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Preface 

Graph Theory has developed into a very active area of mathematical re- 

search. Whereas twenty years ago many mathematics departments had no graph 

theorists, it is now not uncommon to find several in a single department. A major 

impetus for this growth has certainly been the wide applicability of graph theory, 

especially in computer science. Besides the dozen or so extant introductory texts 

on Graph Theory, monographs have been written in recent years covering such 

specialized areas as connectivity, colorability, extremal graphs, random graphs, 

ramsey theory, and groups and surfaces. A number of recent introductory texts 

have used algorithms as the common thread, a reasonable approach because of 

the interest of computer scientists in graph theory. One concept that pervades 

all of graph theory is that of distance. Distance is used in isomorphism testing, 

graph operations, hamiltonicity problems, extremal problems on connectivity 

and diameter, and convexity in graphs. Distance is the basis of many concepts of 

symmetry in graphs. The important application of facility location on networks 

is based on various types of graphical centrality, all of which are defined using 

distance. Many graph algorithms depend on the idea of finding collections of 

long paths within a graph or network. Since distance is such a pervasive notion 

in graph theory, the time has come for a text focusing on distance in graphs. 

Distance in Graphs is based on the classic Graph Theory by F.H. and brings 

Graph Theory up to date on the topics covered. This text can be used by ad- 

vanced undergraduates and beginning graduate students in mathematics and 

computer science and also as a comprehensive reference work for researchers in 

graph theory, communication networks, and the many fields using graph theory 
in applications. The basic mathematical background required here is “mathemat- 

ical sophistication,” although a good one-year course in discrete mathematics (or 

its equivalent) would be helpful. We have made every effort to see that concepts 

are carefully explained and motivated. Accompanying figures are used to eluci- 

date and illustrate concepts throughout the text. Clear, illuminating proofs for all 
major theorems are given. Exercises are included to further clarify the material 

from each section. Many of the exercises contain results extending the concepts 

discussed in the section and cite the original source to provide a direction for 

further reading. 
It should be noted that in the Exercise Sections, a simple statement without 

the words “show that” means to prove it anyway. 

vii 



viii Preface 

The text material is divided into two parts. We discuss Graphs and Digraphs 

in Part I, which contains ten chapters. Chapter 1 presents the basic concepts of 

graph theory. Chapter 2 focuses on Centers and related distance concepts used 

throughout the book. It is expected that the chapters will be read in the order in 

which they appear. However, only Chapters 1 and 2 are essential prerequisites to 

a full appreciation of the results in subsequent chapters. In Chapters 3 and 4, we 

study Connectivity and Hamiltonicity including the recent distance-related ad- 

vances in these areas. Next we examine extremal distance problems such as radius 

and diameter minimal and critical graphs, detours, and long paths in graphs. In 

Chapter 6 we discuss matrices including many results on distance matrix prob- 

lems. Chapter 7 considers various convexity concepts for graphs including graph 

metrics, geodetic graphs, and distance-hereditary graphs. Symmetry is the sub- 

ject of Chapter 8 with particular attention to distance-related results. Over the 

years many graphical sequences, almost all of which are distance-based, have 

been introduced to study various graph properties. We give a thorough treat- 

ment of Distance Sequences in Chapter 9. Digraphs are studied in Chapter 10, 

where we describe extensions of the results in earlier chapters to digraphs. 

Graph algorithms concerning distance are separated into Part II of Distance 

in Graphs so they may easily be incorporated into or deleted from a course 

depending on the background of the students. All algorithms are described in 

Pascal-like pseudocode. Chapter 11 gives numerous distance-related graph algo- 

rithms, while Chapter 12 focuses on distance algorithms in Networks. 

The numerous references to appropriate journal articles given throughout 

Distance in Graphs, make it ideally suited both as an advanced book in mathe- 

matics and an important reference work in graph theory. Following each item in 

the reference section we list in brackets the page numbers on which that partic- 

ular article is cited. We have found this to be an extremely useful tool in quickly 

locating information of interest. For the reader’s convenience, we have provided 

an appendix including all the graphs on at most 6 nodes. 

Distance in Graphs contains many theorems with proofs omitted in order 

to keep the book of manageable size while including a generous collection of 
interesting results. The reader is encouraged to look up the original references 

which we have been careful to include. By describing many unsolved problems, 

the text provides fertile background material for research investigations. 

We have chosen to dedicate this book to two of our colleagues whose re- 

search on distance-related concepts have not only contributed a great deal to 

the excitement of graph theory, but has also inspired others to pursue study in 
this area. Frank Boesch obtained many interesting results on graph connectivity 
and popularized the use of circulants for studying vulnerability and reliability 
in graphs and networks. Peter Slater, who incidently is the academic grandson 
of F.H. via Steve Hedetniemi, introduced numerous centrality measures and ob- 
tained many interesting centrality results which are useful in both theoretical 
and applied settings. 

We are indebted to many people for their assistance and consideration dur- 
ing the preparation of this book. We deeply appreciate the time and efforts of our 
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colleagues Lowell Beineke, Norman Biggs, Marilyn Breen, Gary Chartrand, M.S. 

Krishnamoorthy, Mike Plummer, Lou Quintas, Allen Schwenk, Pete Slater, and 

Carsten Thomassen who read and commented on chapters of the book for us. We 

thank Addison-Wesley, in particular, our editor Allan Wylde for his patience and 

Jan Benes and Laura Likely for their help. This manuscript was prepared using 

the Addison-Wesley typesetting package MicroTEX and the figures were drawn 

with Autosketch. We sincerely thank both our typist and typesetter F. Buckley. 

He in turn asked us to thank John Buhrer at Arbortex for software installation 

assistance, and to express his sincere thanks to A-W electronic publishing con- 

sultants Laurie Petrycki and Mona Zeftel, who wrote most of the typesetting 

macros for this book. 

F.B. thanks the School of Liberal Arts & Sciences of Baruch College (CUNY) 

who provided released time for this project; and the last portion of the book 

was completed during a semester sabbatical. F.H. thanks the Department of 

Computer Science and the Computer Research Laboratory of New Mexico State 

University. Together we would like to thank Stevens Institute of Technology, 

where we conceived this book in Spring 1984 while F.H. held the position of 

Visiting Research Professor of Electrical Engineering and Computer Science at 

that institution. 

Finally, we thank our ladies Wai Mui Choy and Lucia Munoz Hayakawa, 

respectively, for their patience, cheerfulness, and encouragement while we were 

often working away somewhere at a distance in graphs. 

New York, NY E-B: 

Las Cruces, NM F.H. 

7 October 1989 
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CHAPTER 1 

Graphs 

Graph theory is a branch of mathematics which has applications in many 

areas: anthropology, architecture, biology, chemistry, computer science, 

economics, environmental conservation, psychology, and telecommunica- 

tions, to name a few. The list goes on and on. In a typical situation, a 

problem arises in a real-world subject area that can be modeled using 
graphs. Then existing theorems or algorithms are used or new ones are 

developed to solve the original problem. We describe the modeling pro- 

cess and present the basic concepts and terminology of graph theory with 

emphasis on the concept of distance in graphs. In addition, we describe a 

variety of graphs and useful graph operations. 

1.1 GRAPHS AS MODELS 

The concept of distance will be defined in the next section. In the present 

section we shall define graphs and see how they are used. Before doing 

so, however, we show in Figure 1.1 all eleven graphs with four nodes (of 

order 4). 



Figure 1.1 The eleven graphs with 4 nodes. 

Later we will see that 

Every graph of order 4 is “isomorphic” to one of these. 

Graphs (a) - (e) are disconnected. 

(f) - (k) are connected. 

(k) is complete. 

(h) is a cycle. 

(f) is a path. 

(g) is a star. 

CoN SD oO FP © LT (f) and (g) are trees. 

There is no choice at this point: We present here quite a list of formal 

definitions following the previous book [H14] by one of us. A graph G 
consists of a finite nonempty set V = V(G) of p nodes together with a 
set F of gq unordered pairs of distinct nodes of V. We say G has order p 

and size q. The pair e = {u,v} of nodes in F is called an edge of G, and 

e is said to join u and v. We write e = wv and say u and v are adjacent 

nodes. Adjacent nodes are said to be neighbors. Edge e is incident with 
each of its two nodes u and v. A graph with p nodes and q edges is called 

a (p,q)-graph. 
To aid the intuition in using graphs, it is customary to represent a 

graph by means of a diagram and refer to it as the graph. Figure 1.2 shows 

a (6,8)-graph in which s and t are adjacent and edge e is incident with 
node w. Nodes s and v are nonadjacent. A set of nodes is independent if 

the nodes are mutually nonadjacent. In Figure 1.2, {s,u,w} is an inde- 

pendent set. The degree of node v is the number of edges incident with it 

and is denoted deg v. In Figure 1.2, deg s = 2 while deg a = 4. 
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X e W 

Figure 1.2 A graph to illustrate adjacency and incidence. 

The first theorem of graph theory is due to Euler [E3]. 

Theorem 1.1 The sum of the degrees of the nodes of a graph is twice 
the number of edges, 

DS deg v; = 2¢. 

Proof Since each edge e is incident with two nodes, e contributes 2 to 

the sum of the degrees of the nodes. | 

Corollary 1.1 In any graph, the number of nodes of odd degree is 

even. 0 

The degree sequence of a graph is a list of the degrees of the nodes 

in nonincreasing order. The minimum degree among the nodes of a graph 

G is denoted 6(G) while the mazimum degree A(G) is the largest such 
number. Thus, the graph in Figure 1.2 has degree sequence (4,3, 3, 2, 2,2), 

so 6(G) = 2 and A(G) = 4. If all nodes have the same degree k, then G is 
called regular, or k-regular. We then speak of the degree of G and write 

deg G = k. In Figure 1.1, graph (a) is 0-regular, (d) is 1-regular, (h) is 
2-regular, and (k) is 3-regular. The 3-regular graphs are called cubic and 

have been studied extensively. 

Isomorphic Graphs 

A graph is completely determined by specifying its node and edge sets. 
However, two people may draw the graph differently. For example, in Fig- 

ure 1.3 we show two drawings of the graph G having V(G) = {a,6,c,d, e} 



1 Graphs 

Figure 1.3 Two drawings of the same graph. 

and E(G) = {ab,ac,bc,bd,ce}. Although the drawings appear different, 

they represent the same graph. 

Two graphs G and H are isomorphic (written G = H or sometimes 

G = H and called equal) if there exists a one-to-one correspondence 
between their node sets which preserves adjacency. The graphs in Figure 

1.3 are isomorphic. The three graphs G, G2, and G3 in Figure 1.4 are all 

isomorphic to one another. For example, G; and G2 are isomorphic under 

the correspondence v; — u;. Can you find a labeling of G3 to show it is 

isomorphic to Gy and G2? 

Vo OY 

Figure 1.4 Three isomorphic graphs. 

An invariant of a graph G is a number associated with G which has 
the same value for any graph isomorphic to G. We now have two simple 
invariants and one sequences of invariants we can use to distinguish a pair 
of nonisomorphic graphs: 

1. the number of nodes, p 

2. the number of edges, qg 

3. the degree sequence. 
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We shall discuss isomorphic graphs further in the next section after several 
additional invariants are introduced. 

A number of variations of graphs occur in applications. A directed 
graph or digraph D consists of a finite nonempty set V of nodes together 
with a collection A of ordered pairs of distinct nodes in V. The elements 
of A are called arcs or directed edges. A symmetric pair of arcs join two 
nodes wu and v, one in each direction, i.e., arcs (u,v) and (v, wu). An oriented 
graph is a digraph having no symmetric pair of arcs. In Figure 1.5 all four 
digraphs with three nodes and three arcs are shown; the last two are 
oriented graphs. 

a egg 
Figure 1.5 The digraphs with 3 nodes and 3 arcs. 

We now illustrate how graphs are used as models with several exam- 
ples. 

Architecture 

Foulds [F7] used graphs in the design and analysis of floor plans. Each 
room corresponds to a node, and two are adjacent if it is possible to go 

directly from one room to the other. In the building modeled by the graph 

of Figure 1.2, one can go directly from room t to room w but not directly 

from t to v. Node z has the largest degree and might represent a central 

meeting hall. The type of building often determines the properties desired 

in its floor plan and thus its resulting graph. For example. in designing a 

museum, one wants a structure where it is possible to walk through each 

hallway exactly once to see all the exhibits and leave the way one came 

in. A graph with this property is called eulerian. We will see later that 

such graphs are easy to characterize. 

Computer Science 

Graphs occur in very many situations in computer science. One such use 

is modeling computer networks, where each node represents a computer. 

An edge joins two nodes if there is a direct communication link between 
the corresponding computers. 
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Many algorithms such as the sorting algorithm “Heap Sort” use graphs 

in their development and analysis. Graphs are also used to analyze prefix 

and postfix operators used in computing (see McCracken [M3]). 
A standard way of modeling a computer algorithm is to use a “flow- 

chart.” The structure of a flowchart is a digraph. An algorithm whose 

flowchart gives the “simplest” digraph will often be most efficient. 

Electrical Networks 

Kirchhoff [K2] developed the theory of trees in 1847 to solve a system of 

simultaneous linear equations which give the current in each branch and 
around each circuit of an electrical network. He modeled the electrical 

network by its underlying graph in which electrical elements such as in- 

ductors, capacitors, or resistors are modeled by edges, and the nodes tell 

where two of these have a junction. He showed that it is not necessary 

to consider every cycle in the graph of an electrical network separately to 

solve the system of equations. Instead, he pointed out that it is sufficient 

to consider the “fundamental” system of independent cycles determined 

by any “spanning tree” of the graph. 

Age i] 
—o 

—o 

Figure 1.6 A network JN, its underlying graph G, and a spanning tree. 

Environmental Conservation 

The nodes represent different species in a fixed geographical area. Regions 
called habitat patches in that geographic area are classified according to 
various qualities such as: near a stream, type of trees, hills, soil properties, 
vegetation, etc. An edge joins two nodes if the corresponding species share 
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a common habitat patch. Chinn and Marcot [CM2] used graphs to analyze 
how proposed environmental management decisions may affect species 

interaction. Digraphs are often used to depict prey-predator relationships. 

The first such use of these competition digraphs was in [H9]. 

Games 

In 1859 Sir William Hamilton invented a game that uses a regular solid 
dodecahedron (often used for paperweight desk calendars) with its 20 
nodes labeled with the names of famous cities. The player is challenged 

to travel “Around the World” by finding a cycle which passes through 

each node exactly once and returns to the starting point. In graphical 

terms, the object of the game is to find a “spanning cycle” in the graph 

of the dodecahedron, shown in Figure 1.7. 

Figure 1.7 The graph of the dodecahedron. 

A spanning cycle in a graph is a cycle that passes through each node 

exactly once. These are usually called hamiltonian cycles. They are very 

closely related to the Traveling Salesman’s Problem and play a fundamen- 

tal role in the theory of W’P-completeness which we discuss in Chapter 

iB 
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) b i " 
Figure 1.8 Two pairs of isomorphic graphs. 

EXERCISES. leL 

1 

10. 

Label the nodes in the graphs G1; and G2, and Hy; and Hz of 

Figure 1.8 to show that Gy; = G2 and Hy, = Ho. 

Draw all graphs with three nodes. 

Draw the graphs G and H with the following node and edge sets. 

a. V(G) = {a,b, c,d}, E(G) = {ab, ac, bd, cd}. 

b. V(H) = {e, f,9,h,t,5}, E(H) = {ef e, ft, f,e9, 19}. 
a. Draw all graphs having degree sequence (3,2,2,1,1,1). 

b. Why is (5,5,4,2,2,1,1,1) not the degree sequence of a graph? 

Although 5+2+1+1+4+41 = 10 (which is even), (5,2,1,1,1) is 

not the degree sequence of a graph. Why? 

The maximum number of edges in a graph of order p is eae [The 
words “Prove that” are understood.] 

Let G be a (p,q)-graph all of whose nodes have degree k or k + 1. If 
G has p;, > 0 nodes of degree k and p,4 1 nodes of degree k + 1, then 

Pr = (k+ 1)p— 29. 
Draw all digraphs having four nodes and four arcs. 

Find a “tour around the world” in the graph of Figure 1.7. 

Draw all (5,4)-graphs. 

1.2 PATHS AND CONNECTEDNESS 

One of the most basic properties any graph can enjoy is that of being 

connected. Informally, a graph is connected if it is all in one piece. In this 

section, we make this concept precise and examine several fundamental 

classes of connected graphs: paths, trees, and cycles. 
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oO 

Figure 1.9 A graph and two subgraphs. 

Subgraphs 

A subgraph of G is a graph having all of its nodes and edges in G. It is 
a spanning subgraph if it contains all the nodes of G. If H is a subgraph 
of G, then G is a supergraph of H. For any set § of nodes in G, the induced 
subgraph (S') is the maximal subgraph with node set $. Thus two nodes 
of S are adjacent in (5) if and only if they are adjacent in G. In Figure 1.9, 
G, and G2 are subgraphs of G. Here G, is an induced subgraph but G2 
is not; G2 is a spanning subgraph but G; is not. 

A « 
eZ 

= 

WV 
Figure 1.10 A graph minus a node; a graph plus or minus an edge. 

The removal of a node v from a graph G results in that subgraph G—v 
consisting of all nodes of G except v and all edges not incident with v. 
On the other hand, the removal of an edge e from G yields the spanning 

subgraph G — e containing all edges of G except e. Thus G—v and G—e 
are the maximal subgraphs of G not containing v and e, respectively. If 

u and v are not adjacent in G, the addition of the edge wv results in the 
smallest supergraph of G containing the edge uv and is denoted G + uv. 
These concepts are illustrated in Figure 1.10. 
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There are certain graphs for which the result of deleting a node or edge 

or adding an edge is independent of the particular node or edge selected. If 

this is so for a graph G, we denote the result accordingly by G—v, G—e, 

or G +e. We shall see in future chapters that these highly symmetric 

graphs G play important roles in distance related applications. For now 

we mention that any cycle C,, is such a graph. 

Walks and Paths 

A walk in a graph G is an alternating sequence of nodes and edges 

V0, 15 U1, €25V25+++5Un—1;€n, Un Such that every e; = v;-1v; is an edge 

of G,1 <i <n. It is important to mention that the nodes need not be 

distinct and the same holds for the edges. 
The walk connects vo and v, and is sometimes called a vo-v,, walk. 

This walk has length n, the number of occurrences of edges in it. A walk 

is a trail if all its edges are distinct and a path if all its nodes (and thus 

necessarily all its edges) are distinct. The walk is closed if v9 = vp, and is 

open otherwise. A closed walk is a cycle provided its n nodes are distinct 

and n > 3. 

Since the edges in a walk are determined uniquely by writing its suc- 

cessive nodes, we usually do not list the edges. In the labeled graph G of 

Figure 1.11, a,b,e,6,c is a walk which is not a trail and a,b,e,d,b is a 

trail which is not a path; a,b,e,c is a path and b,d,e, 6 is a cycle. 

0 p 

0 ( C 
Figure 1.11 A graph to illustrate walks. 

The girth of a graph G, denoted g(G), is the length of a shortest cycle 
(if any) in G; the circumference c(G) is the length of any longest cycle. 
Note that these terms are undefined if G has no cycles. The distance 
d(u,v) between two nodes u and v in G is the minimum length of a path 
joining them if any; otherwise d(u, v) = oo. A shortest u-v path is called 
a u-v geodesic. The diameter d(G) of a connected graph G is the length 
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of any longest geodesic. The graph G in Figure 1.11 has einthygu=s3, 
circumference c = 5, and diameter d = 2. 

Connected Graphs 

A graph is connected if there is a path joining each pair of nodes. A 
component of a graph is a maximal connected subgraph. If a graph has 
only one component it is connected, otherwise it is disconnected. G and 
G, each have one component while G2 has two. 

Among important connected graphs of order p, a cycle is denoted by 
Cy and path by P,. A triangle is a cycle C3. The complete graph K, has 
every pair of its p nodes adjacent. Thus K, has (3) edges and is regular 
of degree p — 1. Note that Iv is the triangle C3. 

Isomorphic Graphs Revisted 

In §1.1 we found several invariants helpful in distinguishing nonisomorphic 

graphs. We can now add to that list the following invariants: 

the number of components 

the diameter 

the girth 

the distances between pairs of nodes of a given degree. Ec ee eae 

Reconstruction 

For a graph G with nodes v1, v2,..., Up, the graphs G — v; are often called 

the node-deleted subgraphs of G. Ulam [U1] suggested in the following con- 
jecture that the collection of subgraphs G—v; of G completely determines 

G when p > 3. 

The Kelly-Ulam Conjecture: Let G have p nodes v; and H have p 

nodes u;, with p > 3. If for each 2, G—v; and H — v; are isomorphic, then 

the graphs G and H are isomorphic. 

This conjecture is sometimes referred to as the reconstruction conjec- 
ture because of the following viewpoint of the problem [H13]. Draw each 
of the p unlabeled graphs G — v; on a 3 x 5 card thus obtaining the deck 

D(G) of the graph G. A legitimate deck is one that can be obtained from 
some graph. Then the conjecture can be reformulated in terms of just one 
graph by asserting that any graph from which these subgraphs can be ob- 

tained by deleting one node at a time is isomorphic to G. Thus, one may 
try to prove that from any legitimate deck of cards, only one graph can 
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be reconstructed. The conjecture has been proven true for several classes 

of graphs including regular graphs, disconnected graphs, and the class of 

graphs we shall now discuss — trees. 

Trees 

Perhaps the most important type of graph is a tree. This is so because 

of their applications to many different fields. In fact, an entire book is 

now being written on the theory of trees and their applications [HP4]. 

Furthermore, their simplicity makes it possible to investigate a conjecture 

for graphs by first studying it for trees. A graph is acyclic if it has no 

cycles. A tree is a connected acyclic graph. Any graph without cycles is 

a forest, thus the components of a forest are trees. There are 11 different 

trees with seven nodes, as shown in Figure 1.12. 

Bere 
ccnocenet ae 

: ames 
Figure 1.12 The eleven trees with seven nodes. 

There are numerous ways of defining a tree as we shall now see. 

Theorem 1.2 The following statements are equivalent. 

G is a tree. 

Every two nodes of G are joined by a unique path. 

G is connected and p=q+1. 

G is acyclic and p=q+1. 

i sae ee ier ge G is acyclic and if any two nonadjacent nodes of G are joined by an 
edge e, then G + e has exactly one cycle. 
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Proof (1 => 2). Since G is connected, every two nodes are joined by 
a path. Let P and P* be two paths joining u and v in G, and let w be 
the first node of P (as we traverse P from u to v) such that w is on both 
P and P* but its successor on P is not on P*. If we let w* be the next 
node on P which is also on P*, then the segments of P and P* which are 
between w and w* together form a cycle in G. Thus if G is acyclic, there 
is at most one path joining any two nodes. 

(2 = > 3). Clearly G is connected. We prove p = q+ 1 by induction. 

It is obvious for graphs of one or two nodes. Assume it is true for graphs 

with fewer than p nodes. Suppose G has p nodes (p > 2), q edges, and 

let v be a node of degree one (there must be such a node because of the 
uniqueness of paths, connectedness, and p > 2) in G. Then G — v has 

p — 1 nodes, one less edge than G, and still satisfies property (2). By the 

inductive hypothesis, G—v has order p—1 = (¢q—1)+1. Thus the number 
of nodes inGisp=q+l. 

(3 => 4). Assume G has a cycle of length n. Then there are n nodes 
and n edges on the cycle, and for each of the p—n nodes not on the cycle 

there is an incident edge on a geodesic to a node of the cycle. Each such 
edge is different, so gq > p, which is a contradiction. 

(4 => 5). Since G is acyclic, each component of G is a tree. If there 
are k components, then since each component has one more node than 

edge, p=q+k,so k = 1 and G is connected. Thus G is a tree and there 

is exactly one path connecting any two nodes of G. If we add an edge uv 

to G, that edge together with the unique path in G joining u and v forms 

a cycle, The cycle is unique because the path is unique. 

(5 => 1). The graph G must be connected, for otherwise an edge e 
could be added joining two nodes in different components, and G + e 

would be acyclic. Thus G is connected and acyclic, so G is a tree. D 

We need to specify a certain graph to eliminate trivial exceptions from 

theorems. The (1,0)-graph is trivial following the terminology of group 
theory in which the “trivial group” has just one element. 

Corollary 1.2 Every nontrivial tree has at least two endnodes. 

Proof Let P bea longest path in a nontrivial tree T’ and let u and v be 
endnodes of P. Since T is acyclic, u and v each have only one neighbor in 
P, and since P is a longest path they have no neighbors in T — P. Thus, 

there must be at least two nodes of degree one in a nontrivial tree. 0 
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Bipartite Graphs 

A tree is a special type of a bipartite graph. A graph G is bipartite if its 

node set V can be partitioned into two subsets V; and V2 such that every 

edge of G joins a node of V; with a node of V2. For example, the graph of 

Figure 1.13a can be redrawn in the form of Figure 1.13b to display the fact 
that it is bipartite. If G contains every edge joining V; and V2, then G is 

a complete bipartite graph. In this case, if V; and V2 have m and n nodes, 

we write G = Ky». Obviously Kj,» has mn edges. A star is a complete 

bipartite graph Ky,,. The complete n-partite graph K(pi,p2,..-,Pn) has 
a node set V that can be partitioned into n parts Vj, V2,...,V, so that V; 

has p; nodes and two nodes are adjacent if and only if they are in distinct 

parts. Thus, a complete bipartite graph is a complete multipartite graph 

with just two parts. 

Uy Uy | 

Wy Vs pute tC ¢ 
Figure 1.13 A bipartite graph. 

It follows from a result of Konig [K4, p. 170] that a bipartite graph 
can have no odd cycles. 

Theorem 1.3 A graph is bipartite if and only if all its cycles are even. 

Proof If G is bipartite, then its node set V can be partitioned into two 
sets V; and V2 so that every edge of G joins a node of Vi with a node 
of V2. Thus, every cycle 1, v2,...,0n, 01 in G necessarily has its oddly 
subscripted nodes in Vj, say, and the others in V2, so that its length is 
even. 

For the converse, we assume without loss of generality, that G is con- 
nected (for otherwise we can consider the components of G separately). 
Take any node v1; € V and let V, consist of v, and all nodes at even 
distance from v,, while V2 = V — Vj. Since all the cycles of G are even, 
every edge of G' joins a node of Vj with a node of V2. For suppose there is 
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an edge uv joining two nodes of Vj. Then the union of geodesics from 7; 

to v and from v, to u together with the edge wv contains an odd cycle, a 
contradiction. D 

Theorem 1.3 provides an easy method to determine whether a graph 

G is bipartite. Choose a node in each component of G and label it 1; then 

label its neighbors 2. Next label each unlabeled node adjacent to a node 

labeled 2 with the number 1, and continue alternating in this manner 

until every node is labeled. It is helpful to think of labels 1 and 2 as two 

colors. Graph G is bipartite if and only if the nodes of each color are 

independent. 

[ H 
Figure 1.14 A pair of nonisomorphic graphs. 

EXERGISES 132 

1. Draw all graphs with five nodes. There are exactly 34. 

2. Draw all graphs with degree sequence 5,3,2,2,2,1,1. (Hint: There 

are just four.) 

3. Every closed walk of odd length contains a cycle. 

4. The graphs G and H in Figure 1.14 are not isomorphic. 

5. For each n > 3, construct a cubic graph with 2n nodes having no 

triangles. 

6. Prove or disprove: 

a. The union of any two different walks connecting two distinct nodes 

u,v contains a cycle. 

b. The union of any two different paths connecting u and v contains 

a cycle. 
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7. In aconnected graph any two longest paths have a node in common. 

8. A graph G is connected if and only if for any partition of V into two 

subsets V; and V2, there is an edge of G joining a node of V; with a 

node of V3. 

9. If G has p nodes and 6(G) > (p— 1)/2, then G is connected. 

10. Determine the maximum number of edges in a graph with p nodes 

and no even cycles. 

11. Every tree is bipartite. 

12. Every connected graph has a spanning tree. 

13. Draw all trees with 8 nodes. 

14. Determine the number of edges in K(pj, po,.--,Pn)- 

15. If Gis a(p,q)-graph for which g < p—1, then G is disconnected. 

16. Draw all cubic graphs with eight nodes. 

17. Draw all 4-regular graphs with seven nodes. 

18. If 6(G) > 2 then G contains a cycle. 

19. A tree with p > 3 has diameter 2 if and only if it is a star. 

20. Prove or disprove: 

a. If G has a spanning star, then it has diameter 2. 

b. If G has diameter 2, then it has a spanning star. 

1.3 CUTNODES AND BLOCKS 

Some connected graphs can be disconnected by the removal of a single 
node called a cutnode. The distribution of such nodes is of considerable 

assistance in the recognition of the structure of connected graphs. Edges 

with the analogous cohesive property are known as bridges. The fragments 

of a graph held together by its cutnodes and bridges are called its blocks. 
We characterize these concepts in this section. 

A cutnode of a graph is a node whose removal increases the number 

of components, and a bridge is such an edge. Thus if v is a cutnode of 

a connected graph G, then G — v is disconnected. A nonseparable graph 

is connected, nontrivial, and has no cutnodes. A block of a graph is a 

maximal nonseparable subgraph. 

In Figure 1.15, v is a cutnode while w is not; edge z is a bridge but 

y is not; and the four blocks of G are displayed. Each edge of a graph 

lies in exactly one of its blocks, as does each node that is not isolated or 
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a cutnode. Furthermore, the edges of any cycle of G lie entirely within a 

single block. 

Theorem 1.4 Let v be a node of a connected graph G. Then v is a 
cutnode of G if and only if there exist nodes u and w distinct from v such 
that v is on every u-w path. 

Proof If v is a cutnode in the connected graph G, then G — v is discon- 
nected. Let u and w be nodes in distinct components of G — v. There are 

no u-w paths in G—v, but there are u-w paths in G since G is connected. 

Thus every u-w path in G contains v. 

Conversely, if v is on every path in G joining u and w, then there 

cannot be a path joining these nodes in G—v. Thus G — v is disconnected, 

so v is a cutnode of G. 0 

( 

b 

Figure 1.15 A graph and its blocks. 

Theorem 1.5 Let e be an edge of a graph G. The following statements 

are equivalent. 

1. eis a bridge. 

2. eis not on any cycle of G. 

3. There exist nodes u and v of G such that the edge e of G is on every 

path joining u and v. D 
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Any theorem, such as Theorem 1.5, that is stated without proof is 

followed by the end of proof symbol O and the proof is generally quite 

routine and considered to be an exercise. On the other hand, when a spe- 

cific reference is given, the proof is often too lengthy or too cumbersome 

for inclusion, and the reader may wish to consult the original source for 

further details. 

There are many equivalent conditions for a graph to be a nonsepara- 

ble, each of which may serve as the definition. 

Theorem 1.6 Let G be a connected graph with at least three nodes. 

The following statements are equivalent. 

G is nonseparable. 

Every two nodes of G lie on a common cycle. 

Every node and edge of G lie on a common cycle. 

Every two edges of G lie on a common cycle. 

Given two nodes and one edge of G, there is a path joining the nodes 

which contains the edge. 

6. For every three distinct nodes of G, there is a path joining any two 

of them which contains the third. 

7. For every three distinct nodes of G, there is a path joining any two 

of them which does not contain the third. 

Proof (1 => 2) Let u and v be distinct nodes of G, and let U be the set 
of nodes different from u which lie on a cycle containing u. Since G has 

at least three nodes and no cutnodes, it has no bridges; therefore, every 

node adjacent to u is in U, so U is not empty. 

Suppose v is not in U. Let w be a node in U for which the distance 

d(w,v) is minimum. Let Po be a shortest w-v path, and let P, and P» 

be the two u-w paths of a cycle containing u and w (see Figure 1.16a). 
Since w is not a cutnode, there is a u-v path P’ not containing w (see 
Figure 1.16b). Let w’ be the node nearest u in P’ which is also in Po, 
and let u’ be the last node of the u-w’ subpath of P’ in either P, or Pp. 
Without loss or generality, we assume w’ is in Pj. 

Let Q, be the u-w’ path consisting of the u-u’ subpath of P, and the 
u'-w' subpath of P’. Let Q2 be the u-w’ path consisting of P2 followed 
by the w-w’ subpath of Po. Then Q, and Qz2 are distinct u-w’ paths. 
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(h) 
Figure 1.16 Paths in nonseparable graphs. 

Together they form a cycle, so w’ is in U. Since w’ is on a shortest w- 
v path, d(w’,v) < d(w,v). This contradicts our choice of w, proving that 
u and v do lie on a cycle. 

(2 => 3) Let u be anode and ow an edge of G. Let Z be a cycle containing 
u and v. A cycle Z’ containing u and vw can be formed as follows. If w is 

on Z, then Z’ consists of vw together with the v- w path of Z containing u. 
If w is not on Z, there is a w-u path P not containing v, since otherwise 

v would be a cutnode by Theorem 1.4. Let u’ be the first node of P 

in Z. Then Z’ consists of vw followed by the w-u’ subpath of P and the 
u'-v path in Z containing w. 

(3 => 4) The proof is analogous to the preceding one, and the details are 
omitted. 

(4 => 5) Any two nodes of G are incident with one edge each, which 
lie on a cycle by (4). Hence any two nodes of G lie on a cycle , and we 

have (2), so also (3). Let u and v be distinct nodes and e an edge of G. By 
statement (3), there are cycles Z; containing u and e, and Z2 containing 
v and e. If vis on Z; or wis on Zg, there is clearly a path joining wu and v 

containing e. Thus, we need only consider the case where v is not on Z 
and wu is not on Z. Begin with wu and proceed along Z, until reaching 
the first node w of Z2, then take the path on Z2 joining w and v which 

contains e. This walk constitutes a path joining wu and v that contains e. 

(5 => 6) Let u, v, and w be distinct nodes of G, and let e be any edge 

incident with w. By (5), there is a path joining u and v which contains e, 
and hence must contain w. 

(6 => 7) Let u, v, and w be distinct nodes of G. By statement (6), there 
is a u-w path P containing v. The u-v subpath of P does not contain w. 

(7 => 1) By statement (7), for any two nodes u and v, no node lies on 
every u-v path. Hence, G must be nonseparable. D 
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In a nontrivial connected graph G it is always possible to remove two 

nodes from G without disconnecting it. The following result of Chartrand, 

Kaugers, and Lick [CKL2] gives a condition for a nonseparable graph to 

have a nonseparable node-deleted subgraph. 

Theorem 1.7 If Gis nonseparable with 6(G) > 3, then there is a node v 

such that G — v is also nonseparable. 0D 

EXERCISES.1.3 

What is the maximum number of cutnodes in a graph with p nodes? 

A cubic graph has a cutnode if and only if it has a bridge. 

The smallest number of nodes in a cubic graph with a bridge is 10. 

m © dh = A node v is a cutnode of a connected graph if and only if there 

exists a partition of the set of nodes V — {v} into subsets U and W 
such that for any nodes u € U and w € W, the node v is on every 

u-w path. 

5. A node v of G is a cutnode if and only if there are nodes u and w 

adjacent to u such that v is on every u-w path. 

6. Every nontrivial connected graph has at least two nodes that are not 

cutnodes. 

7. A graph Gis a tree if and only if G is connected and every edge of G 
is a bridge. 

8. The following statements are equivalent: 

a. G is a forest. 

b. Every edge of G is a bridge. 

c. Every block of G is K. 

d. Every nonempty intersection of two connected subgraphs of G is 
connected. 

9. If G is a nonseparable graph with p > 3, then given any two nodes 

and any edge, there is a path connecting the nodes which does not 
contain the edge. 

10. A connected graph with at least two edges is nonseparable if and 
only if any two adjacent edges lie on a cycle. 
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11. Let 6(v) be the number of blocks to which v belongs in a connected 
graph G. Then the number of blocks of G is b(G) = 1+ )7[b(v) — 1). 

(Harary [H7]) 
12. A graph G is unicyclic if it is connected and contains exactly one 

cycle. Prove: The following four statements are equivalent. 

a. G is unicyclic. 

b. G is connected and p= q. 

c. For some edge e of G, the graph G — e is a tree. 

d. G is connected and the set of edges of G which are not bridges 
form a cycle. 

13. If the degree of every node in G is even, then G has no bridges. 

14. Every tree of order p > 3 contains a cutnode v such that every node 

except possibly one adjacent to v has degree 1. 

1.4 GRAPH CLASSES AND GRAPH OPERATIONS 

When a new concept is developed in graph theory, it is often first ap- 

plied to particular classes of graphs. Afterwards, more general graphs are 
studied and theorems follow. In the previous sections, we encountered 

the paths, cycles, trees, and bipartite graphs. Many interesting graphs 

are obtained by combining pairs of graphs or operating on a single graph 

in some way. We now discuss a number of operations which are used to 

combine graphs to produce new graphs. 

