N*(z) and similarly if x = y; 
for some j then z; ¢ N(x). Let T denote the set of distinct terminals. Now 

it is easy to see that for every desired path P; starting at + we may choose 

a private member u; of Nt(x) — T and replace 2; by zi, = uj. Similarly 

for every desired path Pj; ending at x we may choose a private member v; 

of N~(x) — T and replace y; by y; = v;. If x, (y,) was not introduced by 

the replacements above we let z/. = z, (yi, = ys). Now the existence of the 
desired linking follows by taking a k-linking in D — z for the set of terminals 
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The requirement on the number of arcs in Theorem 9.2.7 is very strong 
and hence the result is not very useful. However Manoussakis showed by an 

example that the number of arcs in Theorem 9.2.7 is best possible [545]. 
The next result, due to Heydemann and Sotteau, shows that for 2-linkings 

one can also get a sufficient condition in terms of 6°(D). The proof is easy 
and is left as Exercise 9.6. See also Theorem 9.2.10 below. 

Theorem 9.2.9 [426] If a digraph D satisfies 5°(D) > n/2+1, then D is 
2-linked. 0 

The condition above is still quite restrictive and one would expect a 

stronger result to hold. Examples from [426] show that we cannot weaken 
the degree condition. However, we can strengthen the result in the following 

way. 

Theorem 9.2.10 If a digraph D satisfies 6°(D) > n/2+1, then for every 
choice of distinct vertices z,y,u,v € V, D contains internally disjoint (x, y)-, 

(u,v)-paths P,Q such that V(P) UV(Q) =V. 
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Proof: Let X = V — {z,y,u,v} and construct D’ from D — {x,y,u,v} by 

adding two new vertices p and q such that 

N>.(p) = Np (v) 0X, Nf (p) = N5(z) NX, 

N54) = Nay) NX, Np.(q) = Np (u) NX. 

It is easy to see that for every w € V — {z,y, u,v}, dp, (w) 2 djp(w) — 2 and 

d+, (w) > dp(w) — 2. Hence the resulting digraph D’ which has n= 1— 2 

vertices satisfies 6°(D’) > n'/2. By Corollary 5.6.3, D’ has a hamiltonian 

cycle C. Let p+,q+ (p~,q~) denote the successors (predecessors) of p,q on 

C. Then «C[pt,q7]y and uC[q*, pv are the desired paths which cover V. 
oO 

Theorem 9.2.9 was extended.by Manoussakis to 3-linkings. 

Theorem 9.2.11 /545] If a digraph D has n > 9 vertices and ‘yal CBs po 

n/2+2, then D is 3-linked. 0 

Based on Theorems 9.2.9 and 9.2.11, Manoussakis posed the following 

problem. Note that f(n,k) <n —1, since the complete digraph is k-linked. 

Problem 9.2.12 [545] Determine the minimum function f(n,k) such that 
every digraph D on n vertices which satisfies 6°(D) > f(n,k) is k-linked. 

According to Manoussakis [545], Hurkens proved that f(n,4) = n/2+ 3 
when n > 13 and Manoussakis mentions that perhaps f(n,k) <n/2+k—1 

holds for n > 4k — 3. 

Let us conclude this section with a result in connection with problem (P3) 
of Proposition 9.2.1. It is easy to see that, if a digraph is 2-linked, then it 

is also 2-arc-cyclic and hence 2-cyclic. Heydemann and Sotteau proved that, 

if we only want a digraph to be 2-cyclic, then it is possible to weaken the 

condition in Theorem 9.2.7 somewhat. 

Theorem 9.2.13 [426] Every strong digraph D = (V,A) with 6°(D) > 2 
and |A| > n? —5n +15 is 2-cyclic. Oo 

9.2.3 The k-Path Problem for Acyclic Digraphs 

When the digraph considered is acyclic there is enough structure to allow an 

efficient solution of the k-path problem for every fixed k Perl and Shiloach 

[602] proved that the 2-path problem is polynomially solvable for acyclic di- 
graphs. In their elegant proof they showed how to reduce the 2-path problem 

for a given acyclic digraph to a simple path finding problem in another di- 

graph. Fortune, Hopcroft and Wyllie extended Perl and Shiloach’s result to 

arbitrary k. The proof of this result below is an extension of the proof by 

Perl and Shiloach (see also Thomassen’s survey [707]). 
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Theorem 9.2.14 [247] For each fixed k, the k-path problem is polynomially 
solvable for acyclic digraphs. 

Proof: Let D = (V, A) be acyclic and let 21, 22,...,@%, Y1,Y2,-+-, YR be dis- 
tinct vertices of D for which we wish to find a k-linking from (21, @2,..., 2x) 
to (y1,y2,---,yx)- We may assume that dp(2;) = dp(yi) = 0 for i = 
1,2,...,k, since such arcs play no role in the problem and can therefore 
be deleted. 

Form a new digraph D' = (V',A') whose vertex set is the set of 
all k-tuples of distinct vertices of V. For any such k-tuple (v1, v2,..., vz) 

there is at least one vertex, say v,, which cannot be reached by any of 

the other v; by a path in D. (Here we used that D is acyclic.) For each 

out-neighbour w of v, such that w ¢ {v1,v2,...,UK}, we let A’ contain 

Ee TOROR (Uy / Vo, 10.5 Vr 1, Urs Ups, -=~, Vk) (U1) U25s + 5 Uroi yD, Veta) oy UR) 

Only arcs as those described above are in A’. 

We claim that D’ has a directed path from the vertex (x1, 22,...,2%) to 

the vertex (yi, y2,---,Yx) if and only if D contains disjoint paths P;, Po,..., 
P, such that P; is an (2;,y;)-path fori =1,2,...,k. 

Suppose first that D' has a path P from (21, 2%2,...,2%) to (yi, Y2,---5 Yk): 

By definition, every arc of P corresponds to one arc in D. Hence we get a 

collection of paths P;, P2,...,P, such that P; is an (2;, y;)-path by letting P; 

contain those arcs that correspond to a shift in the ith vertex of a k-tuple, i = 

1,2,...,k. Suppose two of these paths, P;, P; are not disjoint. Then it follows 

from the assumption that d5(2;) = d}(yi) = 0 for i = 1,2,...,k and the def- 
inition of D’ that there is some vertex u € V — {21,22,..., 2k, Y1,Y2,---, Yk} 

such that u € V(Pi) NV (P;). Let w (z) be the predecessor of u on P; (P;). 
We may assume without loss of generality that the arc on P corresponding 

to wu is used before that corresponding to zu. This means that at the time 
we change from w to uw in the ith coordinate, the 7th coordinate corresponds 

to a vertex z’ which can reach u in D (through z). Now it follows from the 

definition of the arcs in A’ that we could not have changed the ith coordinate 
again before we have used the arc corresponding to zu in D’'. However that 

would lead to a k-tuple which contains two copies of the same vertex u from 

D, contradicting the definition of D'. Hence P; and P; must be disjoint. 
Suppose now that D contains disjoint paths Q1,Q2,...,Q, such that 

Q; is an (2;,y;)-path, i = 1,2,...,k. Then we can construct a path from 
(@1,%2,...,2%) to (y1,y2,---,yk) in D’ as follows. Start with the tuple 
(v1, 22,...,@%). At any time we choose a coordinate j of the current k-tuple 

(21, 22,...,2,) such that the vertex z; is not in {yi,y2,-.., yx} and z; cannot 

be reached in D by any other vertex from the tuple. Note that such a vertex 
exictsisinver Jeisuacyclic and, d.i(1;)s=e0 for dsl, 245428, Kerli z7uGaV (Fy), 
then we use the arc z;w corresponding to the arc out of z; on P; and change 

the i’th coordinate from z; to w. If follows from the fact that Qi,...,Qx are 

disjoint that this will produce a path from (21, 22,...,2%) to (yi, y2,---5 Yk) 

in D’. 
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Given any instance (D,21,22,-.-,2k,Y1,Y2,---, Yk) we can produce the 

digraph D' in time O(k!n**?) by forming all possible k-tuples and deciding 

which arcs to add based on the definition of D'. Then we can decide the 

existence of a path from (21, 22,...,T%) to (y1, y2,---, Yk) in polynomial time 

using BFS in D’. This proves that the k-path problem is polynomial for each 

fixed k. O 

Note that we don’t actually have to construct D’ in advance. It suffices 

to introduce the vertices and arcs when they become relevant for the search 

forva, path from (ap;09 iss @e) 40 (Yt, y2s eee aD 

It is not difficult to see that we can also use the approach above to find 

the cheapest collection of k disjoint paths where the ith path is an (aj, yi)- 

path in a given acyclic digraph with non-negative weights on the arcs. Here 

the goal is to minimize the total weight of the arcs used by the paths (see 

Exercise 9.9). 7 

Suppose that D is an acyclic graph and v is a vertex of in-degree 1. Let 

u be the unique in-neighbour of v. Then the digraph D' = D//uv which we 
obtain by path-contracting the arc uv is also acyclic. Furthermore, contract- 

ing such an arc can have no effect on the existence of a certain linkage in 

the digraph since only one path in such a linkage may enter the vertex v. 

This shows that we may assume that all vertices except the terminals have 

in- and out-degree at least 2 when considering the 2-linkage problem (and 

more generally the k-linkage problem) for acyclic graphs. Furthermore we 

may assume that no arc enters xz; and no arc leaves y;, i = 1,2. 

It is also easy to see that given any acyclic digraph D with distinct ver- 

tices 21,22, Y1,Y2 we may in polynomial time either decide the existence of 

disjoint (71, y1)-, (v2, y2)-paths, or obtain a new reduced digraph D* such 

that dp. (21) = d5.(z2) = df. (yi) = dp. (ye) = 0, every other vertex has in- 
and out-degree at least 2 in D* and D* has the desired paths if and only if 

D has such paths. Hence, from a computational point of view, the following 

result due to Thomassen completely solves the 2-path problem for acyclic 

digraphs. 

Theorem 9.2.15 /704] Let D be an acyclic digraph on at least 5 ver- 

tices with vertices £1,22,y1,y2 such that d~(41) = d-(z2) = dt(y1) = 

d*(y2) = 0 and every other verter has in- and out-degree at least 2. Sup- 
pose D does not contain disjoint (21, y1)-, (2, y2)-paths. Let H denote the 

digraph one obtains from D by adding two new vertices £0, yo and the arcs 

X01, LoL2, Yi Yo, Y2Yo, 1Y2, 22y1. Then H can be drawn in the plane such that 

the outer cycle is formed by the two paths xo®1y2Yo, 2oL2Y1 Yo and every other 

facial cycle? is the union of two directed paths in H (see Figure 9.4). 

? A cycle C in a plane graph G is facial with respect to a planar drawing of G if 
C is the boundary of some face. 
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Yy2 

vo yo 
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Figure 9.4 The digraph H obtained from D by adding 2o0,yo and arcs 
LoL1, LoL2, yi yo, Y2yYo, Liy2,22y1 (shown as fat arcs). 

Theorem 9.2.15 was generalized by Metzlar [563]. The following interest- 
ing connection between the 2-path problem for undirected graphs and the 

2-path problem for acyclic digraphs is a corollary of Theorem 9.2.15. 

Corollary 9.2.16 /704] Let D = (V,A) be an acyclic digraph and sup- 

pose that the vertices 21,22,y1,y2 are all distinct and satisfy that d~(z;) = 

d*(y;) = 0 for i = 1,2 and that all other vertices of D have in- and out- 

degree at least 2. Then D contains disjoint (x1,y1)-, (22, y2)-paths if and 

only if UG(D) contains such paths. 0 

Thomassen [704] mentioned that it would be interesting to have a direct 
proof of Corollary 9.2.16. Such a proof was given by Lucchesi and Giglio in 

[527]. In that paper the connection between the 2-path problem for acyclic 

digraphs and the 2-path problem for undirected graphs was studied. It was 

shown that there is a very close connection between the two problems. 

The example in Figure 9.5 shows that Corollary 9.2.16 has no analogue 

when k > 2. 

9.3 Linkings in Tournaments and Generalizations of 
Tournaments 

We now turn to linking problems for tournaments and their generalizations. 

It turns out that for semicomplete digraphs enough structure is present to 

allow a polynomial algorithm for the 2-path problem (Theorem 9.3.12). We 

show in Subsection 9.3.3 that this algorithm can be used as a subroutine in 

a polynomial algorithm for the 2-path problem for a large super class of the 

semicomplete digraphs. . 
We start out with some sufficient conditions in terms of the degree of 

(local) strong connectivity. 
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Figure 9.5 An acyclic digraph D in which every non-special vertex has in- and 
out-degree at least 2. There does not exist disjoint paths P;, P2, P3 such that P; is 
an (xi, yi)-path, 1 = 1, 2,3. However UG(D) has such paths. 

xX 

9.3.1 Sufficient Conditions in Terms of (Local-)Connectivity 

The following proposition was proved by Thomassen [701] in the case when 
D is a tournament. By inspection of the proof in [701] one sees that the only 
place there where it is used that one is dealing with a tournament, rather 

than an arbitrary digraph, is to be sure that there:is an arc between every 

successor of x and every predecessor of y on the paths P;,..., P, below. Hence 

we can state and prove Thomassen’s result in the following much stronger 

form: 

Proposition 9.3.1 /52, 701] Let D be a digraph and x,y,u,v distinct ver- 

tices of D such that K(u,v) > q+2 and Py,...,P, are internally disjoint 

(z,y)-paths such that the subdigraph D(V(P,)U...UV(P,)) has no (2, y)- 
path of length less than or equal to 3 and such that the successor of x on P; 

is adjacent to the predecessor of y on P; for all i,j € {1,2,...,p}. Then D 

has q internally disjoint (u,v)-paths, the union of which intersects at most 

2q of the paths Py,..-, Pp. 

Proof: We may assume that p > 2q +1 since otherwise the claim is trivially 

true. Let Q = {Q1,Q2,...,Qq} be internally disjoint (u,v)-paths in D — 

{x,y}. We define two collections of subpaths of the paths in Q as follows (in 
Exercise 9.15 the reader is asked to describe an algorithm for consfructing 
such collections starting from Q). 

Let Q{,Q5,..-,Q, be chosen such that either Qi = Q; or Qi = Q[u, z] 
for some vertex z € V(P;) where j € {1,2,...,p} and P;[z,y] has only the 

vertex z in common with U = V(Q{) U...UV(Qj). We also assume that 
|U| is minimum subject to the conditions above. If some path P, contains 
a vertex w from U and P,[w,y] contains no vertices from U — w, then the 
minimality of U implies that one of the paths Q{,Q$,... ,Q,, terminates in 
w. This implies that the collection Q),Q,..., Qj intersects at most q of the 
paths Py, oye. tp: 
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Analogously we can define a collection Q7,Q3,...,Qj where Q/ is either 

Q; or Q!’ = Qi[w, v] for a vertex w on some P, satisfying that P,[x, w] con- 
tains only the vertex w from V(Q//)U. . .UV(Q/) and such that Q1,Q9,.--,Q4 

intersect at most q of the paths P;, Po,..., Pp. 

Now we construct the desired paths as follows. For each 1 = 1,2,...,4, 

if Qi = Q; or Q/ = Qi, then let R; := Q;. Otherwise let z be the terminal 

vertex of Q/, let w be the initial vertex of Q!’ and let r,7 be chosen such that 

z€V(P;),w € V(P,). Let 2’ (y’) be the successor (predecessor) of x (y) on 
P, (P;). By the assumption that D contains no (z,y)-path of length 3 and 

that every successor of x is adjacent to every predecessor of y on the paths 

P;,..., Pp, we get that-y'z’ € A. Let R; := Qi P,(|z,y'|P,[z', w]Q)' (see Figure 

9.6). 

Figure 9.6 How to obtain R; from Q;,Q/, Pj and P,. The fat arcs indicate the 
resulting (wu, v)-path. 

Now Rj, R2,..., Rq are internally disjoint (u,v)-paths and by construc- 

tion they contain no more than 2q vertices from the paths P,, P2,..., Pp. O 

Our proof above is constructive and can easily be turned into a fast algo- 
rithm for finding the desired collection of paths (Exercise 9.16). The following 
result by Thomassen is an easy corollary 

Corollary 9.3.2 [701] Every 5-strong semicomplete digraph is 2-linked. 

Proof: Let D be a 5-strong semicomplete digraph and let 21,22,y1,y2 be 

arbitrary distinct vertices of D. If D — {r3-;,y3-i} has an (2;,y;)-path P 

of length at most 3 for i = 1 or i = 2, then D — P is strong and hence 
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contains an (23_;,y3—i)-path. Hence we may assume that every (xi, yi)-path 

in D — {x3_;,y3—i} has length at least 4 for 1 = 1, Ds 

Let P,, P2,P3 be internally disjoint (21, y;)-paths in D — {x2,y2}. Then 

D and these paths satisfy the assumption of Theorem 9.3.1 for gq = 1 and it 

follows that D has an (x2, y2)-path which intersects at most two of the paths 

P,, Po, P3. Since 11,22, yi, y2 were chosen arbitrarily, it follows from Lemma 

9.2.2 that D is 2-linked. oO 

Bang-Jensen [43] constructed the 4-strong semicomplete digraph in Figure 

9.7, hence showing that 5-strong connectivity is best possible for general 

semicomplete digraphs. 

Figure 9.7 A 4-strong non-2-linked semicomplete digraph T. All arcs not shown 
go from left to right and x1 y221, 2y122 are the only 2-cycles in JT. There is no pair 
of disjoint (21, y1)-,(r2, y2)-paths in T. The tournament which results from T by 
deleting the arcs y221 and yi 2 is also 4-strong. 

We now turn our attention to special classes of generalizations of tour- 

naments. The first lemma shows that for the class of round decomposable 

locally semicomplete digraphs one can improve the bound from Corollary 

9.3.2. The proof is left as Exercise 9.20. 

Lemma 9.3.3 /52] For each natural number k, every (3k — 2)-strong round 
decomposable locally semicomplete digraph is k-linked. oO 

In order to get a result on k-linkings for locally semicomplete digraphs 

that are not round decomposable we use the following lemma which allows 



9.3 Linkings in Tournaments and Generalizations of Tournaments 491 

us to apply Proposition 9.3.1. Recall that by Exercise 4.33, a(D) < 2 if D is 

locally semicomplete but not round decomposable. 

Lemma 9.3.4 /52] Let x and y be distinct vertices in a locally semicomplete 

digraph D such that a(D) < 2 and let P\,...,P, be internally disjoint (x, y)- 

paths such that the locally semicomplete digraph D' = D(V(P,)U...UV(P,)) 
has no (x, y)-path of length less than 6. Then for all 1 < i,j < p, the prede- 

cessor u of y on P; dominates the successor v of x on P;. 

Proof: We may assume that each P; is a minimal (2, y)-path. Suppose there 

exist 7 and 7 such that the predecessor u of y on P; is not adjacent to the 

successor v of x on P;. Note that the assumption of the lemma and Exercise 
9.18 implies that ya. Therefore D’ is strong and we conclude from Exercise 

9.18 (applied to u,v) that D’ contains an (z,y)-path of length at most 5, 

contradicting the assumption. Hence uv must hold. Oo 

The following theorem by Bang-Jensen gives a sufficient condition for the 

existence of a specified k-linking in a locally semicomplete digraph which is 

not round decomposable in terms of local connectivities. It generalizes a result 

by Thomassen for tournaments [701]. Bang-Jensen also proved an analogous 
result for quasi-transitive digraphs, see [52] for details. 

Theorem 9.3.5 /52/] There exists, for each natural number k, a natural num- 

ber f(k) such that the following holds. If D is a locally semicomplete digraph 

with a(D) < 2 and 21,2%2,...,2k,Y1,Y2,---,Yk are distinct vertices in D 

such that K(2;,yi) > f(k) for alli = 1,...,k, then D has disjoint paths 
Py P,,...,f where P; is an (x;,4;)-path, 1 = 1,2;..., k. 

Proof: Let f(1) = 1 and f(k) = 2(k — 1)f(k — 1) + 2k +1 for k > 2. 
We prove by induction on k that this choice works for f. This is clear for 

k = 1, so we proceed to the induction step assuming k > 2. Suppose that 

21, 22,---,Lk, Y1,Y2,---, Ye are distinct vertices in a locally semicomplete di- 

graph D for which a(D) < 2 and assume that K(2;,y;) > 2(k — 1) f(k-—1) + 
2k +1 for alli =1,...,k. We prove that D — {x2,..., 2x, y2,---, yx} has an 

(21, 41)-path P, such that Ky(2i, yi) > f(k — 1) fori = 2,...,k, where H = 
D-—V(P,). Then the result follows by induction. If D—{x2,..., 2%, Y2,---s Ye} 

has an (x, y)-path of length at most 5, then this can play the role of P,, 

so assume that no such path exists. Let Q1,Q2,---, Q2(k-1)f(k-1)41 be in- 

ternally disjoint (x1, y1)-paths in D — {x2,...,2%,Y2,---, Yk}. We show that 

one of these can play the role of P;. First note that by Lemma 9.3.4 and 

the remark above, we have that for all 1 < i,j < 2(k —1)f(kK-—1)+4+1 
the predecessor of y; on Q; dominates the successor of x; on Q;. Hence, by 

Proposition 9.3.1, for each i = 2,3,...,k, there are internally disjoint (2;, yi)- 

paths P;,;, P2,i,...,Ps(x—1),; which together intersect at most 2f (k — 1) of 
the paths Q1,Qo,...,Q2(k—-1)f(k-1)41- Hence there is at least one path Q, 
which intersects none of Pj;,2<i<k,1<j < f(k—1). Thus we can use 

_ that Q, as P,. oO 
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Combining Lemma 9.3.3, Theorem 9.3.5 and Theorem 4.11.15 we obtain 

the following result by Bang-Jensen (extending a similar result for semicom- 

plete digraphs by Thomassen [701]): 

Theorem 9.3.6 /52] There exists, for each natural number k, a natural num- 

ber f(k) such that every f(k)-strong locally semicomplete digraph is k-linked. 

Here and below the function f(k) is the function which is defined in the 

proof of Theorem 9.3.5. 

Corollary 9.3.7 [52] Every f(k)-strong locally semicomplete digraph is k- 

arc-cyclic. 

The function f(k) is probably far from best possible for Theorem 9.3.6 

and Corollary 9.3.7. In particular, f(2) = 7, but, using Theorem 4.11.15, it 

should be possible to prove that the following holds. 

Conjecture 9.3.8 /52/] Every 5-strong locally semicomplete digraph is 2- 

linked. 

9.3.2 The 2-Path Problem for Semicomplete Digraphs 

In the proof of Corollary 9.3.2 we really only used that K7_42, y;}(23-i, Y3—i) 

was at least 3 for 2 = 1,2 in order to ensure the existence of three internally 

disjoint (x1, y1)-paths in D — {x2, y2} and then we applied Proposition 9.3.1. 
Bang-Jensen strengthened this sufficient condition as follows. 

Theorem 9.3.9 /43] Let T be a semicomplete digraph and let 21,22, yi, yo 
be distinct vertices of T. Suppose that 

min{K7—{29,yo}(21,Y1)) KT—{x1,y1} (£2, Y2) } > 2 and 

max{KT_{22,yo}(T1 ) Yi); Kp —{23,y1} (£2) yo) } 213; 

then T has a pair of disjoint (x1, y1)-, (x2, y2)-paths. Oo 

This is best possible with respect to local connectivities. The semicom- 

plete digraph in Figure 9.7 shows that we cannot replace 3 by 2 above. How- 

ever, see Theorem 9.3.13 for a special case where we can do this. 

Bang-Jensen showed that for cycles through two arcs (the special case 

when yj 22 and y2—2 1), we can strengthen Corollary 9.3.2 in the case of 

tournaments. For semicomplete digraphs the digraph in Figure 9.7 shows that 

we cannot always weaken the connectivity requirement. 

Theorem 9.3.10 /43] Every 3-strong tournament and every 5-strong semi- 

complete digraph is 2-arc-cyclic. 0 
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It follows from the proof of Theorem 9.3.10 in [43] that for a fixed pair of 
arcs e,e’ we can replace the connectivity requirement that D is 5-strong by 
(5 — 2)-strong provided that i of the arcs e,e’ are not in a 2-cycle (i = 1,2). 

Conjecture 9.3.11 /52] Every 3-strong locally tournament digraph is 2-arc- 
cycle. 

The example in Figure 9.7 indicates that finding a complete generalization 

of those semicomplete digraphs that do not have disjoint (x, y)-, (u, v)-paths 

for a given set of distinct vertices x, y, u,v may be very difficult. In the special 

case where we allow u and y to be equal, that is, we are seeking an (z,v)-path 
which passes through the vertex wu (that is, the problem (P5) in Proposition 

9.2.1), it is indeed possible to give a characterization. Such a characterization 
was given by Bang-Jensen in [45]. 

From the algorithmic point of view, the 2-path problem for semicomplete 

digraphs was solved by Bang-Jensen and Thomassen who proved the following 
result: 

Theorem 9.3.12 /89] The 2-path problem is solvable in time O(n°) for 
semicomplete digraphs. O 

The proof of this result in [89] is highly non-trivial. The basic approach is 

divide and conquer. However, several non-trivial results and steps are needed 

to make the algorithm work. We state the most important of these results 
below since it is of independent interest. 

Recall from Chapter 6 that an (s,t)-separator S is trivial if t has in- 

degree zero, or s has out-degree zero in D — S. The following result which 

complements Theorem 9.3.9 is very important for the proof of correctness 

of the algorithm of Bang-Jensen and Thomassen, since it corresponds to a 

case where no problem reduction is possible (using the approach taken in the 

algorithm). 

Theorem 9.3.13 /89] Let T be a semicomplete digraph, and let x1, £2, 41, Y2 

be distinct vertices of T, such that for each i = 1,2, there are two, but not 

three, internally disjoint (x;,y;)-paths in T — {x3-;,y3-i}. Suppose that all 

(xi, yi)-separators of size 2 in T — {x3_i, y3-i} are trivial, fori = 1,2. Then 
T has a pair of disjoint (41, y1)-, (%2, y2)-paths. Furthermore such a pair of 

paths can be constructed in time O(n?). 

Note that the semicomplete digraph in Figure 9.7 does not satisfy the 

assumption of Theorem 9.3.13 since the two non-labeled vertices in the middle 

form a non-trivial (x2, y2)-separator of size 2 in T — {21,y1} . 

9.3.3 The 2-Path Problem for Generalizations of Tournaments 

Now we show that the 2-path problem can be solved in polynomial time for 

quite large classes of digraphs which can be obtained starting from semicom- 
_ plete digraphs and then performing certain substitutions. The algorithm we 
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describe uses the polynomial algorithm from Theorem 9.3.12 for the case of 

semicomplete digraphs as a subroutine. The results in this section are due to 

Bang-Jensen [52]. 

Theorem 9.3.14 [52] Let D = F[S,,S2,...,S5] where F is a strong digraph 

on f > 2 vertices and each S; is a digraph with n; vertices and let 21, £2, 1, Y2 

be distinct vertices of D. There exists semicomplete digraphs T;,...,T's such 

that V(T:) = V(S;), 1 = 1,2)..-,f, and the digraph) D= FlTx, 127.2914] 

has vertezr-disjoint (x1,y1)-, (£2, y2)-paths if and only if D has such paths. 

Furthermore, given D and 21, 22,41, Yy2, D' can be constructed in time O(n?), 

where n is the number of vertices of D. 

Proof: If D has the desired paths, then so does any digraph obtained from D 

by adding arcs. Hence if D has the desired paths, then trivially D’ exists and 

can be constructed in time O(n*) once we know a pair of disjoint (21, y1)-, 

(2, y2)-paths. 
If no S; contains both of z,,y; or both of x2, y2, then it is easy to see 

that D has the desired paths if and only if it has such paths which do not 

use an arc inside any S;. Thus in this case we can add arcs arbitrarily inside 
each S; to obtain a D’ which satisfies the requirement. 

Suppose next that some S; contains all of the vertices 21,22, 41, y2- If 

there is an (z;,y;)-path P in S; — {x3_;,y3_-;}, j = 1 or 2, then it follows 

from that fact that F' is strong that D has the desired paths and we can find 

such a pair in time O(n”). Thus, by our initial remark, we may assume that 
there is no (#;,y;)-path P in S; — {r3_;, y3_;} for 7 = 1, 2. Now it is easy to 
see that D has the desired paths if and only if it has such paths which do not 

use an arc inside any S;. Thus we can replace S; with a tournament in which 

x, and x both have no out-neighbours in S; — {x1, x2} and every other S; 

by an arbitrary tournament on the same vertex set. Clearly the digraph D’ 

obtained in this way satisfies the requirement. 

Suppose now without loss of generality that 2,,y, € V(S;) for some j 

but r2 ¢ V(S;). Suppose first that yo € V(S;). If there is no (#1, y;)-path in 
Sj; — y2, then D has the desired paths if and only if it has such paths which 

do not use an arc inside any S; and we can construct D’ by adding arcs in 

S; in such a way that no (a1, y1)-path avoiding y2 is created (that is, y will 

still separate 2, from y, in D'(V(S;))) and arbitrary arcs in every other Sj. 
On the other hand if S; — yp contains an (x1, y1)-path avoiding yo, then it 

follows from the fact that F' is strong that D has the desired paths and hence 

D' exists as remarked above. Hence we may assume that y2 ¢ V (Sj). 
If S; contains an (71, y)-path which does not cover all the vertices of 9;, 

then it follows from the fact that F is strong that D has the desired paths. 

Thus we may assume that either S; has no (a#1,y1)-path, or every (x1, 41)- 
path in S; contains all the vertices of S;. In the last case we may assume that 
V(S;) separates x2 from y2. Now D has the desired paths if and only if it 
has such a pair which does not use any arcs from S;. Thus in both cases we 
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can construct D’ by replacing S; by a tournament with no (21, y1)-path and 
every other S; by an arbitrary tournament on the same vertex set, except in 
the case when z2 and yo belong to some Sj, i # j. In this case we replace 
that S; by a tournament with no (x2, y2)-path (by the remark above we may 
assume that S; has no (22, y2)-path). 

It follows from the considerations above that D’ can be constructed in 
time O(n’). Oo 

Recall that quasi-transitive digraphs can be decomposed according to 

Theorem 4.8.5. Hence we can apply Theorem 9.3.14 to these digraphs. 

Theorem 9.3.15 /52] There exists a polynomial algorithm for the 2-path 

problem for quasi-transitive digraphs. 

Proof: Let D be a quasi-transitive digraph and 21, 22,41, y2 specified dis- 

tinct vertices for which we want to determine the existence of vertex-disjoint 

(11, 41)-,(@2, y2)-paths. First check that D — {z;, y;} contains an (23_;, y3_i)- 

path for 7 = 1,2. If not then we stop. Now it follows from Theorem 4.8.5 that 

either 21, 22,41, y2 are all in the same strong component of D, or the paths 

exist. For example, if D is not strong and yj, say, is not in the same strong 

component as xz; then, by Theorem 4.8.5, x; and y; belong to different sets 

W;, W; in the canonical decomposition D = Q[W1,...,Wjq)], where Q is a 

transitive digraph. Hence x;y; and the desired paths clearly exist. 

Thus we may assume that D is strong. Let D = S[W,, W2,...,W)s)] be a 

decomposition of D according to Theorem 4.8.5. Now apply Theorem 9.3.14 

and construct the digraph D' which has the desired paths if and only if D 

does. As remarked in Theorem 9.3.14, D’ can be constructed in polynomial 

time. By the construction of D’ (replacing each W; by a semicomplete di- 

graph) it follows that D’ is a semicomplete digraph and hence we can apply 

the polynomial algorithm of Theorem 9.3.12 to D’ in order to decide the 

existence of the desired paths in D. The algorithm of Theorem 9.3.12 can 

be used to find vertex-disjoint (x1, y1)-, (22, y2)-paths in D’ if they exist and 

given these paths it is easy to construct the corresponding paths in D (it 

suffices to take minimal paths). 0 

By inspecting the proof of Theorem 9.3.14 it is not difficult to see that 

the following much more general result is true. The main point is that in 

the proof of Theorem 9.3.14 we either find the desired paths or decide that 

they exist if and only if there are such paths that use no arcs inside any Sj. 

Hence instead of making each T; semicomplete, we may just as well make it 

an independent set, by deleting all arcs inside 5;. 

Theorem 9.3.16 [52] Let & be a class of strongly connected digraphs, let &o 

denote the class of all extensions of graphs in © and let 

So ={F(Di 24 Dip) F € &, eachD; ts an arbitrary digraph}. 
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There is a polynomial algorithm for the 2-path problem in ©* if and only 

if there is a polynomial algorithm for the 2-path problem for all digraphs in 

Po. O 

This result shows that studying extensions of digraphs can be quite useful. 

One example of such a class ®, for which Theorem 9.3.16 applies, is the 

class of strong semicomplete digraphs. This follows from the fact that we can 

reduce the 2-path problem for extended semicomplete digraphs to the case of 

semicomplete digraphs in the same way as we did for quasi-transitive digraphs 

in the proof of Theorem 9.3.15. Hence the 2-path problem is polynomially 

solvable for all digraphs that can be obtained from strong semicomplete di- 

graphs by substituting arbitrary digraphs for vertices. It is important to note 

here that @ must consist only of strong digraphs, since it is not difficult to 

reduce the 2-path problem for arbitrary digraphs (which is M’P-complete 

by Theorem 9.2.3) to the 2-path problem for those digraphs that can be 

obtained from the digraph H consisting of just an arc uv by substituting 

arbitrary digraphs for the vertex v. 

The proof of the following easy lemma is left to the reader as Exercise 9.21. 

Note that four is best possible as can be seen from the complete biorientation 

of the undirected graph consisting of 4-cycle x1 ry; yor and a vertex z joined 

to each of the four other vertices. 

Lemma 9.3.17 Let D be a digraph of the form D = CIS; , Sol, where S; 

is an arbitrary digraph on n; vertices, i = 1,2. If D is 4-strong then D is 

2-linked. g 

The following result generalizes Corollary 9.3.2. 

Theorem 9.3.18 /52] Let k > 4 be a natural number and let F be a digraph 

on f > 2 vertices with the property that every k-strongly connected digraph 

of the form F|T,,T2,...,Tz], where T;, i = 1,2,...,f, is a semicomplete 

digraph, is 2-linked. Let D = F[S,,S2,...,S 5], where S; is an arbitrary di- 

graph on nj vertices, i =1,2,...,f. If D is k-strongly connected, then D is 
2-linked. 

Proof: Let D = F[S;,S2,...,S], where S; is an arbitrary digraph on n; 
vertices, 4 = 1)2,..2,f, be given. _By Lemma 9.3.17 we may assume that D 
cannot be daconipesed as Dt C{R1, Ro], where R; and Rz are arbitrary 
digraphs. Construct D’ as described in Theorem 9.3.14. Note that by Lemma 
7.13.1, «(D') = «(D). Thus D’ is k-strong and using Theorem 9.3.14 and the 
assumption of the theorem we conclude that D is 2-linked. oO 

Corollary 9.3.19 /52] Every 5-strong quasi-transitive digraph is 2-linked. 

Proof: By Theorem 4.8.5, every strong quasi-transitive digraph is of the form 
D = F[S;,S2,...,5 5], f = |F|, where F is a strong semicomplete digraph 
and each S; is a nonsense quasi-transitive digraph on n; vertices. By Lemma 
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4.8.4 and the connectivity assumption, |F'| > 3. Note that for any choice 
of semicomplete digraphs T,,...,7; the digraph D’ = BT} jay. Cay iis 
semicomplete. Hence the claim follows from Theorem 9.3.18 and the fact that, 
by Corollary 9.3.2, every 5-strong semicomplete digraph is 2-linked. (Since F 
has at least three vertices, it follows from Lemma 7.13.1 that «(D’) = K(D).) 

O 

9.4 Linkings in Planar Digraphs 

In this section we briefly discuss the k-path problem for planar digraphs 
(recall the definition of a planar digraph from Section 4.14). The constraint 
that the digraph in question can be embedded in the plane clearly poses 
some restrictions to the structure of disjoint paths. This is illustrated by the 
following result. 

y 

Figure 9.8 A topological obstruction for the existence of disjoint (x, y)- and (u, v)- 
paths in a planar graph G. The cycle C is the boundary of the outer face of G. 

Proposition 9.4.1 Suppose that D = (V, A) is a planar digraph with distinct 

vertices z,y,u,v € V and that D is embedded in the plane in such a way that 

the vertices x,v,y,u appear on the bounding cycle C of the outer face in that 

order (see Figure 9.4.1). Then D does not have a pair of disjoint (2x, y)-, 

(u, v)-paths. 

Proof: We first prove that no matter how we connect x and y by a simple 

(that is, not self intersecting) curve R and u,v by another simple curve R’, 

both inside the bounded disc with boundary C (see Figure 9.8) the two curves 
must intersect. Suppose we can choose simple curves R, R’ so that R connects 

x and y and R’ connects u and v. Then we can add a new point z in the 

interior of the outer face and join it to each of the vertices x, y, u,v by disjoint 

simple curves which lie entirely in the closed disc formed by the outer face and 
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its boundary C. This gives us an embedding of Ks in the plane, contradicting 

Theorem 4.14.1. 

Suppose now that P,Q are disjoint paths in D such that P is an (x, y)- 

path and Q is a (u, v)-path. In the embedding of D these correspond to simple 

curves and hence, by the argument above, they must intersect at some point 

in the plane. Since D is planar, no two arcs intersect in the interior (as curves) 

and hence we see that P and Q must intersect in some vertex v of D. However 

this contradicts the assumption that they are disjoint. O 

We point out that the first part of the proof above can be established using 

the Jordan curve theorem directly to establish that R and R’ must intersect 

somewhere in the disc with boundary C (see e.g. the book by Bondy and 

Murty [127]). 
It was shown by Lynch [529] that when k is part of the input, then the 

k-path problem remains NP-complete even for planar digraphs. For fixed k, 

Schrijver has developed a polynomial algorithm. 

Theorem 9.4.2 /656, 657] For every fired *k the k-path problem is polyno- 

mially solvable for planar digraphs. oO 

The proof method is based on cohomology over free (non-abelian) groups, 

a topic which would require too much space to cover in the present book. 

Schrijver mentions that part of the group theory and topology is mainly used 

to keep notation fairly simple, but in any case the proof is too complicated to 

include here even as a (convincing) sketch. For additional discussion on and 

applications (for digraphs embedded on surfaces) of this very powerful proof 

technique we refer the reader to Schrijver’s papers [656, 657, 658]. We should 
mention though that arguments like those used in the proof of Proposition 

9.4.1 play an important role in Schrijver’s approach. 

To further illustrate how to use planarity in arguments in disjoint path 

problems, we consider a special case of the k-path problem for which a good 

characterization for the existence of a prescribed linking has been found by 
Ding, Schrijver and Seymour [194]. 

Suppose that we are given a planar digraph D = (V, A) which is embedded 

in the plane in such a way that the vertices s,,s2,...,5,,t1,te,...,tx all 

belong to the boundary of the outer face F of D. Ding, Schrijver and Seymour 

[194] proved that in this case there is a simple polynomial algorithm to decide 

the existence of a collection of disjoint paths P,,P:,...,P,, where P; is an 

(s;, t;)-path, i= i ai seey k. 

In fact, as we will see below, it turns out to be easier to describe an 

algorithm for the following slight extension of the problem: in addition to the 

3 That is, k is not part of the input. 
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vertices 81, 82,...,Sx,1,t2,...,t, we are also given subsets A,, Ao,..., Ax of 
A and we demand that P; can only use* arcs from A; for i = LD Meee 

Motivated by the example in Figure 9.8 we say that two pairs of terminals 
(s;,t;) and (s;,t;) on bd(F) cross if each simple curve from s; to t; in R? —F 
(considered as a subspace of R*) crosses each simple curve from 8; to t; in 
R? —F. By Proposition 9.4.1 a necessary condition for the existence of disjoint 
(s1,ti),.-.,(Sk,tx)-paths in D is that the following cross-freeness condition 
is satisfied: 

for every i # j (s;,t;) and (s;,t;) do not cross. (9.1) 

Using the cross-freeness condition we see that there is no solution unless 
the terminals occur in the order uj, v1, U2, v2,...Ux, Ug around bd(F’), where 
{ui, vi} = {87(i),tx(x)} for some permutation 7 of J oye gC lCALlyat iis 
condition can be checked in polynomial time if we are given the (polygonal) 
embedding of D. 

We measure closeness of two polygonal paths with the same end-points 
by the area between the two paths. See Figure 9.9 for an illustration. The 
proof of the following lemma is left as Exercise 9.23. 

V2 U3 V4 
U5 

U1 

Figure 9.9 Let R be the path sviv2v3u4usvet in the underlying graph of D. The 
(s,t)-path sv7v2v9vsveviit is closer to R than the (s,t)-path su7vgvgusveviit. 

Lemma 9.4.3 Let R be a path from x to y along the boundary of the outer 

face (ignoring the orientation of the arcs in D) and let D' be a subdigraph 
of D which contains the vertices x and y. Then either D' has no (x, y)-path 

or there exist a unique (x,y)-path Q in D' which is closest to R. Given the 
embedding of D, we can find Q in polynomial time if it exists. Furthermore, 

no other (x,y)-path ‘crosses over’ Q at any point (e.g. in Figure 9.9 the path 

UgUgUs crosses over the path v2v9V10 at the vertex vg). 

Now we are ready to describe a greedy algorithm which either finds the 

desired paths in D, or a proof that no such paths exist (using only arcs from 

the sets Aj, Ag,..., Ax). 

* In [194] Ding, Schrijver and Seymour consider an even more general case where 
not all paths linking different pairs of terminals must be disjoint, but for sim- 
plicity we assume that they are all disjoint. 
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Start with s,,t,. Since D satisfies the cross-freeness condition, one of the 

two paths between s; and t, along bd(F’) contains no other terminals. Denote 

this path by P. 

If D(A,) contains no (s,,t,)-path, then there is no solution, so assume 

below that such a path exists. 

Let P, be the unique (s,,t,)-path in D(A,) which is closest to P. Modify 

A;, i = 1,2,...,k — 1 by removing from A; every arc that is incident to a 

vertex on P;,. Now repeat the steps above for the pair s,_1,t,-1 and continue 

recursively. 

After at most k iterations we either find the required linking or conclude 

that no such linking exists. 

To prove the correctness of the algorithm we observe that, if Q1, Q2,..., 

Q, is asolution, then so is Qi, Qo,..., Qx—1, Px. Indeed, if P, intersects some 

Q;, then so does Qy because P,_is either equal to Q, or strictly closer to P 

than Q;. This shows that the greedy choice is legal and the correctness fol- 

lows. It also follows from Lemma 9.4.3 that the algorithm above is polynomial 

in the size of D. 
We finish this section with some remarks on the problem (P3) in Propo- 

sition 9.2.1 for the case of planar digraphs. By Theorem 9.2.6 there is no 

degree of vertex-strong connectivity which guarantees that a digraph is 2- 

cyclic (that is, has a cycle containing x,y for every choice of vertices z,y). 

For planar digraphs the maximum degree of vertex-strong connectivity is 5 

(Exercise 7.8). One may ask whether there is some degree of vertex-strong 
connectivity which suffices to guarantee that the planar digraph is 2-cyclic. 

However this is not the case as shown by the 5-strong non-2-cyclic planar 

digraph D, (k = 20) in Figure 9.10 (Exercise 9.25). This example arose from 
a personal communication with BoOhme and Harant (October 1999). The fact 

that there exist 5-strong non-2-cyclic planar digraphs was also mentioned by 

Bermond and Thomassen in the survey paper [115]. Note also that these ex- 

amples of 5-strong non-2-cyclic planar digraphs show that for directed graphs 

there is no analogue of Tutte’s theorem on hamiltonian planar graphs (every 

4-connected planar graph is hamiltonian [721]). 
Using the same family of planar undirected graphs G;, k > 20, as in 

Figure 9.10 one can easily construct 5-strong planar graphs which do not 

contain disjoint [s1,ti]-, [s2,t2]-paths, hence providing the proof that the 

condition of being 6-connected cannot be lowered to being 5-connected for 

undirected graphs (recall the discussion at the end of Subsection 9.2.1). 

9.5 Arc-Disjoint Branchings 

This section is devoted to a very important result due to Edmonds [214]. 

The result can be viewed as just a fairly simple generalization of Menger’s 

theorem. However, as will be clear from the next subsections, it has many 

important consequences. Recall again that an out-branching is a spanning 
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G4 

(a) (6) 

Figure 9.10 Part (a) shows a planar 5-connected graph G; with k = 4; Part (b) 
shows a 5-strong planar digraph D, that is obtained from the complete biorientation 
of G; (shown for k = 20) by adding two new vertices x,y and joining these by the 
arcs indicated. The digraph has no cycle through z and y. 

out-arborescence. In this and the next sections, unless explicitly stated oth- 

erwise, we assume that we are dealing with a directed multigraph (that is, 

we allow parallel arcs, but no loops). 

Theorem 9.5.1 (Edmonds’ branching theorem) /214] A directed multi- 
graph D = (V,A) with a special vertex z has k arc-disjoint spanning out- 
branchings rooted at z if and only? if 

al Xe) ok for all X CV —z. (9.2) 

Proof: We give a short proof due to Lovasz [521]. The necessity is clear, 
so we concentrate on sufficiency. The idea is to grow an out-arborescence F' 

from z in such a way that the following condition is satisfied: 

p-a(r)(U) 2k -1 for all U CV —z. (9.3) 

If we can keep on growing F' until it becomes spanning while always 

preserving (9.3), then the theorem follows by induction on k. To show that 
we can do this, it suffices to prove that we can add one more arc at a time 

to F until it is spanning. Let us call a set X C V — z problematic if 

dp_a(p)(X) = k — 1. It follows from the submodularity of dp _ 4(p) (recall 

Corollary 7.1.2) that, if X,Y are problematic and X NY # Q, then so are 

X NY,X UY. Observe also that, if X is problematic, then X NV(F) # O, 

because X has in-degree at least k in D. Let T denote the intersection of 

all problematic sets not contained in V(F’). By the remark above, T is also 
problematic. If all problematic sets are contained in V(F’), then we take 
R= V. 

° By Menger’s theorem (Theorem 7.3.1), (9.2) is equivalent to the existence of k 
arc-disjoint-paths from z to every other vertex of D. 
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We claim that there exists an arc uv in D such that u € V(F) NT and 
v € T —V(F). Indeed if this was not the case then every arc that enters 

T — V(F) also enters T and we would have 

dp(T — V(F)) = d5_ace)(P -V(F)) S$ 45am (P)S-1, (94) 

contradicting the assumption of the theorem. 

The arc uv cannot enter a problematic set T’, since that would contradict 

the definition of T (recall that u € T). Hence we can add the arc uv to F’ 
without violating (9.3) and the claim follows by induction. 0 

The proof above can be turned into a polynomial algorithm which given 

a directed multigraph D = (V, A) a vertex z € V and a natural number k, 

either finds & arc-disjoint out-branchings from k, or a set X C V — z with 

out-degree less than k (Exercise 9.27). 
The following possible ‘generalization naturally emerges. In addition to 

z, we are given a subset T C U —z so that d~(X) > k for every subset 
X CV—2z,X NT # @ (by Menger’s theorem this is equivalent to saying 

that there are k-arc-disjoint (z,t)-paths for every t € T). Is it true that there 
are k arc-disjoint out-arborescences rooted at z so that each contains every 

element of T’? The answer is yes if T = V — z (by Edmonds’ theorem) or if 

|T| = 1 (by Menger’s theorem). However, Lovasz [519] found the example in 
Figure 9.11 which shows that such a statement is not true in general. This 

example can be generalized to directed multigraphs with arbitrarily many 

vertices (Exercise 9.30). 

Figure 9.11 A digraph with \(z,t) > 2, t € T which has no two arc-disjoint out- 
arborescences rooted at z and both containing every element of T. Here T consists 
of the three black vertices ({519, Figure 1)). 

Observe that in Figure 9.11 d~ (x) = 1 < 2 =d*(z) holds for the only ver- 
tex x not in T and recall that the desired number of arc-disjoint arborescences 
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above was two. Bang-Jensen, Frank and Jackson proved that, if \(z,r) > k 

holds for those vertices « € V(D) for which d+(x) > d~(x) (that is, the value 
of k is restricted by the local arc-connectivities from z to these vertices), then 
a generalization is indeed possible. 

Theorem 9.5.2 /53] Let D = (V, A) be a directed multigraph with a special 

verter z and let T’ := {x € V—z: d~(x) < d*(az)}. If X(z,2) > k(> 1) for ev- 
ery x € T", then there is a family F of k arc-disjoint out-arborescences rooted 

at z so that every verter x € V belongs to at least r(x) := min(k, A(z, z)) 
members of F. 0 

Clearly, if in Theorem 9.5.2 \(z,x) > k holds for every x € V, then we are 

back at Edmonds’ theorem. Another special case is also worth mentioning. 

Call a directed multigraph D = (V,A) with root z a preflow directed 
multigraph if d~ (x) > d*(z) holds for every x € V — z. (The name arises 
from a max-flow algorithms of Karzanov [475] and Goldberg and Tarjan [324], 
see also the definition of a preflow in Chapter 3). The following corollary of 

Theorem 9.5.2 may be considered as a generalization of Theorem 3.3.1. 

Corollary 9.5.3 /53] In a preflow directed multigraph D = (V,A) for any 

integer k(> 1) there is a family F of k arc-disjoint out-arborescences with 
root z so that every vertex x belongs to min(k, A(z,x;D)) members of F. In 

particular, if k := max(Ap(z,z): x2 € V—z), then every x belongs to Ap(z, x) 
members of F. QO 

Aharoni and Thomassen have shown that Edmonds’ branching theorem 

cannot be generalized to infinite directed multigraphs [4]. 

9.5.1 Implications of Edmonds’ Branching Theorem 

Below we give a number of nice consequences of Theorem 9.5.1 (for yet an- 
other consequence see Theorem 9.7.2). The first result, due to Even, may be 

viewed as a generalization of Menger’s theorem for global arc-strong connec- 

tivity. 

Corollary 9.5.4 /229, Theorem 6.10] Let D = (V,A) be a k-arc-strong di- 

rected multigraph and let x,y be arbitrary distinct vertices of V. Then for 

every 0 <r<k there exist paths P,, P2,...,P, in D which are arc-disjoint 

and such that the first r paths are (x,y)-paths and the last k —r paths are 

(y, z)-paths. 

Proof: Let [D,z,y] be as described above. Add a new vertex s and join 
it to x by r parallel arcs of the form sz and to y by k —r parallel arcs 

of the form sy. Let D’ denote the new directed multigraph. We claim that 
D' satisfies (9.2). To see this let X C V be arbitrary. If X # V, then we 
have dp,(X) > dp(X) > k, since D is k-arc-strong. If X = V, we have 
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d5(V) = dp.(s) = k. It follows from Theorem 9.5.1 that D’' contains k 

arc-disjoint out-branchings all rooted at s. By the construction of D', these 

branchings restricted to D must consist of r out-branchings rooted at x and 

k —r out-branchings rooted at y. Take the r (x, y)-paths from those rooted 

at z and the k — rr (y,z)-paths from those rooted at y and we obtain the 

desired paths. O 

The next result, due to Nash-Williams, gives a sufficient condition for 

the existence of k-edge-disjoint spanning trees in an undirected graph. This 

condition is the best possible in terms of the edge-connectivity (see the remark 

after Theorem 9.5.6) and hence we see that for undirected graph we may need 

twice the obvious edge-connectivity requirement to guarantee k edge-disjoint 

trees. This contrasts with the case for directed graphs where k-arc-strong 

connectivity suffices by Edmonds’ theorem. 

Theorem 9.5.5 [584] Every 2k-edge-connected undirected graph contains k 

edge-disjoint spanning trees. 

Proof: Let G = (V, E) be a 2k-edge-connected undirected graph. By Nash- 

Williams’ orientation theorem (Theorem 8.6.3), G has a k-arc-strong orien- 

tation D = (V, A). Let z € V be arbitrary and note that d~(X) > k holds 
for each subset X C V — z of vertices. Hence by Theorem 9.5.1, D contains 

k-arc disjoint out-branchings rooted at z. Suppressing the orientation of all 

arcs on the branchings we obtain k edge-disjoint trees in G = UG(D). Oo 

The following characterization, due to Tutte, of undirected graphs which 

have k edge-disjoint spanning trees can also be derived from Edmonds’ 

branching theorem and Theorem 8.7.6 (see Exercise 9.35). See also Exercise 

8.57 for a simpler orientation result which still implies Theorem 9.5.6. 

Theorem 9.5.6 [722] An undirected graph G = (V,E) has k edge-disjoint 
spanning trees if and only if 

>. Vi, Vj) > kp - 1), (9.5) 
1<i<j<p 

holds for every partition V,,V2,...,Vp» of V. Here e(V;,V;) denotes the num- 

ber of edges with one end in V; and the other in V;. oO 

It is easy to derive Theorem 9.5.5 from Theorem 9.5.6. Furthermore, we 

can use Theorem 9.5.6 to show that the condition in Theorem 9.5.5 is best 

possible in terms of the edge-connectivity. Let G, be the graph obtained from 

the complete graph on 2k +2 vertices by removing the edges of a hamiltonian 

cycle. Then it is easy to show that G, is (2k — 1)-edge-connected and using 
Theorem 9.5.6 on the partition corresponding to one vertex per set in the 

partition we can see that G, has no k edge-disjoint spanning trees (in fact 
this partition has precisely one arc less than the required number). In order to 
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get an example with arbitrarily many vertices and no k edge-disjoint trees for 

each k we let H be an arbitrary 2k-edge-connected graph and let H; be the 

graph consisting of 2k + 2 copies H,, H2,...,H2442 of H and with one edge 

between H; and H; just if the corresponding vertices v;, v; are adjacent in Gx 

(where we have assumed that the vertices of G; are labelled v,,v2,..., VoK+2 

and H; corresponds to v; for i = 1,2,...,2k + 2). It is not difficult to prove 

that H; is (2k — 1)-edge-connected and the partition corresponding to the 

2k + 2 copies of H shows that H; has no k edge-disjoint spanning trees. 

Note also that G, above is (2k — 1)-edge-connected and (2k — 1)-regular. 
Furthermore , a simple counting argument shows that all except finitely many 

(2k — 1)-edge-connected and (2k — 1)-regular graphs have no k edge-disjoint 

spanning trees (simply because they do not have enough edges). 

In some applications (e.g. when a number of tasks have to be distributed to 

different units who can cover part of the jobs or demands) one is interested 

in covering all edges (arcs) of an undirected (a directed) graph by forests 

(arborescences). 

Theorem 9.5.7 [585] Let G=(V,E) be an undirected graph. Then E can 
be covered by k forests if and only if 

|E(G(X))| < k(|X|-1) for all X CV. (9.6) 

Proof: Since no forest can use more than |X| —1 edges with both ends inside 
any set X, we see that the condition (9.6) is necessary. To prove sufficiency we 

use Theorem 9.5.1 and the following result which follows easily from Theorem 

Sol: 

Proposition 9.5.8 A graph H = (V, E) has an orientation D = (V, A) such 

that dj(v) < k for every verter v € V if and only if 

|E(G(X))| < k|X| for all X CV. 

O 

Suppose now that G = (V, E) satisfies (9.6). By Proposition 9.5.8, G has 

an orientation D such that dp(v) < k for every vertex v € V. Add a new 

vertex s to D and add k — dj (v) arcs from s to v for each v € V. Denote the 

new directed multigraph by D’. We claim that 

dp(X) =k for all X CV. (9.7) 

This follows from the fact that for every X C V we have 

dz (X) = D> d5(v) - |E(G(X)) 
vEx 

= k|X| — |E(G(X))| 
> k|X| - k(|\X|-1) =k 
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By Theorem 9.5.1, D’ has k arc-disjoint out-branchings rooted at s. These 

branchings must use all arcs of D since every vertex of V has in-degree one 

in each of these branchings and we have only added k — dp(v) arcs from s 

to v. Now delete the vertex s from each of the branchings and suppress the 

orientations of all arcs. The resulting k forests cover FE. Oo 

The last part of the proof above also implies the sufficiency part of the 

following theorem. The necessity of (9.8) follows from the fact that no vertex 

of an out-branching has in-degree bigger than one. The necessity of (9.9) is 

seen as in the proof above. 

Theorem 9.5.9 [252] The arc set of a directed graph D = (V,A) can be 

covered by k out-arborescences if and only if 

AU) Shen for allvu € V and (9.8) 

|A(D(X))| < k(|X|- 1) for all X CV. (9.9) 

Oo 

9.6 Edge-Disjoint Mixed Branchings 

We saw in the proof of Theorem 9.5.5 that we could use Edmonds’ branch- 

ing theorem to prove that every 2k-edge-connected graph has k-edge-disjoint 

spanning trees. However, that proof does not imply an algorithm to check 

whether a given undirected graph has k edge-disjoint spanning trees. In fact 

this problem is more complicated for undirected graphs than the problem of 

finding k arc-disjoint out-branchings from a given root in a directed multi- 

graph where the proof of Edmonds’ branching theorem provides the answer. 

For undirected graphs the characterization, given in Theorem 9.5.6,is much 

more complicated and does not imply a polynomial algorithm for the prob- 

lem. Note that such an algorithm can be obtained from a formulation of the 

problem as a matroid partition problem (see Exercise 12.46). See also the 
remark at the end of the section. 

A mixed multigraph is the same as a mixed graph, except that we 

allow parallel arcs and parallel edges as well as arcs that are parallel to edges. 

Consider the following common generalization of a spanning tree rooted at s 

in an undirected multigraph and an out-branching with root s in a directed 

multigraph. A mixed out-branching rooted at s is a mixed graph F' whose 

underlying graph is a tree such that F contains an out-branching rooted at 

s. We say that two subgraphs of a mixed multigraph are edge-disjoint if 

they do not share any arcs or edges (they may contain different copies of an 

arc/edge, but not the same). 
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Definition 9.6.1 Let M = (V,EU 4A) be a mized multigraph with a special 
vertex s. A mized out-branching F+ with root s is a spanning tree in the 
underlying undirected multigraph G of M with the property that there is a 
path from s to every other vertex v in F>. 

One reason why mixed out-branchings are of interest in relation to undi- 
rected graphs can be seen from the following easy lemma (which in particular 
covers the case when no arc of M is directed). 

Lemma 9.6.2 Let M = (V,EU A) be a mized multigraph with a special 
vertex s called root. There are k edge-disjoint mized out-branchings rooted 
at s if and only if there exist an orientation D of M with k edge-disjoint 
out-branchings at s. 

Proof: Exercise 9.31. Oo 

The following characterization, due to Frank, generalizes Theorem 9.5.6 

and Theorem 9.5.1. This theorem can be derived from the feasibility theorem 

for intersecting submodular flows (Exercise 9.33). 

Theorem 9.6.3 /252] Let M = (V,E UA) be a mized multigraph with a 

special vertex s. There are k edge-disjoint mixed out-branchings rooted at s, 

if and only if the following holds for all subpartitions F = {Vi,V2,...,Vi} of 
V—-s: 

Gp aks, (9.10) 

where ag denotes the number of edges, oriented or not, which enter some 

Vj. O 

We point out that one can use submodular flows to decide in polynomial 

time whether a given undirected graph G has k edge-disjoint spanning trees. 

By Lemma 9.6.2 all we need to check is whether there is some orientation of 

G which has k arc-disjoint out-branchings from a given vertex. Thus, given 

G we form an arbitrary orientation D of G and then follow the approach in 

Exercise 8.65. It is not hard to see that, with a slight modification, the same 

approach can be used to determine the existence of k edge-disjoint mixed 

branchings from a given root in a mixed graph (Exercise 9.32). 

9.7 Arc-Disjoint Path Problems 

Recall that a directed multigraph D = (V, A) is weakly k-linked if for every 
choice of (not necessarily distinct) vertices s1,...,5%,t1,-..,t%, D contains 

arc-disjoint paths P,,..., FP; such that P; is an (s;,¢;)-path for i =1,...,k. 
The arc-disjoint k-path problem is the following. Given a directed multi- 

graph D = (V,4A) and distinct vertices 21, 22,...,2%,Y1,Y2,---,Yk, decide 

whether D contains k arc-disjoint paths P,,..., P, such that P; is an (2;, y:)- 

path. In view of Theorem 9.7.2 below, the following result by Fortune, 

_Hopcroft and Wyllie may seem slightly surprising. 
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Theorem 9.7.1 [247] The arc-disjoint k-path problem is NP-complete al- 

ready for k = 2. 

Proof: Let [D,z,y,u,v] be an instance of the 2-path problem. Transform 

D = (V, A) into the directed multigraph H by performing the vertex-splitting 

procedure (see Section 3.2). Then it is easy to show that H has a pair of arc- 

disjoint (xz, ys)-, (uz, Us )-paths if and only if D has disjoint (z, y)-, (u, v)-paths 
(Exercise 9.36). Since H can be constructed from D in polynomial time, the 

claim now follows from Theorem 9.2.3. Oo 

For planar directed multigraphs it is an open problem whether there exists 

a polynomial algorithm to decide the existence of two arc-disjoint paths with 

prescribed end vertices (see e.g. Schrijver’s papers [656, page 265] and [658)). 
Even the complexity of the special case when we are looking for arc-disjoint 

(x, y)- and (y,xz)-paths is open! Hence we see from Theorem 9.4.2 that the 

arc-disjoint 2-path problem is much more difficult for planar digraphs than 

the 2-path problem. This is not really surprising since planarity certainly has 

implications on vertex disjoint paths, whereas the implications on arc-disjoint 

paths are not so obvious although there clearly are some. 

Observe that, if D is weakly k-linked, then D is k-arc-strong. To see this 

it suffices to take s; = x and t; = y for each 7, then there are k arc-disjoint 

(x, y)-paths in D and since x,y may be chosen arbitrarily, it follows that D 
is k-arc-strong. 

Shiloach observed [669] that Edmonds’ branching theorem implies that 
k-arc-strong connectivity is also sufficient for the existence of k arc-disjoint 

paths with specified initial and terminal vertices: 

Theorem 9.7.2 A directed multigraph D is weakly k-linked if and only if D 

is k-arc-strong. 

Proof: Above we have argued on the necessity. To see the sufficiency, let 

L1,X2,.--,Le, Y1,---, yx be given. Construct a new directed multigraph D’ 

by adding a new vertex s and arcs sz;,i = 1,2,...,k to D. Since D is k-arc- 

strong, it is not difficult to check that dp,(X) > k for every subset X of V. 

Hence by Edmonds’ branching theorem, D’ has arc-disjoint out-branchings 

Fy,..-,F;), all rooted at s. Since s has out-degree k in D’, each F+, must 

use precisely one arc out of s and without loss of generality F*, uses the 

arc sz;. Now it is clear that ay ; contains an (z;,y;)-path P; and the paths 
P,,..., Px form the desired linking. oO 

Using Theorem 9.5.2 we can obtain, in an analogous way, the following 

sufficient condition, due to Bang-Jensen, Frank and Jackson, for the existence 
of k arc-disjoint paths with prescribed initial and terminal vertices (Exercise 
9.37). 
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Theorem 9.7.3 /53] Let (s1,t1),...,(8k,tk) be k pairs of vertices in a di- 
rected multigraph D = (V, A) so that for every vertex x with d~(x) < dt (a) 

or x =t; there are arc-disjoint paths from s; tox (i =1,...,k). Then there 

are arc-disjoint paths from s; to t; (t= 1,...,k). Oo 

Note that, if we only impose the condition in Theorem 9.7.3 on the vertices 

t;, 7 = 1,2,...,k, then D may not have arc-disjoint paths from s; to ¢; 

(i = 1,2,...,k). This can be seen from the example in Figure 9.12. The 
example can easily be generalized to arbitrary local strong connectivities 

from s; to t;, 7 = 1,2 while preserving planarity. We formulate this as a 

theorem below. 

Theorem 9.7.4 For every natural number k there exists a planar digraph D 

with distinct vertices $1, 82,t1,t2 such that D has kp(s;,t;) > k for i = 1,2, 

but D has no arc-disjoint (s1,t1)-, ($2, t2)-paths. Oo 

This shows that there is no sufficient condition for the existence of arc- 

disjoint paths connecting the vertices of a prescribed set in terms of local 

vertex-strong connectivities from s; to t;,1=1,2...,r. 

$2 

Sl ti 

te 

Figure 9.12 An example of a planar digraph with x«(si,ti) = 2, 7 = 1,2 and no 

arc-disjoint (si,t1)-, ($2, t2)-paths. 

As yet another example of the usefulness of Edmonds branching theorem, 

we consider the following problem called the arc-disjoint (t1, t2)-linking 

problem: given a directed multigraph D and two specified vertices ty and fp. 

Do there exist arc-disjoint (s;,t1)-, ($2, t2)-paths for every choice of vertices 

$1, in D, except possibly in the case when s; = t; # t; and there are no 

arcs out of s;? The (1, t2)-cut condition is satisfied by D if 

I(S,S)| > {i = 1,2: ti ¢ 5} (9.11) 

for each (t;,t2)-cut (S,$). The cut condition is obviously a necessary con- 

dition for the directed multigraph to have the arc-disjoint linking property. 

Below we give a very simple proof due to Frank (private communication, 

April 1994) that it is also sufficient. 
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Theorem 9.7.5 D has the arc-disjoint linking property with respect to the 

set {t,,t2} if and only if D satisfies the (t;, tz)-cut-condition. 

Proof: By the remark above, it suffices to consider the case when D satisfies 

the (t;, t2)-cut-condition. Add an extra vertex t and the following new arcs: 

ty t, tot, t1 52, t2s,. Now it follows from Theorem 9.5.1 and the fact that D 

satisfies the (t,,t2)-cut condition that in the extended graph there are 2 arc- 

disjoint in-branchings F;,, F,4 rooted at t. These contain the two required 
paths in the original graph since the new arcs t,s2 and t2s; cannot play a 

role. DO 

9.7.1 Arc-Disjoint Paths in Acyclic Directed Multigraphs 

The following easy observation, due to Fortune, Hopcroft and Wyllie, can 

be used to reduce the arc-disjoint k-path problem to the k-path problem in 

the case of acyclic directed multigraphs. We need the following lemma whose 

proof is left as Exercise 9.38. 

Lemma 9.7.6 If D is acyclic, then so is its line digraph L(D). 0 

Theorem 9.7.7 [247] For each k, there exists a polynomial algorithm for 

the arc-disjoint k-path problem for the class of acyclic directed multigraphs. 

Proof: Let [D, 21, %2,...,2%,Y1, y2,---, yx] be an instance of the arc-disjoint 

k-path problem where D is an acyclic directed multigraph. If some x; has out- 

degree zero or some y; has in-degree zero, then trivially the desired paths do 

not exist. Hence we may assume that this is not the case. 

Transform the instance [D,21,22,..-,2k,Y1,Y2,---)Yk] into a new in- 
stance [D’,2},25,..-,24,Y},Y9,---,Y,|] as follows. If z; has out-degree two 

or more we add a new vertex x; and the arc 2/2; to D; otherwise let zi, := xj, 
1=1,2,...,k. Similarly, if y; has in-degree more than one, we add a new ver- 

tex y; and the arc y;y;; otherwise let y; := yj, j =1,2,...,k. Clearly, D’ has 

arc-disjoint paths Pj,..., Pj, such that P! is an (a, y!)-path, i= 1,2,...,k, 

if and only if D has arc-disjoint paths P;,..., P,, where P; is an (xj, y;)-path, 
et Ee 

Now consider D* := L(D') and let s; (t;) be the vertex of D* which 
corresponds the unique arc with tail (head) x! (y{). Then it is easy to show 
that D* has a collection Qi, Q2,...,Q% of disjoint paths so that Q; is an 

(si, t)-path, i = 1,2,...,k if and only if D’ has arc-disjoint paths P[,..., Py 
such that P; is an (xj, y;)-path, 1 =1,2,...,k. 

Since there is a polynomial algorithm for transforming the instance 

[Dyer Levasey Cbs Yrs Yo peee ale] MLO! [22 Sreyneh au, Sys tantogas-y es |) theather 

orem now follows from Theorem 9.2.14. O 

In [656], Schrijver shows how to apply a polynomial algorithm for the 
arc-disjoint k-path problem in acyclic digraphs to solve a scheduling problem 
in the airline industry. 
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9.7.2 Arc-Disjoint Paths in Eulerian Directed Multigraphs 

As we will see below, questions about arc-disjoint paths are slightly easier 
for eulerian directed multigraphs than for arbitrary directed multigraphs. 
However, the arc-disjoint 2-path problem seems difficult and is still open. 
As we mentioned in Chapter 7, eulerian directed multigraphs often have 
properties similar to those of undirected multigraphs. This is also illustrated 
by their properties with respect to arc-disjoint paths as can be seen from 
some of the results mentioned in this subsection (see, e.g., Figure 9.14). 

We start with a very simple, yet quite important observation. As men- 

tioned earlier the complexity version of the corresponding problem for planar 

digraphs is still open. 

Lemma 9.7.8 Let D be a eulerian directed multigraph and let s,t be distinct 

vertices of D. Then D has arc-disjoint (s,t)-, (t,s)-paths if and only if D has 
an (s,t)-path. 

Proof: Let P be an arbitrary (s,t)-path. Let D’ be obtained from D by 

removing the arcs of P. In D’, every vertex distinct from s,t has in-degree 

equal out-degree and we have dj,(s) = d},(s) + 1, dp, (¢) = dz, (t) +1. Let 
N(D') be the network representation of D! (recall Definition 7.1.4) and let 
x be the flow that has value equal to the capacity on every arc. By the flow 

decomposition theorem (Theorem 3.3.1), x can be decomposed into a (t, s)- 
flow of value one and some cycle flows. Since the (t, s)-path in N’(D’) is also 
a path in D’, D’ contains a (t, s)-path as claimed. O 

Let z1,...,2% be a k-tuple of (not necessarily distinct) vertices, which 

will be called terminals. We say that a trail T = (voviv2...v~¢_1 04) visits 

the, terminals in the order 7,...,2,; 1f £1 = U;,,%2 = Vij,-+-, fk = 

v;, for some 0 < 211 < ... < i, < t. (We do not exclude some additional 

occurrences of terminals in a trail. In general, a trail may visit given terminals 

in several different orders.) Based on the following lemma (whose proof is left 

as Exercise 9.42), we could restrict ourselves only to eulerian trails. However, 

it is sometimes convenient to work also with non-eulerian trails. 

Lemma 9.7.9 Let D be an eulerian directed multigraph. Assume that there 

is a trail visiting some terminals in the order x1,...,2%. Then there exists 

an eulerian trail visiting the terminals in the same order. O 

Given an eulerian directed multigraph and terminals 71, 72,...,2, there 

are at least three different problems one may consider [440]: 

Specific Trail Problem (ST-problem). 

Instance: An eulerian directed multigraph G and an ordered k-tuple of ter- 

minals 7, ,-.7., 26: 
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Question: Does there exist a trail visiting the terminals in the order Tan Fe 

rR 

Unique Trail Problem (UT-problem). 

Instance: An eulerian directed multigraph G and an unordered k-tuple of 

terminals 71,..., 2x. 

Question: Do all eulerian trails visit the terminals in the same cyclical order? 

All Trail Problem (AT-problem). 

Instance: An eulerian directed multigraph G and an unordered k-tuple of 

terminals 71,..., Zz. 

Question: Does there exist, for every permutation 7 of {1,...,k}, a trail 

visiting the terminals in the order r,(1),-.-, x(k)? 

We will denote by k-ST, k-UT and k-AT the corresponding problems when 

the number of terminals is exactly k. The ST-problem seems to be the most 

important among these three problems, since it is equivalent to the eulerian 

arc-disjoint linking problem (see Lemma 9.7.10). However, the remaining two 
problems occur naturally in the study of the ST-problem. 

As we show below, results on these three problems for eulerian directed 

multigraphs are, in fact, strongly related to arc-disjoint linkings in directed 

multigraphs which are not eulerian, but become eulerian if we add the so- 

called demand arcs. Let [D, 51, 52,...,8x,t1,t2,...,tx] be an instance of the 

arc-disjoint k-path problem. The demand directed multigraph H asso- 

ciated with this instance is the directed multigraph consisting of the arcs® 

t1 $1, tgS2,...,tks,-. The special case of the arc-disjoint k-path problem when 

D +H is eulerian, (here H is the demand directed multigraph of D) is called 
the eulerian arc-disjoint k-linking problem. When, instead of being a 

fixed number k, the number of demand arcs is part of the input, we call the 

above problem the eulerian arc-disjoint linking problem. 

Lemma 9.7.10 The k-ST-problem is equivalent to the eulerian arc-disjoint 

k-linking problem. 

Proof: We show that the k-ST problem is a special case of the eulerian arc- 

disjoint k-linking problem using the following reduction. Let [D,21,..., 2x] 

be an instance of the k-ST-problem. Define s,,t1,...,8,%,t, by sj; = 2; and 

ti = Zizi,t = 1,...,k, (@e41 = 21) and let A consist of the arcs t;s;, 

1 = 1,...,k. Then D + dH is eulerian and it is easy to see that D + H 

has arc-disjoint paths P,,..., Px, where P; is and (s;,t;)-path, i = 1,2,...,k, 
if and only if D has a trail visiting the terminals in the order 21, 29,..., Xx. 

Conversely, given an instance [D, s1...,5,,t1,...,tx] of the eulerian arc- 
disjoint k-linking problem (thus D + H is eulerian), we construct an instance 

g Hence, if s1 = 82 =... = sx and t; = tg =... = tg, the demand directed 
multigraph consists of k parallel arcs from t; to 31. 
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of the k-ST-problem as follows. Let D be the directed multigraph obtained 
from D by adding new vertices 11,...,%,, and arcs 2;8;,tjtj41,1 = 1,...,k. 

Clearly, D is an eulerian directed eileen and it admits a posed teal 

visiting the terminals in the order 2,..., 2, if and only if D admits an arc- 

disjoint k-linking for the prescribed pairs (s;,t;)i =1,...,k, of terminals. O 

Now we see from Lemma 9.7.8 that the arc-disjoint 2-path problem is 

easy in the case when the directed multigraph in question becomes eulerian 

if we add the two demand arcs t; 51, t282. This was also observed by Frank 

in [257]. The eulerian arc-disjoint 3-linking problem is already considerably 

harder. It was solved by Ibaraki and Poljak [440]. We describe their main 
result in Theorem 9.7.11. 

It is easy to see that for k = 3, the problems 3-ST, 3-UT, and 3-AT are 

mutually equivalent from a complexity point of view. The reason is that for 

k = 3 there are only two distinct cyclical orders of terminals, (11, 22, 73) 

and (x1,23,22). Moreover, we may assume that one eulerian trail T of G is 
already given (since it may be constructed by a polynomial time algorithm 

according to Exercise 1.72). The trail T visits the terminals in one of the 

possible orders, say (r1,22,23). Hence it only remains to decide whether 

there is a trail visiting the terminals in the other order. 

We recall the solution, due to Ibaraki and Poljak [440], of the UT-problem, 
since it suggests a possible approach to the remaining two problems. Recall 

that, for an arc a of D, D/a denotes the directed multigraph obtained from 

D by (set-)contracting the arc a. We allow terminals to be identified by the 
contraction. Below we denote the set of terminals by X and an instance of 

the UT-problem by [D, X]. Clearly, if [D, X] admits several orders of visiting 
terminals, then [D/a, X] admits several orders as well, but the converse need 
not be true. We say that [D, X] is UT-minimal, if [D, X] admits unique 
cyclical order of visiting terminals by an eulerian trail, but [D/a, X]| admits 
several orders whenever any arc a is contracted. Ibaraki and Poljak charac- 

terized UT-minimal instances. 

Theorem 9.7.11 [440] Let [D, X] be a UT-minimal instance. Then 
(a) d+(x) = d~(x) = 1 for every terminal x, and dt (u) = d-(u) = 2 for 

every non-terminal u, 
(b) D can be embedded in the plane such that every face is a directed cycle, 

and all terminals lie on one common face. Oo 

Observe that first part of the condition (b) is equivalent with the property 

that the four edges incident to a non-terminal vertex u are oriented alterna- 

tively out of and in to the vertex u (in the planar representation). See Figure 

9.13. 

Theorem 9.7.12 [440] Both the U EARLS and the 3-ST-problem are poly- 

nomially solvable. O 
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£3 

L1 t2 

Figure 9.13 An eulerian digraph with no (eulerian) trail visiting 71, 72, 73 in that 
order. 

Furthermore, Ibaraki and Poljak proved that the eulerian arc-disjoint link- 

ing problem and hence the ST problem are \VP-complete. 

Theorem 9.7.13 [440] The eulerian arc-disjoint linking problem is NP- 
complete. 

Proof: We sketch the construction used in [440]. The reduction is from the 
arc-disjoint 2-path problem, which is ’P-complete by Theorem 9.7.1. Let 

[D = (V, A), 81, 82, t1, t2] be an instance of the arc-disjoint 2-path problem. 

Let D* = D+ 4 be the directed multigraph we obtain from D by adding 

the two demand arcs ft; 8; and tg82. 

Form a directed multigraph D’ from D by adding two new vertices s,t 

and, for every v € V, appending max{0, dj}. (v) — d5.(v)} arcs of the form 
sv as well as max{0,dp.(v) — dp.(v)} arcs of the form vt. Let p be the 
sum of d}.(v) — dp.(v) taken over those vertices for which this number is 
positive. Now let s; = s and t; = t, 7 = 3,4,...,p+2, be new terminals. Then 

[D', 1, 82,.--, 8p42,t1,t2,...,tp42] is an instance of the eulerian arc-disjoint 
linking problem and it is not difficult to show that D has arc-disjoint (s1, t1)-, 

(s2, t2)-paths if and only if D' has arc-disjoint (s;,t;)-paths, i = 1,2,...,p+2, 

(Exercise 9.43). Oo 

Ibaraki and Poljak posed the following conjecture: 

Conjecture 9.7.14 /440] The k-ST-problem is polynomial for any fized k. 

The condition of minimality which was used in Theorem 9.7.11 can be 

replaced by a more technical notion of irreducibility. Let us say that an 

instance [D, X] is 2-irreducible if there is no set S,|S| > 1, of vertices 
such that one of the following holds: 

I( 
I( 

S)| < 2, D(S) is connected and SN. X = 9, S, 
SpS)= ti and \S mx ea 
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Note that D/S (the directed multigraph obtained by contracting S) is 
eulerian whenever D is eulerian. It is not difficult to see the following: 

Lemma 9.7.15 Let [D, X] be an instance of the UT-problem which admits 
a unique order, and let S satisfy one of the conditions (a) and (b). Then 
[D/S,X] admits a unique order as well. a) 

It is also easy to see that D/S can be realized by a series of arc con- 
tractions, and hence every minimal UT-instance is 2-irreducible. Thus, the 

following theorem is a generalization of Theorem 9.7.11. 

Theorem 9.7.16 [440] Let [D, X] be a UT-instance which is 2-irreducible 
and admits eulerian trail with unique order of terminals. Then the conditions 

(a) and (b) of Theorem 9.7.11 hold. 

The polynomial time algorithm for the UT-problem is a consequence of 

Theorem 9.7.16. The algorithm proposed in [440] consists of the following 

steps: 

1. Reduce an instance [D, X] to a 2-irreducible one. This can be done by 
applying network flow techniques. 

2. Check the degree conditions. 

3. Using a planarity test, decide whether D has a planar drawing, and if 

yes, then test the remaining conditions of Theorem 9.7.16. 

The notion of 2-irreducibility formulated here is weaker than the notion 

of irreducibility used in [440] where it was required, in addition, that [D, X] 

does not contain any non-terminal vertex of in- and out-degree one. However, 

using the general definition of irreducibility given in [88, Section 3], it can 
be seen that this additional condition is automatically satisfied by any AT- 

infeasible and irreducible instance. 

Let [D, X] be an instance of AT-problem. Let us say that [D, X] is AT- 
minimal, if [D, X] does not admit an eulerian trail visiting the terminals for 
every given order, but [D/a, X] does whenever any arc a is contracted. The 
following result by Bang-Jensen and Poljak shows that there are also degree 

restrictions on AT-minimal instances. 

Theorem 9.7.17 [88] Let [D, X] be k-AT-minimal. Then d+(u) < k—1 for 
every non-terminal u, and d+ (x) < k — 2 for every terminal z. Oo 

The edge-disjoint 2-path problem for undirected graphs is polynomially 

solvable and a complete characterization of undirected graphs having no edge- 

disjoint s;t, and sot2-paths is available (Dinic and Karzanov [196, 197], Sey- 

mour [662] and Thomassen [697]). Such a graph G can be reduced to a graph 
G’ that has a planar representation with the following properties (see Figure 

9.14(a)): 
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(a) Each of the four terminals has degree 2 and all other vertices have degree 

3, and 

(b) the terminals are located on the outer face in the order sj, S2,t1, te. 

Be BEB ih, 
SC lle 

babey ces 
(a) (b) (c) 

Figure 9.14 Part (a) shows an infeasible instance for the edge-disjoint 2-path 
problem for undirected graphs. The graph shown has no edge-disjoint zy-path and 
uv-path; Parts (b) and (c) show infeasible instances of the arc-disjoint [s, t]-, [p, q]- 
paths problem for eulerian directed multigraphs. 

The complete biorientation G of an undirected graph G is eulerian and 

it contains arc-disjoint (s1,t,)-, (s2,t2)-paths if and only if G contains edge- 
disjoint s1t,, sgt2-paths. Hence, the arc-disjoint 2-path problem for eulerian 

digraphs generalizes the edge-disjoint 2-paths problem. So far the arc-disjoint 

2-path problem for eulerian digraphs remains unsolved. However, even the 

simpler version in which we just require arc-disjoint [s1,t], [s2,t2]-paths 
(that is, the order of s;,t; is not fixed in the ith path, 7 = 1,2) still gen- 

eralizes the edge-disjoint 2-path problem. This problem was recently solved 

by Frank, Ibaraki and Nagamochi in [270]. They proved that the problem is 

solvable in polynomial time. Furthermore they showed the following result. 

By a reduction below we mean a series of transformations such that the de- 

sired paths exist in the new digraph if and only if they exist in the previous 

digraph (for details see {270]). 

Theorem 9.7.18 /270] Let D be an eulerian directed multigraph and let 
$1, 52,t1,t2 be not necessarily distinct vertices of D. Then D contains arc- 

disjoint [s1,t1], [s2,t2|-paths, unless it can be reduced to an eulerian directed 

multigraph D' such that either D' has 6 vertices and is isomorphic to the 
digraph in Figure 9.14(c), or each of (a),(b) and (c) below hold. 

(a) Each of 81,82,t1,t2 have in- and out-degree one and all other vertices 

have in- and out-degree two in D’. 

(b) There is at most one cut vertex’ in UG(D'). 
(c) D has a planar embedding such that every face is a directed cycle and 

all terminals are located on the outer face in the order s,p,t,q where 

{s, t} = {81,ti} and {p,q} = {s2, tz}. O 

” Recall that a vertex x in a connected undirected graph G is a cut vertex if G—z 
is not connected. 
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We finish this section with a remark on very recent work by Seymour 
and Johnson (Seymour and Johnson, personal communication on work in 
progress, February 2000) which may have far reaching consequences. There 
seems to be a theory for eulerian directed multigraphs which is similar to 
the graph minors theory for undirected graphs by Seymour and Robertson 
(see e.g. [642]). Instead of ‘minor’ the natural containment relation when 
studying eulerian directed multigraphs is immersion which we define below 
for 2-regular directed multigraphs. 

A 2-regular directed multigraph H is immersed in another 2-regular 
directed multigraph D if we can obtain H from D by repeatedly choosing a 
vertex v with in-neighbours uj, u2 and out-neighbours w}, wa, deleting v and 
adding two new arcs u,w}, U2W2. See Figure 9.15. 

2 2 2 
1 2 

1 3 1 1 
3 

7 4 4 4 

6 5 6 5 6 5 6 5 

D H 

Figure 9.15 Immersing the directed multigraph H in the directed multigraph D 
by suppressing the vertices 7,3 and 4 in that order. 

It appears that an analogue of the structure theorem of graph minors® 

holds for 2-regular directed multigraphs. The potential applications of such 

a theorem include the well-quasi ordering of 2-regular directed multigraphs 

under immersion and a polynomial time algorithm for the arc-disjoint k-path 

problem. The polynomial solvability of the arc-disjoint k-path problem even 

appears to hold for general eulerian directed multigraphs (Seymour, private 

communication, February 2000). 

9.7.3 Arc-Disjoint Paths in Tournaments and Generalizations of 

Tournaments 

We now consider the arc-disjoint 2-path problem for some generalizations of 

tournaments. We prove that this problem and a related special case (the arc 
version of problem (P5) from Proposition 9.2.1) are polynomially solvable 

for semicomplete digraphs. As we will see in Section 9.9, the corresponding 

algorithms are used as subroutines in a much more complicated algorithm 

for a problem concerning arc-disjoint in- and out-branchings in tournaments. 

® For a nice introduction to this deep result, see Diestel’s book [191]. 
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We prove the first results for the class of extended locally in-semicomplete 

digraphs instead of just for semicomplete digraphs. We do this to show that 

not much extra effort is needed to obtain the result (which also has the same 

statement as for semicomplete digraphs alone) for this much larger class of 

digraphs. The results in this subsection are due to Bang-Jensen [46, 51] 

Recall that two vertices are similar if and only if they are non-adjacent and 

have the same in- and out-neighbours. Note that, if x,y are non-adjacent ver- 

tices with a common out-neighbour w in an extended locally in-semicomplete, 

digraph, then xz and y are similar vertices, by the definition of an extension 

and the definition of a locally in-semicomplete digraph. 

The following lemma can be proved along the same lines as Lemma 9.7.20. 

The proof is left to the reader as Exercise 9.39. 

Lemma 9.7.19 Let D be a strong extended locally in-semicomplete digraph 

and let x,y be distinct vertices of D. Then D has arc-disjoint (x, y)-,(y, x)- 
paths tf and only if there 1s no arc a such that D —a contains no (x, y)-path 

and no (y, x)-path. 0 

Lemma 9.7.20 /51] Let D be an extended locally in-semicomplete digraph 

and x,y,z vertices of D such that x # z and D contains a path from y 

to z. If D has arc-disjoint (x,y)-, (x, z)-paths, then D contains arc-disjoint 

(z,y)-, (y,z)-paths. Similarly, if an extended locally out-semicomplete digraph 

D' has a path from « to y and arc-disjoint (x, z)-, (y,z)-paths, then D' has 
arc-disjoint (x,y)-, and (y, z)-paths. 

Proof: Let P; and P» be arc-disjoint paths such that P» is an (2, z)-path and 

P,; is a minimal (zx, y)-path. If y € V(P2), or yz then the claim is trivial so 

we assume that none of these hold. We can also assume that x and y are not 

similar vertices, because if they are, then y dominates the successor of x on 

Py» and again the claim is trivial. 

If D has a (y, z)-path whose first intersection with V(P,)UV (P2) (starting 
from y) is on P2, then the desired paths clearly exist. Hence we may assume 
that D contains a path from y to V(P,;) U V(P2) — y whose only vertex w 
from V(P,) UV(P2) —y is in V(P,) — V(P2). Now choose P among all such 
paths so that w is as close as possible to x on P;. By the assumption above 
w # x. Let u (v) denote the predecessor of w on P; (P), ie u = Wp, and 
U= Wp. 

Suppose first that u and v are not adjacent. Then, by the remark just 
before Lemma 9.7.19, u and v are similar. Now the choice of P implies that 
v = y (otherwise the predecessor of v on P dominates u, contradicting the 
choice of P). By the assumption that xz and y are not similar we conclude 
that u ~ x, but then Up, —>y, contradicting the minimality of P,. 

Thus we may assume that u and v are adjacent. By the choice of P, this 
implies that u-+v. Choose r as the first vertex on P which is dominated by 
u. By the minimality of P,, r # y. Let s be the predecessor of r on P. The 
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choice of r and P implies that u and s are similar. Thus as above, we must 
have s = y and, since u # x we reach a contradiction as before. 

The second half of the lemma follows from the first by considering the 
converse and interchanging the names of x and z. Oo 

Using Lemma 9.7.20 we can now characterize those extended locally in- 

semicomplete digraphs which do not have arc-disjoint (z, y)-,(y, z)-paths. 

Theorem 9.7.21 /51] An extended locally in-semicomplete digraph D has 

arc-disjoint (x, y)-, (y, z)-paths if and only if it has an (a, y)-path and a (y, z)- 

path and D has no arc e such that D—e has no (x, y)-path and no (y, z)-path. 

Proof: Clearly if D has such an arc e, then the paths cannot exist. Now 

assume that D has no such arc and that D has an (z,y)-path and a (y, z)- 
path. We prove that D has the desired paths. By Lemma 9.7.19 we may 

assume x # z. 

By Lemma 9.7.20, we may assume that D contains no pair of arc-disjoint 

(x, y)-,(x, z)-paths. Thus, by Menger’s theorem, there exists an arc e = uv 

such that D —e has no path from z to {y,z}. Let A = {w : A(z,w) - 
path in D —e} and B= V(D) — A. Then z € A, y,z € B and the only arc 
from A to B is e. 

Since D contains an (x, y)-path, D(A) has an (2,u)-path and D(B) has 
a (v,y)-path. D(B) also has a (y, z)-path, since e does not destroy all paths 

from y to z. 

If v = y the desired paths clearly exist (and can in fact be chosen vertex 

disjoint). If v = z, then it follows from our assumption that there is no arc 

a in D(B) which separates y from z and also z from y. Now it follows from 

Lemma 9.7.19 that D(B) contains arc-disjoint (z,y)-, (y, z)-paths and hence 

D contains the desired paths. Thus we may assume v # y, z. 

Now it is clear that the desired paths exist if and only if D(B) has arc- 
disjoint (v,y)-, (y, z)-paths. By induction this is the case unless there exists 

an arc e’ = ab in D(B) such that D(B) — e’ has no path from v to y and 
no path from y to z, but then e’ separates x from y and y from z in D, 

contradicting the assumption that D has no such arc. 0 

Our proof above is constructive and hence we have the following (see also 

Exercise 9.40): 

Corollary 9.7.22 [46] There exists a polynomial algorithm which given 
an extended in-semicomplete digraph D and distinct vertices x,y,z decides 

whether D has arc-disjoint (x, y)-, (y, z)-paths (or equivalently, an (x, z)-trail 

through y). Oo 

We can now prove the main result of this subsection. 

Theorem 9.7.23 [46] The arc-disjoint 2-path problem is polynomially solv- 

able for semicomplete digraphs. 
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Proof: (Sketch) Let [D,21,22,41,y2; be an instance of the arc-disjoint 2- 

path problem for semicomplete digraphs. By relabelling if necessary, we can 

assume that 212. Below it is understood that we stop as soon as the 

existence of the desired paths have been decided. 

It is easy to check whether D has (2;, y;)-paths for 1 = 1, 2. If not, then D 

does not have the desired paths and we stop. Next check whether there is any 

arc e such that D — e has no (2;, y;)-path for i = 1,2. If such an arc exists, 

then D does not have the desired paths and we stop. Now check whether 

D contains arc-disjoint (x2, y1)-, (22, y2)-paths P, P’. If this is the case then 
either x; P or P[zi,y1] (if z1 € V(P)) and P’ are the desired paths and we 

stop. 

Hence, by Menger’s theorem, there is an arc e such that D — e has no 

path from zz to {y1, y2}. Let 

Y := {v:v has a path to {y1, yo} in D — e}; X :=V(D)=Y. 

Then x2 € X and 2x; € Y, because the arc e does not separate x; from 

{yi,y2}. Furthermore, e is the only arc from X to Y. Let z be the head of 

e and let w be its tail. Note that D(X) contains an (r2,w)-path Q since D 
contains an (£2, y2)-path. 

If z = 21, then the desired paths exist: We cannot have another arc e’ 

which separates xz, from {y1,y2} in D' = D(Y) because then e’ separates 
{x1, £2} from {y1, y2} and we would have stopped earlier. Thus by Menger’s 
theorem D' contains arc-disjoint (21, y1)-, (11, y2)-paths P,, P2. Now P; and 

QP» are the desired paths. 

If z = yo, then the desired paths exist since any (21, y)-path in D’ and 
Qy2 will work. 

If z = y,, then the desired paths exist if and only if D' contains arc- 

disjoint (21, 4y1)-, (yi, y2)-paths. This can be decided in polynomial time by 

the algorithm whose existence follows from Corollary 9.7.22. 

Finally, if z ¢ {x1,y1,y2}, then the desired paths exist if and only if 

D' contains arc-disjoint (x1, y1),- (z,y2)-paths. Hence we have reduced the 
problem to a smaller one of the same kind. 

We leave it to the reader to verify that our steps above can be performed 

in polynomial time and to estimate the time complexity of the algorithm 

(Exercise 9.41). Oo 

9.8 Integer Multicommodity Flows 

Recall the definition of a network and a flow from Chapter 3. In this section 

we consider briefly the following common generalization of flows and arc- 

disjoint paths called the integer multicommodity flow problem (if k is 

fixed in advance we call it the integer k-commodity flow problem): 
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Given a natural number k > 1, a network NV = (V, A, £ = 0, u), 2k not nec- 
essarily distinct vertices 51, 52,...,8,,t1,t2,...,t, and integers r1,7T2,...,Tk, 

decide whether there exist integer valued flows f!, f?,..., f* such that each 

of the following holds (recall that | f*| is the value of the flow f*): 

(i) f* is an (s;, t;)-flow in NV, 
CO a SS Pe en ee 
(iii) f;, > 0 for every 17 € A, p= 1,2,...,k, 

(iv) For every ij € A: poe fi; < us. 

A collection of flows f', f?,..., f* which satisfies (i)-(iv) is called a feasi- 
ble k-commodity flow with respect to (s;,t;), i= 1,2,...,k. We can 

also consider the maximization version where no demands 71,7r2,...,7% 

are specified (or they are to be considered as lower bounds) and the goal is 

to maximize the sum of the values of the flows. 

If we take k = 1 we have the standard (maximum) (s,t)-flow problem 
which was studied in Chapter 3, where several polynomial algorithms were 

described for the problem. However, Even showed that already when k = 2 

the problem becomes very hard. 

Theorem 9.8.1 /230] The integer 2-commodity problem is NP-complete. 

Proof: The problem clearly belongs to NP since given a feasible instance 

we can take specifications of 2 feasible flows, one from s; to t; and the other 

from s2 to tz, as a valid certificate. 

Now let [D = (V, A),21,22,y1,y2] be an instance of the arc-disjoint 2- 

path problem. Let NV = (V,A,é = 0,u = 1), take s; = 2;,t; = yi, i = 1,2 
and let r; = rp = 1. Then it is easy to see that D has arc-disjoint (21, y1)-, 

(2, y2)-paths if and only if NV has a feasible integer 2-commodity flow with 

respect to the pairs (s;,t;), 1 = 1,2. Now the claim follows from Theorem 

Oriel: Oo 

What we really observed above was simply that the arc-disjoint 2-path 

problem is nothing but a very special case of the 2-commodity flow problem. 

This is not surprising since if we concentrate on one of the two flows f* in 
a feasible integer 2-commodity flow (with respect to the values r1,r2 and 

the capacities of the given network), then f* is just a normal (s;, t;)-flow 

and hence can be decomposed into r; (s;,t;)-paths and some cycle flows by 

Theorem 3.3.1. Hence the integer multicommodity flow problem is nothing 

but a generalization of arc-disjoint path problems. 
The name multicommedity flow comes from the interpretation of each 

flow as representing a different commodity that has to be shipped from the 

source of that commodity to its sink while respecting the total capacity of 

the network. Problems of this type are of importance in practical applications 

such as telecommunications and routing problems. For a number of results 
on how to solve multicommodity flow problems in practice see the book by 

Gondran and Minoux [332]. See also the survey [31] by Assad. 
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9.9 Arc-Disjoint In- and Out-Branchings 

We saw in Section 9.5 that the problem of deciding the existence of k arc- 

disjoint out-branchings all with the same root could be solved efficiently and 

in Subsection 9.5.1 we saw that many problems can be reformulated and 

solved using an algorithm for the k arc-disjoint out-branchings problem. In 

this section we consider the following much harder problem concerning arc- 

disjoint in- and out-branchings. 

Problem 9.9.1 Given a digraph D and vertices u,v (not necessarily dis- 

tinct). Decide whether D has a pair of arc-disjoint branchings F{,F> such 

that F'* is an out-branching rooted at u and F~ is an in-branching rooted at 
v. 

Theorem 9.9.2 [46] Problem 9.9.1 is NP-complete for arbitrary digraphs. 

Proof: We give a proof due to Thomassen (see [46]). The problem belongs to 

NP, since if the desired branchings exist, then such a pair forms a certificate 

that the given instance is a ’yes’ instance. We show how to reduce the arc- 

disjoint 2-path problem to Problem 9.9.1 in polynomial time. 

Let (D = (V,A),21, 2,41, y2) be an instance of the arc-disjoint 2-path 

problem. Construct a new digraph D’ by adding 4 new vertices x, r/,, y/, y/ 
and the following arcs (see Figure 9.16): 

[25a L422, YY, Y2Yo, ToT}, Yr) ’ YoY13 YoX, Yor} } U {uz} Oe V(D) 7 £1}U 

{yu :v € V(D) — yo}. 

Figure 9.16 The construction of D’ in the proof of Theorem 9.9.2. The fat arcs 
indicate that all the arcs have that direction, except the arcs 221, yoy). 

The reader can easily verify (Exercise 9.48) that there exists arc-disjoint 
branchings ‘cs ; By in D' if and only if D contains a pair of arc-disjoint 
(r1,41)-, (22, y2)-paths. Since we can construct D’ in polynomial time from 
D, it follows that Problem 9.9.1 is WP-complete. Oo 
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It is easy to reduce (in polynomial time) Problem 9.9.1 for the case when 
u # v to the case when u = v for arbitrary digraphs (Exercise 9.49). Hence 

the problem remains \’P-complete when we ask for an out-branching and an 

in-branching that are arc-disjoint and have the same root. However, Bang- 

Jensen and Huang showed that, if the vertex that is to be the root is adjacent 

to all other vertices in the digraph and is not in any 2-cycle, then the problem 

becomes polynomially solvable. 

Theorem 9.9.3 /79] Let D = (V,A) be a strongly connected digraph and v 

a vertex of D such that v is not on any 2-cycle and V(D) = {v}UN7(v) U 
Nt(v). Let A = {Aj, Ao,... Ax} (B = {Bi, Bo,...,B,y}) denote the set of 
terminal (initial) components in D(N*(v)) (D(N~(v))). Then D contains 
a pair of arc-disjoint branchings F*,F, such that F* is an out-branching 
rooted at v and F is an in-branching rooted at v if and only tf there exist 

two disjoint arc sets E,,Eg C A such that all arcs in E, U Ep go from 

Nt(v) to N~(v) and every A; € A (B; € B) is incident with an arc from 
Ex, (Eg). Furthermore, there exists a polynomial algorithm to find the desired 

branchings, or demonstrate the non-existence of such branchings. 

Proof: We prove the characterization and refer the reader to [79] and Exer- 
cise 9.51 for the algorithmic part. 

First we note that, if the branchings exist, then the arc sets E.,4 and Eg 

exist. Indeed, if F, F> are such branchings, then there must be an arc from 
F (F}) leaving (entering) every terminal (initial) component of D(N*(v)) 
(D(N~(v))) and since v is not on any 2-cycle, all these arcs go from N*(v) 
to N~(v). 

Suppose that there exist sets EH, and Eg as above. Every vertex x € 

N*(v) has a path to one of the terminal components in A and every ver- 

tex in N~(v) can be reached by a path from one of the initial compo- 

nents in B. Hence, we can choose a family of vertex disjoint arborescences 

[gee ey oe Poke peor esuch that (F;) is an in-arborescence 

(out-arborescence ) rooted at a vertex in A; (B;) and bites V (Ewe ie); 
U5_, V(F*) = N7~(v). Let Ff be the out-branching induced by the arcs 

{uw:w € N*(v)}UEBU Uja1 E(F;*) and F~ be the in-branching induced 

by the arcs {uv: u € N~(v)}UB,AU aes E(F;). Then F* and F, are the 
desired branchings. 0 

The following is an easy corollary of Theorem 9.9.3. 

Corollary 9.9.4 [46] A tournament D = (V, A) has arc-disjoint branchings 
Fy} ,F;> rooted at a specified vertex v € V if and only if D is strong and for 

every arc a € A the digraph D — a contains either an out-branching or an 

in-branching with root v. Oo 

There is a small inconsistency in the statement (and the proof) of The- 
orem 9.9.3 in [79] as it was not mentioned that v is not on a 2-cycle and 
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the statement (the part involving the ends to the arcs in E4, Eg) becomes 
slightly different when v is on 2-cycles. However, as the reader is asked to 

prove in Exercise 9.51, one can still describe a nice characterization and prove 

that it can be checked in polynomial time whether the desired branchings ex- 

ist and to find such branchings if they exist. Since the discussion above takes 

care of the semicomplete case, a possible next step is to consider the following 

problem posed by Bang-Jensen. 

Problem 9.9.5 /65] Characterize those locally semicomplete digraphs D that 
have arc-disjoint branchings F},F> for a given verter v € V(D). 

When u # v, Problem 9.9.1 becomes much harder even for tournaments. 

The following complete characterization for the case of tournaments was 

found by Bang-Jensen. Note that the characterization is only valid for tour- 

naments and not general semicomplete digraphs (in which case X,Y, Z, W is 

not a partition of V — {u, v}). 

Theorem 9.9.6 [46] Let Te (V, A) be a tournament and let u,v be distinct 
vertices of T. Define the sets X,Y,Z,W as follows: 

ke 1{peVsurve € Al Y={n€Vitus,2v € A}, 

Z={ee Vs eusur eAt, W = {2 €V: cu,av€ A}. 

Then T has an out-branching Fi} and an in-branching F> such that 
A(FT)N A(F;) = 0 if and only if none of the following holds. 

(1) |V| < 3 or |V| =4 and vue A. 
(2) T is not strong and either u is not in the initial strong component of T, 

or uv ts not in the terminal strong component of T. 
(3) T is strong and there exists an arc e such that u is not in the initial 

strong component of T—e and v is not in the terminal strong component 
of T —e. 

(4) T is strong, ww € A, Y = 0, X,W #9 and (I) below holds 

There is exactly one arc e; leaving the terminal strong component 
(1) 4 of T(X) and there is exactly one arc e2 entering the initial strong 

component of T(W) and e; # e2 

and finally every (X,W)-path in T — {u,v} contains both e, and ey. 
(5) T is strong, vu € A, Y = {y}, X,W #9, [T,u,v] satisfies (I), there is 

no (X,W)-trail in T — {u,v} which contains y and every (X, W)-path in 
T — {u,v} contains both e; and eg. 

(6) T is strong, vu € A, Y =6, X,W £9, [T’, u,v] satisfies (I), there exist a 
pair of arc-disjoint (u,v)-paths and for every choice of arc-disjoint (u, v)- 
paths P,, Py either eq Conc A(P;), OT Ci Rea A(P2). Oo 
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By inspecting each of the exceptions above one easily derives the following 
sufficient condition for the existence of arc-disjoint in- and out-branchings in 
a tournament. 

Corollary 9.9.7 [46] Every 2-arc-strong tournament T = (V,A) contains 
arc-disjoint in- and out-branchings F, F+ for every choice of vertices r,s € 

V. 0 

Some of the conditions in Theorem 9.9.6 are quite complicated and even 

to prove the necessity requires some work (Exercise 9.50). We now show how 

to check the conditions in Theorem 9.9.6 efficiently. This together with the 

fact that the proof in [46] is constructive implies a polynomial algorithm for 
the arc-disjoint in and out-branching problem in tournaments. 

Theorem 9.9.8 /46] There is a polynomial algorithm for checking whether a 

given tournament with specified distinct vertices u,v has arc-disjoint branch- 

ings F+,F > and finding such branchings if they exist. 

Proof: The construction part of this proof relies on the fact that the proof 

of Theorem 9.9.6 in [46] is constructive and that proof is very long and tech- 

nical. Hence we will only show how to check each of the conditions (1)-(6) 
in polynomial time (and hence checking whether or not the desired branch- 

ings exist). Conditions (1)-(4) are easy to check in polynomial time, so we 
concentrate on checking conditions (5) and (6). Let [T,u,v] be an instance 
of the problem for which we wish to check conditions (5) and (6). 

First we show how to check condition (5) using the polynomial algorithm 
from Corollary 9.7.22. Since every (X,W)-trail contains an (X, W)-path and 

every (X,W)-path contains e; and e2 we conclude that every (X, W)-trail 

contains e; and e2. That is, every (X, W)-trail must start at the tail x of e; 
and terminate at the head w of eg. It is easy to show that there exists an 

(x, w)-trail that contains y if and only if there exist arc-disjoint (a, y)-, (y, w)- 
paths. Now we use the algorithm from Corollary 9.7.22 to check whether or 

not there exist arc-disjoint (x, y)-, (y,w)-paths. Condition (5) is satisfied if 

and only if there do not exist such paths. 

Here is how to check condition (6) using the polynomial algorithm A from 
Theorem 9.7.23. It is easy to verify the existence of two arc-disjoint (u, v)- 

paths (use Lemma 7.1.5). In fact, if such paths do not exist then [T, u,v] 
satisfies (3). Let X) denote the terminal strong component of T(X) and W, 
the initial strong component of T(W) and let s be the number of strong 
components of T(W). Since Y = @ and there is only one arc leaving X; and 
only one arc entering W1, the existence of two arc-disjoint (u, v)-paths implies 

that l,s > 2,ie., X —X,;4#0 and W —-W, £0. Let T" = T — X; and check 

whether there exist two arc-disjoint (u,v)-paths in T”’. If such paths exist 

then [T, u,v] does not satisfy (6) and we stop. Let T’” = T — W, and check 

whether there exist two arc-disjoint (u,v)-paths in T’’. If such paths exist 

we stop because then [T,, u,v] does not satisfy (6). 
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By now we know (since we have not stopped yet) that for every pair P,, P2 

of arc-disjoint (u, v)-paths e; and ey belong to A(P,)M A(P2). That is [T, u, v] 
satisfies (6) if and only if there do not exist arc-disjoint (u,v)-paths P,, P2 

with e; € P;, i = 1,2. We use A to check that possibility in the following 

way. 

Since [T’, u, v] satisfies (I) we know that for every pair of arc-disjoint (u, v)- 
paths exactly one of these paths contains a vertex from X; and exactly one 

contains a vertex from W,. Moreover, if there exist arc-disjoint (u,v)-paths 

P,, Py with e; € A(P;), 1 = 1,2 then we may assume that P;[u, X;] = uz and 

P,[W,,v] = wv, where z is the tail of e; and w is the head of eo. 

Let ZT’ be the tournament obtained from T as follows. Contract X; into 

one vertex x2 and Wj into one vertex y,. Furthermore, if there are arcs in 

both directions between zy and some z € JT — x2 we remove the arc zzz. The 

arcs incident with y; are similarly modified. Let x; = u and y2 = v. 

Now it is easy to see that there exist arc-disjoint (u, v)-paths P,, P2 in T 

satisfying e; € A(P;), 7 = 1,2, if and only if there exist arc-disjoint (21, y,)- 

(2, y2)-paths Pe dees in T’. Now we use A to check whether or not 

such paths exist in T’. 

It is easy to see that the above methods provide polynomial algorithms 

to verify conditions (5) and (6). Oo 

Bang-Jensen posed the following conjecture. This conjecture was verified 

by Bang-Jensen and Huang [79] for the special case when D is quasi-transitive 
and u = v: 

Conjecture 9.9.9 /65/ Problem 9.9.1 is polynomially solvable for locally 

semicomplete digraphs and quasi-transitive digraphs. 

For the case when v is adjacent to all other vertices one can prove the 
following using Theorem 9.9.3 and the extension in Exercise 9.51 (see Exercise 
9.52). 

Theorem 9.9.10 Let D be a 2-arc-strong digraph with a verter v that is 
adjacent to all other vertices of D. Then D has arc-disjoint in- and out- 
branchings rooted at v. 

Thomassen conjectured that there is some sufficient condition, in terms 
of arc-strong connectivity, for the existence of arc-disjoint in- and out- 
branchings rooted at the same vertex in a digraph. 

Conjecture 9.9.11 /708] There exists a natural number N such that every 
digraph D which is N-arc-strong has arc-disjoint branchings Fy}, F> for every 
choice of v € V(D). 

For tournaments the following much stronger property has been conjec- 
tured by Bang-Jensen and Gutin: 
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Conjecture 9.9.12 /65] There exists a function f : Z,>Z4 such that for 
every natural number k every f(k)-strongly arc-connected tournament T has 
2k arc-disjoint branchings | One toh a Ey epee esuchedhat Fi ane 

Br are out-branchings rooted at v and Fy yy--+> PF), are in-branchings rooted 

at v, for every vertex v € V(T). : 

It follows from Corollary 9.9.7 that f(1) = 2. 

9.10 Minimum Cost Branchings 

Given a directed multigraph D = (V, A) a special vertex s and a non-negative 

cost function w on the arcs. What is the minimum cost of an out-branching 

Fy rooted at s in D? This problem, which is a natural generalization of 

the minimum spanning tree problem for undirected graphs (Exercise 9.58), 

is called the minimum cost branching problem. The problem arises 

naturally in applications where one is seeking a minimum cost subnetwork 

which allows communication from a given source to all other vertices in the 

network (see the discussion at the end of the section). 
The minimum cost branching problem was first shown to be polynomially 

solvable by Edmonds [211]. Later Fulkerson [283] gave a two phase greedy 
algorithm which solves the problem very elegantly. The fastest algorithm for 

the problem is due to Tarjan [689]. Tarjan’s algorithm solves the problem in 
time O(mlogn), that is, with the same time complexity as Kruskal’s algo- 
rithm for undirected graphs [169]. The purpose of this section is to describe 

a generalization of Fulkerson’s algorithm (due to Frank [250]) which can be 
used to solve a more general problem. 

9.10.1 Matroid Intersection Formulation 

To illustrate the generality of matroids, let us show how to formulate the 

minimum cost branching problem as a weighted matroid intersection problem. 

We refer to Section 12.7 for relevant definitions on matroids. 
Let D = (V, A) be a directed multigraph and let r € V be a vertex which 

can reach all other vertices by directed paths. We define M, = (A,7Z,) and 

Mp2 = (A,7Z2) as follows (here Z;, Zz C oan 

e A’ € TZ, if and only if no two arcs in A’ have a common head and no arc 

has head r, 
e A” € ZT, if and only if UG(D(A")) has no cycle. 

It follows from the definition of Mz that Mz is the circuit matroid of 

UG(D) (see Section 12.7). The fact that M; is a matroid follows from the 

observation that all maximal members of Z; have the same size n — 1 (by our 

assumption, every vertex in V —r has at least one in-neighbour). Hence M; 

is a matroid of rank n — 1. 
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Since r can reach all other vertices, UG(D) is connected and hence the 

rank of M> is also n — 1. We claim that every common base of M, and M2 

is an out-branching with root r. This follows easily from the definition of an 

out-branching and the fact that any common base corresponds to a spanning 

tree in UG(D), since M2 has rank n — 1. 
Thus we can find an out-branching with root r by applying the algorithm 

for matroid intersection of Theorem 12.7.11 to M,, M2. Of course such an 

out-branching can be found much easier by using e.g. DFS starting from r. 

However the point is that using the weighted matroid intersection algorithm, 

we can find a minimum cost out-branching Ft in D. It is easy to see that the 
required oracles for testing independence in M,; and M2 can be implemented 

very efficiently (Exercise 9.55). In fact, and much more importantly (in the 
light of the existence of other and more efficient algorithms for minimum cost 

branchings), using matroid intersection algorithms we can even find a mini- 

mum cost subdigraph which has k-out branchings with a specified root s in 

a directed multigraph with non-negative weights on the arcs (Exercise 9.56). 

Furthermore, it is shown in Exercise 9.57 that using matroid intersection we 

can also solve the augmentation problem where one is given a directed multi- 

graph D = (V, A), aroot s € V and anatural number k and the goal is to find 
a cheapest set of new arcs to add to D from an arc-weighted directed multi- 

graph D' = (V, A’) on the same vertex set in order to ensure the existence 
of k-arc-disjoint out-branchings from s in the resulting directed multigraph. 

Hence using matroid intersection formulations one can in fact solve problems 

which are much more general than the minimum cost branching problem. 

9.10.2 An Algorithm for a Generalization of the Min Cost 

Branching Problem 

In this subsection we will give a generalization due to Frank [250] of Fulk- 
erson’s algorithm [283] for finding a minimum cost out-branching with a 
given root. This generalization, also allows one to determine the minimum 

cost of new arcs to add to a directed multigraph which has k-arc-disjoint out- 

branchings rooted at a vertex s, so as to have k+1 arc-disjoint out-branchings 
rooted at s. 

To motivate the generalization below, we start with the augmentation 
problem above. We are given a directed multigraph D = (V,A) a vertex 
s € V and a natural number k such that D has k, but not (k +1) arc-disjoint 
out-branchings rooted at s (by Edmonds’ branching theorem and Lemma 
7.1.5, this condition can be checked efficiently using flows). Furthermore, 
we are given another directed multigraph H = (V, A’) on the same vertex 
set and a non-negative weight function w : A’+Rpo on A’. The goal is to 
find a minimum cost set of arcs F from A’ so that the directed multigraph 
D* = (V, AUF) has (k+1) arc-disjoint out-branchings rooted at s. In order to 
make sure that the problem has a solution we assume that D” = (V, AU A’) 
does have (k + 1) arc-disjoint out-branchings rooted at s. Note that if we 
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take H := D and then let D := (V,@) and k := 0, we obtain the minimum 
cost branching problem. Hence the augmentation problem generalizes the 

minimum cost branching problem. 

By (9.2) we have d,(X) > k for all X C V —s and since D does not have 
k + 1 arc-disjoint out-branchings from s, there must be some sets for which 

equality holds. Call such sets X (with d,(X) =k) tight. Using submodular- 

ity of dp, it is easy to see that the family F, = {X C V—s:dp5(X) =k} isan 
intersecting family (recall that this means that if X,Y € Fy and XNY 49, 
then XNY,X UY € F,). In view of Edmonds’ branching theorem our goal is 

to find a minimum cost subset F’ of A’ such that dj;(X) > 1 for each X € Fy 
(after doing this we will have d~(X) > k +1 for every X C V —s in the 
resulting directed multigraph). 

We now see that our problem is a special case of the following more general 

problem (we obtain the problem above if we take F = F;,): 

Problem 9.10.1 Given a set V, an intersecting family F C 2” and a di- 

rected multigraph H = (V,A') together with a weight function w : A'>Ro. 

Find a minimum cost subset F C A’ such that dj(X) > 1 for each? X € F. 

To ensure the existence of a solution, we must assume that d4,(X) > 1 

for each X € F. 

We solve this generalization instead of just the minimum cost branching 

problem. The motivation for this is to show the reader that often considering 

an abstraction of a problem will allow one to solve a more general problem 

(see the next subsection). Furthermore the solution for the abstraction can 
often be simpler (or at least not more difficult), since we have gotten rid of 

the special requirements of the original problems (of course these are still 

inherent in the abstraction, but we have more freedom here). 

In order to describe the two phase greedy algorithm below for solving 

Problem 9.10.1 we let M be a matrix whose rows are indexed by the mem- 

bers of F = {X,, X2,...,X,q} and whose columns are indexed by the arcs 

€1,€2,---,€m in H. We let Mx, -, = 1 precisely if the arc e; enters the set 

X;. 
Now we can formulate Problem 9.10.1 as the following linear programming 

problem: 

i,€j 

minimize a w(e)z(e) 
ec A! 

subject to Mz >1 for all X € F (9.12) 

a> 0: 

We are only interested in integer solutions, but as we are going to see, 

provided all weights are integers, there are integer valued optimum solutions 

° That is, we want to cover every member of F by an arc of H. 
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to the system below (this also follows from the fact that the system is a 

TDI system (see Schrijver’s book [659]), but we prove the integrality of the 

solution directly). Note that, if z is an optimal solution to (9.12), then z < 1. 

This follows from the fact that the costs are non-negative. Hence if z is a 

function on the arcs of A’ we can say that z(e;) = 1 (x(e;) = 0) corresponds 

to including (excluding) e; in the solution. 

The dual of (9.12) is 

q 
maximize S- (Xi) 

tal 

such that y7.M < w(e) for alle € A’ (9.13) 

y= 0. 

Here y(X;) denotes the dual variable associated with the set X; of F = 

{X1,Xo,...,Xq}. Note that, if we let 

m(y,e) = Ss: y(X), (9.14) 
{xXeF:e enters x} 

then the first constraint in the dual problem says that we must have m(y,e) < 

w(e) for every arc e. 
The two phase greedy algorithm below works by first finding a feasible 

solution to the dual in a greedy way and then solving the primal problem 

using the dual solution that we obtained in the first phase. 

A pair (2, y) of solutions to (9.12) and (9.13), respectively, are optimal (for 

the primal, respectively, the dual) if and only if it satisfies the complementary 

slackness conditions, see e.g. [160]: 

(I) For every arc e € A’: z(e) > 0 implies m(y, e) = w(e) and 
(II) For every X € F: y(X) > 0 implies!°x~(X) = 1. 

We now describe the algorithm and show that at termination, the final 

vectors z,y are integral and satisfy (1), respectively (2), and hence they 

are optimal solutions to the primal, respectively the dual, problems. The 

description given here is based on notes by the first author from a lecture 

given by Frank in Grenoble, June 1996. See also Frank’s paper [250]. 

The Frank-Fulkerson algorithm 

Phase 1: Start with y = 0. In the initial step we choose A; € F to bea 

minimal member of F, that is, no proper subset of A; belongs to F (see 

‘© Here x (U) denotes the sum of the « values on all arcs entering the set U. See 
also Chapter 8. 
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Exercise 9.59 for an algorithm to find such a minimal member when F is 

the family of tight sets avoiding a fixed vertex s in a directed multigraph). 

Choose an arc e; which enters A; (i.e. dz,(Ai) = 1) such that w(e) is 
minimum among all arcs of A’ which enter A,. Set y(Ai) := w(e). 

In the general step, we assume that (Aj, e1,y(A1)), (Ao, €2, y(A2)),---, 
(Ai-1, ei-1, y(Ai-1)) have been determined. Let A” = {e1,€2,...,€;-1}. If 

av (X) > 1 for all X € F, then Phase 1 has been completed and we go to 

Phase 2. Assume this is not the case and choose A; € F as a minimal member 

Ory —{ Ax; Ad}... ,Ai_1} which has d,,,(A;) = 0. 

By the assumption that d4,(X) > 1 for every X € F, there is at least 

one arc from A’ which enters A;. Choose among all such arcs one, e;, which 

minimizes w(e;) — m(y,e;). Let y(A;) := w(ei) — m(y, e;) (possibly y(A;) := 

0). Note that it is easy to find e; since there are currently (at most) i — 1 sets 
for which y is non-zero and hence m(y,e) can be calculated easily for every 

arc e € A’ which enters A;. Let i :=i+1 and continue the general step. This 

completes the description of Phase 1. See Figure 9.17 for an example (for an 

instance of the minimum cost branching problem) of an execution of Phase 
L, 

Before we go on to describe the second phase of the algorithm, we make 

some useful observations. Let £ = {Aj,Ag,..., Az} be the family of sets 

chosen when Phase 1 terminates (there are only finitely many sets in F, so 

termination follows from the assumption that A’ has at least one arc entering 

every member of F). Recall that a family H of sets is laminar if A,B € H 

and ANB #9 implies AC Bor BCA. 

Claim A: C is a laminar family. 

Proof: Suppose A; — Aj, A; A;,A; — Ai are all non-empty for some 1 < 

i <j < t. Since F is intersecting we have A; A; € F. Recall that A; is 

minimal in F — {A;, Ao,..., Aj-1} at the time it is chosen and none of the 

arcs €1,€2,...,€;—-1 chosen so far enters A;. Hence there must exist a p < 1 

such that e, enters A; A;, but not A; (which means that the tail of ep is 
in A; — A;). But now the arc e, enters A;, contradicting the fact that at the 
(later) time when we consider A; no previously chosen arc enters that set. 
This contradiction implies the claim. 0 

Claim B: After Phase 1 the vector y is a feasible solution to (9.13). 

Proof: It follows from the way we assign values to y that we will always have 

y(X) > 0 for every X € F. Hence it suffices to prove that m(y,e) < w(e) for 
all arcs e € A’. Note that y is zero on F — L, so we only have to consider 

the contribution from y on the sets in L. Since £ is laminar, those sets from 

L which are entered by a given arc e form a chain Aj, C Ai, C ... C Aij,. 

Furthermore, it follows from the way we choose the A;’s in Phase 1 that 

1 aia et tt: 
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A6 y(Ag) = 2 
e7 y(A7z) :=0 

Figure 9.17 An execution of Phase 1 (for the minimum cost branching problem) 
on the digraph shown in the upper left corner with root r. Fat arcs show the arc 
chosen in that step. Normal arcs are arcs that have already been chosen at this 
point in time. 

Consider now a fixed arc e. We wish to show that m(y,e) < w(e) remains 
true during all of Phase 1. Clearly the initial choice y = 0 satisfies this. 

When we consider the first set A;, from £ which contributes to m(y,e), 
we choose y(A;,) so as to maintain the inequality m(y,e) < w(e) (because 
y(A;,) is assigned the minimum of w(e’) — m(y,e’) over all e’ (including e) 
which enter A;,. Then when we choose y(Aj,), the value assigned to y(Ai, ) 
now contributes to w(e) — m(y,e) and again we can argue that we will have 

m(y,e)} < w(e) after assigning the value to y(A;,). Now it is easy to prove 

by induction on r (the number of sets in £ which are entered by e) that 
m(y,e) < w(e) remains true throughout Phase 1. Since e was an arbitrary 
arc, we have proved that y is feasible for the dual (9.13). O 

Let e1,€2,...,¢, be the arcs chosen in Phase 1. Call an arc e € A’ tight 

if m(y,e) = w(e). Note that each of e1,e2,...,e; are tight by the way we 
choose the dual variables (recall how we assign the value to y(A;)). 
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Hence the complementary slackness condition (I) will be trivially satisfied 
if we can find a subset F C {e;,e2,...,e;} such that x is non-zero only on arcs 
in F' and z is a feasible solution to the primal. In order to ensure optimality, 
we must choose z and F so that (II) also holds, that is, we must have that 
y(X) > 0 implies 2~(X) = 1 for every X € F. We are now ready to describe 
the second and last phase of the algorithm. 

Phase 2: 

Let F := 0. 

Consider the arcs e¢,€:-1,...,€2,€; in that order. After having considered 
€t,€t-1,---, €i+1 we add e; to F if and only if d;(A;) = 0 (that is, the arc e; 
is only added to F if no arc with a higher index enters A;). See Figure 9.18 

for an illustration of Phase 2 (corresponding to the same example as Figure 
9.17). 

(a) (0) 

Figure 9.18 Phase 2 on the digraph from Figure 9.17. Part (a) shows the input 
to phase 2. Part (b) shows the output from Phase 2. 

Now set x(e) := 1 if e € F and z(e) := 0 otherwise. This concludes Phase 
2 

It is easy to see that the choice for z and F made above satisfies (II) since 
y is non-zero only on set which belong to CL. 

Claim C: z is a feasible solution to (9.12). 

By the definition of z our claim is equivalent to saying that d,(Z) > 1 
for all Z € F. If no arc e; was disposed of (i.e. not chosen) in Phase 2, then 

this follows from the fact that at the termination of Phase 1, every member 

of F is entered by at least one of the arcs e1, €2,...,e:. Hence we may assume 
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that at least one arc e; was disposed of in Phase 2 and that some member Z 

of F has d;,(Z) = 0. We show that this leads to a contradiction. 
Let Z be a maximal member of F such that d;(Z) = 0 holds. 
We first prove that there exits an index i such that A; C Z and e; enters 

Z. Choose i as small as possible so that e; ¢ F and e; enters Z. Suppose that 

A; ¢ Z. Then A; — Z, A; Z, Z — A; are all non-empty (the last set is non- 

empty by the minimality of 7 and the definition of A;). Since F is intersecting, 

the set A; Z belongs to F. Now the minimality of A; (at the time it was 

chosen in Phase 1) implies that there is some j < i such that e; enters A;NZ, 

but not A;. This means that the tail of e; belongs to A; — Z (and hence e; 

enters Z). However, since d;(Z) = 0 we have e; ¢ F,, contradicting the choice 
of 1. Thus we have shown that there exists an index 7 so that A; C Z and e; 

enters Z. 

Now choose among all pairs (A;,e;) such that A; C Z and e; enters Z, 
the one which has the highest index p. Since e, was not added to F in Phase 
2, there must exist an index j > p such that e; € F and e; enters Ap. Using 

that £ is laminar and j > p we get that A, C A; (we cannot have A; C Ap, 
by the way we choose A, in Phase 1). 

A; 

Figure 9.19 The positions of the sets Aj, Ap and Z and the arcs e;, €p. 

Note that A; ¢ Z since otherwise ep would enter A;, contradicting the 
fact that 7 > p and A; had in-degree zero when we choose it in Phase 1. 
Furthermore, e; does not enter Z since d;(Z) = 0. Thus we must have the 
picture in Figure 9.19. Now it follows that the member Z U A; € F is not 
entered by any arc from F (recall that e; is the unique arc from F which 
enters A;). This contradicts the maximality of Z. 

Hence we have shown that the set Z cannot exist and thus z is indeed a 
feasible solution to (9.12) and Claim C is proved. Oo 

It follows from Claims B and C that the pair (a, y) of primal, respectively 
dual, solutions satisfies the complementary slackness conditions (I) and (II) 
and hence are optimal solutions to the problems (9.12) and (9.13) respectively. 
This proves the correctness of the algorithm. 

Let D be a directed multigraph with a special vertex s. By an s-cut we 
mean an arc set of the form (U,U) where U C V — s (that is, an s-cut is 
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the set of all the arcs entering U for some U not containing s). The following 
min-max result due to Fulkerson [283] is a consequence of our arguments 
above where we proved the existence of optimal integer valued solutions for 
both the primal and the dual. It is instructive to check the statement of the 
theorem on the example in Figures 9.17 and 9.18. 

Theorem 9.10.2 /283] Let D = (V,A) be a directed multigraph with a spe- 
cial vertex s € V which can reach all other vertices of V and a non-negative 
integer weight function w : A-+Z on the arcs. The minimum weight of an 
out-branching with root s is equal to the marimum number of s-cuts (with 
repetition allowed) so that no arc a is in more than w(a) of these cuts. 0 

9.10.3 The Minimum Covering Arborescence Problem 

As we can see from Exercise 9.60 (and Tarjan’s algorithm in [689]), we can find 
an optimal branching quite efficiently. It is also easy to decide if a digraph 

has some arborescence rooted at a prescribed vertex s which covers (that 

is, contains the vertices of) a certain specified subset X of the vertex set 

(Exercise 9.54). This makes it natural to consider the following problem which 
we call the minimum covering arborescence problem. Given a digraph 

D = (V, A) with a non-negative integer valued weight function w on the arcs, 
some vertex s € V and a subset X C V. What is the cost of a minimum 

out-arborescence F* rooted in s such that X C V(F})? 

Theorem 9.10.3 The minimum covering arborescence problem is NP-hard 

even when w = 1. 

Proof: We show how to reduce the graph Steiner problem to the special 

case w = 1 of the minimum covering arborescence problem in polynomial 

time. The graph Steiner problem is as follows (this is a special case, but 

already this is ’P-complete). Given an undirected graph G = (V, E) anda 

subset X C V, find a subtree of G which contains all vertices of X and as 

few other vertices as possible. 

Let [G, X] be an instance of the graph Steiner problem and construct an 
instance [D, X, s] of the minimum covering arborescence problem by letting D 

be the complete biorientation of G, taking s as some vertex from X and using 

the same X. Every tree T which covers X in G corresponds in the obvious 

way to an out-arborescence F;* in D which covers X and vice versa. This 
completes the construction which can obviously be performed in polynomial 

time. Since the graph Steiner problem is ’P-hard [474] we conclude that so 
is the minimum covering arborescence problem. O 

It follows from Frank’s results in [265] that, if the cost of all arcs whose 
head do not belong to X is zero, then the problem can be solved in polynomial 

time. In fact, the model in [265] shows that even the generalization where 
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one is seeking k arc-disjoint arborescences with a common root all of which 

cover a prescribed subset X can be solved in polynomial time, provided the 

cost of all arcs whose head do not belong to X is zero. 

In real-life applications such as telecommunications, one is often interested 

in serving only a subset of the customers from a given source and furthermore 

not all customers have the same demand. This gives rise to the following 

more general problem which is called the directed Steiner problem with 

connectivity constraints (DSCC) in [171]. Given a directed graph D = 
(V, A) with weights on the arcs, a special vertex s and a number k, associated 

with each vertex v € V — s, find a minimum cost subset A’ C A such that 

D(A‘) contains k, arc-disjoint (s,v)-paths for all v € V — s. It follows from 
our remarks above that this problem is ’P-complete even if we only allow 

ky € {0,1} for each v € V—s. In [171] Dahl discusses a cutting plane approach 

to solving the DSCC problem. It is also shown in [171] how to formulate 
another classical problem from operations research, the uncapacitated facility 

location problem, as an instance of the DSCC problem (see Exercise 9.71). 

Let us conclude this section with a few remarks on the directed Steiner 

problem. The directed Steiner problem is as follows. Given a directed 

multigraph D = (V, A) and a subset S of its vertices, find a minimum subset 
A' of A such that D’ = (V, A’) contains an (s,t)-path for every choice of 
s,t € S. The vertices in S are called terminals. Clearly this problem is VP- 

hard as it contains the graph Steiner problem as a special case. In Exercise 

9.69 the reader is asked to describe a polynomial algorithm for the case when 

|S| = 2. Recently Feldman and Ruhl [233] proved that for every fixed k the 
directed Steiner problem with k terminals is solvable in polynomial time. 

In fact they proved that the following more general problem is polynomially 

solvable for every fixed p. Given a directed multigraph D = (V, A) and p pairs 

{(s1,t1),-.+, (Sp, tp)} find a smallest set of arcs A’ in A such that D' = (V, A’) 
contains an (s;,t;)-path for 1 = 1,2,...,p. Feldman and Ruhl also showed 

that the weighted version is still polynomial (provided p is fixed). 

9.11 Increasing Rooted Arc-Strong Connectivity by 
Adding New Arcs 

The approach in the last section does not allow us to solve the augmentation 
problem where one starts with an arbitrary digraph with a special vertex s 
and the goal is to add arcs so that the new digraph has k-arc-disjoint out- 
branchings rooted at s. Only the case when there are already k—1 arc-disjoint 
out-branchings from s in D is covered above. 

The following theorem, answering the general case, can be derived from 
Theorem 7.6.3 (Exercise 9.73). We give a direct proof below since it is quite 
simple and illustrates once again the usefulness of submodularity in proofs. 



9.11 Increasing Rooted Arc-Strong Connectivity by Adding New Arcs 537 

Theorem 9.11.1 Let D = (V,A) be a digraph with a special vertex s. Let 

k be a natural number. The minimum number of new arcs s,4(D) one has 
to add to D in order to obtain a new digraph D' = (V, AU F) which has k 
arc-disjoint out-branchings rooted at s satisfies ys,.(D) = y, where 

7 = max{ De max{0,k — dp(X)}:F is a subpartition of V—s}. (9.15) 
X EF 

Furthermore, an optimal augmenting set F can always be chosen such that 

all new arcs have tails at s. 

Proof: Let [D,k,s] be given. By Edmonds’ branching theorem, we must 

have dp, (X) > k for all X C V —s. Hence 7;,4(D) > y must hold. We prove 
below that there exists a good augmenting set with no more than ¥ arcs. It 

is instructive to compare this proof with the proof of Theorem 7.6.3. 

Let v1, V2,---,Un—1 be a fixed labeling of V — s. Add k parallel arcs from 

s to every other vertex. Clearly the digraph obtained in this way satisfies 

(9.2). To distinguish the added arcs from arcs in A we refer to them below 
aS new arcs. Starting with i = 1 we delete as many new arcs of the kind 

sv; as possible while preserving (9.2) in the current digraph. If i < n— 1 let 

i := i+1 and repeat the deleting step; otherwise stop. Let F' be the final 

set of new arcs after the deletion phase and let D* = (V, AU F’) denote the 

current digraph when this process stops. We will show that |F| < 7. This 

will complete the proof and also imply the second claim since all arcs in F’ 

have tail s. 
Since no remaining new arc sv can be removed without violating (9.2), 

it must enter a set X such that dp.(X) =k. Call a set X C V — s critical 
if d5.(X) = k. Let S := {v : sv € F}, that is, S is the set of all vertices 
that are entered by an arc from F’. Choose a family of critical sets F = 

{X,,X2,...,Xz} such that F covers S' and ¢ is minimum with respect to 

this condition. 
We claim that F is a subpartition of V — s. Suppose that this is not the 

case. Then F contains two sets X;, X;, i # j such that X;.X; 4 0. However 
using the submodularity of dp. we obtain 

k+k=d5.(Xi) + dp.(X;) > dp. (XiN Xj) + dp. (Xi U X;) 

>k+k. 

Hence dp.(X; U X;) = k and we can replace X;,X; by the set X;U X;, 

contradicting the choice of ¥ (note that X;UX; C V —s and hence dp, (X;U 

X;) > k must hold). Thus F is indeed a subpartition of V — s. 

Now we have 

11 A collection of sets F covers a set S if every s € S belongs to some member X 

of F. 
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since every edge from F enters precisely one set X; € F and each X; has 

dp«(X;) = k. Thus 
t 

|F| = > (& - dp (%i)) <7. 
i=1 

and the proof is complete. O 

The method used to prove Theorem 9.11.1 cannot be extended to the case 

when the new arcs have costs and hence we cannot solve the cost version case 

of the problem in this way. As we remarked at the end of Subsection 9.10.1 this 

problem can be solved using an algorithm for weighted matroid intersection 

(Exercise 9.57). Hence weighted matroid intersection algorithms are a quite 

powerful tool. 

Frank [265] has shown that, using a similar (but more complicated) ap- 
proach to that used in Section 9.10, one can also solve the problem in which 

the goal is to add a minimum cardinality set of new arcs to a digraph 

D = (V,A) with a special vertex s with k(s,v) > k for all v € V — s, so 
as to increase K(s,v) to at least k + 1 for every v € V — s. As we mentioned 
in Chapter 7 this problem can be solved with the help of submodular flows 

[275], but the approach in [265] is simpler, since it does not require the (rather 
complicated) algorithms for submodular flows. 

9.12 Exercises 

9.1. Prove Proposition 9.2.1. 

9.2. Prove that problem (P5) of Proposition 9.2.1 for semicomplete digraphs can 
be reduced to the 2-path problem for semicomplete digraphs in polynomial 
time. 

9.3. Prove Proposition 9.2.2. 

9.4. Prove Lemma 9.2.4. 

9.5. Prove Theorem 9.2.7. Hint: use Lemma 9.2.8. 

9.6. Prove Theorem 9.2.9 without using Theorem 9.2.10. 

9.7. Let D be the acyclic digraph in Figure 9.20. Show that the digraph D’ defined 
as in the proof of Theorem 9.2.14 has a directed path from (x1, 22,23) to 
(yi, Y2, y3). 

9.8. (+) Argue that we do not really need to construct D’ when searching for a 
path from (21, %2,...,2%) to (y1,y2,---, yk). Does that lead to an improve- 
ment in the complexity estimate? 
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Yy2 

¥3 

Figure 9.20 An instance of the 3-path problem for acyclic digraphs. 

Finding a cheapest collection of k disjoint paths with prescribed 
ends in acyclic digraphs. Show that the approach used in the proof of 
Theorem 9.2.14 can be modified so that one can find the cheapest collection 
of disjoint paths joining x; to y; fori =1,2,...,k. 

(+) Prove that under the assumption of Corollary 9.2.16, for every non- 
special vertex v, the digraph D contains directed (21, v)-, (42, v)-, (v, y1)-, 
(v, y2)-paths such that the only common vertex of any two of these paths is 
v (Lucchesi and Giglio [527]). Hint: use Menger’s theorem and the fact that 
D is acyclic. 

A sufficient condition for digraph to be 2-linked. Let D = (V, A) 
satisfy dt(x)-+d~(y) > n+2 whenever D does not contain the arc xy. Prove 
that D is 2-linked. Hint: first show that, if ry ¢ A, then there are three 
internally disjoint (z,y)-paths of length 2 in D (Heydemann and Sotteau 
[426]). 

Prove that every k-linked digraph is also k-strong. 

Prove that,if a digraph D = (V, A) is 2-linked, then for every choice of distinct 
vertices z,y, D contains disjoint cycles Cz,Cy such that c € V(Cz),y € 
V(C,). Generalize this to k-linked digraphs and k vertices. 

(—) Disjoint cycles containing prescribed vertices in tournaments. 
Prove that a tournament T contains disjoint cycles Cz,Cy, such that x € 
V(Cz),y € V(C,) if and only if T contains disjoint 3-cycles such that one 
contains x and the other contains y. 

Describe how to construct the collection Q{,Q>,...,Qj of subpaths in the 
proof of Proposition 9.3.1. What is the complexity of your algorithm? 

Show how to turn the proof of Proposition 9.3.1 into an algorithm which takes 

as input a collection P;, P2,..., Pp» of internally disjoint (x, y)-paths and a 

collection Qi, Q2,..., Qq of internally disjoint (u, v)-paths in D — {x,y} and 

finds a collection of q (u,v)-paths which intersect no more than 2q vertices 

OP PAPI... P.. 

Let D bea locally semicomplete digraph and let x, y be distinct non-adjacent 

vertices. Prove that every minimal (x, y)-path is an induced path (Bang- 

Jensen [44]). 
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(—) Let D be a locally semicomplete digraph such that a(D) = 2. Prove 

that if x and y are non-adjacent vertices of D and D has an (z,y)-path, then 

there exists an (x, y)-path P of length at most 3. 

(+) Prove the following statement. Let k > 3, let D be a k-strong lo- 

cally semicomplete digraph which is round decomposable and let D = 
R{Si,...,5,] be the round decomposition of D. Let z and y be vertices 
such that « € V(S;) and y € V(S;), where it # j and let P be a minimal 
(x, y)-path. Then D — V(P) is (k — 2)-strong (Bang-Jensen [52]). Hint: use 
Exercise 9.18 

. (+) Prove Lemma 9.3.3. Hint: use Exercise 9.19. 

. Prove Lemma 9.3.17. 

. (++) Prove Theorem 9.3.13. 

. Prove Lemma 9.4.3. Hint: show how to modify a given (z,y)-path which 
is not closest to R into one*which is closer by a stepwise (but finite and 
polynomially bounded) improvement. For the algorithmic part you can use 
that the embedding is with polygonal curves. 

. Prove that the graph G4 in Figure 9.10(a) is 5-connected. 

. Prove that the digraph D; is Figure 9.10(b) is 5-strong and has no cycle 
through x,y. Hint: use Exercise 7.26 and Proposition 9.4.1. 

. Show how to derive Menger’s theorem (Theorem 7.3.1) from Edmonds’ 
branching theorem (Theorem 9.5.1). 

. (+) A polynomial algorithm for finding k-arc-disjoint out- 
branchings from a specified root. Show how to turn the proof of The- 
orem 9.5.1 into a polynomial algorithm which either finds a collection of k 
arc-disjoint branchings with root z, or a proof that no such collection of 
branchings exists. Hint: use flows. 

Greedy branching algorithm. Instead of applying the algorithmic version 
of Theorem 9.5.1 to find k arc-disjoint out-branchings with a given root, one 
may try a greedy approach: find an out-branching F;* from z. Delete all arcs 
of F{. Find a new out-branching, delete its arcs and so on. Give an example 
of a digraph D which has 2-arc-disjoint out-branchings with root z, but not 
every out-branching F* can be deleted while leaving another with root z. 

. (+) Tutte’s theorem on edge-disjoint trees in undirected graphs. 
Derive Theorem 9.5.6 from Theorem 8.7.6. 

. Generalize the example in Figure 9.11 to digraphs with arbitrarily many 
vertices. 

. Prove Lemma 9.6.2. 

. Show how to use submodular flows to decide in polynomial time whether a 
mixed graph M has k edge-disjoint mixed branchings from a given root. Hint: 
see Exercise 8.65 and adjust the upper/lower bounds on arcs appropriately. 

Give a proof of Theorem 9.6.3 using the reduction you found in the previous 
exercise and the feasibility theorem for intersecting submodular flows. 
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(+) Are disjoint out-branchings with possibly different roots. Prove 
the following result due to Frank [252]: In a directed graph D = (V, A) there 
are k arc-disjoint out-branchings (possibly with different roots) if and only if 

> 4 (Xi) SRE -1) (9.16) 
al 

holds for every subpartition {X1, X2,..., Xz} of V. Hint: add a new vertex 
s and a minimal set of new arcs from s to V so that s is the root of k out- 
branchings in the new graph. Prove that this minimal set of arcs has precisely 
k arcs. 

Prove Theorem 9.5.6. Hint: use Edmonds’ branching theorem and Theorem 
8.7.6. 

Supply the missing details in the proof of Theorem 9.7.1. 

Prove Theorem 9.7.3. 

(—) Prove Lemma 9.7.6. 

Prove Lemma 9.7.19. 

Determine the complexity of the algorithm of Corollary 9.7.22 

Fill in the missing details of the proof of Theorem 9.7.23. What is the com- 
plexity of this recursive algorithm? 