Complements 

The complement G of a graph G has V(G) as its node set, but two nodes 
are adjacent in G if and only if they are not adjacent in G. A graph and 

its complement are shown in Figure 1.17. The graphs K’, are called totally 

disconnected, and are regular of degree 0. 

A well-known puzzle may be stated in the following form: Prove that 

at any party with six people, there are three mutual acquaintances or 

three mutual nonacquaintances. This can be rephrased in graphical terms. 

There is now an entire field of graph theory dealing with related problems. 

In fact, one of us has written a series of 17 papers (to date) on this subject, 

which is called Ramsey theory for graphs. 
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Figure 1.17 A graph and its complement. 

Theorem 1.8 For any graph G of order 6, G or G contains a triangle. 

Proof Let v be a node of a graph G with six nodes. Since v is adjacent 

either in G or G to at least half of the five other nodes of G, we can assume 

without loss of generality that there are three nodes wu , uz, uz adjacent 

to v in G. If any two of these nodes are adjacent, then they are two nodes 

of a triangle whose third node is v. If no two of them are adjacent in G, 

then they are the nodes of a triangle in G. D 

Theorem 1.9 If G is disconnected, then G is connected. D 

Self-Complementary Graphs 

A self-complementary graph is isomorphic with its complement. 

Our first result about self-complementary graphs specifies their order. 

Theorem 1.10 If G is self-complementary, then p= 4nor4n+1. O 

Theorem 1.11 If d(G) > 3, then d(G) < 3. 

Proof Let x and y be any two nodes in G. Since d(G) > 3, there exist 
nodes u and v at distance 3 in G. Hence wv is an edge in G. Since u and 
v have no common neighbor in G, both z and y are each adjacent to u or 
v in G. It follows that d(z,y) < 3 in G, and hence d(G) < 3. 0 

Harary and Robinson [HR1] derived Theorem 1.11 in order to give 
a simple proof of the following result first discovered independently by 
Ringel [R6] and Sachs [S3]. 



1.4 GRAPH CLASSES AND OPERATIONS 23 

Figure 1.18 The smallest nontrivial self-complementary graphs. 

Corollary 1.11 Every nontrivial self-complementary graph has diam- 

eter 2 or 3. a) 

Operations on Graphs 

It is rather convenient to be able to express the structure of a given graph 

in terms of smaller and simpler graphs. We discuss here only those oper- 

ations that have been most useful in distance problems. Descriptions of 

others operations can be found in [H14]. Throughout this section, graphs 
G, and G2 have disjoint node sets Vj and V2 and edge sets E, and E2 

respectively. Their union G = G U G2 has, as expected, V = Vi UV2 

and E = E, U E>. Their join, defined by Zykov [Z6], is denoted G1 + G2 

and consists of G, U G2 and all edges joining V; with V2. In particular, 

Kinn-= Km + K,. These operations are illustrated in Figure 1.19 with 

G4 = Ko = P» and G2 = Ki = P3. 

fF | G. GUL’ 0+ G.: 

Figure 1.19 The union and join of two graphs. 

For any connected graph G, we write nG for the graph with n com- 

ponents each isomorphic with G. Then every graph can be written in the 

form Un;G; with G; different from G; for 7 # j. There are several oper- 

ations on G; and G2 whose set of nodes is the cartesian product Vj x V3. 

These include the product and the composition [H8]. 

To define the (cartesian) product G1 X G2 consider any two nodes 

u = (uy, U2) and v = (4, v2) inV = Vy xX Vo. Then u and v are adjacent 
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u (Uy Uo) (UVa) (Uy Wa) 

uy ON 
wi) oe XG, 

Yi (Vp) (Wyo) (Wy Mo) 

Figure 1.20 The product of two graphs. 

in Gy X G2 whenever [uj = v and ugve € E(G2)] or [ug = v2 and 

u,v, € E(G,)]. The cartesian product of G; = P2 and G2 = P3 is skown 

in Figure 1.20. 

The corona G 0 G2 was defined by Frucht and Harary [FH1] as the 

graph G obtained by taking one copy of G of order p; and p; copies 

of Gp, and then joining the i’th node of G, to every node in the i’th copy 

of G2. For the graphs G; = K2 and G2 = P3, the two different coronas 

G1 0G, and G2 0 G, are shown in Figure 1.21. 

bo, Pu 

Figure 1.21 The two different coronas of two graphs. 

If G, and G2 are (pi,q1) and (p2, q2) graphs, respectively, then for 
each of the above operations one can calculate the number of nodes and 

edges in the resulting graph, as shown in Table 1.1. 

An especially important class of graphs now known as hypercubes are 

most naturally expressed in terms of products. The n-cube Q, is defined 

recursively by Q; = K2 and Q, = K2 X Qn-1. Thus Q, has 2” nodes 

which may be labeled a,a2 ---a,, where each a; is either 0 or 1. Two nodes 

of Q, are adjacent if their binary sequences differ in exactly one place. 
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Table 1.1 BINARY OPERATIONS ON GRAPHS 

Operation Number of nodes Number of edges 

Union G1 UG2 Pp2 + pa qi + Qe 
Join G,+Go Pi + P2 qi + q2 + pipe 
Product GX G2 Pip2 Pigq2 + peg 
Corona G10G2 pi(1 + p2) gi + Pig2 + pip2 

Figure 1.22 shows the 2-cube and the 3-cube, appropriately labeled. The 

importance of hypercubes lies in their usefulness in computer architecture. 

Figure 1.22 Two cubes. 

An important graph formed by the join of other graphs is the wheel. 

For n > 3, the wheel W,,, is defined to be the graph K,+C,. Buckley and 

Harary [BH4] defined the generalized wheel Wn as the graph Ke ECs. 

ewe abl ee 

Figure 1.23 A wheel and a generalized wheel. 

An operation used in recent work on distance introduced by Akiyama 

and Harary [AH2] is the sequential join. For three or more disjoint graphs 
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G1, G2,...,Gn, the sequential join 

Gy + Goet:::+Gnr 

is the graph 

(Gi + G2) U (G2 + G3) U--+U (Gn-1 + Gn). 

The graphs K,+C4+J4q and K,+ 41+ 43+, are shown in Figure 1.24. 

Mullen Ri +K, HRA tK, 

Figure 1.24 Two sequential joins. 

Powers of a Graph 

The square G? of a graph G introduced by Harary and Ross [HR2] has 
V(G?) = V(G) with u,v adjacent in G? whenever d(u,v) < 2 in G. The 
higher powers G?, G*, ... of G are defined similarly. Powers of graphs 

have been studied mostly in connection with hamiltonicity (Chapter 4) 

and chordal graphs (Chapter 2). 

Clique Graphs 

A clique of a graph is a maximal complete subgraph. The clique graph 

Kk(G) of a given graph G has the cliques of G as its nodes and two 
nodes of K(G) are adjacent if the corresponding cliques intersect. Not 
every graph is the clique graph of some graph. Roberts and Spencer [RS1] 

characterized clique graphs: 

Theorem 1.12 A graph G is a clique graph if and only if it contains 

a family F of complete subgraphs whose union is G, such that whenever 

every pair of such complete graphs in some subfamily F’ have a nonempty 

intersection, the intersection of all the members of F’ is not empty. O 
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Figure 1.25 Graphs and their line graphs. 

Line Graphs 

Let graph G have at least one edge. The set of nodes of line graph of G, 

denoted L(G) consists of the edges of G with two nodes of L(G) adjacent 
whenever the corresponding edges of G' are. Two examples of graphs and 

their line graphs are given in Figure 1.25. Note that in this figure Gz = 

L(G), so that L(G2) = L(L(G4)). We write L?(G) = L(L(G)), and in 
general the iterated line graph L"(G) = L(L""\(G)). 

A graph G is a line graph if it is isomorphic to the line graph L(H) 
of some graph H. For example K4 — e is a line graph; see Figure 1.25. 

On the other hand, we now verify that K13 is not a line graph. Assume 

K1,3 = L(H). Then # has four edges a,b,c,d since K 1,3 has four nodes. In 

H one of the edges, say a, is adjacent with the other three edges, while 

none of b,c,d are adjacent. Since a has only two endnodes, at least one 

pair of b,c,d must be adjacent to a at a single node, making that pair of 

edges adjacent to one another as well, a contradiction. So K13 is not a 

line graph. By the same reasoning /y,3 cannot be an induced subgraph 
or a line graph. The first characterization of line graphs is due to Krausz 

[K5]. 
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Theorem 1.13 A graph G is a line graph if and only if the edges of G 

can be partitioned into complete subgraphs in such a way that no node 

lies in more than two of the subgraphs. 

Proof Let G be the line graph of H. Without loss of generality, we assume 

that H has no isolated nodes. Then the edges in the star at each node 
of H induce a complete subgraph of G and every edge lies in exactly one 

such subgraph. Since each edge of H belongs to the stars of exactly two 

nodes of H, no node of G is in more than two of the complete subgraphs. 

Given a partition of the edges of a graph G into complete subgraphs 

S1,59,.--,5, such that no node lies in more than two of the subgraphs, 

we construct a graph H whose line graph is G. The nodes of H correspond 

to the set S of subgraphs $1, S2,...,5, together with the set U of nodes 

belonging to only one of the subgraphs S;. Thus S UU is the node set 
of H and two of these nodes are adjacent whenever they have nonempty 

intersection. i) 

A triangle T of a graph G is called odd if there is a node of G adjacent 

to an odd number of its nodes, and is even otherwise. Another character- 

ization of line graphs is given in the following theorem due to vanRooij 

and Wilf [RW1]. 

Theorem 1.14 G isa line graph if and only if 

1. 44,3 is not an induced subgraph of G, and 

2. if K4—e is an induced subgraph of G, then at least one of the two 

triangles in A’4 — e is even. D 

Beineke [B3] displayed exactly those subgraphs which cannot occur 

as an induced subgraph of any line graph. This result can be proved by 

using Theorem 1.14. 

Corollary 1.14 Graph G is a line graph if and only if none of the 
nine graphs of Figure 1.26 is an induced subgraph of G. 

Proof (Outline). Using Theorem 1.14, we see that K1,3 is not an induced 
subgraph of a line graph G.. Suppose [4 —€ is an induced subgraph of G. 
Then to find other forbidden subgraphs, check possible adjacencies among 
nodes in G with nodes of K’4 — e which would make both of its triangles 



14 GRAPH CLASSES AND OPERATIONS 29 

YOO? 
290] OX 

Figure 1.26 The nine forbidden induced subgraphs for line graphs. 

odd, contradicting condition 2 of Theorem 1.14. For example, if some 

node v is adjacent to both of the nodes of degree two in K4 — e and 

no others, then both triangles are odd so G is not a line graph. In this 

case, we get the second graph of Figure 1.26 as a forbidden subgraph. If 

a node v is adjacent to all the nodes of K4 — e, again both triangles are 

odd so G is not a line graph and we find the third forbidden subgraph. 

If nodes wu and v are each adjacent to one of the nodes of degree 2 and 
no other nodes in IC4 — e, both triangles are odd so G is not a line graph 

and we find the fourth forbidden subgraph. Each of the other forbidden 

subgraphs is found in a similar manner using Theorem 1.14. i) 

EXERCISES 1.4 

Draw the 4-cube Q4. 

2. Prove or disprove: If G, and G2 are regular, then so is 

a. G + G2 Ds Gi x G2 c. G1 0 G2. 

3. Prove or disprove: If G, and G2 are bipartite, then so is 

a. G1+G2 b.Gix'Go c.G10G2. 

4. Construct the following graphs. 
a. K3 + Ve De Pax K3 C. P3 O ky 3. 

5. Prove or disprove: 

AG Gs = Ci +Go baGiecGr = CLxXG 
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13. 

14. 

15. 

1 Graphs 

For the graph G = Ky+K1+P3+44, construct each of the following: 

a.G b. G? c. L(G). 
If d(u,v) = m in G, what is d(u, v) in the nth power G"? 

A graph G and its complement G are both connected if and only if 

no complete bipartite graph spans G or G. 

If v is a cutnode of G, then v is not a cutnode of G. 

(Harary [H5]) 

The square of every nontrivial connected graph is nonseparable. 

Graph G is a tree if and only if Gis not K3U/y or K3UK2, p= qt1, 

and if any two nonadjacent nodes of G are joined by an edge e, then 

G +e has exactly one cycle. 

If G is a graph whose nodes have degrees d;, then the number of 

edges in the line graph L(G) is $ )> di(d; — 1). 

Two regular graphs G and H of the same size whose line graphs also 

have the same size are of the same degree and have the same order. 

If G is k-regular with p nodes, then the number of edges in the 

iterated line graph L"(G) is given by 

(p/2"*") TI i) aD), 
j=l 

A graph is semiregular if each node has one of two possible degrees d, 

or d2. If L(G) is regular, then either G is regular or G is a semiregular 
bipartite graph in which all nodes in each partite set have the same 

degree. (Ray-Chaudhuri [R2]) 

FURTHER RESULTS 

Other graphs operations such as the conjunction of two graphs are devel- 
oped in Harary and Wilcox [HW1] as boolean operations. For additional 
references to other graph operations, see Harary [H14]. 



CHAPTER pe 

Centers 

Facility location problems deal with the task of choosing a site subject to 

some criterion. For example, in determining where to locate an emergency 

facility such as a hospital or fire station, we would like to minimize the re- 
sponse time between the facility and the location of a possible emergency. 

In deciding the position for a service facility such as a post office, power 

station, or employment office, we want to minimize the total travel time 

for all people in the district. When constructing a railroad line, pipeline, 

or superhighway, we want to minimize the distance from the new struc- 

ture to each of the communities to be served. Each of these situations 

deals with the concept of centrality. However, the type of center differs 

for each of the three examples mentioned. Centrality questions are now 

examined using graphs and distance concepts. We shall see that various 

kinds of center are useful in facility location problems. 

215 1 HE -CENLERSAND ECCENTRICITY 

Let G be a connected graph and let v be a node of G. The eccentricity 

e(v) of v is the distance to a node farthest from v. Thus 

e(v) = max{d(u,v): ue V}. 

31 



92 2 Centers 

Figure 2.1 A graph and its eccentricities. 

The radius r(G) is the minimum eccentricity of the nodes, whereas the 
diameter d(G) is the maximum eccentricity. Now v is a central node if 
e(v) = r(G), and the center C(G) is the set of all central nodes. Thus, 
the center consists of all nodes having minimum eccentricity. Node v is 

a peripheral node if e(v) = d(G), and the periphery is the set of all such 
nodes. For a node v, each node at distance e(v) from v is an eccentric node 
for v. These concepts are illustrated in Figure 2.1 where the eccentricity 

of each node is shown in parenthesis. Graph G has radius 2, diameter 4 

and central nodes d and g; nodes f and 7 are eccentric nodes for e. 

A basic result concerning centers is the classical theorem of Jordan 

[J2]. When p(T) > 3, let T’ be the subtree of T obtained by removing 
all endnodes of T. A caterpillar is a tree for which the nodes that are 

not endnodes induce a path. In Figure 2.2, a tree T and its subtree T” is 
shown, and T” is a caterpillar. 

Theorem 2.1 The center of a tree consists of either a single node or a 
pair of adjacent nodes. 

Proof The result is trivial for the trees Ky, and K2. We show that any 

other tree T has the same center as the tree JT’. Clearly, for each node v 

of T, only an endnode can be an eccentric node for v. Thus, the eccen- 

tricity of each node in T’ will be exactly one less than the eccentricity 

of the same node in JT’. Hence the nodes with minimum eccentricity in 

T’ are the same nodes of minimum eccentricity in T, that is T and T’ 

have the same center. If the process of removing endnodes is repeated, 

we obtain successive trees having the same center as T. Since T is finite, 
we eventually obtain a subtree of T which is either Ky or Ko. In either 
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| 
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Figure 2.2 A tree T and its endnode deleted subtree T’. 

case, the nodes in this ultimate tree constitute the center of T which thus 

consists of a single node or a pair of adjacent nodes. D 

A tree with one central node is called a central tree and one with two 

central nodes is called bicentral. 

Figure 2.3 A central tree T and a bicentral tree dbp 

Recent work on centers has dealt with structure (what the subgraphs 

induced by the center look like), facility location (determining where to 

locate emergency and service facilities), embedding (determining when a 
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supergraph G can be built around a graph H so that the nodes of H 

are precisely the central nodes of G), and central ratio (the ratio of the 

number of nodes in C(G) the order of V(G)). The following generalization 

of Theorem 2.1 due to Harary and Norman [HN3] has been of fundamental 

importance in current centrality research. 

Theorem 2.2 The center C(G) of any connected graph G lies within a 

block of G. 

Proof Suppose the center C(G) of a connected graph G lies in more 

than one block. Then G contains a cutnode v such that G—v has compo- 

nents G, and G2 each of which contains a central node of G. Let u be an ec- 

centric node of v and let P be a u-v path of length e(v). Then v contains no 
node from at least one of G, and G2, say G;. Let w be a central node of Gy 

and let P’ be a w-v geodesic in G. Then e(w) > d(w, v)+d(v, u) > 1+e(v). 
So w is not a central node, a contradiction. Thus all central nodes must 

lie in a single block. D 

The Centroid 

A branch at a node v of a tree T is a maximal subtree containing v as 

an endnode. Thus, the number of branches at v is degv. The weight at 

a node v of T is the maximum number of edges in any branch at v. The 

weights at the nonendnodes of the tree in Figure 2.4 are indicated. Of 

course, the weight at each endnode is 13, the number of edges. 

A node v is a centroid node of a tree T if v has minimum weight, 

and the centroid of T consists of all such nodes. Centroids have not been 

widely studied because, until recently, they were only defined for trees, and 

a theorem of Zelinka [Z4, Theorem 2.11] shows that their examination for 
trees would in some sense be redundant. Jordan also studied the centroid 

for trees and proved the following [J2]. 

Theorem 2.3 Every tree has a centroid consisting of either one node 

or two adjacent nodes. D 

Slater [S15] extended the concept of a centroid so that it is defined 
for all connected graphs. For a given pair of nodes u and », let c(u) be 
the number of nodes which are closer to u than to v, and let c(v) be the 
number of nodes which are closer to v than to u. Let f(u,v) = c(u) —c(v) 
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Figure 2.4 The weights at the nodes of a tree. 

and let g(u) = do ,cy_, f(u,v). The centroid of a graph G is the set of all 
nodes for which g(w) is maximum. 

Structural Results 

A graph is planar if it can be drawn in the plane with no crossing edges. 

Two graphs are homeomorphic if they can both be obtained from the 
same graph by a sequence of subdivisions of edges. For example, any two 

cycles are homeomorphic, and a graph homeomorphic to K,4 is displayed 

in Figure 2.5. Perhaps the most well-known structural result in all of 

graph theory is the celebrated theorem of Kuratowski [K8] which states 
that a graph is planar if and only if it has no subgraph homeomorphic to 

Ks or K3.3. 

z x 

Figure 2.5 A homeomorph of 4. 

The central subgraph (C(G)) of a graph G is the subgraph induced 
by the center. Theorem 2.1 gives the structure of the central subgraph of 

a tree. A structural result for centers is of the following form: if G is a 

certain type of graph, e.g., planar or unicyclic, then the central subgraph 
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Figure 2.6 Central subgraphs of maximal outerplanar graphs. 

of G must have a particular structure. Jordan’s result asserts that if T is 

a tree, then (C(T)) is isomorphic to Ky or K2. 

A graph is outerplanar, as defined by Chartrand and Harary [CH2], if 

it can be drawn in the plane with all nodes in the exterior boundary (face); 

it is mazimal outerplanar if no edge can be added without destroying its 

outerplanar property. The next structural result on centers after Jordan 

(1869) was published by Proskurowski [P10] in 1980! 

Theorem 2.4 If G is a maximal outerplanar graph, then its central 

subgraph (C(G)) is isomorphic to one of the seven graphs in Figure 2.6. 
0 

A graph is chordal if every cycle of length greater than 3 has a chord. 

Every tree is (vacuously) a chordal graph and a maximal outerplanar 

graph is also chordal. The structure of the central subgraph has also been 

considered for chordal graphs by Laskar and Shier [LS1], and for other 
classes by Hedetniemi and Hedetniemi [HH3], and Hedetniemi, Hedet- 
niemi, and Slater [HHS1]. 

Embedding and center size problems are discussed in the next section. 
Facility location problems involve algorithms for determining which nodes 

are central, so these problems will be discussed in Chapter 11 on Graph 

Algorithms. 

Eccentricity 

When an edge is added to a graph, the eccentricities of the nodes may be 

affected. A theorem of Ore [03] tells precisely when the diameter decreases 

no matter where an edge is added. A graph G is diameter-mazimal if for 
any edge e € E(G), d(G +e) < d(G). 
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Theorem 2.5 A connected graph G is diameter-maximal if and only if 

1. G has a unique pair of eccentric peripheral nodes u and », 

2. the set of nodes at each distance & from u induces a complete graph, 
and 

3. every node at distance k is adjacent to every node at distance k + 1. 

A disconnected graph G is diameter-maximal if and only if G = K,UKn. 

0 

Note that the structure of a connected diameter-maximal graph G 

can be described in terms of a sequential join. For some d — 1 positive 

integers a;, G has the form 

Tels ets Kevctre te Kees 

A graph G is a unique eccentric node graph (u.e.n.) if each node 

in G has exactly one eccentric node. This concept was defined by Nan- 

dakumar an Parthasarathy [NP1] whose characterization of self-centered 
u.e.n. graphs will be given later, but now we display a simpler result. 

Corollary 2.5 Every diameter-maximal graph with odd diameter is a 

u.e.n. graph. 

Proof Let G be a diameter-maximal graph with odd diameter d. By 

Theorem 2.5, G has two peripheral nodes u and v. For each node w in G 

with d(u,w) > (d+ 1)/2, u is its unique eccentric node; v is the unique 
eccentric node for all other nodes in G. Thus G is a u.e.n. graph. a 

EXERCISES 2a1 

1. For any connected graph G, the radius and diameter satisfy 

r(G) < d(G) < 2r(G). 
2. For any two positive integers m and n such that m < n < 2m there 

is a connected graph G with r(G) = m and d(G) = n. 

3. A tree T has just one central node if and only if d(T) = 2r(T). 

4. Although a connected graph G satisfies d(G) < 2r(G), the same 

is not true for digraphs. Construct a strongly connected digraph D 

with r(D) = 2 and d(D) = 5. 
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5. Construct all u.e.n. graphs of order 5 and 6. 

6. Every u.e.n. graph G, d(G) < 2r(G) - 1. 

7. A tree T is au.e.n. graph if and only if it has two central nodes and 

two peripheral nodes. (Nandakumar and Parthasarathy [NP1]) 

8. The minimum number of edges in a nonseparable graph with diame- 

terd > 1is 4 if p = 2d = 4, and is [(pd— 2d—1)/(d—1)] otherwise. 
(Buckley [B21]) 

9. A tree T satisfies C(T) = V(T) — C(T) if and only if d(T) = 3. 
(Buckley [B23]) 

10. If C is an even cycle in G and S$ is any subset of V(G), then there 
exists a unicyclic subgraph of G with cycle C and center S. 

(Hedetniemi and Hedetniemi [HH3]) 

11. If G is regular with diameter 3, then d(G) = 2. 

12. If G is a connected chordal graph, then (C(G)) is connected and 
chordal. (Laskar and Shier [LS1]) 

2.2 SELF-CENTERED GRAPHS 

Some graphs G have the property that each node of G is a central node. 

A graph is self-centered if every node is in the center. Thus, in a self- 

centered graph G all nodes have the same eccentricity, so r(G) = d(G). 
In this section, we discuss self-centered graphs as well as the problem of 

embedding a graph G in a supergraph H such that (C(H)) = G. Buckley 

[B21] determined the extremal sizes of a connected self-centered graph 
having p nodes and radius r, anticipating a question of Bermond and 

Bollobads [BB1]. 

Theorem 2.6 Let p > 5 and p > 2r > 2. Then there exists a self- 

centered connected (p,q)-graph with radius r if and only if 

[(pr — 2r —1)/(r— 1)] S$ 9 < (p” — 4pr + 5p + 41” — Gr)/2. 
If p = 2r = 4 then q must be 4. a) 

Corollary 2.6 If G is a self-centered (p,q)-graph with radius 2, then 

q > 2p-—5. 0 

The double star Sin, is a tree of the form KA Keka ke lie 

graph K3(a,b,c) is formed by joining a,b, and c end edges to the 3 nodes 
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Figure 2.7 Minimal self-centered graphs with given radius. 

of K3. Akiyama, Ando, and Avis [AAA1] used Corollary 2.6 to obtain 
a structural characterization of the self-centered graphs shown in Figure 
2.8 with p nodes and radius 2 of minimum size. 

Pi 
é 

; 

Figure 2.8 Minimum sized self-centered graphs with radius 2. 

Theorem 2.7 If G is a self-centered graph of order p with radius 2 of 

minimum size, then G is one of the following: 

1. The Petersen graph, 

2. The graph obtained from a double star S;,,, by adding a new node v 
and joining v to every endnode of Sinn, 

3. The graph obtained from any K3(a,b,c) by joining a new node w to 
each endnode of this K3(a, b,c). 0 
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Laskar and Shier [LS1] showed that the radius of a connected chordal 

graph is “almost” determined by its diameter. 

Theorem 2.8 If G is a connected chordal graph, then 

d/Paoreal 2k D 

Corollary 2.8 If G is a connected, self-centered, chordal graph with 

radius 7. then 7 — 1 or 2. 

Proof Since G is self-centered, r(G) = d(G). When r is even, Theo- 
rem 2.8 gives r < r/2 +1, so r = 2. In the same way, we get r = 1 when 

r is odd. D 

Nandakumar and Parthasarathy [NP1] obtained the following charac- 
terization. 

Theorem 2.9 A u.e.n. graph G is self-centered if and only if each node 

of G is eccentric. 

Proof Let G be a self-centered u.e.n. graph. For an arbitrary node v, 

denote its eccentric node by v*, so d(v, v*) = r(G). Then v is the eccentric 
node for v*. Thus, each node of G is an eccentric node. 

For the converse, we are given that each node v of a u.e.n. graph G is 

an eccentric node. We first show that (v*)* = v. Suppose not, and without 

loss of generality, assume wu has least eccentricity among eccentric nodes 

v. Then u = 2” for some node z. Note that e(r) < e(u). If e(z) = e(u) 
then u* = x so (u*)* = z* = u, a contradiction. Thus assume e(z) < e(u). 
Then (z*)* = u* # x and e(z) < e(u) contrary to the choice of u. Thus 
(v*)* = v for each v in G and e(v) = e(2*). 

Suppose r(G) < d(G). Then some pair of adjacent nodes w and v 
satisfy e(w) < e(v). Their eccentric nodes satisfy 
e(w*) = e(w) < e(v) = e(v*), so w* and v* are distinct. Since w* is unique 
for w, d(w,v*) < d(w, w*) which gives 

d(v, v") < d(v, w) + d(w, v*) = 1+ d(w, v*) < 1+ d(w,u”*). 

So e(v) = d(v,v*) < 1+ d(w,w*) = 1+ e(w). Since e(w) and e(v) are 
integers, e(v) < e(w), a contradiction. Hence we must have r(G) = d(G), 
that is, G is self-centered. D0 
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Embedding Problems 

It is quite easy to embed, as an induced subgraph, any graph G in a super- 

graph H such that (C'(/)) is isomorphic to G. Indeed, for any graph G, 
the sequential join H = Ki + Ki +G+ Kk, + Ky satisfies (C(H)) = G. 
Thus, at most four additional nodes are required for the embedding. Let 

f(G) be the minimum number of additional nodes required to embed G 
as the central subgraph of a supergraph H. Then f(G) < 4, and f(G) = 0 
if and only if G is self-centered. Buckley, Miller, and Slater [BMS1] char- 
acterized trees that require 7 additional nodes, 0 < i < 4 in such an 

embedding. 

Theorem 2.10 ForatreeT, f(T) = 0 only for T = Ky or K2; f(T) #1 
or 3. If p > 3, then f(T) = 2 if and only if all endnodes of T have the 

same eccentricity. D 

Clearly, f(G) # 1 for any graph since a diametral path in the super- 

graph H has two endnodes. Bielak [B7] and Chen [C8] found the first 
examples of graphs G for which f(G) = 3, and Liu [L6] constructed infi- 
nite classes of such graphs. 

Besides simply embedding G as the central subgraph of a super- 

graph H, we may require that H have some prescribed property, for 

example, H is k-regular. Such questions were also studied in [BMS1]. 

EXERCISES 2.2 

1. Draw aconnected graph G for which (C(G)) is not connected. What 

is the smallest such graph? 

2. Every connected self-centered graph satisfies the inequality 

A <p-—2r+2. (Akiyama, Ando, and Avis [AAA2]) 

3. If G is self-centered with radius 2 then so is Ge 

4. If Gy and G2 are self-centered with radii r; and r2, then the cartesian 

product G X Gz is self-centered with radius r; + 72. 

5. Construct a self-centered, self-complementary graph with eight 

nodes. 

6. If Gis agraph with p > 9 and k > p+1 then there exists a k-regular 

graph H for which (C(H)) = G. 
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7. IfGisau.e.n. graph with radius 3, then G is either diameter-maximal 

or self-centered. (Nandakumar and Parthasarathy [NP1]) 

8. Construct a unicyclic graph G which requires exactly three additional 

nodes in a supergraph H for which (C(H)) = G. 

9. If Gis a self-centered with radius r > 3, then G is self-centered with 

radius 2. 

2.3 THE MEDIAN 

The center of a graph is important in applications involving emergency 

facilities where response time (distance) to each single location (node) 
in the region (graph) is critical. Suppose, instead, we consider a service 

facility such as a post office, shopping mall, bank, or power station. When 

deciding where to locate a post office, we want to minimize the average 

distance that a person serviced by the post office must travel. This is 

equivalent to minimizing the total distance traveled by all people within 

the district. 

A new shopping mall should be situated so as to minimize the total 

distance to all of the customers in the region. This would make traveling 

to the mall as convenient as possible for their average customer. 

Power stations, banks, and other general service facilities should be lo- 

cated so that the total distance is minimized. This second type of problem 

is the subject of the present section. 

Let G be a connected graph. The status s(v) of a node v in G is the 
sum of the distances from v to each other node in G. This concept was 

introduced by Harary [H6]. The median M(G) of a graph G is the set of 
nodes with minimum status. The minimum status ms(G) of a graph G 
is the value of the minimum status; the total status ts(G) is the sum of 
all the status values. These concepts are illustrated in Figure 2.9. The 

number near each node is its status. The minimum status of G is 8, the 

total status is 70, and the median consists of nodes ), d, and e. 

The following result of Zelinka [Z4] showed that studying the centroid 
of a tree is equivalent to studying the median of a tree. 

Theorem 2.11 Node v is a centroid node of a tree T if and only if it is 

a median node. a) 
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8 

Figure 2.9 A graph and its statuses. 

Thus Theorem 2.3 and Theorem 2.11 together imply that the median 

of a tree consists of either a single node or a pair of adjacent nodes. This 

also follows from the next more general result of Truszczynski [T10]. 

Theorem 2.12 The median M(G) of any connected graph G lies within 
a block of G. 0 

Entringer, Jackson, and Snyder [EJS1] found the range of s(v) in a 
connected (p, q)-graph. 

Theorem 2.13 For each node v of a connected (p,q)-graph G, 

Ped ss) S(p— Vp Pay? —q 

and these bounds can be achieved for each g,p—1l<q< ia) 

Proof The easy lower bound is achieved by any (p,q)-graph with some 
node having degree p—1. We use induction on q to prove the upper bound 

holds. Since G is connected, begin with g = p—1, so G is a tree. For any 

node v, let d; be the number of nodes at distance 2 from v. Then 

s(v) = ina; and Sea, =p-l. 

Note that if d; = 0, then d;,, = 0. Thus the sum > 2d; is maximum when 

d; = 1 for each 1, so that 

5 id; = np) _@ = L)(pt 2) a (p Zs 1). s(v) = : 
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By the inductive hypothesis, the upper bound holds for any connected 

(p,q)-graph. Let v be a node in a connected (p,q+1)-graph G. Then G is 
not a tree, so it contains a cycle. Let u be a node in a cycle C’ such that 

d(u,v) is minimum for such nodes (uw is v if v is on a cycle). Let w be a 
node on C' adjacent to u and consider G — uw. This graph is a connected 
(p,q)-graph. Because of the choice of u as a closest node to v in a cycle, 

d(v,w) is greater in G — uw than in G. By the inductive hypothesis, 

(Bie Die eae ee) = 1 s(v) < -1+ 

so the upper bound holds. 

To show that the upper bound can be achieved for each value of q, 

p-l<q< (ei let ¢ be the largest integer for which 

n=q—p+t+1-—t(t —3)/2 is nonnegative. Let G be the sequential join 

Kye hg a iG, a 

where there are (p — t)X,’s. This graph has p nodes and 

-t-r4nt(S) +ne— m4 ("9") 

edges. After simplifying and substituting for n, we find G is a (p,q)-graph. 
The node v of degree 1 in G has status 

p—t—-1 

s(v) = S> i+ (p—t)nt (pt 1)(t- 2) 
oil 

- (B= 1) +2) Sa ane o 

In the same paper [EJS1], the following result is proven concerning 
the total status of a graph and its complement. 

Theorem 2.14 For any graph G, ts(G) + ts(G) > 3p(p — 1) and this 
bound is best possible for p > 5. 0 

Self-Median Graphs 

Analogous to self-centered graphs are the self-median graphs in which 
all nodes have the same status. Sabidussi [$2] noted that it is easy to 
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Ke bi Kad 

Figure 2.10 A self-median graph. 

construct nonregular self-median graphs with radius r for any odd r > 3. 

His graphs have relatively few edges and have degree set {2,3,4}. If there 

is no restriction on the radius, we can construct nonregular self-median 
graphs with A — 6 arbitrary large. Begin with C,, and two disjoint copies 

of K(n—7). Then join each node of C,, to n — 7 nodes in each K,(,_7) so 

that each node in each K,,,_7) is adjacent to precisely one node of the 

cycle. See Figure 2.10. 

A highly symmetric class of regular graphs, called distance-degree reg- 

ular graphs, were defined and examined by Bloom, Kennedy, and Quin- 

tas [BKQ1]. These graphs will be discussed in Chapter 9 where we will 
see that in addition to their symmetry properties, such graphs are self- 

centered and self-median. 

Embeddings 

The median subgraph of a graph G is the induced subgraph (M(G)). 
Slater [S14] showed how to embed any graph G in a supergraph H so that 
(M(H)) = G. If G is disconnected, then all nodes in G have the same sta- 
tus (00), so G is self-median and no embedding is required. Thus, we may 

restrict attention to connected graphs. Miller [M7] later simplified Slater’s 
construction by producing for any graph G with p nodes a supergraph H 

with at most 2p nodes so that (M(H)) = G. 
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Theorem 2.15 Every graph G has a supergraph H whose median sub- 

graph is isomorphic to G. 

Proof Let V(G) = {v1v2--+vp}. Then form H as follows: add p new 

nodes v1v;--:v, then join v'; to v; and to all nodes of G not adjacent 

to v;. It is easy to check that in H, s(v;) = 3p—2 while s(v’;) = 3p—2+d;, 
where d; is the degree of v; in G. Since dj > 1, (M(H)) =G. D 

EXERCISES 2.3 

1. Determine the status of each node in the following graphs: 

a. Kp {ey a Colt Ci Peal ere 
Determine the total status for each graph. Which of these graphs are 

self-median? 

2. The graph G in Figure 2.10 has two types of nodes — those from C, 

and those from some IC,,(,-7). Determine the status for each type of 

node to verify that G is self-median. 

3. If u and v are adjacent nodes in a connected graph G, and z,y are 

the numbers of nodes closer to u than v, or to v than u, respectively, 

then s(u) — s(v) = y—&. 

4. Every cube Q, is self-median. 

Construct graphs to illustrate each of the following: 

a. The median subgraph may be disconnected. 

b. A shortest path joining a minimum status node and a maximum 

status node need not contain a central node. 

c. There exists two different graphs of order 5 which have the same 
status list for their nodes. 

6. An edge e of aconnected graph G is a bridge if and only if each node 
of G has smaller status in G than in G — e. 

(Entringer, Jackson, and Snyder [EJS1]) 

7. Let G be a graph formed by a finite number of applications of the 

following operation. Add another C’3 and identify one of its edges 

with an edge already in the graph. Then the median subgraph of G 

is isomorphic to IXy, K, or K3. (Slater [S14]) 

8. Construct a tree with disjoint center and centroid, each having two 
nodes. What is the smallest such tree? 
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2.4 CENTRAL PATHS 

If a superhighway is to be built connecting two major metropolitan areas 

so that it has a total of ten exits serving the towns in between, along what 

path should the highway be built and where should the exits be located 

to be most convenient to the largest number of people? If the towns all 

have the same political clout, the highway will be designed to minimize 

the maximum distance from the various towns to the closest exit. (There 
are other considerations such as cost and terrain which will be considered 

when we study networks in Chapter 11.) 