Prove Lemma 9.7.9. 

Prove the last Claim in the proof of Theorem 9.7.13. Hint: use the same 
approach as in the proof of Lemma 9.7.8. 

Fan-in, fan-out in eulerian directed multigraphs. Let D be an eulerian 
directed multigraph and suppose D has arc-disjoint paths P,, P2,..., P, such 
that P; starts at 2; and ends at u fori = 1,2,...,k. Prove that D contains 
arc-disjoint paths P{, P),..., Py, such that P; is a (u, v;)-path and P; is arc- 
disjoint from P; for all 1 < i,j <k. 

(+) Arc-disjoint (x, y)-, (y,z)-paths in quasi-transitive digraphs. 
Prove that the characterization in Theorem 9.7.21 can be extended to quasi- 
transitive digraphs. 

Show that the 3-ST-problem for eulerian digraphs can be reduced in poly- 
nomial time to the problem of deciding the existence of arc-disjoint [s1, t1]-, 
[s2, t2]-paths in an eulerian digraph with specified vertices s1,t1, $2,t2. Hint: 
use Exercise 9.44. 

Prove that the arc-version of Problem (P5) of Proposition 9.2.1 is MP- 
complete. 

Supply the missing details in the proof of Theorem 9.9.2. 

Show how to reduce Problem 9.9.1 for the case u # v to the case u = v. 

(+) Prove that if any of the conditions (1)-(6) in Theorem 9.9.6 are satisfied, 
the T has no pair of disjoint branchings F7, F, . 
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(+) Extend Theorem 9.9.3 to the case when v is on some 2-cycle. Hint: how 

should the sets E,4, Eg and the branchings described be modified? 

Prove Theorem 9.9.10. Hint: use Theorem 9.9.3 and Exercise 9.51. 

Apply Fulkerson’s minimum cost branching algorithm to the digraph in Fig- 

ure 9.21 to find a minimum cost out-branching from r. 

Figure 9.21 An instance of the minimum cost out-branching problem 

Finding an arborescence which covers a prescribed vertex set. Show 
how to decide in polynomial time if a digraph D = (V, A) has an arborescence 
with root s which contains all vertices of a prescribed subset X C V (and 
possibly other vertices). 

Efficient implementation of independence oracles for the matroid 
intersection formulation of the minimum cost branching problem. 
Show how to implement the necessary oracles for testing independence in the 
two matroids M,, M2 which were used in Subsection 9.10.1. Your algorithms 
should have complexity around O(m), where m is the number of arcs in the 
directed multigraph. 

(+) Finding a minimum cost subdigraph which has k-arc-disjoint 
out-branchings rooted at s in a directed multigraph. Show how to 
formulate this as a matroid intersection problem. Then sketch an algorithm 
to find the desired branchings. Hint: modify the matroids M,, M2 from Sub- 
section 9.10.1. 

(+) Finding a minimum cost set of new arcs to add to a directed 
multigraph in order to ensure the existence of k-arc-disjoint out- 
branchings with a specified root. Show how to solve this problem using 
an algorithm for weighted matroid intersection. Hint: use a similar approach 
as that in Exercise 9.56. Compare also with Exercise 8.65. 

Formulating the minimum spanning tree problem as a minimum 
cost branching problem. Show that the minimum spanning tree problem 
(given a connected undirected graph with non-negative weights on the edges, 
find a spanning tree of minimum weight) can be formulated and solved as a 
minimum cost branching problem. 
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Suppose D is a digraph which has k but not k+1 arc-disjoint out-branchings 
rooted at s and let F = {X C V—s: d,(X) =k}. Explain how to find a 
minimal member of F (that is, no Y C X belongs to F). Hint: first show how 
to find a member X of ¥ using flows and then show how to find a minimal 
member inside X. For the later, see the result of Exercise 3.35 

. (+) Efficient implementation of the Frank-Fulkerson algorithm. 
Try to determine how efficient the Frank-Fulkerson algorithm can be im- 
plemented. I.e. identify places in the algorithm where a seemingly time con- 
suming step can be done efficiently. 

Reducing the shortest path problem to the minimum cost branch- 
ing problem. Show how to reduce the shortest (s,t)-path problem for di- 
graphs with non-negative weights on the edges to the min-cost out-branching 
problem. 

Use your reduction from the previous problem to devise an algorithm for the 
shortest (s,t)-path problem in a digraph with non-negative weights on the 
edges. That is, specialize the min-cost branching algorithm to the case where 
we only want to find a min-cost (s,t)-path. Hint: how many minimal sets are 
there to choose from in each step of the algorithm? 

Compare your algorithm above to Dijkstra’s algorithm (see Chapter 2) and 
other classical shortest path algorithms from Chapter 2. 

Simplicity preserving augmentations for rooted arc-connectivity. 
Give an argument for the following claim. The Frank-Fulkerson algorithm 
can be used to find the cheapest set of new edges to add to a digraph to 
increase the maximum number of edge-disjoint out-branchings rooted at a 
fixed vertex from k to k + 1, even when we are not allowed to add arcs that 
are parallel to already existing ones. Hint: what intersecting family F and 
what digraph with the new possible arcs should we consider? 

Increasing capacity of arcs to increase rooted arc-connectivity Prove 
that the Frank-Fulkerson algorithm also works if all new arcs have to be 
parallel to existing ones. 

Show that if £ is a laminar family (i.e. X,Y € L implies X NY = O, or 
X CY, or Y C X) on a ground set of size n, then the number of sets in L 
is at most 2n — 1. Then show that indeed there are digraphs for which the 
Frank-Fulkerson algorithm may be run (legally) so that it will find 2n — 1 
sets before terminating phase 1. 

Comparing the Frank-Fulkerson algorithm with classical minimum 
‘spanning tree algorithms. Suppose D = (V, A) is asymmetric digraph (i.e. 
zy € E if and only if yx € EZ) and that c: A + Ry satisfies c(xy) = c(yz). 
Compare the actions of the min-cost branching algorithm to well-known al- 

gorithms for finding a minimum spanning tree in a weighted (undirected) 
graph G. Such algorithms can be found in the book by Cormen, Leiserson 

and Rivest [169]. 

A min-max formula for the minimum weight of new arcs to add 

to a digraph in order to increase the number of arc-disjoint out- 

branchings rooted at a fixed root by one. Use the description and proof 

of correctness in Section 9.10 of the Frank-Fulkerson algorithm to derive a 
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min-max formula for the minimum weight of such an augmenting set. Hint: 
the statement is similar to that of Theorem 9.10.2. 

(++) Describe a polynomial algorithm for finding in a given digraph D = 
(V,.A) with specified vertices s,t, a minimum size subset A’ C A such that 
D' = (V, A’) has s,t in the same strong component (Natu and Fang [589]). 

(+) A min-max characterization of shortest paths. Prove the following 
theorem due to Fulkerson: 

Theorem 9.12.1 /282] Let D = (V, A) be a digraph that contains an (s,t)- 
path. Then the length of a shortest (s,t)-path in D equals the mazimum num- 
ber of arc-disjoint (s,t)-cuts. 

Extend this result to the weigthed case and give a characterization of the 
length of a shortest (s,t)-path in terms of (s,t)-cuts. Hint: reduce to a mini- 
mum cost branching problem and apply Theorem 9.10.2. 

The uncapacitated facility location problem. This is the following prob- 
lem. Given a set LD = {l1,l2,...,lp} of possible locations of facilities (each of 
unbounded capacity) that shall serve a set C = {c1,c2,...,cq} of customers. 
There is a fixed cost w; of locating a facility at location 1; and the cost of 
satisfying the demand of customer c; from location 1; is given by d;;. The 
problem is to decide which facilities to open and which facilities shall satisfy 
the demand of a customer such that the total costs are minimized. Show how 
to formulate this problem as an instance of the DSCC problem (see Sub- 
section 9.10.3). Hint: since there is unbounded capacity at each facility, no 

client needs more than one facility to serve it. How can you model the cost 
of opening a facility by the cost of an arc? 

Show that if the cost of opening a facility is zero, then there is a very sim- 
ple greedy algorithm for solving the uncapacitated facility location problem 
(defined in Exercise 9.71). 

Show how to derive Theorem 9.11.1 from Theorem 7.6.3. 



10. Cycle Structure of Digraphs 

In the previous chapters, especially in Chapters 5 and 6, we considered various 

properties of cycles in digraphs. The study of cycle structure of digraphs is 

one of the most important areas in the theory of digraphs, and since several 

very interesting topics in this area have remained uncovered in the previous 

chapters, we discuss these topics in this chapter. We will mostly consider 

(directed) cycles; in most cases the adjective ‘directed’ is omitted. Sometimes 

we will use oriented cycles, i.e. orientations of undirected cycles. 

Section 10.1 is devoted to the cycle space of digraphs. We show how 

properties of the cycle space imply certain structural results on digraphs. In 

Section 10.2, we consider polynomial algorithms by Alon, Yuster and Zwick 

to find paths and cycles of length O(log n) in a digraph of order n. In Section 
10.3, we study how many vertex- or arc-disjoint cycles a digraph can have as 

well as the problems to find the minimum number of vertices or arcs to destroy 

all cycles in a graph. In Section 10.4 we will see that the maximum number 

of vertex-disjoint cycles in a digraph D is related to the minimum number of 

vertices in D needed to eliminate all cycles of D and the same is true for the 

corresponding arc version; Younger’s conjecture formally states this mutual 

dependence. We give an overview of the proof of Younger’s conjecture by 

Reed, Robertson, Seymour and Thomas. 
The investigation of cycles of length equal k modulo p is started in Section 

10.5, where we show that cycles of length 0 modulo p are very useful in the 

study of Markov chains. A number of remarkable results related to the even 

cycle problem in digraphs are given in Section 10.6; these include the theorem 

by McCuaig, Robertson, Seymour and Thomas that the even cycle problem is 

polynomial time solvable, and the theorem by Thomassen that every strong 

digraph with minimum out-degree and in-degree at least 3 contains an even 

cycle. In Section 10.6, we describe some extensions of these and other results 

to cycles of length equal k modulo p. A brief overview of results on short 

cycles in semicomplete multipartite digraphs can be found in Section 10.7. 

An interesting inequality between the length of a longest path and the length 

of a longest cycle in a strong semicomplete multipartite digraph, conjectured 

by Volkmann and proved by Gutin and Yeo, is shown in Section 10.8. Results 

on the well-known Caccetta-Haggkvist conjecture on the girth of a digraph, 

including the one by Chvatal and Szemerédi, are given in Section 10.9. Section 
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10.10 is devoted to a pair of additional topics: Adadm’s conjecture on the 

number of cycles in a digraph, and Marcus’ theorem on chords of cycles and 

its applications. 

10.1 Vector Spaces of Digraphs 

In this section we consider the cycle and cocycle spaces of a connected di- 

graph; we will prove some basic properties of these vector spaces and an 

interesting result on 2-arc-coloured digraphs whose proof uses the notion and 

properties of the cycle space. We will use only the most basic notions and 

results on (general) vector spaces (see e.g., Morris [573}). 
Let D = (V, A) be a directed graph with arcs e1,...,€m. The are space 

A(D) of D is the vector space over the 2-element field GF'(2) = {0, 1} of all 
functions A+GF(2). Every vector of A(D) corresponds naturally to a subset 
of A, the set of those arcs to which it assigns one. We may think of A(D) as 
the set of all subsets of A made into a vector space: the sum of B,C C A, 

denoted BAC is their symmetric difference, i.e., BAC = BUC-—BNC. 

Observe that the zero vector of A(D) is 0; the sets {e;}, i = 1,2,...,m are 
linearly independent and every vector of A(G) is the sum of the corresponding 

singletons, thus, {e;}, 7 = 1,2,...,m form a basis of A(D) and dim A(D) = 
mM. 

Let B,C bea pair of vectors in A(D), where B = 3,e,; ABoe2 A... ABmem 
and C = ye1 A 72€24... AYmem, Bi, i € {0,1}. We write the scalar prod- 
uct 

(B,C) := ys Biri (mod 2). 

We say that B and C are orthogonal if (B,C) = 0. Observe that B and 
C are orthogonal if and only if |BNC| is even. For a pair of distinct subspaces 

S and F of A(D), we say that S and F are orthogonal if every vector of 
S is orthogonal to every vector of F. It follows from well-known results in 
linear algebra that 

dim S + dim F <m (10.1) 

for orthogonal subspaces S and F. 
In graph theory, some subspaces of A(D) are of special interest: the cycle 

space and the cocycle space. The cycle space of a digraph D = (V, A) isa 
subspace of A(D) consisting of arc sets B such that the degrees of all vertices 
in the subdigraph D(B) are even’. The cycle space is indeed a subspace of 
A(D): the sum of two vectors in the cycle space as well as the product of 
a coefficient in {0,1} with a vector in the cycle space belongs to the cycle 

' Recall that the degree of a vertex x in a digraph D is the sum d}(x) + dp(z), 
i.e. the degree of x in UG(D). 
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space. The cycle space is denoted by C(D); its name is justified by the fact 
that C(G) is generated by the oriented cycles of G. Indeed, if B is a vector in 
C(D), then D(B) contains an oriented cycle Z; B — A(Z) is also a vector of 
C(D); it remains to apply the induction on the cardinality of B. Later (see 
Theorem 10.1.4) we will show that, if D is strong, then C(D) is generated, in 
fact, only by directed cycles of D. 

For a connected digraph D = (V, A), a set B of arcs is a cocycle if D—B 
is not connected. The cocycle space C*(D) consists of all cocycles of G and 
the empty set. We leave as Exercise 10.2 to prove the following proposition 

(see Bondy and Murty [127] and Diestel [191]): 

Proposition 10.1.1 For a connected digraph D = (V, A), C*(D) is a sub- 
space of A(D). The cocycle space is generated by the cocycles of the form 

C(z)={zye AsyfAa}U{zre A:zAz}. 

Oo 

Using the facts that the cycle space of D is generated by oriented cycles of 

D and the cocycle space of D is generated by the cocycles C(x) together with 

linearity of the scalar product, it is easy to prove the following proposition. 

Proposition 10.1.2 For a connected digraph D, the cycle space and the 

cocycle space are orthogonal. Oo 

Now we are ready to prove the following important theorem on the cycle 

space and the cocycle space. 

Theorem 10.1.3 For a connected directed graph D, we have dimC(D) = 
m—n+1 and dimC*(D) =n-1. 

Proof: Let T be a spanning oriented tree of D. Recall that |A(T)| =n — 1. 
For an arc e in T, the set C. = A(D) — A(T) + € is a cocycle. Clearly, the 
cocycles C, are linearly independent. Hence, dimC*(D) > n — 1. If we add 

an arc e not in T to JT, we obtain a digraph T + e with a unique oriented 

cycle Z,. Since the set of oriented cycles Z, is a linearly independent set, we 

have dimC(D) > m—n+1. Hence, dimC(D) + dimC*(D) > m. 
On the other hand, by Proposition 10.1.2 and Formula (10.1), we have 

dimC(D) + dimC*(D) < m. Thus, dimC(D) + dimC*(D) = m and the 
formulae of this theorem are proved. Oo 

Interestingly enough, for strong digraphs some bases consist entirely of 
directed cycles as can be seen from the following easy result: 

Theorem 10.1.4 For a strong digraph D, the cycle space is generated by 

(directed) cycles of D. 
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Proof: By Theorem 7.2.2 and Corollary 7.2.3, D has an ear decomposition 

P,, P2,..., Pm—n4i, where P, is a (directed) cycle, and every P;, 1 > 1, 

is either a (directed) path which intersects with Ui_V (Pe) only at its 

end-vertices, or a (directed) cycle having only one vertex in common with 

Ui V (Px). Clearly, the subdigraph of D induced by Ui_,V (Px) has a cycle 

C; containing P;. Observe that the cycles Ci,...,Cm-—n41 are linearly inde- 

pendent. Since dim C(D) = m—n+1, the cycles Cy,...,Cm-—n+1 form a basis 
of the cycle space. Oo 

Recall that a transitive triple in a digraph D is a subdigraph of D, which 

is the non-strong tournament of order 3. For special classes of digraphs, one 

can find other bases. For example, Thomassen [709] proved the following two 

results: 

Proposition 10.1.5 If T is a tournament, then C(T) is generated by the 

transitive triples together with the hamiltonian (directed) cycles of T. 

Proof: Clearly, the cycle space of T is generated by oriented cycles of length 

3 (one may apply the result of Exercise 10.1). If T is not strong, but has 

a directed 3-cycle, then consider such a 3-cycle C = ryzz. Clearly, there is 

a vertex vu such that either v dominates each of x,y,z or is dominated by 

eachrot_ 2, y52.In either case, Ca=>| A(7,, \A-Al Ta, NACI.) where ula ais 
the transitive triple containing v and the arc uw. Hence, C(T) is generated 

by the transitive triples. 

Therefore, we may assume that T is strong. By Theorem 10.1.4 it suffices 

to prove that every (directed) cycle C = 2122...2%n_-:21 Of T is a sum of 

some transitive triples and hamiltonian cycles in T’. We prove it by induction 

on t = |V(T)| —|V(C)]. If t = 0, then the claim is trivial. Suppose that t > 0 
and v ¢ V(C). If u+C or Cov, then as above we can see that C is a sum of 

transitive triples. Otherwise, without loss of generality, we may assume that 

r1—+vU-+22. Hence, A(C’) = A(C’)A(A(C')AA(C)), where C’ = C[z2, x1 ]vz0. 
Note that A(C’)AA(C) is a transitive triple. Our proposition now follows by 
induction. oO 

Theorem 10.1.6 JfT is a 4-strongly connected tournament of order n, then 

C(T) is generated by (directed) cycles of lengths n and n — 1. 

Proof: Let arcs ry, yz, xz form a transitive triple R of T. By Exercise 6.16, 

the 3-strong tournament T — y has a hamiltonian cycle H through zz. We 
have’ 

A(R) = A(H)A[A(H)AA(R)}. 
Observe that the term in the brackets is the arc set of a hamiltonian cycle of 
T’. Hence, every transitive triple is in the space generated by cycles of length 
n —1 and n and the theorem now follows from Proposition 10.1.5. O 

We consider the following nice result, also due to Thomassen. This result 
is not directly on the cycle space but its proof exploits properties of the cycle 
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space. First we need the definition of a monochromatic subdigraph of a 2- 
arc-coloured digraph. Let D = (V, A) be a digraph and let f : A->{1,2}. A 
subdigraph D’ = D(A’) of D is monochromatic if f(a) = i for all a € A’, 
where 7 = 1 or 2. 

Theorem 10.1.7 /709] Let D be a strong digraph whose underlying undi- 
rected graph is 2-connected. Let arcs of D be coloured into two colours 1 and 
2 such that D has an arc of each colour. Then D has a non-monochromatic 
(directed) cycle. 

Theorem 10.1.7 follows from Theorem 10.1.4 and the next lemma. 

Lemma 10.1.8 [709] Let D be a 2-arc-coloured and non-monochromatic di- 
graph such that UG(D) is 2-connected. If a set of oriented cycles Gp gener- 
ates C(D), then Gp has a non-monochromatic oriented cycle. 

Proof: Suppose that every cycle of Gp is monochromatic. We show that 
this leads to a contradiction. Let x be a vertex of D incident to two arcs, 

say ry and zz, of different colours. Since UG(D) is 2-connected, D — x has 

an oriented (y, z)-path P. Clearly, P together with zy and zz forms a non- 

monochromatic oriented cycle C of D. Since Gp generates C(D), we have 

C=C,AC2A...AC,, 

where each C; is in Gp. Without loss of generality we may assume that each 

C;, is monochromatic and only the oriented cycles Ci,...,Cp,0<p<hk, are 

of colour 1. Hence the two sets of cycles C},...,Cp and Cp41,...,C, have no 

arc in common. Therefore the fact that C = Cj} AC,A...AC, implies that 

Q=C,A4...A4C, must be a proper non-empty subdigraph of C. So, Q is a 

non-trivial collection of oriented paths and Q € C(D), contradicting the fact 
that C(D) is a cycle space (some vertex in Q has odd degree). 0 

Applying Theorem 10.1.7, one can easily conclude that the problem to 

verify whether a 2-arc-coloured digraph has a non-monochromatic directed 

cycle is polynomial time solvable. It is interesting to compare this result with 

Theorem 11.2.2 asserting that the problem to verify whether a 2-arc-coloured 

digraph has a directed cycle, which alternates in colour, is ’P-complete. 

One may speculate that being non-monochromatic is more vague and thus a 

weaker property than being alternating. 

Several interesting results on tournaments whose proofs are based on the 
properties of the cycle space can be found in the paper [709] by Thomassen 

(see also [714]). 

10.2 Polynomial Algorithms for Paths and Cycles 

While it is ’P-complete to decide whether a digraph D,, of order n has a path 

or cycle with n vertices, it is not trivial to see for what functions J,(n) and 
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I,(n), one can verify in polynomial time whether D, contains a path (cycle, 

respectively) of length 1,(n) (1.(n), respectively). In particular, Papadimitriou 

and Yannakakis [141] conjectured that one can determine in polynomial time 

the existence of a path of length p;(n) = O(logn). Alon, Yuster and Zwick 

[16, 17] resolved this conjecture in affirmative. They also proved that one 

can check whether a digraph of order n has a C, in polynomial time as long 

as k = O(logn). In this section we will briefly consider certain elegant ideas 

behind algorithms designed in [16, 17]. Further developments on the topic can 
be found in [18] and in the references therein. Various algorithmic aspects on 
enumeration of short cycles are also discussed there. 

We start with a simple technical result on the expectation of a geometric 

random variable. This result can be found in many books on probability the- 

ory; we include its short proof for the sake of completeness. We use Prob(£) 

to denote the probability of the event EL. 

Lemma 10.2.1 Let 0 < p < 1 and let 11,22,... be a sequence of random 

boolean variables such that x; = 1 with probability p for each j > 1. A random 

variable v is defined as follows: for j > 1, v = 9 if and only if x; = 1 and 

C= == ee On nen. thevernectution 07 Vets op. 

Proof: The expectation of v equals 

Co > (2) CO 

S > i-Prob(v 0) es S| Prob(v a = Me —p)'-' =1/p. 
i=1 i=1 i=1 

el 

To design algorithms verifying the existence of paths and cycles, Alon, 

Yuster and Zwick [16, 17] introduced two methods: the random acyclic sub- 
digraph method and the colour-coding method. We consider first the random 

acyclic subdigraph method and then the method of colour-coding. In the rest 

of this section, we will follow [17]. 
Let D = (V,A) be a digraph with V = {uj,uo,..., un}. Let M = [mj] 

be the adjacency matrix of D, i.e. mj; = 1 if u;i>u; and m;; = 0, otherwise. 
It is well known (see Exercise 2.20) that the (2,7)th entry of the kth power 
of M is non-zero if and only if there is a (u;, u;)-walk of length k. However, 

many of (u;,u,;)-walks of length k can be with repeated vertices (and even 
arcs). Thus, one naturally asks how we can get rid of walks that are not 

paths or cycles. One such method is the random acyclic subdigraph 

method: we choose randomly a permutation 7 on {1,2,...,n} and construct 

the corresponding acyclic spanning subdigraph H of D by taking the following 

ALCS: Up (i)Un(j7) € A(H) if and only if uz(i)uz(7) € A and m(2) < m(J). Clearly, 
every walk of H is a path in D (no vertices can be repeated as H is acyclic). 

On the other hand, every path P with k arcs in D has a 1/(k + 1)! chance 
to be a path in H as well (Exercise 10.5). 

Let O(n”) be the complexity of boolean matrix multiplication (i.e. of 
the multiplication of two boolean n x n matrices). Due to Coppersmith and 
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Winograd [168], w < 2.376. Using random acyclic subdigraphs, one can prove 
the following: 

Theorem 10.2.2 /16, 17] Let D = (V, A) be a digraph that contains a path 
(a cycle, respectively) of length k. A path (a cycle, respectively) of length k in 

D can be found in expected time O((k +1)!-m) (O(k! log k-n”), respectively). 

Proof: To find a path of length k in D one can apply the following algo- 

rithm. Choose randomly a permutation 7 of {1,2,...,n} and construct the 

corresponding acyclic spanning subdigraph H of D as described above. Using 

the O(m)-algorithm of Subsection 2.3.2, find a longest path P in H. If the 

length of P is less than k, then repeat the above procedure. Otherwise return 

a subpath of P whose length is k. 

Since D contains P,, H has a path of length at least k with probability at 

least 1/(k + 1)!. Hence, by Lemma 10.2.1, the expected number of iterations 
in the above algorithm is at most (k + 1)!. Thus, the expected running time 

is O((k + 1)!m) as claimed. 
To find a cycle of length k in D one can apply the following algorithm. 

Choose randomly a permutation 7 on {1,2,...,n} and construct the corre- 

sponding acyclic spanning subdigraph H of D as above. By computing (in 

time O(log k-n”), see Exercise 2.21) the (k —1)th power of the adjacency ma- 
trix of H, we find all pairs of vertices which are end-vertices of (k — 1)-paths 
in H (see Exercise 10.6). If the terminal vertex of one of the paths dominates 

the initial vertex of the path in D, we construct the corresponding k-cycle 

and stop. If no k-cycle is found we repeat the above procedure. 

Clearly, the expected number of iterations in the above algorithm is at 

most k!. This implies the expected running time of O(k! log k-n’). O 

Now we turn our attention to a more powerful approach, the method of 

colour-coding. Let c: V->{1,2,...,k} be a colouring of the vertices of D. A 

path P in D is colourful if no pair of vertices of P are of the same colour. 

Lemma 10.2.3 Let D = (V,A) be a digraph and let c: V-{1,2,...,k} be 

a colouring of the vertices of D. A colourful P, in D, if one exists, can be 

found in time 2°(*)-m. 

Proof: Add to D a new vertex s of colour 0 that dominates all vertices of D 

and is dominated by no vertex. As a result, we obtain a digraph D’, which 

has a (k+1)-path starting at s if and only if D contains a path of length k. To 

find a path of length k +1 in D’ starting at s we use dynamic programming. 

Suppose that we have already found for each vertex v € V the possible sets 

of colours on colourful (s,v)-paths of length 7 as well as the corresponding 
paths (just one path for every possible set). We call such sets also colourful. 
Observe that for every v we have at most fe) colourful sets and (s,v)-paths, 
respectively. We inspect every colourful set C that belongs to the collection of 
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v and every arc vu. Let P(C) be the co: responding colourful path. If c(u) ¢ C, 

then we add C'Uc(u) (P(C)u, respectively) to the collection of colourful sets 

(paths, respectively) of u of cardinality (length, respectively) 7 + 1. Clearly, 

D' contains a colourful (k + 1)-path with respect to the colouring c if and 

only if the collection of colourful paths of length k + 1 for some vertex is not 

empty. The number of operations of this algorithm is at most 

k+1 

O (s«(" g ‘) m) = O((k + 1)2***m). 
1=0 

O 

The next lemma follows from Lemma 10.2.3 and is left as Exercise 10.8. 

Lemma 10.2.4 Let D = (V, A). be a digraph and let c: V-+{1,2,...,k} be 

a colouring of the vertices of D. For all ordered pairs x,y of distinct vertices 

colourful (x, y)-paths of length k —1 in D, if they exist, can be found tn total 

time 20(*) nm. oO 

Actually, for dense digraphs the complexity of this lmma can be improved 

to 20(4) .n” [17]. Clearly, Lemma 10.2.4 implies an 2°(*) -nm-algorithm to 
find a k-cycle in D. 

If P is a path of length k in D whose vertices are randomly coloured from 

set of k colours, then P has a chance of k!/k* > e~* to become colourful. 

Thus, by Lemma 10.2.1, the expected number of times to randomly generate 

k-colouring to detect P is at most |e*|. This fact and Lemmas 10.2.3 and 
10.2.4 imply the following: 

Theorem 10.2.5 (Alon, Yuster and Zwick) /16, 17] If a digraph D has 
a path of length k (k-cycle, respectively), then a path of length k (k-cycle, 

respectively) can be found in 20(K) am (2°) .nm, respectively) expected time. 

The algorithms mentioned in this theorem are quite simple, but unfortu- 

nately not deterministic. Fortunately, one can derandomize these algorithms 

to obtain deterministic algorithms with time complexity still linear in m. 

Observe that for a path P of length k in D = (V, A) many k-colourings of V 

are equally good or bad depending on P being colourful or not. This means 

that we do not need to consider all n* k-colourings of V to detect a path of 

length k in D; a subset S of colourings such that every k-path is colourful 

for at least one colouring of S is sufficient. In other words, we wish that for 

every k-set W of vertices there is a colouring from S that assigns vertices of 
W different colours. 

This is captured in the notion of a k-perfect family of hash functions from 

{1,2,...,n} to {1,2,...,k}. Schmidt and Siegel [653] following Fredman, 
Komlds and Szemerédi [277] gave an explicit construction of a k-perfect family 
from {1,2,...,n} to {1,2,...,k} in which each function is specified by b = 
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O(k) + 2log, logy n bits. Thus, the size of the family is 26 = 2°(*) log? n. 
The value of each of these functions on each specified element of {1,2,...,n} 

can be computed in O(1) time. Using this family, the algorithms of Theorem 

10.2.5 can be derandomized to obtain deterministic algorithms running in 
time O(2°(*)m log? n) and O(22\) mn log? n), respectively. Alon, Yuster and 

Zwick [16, 17] pointed out how to decrease each of the above complexities 
by the multiplicative factor of logn. They also showed how to derandomize 

some versions of algorithms mentioned in Theorem 10.2.2. 

10.3 Disjoint Cycles and Feedback Sets 

In this section we discuss several interesting non-trivial results on vertex- 

disjoint and arc-disjoint cycles. Actually, these results deal with some aspects 

of the following problem: given a digraph D, find the maximum number of 

vertex-disjoint (arc-disjoint) cycles in D. This problem itself is M’P-hard in 

both vertex and arc versions (see below). However, some very interesting 

sufficient conditions have been obtained for the existence of a large number 

of vertex-disjoint (arc-disjoint) cycles. 

We will use some additional notation and terminology. For a digraph D, 

the maximum number of vertex-disjoint (arc-disjoint) cycles is denoted by 

vo(D) (4(D)). In a digraph D, a set S of vertices (arcs) is a feedback ver- 
tex set (an feedback arc set) if D —S is acyclic. The minimum number 
of elements in a feedback vertex (arc) set of D is denoted by t9(D) (™(D)). 
Notice that the parameters 7)(D) and 7(D) have several practical applica- 
tions, one of the most important is testing electronic circuits (see Leiserson 

and Saxe [512]). An electronic circuit can be modeled by a directed graph by 
letting each (boolean) gate correspond to a vertex and the wires into each 

gate be modeled by arcs into the vertex corresponding to that gate. Finding a 

small set of arcs whose removal makes the resulting digraph acyclic can help 

reduce the hardware overhead needed for testing the circuit using so-called 

scan registers (see Kunzmann and Wunderlich [506]). 

10.3.1 Complexity of the Disjoint Cycle and Feedback Set 

Problems 

We start from the following simple, but quite useful result. 

Proposition 10.3.1 For every digraph D there exist digraphs D' and D" 

Such that 1(D) = %4(D'),7(D) = 71(D’), 1(D) = v(D") and 1(D) = 
T(D"). The digraphs D' and D" can be constructed from D in polynomial 
time. 

Proof: The digraph D” can be defined as D” := L(D). To construct D' sim- 
ply apply the vertex splitting procedure (see Subsection 3.2.4) to all vertices 
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of D. The reader is advised to verify that the equalities of this proposition 

indeed hold. Oo 

This proposition implies that the following problems are of the same com- 

plexity (up to a polynomial factor). 

The FVS problem: Given an integer k and a digraph D, verify whether 

T9(D) < k. 
The FAS problem: Given an integer k and a digraph D, verify whether 

™1(D) <k. 

Similarly the problem of deciding whether vp(D) > k is polynomially 

equivalent to the problem of deciding whether 1; (D) > k. 

Karp [474] was the first to prove the following theorem: 

Theorem 10.3.2 The FAS problem is NP-complete. o 

Gavril [306] proved that the FAS problem remains \VP-complete even for 

digraphs D with 5°(D) < 3 or line digraphs. 
Proposition 10.3.1 and Theorem 10.3.2 imply immediately that the FVS 

problem is NP-complete. Using Theorem 12.6.1 due to Bang-Jensen and 

Thomassen, we obtain the following stronger result: 

Theorem 10.3.3 /89] The FVS problem is NP-complete even for tourna- 

ments. Oo 

The FVS problem remains \’P-complete for digraphs D with 6°(D) < 2, 

planar digraphs D with 6°(D) < 3 (see Garey and Johnson [303]) and for 
line digraphs (see Gavril [306]). This problem, unlike the FAS problem, is 

NP-complete even for undirected graphs [303]. 
It is not surprising that the above mentioned decision problems for the 

parameters vp and 1; are also VV P-complete. 

Theorem 10.3.4 Given a digraph D and an integer k, it is Ne rarnlete 

to decide whether vo(D) > k (™(D) > k). 

Proof: By Proposition 10.3.1 it is sufficient to show this claim only for vp. 

A scheme of the proof of the assertion for vp is given in Exercise 10.9. oO 

10.3.2 Disjoint Cycles in Digraphs with Minimum Out-Degree at 
Least k 

It turns out that one of the sufficient conditions to guarantee the existence of 

a large number of vertex-disjoint cycles in a digraph D is that 6*(D) is large 
enough. Let f(k) be the least integer such that every digraph of minimum 

out-degree at least f(k) contains k vertex-disjoint cycles. The very existence 
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of f(k) for every k > 1 is not obvious. Thomassen [700] was the first to 
show this fact. He proved that f(k) < (k + 1)!. Bermond and Thomassen 
[115] conjectured that, in fact, f(k) = 2k —1.This holds for k = 1 as every 
acyclic digraph has a vertex of out-degree zero. This holds also for k = 2 (see 
Exercises 10.21 and 10.22). Alon [10] was the first to prove that the function 
f(k) is linear. He obtained the following result. 

Theorem 10.3.5 There exists an absolute constant C so that f(k) < Ck 
for all k. In particular, C = 64 will do. Oo 

We will not give a proof of Theorem 10.3.5 as it is somewhat tedious. 

However, we will prove a slightly weaker result, Theorem 10.3.8. This proof 

shows basic ideas involved in the proof of Theorem 10.3.5 in [10]. We leave 
as Exercise 10.23 the proof of the following corollary. 

Corollary 10.3.6 /10] Every digraph with minimum out-degree k has at least 

k?/128 arc-disjoint cycles. Oo 

For k-regular digraphs, the result of this corollary seems far from being 

sharp. Alon, McDiarmid and Molloy [13] conjectured the following: 

Conjecture 10.3.7 Every k-regular digraph contains (es) arc-disjoint cy- 

cles. 

This conjecture was verified for k < 3 in [13]. Now we formulate Theorem 
10.3.8. 

Theorem 10.3.8 /10] For k large enough, f(k) < (3+ 0(1))k log, k. 

For technical reasons, we prove this theorem not only for digraphs, but 

for directed pseudographs without parallel arcs. However, for shortness we 

will still use the term ‘digraphs’ in the rest of this subsection for digraphs 

with possible loops. 

Clearly, Theorem 10.3.8 holds for k = 1. Assume that Theorem 10.3.8 is 

true for all values up to some k and k + 1 is the minimum integer violating 
the inequality. Then, f(k + 1) > f(k) +4. Let D = (V, <A) be a digraph of 
minimum out-degree r, r = f(k+1)—1, such that D does not have k+1 vertex- 
disjoint cycles. We also assume that D has the minimum possible number of 

vertices and, subject to this property, the minimum size. By the definition of 

D, the out-degree of every vertex of D is exactly r and 6~(D) > 0. Moreover, 

D has no loop, since otherwise the digraph obtained from D by deleting 

a vertex with a loop cannot contain k vertex-disjoint cycles, showing that 

f(k+1) -2 =r-—1< f(k) —1, which is impossible as we saw above that 
f(kK+1) > f(k) +4. 

We proceed by proving certain properties of D formulated as lemmas. The 

proof of Lemma 10.3.11 exploits a probabilistic argument. The first lemma 

is due to Thomassen [700] and the next two to Alon [10]. 
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Lemma 10.3.9 [700] For every v € V, the subdigraph D(N~(v)) contains 

a cycle. 

Proof: Fix an arbitrary vertex v € V. Put H = D(N~(v)). It suffices to 
show that 6~(H) > 0. Assume that u € V(H) and d;,(u) = 0. Then, there is 
no vertex in D that dominates both u and v. This implies that the digraph 

D', obtained from D by first deleting the arcs with tail u except for uv and 

then contracting uv, has minimum out-degree r. (Notice that D’ may have 

a loop.) By the minimality of D, the digraph D’ has k + 1 vertex-disjoint 

cycles. These cycles can easily be transformed into vertex-disjoint cycles of 

D, a contradiction. 0 

Lemma 10.3.10 /10] We have |V| < k(r? —r +1). 

Proof: Put n = |V| and let G be the undirected graph with vertex set 
V in which a pair u and v of distinct vertices is adjacent if and only if 

there is a vertex in D that dominates both. Define m = n(5) and observe 
that the size of G is at most m (since every vertex of D has out-degree r). 
Therefore, as it is well known (see, e. 8. Berge [105, page 282]) G has an 

independent set of cardinality at least =". If this number is at least k + 1, 

then there is a set 21,...,2%%41 of independent vertices of G. This means 

that the sets N~(z1),... N ~ (2441) are pairwise disjoint. It now follows from 
Lemma 10.3.9 that D has k+1 vertex-disjoint cycles, a contradiction. Hence, 

man < k. This implies the inequality of Lemma 10.3.10. Oo 

Lemma 10.3.11 /10] We have k(r? —r + 2)(1— 445)" > 1. 

Proof: Assume that the inequality of this lemma is false and 

2 1 iP k(r* —r+2)(1 peer’ <1 

Assign independently to every vertex v € V acolouri € {1,2,...,k+1} with 

probability p = Ea Let V; be the set of vertices coloured 7. For each vertex 

v € V, let EH, denote the event that all out-neighbours of v are of colours 

different than that of v. Since every vertex of D has out-degree r we have 

Prob(£y) = (1 — p)". For i = 1,2,...,k +1, let F, denote the event that 

V; = 0. Then Prob(F;) = (1 — p)” < (1—p)"*!. Hence, by Lemma 10.3.10, 

k+1 

>. Prob(Ey) + da Prob(Fi) < n(1 —p)" +(k + 1)(1—p)"#} 
veEV 

< k(r? —r +1)(1—p)’ + k(1 — p)” 
=k(r?—r + 2)(1—p)" 

<ul 
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This implies that with positive probability each D(V;) is non-empty and 
has a positive minimum out-degree, and hence possesses a cycle. Thus, there 
is a choice of Vj,...,Vk41 giving k + 1 disjoint cycles in D, a contradiction. 

O 

Conclusion of the proof of Theorem 10.3.8: Lemma 10.3.11 implies that 

k(r? —r + 2) > e?/(R+1), 

Hence, for k large enough, f(k) < f(k+1)—l=r < (3+0(1))klog, k. Thus, 
Theorem 10.3.8 is proved. 0 

10.3.3 Feedback Sets and Linear Orderings in Digraphs 

We mentioned above that in many applications one wishes to find a minimum 

(cardinality) feedback arc set. Observe that, if A’ is an arbitrary feedback arc 
set, then by definition D — A’ is acyclic and hence has an acyclic ordering 

U1, U2,---,Un- With respect to this ordering every arc vjv; € A — A’ satisfies 

a < j. Hence, from the algorithmic point of view, finding a minimum feedback 

arc set in D is equivalent to finding an ordering uj, u2,...,Un of V which 

maximizes (minimizes) the number of forward arcs (backward arcs); an arc 
uju; is forward with respect to the above ordering if i < j, otherwise u;u,; 
is backward”. This again is easily seen to be (algorithmically) equivalent 
to finding an acyclic subdigraph with the maximum number of arcs in D 

(Exercise 10.14). The latter problem is known as the acyclic subdigraph 

problem. 

To illustrate the definitions above and to gain some understanding of 
difficulties in studying the problems above, let us consider the class of tour- 

naments. 

For a tournament T’, let y(T') be the size of an acyclic subdigraph of T of 
maximum size. Fixing an arbitrary ordering u,...,Un of vertices in T, we 

see that the number of forward arcs plus the number of backward arcs equals 

(ot By replacing the ordering wi, u2,...,Un by Un, Un-1,.-., U1 if needed, 

we obtain that 7(T) > n(n—1)/4. One may guess that we can always find an 
acyclic subdigraph of T of size exceeding n(n — 1)/4 by a significant number, 

say, en(n — 1)/4, where € is an absolute positive constant not depending on 
n. However, this is not true due the following: 

Theorem 10.3.12 For every n > 3, there exists a tournament T of order n 

such that y(T) < n(n — 1)/4+ /n? log, n/2. 

Proof: Consider a random tournament T;, on vertices 1,2,...,n, i.e., a tour- 

nament chosen randomly from the set of all tournaments on 1,2,...,n. Ob- 

serve that for every pair i # j € {1,2,...,n}, 17 € A(T,) with probability 

Lj2. | 

? Clearly, the set of backward arcs form a feedback arc set. 
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For every pair i < j € {1,2,...,n}, define the random variable 2;,; by 

a1 ize AG) 
745 “~ ) _1 otherwise. 

Let N = (3). With respect to the ordering 7 = 1,2,...,n, the number of 

forward arcs minus the number of backward arcs equals 

Se Lig =: SN. 

1<i<j<n 

Then, E, := {|Sn| > a} denotes the event that, in one of the two orderings 

n = n(1),7(2),...,7(n)(= 1,2,...,n) and m* = x(n), a(n — 1),...,7O)(= 

n,n —1,...,1), the number of forward arcs exceeds n(n — 1)/4 + a/2. On 

the other hand, Sy is the sum of (3) random independent variables taking 

values +1 and —1, each with probability 1/2. By Corollary A.2 in [14], 

Prob(|Sy| >a) < 2e7? /24), (10.2) 

for every positive number a. 

Observe that the event FE that for at least one permutation of 1,2,...,n, 

the number of forward arcs exceeds n(n — 1)/4+a/2 equals the union of the 
events E, for all permutations of 1,2,...,n, whose total number is n!. Put 

a= \/n3 log, n. Applying (10.2) we obtain 

Prob(E) < 2n! exp(—n log, n) 

<2 

<1 

for every n > 3. This means that with positive probability the event E does 

not hold, i.e. for every permutation of 1,2,...,n, the number of forward arcs 

does not exceed n(n — 1)/4+ \/n? log, n/2. By the definition of T;,, it follows 
that there exists a tournament of order n with the above-mentioned property. 

O 

A slightly better result was obtained by de la Vega in [186] who proved 
that ,/log, n in the inequality of Proposition 10.3.12 can be replaced by a 

constant. 

One may also consider weighted versions of the problems above. Each 

arc is assigned a non-negative real valued weight and the goal is to find a 

feedback arc set of minimum total weight (respectively, an acyclic subdigraph 

of maximum weight). The weighted version of the acyclic subdigraph problem 

is known as the linear ordering problem. It arises naturally in the study 

of interactions between various sectors of an economical system (see Reinelt 

[631] and also Funke and Reinelt [284] and Grétschel and Jiinger [337]). 
For the linear ordering problem there is a very easy way to obtain an 

ordering which achieves at least half of the optimum value of an ordering. 
The proof of the following proposition is an easy exercise (Exercise 10.15). 
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Proposition 10.3.13 Given any weighted digraph D = (V,A,w), in time 

O(m) one can find an acyclic subdigraph D' = (V, A') of D such that w(A’') > 
w(A)/2. Oo 

This proposition implies that there exists a polynomial 2-approximation® 

algorithm for the linear ordering problem, since w(A)/2 < w(A’) < w(A,) < 
w(A), where w(A,) is the optimum weight. 

Note that although the linear ordering problem and the feedback arc set 

problem are equivalent problems from the algorithmic point of view, the ap- 

proximation algorithm above cannot be used as a 2-approximation algorithm 

for the feedback arc set problem as well. The reason is that the optimal or- 

dering may have all or almost all arcs in the right direction (implying the 

number 7, is close to zero) whereas the ordering above may still have as little 

as half the arcs in the right direction. In fact, approximating the number 7 

seems to be very difficult and so far no c-approximation algorithm is known 

for any constant c. The following best known approximation guarantee for 

the feedback arc set problem is due to Seymour [665]. 

Theorem 10.3.14 There exists an O(lognloglogn) approzimation algo- 

rithm for the feedback arc set problem. 0 

For a detailed account on approximating the number 7; of a directed 

multigraph we refer to the chapter [671] by Shmoys. Another approximation 

algorithm for a generalization of the feedback arc set problem (as well as the 

feedback vertex set problem) is described by Even, Naor, Schieber and Sudan 

[227]. 
While for arbitrary digraphs the feedback arc set problem is W’P-hard (see 

Theorem 10.3.2), for planar digraphs the situation is quite different (unless 

P =NP) due to the following result by Lucchesi: 

Theorem 10.3.15 [526] The feedback arc set problem is polynomially solv- 

able for planar digraphs. 

We give a proof of Theorem 10.3.15 below. First we need the definition 

of the dual of a plane directed multigraph. Let G = (V,E) be a planar 

pseudograph and let F be the set of faces of G (with respect to the fixed 

planar embedding of G). Let G* be the pseudograph which has a vertex v; 

for each face f; € F and for every edge e € E such that e is on the boundary 

of faces fi, f;, the two vertices v;,vj; corresponding to fi, f; are joined by an 

edge‘. In general G* contains parallel edges and may also contain loops. For 

3 For a minimization problem M, an algorithm A is an f(n)-approximation al- 

gorithm if, for every instance of M of size n, A finds a solution whose value p 

satisfies > < f (n), where p* is the optimum value. 

4 Note that, if e is not part of the boundary of a facialcycle, then f; = f; and we 

get a loop at uj. 
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plane directed pseudographs we can also define a dual called the directed 

dual. This is the same as above but now the orientation of the arc between v; 

and v; is always chosen such that the arc crosses the original arc e from left 

to right (here left means the left side when we traverse e from its tail to its 

head). See Figure 10.1 for an example of the dual of a directed multigraph. 

(a) (b) 

Figure 10.1 (a) A plane directed multigraph D; (b) the directed dual D* of D 
drawn on top of D. White circles indicate the vertices of D™ and thin arcs are arcs 
of D*. Fat arcs indicate arcs of D. 

If D = (V, A) is a plane directed multigraph and D* is its directed dual, 
then it is easy to see that D* is also planar (Exercise 10.10). In fact, we have 
that (D*)* is isomorphic to the converse of D (Exercise 10.11). 

Proof of Theorem 10.3.15: Let D be a planar directed multigraph and 

assume that D is embedded in the plane with directed dual D*. Clearly we 

may assume that UG(D) is connected since otherwise we just consider each 

connected component separately. 

We prove that the size of a minimum feedback set of D is equal to the 

minimum size of a dijoin of D (see the definition of a dijoin in Section 7.15). 

Recall from Section 7.15 that this is also the minimum number of arcs whose 
contraction results in a strongly connected directed multigraph. 

If we delete an arc a of D the effect on the dual will be the same as if 

we contract the corresponding dual arc a* (the one crossing a from left to 

right). If C is a facial cycle of D, then the vertex v corresponding to C' has 

all arcs directed into it or out of it (depending on whether the orientation of 

C is clockwise or anti-clockwise). Thus in D* the arcs incident with v form a 

directed cut (recall the definition of a directed cut from Section 7.15) in D* 
implying that D* is not strong. 

Conversely, if D* is not strongly connected then let H be an initial strong 

component (that is, there is no arc from V — V(H) to V(H) in D) of D*. 
Now it is not difficult to see that the arcs of D corresponding to the directed 
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cut (V(H),V —V(H)) in D* (which is non-empty since D is connected) form 
a directed cycle (Exercise 10.12). Thus we have shown that D has a directed 
cycle if and only if D* is not strongly connected. Furthermore, deleting arcs of 

D until we obtain an acyclic directed multigraph is equivalent to contracting 

arcs of D* until we obtain a strong directed multigraph. This shows that 

the size of a minimum feedback arc set of D equals the size of a minimum 

directed join in D*. Now it follows from Corollary 8.8.10 that we can find 

the feedback number (and a minimum feedback arc set) of D in polynomial 
time. Oo 

Our arguments above imply the following: 

Corollary 10.3.16 For a planar digraph D, 4,(D) = ™4(D). oO 

10.4 Disjoint Cycles Versus Feedback Sets 

In this section, we study relations between the parameters vp and 1;, on one 

hand, and parameters 7) and 7 on the other hand. We state the famous 

Younger’s conjecture and present an overview of the proof of this conjecture 

by Reed, Robertson, Seymour and Thomas. Some (still) open conjectures and 

problems are mentioned as well. 

10.4.1 Relations Between Parameters v; and 7; 

Clearly, for every digraph D, vp(D) < (D) and it is easy to find an infinite 
family of digraphs D for which the two parameters are not equal. The same is 

true for the parameters 79,71. Furthermore, we obviously have v;,(D) < 7;(D) 

for i = 1,2. It is easy to construct an infinite family of digraphs D such that 

Yo(D) < t(D) (Exercise 10.19) and thus, by Proposition 10.3.1, an infinite 
family of digraphs D such that 1,(D) < ™(D). 

On the other hand, there are families of digraphs for which the last two in- 

equalities become equalities. Szwarcfiter [686] described a family of digraphs, 

D for which vo(D) = 19(D). His family generalizes two families introduced 
by Frank and Gyarfas [267] and by Wang, Floyd and Soffa [732]. Szwarcfiter 
[686] also provides polynomial algorithms to recognize his family of digraphs 
and to find k-cycle factors and feedback vertex sets of cardinality k, where 

k = 1o(D) = 70(D). We have already seen that planar digraphs D satisfy 
1,(D) = ™(D). Seymour [666] showed that the same result holds for a spe- 
cial family of eulerian digraphs. Another class of digraphs with the same 

property was considered by Ramachandran [620]. 

Even though not always v;(D) = 7;(D), i = 0,1, in which case 7;(D) 
exceeds v;(D), Younger [750] conjectured that the former is bounded by a 
function of the latter®. In other words, he conjectured that for every k, there 

® The existence of to(2) was conjectured earlier by Gallai, see [626]. 
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exists a (least) natural number to(k) (t1(k), respectively) such that for ev- 
ery digraph D the following holds: either D contains k vertex-disjoint (arc- 

disjoint, respectively) cycles or D has a feedback vertex (arc, respectively) 

set of cardinality at most to(k) (t1(k), respectively). By Proposition 10.3.1, 
the validity of the ‘vertex’ version of Younger’s conjecture implies that the 

‘arc’ version holds and vice versa. Moreover, Proposition 10.3.1 implies that, 

if the functions to(k) and t,(k) exist, then they are equal (Exercise 10.20). 
Younger’s conjecture was completely settled recently by Reed, Robertson, 

Seymour and Thomas [626]. We discuss their solution in the next subsection. 
In the rest of this subsection we consider the parameters 1, and 7, for the 

class of tournaments. 

Even for a tournament T, the parameters v;(T) and 7,(7') do not always 
coincide. By the proof of Theorem 10.3.12, for every n > 3 a random tour- 

nament T;,, with n vertices, with. probability tending to 1 as n-+o0, has at 

least n(n — 1)/4 — \/n? log, n/2 arcs in a feedback arc set of T. On the other 

hand, it follows from a result by Chartrand, Geller and Hedetniemi [144] that 
Tn has at most |#|25+]|] < $($) arc-disjoint cycles (each cycle has at least 
three arcs). Isaak conjectured the following: 

Conjecture 10.4.1 /446] If T is a tournament which has a minimum feed- 

back arc set A such that T(A) is a transitive subtournament of T, then (T) 
and 7(T) coincide. 

In [446] Isaak posed the following problem. Note that, if the answer to 

the problem is yes, then this implies Conjecture 10.4.1. 

Problem 10.4.2 Suppose T is a tournament having a minimum feedback 

arc set which induces an acyclic digraph with a hamiltonian path. Is it true 

that the mazimum number of arc-disjoint cycles in T equals the cardinality 

of a minimum feedback arc set of T ? 

It is easy to see that a minimum feedback arc set of a given digraph 
must induce an acyclic subdigraph of D (Exercise 10.16). The next result 
by Barthélémy, Hudry, Isaak, Roberts and Tesman implies that every acyclic 
digraph arises as a minimum feedback arc set of some tournament. 

Theorem 10.4.3 /95] Let D be an acyclic digraph. Then there exists a tour- 
nament T containing D as a subdigraph such that the arcs of D form a min- 
imum feedback arc set in T. oO 

The following conjecture is due to Bang-Jensen and Thomassen. 

Conjecture 10.4.4 /89] The feedback arc set problem is NP-hard for tour- 
naments. 

We point out that the feedback vertex set problem is ’P-hard for tour- 
naments by Theorem 10.3.3. 
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10.4.2 Solution of Younger’s Conjecture 

The vertex and arc versions of Younger’s conjecture were proved for various 

families of digraphs including the families mentioned above. McCuaig [559] 

proved the existence of to(2) by characterizing intercyclic digraphs, i.e., 
digraphs D for which v9(D) < 1. Moreover, he established that to(2) = 3. 

Reed and Shepherd [627] proved the vertex version of Younger’s conjecture 
for planar digraphs using a result of Seymour [665]. The result of Reed and 

Shepherd combined with a result of Goemans and Williamson [323] implies 

that t?4(c) = O(c), where t?4(c) is the function to(c) restricted to planar di- 

graphs. Finally, Younger’s conjecture was completely settled by Reed, Robert- 

son, Seymour and Thomas [626]. In this subsection, we give a scheme of their 
proof. In particular, we provide a complete proof of perhaps the most inter- 

esting lemma in [626]. 
One of the important tools in the proof in [626] is the following well-known 

Ramsey theorem [621]. 

Theorem 10.4.5 (Ramsey) For all integers q,l,r > 1 there exists a (min- 

imum) integer Ri(r,q) & 0 so that the following holds. Let Z be a set of car- 

dinality at least Ri(r,q) and let every l-subset of Z be assigned a colour from 

{1,...,q}. Then there exist an r-subset S of Z and a colour k € {1,...,q} 
so that every l-subset of S is of colour k. Oo 

Some readers may be more familiar with the graph-theoretic special case 

of this theorem. For every pair of natural numbers q,r there exists an integer 

R2(r,q) > 0 so that every g-edge-coloured complete graph of order at least 

R2(r,q) has a monochromatic complete subgraph of order r. 

We start describing the scheme of the proof of Younger’s conjecture by 

the following lemma whose proof is left as Exercise 10.24. 

Lemma 10.4.6 /626] Let c > 1 be an integer such that to(c — 1) ezists. Let 

D be a digraph with vo(D) < c and let T be a feedback vertex set of D of 

cardinality T9(D). Suppose U,W are disjoint subsets of T both of cardinality 

r, where r > 2to(c — 1). Then there is an r-path subdigraph of D from U to 

W, which contains no verter in T —- (UUW). Oo 

Let CL = P, U...U Py be a k-path subdigraph in a digraph D and let 

u; (w;) be the initial (terminal) vertex in Pj, i = 1,...,2. We say that 

CL links (u1,...,U%) to (wi,---,w,) and £ is from fata, oes Uh eto 

TUG, = => Wk t- 

The following lemma was proved by the authors of [626] in joint work with 

Alon. Its proof uses Ramsey’s theorem as well as Theorem 5.2.3 of Erdés and 

Szekeres. 
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Lemma 10.4.7 Let c > 2 be an integer such that to(c — 1) exists, and let 

k > 1 be an integer. Then there exists an integer t > 0 (depending on k) so 

that the following holds. If D is a digraph with vo(D) < ¢ and T(D) > t, 

then there are distinct vertices u1,...,Uk,W1,---,Wk Of D and a pair of k- 

path subdigraphs L,, £2 of D so that 

G) Ly Winks (Uj yt) £0 (Wi, 24 We), 
(ii) Lo links (w1,..., Wx) to either (u1,...,UxR) or (uz,---, U1), 

(iii) every (directed) cycle of £1 U La meets {uy,..., Uk, Wi,---,Wk}- 

Proof: Let | := (k — 1)? +1, r := max{2to(c — 1), (k + Yl}, g:= (+ 1)’, 
and t := R,(r,q) +1, where R;(r,q) is as in Theorem 10.4.5. Then r > / and 
t > 2r as clearly R;(r,q) > 2r—1. We will show that this choice for t satisfies 

the lemma. Let D be a digraph satisfying vo(D) < ¢ and t(D) > t. Choose 
a feedback vertex set T of D of cardinality 79(D) and an l-subset U of T. Let 

Z = tay, 29). iz} ee Ue Dns AA pee) 
For each X C Z, with X = {zj,,..., Zi, } where 11 < ... < t)x); we put 

Xm (Zip paces tip) and X (h) = aepfori him ei) 20): 
Let X be an I-subset of Z. If there is an l-path, subdigraph £;(X) in 

D from U to X containing no vertex in Z — X, then there is a permu- 

tation (u;,...,u,) of the vertices of U so that £,(X) links (uwi,...,u) to 
X, and we put pi(X) := (w,...,u); if no such path subdigraph exists we 

put pi(X) := @. Similarly, if there is an /-path subdigraph £2(X) from X 
to U that links X to (w,,...,w ,) containing no vertex in Z — X, we put 

p2(X) := (wi,-.., wz); if no such linkage exists we put po(X) := @. We assign 
to X the colour (p;(X),p2(X)). Clearly, there are q possible colours (gq is 
defined in the beginning of this proof). By Theorem 10.4.5, there exist an 

r-subset S of Z and a colour (u,w) such that every l-subset X of S is of 
colour (u, w). 

We claim that both u and w are non-empty. Indeed, suppose that u = @ 

and choose an r-set U' such that U C U' C T—S. By Lemma 10.4.6 there is an 

r-path subdigraph L' in D from U' to S containing no vertex in T—(U'US). 
The path subdigraph CL’ includes a path subdigraph from U to some X C S 

having no vertex in T — (UU X). Thus, u = p,(X) # 9. Analogously, one 
proves that w # 0. 

Let u := (u1,...,u) and w := (wi,...,w;) and let £L1(X), £L2(X) be the 
corresponding linkings. We have already established that for every I-subset 

X of ,S, £1(X) links u to X and £L3(X) links X to w. 
For 1 = 1,...,1 define j; as follows: w;, = uj. By the definition of / and 

Theorem 5.2.3 of Erdos and Szekeres, there are 1 < i; < ig <... < ip < 

| so that the sequence Jj,,Ji.,---,Ji, either increases or decreases. Define 

(i1,..-,%,) to be (9:,,..., Ja, ) in the first case and (j;,,...,9:,) in the second. 
Hence ty <.tna ite 
_ Let G := {S(I),S(2l),...,S(kl)}. Choose an l-subset X of S so that 
S(hl) = X (tq) for h ="1)2. ky Since Li (7) links (ay, nae) tor X ait ine 
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cludes a path subdigraph CL, linking (u;,,...,ui,) to G. Moreover, the only 
vertices of T in £L, belong to U UG. 

Analogously choose an I-subset Y of S so that S(hl) = Y(t.) for h = 
1,...,k. Since £2(Y) links Y to (wi,..., wz), it includes a path subdigraph L5 
linking G to (wi oe » Wit). Observe that (wy tN: Wit ) is either (u;,,..., Ui, ) 

or (ui,,---,Ui,). Moreover, every (directed) cycle in L; U Lz meets T (since 

T is a feedback vertex set), and the only vertices of T in V(L, U L2) are 

Ui,,---, Ui, and the elements of G; and so L,, Lo satisfy the lemma. O 

A digraph D is bivalent if, for every v € V(D), dt(v) = d~(v) € {1,2}. 
The following lemma is the most technically involved basic result in [626]. 

Lemma 10.4.8 For every integer c > 1 there exists k > 0 such that, for 

every bivalent digraph D, if there exists a pair of k-path subdigraphs L, L2 

in D so that each path of Li meets each path of Lo and Ly U Le has no 

(directed) cycles, then vo(D) > c. Oo 

Using this lemma and Theorem 10.4.5, one can prove the following: 

Lemma 10.4.9 For every integer c > 1 there exists k > 0 so that the follow- 

ing holds. Let D be a digraph and let uy,...,up,Wi,..., Wz be distinct vertices 

of D. Let £1, £2 be path subdigraphs in D linking (ui,...,ux) to (wi,..., We) 

and (wi,..., Wx) to one of (ui,..., Uk), (UR,---, U1), respectively. If every (di- 

rected) cycle of L; UL meets {tu,..., UR, W1,---,We}, then(D)>c. O 

Theorem 10.4.10 (Reed, Robertson, Seymour and Thomas) /626/ 
For every integer c > 1 there exists a (minimum) integer to(c) such that, for 
every digraph D with vo(D) <c, we have T(D) < to(c). 

Proof: We use induction on c > 1. For c = 1, this theorem is trivially true. 

Assume that c > 2 and to(c — 1) exists. Let k be as in Lemma 10.4.9, and let 
t be as in Lemma 10.4.7. We prove that there is no digraph D with vop(D) < c 

and 7(D) > t — 1 (i.e., to(c) < t — 1). Suppose that D is such a digraph. 
By Lemma 10.4.7, there exist uw ,...,uxz,W1,..., We and L;, Ly as in Lemma 

10.4.7. This means, by Lemma 10.4.9, that v9(D) > c, a contradiction. O 

10.5 Application: The Period of Markov Chains 

Markov chains are a special type of stochastic processes, which have numerous 

applications in genetics, economics, sport science, etc. We will see in this 

section that the corresponding digraph cycle structure is of great importance 

to Markov chains. 

Let S;,S2,...,S, be all possible states of some system. The system is 

initially in a state S; with probability p, i = 1,2,...,n. At every step 
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the system moves from the state $;, which it is currently in, to a state Sj 

with probability p;; depending only on i and j. Clearly, for all 7,7, we have 

0.< pi; < 1 and et pij = 1 for every i = 1,2,...)n. The stochastic 

process, which we have under these conditions, is called a Markov chain 

(for more details on Markov chains, see e.g. Feller [234] and Kemeny and 

Snell [476])®. Let 7 = (p,...,p%), let p\*” be the probability of the 
system to be in state S; after the kth step, and let nk) = (p\*), A pe). It 

is well-known that the vector 7‘*) can be found as follows: {*) = 1(° PF, 
where P = [p;;]. However, this equality is difficult to use directly if we wish 

to know the probability distribution 7“) after a large number of steps. In 

fact, 7 = limp—oo 1) P¥ is often of interest (if it exists). 

To investigate when this limit exists and to see what happens when this 

limit does not exist, it is very useful to study directed pseudographs D as- 

sociated with Markov chains. The vertex set of D is {v1,...,Un} and the 
arc set is {ujv; : pij > 0,1 < i,7 < n}; D has no parallel arcs but may 

have loops. It is not difficult to see that for n—oo with probability tending 

to 1 the system will be in one of the stages corresponding to the vertices in 

the terminal strong components of D (once the system is in such a ‘vertex’ 

it cannot escape the corresponding terminal strong component.) This shows 

that it suffices to study only strong directed pseudographs D correspond- 

ing to Markov chains. When D is strong, the following parameter of D is 

of interest. The period p(D) of D is the greatest common divisor of the 

cycle lengths of D. If p(D) = 1, then it is well-known that the limit above 

does exist and, moreover, does not depend on the initial distribution 7). If 

p(D) > 2, then the situation is absolutely different since D has a quite special 

structure. Actually, if p(D) is even, then by Theorem 1.8.1 we obtain that 

D is bipartite. However, the following stronger assertion, which generalizes 

Theorem 1.8.1, holds’: 

Theorem 10.5.1 Jf a strong digraph D = (V, A) has period p > 2, then V 

can be partitioned into sets Vi, V2,...,Vp such that every arc with tail in V; 

has tts head in Vi41 for everyi =1,2,...,p, where Vpi1 = Vi. 

Proof: Let D = (V, A) have period p > 2. Every closed walk W of D, being 

an eulerian digraph, is the union of cycles (see Theorem 6.8.1); hence the 
length of W equals 0 modulo p. Let x,y be a pair of distinct vertices of D 

and let P,Q be a pair of distinct (x, y)-paths in D. We claim that the lengths 

of P and @ are equal modulo p. Indeed, let R be an (y,x)-path in D. Both 
P and Q form closed walks with R; hence our last claim follows from the 
remark above. 

® Some readers may find useful to consider Si,...,Sn as water containers, p) as 
the fraction of water in S; initially, and p;; as the fraction of water in S; to be 
moved to Sj in one step. We are interested in how the water will be distributed 
after a large number of steps. 

” We have been unable to trace the first paper, where this result was proved. Our 
proof of this theorem makes use of some results considered in previous chapters. 
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Since D is strong, it can be constructed from a cycle using ear composition 

(see Section 7.2). We start from a cycle C and in every iteration add to the 

current digraph H a path whose vertices apart from the end-vertices do not 

belong to H or a cycle with only one vertex in common with H. Initially, 

all sets Vj, V2,...,Vp are empty. We choose an arbitrary vertex xz in C and 

consider every vertex y in C; we put y in V; if the length of C[z, y] equals i 

modulo p. In the first iteration of ear composition, we add a path or cycle R 

to C. Let z be the initial vertex of R if R is a path or the only vertex of R in 

common with C if R is a cycle, and let z € V;. We consider every vertex y in 

R and put y in Vy4; if the length of R[z, y] equals i modulo p. Note that, if R 

is a path, then its terminal vertex z' will be put in the same set V;, where it 

has been already, since otherwise we could find a pair of (z, z’)-paths, whose 

lengths are not equal modulo p. We proceed with ear composition as above 

and in the end we will have V partitioned into Vi, V2,..., Vp such that every 

arc with tail in V; has its head in V;4; for every 2 = 1,2,...,p (by the way 

we have formed V;’s). Oo 

Clearly, when the period of the digraph of a Markov chain is larger 

than 1, the limit introduced above does not exist; instead the Markov chain 

moves ‘cyclically’. Theorem 10.5.1 shows that a strong digraph D of order 

n and period p > 2 is a spanning subdigraph of Cp[Kn,,-.-., Kn,], for some 
N,N2,...,Np Such that >°?_, n; = n. In particular, in terms of homomor- 

phisms, we have DC; (see Section 12.5). 

There are two algorithms to compute the period of a strong digraph in 

optimal time O(n+m). The first algorithm is by Balcer and Veinott [39] and 
based on the following idea. If, for a vertex 2 of d*(x) > 2, we contract all 

vertices in N*(x) and delete any parallel arcs obtained, then the resulting 

digraph has the same period as the original digraph by Theorem 10.5.1. 

Repeating this iteration, we will finally obtain a cycle C’ (see Exercise 10.25). 

Clearly, the length of C is the desired period. For example, the digraph H 

obtained from a 3-cycle and a 6-cycle by identifying one of their vertices 

after five iterations above becomes a 3-cycle (see Figure 10.2). The second 
algorithm is due to Knuth (see [29]) and based on DFS-trees. 

10.6 Cycles of Length k Modulo p 

The linear-time algorithms mentioned in Section 10.5 show that the problem 
to verify whether all cycles of a digraph are of length 0 modulo p for some p is 

polynomial time solvable. This problem has the natural ‘existence’ analogue: 

given a (fixed) integer p > 2, verify whether a digraph D has a cycle of length 
equal 0 modulo p. In this section, we consider this and the more general 

problem of the existence of cycles of lengths equal k modulo p. In Subsection 

10.6.1, we study the complexity results on these problems; Subsection 10.6.2 
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Figure 10.2 Illustrating the Balcer-Veinott algorithm. 

is devoted to some sufficient conditions for the existence of cycles of lengths 

equal k modulo p. 

10.6.1 Complexity of the Existence of Cycles of Length k Modulo 

p Problems 

We start our consideration from the following problem. Given a (fixed) inte- 

ger p > 2, verify whether a digraph D has a cycle of length equal 0 modulo 

p. The case of p = 2 of this problem is called the even cycle problem. 

The even cycle problem has numerous applications (see e.g. Robertson, Sey- 

mour and Thomas [643] and Thomassen [711] and the reference to further 
literature therein) and is related to several problems on permanents of matri- 

ces, so-called Pfaffian orientations of graphs, colouring of hypergraphs, etc. 

The complexity of the even cycle problem has been an open problem for quite 

some time: Thomassen [712] proved that the even cycle problem is polynomial 
time solvable for planar digraphs and Galluccio and Loebl [300] extended this 
result to digraphs, whose underlying undirected graphs do not contain sub- 

graphs contractible to either Ks or K3,3. Finally, independently McCuaig, 

and Robertson, Seymour and Thomas (see [643]) found highly non-trivial 
proofs of the following result: 
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Theorem 10.6.1 The even cycle problem is polynomial time solvable. O 

We are not aware of any paper determining the complexity of the problem 
to check whether a digraph has a cycle of length equal 0 modulo p for fixed 
p> 2. 

Problem 10.6.2 Is there a polynomial algorithm to check whether a digraph 
has a cycle of length equal 0 modulo p for fixed p > 2? 

The last problem can be naturally generalized to the problem to verify 

whether a digraph D has a cycle of length equal k modulo p for fixed k, p 

such that 0 < k < p, p > 2. We have considered the case of k = 0; the 

case of k > 0 was studied by Arkin, Papadimitriou and Yannakakis [29], who 

proved the following theorem (observe that the case of k = 1 and p = 2 is 

polynomial time solvable since one can check whether a digraph is bipartite 

in polynomial time): 

Theorem 10.6.3 Let k,p be a pair of fixed integers such thatO0 <k <p, p> 

2. The problem to verify whether a digraph D has a cycle of length k modulo 

p is NP-complete. 

Proof: Let D be a digraph and let k > 2. Choose k arbitrary arcs 

@,,@2,...,a% in D and replace every arc zy in A(D) — {aj,a2,...,ax} by 

an (z,y)-path of length p, whose intermediate vertices do not belong to D 
(and the intermediate vertices of all such paths are distinct). Clearly, the 
obtained digraph D’ has a cycle of length equal k modulo p if and only if D 

has a cycle through all arcs a;,a2,...,a,. For a fixed k > 2, the problem of 

the existence of a cycle through k given arcs in a digraph is NP-complete 

(see Proposition 9.2.1 and Theorem 9.2.3); hence this theorem is proved for 

k > 2. For k = 1, we choose a pair of arcs a, b, replace a by a path of length 2, 

b by a path of length p—1, and every c € A(D) — {a,b} by a path of length p 

such that all internal vertices of the paths are distinct and distinct from the 

vertices of D. Clearly, the obtained digraph D’ has a cycle of length equal 1 

modulo p if and only if D has a cycle through a and 0; the last problem is 

NP-complete as we remarked above. Oo 

Because of this theorem, the following result of Galluccio and Loebl [299] 

is of certain interest: 

Theorem 10.6.4 Letk, p be a pair of fixed integers such that0 <k < p, p> 
2. There is a polynomial algorithm to verify whether a planar digraph D has 

a cycle equal k modulo p. Oo 
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10.6.2 Sufficient Conditions for the Existence of Cycles of Length 

k Modulo p 

A digraph D = (V, A) is called even if, for every B C A, the subdivision of all 

arcs in B results in a digraph with an even cycle. A k-weak-double-cycle 

is a digraph which is defined recursively as follows (see Figure 10.3): 

\ 

“eee 
Figure 10.3 The 5-double-cycle and a 5-weak-double-cycle. 