Many years ago, the New York City Transit Authority had a New 

Routes Program which was designed to install a new subway line to service 

certain areas of Queens, one of the city’s boroughs. If the plan called for 

a subway line with six stations to be built, where should the line and 

stations be located to best serve the people? In this case, there will be 

thousands of individuals using the new subway each day, and we want to 

minimize the sum of the distances that the people travel to the station 

closest to their home. (Since the New York fiscal crisis of the 1970’s, the 
program has shrunk to the point where the line will have two stations 

— Roosevelt Island and Long Island City; the scheduled completion date 

was Fall 1985, and after numerous postponements the opening was last 

scheduled for October 1989.) 

There are other situations such as the installation of natural gas 

pipelines or pipelines for irrigation, where one may want to find a path 

that all nodes in a graph are “close” to. In this section, we discuss several 
concepts which involve minimizing the distance to a path in a graph. 

The Path Center 

Let G be a graph, and let W be a subgraph of G. For any node v in G, 

the distance d(v,W) from v to W is the minimum distance from v to 

a node in W. The eccentricity of W, e(W), is the distance to a node 

farthest from W. Thus e(W) = maxd(v, W) for v in G. We restrict our 

attention to the situation where W is a path in G. More general cases will 

be considered in the next section. A path P is a path center of G if P has 

minimum eccentricity and has minimum length among such paths. For 

the tree in Figure 2.11, paths gfdik and abcdf have eccentricity 3 and 2, 

respectively. The central path is cd with eccentricity 2. 
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Figure 2.11 A tree to illustrate central paths. 

The concept of path center was developed independently by Slater 

[S16] and by Cockayne, Hedetniemi, and Hedetniemi [CHH1]. They ob- 
served that the algorithm for finding the center of a tree is easily adapted 

to find the path center of a tree: 

(1) If the tree is a path, stop. This is the path center. Otherwise, 

(2) Delete all endnodes and go to (1). 

A simple consequence is the following result. 

Theorem 2.16 The path center of a tree T is unique and it contains 
the center C(T). 0 

It is easy to see that a similar statement does not extend from trees to 

graphs. For example, let G be any graph that is the join of two graphs Gj 

and G2 with p; and p2 nodes (Km, is such a graph), so G = G1 + G2. If 

neither G; nor G2 is complete, then G has at least pjp2 path centers — 

simply choose a path of length two with one node from G and the other 

from G2. 

The Path Centroid 

The weight b(W) of a set W of nodes in a graph G is the number of nodes 
in the largest component of G— W. The path centroid of a graph G is a 

path with minimum weight having minimum length among such paths. 

The path centroid of the tree in Figure 2.11 is fd with weight 3. Slater 
[S19] showed that the analogous result to Theorem 2.16 holds for path 
centroids. 
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Theorem 2.17 The path centroid of a tree T is unique and it contains 
the centroid of T. 

Proof Let P bea path centroid and let k be the weight of a centroid node 
in tree T. By Theorem 2.3, the centroid consists of either one node or a 

pair of adjacent nodes. Assume P does not contain the centroid. Then P 

is a subgraph of one of the branches at a centroid node and b(P) > k +1. 
This is a contradiction since the subgraph induced by the centroid is a 

path with smaller branch weight. Thus, any path centroid contains the 

centroid. 

Let W be the centroid of T, and let k be the weight of w € W. Suppose 

(V(T) — W) contains three or more components with k nodes. Since a 
path P through W contains nodes from at most two of these components, 

b(P) > k. In this case, the shortest path is (W). If (V(T) — W) contains 
just two components with k nodes, let u and v be the nodes from those 

components which are adjacent to a node in W. With u and v in the path 

centroid P, b(P) < k, whereas if either wu or v is not in P, then b(P) > k. 
Thus both wu and v are in the path centroid. Note that u and v each have 

minimum weight among nodes adjacent to the centroid. 

Suppose a path P = v,v2---v, is known to be in the path centroid 

of T (n > 2). Let X; be the set of nodes in V(T) — V(P) which are 
adjacent to v;. If u € X, (or X,) and b(u) < b(v) for all v € UX; - 4, 
then P’ = uv,v2---v, has b(P’) < b(P), so u is in the path centroid 
(if u € X, then P’ = v1 v2-++ pu). If uy € X, and uz € X, such that 

b(ui) = b(un) < 6(v) for all v € UXi—{u1, un}, then P! = u,v, 02-++ UnUn 
and both u, and u, are in the path centroid. In all other cases, P cannot 

be extended to a path with smaller weight. We have thus described an 

algorithm to generate the unique path centroid of T. 0 

Cores and Pits 

The status s(P) of a path P in graph G is the sum of the distances 

d(v,V(P)) for all v € V(G). A path with minimum status is a core or 

path median of G. The graph of Figure 2.8 has three cores — abcdfe, 

abcdfg, and abcdfh — each with status 7. Note that unlike the path center 

and path centroid, the core of a nontrivial tree will necessarily contain two 

endnodes of the tree. For each v in G, let t(v) be the maximum difference 

between s(v) and s(P) where P is a nontrivial path with v as an endnode. 

A node v in G for which ¢(v) is minimum is called a pit node and the set 

of such nodes is the pit of G. The pit of the tree in Figure 2.8 is {d}. Note 
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Figure 2.12 A graph to exercise centrally with. 

that the center is {c,d}. It is easy to construct graphs with disjoint pit 

and center. Slater [S16] proved the following result about cores and pits 

of trees. 

Theorem 2.18 Every tree T has a pit consisting of either one node or 

two adjacent nodes, and each core of T contains all its pits. a) 

EXERCISES 2.4 

1. Find all path centers, path centroids, and cores of the graph Go in 

Figure 2.12. Note that path centers and path centroids are unique 

for trees but not for graphs in general. 

Determine the branch weight for each node in Go. 

Find the center, median, centroid, and pit for Go. 

Construct a tree with disjoint center and pit. What is the smallest 

such tree? 

5. Construct a tree with disjoint core and path centroid. What is the 

smallest such tree? 

6. It is not true that the path center of any graph G contains its center. 

2.5 OTHER GENERALIZED CENTERS 

A major new set of retirement communities are being planned for a state 

in the southwest and it is decided that there should be three firehouses to 
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protect the houses within these communities. Where should the county 

locate the firehouses? Since they are emergency facilities, the firehouses 
should be situated to minimize the response time to the farthest point 
being protected. 

Just recently, a major pizza company began opening stores throughout 
New York City. If they plan to open 15 stores, where should they be 

located? Such stores are considered general service facilities. Thus we 
want to situate the stores so that the sum of the distances from each 

customer to the closest store is minimized. 

The central paths of the previous section are one type of general- 

ized center. They are special cases of more general classes of problems — 

n-centers, n-medians, and n-centroids. When locating the set S of 3 fire- 

houses to protect the retirement communities, this is an n-center problem 

(in reality, the county may already have two firehouses but wants to deter- 

mine where to position a third one). A path center is an n-center for which 

the n nodes in S form a path. The problem of where to locate the pizza 

stores is an n-median problem. Here, we discuss n-centers, n-medians, the 

cutting center, the path centrix, and several other generalized centers. 

The Cutting Center 

This topic was introduced by Harary and Ostrand [HO1]. The cutting 
number c(v) of a node v in a connected graph G is the number of pairs of 
nodes {u, w} such that u and w are in different components of G—v. The 
cutting center CC(G) of a graph G is the set of all nodes with maximum 
c(v); a node in CC(G) is called a cutting center node. Clearly, c(v) > 0 if 
and only if v is a cutnode. A graph G with its cutting numbers is displayed 

in Figure 2.13. The cutting center of G is {g}. Cutting centers have been 
studied mainly for trees, where every nonendnode has positive cutting 

number. 

Harary and Ostrand [HO1] described the positioning of cutting center 
nodes for trees. 

Theorem 2.19 The cutting center of a tree T is contained entirely in 

one path of the tree. D 

It has also been shown that there are trees with an arbitrarily large 

cutting center as well as trees with two cutting center nodes which are 

arbitrarily far apart from one another. 
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Figure 2.13 A graph and its cutting numbers. 

Multicenters and Multimedians 

For a graph G of order p, a set S C V(G) is an n-center if |S| = n and 
its eccentricity e(S) is minimum among all n-subsets. Thus, an n-center 
is a set S of n nodes such that every other node is close to S, i.e., to at 

least one of the nodes in S. For a given n, a graph G may have several 
n-centers. For example, the graph G in Figure 2.14 has four 2-centers, 

which are {b,g}, {b,7}, {c,g}, and {c,i}, each having eccentricity 2. 

0 e 

Figure 2.14 A graph with four 2-centers. 

A simple result which produces a lower bound for the eccentricity of 

an n-center of a graph is the following: 

Theorem 2.20 The eccentricity of an n-center of the path P, is: 
[(k — n)/2n}]. 
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Proof Let Py = vyv2---vg and suppose the eccentricity of an n-center 
is m. By being greedy, we may form an n-center as follows: choose One tis 
V3m+2 Usm435 VIm-+44y- ++) U(2j—-1)m4j while the subscripts are less than k. 
Then choose any other n — j nodes. When k is as large as possible for 
a given m and n, we will choose Y(2n-1)m4n Which will be at distance m 
from vx. In this extreme case, each node u of Py has a unique node v 
in the n-center such that d(u,v) < m. There are 2m nodes on the path 
between successive n-center nodes, so 

k<m+(n-1)2m4+n+m=2mn+4+n, 

which gives m > (k — n)/2n. Since m is an integer, we get: 
m = [(k—n)/2n]. Db 

Corollary 2.20 If G has diameter k, then the eccentricity of an 

n-center is at least [(k — n)/2n]. D 

A subset S of V(G) is an n-median of G if |S| = n and its status, 
s(S) = }) d(v,S), is minimum among all n subsets of V(G). For a given 
n, a graph may have several n-medians. The graph G in Figure 2.14 has 
four 2-medians: {b,g}, {c,g}, {d,g}, and {d,7z}, each with status 10. 

The k-Centrum 

Slater [S13] unified the concepts of the center and median of a graph 
by defining the k-centrum. For a node v, define its k-centricity e,(v) as 
the sum of the distances to the k nodes farthest from v. The k-centrum 

C(G;k) of a graph G is the set of nodes for which e,(v) is minimum. Note 
that C(G;1) is the center of G and C(G;p) is the median. The graph of 
Figure 2.15 has center {b,c,g,7} and 3-centrum {c}. 

Recently, Reid [R4] introduced a related but distinct concept, which 
he called the k-ball branch weight centroid for trees. For a nonnegative 
integer k and a node v in a tree, the k-ball branch weight 6(v; k) of v is 
the number of nodes in a largest subtree of T all of whose nodes are at 

distance at least k +1 from v. The k-ball branch weight centroid W(T;k) 
of a tree T is the set of all nodes v for which b(v;k) is minimum. Reid 
examined structural properties of the subgraph spanned by W(T;k). 
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Figure 2.15 A graph and its 3-centricities. 

The Accretion Center 

An ordered n-tuple (vj, v2,...,Un) is a sequential labeling of a connected 

graph G if V(G) = {v1, v2,...,0n} and the subgraph induced by 
{v1, V2,...,v;} is connected for each j, 1 < 7 < n. For example, 

(c,e,9, f,b,h,d,i,j,a) is a sequential labeling of the graph in Figure 2.15. 

For each node v, let o(v) be the number of sequential labelings of G which 
use v as the first node in the n-tuple. Vertex v is an accretion center node 

if o(v) is maximum among the nodes in G; the accretion center is the 
set of such nodes. Let ww be a bridge in in G, and let U and W be the 
components of G — {u,w} containing wu and w, respectively. Slater [S17] 
showed that the value of o(u) in G can be determined from the values 
of o(u) in U, o(w) in W, and the number of nodes in U and W, and is 
independent of the structure of the components U and W. Let n, and 
nN, be the number of nodes in U and in W. For a node v in an induced 

subgraph H of G, let o(v; H) be the number of sequential labelings in H 
which use v as the first node. 

Theorem 2.21 Suppose that G is a graph with bridge uw, |V(U)| = nu, 
|V(W)| = ny, and |V(G)| =n = ny + ny. Then 

Ny, —1 
o(ujG) = a(us¥)-(w)-(® 4). O 
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Corollary 2.21 For any tree T, v is an accretion center node if and 

only if it is a centroid node. D 

The Betweenness Center 

Suppose the nodes of a graph G are labeled vj, v2,..., Un. For each pair of 

nodes v; and v;, the 7-7 betweenness value b;;(v,) of a node v; is the ratio 
of the number of v;-v; geodesics which contain v, to the total number 
of v;-v; geodesics. The betweenness value C'p(v,) of v, is the sum of the 
numbers 6;;(v,) over all pairs 7,7. The betweenness center BC(G) of G is 
the set of all nodes with maximum betweenness value; a node in BC'(G) is 
a betweenness center node. The betweenness value of a node indicates its 
potential for control of communication among nodes in the graph. Hage 

and Harary [HH2] used betweenness centrality proposed by Freeman [F 10] 
to analyze the structure of exchange networks among the Caroline Islands 

in the Pacific. 

Figure 2.16 A graph to exercise generalized centers with. 

EXERCISES. 2.5 

1. Find a formula for the cutting number of a node v in tree T in terms 

of the number of nodes in each branch at v. 
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Determine the cutting number of each node in the graph of Figure 

2.16. What is the cutting center of G? 

Find all 2-centers and all 3-centers of the graph in Figure 2.16. 

Find all 2-medians of the graph in Figure 2.16. 

Determine the 2-centricity of each node in Figure 2.16. What is the 

2-centrum of G? 

Find the accretion center of the graph of the graph in Figure 2.16. 

(Hint: Use Theorem 2.21 to help calculate o(v).) 

Determine the betweenness value for each node in the graph of Figure 

2.16. What is the betweenness center? 

The number of sequential labelings beginning at v, o(v;G), is (p—1)! 
if and only if degv = p—1. (Slater [S17]) 

Let T be a tree and k be an integer, 0 < k < r(T). Then the k-ball 
branch weight centroid of T' consists of a single node or a pair of 

adjacent nodes. (Reid [R4]) 

Further Results 

lie The maximum number of edges in a graph with radius r is 

p(p — 1)/2 ifr =1; 
P(p — 2)/2 if m= aand 
(p? — 4rp + 5p+4r? —6r)/2 ifr > 3. 

(Vizing [V1]) 

Let a/b < 1 bea positive rational number in lowest terms. Determine 

the minimum number of nodes and edges in a graph G such that 

|C(G)|/p = a/b. (Note: There are several cases to consider: 
b=at+1;b#a+1landa=1lor2; orb#a+1anda> 2). 

(Buckley [B23]) 
For each node v in a self-centered u.e.n. graph G with radius r, there 
are at least as many nodes at distance r—1 from v as there are 
adjacent to v. (Nandakumar and Parthasarathy [NP1]) 
The path centroid of a tree T contains the cutting center of T. 

(Slater [S16]) 
The path number of a node v in a connected graph G is the number 
of paths that pass through v. For any tree T, the set of nodes with 
maximum path number is the cutting center of T. Also, for all n > 3, 
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there is a tree T having just one node with maximum path number 
Rs (Chinn [C9]) 

6. Let N;,(v) be the set of nodes whose distance is at most k from v. Let 
pr(v) = di{d(v, N,(w) : w € V(G)}. The k-nucleus of a connected 
graph G to be the set of nodes which minimize p;(v). Then the 
k-nucleus of a tree T consists of either a single node or a pair of 

adjacent node if0 <k <r(T). (Slater [S18]) 

Intuitively, one feels that asymptotically half of all trees are central 

and half bicentral. Szekeres [S26] confirmed this for labeled trees; however, 
the problem remains open for unlabeled trees. 

Buckley and Lewinter [BL3] obtained some relationships between the 
periphery and the set of eccentric nodes of a graph. For example, they 

determined tight bounds on the possible value of the diameter in terms of 

the radius for graphs in which no node is eccentric. Gu and Reid [GR1] 
extend that study to obtain all possible set inclusion relationships between 

the two sets. Earlier Bielak and Systo [BS3] completed an analogous 
examination for the relationships between the center and periphery. 

Self-centered graphs were surveyed recently in [B28]. Earlier Plesnik 
[P5] completed a survey of results on the median of graphs and digraphs. 

We have described embedding problems for centers and for medians. 

Holbert [H25] provides constructions combining the two problems. In par- 
ticular, she shows that for graphs F and G and integer k, there is a con- 

nected graph H such that (C(H)) = F, (M(#)) = G, and the distance 
between F and G in H is k. 
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CHAPTER 3 

Connectivity 

Computer and telecommunication networks are often modeled by graphs. 

It is useful to know the reliability of a telecommunications network. That 

is, if one or two pieces of equipment fail, is it still possible for communica- 
tion to proceed uninterupted? Network realiability problems are modeled 

by graphical networks where a number associated with each node and each 

edge represents the probability that the piece of hardware or connecting 

lines will fail. Networks and reliability will be studied in Chapter 12. A 

related concept is vulnerability, which is the susceptibility of a network 

to successful attack by adversaries. Both reliability and vulnerability are 

concerned with the subject of this chapter. 

The connectivity of a graph is a particularly intuitive area of graph 

theory and extends the concepts of cutnode, bridge, and block. Two in- 
variants called connectivity and edge-connectivity are useful in deciding 

which of two graphs is “more connected”. 

There is a rich body of theorems concerning connectivity. Many of 

these are variations of a classical result of Menger, which involves the 

number of disjoint paths connecting a given pair of nodes in a graph. 

We will see that several such variations have been discovered in areas of 

mathematics other than graph theory. 

59 
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3.1 CONNECTIVITY AND EDGE-CONNECTIVITY 

The connectivity & = K(G) of a graph G is the minimum number of 

nodes whose removal results in a disconnected or trivial graph. Thus the 

connectivity of a disconnected graph is 0, while the connectivity of a 

connected graph with a cutnode is 1. The complete graph K, cannot be 

disconnected by removing any number of nodes, but the trivial graph 

results after removing p — 1 nodes; therefore, K(K,) = p— 1. 
Analogously, the edge-connectivity x’ = x'(G) of a graph G is the 

minimum number of edges whose removal results in a disconnected or 

trivial graph. Thus «/(Jv,) = 0 and the edge-connectivity of a discon- 
nected graph is 0, while that of a connected graph with a bridge is 1. 

Connectivity, edge-connectivity and minimum degree are related by an 

inequality due to Whitney [W3]. 

Theorem 3.1 For any graph G, K(G) < «/(G) < 6(G). 

Proof We first verify the second inequality. If G has no edges, then 

«’ = 0. Otherwise, a disconnected graph results when all the edges inci- 

dent with a node of minimum degree are removed. In either case k’ < 6. 

To obtain the first inequality, various cases are considered. If G is dis- 

connected or trivial, then « = k’ = 0. If Gis connected and has a bridge e, 
then «’ = 1. In this case k = 1 since either G has a cutnode incident with 
e or G is Ko. Finally, suppose G has xk’ > 2 edges whose removal discon- 

nects it. Clearly, the removal of k’ — 1 of these edges produces a bridge 

e = uv. For each of these x’ — 1 edges, select an incident node different 

from u or v. If the removal of these nodes produces a disconnected graph 
then « < «’; if not, then e = uv is a bridge, and hence the removal of u 

or v will result in either a disconnected or trivial graph, so K < x’ in every 

case. 0 

Chartrand and Harary [CH3] constructed a family of graphs with 
prescribed connectivities and minimum degree. This result shows that the 

restrictions on kK, k’, and 6 imposed by Theorem 3.1 cannot be improved. 

For example, in Figure 3.1, we have k = 2, k’ = 3, and 6 = 4. 

Theorem 3.2 For all integers a, b, c such that 0 < a < b < c, there 

exists a graph G with K(G) = a, K/(G) = b, and 6(G) =c. 0 

As usual, |z| denotes the greatest integer less than or equal to the 
real number z, and [2] is the least integer greater than or equal to z. 
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Figure 3.1 A graph withO <K<k/ <6. 

Chartrand [C6] pointed out that if 6 is large enough, then the second 
inequality in Theorem 3.1 becomes an equality. 

Theorem 3.3 If a graph G has p nodes and the minimum degree 

6(G) > |p/2], then «'(G) = 6(G). D 

For example, if G is regular of degree r > |p/2], then «’(G) = r. In 

particular «/(K,) = p—1. Boesch and Suffel [BS5,6] extended Theorem 3.3 
by finding a list of six necessary and sufficient conditions for the existence 

of a graph G with given values of p , k, k’ , and 6. 

The analogue of Theorem 3.3 for connectivity does not hold. The 
problem of determining the largest connectivity possible for a graph with 

a given number of nodes and edges was proposed by Berge [B5] and the 

solution given by Harary [H12]. 

Theorem 3.4 Among all graphs with p nodes and q edges, the maxi- 
mum connectivity is 0 when q < p—1, and is |2¢/p| when q > p—1. 

Proof (Outline). Since the sum of the degrees of the nodes in any (p,q)- 
graph is 2q, the average degree is 2q/p. Therefore, 6(G) < |2q/p], so 
K(G') < |2q/p| by Theorem 3.1. To show that this value can actually be 
attained, an appropriate family of graphs can be constructed. D 

The same construction also gives those (p,q)-graphs with maximum 

edge-connectivity. 

Corollary 3.4 The maximum edge-connectivity of a (p, q)-graph equals 

the maximum connectivity. D 
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As noted by Bermond, Bond, Paoli, and Peyrat [BBPP1], the maxi- 

mum connectivity and maximum edge-connectivity graphs are of funda- 

mental importance in the design of minimum cost networks having uni- 

form reliability. An excellent discussion of maximum connectivity graphs 

and network reliability can be found in Boesch [B11,12]. 

n-Connected Graphs 

A graph G is n-connected if K(G) > n and n-edge connected if K/(G) > n. 
Thus a nontrivial graph is 1-connected if and only if it is connected and 2- 

connected if and only if it is nonseparable and has more than one edge. So 

K2 is the only nonseparable graph that is not 2-connected. From Theorem 

1.6, it therefore follows that G is 2-connected if and only if every two nodes 

of G lie on a cycle. Dirac [D6] extended this observation to n-connected 
graphs. 

Theorem 3.5 If G is n-connected, n > 2, then every set of n nodes of 

G lie on a cycle. D0 

By taking G to be the cycle C,, it is seen that the converse is not true 

for n > 2. However, a characterization of 3-connected graphs was given 
by Tutte [T15]. 

Theorem 3.6 A graph G is 3-connected if and only if it is a wheel or 
can be obtained from a wheel by a sequence of operations of the following 
two types: 

1. The addition of a new edge. 

2. The replacement of a node v having degree at least 4 by a pair of 
adjacent nodes v1, v2 such that in the resulting graph, each node is 
joined to exactly one of vj and v2 and deg v; > 3 and deg v2 > 3. O 

We discuss characterizations of n-connected and n-edge connected 
graphs in Section 3.2. 

Connectivity of Line Graphs 

Perhaps because the edge-connectivity of a graph G equals the connectiv- 
ity of its line graph L(G), line graphs have been studied extensively with 
respect to connectivity questions. The following observation of Chartrand 
and Stewart [CS2] was one of the first such results. 
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Theorem 3.7 If G is n-connected, n > 2, then its line graph L(G) is 
also n-connected. 

Proof Let G be n-connected and suppose that «(L(G) < n. Then re- 
moving k < n nodes from L(G) will produce either a disconnected or 
trivial graph. Each node of L(G) corresponds with an edge of G with two 
nodes of Z(G) adjacent if and only if the corresponding edges of G are 
incident. Thus, by removing k < n edges from G, we can produce either 

a disconnected or trivial graph, that is, K/(G) < n. But Theorem 3.1 then 
implies k < k’ < n, a contradiction. So K(L(G)) > n, that is, L(G) is 
n-connected. Oo 

Capobianco and Molluzzo [CM1] asked whether for each pair of in- 
tegers a, b, with 1 < a < b, there exists a graph G with k(G) = a and 

«(L(G)) = 6. Bauer and Tindell [BT 1] constructed appropriate graphs to 
obtain the affirmative answer. 

Theorem 3.8 For all integers a and b, 1 < a < J, there is a graph G 
such that «(G) = a and K(L(G)) = b. D 

EXERCISES 3.1 

1. The connectivity of 

a. The octahedron K, + C4 is 4. 

b. The square of the cycle Cp, p > 5, is 4. 

2. Every n-connected graph has at least pn/2 edges. 

3... Construct a graph with x= 3, Kk’ = 4, 6 = 5. 

4. Given a positive integer n, construct a graph having k = n, 

Manse 16 = 1512: 

5. Determine « and «’ for each of the following: 
a. Cy b. A, C. Win CF es 

6. If Gis cubic, then « = 6. 

7. Theorem 3.3 does not hold if «/(G) is replaced by K(G). 

8. There is no 3-connected graph with seven edges. 

9. If Gis r-regular and « = 1, then k’ < [7/2]. 

10. If G has diameter at most 2, then K'(G) = 6(G). 
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11. If Gis connected, then with the minimum taken over v € V(G), 

K(G) = 1+ mink(G — v). 

(alt K(G) Seren 2 thenrn: (EG) es 2a. (Zamfirescu [Z1]) 

13. If G is n-connected, then the join G + Ky is (n + 1)-connected. 

14. Use Tutte’s Theorem 3.7 to show that the graph of the cube Q3 is 

3-connected. 

3.2 MENGER’S THEOREM 

In 1927 Menger [M5] showed that the connectivity of a graph is related to 
the number of disjoint paths joining two nodes. Many of the variations and 

extensions of Menger’s which have since appeared have been graphical, 

and we discuss some of these here. Further variations of Menger’s Theorem 

will be given in Section 3.3. 
Let u and v be two nodes of a connected graph G. Two paths joining 

u and v are disjoint (sometimes called node-disjoint) if they have no 
nodes other than wu and v (and hence no edges) in common; they are 
edge-disjoint if they have no edges in common. A set S of nodes, edges, 

or both separates u and v if u and v are in different components of G—S. 

Clearly, no set of nodes can separate two adjacent nodes. In Figure 3.2, 

we display a graph with two nonadjacent nodes s and t which can be 

separated by removing three nodes but no fewer. The classical theorem 
of Menger guarantees the existence of three node-disjoint paths joining s 
and ¢. 

Theorem 3.9 The minimum number of nodes separating two nonadja- 

cent nodes s and ¢ equals the maximum number of disjoint s-t paths. 

Proof We follow the elegant proof of Dirac [D8]. It is clear that if k nodes 
separate s and t, then there can be no more than k disjoint paths joining 
s and t. 

It remains to show that if it takes k nodes to separate s and t in G, 

there are k disjoint s-t paths in G. This is certainly true if k = 1. Assume 

it is not true for some k > 1. Let h be the smallest such k, and let F bea 

graph with the minimum number of nodes for which the theorem fails for 

h. We remove edges from F until we obtain a graph G such that h nodes 

are required to separate s and t in G but for any edge e in G, only h—1 

nodes are required to separate s and t in G — e. We first investigate the 
properties of G. 
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Figure 3.2 A graph illustrating Menger’s Theorem. 

By the definition of G, for any edge e of G there exists a set S(e) of 

h — 1 nodes which separates s and t in G— e. Now G — S(e) contains at 
least one s-t path, since it takes h nodes to separate s and t in G. Each 

such s-t path P must contain the edge e = uv since P is not a path in 

G—e.Sou,v ¢ S(e) and if u # s,t, then S(e)U uw separates s and t in G. 

If there is a node w adjacent to both s and ¢t in G, then G—w requires 

h — 1 nodes to separate s and ¢ and so it has h — 1 disjoint s-t paths. 

Replacing w, we have h disjoint s-t paths in G. Thus we have shown: 

(1) No node is adjacent to both s and ¢ in G. 

Let W be any collection of h nodes separating s and t in G. An s-W 

path is a path joining s with some w; € W and containing no other node 

of W. Call the collection of all s-W paths and W —t paths P, and P,, 

respectively. Then each s — t path begins with a member of P, and ends 

with a member of P;, because every such path contains a node of W. 

Moreover, the paths in P, and FP; have only the nodes of W in common, 

since it is clear that each w, is in at least one path in each collection and, 

if some other node were in both an s-W and a W-t path, then there would 

be an s-t path containing no node of W. Finally, either P, -W = {s} 
or P; — W = {t} since, if not, then both P, plus the edges {wyt, wot,...} 
and P,; plus the edges {sw,, sw2,...} are h-connected graphs with fewer 
nodes than G in which s and ¢ are nonadjacent, and therefore in each 

there are h disjoint s — t paths. Combining the s-W and W-t portions of 

these paths, we can construct fh disjoint s-t paths in G, and thus have a 

contradiction. Therefore we have proved: 
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(2) Any collection W of h nodes separating s and ¢ is adjacent either 

TOrsor tort. 

Now we can complete the proof. Let P = {s,u1,u2,...,t} be a short- 

est s-t path in G and let uju2 = x. Note that by (1), u2 # t. Form 

S = {v1,v2,...,0n — 1} as above, separating s and ¢ in G—z. By (1); 

ust ¢ G, so by (2), with W = S(x)U {ui}, sv; € G, for all 7. Thus by (Ch); 

v;t ¢ G, for all i. However, if we pick W = S(x) U {ug} instead, we have 

by (2) that sug € G, contradicting our choice of P as a shortest s-¢ path, 

and completing the proof of the theorem. D 

Chronologically, a first corollary of Menger’s Theorem was published 

by Whitney in a paper [W3] in which he included a criterion for a graph 

to be n-connected. 

Corollary 3.9 A graph G is n-connected if and only if every pair of 

nodes are joined by at least n node-disjoint paths. D0 

To indicate how Whitney’s result follows from Theorems 3.9 we use 

the concept of local connectivity. The local connectivity of two nonadja- 

cent nodes u and v of a graph is denoted by K(u,v) and is defined as 
the smallest number of nodes whose removal separates u and v. In these 

terms, Menger’s Theorem asserts that for any two specific nonadjacent 

nodes wu and v, K(u, v) = fo(u,v), the maximum number of node-disjoint 
paths joining u and v. Obviously, both theorems hold for complete graphs. 

If we are dealing with a graph G which is not complete, then the observa- 
tion which links Theorem 3.9 and its corollary is that K(G) = min K(w, v) 
over all pairs of nonadjacent nodes u and v. 

Strangely enough, the theorem analogous to Theorem 3.9 in which 

the pair of nodes are separated by a set of edges was not discovered until 

much later. There are several nearly simultaneous discoveries of this result 

which appeared in papers by Ford and Fulkerson [FF 1] (as a special case 
of their “max-flow, min-cut” theorem) and Elias, Feinstein, and Shannon 

(EFS1]. 

Theorem 3.10 For any two nodes of a graph, the maximum number 

of edge-disjoint paths joining them equals the minimum number of edges 
which separate them. a) 

Referring again to Figure 3.2, we see that s and t can be separated 
by the removal of 5 edges but no fewer, and that the maximum number 
of edge disjoint s-t paths is 5. 
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Table 3.1 Menger’s Theorem Variations 

Theorem Objects separated Maximum number Minimum number 

a o.9 specific u,v disjoint paths nodes separating u,v 

C. 3.9 general u,v disjoint paths nodes separating u,v 
T. 3.10 specific u,v edge-disjoint paths edges separating u,v 

Even with only these three theorems available, we can see the begin- 

nings of a scheme for classifying them. The difference between Theorems 

3.9 and Corollary 3.9 may be expressed by saying that Theorem 3.9 in- 

volves two specific nodes of a graph, while Corollary 3.9 gives a bound in 

terms of two general nodes. This distinction as well as the obvious one 

between Theorems 3.9 and 3.10 is indicated in Table 3.1. 
Thus we see that with no additional effort we can get another variation 

of Menger’s Theorem by stating the edge form of Whitney’s result. 

Theorem 3.11 A graph is n-edge-connected if and only if every pair of 

nodes are joined by at least n edge-disjoint paths. D 

In Menger’s original paper, there also appeared the following variation 

involving sets of nodes rather than individual nodes. 

Theorem 3.12 For any two disjoint nonempty sets of nodes V; and V2, 

the maximum number of disjoint paths joining V; and V2 is equal to the 

minimum number of nodes which separate V; and V2. D 

Of course it must be specified that no node of Vj is adjacent with a 

node of V> for the same reason as in Theorem 3.9. Two paths joining Vi 

and V> are understood to be disjoint if they have no nodes in common 

other than their endnodes. A proof of the equivalence of Theorems 3.9 

and 3.12 is extremely staighforward and only involves shrinking the sets 

of nodes V; and V2 to individual nodes. 

EXERGISES:3:2 

1. Construct a family of (p,q)-graphs with 2q/p integral such that 

Kis 2d) D: 

2. State the result analogous to Theorem 3.9 for the maximum number 

of disjoint paths joining two adjacent nodes of a graph. 
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3. Every cubic triply-connected graph can be obtained from K’4 by the 

following construction. Replace two distinct edges uyv, and u2v2 

(u,; = ug is permitted) by the subgraph with two new nodes w, 

w2 and the new edges uywy, W101, U2W2, W2v2, and w1W2. 

4. Every block of a connected graph G is a wheel if and only if ¢g = 2p—2 

and K(u,v) = 1 or 3 for any two nonadjacent nodes. 
(Bollobas [B13]) 

5. Given two disjoint paths P, and P2 joining two nodes u and v of a 

3-connected graph G, is it always possible to find a third path joining 

u and v which is disjoint from both P,; and P2? 

If G is n-connected, then the join G + K, is (n + p)-connected. 

For the n-cube Qn, K(Qn) = &'(Qn) = 7 for all n. 

For the cartesian product of two graphs G and H, we have 

K(G x H) > «(G)+ «(H). 

3.3 PROPERTIES OF N-CONNECTED GRAPHS 

A collection of paths of a graph G is an independent set if no two of them 

have a node in common. If each path in an independent set M of paths 

is an edge, then M is a matching for G. Thus a matching in a graph G is 

a set of edges of G, no two of which have a node in common. A number 

of variations of Menger’s Theorem deal with matchings and independent 

paths. One such variation is the next theorem by Dirac [D7]. 

Theorem 3.13 A graph with at least 2n nodes is n-connected if and 
only if for any two disjoint sets V,; and V2 of n nodes each, there exist n 

independent paths joining these two sets of nodes. 

Note that in this theorem these n independent paths do not have any 

nodes at all in common, not even their endnodes! 

Proof ‘To show the sufficiency of the condition, we form the graph G’ 

from G by adding two new nodes w; and w2 with w; adjacent to exactly 

the nodes of V;, 1 = 1,2. (See Figure 3.3.) 

Since G is n-connected, so is G’, and hence by Theorem 3.9 there are 

n disjoint paths joining w; and wg. The restrictions of these paths to G 
are clearly the n independent V\-V2 paths we need. 

To prove the other “half,” let S be a set of at least n — 1 nodes which 
separates G into G, and G2, with node sets V/ and V3, respectively. Then 
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Figure 3.3 Construction of G’. 

since |V;| > 1,|Vj| > 1, and |V/|+|V3|+|5| = |V| > 2n, there is a partition 
of S' into two disjoint subsets || and |5>| such that |V/ U Si| > n and 
|V7 U S| > n. Picking any n-subsets V; of Vj U 5; and V2 of Vj U S2, we 
have two disjoint sets of n nodes each. Every path joining V; and V2 must 

contain a node of S, and since we know there are n independent V;-V2 

paths, we see that |5| > n, and G is n-connected. D 

Further Variations of Menger’s Theorem 

Fulkerson [F14] proved the following variation, which deals with cutsets 
rather than paths. 

Theorem 3.14 In any graph, the maximum number of edge-disjoint 

cutsets of edges separating two nodes u and v is equal to the minimum 

number of edges in a path joining u and v, that is, the distance d(u,v).0 

We now describe several additional variations of Menger’s theorem, all 

discovered independently and only later seen to be related to each other 

and to a graph theoretic formulation. 

Let us define a line of a matriz as either a row or a column. Every 
entry of a binary matriz is 0 or 1. In a binary matrix M, a collection of 

lines is said to cover all the unit entries of M if every 1 is in one of these 

lines. Two 1’s of M are called independent if they are neither in the same 
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row nor in the same column. Kénig [K3] obtained the next variation of 

Menger’s Theorem in these terms. 

Theorem 3.15 In any binary matrix, the maximum number of inde- 

pendent unit elements equals the minimum number of lines that cover all 

the units. O 

CeO set= OF Or e0 0 401-0720. 6 
1 ek | i090. 30 Ure 0 

i= oe Oe ete). od Mo= 10.0 “00.00.7071 

ag eae al Wf St Hp 8 Goi 0 oe 0 0 

O20 e31 0-40 al 00 0 0 0 0 

We illustrate Theorem 3.15 with the binary matrix M above. All the 

unit entries of M are covered by rows 2 and 4 and columns 3 and 6, but 

there is no collection of three lines of M which covers every 1. In the 

matrix M’, four independent unit entries of M are shown and there is no 

such set of five units in M. 

When this matrix M is regarded as an incidence matrix of sets versus 

elements, Theorem 3.15 becomes very closely related to the celebrated 

result of P. Hall [H3]. This provides a criterion for a family of finite sets 
51,52,.--,5m to possess a system of distinct representatives, i.e., a set 

{€1,€2,---,€m} of distinct elements such that e; € 5S; for each 7. 

Theorem 3.16 There exists a system of distinct representatives for a 

family of sets 5, S2,...,5m if and only if the union of any k of these sets 

contains at least k elements, for all k& for 1 to m. 0 

A node and an edge are said to cover each other if they are incident. 
A node cover of a graph G is a set of nodes which together covers all 

the edges of G. The next result due to Kénig [K3] is equivalent to his 
Theorem 3.15. 

Theorem 3.17 If G is bipartite, then the number of edges in a max- 

imum matching equals the minimum number of nodes required to cover 
all the edges of G. z) 

The problem of finding a maximum matching, the so-called matching 
problem, in a general graph will be discussed in detail in Chapter 11 on 
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Graph Algorithms. A matching that covers all the nodes of a graph G is 
called a perfect matching (also called a 1-factor). 

An additional Mengerian type theorem, the “max-flow”, “min-cut” 
theorem due to Ford and Fulkerson will be discussed in detail in Chapter 
12; 

Node Degree and Connectivity 

The following result of Bondy [B17] gives a condition on the degrees of 
the nodes which guarantees that a graph is n-connected. 

Theorem 3.18 Let G be a graph of order p > 2 whose node degrees d; 

satisfy dj < dy <--- < d,. Let n be an integer, 1 <n < p—1. If 

dy, <k+n—2 => dyp-nti 2p k 

for each k such that 1 < k < |(p—n+1)/2], then G is n-connected. 

Proof Suppose G satisfies the conditions of the theorem, but K(G) < n. 
Then there exists a set S of at most n—1 nodes whose removal disconnects 

G. Consider the smallest component H of G—S and call its order k. Then 

k < |(p—n+1)/2] and the largest degree of a node in H is at most 
k+n—2< p—k. Thus dy < k+n-2 and the hypothesis of the theorem 

then implies that dp_n41 > p—k. Since each node in V(G) —- V(H) — S$ 
has degree at most p— k —1 and nodes in H also have degree less than 

p—k, only vertices in S have degree at least p — k. Now since 

dy > dyp-1 > +** > dyp-n4i > p—k, S contains at least n nodes, a 

contradiction. Thus, G is n-connected. 0D 

Boesch [B10] describes the result in Theorem 3.18 as the strongest 
monotone degree condition for n-connectedness of a graph. To see why, 
consider the graph G formed by joining each node of two disjoint complete 

graphssHyr= K,, and Hy = K,-p—-nt1 toeach node eins 2 2k;,<7. For 

u € Hy, v € H2, and w € S, we have deg u = m+n-2, degv = p—m-l, 

deg w = p— 1 (see Figure 3.4). This graph “just fails” the conditions of 
Theorem 3.18 in the following sense. For each k such that 

1<k< |(p—(n—-1)+1)/2], we have 

dy S<k+(n—1)—2 => dy_(n-1)41 2p—k, 
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n Korat 
Figure 3.4 An “almost n-connected” graph. 

so G is (n — 1)-connected. However, when testing the condition of the 
theorem for n-connectivity with this graph, the hypothesis of the theorem 

holds for all k except for the single value k = m. Thus graph G is (n — 1)- 
connected and “almost but not quite” n-connected. 

EXERGISES 333 

Let G be a graph of order p > 2, and let n be an integer where 

1<n<p-1. If for every v € G we have degv > |(p +n — 2)/2], 
then G is n-connected. 

The minimum order of a node cover of G is at least 6(G). 

Prove or disprove: Every node cover of G contains a minimum node 

cover. 

If an n-connected graph G with p even is regular of degree n, then 
G has a perfect matching. (Tutte [T13]) 

Prove the equivalence of Theorems 3.15 and 3.17. 

If G is n-connected, n > 2, and 6(G) > (3n — 1)/2, then there exists 
a node v € G such that G — v is n-connected. 

(Chartrand, Kaugers, and Lick [CKL2]) 
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3.4 CIRCULANTS 

In Section 3.1, we noted that among all graphs with p nodes and q edges, 

q => p—1, the maximum connectivity is |2q/p| and this bound can al- 

ways be attained. A chief reason for the importance of connectivity is its 

relation to the reliability and vulnerability of large-scale computer and 

telecommunication networks. (By vulnerability we mean susceptibility to 

successful attack by adversaries.) For example, on November 18, 1988 the 

major fiber-optic cable used for long distance calls on the east coast was 

inadvertantly severed by a construction crew in New Jersey. This caused 

several hundred thousands of callers to receive a busy signal when the 

phone of the person being called actually was not in use. (See New York 

Times, Nov. 19, 1988, p. 1.) 

Maximum connectivity graphs play an important role in the design 

of reliable networks. In this section we discuss a class of graphs known as 
circulants which contains those graphs. For a given positive integer, let 

11,72,...,N% be a sequence of integers where 

0< ny < ng <---< my < (pt 1)/2. 

Then the circulant graph C,(n1,n2,...,n,~) is the graph on p nodes 
V1, V2,+++,Up With vertex v; adjacent to each vertex jin, (mod p): The 

values n; are called jump sizes. For example, the circulant graphs Cyo(1,3) 

and Cj2(1,2,5) are displayed in Figure 3.5. 

Theorem 3.1 gives the relationship between K(G), «/(G), and 6(G) for 
an arbitrary graph G. Boesch and Tindell [BT2] characterized circulants 

for which k < 6. 

Theorem 3.19 The circulants C,(n1,1n2,...,n,) satisfies K < 6 if and 

only if for some proper divisor m of p, the number of distinct positive 

residues modulo m of the numbers n1,72,-.-.,Nk,P—Mk,---,P— 1 Is less 

than min{m — 1,ém/p}. D 

Boesch and various coauthors considered both the size and struc- 

ture of disconnecting sets of graphs (see [B12] or [BT3]). In one such 

study, Boesch and Wang [BW2] considered x’-optimal graphs. Let Kak 

max k/(G) over all (p,q)-graphs g. Let A be the set of all (p, q)-graphs G 

for which «/(G) = «/*. A graph G* € A is «’-optimal if it has the mini- 

mum number of disconnecting sets of edges of size k’ among all graph in 

A. Boesch and Wang showed that all circulants are «/-optimal except the 

cycles and the graphs C2,(2,4,...,n — 1,) for n odd. 
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Figure 3.5 Two circulant graphs. 

A regular graph with « = 6 for which the only minimum size dis- 

connecting sets of nodes consists of the neighborhoods of single nodes is 

called a super-k graph. Similarly, a regular graph with «’ = 6 for which 

each minimum sized disconnecting sets of edges isolates a single node is 

called a super-x’ graph. Results for these graphs were described in the 

survey by Boesch and Tindell [BT3]. 

Diameter of Circulants 

When designing a communication network, one not only wants to max- 

imize the connectivity and edge-connectivity, but also to minimize the 

diameter as well as the number of edges. By minimizing the diameter, 
transmission times are kept small and the possibility of distortion due to 
a weak signal is avoided. Minimizing the number of edges will keep down 
the cost of building the network. Of course, one cannot have everything. 
That is, in general one cannot simultaneously maximize « and k’ while 
minimizing |E| and d(G). To study this and similar problems, Harary 
[H15] introduced the concept of conditional invariants of a graph. These 
will be discussed in Chapter 6 where we explore extremal problems. 

Determining the diameter of a circulant (or any graph for that matter) 

is a difficult problem. However, Boesch and Wang [BW3] were able to 
determine the minimum diameter among all circulants on p nodes and 

having two jump sizes. 
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Theorem 3.20 Let G = C,(m,m +1) be a circulant on p nodes with 
p > 6 and m = [(-1 + V2p—1)/2]. Then d(G) = m and m is the 
minimum diameter among all circulant graphs C,(1, 22), where pis fixed, 
but n, and ng are arbitrary with ny < ng < p/2. D 

EXERCISES 3.4 

1. A graph G is minimal n-connected if K(G) > n and for any edge 
e € G, K(G — e) < n. Every minimal n-connected graph has a node 
of degree at most |3n/2| — 1. 

(Chartrand, Kaugers, and Lick [CKL2]) 
2. Every minimal 3-connected graph has two nodes of degree 3. 

(Entringer and Slater [ES1}) 

Draw the circulants Cy2(1,3,4) and C2(2, 4,5). 

4. Use Theorem 3.19 to determine the minimum diameter of a circulant 

C20(71, 2), where ni,n2z< p/2. 

5. Determine all lists of jump sizes for which a circulant on 8 nodes is 
connected. 

6. The complement of a circulant is a circulant. 

7. The regular complete n-partite graph Kp n,...n is a circulant. 

8. The circulants C’7(1,2) and C7(1,3) are isomorphic. 
(Turner [T11]}) 

FURTHER RESULTS 

1. Two elements of a lattice (see Birkhoff [B9]) are incomparable if nei- 
ther dominates the other. By a chain in a lattice is meant a down- 

ward path from an upper element to a lower element in the “Hasse 

diagram” of the lattice. Prove: In any finite lattice, the maximum 

number of incomparable elements equals the minimum number of 
chains which include all the elements. (Dilworth [D4]) 

A graph G is k-critically n-connected if for all S C V(G) with |S| < k, 
we have K(G — S') = n—|S|. This concept was introduced by Maurer and 
Slater [MS2]. A survey of results on these graphs was given by Mader 

[M1]. 



76 3 Connectivity 

The edge persistence of a graph is the minimum number of edges that 

must be removed to increase its diameter. Exoo, Harary and Xu [EHX1] 
characterize graphs of diameter four with edge persistence equal to two. 

Network reliability has been a very active area of research. So much 

so that a whole book (Colbourn [C16]) has been written on the subject. 



CHAPTER 4 

Hamiltonicity 

One feature of graph theory that has helped popularize the subject lies in 

its applications to the area of puzzles and games. Sir William Hamilton 

suggested the class of graphs which bears his name with his invention of 
the Around the World Game in the mid 1800’s. The game involved a solid 

dodecahedron, where each of the 20 nodes was labeled with the name of 

a well-known city. The object of the game was to find a round-the-world 
tour along the edges of the dodecahedron which passes through each city 
exactly once and returns to the initial city. 

4.1 NECCESSARY OR SUFFICIENT CONDITIONS 

In his Around the World Game, Hamilton asked for the construction of 

a cycle containing every node of a dodecahedron (its graph was given 
in Figure 1.7). If a graph G has a spanning cycle Z, then G is called a 

hamiltonian graph and Z a hamiltonian cycle. No elegant characterization 

of hamiltonian graphs exists, although several sufficient conditions are 

known as well as a few necessary conditions. Thus, there is no easy test 

to determine whether a given graph is hamiltonian. In fact, determining 

whether an arbitrary graph has a hamiltonian cycle is a standard example 

of an NP-complete problem. More will be said about this in Chapter 11 

17 
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on algorithms. The related traveling salesman problem will be discussed 

in Chapter 12. 
The following theorem, due to Pésa [P8] gives a sufficient condition 

for a graph to be hamiltonian. It generalizes earlier results by Ore and 

Dirac which appear as its corollaries. 

Theorem 4.1 If graph G has p > 3 nodes such that for every n, 

1 <n < p/2, the number of nodes of degree at most n is less than n, then 

G is hamiltonian. 

Proof Assume the theorem does not hold and let G be a maximal non- 

hamiltonian graph with p nodes satisfying the hypothesis of the theorem. 

Obviously, the addition of any edge to a graph satisfying the hypotheses 

of the theorem results in a graph which also satisfies these conditions. 

Thus since the addition of any edge to G results in a hamiltonian graph 
by the maximality of G, any two nonadjacent nodes must be joined by a 

spanning path. 

We first show that every node in G of degree at least (p — 1)/2 is 
adjacent to every node of degree greater than (p—1)/2. Assume (without 
loss of generality) that deg v; > (p—1)/2 and deg v, > p/2, but v; and v, 
are not adjacent. Then there is a spanning path v; v2--- vp, connecting vj 

and vp. Let the nodes adjacent to v, be v;,, v;,,...,Vi,, Where n = deg v1 

and 2 = 11 < i2 < +++ < ty. Clearly v, cannot be adjacent to any node of 

G of the form v;;-1 for otherwise there would be a hamiltonian cycle 

U1 V2 ia a Ui;-1UpUp-1 one “Uj; U1- 

Now since n > (p—1)/2, we have p/2 < degv, < p—1—n < p/2 which 
is impossible, so vj and vp must be adjacent. 

It follows that if degv > p/2 for all nodes v, then G is hamiltonian. 

(This is stated below as Corollary 4.1b.) For the above argument implies 
that every pair of nodes in G are adjacent, so G is complete. But this is 
a contradiction since K, is hamiltonian for all p > 3. 

Therefore there is a node v in G with degu < p/2. Let m be the 
maximum degree among all such nodes and choose 1 so that deg vj = m. 
By hypothesis, the number of nodes of degree not exceeding m is at most 
m < p/2. Thus there must be more than m nodes having degree greater 
than m and hence at least p/2. Therefore there is some node, say Up of 
degree at least p/2 not adjacent to v,. Since v, and Up are not adjacent, 
there is a spanning path v)v2--- vp. As above, we write Op). Visser Ur ae 
the nodes of G adjacent to 1; and note that v, cannot be adjacent to any 
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of the m nodes vi,-1 for 1 < j < m. But since 1, and Up are not adjacent 
and vp has degree at least p/2, m must be less than (p—1)/2, by the first 
part of the proof. Thus, by hypothesis, the number of nodes of degree at 
most m is less than m, and so at least one of the m nodes Vi;-1, Say On 
must have degree at least p/2. We have thus exhibited two nonadjacent 
nodes vp and v’, each having degree at least p/2, a contradiction which 
completes the proof. D 

By specializing Pésa’s Theorem, we obtain simpler but less powerful 
sufficient conditions due to Ore [01] and Dirac [D5], respectively. 

Corollary 4.la If p > 3 and for every pair u and v of nonadjacent 
nodes, deg u + deg v > p, then G is hamiltonian. D 

Corollary 4.1b _ If for all nodes v of G, deg v > p/2, then G is hamil- 
tonian. 0 

It is interesting to note that in the theory of hamiltonian graphs, 

stronger and stronger results have been obtained so that new results sub- 
sume older results as corollaries. Our next theorem, due to Chvatal [C13] 
can be used to prove Theorem 4.1. 

Theorem 4.2 Let G be a graph of order p > 3 with degrees 
At aids <<a, lf 

(4.1) Cp (2 pit, 

then G is hamiltonian. 

Proof Assume the assertion is false and let G be a maximal nonhamilto- 

nian graph which satisfies the hypothesis of the theorem. Let u and v be 

nonadjacent nodes for which deg u+deg v is maximum with deg u < deg v. 
Since G is maximal, G + wv is hamiltonian and there is a spanning u-v 
path v1 v2-+--vp. As in Theorem 4.1, we write v;,, Viz,..., Vim, aS the nodes 

of G adjacent to v; and note that v, cannot be adjacent to any of the 

m nodes v;;-1 for 1 < 7 < m or we would find a hamiltonian cycle. 

This implies that deg v, + degv,p < p, so degv,; < p/2. Since for each 

j, pvi;-1 ¢ E(G) and deg 7 + deg vp is maximum among nonadjacent 
pairs of nodes, deg v;,-1 < deg v. Let deg v; = m. Then the number of 

nodes of degree at most m is at least m, sod, < m < p/2. Thus (4.1) 
implies d,_m > p—m. Thus each d;, p— m <i < p, is at least p — m. 

Since deg v1 = m, vj is adjacent to at most m of these m+ 1 nodes. Thus 



80 4  Hamiltonicity 

there is some node w not adjacent to u = v; with deg w > p— m. Thus 

deg u+ deg w > p > deg u + deg v, contradicting the choice of u and v. O 

It is interesting to compare this result and Bondy’s Theorem 3.18 

about connectivity. Given two degree sequences dy < dz < -:: < dp 

and d, < d, < -:- < dj, we say that the first sequence majorizes the 
second if d; > d; for each 7. As with Bondy’s Theorem, Theorem 4.2 is 

best possible in the following sense. If G is a graph with degree sequence 

d, < dz < --- < d, which does not satisfy (3.1), then there exists a 

nonhamiltonian graph G’ whose degree sequence majorizes that of G. 

Noting the similarity of Bondy’s connectivity result and Chvatal’s 

hamiltonicity result, it is not surprising that together they obtained sev- 

eral interesting results on hamiltonian graphs. The following theorem 
[BC1] is a sample of their collaboration. 

Theorem 4.3 Let u and v be distinct nonadjacent nodes in a graph G 

of order p. If deg u + deg v > p, then G + uv is hamiltonian if and only if 

G is hamiltonian. 0 

One can then define the closure cl(G) of a graph G as the graph 
obtained be recursively joining nonadjacent pairs of nodes whose degree 

sum is at least p. Then Theorem 4.3 implies that G is hamiltonian if and 
only if cl(G) is hamiltonian. 

Neighborhood Conditions 

For a given node v, let N(v) denote the set of neighbors of v. Then 
|N(v)| = degv. For a set S C V(G), the neighborhood of S is the set 
N(S) = UN(v) for v € S. Recently, various authors have been studying 
hamiltonicity by considering the neighborhoods of nonadjacent nodes. 
The first observation they noted was that a minimum connectivity con- 
dition must be assumed to obtain any sort of reasonable results from the 
neighborhood sizes. Indeed, for a graph G on p nodes, one could have the 
size of the union of each pair of nonadjacent nodes as big as p — 3 and 
G still be disconnected, namely, with G = K tpj2 U K pa}. However, by 
simply assuming 2-connectedness, Faudree, Gould, Jacobson and Schelp 
[FGJS1] obtained a vast improvement on the existing degree conditions. 

Theorem 4.4 If G is 2-connected and for every pair of nonadjacent 
nodes uw and v, |N(u) U N(v)| > (2p — 1)/3, then G is hamiltonian. © 
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Figure 4.1 A nonhamiltonian and a hamiltonian graph. 

To see that the bound given in Theorem 4.4 is sharp, consider the 

graph G = 3K, + K¢ illustrated in Figure 4.1a. Graph G is 2-connected, 

has p = 3n + 2, and for all pairs of nonadjacent nodes u and v, 

|N(u) U N(v)| = 2n = (2p—1)/3 - 1, 

but G is not hamiltonian. To see that Theorem 4.4 catches certain ham- 

iltonian graphs that the previous sufficient conditions missed, consider 

the graph H in Figure 4.1b. Graph H is the cartesian product K, x K3, 

which is perhaps easier to think of as 3 copies of K, with a matching 
between coresponding pairs of nodes in each K,. Graph H is hamiltonian 

but is not caught by any of Theorems 4.1-4.3 or their corollaries, since 

the degree of each node is only p/3 + 1. However, Theorem 4.4 implies 

that H is hamiltonian. 

Theorem 4.4 has been improved upon in two different directions. In 

one case, Fraisse [F9] proved the following generalization conjectured in 
[FGJS]]. 

Theorem 4.5 If G is k-connected and for some n < k, every set S of n 

mutually nonadjacent nodes satisfies |V(S')| > p(n — 1)/(p + 1), then G 
is hamiltonian. 0 

So Theorem 4.4 is the special case of Theorem 4.5 with k = n = 

2. The second improvement on Theorem 4.4 is due to Lindquester [L5]. 

She showed that Theorem 4.4 remains true when we restrict attention to 

nonadjacent nodes at distance two from one another. 
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Theorem 4.6 If G is 2-connected and every pair of nonadjacent nodes 

u and v with d(u,v) = 2 satisfies |N(u) U N(v)| > (2p — 1)/3, then G is 

hamiltonian. D0 

Another result (which could be expressed in terms of neighborhoods 

but appears neater using degrees) is due to Fan [F1]. This result was in 

fact part of the inspiration for Theorem 4.6. 

Theorem 4.7 If G is a 2-connected graph and every pair of nodes u 

and v with d(u,v) = 2 satisfies max{deg u, deg v} > p/2, then G is ham- 
iltonian. D 

Lesniak [L4] gives an interesting survey of neighborhood conditions, 

not only for hamiltonicity but for various other graphical properties as 

well. 

EXERCISES 4.1 

1. Give an example of a nonhamiltonian graph with 10 nodes such that 

for every pair of nonadjacent nodes u and v, degu + degv > 9. 

2. How many spanning cycles are there in the complete bipartite graphs 

K33 and K43? 

3. Pdsa’s theorem can be generalized as follows: Let G have order p > 3 
and let 0 < k < p—2. If for every integer i with k+1 <1 < (p+k)/2, 
the number of nodes of degree not exceeding 2 is less than 1—k, then 
every path of length k is contained in a hamiltonian cycle. 

(Kronk [K6}) 

4. If Gis a (p,q)-graph with p > 3 and q > (p* — 3p + 6)/2, then G is 
hamiltonian. Furthermore, this bound is best possible. 

(Ore [02]) 

5. If G is a bipartite graph with an odd number of nodes, then G is 

nonhamiltonian. 

6. The bound deg v > p/2 in Corollary 4.1b is best possible. 

The n-cube Q, is hamiltonian for n > 2. 

8. The complete bipartite graph K,,,, contains n!(n—1)!/2 hamiltonian 
cycles. 
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9. The closure of a graph is well defined, that is, cl(G) is independent 

of the order in which one joins nonadjacent nodes whose degree sum 
exceeds p. 

10. Give an example of a hamiltonian graph G with A(G) < p/2 such 
that cl(G)=G. 

11. If G has a pair of edge-disjoint hamiltonian cycles, then G has at 

least three hamiltonian cycles. (Sloane [S21]) 

4.2 CONNECTIVITY AND HAMILTONICITY 

Theorems 3.18 and 4.2 give some indication of a relationship between 

connectivity and hamiltonicity. In this section we describe several such 

links. A theta graph is a nonseparable graph with two nonadjacent nodes 

of degree 3 and all other nodes of degree two. Thus, a theta graph consists 
of two nodes of degree 3 and three disjoint paths joining them, with each 

path of length at least 2. 

Theorem 4.8 Every hamiltonian graph is 2-connected. Every non- 

hamiltonian 2-connected graph has a theta subgraph. 0 

It is easy to find a theta subgraph in the nonhamiltonian nonseparable 

graph of Figure 4.2. 

Figure 4.2 A nonhamiltonian nonseparable graph. 

A set of nodes in G is independent if no two of them are adjacent. The 

largest number of nodes in such a set is the node independence number 
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comecte Sac i ; ee 

Figure 4.3 An illustration for Theorem 4.9. 

of G and is denoted by 2(G) or 3. The next result, due to Chvatal and 

Erdés [CE1] shows that if @ is not too large then G is hamiltonian. 

Theorem 4.9 Let G bea graph of order p > 3. If K(G) > B(G), then 
G is hamiltonian. 

Proof If 6(G) = 1 then G is complete, so p > 3 implies that G is hamil- 
tonian. Thus assume that §(G) > 2. Since K(G) > B(G) > 2, G contains 
at least one cycle. Let C’ be a longest cycle in G and suppose that C’ is 

not a spanning cycle. Let H be a connected component of G — C' and let 

V1, V2,..., 0% be nodes of C which are adjacent to nodes of H. No two of 

the nodes v;, v; are adjacent in C’, since otherwise we could replace the 

edge v;v; of C’ by a path through H and obtain a longer cycle than C. 
Now traverse C' in some fixed direction and let w; be the node following v; 
in the traversal. Then no node w; is adjacent to a node of H for otherwise 

a replacement of edge v;w; by a path through H would produce a longer 

cycle. Also, the nodes w; are independent since if two of them, say w; and 

w;, are adjacent, then a longer cycle than C’ exists. This cycle consists 

of the edges of C' with v;w; and v;w; deleted, plus the edge wyw;, and a 

vj — v; path through H (see Figure 4.3). 
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Let A be a node of component H. Then {h, w1, wo,..., wz} is an inde- 
pendent set. Since {v1, v2,..., v~} contains all the nodes of C which are ad- 
jJacent to nodes of H, G— {v1,v2,..., vg} is disconnected. Thus K(G) < k. 
But since {h, w1, we,..., wx} is an independent set, G(G) > k +1. There- 
fore, 8(G) > K(G), a contradiction. Thus, C is spanning cycle and G is 
hamiltonian. D 

The condition in Theorem 4.9 is certainly not necessary. For example, 
the cycle C, has « = 2 and @ = |p/2| but is hamiltonian. Bondy [B19] 
showed that if G has order p > 3 and degu + degv > p for all pairs 
of distinct nonadjacent nodes, then k(G) > G(G). Thus, Theorem 4.9 
implies Ore’s Theorem. It can also be used to prove the following result 
of Nash-Williams [N2]. 

Theorem 4.10 Every k-regular graph (k > 2) of order 2k + 1 is 
hamiltonian. 0 

EXERCISES 4.2 

1. If every two nodes of G are joined by a spanning path, then G is 

3-connected. 

2. Prove or disprove: If a graph G contains an induced theta subgraph, 

then G is not hamiltonian. If false, find the smallest counterexample. 

3. If Gis a graph with p> 3 nodes such that the removal of any set of 

at most n nodes results in a nontrivial hamiltonian graph, then G is 

(n + 2)-connected. (Chartrand, Kapoor, Lick [CKL1]) 

4. If G is bipartite with each part of order n and if its size q satisfies 
q > n* —n+2, then G is hamiltonian. 

5. If G has order p > 3 and contains n nodes of degree p — 1, then 
n > Bo(G) implies that G is hamiltonian. 

6. Every cubic hamiltonian graph has at least three spanning cycles. 
(Tutte [T12]) 

7. If Gis hamiltonian and S is a set of k nodes of G, then G— S' has 
at most k components. 

8. Draw a 3-connected planar nonhamiltonian graph on 11 nodes. 

9. Do there exist nonhamiltonian graphs with arbitrarily high connec- 

tivity? 
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4.3. GRAPH OPERATIONS AND HAMILTONICITY 

In Chapter 1 we defined a number of unary operations on a graph, such 

as the square, cube, complement, and line-graph of a given graph. These 

operations have served to obtain hamiltonicity results, some of which are 

given in this section. 

Powers of graphs 

Recall that the nth power G” of G has the same node set as G and nodes 

u and v are adjacent in G” if their distance in G is at most n. 

If the diameter of G is k, then G* is complete and therefore ham- 

iltonian. However, it may be that G” is hamiltonian for some n < k. 

Plummer and Nash-Williams independently conjectured that if G is 2- 

connected, then G? is hamiltonian. Their true conjecture was proved by 

Fleischner [F4] in a tour de force of mathematical reasoning. Riha [R5] 
recently obtained a simple proof of this result. 

Theorem 4.11 If G is a 2-connected graph, then G? is hamiltonian. 0 

Fleischner’s Theorem can be used to obtain a number of results on 

generalizations of hamiltonicity which we discuss in the next section. For 
now we present the following simple result whose proof was kindly pro- 
vided by C. Thomassen. 

Theorem 4.12 If G has p > 3, then G? or (G)? is hamiltonian. 

Proof If G is 2-connected, then Theorem 4.11 implies that G? is hamil- 

tonian. If G is disconnected, then (G)? = Ky. If G and (G) are connected, 
and v is a cutnode in G, then (G)? — v = Ky_1. Since deg v in (G) is at 
least 1, deg v in (G)? is at least 2, and hence (G)? is hamiltonian. 0 

Corollary 4.12 If G is self-complementary, then G? is hamiltonian. 0 

Although the square of a connected graph of order at least 3 is not 
always hamiltonian, its cube is. The next result is due to Sekanina [S8]. 

Theorem 4.13 If G is a connected graph of order at least 3, then G? 
is hamiltonian. 
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Proof Let G be a connected graph of order at least 3. We proceed by 
induction on the radius of G. If r(G) = 1, then d(G) < 2 so clearly G® 
is hamiltonian. Thus assume that for all graphs H with r(H) < k, H is 
hamiltonian. Clearly, if d(G) < 3, then G? is hamiltonian. Thus suppose 
that r(G) = k > 2, d(G) > 4, and let v be a central node of G. Then we 
may perform a breadth first search with root v to form a spanning tree 
f of G so that r(T) = r(G). 

Let P be the set of peripheral nodes of T. Each node u € P has degree 
1 in T, so has a unique neighbor nz(u) in T. Let T’ = T — P, and let 
G' = (T'). Then r(G’) < r(T’) = r(T) — 1 = k —1, so by the inductive 
hypothesis, (G’)* has a hamiltonian cycle C’. We can expand C to form a 
hamiltonian cycle of G as follows. Let the nodes of C be labeled so that 
C = v1 v2°++ v1. For each i, 1 < i < t, let P; be the set of those nodes 

of P whose unique neighbor in T is v;. For a given 7, the nodes of P; are 

at distance 2 from one another and from %(i41)mod ¢ in T so are adjacent 

in G°. For each 2, if P; # 0, delete edge i,i+1 (mod t) from C include 
an edge from v; to one node of P;, followed by a path spanning P; which 

ends in node p?, followed by edge p*,v;41. This procedure results in a 

cycle which spans G%, which is therefore hamiltonian. D 

Eulerian Graphs 

A graph G is eulerian (pronounced “oileerian” ) if it has a closed spanning 
trail which includes each edge. These graphs are named after Leonhard 
Euler (1707-1782) who became the father of graph theory as well as topol- 
ogy when in 1736 he settled a famous unsolved problem of his day called 

the Konigsberg Bridge Problem. There were two islands linked to each 

other and to the banks of the Pregel River as shown in Figure 4.4a. The 

problem was to begin at any of the four land areas and walk across each 
bridge exactly once. Euler replaced each land area by a node and each 

bridge by an edge joining the corresponding nodes. This produces a multi- 
graph (a graph allowing multiple edges, see Figure 4.4b). 

Rather than treating this specific problem, Euler showed that no such 

traversal of the Kénigsberg bridges was possible when he proved the fol- 

lowing more general result, often called the first theorem of graph theory. 

Theorem 4.14 A connected graph G is eulerian if and only if each node 

of G has even degree. 0 
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Figure 4.4 The Kénigsberg Bridges and corresponding multigraph. 

Line Graphs 

Recall that the line graph L(G) of G has V(L(G)) = E(G) and two nodes 
of L(G) are adjacent if the corresponding edges of G are adjacent, i.e., 
have just one common node. Obviously, if G is eulerian, then L(G) is 
hamiltonian. The iterated line graphs are L?(G) = L(L(G)), L°(G) = 
L(L*(G)), etc. An early result on hamiltonian iterated line graphs is the 
following theorem of Chartrand and Wall [CW]]. 

LAT ED 
Figure 4.5 A sequence of iterated line graphs. 

Theorem 4.15 If G is connected and 6(G) > 3, then L?(G) is hamil- 
tonian. 

Proof If G is connected and 6(G) > 3, then each pair of incident edges 

of G are mutually incident with a third edge. This means that in L(G) 
every edge is contained in a triangle. Thus L(G) has no bridges, each node 
of L(G) has degree at least 4, and L(G) has a spanning closed trail that 
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is incident with each edge of L(G). Let this trail T* be C45 Carey Nn y C1 
We can expand this to a list of edges which produces a hamiltonian path 
in L(L(G)) as follows. Begin with ey = v,v2 and follow it by a list of 
all other edges not on T* which are incident with v2. The list can be in 
any order and should be followed by e2 = v2v3. In general, after listing 
€; = VjV;41, list all edges not on T* which are incident with Vi41 and have 
not already been listed. End the list with the edge €, = Unv;. Since each 
edge in the resulting list is incident with the edge preceding and following 
it, the first and last edges are incident, and the list contains every edge of 
L(G), the corresponding path in L(L(G)) is a spanning path, so L(G) is 
hamiltonian. D 

From Theorem 4.15, we obtain the following result due to Chartrand 
[C7]. 

Corollary 4.15 If G is connected and not a path, then L(G) is 
hamiltonian for some n. D 

Thomassen [T9] conjectured that if L(G) is 4-connected, then L(G) 
is hamiltonian. 

EXERCISES 4.3 

1. Find a connected graph G whose square is not hamiltonian. 

2. Construct a class of graphs to show that for an arbitrarily large 

positive integer n, there exist connected graphs G which are not 

paths such that L"(G) is not hamiltonian. 

3. A graph G is eulerian if and only if G is connected and every block 
of G is eulerian. 

4. A nontrivial connected graph G is eulerian if and only if every edge 
of G lies on an odd number of cycles. 

5. Graph G is randomly eulerian from node v if every maximal trail 
starting at v produces an eulerian circuit. Prove: G is randomly eu- 

lerian from v if and only if it is eulerian and v is on every cycle of 

G. 

6. Acycle C is a dominating cycle of G if each node of G is either in C 
or adjacent to a node in C.. Let G be a graph without isolated nodes. 

Then L(G) is hamiltonian if and only if G contains a dominating 
cycle or G is a star Ky, with n > 3. 

(Harary and Nash-Williams [HN1]) 
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7. If G is hamiltonian, then L(G) is hamiltonian. 

8. If G is eulerian, then L(G) is both eulerian and hamiltonian. 

9. If G is n-edge-connected, then 

a. L(G) is n-connected, and 

b. L(G) is (2n — 2)-edge-connected. 
(Chartrand and Stewart [CS2]) 

10. Prove or disprove: If G and H are hamiltonian, then their product 

G X H is hamiltonian. 

11. Construct a connected graph G with p > 4 such that L(G) is not 

eulerian but L?(G) is. 

12. There is no connected graph G with p > 5 such that L?(G) is not 

eulerian and L°(G) is. 

13. The line graph L(G) is eulerian if and only if G is connected and the 

degrees of all nodes of G are of the same parity. 

4.4 GENERALIZATIONS OF HAMILTONICITY 

There has been no computationally useful characterization found for ham- 

iltonian graphs, and it is the consensus among graph theorists that no 

such criterion can ever be found. However, related problems have been 

considered which have provided interesting questions for research. We 

now discuss several of these questions. 

Highly Hamiltonian Graphs 

If we know that a graph G is hamiltonian, it is still not an easy task to 

find a spanning cycle in G. As we are tracing the cycle, it does not matter 

where we start, but it almost always matters to which node we proceed 

next. However, for certain hamiltonian graphs it is easy to find a spanning 

cycle. A graph G is randomly hamiltonian if a hamiltonian cycle always 

results upon starting at any node of G and then successively proceeding to 

any adjacent node not yet chosen until no new nodes are available. These 

graphs were characterized by Chartrand and Kronk [CK1] as follows. 

Theorem 4.16 A graph G with p > 3 nodes is randomly hamiltonian 

if and only if it is one of the graphs C,, Kp, or Ky» with p = 2n. 0 
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Figure 4.6 A pancyclic graph which is not node-pancyclic. 

Another class of highly hamiltonian graphs are graphs G for which 
there is not only a cycle of length p in G, but a cycle of each smaller 
length as well. A graph G of order p is pancyclic if it contains a cycle 
of length k for each integer, 3 < k < p. Bondy [B18] gave the following 
sufficient condition for a hamiltonian graph to be pancyclic. 

Theorem 4.17 If Gis a hamiltonian graph of order p and size q > p?/4, 

then either G is pancyclic or p is even and G is Ky /2,p/2° ey 

One could require even more than a graph having a cycle of each 

possible length. A hamiltonian graph G is node-pancyclic if for each node 

v, G contains a cycle of each length k, 3 < k < p, which contains node v. 

Note that in a node-pancyclic graph, every node is contained in a triangle. 

The graph (C7)? is an example of a node-pancyclic graph (note that it is 

also the circulant C(1,2)). In Figure 4.6, we display a graph of order 8 
which is pancyclic but not node-pancyclic. 

Nearly Hamiltonian Graphs 

There are several classes of graphs that have been studied which are 
“almost” hamiltonian. The first of these are traceable graphs which have 
a spanning path but no spanning cycle. A special class of these graph 

has received considerable attention. A graph G is hamiltonian-connected 

if for each pair of nodes u,v, there is a spanning path joining wu and v. It 

is easy to see that any hamiltonian-connected graph G of order at least 

3 is hamiltonian. Simply consider two nodes u and v of G and let P bea 

spanning path joining wu and v. Let w be the neighbor of u on P. Then G 

has a spanning path P’ joining u and w, and P’ U ww is a spanning cycle 

of G. 
It is interesting (but not surprising) that for each sufficient condition 

of Section 4.3 which guarantees that a graph G is hamiltonian, there is an 
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analogous condition which shows that G is hamiltonian-connected. Since 

hamiltonian-connectedness is the stronger of the two, tighter restrictions 

are required to guarantee hamiltonian-connectedness. For example, anal- 

ogous to Corollary 4.1a, we have the following result of Ore [04]. 