1. The complete biorientation Ge of a k-cycle is a k-weak-double-cycle. 

2. If H is a k-weak-double-cycle and D is obtained form H by subdividing 

an arc or splitting a vertex, then D is a k-weak-double-cycle. 

It is easy to see that for odd k a k-weak-double cycle is even because it has 

an odd number of cycles and every arc is in an even number of distinct cycles 

(see Exercise 10.27). The following result is much more difficult to prove. 

Theorem 10.6.5 (Seymour and Thomassen) /667] A digraph is even if 
and only if it contains a k-weak-double-cycle for some odd k. Oo 

Galluccio and Loebl [301] have extended this result. They call a digraph 
D = (V,A) (k, p)-odd if, for every B C A, the subdivision of all arcs in B 
results in a digraph with cycle of length different from k modulo p. 

Theorem 10.6.6 /301] A digraph is (k,p)-odd if and only if it contains a 

q-weak-double-cycle, with (q — 2)k #0 (mod p). 0 

Using Theorem 10.6.5 and other results, Thomassen [711] proved the fol- 
lowing very interesting theorem: 

Theorem 10.6.7 (Thomassen’s even cycle theorem) If D is a strong 
digraph with 6°(D) > 3, then D is even. Oo 
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Koh [483] constructed an infinite family of digraphs D with 6°(D) > 2 and 
with no even cycle. Thomassen [702] strengthened this result by exhibiting, 
for every k > 2, a digraph Dx with 6°(D,) > k and with no even cycle. 
This implies that the strong connectivity requirement in Theorem 10.6.7 is 
necessary. Theorem 10.6.7 implies that every 3-strong digraph has an even 
cycle. Thomassen [705] pointed out that there exists a 2-strong digraph of 
order 7 that has no even cycle namely, the digraph in Figure 10.4. 

Figure 10.4 A 2-strong digraph with no even cycle. 

Thomassen [702] constructed infinitely many 2-strong digraphs that are 
not even. However, the following question is still open: 

Problem 10.6.8 /705] Are there infinitely many 2-strong digraphs with no 
even cycle? 

Theorem 10.6.7 was extended by Galluccio and Loeb! [301], who proved 
that every strong digraph D with 6°(D) > 3 contains a cycle of length dif- 
ferent from k modulo p, for every 1<k <p, p>3. 

Although we do not provide a proof of Theorem 10.6.7, we will prove 

Theorem 10.6.11 which implies a result weaker than Theorem 10.6.7, i.e. 

Corollary 10.6.12, but its assertion is not only on even cycles but also on 

cycles of length 0 modulo q(> 2). To prove Theorem 10.6.11, we need two 

lemmas; the first lemma is the famous Lovasz local lemma (cf. Alon and 

Spencer [14] or McDiarmid [560]). For an event E, FE means that E does not 
hold. 

Lemma 10.6.9 Let E,,...,E, be events in an arbitrary probability space. 

Suppose that each event E; is mutually independent of all other events except 

for at most d events, and that Prob(E;) < p for every i = 1,2,...,n. If 

ep(d+1) <1, where e is the basis of natural logarithms, then Prob(N_, E;) > 

0. Oo 

Lemma 10.6.10 /12/ Let D be a digraph and let q > 2 be an integer. Suppose 
that every vertex x of D is assigned a colour c*(x), an integer in {0,1,...,q— 
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1}, such that for every u € V(D) there exists an out-neighbour v with c*(v) = 

c*(u) +1 (mod q), then D contains a cycle of length 0 (mod q). 

Proof: Clearly, choosing an arbitrary vertex uo in V(D), we can find a 

sequence Uo,t1,... of vertices such that ujuiz1 € A(D) and c*(uizi) = 

c*(u;) + 1 (mod q) for every i > 0. Let s be the least integer such that 

uj = Us for some j < s. It remains to observe that the cycle ujuj+41i.-.Us is 

of length 0 (mod q). Oo 

The following result is due to Alon and Linial: 

Theorem 10.6.11 /12] For a digraph D = (V, A), if 

e(A{D) 6? (Dy iat fa” Ped (10.3) 

or if 

e(At(D)6-(D) + 1) - Wo ot a (10.4) 

then D contains a cycle of length 0 (mod q). 

Proof: Since (10.4) tranforrhs into (10.3) by replacing D by its converse, it 
suffices to prove that (10.3) implies that D has a cycle of length 0 modulo q. 

For every vertex u, delete dt(u) — 6*(D) arcs with tail u and consider 
the resulting digraph D’ = (V, A’). Assign to every vertex u of D’ a colour 

c(u), an integer in {0,1,...,qg — 1}, independently according to a uniform 

distribution. For each u € V, let E,, denote the event that there is no v € V 

with uv € A’ and c(v) = c(u)+1 (mod q). Clearly, Prob(£,) = (1—1/q)*" ©). 
It is not difficult to verify that each event E,, is mutually independent of all 

the events E,, except for those satisfying 

Nt(u)N(vUNt(v)) £0. 

The number of such v’s is at most A~ (D)6+(D) and hence, by our assumption 

(10.3) and Lemma 10.6.9, Prob(Quev £u) > 0. This means that there is a 
colouring c* such that for every u € V there exists av € V with uv € A’ and 

c*(v) = c*(u) +1 (mod gq). Now it follows from Lemma 10.6.10 that D has a 
cycle of length 0 modulo q. Oo 

An easy proof of the following corollary is left as Exercise 10.33. 

Corollary 10.6.12 Every k-regular digraph D with k > 8 contains an even 

cycle. oO 

We have seen above that no constant k can guarantee that a digraph 

of out-degree at least k contains an even cycle. This leads to the following 

natural question (raised by Erdés, see [702]): what is the smallest integer h(n) 
such that every digraph of order n and minimum out-degree h(n) contains 
an even cycle? In order to prove an upper bound for h(n) we need a result 

on hypergraph colouring. The following lemma is due to Beck [98]?: 

® Recently, Radhakrishnan and Srinivasan [618] improved the bound of this lemma 

to 0.7-2” ,/m/Inm. Hence, the bound of Lemma 10.6.14 can slightly improved. 
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Lemma 10.6.13 There exists an absolute constant d such that every m- 
uniform hypergraph with at most Ldmi/32™ | edges is 2-colourable. 0 

Lemma 10.6.14 /12] For every n > 2, 

1 
h(n) < logy n — 3 log, log, n + O(1). 

Proof: Let m > 2 be an integer and let d be a constant satisfying Lemma 

10.6.13. Suppose that 

n= |dm1/32™| (10.5) 

and let D = (V, A) be a digraph of order n and 6+(D) > m—1. Let H be 
the hypergraph on the set of vertices V, whose n edges are the sets N*[u] = 

N*t(u) Uw. Since every edge of H is of cardinality at least m, Lemma 10.6.13 

implies that H is 2-colourable. This means that there exists a vertex colouring 

c* : V-+{0,1} such that for every u € V there is v € N*(v) with c*(v) = 
c*(u) +1 (mod 2). Hence, by Lemma 10.6.10, D has an even cycle. Solving 

for m from (10.5) we obtain that 

1 
h(n) <m—1 < logy n — 3 log, log, n + O(1). 

O 

Clearly, if a digraph D contains cycles of length k and k + 1 for some k, 
then D has an even cycle. Deciding the existence of such cycles of consecutive 

length in a strong digraph as VP-complete (see Exercise 10.37). Furthermore, 

it is easy to construct digraphs of arbitrary high vertex-strong connectivity 

with no such cycles (Exercise 10.38). It would be interesting to find non- 
trival degree conditions (weaker than conditions implying pancyclicity, such 

as those in Section 6.5) which guarantee that a non-bipartite digraph has 

two cycles of consecutive lengths. See also Exercise 1.49 for another type of 

sufficient condition for the existence of two cycles of consecutive lengths. 

10.7 ‘Short’ Cycles in Semicomplete Multipartite 

Digraphs 

As we mentioned in Chapter 5 the hamiltonian cycle problem is NP-complete 

for arbitrary digraphs and polynomial time solvable for certain families of 

digraphs including semicomplete multipartite digraphs. In this section we 

consider the existence of ‘short’ cycles in semicomplete multipartite digraphs. 

By short cycles in a semicomplete p-partite digraph we mean cycles of length 

at most p. 

The cycle structure of semicomplete bipartite digraphs is quite well un- 

derstood due to Theorem 5.7.4 and Exercises 6.33, 6.34. The cycle structure 
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of semicomplete p-partite digraphs, p > 3, is less investigated especially for 

cycles of length more than p. In this section, we will consider results on cy- 

cles of length at most p. Most of the results on short cycles in semicomplete 

multipartite digraphs were actually obtained for multipartite tournaments. 

Therefore, we state them for multipartite tournaments. However, all of them 

can be immediately extended to semicomplete multipartite digraphs due to 

the following theorem of Volkmann. 

Theorem 10.7.1 [728] Let D be a strong semicomplete p-partite digraph of 

order n, p,n > 2, with a cycle C of length at least 3. Then D contains a 
Cad 

strong orientation containing the cycle C, if and only if D he nil oO 

Interestingly enough the analogue of this theorem does not hold for longest 

paths, see Exercise 10.39 (some relaxation of the analogue still holds, see 

Exercise 10.40). It is often more convenient to work with the following easy 

corollary of this theorem. 

Corollary 10.7.2 [728] Every strong semicomplete p-partite digraph, p > 3, 

contains a spanning strong oriented subgraph. Oo 

One of the most interesting results on the topic is the following theorem. 

Theorem 10.7.3 (Guo and Volkmann) /350] Let D be a strong p-partite 
tournament, p > 3, with partite sets Vi,...,Vp. For each i € {1,2,...,p}, 

there exists a verter v € V; belonging to an s-cycle of D for every s € 

{3:Anele ph 

Proof: It suffices to prove that V; has a vertex v which is on an s-cycle of 

D for every s € {3,4,...,p}. We proceed by induction on s. 

We will first show that D has a 3-cycle through a vertex in Vj. Let C = 

U1 V2 ...UzV, be a shortest cycle through a vertex, say v;, in Vj. Suppose that 

k > 4. By the minimality of k, v3 € Vi, since otherwise v3—v; implying the 

3-cycle v1 v23v; through a vertex in V,, a contradiction. This means that 

v4 ¢ Vi; without loss of generality assume that vg € V2. Since k > 4 is 

minimal and v3 € V,, we conclude that v4, i.e. k = 4, and vo € Vo. 

If there is a vertex x € V — (V; UV2) which dominates a vertex of C and 

is dominated by a vertex in C, then there exists 1 € {1,2,3,4} such that 

Vi41 ZY; (indices modulo 4), which implies that there is a 3-cycle through 
Vy Or V3, a contradiction. 

This’means that the set V(D)—(V,UV2) can be partitioned into sets S,, S2 
such that S2,>V(C)—S,. Assume without loss of generality that S, 4 9. 
Since D is strong there is a path from S; to C. Let P = 2%2...4%, be a 

shortest such path. Clearly, g > 3. If P has no vertex in S2, then one of the 

vertices 22,23 belongs to V; and the other to V2 (V —(S1;US2) C Vij UV2). By 

the minimality of P, 73-2, implying that 7122732, is a 3-cycle containing 

a vertex in V;, a contradiction. Therefore, P has a vertex in S2. By the 
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minimality of P and S.C, it follows that rj-1 € So. If q = 3, then v2, 220; 

is a 3-cycle, a contradiction. So, assume that q > 4. Since x,-2 cannot be 

in S; U S9, Zg-2 € Vi UVo. If ag-2 € Vi, we have V2—+Zq—2 implying that 

Lq—2%q—-1V2Lq-2 is a 3-cycle, a contradiction. Finally, if rJ-2 € V2, then 

U1 Lq—2%q-1V) iS a 3-cycle, a contradiction. We have shown that D has a 

3-cycle containing a vertex in V;. 

Suppose now that 3 < s < p and some vertex u; of V; is contained in a 

k-cycle for every k = 3,4,...,s. Assume, on the other hand, that 

no vertex of V; is in a k-cycle for any k = 3,4,...,s,s+1. (10.6) 

Let uju2...usu; be an s-cycle of D and let S be the union of partite 

sets of D not represented in C. We claim that there is no vertex in S, which 

dominates a vertex in C' and is dominated by a vertex in C. Indeed, if such 

a vertex existed one could insert it into C, a contradiction with (10.6). This 
means that S can be partitioned into sets $),52 such that S,+C—S}. As- 

sume without loss of generality that S, 4 @. Since D is strong there is a path 

from S; to C. Let P = yi y2...Yq be a shortest such path. Clearly, g > 3. 

Assume that P has a vertex of S2. Clearly, yg_1 € S2 and no other vertex 

of P is in So. If yg_o ¢ Vi, then yg—2yg-1C[usz, uilyg—2 is an (s + 1)-path 

containing u,, a contradiction with (10.6). Hence, yg_2 € Vi and u2Yyq-2. 

Now we see that u2yg—2Yq-1P[u4, U2] (or uiueyg—2Yqg-1t1, if s = 3) is an 

(s + 1)-cycle containing u;, a contradiction with (10.6). Thus, we conclude 
that P has no vertex of S». 

Assume that P contains a vertex y of Vi. Let | be chosen such that 

{y1, y2,---,yi-1} Vi = . Assume that g < s. Due to the facts that every ver- 
tex of C dominates y;, for every k = 3,4,...,s +1, and yi {yi, yo, ..., yi-2}, 

there is a k-cycle Cy containing parts of C and P; C, includes y; € Vi, a 

contradiction with (10.6). Therefore, g > s +1. Assume that 1 < s +1. Since 

yi—yi, for every i = 3,4,...,8 +1, we obtain that Plyi,y:]y1 is an i-cycle 
containing y,, a contradiction with (10.6). Thus, we conclude that | > s + 2. 
In the cycle C’ = Plyi, w]yi, the vertex y; dominates every vertex. Hence, for 
every i = 3,4,...,5+1 we can construct an i-cycle using part of the vertices 

of C’ including y, a contradiction with (10.6). 
Thus, P has no vertex in V,. Hence, u; dominates every vertex in P. If g > 

k+1, then ui Plyg—x, Yq|C[uk41, ui] would be an (s+1)-cycle containing uj, a 

contradiction with (10.6). Therefore, g < k. Since every vertex of C' dominates 

y1, PClug+1, Uk—gtily1 is an (s+1)-cycle containing u;, a contradiction with 

(10.6). 
Thus, the assumption (10.6) resulted in a contradiction. This proves our 

theorem. oO 

This theorem generalizes several other results on multipartite tourna- 

ments and (ordinary) tournaments. Three of them are Moon’s theorem on 

vertex pancyclic tournaments, Theorem 1.5.1, and the following extension of 

Theorem 1.5.1 by Gutin. 
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Corollary 10.7.4 [364] Let D be a strong p-partite tournament, p > 3, such 

that one partite set of D consists of a single verter v. Then for each k € 

{3,4,...,p}, D contains a k-cycle through v. oO 

By Theorem 10.7.1, Corollary 10.7.4 can be extended to semicomplete 

p-partite digraphs, p > 3. Theorem 10.7.3 generalizes the following assertion, 

due to Bondy, which was actually the first non-trivial result on cycles in 

multipartite tournaments. Again, Corollary 10.7.5 can be extended to semi- 

complete p-partite digraphs, p > 3. 

Corollary 10.7.5 [124] A strong p-partite tournament contains an s-cycle 

for every s € {3,4,...,p}. Oo 

The assertion of this corollary is the best possible in the sense that for 

every p > 3 there exists a strong p-partite tournament with no cycle of length 

more than p. The following example is due to Bondy [124]. Let H be a p 
partite tournament with partite sets Vi = {v},V2,...,Vp such that |V;| > 2 

for each 2 <i < p. If Va4u— Ul_, V; and V;>V; for 2<i<j <p, then H 
is strong but does not have a k-cycle for every k > p. 

Another interesting generalization of Moon’s theorem is due to Goddard 

and Oelermann [322]. 

Theorem 10.7.6 Every vertex of a strong p-partite tournament D belongs 

to a cycle that contains vertices from exactly t partite sets of D for each 

eae, 62, Di} im 

It is left as Exercise 10.41 to show that Theorem 10.7.3 is the best possible 

in the following sense: for every p > 3 there exists a strong p-partite tourna- 

ment 7 such that some vertex v of T is not contained in a k-cycle for some 

3 < k < p. If one wishes to consider only cycles through a given vertex of a 

multipartite tournament, one perhaps should sacrifice the exactness. This is 

illustrated by the following result due to Guo, Pinkernell and Volkmann. 

Theorem 10.7.7 [347] If D is a strong p-partite tournament and v an ar- 

bitrary vertex of D, then v belongs to either a k-cycle or a (k + 1)-cycle for 
every k € {3,4,...,p}. oO 

For regular multipartite tournaments Guo and Kwak proved the following 

much stronger result. Observe that the partite sets of a regular multipartite 

tournament are of the same cardinality. 

Theorem 10.7.8 [346] Let D be a regular p-partite tournament. If the car- 
dinality of the partite sets of D is odd, then every arc of D is on a cycle that 

contains vertices from exactly k partite sets for each k € {3,4,...,p}. 0 
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This theorem generalizes the corresponding result by Alspach [19] on reg- 

ular tournaments. The next theorem is another generalization of Alspach’s 
theorem. 

Theorem 10.7.9 /345] Let D be a regular p-partite tournament. If every arc 

of D is contained in a 3-cycle, then every arc of D is on a k-cycle for each 

k € {3,4,...,p}. Oo 

10.8 Cycles Versus Paths in Semicomplete Multipartite 

Digraphs 

For a digraph D, the numbers Ip(D) (Ic(D), respectively) denote the number 
of vertices in a longest path (cycle, respectively) of D. The existence of an 

acyclic semicomplete multipartite digraph containing a Hamilton path and 

a hamiltonian semicomplete multipartite digraph suggests that there are no 

relations between the lengths of longest paths and cycles apart from trivial 

ones. However, the situation becomes quite different when we consider strong 
semicomplete multipartite digraphs. Volkmann [730] conjectured that, if D 

is a strong semicomplete multipartite digraph then Ip(D) < 2-Ic(D) — 1. 

The example of Bondy from Section 10.7 shows that the bound on Ip(D) 

is sharp. Volkmann’s conjecture was settled in affirmative by Gutin and Yeo 

[382] (see Theorem 10.8.3). The aim of this section is to present an interesting 

proof given in [382]. However, we first state a more general conjecture of Volk- 

mann. Recall that a(D) denotes the cardinality of a maximum independent 
vertex set of D. 

Conjecture 10.8.1 /728] Let D be a strongly connected semicomplete mul- 

tipartite digraph with k(D) < a(D). Then k(D)lp(D) < (K(D) + 1)lc(D) - 
K(D). 0 

The condition k(D) < a(D) is given since every semicomplete multipar- 

tite digraph D with k(D) > a(D) is hamiltonian by Corollary 5.7.25 and 
thus the conjecture is not of interest for K(D) > a(D). Tewes and Volkmann 

[693] showed that the conjecture holds for K(D) = a(D) —1>1. 
ForjapathuP= xyz3 9-82, welet Pizia;|:= Pia} r;—1). 

Lemma 10.8.2 /382] Let D be a semicomplete multipartite digraph. Let 

Q1,Q2, ...,Q) be non-empty sets which form a partition of V(D) such that 

Qi>Q,; for every1 <i <j <1. Assume that |V(D)| > 1 and D(Q;) has a 
Hamilton path qiqi... Gax| for every i =1,2,...,1. Then, D has a (915 iq,))- 

path with at least |V(D)| —1+ 1 vertices. 
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Proof: We use the induction on !. Clearly the theorem holds when / = 1, so 

assume that | > 1. 

If |V(D) — Qi| > (J — 1) then, by the induction hypothesis, there is a 

(41, %9,_,|)-Path, D1P2--Pk, in D — Q; which cortains k > |V(D) — Qi| — (1 - 

1) +1 > 2 vertices. Since {px—1, Px}=>g, and pz—1 and px, belong to different 

partite sets, pe_1—>gi or py—q}. Therefore, the path pipe ..-psq,% --- qa,\> 

where s = k —1 or k, is of the desired type. 

If |V(D) — Qi| < (1 — 1), then clearly |Q;| > 1. Since gi=>{qj,q5} and qj 

and qi, belong to different partite sets, gi +g} or gig). Therefore, the path 

91.95 %5+1 -+- 4a)» Where s € {1, 2}, is of the desired type. Oo 

Theorem 10.8.3 [382] Let D be a strong semicomplete multipartite digraph 

and let | = lp(D) be the number of vertices in a longest path in D and let 

c = Ic(D) be the number of vertices in a longest cycle in D. Thenl < 2c—1. 

Proof: Let P = pip2..p) be a path in D of maximum length and let R = 

V(D) — V(P). Let zo = p and define S;, x; and y; recursively as follows 

Ce eee 
First let S} be a (pj, px)-path in D—V(P—{p,, px}), such that k is chosen 

as small as possible. Let 21 = px, let y: = p and let S; = S} — {x1, y1} (note 

that S; = @, by the maximality of 1). Now for i = 2,3,4,... let Sj be a 
(pt, Pe )-path in D({pz, pp} UR — (V(S1) UV (S2) U... UV(S;_1)), such that 
pe € V(P[zi-1,pi]) and pp € V(Plpi, z:-1[), and firstly k is chosen as small 

as possible, thereafter t is chosen as large as possible. Let also 7; = pr, yi = Pt 

and S; = Si — {z;,y;}. (Some paths 5S; can be empty, meaning that Sj is just 

an arc.) 
We continue the above process until 7; = p,. Let the last value of 7 found 

above be denoted by m (i.e. Zm = pi). Observe that the paths S; always 
exist as D is strong. Observe also that y; = p, and that T' below is a path in 

D: 

T= Yisil|[21, yo|O2F |£2,93\o3 5 -f imo Um om ene 

Letive: =P lcmytnci 1 orem ea end let Us ly eis) — 

{Y¥m—i+1,%m-—i—1} for + = 1,2,..,m — 1. Note that some of the U;’s (i = 

0,1,2,..,m—1) can be empty. Observe that V(T), Uo, Ui,..., Um-1 partitions 

the set V(P)UV(S,)U...UV(S,). Let Zo, Z1,..., Zm'—1 be the non-empty 

sets among Up, Uj,...,Um-1i, where the relative ordering has been kept (i.e. 

bie Ae Oo Z; = Uy and <9 then <7) Let By 29 U Ze MRIS 

and Bi = Z,;UZ3U...UZ,, where f (g, respectively) is the maximum even 

integer (odd integer, respectively) not exceeding m! — 1. 

If pip, then we are done (the cycle Pp; is of length /). Thus, we may 

assume that p; is not dominated by py. As tm = py, it follows from the way 

we constructed the paths above (always going as far back as possible) that 

p22 UZ2 U5. Znia1 Ut pi} (10.7) 
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Similarly, by the definitions of z;, y; and Sj, 

Marie UW 23 UI Zyl {p by t= 0) 1p; 7m" — 2. (10.8) 

ASH hoi). <6, Tm pc .V (1) and.m > m', we have 

|V(T)| > m' +1. (10.9) 

As V(T), Bo, Bi partitions the set V(P) UV(S1) U... UV(Sm), 

V(T)| + [Bol + [Bal > 1. (10.10) 
All Z;U{z;} are disjoint sets containing at least two vertices. Thus, there 

are at most //2 such sets. Hence, we obtain 

mo (10.11) 
Nl ~~ 

odd since the case of even m’ can n We only consider the case when m! i 

be treated similarly. 

If |Bo|+2 > ™++ then, by (10.7), (10.8) and Lemma 10.8.2, there is a path 
Wo from p; to p in D({p,,p,} U Bo) containing at least |Bo| + 2 — mitt +1 

vertices (to use Lemma 10.8.2 we take V(Qi) = {pi} U Zo, V(Q2) = Za, 
tetany V (Q(m'-1)/2) SST Sa: V (Q(m'+1)/2) = Zm-1 U {p;}). Analogously if 

|Bi| > mod then there is a path W; from p; to p in D({pi,p,} U By) 

containing at least |B,|— m1 +1 vertices (this time we take V(Q1) = {pi}, 

V(Q2) = Z1, ---; V(Q(m'—1)/2) = Zm'—-2, V(Q(m'41)/2) = {pr}). 
We now consider the cases where none, one or two of the paths Wo and 

W, exist. 

Case 1 Both Wo and W, exist: The cycle Co = WoT contains |V (T)|+ 

|\V(Wo)| — 2 vertices (as p; and p; are counted twice). The cycle C; = WiT 
contains |V(T)| + |V(W,)| — 2 vertices. By (10.9) and (10.10), this implies 
the following: 

|V(Co)| + |V(C1)| = 21V(T)| + |V(Wo)| + |V(Wi)| — 4 
Z| (Mike Bolt 2a Sor 1) 
+ (|Bi|- ™=++1)-4 
= |V(T)| + (IV (T)| + |Bo| + |Bi|) — m' 
> |V(T)|+l-—m' 
>1+1. 

This implies that the largest cycle of Co and C contains at least [(/+1)/2] 
vertices. Thus, we are done. 

Case 2 Exactly one of Wo or W, exists: Let j € {0,1} be defined 

such that W; exists, but Wi_; does not exist. Using (10.10) and (10.11), and 

observing that either |Bo| + 2 — mth +1 <1 or |By| - moi +1< 1, we 
obtain the following (C; = W;T, as above): 
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IV(C;)| > |V(T)| — 2+ (Bol +2- 24 +) +(Al-™-+)-1 
> |V(T)| + |Bo| + |Bil-—m' +1 
>l-—m'+1 

>l-$+1 
> He. 

This is the desired result. 

Case 3 Neither Wo nor W, exists: This means that |Bo|+2—= +4 <0 

and |B,| — moat < 0. Thus, 

|V(T)| > |V(T)| + (\Bo| + 2 - ™#) + (|Bal - 2) 
= |V(T)| + |Bo| + |Bi| + 2 —m' 

>l—-m'+2 

eee oil 

If p; +p, then there is a cycle of length at least [4* +1] (using all vertices 

in V(T)). By (10.7), p, does not dominate p;, so we may assume that p; and 
p, are in the same partite set. We have S,, = 0 as otherwise S,,P is longer 

than P which is impossible, hence y,, and p are in different partite sets. If 

pi>Ym then either Plym,pi]ym or Plpi, yml|pi is a cycle with at least jo) 

vertices. Therefore, we may assume that y—p;. Then the cycle T[p,, ym|pr 

contains at least [42] vertices. We are done. Oo 

10.9 Girth 

Recall that the girth g(D) of a digraph D is the length of a shortest cycle in 

D. The girth is an important parameter of a digraph and has been studied 

in a number of papers especially with respect to its extreme values. 

Theorem 5.6.10 claims that, if the minimum degree of every vertex in a 

strong digraph D is large enough, then the length of a longest cycle in D is 

large as well. Caccetta and Haggkvist [139] conjectured a somewhat similar 

result for girth (with obvious replacement of upper bound to a lower bound): 

Conjecture 10.9.1 (Caccetta and Haggkvist) /139] Every digraph of 

minimum out-degree k and order n has a cycle of length at most [n/k]. 

This conjecture is trivially true for k = 1; it was proved for k = 2 by Cac- 

cetta and Haggkvist [139], for k = 3 by Hamidoune [396], and for k = 4 and 
5 by Hoang and Reed [430]. Hamidoune [395] proved that the conjecture is 
true for digraphs with transitive group of automorphisms. As an application, 

he showed in [395] that for a finite group G of order n and a subset S of G 
of cardinality s, there is a collection of at most [n/s]| elements of S whose 
product equals the unit element of G. For an arbitrary integer k > 1, we have 

the following: 
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Theorem 10.9.2 (Chvatal and Szemerédi) /163] There is a constant c 
such that every digraph of minimum out-degree k > 1 and order n contains 

a cycle of length at most [n/k] +c. Moreover, c < 2500. oO 

A straightforward refinement of the proof in [163] was used by Nishimura 
[593] to show that c < 304. For relatively small values of n/k, the following 
result of Chvatal and Szemerédi [163] is of interest. 

Theorem 10.9.3 Every digraph of minimum out-degree k and order n has 

a cycle of length at most [2n/(k + 1)]. 

Proof: By induction on n > 2. For n = 2 or 3 and k > 1, the digraph in 

question has either a 2-cycle or a 3-cycle and hence the claim holds. Let D be 

a digraph of order n > 4 and minimum out-degree k > 1. Since the size of D 

is at least kn, D contains a vertex v of in-degree at least k. If D has a 2-cycle, 

we are done. So, assume that D is an oriented graph. Let D’ be the digraph 

obtained from D by deleting the vertices of N~[v] = N~(v)U{v} and adding 
the new arc zy for every ordered pair z,y such that zy ¢ A(D), y € NT(v) 
and x dominates an in-neighbour of v. Clearly, D' is of order at most n—k-1 

and minimum out-degree at least k. By the induction hypothesis, D’ contains 

a cycle C of length at most 2(n — k — 1)/(k +1). Replacing each of the new 
arcs zy in C by the path ruvy, we obtain a closed walk C* in D. If C has 

precisely s new arcs, then v appears on C* exactly s times, and so C® is the 

union (see Exercise 1.12) of at least s cycles, whose total length is at most 

2(n —k —1)/(k +1) + 2s. Clearly, the shortest of these cycles has length at 
most 2n/(k +1). Oo 

Searching for new approaches to the Caccetta-Haggkvist conjecture, 
Hoang and Reed [430] came up with the following conjecture that implies 

the Caccetta-Haggkvist conjecture (Exercise 10.43). 

Conjecture 10.9.4 Every digraph D of minimum out-degree k contains a 

sequence C1, Co,..., Cy of cycles such that Wir C; and C; have at most one 

verter in common. 

In the case of k = 2, the last conjecture was proved by Thomassen [704]. 

Theorem 10.9.5 Every digraph D of minimum out-degree 2 contains a pair 

of cycles with precisely one vertex in common. 

Proof: By induction on n, the order of D. If n = 3, the claim trivially holds, 

so assume that n > 4. Since the minimum out-degree in the terminal strong 

component of D is at least 2, we may assume that D is strong. Moreover, since 

6+(D) > 2, D has a vertex x such that D — « is strong (see Exercise 10.44). 
If D(N~(x)) contains a cycle C, then the required pair of cycles consists of 

C and a cycle formed by a shortest path P from z to C and the arc from 
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the terminal vertex of P to z. So, we may assume that D(N~(z)) is acyclic, 

and, thus, D(N~(z)) has a vertex y of in-degree 0. 

If we delete all arcs with tail y and identify z and y, we obtain the digraph 

D' of order n — 1 and minimum out-degree at least 2. By the induction 

hypothesis, D’ has a pair of cycles with precisely a vertex in common; these 

cycles correspond to cycles C, and C2 in D. We may assume that C1 and C2 

have yx in common for otherwise they have precisely a vertex in common. 

Since D — z is strong, y is in a cycle C3 of D — z. It is not difficult to see 

that C, U C2 U C3 contains a pair of cycles having precisely y in common. 

Indeed, if C3 has only y in common with C; or C2, then there is nothing to 

prove. If C3 intersects with C, U C2 at a vertex distinct from y, then let z be 

such a vertex with C3[y, z] being as short as possible (meaning that C3[y, z] 

has only y and z in common with V(C,) U V(C2)). Choose 7 such that z is 

in C;, where i = 1 or 2. Then C3>,; and C;[z, y]C3[y, z] is the required pair of 

cycles. Oo 

The density of a digraph D is the ratio of its size and order (i.e. m/n). 

Clearly, high density of a strong digraph D guarantees that g(D) is small. 
Thomassen (see [112]) asked to determine the least number m(n, k) such that 
every strong digraph of order n and size at least m(n,k) contains a cycle of 

length at most k. Bermond, Germa, Heydemann and Sotteau [112] solved 

this problem by proving the following: 

Theorem 10.9.6 Let D be a strong digraph of order n and let k > 2. Then 

n? +(3—2k)n+k? —k oS 
implies that g(D) < k. Oo 

This theorem is best possible since there exist strong digraphs of order n 

and size (n? + (3 — 2k)n + k? — k)/2 — 1 with shortest cycle of length k + 1 
(Exercise 10.45). 

In many questions on properties of (di)graphs, one may ask whether all 

(di)graphs satisfying a certain property must have cycles of length at most 

a constant. Perhaps the most famous such question is the problem regarding 

the chromatic number of an undirected graph: given k > 3 and g > 3, is 

there an undirected graph of chromatic number k and of girth at least g? 

This problem was resolved in affirmative by Erdds [220] using probabilistic 

argument (a simplification of the original proof is given by Alon and Spencer 

[14]). Clearly, many digraphs of large vertex-strong connectivity are quite 

dense and, thus, of small girth. However, it is not difficult to construct di- 

graphs of large vertex-strong connectivity and large girth. The ‘vertex-strong 

connectivity’ and ‘girth’ parts of the next result were proved by Ayoub and 

Frisch [34] (see Exercise 7.24) and Liu and Zhou [517] (see Exercise 10.42), 
respectively. 
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Proposition 10.9.7 If n = gs, g > 2, then there exists an s-regular round 
digraph of order n which is s-strong and has girth g. 0 

10.10 Additional Topics on Cycles 

10.10.1 Chords of Cycles 

The existence of chords of cycles is not only an interesting problem by itself, 
it has also several applications. One of these applications is the existence of 

kernels in digraphs (see Subsection 12.3.1), another one will be described in 
this subsection. 

Let D be a directed multigraph with 6°(D) > k. It is not difficult to see 
that D has a cycle with at least k — 1 chords. Indeed, let P = pipo... px 

be a longest path in D. Clearly, there are k arcs from p, to vertices of P. 

These arcs and part of P form the desired cycle with k — 1 chords. While 

for k = 1 this result cannot be improved (consider Cy or ‘tree-like’ strong 

digraphs obtained from several cycles in such a way that every pair of cycles 

has at most one common vertex). Marcus [551] showed that for k > 2 the 
above simple result can be improved to the following: 

Theorem 10.10.1 (Marcus’ theorem) /551] Let D be a strong directed 
multigraph with at least two vertices and 6°(D) > k > 2. Then D contains a 
cycle with at least k chords. oO 

This result improves and extends the main assertion by Thomassen [713] 
that every 2-arc-strong directed multigraph has a cycle with at least two 

chords. The proof of Theorem 10.10.1 in [551] is quite involved and lengthy, 
and thus is not given here. Instead, we will consider an interesting applica- 

tion of Theorem 10.10.1 to the problem of minimum size strong spanning 

subgraphs of strong directed multigraphs (often called the minimum equiva- 

lent subdigraph problem, see the end of Section 4.3 and Section 6.11). 

Lemma 10.10.2 /550] Let k be a positive integer, let a and b be non-negative 
real numbers, and suppose that every k-arc-strong directed multigraph with at 

least two vertices has a strong subgraph H with at least two vertices and a 

strong factor? Ho of H such that 

€9 <ae+ b(h-1), 

where h is the order of H and e (eo) is the size of H (Ho). Then every k- 
arc-strong directed multigraph of order n and size m has a strong factor with 

at most am + b(n — 1) arcs. 

° Recall that a factor is a spanning subdigraph. 
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Proof: This holds trivially for directed multigraphs with one vertex since 

a > 0. Thus, consider a directed multigraph D of order n > 2 and assume 

that the result is true for all directed multigraphs with less than n vertices. By 

the assumption, D has a subgraph H as in the lemma. Clearly the contracted 

directed multigraph D/H is k-arc-strong and has n —h+1 <n vertices; so 

D/H has a factor with a(m—e)+b(n—h) arcs. The corresponding arcs of D, 

along with the eo arcs of Ho, form a factor of D of size at most am + b(n — 1). 

Oo 

Setting a= py a and b = ra in this lemma and using this lemma together 

with Theorem 10.10.1, we obtain the following (see Exercise 10.46): 

Corollary 10.10.3 /551] For k > 2, every k-arc-strong directed multigraph 

of size m and order n > 2 contains a strong factor of size at most (m+k(n— 

1))/(K+1). Oo 

10.10.2 Addm’s Conjecture 

Addm’s conjecture [1, 2] seems one of the most interesting conjectures on 

cycles in digraphs. 

Conjecture 10.10.4 (Adam) Every digraph has an arc whose reversal de- 
creases the total number of cycles. 

Originally, Adam formulated the conjecture for directed multigraphs. This 

extension was disproved independently by Grinberg and by Thomassen (see 

[334, 461, 706]). Thomassen [706] used the following result of Penn and Witte 
[601], which is of independent interest and was established with the aid of 
knot theory on the torus. Note that this theorem generalizes Theorem 5.11.6. 

Theorem 10.10.5 The cartesian product On i Cr has a cycle of length k if 

and only if there is a pair a,b of relatively prime natural numbers such that 

ap+bq=k. oO 

The main idea of Thomassen is to apply the following corollary: 

Corollary 10.10.6 /706] Infinitely many digraphs of the type Ge x Gr have 
the praperty that the reversal of any arc increases the length of a longest cycle. 

Proof: By the above theorem, Ge x Cee k > 0, has no cycle of length 

35+ 50k or 34+50k (Exercise 10.47). However, the reversal of any arc creates 
a (34 + 50k)-cycle. This is depicted in Figure 10.5 (due to Thomassen [706]) 
for k = 0 and a similar structure can be used to obtain a cycle of length 

34 + 50k when k > 1. (Actually, Figure 10.5 shows a 35-cycle, too, and this 

cycle can be generalized for every k > 0.) Oo 
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Theorem 10.10.7 /706] There is an infinite family of counterexamples to 

Adém’s conjecture in the case of directed multigraphs. 

Proof: Let D(k, f) be the directed multigraph obtained from Cs x Crater 

by replacing each arc by f parallel arcs. Let ¢ denote the maximum number 

of cycles through an arc of Ge x Cloer and let s be the length of a longest 

cycle in Cs x Cretok: Then no arc of Dk, fi is contained in more than tf*~! 

cycles, but if we reverse an arc e of OF x Colas, then e is is contained in a 

cycle of length at least s + 1 and hence e is contained in at least f* cycles. 

Hence, if f > t, D(k, f) is a counterexample to Addm’s conjecture. O 

ee eS 
St SA > 

ARIAS = 

Bs ee ee 
Ca area 

Figure 10.5 Cs x C7 and (directed) cycles of lengths 34 and 35 when an arc is 
reversed. (All arcs represented by vertical or horizontal straight line segments are 
directed upwards or to the right.)[706] 

Grinberg’s counterexamples are inspired by projective geometry. All the 

examples by Thomassen and Grinberg have parallel arcs. At the same time, 

Ad&m’s conjecture holds for some families of digraphs. Actually, it holds when 

a digraph has a 2-cycle. 

Proposition 10.10.8 /462] If a digraph D contains a 2-cycle, then D has 

an arc whose reversal decreases the total number of cycles in D. 
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Proof: Let uvu be a 2-cycle in D and, for every a € A(D), let ca be the 

number of cycles in D containing a. Without loss of generality, we may assume 

that Cuy < Cyy. Then, the reversal of vu decreases the number of cycles in D 

by Cyu — Cuy +1 > 0. oO 

Apart from this proposition, Jirdsek [462] proved several other assertions 

on families of digraphs that satisfy Ad4m’s conjecture. The most interesting 

is the following: 

Theorem 10.10.9 Jf, after reversal of at most three arcs a non-acyclic di- 

graph D becomes acyclic, then D has an arc whose reversal decreases the total 

number of cycles in D. 

To the best of our knowledge, Adadm’s conjecture is still open for oriented 

graphs. ‘ 

Problem 10.10.10 /706] Verify Addm’s conjecture for oriented graphs and, 

in particular, for tournaments. 

10.11 Exercises 

10.1. (—) Prove that for a strong digraph D the cycle space is generated by 
oriented cycles without chords. 

10.2. Prove Proposition 10.1.1. 

10.3. (—) Let D be a digraph such that is UG(D) has c connected components. 
Prove that the dimension of the cycle space of D is m—n+ ce. Hint: apply 
Theorem 10.1.3 to every component of D. 

10.4. Prove the following assertion. Let D, H be digraphs and let Gp and Gy be 
sets of oriented cycles generating the cycle spaces of D and H, respectively. 
Suppose further that f : A(D)—A(A#) is a bijection such that f(Gp) = Gu. 
Then f and f~' preserve oriented cycles (Thomassen [709]). 

10.5. (—) Let 1 < k < n be integers. Let ai,a2,...,a,% be a sequence of objects 
and let c be a colouring that assigns one of the colours {1,2,...,n} to 
every object such that no colour is assigned to two objects. Prove that the 
probability of the event c(ai) < c(az) <.:. < c(ax) equals 1/k!. 

10.6. (—) Let M be an n x n matrix and let k be a natural number. Describe an 
_ algorithm that finds the kth power of M using only O(log k) multiplications 

of two n X n matrices. 

10.7. Prove the first equality in the proof of Lemma 10.2.1. 

10.8. Prove Lemma 10.2.4 using Lemma 10.2.3. 

10.9. Prove that the following problem is WP-complete. Given a digraph D and 
an integer k, decide whether D has at least k disjoint cycles. Hint: use 
a reduction from the 3-dimensional matching problem. (Given three sets 
X', X?, X° of the same cardinality n and a subset R of X! x X2 x x. 



10.10. 

10.11. 

10.12. 

10.13. 

10.14. 

10.15. 

10.16. 

10.11 Exercises 587 

decide whether the elements of every X’ can be labelled x‘, 7},...,2', so 
that (aj, 23, z}) € R for each j = 1,2,...,n. This problem is VP-complete, 
see Gary and Johnson (303].) In the reduction you may utilize the gadget L 
given in Figure 10.6. We start from the digraph G on vertices X' UX?U X? 
and with no arcs. For each (x,y,z) € R, we add L to G. Prove that the 
resulting digraph has n + 2|R| cycles (all of which are 3-cycles) if and only 
if there exists the required labelling of the elements in X’, X? and X? (A. 
Yeo, personal communication). 

L 

Figure 10.6 The gadget for Exercise 10.9. 

The directed dual of a plane directed multigraph is planar. Show 
that, if D is a plane directed multigraph, then its directed dual D* is also 
planar. 

Taking duals repeatedly. Let D be a plane directed multigraph and 
let D* be the directed dual of D. Show that the directed dual of D* is 
isomorphic to the converse of D. 

Let D be a plane directed multigraph and let D* be the directed dual of D. 
Show that, if (S,S) is a directed cut in D*, then the corresponding arcs in 
D form a directed cycle. 

Let D = (V, A) be the plane digraph in Figure 10.1(a). Find two arcs in 
A whose deletion leaves an acyclic directed multigraph. Then check that 
contracting the corresponding two arcs in D*, the directed dual of D, results 
in a strongly connected digraph. 

(—) Show that the problem of finding a maximum size acyclic subdigraph of 
a directed multigraph D = (V, A) is equivalent to that of finding an ordering 
U1, U2,..-,Un of V such that the number of arcs viv; with 7 < 7 is maximum. 

Prove Proposition 10.3.13. 

Let D be an arbitrary directed multigraph. Prove that every minimum feed- 
back arc set of D induces an acyclic subdigraph of D. 
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Show that the tournament T in Figure 10.7 has a minimum feedback arc 

set which induces a transitive subtournament of T’. 

Figure 10.7 A tournament T on 5 vertices. 

Show that, if there exists a polynomial approximation algorithm with ap- 
proximation guarantee p(n).for the feedback arc set problem, then there also 
exists a polynomial approximation algorithm with approximation guarantee 

p(n) for the feedback, vertex set problem and vice versa. 

(—) Construct an infinite family of digraphs D such that vo(D) < to(D). 

(—) Prove that, if the functions to(k) and t;(k) exist, then they are equal. 
Hint: apply Proposition 10.3.1. 

For every n > 3, construct a digraph of minimum out-degree 2 not having 
two disjoint cycles. 

Prove that every digraph D with 6*(D) > 3 has a pair of vertex-disjoint 
cycles. Hint: use Lemma 10.3.9 (Thomassen [700]). 

Prove Corollary 10.3.6 using Theorem 10.3.5. Hint: first observe that every 
digraph D with 5*+(D) > k has at least & vertex disjoint cycles. Remove 
the arcs of these and continue recursively. 

(+) Prove Lemma 10.4.6. Hint: use Menger’s theorem. 

(—) Prove that the Balcer-Veinott algorithm (in Section 10.5) terminates 
with a cycle, whose length is the period of the input digraph. 

(—) Prove that a digraph D is even if and only if, for every assignment of 
weights 0 and 1 to its arcs, D contains a cycle of even weight. 

Let D be a k-weak-double-cycle for some odd k. Prove that D has an odd 
number of cycles and that every arc is in an even number of cycles. Hint: 
use the recursive definition of a k-weak-double-cycle. 

_Let D be a k-weak-double-cycle for some odd k. Prove that D has an even 
cycle. Hint: assume that all cycles in D are odd and use Exercise 10.27 to 
obtain a contradiction. 

Prove that given an arc e in a digraph D it is NP-complete to decide 
whether D has an odd cycle through e (even cycle through e, respectively) 
(Thomassen [702]). 
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Digraphs for which all cycles have the same parity. Show that there 
is a polynomial algorithm to decide if the length of all cycles of a given 
digraph have the same parity. 

(—) Give a short direct proof that the problem to verify whether a digraph 
D has cycle of length 0 modulo p, where both D and p form an input, is 
NP-complete. 

(—) Prove that the period of a strong non-bipartite digraph D with 6°(D) > 
3 equals 1. Hint: use Theorem 10.6.7. 

Prove Corollary 10.6.12. 

(—) Prove the following generalization of Lemma 10.6.10. Let D = (V, A, w) 
be a weighted digraph and let k > 2 be an integer. If there is a vertex 
colouring c*: V-+{0,1,...,k—1} of D such that for every u € V there is 
av € N*(u) with c*(v) =c*(u) + w(u,v) (mod k), then D has a cycle of 
weight 0 (mod k) (Alon and Linial [12]). 

Cycles modulo k in weighted digraphs. Using the result of the previous 
exercise and the method of proof of Theorem 10.6.11 prove the following 
generalization of Theorem 10.6.11: Let D = (V, A, w) be a weighted digraph 
and let k > 2 be an integer. If either (10.3) or (10.4) holds then D contains 
a cycle of weight 0 (mod k) (Alon and Linial [12]). 

Prove that a 3-weak-double cycle is (k, p)-odd for every pair k, p such that 
1<k<p, p> 3 (Galluccio and Loeb! [301]). 

Prove that it is WP-complete to decide whether a strong digraph has two cy- 
cles whose lengths differ by one. Hint: reduce the hamiltonian cycle problem 
to this problem. 

Construct for every k an infinite family of k-strong digraphs such that no 
digraph in the family has two cycles whose lengths differ by one. 

(+) For p > 3, construct an infinite family F, of strong semicomplete p- 
partite digraphs such that every digraph D in F, contains a hamiltonian 

path, yet, a longest path of any strong orientation of D has n — 2 vertices, 
where n is the order of D (Gutin, Tewes and Yeo [372]). 

(++) Prove the following theorem. Let D be a strong semicomplete mul- 

tipartite digraph of order n such that D er and let | be the length of 
a longest path in D. Then D contains a strong spanning oriented subgraph 
with a path of length at least / — 2 (Gutin, Tewes and Yeo [372]). 

For every p > 3 construct a strong p-partite tournament 7 such that some 
vertex v of T is not contained in a k-cycle for some 3 < k < p. 

(—) Prove that if n = gs, then the s-regular round digraph of order n is of 
girth g. 

Prove that Conjecture 10.9.4 implies Conjecture 10.9.1. 

Let D be a strong digraph of minimum out-degree 2. Prove that D contains 
a vertex z such that D — z is strong. Hint: consider D’, a maximal strong 
proper subdigraph of D. Prove thai D’ contains all vertices of D but one. 
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10.45. For every k > 2, construct strong digraphs on n vertices such that the 
2 2 

number of arcs is = +(3— 2k nt+k'—k _ 1 and the shortest cycle has length 
ke 1, 

10.46. Derive Corollary 10.10.3 from Lemma 10.10.2 and Marcus’ theorem (Theo- 
rem 10.10.1). 

10.47. Prove that Cs x Crvnn, k > 0, has no cycle of length 35 + 50k or 34+ 50k. 
Hint: apply Theorem 10.10.5. 
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In this chapter, several results proved for digraphs are extended to edge- 

coloured graphs, arc-coloured digraphs and hypertournaments. We will see 

that some results remain the same with respect to their formulation, but their 

proofs become much more involved. Other results do not hold any more. This 

gives an additional insight to the theory of digraphs. In particular, we can 

more clearly see which properties of digraphs allow us to obtain various results 

on them. 

In Section 11.1 we study properly coloured trails (i.e. trails whose con- 

secutive edges differ in colour) in edge-coloured undirected multigraphs. In 

Subsection 11.1.1 we prove Kotzig’s characterization of edge-coloured multi- 

graphs containing properly coloured (PC) Euler trails and Pevzner’s theorem 

that shows how to generate all PC Euler trails of an edge-coloured multi- 

graph from some initial one. Yeo’s theorem on PC cycles in edge-coloured 

graphs, which in a sense characterizes edge-coloured graphs not having PC 

cycles, is proved in Subsection 11.1.2. Subsection 11.1.3 is devoted to gener- 

alizations of strong connectivity to edge-coloured multigraphs. We consider 

various interesting results on hamiltonian and longest PC paths and cycles in 

2-edge-coloured multigraphs in Subsection 11.1.4. Many of these results can 

be easily obtained from the corresponding results on digraphs using some 

transformations also described in this subsection. The characterization of 

2-edge-coloured complete graphs containing hamiltonian PC cycles, due to 

Bankfalvi and Bankfalvi, is given in Subsection 11.1.5. There we prove Saad’s 

theorem characterizing longest PC cycles in 2-edge-coloured complete graphs. 

PC paths and cycles in c-edge-coloured complete graphs, c > 3, are studied 

in Subsections 11.1.6 and 11.1.7; along with results on the topic, we describe 

several interesting open problems. 

The somewhat surprising result, due to Gutin, Sudakov and Yeo, that the 

problem of checking the existence of a PC directed cycle in a 2-arc-coloured 

digraph is MP-complete is proved in Section 11.2. There we also consider the 

PC Euler trail problem for arc-coloured directed multigraphs; the complex- 

ity of this problem remains unknown. We generalize the classic theorems on 

tournaments, Rédei’s theorem, Camion’s theorem and Landau’s theorem, to 

hypertournaments in Section 11.3. Despite the existence of elegant character- 

ization of hamiltonian hypertournaments proved by Gutin and Yeo, it turns 
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out that the hamiltonian cycle problem for hypertournaments, in general, is 

NP-complete. We finish this chapter by a short overview of an application of 

alternating Hamilton cycles in 2-edge-coloured multigraphs to genetics (see 

Section 11.4). 

11.1 Properly Coloured Trails in Edge-Coloured 

Multigraphs 

In this section we consider edge-coloured multigraphs, i.e. undirected 

multigraphs such that each edge has a colour and no two parallel (i.e. joining 

the same pair of vertices) edges have the same colour. If the number of colours 

is restricted by an integer c, we speak about c-edge-coloured multigraphs. 

We usually use the integers 1, 2,.:.,c to denote the colours in c-edge-coloured 

multigraphs. In case c = 2, we also use the names red and blue for colours 1 

and 2, respectively. The red subgraph (blue subgraph, respectively) of a 

2-edge-coloured multigraph G consists of the vertices of G and all red (blue, 

respectively) edges of G. 
Let G be a c-edge-coloured multigraph (c > 2). A trail T in G is properly 

coloured (PC) if no two consecutive edges of T have the same colour. A PC 
m-path-cycle subgraph f,,, of G is a union of m PC paths and a number of 

PC cycles in G, all vertex-disjoint. When m = 0, we will call Fp a PC cycle 

subgraph. If G is 2-edge-coloured, then we call a properly coloured trail in G 

alternating . To see that the alternating path and cycle structure of 2-edge- 

coloured multigraphs generalizes the path and cycle structure of directed 

multigraphs, we consider the following simple transformation attributed to 

Haggkvist in [548]; see Figure 11.1. Let D be a directed multigraph. Replace 

each arc xy of D by two (unoriented) edges rzz, and zzyy by adding a new 
vertex Zz, and then colour the edge xz, red and the edge zzyy blue. Let G 

be the 2-edge-coloured graph obtained in this way. It is easy to see that each 

alternating cycle in G corresponds to a directed cycle in D and vice versa. 

Hence, in particular, we obtain the following proposition. 

1 2 

2 1 

1 2 

2 1 

Figure 11.1 Haggkvist’s transformation. 
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Proposition 11.1.1 The following problems on paths and cycles in 2-edge- 

coloured graphs are NP-complete: 

(a) The alternating Hamilton cycle problem. 

(b) The problem to find an alternating cycle through a prescribed pair of 

vertices. 

Proof: Exercise 11.1. Oo 

Clearly, a directed path in D corresponds to an alternating path in G as 

well. Thus, we may conclude that the alternating path and cycle structure 

in 2-edge-coloured graphs generalizes the (directed) path and cycle structure 

of directed multigraphs. In fact, we will see, in this section, that the for- 

mer is certainly more complicated than the latter. Still, several methods and 

results obtained for directed multigraphs can be adapted to edge-coloured 

multigraphs. 

Petersen’s famous paper [603] seems to be the first place where one can 
find applications of PC trails (cf. [575]). Besides a number of applications in 

graph theory and algorithms (cf. the papers [738, p. 58] by Woodall and [386] 
by Haggkvist), the concept of PC trails and its special cases, PC paths and 

cycles, appears in various other fields including genetics (cf. the papers [200, 

201] by Dorninger, [202] by Dorninger and Timischl and [606] by Pevzner; see 
also the last section of this chapter) and social sciences (cf. the paper [156] 

by Chow, Manoussakis, Megalakaki, Spyratos and Tuza). 

Let G be a c-edge-coloured multigraph. The jth degree of v, d;(v), is 

the number of edges of colour j incident to v (1 < j < c). The maximum 

monochromatic degree of G is defined by 

Apon(G = maxi{d;(v) = meEV(G), j 1,2; tog, €}. 

The colour of an edge e in G will be denoted by y(e). Let X and Y be two 

sets of the vertices of G. Then XY denotes the set of all edges having one 

end vertex in X and the other in Y and x(XY) stands for the set of colours 
of edges in XY. In case all the edges in XY have the same colour, say 2, we 

write x(XY) =i. 
Edge-coloured multigraphs G and H are colour-isomorphic if there ex- 

ists an isomorphism f : V(G)>V(H) such that x(cy) = x(f(z)f(y)) for 

every pair x,y of distinct vertices of G. Let T = pip2...p, be a trail in G. 

Then, the trail pjpj_1 ...p1, called the reverse of T’,, will be denoted by T”°”. 

Also, if 1 > 2, then 

XYena(l) = x(pi-1pr), Xstore(1) = x(pipe). 

Let G be a 2-edge-coloured multigraph of even order n; G is alternating- 

pancyclic if G has an alternating cycle of length 2k for every k = 2,3,4,..., 

n/2; G is vertex alternating-pancyclic if, for every vertex v € V(G) and 
every integer k € {2,3,4,...,n/2}, G contains an alternating cycle through 

v of length 2k. 
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11.1.1 Properly Coloured Euler Trails 

In [502], Kotzig proved the following characterization of edge-coloured multi- 

graphs which contain properly coloured Euler trails. 

Theorem 11.1.2 (Kotzig) /502] An edge-coloured multigraph G has a 
properly coloured Euler trail if and only if G is connected, each vertex of G is 

of even degree, and for every vertex x and every colour i, d;(x) < Hi aia): 

Proof: Obviously, the conditions above are necessary. 

Suppose G satisfies the conditions of Theorem 11.1.2. We will first show 

that, for every vertex x, the edges of G incident to z can be partitioned into 

disjoint pairs of distinct edges so that the colours of the edges in each pair 

are different. This guarantees that each time we enter x through an edge e 

we can leave it through the edge f forming one of the above pairs with e. 

(We will denote f by match, (e).) 
In order to determine this partition, for each vertex x we define an aux- 

iliary graph G, so that the vertices of G, are the edges incident to x. Two 

vertices are connected in G, if their corresponding edges in G have different 

colours. It is easy to see that the above partition exists if and only if each 

G, has a perfect matching. It remains to prove that each G, indeed has a 

perfect matching. 
Observe that each G, is a complete multipartite graph with partite sets 

of some cardinalities n1,n2,...,nz satisfying the following inequality: 

ni Son; (11.1) 
j#Ft 

for every 1 = 1,2,...,t. Choose an edge b between two largest partite sets of 

G,. Delete the vertices of b from G,. Clearly, the partite sets of the obtained 

graph satisfy the inequality (11.1). This means we can proceed by choosing 

another edge as above. This process will clearly produce a perfect matching 

of G,. (One could easily arrive at the same conclusion using Tutte’s theorem 

on perfect matchings in multigraphs, see e.g. the book [127] by Bondy and 
Murty.) 

Fix a perfect matching 

{(e,match,(e)) : e € V(Gz)} 

in G, for every x in G. We call a PC trail Q of G an M-trail if match,(e) € 
E(Q) for every x € V(Q) and every e € E(Q) incident to z. Clearly, every 
M-trail is closed. In the obvious way (see the construction of R below), one 
can build an M-trail. Let T be an M-trail of G with maximum number of 
edges. Assume that E(T) # E(G). Since G is connected, G — E(T) contains 
an edge e; incident to a vertex 2, in T. We construct a trail R in G — E(T) 
as follows: 21, e€1,%2,€2 = matchz,(€1),£3,e3 = match;,(e2), 24,..., 2k, ek = 
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matchz, (€x-1), 2x41, where e; = eer ator revelry tess ND t ee kay b= 
x, and e; = match,,(e,). Observe that T and R are edge-disjoint by the 
definition of M-trails. 

Since x, is in T, we can write down T as... f, X1,g,.... Assume, without 
loss of generality, that x(f) = 1, x(g) = 2 and x(e1) # 1. If x(ex) 4 2, then 
replace the appearance of x between f and g in T with the trail R obtaining, 
as a result, an M-trail of G with more edges than T’,, a contradiction. If 
x(ex) = 2, then replace the appearance of x; between f and g in T with the 
trail R"® obtaining, as a result, an M-trail (observe that y(e1) > 2) of G 
with more edges than T, a contradiction. 

Thus, E(T) = E(G), i.e., T is eulerian. Oo 

Benkouar, Manoussakis, Paschos and Saad [103] described an O(n? log n)- 
algorithm for finding a properly coloured eulerian trail in an edge-coloured 
multigraph G on n vertices that satisfies the conditions of Theorem 11.1.2. 
Pevzner [606] suggested the following simple and practical algorithm to find 

a PC eulerian trail in G. Let P = 2, 22...2,% be a PC trail. A colour y’ is 

critical with respect to P if it is the most frequent colour x’ 4 x(xp_12x) 
of edges with one end at x, and the other in V(G)—V(P). Pevzner’s algorithm 
for an edge-coloured multigraph G satisfying Theorem 11.1.2 proceeds as 

follows. Let 2; be an arbitrary vertex in G. Put P,; = 2, and build up 

P, = %1%2...2,% by adding an arbitrary edge r,2%41 of colour y(z122), if 

this colour is critical with respect to P, or of any critical colour with respect 

to P, otherwise. We stop when no critical colour edge is available. Pevzner 

[606] proved that this simple algorithm always produces a PC eulerian trail 
if one exists (Exercise 11.3). 

Using the above transformation by Haggkvist, one can readily obtain the 

following result (see a direct proof of it in Theorem 1.6.3): 

Corollary 11.1.3 A directed multigraph D is eulerian if and only if D is 

connected and d*(x) = d~ (zx) for every vertex x in D. Oo 

Fleischner, Sabidussi and Wegner [242] and Pevzner [606] independently 
investigated what operations can be used to transform an alternating eulerian 

trail of a 2-edge-coloured multigraph to any other one. Interestingly enough, 

while the first paper has had a pure theoretical motivation, in the second 
paper, the author showed some applications of alternating eulerian trails, 

in general, and those transformations, in particular, to an important \’/P- 

hard problem in genetics. We discuss below only the characterization of the 

transformations in [606]. 
Let G be 2-edge-coloured multigraph containing an alternating eulerian 

trail. In the rest of this subsection, for the sake of convenience, we consider 

alternating trails as ordered sets of edges. Let T = 772737475 be an alter- 

nating trail (where T; are fragments of T viewed as subsets of E(G)). The 
transformation T3T* = 7,7473T2Ts is called an order exchange if T™* is 
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an alternating trail. Let T = T,T27T3 be an alternating trail. The transforma- 

tion T>T* = T,TZ°’T;3 is an order reflection, if T* is an alternating trail. 

Let X and Y be a pair of alternating trails in G. The number of vertices in 

the largest common subtrail of X and Y is the index ind(X, Y) of X and Y. 

Theorem 11.1.4 (Pevzner) /606] Every pair of alternating eulerian trails 
X and Y in a 2-edge-coloured multigraph can be transformed into each other 

by means of a sequence of order transformations (exchanges and reflections). 

Proof: In the set of alternating eulerian trails 7, which can be obtained 

from X by means of a sequence of order transformations, choose an element, 

X* = 2122...Zq, having the largest common subtrail with Y = yi yo... yq- 

(Clearly, r; = aq and y; = yq.) Let us assume that ind(X*,Y) = @ < q. Due 

to the fact that both X* and Y~are closed, without loss of generality, we may 

assume that 2; = y; for 1 <7 < 2. 

Let e; = xe2e41 and’ eg = yeyeyi1. Clearly, x(e1) = x(e2). Since X* 

is eulerian, X* contains eg. There are two possibilities depending on the 

direction in which we traverse the edge e2 in X* (going from 2; to z,). 

Case 1: In X* the edge e2 is traversed from ye41 to ye. In this 
case, 

AST REL eT oe UEP ee ee 

Let Ty = 21 ...%¢, To = XeXe41... Yeriye and T3 = ye... %q. Since x(e1) = 

x(e2), the transformation X*—+X** = T,Ts¢’T3 is an order reflection. But 
X** € 7 and ind(X**,Y) > ind(X*, Y), a contradiction to the choice of X*. 

Case 2: In X* the edge e2 is traversed from ye to yg41. In this 
case, 

AO Fi EtG ti «- (Lp = Ye) (Sar = Vee tee 

8 Gy entry Gy nye -%p and X3 = TpTpi1-..Zq- 

Claim. The trail X3 contains a vertex 2; (j > p) belonging to Xo. 
Proof of Claim: Let i > @ be the minimum number fulfilling the following 
condition: vertex y; of the trail Y is in Xj. The existence of such an i follows 
from the fact that Y contains the edge e, = y:-1y; for some t > &. Due to 
the minimality of 7 the edge y;_1y; does not belong to X. Condition i > | 
implies that this edge is not in X,. Hence, this edge is in X3 implying that 
X2 and X3 have a common vertex. The claim is proved. 

Due to the claim, the trail X* can now be rewritten as 

X* = By... E141... (LE = Xj)... 6 (Gp = Fe)(A p41 = e431) a SE Aes on 

Let Ty = 21...%2, Tz = %¢a41... a4, Ty = ay ...25, T, = Lp-..%5, and 
Ts = £j...@q. Consider the edges f; = x,_ 12% and fo = Dee; At Xfi) 

x(f2), then x(fo) # x(vere41) and X** = T,T,T3ToTs is the alternating trail 
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obtained from X* by means of some order exchange. Clearly, ind(X**,Y) > 
ind(X*,Y), a contradiction to the choice of X*. 

If x(fi) A x( fe), then X** = T,T, T°’ T2°’Ts is an alternating trail. This 

trail is obtained from X* by means of two order reflections: 

T,T27T3T4Ts 37,7 (Pada ye aed & 

SO AT Te, (Tre Ty 
—— Ty A WW isaac wages . 

Clearly, ind(X**, Y) > ind(X*,Y), a contradiction to the choice of X*. O 

11.1.2 Properly Coloured Cycles 

Using Haggkvist’s transformation, we see that the problem to check whether 

a c-edge-coloured graph has a properly coloured cycle is more general (even 

for c = 2) than the simple problem to verify whether a digraph contains a 

directed cycle (see Proposition 1.4.2 and the remark afterwards). In the rest 
of this subsection we consider the following: 

Problem 11.1.5 Given ac-edge-coloured graph G, check whether G contains 

a properly coloured cycle. 

Grossman and Haggkvist [335] were the first to study this problem. They 
proved Theorem 11.1.6 below in the case c = 2. Yeo [743] showed Theorem 
11.1.6 for every c > 2. 

Let G be a c-edge-coloured graph and let z, y be arbitrary distinct vertices 

of G. We will use the following additional notation: 

Xena(z, y) = {Xena(P) :PisaPC (x, y)-path}; 

Xstart (2, y) = {Vatart(L) : PAs a. PC (x, y)-path}. 

Theorem 11.1.6 (Yeo) [743] Let G be a c-edge-coloured graph, c > 2, with 

no PC cycle. Then, G has a verter z € V(G) such that no connected compo- 

nent of G — z is joined to z with edges of more than one colour. 

Proof: Let G = (V,£) be an edge-coloured graph with no PC cycle. Let 

pi € V be arbitrary. Set S = {pi} U{s € V — {pi} : |Xena(pi,3)| = 1}. 
Now let P = pipo...p, (1 > 1) be a PC path of maximum length such that 

p € S, and set T, = {t € V — {pi} : k © Xstart(~,t)} for every colour 

k € {1,2,...,c}. If 1 = 1, then let C* be the set of all colours in G, and if 
| > 2 then let C* be the set of all colours in G except Yena(P). We will prove 

this theorem in three steps. 

(hy) VCP) oT; = O.for all ke C*: 
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If 1 = 1 then this statement is trivially true (since pe ¢ Ty), so as- 

sume that 1 > 2 and that the statement is false, which implies that there 

is a PC (pj, p;i)-path R = pirir2..-Tm—=1% mPi (m > 0) with Xstart(R) = &, 

i€ {1,2,...,-1} and V(R)NV(P) = {pi, pi}. Clearly x(pipit1) = Xena(R), 
since otherwise we would obtain the PC cycle pjpi4i -- -piT1T2 ---Tm—11T mPi- 

This implies that Q = pipe.--DiTmTm—1---T1p1 is a PC (pi, p1)-path, 

with vena(Q) = Txivie(R) ck) evade) Wet lave *thus shown that 

{xend(Q),Xend(P)} © Xena(p1,p1), which implies that |Xena(p1,pP1)| 2 2. 
Therefore p, ¢ S, contradicting the definition of P. 

(2) Ifzy € E, x € Th, y ¢ Ty for some k € C*, then y = p and (x1) =k. 

First we claim that there is a PC (p,x)-path R with Yena(R) # x(zy) 

and Xstart (R) =k. 

By the definition of T;, there is a PC (py, x)-path Q with Xstart(Q) = k. 

If Xena(Q) # x(zy) we set R =Q, so assume that Xend(Q) = x(zy). By (1), 

PQ is a PC (pi, 2)-path, which is longer than P. This implies that x ¢ S, so 

\Xena(pi,x)| > 2. Thus there is a PC (p1,z)-path L with Yena(L) # x(zy). 
Let w € (V(L)NV(PUQ)) — {x} be chosen so that V(L[w, z]) NV (PUQ) = 

vate es 
Suppose that w € V(P) — {p,}. Then QL"®*[z, w] is a PC (pj, w)-path 

whose first edge has colour k. This implies that w € T;, which contradicts 

(1). Hence w € V(Q) and Xstart(Q[w, z]) = Xstart(L[w, z]), since otherwise 
Q[w, z]L’®’[xz, w] is a PC cycle. This implies that R = Q[p,w]L[w,z] is a 
PC (pi, x)-path with ystart(R) = k and Xena(R) # x(xy). Thus, the claim is 

proved. 

Let R be as guaranteed by the claim. If y # p, then Ry is a PC (py, y)- 

path with xstare(Ry) = k, which contradicts the assumption that y ¢ Ty. 

Thus y = py. If x(ry) # k, then we obtain the PC cycle Ry, which is also a 

contradiction. Thus (zy) = k. 

(3) No connected component of G — p; is joined to p, with edges of more 

than one colour. 

Assume that the statement is false, and let px and py be a pair of distinct 

edges in G such that x and y belong to the same connected component of 

G —p, and y(pix) # x(pry). Assume without loss of generality that y(pix) € 
C* (otherwise interchange x and y). In G — p; there is a (not necessarily PC) 

path R =rir2...Tm (m > 2) between z = 7; andy =r. If y € Ty(p,2), then 

since py ¢ Ty(p,c), (2) implies that x(pry) = x(~ix), which is a contradiction. 

Therefore y ¢ Ty(p,c), which together with x € T\(p,z) implies that there 

exists an i (1 < i < m—1) such that r; € Ty(p,2) and riz1 ¢ Typ,2)- This, 
however, contradicts (2), since ririz1 € E but py, ¥ rigi. 

One can see that Theorem 11.1.6 actually solves Problem 11.1.5. Indeed, if 

G has no vertex z such that all edges from z to any of the components of G—z 

are of the same colour, then Theorem 11.1.6 implies that G contains a PC 
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cycle. If G has such a vertex z, we may consider only G'— z or its components 
(if G — z is disconnected), since no PC cycle can contain z. (See also Figure 
11.2.) This leads to an obvious polynomial recursive algorithm (for a vertex 

x € G, the components of G — z can be found in O(|V(G)| + |E(G)|) time). 

Figure 11.2 An edge-coloured graph with no PC cycle. To see this, it suffices to 
check that every vertex v; has only edges of the same colour to {v1,..., vi-1}. 

Interesting corollaries of Theorem 11.1.6 are given as exercises (Exercises 

11.7,11.8) in this chapter. Theorem 11.1.6 also implies: 

Corollary 11.1.7 /100, 501, 534] There does not exist a bridgeless graph 
that contains a unique perfect matching. 

Proof: Exercise 11.6. Oo 

Another possibility to solve Problem 11.1.5 is to use the following con- 

struction by Bang-Jensen and Gutin [61] illustrated in Figure 11.3. Here, we 

can actually find a PC cycle subgraph with maximum number of vertices of 

a c-edge-coloured multigraph in polynomial time. This result is very useful, 

as a starting point, for a number of problems on PC cycles and paths. 

Let G be an arbitrary c-edge-coloured multigraph (with colours 1,2,...,c). 