Theorem 4.18 If G is a connected graph of order p such that for all 

pair of nonadjacent nodes u,v, 

deg u + degv > p+1, 

then G is hamiltonian-connected. D 

A concept that is similar in flavor to pancyclic graphs is that of pan- 

connected graphs. A hamiltonian-connected graph G is panconnected if 

for each pair of nodes u,v and each integer k, d(u,v) < k < p, there is 

a path of length k joining u and v. Williamson [W4] gave the following 

sufficient condition for a graph to be panconnected. 

Theorem 4.19 If G has order p > 4, and if for each node v, 

deg v > p/2+ 1, then G is panconnected. 

Proof Ifp=4orp=5, then G= K4 or Ks, respectively. Thus, assume 

the theorem is true for p = t, and show it true for p=t+2. Let G bea 
graph on p = t + 2 nodes such that 6(G) > p/2+4+ 1. Let u and v be any 
two nodes of G. Then u and v are each adjacent to at least half the nodes 

of G. The graph G’ = G — {u,v} has t nodes and 6 > t, so Corollary 4.1b 
implies that G’ has a hamiltonian cycle C’ = uj, u2,...,u,. The degree 

conditions on wu and v in G then imply that d(u,v) < 2. Suppose that 
for some m, 2 < m < t, node v does not have a neighbor whose distance 

on C’ is m — 2 from a neighbor of u on C’. Then degv < p/2+ 1, a 
contradiction. Thus, the existence of such a neighbor for each given value 
of m guarantees a path of each length between d(u,v) and t+ 2 = p. 
Hence, G is panconnected. a) 

It should be noted that Lesniak’s survey paper [L4] also describes a 
number of neighborhood results relating to generalizations of hamiltonic- 

ity. Various researchers have determined sufficient conditions for a non- 

hamiltonian graph to contain a path or a cycle of some specified length. 

We shall discuss those results in Chapter 5. 
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Figure 4.7 A nonhamiltonian graph. 

EXERCISES 4.4 

ib 

eS a 

A graph is randomly traceable if a hamiltonian path always results 

upon starting at any node and successively proceding to an adjacent 

node not yet chosen until no new nodes are available. A graph G 
with p > 3 nodes is randomly traceable if and only if it is randomly 

hamiltonian. (Chartrand and Kronk [CK1]) 

The smallest nonseparable graph whose line graph is not hamiltonian 

is the theta graph with 8 nodes in which the distance between the 
nodes of degree 3 is 3. 

If G is a hamiltonian-connected graph of order at least 4, then 

6(G) 2 3. 

The Petersen graph is hamiltonian-connected, but not hamiltonian. 

The graph in Figure 4.7 does not have a hamiltonian path. 

There exists a pancyclic graph that is not panconnected. 

The minimum number of edges in a hamiltonian-connected graph of 

order p > 4 is |(3n + 1)/2]. (Moon [M12]) 

If G is connected with order at least 4, then G? is panconnected. 
(Alavi and Williamson[AW1]) 

If G is hypohamiltonian and wu and v are adjacent nodes on a cycle 

which spans G — z, then wu and v are not both adjacent to node z. 

FURTHER RESULTS 

Jackson [J1] showed that every 2-connected, k-regular graph of order 
p < 3k is hamiltonian. Liu, Yu, and Zhu [LYZ1] improved this bound to 
k > p/3—1 with the Petersen graph as one exception. Bondy and Kouider 

[BK1] give a simple proof of this result. 
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Several results relating hamiltonicity and connectivity concern planar 

graphs. Tait [T1] conjectured that every cubic 3-connected planar graph 

contains a spanning cycle. Tutte [T12] disproved this by showing that the 

3-connected planar graph with 46 nodes in Fig. 4.8 is not hamiltonian. 

Tutte [T14] also showed that every 4-connected planar graph is hamilton- 

ian. Thomassen ([T8] showed that it is even hamiltonian-connected. 

Figure 4.8 The Tutte graph. 

A graph G is hamiltonian-connected from node v if there is a v-u 
spanning path for each u € G—v. Chartrand and Nordhaus [CN1] showed 
that such graphs have at least [(5p—1)/4] edges. Recently, Knickerbocker, 
Lock, and Sheard [KLS1] proved that bound to be sharp. Graph G is 

uniquely hamiltonian-connected from v if it is hamiltonian-connected from 

v and each v-u is unique. In a separate paper [KLS2], the same authors 

extend a result of Hendry [H22] to show that a graph of order p > 3 can 
be uniquely hamiltonian-connected from at most one node. 

Another class of nearly-hamiltonian graphs are the hypohamiltonian 

graphs introduced by Gaudin, Herz, and Rossi [GHR1]. A nonhamiltonian 

graph G is hypohamiltonian if for every node v in G, the graph G — v is 

hamiltonian. The Petersen graph is the smallest hypohamiltonian graph. 

Note that hypohamiltonian graphs exist for almost every possible order 

(see Chvatal [C14] and Thomassen [T4]). There are even planar, cubic 3- 
connected hypohamiltonian graphs [T7]. The smallest known such graph 

is displayed on the cover of Beineke and Wilson [BW1]. 



CHAPTER 5 

Extremal Distance Problems 

Let f be a real-valued function whose domain is the set of all graphs and 

let P be any graphical property. One could ask the question: “What is the 

largest (or smallest) possible value of f among all graphs with property 

P?” This is one paradigm of questions in extremal graph theory. As with 

topics discussed in previous chapters, extremal graph theory is an area on 

which a whole book could be written (and has been, see Bollobds [B15]). 
In this chapter we shall focus our attention on extremal problems relating 

to radius, diameter, and long paths and cycles in graphs. 

5.1 RADIUS 

In Chapter 2 we defined the radius r(G) .of a connected graph G as the 
minimum eccentricity of its nodes and the center C(G) as the set of all 
nodes v with e(v) = r(G). We saw that the center plays an essential 
role in a number of facility location problems. Since r(G) is a real valued 

function, in fact positive integer valued, the radius could play the role 

of the function f in the extremal graph paradigm. However, in many 

extremal problems, r(G) instead plays a role in the property P. The 
following result of Vizing [V1] is an example where 7(G) plays this latter 
role. 

95 
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Theorem 5.1 The maximum number of edges in a graph on p nodes 

with radius r is 

P(p — 1)/2, r=1; 
{In 3/3 r=2; 

(p* — 4pr + 5p + 4r? — 6r)/2 r>3. o 

Vizing gives an interesting proof of this result which uses double in- 

duction. Extremal graphs for the three possibilities are K, for r = 1, and 

K, — {a 1-factor} when p is even and r = 2. When r = 2 and p is odd, 
an extremal graph can be formed as follows. Begin with complete graphs 

G = K(p-1)/2 and H = K(p41)/2- Join each node of H with (p— 3)/2 
nodes of G in such a way that no node of G achieves degree p — 1. An 
extremal graph for r > 3 is shown in Figure 5.1. This graph consists of a 
complete graph [{p_2, all of whose nodes are joined to three consecutive 

nodes on a cycle @2,. 

K 
p-er Co 

Figure 5.1 An extremal graph on Pp nodes with radius Tr. 

Radius-Minimal and Radius-Critical Graphs 

For any connected graph G, it is easy to generate a spanning tree T 
of G for which the distances from a fixed node v are preserved. One 
simply uses the well-known “breadth-first search” algorithm with root v. 
This algorithm begins at a node v and branchess out to its neighbors u, 
including the edges uv in the tree. Next, edges joining those nodes at 
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distance one from v with nodes at distance two from v are included so 
as not to form any cycles. This process continues until a spanning tree is 
formed. This process is illustrated in Figure 5.2 where the central node d 
is used as the initial node. For now it is important to note that if we begin 
at a central node, the spanning tree T will have the same radius as G. 
Such a tree is called a radius-preserving spanning tree. We shall discuss 
breadth-first search and other algorithms in detail in Chapters 11 and 12. 

(h) (() 
Figure 5.2 A breadth-first search at a node. 

Vizing’s result described in Theorem 5.1 concerns radius-maximal 

graphs. That is, if a graph G on p nodes has radius r and its number 

of edges equals the given bound, then any new edge added to G will 

necessarily decrease the radius. We now look at graphs at the opposite 

extreme. If one removes an edge from a graph G, it is clear that the ra- 
dius may increase or stay the same, but it certainly could not decrease. 

A graph G is called radius-minimal if r(G — e) > r(G) for every edge e 
in G. Gliviak [G7] characterized such graphs as follows. 

Theorem 5.2 A nontrivial graph G is radius-minimal if and only if G 

is a tree. 

Proof If G is a tree, then clearly G is radius-minimal since the removal 

of any edge will disconnect G, resulting in an infinite radius. 

If G is radius-minimal, then r(G) must be finite so G is connected. As- 
sume that G is connected and not a tree. Then G has a radius-preserving 
spanning tree T which necessarily has fewer edges than G. Thus it is pos- 

sible to remove an edge from G without decreasing the radius. Hence a 
radius-minimal graph must be a tree. | 0 
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(a) (0) 
Figure 5.3. An r-changing graph and an T-decreasing graph. 

Next we consider graphs whose radius is altered by the removal of 

any node. A nontrivial graph G is called r-critical, or briefly r-critical, 

if for every node v in G, r(G — v) # 7r(G). Every even path P2, is 
r-critical. By removing an endnode of P2,, the radius decreases by one, 

but removing an internal node of P2, makes the radius unbounded. It is 

a simple observation that if G is an r-critical graph and v is one of its 

nodes, then r(G — v) < r(G) if and only if v is a peripheral node, and in 
this case r(G — v) = r(G) —1. Gliviak [G7—-8] obtained most of the results 
on these graphs. 

The class of r-critical graphs can be partitioned into three sets: 

r-decreasing graphs for which r(G — v) = r(G) — 1 for all v; 

r-increasing graphs for which r(G — v) > r(G) for all v; and 

r-changing graphs which comprise all other r-critical graphs. 

Thus each r-changing graph contains at least one node v for which 

r(G — v) > r(G) and one node wu for which r(G — u) < r(G). Figure 
5.3(a) gives an example of an r-changing graph, while Figure 5.3(b) is an 
r-decreasing graph. Gliviak [G8] reduced the study of r-critical graphs to 

that of r-decreasing graphs by means of the following theorem. 

Theorem 5.3 Every connected r-critical graph G is either r-decreasing 

or consists of an r-decreasing subgraph H, and endpaths so that one 

endpath of length r(G) — r( ZZ) is joined to each node of H. 0 

Corollary 5.3 ‘There are no r-increasing graphs. 0 

In another paper, Gliviak [G7] characterized r-critical graphs having 

radius 2, as well as all r-decreasing graphs. 
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Theorem 5.4 A graph G of radius 2 is r-critical if and only if it is 
either the path P, or the complete multipartite graph K(2,2,... 2) with 
n > 2 parts. D 

Note that P,4 is r-changing, while the complete multipartite graphs 

K(2,2,...,2) are r-decreasing. If node v has eccentricity t and for some 

node u, d(u,v) = t, then w is called an eccentric node of v. The charac- 
terization of r-decreasing graphs follows. 

Theorem 5.5 For a graph G, the following statements are equivalent. 

1. G is r-decreasing. 

2. Each node v € V(G) has exactly one eccentric node 0 such that 
e(v) = e(d). 

3. There exists a decomposition of V(G) into pairs v,v such that 
d(v,v) = r(G) > max{d(u,v),d(u,v)} for all u € V(G) — {1, >}. 

O 

Akiyama, Ando, and Avis [AAA2] defined the eccentric graph G, of 
G to be the graph with V(G.) = V(G), where two nodes wu and v of 
V(G-_) are adjacent if one of them is an eccentric node of the other. They 
showed that a graph G on 2n nodes is r-decreasing if and only if G, = 

nK2, thereby rediscovering part of Gliviak’s characterization. Recall from 

Chapter 2 that a graph G is a unique eccentric node graph if each node 

in G has precisely one eccentric node. Nandakumar [N1] showed that a 
unique eccentric node graph G is self-centered if and only if G. = nKo. 

This give the following. 

Corollary 5.5 A graph G on 2n nodes is r-decreasing if and only if 
G is a self-centered unique eccentric node graph. 0 

EXERCISES 0.1 

1. Every nontrivial self-complementary graph G has radius r(G) = 2. 

2. Let u and v be nodes in G with r(G) > 3. Then 
deg u+degv < p—2r(G) +4. 

3. For an r-critical graph G, r(G — v) < r(G) if and only if v is a 

peripheral node. 

4. If G and H are r-decreasing, then the cartesian product G x H is 

also r-decreasing. 
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5. Let G have p > 3 nodes, and let r > 3 and k > 2p + 2 be given 

integers. Then there exists a k-regular, r-decreasing, radius-maximal 

graph Q with radius r which has G as an induced subgraph. 

(Gliviak [G7]) 

6. Graph G, = nk, if and only if G is r-critical. (Nandakumar [N1]) 

7. Show that the graph in Figure 5.4 is not r-critical. 

8. If G is an r-critical graph that is not nonseparable, then every 

peripheral node of G has degree 1. (Gliviak [G7]) 

Figure 5.4 A self-centered graph that is not radius-critical. 

5.2 SMALL DIAMETER 

Moon and Moser [MM1] were first to show that almost all graphs have 
diameter two. Their result was generalized by Klee and Larman [KL1] and 
independently by Bollobds [B16] who obtained the most general result. 
Thus a discussion of graphs of small diameter includes most graphs. We 

focus here on extremal results for graphs having diameter two or three. 

Extremal results for general values of d will be presented in the next 
section. 

Moore Graphs 

One of the earlier results for graphs with small diameter concerns a special 

class of graphs called Moore graphs. The distance degree sequence of a 

node vis dds(v) = (do(v),di(v),---,de(»)(v)), where d;(v) is the number of 
nodes at distance 2 from v. If every node of G has the same distance degree 
sequence, then G is said to be distance degree regular (DDR). We shall 
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examine these graphs in §9.2. A (k, t)-Moore graph is a k-regular graph G 
of diameter ¢ where for some peripheral node v € G, d;(v) = k-(k—1)'7! 
for each 2 > 1. A Moore graph is a DDR graph, so it is self-centered and 
self-median. Hence any node could play the role of the peripheral node v. 
The girth of a graph is the length of any shortest cycle. A (k,t)-Moore 
graph could be described as a k-regular graph with girth g = 2t+1 having 
the minimum possible number of nodes. These are a special example of 
a class of highly symmetric graphs called cages that we discuss in §8.2. 

Hoffman and Singleton [HS1] classified Moore graphs with diameters 2 
and 3. They showed that the only Moore graph of diameter 3 is C7. For 

diameter 2, the situation is far more complicated. They showed that for 

diameter 2 there are Moore graphs of degree 2, 3, 7, and possibly 57; and 
the (2,2), (3,2), and (7,2)-Moore graphs are unique. The (2,2)-Moore 
graph is C's, and the (3,2)-Moore graph is the Petersen graph. The (7, 2)- 

Moore graph (also called the (7,5)-cage or the Hoffman-Singleton graph) 
has 50 nodes. A description of its construction can be found in Biggs 

[B8,p.163]. The question as to whether the (57,2)-Moore graph actually 
exists remains open, which is not surprising since this graph would have 

3250 nodes and 92,625 edges, yet a result of Aschbacher [A3] shows that 

it cannot be distance-transitive (see §8.3). 

Diameter-Minimal and Diameter-Critical Graphs 

Deleting an edge from a graph may cause its diameter to increase or stay 
the same, but it cannot decrease. A graph G is diameter-minimal if for 

all edges e € G, d(G — e) > d(G). Any edge that can be removed from 
G without affecting the diameter is called superfluous. Thus diameter- 

minimal graphs are the graphs with no superfluous edges. Suppose that 

G has diameter 2. Then every superfluous edge e = wv is contained in 

a triangle, since otherwise removal of e would make d(G) > d(u,v) > 3. 
Gliviak [G6] established a number of existence results diameter-minimal 
graphs of diameter 2, which he refers to as graphs of class B. He partitions 
his study in terms of the types of induced cycles the graphs contain. Since 

a graph in B cannot contain an induced C,, for n > 6, there were 23 = 8 

types of graphs he had to consider. Note that B graphs having an induced 

Cs but no induced C’, or C3 are precisely the Moore graphs of diameter 

2. One of the more interesting results of [G6] is the following. 

Theorem 5.6 Every graph G can be imbedded as an induced subgraph 

in a diameter-minimal graph of diameter 2. 
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Proof Label the nodes of G by 1, v2,...,Up. Next, add new nodes 

W,L, Uz, U2,---,Upzi1, and edges vjuj, wWr;, WUp41, and zru;. Finally, for 

each pair of distinct nonadjacent nodes v;, v; insert the edge u;u;. It is 

easy to verify that the resulting graph is diameter-minimal, has diameter 

2, and has G as an induced subgraph. D 

Note that the graph constructed in Theorem 5.6 also has the property 

that distinct nodes have distinct neighborhoods. 

By removing nodes rather than edges from G, the diameter could 
increase, decrease or stay the same. A graph G is diameter-critical if 
d(G — v) # d(G) for every node v € G. Note that in a diameter-critical 
graph G, some nodes of G may cause the diameter to increase when 

removed while others cause it to decrease. For example, if G consists of 

C7 with a endedge attached, then removal of the node of degree one would 
cause the diameter to decrease, whereas the removal of any other node 

increases the diameter. One may then wonder whether a diameter-critical 

graph can have the property that the removal of each of its nodes causes 

the diameter to decrease or the removal of each of its nodes causes the 

diameter to increase. Gliviak [G9] answered this question by showing that 
a graph can have at most two nodes that decrease the diameter. 

Theorem 5.7 Let G be a connected graph and let X be the set of all 
nodes x for which d(G — x) < d(G). Then |X| < 2 and 
d(G)-2<d(G-—X)<d(G)-1 for X #9. 

Proof If x € X then dg(u,v) < d(G@— 2x) < d(G) for all uv EC G—z. 
Hence if d(y, w) = d(G) for some pair of nodes y, w € G, then y or w must 
be x. So each node in X is peripheral. Any pair of nodes z,z’ € X must 
be antipodal nodes or else removing one of them could not decrease the 
diameter. But then if X contains three or more nodes, removal of one of 
them, say z* would still leave an antipodal pair of nodes at distance d(G) 
from one another in G'— 2*, contradicting the fact that d(G—2*) < d(G). 
Thus |X| < 2. 

By deleting a single node from G, the length of any longest path will 
decrease by at most one. And by deleting two nodes, the diameter may 
decrease by at most two. Hence the stated inequalities on the diameter 
hold. - 

A graph G is d-increasing if d(G — v) > d(G) for all v € G and 
d-decreasing if d(G' — v) < d(G) for all v € G. Theorem 5.7 implies that 
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the only d-decreasing graphs are K2 and K. In [G9], Gliviak gave various 

results on embedding graphs into d-increasing graphs and into diameter- 

critical graphs that are not d-increasing as well as the following result for 
small diameter. 

Theorem 5.8 Let G be a diameter-critical graph of diameter d < 3 
that is not d-increasing. Then G is a path of length d. 0 

Trees of Small Diameter 

Although there are infinitely many trees of diameter at most three, they 

are easy to describe. They are the graphs Ky, K2, the stars Ky,,, and the 

double stars S,,., = Km + Ky, + Ky, + K,. These trees have been used in 

various situations in the literature, perhaps the most interesting of which 

is in decomposition problems or analogously, in packing problems. 

The slight difference between packing problems and decomposition 

problems is one of generality. In a typical packing problem, one begins 

with a well-known class of graphs such as the K, or Km, and wants to 

determine whether one can color the edges of the graph so that the color 
classes determine some fixed set of trees of small diameter. The following 

interesting result of this genre is due to Bourgeois, Hobbs, and Kasiraj 

[BHK]]. 

Theorem 5.9 Suppose T72,73,...,Tp are trees such that 7; has order 1 

and d(T;) < 3. Then T2,73,..., Tp can be packed into Kp. a) 

An example providing a packing of trees T; into Ks is given in Figure 

5.5. Bourgeois, Hobbs and Kasiraj also showed that the result in Theorem 

5.9 is still true if one allows at most one of the trees to have diameter 

greater than three. 

In decomposition problems, one generally begins with an arbitrary 

graph with the goal of coloring the edges so that each color class corre- 

sponds to some arbitrary tree within some fixed class of trees. For example, 

Lovasz [L7] showed that any graph G whose maximum matching has size 

m can be decomposed into m double stars and p — 2m stars. 

Minimal Blocks of Small Diameter 

Recall that a graph is nonseparable if it is connected and has no cutnodes. 

Such a graph has only one block, and for that reason, the graph itself is 
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Figure 5.5 A packing of trees into Its. 

often called a block. A block G is minimal if G — e is not a block for each 

edge e € G. These graph were characterized independently by Plummer 

[P7] and Dirac [D9]. Recently, Harary and Tindell [HT2] considered re- 
stricting the diameter of the blocks and characterized the minimal blocks 

of diameter 2 and 3. 

Theorem 5.10 The minimal blocks of diameter 2 are as follows: 

1. Ko 5-2 with p > 4, and 

2. The graph formed from the double star S,,,,, by adding a new node 
v and joining v to each endnode of Sim n. D 

The minimal blocks of diameter three are far more complicated to 

describe. We refer to [HT2] for further details. 

EXERGISESs5:2 

1. The only unique eccentric node graphs of diameter two are the graphs 
ier <a n>. 

2. Hi d(Gyi=\2, AG) sk. andi =. ke. thensG is, as4-cyclasGa, 
(Erdos, Fajtlowicz, and Hoffman [EFH1]) 

3. The only diameter-minimal graphs of diameter two with no induced 
C4 or Cs are the stars Ky n. (Gliviak [G6]) 

4. In a diameter-minimal graph there is at most one block containing 
a cycle. (Plesnik [P3]) 

5. If 6(G) > 2 and g(G) > d(G) + 3, then G is diameter-critical. 
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6. If d(G) =2 and A(G) = p—2, then |E(G)| > 2p— 4. 

If G is diameter-critical with d(G) = 2 and K(G) = 1, then G = P3. 

The double m-star is the double star Sim. Every (2m + 1)-regular 
graph (m > 1) with a perfect matching is decomposable into double 

m-stars. (Dean [D1]}) 

5.3 DIAMETER 

There are a huge number of extremal results concerning graphs of diam- 

eter d. Many of those theorems deal with random graphs and are asymp- 

totic in nature. To avoid a 100 page section, we shall focus only on those 

observations on random graphs which are crucial to the study of other 
distance problems. For additional discussion concerning random graphs, 

see the books by Bollobds [B15] or Palmer [P1] or the survey article by 
Bermond and Bollobdas [BB1]. 

Diameter-Critical and Diameter-Minimal Graphs 

In the last section we presented results on diameter-critical graphs of 

small diameter. We now complete that discussion by looking at arbitrary 

values of d(G). These results are also due to Gliviak [G9]. 

Theorem 5.11 For any graph G and integer k > 4, there exists a 

diameter-critical graph H with diameter k containing G as an induced 

subgraph. 

Proof Begin by adding an additional node v1,9 to G and joining 21,9 to 

each node of G to form graph F.. Label the nodes of G by 114, 1 <t <p. 

Next take a copy of F with nodes vz_1,2, 0 < t < p. Add additional nodes 

Vit, 2<i< k-2,0<t < p, and join each pair of nodes v1 4 and vz_1,4 by 

the path v1 4, v2,2,..., vk—1,t- Finally, add two more nodes u and w, join u 

to w and to all nodes vz_1,4. (See Figure 5.6.) 

It is easy to check that the resulting graph H has diameter d and it 

clearly contains G as an induced subgraph. It remains only to verify that 

H is diameter-critical. Graph H —w has diameter d—1 and d(H —u) = oo. 

Upon removing some node v;,; with 2<7t< k — 1, one finds the distance 

d(w, v1,;)>okin G = 1735/80 d(G — v;,;) > k. Removing v,; yields the 

distance d(v2,;,z) > k in G — v1,; for z € Nr(u,;). Hence, each node’s 

removal alters the diameter, so H is diameter-critical. O 
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Figure 5.6 A diameter-critical graph containing a given graph. 

Bosak, Rosa, and Zndm [BRZ1] found the following bound on the 
maximum degree of a node in a graph G in terms of the diameter: 

K(Gyepe dG) ay 

For diameter-critical graphs, Gliviak [G9] found a bound for the minimum 
degree in terms of diameter. 

Theorem 5.12 Let G # Ky be a diameter-critical graph on p nodes. 

Then 6(G) < |[(p— d+ 1)/2]. Oo 

Ore [03] discovered the following bound on the number of edges in a 
graph. 

Theorem 5.13 For any (p,q)-graph of diameter d, we have 

¢<d+i(p—d-1)(p-d+4). O 
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Brigham and Dutton [BD1] developed an interactive computer pro- 

gram that allows one to specify values of various graphical invariants in 

order to query for possible values of other invariants. The database for 

their program consists of a huge number of theorems involving graphical 
equalities and inequalities. By using that system they found several new 

relationships between invariants. 

Geodetic Connectivity 

A connected noncomplete graph G is n-geodetically connected if the 

removal of at least n nodes are required to increase the distance between 

every pair of nonadjacent nodes. The geodetic connectivity is the max- 

imum n such that G is n-geodetically connected. If G is n-geodetically 
connected, then it is obviously n-connected, but the converse is not true. 

For example, the graph K4 + K2 is 3-connected, but only 2-geodetically 

connected. Note that every graph with geodetic connectivity equal to one 

is diameter-critical, but the converse is not true even if diameter-critical 

is replaced by d-increasing. Entringer, Jackson, and Slater [EJS2] charac- 
terized n-geodetically connected graphs. 

Theorem 5.14 The following assertions are equivalent for a graph G: 

1. Gis n-geodetically connected. 

2. Gis connected and every two nodes at distance two from one another 

are joined by at least n geodesics. 

3. For every pair of distinct nonadjacent nodes u and v, any set of 

m <n disjoint u-v geodesics is contained in a set of n disjoint u-v 

geodesics. 

4. For any n+ 1 distinct nodes vo, 24, V2,---,0n, G contains disjoint 

Vo-V1, Vo-V2, +++, VO-Un geodesics. 0 

Diameter and Connectivity 

Among all invariants studied in connection with diameter extremal prob- 

lems except maximum degree, connectivity has played the greatest role. 

It has generated the most interest in problems involving regular graphs. A 

minimum (t,k,n)-graph is an n-regular graph G of minimum order with 

«(G) = k and diameter d(G) = t. This class of graphs was introduced 

by Klee and Quaif [KQ2] for cubic graphs only. Myers [M14,15] exam- 

ined minimum (t,3,3)-graphs, that is, minimum order 3-connected cubic 
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graphs with diameter t. Bhattacharya [B6] studied the more general prob- 

lem of n-connected, n-regular graphs with diameter t, and determined the 

minimum order for such graphs. 

Theorem 5.15 The minimum order p of an n-regular, n-connected 

graph of diameter t is 

n+1 here 
n(t-—1)4+3 n odd and t even, and 
n(t—1)+2 otherwise. 0 

In §2.1, we described Ore’s characterization of diameter-maximal 

graphs. Ore [03] also characterized the diameter-maximal graphs of con- 
nectivity n having the maximum number of edges among all such graphs 

of order p. Their structure is similar to that of diameter-maximal graphs. 

Theorem 5.16 A diameter-maximal graph G of diameter t > 4, con- 
nectivity n and order p having the maximum number of edges has the 

form 
Ky + Ky + Ka, + Kaz +°°° + Ka,_, + Kn + a 

with a; = n for each 7 except possibly one or two consecutive a; for which 

te 10k a 

Caccetta and Smyth [CS1] showed that the structure for diameter- 
maximal graphs with edge-connectivity n, diameter t, order p and the 
maximum number of edges is similar, yet somewhat more complicated. 

Theorem 5.17 A diameter-maximal graph G of diameter t > 6, edge- 
connectivity n and order p having the maximum number of edges has the 

form 

Ixy sl IG; +f Kee t UGS, ae OO ee a MG a NG 

where every triple (a;-1, @;,@:41), 3 < i < t — 3, except possibly one, 
contains exactly n + 1 nodes. The exceptional triple is either (a2, a3, a4) 

or (4-4, 4-3, 4-2). 0 

Some Random Results 

The random graph model I'(n,p) consists of all graphs with node set 
V(G) = {v1, v2,...,Un} whose edges are chosen independently with prob- 
ability p. Hence, if G is a graph with node set V and has m edges, then 
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the probability of G is Pr({G}) = p™(1—p)N-™, where N = (5). Let lg x 
mean log, x. For a property P, we say that a random graph G € I(n, p) 
has property P almost surely (a.s.) if Pr(G has property P) — 1 as 
n —+ oo. Perhaps the most useful results concerning diameter of random 
graphs are the following due to Bollobds [B16]. 

Theorem 5.18 

1. If p¢n —2lgn —+ o and n?(1 — p) — ov, then G E I(n,p) almost 
surely has diameter 2. 

2. If the functions d = d(n) > 3 and 0 < p= p(n) < 1 satisfy the three 
conditions 

a. (1/d)lgn — 3lglgn — ov, 

b. p?n?-! — 2lgn —> oo, and 

Cop a ni a4 2 lene 00 

then G € I'(n,p) almost surely has diameter d(n). 0 

It is easy to see that with p = 1/2 both expressions in part 1 of 

Theorem 5.18 approach co as n —> oo. Because of this one can say that 

almost all graphs have diameter 2. In fact, another result of Bollobas says 

that for a very large range of p (including p = 1/2) almost no graph 

has a node of full degree. Hence almost no graph has radius one. Since 

r(G) < d(G), almost all graphs have r(G) = d(G) = 2, that is, almost all 
graphs are self-centered with diameter 2. 

Buckley and Palka [BP2] used some powerful results of Burtin [B30,31] 
to examine the central and peripheral ratios of random graphs as well as 

the asymptotic distributions of the size of the center and the periphery 

of a random graph. 

EXERCISES-9:3 

1. Construct a minimum order 4-regular, 4-connected graph of diameter 
3. (Bhattacharya [B6]) 

2. Let K(G) be the clique graph of G. Then 
d(G)-1< d(K(G)) < dG) +1. (Hedman [H19]) 

3. An edge e = uv is a dominating edge in graph G if every node of G 

is adjacent to at least one of w and v. Almost no graph contains a 

dominating edge. 
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5.4 LONG PATHS AND LONG CYCLES 

In Chapter 4, we discussed hamiltonian and nearly hamiltonian graphs. 
The subject of this section is related to some of those hamiltonicity ques- 

tions. We consider detours in graphs, long paths that avoid certain nodes 

of the the graph, and conditions that guarantee a path or cycle of some 

given length. 

Paths and Trails 

Recall that a trail is a walk in which no edge appears more than once. 

Thus in a trail, nodes can be revisited, but edges cannot. In a path, neither 

nodes nor edges may be repeated. The trail number tr(G) of a graph G 
is the maximum length of a trail in it. This invariant was examined by 
Bollobas and Harary [BH1] who determined exactly the maximum trail 
number among all (p, q)-graphs. 

Theorem 5.19 The maximum trail number among all graphs on p 

nodes and q edges is 

{2 poddor'g = (3) 34, 
(=) —F41 otherwise. 

Proof If pis odd then K, is eulerian and the p nodes of K, along with 
the first q edges of any eulerian trail of K, form a (p,q)-graph G with 
ir(G) = q. If p is even, then K, — ($ — 1)K2 has a spanning trail that 
includes every edge. Hence for g < (3) — 3 +1, the first g edges in such a 
trail again produces a (p,q)-graph G with tr(G) = q. On the other hand, 
if p is even, tr(G) can be no larger than (5) — 3 +1 since any subgraph 
H formed by the edges of a trail in G has at most two nodes of degree 
p—1.So 

tr(G) = |E(H)| < 3 (2(n- 1) + (n-2)?) = @)-—2 41. O 

In [BH1], close upper bounds for the minimum trail number among 
all (p, q)-graphs were also obtained. 

When studying long paths in graphs many surprising results are found. 
For example, there are graphs with the property that none of their diame- 
tral paths contain a central node. Buckley and Lewinter [BL3] determined 
the range of the diameters for such graphs. 
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Figure 5.7 A graph with all diametral paths avoiding the center. 

Theorem 5.20 Suppose that all diametral paths of G avoid the center. 

Then 

r(G)+2 < d(G) < 2r(G)-1 

and all pairs of values in the given range are attainable. i) 

Note that the constraints on diameter for such a graph imply that a 

smallest graph with every diametral path avoiding the center has radius 

3 and diameter 5 as shown in Figure 5.7. 

Buckley and Harary [BH5] determined the maximum length of a 
longest induced path among all graphs with p nodes and q edges. 

Theorem 5.21 Among all (p,q)-graphs G, the maximum length of a 

longest induced path is given by: 

{4 q <P; 
max{t : #(t —1) < p(p— 1) — 2g} +1 q > p. D 

In [BH5], the authors also determined the maximum length of a 
longest induced path among all (p,q) bipartite graphs. 

Detours 

A detour in a graph G is a path of maximum length and the length of 

such a path is called the detour number dn(G). This concept was studied 

by Kapoor, Kronk, and Lick [KKL1] who found relations between dn(G) 

and other invariants. Among their results is the following. 
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Figure 5.8 A graph with only 12 nodes having a detour avoiding each given node. 

Theorem 5.22 If Gis a connected graph on p nodes then 

dn(G) > min{p — 1, 26(G)}. 0 

A surprising result concerning detours is that there are graphs in 

which for each node, there is a detour which avoids it. H. Walther found 

the first such example which had 25 nodes thereby answering a question 

of T. Gallai. Zamfirescu [Z2] cut Walther’s bound in half when he found 
a graph on 12 nodes which also has the property. His graph is displayed 

in Figure 5.8. 

Even more surprising is that one can require that G be 2-connected, or 

even 3-connected and planar and still have graphs with detours avoiding 

any given node (or even any given pair of nodes. For a lively discussion 

of this and related problems, see [Z3]. The circumference of a graph is 
the length of its longest cycle, and a cycle achieving that length is a 
circumcycle. Circumcycles avoiding a given node are also discussed in 
[Z3]. 

Long Cycles and Toughness 

Chvatal [C15] introduced the concept of toughness to study hamiltonicity. 

Let w(H) denote the number of components in a graph H. A graph G is 
t-tough if each subset S$ C V(G) with w(G— S) > 1 satisfies 

|S|/u(G — $) 2 t. 

The toughness of a graph is the maximum value of t for which it is t-tough. 

A necessary condition for a graph to be hamiltonian is that it be 1-tough. 
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Chvatal found 3/2-tough nonhamiltonian graphs, but conjectured that 
there is some real number t* such that all t*-tough graphs are hamiltonian. 
The conjecture remains open. 

Toughness has been used recently by a number of authors not only 

to consider hamiltonicity, but also to bound the circumference in a graph 

that might not be hamiltonian. For example, Bauer and Schmeichel [BS1] 

proved the following which had been conjectured by A. Ainouche and N. 
Christofides. 

Theorem 5.23 If G is 1-tough with order p > 3 such that 

deg u+degv > k for all distinct nonadjacent nodes u,v, then the circum- 
ference of G is at least min{p,k + 2}. D 

Bauer, Morgana, Schmeichel and Veldman [BMSV1] extended this by 
considering triples rather than pairs of nodes. 

Theorem 5.24 Suppose that G is 1-tough with order p > 3 such that 

degu + degv + degw > & for all independent triples of nodes u,v, w. 

Then the circumference of G is at least min{p, p/2 + k/3}. D0 

In some studies on longest cycles, 2-connectedness is assumed rather 

than a toughness constraint. An example of this is the following result of 

Fan [F1]. 

Theorem 5.25 Let G be 2-connected with order p an let k be an in- 

teger with 3 < k < p. If for all pairs of nodes u,v at distance two from 

one another max{deg u, deg v} > k/2, then the circumference of G is at 
least k. a 

Further results of this flavor as well as additional references are given 

in [BSV1] and [BMSV1]. 

Cycles of a Given Length 

In some instances, authors have been concerned with whether a graph 
contains cycles of some given length. Of particular interest has been the 

case of graphs containing a cycle of some residue class modulo b. Along 

these lines, Bollobds [B14] answered a question of 5. Burr and P. Erdos 

with the following result. 
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Figure 5.9 A graph with circumcycles avoiding each node. 