For each vertex v of G we form the a graph H, with vertex set V(H,) = 
{v1,...,UV2c-2} and vu; is adjacent to v; (i < j) in Hy if and only if either 
both 7,7 € {1,.:.,c} or2 € {1,...,c},j7 € {c+1,...,2e— 2}. Construct a 

new graph R = R(G) from the disjoint union of the graphs H, (v € V(G)) 
as follows. An edge v;u; is in R if and only if 1 = 7 = yq(vu). Let the edges 
of R of the form v;v; where both 7,7 € {1,...,c} have the weight 0 and all 
other edges have the weight 1. Then, a maximum weight perfect matching 

in R corresponds to a PC cycle subgraph F of G with maximum number of 
vertices. To see this, it suffices to observe that for any perfect matching of R 

and any H, (corresponding to one vertex v of G), all but two of the vertices 
V1, U2,-..,Ue will be matched to vertices within H, and with index at least 

c+ 1. Hence if the edge between the two remaining vertices in Hy is not in 

the matching, then in G this corresponds to v being on a PC cycle and vice 
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i R(Go) 

Figure 11.3 The left figure shows a 4-edge-coloured graph Go. The right figure 
depicts the construction from [61] for Go. The big circle in every H, has c = 4 
vertices and the small one c — 2 = 2 vertices. Only edges of R(Go) between the 
graphs H, are shown. The fat edges are part of a maximum weight perfect matching 
of R(Go), they correspond to PC cycles abca and defd of Go. 

versa. This construction implies the existence of a polynomial algorithm for 

finding F since a maximum weight perfect matching in a weighted graph on 

p vertices can be found in time O(p?) (cf. the book by Papadimitriou and 

Steiglitz [600, Chapter 11)). 
Sometimes, one needs to find a maximum PC 1-path-cycle subgraph of a 

c-edge-coloured multigraph G. We can easily transform the last problem to 

the maximum PC cycle subgraph problem as follows. Add an extra-vertex x 

to G and join x to every vertex of G by two edges of colour c+1 andc+2 

respectively (new colours). Clearly, a maximum PC cycle subgraph of the 

new multigraph corresponds to a maximum PC 1-path-cycle subgraph of G. 

We formulate the obtained results as a theorem: 

Theorem 11.1.8 /61] One can construct a marimum PC cycle subgraph 
and a maximum PC 1-path-cycle subgraph, respectively, in a c-edge-coloured 

multigraph G on n vertices in time O((cn)*). Oo 

Let G be a c-edge-coloured multigraph and let x be a vertex in G. Consider 

the following modification R'(G') of R(G): change the weight of the edges 
ritj;,1 <%t< Jy <c from 0 to —oo. There is a perfect matching of finite 

weight in R'(G) if and only if G has a PC cycle through z. This implies the 
next proposition. 
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Proposition 11.1.9 Given a c-edge-coloured multigraph G and a verter x 
of G, one can verify whether G has a PC cycle through x in polynomial time. 

O 

This proposition is in sharp contrast with Proposition 11.1.1 (b). 

11.1.3 Connectivity of Edge-Coloured Multigraphs 

Strong connectivity plays a central role in the study of digraphs. Hence, it 

is natural to try to obtain some extensions of strong connectivity to edge- 

coloured graphs. Such extensions have been introduced and studied in the 

literature. In fact, there are two useful extensions of strong connectivity: one 

of them generalizes the usual definition of strong connectivity that refers 

to paths between pairs of vertices and the other extends the definition of 

cyclic connectivity in digraphs (see Exercise 1.30), which is equivalent to 

strong connectivity (for digraphs). However, for edge-coloured graphs these 

two generalizations are not equivalent any more. 

In this subsection we study the above-mentioned generalizations of strong 

connectivity. We restrict ourselves to 2-edge-coloured multigraphs since we 

will later use connectivity results only for 2-edge-coloured graphs. Also this 

will make our arguments easier to follow. However, the reader should bear in 

mind that some of the results below could be generalized to c-edge-coloured 

multigraphs, c > 2. 

The following notion of colour-connectivity was introduced by Saad [648] 
(he used another name for this notion). Let G be a 2-edge-coloured multi- 
graph. A pair of vertices z,y of G are colour-connected if there ex- 

ist alternating (z,y)-paths P and Q such that Xstart(P) # Xstart(Q) and 

Xena(P) # Xena(Q). (Notice that P and Q are paths, not trails.) We define a 
vertex x to be colour-connected to itself. We say that G is colour-connected 

if every pair of vertices of G is colour-connected. 

Clearly, every alternating cycle is a colour-connected graph. This indi- 
cates that colour-connectivity may be useful for solving alternating cycle 

problems. We can use colour-connectivity more effectively if we know that 

this is an equivalence relation on the vertices of the graph under considera- 

tion. This leads us to the following definition: a 2-edge-coloured multigraph 

G is convenient if colour-connectivity is an equivalence relation on the ver- 

tices of G. Unfortunately, there are non-convenient multigraphs. Consider 

the graph H in Figure 11.4. It is easy to check that the vertices x and y are 

colour-connected to u, but x and y are not colour-connected in H. 

The following proposition can be easily proved using only the definition 

of colour-connectivity. The following result due to Bang-Jensen and Gutin 

provides another way of checking colour-connectivity. Its proof is left to the 

reader as Exercise 11.9. 
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Figure 11.4 A non-convenient 2-edge-coloured graph. 

Proposition 11.1.10 /64] A pair of vertices, 21,22, in a 2-edge-coloured 

multigraph G is colour-connected if and only if G has four (not necessar- 

ily distinct) alternating (21, 22)<paths, P,, P2,Q1,Qz2, such that Xstart(Pi) = 

Vendt@) ee O 

Let G be a graph with matching M. A path P in G is augmenting 

with respect to M if, for any pair of adjacent edges in P, exactly one of 

them belongs to M, and the first and last edges of P do not belong to M. 

Let G be a 2-edge-coloured multigraph. The following proposition by Bang- 

Jensen and Gutin shows that we can check whether a pair of vertices of G 

are colour-connected in polynomial time. 

Proposition 11.1.11 /64] Let G = (V,E) be a connected 2-edge-coloured 
multigraph and let x and y be distinct vertices of G. For each choice of 

i,j € {1,2} we can find an alternating (x,y)-path P with Xstart(P) = i 
and Xena(P) = j in time O(|E|) (if one exists). 

Proof: Let W = V — {z,y}. Create an uncoloured graph Gz,,i; in the fol- 

lowing way: V(Gay,ij) = {z,y}UW' UW?, where W" = {z": z € W} 
for’r = 1,2, E(G. 4) = {oziciee CiW andi (az) Uitely sieve 
Wand y(zy) = j} U{uku® : u,v € W and x(uv) = k} U {z!2z2: ze WH. 

The reader can easily verify that G has the desired path if and only if 

there exists an augmenting path in Gz, with respect to the matching M = 

{z1z? : z € W}. The latter can be checked, and a path constructed if one 
exists, in time O(|E|). From any augmenting path P in G,, we can obtain 

the desired path in G, simply by contracting those edges of M which are on 

Binw O 

Since colour-connectivity is not an equivalence relation on the vertices 

of every 2-edge-coloured multigraph, another notion of connectivity, cyclic 

connectivity, introduced by Bang-Jensen and Gutin [61], is sometimes more 
useful. Let P = {Hj,...,Hp} be a set of subgraphs of a multigraph G. 

The intersection graph §2(P) of P has the vertex set P and the edge set 
{H;H; : V(Gi) OV(A;) 4 O10 <7 <3 < p}OA pair, a; y, of vertices in a 
2-edge-coloured multigraph H is cyclic connected if H has a collection of 
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alternating cycles P = {C,...,C,} such that z and y belong to some cycles 
in P and §2(P) is a connected graph. 

We formulate the following trivial but useful observation as a proposition. 

Proposition 11.1.12 Cyclic connectivity is an equivalence relation on the 
vertices of a 2-edge-coloured multigraph. 0 

This proposition allows us to consider cyclic connectivity components 
similar to strong connectivity components of digraphs. 

The following theorem due to A. Yeo (private communication, 1998) shows 
that cyclic connectivity between a pair of vertices can be checked in polyno- 
mial time. 

Theorem 11.1.13 For a pair x,y of vertices in a 2-edge-coloured multigraph 

H = (V,E), one can check whether x and y are cyclic connected in time 

O(/E|(IV| + |E)). 

Proof: By Proposition 11.1.11, in time O(|E]), one can check whether H has 

an alternating cycle through a fixed edge e € E. This implies that, in time 

O(|V |||), one can verify whether H has an alternating cycle through a fixed 
vertex v € V. 

We now describe a polynomial algorithm to check whether z and y are 

cyclic connected. Our algorithm starts by initiating X := {xz}. Then, we find 

an alternating cycle through 2; let X' be the vertices except for z of such a 
cycle. If y € X’, then we are done. Otherwise, delete the vertices of X from 

H, set X := X' and X' := @. Then, for each edge e with one end-vertex in 
X and the other not in X find an alternating cycle through the edge (if one 

exists). Now append all the vertices, except for those in X, in the cycles we 

have found to X' and check whether y € X'. If y ¢ X’, then we continue 
as above. We proceed until either y € X’ or there is no alternating cycle 

through any edge with one end-vertex in X and the other not in X. Clearly, 
if y € X' at some stage, then xz and y are cyclic connected, otherwise they 

are not. 

The total time required for the operation of deletion is O(|V||E|). By the 
complexity bounds above and the fact that we may want to find an alternating 

cycle through an edge at most once, the complexity of the described algorithm 

is O(|E|(|V| + |E))). a 
The following theorem by Bang-Jensen and Gutin shows that cyclic con- 

nectivity implies colour-connectivity. 

Theorem 11.1.14 /64] If a pair, x,y, of vertices in a 2-edge-coloured multi- 

graph G is cyclic connected, then x and y are colour-connected. 

Proof: If z and y belong to a common alternating cycle, then they are 

colour-connected. So, suppose that this is not the case. 
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Since x and y are cyclic connected, there is a collection P = {Ci,..., Cp} 

of alternating cycles in G so that x € V(C1), y € V(C,), and, for every 

i=1,2,...,p—1 and every j = 1,2,...,p, |i—j| > 1, V(Gi) NV (Cisr) FO, 

V (Ci) NV(C;) = 0. (P corresponds to a (Ci, C>)-path in 2(R), where R is 
the set of all alternating cycles in G.) We traverse P as follows. We start at 

the red (blue, respectively) edge of C, incident to x and go along C; to the 

first vertex u that belongs to both C; and C2. After meeting u, we go along 

Cz such that the path that we are forming will stay alternating. We repeat 

the procedure above when we meet the first vertex that belongs to both C2 

and C3 and so on. Clearly, we will eventually reach y. It follows that there is 

an (x, y)-path that starts from a red (blue, respectively) edge. By symmetry, 

we can construct an (z,y)-path that ends at a red (blue, respectively) edge. 

It follows from Proposition 11.1.10 that x and y are colour-connected. O 

x 

11.1.4 Alternating Cycles in 2-Edge-Coloured Bipartite 

Multigraphs , 

The aim of this subsection is to describe two simple approaches which allow 

one to obtain results for bipartite 2-edge-coloured multigraphs using results 

on directed graphs. ; 

Let D be a bipartite digraph with partite sets V,, V2. Define a 2-edge- 

coloured bipartite multigraph CM (D) in the following way: CM (D) has the 
same partite sets as D; every arc (v1, v2) from V; to V2 is replaced with red 

edge vi v2 and every arc (v2, v1) from V2 to V; is replaced with blue edge v1 v2. 

Moreover, CM~!(G) = H if CM(H) = G. This simple correspondence which 

we call the BB-correspondence leads us to a number of easy and some more 

complex results which are described in this and the next subsections. (One 

example is the fact that the alternating Hamilton cycle problem for bipartite 

2-edge-coloured graphs is ’P-complete.) In many of our results on cycles we 

will exploit the following easily verifiable proposition (see Exercise 11.10). 

Proposition 11.1.15 The following three claims are equivalent for a bipar- 

tite digraph D: 

(a) D is strongly connected. 
(b) CM(D) is colour-connected. 
(c) CM(D) is cyclic connected. 0 

The following correspondence which we call the BD-correspondence 

is less universal but may allow one to exploit the wider area of results on 

arbitrary digraphs. The idea of the BD-correspondence can be traced back to 

Haggkvist [386]. Let G be a 2-edge-coloured bipartite multigraph with partite 

sets V; and V2 so that |Vi| = |V2| = m and let G’ be the red subgraph of 
G. Suppose that G’ has a perfect matching v11v21, V12V22,.--, VimU2m, Where 

vig € Vi (i = 1,2 and 1 < j < m). Construct a digraph D = D(G) as follows: 
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vi164 V21 

V12 U22 
2 3 

1 4 

V13 U23 

V14 U24 

& D(G) 

Figure 11.5 An illustration of BD-correspondence. 

P{D) — {1 2,...,m)} and, for 1 <i #3 < m, G,j) is an arc of D if and only 

if v1;v2; € E(G) — E(G’) (see Figure 11.5). It is easy to see that, if D has 
a Hamilton cycle, then G has a Hamilton alternating cycle including all the 

edges of the perfect matching. Using the BD-correspondence and Corollary 

5.6.3 Hilton [429] proved the following: 

Theorem 11.1.16 Let G be a 2-edge-coloured r-regular bipartite graph such 

that each of the partite sets of G has m vertices and let G" be the blue subgraph 

of G. Ifr > 2 +1 and G" is s-regular such that 2 <s<r—1, thenG has 
an alternating Hamilton cycle. 

Proof: Exercise 11.11. Oo 

Although the last theorem is the best possible (consider two disjoint copies 

of Km/2,m/2 With perfect matchings in both copies in red and all other edges in 

blue), Hilton [429] believes that the bound on r could be lowered considerably 
if we assume that G is connected. It was noticed by Chetwynd and Hilton [155] 
that Theorem 11.1.16 follows easily from the following result by Haggkvist 

[386] (using the BB-correspondence). 

Theorem 11.1.17 Let G be a bipartite graph so that each of the partite sets 

contains m vertices. If d(v) + d(w) > m-+1 for every pair v,w of vertices 

from different partite sets, then every perfect matching of G lies in a Hamilton 

cycle of G. 0 

The BB-correspondence is very useful when we consider 2-edge-coloured 
complete bipartite multigraphs. In this case we can use the rich theory of 

semicomplete bipartite digraphs (discussed in Chapters 5, 6). By the BB- 
correspondence, Proposition 11.1.15 and Theorem 5.7.4, we obtain the fol- 

lowing: 

Theorem 11.1.18 A 2-edge-coloured complete bipartite multigraph contains 

an alternating Hamilton cycle if and only if it is colour-connected and has an 
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alternating cycle factor. There is an algorithm for constructing an alternat- 

ing Hamilton cycle in a colour-connected 2-edge-coloured complete bipartite 

multigraph on n vertices in time O(n?) (if one exists). Oo 

Another condition for a 2-edge-coloured complete multigraph to contain 

an alternating Hamilton cycle was obtained by Chetwynd and Hilton [155}: 

Theorem 11.1.19 A 2-edge-coloured complete bipartite graph B with partite 

sets U and W (\U| = |W| =n) has an alternating Hamilton cycle if and only 

if B has an alternating cycle factor and, for every k = 2,...,n—1 and every 

pair of k-sets X and Y such that X CU, Y CW, we have 

min{ 5 di(z) + )> ds_a(y) : 1 = 1,2} > F’. 
zEX yeY : 

XN 
Oo 

We point out that the original proof of Theorem 11.1.19 is quite similar 

to that of Theorem 5.7.4. (Another proof of Theorem 11.1.19 is given by 
Bang-Jensen and Gutin [61]; see also Exercise 11.14.) To see that the set of 
inequalities of this theorem is necessary, observe that the number of edges 

between X and Y is precisely k?. If B has a Hamilton cycle C, then C 

contains an edge e; from U — X to Y as well as an edge eg from X to W —Y 

such that y(e1) = x(e2). Precisely one of these edges contributes to the sum 
in the corresponding inequality. 

Using the corresponding result on longest cycles in semicomplete bipartite 

digraphs (Theorem 5.7.6), one can obtain the following: 

Theorem 11.1.20 The length of the longest alternating cycle in a colour- 

connected 2-edge-coloured complete bipartite multigraph G is equal to the 

number of vertices in maximum alternating cycle subgraph of G. There is 

an algorithm for finding a longest alternating cycle in a colour-connected 2- 

edge-coloured complete bipartite multigraph on n vertices in time O(n?). O 

Let B, and Bi are 2-edge-coloured complete bipartite graphs with the 

same partite sets {v,...,UVor} and {w,..., wer}. The edge set of the red 
(blue) subgraph of B, (Bt) consists of 

LUptuge eliseg eer) UL fupw es ml ag or) 

The following result is a characterization of vertex-alternating-pancyclic 2- 

edge-coloured complete bipartite multigraphs that can be readily obtained 

from the corresponding characterization for semicomplete bipartite digraphs 
in Theorem 6.13.1. 

Theorem 11.1.21 A 2-edge-coloured complete bipartite multigraph is vertex- 

alternating-pancyclic if and only if it has an alternating Hamilton cycle and 

is not colour-isomorphic to one of the graphs B,, B!. (r = 2,3,...). Oo 
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Since none of the graphs B,., B). (r = 2,3,...) is alternating-pancyclic, we 
obtain the following: 

Corollary 11.1.22 Let G be a 2-edge-coloured complete bipartite multi- 

graph. Then G is is alternating-pancyclic if and only if it has an alter- 

nating Hamilton cycle and is not colour-isomorphic to one of the graphs 

iE fe es Pa 0 

This result was obtained by Das [182]. The equivalent (via the BB- 
correspondence) claim was proved by Beineke and Little [99] for bipartite 
tournaments. (Both results were published in the same year!) 

To save the space we will not give any other ‘BB-translations’ of results 

obtained for cycles and paths in semicomplete bipartite digraphs (see Chap- 

ters 5, 6) into the alternating cycles and paths language. 

11.1.5 Longest Alternating Paths and Cycles in 2-Edge-Coloured 

Complete Multigraphs 

Since the longest alternating path problem for 2-edge-coloured complete 

multigraphs is much simpler than the longest alternating cycle problem, we 

start our study from the former. Bang-Jensen and Gutin characterized 2-edge- 

coloured complete multigraphs which have an alternating Hamilton path (see 

Corollary 11.1.24). 

Theorem 11.1.23 /61] Let G be a 2-edge-coloured complete multigraph with 

n vertices. Then for any 1-path-cycle subgraph F of G there is an alternating 

path P of G satisfying V(P) = V(F) (if F is a maximum alternating 1-path- 

cycle subgraph of G, then P is a longest alternating path in G); there exists 

an O(n*) algorithm for finding a longest alternating path in G. 

Proof: Obviously, F is a 1-path-cycle factor of a complete bipartite subgraph 

B of G. The factor F corresponds to a directed path together with a collection 

of directed cycles, all vertex disjoint, F' of CM~'(B). Therefore, by Theorem 
5.7.1 restricted to semicomplete bipartite digraphs, there is a path P’ in 

CM~1(B) such that V(P’) = V(F'). This path corresponds to an alternating 
path P of B so that V(P’) = V(P). Clearly, P is an alternating path in G 

and, moreover, V(P) = V(F). 
The complexity result easily follows from the construction above, and 

Theorems 5.7.1 and 11.1.8. 0 

Corollary 11.1.24 /61] A 2-edge-coloured complete multigraph has an al- 
ternating Hamilton path if and only if it contains an alternating 1-path-cycle 

factor. Oo 

It is not difficult to prove Corollary 11.1.24 directly (see Exercise 11.17). 
Clearly, Corollary 11.1.24 implies immediately the first part of Theorem 



608 11. Generalizations of Digraphs 

11.1.23. Thus, the first part of Theorem 11.1.23 and Corollary 11.1.24 are 

in fact equivalent. 

In 1968, solving a problem by Erdés, Bankfalvi and Bankfalvi [91] gave 

the following characterization of 2-edge-coloured complete graphs which have 

an alternating Hamilton cycle. 

Theorem 11.1.25 (Bankfalvi and Bankfalvi) /91] A 2-edge-coloured 

complete graph G of order 2n has an alternating Hamilton cycle if and only 

if it has an alternating cycle factor and, for every k = 2,...,.n—1 and every 

pair of disjoint k-subsets X and Y of V(G), Daex A(z) + Vycy ly) > ke. 
O 

It is easy to see that the conditions of this theorem are necessary (Ex- 

ercise 11.13). Saad [648] proved the following more general result, using the 

notion of colour-connectivity rather than degree conditions. We provide a 

proof of Theorem 11.1.26.in the end of this subsection after some discussion 

of implications and generalizations of Theorem 11.1.26. 

Theorem 11.1.26 (Saad) /648] The length of a longest alternating cycle 

in a colour-connected 2-edge-coloured complete multigraph G is equal to the 

number of vertices in a mazimum alternating cycle subgraph of G. 

Corollary 11.1.27 /648] A 2-edge-coloured complete multigraph G has an 

alternating Hamilton cycle if and only if G is colour-connected and contains 

an alternating cycle factor. Oo 

Corollary 11.1.27 and the fact that colour-connectivity can be checked in 

polynomial time (see Propositions 11.1.10 and 11.1.11) shows that the alter- 

nating hamiltonian cycle problem for 2-edge-coloured complete multigraphs 

is polynomial time solvable. However, one cannot deduce the analogous re- 

sult for the longest alternating cycle problem (for 2-edge-coloured complete 

multigraphs) from Theorems 11.1.26 and 11.1.8 and Propositions 11.1.10 and 

11.1.11, only. The reason is that we do not know how to obtain all maximal 

colour-connected subgraphs of an arbitrary 2-edge-coloured multigraph in 

polynomial time. Fortunately, for 2-edge-coloured complete multigraphs G, 

colour-connectivity is an equivalence relation on the set of vertices (this was 

first proved by Saad [648] and also follows from Proposition 11.1.12 and the 
following deeper theorem by Bang-Jensen and Gutin [64]): 

Theorem 11.1.28 /64] A 2-edge-coloured complete multigraph G is colour- 

connected if and only if G is cyclic connected. oO 

Proof: Exercise 11.15. 

Thus, we can use Propositions 11.1.10 and 11.1.11 to obtain (vertex- 

disjoint) colour-connected components of G. Hence, the longest alternating 
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cycle problem for 2-edge-coloured complete multigraphs is also polynomial 

time solvable. In [64], Bang-Jensen and Gutin showed the following more 

general result. (Clearly, the case f(x) = 1 for every x € V(G) corresponds to 
the longest alternating cycle problem.) 

Theorem 11.1.29 /64] The following problem is polynomial time solvable. 

Given a function f from V(G), the vertex set of a 2-edge-coloured complete 

multigraph G, to Zo, find a mazimum size alternating closed trail H in G 

such that dy, 7(x) = d2,y(x) < f(x) for every x € V(G). Oo 

Das [182] and later Haggkvist and Manoussakis [389] observed that the 
alternating hamiltonian cycle problem for 2-edge-coloured complete bipar- 

tite multigraphs can be reduced to the same problem for 2-edge-coloured 

complete multigraphs using the following simple construction. Consider a 

2-edge-coloured complete bipartite multigraph L with bipartition (X,Y). 

Add to L the edges {z'x",y'y" : a',2" € X, y',y” € Y} and set 

x(XX) = 1, x(YY) = 2. Let K be the 2-edge-coloured complete multigraph 
obtained in this way. It is not difficult to verify that K has no alternating 

cycle containing any of the edges from XX UYY. Hence, K contains an 

alternating hamiltonian cycle if and only if L has one. Moreover, it is easy 

to check that K is colour-connected if and only if L is colour-connected. In 

the following, we will call the construction above the DHM-construction. 

The DHM-construction shows that (the non-algorithmic part of) Theorem 
11.1.18 follows immediately from Corollary 11.1.27. This illustrates the fact 

that many problems on alternating cycles for 2-edge-coloured complete multi- 

graphs are more general than those for 2-edge-coloured complete bipartite 

multigraphs. 

Consider the following Hamiltonian 2-edge-coloured complete graphs 

which are not even-pancyclic (see the proof of this fact below). Let r > 2 
be an integer. Each of the graphs H(r), H'(r), H"(r) has a vertex set 
AUBUCUD so that the sets A,B,C,D are pairwise disjoint and each 

of these sets contains r vertices. Moreover, the edge set of the red subgraph 

of H(r) consists of AAUCC UAC U AD UCB. The edge set of the red 
(blue) subgraph of H'(r) (H"(r)) consists of AC UCBU BD U DA. By the 
DHM-construction, the following result by Bang-Jensen and Gutin [61] is a 
generalization of Theorem 11.1.21 (the proof is left as Exercise 11.16). 

Theorem 11.1.30 Let G be a 2-edge-coloured complete multigraph. Then G 

is vertez-alternating-pancyclic if and only if G has an alternating Hamilton 

cycle and is not colour-isomorphic to the graphs H(r), H'(r), H"(r) for 
(i Seales 0 

Since the graphs H(r), H’(r), H'(r) are not alternating-pancyclic for 

r = 2,3,..., we obtain the following characterization first proved by Das 

__ [182]. 
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Corollary 11.1.31 A 2-edge-coloured complete multigraph G is alternating- 

pancyclic if and only if G has an alternating Hamilton cycle and is not colour- 

isomorphic to the graphs H(r), H'(r), H"(r) for r = 2,3,.... Oo 

The rest of this subsection is devoted to the proof of Theorem 11.1.26 

adapted from Bang-Jensen and Gutin [64]. In the statements and the proofs 

of the rest of this subsection, we use the following notation: G is a 2-edge- 

coloured complete multigraph with n vertices, Fp = C, U...UC>p is an 

alternating cycle subgraph in G consisting of p ele Cyaan rg 1OF 1eacu 

( Se AO io + U94 (4) U1 such that x(vjv3) = 1, X (iggy V4) = s 

and Ay = ethos ++ Ubq Gat) Yi = V(Ci) — Xi. We write Cj+C; to denote 

that 

x(XiXi) = x(XiV(C;)), x(V¥i) = x(ViV (Cj) and x(XiXi) # XN). 

We point out that the meaning of C;—C; is that, for any choice of vertices 

z € V(C;) and y € V(C;), there exist alternating (2, y)-paths P and P’ such 
that the colours of the edges incident with z in P and P’ are distinct, but 

for every such choice of paths P and P’, the colours of the edges in P and 

P' incident with y are equal. Hence, if C; +C;, then the multigraph induced 

by the vertices of these two. cycles is not colour-connected. (See Figure 11.6, 

where C2-+C3.) 

Lemma 11.1.32 Suppose G has an alternating cycle factor Fz = C,; UC». 

Then, G has an alternating Hamilton cycle if and only if neither C;—>C2 nor 

Cy>C,. Given a pair C, and C2 of cycles of G, so that neither Cj—-C>2 

nor C2z-C\, an alternating Hamilton cycle of G can be found in time 

O(\V (Ci) {IV (C2))). 

Proof: It is easy to see that, if either C} +C2 or C2—C}, then G is not colour- 

connected. Hence, G has no alternating Hamilton cycle. Assume that neither 

C\—C>2 nor C2-C;, but G has no alternating Hamilton cycle. Consider the 

bipartite digraph T with partite sets Vj = X¥; UX. and V2 = Y, UY> obtained 

from G in the following way: delete all edges between vertices both on C; or 

on C2 except those edges that are on the cycles and delete all edges between 

vertices both in the same partite set. Now make the following orientations 

of the edges in the resulting bipartite multigraph. For i = 1,2 and any pair 

v1 € Vi, vo € Vo, if there is an edge e between v; and v2, then delete the 

colour of the edge e and orient it as the arc (v;,v3_;) if and only if y(e) =i. 
Obviously, T has a spanning cycle subgraph consisting of two directed cycles 

Z, Z2 which are orientations of the cycles C,, C2, respectively. Similarly we 

see that every directed cycle in T corresponds to an alternating cycle in G. 

Thus, since G has no alternating Hamilton cycle, T is not hamiltonian. By 

Exercise 5.34, this means that T is not strong, i.e. all arcs between Z, and 

Z2 have the same orientation. Without loss of generality we may assume that 
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all these arcs are oriented from Z, to Zj. Then, by the definition of T, we 

obtain that x(Xi1Y2) =1, x(% Xe) =2. 
Consider next the bipartite digraph T’ with partite sets V;) = X;UY2 and 

Vz = Y1 U X2. The rest of the definition of T’ coincides with that of T. T’ 

also contains a spanning cycle subgraph consisting of orientations of C and 

C2. Since G has no alternating Hamilton cycle, T’ is not hamiltonian. By 

Corollary 5.34, this means that JT’ is not strongly connected. This leads us 

to the conclusion that either y(X1X2) = 1 and x(Y, Y2) = 2 or x(X1X2) = 2 

and (Yi Y2) = 1. The first possibility together with the conclusion of the 
previous paragraph implies y(X1;V(C2)) = 1,x(YiV(C2)) = 2. The second 
gives x(X2V(C1)) = 2,x(¥Y2V(C1)) = 1. Without loss of generality we may 
assume that y(X1V(C2)) = 1,x(%iV(C2)) = 2. 

Suppose that, for some i # j, there exists an edge v3; 4109 j+1 Of colour 2. 

Then G has the alternating Hamilton cycle 

2a kd i 1 1 1 Th 2 

Hence, x(X;X1) = 1. Analogously, y(Y¥i1¥1) = 2. Now C2 > C, and we have 

obtained a contradiction. 

The complexity bound follows from that of Corollary 5.34. oO 

An alternating cycle subgraph F of G is irreducible if there is no other 

alternating cycle subgraph Q in G so that V(R) = V(Q) and Q has fewer 
cycles than R. (See Figure 11.6.) 

Ci C2 C3 C4 

Figure 11.6 An irreducible PC cycle factor. The number s € {1,2} on the edge 
emanating to the left from a vertex on Ci, 2 < i < 2 indicates that the colour of 
all edges from that vertex to all the vertices of Cj with j < i is s. The vertices 
are partitioned into two equal sized sets indicated by black and white vertices. The 

- number r € {1,2} on an edge between two black (white vertices) on the same cycle 
indicates that all edges between black (white) vertices on that cycle have the same 
colour r. 
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Theorem 11.1.33 Let G have an alternating cycle factor F consisting of 

p > 2 cycles. F is an irreducible alternating cycle factor of G if and only 

if we can label the cycles in F as Ci,...,Cp, such that, with the notation 

introduced above, for every1 <i <j <p, x(X;V(Gi)) =1, x(WjV(Gi)) = 

2,x(X;X;) = 1,x(Yj¥;) = 2. An irreducible alternating cycle factor of G (if 

any) can be found in time O(n?*). 

Proof: If the edges have the structure described above, then C;—+C;j for all 

i <j and each of the cycles in F form a colour-connected component and F 

is clearly irreducible. 

To prove the other direction we let F be an irreducible alternating cy- 

cle factor of G and let p > 2 be the number of cycles in #. By Lemma 

11.1.32, no two cycles in F induce a colour-connected subgraph. Thus, for 

alll <i <j <p, either C; Cj; or Cj;-+C;. Therefore, the digraph with 

vertex. set {C),...,C,} and arc set {(C;,Cj) © C;-7-G;,) <3 eee a 
is a tournament. So, if there exist cycles Cj,C},...,C;, from F such that 

CC... +Cj},-+C}, then there also exists such a collection for k = 3 and 
the reader can easily find an alternating cycle covering precisely the vertices 

of those cycles, contradicting the irreducibility of 7. Hence we can assume 

that there is no such cycle. Thus there is a unique way to label the cycles 

in F as C\,C2,...,Cp, so that C;-C; if and only if 1 < 7. If there are 

three cycles C;,C; and C;, from F such that C;-+Cj;,C, and Cj;—C,, but 

x(XEV(Ci)) 4 x(X4V(C;)), then we can easily find an alternating cycle cov- 
ering precisely the vertices of C;,C; and C;, contradicting the irreducibility 

of F. Hence we may assume that for all 1 <i <j < p, x(Xj;V(Ci)) = 1 and 

x(Y;V(C;)) = 2. The fact that x(X;X;) = 1,x(YjY;) = 2 follows from the 
proof of Lemma 11.1.32 and the minimality of F. 

Using the proof of Lemma 11.1.32, the proof above can be converted into 

an O(n?)-algorithm for transforming any alternating cycle factor into an al- 

ternating hamiltonian cycle or an irreducible alternating cycle factor. Now the 

complexity bound of the lemma follows from a simple fact that one can find a 

spanning alternating cycle subgraph (if any) in a 2-edge-coloured multigraph 

L in time O(|V(L)|?°). Indeed, find maximum matchings in the red and blue 
subgraphs of ZL. Obviously, L has a spanning alternating cycle subgraph if 

and only if both subgraphs have perfect matchings. The complexity bound 

follows from that of the algorithm for finding a maximum matching in an 
arbitrary graph described in the book [231] by Even. 0 

We will make use of the following simple lemma. 

Lemma 11.1.34 Let P = 2,22...2,% be an alternating path and C an al- 

ternating cycle disjoint from P in G. Suppose x(ai1V(C)) = i # x(a 22) 
where 1 = 1 ori = 2 and that G contains an edge ryz, where z € V(C) and 
X(@e-10%) A X(TKz). If x(xez) =i, then G contains a cycle C' with V(C') = 
V(P)UV(C). Otherwise G has a cycle C" with V(C") = V(P)UV(C) —w, 
where w is the neighbour of z on C for which x(wz) = 3-1. 
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Proof: Exercise 11.18. oO 

Proof of Theorem 11.1.26: Let F = C, U...UC, be an alternating 

cycle subgraph of G and let F' = C, U...UC,_1. We will show by induction 
on p that G has an alternating cycle C* having at least the same number 

of vertices as ¥. If p = 1, we are done. So, we may suppose that p > 2. By 

Theorem 11.1.33, we may assume, using the (obvious) induction hypothesis, 

that, for all l<i<j<p, 

x(XGV (Ci)) = 1, x(YGV (Ci) = 2, x(XGX5) = 1,x(VjYj) = 2. (11.2) 

Since G is colour-connected there is an alternating (x, y)-path R of min- 
imum length such that s € V(C,), {y} = V(R) AN V(F') and x(az') # 
x(«V (F')), where z’ is the successor of x in R. We prove that (V(R) — 
{z,y}) NV(F) = @. Assume this is not so, that is, R contains at least two 

vertices from Cy. Consider a vertex z in (V(R) N V(C,)) — x. Let z’ be the 
successor of z in R. Clearly, y(zz') = x(zV(F’)) since the (z,y)-part of R 
is shorter than R. On the other hand, by (11.2) z’ is not in C, and by the 

minimality of R, x(z2'V(F')) = x(xz'). Then, the alternating path Qv, where 
Q is the reverse of the (2’, z)-part of R and v is a vertex in Cp_1, is shorter 

than R; a contradiction. 

Now consider an alternating (x, y)-path R with the properties above in- 

cluding (V(R)—{z, y})NV(F) = 0. We may assume without loss of generality 
that « = v? and y(xV(F’)) = x(v8u?). Choose t such that y € V(C;). Apply 
Lemma 11.1.34 to the path 

Pp Pp P pl V>K(p) Yar(p)—1 °° U2 » 

where R’ is the path R without y, and the cycle C;. We get a new alternating 

cycle C’, with V(C’) Cc V(R) UV(Ct) U V(C,), covering at least as many 
vertices as C; and C, together, so by replacing C; and Cp by C’ in F, we 

obtain a new alternating cycle subgraph with fewer cycles which covers at 

least as many vertices as F and the existence of C* follows by induction. O 

The proof above can be converted into an O(n?)-algorithm for finding 
a longest cycle in G, provided we are given a maximum cycle subgraph as 

input. 

11.1.6 Properly Coloured Hamiltonian Paths in c-Edge-Coloured 

. Complete Graphs, c > 3 

Let K° denote a c-edge-coloured complete graph with n vertices. The prop- 

erly coloured (PC) Hamilton path problem for c-edge-coloured complete 

graphs seems to be much more difficult in the case c > 3, than in the case 

c = 2 treated above. 
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Problem 11.1.35 /61] Determine the complexity of deciding whether a c- 

edge-coloured complete graph, c > 3, has a PC Hamilton path. oO 

There is a polynomial time algorithm for Problem 11.1.35 if the following 

generalization of Corollary 11.1.24 is true. 

Conjecture 11.1.36 /61] A KS (c > 2) has a PC Hamilton path if and only 
if KS contains a PC spanning 1-path-cycle subgraph. 0 

We know that the claim of this conjecture is true when c = 2 (see Corollary 

11.1.24). The following weaker result is proved by Bang-Jensen, Gutin and 

Yeo [73]. 

Theorem 11.1.37 If a KS (c > 2) contains a PC spanning cycle subgraph, 

then it has a PC Hamilton path. 

Proof: Let C;,C2,...,C; be the cycles of a PC spanning cycle subgraph F 

of K*. Let F be chosen so that, among all PC spanning cycle subgraphs of 

K‘, the number of cycles t is minimum. We say that C; edge-dominates 

C; (i # J) if, for every edge ry of Cj, there exists an edge between z and C; 

and an edge between y and C; whose colours differ from the colour of zy. 

Construct a digraph D as follows. The vertices of D are 1,2,...,¢ and an arc 

(i,j) isin D (1<i¥ 7 <t) if and only if C; edge-dominates C;. 

First we show that D is semicomplete. Suppose this is not so, i.e. there 

exist vertices i and j which are not adjacent. This means that neither C; edge- 

dominates C;; nor C; edge-dominates C;. Thus C; has an edge ry such that 

x(zV (C;)) = x(zy) and C; has an edge uv such that x(uV(Ci)) = x(uv). 
It follows that y(ry) = x(xu) = x(uv) = x(rv) = x(uy). Therefore, we can 
merge the two cycles to obtain a new properly coloured one as follows: delete 

xy and uv, and append xv and yu. However, this is a contradiction to t being 

minimum. Thus, D is indeed semicomplete. 

Since D is semicomplete, it follows from Theorem 1.4.5 that D has a 

Hamilton directed path: 7,72 ...74. Without loss of generality we may assume 

that 7, = k for every k = 1,2,...,t. In other words, C; edge-dominates Cj, 

for everyol < i059 1. et CO) = me ns etic tt el eee einem 
edge-dominates C2, without loss of generality, we may assume the labellings 

of the vertices in C; and Cy» are such that x(z},,21) # x(z}z3). Since the 
edges z?z3 and z3z? have different colours, without loss of generality we may 
assume that y(z222) # y(zi23). Analogously, for every i = 1,2,...,t—1, we 
may assume that x(z‘,.z1) # x(zizst") A x(z5t* zit). Now we obtain the 
following PC Hamilton path: 

leset L4{ yiN2 2 ving.” ist te 2923 6. 2m, 21 2923 «+s Sng 2] «2 2Q23 vt Sen, 21 « 
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The above theorem can be considered as a sufficient condition for an edge- 
coloured complete graph to have a PC Hamilton path. We state two other 
sufficient conditions. The first theorem is by Barr and has a simple inductive 
proof (Exercise 11.19). The proof of the second theorem, due to Manoussakis, 
Spyratos, Tuza and Voigt, is much more involved; it is omitted. 

Theorem 11.1.38 /94] Every KS without monochromatic triangles has a 
PC Hamilton path. Oo 

Theorem 11.1.39 /549] Ifc > $(n—3)(n—4)+2, then there is anno = no(c) 
such that, for every n > no, each KS has a PC Hamilton path. Oo 

11.1.7 Properly Coloured Hamiltonian Cycles in c-Edge-Coloured 

Complete Graphs, c > 3 

Benkouar, Manoussakis, Paschos and Saad posed the following problem which 

is analogous to Problem 11.1.35: 

Problem 11.1.40 /103] Determine the complezity of the PC Hamilton cycle 
problem for c-edge-coloured complete graphs when c > 3. 

Another interesting problem is to find a non-trivial characterization of 

c-edge-coloured (c > 3) complete graphs containing PC hamiltonian cycles. 

In this subsection, we consider results from [103] related to Problem 11.1.40. 
We give an example showing that the obvious analogue of Corollary 11.1.27 

is not valid for c > 3. Later we present some conditions which guarantee the 

existence of a PC Hamilton cycle in a c-edge-coloured complete graph. 

A strictly alternating cycle in K¢ is a cycle of length pc (p is an inte- 

ger) so that the sequence of colours (12...c) is repeated p times. Benkouar, 
Manoussakis, Paschos and Saad [103] proved the following: 

Theorem 11.1.41 /103] Letc > 3. The problem of determining the existence 

of a strictly alternating Hamilton cycle in K¢ is NP-complete. 

Proof: Exercise 11.20. O 

The following result shows that, if we relax the property of colours to be 

at strict places, but maintain the number of their appearances in a Hamilton 

cycle, then we still have an W’P-complete problem. 

Theorem 11.1.42 /103] Given positive integers p and c > 3, the problem 

of determining the existence of a PC Hamilton cycle C of K¢, so that each 

colour appears p times in C is NP-complete. 

Proof: Exercise 11.21. O 

The following example shows that the obvious analogue of Corollary 

11.1.27 is not valid for c > 3. The graph G¢ is a 3-edge-coloured complete 
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graph on vertices 1,2,3,4,5,6. All the edges of Gg has colour 1 except for 

the following: the triangles 2342 and 2562 have colours 2 and 3, respectively, 

x (36) = y(45) = 2, x(12) = 3. It is easy to check that G¢ is colour-connected 
and has the alternating spanning cycle subgraph 1231 U 4564, but Gg» con- 

tains no PC Hamilton cycle (Exercise 11.22). Note that alternating paths 

showing that Gg is colour-connected may be chosen so that for each choice of 

vertices x and y the two paths P and P’ described in the definition of colour- 

connectivity are internally disjoint. Hence it will not be enough to change this 

definition to require that P and P’ are disjoint, a condition which is obviously 

necessary for the existence of a PC Hamilton cycle. For every even n, using 

the definition of Gg, one can easily construct a 3-edge-coloured complete 

graph on n > 8 vertices which is colour-connected and has a PC spanning 

cycle subgraph, but contains no PC Hamilton cycle (see Exercise 11.23). 

We start our consideration of sufficient conditions for an edge-coloured 

complete graph to contain a PC Hamilton cycle with the following simple 

result by Manoussakis, Spyratos, Tuza and Voigt: 

Proposition 11.1.43 /549] Ifc > $(n —1)(n—2)+2, then every K< has a 

PC Hamilton cycle. 

Proof: Exercise 11.24... : oO 

To see that the bound of Proposition 11.1.43 is sharp consider the follow- 

ing K,. Assign colour 1 to all edges incident to a fixed vertex c € V(K¢). 
Each of the remaining edges has a distinct colour not equal 1. Clearly, such 

K§ has no PC Hamilton cycle and c = $(n — 1)(n — 2) +1. 
In [184] Daykin posed the following interesting problem. Find a positive 

constant d such that every K¢ with Amon(KS) < dn has a PC Hamilton 
cycle. This problem was independently solved by Bollobds and Erdés [121], 

and Chen and Daykin [145]. In [121] (in [145], respectively), it was proved 
that, if 69Amon(KS) < n (17Amon(KE) < n, respectively), then K¢ has 
a PC Hamilton cycle. Shearer [668] improved the last result showing that 
if 7TAmon(KS) < n, then KS has a PC Hamilton cycle. So far, the best 
asymptotic estimate was obtained by Alon and Gutin [11]. 

Theorem 11.1.44 /11] For every € > 0 there exists an no = no(e) so that 
for eachn > no, every K< satisfying 

§ . 
Amon(Kn) $(1- Fe —e)n (= (0.2928...—e)n ) (11.3) 

contains a PC Hamilton cycle. 

However, Theorem 11.1.44 seems to be far from the best possible, at least, 

if the following conjecture by Bollobds and Erdés [121] is true. 
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Conjecture 11.1.45 Every K¢ with Amon(KS) < |n/2|] —1 has a PC 

Hamilton cycle. 

The rest of this subsection is devoted to a probabilistic! proof of Theorem 

11.1.44. For simplicity we assume first that n = 2m is even, and remark at 

the end of the subsection how to modify the argument for the case of odd 

n. Fix a positive €, and let K = K¢ be an edge-coloured complete graph on 

n = 2m vertices satisfying (11.3). We first prove the following lemma. 

Lemma 11.1.46 For all sufficiently large m, K contains a spanning edge 

coloured complete bipartite graph K<, _, satisfying m,m 

: 1 € 
Amon(Kinm) < (1 - V2 + 5)m- (11.4) 

Proof: Let ujv;j (1 < i < m) be an arbitrary perfect matching in K and 

choose a random partition of the set of vertices of K into two disjoint subsets 

A and B of cardinality m each by choosing, for each 7, 1 < i < m, randomly 

and independently, one element of the set {u;,v;} to be a member of A and 

the other to be a member of B. Fix a vertex w of K and a colour, say red, that 

appears in the edge-colouring of kK. The number of neighbours a of w in A so 

that the edge wa is red can be written as a sum of m independent indicator 

random variables 2),...,£m, where x; is the number of red neighbours of w 

in A among u;,v;. Thus each 7; is either 1 with probability one (in case both 

edges wu;, wv; are red) or 0 with probability 1 (in case none of the edges 
wu;, wv; is red) or 1 with probability 1/2 (in case exactly one of these two 

edges is red). It follows that, if the total number of red edges incident with w 

is r then the probability that w is adjacent with more than (r+ s)/2 vertices 
in A by red edges is equal to the probability that more than (q + s)/2 flips 
among g independent flips of a fair coin give ‘heads’, where qg is the number of 

nonconstant indicator random variables among the z;’s. This can be bounded 

by the well known inequality of Chernoff (cf. e.g. [14, Theorem A.4, page 235]) 

by e~28'/4 < e—28°/m_ Since the same argument applies to the number of ‘red’ 

neighbours of w in B, and since there are less than 8m? choices for a vertex w, 

a colour in the given colouring of K and a partite set (A or B), we conclude 
that the probability that there exists a vertex with more than 

Nh € 
(1 53 5ym 

neighbours of the same colour in either A or B is at most 

Biny!? 
8me 2€ ye 

1 Probabilistic methods have proved to be very powerful for various problems (see 
e.g. the book [14] by Alon and Spencer). 
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which is (much) smaller than 1 for all sufficiently large m. Therefore, there 

exists a choice for A and B so that the above does not occur, completing the 

O proof. 

The next lemma can be proved by applying a large deviation result for 

martingales, i.e., Azuma’s inequality [14]. 

Lemma 11.1.47 /11] Let U be a subset of M = {1,2,... ,m—1} and suppose 

that for each u € U there is a subset S, C M, where |Sy| <1 for all u. Let 

f:UWM be a random one-to-one mapping of U into M, chosen uniformly 

among all one-to-one mappings of U into M, and define: 

B(f) =|{ueU: f(u) € Su}I- 

Then the expectation of B(f) is given by 

B= B(B(f)) = PM (< 
ucU 

and the probability that B(f) is larger satisfies the following inequality. For 

every A > 0 

Prob[B(f) - E> 44V/m— 1] <e". 

Corollary 11.1.48 Let Kf, ,, be an edge-coloured complete bipartite graph 

on the partite sets A and B, and suppose that (11.4) holds. Then, for all 

sufficiently large m, there exists a perfect matching a;b;, 1 <1 <m, in Ky, 

so that the following two conditions hold. 

(i) For every i the number dt(i) of edges aib; between a; and B whose 

colours differ from those of a;b; and of a;b; is at least m/2 +1. 

(ii) For every j the number d~(j) of edges ajb; between b; and A whose 
colours differ from those of ab; and of a;b; ts at least m/2+ 1. 

Proof: Let a,;b;, 1 < «7 < m, be a random perfect matching between A 

and B, chosen among all possible matchings with uniform probability. Put 

T = Amon(Ky,,m) and notice that by (11.4) 

Fix an 7, say i = m, and let us estimate the probability that the condition (i) 

fails for 1. Suppose the edge abm has already been chosen for our random 

matching, and the rest of the matching still has to be chosen randomly. There 

are at most r edges a,,b (b € B) having the same colour as a,b. Let U be 

the set of all the remaining elements B. Then |U| > m—r. For each u € U, 
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let S, denote the set of all elements a € A—a,, so that the colour of the edge 

au is equal to that of the edge a,,u. The random matching restricted to U 

is simply a random one-to-one function f from U to A — aj. Moreover, the 

edge au will not be counted among the edges incident with a,, and having 

colours that differ from those of a,b, and of the edge matched to u if and 

only if the edge matched to u will lie in S,,. It follows that the random variable 

counting the number of such edges of the form a,,u behaves precisely like the 

random variable B(f) in Lemma 11.1.47. By choosing say, \ = ,/log(4m) we 
conclude that the probability that B(f) exceeds |U|r/(m — 1) + 4AV/m—1 
is smaller than 1/(4m). Therefore, with probability at least 1 — + 

a (m) > U|- A — avin /iog(am) 
> (m= Him=r =) Be nein) 

>m/2+1, 

for all sufficiently large m (using the fact that r < (1 — 3 =e): 

Since there are m choices for the vertex a; (and similarly m choices for 

the vertex b; for which the computation is similar) we conclude that with 

probability at least a half dt(i) > m/2+1, and d~(j) > m/2 +1 for all i 
and 7. In particular there exists such a aichine, completing the proof of the 

corollary. O 

Returning to the proof of Theorem 11.1.44 with n = 2m, and given 

an edge-coloured K¢ satisfying (11.3) apply Lemma 11.1.46 and Corollary 

11.1.48 to obtain a matching a,b; satisfying the two conditions in the corollary. 

Construct a digraph D = (V, E) on the set of vertices V = {v1, v2,...,Um} by 
letting v;v; be a directed edge (for i ¥ 7) if and only if the colour of a,b; in Kt 

differs from that of a,b; and that of ajb;. By Corollary 11.1.48 the in-degree 

and the out-degree of every vertex of D exceeds m/2, implying, by Corol- 
lary 5.6.3, that D contains a directed Hamilton cycle v,(1)Uq(2) ---Ux(m)Ux(1)> 

where a = 7(1),7(2),...,7(m) is a permutation of {1,2,...,m}. The cycle 
bx(1)Ax(1) bx (2) An(2) ne Dam) Ox (m) Ox (1) is clearly a PC Hamilton cycle in KS, 

as needed. 

In case n = 2m+1 is odd we fix a path P = a,c }, of length 2, so that the 

edges a,c; and c;b; have distinct colours, choose a random perfect matching 

a2b2,...,Qmbm in the rest of the graph and show that with high probability 

there is a PC Hamilton cycle containing the path P and the matching by 

' applying Corollary 5.6.3 as before. Since the details are almost identical to 
the ones for the even case, we omit them. This completes the proof of the 

theorem. 0 
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11.2 Arc-Coloured Directed Multigraphs 

In this section we show that surprisingly the problem to verify whether a 

2-arc-coloured digraph has an alternating directed cycle is NP-complete. 

We prove some sufficient conditions for a 2-arc-coloured digraph to contain 

an alternating directed cycle. These results are due to Gutin, Sudakov and 

Yeo [371]. We will obtain an original characterization of weakly eulerian arc- 

coloured directed multigraphs (see a definition below) and pose the problem 
to find the complexity of the eulerian trail problem for arc-coloured directed 

multigraphs. 
In this section we assume that the arcs of directed multigraphs are 

coloured with c colours: 1,2,...,c. We adapt notation and terminology of 

the previous section in the obvious way. 

The problem of the existence of an alternating cycle in a 2-arc-coloured 

digraph (the ADC problem) generalizes the following two polynomially 

solvable problems: the existence of an alternating cycle in a 2-edge-coloured 

graph (see the previous section) and the existence of an even length cycle in 
a digraph (see Chapter 10). To see that the ADC problem generalizes the 
even cycle problem, replace every arc (z,y) of a digraph D by two vertex 

disjoint alternating paths of length three, one starting from colour 1 and the 

other from colour 2. Clearly, the obtained 2-edge-coloured digraph has an 

alternating cycle if and only if D has a cycle of even length. We will prove 

that the ADC problem is ’P-complete [371] by providing a transformation 
from the well-known 3-SAT problem (see Section 1.10) to the ADC problem. 
This is in contrast to the simple fact that the ADC problem restricted to 

bipartite 2-arc-coloured digraphs is polynomial time solvable. 

To indicate that an arc (z,y) has colour i € {1,2,...,c} we will write 
(z,y);- For a vertex v in a c-arc-coloured directed aiieeank OR he (v) 
{ ; (uv # denotes the number of arcs of colour i leaving (entering) v, i = 

’ Lider C; 

bay ul minfd? (v) fda (6). a Soe eee 

The following parameter is of importance to us: 

Smon(D) = min{Smon(v) : v € V(D)}. 
Let f(n) be the minimum integer such that every strongly connected 2-arc- 

coloured digraph D with n vertices and 6°,,,(D) > f(n) has an alternat- 
ing cycle. Similarly let g(n) be the minimum integer such that every 2-arc- 

coloured digraph D with n vertices and 6°,,,,(D) > g(n) has an alternating 
cycle. We show below that f(n) = O(logn) and g(n) = O(log n). 

By contrast with that, the corresponding function f(n) for the even cycle 
problem does not exceed three (see Thomassen’s even cycle theorem in Sec- 

tion 8.3). Using Theorem 3.2 in [702], one can show that the corresponding 
function g(n) for the even cycle problem equals O(log n). By Theorem 3.2 in 
[702], there exists a digraph H,, with n vertices and minimum out-degree at 
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least + logn not containing even cycles. Let H}, be the converse of H,,. Take 
vertex disjoint copies of H, and H}, and add all arcs from H!, to Hy. The 
obtained digraph and the upper bound in Theorem 3.2 of [702] provide the 
estimate O(log 7). 

A directed trail is properly coloured (PC) if its consecutive arcs differ 
in colour. In case of two colours, we speak of alternating trails. An arc- 
coloured directed multigraph D is weakly eulerian if the arc set of D can 
be partitioned into PC closed trails T,,...,7;. If D has a PC closed trail 
containing all arcs of D, then D is eulerian. 

11.2.1 Complexity of the Alternating Directed Cycle Problem 

The proof of the following proposition is left as a simple exercise (Exercise 
mir 2 7): 

Proposition 11.2.1 The ADC problem restricted to 2-arc-coloured bipartite 

digraphs is polynomial time solvable. 

In contrast with Proposition 11.2.1, we have the following: 

Theorem 11.2.2 (Gutin, Sudakov, Yeo) /371] The ADC problem is NP- 
complete. 

Proof: To show that the ADC problem is V’P-complete, we transform the 3- 

SAT problem to the ADC problem (recall the definition of the 3-SAT problem 

from Section 1.10). Let X = {z1,...,2,%} be a set of variables, and let F = 

C1 * C2 *...* Cm be an instance of the 3-SAT problem such that every c; has 

three literals and all of these are variables or negations of variables from X. 

We construct a 2-arc-coloured digraph D which has an alternating cycle if 

and only if C is satisfiable. We use the same reduction as in [371], but rather 
than giving a formal definition of D, we describe its structure in the caption 

of Figure 11.7 and argue using this picture. This can easily be formalized 

to a precise description of D (see [371]). Based on the definition of D, it is 
not difficult to prove the following lemma which gives important structural 

properties of D (Exercise 11.26). 

Lemma 11.2.3 let C be an alternating directed cycle in D. Then the follow- 

ing holds: 

(a) C uses precisely one of the three paths of length two from c; to cj41 for 

eT: 
(b) For each j = 1,2,...,m, the subpath C[c;,cj+41] has length 2 and contains 

precisely one vertex from US_, (V(P;) UV(Q;)). 
(c) C contains each of the vertices c1,C2,---,Cm,€m+1 and in that order. 

(d) If C uses a path cjuc;41 such that u € V(Pi) (u € V(Qi)), then no 
other subpath of C of the type cqvCq+1, ¢ # J, uses a vertex from V(Q;) 

(V(P;)) and C contains the whole path Q; (P;) as a subpath. 
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Figure 11.7 A schematic view of the digraph D. The digraph has one vertex c; for 
each clause c; in F¥ and an extra vertex cm41. For each variable z;, i = 1,2,...,k, 

D contains two alternating directed paths P;,Q; such that these start and end in 
the same vertices but are otherwise disjoint and both paths start and end with 
colour 1. Part (a) shows the way these structures are put together to form D. 
There is a unique arc from a pair P;,Q; to the next pair P;41, Qi+1 and this arc 
has colour 2. For every j = 1,2,...,m, cj is joined to cj41 by three paths of 
length 2. Part (b) of the figure shows a detailed picture of the three (c;c;+1)-paths 
of length 2 when c; is the clause cj; = 2, + ©; + 2. These paths are cjuc;+1, 
where u € V(T;), Ti € {Pi,Qi}. The first arcs of these paths are of colour 1. 
Furthermore the paths P;,...,P,Qi,...,Qx are chosen sufficiently long so that 
no vertex u € V(P;) UV(Q;) is used on two different paths of the type cj; ucj 41. 

(e) C uses precisely one of the alternating directed paths P;,Q; for each i = 

1,2,...,k and it uses them in order of increasing 1. 

Lemma 11.2.4 The digraph D has an alternating directed cycle if and only 
if F is satisfiable. 

Proof: Suppose C is an alternating directed cycle in D. By Lemma 11.2.3, 

the following is a truth assignment to X = {21,22,...,2,%}. For each i = 
1,2,...,k, if C uses P; then put 2; = 0 otherwise (C uses Q; by (e)) put 
xz; = 1. We claim that each clause c; is satisfied by this assignment. By 

Lemma 11.2.3, the subpath of C from c; to cj41 has the form cjucj41 for 
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some u € U*_, (V(P;) UV(Q;)). Let @ be the literal of c; corresponding to u 

(that is, if w € P;, then by (d) and the definition of D, = 2; and if u € Q,, 

then @ = Z;). If u € V(P,), then C uses the path Q; and the truth assignment 

above will put €= 2; = 1. Ifu € V(Q;), then C uses P; and 2; is assigned the 
value 0, implying that @ = %; = 1 . This shows that the clause c; is satisfied. 

Since this argument is valid for all clauses we see that the truth assignment 
described above satisfies F. 

Suppose now that F has a satisfying truth assignment t = {t1,t2,..., tx} 

(see Section 1.10). Then we can fix, for each clause c; one literal 1; which 
is true according to this assignment. Let @1,¢2,...,€m denote these fixed 

literals. Note that since ¢ is a truth assignment, none of the chosen literals 

is the negation of another. By the construction of D there is a unique path 

Cj; = cjuj;cj4+1 which corresponds to the choice of @; (that is, uj; € P; if 
£; =o and Uz € GF if £; = wel Furthermore if tae = Co for some j; # Ja, 

then u;, # u;,. For each i = 1,2,...,k fix one of the paths Pj, Q; as follows: 

it — 2; for some. r €{1,2,...,m}, then T; = Q;; otherwise T; = P;. By 

the comment above this assignment of subpaths always chooses one subpath 

pomeach 7. 11,2,,..,.h: 

Now it is easy to see that the following is an alternating directed cycle in 

D 
C1C2 oltelfe Gatyls pron Ty. 

This completes the proof of the lemma. O 

To complete the proof of Theorem 11.2.2, it suffices to observe that the 

digraph D can be constructed in polynomial time for any given instance of 

the 3-SAT problem. QO 

We do not know what the complexity of the ADC problem is when re- 

stricted to tournaments. 

Problem 11.2.5 /371] Does there exist a polynomial algorithm to check 

whether a 2-arc-coloured tournament has an alternating cycle? 

Figure 11.8 illustrates the difficulty of this problem. In contrast to the ‘un- 

coloured’ case, the 2-arc-coloured tournament T in Figure 11.8 has a unique 

alternating cycle, which is hamiltonian. Therefore, a reduction to ‘short’ al- 

ternating cycles may well be impossible. 

Proposition 11.2.6 The cycle C in the tournament T of Figure 11.8 is 

hamiltonian and consists of the matching of colour 1 from R to B and the 

matching of colour 2 from B to R. If we reverse any arc of colour 1 in Cs 

we obtain a tournament with no alternating cycle. 

Proof: Exercise 11.31. 0 
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Figure 11.8 A 2-arc-coloured tournament with a unique alternating cycle C. All 
arcs within R (B) are of colour 1 (2). The cycle C is hamiltonian and consists of 
the matching of colour 1 from R to B and the matching of colour 2 from B to R. 
If we reverse any arc of colour 1 in C, we obtain a tournament with no alternating 
cycle. 

x 

11.2.2 The Functions f(n) and g(n) 

Since f(n) < g(n) we will only prove a lower bound for f(n) in Theorem 
11.2.10 and an upper bound for g(n) in Theorem 11.2.11. 

Let S(k) be the set of all sequences whose elements are from the set {1, 2} 
such that neither 1 nor 2 appears more that k times in a sequence. We assume 

that the sequence without elements (i.e. the empty sequence) is in S(k). We 

start with three technical lemmas. Their proofs are formulated as Exercises 

Wil PAess TEE PA, IU cot): 

Lemma 11.2.7 /371] |S(k)| = (7d) —1. Oo 

Lemma 11.2.8 /371] For every k > 1, 

fA < i (11.5) 
k}) Vr JVk 

Let d(n) = |Flogn + ; loglogn —a|, where a = a (<0:5): 

Lemma 11.2.9 /371] ee) <n, for all n > 24. Oo 

Now we are ready to prove the following theorem by Gutin, Sudakov and 
Yeo [371]. 

Theorem 11.2.10 For every integer n > 24, there exists a 2-arc-coloured 
strongly connected digraph Gy with n vertices and 6°,,(Gn) > d(n) not 
containing an alternating cycle. 
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Proof: Let the vertex set of a digraph D, be S(2d(n)) and let two vertices 

of D, be connected if and only if one of them is a prefix of the other one. 

Moreover, if r = (%1,%2,...,%p) and y = (y1,y2,..., Yq) are vertices of Dn, 
and z is a prefix of y (namely, 2; = y; for every i = 1,2,...,p), then the arc 

a(x,y) between x and y has colour yp; and a(x, y) is oriented from zx to y 

if and only if |{j: 7 >p+1 and y; = yp41}| < d(n). 
The digraph D,, is strongly connected since the arc between a pair of 

vertices Z = (21, 22,...,%p) and y = (21, 22,..., Lp, p41) is oriented from x 

to y, and the arc between the empty sequence @ and a vertex v of D,, which 

is a sequence with 4d(n) elements is oriented from v to # (every vertex of Dy, 

belongs to a cycle containing § and a vertex corresponding to a sequence of 

4d(n) elements). 
Let x = (11, 22,-.-,%p) be a vertex of D,. It is easy to see that df (zx) > 

d(n). Indeed, if x contains at most d(n) elements equal one, then (x, x"); is 
in D,, where r = 1,2,...,d(n) and 2” is x followed by r ones. If x contains 

t > d(n) elements equal one, then (x,y); is in Dn, where y is obtained from z 

by either adding at most 2d(n) —t ones or deleting more than d(n) rightmost 
ones, together with 2’s between them, from z. 

Analogously, one can show that d; (x) > d(n). By symmetry, 6°,,,,(Dn) > 

d(n). 
Now we prove that D, contains no alternating cycle. Assume that Dy 

contains an alternating cycle C. The empty sequence @ is not in C as @ is 

adjacent with the vertices of the form (i,...) by arcs of colour i € {1,2}, but 

the vertices of the form (1,...) are not adjacent with the vertices of the form 
(2,...). Analogously, one can prove that the vertices (1) and (2) are not in 
C. In general, after proving that C’ has no vertex with p elements, we can 

show that C has no vertex with p+ 1 elements. 

By Lemma 11.2.7, D, has b(n) = ea) — 1 vertices. By Lemma 

11.2.9, b(n) < n. Now we append n — b(n) vertices along with arcs to Dy 

to obtain a digraph G, with 6°,,,(Gn) > d(n). Take a vertex x € Dy with 
4d(n) elements. We add n — b(n) copies of x to Dy such that every copy has 

the same out- and in-neighbours of each colour as z. The vertex x and its 

copies form an independent set of vertices. 

The construction of G, implies that 5°,,,,(Gn) > d(n), Gn is strongly 
connected and G,, has no alternating cycle, by the same reason as Dy. oO 

Now we are ready to prove an upper bound? for g(n). 

Theorem 11.2.11 Let D=(V,A) be a 2-arc-coloured digraph on |V| = n 
vertices. If df (v) > logn — 1/3loglogn + O(1) for everyi = 1,2 andve V, 

then D contains an alternating cycle. 

2 As we mentioned in the footnote just before Lemma 10.6.13 the bound of the 

lemma can be slightly improved. Hence the bound for g(n) can also be improved 
slightly. 
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Proof: Without loss of generality assume that d/(v) = k for all vu € V (k 
will be defined later), otherwise simply remove extra arcs. For each vertex 

v € V and each colour i = 1, 2, let 

Bi ={ueV: (v,u) is an arc of colour i}. 

The size of each of the sets B’ is equal to k, thus they form a k-uniform 

hypergraph H with n vertices and 2n edges. Let k = logn—1/3loglogn + b, 

where b is a constant. Then it is easy to see that by choosing b large enough we 

get that ck!/?2* > 2n. By Lemma 10.6.13, our hypergraph H is 2-colourable. 
By taking a 2-colouring of H we get a partition V = X UY such that Bi, 

intersects both X and Y for every i = 1,2 and v € V. Let D, be asubdigraph 

of D which contains only arcs of colour 1 from X to Y and arcs of colour 

2 from Y to X. The out-degree of every vertex in Dj is positive, since all 

sets B! intersect both X and .Y. Therefore D; contains a cycle, which is 

alternating by the construction of D,. 0 

11.2.3 Weakly Eulerian Arc-Coloured Directed Multigraphs 

Figure 11.9 Weakly eulerian non-eulerian 2-arc-coloured digraph. 

The following theorem yields a characterization of weakly eulerian arc- 

coloured directed multigraphs. Due to Theorem 11.1.2, every connected 

weakly eulerian edge-coloured multigraph is eulerian (the definition of weakly 
eulerian edge-coloured multigraphs is analogous to that of arc-coloured di- 
rected multigraphs). This is in contrast to the fact that not every connected 
weakly eulerian arc-coloured directed multigraph is eulerian. For example, 
let C and Z be a pair of 2-arc-coloured alternating directed cycles with only 
one common vertex x and 1 = y(xzt) # y(xx}) = 2; see Figure 11.9. The 
union H of C' and Z is weakly eulerian, but H has no PC eulerian trail. 

The proof of the following theorem is similar to that of Theorem 11.1.2 
and left as Exercise 11.34. 

Theorem 11.2.12 An arc-coloured directed multigraph D is weakly eulerian 
if and only if d+ (x) = d~(a) for every vertex x in D, and for every vertex x 
in D and every colour i, we have 

diz) Sa: (). 
j#t 
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Neither characterization nor complexity is known so far for the eulerian 
trail problem in arc-coloured directed multigraphs. 

Problem 11.2.13 Find the complexity of checking whether an arc-coloured 
directed multigraph is eulerian. 

For the case of just two colours the following simple transformation by 

Fleischner [240] can be applied. Let D be a 2-arc-coloured directed multi- 
graph. Split every vertex v with 6°(v) > 0 into a pair v',v” of vertices such 
that v’ ‘inherits’ all red arcs entering v and all blue arcs leaving v, and vu" 
‘inherits’ all blue arcs entering v and all red arcs leaving v. By disregarding all 

colours in the obtained 2-arc-coloured directed multigraph, we yield the di- 

rected multigraph H. Clearly, D is eulerian if and only if H is eulerian. Some 

sufficient conditions for an arc-coloured directed multigraph to be eulerian 
are given in [240]. 

11.3 Hypertournaments 

Given two integers n and k, n > k > 1, a k-hypertournament T on n 

vertices is a pair (V,A), where V is a set of vertices, |V| = n and A isa 
set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A 

contains exactly one of the k! k-tuples whose entries belong to S. That is, T 

may be thought of as arising from an orientation (being a fixed permutation 

of vertices) of the hyperedges of the complete k-uniform hypergraph on n 

vertices. Clearly, a 2-hypertournament is merely a tournament. 

As an example of a 3-hypertournament, let L have vertex set V(L) = 

{1,2,3,4} and arc set A(L) = {(1, 2,3), (1,2, 4), (1, 4,3), (4,3, 2)}. The four 
arcs of L are orientations of sets {1,2,3}, {1,2,4}, {1,4,3} and {2,3, 4}, 

respectively. 

Hypertournaments have been studied by a number of authors (see, e.g., 

the papers [32] by Assous, [92, 93] by Barbut and Bialostocki, [117] by Bialo- 
stocki, [276] by Frankl, [374] by Gutin and Yeo, [552, 553] by Marshall, [599] 
by Pan, Zhou and Zhang and [759] by Zhou, Yao and Zhang). Reid [630, Sec- 

tion 8] describes several results on hypertournaments obtained by the above 

authors and poses some interesting problems on the topic. In particular, he 

raises the problem of extending the most important results on tournaments 

to hypertournaments. 
In this section based on the results of Gutin and Yeo in [374] and Zhou, 

Yao and Zhang in [759], we give extensions of three of the most basic theo- 
rems on tournaments: every tournament has a Hamilton path (Rédei’s the- 
orem), every strong tournament has a Hamilton cycle (Camion’s theorem), 

and Landau’s theorem, Theorem 8.7.1, on out-degree sequences of tourna- 

ments. It turns out that every k-hypertournament on n (> k) vertices has a 

Hamilton path and every strong k-hypertournament on n > k + 2 > 5 ver- 

tices contains a Hamilton cycle. We also describe, for every k > 3, a strong 
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k-hypertournament on k + 1 vertices which has no Hamilton cycle. We con- 

sider the complexity of the Hamilton cycle problem for k-hypertournaments 

and note that the problem remains polynomial time solvable when k = 3 and 

becomes \VP-complete for every fixed integer k > 4. As follows from The- 

orem 11.3.4, deciding strong connectivity for hypertournaments is already 

NP-complete. Interestingly enough, Landau’s theorem and the Harary-Moser 

theorem, Theorem 8.7.2, on out-degree sequences of all tournaments and all 

strong tournaments have direct extension to hypertournaments. 

Let T = (V, A) denote a k-hypertournament T on n vertices. A path in T 

is a sequence V1 41 V242U3 ...U~_-1 04-1 Uz Of distinct vertices v1, v2,.-.,Vt,t > 1, 

and distinct arcs a 1,...,@:—, such that v; precedes vj41 in aj, 1 <i <t—l1. 

A cycle in T is a sequence 0141020203... Vt-14¢-1U444U1 Of distinct vertices 

V1,V2,--.,U~ and distinct arcs a,,...,a4, t > 1, such that v; precedes v;41 

in aj, 1 <i <t (a¢41 = a1). The above definitions of a path and cycle in a 
hypertournament are similar to the corresponding definitions of a path and 

cycle in a hypergraph. . 