Theorem 5.26 For a graph G, if k > 3 is an odd positive integer and 

let 

5(G) 2 or 
k+1)F-1 k+1)*-k-1 UeaD pear rees 

then for every natural number t, G contains a cycle of length t mod k. O 

As a particular example, this result asserts that if 6(G) > 21, then G 
contains a cycle of length 0 mod 3. Barefoot, Clark, Douthett, Entringer, 

and Fellows [BCDEF1] set out to determine the actual structure of such 
graphs. They showed that all cubic graphs, subdivisions of 3-connected 

cubic graphs on p > 10 nodes, and subdivisions of graphs with at least 

3p — 5 edges always contain a cycle of length 0 mod 3. Furthermore, they 

showed the bound 3p — 5 is sharp. 

Very recently, Erdés, Faudree, Gyarfas and Schelp [EFGS1] obtained 
the following result which determines the length of a cycle of a given size 
in a nonbipartite graph in terms of the minimum degree. 

Theorem 5.27 Let k > 3 be a fixed positive integer. If G is a 2- 
connected nonbipartite graph on p nodes with 6(G) > 2p/(k + 2), then 
for p large (as a function of k) either G contains the cycle C, or G is 

isomorphic to the graph obtained from Cy42 by replacing each of its nodes 

by an independent set of order p/(k + 2). 0 
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Figure 5.10 Induced subgraphs of G with g(G) = g(G) = 4), 

EXERCISES 5.4 

ik 

Ze 

Determine all graphs that contain Py but not Ps. 

The graph G in Figure 5.9 has the property that for each node v € G, 

it has a circumcycle that avoids v. (C. Thomassen) 

Determine the toughness of the wheels Wp. 

Find a subdivision of K’4 with no cycle of length 0 mod 3. What is 
the smallest number of nodes? 

Determine the detour number and circumference of each graph in 
the figures of Chapter 5. 

Let & be the set of all graph G for which g(G) = g(G) = 3. Then 
G € G if and only if G contains one of the graphs in Figure 5.10 as 

an induced subgraph. (Akiyama and Harary [AH1]) 

FURTHER RESULTS 

Peyrat, Rall, and Slater [PRS1] answered a question of Hedman [H19] 
concerning the diameters of clique graphs. Let G be a graph with diameter 

d(G) = n. Then they showed its clique graph K(G) has diameter n + 1 if 
and only if G has cliques C and D such that d(x, y) = n for every pair of 

nodes x € C and ye D. 

A graph G is diameter edge-invariant (d.e.i) if its diameter is un- 
changed by the deletion of an edge, that is, d(G—e) = d(G) for all e € G. 
These graphs were studied by Lee [L2]. A critical diameter edge-invariant 

graph is a d.e.i. graph G such that for all v € G, G — v is not d.e.i. Lee 
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and Wang [LW1] develop constructions of these graphs and examine their 

properties. 

For and graph G, let ch*+(G) be the least number of edges whose 
addition to G decreases the diameter, and let ch~(G) be the least number 
of edges whose deletion increases the diameter. Similarly, let unt(G) be 
the maximum number of edges that may be added to G without changing 
the diameter, and let un~(G) be the greatest number of edges whose 
removal does not affect the diameter. Graham and Harary [GH2] examine 

these invariants for the hypercubes. In particular, they show 

iim Um (@n) _, 
n—oo n2nr-l 

which means that almost all edges of Q, may be removed without altering 
the diameter. They also determine that 

wr OL anihit a a let oy 



CHAPTER 6 

Matrices 

A graph is completely determined either by its adjacencies or by its in- 

cidences. This information can be conveniently stated in matrix form. 

Indeed, with a given graph, adequately labeled, there are associated sev- 

eral matrices, including the adjacency matrix, incidence matrix, distance 

matrix, cycle matrix, and cocycle matrix. It is often possible to make 

use of these matrices in order to identify certain properties of a graph. 

The classic theorem on graphs and matrices is the Matrix-Tree Theorem, 

which gives the number of spanning trees in a given graph. 

6.1 THE ADJACENCY MATRIX 

Suppose we want to test a conjecture about graph with the aid of a 

computer. A standard technique is to represent, store, and manipulate 

the graph in computer memory using a matrix. A common matrix used 

in this way is the adjacency matrix. In a binary matrix each entry is 0 

or 1. Let the nodes of G be labeled v1, v2,..., vp. The adjacency matriz 

A = A(G) = [a:j] of G is the binary matrix of order p 

Pe { 1 if v; is adjacent with v; 
a 0 otherwise. 

117 
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Figure 6.1 A labeled graph and its adjacency matrix. 

Since graphs have no loops, the diagonal of A is zero. Thus there is an 
immediate one-to-one correspondence between labeled graphs on p nodes 

and p X p symmetric binary matrices with zero diagonal. 

Figure 6.1 shows a labeled graph G and its adjacency matrix A. One 

immediate observation is that the row sums of A are the degrees of the 

nodes in G. Thus the degree sequence can be obtained at once from the 

adjacency matrix. 

Because of this correspondence between graphs and matrices, every 

graph theoretic concept is reflected in its adjacency matrix. For example, 

consider the statement that a graph G is connected if and only if there is 

no partition V = V; U V2 of its nodes such that no edge joins a node of 

VY, with a node of V2. In matrix terms, we may say that G is connected if 

and only if there is no labeling of its nodes such that its adjacency matrix 
has the form 

0 Age 

where Ay, and Ag2 are square. 

A graph G does not always come conveniently labeled. It may have 

labels other than v1, v2,..., Up, or G may have no labels. In either case, we 

can arbitrarily assign the labels v1, v2,..., vp to the nodes of G. Different 

label assignments will produce different matrices. There is nothing to 

worry about; all information about a graph G is contained in the matrix 
A no matter how we label the graph. If Ay and A» are adjacency matrices 
which arise from two different labelings of the same graph G, then for 
some permutation matrix P, Ay = P~!A2P. Sometimes a labeling is 
irrelevant, as in the following results which interpret the entries of the 
powers of the adjacency matrix of a digraph D, which of course apply as 
well to a graph G. 
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Theorem 6.1 Let D be a labeled digraph with adjacency matrix A. 
Then the (2,7)-entry of A” is the number of walks of length n from v; to 
Vis 

Proof The proof is by induction on n. The result is obvious for n = 1 
: 1 g ‘ 

since a = a,j = 1 if and only if the arc u,v; is present. Now assume that 

Gree is the number of distinct walks of length n — 1 from v; to v;. Since 

A” = A”-'A, its entries a are found by 

P 

(6.1) af? = Seal ays. 
k= 

Since every walk of length n from »; to v; consists of a walk of length 
n—1 from v; to some node vz followed by the arc v,v;, the inductive 

hypothesis and (6.1) yields the desired result. a) 

Corollary 6.1la_ = In a digraph D, the off-diagonal entry a” of A? is 

the number of paths of length two from »; to v;. D 

Corollary 6.1b_ In a graph G, the diagonal entry a?) of A? is the 

degree of 2;. 0 

Corollary 6.1c If a graph G is connected, the distance between 0; 

and v; fori #7 is the least integer n for which rau a0. D 

A simple yet useful observation about the adjacency matrix concerns 

bipartite graphs. A graph G is bipartite if and only if there is a labeling 

of its nodes so that A(G) has the form 

0 B A(G) = See 

Determinants and Inverses 

Since the adjacency matrix of a graph is square, we can investigate its 

determinant. Clearly the determinant of A is independent of the labeling 

of the nodes of G. Hence we may say that the determinant of a graph G is 
the determinant of any adjacency matrix of G. If two nonadjacent nodes 

of a graph G have the same neighborhood, then det A = 0. This follows 
from the fact that two rows of A would be identical. Thus a complete 

bipartite graph K,,,, has zero determinant except when m =n = 1. 
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An ordinary linear subgraph (o’graph for short as in [BDH1)) of G is 

a spanning subgraph whose components are single edges (K2) or cycles 

(C,). A component is even if it has an even number of nodes. Thus 

each K2 component of an o’graph is even. Let ¢ be the number of even 

components and let c be the number of cycles in an o’graph. Harary (H11] 

determined a formula for the determinant of a graph. 

Theorem 6.2 Let A be any adjacency matrix of a graph G. Then the 

determinant of G is given by 

(6.2) det A= 5 >(-1)° - 2%, 

where the sum is taken over all o’graphs of G. a) 

Corollary 6.2. Fora graph G, | det A| = 1 implies that G has a 

1-factor. 

Proof If G has no o’graph, then detG = 0 as there are no terms in 

the expansion of (6.2). Thus, suppose G has an o’graph. If every o’graph 

contains a cycle, then every term from the sum in (6.2) is even because it 
has c > 0. Thus if | det A] = 1, then some o’graph must be acyclic. Hence, 

| det A| = 1 implies that G has a 1-factor. 0 

The graph K,,,, 2 > 1, shows that the converse to Corollary 6.2 does 

not hold. Harary and Minc [HM5] defined a graph G to be invertible if 
A7} is the adjacency matrix of some graph. Since an integral matrix M 

(with all entries integers) has an integral inverse if and only if det M = +1, 
invertible graphs satisfy | det A] = 1. 

Theorem 6.3 The only invertible graphs are the matchings nK2. O 

A signed graph is a graph with each edge labeled by a sign (+ or —). 
A signed graph is balanced if every cycle contains an even number of neg- 
ative edges. This concept has proved useful in social science applications 

and in studying the stability of political alliances [H10]. The structure of 
balanced signed graphs was determined in [H4]. 

In a signed graph, the positive edges are drawn solid and the nega- 

tive edges are drawn dashed. An adjacency matrix of a signed graph is 
symmetric, has zeros on the diagonal, and each entry is 0, 1, or -1. A 

signed invertible graph (s-invertible for short) is a graph G for which A7! 
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Figure 6.2 The signed inverse of the s-invertible graph Pg. 

is the adjacency matrix of some signed graph H. In this case, we call H 
the signed inverse of G and write G~! = H. The signed inverse of Pg is 
shown in Figure 6.2. 

Just as a graph G must have det A = +1 to have an inverse, this 

condition is necessary for the existence of a signed inverse because a signed 

graph also has an integral adjacency matrix. But this condition is not 

sufficient. For example, the graph in Figure 6.3 has determinant —1 but 

is not s-invertible. 

Figure 6.3 A graph G with | det A| = 1 which is not s-invertible. 

Buckley, Doty, and Harary [BDH1] characterized s-invertible trees. 

Theorem 6.4 A tree T is s-invertible if and only if it has a perfect 

matching. D 

Note that “tree” in Theorem 6.4 cannot be replaced “graph” as Figure 

6.3 would be a counterexample. 
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EXERCISES 6.1 

Find the determinants of Pn, Wn, and Kn. 

The path P,, is s-invertible if and only if n is even. 

The signed inverse (P2,,)~! is balanced. 

A graph G is bipartite if and only if for all odd n, every diagonal 

entry of A” is 0. 

5. The inner product of any two rows of A is at most one if and only if 

G contains no C4. 

Be N 

6. For a graph G, the diagonal entry a? 

triangles containing 2,;. 

7. The trace tr(M) of a square matrix M is the sum of its diagonal 
entries. Let J be the number of of triangles in a graph G with adja- 

cency matrix A. Then T = tr(A?)/6. 

8. For a signed graph S let S* be its underlying graph (with the 
signs removed). For any graph G, the corona G o K, is s-invertible. 

Furthermore, ((Go K,)~!)* = Go Ky. 
(Buckley, Doty, and Harary [BDH1]) 

9. Let G be aconnected graph with adjacency matrix A. What can be 
said about A if 

) of A? is twice the number of 

a. 0; is a cutnode? 

b. v;v; is a bridge? 

10. Two graphs Gj and G2 are cospectral if the polynomials det( A, — tI) 
and det(A2 — tI) are equal. There are just two different cospectral 
graphs with 5 nodes. 

(Harary, King, Mowshowitz, and Read [HKMR1]) 

11. An ezgenvalue of G is a root of its characteristic polynomial 
det(A; — t/). A connected graph of order p and diameter d has at 
least d+ 1 and at most p distinct eigenvalues. 

12. Graph G is connected if and only if (A + I)?~! has no zero entries, 
Hes, (A fl )Pat 0; 

6.2 THE INCIDENCE MATRIX 

A second matrix associated with a graph G in which both its nodes and 
edges are labeled is the incidence matrix. Let the nodes of G be labeled 
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V1,U2,---+,Up and the edges be labeled ej, e9,... ,€g- Then the incidence 
matriz B of G is the p x q binary matrix in which 

ae { 1 if v; is incident with e; 

4 0 otherwise. 

As with the adjacency matrix, the incidence matrix determines G up to 
isomorphism. In fact, any p— 1 rows of B determine G since each row is 
the sum of all others modulo 2. 

We now note several simple observations about B. Since each edge 
has two endnodes, each column of B contains exactly two 1s. Each 1 in 
row 2 corresponds to an edge incident with v;. Thus, the number of 1s in 
row 2 is deg v;. The next theorem relates the adjacency matrix of the line 
graph of G to the incidence matrix of G. Recall that B* is the transpose 
of matrix B. 

Theorem 6.5 For any (p,q)-graph G with incidence matrix B, 

A(L(G)) = BYB — 21. D 

Let M denote the matrix obtained from —A by replacing the ith 

diagonal entry by deg v;. In the proof of our next theorem, we use the 

following algebraic result, called the Binet-Cauchy Theorem. 

Lemma 6.6 If P and Q are m X n and n X m matrices, respectively, 

with m < n, then det PQ is the sum of the products of corresponding 

major determinants of P and Q. =) 

In Lemma 6.6, a major determinant of P or Q has order m, and the 

phrase “corresponding major determinants” means that the columns of 

P in the one determinant are numbered like the rows of Q in the other. 
The following theorem is contained in the pioneering work of Kirchkoff 
[K2]. 

Theorem 6.6 (Matrix-Tree Theorem) Let G be a connected labeled graph 
with adjacency matrix A. Then all cofactors of the matrix M are equal 

and their common value is the number of spanning trees of G. 

Proof We begin the proof by changing either of the two 1s in each column 

of the incidence matrix B of G to —1, thereby forming a new matrix E. 
(This amounts to arbitrarily orienting the edges of G and taking F as the 

incidence matrix of this oriented graph.) 
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The i,j-entry of EE" is ej,e;1 + €:2€;2 + +++ + €igejq, Which has the 

value deg v; if i = 7, —1if v; and v; are adjacent, and 0 otherwise. Hence 

EE. 

Consider any submatrix of FE consisting of p — 1 of its columns. This 

p X (p— 1) matrix corresponds to a spanning subgraph H of G having 

p — 1 edges. Remove an arbitrary row, say the kth, from this matrix to 

obtain a square matrix F’ of order p—1. We will show that | det F| is 1 or 

0 according as # is or is not a tree. First, if H is not a tree, then because 

H has p nodes and p—1 edges, it is disconnected, implying that there is a 

component not containing vz. Since the rows corresponding to the nodes 

of this component are dependent, det F = 0. On the other hand, suppose 

H is a tree. In this case, we can relabel its edges and nodes other than v; 

as follows: Let u, # vz be an endnode of H, and let y; be the edge incident 

with it; let ua # vg be any endnode of H — wu, and yp its incident edge, 

and so on. This relabeling of the nodes and edges of H determines a new 

matrix F’ which can be obtained by permuting the rows and columns of 

F independently. Thus | det F'’| = | det F'|. However, F” is lower triangular 
with every diagonal entry +1 or —1; hence | det F'| = 1. 

We apply Lemma 6.6 to calculate the first principal cofactor of M. 

Let E, be the (p— 1) x g submatrix obtained from FE by striking out its 
first row. By letting P = FE, and Q = (F))', we find from the lemma, 
that the first principal cofactor of M is the sum of the products of the 

corresponding major determinants of FE, and (£,)'. Obviously, the cor- 

responding major determinants have the same value. We have seen that 

their product is one if the columns from E, correspond to a spanning tree 

of G and is 0 otherwise. Thus the sum of these products is exactly the 
number of spanning trees. 

The equality of all the cofactors, both principal and otherwise, holds 
for every matrix whose row sums and column sums are all zero, completing 
the proof. 0 

To illustrate the Matrix-Tree Theorem, we consider a labeled graph G 
taken at random, say K4 —e. This graph, shown in Figure 6.4, has eight 
spanning trees, since the (2,3)-cofactor, for example, 

3 -l -1 -1l i “s ete 
ee Mea Naresh eed aes See pelea Urea 

nel in 
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ae eee 
ae SOSINS 

oF) 
Figure 6.4 4 — € and its spanning trees. 

The number of labeled trees with p nodes is easily found by applying 
the Matrix-Tree Theorem to K,. Each principal cofactor is the determi- 

nant of order p— 1: 
p-l -1l —1 
—-1 pl —1 

| —-1, -l p-1 

Subtracting the first row from each of the others and then adding the 
last p — 2 columns to the first yields an upper triangular matrix whose 

determinant is p?~?. 

Corollary 6.6 The number of labeled trees with p nodes is p?-?. DO 

There appear to be as many ways of proving this formula as there are 

independent discoveries thereof. A fascinating compilation of such proofs 

is presented in Moon [M10]. 

Cycle Matrix 

Let G be a graph whose edges and cycles are labeled. The cycle matrix 
C = [c;;] of G has a row for each cycle and a column for each edge with 

ai ao { 1 if the ith cycle contains edge 2; 

i 0 otherwise. 

In contrast to the adjacency matrix and incidence matrices, the cycle 

matrix does not determine a graph up to isomorphism. Obviously, the 

presence or absence of edges which lie on no cycle is not indicated. Even 

when such edges are excluded, however, C' does not determine G as shown 
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Xs 
Figure 6.5 Two graphs with the same cycle matrix. 

by the pair of graphs in Figure 6.5 which both have cycles 

Z1 = {€1, €2,e3} 

Z3 = {€6, €7,e8} 

Z2= {€2,€4,€5,€6} 

La {e1,€3, €4,€5, €6} 

Zs = {€2,€4,€5,€7,€8} Ze = {€1,€3,€4,€5,€7,€8} 

and therefore share the same cycle matrix 

€1 

Z1 i) 

22 0 

£3 0 

ue ZA il 

25 0 

26 1 

€2 

oreo KF 

€3 

rFPorTCceocr 

€4 
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6 Matrices 

The next theorem provides a relationship between the cycle and in- 
cidence matrices. In combinatorial topology, this result is described by 

saying that the boundary of the boundary of any chain is zero. 

Theorem 6.7 If G has incidence matrix B and cycle matrix C, then 

CB'=0 (mod 2). 

Proof Consider the ith row of C and the jth column of B’, which is the 

jth row of B. The rth entries in these two rows are both nonzero if and 
only if e, is in the ith cycle Z; and is incident with v;. If e, is in Z;, then 
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v; is also, but if v; is in the cycle, then there are two edges of Z; incident 
with v; so that the (2,7)-entry of CB‘ is 1+1=0 (mod 2). 0 

When we discuss graphs algorithms in Chapter 11, we shall describe 
data structures related to the adjacency and incidence matrices which are 
used to save computer memory and implement distance related algorithms 
more effectively. 

EXERCISES 6.2 

1. If G is a disconnected labeled graph, then every cofactor of M 

is 0. (Brooks, Smith, Stone, and Tutte [BSST1]) 

2. If G is connected, the number of spanning trees of G is the product 

of the number of spanning trees of the blocks of G. 

(Brooks, Smith, Stone, and Tutte [BSST1]) 

3. Do there exist two graphs G; and G2 with the same cycle matrix 

which are smaller than those in Figure 6.5? 

4. For aconnected graph G, the rank of the incidence matrix B is p—1. 

5. For aconnected graph G, the rank of the cycle matrix C is q—p+1. 

6.3 THE DISTANCE MATRIX 

Let G be a connected graph whose nodes are labeled 1, v2,...,vp. The 

distance matriz D(G) = [d;;] of G has d;; = d(v;, v;), the distance between 
y; and v;. Thus D(G) is a symmetric p X p matrix. Unlike the adjacency, 
incidence, and cycle matrices, the distance matrix is not a binary matrix. 

A graph and its distance matrix are shown in Figure 6.6. 

Research on distance matrices has been concentrated in two areas: 

realizability questions and properties of the characteristic polynomial of 

DG 

Distance Matrix Realizability 

For a matrix D of real numbers to be the distance matrix of a graph G, 

it must certainly be symmetric with zeros in the diagonal and satisfy the 

triangle inequality: 

di; < dix + dy;. 
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V3 

Vy V4 

Figure 6.6 A labeled graph and its distance matrix. 

Distance matrices are generally considered in the context of weighted 

graphs. A weighted graph consists of a graph together with a weight w; 

assigned to each edge e;. In particular, every graph can be regarded as 

a weighted graph in which the edges to each have weight one. To see 
why weighted graphs arise here (besides their usefulness in the related 

applications), considered the matrix: 

0 
iz 

etal 
1 
2 Nr WO bd FPNmoOoWwW Fe FSF ONFR Fe 

2 
Z 
1 
1 
0 

Is D the distance matrix of a graph? As we are restricted to graphs, 

the answer is easy! Since each edge in G must have weight one, each unit 

entry in D corresponds to an edge in G. Thus the adjacencies in G are 
determined by the ones in D and nonadjacencies are given by the other 
entries of D. Hence we immediately obtain the adjacency matrix A. Since 

there is a unique labeled graph G corresponding to A, one need only verify 

whether G is connected. It is easy to check that D is the distance matrix 

of the sequential join K; + K; + K2+ Ky, appropriately labeled. 

Aside from weights on the edges, a distance matrix realization differs 
from what one usually considers a realization to be. In general one is not 

looking for a graph G with distance matrix D, but a supergraph H of 

G such that for any two nodes u,v € G, their distance d(u,v) in H is 
d;;. Nodes in G are called main nodes while those in H — G are called 

auziliary nodes. The weight W (J) of such a realization H of D is defined 
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(q) 
Figure 6.7 Three realizations of D*. 

as the sum of the weights of the edges of H. 

Wi) =o ae 
H 

A realization is optimal if W(H) is minimum among all possible realiza- 
tions H of D. 

To get a better understanding of these concepts, we illustrate them 

with the three realizations in Figure 6.7 for the matrix 

0 2 

Die 

© dS W bd 

1 
i hed a 
eae) 
oe mee 

The graphs A, B, and C in Figure 6.7 are realizations using 0, 1, and 2 

auxiliary nodes, respectively. Their weights are W(A) = 9, W(B) = 6, 
and W(C) = 6. Note that C is simply graph B with edge bc bisected at a 
new auxiliary node. Clearly, for any realizable positive integral distance 

matrix, there is a realization which uses units only. Graph B is preferred 

since it uses fewer auxiliary nodes. 

After several attempts, the reader may find only the three realizations 

in Figure 6.7 for matrix D*. One reason for this is a lifelong preference 
for integers. In fact, neither B nor C' is an optimal realization for D*. In 
Figure 6.8, we show a realization H* with weight W(H*) = 5 which is 
optimal for D*, in which not all the weights are integers. 

We shall say why we know that H* is an optimal realization presently. 

Early results on optimal realizations of distance matrices include the fol- 
lowing two results of Hakimi and Yau [HY1]. 
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Figure 6.8 An optimal realization for Des 

Theorem 6.8 No optimal realization contains a triangle. 0 

Theorem 6.9 If D has a realization which is a tree, then this realization 

is optimal. D0 

Much of the work on realizations of distance matrices has focused on 

tree-realizations, that is, realizations which are trees. Sim6es-Periera [S9] 
characterized those distance matrices which have a tree realization. 

Theorem 6.10 Matrix D has a tree-realization if and only if its prin- 

cipal submatrices of order 4 have tree-realizations. 0 

Thus, Simoes-Periera reduced the problem to determining whether 
4 x 4 matrices have tree realizations. This question was settled by the 

following result obtained independently by Buneman [B29] and Imrich 
(I1]. 

Theorem 6.11 A matrix of order 4 is tree-realizable if and only if 
among the three sums dj2 + dz4, dy3 + d24, and dy4 + d3, two are equal 

and not smaller than the third. D 

Using this theorem, we can verify that matrix 

y Bt 

NOwr © wWnor ND © dD bo Od Ww bd 
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used earlier has no tree-realization because none of the sums dj2+d34 = 3, 

di3 + do4 = 5, and dj4 + d23 = 4 are equal. However, Simdes-Periera and 

Zamfirescu [SZ1] found the optimal realization of a non-tree-realizable 
distance matrix. 

Theorem 6.12 The optimal realization of a non-tree-realizable distance 

matrix with main nodes v1, v2, v3, v4 consists of a cycle uy, U2, U3, U4, Uy Of 

auxiliary nodes with opposite sides having equal weights, plus edges u,v; 

with weight t; > 0. a) 

If t; = 0 for a given 7 in Theorem 6.12, then u; = v;. Thus, the optimal 

realization uses four or fewer auxiliary nodes. Theorem 6.12 implies that 

graph H™* in Figure 6.8 is optimal for D*. Theorems 6.10 and 6.11 pro- 

vide a method to determine whether a given distance matrix has a tree 

realization. If it does and a tree realization T is found, then Theorem 6.9 

guarantees that T is optimal. If the matrix has no tree realization, the 

situation is more difficult. However, one can test any realization which 

is found for optimality using a rather complicated criterion of Sim6es- 

Periera [S10]. 

The Characteristic Polynomial of D 

In this subsection, we briefly describe several results which relate to the 

characteristic polynomial of the distance matrix of G, 

Wp(x) = det(D(G) — #1) = S> bya". 
k=0 

For the characteristic polynomial 

P 
V(x) = det(A(G) — 21) = arn) 

k=0 

of the adjacency matrix, Moshowitz [M13] found that the coefficients a, 

in W,4(zx) for a tree T are given by 

p21 = (—1)'*?M(t) and 

Gp—2i-1 = 9, 

where M(t) denotes the number of ways of selecting t disjoint edges from 

T. With this motivation, Edelberg, Garey, and Graham [EGG]] investi- 

gated the coefficients b, to see if a similar relationship holds for distance 
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matrices. Earlier, Graham and Pollack [GP1] had determined the constant 

term in the polynomial Vp(z). 

Theorem 6.13 Fora tree T on p nodes, the constant in the character- 

istic polynomial of the distance matrix is 

bo = det(D(T)) = (-1)-)(p — 1)28-?). Oo 

In [EGG1], Edelberg, Garey, and Graham extended this by showing 
that the terms b;, for 1 < k < 4 can be found by counting subtrees of 

various types. The coup de grace on this question was obtained by Graham 

and Lovasz [GL2] by extending the work in [EGG1] to show that all the 
coefficients can be found by counting subforests of various types. 

Theorem 6.14 Let F be a forest, {7;} be the set of trees composing 
F,, p[F] and q[F] be its number of nodes and edges, respectively, and let 
n(T) be the number of occurrences of tree T in F’. Then for a tree T on p 
nodes, the coefficient b, in the expansion of the characteristic polynomial 

of the distance matrix D(T) is given by 

De (1) 2 erin hy, 
F 

where the sum ranges over subforests F of T with k—1, k, or k+ 1 nodes, 

and the integer coefficients cr(k) are 

4n(F)( fel 1) (tales 

cn = 4a(F)(a1F] - Dien aby Dever, 2,9) glF] = k 
m(F)( tal - Dis py Dewers(d(e,y)- 1?) gf F]= +10 

By generating Vp(T7’) for trees T it appears that one always gets 
distinct polynomials. This led Edelberg, Garey, and Graham [EGG1] to 
conjecture that if T ¥ 7", then Vp(T) # Up(T). McKay [M4] disproved 
this conjecture by showing that the proportion of trees T, whose distance 
matrix does not have a cospectral mate goes to zero as p > oo. Earlier, 
Schwenk [S5] had discovered the corresponding result for the characteristic 
polynomial V4(T) of the adjacency matrix, thereby showing that almost 
all trees have a cospectral mate. 
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In this chapter, we have discussed several matrices and algebraic re- 

sults relating to graphs, focusing on distance concepts. We remark that 

we have only scratched the surface on this subject. In fact, a whole book 

could be (and was, see Biggs [B8]) written on algebraic graph theory. 

EXERCISES 6.3 

1. Find the distance matrix of W,,. 

2. Let D;(a) be the matrix obtained from D by subtracting the non- 
negative number a from each entry except d;; in the ith row of D. 

Matrix D;(a) is tree-realizable if and only if D is. 
(Sim6es-Periera and Zamfirescu [SZ1]) 

3. Find an optimal realization of the matrix 

Qaim 3 
eal tips oe) 
Pee al 

Rees mls €0 

4. Determine the characteristic polynomial of the distance matrix of 

the tree Ky3. 

FURTHER RESULTS 

1. Graham, Hoffman, and Hosoya [GHH1] showed how the determinant 

of the distance matrix of a directed graph D can be explicitly ex- 

pressed in terms of the determinants of the blocks of D. We present 

their result in Chapter 10. 

2. Let cn(G) is the number of n-cycles of a graph G with adjacency 

matrix A. Then 

a. c4(@) = (1/8)[tr(A*) - 29 - 2 Dig; 443) 

b. ¢5(G) = (1/10)[tr(A5) — 5ér(A®) = 5 DP, af (DF_1 ass — 2)]- 
(Harary and Manvel [HM2}) 

Suppose that A is the adjacency matrix of G with eigenvalues 

Miy Ag, -<-- 5 At, where [Ai] > |Aigil. If G is k-regular, then Ay = k. 
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Recently, Chung [C12] showed that if |A2| is relatively small compared to 
k, then the diameter of G is also small. 

Farrell [F2] developed certain polynomials relating to the cycles in 
a graph. Among other things, he showed how one might simplify the 

calculations of the characteristic polynomial using the cycle polynomial 

which is easier to generate. 

Sim6es-Periera [S12] has just published an algorithm to help obtain 
optimal realizations for non-tree realizable distance matrices. 



CHAPTER 7 

Convexity 

As with most other chapters, a discussion of convexity could fill a whole 

book. Indeed, this has been true for many decades, and much has been 

discovered more recently. We begin by discussing convexity and numer- 

ous new graphical invariants it inspired. Next we consider metrics used 

for graphs besides the usual distance metric. We then focus our atten- 

tion on various convexity concepts related to geodesics in graphs. Finally, 

we discuss the concept of distance heredity and associated properties for 

graphs. 

7.1 CLOSURE INVARIANTS 

Over the years, various distance-related closure properties have been de- 

veloped. In most instances, the closure operations involve finding the con- 
vex hull of some specified set of nodes under the given metric. Sometimes 

the operation is iterated until stability occurs. In this section, we discuss 

several distance-related closure operations on graphs. 

135 
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The Geodetic Iteration Number 

The closure (S) of a set S of nodes consists of the nodes of S' together 
with all nodes on geodesics between two nodes of S. Set S is conver if all 

nodes on any geodesic between two of its nodes are contained in S. Thus 

S is convex if (S') = S. The process of taking closures can be repeated to 
obtain a sequence $!, $?,... of geodetic closures, where 

S'=(S), S$? =((S)) =(S°), 

and in general $* = (S*-1), Since V(G) is finite, the process must ter- 
minate with some smallest n for which S$” = $"—!. Call the resulting 

set [S'], the convex hull of S; it corresponds to the smallest convex set 
containing $, and the value of n is the geodetic iteration number, gin(S). 
For a graph G, gin(G) is now defined as the maximum value of gin($) 
over all S C V(G). 

Determining gin(G) is rather tricky. To check one’s understanding of 
this concept, it is instructive to verify that gin(K23) = 2. The geode- 
tic iteration number was studied by Harary and Nieminen [HN2] who 
determined the minimum order of a graph G such that gin(G) = n. 

Theorem 7.1 Let H, be any graph having the minimum number of 

nodes with gin(H,) = n. Then the number of nodes in H,, is 1 if n = 0, 
Sufima i, and 2 +3 dini> 2: 0 

The exact structure of these graphs is also determined in [HN2]. 
Graphs Ho = Ky, MH, = K3, and Hz = K23. The general case is 

illustrated in Figure 7.1, where vj is adjacent to each odd labeled node, 
v is adjacent to each even labeled node, v2vj, v203 € E(H,), and 

V2kV2k-1, V2kVok+1 © E( Hy). 
Convex hulls were also used by Nieminen to characterize trees and 

complete graphs [N4]. 

The Geodetic Number 

A geodetic cover of G is a set S C V(G) such that every node of G is 
contained in a geodesic joining some pair of nodes in S$. The geodetic 
number gn(G) of G is the minimum order of its geodetic covers, and any 
cover of order gn(G) is a geodetic basis. For a geodetic cover S, we call a 
node of G — S' a check node. Some simple observations about gn(G) for 
nontrivial graphs are that 
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Figure 7.1 Minimum order graph H,, with gin( A, ) = Me 

Lm 2 <9n(G) <pand-gn(k,)'=p. 

2. If degv < 1, then v is in every geodetic basis of G. 

3. Every cutnode is a check node of every geodetic basis. 

Buckley, Harary, and Quintas [BHQ1] characterized those connected 

graphs G for which gn(G) = p, p—1, or 2. 

Theorem 7.2 Let G be a connected graph. Then 

ign(G )=patandonlyat Ga k,. 

2. gn(G) = p—1 if and only if G = K, + Um;K;j, where 2 < }>m;. 0 

The graphs with gn(G) = p-— 1 consist of the join of two or more 
complete graphs with Jt, and the cutnode is the only check node. A 

diametral path is a geodesic of length d(G) joining peripheral nodes u and 

v. Hence, a diametral path is a path of length d(G) that is an eccentric 
path for its endnodes. 

Theorem 7.3 For a connected graph G, gn(G) = 2 if and only if there 
exist peripheral nodes u and v such that every node of G is on a diametral 

path joining wu and v. 
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Proof Let u and v be nodes such that each node of G is on a diametral 

path P joining u and v. Since G is nontrivial, gn(G) > 2. Since P is a 

geodesic joining u and v, each node of G is on a geodesic between wu and 

v, so S = {u,v} is a basis and gn(G) = 2. 
Conversely, let gn(G) = 2 and S = {u,v} be a basis for G. If 

d(u,v) < d(G) then there exist nodes s and t on distinct geodesics joining 

u and v such that d(s,t) = d(G). But then we get 

(1) d(u, v) = d(u,s) + d(s,v), 

(2) d(u,v) = d(u,t) + d(t,v), but 

(3) d(s,t) < d(s,u) + d(u,t) by the triangle inequality. 

Since d(u,v) < d(G) = d(s,t), (3) implies d(s,t) < d(s,u) + d(u,t), 
which together with (1) yields d(s,v) < d(u,t). Then using (3) with v 
playing the role of wu gives, by (2), 
d(s,t) < d(s,v) + d(v,t) < d(u,t) + d(v,t) = d(u,t) + d(t,v) = d(u,v). 
Thus d(s,t) < d(u,v), a contradiction. Hence d(u,v) = d(G) and each 
node of G is on a diametral path joining u and v. 0 

Obviously, the unique geodetic basis of a tree consists of all its end- 

nodes. In [BHQ1], the value of gn(G) was determined for various classes 
of graphs such as unicyclic graphs, complete multipartite graphs, and 

prisms of an n-cycle. They also solved various extremal problems involv- 

ing gn(G) by determining the maximum and minimum values for gn(G) 
among graphs having p nodes or gq edges, as well as the minimum when 
both p and q are given. Since almost all graphs have diameter two, the 
following result often proves useful. 

Theorem 7.4 If d(G) = 2 and G contains an independent set I of nodes 
such that each node in V(G) — J has at least two neighbors in J, then 

gn(G) <I]. O 
For example, using Theorem 7.4 it becomes easy to show that the 

Petersen graph has geodetic number 4. 

Two classes of graphical games called achievement and avoidance 

games were presented by Harary in [H16]. These games were examined for 
the geodetic number by Buckley and Harary [BH3] and Necaskova [N3]. 

Suppose that instead of looking for a basis, we select nodes sequen- 

tially as follows. Select a node v and let S; = {uv}. Select v2 # v1, let 
S2 = {v1, v2} and then successively select node vz, ¢ (S,-1). The closed 
geodetic number cgn(G) is the smallest k for which selection of vz in the 
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given manner makes (5;,) = V(G). Games related to this invariant were 
studied in [BH2]. 

Another related invariant is the sequential geodetic number defined 
by Harary [H16]. The process begins as above but differs after S'2. Select 
a node v and let S; = {v,}. Select vp # v4, let Sp = {v1, v2} and then 
successively select v, ¢ S,_1 and let 

Sk = Sp_1 U {vg} U {nodes on v~—u geodesics for u € Sp_1}. 
The sequential geodetic number sgn(G) is the smallest k such that there 
is a sequence (v1, v2,..., 0%) for which 5, = V(G). 

At first it may seem that cgn(G) = sgn(G). For sgn(G) the sets S; 
only include new nodes vz and nodes on geodesics of length d(vz, Sz_-1); 
whereas, for cgn(G) nodes on geodesics of all lengths between vz, and 
nodes in $,_, are included in S,. To check one’s understanding of the 

difference, it is instructive to verify that for the wheel W1¢, cgn(W1i,.6) = 3 

but sgn(W1 6) = 4. 

The Hull Number 

The hull number h(G) is the minimum order of a set S C V(G) such that 
its convex hull [S] is V(G). Such a set is called a minimum hull set. Since 
the convex hull can be found by repeatedly taking closures until stability 

occurs, it is clear that h(G) < gn(G). This observation and Theorem 7.2 
lead easily to the conclusion that h(G) = p or p—1 just for the graphs 

K, and Kk, + Um,;Ic;, where 2 < 5) m;. 
For a convex set S C V(G), node v € S is an extreme node of S if 

S—v is also convex. The hull number was studied by Everett and Seidman 

[ES3] who obtained a number of bounds for h(G). The following two are 
typical of the simpler results. 

Theorem 7.5 If G is a connected graph of order p with k extreme 
nodes, then kk <h<p—d+l. 

Proof The lower bound follows from the fact that each extreme node 

must be in each minimum hull set. Since the d — 1 internal nodes of 

any diametral path can be eliminated from S simply by including the 
endnodes of that path, the stated upper bound holds. D 

Theorem 7.6 If G is n-connected, then h < p—n|d/2]. O 

Everett and Seidman obtained other bounds relating to extreme nodes 

and neighborhood sets of cliques. They observed that the minimum hull 

set consisting entirely of extreme nodes is unique. However, even when 
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Figure 7.2 A graph with no extreme nodes in its minimum hull set. 

there are no extreme nodes in a minimum hull set, it may still be unique 

as illustrated in Figure 7.2 where none of the nodes a, d, or k is extreme, 

but {a,d,k} is the unique minimum hull set. 

Other Geodetic Closure Invariants 

There are other invariants related to geodetic closures which have been 
investigated in varying degrees. In fact, any type of abstract convexity 

can generally be translated into at least one and often several interest- 
ing graphical invariants to study. The caratheodory number cara(G) of a 

graph G is the smallest positive integer k such that for all sets S C V(G) 
and v € [S], there exists 5’ C S with |5”| < k such that v € [$’]. 

A set S of nodes is monophonically-conver if S contains every node 

on every induced path between nodes in S$. A slight variant of the car- 

atheodory number was studied for monophonic-convexity by Farber and 

Jamison [FJ1]. 

A set S$ C V(G) has a radon partition S = $,U $2 if [Si] N[S2] # 9, 
that is, if the intersection of their convex hulls is nonempty. The radon 

number radon(G) of G is the least integer k such that every subset 
SC V(G) with |S| > k has a radon partition. Since K, has no radon parti- 
tion, the definition is extended to all graphs by defining radon(K,) = p+1. 
The radon number was studied by Delire [D2] who classified all graphs G 
with p— 2 < radon(G) < p+1. 

The helly number hell(G) of a graph G is the smallest integer k such 
that for any family S of convex sets of nodes from G, all its subfamilies 
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S" of convex sets of order k satisfy 

() S;’ #9 implies () Spe O. 
S;'ES! S;ES 

By studying the radon number, one obtains corresponding information 
about the helly number according a theorem of Kay and Womble [KW1] 
which asserts that radon(G) = 1 + hell(G). 

EXERCISES 7.1 

1. Determine gn(G) for each of the following: 
cM Os bea. sl | aks 

2. Determine cgn(G) for each of the following: 
an, bsQh Caley, 

3. Determine sgn(G) for each of the following: 
anGs b-Q;, CG 

4. The following relations hold: gn(G) < cgn(G) < sgn(G). 

5. Determine gin(G) for each of the following: 
a. C, b. Oo; Cc. Kan 

6. Construct a smallest order graph G for which h(G) < gn(G). 

7. Determine h(G) for each of the following: 
CRIES ber CG en 

8. Construct a graph with gin(G) = 4 and gn(G) = 2. 

7.2 METRICS ON GRAPHS 

The standard metric used on graphs is the distance metric, d(u,v), the 
length of a shortest path joining nodes u and v, which may be called 

the path metric. For this metric, many interesting questions arise as we 

have seen throughout the text. In Chapter 6, we discussed the problem of 
realizing a given distance matrix by a graph. We now consider a related 

question — embedding problems for graphs. 

Isometric Embeddings 

For two connected graphs G; and G2 with distance metrics d, and dp, 

respectively, a set of nodes S$; C Vj is zsometrically embeddable in G2 if 
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there is a set Sy C V> and a bijection f : S; —> Sz such that for all 

u,v € Sy, dy(u,v) = do(f(u), f(v)). This concept was examined for trees 

and bipartite graphs by Melter and Tomescu [MT1]. They used the fol- 

lowing two lemmas to characterize trees in terms of isometric embeddings. 

Lemma 7.7a For any three nodes u, v, and w of a tree 

d(u,v) + d(v, w) + d(a,w) =0 (mod 2). 0 

Lemma 7.7b For any four nodes u, v, w, and z in a tree, the 

numbers d(u,v)+d(w,z), d(u,w)+d(v,z), and d(u,zr)+d(v, w) 

are not all distinct. D 

Theorem 7.7 A connected graph G is a tree if and only if every subset 

Gs C V of at at most 4 nodes is isometrically embeddable in some tree. 

Proof The necessity is trivial so we need prove only the sufficiency. 

Assume that G contains an odd cycle and let C be the shortest with 

2k+1 nodes. Let v and w be adjacent nodes on C, and let u be the unique 

node on C such that d(u,v) = d(u, w). Then 

d(u,v) + d(v, w) + d(u,w) = 2k+1=1 (mod 2). 

But then Lemma 7.7a implies that these three nodes cannot isometrically 

embed in a tree, a contradiction, so G must be bipartite. 

Next assume that G contains an even cycle C’ of length 2k (k > 2). 
Let u and z be antipodes on C’, and let v and w be antipodal nodes 

which are neighbors of u and a, respectively. Then d(u,v) + d(w, x) = 2, 

d(u,w)+d(v, x) = 2k—2, and d(u,z)+d(v, w) = 2k, which are all distinct. 
Lemma 7.7b then asserts that these four nodes cannot isometrically embed 

in a tree. 

The only remaining case is G = C4. But clearly the nodes of C’4 do not 

isometrically embed in a tree. Hence G is connected and has no cycles, so 
G is a tree. | 

It is interesting to compare Theorems 7.7 and 6.10 and note that 

Simoes-Pereira’s characterization of tree realizable distance matrices de- 

pends only on the principal submatrices of order 4. 

Winkler [W5] surveys results concerning isometric embeddings of 
graphs in cartesian products. The hypercube Q,, is the cartesian product 

of n — 1 copies of Ky and as noted in [W5] is of interest in relation to 
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addressing schemes for communications networks. Let Nuy denote the set 
of nodes nearer to x than to y in G. Djokovié [D10] characterized graphs 
isometrically embeddable in Q,. 

Theorem 7.8 A connected graph G can be isometrically embedded in 
Q, if and only if G is bipartite and for each edge uv € G, both N,, and 
Noy are convex. D 

Euclidean Embeddings 

A euclidean embedding of a graph G is a mapping of G into #” such 
that adjacent nodes have euclidean distance 1 and nonadjacent nodes 
have some other distance. Erdés, Harary and Tutte [EHT1] defined the 
euclidean dimension ed(G) of a graph G to be the smallest n so that G has 
a euclidean embedding into ”. It is easy to verify that ed(K,) = p-1. 
Figure 7.3 shows euclidean embeddings of the Petersen graph P into ®° 
and §?. Since there is no euclidean embedding of P into ®!, ed(P) = 2. 

Figure 7.3 Two euclidean embeddings of the Petersen graph. 

The invariant ed(G) is nondecreasing, that is, if H is an induced sub- 
graph of G, then ed(H) < ed(G). However, a homeomorph of a graph 
may have a smaller value of ed. So for example, although ed(K5) = 4 and 
ed(IX3,3) = 4, there are nonplanar graphs G with ed(G) = 2. 

Buckley and Harary {[BH4] determined the euclidean dimension of 
wheels, generalized wheels, and complete tripartite graphs. The following 

result of Maechara [M2] subsumed the last of these results by determining 
a formula for the euclidean dimension of any complete multipartite graph. 
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Theorem 7.9 Let G be a complete multipartite graph with s parts of 

size 1, t parts of size 2, and u parts of size greater than 2. Then 

_ fstt+2u ift+u> 2; 

ed(@)= {S404 Qu-1 iy AL, D 

The Metric Dimension 

A metric basis of a connected graph G is a smallest set 5 = {v1, v2,..-, Un} 

of nodes of G such that for nodes u € G, the ordered n-tuples of distances 

[d(u,v,),d(u, v2),...,d(u,vp)] are all distinct. The metric dimension of 
G is the cardinality of a metric basis for G. For trees T, Slater and inde- 

pendently Harary and Melter [HM3] found an algorithm to determine a 
metric basis for T, gave an explicit formula for the metric dimension of 

T, and showed that every tree has a metric basis consisting of endnodes 

only. 

In an analogous study, Melter and Tomescu [MT2] examined the 
boolean metric dimension of a graph where the boolean distance bd(z,y) 
is 0 if z = y and {z: z lies on some path between z and y} if z # y. Note 
that the boolean distance is a set, not its cardinality. In this situation, 

the conditions of a metric are described in terms of equality, containment, 

and unions of sets. 

By taking the multiplicity of boolean distances into account, we obtain 

the boolean distance multiset B(G) of G, which lists each boolean distance 
as well as how many times it occurs for some pair of nodes of G. Harary, 

Melter, Peled, and Tomescu [HMPT1] determined when a graph can be 
reconstructed by using B(G) 

Theorem 7.10 A nontrivial connected graph G is reconstructible from 
B(G) if and only if every block of G is either an edge ora triangle. O 

Other Metrics 

Besides the usual path metric that describes the length of a shortest 
path joining a pair of nodes, other metrics have been used to indicate 
the distance between sets of nodes in a graph or the distance between 
graphs themselves. For example, Chartrand, Oellermann, Tian and Zou 
[COTZ1] define the Steiner distance sd(S$) of a set S of nodes in a 
connected graph G as the minimum size of a connected subgraph of 
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0, ( C 0 0 
O- O———_O 

j 0 
Figure 7.4 A graph to illustrate Steiner distance. 

G containing S. For example, consider the graph in Figure 7.4. Let 
Si = {d, f,g} and Sj = {a,e, f}. Then sd(S,) = 3 and sd(S2) = 5. 

Note that if H is a connected subgraph of G for which S C V(H) and 
q(H) = sd(G), then H is a tree, often called a Steiner tree. In [COTZ1] 
the n-eccentricity e,(v) of a node is defined as the maximum Steiner 
distance among n-element sets containing v. Then the n-radius rn(G) and 
n-diameter dn(G) are defined naturally. Among the results in [COTZ1] is 
the following. 

Theorem 7.11 IfT is a tree and 3 < n < p, then-d,_1(T) = 7,(T). O 

In asubsequent paper, Oellermann and Tian [OT1] defined the Steiner 

n-center C’,(G), n > 2 as the subgraph induced by the set of nodes v for 

which e,(v) = 7,(G). Since the Steiner 2-center C2(G) is simply C(G), 
this concept generalizes that of the center. Oellermann and Tian showed 
that for each n > 2, every graph is the Steiner n-center of some graph. 

They also characterized those trees that are Steiner n-centers of trees. 

Of course, Theorem 2.1 and the fact that C2(G) = C(G) imply that 
C2(G) = Ky or Ko. 

Theorem 7.12 Let n > 3 be an integer and let T be a tree. Then T is 

the n-center of some tree if and only if T has at most n—1 endnodes. 0 

One can define the distance between two graphs, G and H, both of 

order p, 0(G,H), as the minimum order of a graph containing both G 
and H as induced subgraphs. This concept was studied by Zelinka [Z5]. 

Theorem 7.13 The function 0 is a metric on the set of all graphs of 
order p. D 
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EXERGISES 7-2 

1. Draw a nonplanar graph G with euclidean dimension ed(G) = 2. 

2. The euclidean dimension of a wheel Wj,p is 2 ifn = 6 and 3 ifn F 6. 

(Buckley and Harary [BH4]) 

3. An equilateral triangle in a graph is a set of three nodes u, v, and w 

such that d(u,v) = d(u,w) = d(v, w). A graph G has no equilateral 
triangles if and only if each component of G is either a path or a 

cycle whose length is not divisible by three. 
(Harary and Melter [HM4]) 

4. Determine the metric dimensions of the following graphs: 

arely b. Cy Glin ds: Wan 

5. Let md(G) denote the metric dimension of G. For connected graphs 
G, and G2, the metric dimension of the join G, + G2 is given by 

md(G, + G2) = md(G) + md(G2). (Harary and Melter [HM3]) 

7.3. GEODETIC GRAPHS 

For a tree T, there is a unique path joining any pair of nodes in T. 

Thus every path in T is a geodesic. A graph G is geodetic if each pair 

of nodes in G is joined by a unique shortest path. Research on geodetic 

graphs has focused on two main items. Early studies tried to characterize 

the structure of geodetic graphs of a given diameter, while more recent 

investigations have dealt with techniques for constructing one geodetic 
graph from others. 

Structural! Results 

Some early observations of Stemple and Watkins show that it is appropri- 

ate to focus on the blocks of a graph to check whether it is geodetic. They 

showed [SW1] that a graph is geodetic if and only if each of its blocks is 

geodetic. They also characterized planar geodetic graphs. 

Theorem 7.14 A planar graph G is geodetic if and only if each block 

of G is either If2, an odd cycle, or a geodetic graph homeomorphic to K4. 

0 



7.3 GEODETIC GRAPHS 147 

Stemple [S24] gives a structural description of geodetic graphs of di- 
ameter two in terms of order, degree, and relationships among the cliques 
in the graph. Later, Scapellato [S4] built on Stemple’s results to show 
a connection to various geometric structures. He then showed that a 

2-connected geodetic graph of diameter 2 is either strongly regular with 
pe = 1 (see §8.3), a graph called a “pyramid”, or a m-graph (the last 
two graphs are defined in terms of incidence relationships among their 
cliques). 

Plesnik [P4] introduced a certain type of graph that links the early 
characterization work and the later construction processes. He defines a 

graph K,, in terms of a special type of homeomorph of K,. Let the nodes 

of IK, be v1, v2,...,Un, and for each i, let f(v;) = 2; be a nonnegative 

integer. Then the graph K,/) is obtained from K, by inserting x; + D5 
additional nodes on edge v;v; (or equivalently, replacing the edge by a 

path of length z;+2;+1). Plesnik showed that these graph are geodetic. 

His result was extended by Stemple [S25]. 

Theorem 7.15 <A homeomorph of K,, is geodetic if and only if it is of 

the form K,,“). D 

As we shall soon see, the graph K,,) has been used in a number of 

constructions of geodetic graphs. 

As usual, let N;(v) = {u : d(u,v) = i}, that is, the set of nodes in 
the ith neighborhood of v. Parthasarathy and Srinivasan [PS1] obtained 

some beautiful constructions of geodetic blocks. In order to check that 

the resulting graph is indeed geodetic, they developed the following char- 

acterization. 

Theorem 7.16 A graph G is geodetic if and only if for every node 

v, each node u € N,(v) is adjacent to a unique node in Nx_1(v) for 

2k <ee(v). 

Proof If for an arbitrary pair u,v of nodes in G, each node u € N,(v) 

is adjacent to a unique node in Nx_1(v) for 2 < k < e(v), then by back- 

tracking we obtain a unique geodesic joining u and v. Thus G is geodetic. 

On the other hand, assume that G is geodetic and for some node v and 

some integer k, a node u € N;,(v) has two neighbors w;,w2 € Nx-1(). 

Then d(u,v) = k and there are two geodesics joining u and v, one through 



148 7  Convexity 

w, and another through w2, contradicting the fact that G is geodetic. 

Hence, each node u € N,(v) is adjacent to a unique node in N,x_, for 

Te et) D 

Additional structural results for geodetic blocks are contained in Stem- 

ple [S24], Parthasarathy and Srinivasan [PS2] and Alagar and Srinivasan 
[AS1]. For example, Stemple showed that every geodetic block of di- 

ameter 2 is self-centered and each of its nodes lies on an induced Cs. 

Parthasarathy and Srinivasan showed that every geodetic block of diam- 

eter 3 is self-centered and each of its nodes lies on an induced C7. This is 
the end of the road as for diameter 4 or greater, a geodetic block need not 

be self-centered. For example, the graph in Figure 7.5 is a geodetic block 
of diameter 4 but is not self-centered. Note that this graph corresponds 

to K44) where f(v,) = 0 and f(v,) = 1 for k = 2,3,4. Thus by Plesnik’s 
result, Theorem 7.15, the graph is geodetic. 

O = 

Figure 7.5 A geodetic block that is not self-centered. 

Parthasarathy and Srinivasan [PS3] found bounds on the number of 
edges in geodetic graphs of diameter d and other bounds for geodetic 
blocks of diameter d that are either self-centered or not. An interesting 
result in that paper states that in a geodetic block of diameter d which is 
sue Kg nor an odd cycle, there are at least 4 nodes of each eccentricity 
t, [$(d+2)| <t<d. 

Alagar and Srinivasan [AS1] showed that every geodetic block 
G # Cod41 with diameter d = d(G) > 2 contains an induced Kk1,3. Thus 
by Theorem 1.17, such a graph cannot be a line graph. 
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Constructing Geodetic Graphs 

Because of Stemple and Watkin’s observation that a graph is geodetic if 
and only if each of its block is geodetic, constructive results in this area 
have focused mostly on geodetic blocks. 

Cook and Pryce [CP1] and Plesnik [P6] used a concept called pulling 
to construct a new geodetic graph from a given geodetic graph. The way 

pulling works is to first split each main node (deg > 3) ina K;) subgraph 

(t > 3) for which f(v;) > 1 for each main node. Then replace K;,) in 

the geodetic graph by a smaller K;%) with f'(v;) = f(v%j) — 1 for each 
main node. The process can be repeated so long as f’(v;) > 0 for all 2. 
Whenever the resulting graph G* satisfies some rather simple conditions 

on the path lengths between triples of its main nodes, the resulting graph 

G™ is geodetic. See Plesnik [P6] for further details on this process and the 

conditions to check. 

Parthasarathy and Srinivasan [PS1] developed a technique for con- 

structing new geodetic graphs from others. Their technique enables the 

building of geodetic graphs of large diameter. They also modify the con- 

struction to produce geodetic homeomorphs of a geodetic block, thus ob- 

taining geodetic blocks with large diameter and girth. Their constuction 
begins with a clique cover of graph G, that is, a set S of edge-disjoint 

maximal complete subgraphs of G partitioning E(G). Let the nodes of 
G be v},v2,...,Vp and label the cliques of S by 51, S2,...,5;. Form the 

graph G* as follows. For each node v; of G, let c; be the number of cliques 
it is in. Then to build graph G*, begin by replacing v; by the star I1,,,. 

Now label the center node of Ky,2; by vj and label the other nodes by 

vi, for the cliques S$, that contain v;. After labeling the nodes of each 

star in this manner, insert edges 2;,;2;,; for j,j’ > 1. The resulting graph 

is G*. Parthasarathy and Srinivasan showed that if G is a geodetic block, 

then G™* is also geodetic. 

Strongly Geodetic Graphs 

If each pair of nodes u,v of a graph G is joined by at most one path of 

length not more than the diameter d(G), then G is called strongly geodetic. 
Every strongly geodetic graph is geodetic, but not conversely. Strongly 

geodetic graphs were studied by Bosdk, Kotzig, and Znam [BKZ1], who 

showed that there are two basic types of such graphs. 
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Theorem 7.17 If G is strongly geodetic, then G is either a forest or a 

connected regular graph. D 

They also showed that the connected strongly geodetic graphs are 

precisely the Moore graphs discussed in §5.2. 

EXERCISES? 

1. If G has no even cycles, then G is geodetic. 

2. In a geodetic graph, any shortest cycle must have odd length. 

3. If G is a block such that the shortest cycle containing any pair of 

nodes is odd, then G is geodetic. 

4. Draw a geodetic graph that is not strongly geodetic. 

If for all pairs of nodes u,v € G such that d(u,v) < p/2, there is a 

unique geodesic joining u and v, then G is geodetic. 

6. For each odd integer g > 3 and any integer d > g — 2, there exists 

a self-centered geodetic block on 3k + 1 nodes having girth g and 

diameter d. (Parthasarathy and Srinivasan [PS1]) 

7.4 DISTANCE-HEREDITARY GRAPHS 

There are a number of graphs that are defined in terms of convexity and 

distance relations among pairs, triples, or quadruples of nodes. In this 

section we discuss several such graph classes. 

Convex Basic Graphs 

In $7.1, we saw that under the usual distance metric a set S is convex if 

all the nodes on geodesics joining two nodes of S are also in S. For any 

graph G, with V(G) = {v,v2,...,vp}, the sets 0, {vj}, and V(G) are 
always convex. A connected graph G is conver basic if those are the only 
convex sets in G. 

The study of convex basic graphs has focused mainly on planar graphs, 

that is, graphs that can be drawn in the plane with no crossing edges. 

Planar convex basic graphs were characterized by Hebbare and Rao [HR4]. 
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Theorem 7.18 Let G bea planar graph of order at least 4 other than 

the cube Q3. Then G is convex basic if and only if for all paths u,v, w of 

length two there is a node z € G such that ({u,v, w, z}) is C4. 0 

Hebbare and Rao also observed that a planar convex basic graph on 

at least three nodes must have at least one node of degree two. Later 

Hebbare [H18] improved this to show that there must in fact be at least 
two such nodes and described the graphs having exactly two or three 
nodes of degree two. 

Preserving Distance Properties in Spanning Trees 

For a connected graph G, there are a number of distance related properties 

one might wish to preserve in a spanning tree of G. Of course, the distances 
themselves cannot be preserved unless G is a tree, since once an edge uv 
is removed, the distance d(u,v) increases. Nandakumar [N1] determined 
when it is possible to preserve the eccentricities. Let d = d(G) be the 
diameter and r = 7(G) the radius of G. 

Theorem 7.19 A connected graph G has an eccentricity-preserving 

spanning tree if and only if the following conditions hold: 

[er tc UG) = Ay and d.— 27,01 
(C(G)) = Ke andd=2r-1; and 

2. Each v with e(v) > r has a neighbor u for which e(u) = e(v) —1. O 

Rather than requiring all eccentricities to remain unchanged in a span- 

ning tree, one might only ask that the maximum eccentricity not change. 

A diameter-preserving spanning tree of a graph G is a spanning tree T 

for which d(T) = d(G). Graphs with diameter-preserving spanning trees 

were characterized elegantly by Buckley and Lewinter [BL]]. 

Theorem 7.20 A connected graph G has a diameter-preserving span- 

ning tree if and only if either 

1 d( Gy )27(G,) Or 

2. d(G) = 2r(G) — 1 and G contains a pair of adjacent center nodes 

u and v which have no common eccentric node. 0 
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Another related problem involving spanning trees is to preserve the 

center of G. A spanning tree T for which C(T) = C(G) is called a center- 
preserving spanning tree. These graphs were discussed in [BL2], where it 

was noted that no useful nontrivial characterization yet exists for such 

graphs. Finally, we note that Buckley and Palka [BP3] studied conditions 

under which a random graph has a diameter-preserving spanning tree. 

Distance-Hereditary Graphs 

Rather than check whether a graph has a single subgraph (such as a 

spanning tree) with some distance preserving property, one might ask 

that all subgraphs in some class share some such property. The graphs we 

now discuss fall into this category. A graph G is distance-hereditary if for 

all connected induced subgraphs F' of G, dr(u,v) = dg(u, v) for all pairs 

of nodes u,v € F’. The first characterizations of such graphs were found 
by Howorka [H26] 

Theorem 7.21 The following conditions are equivalent for a graph G: 

1. G is distance-hereditary. 

2. Every induced path of G is a geodesic. 

3. Each cycle C,, n > 5, in G has at least two chords and each Cs in 

G can be labeled a,b,c,d,e,a so that ac and bd are edges of G. O 

Using Theorem 7.21, Buckley and Palka [BP1] and Bandelt and 
Mulder [BM1] independently obtained the following forbidden induced 
subgraph characterization of these graphs. 

Theorem 7.22 Graph G is distance-hereditary if and only if G contains 
no C;,, n > 5, nor any of the graphs in Figure 7.6 as an induced subgraph. 

Proof If G is distance-hereditary, then by Theorem 7.21, G cannot con- 
tain an induced C,, n > 5. Also, G cannot contain any of the graphs in 
Figure 7.6 as an induced subgraph since they each contain an induced 
path that is not a geodesic. 

For the converse, suppose G contains no C,, n > 5, nor graphs A, B; 
or C in Figure 7.6 as an induced subgraph. Let Cy be a longest cycle in 
G having only one chord. If k > 7, then G contains an induced C, with 
n 2 95, a contradiction. Thus k = 4, 5, or 6. If k = 4 then 
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(Cx) = K4 — e, which is distance-hereditary. If k = 5, then G contains 
an induced subgraph A, a contradiction. If k = 6, then G contains either 
an induced C's or graph C, a contradiction. Hence each cycle of length 
at least 5 must contain at least two chords. Suppose some Cs € G has 
exactly two chords. Then since G does not contain an induced B, it must 
be possible to label Cs by a,b,c,d,e,a so that ac and bd are edges of G. 
Thus by Theorem 7.21, G is distance-hereditary. 0 

: B L 
Figure 7.6 Three forbidden induced subgraphs of distance-hereditary graphs. 

Theorem 7.22 was used in [BP1] to examine random graphs that are 

distance-hereditary. Besides discovering Theorem 7.21, Bandelt and Mul- 
der [BM1] obtained several other characterizations. One of their metric 
characterizations is the following. 

Theorem 7.23 A graph G is distance-hereditary if and only if for any 

four nodes u,v, w,z € G, at least two of the following sums are equal: 

d(u,v)+d(w,z), d(u,w)+d(v,xz), d(u,r)+d(u,w). 
Furthermore, if it is the smaller distance sums that are equal, then the 

larger sum exceeds the smaller sum by at most 2. D 

Another characterization in [BM1] describes the structure of these 
graphs. 

Theorem 7.24 Let G be a nontrivial connected graph. Then G is 
distance-hereditary if and only if G can be obtained from K2 by a sequence 

of the the following operations: 

1. Adding a new node vw’ and joining it only to one node v. 

2. Adding a new node v’ and joining it to some node v and all its 
neighbors. 

3. Adding a new node v’ and joining it to the neighbors of some node 
v but not to v. 0 
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Ptolemaic Graphs 

A graph G is ptolemaic if every quadruple u,v, w, x of its nodes satisfy 

d(u,v)d(w, x) < d(u,w)d(v, x) + d(u, x)d(v, w). 

These graphs were studied by Howorka {[H27] who showed that they are 

a subset of distance-hereditary graphs. 

Theorem 7.25 A graph G is ptolemaic if and only if it is distance- 
hereditary and contains no induced C4. 0 

Using this result, Buckley and Palka [BP1] studied random graphs 
that are ptolemaic. Bandelt and Mulder [BM1] used Theorem 7.25 and 
their characterizations of distance-hereditary graphs to obtain a met- 

ric characterization as well as a structural characterization of ptolemaic 
graphs. Relations between chordal graphs (see §2.1) and ptolemaic graphs 

were obtained by Farber and Jamison [FJ1]. 

EXERCISES 7.4 

1. Draw all convex basic graphs on 5 or fewer nodes. 

2. If Gis unicyclic, C(G) = {u,v}, and wv € E(G), then G has a center- 
preserving spanning tree if and only if wu and v have no common 

eccentric node. 

3. Draw all graphs on six or fewer nodes which are not 
distance-hereditary. 

Which wheels are distance-hereditary? 

Find a smallest distance-hereditary graph that is not ptolemaic. 



CHAPTER 8 

Symmetry 

From its inception, the theory of groups has provided an interesting and 

powerful abstract approach to the study of the symmetries of various 

configurations. It is not surprising that there is a particularly fruitful 
interaction between groups and graphs. In order to place the topic in its 

proper setting, we recall some elementary but relevant facts about groups. 

In particular, we develop several operations on permutation groups. A 

whole book could be written (and has, see White [W2]) concerning the 
interplay of graphs and groups. We shall focus our attention on those 

results which relate to the distance concepts we have been considering. 

8.1 GROUPS 

First we recall the usual definition of a group. The nonempty set A = 

{a,3,7,-...} together with a binary operation, denoted by juxtaposition, 
constitutes a group whenever the following four axioms are satisfied: 

Axiom 1 (closure) For all a, in A, af is also an element of A 

Axiom 2 (associativity) For all a,f,7 in A, 

a(B7) = (a8)7- 

155 
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Figure 8.1 Two identity graphs. 

Axiom 3 (identity) There is an element z in A such that 

los Ob =a for all a in A. 

Axiom 4 (inversion) If axiom 3 holds, then for each a in A, there is an 
element denoted a7! such that 

A 1-1 mapping of a finite set onto itself is called a permutation. The 

usual composition of mappings provides a binary operation for permuta- 

tions on the same set. Furthermore, whenever a collection of permutations 
is closed with respect to this composition, Axioms 2,3, and 4 are autu- 

matically satisfied and it is called a permutation group. If a permutation 

group A acts on object set X, then |A| is the order of this group and |X| 
is its degree. 

Whenever A and B are permutation groups acting on the sets X and 

Y, respectively, we will write A = B to mean that A and B are isomorphic 

groups. However A = B indicates not only isomorphism but that A and 

B are identical permutation groups. More specifically, A = B if there is a 

1-1 map h: A+ B between the permutations such that for all a, @ € A, 

h(aB) = h(a)h(Z). To define A = B precisely, we also require another 

1-1 map f : X «= Y between the objects such that for all c € X and 

a€ A, flax) = h(a)f(2). 
An automorphism of a graph G is an isomorphism of G with itself. 

Thus each automorphism a of G is a permutation on the node set V 

which preserves adjacency. Of course, a sends any node onto another 

of the same degree. Obviously any automorphism followed by another is 

also an automorphism, hence the automorphisms of G form a permutation 

group, [(G), which acts on the nodes of G. It is known as the group of 
G. Note that the group of a graph and the group of its complement are 
identical: [(G) = I(G). 

The identity map from V onto V is of course always an automorphism 

of G. For some graphs, it is the only automorphism; these are called 
identity graphs. The smallest nontrivial identity tree has seven nodes and 
is shown in Figure 8.1, as is an identity graph with six nodes. 
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Operations on Permutation Groups 

There are several important operations on permutation groups which pro- 

duce other permutation groups. We now develop four such binary opera- 

tions: sum, product, wreath product, and power group. 

Let A be a permutation group of order m = |A| and degree s acting 

on set X = {21,%2,...,2s}, and let B be another permutation group 

of order n = |B| and degree t acting on the set Y = {y1,y2,...,ye}- 

For example, consider A = Z3, the cyclic group of degree 3, which acts 

on X = {1,2,3}. Then the three permutations of Z3 may be written 
(1)(2)(3), (123), and (132). When B = 59, the symmetric group of 
degree 2, acting on Y = {a,b}, we have the permutations (a)(b) and 
(ab). We will use these two permutation groups to illustrate the binary 

operations defined here. 

Their sum (sometimes called product or direct product and denoted 

accordingly) A + B is a permutation group which acts on the disjoint 

union X UY, whose elements are all the ordered pairs, written a + £, of 

permutations a in A and @ in B,. Any object z of X UY is permuted by 

a + @ according to the rule: 

(@+A)= {hs Fey. 
Thus Z3+ 52 contains 6 permutations each of which can be written as the 

sum of permutations a € Z3 and 3 € S2 such as (123)(ab) = (123)+(abd). 
The product (also known as cartesian product) A x B of A and Bisa 

permutation group which acts on the set X x Y and whose permutations 

are all the ordered pairs, written a X 3, of permutations a in A and # in 

B. The object (2,y) of X x Y is permuted by a x f as expected: 

(ax) (2.4) =] (ar,0y): 

The product Z3 x 52 also has order 6 but while the degree of the sum 

Z3 + S2 is 5, that of the product is 6. The permutation in Z3 X S2 corre- 

sponding to (123)(ab) in the sum is (1a 2b 3a 1b 2a 36), where for brevity 

1a denotes (1, a), etc. 
The wreath product A[B] of “A around B” also acts on X x Y. It is 

often called the composition “A of B.” For each a € A and any sequence 

(G1, B2,---,8s) of s (not necessarily distinct) permutations in B, there is 

a unique permutation in A[B] written (a; 61, 2,..., 8s) such that for any 

(ree nee 

(8.1) (a; 1, B2,+-+,Bs)(@is Yj) = (@;, Biys)- 
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Table 8.1 OPERATIONS ON PERMUTATION GROUPS 
SS 

Wreath 

Sum Product Product Power 

group A RACED @ ADD A[B] (es 
Ghjects Sek PYR OX CNY ee Xa b Gp" v yo 
order m n mn mn mné mn 
degree 8 t st+t st st is 

The wreath product Z3[52] has degree 6 but its order is 24. Each per- 
mutation in Z3[.$2] may be written in the form in which it acts on X XY. 
Using the same notation la for the ordered pair (1,a) and applying the 

definition (8.1), one can verify that ((123);(a)(0), (ab), (a)(b)) is express- 
ible as (1a 2a 3b 1b 2b 3a). Note that $2[Z3] has order 18 and so is not 
isomorphic to Z3[59]. 

The power group denoted by B4 acts on Y*, the set of all functions 

from X into Y. We will always assume that the power group acts on more 

than one function. For each pair of permutations a in A and £ in B there 

is a unique permutation, written G% in B4. We specify the action of 6% 

on any function f in Y* by the following equation which gives the image 

of each x € X under the function 6° f: 

(8.2) (6° f)(z) = Bf(az). 

The power group nae has order 6 and degree 8. It is easy to see by applying 

(8.2) that the permutation in this group obtained from a = (123) and 
GB = (ab) has one cycle of length 2 and one of length 6. 

Table 8.1 summarizes the information concerning the order and degree 
of each of these four operations. 

We now see that three of these operations are not all that different. 

Theorem 8.1 The three groups A+ B, Ax B, and BA are isomorphic. 

Proof It is easy to show that A+ B = Ax B. Tosee that A+ B= BA, 
we define the map f : B4 — A+B by f(a; 8) = a1, and verify that f 
is an isomorphism. Note that these three operations are commutative; in 
fact, A+ B= B+A,AXB=BxA,and BAY APF, 0 
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Table 8.2 PERMUTATION GROUPS OF DEGREE P 

Group Symbol Order Definition 

Symmetric Sp p! All permutations on {1,2,...,p} 
Alternating Ap p\/2 All even permutations on {1,2,...,p} 
Cyclic Zp D Generated by (12 --- p) 
Dihedral D; 2p Generated by (12 --- p) and 

(ip(2 7 1) >. 
Identity 1m 1 (1)(2)---(p) is the only permutation. 

Table 8.2 introduces notation for five well-known permutation groups 

of degree p. In these terms, we can describe the groups of two familiar 

graphs with p nodes. 

Theorem 8.2 The group I(G) is S, if and only if G is K, or Kp. 
The group I(G) is D, if and only if G is a cycle of length p or its 
complement. D 

Thus two particular groups of degree p, namely S, and D,, belong to 

graphs with p nodes. For all p > 6, there exists an identity graph with p 

nodes, and in fact whenever p > 7, there is an identity tree. 

Graphs with a Given Group 

Konig [K4,p.5] asked: When is a given abstract group isomorphic with the 

group of some graph? An affirmative answer to this question was given 

constructively by Frucht [F11]. His proof that every group is the group 

of some graph makes use of the Cayley “color-digraph of a group” [C5] 

which we now define. Let F = {fo, fi, fa,---, fn — 1} be a finite group of 

order n whose identity element is fo. Let each nonidentity element have 

associated with it a different color. The color-digraph of F, denoted D(F), 

is a complete symmetric digraph whose nodes are the n elements of F’. 

In addition, each arc of D(F), say from f; to f;, is labeled with a color 

associated with the element we of F. Of course, in practice we simply 

label both nodes and arcs of D(F’) with the elements of F’. 

For example, consider the cyclic group of order 3, Z3 = {0,1,2}. The 

color-digraph D(Z3) is shown in Figure 8.2. 

Frucht discovered the next result which is simple but very useful. 

Theorem 8.3 Every finite group F is isomorphic with the group of 

those automorphisms of D(F’) which preserve arc colors. 
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Gueseeei 
Figure 8.2 The color digraph of the cyclic group. 