For a path or cycle Q, V(Q) and A(Q) denote the set of vertices (v;’s 
above) and the set of arcs (a;’s above), respectively. For a pair of vertices 

v; and v; of a path or cycle Q, Q[u;,v;] denotes the subpath of Q from 

v; to v; (which can be empty). A path or cycle Q in T is hamiltonian if 

V(Q) = V(T). The 3-hypergraph L considered in the beginning of this section 

has a Hamilton path 1, (1, 2,3), 2, (1,2,4),4, (1,4,3),3. A hypertournament 

T is hamiltonian if it has a Hamilton cycle. A path from z to y is an 

(z,y)-path. A hypertournament T is strong if T has an (z, y)-path for every 

(ordered) pair x,y of distinct vertices in T. The hypertournament L is not 

strong, since there is no (2, 1)-path in L. This, in particular, means that L is 

not hamiltonian. 

We aiso consider paths and cycles in digraphs which will be denoted as 

sequences of the corresponding vertices. 

The out-degree d*(v) of a vertex v in a hypertournament T is the num- 

ber of arcs in T' in which v is the last vertex. The out-degree sequence 

of T = (V,A) is the non-decreasing sequence sj, S2,...,5n of non-negative 

integers such that {s1, $2,...,8n} = {d*(v): v € V}. For a pair of distinct 
vertices x and y in T, Ar(a,y) denotes the set of all arcs of T in which x 
precedes y. Clearly, for all distinct 2,y € V(T), 

lAr(2,y)| + |Ar(y,2)| = G 3 al (11.6) 

11.3.1 Out-Degree Sequences of Hypertournaments 

It turns out that Landau’s theorem on out-degree sequences of tournaments 

can be directly extended to hypertournaments. Similarly, one can extend the 

Harary-Moser theorem on out-degree sequences of strong tournaments. These 

extensions were proved by Zhou, Yao and Zhang [759]. 
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Theorem 11.3.1 [759] Given two non-negative integers n and k with n > 
k > 2, a non-decreasing sequence s1,82,...,8n of non-negative integers 1s 
the out-degree sequence of some k-hypertournament if and only if for each j, 

Boy <n, 

: j 
<> 

a2 (a 
1=1 

with equality holding when j = n. 0 

Theorem 11.3.2 /759] A sequence s; < s2 < ... < Sy of non-negative 

integers with n > k > 2 is the out-degree sequence of some strong k- 

hypertournament if and only if for each j, k<j<n-—1, 

and 

11.3.2 Hamilton Paths 

Assume, in this subsection, that k > 2. Clearly, no k-hypertournament with 

precisely k(> 3) vertices has a Hamilton path. However, all other hypertour- 

naments have Hamilton paths: 

Theorem 11.3.3 Every k-hypertournament with n (> k) vertices contains 

a Hamilton path. 

Proof: Let T = (V, A) be a k-hypertournament T on n vertices 1,2,...,n. 

We consider the cases k = n — 1 and k < n —1 separately. 

Case 1: k = n —1. We proceed by induction on k > 2. Clearly, this 

theorem holds for k = 2. Hence, suppose that k > 3. Assume (by relabelling 

the vertices, if necessary) that T contains the arc a = (23...n). Let 6 be 
the arc of T whose vertices are 1,2,...,m — 1 (in some order). Consider the 

(k — 1)-hypertournament T’ = (V’, A’) obtained from T by deleting the arc 
a, deleting n from the arcs in A — {a,b}, and finally deleting 1 from b. So, 

Vie, 25 pi) Ale fe’: Sesisne without n;<e €.A.—-{a, b}}.U:{b'}, 
where 0b’ is b without the vertex 1. By the induction hypothesis, T’ has a 

Hamilton path 2,ax%2a4...a),_5%,-1. This path corresponds to the path 

Oee Fra; isda sc. Gnesi in: TY Clearly,){2105, 0-1} 6= {160,70 1} 
and A — {a;,...,@n—2} consists of the arc a and another arc c. 

If tp, # 1, then Qan is a Hamilton path in T. Hence from now on 

assume that z,_; = 1. Consider two subcases. 
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Subcase 1.1 c $ b: If the last vertex of c is n, then Qen is a Hamilton 

path in T. Otherwise, x; is the last vertex of c for some j <n—1. If 7 > 1 we 

replace aj_1 by anc in Q in order to obtain a Hamilton path in T. If j = 1, 

then ncQ is a Hamilton path in T’. 

Subcase 1.2 c = b: If c ~ (fn-12n-2---21) So that x; precedes 2441, 

for some i, 1 < i < n— 2, inc, then P = Q[21, xi|cQ[xi+1, Zn_-1] is a path 

in T. Since a; # b, one can construct a Hamilton path in T from P as in 

Subcase 1.1. If ¢c = (tn_1%n_2-.-21), then Q[x2,tp-1]cx1an is a Hamilton 

path in T. 

Case 2: k < n — 1. We proceed by induction on n > 4. The case n = 4 

(and, hence, k = 2) is easy to verify (it also follows from Rédei’s theorem). 
Therefore, suppose that n > 5. Consider the new k-hypertournament T’’ 

obtained from T by deleting the vertex n along with all arcs in A containing 

n. T" has a Hamilton path because of either Case 1 if n = k — 2 or the 

induction hypothesis, otherwise. . 

Let_P = 2101 2202...Qn22%n_1 be a Hamilton path in JT”. If T has 

an arc a € Ar(%p_1,n), then Pan is a Hamilton path in T. Suppose that 

Ar(tn-1,n) = 0. Then either Uns! Ar(ai, 7) = @, or there is an 7 so that 

Ue Art, n) = @ and T contains an arc b where x; precedes n. In the first 
case, ncP is a Hamilton path in T', where c is an arc of T containing both 

x, and n. In the second case, P[z1, x;]bndP[xi+1,£n-1] is a Hamilton path 

in T, where d is an arc of T containing both z;,; and n and distinct from 

b. oO 

11.3.3 Hamilton Cycles 

Clearly, every hamiltonian hypertournament is strong. However, for every k > 

3, there exists a strong k-hypertournament with n = k + 1 vertices which is 

not hamiltonian. Indeed, let the (n — 1)-hypertournament H,, have vertex set 

{21,...,@n} and arc set {a1,a2,...,Qn}, where a, = (zoz3.. Bo PR he pao 

a2 = 3, a3 = (41222425 ...2n), Ag = (4243214526 ...Ln), and 

ay = (1122 +++ Uj-42j-37j-12j_27j44T7j42.. pte) for 5 < 1 < nN. 

The hypertournament H,, is strong (Exercise 11.35). However, H,, is not 
hamiltonian. To prove that, assume that H, has a Hamilton cycle C. We 
will try to construct C starting from the vertex z,. Since a; is the only 
arc which has a vertex that succeeds z,, C has the form 2,a@,%n_1.... 
Since ay is the only arc which has a vertex different from z, that suc- 
ceeds Zn-1, C = 201 %p-14n%n_-2.... Continuing this process, we obtain 
that C = rna,tn_1...24a523.... The only arc where 23 precedes 2 or 2 
is a4. Hence, C = rna,%n_1...2405230421 .... Now we need to include X2, 
a3 and ag into C. However, this is impossible because only one of the arcs 
a3, @2 contains Xo. 
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In the proof in [374] that every strong k-hypertournament with n vertices, 

where 3 < k < n — 2, is hamiltonian the following notion is of great impor- 

tance. The majority digraph Dyqj;o,(H) of a k-hypertournament H with 

n vertices has the same vertex set V as H and, for every pair 2, y of distinct 

vertices in V, the arc ry is in Dmajor(H) if and only if |Ay(z, y)| > |An(y, 2)| 
(or, by (11.6), |Ar(z,y)| > $(f73)). Obviously, Dmajor(H) is a semi- 
complete digraph. Figure 11.10 shows the majority digraph Dmajor(L) of 

the 3-hypertournament L with vertex set V(L) = {1,2,3,4} and arc set 

A(L) ={ (1; 2,3); (1)2, 4), (14,3), (453, 2)} 

Figure 11.10 The majority graph Dmajor(L) of L. 

Since the proof of the following interesting result is rather lengthy, we do 

not provide it here. 

Theorem 11.3.4 (Gutin and Yeo) /374] Every strong k-hypertournament 
with n vertices, where 3 < k <n — 2, contains a Hamilton cycle. Oo 

We know that the Hamilton cycle problem for 2-hypertournaments, i.e. 

tournaments is polynomial time solvable (see Chapter 5). It turns out that the 
k-hypertournament hamiltonicity problem remains polynomial time solvable 

for k = 3, but becomes NP-complete for every fixed k > 4. 

Let H = (V,A) be a k-hypertournament, A = {a1,...,@m}. Associate 
with H the following arc-coloured directed multigraph D(H): the vertex set 

of D(H) is V; for distinct vertices z,y € V, D(H) has the arc zy of colour 
i if and only if a; € Ay(x,y). Clearly, H contains a path from a vertex x to 

another vertex y if and only if D(H) has a path P from z to y such that no 
two arcs in P have the same colour. 

Theorem 11.3.5 /374] The Hamilton cycle problem is solvable in polyno- 

mial time for the class of 3-hypertournaments. 

Proof: Let H be a 3-hypertournament. We may assume that n > 5, since 

the case when n < 4 can be checked in constant time. By Theorem 11.3.4, 

it suffices to prove that one can check the existence of a path, in H, from a 

vertex xz to another vertex y in polynomial time. Construct the arc-coloured 

directed multigraph D(H) as above. We prove that H has a path from z to 
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y if and only if D(H) has some (z,y)-path. Clearly, if H has a path from 

z to y, then D(H) contains such a path. Suppose that D(H) has a path 

Q=2...%p from x = 2 to y = Zp. If Q has no arcs of the same colour, 

then Q corresponds, in the obvious way, to an (z, y)-path of H. Suppose that 

Q contains arcs of the same colour. This means that there exist a subscript 2 

and an integer j such that the arcs z;_12; and 2;2;41 have the same colour 

j (these two are the only arcs of colour j which can be in Q). We can replace 

Q by the path Q[21, 2i-1]Q[zi+1, 2p]. Continuing this process, we obtain a 

new path, in D(H), from zx to y without repetition of colours. The new path 

corresponds to an (z,y)-path in H. Oo 

Theorem 11.3.6 (Gutin and Yeo) /374] Let k > 4. The Hamilton cycle 
problem for k-hypertournaments is NP-complete. O 

The proof of this theorem in [374] is considerably more difficult and lengthy. 
It reduces the 3-SAT problem*into the Hamilton cycle problem for 4- 

hypertournaments. 

11.4 Application: Alternating Hamilton Cycles in 

Genetics 

In [200, 201] Dorninger considers Bennett’s model (see Bennett’s book [104] 
and the papers [423, 424] by Heslop-Harrison and Bennett) of chromosome 

arrangement in a cell of an eukaryotic organism. In [201], the case of even 
number, n, of chromosomes is studied. We consider here only this case as it is 

more interesting. Every individual chromosome consists of a long arm and a 

short arm, which are linked at the so-called centromere. At a certain stage of 

cell division, which is of interest to biologists, the arms of n chromosomes form 

an n-angle star whose internal points are the centromeres (see Figure 11.11) 

and external points created by the arms of ‘adjacent’ chromosomes. To find 

Figure 11.11 Chromosome arrangement. 

out the order of the centromeres, Bennett [104] suggested that the external 
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points are formed by the most similar size arms. Bennett and Dorninger 

(see [201]) generalized the notion of similarity to so-called k-similarity and 

Dorninger [201] analyzed the consistency of this generalized notion. Let us 

consider the following graph-theoretic model of this biological system. Let 

s; and |; denote the short and long arm of chromosome number 7. Let the 

chromosomes be labeled 1,2,...,n in such a way that s; is longer than s; if 

i<j, and let 7 be a permutation of 1,2,...,n such that l,(;) is longer than 

Le(3) ti <9) 

We call two short arms s; and s; (long arms [,(;) and l,(;)), 1 # J, k- 

similar if |i —j| < k. In this way, for k = 1, we obtain the original Bennett’s 
notion of ‘most similar size’. Let G(n,k,7) be a 2-edge-coloured multigraph 

with vertex set {1,2,...,n}. The blue (red) subgraph Gj(n, k, 7) (G2(n, k, 7)) 
of G(n,k,7) consists of edges pg (p # q) such that sp and sq (lp and /,) are 

k-similar. (See Figure 11.12.) 

5 6 

Figure 11.12 The 2-edge-coloured graph G(6,2,7), where r(1) = 2, 7(2) = 

1, 7(3) = 4, 7(4) = 3, 7(5) = 5, 7(6) = 6. The blue edges are shown by ordi- 

nary lines. The red edges are indicated by fat lines. 

According to one of Bennett’s assumptions, G(n, k, 7) has an alternating 

Hamilton cycle. Dorninger [201] analyzed when G(n,k,7) has an alternat- 

ing Hamilton cycle for every permutation 7. Clearly, for k = 1, the 2-edge- 

coloured multigraph is a collection of t > 1 alternating cycles and, when t > 2, 

Bennett’s assumption does not hold. Dorninger [201] proved that G(n, 2,7) 

has an alternating Hamilton cycle for every 7 provided n < 12. He [201] also 

showed that for every n > 14 there exists a permutation 7 such that G(ni2)m) 

has no alternating Hamilton cycle. Yeo (private communication, April, 1999) 

proved that the alternating Hamilton cycle problem for the graphs G(n, 2, 7) 

is NP-hard. Interestingly enough, G(n, 3,7) contains an alternating Hamil- 

ton cycle for every permutation 7. Thus, the notion of 3-similarity seems to 

be most consistent with Bennett’s assumptions. 

In the rest of this section we will prove the following two results: 

Theorem 11.4.1 /201] For every even positive integer n < 12 and every 

permutation 7 of 1,2,...,n, the 9-edge-coloured multigraph G(n, 2,7) has an 

alternating Hamilton cycle. : 
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Theorem 11.4.2 (Dorninger) [201] For every even positive integer n and 
every permutation m of 1,2,...,n, the 2-edge-coloured multigraph G(n, 3,7) 

has an alternating Hamilton cycle. 

11.4.1 Proof of Theorem 11.4.1 

In this subsection, which contains certain proofs suggested by Yeo (private 

communication, April, 1999), we consider multigraphs G = G(n,2,7). We 

recall that V(G) = V(G1) = V(G2) = {1,2,:..,n}, H(Gi) = {a7 : [t—G| < 
2}, and E(G2) = {x(t)m(j) : |t — Z| < 2} (see Figure 11.12). Clearly, every 
alternating cycle factor F of G is the union of a perfect matching F\ of G; 

and a perfect matching F) of G2. We write F = C(F,, Fo). 
Suppose that e = 17 and f = pq are in F; and e and f belong to two 

distinct cycles X and Y of ¥. Suppose also that 7 < 7, p < q and edges ip 

and jq are in G,. If we delete e and f in F, and add edges ip and jq, we 

obtain a new perfect matching F’ of G,. Observe that C(Fj, F2) has one less 
cycle than C(F,, F2) since the vertices of X and Y form a new alternating 
cycle Z. We call F{ the (e, f)-switch of F,; the operation to obtain F{ from 
F, is a switch (or, the (e, f)-switch). 

LetiSo=t{{2t 11, 2t) tis 2 9- to 2 andl = (tee 1 al eee 
t = 1,2,...,n/2}. Clearly, S and L are perfect matchings in G, and Go, 
respectively. 

Lemma 11.4.3 Let C(S,L) contain m cycles. There is a sequence of switches 

of edges in S, such that the resulting perfect matching F of G,, has the prop- 

erty that C(F,L) has at most |(m+1)/2]| cycles. Furthermore, given any 
cycle C, in C(S,L) we may choose F, such that all cycles in C(F,L), except 
possibly Cp, have length at least 4. 

Proof: Let C(S, L) consist of cycles C),C2,..., Om. Let e; = {2r;—1, 2r;} be 

an edge of C;,, such that r; is minimum. Assume that the cycles C, C2,...,Cm 

are labelled such that 1 = 1] < rg <...< rm. Define q; to be the maximum 

number such that {2r; — 1, 2r;}, {2r; + 1, 2r; + 2},..., {2q; — 1,2q;} belong 

to G;, for every t= 1. 273,01. Observe thatel 2— ti Giee Ponm Gone 

Tm S Im = N. 

Fix h € {1,2,...,m}. We will now prove that by doing switches every 

cycle, except possibly C;,, can be merged with another cycle. We perform the 

switches recursively in the following way. While there is a cycle, C; withi < h, 

which has not been merged to another cycle do the following: choose i to be 

the minimum such index and perform the ({2q; — 1, 2q:}, {2q: + 1, 2q; + 2})- 
switch. While there is some cycle, C; with i > h, which has not been merged 
to another cycle do the following: choose i to be the maximum such index 
and perform the ({2r; — 3, 2r; — 2}, {2r; — 1, 2r;})-switch. Note that all the 
above switches use distinct edges. 

Since every cycle, except possibly C,, is merged to another cycle, we 
must have performed at least |m/2| merges. Therefore there are at most 
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m — |m/2} = |(m + 1)/2] cycles left, which proves the first part of the 
theorem. The second part follows immediately from the above construction. 

O 

Theorem 11.4.1 follows from the next lemma. 

Lemma 11.4.4 If C(S,L) has at most six cycles, then G has an alternating 
Hamilton cycle. 

Proof: By the previous lemma, the alternating cycle factor C(F,L) has at 

most three cycles. Furthermore we may assume that all cycles in C(F,L) 

have length at least 4, except possibly the cycle containing the vertex 7(1). 

If C(F, L) consists of a unique cycle, then we are done. Assume that C(F, L) 
has three or two cycles. Label them D;, Dz, D3 (or D,, D2) similarly to that 

in the proof of Lemma 11.4.3. Let f; = m(2r; — 1)m(2r;) be an edge of Dj, 
such that r; is minimum. Assume that the cycles D,, D2, D3 are labelled such 

that l=r; < ro <r3. Let f} = 2(2r; — 3)a(2r; — 2) for i > 2. 

Note that all cycles except possibly D, have length at least 4. If C(F, L) 
has two cycles (D; and D2), then construct the (f%, f2)-switch M of L. 
Clearly, C(F, M) consists of a unique cycle. Assume that C(F,L) has three 
cycles, D,,D2,D3. Perform the (f3, fo)-switch. If ff # fo then perform 

the (f3, f3)-switch, which gives the desired cycle. If ff = fz then let 
g = m(2j — 1)7(27) be the edge of minimum 7 > r3 which does not lie in 
D3, and let g' = (27 — 3)m(2j — 2). Now perform the (g’, g)-switch, which 
gives the desired cycle. oO 

11.4.2 Proof of Theorem 11.4.2 

In this subsection, we follow [201]. We consider multigraphs G = G(n, 3,7). 
Werren! thats (G)o= Vidi) eV (Ga) a lees hye Gre tf 
|i —j| < 3}, and E(G2) = {(i)a(y) : |i-—g| < 3}. We use the same notation 
as in the previous subsection, in particular, the notation C1,C2,...,Cm and 

€1,€2,...,€m remain valid. Let G* be the subgraph of G induced by the 

vertices of the cycles C;,C2,...,Cz. Let L* = LN E(G§). 
We show that, for every k > 1, there is a perfect matching F* of Gt 

such that C(F*, L*) consists of a single cycle. Clearly, the assertion implies 

Theorem 11.4.2. Trivially, the assertion is true for k = 1. So let us assume 

that the assertion holds for every i < k — 1. Let e, = {s +1,s +2}, where s 

is an appropriate even integer. Consider the following three cases. 

Case 1: The edge e = {s,s — j}, where j = 1 or 2, is in F*~?. 

Then, the desired F* is the (ex, e)-switch of F*-! + e,. Indeed, C(F*, L*) 

consists of a single cycle. 

Case 2: The edges e’ = {s,s — 3} and e” = {s — 1,8 — 2} are in 

F*-1, Let M, (Mz) be a perfect matching of G{~’ obtained from F*~* by 

replacing edges e’,e” with {s,s — 1}, {s— 3, s— 2} ({s,s — 2}, {s—3,s—1}). 
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Clearly, for some i € {1,2}, C(M;,L*~*) consists of a single cycle H. Since 

either {s,s —1} or {s,s —2} is in H, we can apply the transformation of Case 

1 to the appropriate matching Mj. 

Case 3: The edges e’ = {s,s — 3} and e” = {s —1,s — 4} are in 

F*-1, Then e = {s —2,s —5} must be in F*~'. Let H be the single cycle of 

C(F*-1, L¥-). Consider the following two subcases. 

Subcase 3.1: The vertices of e and e’ are in the cyclic order 

3 — 5,8 — 2,8 — 3,s in H. Replacing e and e’ with {s—5, s—3} and {s, s— 

2}, we obtain a perfect matching M of G*~* such that C(M, L*-') consists 
of a single cycle. Since {s,s — 2} € M, we can apply the transformation of 

Case 1 to M. 

Subcase 3.2: The vertices of e and e’ are in the cyclic order 

s —2,s —5,s — 3,s in H. Ife” belongs to H[s—5, s—3], then by replacing 

e,e’,e"’ with three edges, one of which is {s,s — 1}, we obtain a perfect 
matching M of Gk~! such that C(M, L*—!) consists of a single cycle. Since 
{s,s—1} € M, we can apply the transformation of Case 1 to M. If e” belongs 

to H[s, s—2], then by replacing e, e’, e” with three edges, one of which is {s, s— 

2}, we obtain a perfect matching M of G{~* such that C(M, L*~') consists 
of a single cycle. Since {s,s — 2} € M, we can apply the transformation of 
Case 1 to M. 0 

11.5 Exercises 

11.1. Prove Proposition 11.1.1. Hint: use Haggkvist’s transformation as well as 
Theorem 5.0.1, Proposition 9.2.1 and Theorem 9.2.3. 

11.2. (—) Deduce from Theorem 11.1.2 that an undirected multigraph G has an 
eulerian trail if G is connected and each vertex of G is of even degree. 

11.3. Prove that Pevzner’s algorithm described after Theorem 11.1.2 is correct. 

11.4. (—) Every eulerian digraph has a cycle (unless it is the trivial digraph with 
one vertex). Show that the corresponding claim is not valid for alternating 
trails and cycles in 2-edge-coloured graphs. 

11.5. Let G be a connected 2-edge-coloured graph. Let V(G) = X + Y such that 
d,(“) = do(x) for every  € X, and di(y) = d2(y) —1 for every y € Y. What 
is the minimum number of edge-disjoint alternating trails to cover E(G)? 

11.6. Prove Corollary 11.1.7. 

11.7. Every bridgeless graph G has an M-alternating cycle for a given 
perfect matching M of G. Let M be a perfect matching in a graph G. 
Using Theorem 11.1.6 prove that, if no edge of M is a bridge of G, then 
G has a cycle whose edges are taken alternatively from M and G — M 
(Grossman and Haggkvist [335]). 
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11.26. 
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11.28. 

11.29. 

11.5 Exercises 637 

. (+) Let G be a 2-edge-coloured eulerian graph so that all monochromatic 
degrees are odd. Using Theorem 11.1.6 demonstrate that G has an alternat- 
ing cycle (Grossman and Haggkvist [335]). 

Prove Proposition 11.1.10. 

. Prove Proposition 11.1.15. Hint: see Exercise 1.30. 

. Prove Theorem 11.1.16 using the BD-correspondence and Corollary 5.6.3. 

. Deduce Theorem 11.1.16 from Theorem 11.1.17. 

. Show that the conditions of Theorem 11.1.25 are necessary. Hint: it is similar 
to the remark after Theorem 11.1.19. 

. Derive Theorem 11.1.19 from Theorem 11.1.25. Hint: you may use the DHM- 
construction. 

(+) Prove Theorem 11.1.28. 

. (+) Prove Theorem 11.1.30. 

. Give a direct proof of Corollary 11.1.24 (Bang-Jensen, Gutin and Yeo [73]). 

. Prove Lemma 11.1.34. 

. Prove Theorem 11.1.38. 

. Prove Theorem 11.1.41. 

. Prove Theorem 11.1.42. 

. Check that Gg introduced after Theorem 11.1.42 is colour-connected and has 

the alternating spanning cycle subgraph 1231 U 4564, but does not contain 
a PC Hamilton cycle. 

Using the definition of Gg given after Theorem 11.1.42, construct, for ev- 
ery even n, a 3-edge-coloured complete graph on n > 8 vertices which is 
colour-connected and has a PC spanning cycle subgraph, but contains no 
PC Hamilton cycle. 

Prove Proposition 11.1.43. Hint: consider the complete biorientation of a 
maximum spanning subgraph G of Ky, such that no pair of edges in G is of 

ete 

the same colour. Apply Exercise 5.22 to see that G is hamiltonian. 

(—) Prove that the alternating hamiltonian directed cycle problem is VP- 
complete for bipartite 2-arc-coloured digraphs. 

Prove Lemma 11.2.3. 

(—) Prove Proposition 11.2.1. 

Prove Lemma 11.2.7. 

(+) Using the well-known inequality (see e.g. Feller’s book [234, page 54]) 

Vian? ti/2e-ne(lant1)—! ee Jamn®t/2——n (130) 

prove Lemma 11.2.8. 
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11.38. 

11.39. 

11. Generalizations of Digraphs 

(+) Prove Lemma 11.2.9. 

(—) Prove Proposition 11.2.6. 

Let H be the 4-hypertournament with vertices {1,2,3,4,5} and arcs 

{(2, 3, 4, 5), (3, 1, 5, 4), (2, 1, 4, 5), (1, 5, 3, 2), (1, 2, 3, 4)}. 

Find a hamiltonian path in H. 

Let H the 4-hypertournament defined above. Does H have a hamiltonian 
cycle? 

Prove Theorem 11.2.12. 

Prove that the hypertournament H,, introduced in the beginning of Subsec- 
tion 11.3.3 is strong. 

Prove directly that for every fixed k > 4 and n large enough every k- 
hypertournaments is traceable. Hint: use the fact that the majority digraph 
of T is semicomplete. 

(+) Prove that every strong 3-hypertournament on n > 5 vertices is hamil- 
tonian (Gutin and Yeo [374]). 

Show that every hypertournament T has a 2-king, i.e. a vertex x such that 
for every y € V(T) — 2 there is an (z, y)-path of length at most two. Hint: 
see the hint for Exercise 11.36. 

(—) Construct an alternating hamiltonian cycle in the 2-edge-coloured 
graph of Figure 11.12. 



12. Additional Topics 

The purpose of this chapter is to discuss briefly some topics that could not 
be covered in other chapters in the book and which we feel should still be 
mentioned. Depending on taste, several of these (and other topics which have 
been completely left out due to space limitations) could have taken up a whole 
chapter by themselves. Yet we think that our modest coverage will still show 
the flavour and.potential usefulness of these topics. This applies in particular 
to the sections on matroids and heuristics for obtaining good solutions to 
NP-hard problems. 

12.1 Seymour’s Second Neighbourhood Conjecture 

Recall that for a vertex x in a digraph D, N*?(z) is the set of vertices of 
distance two from x. Seymour posed the following conjecture (see [187] and 
Problem 325, page 804 in volume 197/198 (1999) of Discrete Mathematics). 

Conjecture 12.1.1 Every oriented graph D = (V,A) has a verter x such 
that 

[Noh (=) lila (a). (12.1) 

Note that, if we allow 2-cycles, then the conjecture is no longer true as can 

be seen by taking the complete digraph K n- Note also that, if the oriented 

graph has a vertex of out-degree zero, then this vertex satisfies the conjecture. 

This observation implies that it is sufficient to consider the conjecture for 

oriented graphs that are strongly connected. 

The truth of Conjecture 12.1.1 in the case of tournaments was also conjec- 

tured by Dean [187]. This special case of the conjecture was proved by Fisher 

[237] using an analytic approach. Fisher’s argument is non-trivial and in- 

volves the use of a probability distribution on the vertices along with Farkas’ 

Lemma and several other tools. Moreover, Fisher’s method does not explicitly 

identify a vertex which satisfies (12.1). Note that given any oriented graph 
D, such a vertex, or a proof that D is a counter-example to the conjecture, 

can be found in time O(nm) (Exercise 12.1). 
Below we give an elementary proof, due to Havet and Thomassé [407], of 

Conjecture 12.1.1 for the case of tournaments. The proof uses the concept 
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of a median order of the vertex set of a tournament. A median order of a 

tournament T is an ordering L = v1, v2,...,Un of the vertices, such that the 

cardinality of the set of backwards arcs (namely arcs of the form v;v;, 7 > 7) 
is minimum. In other words if H is an acyclic subdigraph of T whose size is 

maximum among all acyclic subdigraphs of T, then any acyclic ordering of 

H induces a median order on T’. 

By definition, if £ = v1, v2,...,Un is a median order of T = (V, A), then 

A' = {ujv; : 1 > j} is a minimum feedback arc set in T’ (see Section 10.3). 
Hence, in the light of Conjecture 10.4.4, finding a median order of a tourna- 

ment seems to be a difficult problem and the weighted version (where we seek 

an order which minimizes the total weight of the backwards arcs) is WV P-hard 

since it is easy to formulate the feedback arc set problem this way (Exercise 

Peale 

The following relaxation of a median order, called a local median or- 

der in [407], is still a powerful tool as we shall see later. An ordering 
L = U4,U2,.--,Un Of the vertices of a tournament T = (V, 4A) is a local 

median order if the following holds for all 1 <i < 7 < n. (Here and below 

we use the notation [v;, vj] = {vi, vigi,...,v;} for all 1 <<i<j <n.) 

IN* (vi) 1 [vi v9]] > [IN (vi) 2 [vi v5]] and (12.2) 

IN~ (us) 0 [vss gl] 2 LN (v3) 9 [ui 95]. (12.3) 
Note that, if (12.2) does not hold, then the number of forward arcs in 

3 Lo 099 - Bay Ui Aas Vea, G1 Uaioe IA 

is larger than in £. Similarly if (12.3) does not hold, then we can obtain 
a better ordering (with respect to the number of forward arcs) by moving 
vj just after v;. Thus a local median order is precisely a local optimum, 
which cannot be improved by moving just one vertex in the ordering. Such 
an ordering can be found in polynomial time for any given digraph by using 
the 1-OPT procedure in Section 12.8 below. 

The following is a direct consequence of the definition of a local median 
order: 

Lemma 12.1.2 Let L = v,0v2,...,Un be a local median order of a tourna- 
ment T’. Then for every 1 <i <j <n the ordering Liz = Vj, Vi41,...,0; is 
a local median order of T({v;,vi+41,...,v;}). oO 

Lemma 12.1.2 provides us with a powerful inductive tool as we shall see 
below. Let T be a tournament and let £L = v1, v,... ,Un be a local median 
order of T. We define a partition Gz, Bc of N ~ (vn) as follows: 

Gc = {vj : ¥jUn and there exists i < j such that un—v;—0;}; 

Be=WN (vn) — Ge. 
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The vertices of Gz are called good and those in Be bad vertices. Note that 
|N*?(un)| > |Gc|. The following result by Havet and Thomassé implies that 
Conjecture 12.1.1 holds for tournaments. 

Theorem 12.1.3 [407] Let T be a tournament and let L = U1,V2,...,Un be 
a local median order of T. Then the vertex Un has |N*?(un)| > |N+(vn)I. 

Proof: Let £ = v1, v2,...,Un be a local median order of T. We prove by 
induction on n that 

IN*+ (vn) < [Gcl- (12.4) 
If n = 1 the claim is trivially true so suppose that n > 1. If Bre = 0 

then we have |Gc| = |N~(vn)| > |N*(vn)|, where the equality holds by the 
definition of the good vertices and the inequality holds by the definition of a 
local median order. Hence we may assume that there is a bad vertex. Choose 
tas small as possible so that vj is bad. Define the sets GL,G, N', N* as 
follows: 

G'. = GcN[v1,uj] and G2 =G.n [vir1, Un, 

N' = Nt (vp) A [v1, vi] and N* = Nt+(u,)N [vi+1,Un]- 

Note that, if a vertex is good with respect to the pair (T({vis1,-..,Un}), 
L"), where L’ = vi41,...,Un, then it is also good with respect to (T,L). 
Hence, by the induction hypothesis (applied to T({vj41,...,Un}) and the 
ordering £"), we have |N"| < |G%|. The minimality of i implies that every 
vertex in {v,,...,Uj-1} is either in G. or N’. Furthermore, since v; is bad 
we have N! C N+(v;) N[u1, v4-1] and N~(v%) N [ur, vs—1] C G',. Now using 
(12.3) we obtain 

IG] > |N~ (vi) 9 [vr, vi-a]] > [NF (v4) (vr, vi-1]| > |N" |. 

Thus we have 

IGc| = |GL| + |G2| > |N'| + |N*| = |N*(un)I, 

implying that (12.4) holds for all positive integers n. Oo 

If a tournament has a vertex of out-degree zero, then this vertex satisfies 

(12.1) and the transitive tournament on n vertices shows that this vertex 
may be the only vertex satisfying (12.1). Using median orders Havet and 
Thomassé [407] proved that unless there is a vertex of out-degree zero, a 

tournament has at least two vertices satisfying (12.1). 

Havet and Thomassé showed by an example that their method (just as 

Fisher’s method [237]) will not suffice to prove Conjecture 12.1.1 in full. 
However, as an illustration of the power of median orders as a tool for proofs 
of results (on tournaments), Havet and Thomassé proved the following result. 
Recall that an oriented tree is an orientation of an undirected tree. 
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Theorem 12.1.4 [407] Every tournament of order at least in contains 

every oriented tree on n vertices as a subdigraph. oO 

This is a significant step towards proving the following conjecture due to 

Sumner (see [740]). Previous results on the conjecture (including a proof that 

every tournament on at least (4+ 0(1))n vertices contains every oriented tree 

on n vertices) were obtained by Haggkvist and Thomason [390]. 

Conjecture 12.1.5 (Sumner) Every tournament on at least 2n—2 vertices 

contains every oriented tree on n vertices. 

12.2 Ordering the Vertices of a Digraph of Paired 

Comparisons 

In this section we consider, several methods for ordering the vertices of a 

weighted digraph. Even though all the methods we study can be applied to 

arbitrary weighted digraphs, we concentrate on so-called paired comparison 

digraphs (PCDs), a graph-theoretical model for the method of paired com- 

parisons [183], which are defined in Subsection 12.2.1. In that subsection, 
we consider also the score method and the feedback set ordering method to 

order the vertices of PCDs. Limitations of these two methods imply the ne- 

cessity to introduce and study other methods of ordering. In the main part 

of this section we consider three methods of ordering that are due to Kano 

and Sakamoto, and were introduced in 1983. These methods are described in 

Subsection 12.2.2; several results on these methods are given in the following 

subsections. 

12.2.1 Paired Comparison Digraphs 

The method of paired comparisons is an approach to ordering a group of 

objects. In the framework of this method, objects are considered in pairs, a 

pair at a time, and the decision is made of which of the two is better. This 

procedure is repeated with all or some other pairs. This method is normally 

applied when objects are characterized by many parameters and/or some 

parameters are unknown or vague (of non-numerical nature). The method of 
paired comparisons is usually carried out by a team of experts. In general, 

the experts will have different views and thus an object M will be favoured 

over an object N by some experts, while others will prefer N over M. (Notice 

that in general some pairs will not be compared at all.) Hence, the results 

of the use of the method of paired comparisons often have to be analyzed to 
find an ‘average’ ordering. 

To carry out such an analysis, a paired comparison digraph D is initially 

constructed. The vertices of D correspond to the objects and, for an ordered 
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pair x,y of vertices (i.e. objects) in D, the arc zy is in D if and only if 
some experts prefer y to z. The weight of zy is the fraction of the experts 
that favour x over y. Formally, following Kano and Sakamoto [472, 473], we 
introduce a digraph of paired comparisons as follows. Let D = (V,A,€) bea 
weighted digraph in which every arc zy has a positive real weight e(zy). A 
digraph D is called a paired comparison digraph (abbreviated to PCD) 
if D satisfies the following conditions: 

(a) 0 < €(ry) <1 for every ry € A; 

(b) (xy) + (yx) = 1 if both zy and yz are arcs; 
(c) e(zy) = 1if cy € A but yz ¢ A. 

Figure 12.1 A paired comparison digraph H. 

See Figure 12.1 for an example of a paired comparison digraph. An (un- 

weighted) digraph D = (V, A) can be viewed as a PCD by setting the weight 
of each arc of D as follows: 

(i) e(zy) = e(yx) = 0.5 if ry, yx € A; 
(ii) e(zy) = lif cy € A but yz ¢ A. 

We call the PCD D’ = (V, A,e) with the weight function € determined by (i) 
and (ii) the uniform PCD corresponding to D. The positive (negative) 
score of a vertex z € V is 

ot (x)= Do (zy), (0 (@) = DO e(yz).) 
zycA yreEA 

In Figure 12.1, 0+ (u) = 0.5 and o~ (u) = 1.5. 
A PCD D is not always semicomplete (some pairs of vertices may not be 

compared). If D is a tournament, then usually the vertices of D are ordered 

according to their positive score, with the first vertex being of highest positive 

score. This approach, the score method, is justified by a series of natural ax- 
ioms (see the paper [647] by Rubinstein). The score method can be naturally 
used for semicomplete PCDs. When a PCD is not semicomplete, the score 
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method may produce results that are not justified from the practical point of 

view. For example, consider the digraph R = (V,A) with V = {1,2,.. .,n}, 

n>5,and A = {12,13}U {41,51,...,n1}. Let R' =(V,A, €) be the uniform 

PCD corresponding to R. Even though the positive score of the vertex 1 is 

maximum, it is against our intuition to order in R’ the vertex 1 first (i.e. the 

winner). This raises the question of finding a method of ordering the vertices 

of an arbitrary PCD, which agrees with the score method for semicomplete 

PCDs. 

In Subsection 10.3.3, we studied a method of ordering of the vertices of a 

weighted digraph D = (V, A, €), the feedback set ordering (FSO). Recall that, 

for an ordering a = (v1, V2,---,Un), where n = |V| and {v1,v2,...,Un} = V, 

an arc (uj,vj) € A is forward (backward) if i < j (i > j). In Figure 12.1, 

for the ordering 6 = (u,v,w,2), wv, uz and wa are (all) forward arcs; vu 

and rw are backward arcs. An ordering a = (v1,v2,.--,Un) can be viewed 

as a bijection from V to {1,2,...,n}. Thus, for a vertex z € V, a(x) =7 if 
x = v;. An ordering a of V is FSO-optimal if the number of backward arcs 

is minimum. Let OR(D) denote the set of all FSO-optimal orderings of V. 
In many cases, OR(D) has more than one element. In these cases, the final 
objective is to calculate the proper FSO-rank of every vertex z of D, i.e. 

il 
trso(2) = ORD) ya: (12.5) 

a€OR(D) 

The final ordering is carried out according to the proper FSO-ranks; the best 

vertex has the smallest FSO-rank. 
Although the FSO method is of definite importance for some applica- 

tions, it does not agree with the score method for semicomplete digraphs: 

Let T be the digraph with vertices 1,2,3,4,5, in which there is a pair 

of opposite arcs between any pair of distinct vertices except for the pairs 

{i,i +1}, «1 = 1,2,3,4, and {1,3}. Moreover, i471 + 1 for = 1,2,3,4 and 

3-1. Let T’ be the uniform PCD corresponding to the semicomplete di- 

graph T. According to the score method, the set of optimal orderings is 

{(3,%,j,k,5) : {t,j,k} = {1,2,4}}. This implies that the proper ranks 

of the vertices according to the score method (by an obvious analogue of 

(12.5)) are m5(3) = 1, wg(1) = ms(2) = ag(4) = 3 and ws5(5) = 5, At the 
same time, the orderings that are optimal according to FSO form the set 
ORT) = {(1,:2,3..4,5)31 2.0) 1¢45 0), (35.1, 28d) 5A aaah) a sa late) 

(3, 4,5,1,2)}. (To see this, first observe that the contribution from 2-cycles 
is independent on the ordering and hence can be ignored. Secondly, observe 

that in an FSO-optimal ordering, which actually has only one backward or- 

dinary arc, 3 must be before 4 and 5, 4 before 5, and the vertices 1,2,3 must 

appear in this order, or as either 2,3,1 or 3,1,2.) By (12.5), we obtain that 

TFrS0(3) < trso(1) = Trso(2) < trso(4) < mrso(5). 

‘ Recall that an arc xy is ordinary if the opposite arc yx does not exist. 



12.2 Ordering the Vertices of a Digraph of Paired Comparisons 645 

We leave it to the reader to construct other examples of semicomplete PCDs, 

for which F'SO and the score method produce different results (Exercise 12.4). 

12.2.2 The Kano-Sakamoto Methods of Ordering 

In this subsection we describe three methods (forward, backward and mutual) 
of ordering introduced by Kano and Sakamoto [472, 473]. Notice that, for 

semicomplete digraphs, all these methods agree with the score method. In 

Subsection 12.2.3, we prove this important result. In Subsection 12.2.4, we 

characterize orderings that are optimal with respect to the mutual method. 

In Subsection 12.2.5, we study the complexity of the problems to find forward 

and backward optimal orderings as well as some ways to obtain polynomial 

algorithms for these problems restricted to semicomplete multipartite PCDs 

and PCDs close to them. 

Although the reader may find examples of PCDs for which the methods 

of Kano and Sakamoto, especially the mutual one, produce counter-intuitive 

orderings, these methods seem to give adequate results for PCDs close to 

semicomplete, which are perhaps of the main interest for the method of paired 

comparisons. 

Let D = (V, A,€) be a PCD. Let z and y be a pair of distinct vertices in D 

and let a be an ordering of D. Then az, denotes an ordering of D as follows: 

Qzy(z) = a(z) for every z ¢ {z,y}, and azy(z) = a(y), @zy(y) = a(x). The 
length of an arc vu € A is e(vu)|a(v) — a(u)|. The forward (backward) 
length fp(a) (bp(a)) of a is the sum of the lengths of all forward (backward) 
arcs. The mutual length of a is mp(a) = fp(a)—bp(q@). In Figure 12.1, the 
ordering 3 = (u,v, w, x) has forward length fy(@) = (0.21+0.33+0.91) = 2, 
backward length by(@) = (0.8-1+1-1+0.1-1+0.7-3) = 4, and mutual length 
my(8) = —2. Clearly, (z,w,v,u) is a better ordering (with respect to all 

three criteria) than 6. Even fa(Guv) = 2-3 > fx(). 
An ordering a is forward (backward, mutual) optimal if the corre- 

sponding parameter fp(a) (bp(a), mp(a)) is maximum (minimum, maxi- 

mum) over all orderings of D. The set of all forward (backward, mutual) 

optimal orderings of D is denoted by FOR(D) (BOR(D), MOR(D)). The 

final objective is to calculate the proper forward rank (proper back- 

ward rank, proper mutual rank) of every vertex x of D. They are ob- 

tained by replacing OR(D) with FOR(D) (BOR(D),MOR(D)) in (12.5). 

Clearly, the best vertex of D has the lowest proper rank in each case. In 

Figure 12.1, BOR(H) = {(w,v,2x,u),(w,2,v,u)} (we will see how to find 

BOR(D) for a semicomplete multipartite PCD in Subsection 12.2.5). Thus, 

p(w) = 1,7p(2) = 7p(v) = 2.5 and mp(u) = 4. 

12.2.3 Orderings for Semicomplete PCDs 

Lemma 12.2.1 /472, 473] Let K = (V,A,€) be a semicomplete PCD with n 

vertices, and let a be an ordering of V. Then 
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f(a) = 47 (n? — 1) ~Soot(a 
zEV 

= a ot (x)a(z) — oo —1). 

rEeV 

Proof: The equality for fx (a) can be proved by induction on n (Exercise 
12.5). The equality for b% (a) can be easily obtained from that for fx (a) by 
using the fact that fx (a) + bx (a) = n(n? — 1)/6, the proof of which is left 
as Exercise 12.6. Oo 

This lemma implies the following: 

Theorem 12.2.2 /472, 473] Let K = (V,A,€) be a semicomplete PCD with 

n vertices, and let a be an ordering of V. Then a = (v1, 2,---,Un) is forward 

(backward) optimal if and only if ot (v;) > o* (vi4i) for everyi = 1,2,...,n— 
ie 2 

Proof: Let a = (v1,v2,..-,Un) be a forward (backward) optimal ordering. 

Suppose that ot (vj) < at hol for some i. By Lemma 12.2.1, 

f(a) =e IK (Quaza) = ot (v;) = ot (vi41) <a) 

Hence, a is not forward optimal, a contradiction. Analogously, we can show 

that a is not backward optimal, a contradiction. So, we may conclude that 

ot(uj) > ot (vi4i1) for every i = 1,2,...,n — 1. On the other hand, let 
GB = (wi, W2,...,Wn) be an ordering such that ot (w;) > o* (wi41) for every 
1 =1,2,...,n—1. By the formula for fx (a) in Lemma 12.2.1, fx(a@) = fx({). 
Hence, 8 € FOR(K). Analogously, we see that 6 € BOR(K). O 

It is easy to see that this theorem allows one to compute the proper 

forward and backward ranks of a semicomplete PCD in polynomial time. 

Clearly, Theorem 12.2.2 is also valid for the mutual orderings of the semi- 

complete PCDs. However, for the mutual orderings, a more general assertion 

is true. We prove it in the next subsection. 

For a vertex x of a PCD, let o*(x) = ot (x) —o (x). Since for a semicom- 
plete PCD D of order n, ot (x) +07 (x) = n—1, we have that ot (x) > o*(y) 
if and only if o*(x) > o*(y). Therefore, THesree 12.2.2 can be reformulated 
using o* instead of oF. 

12.2.4 The Mutual Orderings 

Kano and Sakamoto proved the following characterization of the mutual 
length of an ordering a: 

Lemma 12.2.3 [4/72] Let D = (V,A,e) be a PCD and let a be an ordering 
of V. Then the mutual length of a satisfies 

mp(a) = - > o*(2)a(z). 
zEV 
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Proof: Define 

AINE e(u,v) if (u,v) is an arc of D 
; 0 otherwise (in particular, if u = v). 

Let F(a) (B(a)) be the set of forward (backward) arcs for a. We have 

mp(a)= DS) e(a,y)(aly)-a(z))- > e(e,y)(a(z) - aly) 
(z,y)E F(a) (z,y)€B(a) 

= >> (2,y)(a(y) - a(z)) 
(z,y)EA 

a5 (x 2 ja) = 5m pe coat) 
yEV \rEV zEV \yEeV 

= Soo (jay) — > ot (z)a(x) = - S> o*(2)a(z). 
yEeV rEV zEV 

O 

Analogously to Theorem 12.2.2, but using the previous lemma instead of 
Lemma 12.2.1, we can prove the following: 

Theorem 12.2.4 [472] Let D = (V,A,e) be a PCD with n vertices, and let 

a be an ordering of V. Then a = (v1, v2,...,Un) is mutual optimal if and 

only if o* (uj) > o* (vi4i) for every i =1,2,...,n—1. 0 

This theorem shows that the proper mutual ranks of vertices depend only 

on o*, not on the structure of a PCD. This indicates that perhaps mutual 

orderings are not sound for non-semicomplete PCDs. 

12.2.5 Complexity and Algorithms for Forward and Backward 

Orderings 

We saw in the previous subsection how to find a mutual optimal ordering 
(simply order according to the values of o*); this obviously can be done in 

polynomial time. The time complexity of the same problems for forward and 

backward optimal ordering are significantly more difficult (unless P = NP) 

as we see below. 

Theorem 12.2.5 /473] The problem of finding a backward optimal ordering 

of a PCD is NP-hard. 

Proof: The following problem, called the optimal linear arrangement prob- 
lem (OLAP), is ’P-completes see [303, page 200]. 

Instance: A graph G = (V, E) and a positive integer k. 
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Question: Is there an ordering a of \’ so that 

S> Ja(z) — aly)| <k. 
{x,y}EE 

Let G = (V,E) be a graph and let D a¢ be the complete biorientation 

of G. Let also e(zy) = 0.5 for every zy € A(D). Then for every ordering a 

>= a(x) — a(y)| = 2fr(a). 
{z,y}EE 

Hence, the OLAP is polynomially reducible to the problem of finding a back- 

ward optimal ordering of the vertices of a PCD. oO 

A similar but slightly longer proof in [373] shows that the problem to 
find a forward optimal ordering*of the vertices of a PCD is NP-hard too 

(Exercise 12.7). This means that, in order to design polynomial algorithms 

to compute forward and backward optimal orderings, we need to restrict our- 

selves to special classes of PCDs. Since the method of paired comparisons is 

of main interest when a PCD is quite dense, it is useful to consider PCDs 

close to semicomplete. For semicomplete multipartite PCDs, characteriza- 

tions of forward backward (forward) orderings were obtained by Kano [471] 
(Gutin and Yeo [373], respectively). In this subsection, we describe only the 
main result of [471]; the characterization in [373] is more complicated. Us- 
ing the above-mentioned characterizations, Gutin [360] and Gutin and Yeo 

[373] constructed polynomial algorithms to find proper backward ranks and 
proper forward ranks, respectively, of the vertices of semicomplete multipar- 

tite PCDs. We will also discuss the method of multipartite completion (see 

[471, 473]), which allows one to find effectively all forward and backward 
optimal orderings in PCDs close to semicomplete multipartite PCDs. 

Let D = (V,A,€) be a semicomplete multipartite PCD and let a be an 

ordering of V. Then, for a vertex x € V, we define w(a,z) = ot (x) + |{y € 
U : a(y) > a(z)}|, where U is the partite class of D containing z. The 
following lemma is proved in [471]; we give a much shorter proof adopted 
from [373]. 

Lemma 12.2.6 Let a be an ordering of the vertices of a semicomplete mul- 

tipartite PCD D = (V,A,e), n=|V|. Then 

bp(a) = > ¥(a,2)a(2) — n(n? ~ 1). 
rEV 

Proof: For every partite set U of D, add the set of arcs {uw : v,w € 

U,a(w) > a(v)} (all of weight one) to A. The new PCD H is semicomplete. 
Observe that the positive score of a vertex x in H equals w(a,z). Now the 

formula of this lemma follows from the equality for bk (a) in Lemma 12.2.1 
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and the fact that bp(a@) = by(a) (which holds since all new arcs in H are 
forward). Oo 

This lemma implies the following result (Exercise 12.9): 

Lemma 12.2.7 /471] Suppose that B is an ordering of the vertices of a semi- 
complete multipartite PCD D, and X and Y are distinct partite sets of D. 
We have the following: 

(a) Ifz,y eX andm= B(y) — B(x) > 0, then 

bp(Bry) a bp(f) = m(at (x) —ot (y)). 

(b) Ifxe X,ye€Y, m= By) — B(x) > 0 and there is no verter z € X UY 
such that B(x) < B(z) < Bly), then 

bp(Bry) =a bp(G) = mB, x) = v(B, y)). 

O 

Using this lemma one can prove the following (the actual proof is left as 
Exercise 12.10): 

Theorem 12.2.8 [471] Let D be a semicomplete multipartite PCD of order 

n. An ordering a = (v1,V2,...,Un) ts backward optimal if and only if the 
following two conditions hold. 

(a) w(a, v1) Pa w(a, V2) a one 2 W(a, Un). 

(b) For every pair x,y of vertices in the same partite set of D, a(x) < a(y) 
implies o* (x) > ot (y). 

O 

We illustrate this theorem by the semicomplete bipartite PCD H in Figure 

12.1. Wei have o~ (u),, =..0.5,.07°(v) = o7(#) =.0.8, ah (w)'=)1.9..Letra 
be backward optimal. Then, by (b), a(w) is less than a(u) implying that 
W(a,w) = 2.9,Y(a,u) = 0.5. Since the positive scores of v and x coincide, 

there are two backward optimal orderings a’,a” and w(a',v) = ¥(a",r) = 

0.8, W(a",v) = Y(a',z) = 1.8. By (a), BOR(H) = {(w,z,v,u), (w,v,2,u)}. 
Hence, mg(w) = 1, me(x) = 7pB(v) = 2.5 and mg(u) = 4. Another example 
to illustrate this theorem is given in Exercise 12.11. 

Applying Theorem 12.2.8, it is not difficult to construct a polynomial 

algorithm to find proper backward ranks of the vertices of a semicomplete 

multipartite PCD [360] (Exercise 12.12). 

Let £(D) be the backward length of a backward optimal ordering of a 
digraph D. Let D be a non-semicomplete multipartite PCD with partite 

sets Vj, V2,...,V~. The semicomplete multipartite PCD obtained from D 

by adding exactly one arc between every pair of non-adjacent vertices from 

distinct partite sets is called a multipartite completion of D. Let C(D) be 

the set of multipartite completions of D. The TEES of this set is given 

in the following theorem: 
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Theorem 12.2.9 [473] Let D be a non-semicomplete multipartite PC 

Then 

€(D) = min{@(H): H €C(D)}. 

Moreover, if H = {H €C(D): &(H) = €(D)}, then 

BOR(D) = UnenBOR(H). 

Proof: Exercise 12.13. oO 

Clearly, if the cardinality of C(D) is not large, this theorem allows one to 

list backward optimal orderings of D.. 

12.3 (k,l)-Kernels 

Galeana-Sdnchez and Li [293] introduced the concept of a (k,l)-kernel in 
a digraph. This concept generalizes several well-known notions of special 

independent sets of vertices such as a kernel and a quasi-kernel. In this section, 

we discuss (k,1)-kernels and their special important cases, kernels and quasi- 
kernels, and study some basic properties of kernels and quasi-kernels. The 

notion of a (k,/)-kernel has various applications, especially that of a (2, 1)- 

kernel. 

Let k and | be integers with k > 2,1 > 1, and let D = (V, A) bea digraph. 
A set J CV is a (k,l)-kernel of D if 

(a) for every ordered pair x, y of distinct vertices in J we have dist(z, y) > k, 
(b) for each z € V — J, there exists x € J such that dist(z, x) < l. 

A kernel is a (2, 1)-kernel and a quasi-kernel is a (2, 2)-kernel. Galeana- 
Sanchez and Li [293] proved some results which relate (k,1/)-kernels in a di- 
graph D to those in its line digraph. In particular, they proved the following: 

Theorem 12.3.1 Let D be a digraph with 6-(D) > 1. Then the number of 

(k,1)-kernels in L(D) is less than or equal to the number of (k,1)-kernels in 
D; O 

12.3.1 Kernels 

We start with an equivalent definition of a kernel. A set K of vertices in 

a digraph D = (V,4A) is a kernel if K is independent and the first closed 
neighbourhood of K, N~[K], is equal to V. This notion was introduced by von 
Neumann in [731]; kernels have found many applications, for instance in game 
theory (a kernel represents a set of winning positions, cf. [731] and Chapter 14 
in the book by Berge [108]), in logic [109] and in list edge-colouring of graphs 
(see Section 12.4). Chvatal (see [303], p. 204) proved that the problem to 
verify whether a given digraph has a kernel is WP-complete. Several sufficient 
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conditions for the existence of a kernel have been proved. Many of these 

conditions can be trivially extended to kernel-perfect digraphs, i.e. digraphs 

for which every induced subdigraph has a kernel. The notion of kernel-perfect 

digraphs allows one to simplify certain proofs (due to the possibility of using 

induction, see the proof of Theorem 12.3.2) and is quite useful for applications 
(see Section 12.4). 

Clearly, every symmetric digraph, i.e. digraph whose every arc belongs to 

a 2-cycle, is kernel-perfect (every maximal independent set is a kernel). It was 

proved by von Neumann and Morgenstern [731] that every acyclic digraph is 

kernel-perfect. Richardson [635] generalized this result as follows: 

Theorem 12.3.2 Every digraph with no odd cycle is kernel-perfect. 

The proof of Theorem 12.3.2, which we present here, is an adaptation of 

the one by Berge and Duchet [110]. A digraph which is not kernel-perfect 
is called kernel-imperfect. We say that a digraph D is critical kernel- 

imperfect if D is kernel-imperfect, but every proper induced subdigraph of 

D is kernel-perfect. 

Lemma 12.3.3 Every critical kernel-imperfect digraph is strong. 

Proof: Assume the converse and let D = (V,A) be a non-strong critical 
kernel-imperfect digraph. Let T be a terminal strong component of D and 

let S, be a kernel of T. Since D has no kernel, the set M = V — N~[S;j] 
is non-empty. Hence the fact that D is critical kernel-imperfect implies that 

D(M) has a kernel Sj. The set S; US» is independent since no arc goes from 
S; to S2 (by the definition of a terminal strong component) and no arc goes 
from Sz to S; (by the definition of M). Clearly, N~[S; U S2] = V. Hence, 

S, U Sp is a kernel of D, a contradiction. Oo 

Proof of Theorem 12.3.2: Let D be a kernel-imperfect digraph with 

no odd cycle and let D’ be a critical kernel-imperfect subdigraph of D. By 

the lemma above, D’ is strong. Since D' is strong and has no odd cycles, 

by Theorem 1.8.1, D’ is bipartite. Let K be a partite set in D’. Since D’ is 

strong, K is a kernel of D', a contradiction. Oo 

This theorem has been strengthened in a number of papers. The condi- 

tions (a) and (b) of the following theorem are due to Duchet (see the papers by 
Berge [110]), and Galeana-Sdnchez and Neumann-Lara [294], respectively). 

Galeana-Sdénchez showed that for every k > 2, there are non-kernel-perfect 

digraphs for which every odd cycle has at least k chords [291]. 

Theorem 12.3.4 A digraph D is kernel-perfect if at least one of the follow- 

ing conditions holds: 

(a) Every odd cycle has two arcs belonging to 2-cycles; 

(b) Every odd cycle has two chords whose heads are consecutive vertices of 

the cycle. 
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0 

There were other attempts to strengthen Richardson’s Theorem 12.3.2. In 

particular, Duchet (see [132]) conjectured that every digraph D, which is not 
an odd cycle and which does not have a kernel, contains an arc e such that 

D —e has no kernel either. Aparsin, Ferapontova and Gurvich [26] found a 
counterexample to this conjecture which we describe below. For an integer 

n>2andaset W C {1,2,...,n—1}, acircular digraph C,,(W) is defined 

as follows: V(C,(W)) = {1,2,...,n} and 

A(Cn(W)) = {(i,i +7 (mod n)): 1<i<n,j€ W}. 

In particular, C,({1,2,...,n — 1}) =Kn and C,,({1}) = G, 
Aparsin, Ferapontova and Gurvich proved that the circular digraph 

C'43({1,7,8}) has no kernel, but after deletion of any arc in this digraph 
a kernel will appear. Observe that by the symmetry of C43({1,7,8}) one 

needs only to show that C43({1,7,8}) — (1,2), Ca3({1, 7, 8}) — (1,8) and 
C'43({1, 7, 8}) — (1, 9) have kernels. This task is left as Exercise 12.16. We note 
that C43({1,7,8}) is the only known counterexample to the Duchet conjec- 
ture; Gurvich (private communication, December 1999) suspects that there 

is an infinite such family of circular digraphs. It was also proved in [26] that 

Cr({1,7,8}) has a kernel if and only if n = 0 (mod 3) or n = 0 (mod 29). 
The following problem seems quite natural: 

Problem 12.3.5 Characterize circular digraphs with kernels. 

A biorientation D of a graph G is called normal, if every subdigraph of 

D which is a semicomplete digraph has a kernel. An undirected graph G is 

kernel-solvable if every normal biorientation of G has a kernel. Boros and 

Gurvich [132] showed that a slight modification of the above conjecture of 
Duchet holds. They proved the following: 

Theorem 12.3.6 Let G be a connected non-kernel-solvable graph, which is 

not an odd cycle of length at least 5. Then there exists an edge e in G such 

that G — e is not kernel-solvable either. Oo 

Berge and Duchet (see [543]) conjectured that a graph G is perfect? if and 
only if G is kernel-solvable. Boros and Gurvich [131] proved one direction of 
this conjecture, namely: 

Theorem 12.3.7 Every perfect graph is kernel-solvable. oO 

? A graph G is perfect if, for every induced subgraph H of G, the chromatic number 
of H is equal to the order of the largest clique of H. 
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The two original proofs of Theorem 12.3.7 are quite involved and lengthy. 
Using the notion of a fractional kernel, Aharoni and Holzman [3] found a 
much shorter proof of Theorem 12.3.7. Many special cases of the above con- 
jecture had been proved before, see [543] and references therein. In particular, 
Maffray [543] proved the following result: 

Theorem 12.3.8 A biorientation of a line graph is kernel-perfect if and only 
if it 1s normal. 

This result was extended to line multigraphs by Borodin, Kostochka and 
Woodall [130]. 

12.3.2 Quasi-Kernels 

We start with an equivalent definition of a quasi-kernel. A set Q of vertices 

in a digraph D = (V, A) is a quasi-kernel if Q is independent and the second 

closed in-neighbourhood of Q, N~?[Q], is equal to V. The two results on 2- 

kings (or, more precisely, 2-serfs) in tournaments mentioned in the beginning 

of Section 12.3.2 have been extended to quasi-kernels in arbitrary digraphs 

as follows. The first theorem is by Chvatal and Lovdsz [162] (see also [524]). 
It has a surprisingly short proof. 

Theorem 12.3.9 Every digraph D has a quasi-kernel. 

Proof: The proof is by induction on the order of D. The base case when the 

number of vertices is 1 is trivial. Let D be a digraph of order n and assume 

(as the induction hypothesis) that all digraphs with less than n vertices have 

a quasi-kernel. If D has a kernel, we are done. Assume D has no kernel. Let 

x be a vertex in D. Consider D' = D — (x U N~(a)). By induction, D’ has 
a quasi-kernel Q’. If Q' Uz is an independent set, then, clearly, this set is a 

quasi-kernel in D. 

Suppose now that Q’ Uz is not independent. Then there exists a vertex 
z € Q! which is adjacent to z. As z ¢ N~ (x), xz. Now it follows that Q’ is 

a quasi-kernel in the whole digraph D. 0 

The second theorem is by Jacob and Meyniel [454]. 

Theorem 12.3.10 /f a digraph D = (V,A) has no kernel, then D contains 

at least three quasi-kernels. 

Proof: By Theorem 12.3.9, D has a quasi-kernel Q,. Since D has no kernel, 

we have V # N~[Q,]. Let Q2 be a quasi-kernel of D— N~[Q,]. We will prove 
that Q5 = Q2U(Q; — N~(Q2)) is a quasi-kernel of D. It is straightforward 
to see that Q4 is independent and 

V=(V—N-[Qi1]) UN -[Q1NN(Q2)} UN -[Q1 — N (Q2)]. 
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By the definition of Q2, every vertex of V — N~[Q,] is the initial vertex of 

a path of length at most two terminating in Q2. Since N~[Qi NM N~(Q2)| © 

N-?[Qo], every vertex of N~[Qi N N~(Q2)] is the initial vertex of a path of 

length at most two terminating in Q2. Since N~ [Qi — N~(Q2)] © N~ [Qi], 

a vertex of N~[Q, — N~(Qz2)] either belongs to Q, or is the tail of an arc 

whose head is in Q; — N~(Qz2). Hence, Q2 is a quasi-kernel. 

Observe that Q; NQ2 =@ and Q2 # . Thus, Q5 # Q1. 

As Qj is not a kernel of D, we have V # N~[Q)]. Let Q3 be a quasi- 

kernel of D — N~[Q}] and let Q5 = Q3 U (Q5 — N~(Q3)). As above, we 

can demonstrate that Q5 is a quasi-kernel distinct from Q). It remains to 

show that Qs # Qi. Observe that Q3 C V — N~[Q4] and Qi C N7[Q)]. 

Thus, Q1NQ3 = 0. By this fact and since Q3 is nonempty, we conclude that 

Q3 # Q1. O 

12.4 List Edge-Colourings of Complete Bipartite Graphs 

The topic of this section may seem to have nothing to do with directed graphs, 

but as we will see, directed graphs have been a useful tool for solving the so- 

called Dinitz problem which we now describe. Our discussion in this section 

is inspired by the book [8] by Aigner and Ziegler and Galvin’s paper [302]. 
An n X n matrix M over the integers {1,2,...,n} is a Latin square 

(of size n) if no two entries in the same row and no two entries in the same 
column are equal. It is an easy exercise to show that for every integer n > 1 

there exists a Latin square (Exercise 12.17). 

A proper edge-colouring of an undirected graph G = (V,£) is an 

assignment of integers to the edges in such a way that no two edges with a 

common end-vertex receive the same colour. The smallest k such that a graph 

G has a proper edge-colouring using only colours from the set {1,2,...,k} 

is called the chromatic index of G. Thus it is easy to see that there is a 

1-1 correspondence between the set of Latin squares of size n and the set 

of proper edge-colourings of the complete bipartite graph Ky, using colours 

NG ee ward fa 
Proper edge-colourings are useful for various practical applications such 

as time table construction, see e.g. the book by Jensen and Toft [459]. In rest 
of this section we omit the word ‘proper’ since only proper edge-colourings 

will be considered. 

In 1979 Dinitz raised the following problem (see e.g. [221, 222]): suppose 
we are given an mn X n matrix whose (7,7) entry is a set C(7,7) of n integers, 

1 <1,j <1, is it always possible to choose from each set C(i, 7) one element 

cj in such a way that the elements in each row are distinct and the elements 
in each column are distinct? 

The Dinitz problem can be reformulated in terms of edge-colourings of 
complete bipartite graphs. Suppose that we are given, for each edge ij of the 

complete bipartite graph Ky n, a set C(i, 7) of possible colours for that edge. 
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Does there always exist an edge-colouring of Ky, so that for each edge ij 

the colour c;; of 77 belongs to C(i, 7)? In this formulation the Dinitz problem 

is just a special case of the more general list colouring conjecture (see e.g. 

the book by Jensen and Toft [459]) which states that, if a graph G has an 
edge-colouring with k colours, then no matter how we assign to each edge e 

of G a set C, of k arbitrary colours, G has an edge colouring such that. the 
colour of the edge e belongs to the set C, for each e € E. Such a colouring is 

called a list edge-colouring of G. An important step towards settling the 

Dinitz conjecture was made by Jansen [458] who proved that, if all lists have 

length n + 1 (instead of n) then a solution always exists. 

In order to apply results on kernel in digraphs we study the line graph of 

Kn n- The definition of a line graph is analogous to that of a line digraph: 

L(G) contains a vertex for each edge of G and two vertices in L(G) are 
joined by an edge if and only if the corresponding edges have an end-vertex in 

common. It is easy to see that every list edge-colouring of Ky, corresponds to 

a list vertex colouring (in short a list colouring) of L(K,,,,) using the same 
sets (lists). Hence, in order to solve the Dinitz problem, it suffices to prove 

that no matter which sets C11, Cj2,..., Cnn, each of size n, we associate with 

the n? vertices of L(Kn.n), there exists a proper vertex colouring of L(Kn,n) 

such that the colour of the vertex 7 is chosen from the corresponding set Cj. 

Now we return to digraphs. The following lemma is attributed to Bondy, 

Boppana and Siegel in [15, Remark 2.4, p. 129] (see also [302]). 

Lemma 12.4.1 Let D = (V, A) be a digraph and suppose that for each vertex 
v €V we are given a prescribed set C(v) of colours satisfying |C(v)| > dt (v). 
If D is kernel perfect (i.e. every induced subdigraph of D has a kernel), then 

there exists a list colouring of UG(D) which uses a colour from C(v) for each 

eee Vas 

Proof: The proof is by induction on n, the case n = 1 being trivially true. 

Fix a colour c which belongs to at least one of the sets C(v), v € V and let 

X(c) := {v € Vc € C(v)}. By the assumption of the lemma the induced 

subdigraph D(X(c)) has a kernel Y. Now colour each vertex of V which 

belongs to Y by colour c (which is a proper choice by the definition of X(c)) 

and consider the digraph D' = D — Y with colour sets C'(v) = C(v) — {c}. 

Notice that for each vertex v € X(c) — Y the out-degree of v in D’ is at least 

one smaller than the out-degree of v in D and hence we have |C’(v)| > di, (v) 

for all v € V(D'). Furthermore, every vertex u that does not belong to 

X(c) has |C(u)| = |C’(u)|. Thus, by the induction hypothesis, there is a list 

colouring of D’ which uses a colour from C"(v) for each v € V(D’). Using 

that colouring along with the colour c for vertices in Y we achieve the desired 

colouring. - 

From Lemma 12.4.1 we see that, if we can establish the existence of an 

orientation D of L(Ky,n) such that every induced subgraph of D has a kernel 
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and d}(v) <n —1 for each vertex v, then we have proved that L(Kn,n) has 

list chromatic number at most n as desired. 

We show below that in order to obtain such an orientation we can use any 

n-edge-colouring of Ky, and orient appropriately. To prove the existence of 

a kernel in each induced subgraph we use the concept of stable matchings 

which we discuss below. 
Below we assume that we are given a bipartite graph B = (X UY, E) and 

that for each vertex u € X UY there is a fixed ordering >, on the neighbours 

of u. That is, >, induces an ordering v1 >y V2 >u--. >u Vdg(u) On Np(u). 

A matching M in B = (X UY, E) is stable with respect to the family of 
orderings {>, |u € X UY} if the following holds for all uv € E — M: either 
uy € M for some y such that y >, v or zu € M for some z with z >, u. 

Stable matchings have an amusing real-life interpretation. Consider X 

as a set of men and Y as a set of women and let the existence of an edge 

zy € E,x € X,y € Y mean that.person z and y might marry. As we saw in 

Theorem 3.11.2, given B we can determine in polynomial time the maximum 

number of men and women that can marry without anybody committing 

bigamy. However, in practice the fact that a man xz and a woman y might 

marry does not mean that this particular choice is the optimal one for z or 

y. Hence, in a more realistic setting each person has a list of possible spouses 

and some ranking among these as to who would be the favourite choice down 

to the least wanted spouse (but still a possible choice). Now we see that 

this description corresponds to the orderings described above. Furthermore, 

stability of a given matching corresponds to saying that among the men and 

women that are paired for marriage there is no pair xy for which z prefers 

some other woman y’ to y and at the same time woman y prefers some other 

man z’ to z. So in some sense a stable matching corresponds to a situation 

where no pair is highly likely to split up. 

The concept of stable matchings was introduced by Gale and Shapley who 

proved the following slightly surprising fact. We leave the proof as Exercise 
NPR Altes, 

Theorem 12.4.2 [290] For every bipartite graph B = (X UY, E) and every 

family of orderings {>y |w € X UY} which arises from a local linear ordering 

of the neighbours of each vertex in B, there exists a stable matching with 

respect to { >y thenx UY Y Oo 

In Exercise 12.19 the reader is asked to show by an example that it is not 

always: true that there exists a maximum matching which is stable. 

For more information about stable matchings see e.g. the papers [40, 41] 

by Balinski and Ratier. Now we are ready to describe Galvin’s proof of the 
Dinitz conjecture. 

Theorem 12.4.3 [302] For every n > 1 the complete bipartite graph (ashen 
has list chromatic index n. 
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Proof: Denote the vertices of L(Ky ) by (i,j), 1 < i,j <n, where (i,j) is 
adjacent to (7’, 7’) if and only if ¢ = i’ or j = 7’, but not both. Let Q be any 
Latin square of size n (recall that this corresponds to a proper edge-colouring 
of Kn,n) and denote by Q;; the ijth entry of Q. Let D,, be the oriented graph 
obtained from L(K;,,,) by orienting the edges as follows: 

(1,7) >(v,j) if and only if Qi; > Qi; (see Figure 12.2). 

Figure 12.2 The orientation of L(K3,3) based on a Latin square of size 3. 

It is easy to see that D is (n—1)-regular (Exercise 12.20). Thus, by Lemma 
12.4.1 we just have to prove that every induced subdigraph of D has a kernel. 

To prove this wé use Theorem 12.4.2. 

Let D’ be an arbitrary induced subdigraph of D and let B = (X,Y, EF) 
be the corresponding bipartite subgraph of K,,,, induced by those edges for 

which the corresponding vertex (7,7) belongs to D’. For each vertex i € X we 
define an ordering >; of the neighbours of 7 in B by letting 7’ >; 7 whenever 

(7,7)—>(t, 97’) in D. Similarly, for each 7 € Y we define the ordering >; of the 

neighbours of 7 in B by letting 1’ >; i whenever (7,7)—(2’, 7) in D. 
According to Theorem 12.4.2 B has a stable matching M with respect 

to {>, |u € X UY}. Since M is also a matching in Kp,» the corresponding 
vertices are independent in D. Furthermore, it follows from the fact that M is 

stable with respect to {>, |u € X UY} that for every (7,7) such that 77 ¢ M, 

either there exist 7/ € Y such that ij’ € M and 7’ >; j or there exists an 

i! € X such that i’7 € M and i’ >; 1. In the first case we have (i, j7)>(#, 7’) 
and in the second case we have (i, 7)—>(2', 7) in D. Thus we have shown that 

every vertex of D’ which is not in M dominates a vertex in M. Hence M is 

a kernel and the proof is complete. 0 

The idea of orienting L(Kn,) as we did above is due to Maffray [543). 
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12.5 Homomorphisms — A Generalization of Colourings 

Let D and H be digraphs. A mapping f : V(D)>V(H) is a homomor- 

phism if it preserves arcs, that is, zy € A(D) implies f(x)f(y) € A(#f). 

We will always write f : D-H or just DH (when the actual homomor- 

phism is not important). If there is no homomorphism from D to H, then 

we write D/H. See an illustration in Figure 12.3. We say that G is homo- 

morphic to H if GH. Similarly, for undirected graphs a homomorphism 

is an edge preserving map. To motivate what follows, we start our discussion 

from undirected graphs. 

1 
1 

2 Y 2 2 

3 2 
3 2 1 3 

1 DZ 

(a) (6) | (c) 

Figure 12.3 Illustrating the concept of a homomorphism; (a) A 3-cycle C3; (b) 

and (c) show digraphs with homomorphisms to C3 indicated by the labelling. 

Recall that an undirected graph is k-colourable if we can assign numbers 

1,2,...,k to its vertices such that adjacent vertices receive distinct numbers 

(colours). It is easy to see that an undirected graph G is k-colourable if and 

only if G-+K, (the complete graph on k vertices). Based on this observa- 
tion we say that a (di)graph G is H-colourable for some (di)graph H if 

G—H and we call the mapping itself an H-colouring of G. Thus, if both 

G and H are given as part of the instance, the decision problem ‘Is there a 

homomorphism of G to H”’ properly includes k-colouring, and is therefore 

NP-complete [474]. 
It is interesting to consider the same question when the graph H is fixed 

in advance. The H-colouring problem is formally defined as follows: 

H-colouring 

Instance: A finite graph G. 

Question:: Is there a homomorphism of G to H? 

It is not difficult to see that a graph G has a homomorphism to a bipartite 

graph B if and only if G is 2-colourable (and hence is homomorphic to K2). 

As we know this last question is the same as checking whether G is bipartite 
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and hence easy (since this can be done using BFS or DFS). However in the 
case when the target graph (that is, the graph to which we want to map the 
given graph) H is not bipartite, the H-colouring problem is always difficult 
as shown by Hell and NeSetfil. 

Theorem 12.5.1 /412] If H is a fired finite non-bipartite graph, then H- 

colouring is NP-complete. If H is a fixed bipartite graph, then H-colouring 

is polynomial. oO 

So, for undirected graphs the division between easy and hard problems is 

very clear: bipartite versus non-bipartite. For directed graphs the situation 

is much less clear. In the next pages we give some results and conjectures 

which illustrate the topic and interesting open problems. 

First observe that, if H-H' for some induced subdigraph H' of H, then 

D-H if and only if DH" (i.e. homomorphisms compose). Let H' be a 

subdigraph of H. A homomorphism r : H-+H' is called a retraction if the 

restriction of r to H' is the identity map on H’. If there exists a retraction 

H-H', then H' is called a retract of H. A digraph is a core if and only if it 

has no proper retracts. The above observation shows that it suffices to study 

the H-colouring problem for those digraphs that are cores. Up to isomorphism 

every digraph has a unique core (see Exercise 12.21). Unfortunately deciding 

whether a digraph is indeed a core is a difficult problem. 

Theorem 12.5.2 /413] It is NP-complete to decide whether a given input 
digraph is not a core?. oO 

However for some classes of digraphs it is easy to tell whether they are 

cores or not. It is an easy exercise to show that every semicomplete digraph 

is a core (Exercise 12.22). It is slightly more difficult to characterize those 
semicomplete bipartite digraphs that are cores (Exercise 12.23). 

Our first results deal with directed paths and cycles. The proof of the fol- 

lowing easy observation by Maurer, Sudborough and Welzl is left as Exercise 

12325: 

Proposition 12.5.3 /556] There is a polynomial algorithm which decides if 

a given input digraph is homomorphic to the directed path P,. 0 

When H is an arbitrary orientation of a path, Gutjahr Welzl and Woeg- 

inger proved that it is still polynomial (although much less trivial) to decide 

whether a given digraph is homomorphic to H. 

Theorem 12.5.4 [384] Let H be an arbitrary orientation of a path on k 

vertices. Then H-colouring is polynomial. O 

3 Here the certificate showing that D is not a core is a mapping of D to a proper 

subdigraph of D. 
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Since homomorphisms compose it follows that, if D-H then every di- 

graph which is homomorphic to D is also homomorphic to H. Thus one way 

of proving that D is not homomorphic to H would be to show a graph which 

is homomorphic to D but not to H. Using this approach Hell and Zhu [417] 

proved the following: 

Theorem 12.5.5 /417] Let D be a digraph on n vertices and P an ortented 

path on k vertices. Then D/P if and only if there exists an oriented path P' 

on at most 2*n +1 vertices such that P'+D and P'AP. oO 

It is easy to check whether D-+C;, holds for a given strong digraph D = 

(V, A) and a given integer k > 2. Indeed, let the vertices of Cy be labelled 

{1,2,...,k}. Now to check whether D-+Cy we pick an arbitrary vertex v € V 

and map it to the vertex 1. After this the mapping of all other vertices in V 

fixed and it is easy to check whether this (unique) mapping is arc preserving. 

This can all be done in time O{n + m) by using DFS from v to label and 
check whether each arc is preserved by the mapping at the same time. When 

D is not strongly connected it is a little more cumbersome to check whether 

D-C;,, but it can still be done in time O(n +m) (Exercise 12.26). Hence we 
have the following result ude to Maurer, Sudborough and Welzl: 

Theorem 12.5.6 /556] For every k > 2, C,-colouring is polynomial. Oo 

The following easy observation is merely a restatement of the definition 

of a homomorphism (recall that, by definition, digraphs have no loops): 

Proposition 12.5.7 Let D and H be digraphs. Then D-H if and only if 

there exists an extension Hz = H[Koa,,Kaz,---,Ka,], h = |V(H)| of H 
such that D is a subdigraph (not necessarily induced) of Hest. 0 

Let D be a digraph and C an oriented cycle of D. The net length of C is 

the absolute value of the difference between the number of forward arcs and 

the number of backward arcs with respect to an arbitrary fixed traversal of 

C (as an undirected cycle). Using Proposition 12.5.7 it is easy to prove the 

following characterization due to Haggkvist, Hell, Miller and Neuman-Lara 

of those digraphs which are homomorphic to a k-cycle (see also [556}): 

Theorem 12.5.8 [388] A digraph D is homomorphic to Cy if and only if 
the net length of every oriented cycle in D is divisible by k. 

Proof: Exercise 12.27. Oo 

When H is an oriented cycle of a cycle, the corresponding H-colouring 

problem may not be polynomial. Gutjahr showed in [383] that there are 

oriented cycles for which the corresponding H-colouring problem is MWP- 

complete. Hell and Zhu proved that, if H is an oriented cycle with net length 

different from zero, then a statement similar to Theorem 12.5.5 holds (neces- 
sity of these conditions is clear): 
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Theorem 12.5.9 [418] Let C be an oriented cycle whose net length is not 

zero. A digraph D is homomorphic to C if and only if every oriented path 

homomorphic to D is also homomorphic to C, and the net length of every 

cycle of D is a multiple of the net length of C. Oo 

It was shown in [384] by Gutjahr, Welzl and Woeginger and in [414] by 
Hell, NeSetril and Zhu that the H-colouring problem may be NP-complete 

even for orientations of trees. Hence classifying the complexity of the H- 

colouring problem for arbitrary digraphs seems almost hopeless. 

When the target H has 6°(H) > 0 the picture seems clearer. If the core 

of H is a directed cycle, then H-colouring is polynomial by Theorem 12.5.6. 

In all other cases the problem seems to be difficult. In fact, the existence of 

two directed cycles in the core is often sufficient for the ’P-completeness of 

H-colouring as is illustrated by the next three results. The first result is an 

easy consequence of Theorem 12.5.1 (Exercise 12.28). 

Theorem 12.5.10 /412] Let H be the complete biorientation of an undi- 
rected graph G. If G is bipartite then H-colouring 1s polynomial and if G is 

not bipartite, then H-colouring is NP-complete. Oo 

The next two results due Bang-Jensen, Hell and MacGillivray, respec- 

tively, Bang-Jensen and Hell show that for some classes of digraphs, the 

number of cycles play an important role on the complexity of the H-colouring 

problem. 

Theorem 12.5.11 /77] Let H be a semicomplete digraph. If H has two or 

more directed cycles, then H-colouring is NP-complete. If H has at most one 

directed cycle, then H-colouring is polynomial. Oo 

Theorem 12.5.12 /74] Let H be a semicomplete bipartite digraph which is a 
core. If H has two or more directed cycles, then H-colouring is NP-complete. 

If H has at most one directed cycle, then H-colouring is polynomial. 0 

These results spurred further study [74, 85]. Based on the results in [74], 

Bang-Jensen and Hell made the following conjecture, which postulates a clas- 

sification of the complexity of the H-colouring problem for all digraphs with 

6°(H) > 0 and whose core is not a cycle. Note that a digraph H with 

6°(H) > 0 is homomorphic to a directed cycle C, if and only if its core 

is C, for some r which is a multiple of k. 

Conjecture 12.5.13 /74] Let H be a digraph with 6°(H) > 0 and connected 

underlying graph. If H is homomorphic to a directed cycle, then H -colouring 

is polynomial. Otherwise H-colouring 1s NP-complete. 

Since C;,-colouring is polynomial as we mentioned above, the first state- 

ment is easy to see. Conjecture 12.5.13 has been verified for many classes of 

digraphs, see e.g. [74, 77, 78, 85, 383, 384, 412, 530, 531]. 
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The main techniques for proving ’P-completeness H-colouring problems 

for directed graphs are described in [74, 77, 412]. These include the following 

two constructions both of which are due to Hell and Neéetiil [412]. We show 

how to use these tools below. 

The indicator construction. Let J be a fixed digraph and let i, 7 be distinct 

vertices of J. The indicator construction (with respect to (I,i,7j)) transforms 

a given digraph H = (V,A) into the directed pseudograph H* = (V, A*) 

where for every choice of (not necessarily distinct) h,h' € V, the arc hh’ is in 

A* precisely when there exists a homomorphism f : +H such thatf(7)—= fh 

and f(j) = h’. See Figure 12.4. 

Lemma 12.5.14 [412] If the H*-colouring problem is NP-complete, then 

so is the H-colouring problem. 0 

= 

(a) (0) (c) 

Figure 12.4 Illustrating the indicator construction: (a) A digraph H; (b) An in- 
dicator IJ with special vertices 7,7; (c) The result H* of applying the indicator 
construction with respect to (J,i,j) to H. Undirected edges are used to indicate 
2-cycles. 

Note that H* may have loops, in which case the H*-colouring problem is 

trivial, since we can map every vertex to a vertex with a loop in H*. Hence 

the construction is only useful if H* has no loops. In this case H* is always 

a digraph. 

The sub-indicator construction. Let J be a fixed digraph with spec- 

ified vertices j,v1,V2,...,v¢. The sub-indicator construction with respect 

to (J,j,U1,U2,-..,Ue) transforms a core H = (V, A) with specified vertices 
hy, h2,..-, he into the subdigraph H of H which is induced by the vertex set 

V CV where V is defined as follows. Let W be the digraph obtained from 

the disjoint union of H and J by identifying v; with h; fori = 1,2,...,t. A 

vertex vu € V belongs to V if and only if there exists a retraction f : W>H 
which maps 7 to v. See Figure 12.5. 
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Lemma 12.5.15 /412] Let H be a core. If the H-colouring problem is NP- 
complete, then so is the H-colouring problem. O 

(2) 

(a) (0) (c) 

Figure 12.5 Illustrating the sub-indicator construction; (a) a digraph H with a 

special vertex h; (b) the sub-indicator J with special vertices j,v; (c) the result H 
of applying the sub-indicator construction with respect to (J,j,v) to (H,h). 

To illustrate how to use the indicator and the sub-indicator construction, 

let us show that, if H is the digraph in Figure 12.4(a), then the H-colouring 
problem is ’P-complete. First apply the indicator construction with respect 

to the indicator shown in Figure 12.4(b) to H. This gives us the digraph 
H™* in Figure 12.4(c). By Lemma 12.5.14, H-colouring is ’P-complete if 
and only if H*-colouring is ’P-complete. Now let J be the sub-indicator 

consisting of the complete biorientation of a 3-cycle with one vertex labelled 

j and an isolated vertex v,. Let H’' be the result of applying the sub-indicator 

construction with respect to (J, 7, v1) to H*. Since v, is isolated, a vertex from 

H* will be in H' precisely when it is itself on a complete biorientation of a 3- 

cycle in H*. Hence H' is the complete biorientation of a 3-cycle. By Theorem 

12.5.10 H’-colouring is P-complete and now we conclude by Lemma 12.5.15 

that H*-colouring and hence also H-colouring is ’P-complete. 

Although the sub-indicator and the indicator constructions are very useful 

tools for proving the W’P-completeness of many H-colouring problems, there 

are digraphs H for which another approach such as a direct reduction from a 

different type of ’P-complete problem is needed. Such reductions are often 

from some variant of the satisfiability problem (see Section 1.10). The reader 

is asked to give such a reduction in Exercise 12.29. 

For examples of other papers dealing with homomorphisms in digraphs 

see [135] by Brewster and MacGillivray, [416] by Hell, Zhou and Zhu, [590] 
by NeSetil and Zhu, [680] by Sophena and [761, 762] by Zhou. 
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12.6 Other Measures of Independence in Digraphs 

The definition of independence of vertex subsets in digraphs used in this book 

is by no means the only plausible definition of independence in digraphs. One 

may weaken the definition of independence in directed graphs in at least two 

other ways, both of which still generalize independence in undirected graphs. 

(1) By considering induced subdigraphs which are acyclic. This gives rise to 

the acyclic independence number, Qg-y-(D), which denotes the size 

of a maximum set of vertices X such that D(X) is acyclic. 
(2) By considering induced subdigraphs which contain no 2-cycles. This gives 

rise to the oriented independence number, a,,(D), which denotes the 

size of a maximum set of vertices Y such that D(Y) is an oriented graph. 

Both of these generalize the definition of independence in undirected graphs: 

if G is an undirected graph with independence number k then Qacyc(D) = 
Qor(D) = k, where D is the complete biorientation of G. Note that we always 

have ; 

@(D) <cee. (Do ( Dy, 

Furthermore, by our remark above, each of these parameters is at least as 

hard to calculate as a(D). In fact they seem much harder as they are NP- 
hard already for tournaments, respectively semicomplete digraphs. The fact 

that a,,(D) is hard to calculate for semicomplete digraphs is left to the reader 
as Exercise 12.31. We prove below that calculating Qacyc(D) is NP-hard even 

for tournaments. This result is due to Bang-Jensen and Thomassen and to 
Speckenmeyer. 

Theorem 12.6.1 /89, 681] The problem of finding a largest transitive sub- 
tournament in a tournament is NP-hard. 

Proof: We show how to reduce the independent set problem for undi- 
rected graphs to our problem by a polynomial time reduction. This will im- 
ply the claim, since the independent set problem is W’P-hard, see e.g. [303]. 
Let G = (V, #) be an undirected graph with vertex set {v1,9,U2,0,... 5 Ute 
We form a tournament T as follows. We add, for each i = 1,2,...,n a set 
of n+1 new vertices {v;.1,0;.9,..- ,Vin+1}. Now T contains the directed arc 
Ui,kUj,m Whenever 7 > j ori = 7 and k > m unless k = m = 0 and Vi,0, 5,0 
are adjacent in G. In the last case T contains the arc U;,0Vi,o. Now a vertex 
set S in G is a largest independent set if and only if T — (V — S) is a largest 
transitive subtournament of T. oO 

Jackson made the following conjecture: 

Conjecture 12.6.2 [453] Every digraph D with ao,(D) < K(D)+1 contains 
a hamiltonian path. 
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As pointed out in Section 6.10.2, Conjecture 12.6.2 is not true if we replace 

Qor(D) by a(D). 
A famous result due to Chvatal and Erdés [161] says that, if the vertex 

connectivity of an undirected graph G is at least as high as the size of a largest 
independent set, then G is hamiltonian. This is not true for digraphs, but as 
we pointed out in Proposition 3.11.12, at least there is a cycle factor in D if it 

is a(D)-strong. Jackson proved that, if we consider the oriented independence 
number ao,(D), then an analogue of the Chvatal-Erdés theorem does exist. 

Theorem 12.6.3 [450] Let D be a digraph which is k-strong where k = 

2%r(P) (a,,(D) + 2)!. Then D has a hamiltonian cycle. Oo 

12.7 Matroids 

In this section we give a very short introduction to matroids. The motivation 

for this is that algorithms for matroids are a useful tool for solving various 

graph theoretical problems. For an example of this we refer to Section 9.10 

and Exercise 12.46. Unfortunately, due to lack of space we will not be able 

to describe in detail the algorithms for 2-matroid intersection and matroid 

partition (those are the ones used in the applications mentioned above). We 

refer the reader to the books [166] by Cook, Cunningham, Pulleyblank and 
Schrijver and [623] by Recski for detailed descriptions of these algorithms. 

Definition 12.7.1 Let S be a finite set and let Z be a collection of subsets 

of S. The pair M = (S,T) is a matroid if the following holds: 

(I1) 0 € TZ. 
Geary € Land X CY, then Xe T. 
(13) If X,Y € TZ and |X| < |Y], then there exists an element y € Y —X such 

that X U {y} € I. 

Let M = (S,Z) be a matroid. A set X C S such that X € T is called 
independent. All other sets are dependent. A base of M is a maximal 

independent set. A circuit is a minimal dependent set. Let B denote the set 

of bases of M and C the set of circuits of M. 

It follows directly from (13) and the definition of a base that 

all bases of a matroid have the same size. (12.6) 

There are several equivalent sets of axioms which define matroids. In 

particular it is easy to see that we may replace (I3) by (13’) (Exercise T2733) 

(13’) All maximal elements of Z have the same size. 

Below we list some important properties of the bases of a matroid. (B1) 

follows from (I1). (B2) follows from (I3) and (B3) is left to the reader as 

Exercise 12.32. 
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Proposition 12.7.2 Let M = (S,Z) be a matroid. The set B of bases of M 

satisfy the following: 

(B1) B#9. 
(B2) For all B, B' € B we have |B| = |B’. 

(B3) Let B,B' € B. For every b € B there exists an element b' € B’ such 

that (B — b)U {b'} € B. Oo 

The other direction holds as well (see Exercise 12.35) 

Proposition 12.7.3 Let S be a finite set and B a collection of subsets of 

S which satisfies (B1)-(B3) above. Then there exists a matroid M = (S,T) 

whose set of bases is precisely B. 0 

If M = (S,Z) is a matroid and X C S, then we say that a subset Y C X 

is a maximal independent subset of X if Y € Zand Y Cc Z CX implies 

Z ET. 

Lemma 12.7.4 Let M = (S,Z) be a matroid and let X C S. All mazimal 

independent subsets of X have the same size. 

Proof: Exercise 12.34. a) 

By Lemma 12.7.4, the following function is well:defined for all subsets of 

S. 

r(X) = maxt|VileYaC X, andeYeql} (2%) 

The rank of a matroid M = (S,T) is the number r(S), the size of a base 

in M. 

Examples of matroids: 

(1) Let G = (V, E) be an undirected graph. Define M(G) as M(G) = (£,T), 
where E’ € TZ if and only if Gm = (V,£’) has no cycle. Then M(G) is 
a matroid (called the circuit matroid of G). To see this, it suffices to 
check (I3), since (I1),(12) trivially hold. Let X,Y be subsets of E such 
that none of G(X) and G(Y) has a cycle and |X| < |Y]. It is easy to 
show that, if Z is independent in M(G), then the number of connected 
components in G(Z) is n — |Z|, where n is the number of vertices in 
G. Thus |X| < |Y| implies that the number of connected components 
of G(X) is larger than that of G(Y). Hence Y contains an edge y such 
that y joins two vertices which are in distinct components of G(X). This 

implies that G(X U {y}) is acyclic and hence X U {y} € TZ. 
The bases of M(G) are the (sets of edges of ) maximal forests of G and 
a cycle of M(G) is a fundamental cycle of G with respect to a maximal 
forest of G. The rank of M(G) is |V| minus the number of connected 
components of G. 
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(2) Let S be a set on n elements, and define U,, for k < n as follows: 

Unk = (S,{X CS: |X| < k}). This trivially gives a matroid called a 

uniform matroid. If k = n we obtain a very special case in which all 

subsets are independent. This matroid is called the free matroid on n 

elements. 

(3) Let D = (V, A) be a digraph such that 6~(D) > 0 and define B as those 
subsets A’ of A for which every vertex v € V has in-degree precisely 

one in D(A’). We show that B satisfies (B1)-(B3) of Proposition 12.7.2 
and hence, by Proposition 12.7.3, B forms the set of bases of a matroid 

M~(D). Indeed, (B1) holds since 6~(D) > 0 and (B2) holds by the 
definition of B. To see that (B3) is true consider sets A’, A” € B and let 
a’ € A’. The arc a’ enters a vertex x and in A” there is exactly one arc 
a” with head x. Now we see that (A’ — a’) U {a"} € B. 
Similarly, if 6*(D) > 0, then we may define a matroid M*(D) whose 

bases are those subsets X of the arcs for which every vertex v € V has 

out-degree precisely one in D(X). This follows from the argument above 

by considering the converse of D. 

The next result shows, in particular, that the rank function of a matroid 

is submodular. This is one of the reasons for the usefulness of matroids. 

Proposition 12.7.5 The rank function of M = (S,T) satisfies the following: 

(R1) 0< r(X) < |X| for every X ES. 
(R2) X CY implies r(X) <r(Y). 
(RS). For all X,Y-G Sor(X)+r(¥) > r(X AY) +r(XUV): 

Proof: (R1) and (R2) follow from the definitions. To see that (R3) holds 
consider two subsets X,Y of S. We may assume that X # Y. Let A bea 

maximal independent subset of X MY and let B be an extension of A to a 

maximal independent subset of X U Y. Now using (R2) we have 

r(X)+r(Y) >|BNX|+|BNY| 

= |Bi- 1Al (12.8) 

=i Olen AraC. Gan ae 

12.7.1 The Dual of a Matroid 

The dual of a matroid M = (S,Z) is the pair M* = (S,Z*), where Z* = 

{X CS: XN B =O for some base B of M}. In Exercise 12.37 the reader 

is asked to prove that M* is a matroid. Note that the bases of M* form 

precisely the set B* = {S — B: B is a base of M}. 
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Proposition 12.7.6 For any matroid M we have 

(i) (M*)*=M. 
(tt) r*(X) = |X| +7r(S — X) —r(S). 

Proof: Exercise 12.38. O 

A circuit in M* is called a cutset or a cocircuit in M. It follows from 

the definition of M* that a cocircuit of M is a minimal subset of S which 

has a non-empty intersection with all bases of M. 

12.7.2 The Greedy Algorithm for Matroids 

Let M = (S,Z) be a matroid. For every X € T we define the set ext(X) by 

ext(X) ={yeS—-X:XU{y} €T}. (12.9) 

That is, ext(X) are precisely those elements y in S — X such that y can 

be added to X without creating a dependent set. 

Suppose we are given a weight function w : S + R+U{0} on the elements 
of S. We let w(X) = >0,<-x w(x). Our goal is to find an independent subset 
of S with maximum weight. Since w(s) > 0 for every s € S it follows that 
a maximum weight independent subset can always be assumed to be a base 

(using (13), we may add extra elements of weight zero to X if X has maximum 
weight and is not a base). An optimal base is a base B such that w(B) > 
w(B’) for every B’ € B. 

The following simple algorithm GA is known as the greedy algorithm 

for matroids: 

Input: A matroid M = (S,Z) and a weight function w : S > Ri U {0}. 
Output: an optimal base of M. 

1 Let Aa: 

2. If ext(X) = 0 go to Step 5; 
3. Choose an element x € ext(X) such that w(x) = max{w(y) : y € 

ext(X)}; 
4. Let X := X U {x} and go to Step 2; 
5. Return X; 

Since the only maximal independent sets in M are bases, it follows that 

the greedy algorithm returns a base X of M. Such a base is called a greedy 
base of M. The following result due to Rado shows that the greedy algorithm 
works nicely for matroids: 

Theorem 12.7.7 /619] The greedy algorithm for matroids always finds an 
optimal base. 
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Proof: Suppose there exists a matroid M = (S,Z) and weight function w 
such that the greedy algorithm does not find an optimal base of M. Let B, 
be the greedy basis which is returned by the algorithm. By assumption, M 
has another base B such that 

w(B,) < w(B). (12.10) 

Since 0 C BN B, and B, # B, there is a well-defined first iteration of the 
while loop in which GA chooses an element x which is not in B. Let A be 
the current independent subset found by the algorithm just before GA adds 
x (to A). Consider the independent set A’ = AU z. By (I3), we can extend 
A’ to a base B' of M by adding elements from B. It follows from this and 
(B2) that B’ = (B—y)U {zx} for some y € B— B,. Since AUy C B' we have 
y € ext(A). Now it follows from that fact that GA chose x and not y when it 
extended A that we have w(y) < w(x). However this means that 

w(By) = w(B) — w(y) + w(x) > w(B), 

contradicting (12.10). Oo 

It can be shown that, if we have a collection F of subsets of a set S 

such that (I1) and (I2) hold, but (I3) does not, then there exists a non- 
negative real-valued weight function so that applying the algorithm GA to 

this collection of sets we never find an optimal basis (Exercise 12.39). 
The reader who knows Kruskal’s classical algorithm for finding a mini- 

mum weight spanning tree in a connected undirected graph G with weights 

on the arcs (see e.g. [169]) will have noticed the strong similarity between 
that algorithm and the algorithm GA above. In fact Kruskal’s algorithm is 

precisely GA for the case when the input is the circuit matroid M(G) of G. 

12.7.3 Independence Oracles 

What is a fast algorithm for matroids? How do we represent a matroid effi- 

ciently? These are important questions. In particular, it should be clear that 

in general it is infeasible to store information about a given matroid by a list 

of its independent sets. For example, if M is the uniform matroid Un,4, we 

would have to store all subsets of size at most k of {1,2,...,n}. On the other 

hand for U,,, it is very easy to decide whether a given subset of {1,2,...,n} 

is independent: simply calculate its size and check whether this is at most k. 

This illustrates that what is important is not having a list of all independent 

sets, but rather to be able to determine whether a given subset X of the 

ground set S is independent in M. 

We shall assume that our matroids are always given in terms of the ground 

set S and a subroutine Oy which given X C S decides whether X is indepen- 

dent in M or not. Such a subroutine Oy is called an independence oracle 

for M = (S,Z). We say that a matroid algorithm A for a matroid M = (5,7) 
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with independence oracle Oy is fast if the number of steps of A is polyno- 

mial in |S| and any other inputs (such as a weight function), provided that 

we consider each call to Oy as taking constant time. With this assumption, 

the greedy algorithm is a fast matroid algorithm. 

In order for a fast matroid algorithm to be useful in practice, we must 

be able to supply an independence oracle which works in polynomial time 

(and preferably very fast) In the case of Kruskal’s algorithm above such an 

oracle exists, since a subset X C FE is independent in the circuit matroid 

of G = (V,E) if and only if X induces a forest in G, something which can 

be checked in linear time by DFS, say (Exercise 12.41). Similarly, checking 

whether a subset is independent in U,,, can be done in linear time. 

12.7.4 Union of Matroids 

Let M; = (S,Z;), i = 1,2,...,k ke matroids on the same ground set S. Define 

vk_, M; = (S, VE, 7;) as follows. A set X C S is independent in V#_, M; if 
and only if X can be decomposed as X = X; UX2U...U Xx, where X; € T; 

for i = 1,2,...,k. It is a non-trivial exercise (Exercise 12.42) to prove the 

following: 

Proposition 12.7.8 Let M; = (S,Z;), i = 1,2,...,% be matroids on the 

same ground set S. Then VE; is a matroid. ° O 

Note that, if X is independent in V*_, Mi, then X has a partition into sets 

X,,Xo,...,X, such that X; (which might be empty) is independent in Mj, 

i =1,2,...,k. Thus deciding whether X is independent in V*_, M; is equiva- 

lent to deciding whether X can be partitioned into k subsets Xj, X2,...,Xx 

Such thatan @G. i tOlst onal dob a, he 

The matroid partition problem: Let M; = (S,7;), i = 1,2,...,k be 
matroids on the same ground set S and a subset X € S. Does there exist 

subsets X15X%,...,Xe of S such that X = UE,X; and X; € J; for? = 
TD itowk sh 

In Exercise 12.45 the goal is show that the question of deciding whether 

an undirected graph has k edge-disjoint spanning trees can be formulated as a 

matroid partition problem. Hence the following theorem implies the existence 

of a polynomial algorithm for deciding whether an undirected graph has k 

edge-disjoint spanning trees (see Exercise 12.46). 

Theorem 12.7.9 The matroid partition problem can be solved in polynomial 

time, provided we are given polynomial time realizable independence oracles 

for each of the matroids M;, i =1,2,...,k. oO 

We refer the reader to Recski’s book [623] for a description of a fast 
algorithm for the matroid partitioning problem. Note that, if M = (S,Z) isa 

matroid and X is a subset of S, then M(X) = (X,Zx), whereZx ={Y €T: 
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Y C X} is also a matroid (Exercise 12.43). Hence, the matroid partitioning 
problem is equivalent to the problem of deciding whether the ground set S$ 

is independent in V‘_, M;. This is the problem which is solved in [623]. 

12.7.5 Two Matroid Intersection 

Another very useful topic on matroids is matroid intersection. By this we 

do not mean that, if 4), M2 are matroids on the same ground set S, then 

M = (S,7, N72) is also a matroid. This is false as the reader can easily show 

by an example (Exercise 12.47). Instead we are interested in the following 

problem. 

The matroid intersection problem: Given matroids M, = (S,Z,), M2 = 

(S,Z2) such that r1(S) = ro(S). Find a maximum cardinality subset T C S 
which is independent in each of M,, M2. 

The next result shows that the matroid intersection problem and the 

matroid partition problem are closely related. 

Theorem 12.7.10 Let M, = (S,7,), Mz = (S,Z2) be matroids on the same 
ground set S with r,(S) = ro(S) =r and let n = |S|. There is a common 
base of My, M2 if and only if M, V MZ = Up. 

Proof: If X is a base of M, and of M2, then S — X is independent in Mz 

and hence S = X U(S — X) is independent in M, V Mj, implying that this 
is the free matroid on n = |S| elements. 

To prove the converse, suppose S is independent in M, V M3. Then S can 

be partitioned as S = S; US_ where 5; € Z;, Sz € Tj. 

Now we obtain 

|S| = [Si] + |S2] = ri(Si) + 73 (S2) 
< ri(S) + 73(S) 
=r-+(|S|—re(S)) (12.11) 

=r+({S|—r) 

alt 

This implies that r1($1) =r and r3(S2) = |S| —1r2(S). Thus S; is a base 

of M, and S;(= S — S,) is a base of Mj. Now we see that S; is a common 

base of M, and Mo. oO 

The following result is due to Edmonds: 

Theorem 12.7.11 [212] The matroid intersection problem can be solved in 

polynomial time, provided we are given polynomial time realizable indepen- 

dence oracles for M,, M2. Furthermore, under the same assumptions, one 
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can find in polynomial time a maximum (or minimum) weight common in- 

dependent subset with respect to any given real-valued weight function w on 

S. 0 

For a description of a polynomial algorithm for (weighted) matroid inter- 

section see e.g. [166, 623]. 
Matroid intersection is a very useful tool for modeling (and solving) many 

combinatorial optimization problems. 

For instance the problem to find a minimum weight cycle factor in an arc 

weighted digraph can be formulated as a weighted two matroid intersection 

problem. Consider the intersection of the matroids M~(D),M*(D) which 
were defined in the beginning of this section. There is a common base of these 
matroids if and only if D has a cycle factor and furthermore, the minimum 

weight of a common base equals the minimum weight of a cycle factor. Two 

more example are given in Section 9.10 and Exercise 12.48. 

12.7.6 Intersections of Three or More Matroids 

If we consider three or more matroids all on the same ground set and ask 

for a common base of these, then this problem contains quite a few difficult 

problems as special cases as we shall see below. 
The k-matroid intersection problem: Given matroids M; = (S,Z;), i= 
1,2,...,k on the same ground set. Does there exist a set X C S such that 
Xis.a base of MM, fort = 192k 

Theorem 12.7.12 The k-matroid intersection problem is NP-complete for 
kee) 

Proof: It suffices to prove the theorem for k = 3 since the proof can easily 
be extended to higher k by using several copies of the same matroid. We will 
prove that the NP-complete problem of deciding the existence of a hamil- 
tonian path which starts in a prescribed vertex u and ends in a prescribed 
vertex v in a digraph (see Exercise 6.3) can be reduced to the 3-matroid 
intersection problem in polynomial time. 

Let D = (V,A) be a digraph with specified vertices u,v € V. Define 
M; = S,J;)-2= 12,3 as follows: 

S =A; 

M, = M(UG[D)); 
X € I, if and only if there is no arc entering u in Dy = (V, X) and every 
other vertex has at most one arc entering it in Dx. 
Y € T; if and only if there is no arc leaving v in Dy = (V,Y) and every 
other vertex has at most one arc leaving it in Dy. 

We argued in Section 9.10 that Mz = (A,Z2) is a matroid and similarly 
M3 = (A,T3) is seen to be a matroid. It is easy to see that D has a Hamilton 



12.8 Finding Good Solutions to MP-Hard Problems 673 

path P from u to v if and only if M,, M2, M3 have a common base (the arcs 
of a Hamilton path correspond to a common base of M;, M2, M3). 

Note that the reduction above is a polynomial one because given an in- 
stance [D, u,v] of the hamiltonian path problem with prescribed initial and 
terminal vertices, we can easily extract the arc set of A and hence the ground 
set of the 3 matroids above. 0 

12.8 Finding Good Solutions to WP-Hard Problems 

In this book we have encountered many problems which are NP-hard. Sev- 
eral of these such as the feedback arc set problem (denoted FAS below for 
convenience) are of significant practical interest. Part of our discussion below 
will focus on the feedback arc set problem, but most of the discussion is valid 

for the majority of NP-hard problems we know of. 

Clearly we could solve the FAS problem if we simply try all subsets of 

the arc set and take the smallest feedback arc set we find. Of course this 

would take exponential time and even for digraphs with at most 100 arcs 

this process would be extremely time consuming if not infeasible, even on the 

fastest computers available today and in the near future. 

A better approach is to try to solve the problem at hand by a clever way 

of examining those among the set of all possible solutions which could be 

a candidate for an optimal solution. If we already know a feedback arc set 

with 20 arcs and we have a (preferably fast) way of detecting that among all 
subsets from a certain collection of subsets of arcs, no feedback arc set with 

less than 20 arcs exists, then we do not have to consider these subsets any 

more, since no optimal solution can be found here. This idea, which we will 

not describe in detail here, is one of the two main ingredients in a general 

method called branch and bound, (see e.g. the book [600] by Papadimitriou 
and Steiglitz). Branch and bound can be used to solve small instances of the 
FAS problem, but already for digraphs with 100 vertices it becomes very time 

consuming to find an optimal solution. 

In the rest of this section we describe methods that do not give us any 

guarantee on the quality of the solution and sometimes not even on the 

running time of an implementation of the method. But experimental evidence 

suggests that in practice some of these so-called heuristics do give solutions 

which are close to the optimum solution. Furthermore, they often run very 

fast when implemented carefully on a PC. Such methods may not seem very 
_ interesting to the theoretician who may only consider methods that provably 

obtain the optimum or some approximation guarantee for the solution as 

worth studying. However, in practice the situation is entirely different: the 

engineer who has been asked to find a reasonable solution to an instance of the 

FAS problem, say, cannot really use this attitude. What (s)he needs is a way 
to get a good solution and some indication that this solution is better than 

a random solution and cannot be easily improved on (recall the discussion 
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concerning the domination number of algorithms for the TSP problem in 

Section 6.12). Certainly such a solution will often be much better than one 

that could be found at hand by the engineer. 

We start with a very simple method for finding a feedback arc set which 

is locally optimal. We assume that we are given a directed multigraph D = 

(V, A) and an ordering s = v1, V2,...,Un of V. Given this ordering we can 

easily determine the set of forward arcs Ay (as those arcs vjv; for which i < 7) 

and clearly A — Ay is a feedback arc set of D. Now suppose that there are 

indices i,7 such that by deleting the vertex v; and reinserting it between v; 

and‘ v;4; we obtain a smaller feedback arc set. The effect on the value of 

the feedback arc set can be calculated easily without reconsidering all arcs 

(Exercise 12.49). 
By a solution s we mean an ordering of the vertices of D. The value 

v(s) of a solution s is the number of backwards arcs with respect to s. We 
say that two solutions s, s’ are neighbours if we can obtain one from the 

other by deleting one vertex and reinserting it somewhere else in the ordering 

of the remaining vertices. With respect to this definition of a neighbour of a 

solution s we can define the neighbourhood NV(s) of s as the set of solutions 
that are neighbours of s. Now we can describe a very simple heuristic which 

we call 1-OPT for the FAS problem: 

1-OPT . 
Input: A directed multigraph D = (V, A); 
Output: An ordering of V (for which the backwards arcs form a feedback 

arc set in D). 

1. Start with a solution s corresponding to a random permutation of V; 

2. If there exists a neighbour s’ of s such that v(s’) < v(s); then take s := s’ 
as the new current solution and repeat this step; 

3. Output the locally optimal solution s and halt. 

It is easy to show (Exercise 12.50) that the 1-OPT algorithm will halt 
after finitely many steps with a solution that is locally optimal. Here locally 

optimal means that the number of backwards arcs cannot be decreased by 

moving a single vertex. 

There are several other ways of defining sensible neighbourhoods of a so- 

lution to the FAS problem. For example, one could consider all solutions that 

can be obtained by interchanging the positions of two vertices in the given or- 

dering (see Exercise 12.52 and Exercise 12.53). Experimental evidence found 
by Olsen [594] suggests that this last way of choosing the neighbourhood does 
not produce as high quality solutions as the one above. 

Although 1-OPT produces solutions that are in general much better than 

a random choice, it only guarantees that the final solution found is locally 

4 We allow i = n and i = 0 with the obvious meaning of v;41 and vp. 
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optimal. Furthermore, since a new solution is only taken if it improves the 

objective function, the algorithm cannot escape a local minimum. 

This can be remedied somewhat by restarting the algorithm several times, 

each time starting from a new random permutation of the vertices. Since the 

algorithm is usually very fast it is possible to restart it many times (from 

different random solutions) and then take the best solution among the local 

optima which were found. 

Another method to escape local minima would be to allow a neighbour s’ 

of the current solution s with u(s’) > v(s) to be chosen with some positive 
probability. However, unless this probability decreases as the number of steps 

increases the method may never converge towards a local minimum. 

This problem is handled in the next method which we briefly describe. 

In the method called simulated annealing the basic idea is to allow a 

neighbouring solution s’ with v(s') > v(s) to be chosen with a probability p 
which depends both on 7 = v(s’) — v(s) and the number of steps taken by 
the algorithm so far. 

Below we describe the generic simulated annealing method for a minimiza- 
tion problem over the set S of possible solutions and with objective function 

f and neighbourhood structure N. Note that this is a meta-heuristic, i.e. it 

is a scheme that can be applied to many types of combinatorial optimization 

problems rather than just one specific problem. 

Generic Simulated Annealing 

1. Select an initial solution so; 

2. Initialize control parameter t to a value to; 

3. Select a reduction method M for the control parameter ¢; 

4. Repeat K(n) times: 
5. Choose randomly a neighbour s € N(so); 

6. Let 7 := f(s) — f (80); 
CG If r <0 then so :=s 

8. Else let so := s with probability exp (—7/t); 

oP Lett W(t); 
10. If the stopping condition is satisfied then return the best solution en- 

countered and halt. Otherwise go to Step 4. 

Although we did not write it above, it is understood that the algorithm 

also keeps track of the best solution found so far (note that this may not 

coincide with the current solution s9.). 
It is evident from the (loose) description above that any implementation 

of the method involves making several choices about how to perform the 

various steps. We discuss briefly the general idea below and refer to the survey 

[203] by Dowsland and the experimental evaluation of simulated annealing by 
Johnson, Aragon, McGeoch and Schevon described in [464] for more details. It 

is important to note that finding a good set of values/methods to implement 

the algorithm is by no means always a trivial task. Part of this process consists 
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of tuning the parameters to,K(n), the method M for decreasing t and the 

stopping criterion. This is done by performing a number of runs with all 

but one parameter fixed and then selecting values that look promising. After 

some stages of this process, one may arrive at a choice for the parameters 

which does not seem easy to improve (based on the test data used). See also 

Exercise 12.51. However, experimental evidence reported by Hansen [397] and 

Olsen [594] indicate that for a problem such as FAS it is not too hard to make 

a set of choices which will make the algorithm perform quite well. 

The initial solution can be chosen arbitrarily or it may be a local optima 

found by 1-OPT, say. The control parameter t should be initialized so that in 

the beginning there is a fair chance that the algorithm will accept a neighbour 

with a higher f value than the current solution s9. Normally this is done 

by starting from a random solution and then performing, say, 1000 steps 

of the algorithm while keeping track of the number of neighbours who are 

accepted as the new current solution’. The initial acceptance rate is the 

fraction of accepted solutions over the total number of neighbours tested 

(1000 above). Experiments reported in e.g. [464] suggest that acceptance 
rates in the interval [0.3,0.9] all work well (these experiments were not for 
the FAS problem, but the conclusion also seems to hold for FAS [594]). 

Experiments show that the actual reduction method used to reduce t after 

every cycle of K'(n) steps is not as important as the,rate at which t is reduced. 

This rate should be as slow as possible (that is, as time allows) [464]. In fact, 
whereas in general no theoretical guarantee exists for the quality of a solution 

found by local search heuristics such as 1-OPT, it can actually be shown (see 

e.g. the book [30] by Arts and Korst) that under ideal conditions (such as 
reducing the parameter t infinitely slowly, taking a very large number of steps 

for each value of ¢t and using a neighbour structure that allows one to reach 

some optimal solution from an arbitrary solution) simulated annealing will 

in fact find an optimal solution. Of course such a result is only of theoretical 

interest, but the nice thing is that, since some of these results are based 

on Markov chains, the results suggest that the slower one reduces t and 

the higher K(n) (as a function of the size of the neighbourhood), the better 
results one should obtain. This thesis seems to be true for several applications 

of simulated annealing (see e.g. [203, 464]). 

It is common to use a simple geometric reduction method where we set 

t := rt for some fixed number 0 < r < 1 which is close to one. Experiments 

suggests that r = 0.95 is generally a good choice [464]. The number of steps 

K(n) for each value assumed by t should be at least a linear function in 
the size of the neighbourhood of an arbitrary solution. Finally it is common 

to use as a stopping condition that there has been no improvement in the 

current solution for some number N of moves. Another possibility is to use 

the current acceptance rate (calculated similarly as the initial acceptance 

° This includes those that have a better (or equal) value than the current solution 
as well as those that are worse, but are chosen in the probabilistic step 8. 
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rate by keeping track of the number of accepted moves over the last, say, 

1000 steps) as a measure and stop when this rate gets below, say 1 percent. 

One may also decide to stop when the control parameter becomes smaller 

than a prescribed value t,. Note that in the last case, the number of steps 

performed by the algorithm is always the same (for K(n) and M fixed). 

Due to space limitations we will not go into further details of the method. 
The interested reader is encouraged to work out the programming projects of 

Exercises 12.51 and 12.52. The success of the simulated annealing algorithm 

on various combinatorial optimization problems varies of course (and also 

depends strongly on the ingenuity of the persons who experiment with it, 

in particular in the tuning phase). For a problem like the linear ordering 

problem, the algorithm seems to perform very well. Hansen showed [397] 

that when applied to real-world instances of the linear ordering problem of 

sizes up to 75 vertices, the simulated annealing algorithm very often finds the 

optimal solution within a few minutes on a standard PC and the ones that 

were not optimal were within one percent of the optimal values. 

For a very thorough discussion on how to tune simulated annealing algo- 

rithms as well as a comparison of simulated annealing with other methods on 

various combinatorial problems we refer to the experimental papers (464, 465] 

by Johnson, Aragon, McGeoch and Schevon. There are several other meta- 

heuristics which work quite well for many types of combinatorial optimiza- 

tion problems. For a detailed discussion we refer the reader to the book [628] 
edited by Reeves. 

12.9 Exercises 

12.1. Show that given an oriented graph D one can check whether D satisfies Con- 
jecture 12.1.1 in time O(nm). Which representation of the oriented graph 
may we assume to obtain this complexity? 

12.2. Show that finding a median order of an arc weighted tournament (that is, an 

order which minimizes the total weight of the backwards arcs) is NP-hard 

by giving a polynomial reduction of the feedback arc set problem to this 

problem. 

12.3. (+) Give a short and direct argument which shows that there exists a 

function f(n) so that every tournament on f(n) vertices contains every 

oriented tree on n vertices. Hint: consider removing a leaf from a tree and 

then applying induction. 

12.4. Construct your own examples of semicomplete PCDs, for which FSO and 

the score method produce different results. 

12.5. Prove by induction on n the formula for fx (a) in Lemma 12.2.1. 

12.6. Prove the following. Let K = (V,A,€) be a complete PCD with n vertices, 

and let a be an ordering of K. Then fx(a) + bx (a) = n(n* — 1)/6. Hint: 

use induction on n. 
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. Prove that the problem to find a forward optimal ordering of a PCD is 

NP-hard (Gutin and Yeo [373)) . 

. (—) Formulate and prove a lemma for forward orderings analogous to 

Lemma 12.2.6. 

Prove Lemma 12.2.7 using Lemma 12.2.6. 

. Prove Theorem 12.2.8. 

. (—) Compute the proper backward ranks of the vertices of the uniform PCD 
corresponding to the digraph D in Figure 12.6. 

Figure 12.6 A semicomplete 3-partite digraph D. 

Using Theorem 12.2.8 construct a polynomial algorithm to find proper back- 
ward ranks of the vertices of a semicomplete multipartite PCD. 

Prove Theorem 12.2.9. 

(—) Find the proper backward ranks of the vertices of the uniform PCD 
corresponding to the digraph D — vz, where the digraph D is depicted in 
Figure 12.6. 

Give a direct proof that every acyclic digraphis kernel-perfect. Prove that an 
acyclic digraph has a unique kernel (von Neumann and Morgenstein [731]). 

Prove that C43({1, 7,8}) — (1, 2), Ca3({1, 7, 8}) — (1,8) and C43({1, 7, 8}) — 
(1,9) have kernels, where C43({1, 7, 8}) is a circular digraph. 

(—) Give a construction of a Latin square of size n for each integer n > 1. 

(+) Prove Theorem 12.4.2. 

‘Construct a bipartite graph B = (X UY, E) with a family {>, |u € X UY} 
of orderings induced from local orderings of the neighbours of each vertex, 
such that no maximum matching of B is stable. 

(—) Argue that the oriented graph D in the proof of Theorem 12.4.3 is 
(n — 1)-regular. 

(+) Prove that every digraph has a unique core (up to isomorphism). 

(—) Prove that every semicomplete digraph is a core. 



12°23. 

12.24. 

12.25. 

12.26. 

12227. 

12.28. 

12229: 

12.30. 

12.9 Exercises 679 

Characterizing core semicomplete bipartite digraphs. Prove the fol- 
lowing theorem due to Bang-Jensen and Hell: 

Theorem 12.9.1 /74] Let B be a semicomplete bipartite digraph with ver- 
ter partition X,Y. Then B is a core if and only uf 
(a) B is a 2-cycle, or 
(b) For allx,y € X such that x # y, either y € Nt?(x) ora € Nt?(y) and 

for allu,v € Y such that u# v, either u € Nt?(v) or ve Nt?(u). 

Show that there is a polynomial algorithm which transforms a given semi- 
complete bipartite digraph into its core. Hint: use Theorem 12.9.1. 

Prove Proposition 12.5.3. Hint: first show that you can assume that the 
input digraph is acyclic and then use the acyclic ordering. 

A polynomial algorithm for C,-colouring. Complete the description 
from the text to an O(n + m) algorithm which, given an arbitrary digraph 
D of order n and size m, either finds a homomorphism DC, or a proof 
that DAC. 

Prove Theorem 12.5.8. 

(—) Prove Theorem 12.5.10. 

(+) Reducing 3-SAT to an H-colouring problem. Let H be the di- 
graph in Figure 12.7(a) and let Y be the digraph in Figure 12.7(a). 

1 
u 

a 

lek D) Yancy) ie) 

Ay 
w 

3 4 

(a) (6) (c) 

Figure 12.7 (a): the digraph H; (b) the digraph Y; the digraph X. 

(i) Prove that for every H-colouring of Y, at least one of the vertices wu, v, w 
is not mapped to 1. 

(ii) Prove that every partial H-colouring of Y in which at most two of the 
vertices u,v, w is mapped to 1 can be extended to an H-colouring of Y. 

(iii) (—) Prove that in every H-colouring of X, either z is coloured 1 and 
& is coloured 2 or vice versa. ect 

(iv) (+) Use (i)-(iii) to construct in polynomial time for a given instance 
F = Ci * Co *... * Cm of 3-SAT a directed graph D[F] such that 
D|F|—H if and only if F is satisfiable. Hint: use a copy of X for each 
variable and a copy of Y for each clause and piece together according 
to the formula F. 

(++) Prove, using a similar reduction to that outlined in Exercise 12.29 that, 
if H is the strong tournament on four vertices, then the H-colouring problem 
is NP-complete. 
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Prove that calculating ao; 1s N-hard, even for semicomplete digraphs. 

Hint: reduce the independence number problem for undirected graphs to 

this problem. 

Prove that (B3) holds for any matroid. 

(—) Prove that M = (S,Z) is a matroid if and only if it satisfies (11), (12) 

and (I3’). 

(—) Prove Lemma 12.7.4. 

Prove Proposition 12.7.3. 

Circuit axioms for a matroid. Prove the following Proposition. Hint: use 
(R3) and the fact that C — x is independent for every circuit C and every 
weGiCa 

Proposition 12.9.2 Let C be the set of circuits of the matroid M = (S,T). 
Then the following holds: < 
(Cl) 1fC,C  €¢ and. C CC, then C=C: 
(C2) IfC,C’ €C, C#C' anduE CNC’, then there exists a circuit Z EC 

such that ZC CUC’ —u. 

Prove that, if M is a matroid, then the dual M™ is also a matroid. 

Prove Proposition 12.7.6. 

(+) Fooling the greedy algorithm for families of subsets which 
are not matroids. Suppose F is a collection of subsets of a set S which 
satisfies (I1), (12), but not (13). Construct a weight function w such that 
the algorithm G.A will not find an optimal basis (Edmonds [213]). 

(+). Prove the following result: 

Theorem 12.9.3 Let M = (S,T) satisfy (I1),(I2). The greedy algorithm 
GA finds an optimal base for M for every choice of non-negative real-valued 
weight function w on S if and only if M is a matroid. 

Hint: show that, if A = {a1,...,a,} and B = {bi,..., bg, bx41} both belong 
to Z, then one can choose a weight function w on the elements of S so that 
GA will always choose A as the first k elements and unless there is a b; € B 
such that AU {bj} € Z, GA will not reach an optimal base. 

Describe an O(n + m) algorithm for deciding whether an undirected graph 
on n vertices and m edges has a cycle. 

(+) Prove Proposition 12.7.8. Hint: it suffices to prove the claim for two 
matroids. Consider a counterexample X,Y to (I3) with X = X; U X2 and 
ie Vaio, XG Al E TB). X2,Y2 € To and |X1 NY2|+|Xe2 NY | is maximum. 

‘Prove that M(X) defined in Section 12.7 is a matroid. 

Let D = (V, A) be a digraph with two vertices s,t such that \(s,t) > k for 
some k. Define J by J = {X C A: Ap_x(s,t) > k}. Show by an example 
that (A, Z) is not always a matroid. (+) Can you characterize those digraphs 
for which (A, 7) is actually a matroid? 

(+) Testing for k edge-disjoint spanning trees in graphs. Show how 
to formulate the problem of deciding whether an undirected graph G has k 
edge-disjoint spanning trees as a matroid partition problem. 
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(+) An algorithm for deciding the existence of k edge-disjoint 
spanning trees. Use the formulation in Exercise 12.45 to derive a polyno- 

mial algorithm for deciding whether an undirected graph has k edge-disjoint 
spanning trees. Remember to justify that the needed oracles can be imple- 
mented as polynomial algorithms. 

Give an example of two matroids M;, M2 on the same ground set S for 
which M = (S,Z,; NZ) is not a matroid. 

(+) Formulating the maximum (weight) matching problem for a 
bipartite graph as a (weighted) matroid intersection problem. 
(a) Show how to formulate the question of deciding the existence of a 

matching of size n in a bipartite graph G = (U,V, E) on 2n vertices 
as a matroid intersection problem. 

(b) Show how to solve the problem of finding a maximum weight matching 
of size n in the graph G above if we are given nonnegative weights on 
the edges of G. 

(c) Argue that one can in fact find a maximum matching in any bipartite 
graph in polynomial time, using an algorithm for the matroid intersec- 
tion problem. 

Consider the 1-OPT method for the FAS problem. Describe how to de- 
termine, in linear time, the number of backwards arcs with respect to the 
ordering we obtain from vj, v2,...,Un after removing one vertex from posi- 
tion j and reinserting it between v; and v;+1. 

Prove that the 1-OPT algorithm applied to the feedback arc set problem 
will always halt. Then give a good bound on the number of steps taken by 
the algorithm. 

(+) Project: Implementing a simulated annealing algorithm for 
the feedback arc set problem. The purpose of this project is to imple- 
ment a version of simulated annealing which will allow one to obtain good 
solutions for moderately sized instances of the feedback arc set problem 
(n < 500). Use the details described in Section 12.8 along with the neigh- 
bourhood structure which we used in the 1-OPT algorithm. Perform test 
on various test data (such a randomly generated data and data for which a 
good feedback arc set is already known) in order to investigate the following 
issues’ : 
1. How much does the initial value of t (measured in terms of the resulting 

initial acceptance rate) influence the quality of the solution? 
2. Is there a clear dependence of the value of the final solution on the value 

of the initial solution? Is is better to start from a good solution than a 
random one? 

3. How important is it to decrease t slowly? 
4. How many iterations should be performed between two consecutive re- 

ductions of t? Try to find a good estimate and see how it depends on 
the size of the input graph. 

5. Try to combine the simulated annealing algorithm and 1-OPT by ei- 
ther rounding off a calculation by simulated annealing by an execution 
of 1-OPT, or by using 1-OPT at every step of the simulated annealing 

® It is understood that as you vary one parameter, all other parameters are fixed 
at values which have either been found to be good experimentally already, or are 

as described in Section 12.8. 
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algorithm and using the value of resulting solution s’ (based on the cur- 
rent solution s) as the (modified) objective function for the algorithm, 
i.e. take f(s) to be the number of backwards arcs in the locally optimal 
solution s’ and accept a new proposed neighbour of its f-value is better 
than f(s), or it passes the test in Step 8 of the algorithm. 

Instead of defining the neighbourhood of a solution s (an ordering of the 
vertices) to the FAS problem as we did in Section 12.8, we may also say that 
two solutions (orderings) s,s’ are neighbours if we can obtain one from the 
other by interchanging the positions of two vertices v;,v; in the ordering. 
Try to work out Exercise 12.51 with this choice of neighbourhood instead 
and compare the results. Which neighbourhood choice would you think is 
the best and why? Carry out computation experiments to check this. 

Project: comparing various local search algorithms for the feed- 
back arc set problem. Consider the following heuristics for the FAS prob- 
lem. 

(a) 1-OPT. . 
(b) 2-OPT which uses the neighbourhood defined in Exercise 12.52 and 

swaps two vertices as long as there is a pair such that swapping these 
will improve the objective function. 

(c) Steepest descent 1-OPT: Same as 1-OPT, except now we look at all 
neighbours of the current solution s and take the one whose objective 
function is the best if any has a lower value. Otherwise we stop. 

(d) Steepest descent 2-OPT: Same as above, but for 2-OPT. 
Implement each of these and compare them on various test data to see which 
one finds the best solution and compare their running times. Then try the 
same with probabilistic versions where the heuristics are restarted a number 
of times from random starting solutions. 
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Symbol Index 

To shorten and unify notation, in this index we use the following convention: 

B denotes a bipartite (di)graph. 

C, C; denote cycles (directed, undirected, edge-coloured, oriented). 
D, D; denote digraphs, directed multigraphs and directed pseudographs. 

G, G; denote undirected graphs and undirected multigraphs. 

H denotes a hypergraph. 

M denotes a mixed graph or a matroid. 

P, P; denote path (directed, undirected, edge-coloured, oriented). 

S denotes a matrix or a multiset. 

X, X; denote abstract sets or sets of vertices. 

Y, Y; denote sets of arcs. 

(Di, D2)p: set of arcs with tails in 
V(D,) and heads in V(D2), 
6 

(X, <): partial order on X, 236 
(X1, X2)p: set of arcs with tail in X) 

and head in X2, 3 

(I, +): an additive group, 438 

( K nC): weighted complete digraph, 
82 

(F,b): pair of a family F and a sub- 
modular function b on Ff, 
452 

*P: P minus the first vertex on P, 

322 
>u: ordering of neighbours of u, 656 

A(D): arc set of D, 2 
A(z): arc set of residual network w.r.t 

2, 98 

B= (Xi, X2;E): specification of a 
bipartite graph with bipar- 
tition X1, X2, 25 

BG(D): bipartite representation of 
D, 25 

BOR(D): proper backward rank of 
D, 645 

Bre: bad vertices with respect to the 
local median order L, 641 

CM(D): the 2-edge-coloured bi- 
partite multigraph corre- 
sponding to the bipartite 

digraph D, 604 

CM~'(B): the bipartite digraph cor- 
responding to the 2-edge- 

coloured bipartite multi- 
graph B, 604 

C[x;,2;]: subpath of C from z; to x;, 
pe 

Ci>>C2: Ci contains singular ver- 
tices with respect to C2 and 
they all are out-singular, 
and C2 has singular ver- 
tices with respect to Ci and 
they all are in-singular, 255 

D(G): digraph obtained from G via 
BD-correspondance, 604 

D(d,n,q,7): consecutive-d digraph, 
190 

D—X: deleting the vertices of X 
from D, 7 

D—Y: deleting the arcs of Y from 
Dai 

D//P: path-contraction, 229 
D/D,: contracting the subdigraph 

dD, in 1D. 7 

D=(V+s,A), D=(V+s,EUF): 
specification of D with spe- 
cial vertex s, 358 

D=(V,A): specification of D, 2 
D=(V,A,e): specification of a 

paired comparison digraph, 
645 

D = (V,A,c): specification of weight- 
ed D, 6 

D[D1,D2,...,Dn]: composing D 
with Di, D2,-..,Dn, 8 

D?: pth power of D, 9 
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D, = D2: no arc from V(D2) to 
V(D;), 6 

D, = Dz, D=H: Dy, is isomorphic 

to Do, 7 

D; U D2: union of D; and D2:, 10 

D,— Dz»: D; is homomorphic to D2, 

658 
dD, aA Do: V(D1) dominates V(D2) 

and no arc from V(D2) to 
V(D1), 6 

D,ADz2: D; is not homomorphic to 
D2, 658 

Dy, —7 Do: V(D1) dominates V(D2), 

6 
ID SS IDES 55 OS IBY, a pe IDR: 

Cnn product x di- 
graphs, 9 

Dz(d,t): the de Bruijn digraph, 187 
De(d,n): generalized de Bruijn di- 

graph, 190 
Dx/(d,t): the Kautz digraph, 189 
Dsr: digraph obtained from D by the 

vertex splitting procedure, 
102 

Dr: digraph associated with a 2- SAT 
expression, 36 

Dmajor(T): majority digraph of the 
hypertournament T’, 631 

D(X): subdigraph of D induced by 
X,5 

E(G): edge set of the graph G, 18 
FOR(D): proper forward rank of D, 

645 
Fy, F >: out- and in-branching 

rooted at s, 19 

G =(V +s, E): specification of undi- 
rected graph with special 
vertex s, 443 

F(2): Gallois field on 2 elements, 
546 

Gi x G2 x... X G,: Cartesian prod- 
ucts of graphs, 71 

Gc: good vertices with respect to the 
local median order £, 641 

Gita: graph corresponding to ori- 
entability as a locally in- 
tournament digraph, 426 

Gita: graph corresponding to ori- 

entability as a locally tour- 
nament digraph, 420 

Gata: graph corresponding to ori- 
entability as a  quasi- 
transitive digraph, 416 

H =(V,€): specification of the hy- 
pergraph H, 24 

K&: c-edge-coloured complete graph 
of order n, 613 

K,,: complete graph of order n, 25 
: complete multipartite 

graph, 25 
L(D): line digraph of D, 182 

L*(D): iterated line digraph of D, 
187 

M = (S,T): specification of matroid, 
665 

M =(V,A,£E): specification of the 
mixed graph M, 23 

MOR(D): proper mutual rank of D, 
645 

M™*: dual of the matroid M, 667 
M, V M2: union of matroids M; and 

Mo, 670 
N(T, X): assignment neighbourhood 

Obl wert) Xe, 65 

Ni?(X), N5?(X): pth out- and in- 
ea Mes of X, 46 

N3?[X], N5?[X)]: closed pth out- and 
Bohannon of X, 46 

Np(v): neighbourhood of v, 4 

Nd (X), N5(X): out-neighbourhood, 
in-neighbourhood of X, 4 

Nx(v), Np (v): out-neighbourhood 
and in-neighbourhood of v, 
4 

Ne(a): neighbourhood of x in G, 19 
O(f(k)): O-notation, 29 
OR(D): set of all FSO-optimal order- 

ings of V, 644 
P(x;, xj]: subpath of P from 2; to z;, 

i<j, 12 
Qz,z, Q.w: path factor with two 

paths such that the first is 
an (x, z)-path and the sec- 
ond path has terminal ver- 
tex w, 295 

Q:z,2, Qw,.: path factor with two 
paths such that the first is 
a (z,x)-path and the sec- 
ond path has initial vertex 
w, 295 

R*(X): vertices that can be reached 
from X, 323 

R(X): vertices that can reach X, 
323 

Ri(r,q): Ramsey number for I[- 
uniform hypergraphs, 563 



S = (s,;]: matrix, 2 
SC(D): strong component digraph of 

D 1% 
S*: transpose of matrix S, 2 
TC(D): transitive closure of D, 177 
TT;: transitive tournament on s ver- 

tices, 416 

T’*”: reverse of T, 593 

UG(D): underlying graph of D, 19 
Un,~: uniform matroid, 666 

V(D): vertex set of D, 2 
V(G): vertex set of the graph G, 18 
X*,X7~: successors and predecessors 

of vertices in X, 12 

X, => X2: no arc from X2 to Xj, 3 

X14 Xo: Xi > Xo ANG 24 = X2, 3 

X, — X2: X; dominates Xo, 3 

X, x X2 x... xX Xp: Cartesian prod- 
uct of sets, 2 

X,AX2: symmetric difference, 546 
A(G): maximum degree of G, 19 
At(D), A~(D): maximum out- and 

in-degree of D, 5 
A°(D): maximum semi-degree of D, 

Amon(G): maximum monochromatic 
degree of G, 593 

I'(F): intersection graph of the fam- 
ily F of sets, 426 

Q(F): catch digraph of the family F 
of pointed sets, 426 

2(f(k)): Q-notation, 29 
Q(P): intersection graph of the fam- 

ily P of subgraphs, 602 

Q(D): maximum number of arc- 
disjoint dicuts in D, 400 

**': set of extended @-digraphs, 9 
@o: union of semicomplete multipar- 

tite, connected extended 
locally semicomplete di- 
graphs and acyclic di- 
graphs, 215 

#;: union of semicomplete bipartite, 
connected extended locally 
semicomplete and acyclic 
digraphs, 215 

@2: union of connected extended 
locally semicomplete and 
acyclic digraphs, 215 

WY: union of transitive and ex- 
tended semicomplete di- 
graphs, 196 
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W,: class of all digraphs for which 
a minimum path-factor can 
be found in polynomial 
time O(n‘), 335 

O(f(k)): O-notation, 29 

a(D): independence number of D, 22 

Qacyc(D): acyclic independence num- 
ber of D, 664 

Qor(D): oriented independence num- 

ber of D, 664 

TJ: admissible cells for transporta- 
tion, 149 

x(X1X2): colour of edges between X 
and X2, 593 

x(e): colour of edge e, 593 

Xena(P): colour of last edge of P, 593 
Xstart(P): colour of first edge of P, 

593 

x(H): chromatic number of D, 22 
6(G): minimum degree of G, 19 
6*(D), 6- (D): minimum out- and in- 

degree of D, 4 

6°(D): minimum semi-degree of D, 5 
67: length of a shortest (7, 7)-path 

using only internal vertices 
from {1,2,...,m— 1}, 58 

6°.on(D): minimum monochromatic 
semi-degree of the arc- 
coloured digraph D, 620 

6o.on(v): minimum monochromatic 
semi-degree of v in an arc- 
coloured digraph, 620 

6(P): capacity of augmenting path P, 
109 

6x(s,t): length of a shortest (s,t)- 
path in NV (a), 114 

e(xy): weight of the arc ry in a paired 
comparison digraph, 643 

nz(F): deficiency of the family F of 
one-way pairs, 369 

nk(X,Y): deficiency of the one-way 
pair (X,Y), 368 

k,s,r(D'): k-(S,T)-arc-strong con- 
nectivity augmentation 
number of D, 377 

(5,5): flow demand of the (s,t)-cut 
(SS) 127 

7;,(D): subpartition lower bound 
for augmenting the vertex- 
strong connectivity of D to 
k, 367 
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yx(D): subpartition lower bound for 
augmenting the arc-strong 
connectivity of D to k, 362 

Ys,:(D): minimum number of new 
arcs one has to add to 
D in order to obtain a 
new digraph D’ =(V,AU 
F) which has k arc-disjoint 
out-branchings rooted at s, 
537 

k(D): vertex-strong connectivity of 
D, 16 

k(x, y): local vertex-strong connectiv- 
ity from x to y, 346 

A(D): arc-strong connectivity of D, 
19 

A(z, y): local arc-strong connectivity 
from x to y, 346 

(Yi, Y2): scalar product of ¥; and Y2, 
546 ‘ 

dim S: dimension of the vector space 
S, 546 

+ 

G: complete biorientation of G, 19 

K n: complete digraph of order n, 27 
p(x, y): number of arcs with tail x 

and head y, 4 
lic(u, v): number of edges between u 

and v in G, 18 
vo(D): maximum number of vertex- 

disjoint cycles in D, 553 
,(D): maximum number of vertex- 
ae disjoint cycles in D, 553 
G: complement of G, 18 
Kn: graph of order n with no edges, 

25 
Z: negation of boolean variable x, 35 
d(u): forefather of u, 180 
™rso(a): proper FSO rank of x, 644 
p(G): diammin(G) — diam(G), 67 
p(D): minimum number of arcs 

whose contraction in D 
leads to a strong directed 
multigraph, 401 

o*(x): ot (x) — a (a), 646 
at(x), ¢ (x): positive and negative 

scores of x, 643 
To(D): size of a minimum feedback 

vertex set of D, 553 
7(D): size of a minimum feedback 

arc set of D, 553 
T(D): size of a minimum dijoin of D, 

400 
Cn: directed cycle on n vertices, 12 

P,,: directed path on n vertices, 12 
a,(D): k-strong augmentation num- 

ber of D, 368 
ay: the number of edges, oriented 

or not, which enter some 

XE EDO. 
b(v): balance prescription for the ver- 

tex vu, 96 

bp(q@): backward length of the order- 
ing alpha, 645 

bz: balance vector of the flow x, 96 

bd(F’): boundary of face F’, 220 
c(G): the number of connected com- 

ponents of G, 447 
c(Y): sum of costs/weights of arcs in 

c(a): cost/weight of the arc a, 6 
d(X,Y): d+(X,Y) +dt(Y, X), 346 
ae degree of x, 19 
d* (X,Y): number of arcs with tail in 

X —Y and head in Y — X, 

346 
d}(X), p(X): number of arcs from 

F that leave, respectively 
enter, X, 476 

dp(X): degree of X, 4 

d}(X), d5(X): out- and in-degree of 
Geer 

d}(v),d; (v): ith out- and in-degree 
of v in an arc-coloured di- 
graph, 620 

d;(v): jth degree of of v, 593 
e(X1,X2): number of edges between 

XK and X2, 504 

eq(X): number of edges of G with at 
least one end in X, 447 

ey: number of edges connecting dif- 
ferent sets of partition F, 
451 

f(X1, X2): sum of f-values over arcs 
with tail in X, and head in 
X2, 96 

fp(q): forward length of the ordering 
alpha, 645 

g(D): girth of D, 11 
g.(D): length of a shortest cycle 

through v in D, 304 
h(X,Y): number of vertices not in 

the one-way pair (X,Y), 
368 

h(p): height of vertex p, 118 
ig(X): number of edges of G with 

both ends in X, 447 



ig(D): global irregularity of D, 263 
t,(D): local irregularity of D, 263 

1(S, S): lower bound of the cut (5, S), 
126 

I;;: lower bound of the arc ij, 95 
m(y, e): sum of values of y on sets sets 

entered by the arc e, 530 

mp(q): mutual length of ordering a, 
645 

p(D): period of D, 566 
r(X): rank of X, 666 
r*(X): dual rank of X, 668 
r+(U): sum of function values of r on 

arcs in (U,U), 451 
r~(U): sum of function values of r on 

arcs in (U,U), 451 
rx(D): minimum number of arcs to 

reverse in D to obtain a k- 
strong digraph, 378 

rij: residual capacity of the arc 77, 98 

s(G): minimum number of steps for 
gossiping in G, 81 

sgn(P): — if P is an in-path and + if 
P is an out-path, 322 

u(S,S): capacity of the (s,t)-cut 

(5,5), 108 
uij: Capacity of the arc 77, 95 

z(S,5): flow across the (s,t)-cut 

(S,S), 109 
z(uv): value of integer flow x on the 

arc wv, 437 

xz +2’: arc-sum of flows x and 2’, 104 
x —y: x dominates y, 3 

x > y: z is a descendant of y ina DFS 
tree, 173 

x* =x @z: adding the residual flow 
£ to x, 105 

a} ,x;: successor and predecessor of 
Ti, 12 

xij: flow value on the arc 17, 96 
A(D): arc space of D, 546 
C(D): cycle space of D, 546 
C*(D): cocycle space of D, 547 
De, Dg: classes of non-arc-pancyclic 

arc-3-cyclic tournaments, 

309 
A= Pi ee UPC, UU Ge: q- 

path-cycle subdigraph, 15 

N(D): network representation of D, 
348 

N (a): residual network w.r.t x, 98 
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N =(V,A,l,u,b,c): specification of 
the flow network NV, 96 

Ng: network corresponding to the bi- 
partite graph B, 138 

Ns = (V,A, f, 9, (B,b),c): submodu- 
lar flow network, 457 

Nag): admissible network with re- 
spect to (a, @), 151 

Q: set of rational numbers, 1 

OQ: set of positive rational numbers, 

Qo: set of non-negative rational num- 

bers, 1 

R: set of reals, 1 

R-+: set of positive reals, 1 

Ro: set of non-negative reals, 1 

S <p T: S polynomially reducible to 
T, 34 

T*: set of second powers of even cy- 
cles of length at least 4, 290 

Ta, Je: classes of semicomplete di- 
graphs, 290 

Z: set of integers, 1 

Z4: set of positive integers, 1 

Zo: set of non-negative integers, 1 

Prob(£): probability of the event EF, 
550 

diam(D): diameter of D, 47 
diammin(G): minimum diameter of an 

orientation of G, 63 

dist (X1, X2): distance from X, to X2, 
47 

dist(z, y): distance from zx to y, 47 

domn(A,n): domination number of 
heuristic A for TSP prob- 
lem of order n, 337 

ext(X): set of elements each of which 
can extend X to an inde- 
pendent set, 668 

in(D): intersection number of D, 217 
Ic(D): length of a longest cycle of D, 

577 
Ip(D): length of a longest path in D, 

435 
Ip(G): longest path in G, 61 
pcec(D): path-cycle covering number 

pec*(D): 0 if D has a cycle factor and 
pcc(D) otherwise, 331 

pc(D): path covering number of D, 
15 
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pc,,(D): minimum number of paths in 
a path factor which starts 
at x, 283 

pe*(D): 0 if D is hamiltonian and 
pc(D) otherwise, 334 

ph(D): pseudo-hamiltonicity number 
of D, 232 

pred(x): predecessor of x w.r.t a DFS 
search, 172 

qhn(D): quasi-hamiltonicity number 
of D, 230 

rad(D): radius of D, 47 
rad" (D): out-radius of D, 47 
rad (D): in-radius of D, 47 

srad(D): strong radius of D, 64 
texpl(z): time when z is explored by 

a DFS search, 172 
tvisit(x): time when z is visited in a 

DFS search, 172 
|D|: the order of the digraph D, 2 
|S|: cardinality of the multiset S, 2 
|z|: value of flow z, 100 

co-N P: class of co-N’P decision prob- 
lems, 33 

NP: class of NP decision problems, 
33 
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ity, 381, 459 
partial, 430 
tournament, 381 

versus augmentation, 380 
arc space of a directed graph, 546 
arc-k-cyclic, 309 
arc-3-cyclic tournament, 309 

arc-disjoint hamiltonian path 
and cycle, 320 

2-arc-coloured digraph, 549 
arc-coloured directed multigraph, 

620-627 
2-arc-coloured tournament, 623 

k-arc-cyclic, 476 
2-arc-cyclic 

locally tournament digraph, 493 
semicomplete digraph, 493 

arc-disjoint 
(s,t)-paths, 353 

(x, y),-(y, z)-paths, 519 
branchings, 357 
cycles, 12 
hamiltonian cycles, 318 
hamiltonian path and hamilto- 

nian cycle, 320 

paths, 12, 348 
arc-disjoint (ti,t2)-linking problem, 

509 
arc-disjoint k-path problem, 507-521 
arc-disjoint 2-path problem, 522 

semicomplete digraphs, 519 
arc-disjoint branchings, 500-506, 540 
arc-disjoint in- and out-branchings, 

522-527 
effect of arc-strong connectivity, 

526, 527 
polynomial algorithm for tour- 

naments, 525 
root s adjacent to all of V(D) — 

8, 523 

tournaments, 524 

k-arc-disjoint out-branchings 
orienting a graph to have, 472 
orienting a mixed graph to have, 

472 
arc-disjoint paths, 476, 507-521 

acyclic digraphs, 510 
eulerian directed multigraphs, 

511-517 
generalizations of tournaments, 

517-521 
arc-induced subdigraph, 5 

arc-locally tournament digraph, 278 
arc-pancyclic digraph, 309-312 

locally tournament digraph, 311 
regular tournament, 310 

tournament, 310 
k-(S,T)-arc-strong, 376 
k-arc-strong, 17 
arc-strong connectivity, 17, 345-414 

algorithms, 355 
certificate, 408 
versus minimum degree, 392 

arc-strong connectivity augmenta- 

tion algorithm, 365 
k-arc-strong in V, 359 
k-arc-strong orientation 

converting between two orienta- 
tions, 471 

of a mixed graph, 472 
arms of chromosome, 632 

ASP digraph, see arc series-parallel 
digraph 

assignment neighbourhood, 85 
assignment problem, 147-158 

complexity, 154 
AT-minimial, 515 
AT-problem, 512 

augmenting, 390 
(S,T)-are-strong connectivity, 

376 
algorithm for, 376 

(s,t)-flow along a path, 109 
arc-strong connectivity, 362-367 

with vertex-weights, 366 
with weights, 366 

connectivity of a graph, 390 
set of arcs, 362 

strong connectivity, 367 
by one, 371 

strong connectivity optimally 
algorithm for, 370 

successive arc-connectivity aug- 
mentation property, 367 

the number of arc-disjoint out- 
branchings from a root s, 
410, 528, 536 

at minimum cost, 542 
vertex-strong connectivity 

of acyclic tournaments, 411 
of an acyclic digraph, 372 
of an in-branching, 371 
semicomplete digraphs, 373 
tournaments, 372 

augmenting cycle, 131 



augmenting path, 109 
capacity of, 109 
maximum capacity, 164 

augmenting path with respect to a 
matching, 602 

augmenting set of arcs, 380 
automorphism of a digraph, 338 
average cost of a hamiltonian cycle, 

337 

backward arc on an augmenting path, 
109 

backward arc with respect to an or- 
dering, 14, 557, 674 

backward length of an ordering, 645 
backward optimal ordering, 645, 648 
bad vertex with respect to a local me- 

dian order, 641 
balance vector of a flow, 96, 438 
balance vector of a network, 96 

balanced edge, 421 
Balcer-Veinott algorithm, 567, 588 
base of a matroid, 665 

BB-correspondence, 604 

BD-correspondence, 604 
Bellman-Ford-Moore algorithm, 55- 

58, 90 
BFS, see also breadth-first search 
BFS tree, 82 
BFS tree from a root s, 51 
bi-submodular function, 413 
biorientation of a mixed graph, 23 
bipartite, 659 
bipartite digraph, see also semicom- 

plete bipartite digraph, 25 
versus bipartite 2-edge-coloured 

graph, 604 
bipartite graph, 25, 417, 420 

matching, 137 
maximum matching, 137 
perfect matching, 140, 143 
regular, 167 
vertex cover in, 139 

bipartite representation, 25, 143, 407, 

413 
bipartite tournament, see also semi- 

complete bipartite digraph, 
27, 63, 64, 68, 252, 289, 327, 
341, 434, 607 

bivalent digraph, 565 

block, 428 
(n1,...,Np)-block-triangular — struc- 

ture, 222 
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blocking flow, 116 
boolean matrix multiplication, 550 

boolean multiplication, 36 
boolean variable, 35 
branching, 19 
branchings 

arc-disjoint, 357, 500-506 

arc-disjoint in- and _ out- 
branchings, 522-527 

minimum cost branchings, 527— 
535 

breadth-first search, 50-52 

bridge of a graph, 19, 273, 352 

bridgeless graph, 599, 636 
buildup algorithm for minimum cost 

flows, 135, 271 
buildup theorem for minimum cost 

flows, 135 
C-bypass, 237 

Caccetta-Haggkvist conjecture, 580 
cactus, 428 

Camion’s theorem, 16, 239 
capacity 

of an (s,t)-cut, 108 
of an arc, 95 

of an augmenting path, 109 
Cartesian product of digraphs, 9, 275 
Cartesian product of sets, 2 
catch digraph, 426 
certificate 

for k-(arc)-strong connectivity, 
404—409 

for an instance of a decision 
problem, 33 

for strong connectivity, 351 
via contraction, 405 

for vertex-strong connectivity, 
407 

chain of a partial order, 236 
Chinese postman problem, 141 
chord of a subdigraph, 5 
chordal graph, 218, 416, 428 
chromatic index, 654 

chromatic number of a (di)graph, 22, 
435, 652 

chromosome arrangement, 632 
circuit axioms for a matroid, 680 
circuit matroid, 666 

circuit of a matroid, 665 
circular arc graph, 415, 428 
circular digraph, 652 
circulation, 101, 437, 451 



734 Subject Index 

decomposition into cycle flows, 
105 

feasible, 125 
reducing (s,t)-flow to, 101 

clause, 35 

size, 35 
closed pth in-neighbourhood, 46 
closed pth out-neighbourhood, 46 
closed walk, 10 
closeness among polygonal paths, 499 

co-NVP, 44 
co-disjoint sets, 456 
co-pair, 69 

co-triple, 69 

cocircuit of a matroid, 668 
cocycle, 547 
cocycle space of a digraph, 547 € 

dimension, 547 

colour-coding, 551 ! 
colour-connected 2-edge-coloured 

multigraph, 601, 606, 608 
colour-connected pair of vertices, 601 
colour-connectivity 

checking in polynomial time, 
601 

colour-isomorphic edge-coloured 
multigraphs, 593 

k-colourable graph, 658 
colourful path, 551 
colourful set, 551 
colouring, 22 
k-colouring, 435 
colourings and orientations, 435 
comparability graph, 416 

recognition, 416 
comparable elements with respect to 

a partial order, 236 
complement of a proper circular arc 

graph, 422 
complement of an undirected graph, 

18 
complementary cycles, 326 

bipartite tournaments, 327 
containing prescribed vertices in 

- tournaments, 328 

locally semicomplete digraph, 
328 

multipartite tournaments, 327 
tournaments, 327 

complementary slackness condition, 
530, 532 

complete p-partite graph, 25 
complete biorientation, 19, 395, 570 

vertex-strong connectivity of, 
411 

complete biorientation of a mixed 
graph, 23 

complete bipartite graph, 654 

complete digraph, 16, 27 

complete graph, 25 
complete multipartite graph, 25 

composition of digraphs, 8 
composition of graphs, 22, 422 

Conjecture, 244-246, 294, 298, 299, 
307, 312, 314, 317-319, 321, 
327-330, 336, 372, 380, 381, 
387, 391, 396, 428, 441, 446, 
492, 493, 514, 526, 527, 555, 
614, 617, 639, 642, 661, 665 

connected (g, f)-factor, 280 
connected component, 19 
connected digraph, 19 
connected graph, 19 
k-connected graph, 19 
consecutive-d digraph, 190 
consistent cycles, 329 

spanning pair of, 329 
construction heuristic for TSP, 83 

contraction, 229, 515 
of a subdigraph, 7 
of an arc, 401, 486, 513, 515 
of an edge, 358 
of cycles, 405 

convenient multigraph, 601 

converse of a digraph, 201, 384 
converse of a directed multigraph, 7 
core of a digraph, 659, 662, 679 

cost 

of a path/cycle, 131 
of an arc, 6, 95 

cover of a family of sets, 2 
covering a set by a family of sets, 537 
covering by out-arborescences, 506 
covering vertices by cycles, 326-331 
critical 2-cycle, 399 
critical colour with respect to a PC 

trail, 595 
critical kernel-imperfect, 651 
critical set, see k-critical set, 537 
k-critical set, 359 

critical vertex 
in a digraph, 391 
in a tournament, 391 

critically k-strong digraph, 391-392 
degrees of vertices in, 392 

cross-free family, 346 



crossing 

dicuts, 402 

family, 346 
crossing G-supermodular function, 

450, 463 
crossing chords of a cycle, 429 
crossing dicuts, 402 
crossing family of pairs of sets, 413 
crossing pair, 452 

crossing paths, 499 
crossing submodular function, 452, 

458 
cubic graph, 469 
cubic multigraph, 439 
cut), 17 

s-cut, 534 

(s,t)-cut in a graph, 347 
(s,t)-cut in a network, 108 

minimum, 109 

cut set, 17 

(t1,t2)-cut condition, 509 
cutset of a matroid, 668 
cycle, see also walk, closed, 11 

1-maximal, 44 

algorithm for finding a cycle of 
prescribed length, 551 

alternating, 592 
augmenting, 131 
chord, 583 
disjoint, see disjoint cycles in a 

digraph 
even, 11 

even cycle problem, 568 
extendable, 308 
length, 11 
longest, 11 
mean cost of a cycle, 134 
modulo k, 589 

negative, 46 
odd, 11 
odd through a fixed arc, 588 
of length O(log n), 550 
of length k Modulo p, 567-573 
of length 0 (mod q), 572 
of minimum mean cost, 134 

ordinary, 203 
oriented, 19 
shortest, 11, 92 

through a vertex, 11 
k-cycle, 11 

finding one fast, 550 
cycle canceling algorithm, 132, 167 
cycle extendable digraph, 308 
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almost complete digraph, 308 

locally semicomplete, 341 
regular tournament, 341 
round digraph, 341 
weakly, 341 

cycle factor, 15, 244, 250-269, 331, 
665 

complexity of finding, 145 
existence of, 143 

good, 255-259 
in regular directed multigraph, 

168 
sufficient condition in terms of 

independence number, 146 
k-cycle factor, 328 

with prescribed cycle lengths, 
329 

2-cycle factor, see complementary cy- 
cles 

cycle flow, 104 
cycle space of a digraph, 546, 586 

dimension, 547 
strong digraph, 547 

cycle space of a tournament, 548 
cycle subdigraph, 15 

covering a prescribed vertex set, 
146, 147 

covering specified arcs, 411 
of maximum cardinality, 145 

t-cycle subdigraph, 15 
cycles avoiding prescribed arcs 

versus cycles containing pre- 
scribed arcs, 317 

cyclic connectivity of a 2-edge- 
coloured multigraph, 602 

cyclic digraph, 330 

k-cyclic digraph, 263, 476 

cyclically connected digraph, 40 
cyclomatic number, 330 

Dag, see acyclic digraph 
k-dangerous set, 471 
de Bruijn digraph, 187-190, 308 
decision problem, 33 
decomposable digraph, 284 

connectivity properties of, 393 

MSSS problem, 336 
@-decomposable digraph, 8 
decomposition 

into arc-disjoint hamiltonian cy- 
cles, 318 

of A(Kn) into arc-disjoint 
hamiltonian cycles, 319 
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of the arc set of regular tourna- 
ments, 319 

é-decomposition of a digraph, 9 
decomposition of a graph into cliques, 

422 
decreasing subsequence, 235 
deficiency 

of a family of one-way pairs, 369 
of a one-way pair, 368 

degree of a vertex 
in a digraph, 4 
in a graph, 19 

jth degree of a vertex, 593 
degree-constrained digraphs and 

hamiltonian cycles, 240- 
250 

degrees ms 
digraphs with bounds on de- 

grees, 413 

deleting multiple arcs, 6 
deletion 

of a subdigraph from a digraph, 
7 

of arcs from a digraph, 7 
of vertices from a digraph, 7 

demand arc, 512 
demand directed multigraph, 512 
density of a digraph, 582 

dependent set of a matroid, 665 
depth-first search, 172-176 

explored vertex, 172 
tree arc, 172 

unvisited vertex, 172 

visiting a vertex, 172 
derandomizing, 552 
descendant in a DFS tree, 173 
DFS, see also depth-first search, 179, 

180 
DFS forest, 173 
DFS tree, 173 

backward arc, 173 
cross arc, 173 

descendant of a vertex in, 173 
root of, 173 

DHM-construction, 609 

diameter, 47, 59-74, 79 

maximum finite diameter, 61 
minimum in orientation, 63 

Moore bound on number of ver- 
tices, 59 

diameter versus degree, 187 
dicut, 400 

arc-disjoint, 401 

crossing dicuts, 402 

difference between to sets, 1 

digraph, 2 

digraph corresponding to instance of 
2-SAT, 36 

Dijkstra’s algorithm, 53-54, 90 
dijoin, 401 
Dilworth’s theorem, 236 

dimension 
cocycle space of a digraph, 547 

cycle space of a digraph, 547 
3-dimensional matching problem, 586 
Dinic’s algorithm, 116 

for simple networks, 125 

on unit capacity networks, 123 

Dinitz conjecture, proof using ker- 
nels, 654-657 

directed cut, see dicut 

directed dual of a planar digraph, 
560, 587 

directed graph, see also digraph, 2 
directed multigraph, 4 
directed pesudograph associated with 

a Markov chain, 566 
period, 566 

directed pseudograph, 4, 555 

directed Steiner problem with con- 
nectivity constraints, 536 

disjoint cycles, 553-565, 588 

in digraphs of high minimum 
out-degree, 554 

versus feedback sets, 561 
disjoint cycles containing specified 

vertices, 539 

disjoint path problem, 477-500 
acyclic digraph, 341 

disjoint paths, 476 
disjoint sets, 1 

distance classes from a vertex, 51 
distance from a set to another, 47 

distance from a vertex to another, 47 
distances 

acyclic digraphs, 52 

algorithms for finding, 50-59 
Bellman-Ford-Moore algorithm, 

55-58 
Dijkstra’s algorithm, 53-54 
in complete biorientations, 54 

dominated, 3 

dominated pair of vertices, 240 
dominates, 3 

dominating pair of vertices, 240 



domination number of a heuristic for 
ANSE, Sei 

dual of a matroid, 667 

dual of the restricted primal problem 
of transportation problem, 150 

dynamic programming, 551 

ear composition, 566 

ear decomposition, 332, 349, 547 

linear algorithm for, 351 
non-trivial ear, 350 

trivial ear, 350 

edge of an undirected graph, 18 
2-edge-coloured bipartite multigraph, 

604-607 
2-edge-coloured complete multi- 

graph, 607-613 

edge-coloured multigraph, 592 
c-edge-coloured multigraph, 592 
edge-colouring, 439 

of a cubic multigraph, 439 
k-edge-connected, 19, 443 
k-edge-connected in V, 443 
edge-connectivity, 357 

algorithm to determine, 357 
edge-cover, 406 
edge-disjoint 2-path problem, 516 
edge-disjoint mixed branchings, 506 
edge-disjoint spanning trees, 504 
edge-disjoint trees, 540 
edge-dominates, 614 
Edmonds’ branching theorem, 357, 

382, 501-506, 508, 509, 528, 
540, 541 

generalization of, 503 
Edmonds-Giles theorem, 452 

electronic circuit design, 553 
element of a directed pseudograph, 6 
elementary operation, 29 
ellipsoid method, 370, 455 
embedding of a planar (di)graph in 

the plane, 219 
end-extendable path, 276 

end-vertex of a walk, 11 
end-vertex of an arc, 2 

entering arc, 2 
essential set, 376 
Euler trail, see eulerian trail 

properly coloured, 594 
Euler’s formula, 220 
Euler’s theorem, 21 
eulerian arc-coloured directed multi- 

graph, 621, 627 
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eulerian arc-disjoint k-linking prob- 
lem, 512 

eulerian arc-disjoint linking problem, 
512 

eulerian directed multigraph, see also 
regular digraph, 12, 21, 
135, 141, 159, 262, 362, 409, 
511-517, 541, 555 

decomposition into cycles, 159 
eulerian graph, 444 

eulerian multigraph, 442 
eulerian orientation of a mixed graph, 

449 
eulerian subgraph, 440 

eulerian trail, 12, 43 
even cycle, 11, 25, 432, 620 

in a k-regular digraph, 572 
oriented graphs with many arcs, 

434 
even cycle problem, 568 
even digraph, 570 
even pancyclic, 341 
even pancyclic bipartite tournament, 

341 
even vertex with respect to a cycle, 

87 
even vertex-pancyclic digraph, 341 
extended -digraph, 9 
extended locally in-semicomplete di- 

graph, 226, 264, 265, 518, 

519 
extended locally out-semicomplete 

digraph, 283 
extended locally semicomplete di- 

graph, 215, 264-265, 279, 
282, 284 

extended semicomplete digraph, 28, 
196, 215, 237, 252, 257, 258, 
282, 287, 299-301, 332-336, 
341, 343, 496 

hamiltonian cycle, 252 
longest cycle, 252 
MSSS problem, 333 

polynomial algorithm, 333 
extended tournament, 282, 286-288, 

294, 400 
hamiltonian [z, y]-path, 286 

algorithm, 287 
proof using the structure of, 282 
weakly hamiltonian-connected, 

287 
extension closed class of digraphs, 9 
extension of a digraph, 9 
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extension of a graph, 22 
extension-closed class of digraphs, 28 

face of a plane (di)graph, 219 
facial cycle, 486, 559 
factor of a digraph, 5 
family 

(S,T)-independent, 376 
cross-free, 346, 383 

crossing, 346 
intersecting, 346 
laminar, 346, 384 

family covering a set, 537 
family of sets, 2 
fan-in, fan-out in eulerian directed 

multigraphs, 541 
feasibility theorem x 

for circulations, 126 
for crossing submodular flows, 

456 
for flows, 127 
for fully submodular flows, 453 
for intersecting submodular 

flows, 456 
feasible k-commodity flow, 521 

feasible flow 
with balance vectors within in- 

tervals, 164 
feasible submodular flow, 452 

existence of, 453-457 
feedback arc set, 553, 587, 640 
feedback arc set problem, 554, 673- 

677, 681 
6°(D) < 3, 554 
approximation algorithm, 559, 

588 
line digraph, 554 
planar digraph, 559 

feedback set ordering (FSO), 644 
feedback sets, 553-565 

versus (arc)-disjoint cycles, 561 
feedback vertex set, 553 
feedback vertex set problem, 554 

tournament, 554 

Fibonacci heap, 54 
flow, 96 

adding a residual flow, 106 
application, see application of 

flows 
arc sum of two flows, 104 
augmenting path with respect 

to, 109 
balance vector of, 96 

blocking, 116 
circulation, 101 

cost of, 97 

cycle flow, 104 
decomposition into path and cy- 

cle flows, 104 
difference between two flows, 

107 
feasibility theorem, 127 

feasible, 97, 125, 164, 446 
integer, 96 

maximal, 112 

maximum, see maximum flow 
problem 

minimum cost, see minimum 

cost flow problem 

netto flow, 97 

optimal, 131 

path flow, 104 
residual network with respect 

to, 98 

(s,t)-flow, 100 
(s,t)-cut, 108 
minimum value, 127 

reducing general flows to, 100 
relation to arc-strong connectiv- 

ity in directed multigraphs, 
348 

value of, 100 

T-flow, 438 
k-flow, 437-442 
Z,-flow, 438 

flow across a cut, 108 
flow decomposition, 104 

(s,t)-flow, 108 
fast algorithm, 159 

flow demand of a cut, 127 

Floyd-Warshall algorithm, 58, 177 

Ford-Fulkerson aigorithm, 110, 155, 
356 

on real valued instances, 160 

forefather, 180 
forest, 19 

forward arc on an augmenting path, 
109 

forward arc with respect to an order- 
ing, 557 

forward length of an ordering, 645 
forward optimal ordering, 645, 648 
fragment, 391 
Frank’s arc-strong connectivity aug- 

mentation algorithm, 365 



Frank’s arc-strong connectivity aug- 
mentation theorem, 364 

Frank’s general orientation theorem, 
465 

Frank’s orientation theorem, 450 
Frank-Fulkerson algorithm, 459, 528- 

535 
Frank-Jordén vertex-strong connec- 

tivity augmentation theo- 
rem, 370 

fraternately orientable graph, see un- 
derlying graph, of an in- 
tournament digraph 

fraternately oriented graph, see in- 
semicomplete digraph 

free matroid, 666 

FSO optimal ordering, 644 
fully G-supermodular function, 450 
fully submodular function, 452 

gadget for MP-completeness proof, 
478 

Gallai-Milgram theorem, 234, 276 
Gallai-Roy-Vitaver theorem, 435 
game theory, 650 
gap of a C-bypass, 248 
Gaussian elimination, 221 
generalized de Bruijn digraph, 190 
generalized matching, 167 
generating pair, 218 
genetics, 632 
geometric random variable, 550 
girth, 11, 92, 304, 580-583 

in digraphs of high minimum 
out-degree, 580 

global irregularity, 263 
good cycle factor, 255-259 
good cycle factor theorem, 256 
good odd-vertex pairing, 445 
good vertex with respect to a local 

median order, 641 

gossip problem, 80 
Groétzsch graph, 469 
graph, see also undirected graph, 18 
graph representable in a unicyclic 

graph, 427 
graph Steiner problem, 535 
greedy algorithm, 237, 540 
greedy algorithm for matroids, 668, 

680 
greedy base of a matroid, 668 
group flow, 438 

H-colourable, 658 
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H-colouring, 658 
complexity for undirected 

graphs, 659 

H-colouring problem, 658 
Haggkvist’s transformation of a di- 

graph to a 2-edge-coloured 
graph, 592 

half-duplex gossip problem, 81 
Hall’s theorem, 140, 449, 471 
Hamilton cycle, see hamiltonian cy- 

cle 
Hamilton cycle problem, 33, 179, 366 
Hamilton path, see hamiltonian path 
Hamilton walk, see hamiltonian walk 
hamiltonian (z, y)-path 

locally semicomplete digraph, 
294 

polynomial algorithm for semi- 
complete digraphs, 295 

semicomplete digraph, 293 
hamiltonian [z, y]-path 

algorithm for extended tourna- 
ments, 287 

extended tournament, 286 
in tournament, 284 

locally semicomplete digraph, 
289, 291 

hamiltonian connected, 292-299 
almost complete digraph, 294 
locally semicomplete digraph, 

294 
semicomplete digraph, 293 

hamiltonian cycle, 12, 82, 143, 177, 
203, 227, 237, 238, 264, 266, 
267, 275, 278, 300-302, 307, 
309, 310, 312-321, 329, 331, 
332, 334, 336, 337, 340-342, 
382, 665 

almost acyclic digraph, 341 
alternating in 2-edge-coloured 

multigraph, 592 
arc-disjoint hamiltonian cycles, 

318 
avoiding k —1 arcs in k-strong 

tournament, 315 

avoiding arcs in 2-cycles, 317 
avoiding arcs in cliques in tour- 

naments, 315 

avoiding prescribed arcs, 315- 
318 

decomposable digraph, 336 
in almost semicomplete digraph, 

313 
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in semicomplete bipartite di- 
graph, 42 

multipartite tournament, 315 
necessary conditions, 229-234 

power of, 320 
quasi-transitive digraph, 265— 

269, 334 
regular semicomplete multipar- 

tite digraph, 262 
semicomplete multipartite di- 

graph, 250-264 
sufficient conditions in terms of 

degrees, 240-250 
through a fixed arc in a semi- 

complete digraph, 312 

through a prescribed set of arcs, 
314 : 

through a set of arcs arc in a 
semicomplete digraph, 312 

hamiltonian cycle in undirected 
graph, 245 

hamiltonian digraph, 12 
hamiltonian path, 12, 49, 143, 208, 

227, 238, 239, 251, 266, 278, 
279, 282-299, 304, 318-321, 
330, 339, 340, 665 

alternating in 2-edge-coloured 
multigraph, 592 

between two prescribed vertices, 
284 

in a tournament, 30 

in semicomplete bipartite di- 
graph, 42 

one end vertex prescribed, 282— 
284 

oriented, 321 

hamiltonian problem, 297 
hamiltonian walk, 12 

Havet-Thomassé theorem, 322 
k-HCA problem, 312, 314 

for highly connected tourna- 
ments, 314 

head 
of a one-way pair, 368 
of and arc, 2 

heaviest k-path subdigraph, 269 
height function 

finding a minimum cut via, 161 
height function with respect to a pre- 

flow, 118 
hereditary set of digraphs, 215 
heuristic, 337 

for TSP;'337 

heuristics for MP-hard problems, 
33% 613-0 i 

Hoffman’s circulation theorem, 126 
homomorphic digraphs, 658 
homomorphism, 658-663 

to a directed cycle, 660 
to a directed path, 659 
to a semicomplete bipartite di- 

graph, 661 
to a semicomplete digraph, 661 
to an oriented cycle, 660 
to an oriented path, 659 
to an oriented tree, 661 

HPS-problem, 269 
hypergraph, 24, 63, 572 

2-colourable, 25 

2-colouring of, 25 
edge of, 24 
order of, 25 
rank of, 25 
uniform, 25 
vertex of, 24 

hypertournament, 627-632 
arc, 627 

cycle in, 628 
hamiltonian path/cycle, 628, 

631 
out-degree of a vertex, 628 
out-degree sequence, 628 
path in, 628 

strong, 628 

immersion of one 2-regular directed 
multigraph in another, 517 

implication class, 418, 420, 422 

in-arborescence, 476 
in-branching, 19, 239 

minimum cost, 406 
in-critical set, see k-in-critical set 
k-in-critical set, 359, 383 
in-degree of a vertex, 4 
in-generator of a digraph, 323 
in-neighbour, 4 
in-neighbourhood, 4 
pth in-neighbourhood, 46 

closed, 46 
open, 46 

in-path, 322 
in-path-mergeable digraph, 201, 226 
in-pseudodegree of a vertex, 4 
in-radius, 47 
in-singular vertex with respect to a 

cycle, 253 
in-tight set, 374 



incident to an arc, 3 

incomparable elements with respect 

to a partial order, 236 

increasing capacity of arcs to increase 
rooted arc-connectivity, 
543 

increasing rooted arc-strong connec- 
tivity by adding new arcs, 
536-538 

increasing subsequence, 235 
independence in digraphs, 664 

independence number, 22, 226, 234, 
262, 276 

effect on cycle factors, 329 
independence oracle for a matroid, 

528, 669 
independent arcs (edges), 22 
independent set, 43, 426 

independent set of a matroid, 665 

independent set problem, 43, 664 

independent vertices, 22 

index of a pair of alternating trails, 

596 
indicator, 662 

indicator construction, 662 

induced subdigraph, 5 
initial strong component, 17 
initial vertex of a walk, 11 

inserting one path into another, 246 

insertion of a vertex into a cycle, 85 

instance of a problem, 33 

integer multicommodity flow prob- 
lem, 521 

integrality theorem for maximum 
flows, 112 

Intel A-prototype, 81 
intercyclic digraph, 563 

intermediate strong component, 17 
internally disjoint 

(s,t)-paths, 353 
internally disjoint paths, 12, 410, 476 

intersecting G-supermodular func- 
tion, 450 

intersecting family, 346, 529 
covering all members by arcs, 

529-535 
intersecting pair, 452 
intersecting submodular function, 

452 
intersection digraph, 217 

intersection graph 
of a family of sets, 426 
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of a set of subgraphs of a graph, 
602 

intersection number of a digraph, 

217, 226 
intersection of digraphs, 177 
interval digraph, 218 
interval graph, 218 
interval of an oriented path, 322 

length, 322 
2-irreducible instance of k-ST prob- 

lem, 514 
irreducible alternating cycle sub- 

graph, 611 
isomorphic directed pseudographs, 7 
isomorphic graphs, 19 
isomorphism, 7 
iterated line digraphs, 187 

Jordan curve theorem, 498 

Konig’s theorem, 139 
Kautz digraph, 189 
Kelly’s conjecture, 319 
kernel of a digraph, 650-653 
(k, l)-kernel, 650 
kernel-imperfect digraph, 651 
kernel-perfect digraph, 651, 655 
kernel-solvable graph, 652 
king, 74-78 

k-king, 42 
r-king, 48 
2-king in a hypertournament, 

638 
2-king in a multipartite tourna- 

ment, 93 

2-kings in tournaments, 74 
3-kings in quasi-transitive di- 

graphs, 78 
4-kings in semicomplete multi- 

partite digraphs, 75 
Kruskal’s algorithm for minimum 

spanning trees, 527, 669 
Kuratowski’s theorem, 220 

labelled digraph, 7 
labelling algorithm for maximum 

flow, 111 
laminar family, 346, 384 

maximum size of, 543 
Landau’s theorem, 447, 471, 628 
large packet radio network, 187 
largest transitive subtournament in a 

tournament, 664 

Las Vegas algorithm, 357 
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Latin square, 654 
layer in a network, 114 

layered network, 114 
leaving arc, 2 
legal ordering, see max-back ordering 
length 

of a walk, 11 
of a cycle, 11 
of a path, 11 
of an arc w.r.t. an ordering, 645 

lexicographic 2-colouring, 419, 421 
lexicographically smaller vertex, 419 
line digraph, 182-187, 307, 650 

feedback arc set problem, 554 

iterated, 187 
recognition, 184 

line graph, 429, 653 
linear independence, 546 
linear ordering problem, 558 , 

2-approximation, 558 
linear programming, 89, 113, 147, 

149, 158, 452, 455, 459, 529 
linear time searchable exponential 

neighbourhoods for the 
TSP, 84 

k-linked, see also k-path problem 
k-linked digraph, 476, 478, 482-500, 

539 
k-linking, 476 
linking from one k-set to another, 563 
linking principle, 448, 462 

list chromatic index, 657 
list colouring, 655 
list colouring conjecture, 655 
list edge-colouring, 651, 654-657 
literal, 35 

local arc-strong connectivity, 347 
local edge-connectivity, 444 
local in-tournament, see locally in- 

tournament digraph 
local irregularity, 263 
local median order, 640 

local out-tournament, see locally out- 
tournament digraph 

local tournament, see locally tourna- 
ment digraph 

local transitive tournament, see 

round local tournament 
local vertex-strong connectivity, 347 
locally in-semicomplete digraph, 

200-202, 225, 226, 238- 
240, 277, 296, 306, 307, 
424-429 

strong decomposition, 202 
structure of non-strong, 202 

locally in-tournament digraph, 200 
locally optimal solution of an opti- 

mization problem, 674 
locally out-semicomplete digraph, 

200-202, 225, 240, 279 
locally out-tournament digraph, 200 

locally semicomplete digraph, 200, 
202-214, 240, 289-292, 294, 
299, 303-306, 328, 339-341, 
395, 397, 412, 419, 420, 423, 
477, 490-492, 524, 526, 539, 
540 

classification theorem, 214 

extended 
hamiltonian path with one 

end vertex specified, 282 
generalization, 242 
hamiltonian (z, y)-path, 294 
hamiltonian [z, y]-path, 289, 291 
hamiltonian connected, 294 
independence number, 226 
minimal separating set in, 412 

non-round decomposable, 213 
orientation of, 397 
round decomposable, 208 
semicomplete decomposition, 

209 
structure of non-strong, 207 
weakly hamiltonian-connected, 

292 
locally tournament digraph, see also 

locally semicomplete  di- 
graph, 200, 294, 303, 304, 
306, 311, 397, 419-421, 423, 
430, 431, 467, 468, 493 

characterization through orien- 
tations, 422 

round, 207 

longest (x, y)-path problem 
semicomplete digraph, 298 

longest [z, y]-path problem 
semicomplete digraph, 298 

longest alternating cycle, 608 
longest alternating cycle in 2-edge- 

coloured complete bipar- 
tite multigraph, 606 

longest cycle, 264 
extended semicomplete digraph, 

333, 334 
relation to chromatic number, 

436 



longest cycle problem, 196 
longest path, 240, 265 

relation to chromatic number, 
435 

longest path problem, 196 
acyclic digraph, 89 
weighted acyclic digraph, 53 

loop, 4 
Lovasz’s local lemma, 571 

Lovasz’s splitting theorem, 443, 471 
lower bound 

on an arc, 95 

removing from a network, 99 
Lucchesi- Younger theorem, 401 

proof using submodular flows, 
459 

Mader’s directed splitting theorem, 
360 

main (m1,...,p)-blocks, 221 
majority digraph of a hypertourna- 

ment, 631 

Marcus’ theorem, 583 
Markov chain, 565 
matching, 22, 444 

perfect, 22 
matching diagram digraph, 218 
matrix multiplication, 177 
matroid, 527, 665-673 

base, 665 
circuit, 665 

cocircuit, 668 
cutset, 668 
dependent set, 665 
dual, 667 
examples of, 666 
fast algorithm, 669 
greedy algorithm, 668, 680 
greedy base, 668 
independence oracle, 669 
independent set, 665 
intersection, 671 

optimal base, 668 
rank, 666 
union, 670 

matroid intersection, 459 
matroid intersection problem, 527, 

671, 681 
k-matroid intersection problem, 672 
matroid partition problem, 670, 680 
MAX-2-SAT, 38, 44 
Max-flow Min-cut theorem, 109 

application to vertex cover in bi- 
partite graphs, 139 
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relation to Menger’s theorem, 
353 

1-maximal cycle, 44 

maximal flow, 112 

maximal hamiltonian  arc-critical 
subdigraph, 434 

maximal independent subset of a set 
in a matroid, 666 

maximal with respect to property P, 
2 

maximum adjacency ordering, 357 
determining edge-connectivity 

via, 358 
maximum capacity augmenting path 

method, 164 

maximum finite diameter orientation, 

61 
maximum flow algorithms, 110-125 

capacity scaling algorithm, 162 
Dinic’s algorithm, 116 
for unit capacity networks, 123 

Ford-Fulkerson algorithm, 110 
maximum capacity augmenting 

path method, 164 
MKM algorithm, 161 
on simple networks, 125 

preflow push algorithm, 119 
shortest augmenting paths, 114 

maximum flow problem, 108-125 
and arc-strong connectivity, 355 
in unit capacity networks, 123 

integrality theorem, 112 

re-optimizing after small pertur- 
bation, 161 

maximum in-degree of a digraph, 5 

maximum matching in _ bipartite 
graphs, 137 

algorithm, 138 
reduction to flow problem, 137 

maximum monochromatic degree, 
593 

maximum out-degree of a digraph, 5 

maximum semi-degree of a digraph, 5 
maximum with respect to property 

PP 
mean cost of a cycle, 134 
median order, 640 
member of a family of digraphs, 7 
member of a family of sets, 346 
Menger’s theorem, 147, 293, 297, 

353-356, 358, 362, 367, 374, 
376, 386, 398, 410, 411, 444, 
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445, 458, 476, 500, 502, 503, 
519, 520, 539, 540, 588 

applied to sets of vertices, 410 

refinement of, 410 
relation to the Max-flow Min- 

cut theorem, 410 

Mergesort, 32 
merging paths in a digraph, see path- 

mergaeble digraph 
meta-heuristic, 675 
Meyniel set, 243 

Min-flow Max-demand theorem, 127 

minimal (z, y)-path, 11 
minimal vertex series-parallel di- 

graphs, 191 
minimally k-arc-strong directed 

multigraph, 381-387 
characterization of, 386 
degree of vertices in, 383 
number of arcs in, 382 

minimally k-edge-connected multi- 
graph, 443, 471 

minimally k-strong digraph, 387-391 
degrees of vertices in, 390, 391 

minimizing a submodular function, 
455, 457, 473 

minimum 

separator, 347 
minimum (s,t)-cut in a network 

structure of, 159, 164 
minimum cost 

in-branching, 406 
out-branching, 406 
submodular flow, 457 

minimum cost branching problem, 
527 

minimum cost cover of directed cuts, 
461 

minimum cost flow, see minimum 
cost flow problem 

minimum cost flow problem, 128-137 

assignment problem, see assign- 
ment problem 

buildup algorithm, 135 
-complexity of, 136 

buildup theorem, 135 
cycle canceling algorithm, 132 
integrality theorem, 132 

strongly polynomial algorithm, 
134 

transportation problem, see 

transportation problem 
minimum cost flows 

application to Chinese postman 
problem, 141 

applied to a branching problem, 

410 
characterization, 132 

minimum cost out-branching 
min-max formula for, 535 

minimum cost submodular flow prob- 

lem, 457, 460, 473 
minimum covering arborescence 

problem, 535 
minimum diameter orientation, 63— 

74 
Cartesian products of graphs, 71 
complete multipartite graph, 67 

extensions of graphs, 69 
minimum diameter versus degree, 

187 
minimum dijoin, 461 

minimum equivalent subdigraph, see 
also MSSS problem, 179, 
405 

minimum feedback arc set, 640 
minimum flow, 127 

minimum in-degree of a digraph, 4 
minimum out-degree of a digraph, 4 
minimum path factor, 227 
minimum path factor in acyclic di- 

graph 
application, 236 

minimum path factor problem, 235 
minimum semi-degree of a digraph, 5 
minimum spanning strong subgraph 

problem, see MSSS prob- 
lem 

minimum spanning tree, 527, 542 

mixed branchings, 506 
edge-disjoint, 506 

mixed graph, 23, 449 

arc of, 23 

biorientation of, 23 
bridge of, 23 
complete biorientation of, 23 
connected, 23 
edge of, 23 
orientation of, 23, 411 
strong, 23 

mixed multigraph, 506 
mixed out-branching, 506 
modular function, 446 

monochromatic complete subgraph, 
563 

monochromatic subdigraph, 549 



monochromatic triangle, 615 
Monte-Carlo algorithm, 357 
Moon’s theorem, 16 

Moore bound, 59 

MSSS problem, 331-336, 404, 583 
approximation algorithm for, 

405 
decomposable digraph, 336 
extended semicomplete digraph, 

333 
lower bound, 331, 334 

polynomial algorithm 

extended semicomplete di- 
graph, 333 

quasi-transitive digraph, 334 
quasi-transitive digraph, 332, 

334 
semicomplete multipartite di- 

graph, 336 
multi-inserting one path into an- 

other, 246 

multi-insertion partition of a path, 

247 
multi-insertion technique, 246 

multicommodity flow, 520 
multigraph, 18 
multipartite completion, 649 
multipartite tournament, see also 

semicomplete multipartite 
digraph, 27, 68, 69, 75-77, 
93, 253, 275, 278, 279, 307, 
315, 327, 574 

multiple arcs, 3 
multiset, 2 

mutual length of an ordering, 645 
mutual optimal ordering, 645 
MVSP digraph, see minimal vertex 

serie-parallel digraph 

Nash-Williams’ orientation theorem, 
443 

extension to mixed graphs, 462 
proof using submodular flows, 

458 
Nash-Williams’ strong orientation 

theorem, 444 
proof for eulerian multigraphs, 

470 
negation, 35 
negative cycle, 46 

detection, 56 

effect on shortest path problems, 

49 
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in residual network, 132 
negative score of a vertex, 643 
neighbour, 4 
neighbourhood, 4, 19 
neighbourhood digraph of a neigh- 

bourhood structure, 86 
polynomially searchable, 86 

neighbourhood of a solution, 674 
neighbourhood structure for TSP, 83 
neighbouring solutions, 674 
nested interval graph, 426 
net length of an oriented cycle, 660 
network, 95 

augmenting path in, 109 
balance vector of, 96 
balanced vertex in, 97 
capacity of arcs, 95 
circulation in, 101 

cost of arcs, 95 

flow in, 96 

layered, 114 
lower bound on arcs, 95 

maximum flow in, 108 
residual with respect to a flow, 

98 
simple, 124 
sink vertex in, 97 

source vertex in, 97 

unit capacity, 122 

with bounds/costs on vertices, 
102 

network design, 187 
network representation, 348, 353 

non-monochromatic directed cycle, 

549 
non-monochromatic oriented cycle, 

549 
normal biorientation, 652 
nowhere-zero k-flow, see k-flow 
NP-complete problem, 33, 34, 49, 63, 

143, 146, 179, 279, 282, 284, 
292, 312-314, 317, 318, 342, 
352, 436, 473, 475, 477, 478, 
482, 496, 498, 508, 514, 521, 
522, 535, 536, 541, 592, 604, 
615, 621, 632, 637, 647, 650, 
658-663, 679 

NP-hard problem, 34, 49, 62-64, 81, 
82, 179, 331, 366, 382, 404, 
406, 436, 535, 536, 633, 640, 
647, 648, 664, 672, 673, 677, 
678, 680 

NP-hard optimization problem, 34 
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2-objective optimization problem, 

187 
obstruction for line digraph, 185 

odd chain, 291 
locally semicomplete digraph, 

291 
odd cycle, 11, 25 
odd cycle through a fixed arc, 588 
(k, p)-odd digraph, 570 
odd necklace, 468 
odd orientation, 432 

strongly connected, 433 
odd vertex with respect to a cycle, 87 

odd-K4, 432, 468 
one-way communication, 81 

one-way pair, 368, 387 
deficiency of, 368 . 

head of, 368 

tail of, 368 
one-way pairs, 371, 374, 412 

family of 
subpartition type, 370 

independent, 369 
independent family of, 370 

one-way set of arcs, 218 
one-way street problem, 79 
O, 2, O-notation, 29 
open pth in-neighbourhood, 46 
open pth out-neighbourhood, 46 
open problem, 83, 238, 265, 275, 287, 

312; 315, 316, 318, 321, 327, 
329, 378, 399, 406, 432, 435, 
445, 482, 484, 508, 522, 524, 
573, 597, 614, 615, 623, 627, 
652, 654 

opposite vertices, 290 

1-OPT, 674, 681 
optimal augmentation, 362 
optimal base of a matroid, 668 
optimal flow, 131 
optimal linear arrangement problem, 

647 
optimal submodular flow, 457 
optimization problem, 34 

order exchange, 595 
order of a digraph, 2 
order of functions, 29 

order reflection, 596 
ordering the vertices of a digraph of 

paired comparisons, 642- 
650 

ordinary arc, 203, 317, 644 
ordinary cycle, 203 

ordinary path, 203 
orientation 

acyclic, 468 
aS a quasi-transitive digraph, 

416 
as a round local tournament, 

419 
as a transitive digraph, 416 
as an in-tournament digraph, 

426 
eulerian multigraph, 470 
odd, 432 
of a mixed graph, 449 
respecting degree constraints, 

446-450 
respecting degree constraints on 

subsets, 450-451 

strong, 20 
of mixed graph, 352 

G-orientation, 72 

G*-orientation, 72 

S-orientation, 72 
S*-orientation, 73 
orientation of a digraph, 24, 79, 225 

with high arc-strong connectiv- 
ity, 396 

with high vertex-strong connec- 
tivity, 395, 396 

orientation of a graph, see also ori- 
entation, 19, 273, 275, 316, 
352, 415-451, 458, 459, 467, 
468, 470-473, 504, 505, 507, 
610, 641, 652, 653, 656, 657, 
659-661 

maximum finite diameter, 61 
minimum diameter, 63, 81 
with high arc-strong connectiv- 

ity 

algorithm, 471 
with small strong radius, 65 

orientation of a locally semicomplete 
digraph 

with high strong connectivity, 
397 

with high vertex-strong connec- 
tivity, 397 

orientation of a mixed graph, 23, 462— 
467 

with small diameter, 67 
orientation of a mixed multigraph, 

411 
orientation of a multigraph, 443 
oriented cycle, 19 



homomorphisms to, 660 
oriented forest, 19 
oriented graph, 14 
oriented hamiltonian cycle in a tour- 

nament, 325-326 
oriented hamiltonian path, 321-325 
oriented hamiltonian path in a tour- 

nament 

finding a prescribed orientation, 
325 

oriented independence number, 664 
oriented path, 19 

interval of, 322 
origin of, 322 
terminus of, 322 

oriented tree, 19, 641 

origin of an oriented path, 322 
orthogonal rows in a matrix, 183 
orthogonal subspaces, 546 
out-arborescence, 476, 501 
out-branching, 19, 201, 235 

arc-disjoint, 410 
BFS tree, 51 
minimum cost, 406 

of shortest paths, 48 
out-critical set, see k-out-critical set 

k-out-critical set, 359 
out-degree of a vertex, 4 
out-generator of a digraph, 323 
out-neighbour, 4 
out-neighbourhood, 4 
pth out-neighbourhood, 46 

closed, 46 

open, 46 
out-path, 322 
out-path-mergeable digraph, 201 
out-pseudodegree of a vertex, 4 
out-radius, 47 

finite in a weighted digraph, 47 
minimizing, 60 

out-singular vertex with respect to a 
cycle, 253 

out-tight set, 374 
outer face of a plane (di)graph, 219 

P, 33 
packing cuts, 400 
paired comparison digraph, 642 
pancircular digraph, 307 

de Bruijn digraph, 308 
pancyclic digraph, 299-308, 340 

m-pancyclic, 299 
de Bruijn digraph, 308 
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degree conditions, 299 
extended semicomplete digraph, 

301 
line digraph, 307 
locally in-tournament digraph, 

306 
locally semicomplete digraph, 

306 
quasi-transitive digraph, 302 
regular semicomplete multipar- 

tite digraph, 307 
round decomposable digraph, 

304 
parallel architectures, 187 
parallel arcs, 3 
parallel composition of digraphs, 191 
parallel reduction, 194 
partial order, 236 
partial reversal, 430 
p-partite digraph, 25 
p-partite graph, 25 
partite sets, 25 

partition, 2 
path, see also walk, open, 11 

algorithm for finding a path of 
prescribed length, 551 

anti-directed, 321 

arc-disjoint, 353, 476 
colourful, 551 
crossing, 499 
even, 11 
finding a colourful path of pre- 

scribed length, 551 
good reversal, 472 
internally disjoint, 476 
length, 11 
longest, 11 
odd, 11 
of length O(log n), 550 
ordinary, 203 
oriented, 19 
vertex-disjoint, 353, 476 

(X, Y)-path, 11 

(x, y)-path, 11 
[x, y]-path, 11 

xy-path, 19 
path covering, 335 
path covering number, 15, 227, 234, 

237, 251, 267 
path cycle covering number, 251 
path factor, 15, 235, 335 

starting at a prescribed vertex, 
283 
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path factor with longest paths, 237 
path flow, 104 
path mergeable digraph 

hamiltonian (z, y)-path, 293 
k-path problem, 477, 484-500 

acyclic digraphs, 538 
planar digraphs, 498 

2-path problem, 477, 492-497 
NP-completeness proof, 478- 

482 
acyclic digraph, 484, 486 
decomposable digraph, 495 
generalizations of tournaments, 

493-497 
quasi-transitive digraph, 495, 

496 
semicomplete digraph, 492, 493 

g-path subdigraph, 15 

path-contraction, 229, 301 

versus set-contraction, 229 

path-cycle covering number, 15, 234, 
331 

path-cycle factor, 333 
with k paths, 145 

with minimum number of paths, 
145 

with prescribed initial/terminal 
vertex, 167 

q-path-cycle factor, 15 
q-path-cycle subdigraph, 15 
path-mergeable digraph, 198-200, 

225, 237, 238, 277, 293 
recognition, 199 

(s, t)-paths 
arc-disjoint, 353 

internally disjoint, 353 
PC, see also proper coloured 

PC m-path-cycle subgraph, 592 
PC 1-path-cycle subgraph with max- 

imum number of vertices, 
600 

PC cycle subgraph, 592 
with maximum number of ver- 

tices, 599 

PC cycle through a specified vertex, 
600 

PC Hamilton path/cycle in KS, c> 
3, 613-619 

PC spanning cycle subgraph, 614 
PCD, see paired comparison digraph 
k-perfect family of hash functions, 

552 
perfect graph, 652 

perfect matching, 22, 167, 449, 594, 
599, 634, 636 

contained in a Hamilton cycle, 
605 

in a bipartite graph, 140 
of minimum weight in a bipar- 

tite graph, 147 
random, 618 

period of a directed pesudograph 
associated with a Markov 
chain, 566 

permutation graph, 218 
Petersen graph, 440, 469 

3-colouring of, 469 
5-flow in, 440 
even cycle in strong orientation, 

468 
PFx problem, 284 

for totally ;-decomposable di- 
graph, 284 

planar digraph, 219-221, 227, 409, 
475, 486, 497-500, 508, 509, 
511, 513, 516, 517, 540 

feedback arc set problem, 559 
recognition, 220 

vertex-strong connectivity of, 
409 

planar graph, 219 
plane (di)graph, 219 
pointed set, 426 
polygonal curve, 219 
polynomial algorithm, 29 
polynomial reduction, 34 

polynomially searchable neighbour- 
hood for TSP, 84 

positive score of a vertex, 643 
power of a cycle, 290, 328, 340, 410 

connectivity of, 410 
power of a digraph, 9 
power of a hamilton cycle, 320 
power of a matrix 

kth power of a matrix, 586 
power of a path, 340 
predecessor of a vertex on a 

path/cycle, 12 
preflow, 118, 503 

maximum, 164 

converting to a maximum 
flow, 164 

preflow directed multigraph, 503 
preflow push algorithm, 119 

active vertex, 119 

admissible arc, 119 



complexity, 120 

improving performance of, 160 
lifting a vertex, 119 
pushing along an arc, 119 

saturating push, 121 
unsaturating push, 121 
using exact distance labels, 160 

primal-dual algorithm 
for the transportation problem, 

148-158 
problem, 33 
proof technique 

BB-correspondence, 605 
BD-correspondence, 637 

colour-coding, 551 
contraction, 401 

DHM-construction, 609 

divide and conquer, 32 

gadgets for A P-completeness 
proofs, 478, 621, 679 

indicators, 662 

insertion method, 30 

matroid intersection, 459, 681 

matroid partition, 680 
multi-insertion, 246-250 
one-way pairs, 371, 372, 374, 

377, 387, 399 
probabilistic method, 555, 557, 

572, 617-619 
random acyclic subdigraph 

method, 550 

reduction from 3-SAT, 621, 679 
reduction to a flow problem, 411 
reduction to minimum cost flow 

problem, 407 
reversing arcs, 398 
splitting off arcs, 364 
splitting off edges, 443 
submodular flows, 458-467, 507 
uncrossing, 383, 402 
using orientations of undirected 

graphs, 505 

using recursive formulas, 189 
using submodularity, 353, 359, 

374, 536 
using the bipartite representa- 

tion of a directed multi- 
graph , 25 

vertex splitting procedure, 353 
proper backward rank, 645 
proper circular arc graph, 415 

orientation as a round local 
tournament, 420 
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recognition in linear time, 421 
proper colouring, 22, 435 

proper edge-colouring, 654 
proper forward rank, 645 
proper interval graph, 467 
proper mutual rank, 645 
proper subset, 2 

properly coloured cycle in an edge- 
coloured multigraph, 597 

properly coloured directed trail, 621 
properly coloured Euler trail, 594 
properly coloured trail, 592 
h-pseudo-hamiltonian directed multi- 

graph, 232 
pseudo-hamiltonian directed multi- 

graph, 232 
h-pseudo-hamiltonian walk, 232 
pseudo-hamiltonicity 

algorithm, 233 
pseudo-hamiltonicity number, 232 
pseudograph, 18 
pseudoregular directed pseudograph, 

188, 190 

k-quasi-hamiltonian, 230 
quasi-hamiltonicity, 230-234 

algorithm, 233 
quasi-kernel, 650, 653 
quasi-transitive digraph, 28, 78, 79, 

195-198, 266, 267, 270, 279, 
0), KO» SUP Sib). okey. 
334-336, 340, 343, 400, 416, 
418, 419, 495, 496, 526, 541 

hamiltonian cycle, 265-269 
highly connected orientation of, 

400 
longest cycle, 272 
MSSS problem, 332 
recursive characterization, 197 
vertex-heaviest paths and cy- 

cles, 269-272 
quasi-transitive orientation, 416 
queue, 51 

Rédei’s theorem, 14, 322, 627 
radius, 47, 59-61 
Ramsey’s theorem, 563 
random acyclic subdigraph method, 

550 
rank of a matroid, 666 
re-weighting the arcs of a digraph, 91 

eliminating negative arcs, 91 
reachable from a vertex, 16 
recognition 
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interval digraphs, 219 
line digraph, 184 
local tournament, 431 
path-mergeable digraph, 199 
planar digraph, 220 
round decomposable locally 

semicomplete digraph, 211 

round local tournament di- 
graphs, 467 

totally &-decomposable  di- 
graph, 216 

vertex series-parallel digraph, 
195 

red/blue subgraph of a 2-edge- 
coloured multigraph, 592 

reduced graph, 421 
reducible graph, 421 . 
reduction among flow models, 99 
redundant arc of a digraph, 177 
reference orientation, 446 

regular digraph, 5, 189, 227, 262 
arc-disjoint cycles in, 555 
immersion, 517 

6°(D)-regular digraph, 5 
regular graph, 19 
removal of a vertex from a cycle, 85 
reorienting arcs, 458 
representable in a graph, 426 
representation of a digraph, 217 
representation of a graph, 415 
residual capacity 

of an arc, 98 

residual network, 98 
using to update flow, 105 

restricted primal problem 
of transportation problem, 149 

retract of a digraph, 659 
reversal of a path, 472 
reverse of a trail, 593 
reversing an arc, 6 

reversing arcs, see arc reversal 
reversing arcs to obtain arc-disjoint 

branchings, 473 
Robbins’ theorem, 20, 352, 443, 449 
root of a branching, 19 
root of a DFS tree, 173 

round decomposable digraph, see 
also locally semicomplete 
digraph 

round decomposable locally semi- 
complete digraph, 208-211 

recognition, 211 
round decomposition, 208 

round digraph, 203-207 
s-regular, 583 

round labelling, 203 
routing problems, 521 

2-SAT, 35-38 
application to orientability as 

in-tournaments, 424 

3-SAT, 36, 621 
reduction to an A-colouring 

problem, 679 

Satisfiability, see also SAT, 36 
satisfiable boolean expression, 36 
saturated arc, 112 

scalar product, 546 
_ scaling algorithm for maximum flow, 

162 
scan register, 553 
scheduling jobs on identical ma- 

chines, 165 

scheduling problems, 191 
scheduling reporters, 236 
score method, 643 

score of a vertex, 447 
score sequence, 447 
semi-degree of a vertex, 4 
semi-partitioncomplete digraph, 264 
semicomplete p-partite digraph, see 

semicomplete multipartite 
digraph 

semicomplete bipartite digraph, 27, 
42, 79, 145, 252, 258, 278, 
282-284, 327, 341, 605-607, 
649, 661, 678, 680 

even pancyclic, 341 
hamiltonian cycle, 252 
hamiltonian path with one end 

vertex specified, 282 
longest cycle, 252 

semicomplete decomposition of a 
locally semicomplete di- 
graph, 209, 213 

semicomplete digraph, 27, 74, 92, 
145, "167; “1967" 1078" 277, 
290, 293-298, 306, 312-314, 
317-319, 327, 339, 340, 342, 
373, 379, 381, 397, 399, 412, 
414, 487, 489, 490, 492-497, 
517, 520, 524, 538, 614, 631, 
638, 643-646, 652, 659, 661, 
664, 678 

2-path problem, 492 
critical 2-cycle in, 412 

hamiltonian (2, y)-path, 293 



polynomial algorithm, 295 
hamiltonian connected, 293 

highly connected orientation of, 

397 
semicomplete multipartite digraph, 

Zip-T hy Lise 200" 201, 
253, 255, 257, 259, 261-263, 
218-280, 30is SLT, Sale oo2, 
336, 645, 648, 649 

‘short’ cycles, 573-577 

cycles versus paths, 577-580 
hamiltonian cycle, 250-264 
hamiltonian path, 251 
longest path, 251 
MSSS problem, 336 
path covering number, 251 
regular, 262 
relation between longest path 

and cycle, 577 
separates, see separator 

separating set, see separator 

separator, 16 

(s,t)-separator, 17 
minimum, 347 

trivial, 297, 493 
(s,t)-separator, 17, 347 
sequencing problems, 191 
2-serf, 75 
series composition of digraphs, 191 
series reduction, 194 

series-parallel digraph, 191-195 
k-set, 2 
set-contraction, see contraction 

Seymour’s second neighbourhood 
conjecture, 639 

ship loading problem, 129 
short cycle in a digraph, 550 
shortest cycle, see also girth, 92 
shortest path problem, 544 

formulated as a minimum cost 
flow problem, 98 

shortest path tree form s, 49 
shortest paths 

from a vertex s, 49 
structure of, 48 

k-similar arms of chromosomes, 633 
similar size arms of chromosomes, 632 

similar vertices, 9 

simple network, 124 
simplicity preserving augmentations 

for rooted arc-connectivity, 

543 
simulated annealing, 675-677 
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current acceptance rate, 677 

initial acceptance rate, 676 
parameter tuning, 675 
programming project, 681 

singular vertex with respect to a cy- 
cle, 253 

sink 
of a network, 97 
of an anti-directed trail, 389 

vertex with respect to a flow, 97 
size of a clause, 35 
size of a digraph, 2 
solution of an optimization problem, 

674 
sorting m numbers faster than 

2(nlogn), 54 
sorting versus distances in digraphs, 

54 
source 

of a network, 97 

of an anti-directed trail, 389 

vertex with respect to a flow, 97 
spanning strong subgraph, 351 
spanning tree, 19 
special families of digraphs 

Po, 215, 268, 272 
@,, 215, 272, 284 
2, 215, 268, 272 
W, 196, 270 

specific trail problem, 511 
Sperner’s lemma, 67 
splitting, 359, 471 

admissible, 359 

complete, 361 
for vertex-strong connectiv- 

ity, 374 
finding an admissible splitting, 

412 
in eulerian directed multigraphs, 

361 
in mixed graphs, 362 
in undirected graphs, 443 
preserving 

local arc-strong connectivity, 
361 

vertices, see vertex splitting pro- 
cedure 

splitting a vertex, 9 
splitting off arcs, 358-367, 387 
splitting off edges, 443 
ST-problem, 511 
k-ST-problem, 514 
stable matching, 656 
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straight digraph, 467 
straight enumeration, 467 
strictly alternating cycle, 615 
k-strong, 16 
k-strong augmentation number of a 

digraph, 368, 370 
strong component, 17, 36, 239 

algorithm for finding, 179 
strong component digraph, 17 
strong components 

application to finding block- 
triangular structure in ma- 

trices, 223 
strong decomposition of a digraph, 

iti 202 
strong digraph, 16, 179-182 

cycle space of, 547 . 
strong orientation, 20, 352 

respecting degree constraints, 
449 

strong radius, 64 
strongly connected, see strong 

strongly polynomial algorithm 
for minimum cost flow, 134 

sub-indicator, 662 
sub-indicator construction, 662 

subdigraph, 5 
spanning, see also factor, 5 

with prescribed degrees, 142 
minimum cost, 142 

subdivision, see also subdividing an 
arc 

subdivision of a digraph, 9 
subdivision of an arc, 9, 402, 570 
submodular flow, 381, 404, 451-467 

applications, 458-467 
feasible, 452 

minimum cost, 457 

submodular flow models, 452 
submodular flow polyhedron, 452 
submodular function, 347 

minimizing, 455 
submodular proof technique, see 

_ proof technique, submodu- 
lar 

submodularity 
of (s,t)-cuts, 164 
of matroid rank functions, 667 

subpartition, 2 
subpartition lower bound, 370 

for arc-strong connectivity, 363 
subpartition lower bound for vertex- 

strong connectivity, 368 

subpath, 12 
subtree intersection digraph, 218 
successive arc-connectivity augmen- 

tation property, 367 
successor of a vertex on a path/cycle, 

ie 
sum of boolean variables, 35 

superdigraph, 5 
supermodular function, 446, 453 
G-supermodular function, 450 
switch, 478 
(e, f)-switch, 634 
symmetric digraph, 19 
symmetric function, 450 

tail 
of a one-way pair, 368 
of an arc, 2 

TDI system, 530 
telecommunications, 521, 536 
terminal strong component, 17 
terminal vertex of a walk, 11 
terminals of a trail in eulerian di- 

rected multigraph, 511 
terminus of an oriented path, 322 
the hamiltonian algorithm, 297 
Thomassen’s even cycle theorem, 570 
tight arc, 454, 532 
tight set, 354, 374, 454, 529, 531 
Tillson’s decomposition theorem, 319 
time complexity of an algorithm, 29 
topological obstruction for disjoint 

paths, 497 
topological sorting, see acyclic order- 

ing 
total é-decomposition of a digraph, 9 
totally @-decomposable digraph, 9, 

196; 215-217, 272 
hamiltonian cycle, 268 
hamiltonian path, 268 
recognition, 216 

totally unimodular matrix, 114 
tournament, see also semicomplete 

digraph, 14, 30, 41, 64, 
74-76, 92, 167, 284-286, 
293, 298, 308-310, 313-316, 
319-323, 325-329, 340-342, 
372, 380, 391, 395, 397, 
398, 409, 411-413, 447, 469, 
477, 487, 492, 494, 495, 517, 
523-527, 539, 623, 639-643, 
653, 664, 677, 679 

feedback vertex set problem, 554 
hamiltonian [z, y]-path, 284 



weakly hamiltonian-connected, 
284 

traceable, see also hamiltonian path, 
12, 14, 30, 243, 329 

trail, 11 

alternating, 592 
M-trail, 594 
transitive closure, 177, 178 

relation to matrix multiplica- 
tion, 177 

versus transitive reduction, 178 

transitive digraph, 28, 176, 197, 225 

transitive reduction, 177, 191 

transitive tournament, 41, 44, 562 
transitive triple, 41, 548 

transportation problem, 148-158 
primal-dual algorithm, 153 

transputer-based machine, 81 
travelling salesman problem, see TSP 

problem 
tree, 19 

spanning, 19 
tree solution to a flow problem, 169 
triangular digraph, 301, 302 
trivial (s,t)-separator, 297 
trivial separator, 493 
truth assignment, 35 
TSP problem, 33, 82-89, 337-339 

assignment neighbourhood, 85 
heuristic 

domination number, 337 

linear time searchable exponen- 
tial neighbourhoods, 84 

neighbourhood digraph, 86 
polynomially searchable neigh- 

bourhoods, 84 
pyramidal neighbourhood, 86 
vertex insertion algorithm, 338 

k-tuple, 485 
Tutte’s 5-flow conjecture, 441 

structure of a minimal coun- 
terexample, 441, 470 

two-terminal parallel composition, 
191 

two-terminal series composition, 191 

unbalanced edge, 421 
uncapacitated facility location prob- 

lem, 544 

uncrossing technique, 383, 402 
underlying graph 

edge-connectivity of, 395 
in-semicomplete digraph, 427 
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locally in-semicomplete digraph, 
424-429 

locally in-tournament digraph 
recognition, 424 

locally semicomplete digraph, 
419-424 

non-bipartite, 423 

quasi-transitive digraph, 416— 
419 

transitive digraph, 416 
underlying graph of a digraph, see 

also underlying graph, 19, 
173, 196-198, 216, 225, 226, 
238, 316, 330, 352, 395, 396, 
404, 415-432, 435, 436, 467, 
468, 487, 499, 504, 516, 527, 
528, 655, 672 

undirected graph, 18 
non-critical edge of, 390 

unicyclic graph, 427 
uniform matroid, 666 
uniform PCD corresponding to a di- 

graph, 643 
unilateral digraph, 17 
union of digraphs, 10, 178 
union of matroids, 670 
unique alternating cycle, 623 
unique trail problem, 512 
unit capacity network, 122 
universal set, 217 
upward embedding, 224 
UT-minimal instance, 513 
UT-problem, 512 

value of a flow, 100 
value of a solution, 674 
vector space, 546 
vertex, 2 

vertex cover of a bipartite graph, 139 
vertex even pancyclic digraph 

bipartite tournament, 341 
vertex insertion algorithm for TSP, 

338 
vertex series-parallel digraph, 191 

recognition algorithm, 195 
vertex splitting, 353 
vertex splitting procedure, 102, 353, 

377, 553 
vertex-alternating pancyclic 

2-edge-coloured complete bipar- 
tite multigraph, 606 

vertex-alternating-pancyclic 
2-edge-coloured complete multi- 

graph, 609 
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2-edge-coloured multigraph, 593 
vertex-arc incidence matrix, 113 

vertex-heaviest cycle, 269 
vertex-pancyclic digraph, 299 

extended semicomplete digraph, 
301 

locally semicomplete digraph, 
306 

quasi-transitive digraph, 302 
round decomposable digraph, 

304 
vertex-m-pancyclic, 299 

vertex-strong connectivity, see also 
strong connectivity, 16, 

345-414 
algorithms, 355 
certificate, 407 
of complete biorientations, 411 
of extensions of digraphs, 393 
of special classes ‘of digraphs, 

393 
reduction to (S,T)-arc-strong 

connectivity, 376 

vertex-weighted directed pseudo- 
graph, 6 

Volkmann’s meta-conjecture, 327 
VSP digraph, see vertex series- 

parallel digraph 

walk, 10 
arc-disjoint walks, 12 
Chinese postman walk, 141 
closed, 11 

disjoint walks, 12 
even, 11 

internally disjoint walks, 12 
length, 11 
odd, 11 

open, 11 

(x, y)-walk, 10 
weak-k-linking, 476 
k-weak-double-cycle, 570, 588 
weakly k-linked digraph, 507, 508 
weakly cycle extendable, 341 
weakly eulerian arc-coloured directed 

multigraph, 621, 626 

weakly hamiltonian-connected, 284— 
292 

degree condition, 295 
extended tournament, 287 

locally semicomplete digraph, 
292 

tournament, 284 

weakly-k-linked directed multigraph, 
476 

weight of a subdigraph, 6, 269 
weight of an arc, 6 
weighted arc-strong connectivity aug- 

mentation problem, 366 
weighted directed pseudograph, 6 

Yeo’s irreducible cycle subdigraph 
theorem, 261 

Younger’s conjecture, 561 
proof of, 563-565 