Proof To construct a graph G whose group I(G) is isomorphic with F, 
Frucht replaced each arc f;f; in F by a doubly rooted graph. This is done 

in such a way that every arc of the same color is replaced by the same 

graph. Suppose that f;f; = fy. Then the graph replacing arc f; f; is a tree 

consisting of the path fjujv;f; with a path of length 2k — 3 from u; and 

a path of length 2k — 2 from v;. The resulting graph G has n?(2n — 1) 
nodes and ['(G) = F. 0 

Theorem 8.4 For every finite abstract group F’, there exists a graph G 
such that ['(G) and F are isomorphic. 0 

The graph obtained by this method from the cyclic group Z3 is shown 

in Figure 8.3a. It should be clear from this example that the number of 

nodes in any graph so constructed may be excessive. When the group 

is known to have m < n generators, a smaller graph can be obtained by 
modifying the color-graph to only include directed edges which correspond 

to the m generators. Thus a graph containing n(m + 1)(2m + 1) nodes 
can be obtained for the given group. Since Z3 can be generated by one 
element, there is a graph with 18 nodes for Z3. It is shown in Figure 8.3b. 

The inefficiency of even this improvement of the method of construc- 

tion was illustrated in [HP1] where it was shown that the unique smallest 
graph whose automorphism group is Z3 has 9 nodes and 15 edges. 

Later Frucht [F 12] showed that one could also specify that G be cu- 
bic. Sabidussi [S1] then showed that there are many graphs with a given 
abstract group having one of several other specified properties. Babai ([B1] 

gives an excellent survey of further work in this area. 
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(q) (0) 
Figure 8.3 Frucht’s graph whose group is Z3 and a smaller such graph. 

EXERCISES 8.1 

1. If Gis a connected graph, then [(nG) = S,[I'(G)). 
(Frucht [F13]) 

2. If G; and G2 are disjoint, connected, nonisomorphic graphs, then 

T'(G, U G2) zs T'(G) + T'(G2). 

3. I(G,; UG2) = T(G1) +T(G2) if and only if no component of Gj is 
isomorphic with a component of G9. 

4. T(G, + G2) = 1(G1) + I(G2) if and only if no component of G; is 
isomorphic with a component of G2. 

5. The group of the corona Gj o G2 is 

I'(G, fo) G2) = T'(G,)[F1 + T'(G2)] 

if and only if G, or Gz has no isolated nodes. 

(Frucht and Harary [FH1]) 

6. Draw the unique smallest graph whose automorphism group is C3. 

It has 9 nodes and 15 edges. (Harary and Palmer [HP 1]) 

7. Determine the group of each connected graph with four or fewer 
nodes. 

8. Express the groups of the following graphs in terms of operations on 

familiar permutation groups: 

a. 3K 2 DS Ko + CA C. Teer d. K4 U C4. 

9. There are no nontrivial identity graphs with less than 6 nodes. 
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10. There are no cubic identity graphs with less than 12 nodes. 

11. Construct a cubic graph whose group is cyclic of order 3. 

8.2 SYMMETRIC GRAPHS 

A systematic study of symmetry in graphs was initiated by Foster [F6], 

who made a tabulation of symmetric cubic graphs. Two nodes u and v 

of the graph G are similar if for some automorphism a of G, a(u) = v. 

A fived node is not similar to any other node. Two edges %1 = 0101 and 

Ly = Ugv2 are called similar if there is an automorphism a of G such that 

a({uy,01}) = {uz, v2}. We consider only graphs with no isolated nodes. 

A graph is node-symmetric if every pair of nodes are similar; it is edge- 

symmetric if every pair of edges are similar; and it is symmetric if it is 

both node-symmetric and edge-symmetric. The smallest graphs that are 

node-symmetric but not edge-symmetric (the triangular prism K3 x K2) 

and vice versa (the star Jj,2) are shown in Figure 8.4. 

U 

Figure 8.4 A node-symmetric and an edge-symmetric graph. 

Note that if a is an automorphism of G, then it is clear that G — u 

and G — a(u) are isomorphic. Therefore, if u and v are similar, then 
G-—u2=G-v. Surprisingly, the converse of this statement is not true. 

The graph in Figure 8.5 provides a counterexample, see [HP2]. It is the 
smallest graph which has dissimilar nodes u and v such that G—u = G—v. 

The degree of an edge = wy U2 is the unordered pair d,,d2 with 

d; = degui;, 2 = 1,2. A graph is edge-regular if all edges have the 

same degree. When m # n, the complete bipartite graphs K,,,, are edge- 
symmetric but not node-symmetric and are edge-regular of degree m,n. 

We next state a theorem due to E. Dauber whose corollaries describe 

properties of edge-symmetric graphs. Note the obvious but important 

observation that every edge-symmetric graph is edge-regular. 
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U V 
Figure 8.5 A counterexample to a conjecture. 

Theorem 8.5 Every edge-symmetric graph with no isolated nodes is 
node-symmetric or bipartite. 

Proof Consider an edge-symmetric graph G with no isolated nodes, hav- 

ing gq edges. Then for any edge z, there are at least q automorphisms 

Q1,02,...,Q@ of G which map z onto the edges of G. Let x = v0, 

Vi = {a (v), a2(v1), cee OAC Oe and V2 = {a1(v2), a2(v2), eee ,Qq(v2)}. 

Since G has no isolated nodes, the union of V; and V2 is V. There are two 

possibilities: V; and V2 are disjoint or they are not. 

Case 1. If Vj and V2 are disjoint, then G is bipartite. 

Consider any two nodes w, and wy, in Vj. If they are adjacent, then 

there is an edge y joining them. Hence for some automorphism a;, we 

have a;(z) = y. This implies that one of these two nodes is in V; and the 

other is in Vj, a contradiction. Hence V; and V2 constitute a partition of 

V such that no edge joins two nodes in the same subset. By definition, G 
is bipartite. 

Case 2. If Vj and V2 are not disjoint, then G is node-symmetric. 

Let wu and w be any two nodes of G. We wish to show that u and 

w are similar. If uw and w are both in the same set, say Vi, then there 

exists an automorphism a with a(v,) = u and £ with B(v;) = w. Thus 
Ba-1(u) = w so that any two nodes u and w in the same subset are 
similar. If u € Vj and w € V9, let v be a node in Vj N V2. Since v is similar 

with wu and with v, u and v are similar to each other. D 

Corollary 8.5a If G is edge-symmetric and the degree of every edge 

is dy, dz with d; # dz, then G is bipartite. D 

Corollary 8.5b Ifa graph G with no isolated nodes is edge-symmetric, 

has an odd number of nodes, and the degree of every edge is di,d2 with 

d, = dz, then G is node-symmetric. D 
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Corollary 8.5c ‘If G is edge-symmetric, has an even number of nodes, 

and is k-regular with k > p/2, then G is node-symmetric. D 

With these three corollaries, the only edge-symmetric graphs not yet 

characterized have an even number of nodes and are k-regular with 

k < p/2. 

n- Transitive Graphs 

Following Tutte [T16], an n-route is a walk of length n with specified 
initial node in which no edge succeeds itself. A graph G is n-transitive, 

n > 1, if it has an n-route and there is always an automorphism of G 

sending each n-route onto any other n-route. Obviously, a cycle of any 

length is n-transitive for all n, and a path of length n is n-transitive. Note 

that not every edge-symmetric graph is 1-transitive. For example, in the 

edge-symmetric graph P3 = v1 v2v3, there is no automorphism sending the 

l-route vjv2 onto the l-route v2v3. 

If W is an n-route vov¥1,v2-++ Up and wu is any node other than v,_1 

adjacent with v,, then the n-route vj v2 +++ v,u is called a successor of W. 

If W terminates in an endnode of G, then obviously W has no successor. 

For this reason, it is specified in the next two theorems that G is a graph 

with no endnodes. We now have a sufficient condition [T16, p.60] for 
n-transitivity. 

Theorem 8.6 Let G be a connected graph with no endnodes. If W is 

an n-route such that there is an automorphism of G from W onto each of 

its successors, then G is n-transitive. 0 

There is a simple relationship [T16, p.61] between n-transitivity and 
the girth of a graph. 

Theorem 8.7 If G is connected, n-transitive, is not a cycle, has no 
endnodes and has girth g, then n <1+4g/2. 0 

Using Theorem 8.6, it can be shown that the Heawood graph in Figure 
8.6 is 4-transitive. Furthermore, it is easily seen from Theorem 8.7 that 
this graph is not 5-transitive. It is cubic and has girth 6. 
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Figure 8.6 The Heawood graph. 

Cages 

There are regular graphs called “cages” which are, in a sense, even more 

highly symmetric than n-transitive graphs. An n-cage, n > 3, is a cubic 

graph of girth n with the minimum possible number of nodes. This class 

of graphs has been generalized to (r, n)-cages, which are r-regular graphs 

with girth n having minimum order. Thus an n-cage is equivalent to a 

(3, n)-cage. The unique (2,7)-cages are the cycles Cy. It was shown (see 
[T16, pp.71-83]) that there are (3,n)-cages for all n > 3, and that for 
n = 3 to 8, such (3, n)-cages are unique. It is interesting to note that not 
only are these cages n-transitive, but for each pair of n-routes in such 

a cage, there is a unique automorphism which maps one onto the other. 

The (3, 8)-cage is illustrated in Figure 8.7. 

It is easy to see that the (r,3)-cages are uniquely K,41. Erdos and 
Sachs [ES2] showed that (r,n)-cages always exist. 

Theorem 8.8 For all pairs of integers r,n > 3, there is an (r, n)-cage 

and its order is bounded by 

(5 )te- yt + = += 4) O 

The comprehensive survey article by Wong [W6] presents additional 

results on (r,n)-cages, as does the paper [HK 1]. 
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Figure 8.7 The (3, 8)-cage is the union of the above graphs as labeled. 

EXERCISES 8.2 

1. Every connected node-symmetric graph is a block. 

2. The (r,4)-cages are uniquely K,,,. (Chartrand and Lesniak [CL1]}) 

3. Graph G is a circulant if it contains a spanning cycle vp «++ Vp_1V0 

such that whenever the edge v,um4n is in G, so are all the edges u,v; 

where 7 -i =n (mod p). A connected graph with a prime number 

p of nodes is node-symmetric if and only if it is a circulant. 

(Turner [T11}) 

4. If Gisaconnected graph with at least one cycle, then the girth g(G) 
satisfies g(G) < 2d(G) + 1. 

5. Prove or disprove the following eight statements: If two graphs are 

node-symmetric (edge-symmetric), then so are their join, product, 

composition, and corona. 

8.3. DISTANCE SYMMETRY 

Some properties concerning symmetry in graphs refer directly to distance 

between nodes. Actually, edge-symmetry could be considered in this cat- 

egory. A graph G is edge-symmetric if for every two pairs of nodes at 

distance one from one another there exists an automorphism of G which 
maps one pair of nodes into the other pair. In this section we examine two 

classes of graphs whose distance symmetry conditions are more restrictive. 
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Distance- Transitive Graphs 

A graph G is distance-transitive if for every set of four nodes u,v, w, z 

in G for which d(u,v) = d(w, z), there is an automorphism a such that 
a(u) = w and a(v) = z. It is clear from the definition that any distance- 
transitive graph is both node-symmetric and edge-symmetric and there- 

fore symmetric. However, the converse is not true. 

For n > 5 relatively prime to [(n — 1)/2], the generalized Petersen 
graph of order 2n is constructed from two copies of C,,. Label the con- 

secutive nodes of one cycle by uo, uy, U2,..., Un—1 and those of the other by 

V0, 01, 02,+-+,Un-1- Then join each node uj to 0(54[(n~1)/2]) modn: 
All generalized Petersen graphs are symmetric. Figure 8.8 displays a graph 

which is symmetric but not distance-transitive. The graph is symmetric 
since it is a generalized Petersen graph. To see that this graph is not 

distance-transitive, consider the 4 nodes v1, v4, v2,V12. For these nodes, 

d(v1, v4) = d(v2, v12) = 3. However, there can be no automorphism which 

maps v1 to v2 and v4 to v12, because v; and v4 are joined by two geodesics, 

while v2 and v2 are joined by three. 

Figure 8.8 A symmetric graph which is not distance-transitive. 

Distance-transitive graphs are regular, so one might organize an exam- 

ination of these graphs according to degree. Biggs and Smith [BS4] showed 

that there are exactly twelve cubic distance-transitive graphs, and Smith 

[S23] showed that there are fifteen distance-transitive 4-regular graphs. 

For a node v € G, the ith neighborhood of v is Ni(v) = {ueE G: d(u,v) = 

i}, and as above d;(v) = |Ni(v)|. A useful result about distance-transitive 

graphs is the following. 

Theorem 8.9 Let wand v be nodes at distance d(u,v) = 7 in a distance- 

transitive graph G. Call |Ni(u)N Ni(v)| = ai, |Ni(u) N Ni+1(v)| = 8, and 

|Ni(u) N Ni-1(v)| = ci. Then these numbers depend only on 2 and are 

independent of the choice of u and v. 0 
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Biggs [B8,p.135] observed that for a distance-transitive graph G which 

is necessarily regular, say of degree k, ag = 0, bop = k, and cy = 1. He then 

went on to prove the following. 

Theorem 8.10 Let G be a distance-transitive graph with parameters 

a;, 61, and c; as described above. Then 

PES) RGA OT A URS ES HA 
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Note that the definition of a distance-transitive graphs requires that 

for any two pairs of nodes whose distances apart match, there is an 

automorphism which sends one pair into the other. Rather than con- 

sider pairs, one could consider a corresponding problem for n-tuples. A 

graph G is n-tuple distance-transitive if for all sequences (wy, U2, ..., Un) 

and (v1, 02,...,%n) with d(u;, u;) = d(v;, v;) for all i,7, there is an auto- 

morphism a of G such that a(u;) = v;. Thus distance-transitive graphs 
are just 2-tuple distance-transitive graphs. Cameron [C1] characterized 
6-tuple distance-transitive graphs and showed that these graphs are also 

n-tuple distance-transitive for all n. 

Theorem 8.11 If G is a 6-tuple distance-transitive graph, then G is 

one of the following: 

1. K(t,t,...,t), the complete k-partite graphs with each part having t 

nodes. 

Kx41,k41 minus a 1-factor. 

Ga: 

The line graph L(K33). 

The icosahedron. 

2 hee ae The 9-regular graph on 20 nodes whose nodes correspond to the 
3-subsets of a 6-set with two nodes adjacent whenever their intersec- 

tion is a 2-set. 0 

Distance-Regular Graphs 

Let G be a k-regular graph with diameter d. Then G is distance-regular 
if there are positive integers bo = k, 61, b2,...,ba —1,c, = 1,€9, €3,..-,€q, 
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such that for each pair of nodes u,v at distance j apart, we have 

(8.3) The number of nodes at distance 7 — 1 from v which are neighbors 
OL wis'c;\(1 < 9°< d): and 

(8.4) The number of nodes at distance 7 + 1 from v which are neighbors 
of wis b; (0<j<d-1). 

By Theorem 8.9 every distance-transitive graph is distance-regular. 

Thus numerous familiar graphs, such as cycles, complete graphs, hy- 

percubes, and regular complete bipartite graphs are distance-regular. 

Although distance-regularity places no restrictions on the automorphism 

group of G, most distance-regular graphs are also distance-transitive. 

However, as Biggs noted [B8,p.139] with the following example due to 

Adel’son-Velski [A1], not all are. Let G be the graph with 26 nodes 1, 
wi, 0 < i < 12, where adjacency is defined as follows: v; and v; are ad- 

jacent when 2 — 7 = 1,3,4,9,10,12 (mod 12); w; and w; are adjacent 

when i — 7 = 2,5,6,7,8,11 (mod 12); and v; and w; are adjacent when 

t—7j =0,1,3,9 (mod 12). Then G is distance-regular, but since it has 

no automorphism mapping a; to b;, it is not distance-transitive. Other ex- 

amples of distance-regular graphs which are not distance-transitive were 

found by Weisfeiler [W1]. 

Figure 8.9 Some familiar distance-regular graphs. 

For a distance-regular graph G, Smith [S22] established the following 

relationships for its parameters. 

Theorem 8.12 IfG is a distance-regular graph with parameters c; and 

b;, then 

bstepmicgig oF Reg and k= bg Srbyaee 2+ > baa: 
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Proof Let v be a node of G and w € Nj41(v) with 0 < 7 < d. Then 

|Ni(v) A N;(w)| = cj41 # 0. Hence, there is a node wu in Ni(v) N N;(w). 

Then Ny(w) Nj-1(u) C Ni(w)N N;(v), so cj < cj41. The argument for 

the parameters b; is analogous. 0 

Additional relationships between the parameters of a distance-regular 

graph were obtained recently by Nomura [N5]. The classification of 

cubic distance-regular graphs was completed by Biggs, Boshier and 
Shawe-Taylor [BBS1]. Just one such graph is not distance-transitive; it 
has 126 nodes (see Biggs [B8, p.164]). 

Taylor and Levingston [TL1] studied distance-regular graphs of small 
diameter by considering the sizes d;(v) of the sets N;(v). For diameters 3 
and 4, they characterized such graphs when d; = d3. To describe these, 

they use aspecial graph and aconstruction on it. A regular 2-graph (W, S) 
consists of a set W together with a set S of 3- subsets of W such that 
every 4-subset of W contains an even number of element of S and every 

2-subset of W is contained in the same number of elements of S. For 

results on these graphs see Taylor [3]. 

For the construction, take V(G) = WU W’, where W’ is a second 
copy of W and has prime-labeled nodes. Define adjacency in G as follows. 

Choose some node v € W and join it to all other nodes in W. For each 

pair of nodes u,w # v join u and w if {u,v,w} € S, otherwise join u to 
u’ and w to w’. Then join u’ to w’ whenever u is joined to w. Graph G is 
distance-regular as long as S' does contain all 3-subsets of W. This is called 

the “doubling construction”. We can now state the characterizations given 
by Taylor and Levingston [TL1]. 

Theorem 8.13 Let G be a distance-regular graph. 

1. If G has diameter 3, then d, = d2 if and only if g is the “doubled- 

graph” of a regular 2-graph or G = C7. 

2. If the diameter of G is at least 4, then d; = dz if and only if Gis a 

cycle. D 

A graph G is distance regularized if, for any integer k and any nodes 
u and v, the number of neighbors of v which are at distance k from u only 
depends on d(u,v) and node u. Bipartite distance regularized graphs in 
which nodes in the same part have the same parameters b;, c; are called 
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distance-biregular. Godsil and Shawe-Taylor [GS1] categorized distance 
regularized graphs. 

Theorem 8.14 Any distance regularized graph is either distance-regular 

or distance-biregular. D 

Strongly Regular Graphs 

Bose [B20] introduced a class of graphs related to design theory and, like 

distance-regular graphs, defined in terms of neighborboods. A k-regular 

graph G # KK or K, is strongly regular if every pair of adjacent nodes 

has A common neighbors and every pair of nonadjacent nodes has p com- 

mon neighbors. The numbers p,k, A, are the parameters for a strongly 

regular graph. It is easy to verify that two of the graphs in Figure 8.9 are 

strongly regular. Which one is not? Since all pairs of nonadjacent nodes 

in a strongly regular graph must have the same number of common neigh- 
bors, all connected strongly regular graphs have diameter 2. Hence the 

hypercube Q3 is not strongly regular. 

There is a basic relationship between the parameters of a strongly 

regular graph. 

Theorem 8.15 If G is a strongly regular graph with parameters 

p,k,A,p, then (p—k-1)u=k(k-1-4). 

Proof Let N(v) and M(v) be the sets of neighbors and nonneighbors, 
respectively, of node v € G. Set N(v) has k elements and M(v) has 
p—k-—1. For each u € N(v), wu and v have \ common neighbors. Each 
such node wu has degree k and k — 1 — X neighbors in M(v). Since there 
are k such nodes wu, there are k(k — 1— A) edges between N(v) and M(v). 

Another way of counting the number of edges between N(v) and M(v) 

is to begin with a node w € M(v). Since nodes v and w are not adjacent, 

they have 4 common neighbors, all of which are in N(v). This is true for 

each of the p—k—1 nodes in M(v). Therefore there are (p— k— 1) edges 

between N(v) and M(v). Hence (p— k —1)u = k(k-—1-A) oO 

Many strongly regular graphs are completely determined up to iso- 

morphism by their parameters. See for example, Gewirtz [G3] and Seidel 

[S6]. For an excellent introduction to the theory of strongly regular graphs, 
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the reader is referred to Cameron and Van Lint [CV1] and the survey ar- 
ticle by Seidel [S7]. Construction of strongly regular graphs are given in 
Hubaut [H28]. 

EXERCISES 8.3 

1. The hypercubes Q, are distance-transitive. 

2. The Petersen graph is distance-regular, and so is its line graph. 

3. A graph G of diameter k is antipodal if {vU Na(v) : v € V(G)} forms 
a partition of V(G). If G is distance transitive and the automorphism 

group of G act imprimitively on V, then G is antipodal or bipartite. 

(Smith [S22]) 

4. If Gis distance-regular of diameter d with parameters b; and c;, then 

t+ 7<dimplies c; < b;. (Taylor and Levingston [TL1]) 

5. Construct a graph which is distance-biregular but not regular. 

6. Let A and B be the adjacency matrices of a graph and its com- 

plement. If G is strongly regular with parameters p,k,A,p, then 

Akl aA PB, 

7. If Gis strongly regular, then so is its complement. 

FURTHER RESULTS 

A.E. Brouwer, A.M. Cohen, and A. Neumiaer are completing a monograph 
entitled Distance Regular Graphs to be published in the series Ergebnisse 

der Mathematik by Springer-Verlag. 



CHAPTER 9 

Distance Sequences 

A sequence for a graph is simply an invariant which consists of a list of 

numbers rather than a single number. The advantage of studying and 

using a sequence is that it is often nearly as easy to calculate as a single 

numerical invariant yet it carries far more information about the graph 

it represents. In this chapter we discuss a number of distance related 

sequences for a graph, display their relation to one another as well as to 

various concepts in graph theory, and indicate their uses in applications. 

9 THE ECCENTRIC SEQUENCE 

A sequence § is graphical if there is a graph which realizes S. Before 

discussing the eccentric sequence, we present results on the only graph 
sequence which predated it. 

The Degree Sequence 

The first sequence studied for graphs was the degree sequence. An exis- 

tential characterization of graphical degree sequences was given by Erdos 

and Gallai [EG1]. The following constructive characterization was found 
independently by Havel [H17] and later by Hakimi [H1]. 

173 
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Theorem 9.1 The sequence D = (dj, d2,...,dp) with 

p-1>daq>d,>--->d, 
is a graphical degree sequence if and only if the modified sequence 

D = (dg = 1, d3 = er det —= Lid tases Op) 

is a graphical degree sequence. 

Proof If D’ is a graphical degree sequence, then so is D, since from a 

graph with degree sequence D’ one can construct a graph with degree 

sequence D by adding a new node adjacent to the nodes having degrees 

dz —1,d3 —1,..-,dg,41 —1. 
Now let G be a graph with degree sequence D. If a node of degree dy 

is adjacent to nodes of degree d, for k = 2 to dj +1, then the removal of 

this node results in a graph with degree sequence D’. 

Suppose that G has no such node. We will show that from G one can 

always get another graph with degree sequence D having such a node. 

We assume that the nodes in G are labeled so that deg v; = d; and that 

v, is a node of degree d, for which the sum of the degrees of the adjacent 

nodes is maximum. Then there are nodes v; and v; with d; > d; such that 

v1 v; is an edge but v,v; is not. Since d; > d;, there must be some node vx 

adjacent to v; but not to v;. Removal of the edges vv; and vzv; and the 

addition of vjv; and v;z,v; results in another graph with degree sequence 
D. But in this new graph, the sum of the degrees of the nodes adjacent to 

v1 is greater than before since vj is now adjacent to v; rather than v;. By 

repeating this edge-switching process a finite number of times, we obtain 

a graph with degree sequence D in which v; has the desired property. O 

The theorem gives an effective algorithm for the construction of a 

graph with a given degree sequence, if one exists. If none exists, the algo- 

rithm cannot be applied at some step. 

Algorithm 9.1 The sequence D = (dj, d2,...,d,) with 
p—12> d, > dz >-:- > d, is a graphical degree sequence if and only if 

the following procedure results in a sequence with every term zero. 

1. Determine the modified sequence D’ as described in Theorem 9.1. 

2. Reorder the terms of D’ so that they are in nonincreasing order, and 
call the resulting sequence Dj. 

3. Determine the modified sequence D” of D, as in step 1 and reorder 
D" as in step 2; call the reordered sequence Do. 

4. Continue as long as only nonnegative terms are obtained. a) 
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If a sequence at an intermediate stage of the algorithm is known to 
be a graphical degree sequence, stop, since D itself is then established to 
be one also. To illustrate Algorithm 9.1, we test the sequence 

D = (5,5,3,3,2, 2,2) 
IDE SCR DT MD) 
D, = (4,2,2,2,1, 1) 
D" = (1,1,1,0,1) 
D2 = (1,1,1,1,0) 

Clearly, D2 is a graphical degree sequence, so D is also. The graph so 
constructed is shown in Figure 9.1. 

Figure 9.1 An example for Algorithm 9.1. 

Eccentric Sequences 

The eccentric sequence of a connected graph G is a list of the eccentricities 

of its nodes in nondecreasing order. Since there are often many nodes 
having the same eccentricity, we will simplify the sequence by listing it as 

Cf Nest eyes 

where the e; are the eccentricities (e; < e;41) and m, is the multiplicity 

of e;. Thus, for the eccentric sequence 2,2,3,3,3,3,4,4 for the graph of 

Figure 9.2, we will write 27,34,4?. If node u has eccentricity t and for 

some node v, d(u,v) = t, then v is called an eccentric node of u. 

Some simple observations about the values e; and m, for a nontrivial 
connected graph are as follows: 

1. Since for each pair of adjacent nodes u,v, and any third node w, 

|d(u, w)—d(v, w)| < 1, it follows that the e;’s are consecutive positive 
integers. 

A Didi aeaep 
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3. e, =17(G) and e, =d(G),sol<e<p-l. 

4. Since there must be a pair of diametral nodes, m,z > 2. 

5. Since the diameter is at most twice the radius, ex < 2e1. 

Figure 9.2 A graph and its eccentricities. 

Lesniak [L3] showed that (possibly) except for the radius r, there are 
at least two nodes of each eccentricity between r and d. 

Theorem 9.2 For p> 2, m; > 2 except possibly for m,. 

Proof Since the e;’s are consecutive positive integers, there is at least 

one node of eccentricity t for each integer t, e; < t < ex. Let u be a node 

with eccentricity t > e; in G, and let v be an eccentric node of u. Then 

e(v) > t. For a central node w, let P be a v— w geodesic. Since e(w) = e1, 
d(v,w) < e;. Since the eccentricities of adjacent nodes can differ by at 

most one, and e(w) = e, < t < e(v), some node z on P (possibly x = v) 
has eccentricity t. Since d(u,v) = t > e1 > d(z,v), node x must be distinct 
from u. Thus there are at least two nodes with eccentricity t. 0 

Ostrand [05] determined all nonisomorphic graphs of minimum order 
having specified radius and diameter. His result which follows will be 
useful for us. 

Lemma 9.3 ‘For all positive integers r and d satisfying r < d < 2r—2, 
there exist graphs with radius r and diameter d. The minimum order of 

such a graph is r + d. There are exactly |(d — r)/2| + 1 nonisomorphic 
graphs of order r + d, radius r, and diameter d. Each graph consists of a 

path uo, ui, U2,-..,Uq and a path wus, V1, V2,...,Ur—1, Us¢r With only the 

nodes uw, and us4, in common (0 <s < |(d—r)/2]). 0 
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Us 1 Us 4.2 one) 

Figure 9.3 Minimum order graphs with given radius and diameter. 

Theorem 9.3 Let r™,(r + 1)™,...,(r +k — 1)™* be the eccentric 
sequence of a graph on p nodes (p > 2). Then the following conditions 
must hold. 

1. k<r+l,and p> 2r+k-1 fork <r—1(p<r+k-—1 otherwise). 

Dome eet DOL Det el 

Sa Se wits aap: 

Proof Clearly condition 3 is necessary. The first part of condition 1 is 
equivalent to saying that the diameter is at most twice the radius. The 

second part of 1 follows from Lemma 9.3 for d < 2r— 2, and the fact that 

for d = 2r or 2r —1, the path Py is the minimal graph. Condition 2 must 

hold by Theorem 9.2. D 

Minimal Eccentric Sequences 

We say that a sequence is eccentric if it is realizable as the eccentric 

sequence of some graph. Lesniak [L3] obtained the following characteri- 
zation of eccentric sequences. 

Theorem 9.4 A sequence S of positive integers is eccentric if and only 

if some subsequence T of S' is eccentric. D 

One of the difficulties in using Theorem 9.4 is that the subsequence T 

may be the full sequence S itself. This led Nandakumar [N1] to consider 
the concept of minimal sequences. An eccentric sequence is minimal if it 

has no proper eccentric subsequences with the same number of distinct ec- 

centricities. Nandakumar [N1] determined all minimal eccentric sequence 
with least eccentricity at most 2. 
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Theorem 9.5 There are exactly six minimal eccentric sequences with 

least eccentricity at most two, namely, 

12) 1,07: 34-597,3?: 9958°. and) 32 2Ate ia 

BAS! 
ia 

Figure 9.4 Graphs realizing the minimal eccentric sequences of Theorem 9.5. 

EXERCISES 9.1 

1. Which of the following are graphical degree sequences? 

A 3, 

b. (8,6,5, 4,3, 2, 2,1). 

G5; 5951813505550): 

a eRe, os oy Re Bs eet Be bea A) 

2. A sequence (d1,d2,...,dp) where }\d; = 2q is the degree sequence 

of a tree if and only if each d; is a positive integer and g = p— 1. 

3. Draw all graphs with degree sequence (5,5, 3,3, 2,2). 

4. The eccentric mean ue(G) = (1/p) >> mie;. Determine .(G) for each 
of the following. 
al bar cxG, das e. Win. 

5. IfG is aconnected graph on p nodes, then 1 < ue(G) < (3p—2)/4 for 
even pand 1 < p.(G) < (3p* — 2p — 1)/4p for odd p. The lower and 
upper bounds are achieved only when G = K;, or Pp, respectively. 
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6. The conditions of Theorem 9.3 are sufficient to guarantee a graph 

realizing the given eccentric sequence when r < 2. 

7. Verify that sequence 34, 4° satisfies the conditions of Theorem 9.3, 

although it is not eccentric. 

8. A finite nonempty set S of positive integers is an eccentric set if 

there exists a graph G all of whose eccentricities are elements of S. 

A nonempty set S = {e1,€2,...,€n} of positive integers, listed in 

increasing order, is an eccentric set if and only if n < e; +1 and the 

e; are consecutive integers. (Behzad and Simpson [BS2]) 

9. A spanning tree T of a connected graph G is eccentricity preserving 

if and only if it has the same eccentric sequence as G. Graph G has 

an eccentricity preserving spanning tree if and only if 

a. G is central and d = 2r, or 

G is bicentral and d = 2r — 1; and 

b. For each v with e(v) > r(G), one of its neighbors wu satisfies 
e(u) = e(v) — 1. (Nandakumar [N1]}) 

9.2 DISTANCE SEQUENCES 

There are several graphical sequences that concern the distances between 

all pairs of nodes in a graph. We discuss these sequences in this section. 

The Distance Degree Sequence 

This sequence actually consists of a collection of sequences. For a node v 

in a connected graph G, let d;(v) be the number of nodes at distance 7 

from v. The distance degree sequence of node v is 

dds(v) = (do(v), di(v), do(v),.--, der) (v)). 

Note the following: 

(9.1) do(v)=1 for all v; — d,(v) = deg». 

(9.2) The length of sequence dds(v) is one more than the eccentricity 

of v. 

(9.3) do di(v) =p. 

The distance degree sequence dds(G) of a graph G consists of the 

collection of sequences dds(v) of its nodes, listed in numerical order. If a 
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particular dds appears k times, we list it once with k as an exponent to 

indicate the multiplicity. For example, in Figure 9.5, dds(t) = (1,2,1,1), 

dda(w),= (1,3,1), andidds(G)=. (11.2.1); ,2,1,1)3(1;3, 1); 

U 

V 

Figure 9.5 A graph to illustrate the distance degree sequence. 

Distance degree sequences of graphs were studied by Randic [R1] for 

the purpose of distinguishing chemical isomers by their graph structure. 

Chemists have also proposed and discussed other sequences for this pur- 

pose. Their objective and hope is to develop a “chemical indicator” which 
would be useful both for the “graph isomorphism problem” and to predict 

various properties of the molecule at hand. 

Figure 9.6 A pair of nonisomorphic trees with the same distance degree sequence. 

Randic [R1] conjectured that a tree is determined by its distance 
degree sequence and verified it for all trees with 14 or fewer nodes. 
Slater [S20] disproved this conjecture by showing how to construct an 
infinite class of pairs of trees so that each pair has the same distance 
degree sequence. The smallest pair of graphs among his counterexamples 
are displayed in Figure 9.6. 
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For non-tree graphs, it is far easier to find nonisomorphic graphs with 
identical distance degree sequences. The smallest pair, with five nodes, are 
displayed in Figure 9.7. Each graph has dds equal to ((1,2, 2)°; (1,3, 1)?). 

Figure 9.7 The smallest nonisomorphic graphs with the same distance degree 

sequence. 

Bloom, Kennedy, and Quintas [BKQ1] were concerned with graphs in 

which all nodes have the same distance degree sequence. Such graphs are 

called distance degree regular (DDR) graphs. Thus a DDR graph has the 

property that dds(G) = ((dds(v))?), where v is any node in G. A DDR 
graph G is necessarily regular since d,(v) = d,(w) for any two nodes v and 
w in G. However, the converse is not true. In fact, we have the following. 

Theorem 9.6 Every regular graph containing a cutnode is not DDR. 

Proof Let G be a connected regular graph with a cutnode v, and let G; 
and G2 be components of G — v. Suppose that an eccentric node of v in 

G lies in G2, and let x be a neighbor of v which lies in Gi. Then the 
eccentricity of z within G is greater than the eccentricity of v in G. Thus 

dds(x) # dds(v) by (9.2). D 

Bloom, Kennedy, and Quintas [BKQ1] showed, however, that each 
regular graph with diameter at most two is DDR. The following is a 

simple yet useful observation. 

Theorem 9.7 If Gis DDR, then G is self-centered and self-median. DO 
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O00 ------O oO “| ssn anne 

Figure 9.8 A family of DDI graphs of order p > 7. 

Now we turn our attention to graphs at the far extreme from DDR 

graphs. A connected graph G is distance degree injective (DDI) if the 

distance degree sequences of its nodes are all distinct. As opposed to DDR 

graphs, these graphs are completely asymmetric. Indeed, all DDI graphs 

have identity automorphism group. There are DDR graphs of every order 

and every diameter because of the K, and C,,. On the other hand, using 

the graphs in Appendix 1 and the class of graphs in Figure 9.8, Bloom, 

Kennedy, and Quintas [BKQ2] showed the following. 

Theorem 9.8 A smallest nontrivial DDI graph has order 7, and there 

exist DDI graphs for all orders p > 7. i) 

Before the abbreviations used get too overwhelming, we list in Table 
9.1 a dictionary of acronyms for this and the next section. 

Table 9.1 DICTIONARY OF ACRONYMS 

dds distance degree sequence 
DDR distance degree regular 
DDI distance degree injective 
Ss status sequence 

SI status injective 
dd distance distribution 

The following result is from Bloom, Kennedy and Quintas [BKQ2]. 

Theorem 9.9 If G is a nontrivial graph for which both G and G are 
DDI, then both G and G have diameter 3. 

Proof The only graphs with diameter 1 are the complete graphs and for 
p> 1, they are DDR but not DDI. Next, suppose that G is a graph with 
diameter two. Then the distance degree sequence of any node v of G is 
dds(v) = (1,deg v,p — deg v — 1). Since at least two nodes of G have the 
same degree, two nodes of G also have the same dds. Thus, no DDI graph 
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has diameter 2. Finally, if d(G) > 3, then d(G) < 2. Thus, a DDI graph 
cannot have diameter greater than three if its complement is also a DDI 
graph. D 

The Status Sequence 

Recall that the status s(v) of a node v in a connected graph G is the sum 
of the distances to all the other nodes in G. The status sequence ss(G) of a 
connected graph G is the list of its status values arranged in nondecreasing 
order. The graph in Figure 9.9 has status sequence (5°, 7, 8). 

y " 

/ 
Figure 9.9 A graph to illustrate the status sequence. 

The relationship between status sequences and median problems is 
analogous to the relationship between eccentric sequences and center 

problems. There are several properties which distinguish status sequences 

from eccentric sequences. 

1. The status values need not be consecutive integers. 

2. There need not be two nodes having maximum status. 

3. ss(G) is derivable from dds(G): For the sequence 
dds(v) = (do(v), di(v),...,de(.)(v)), we have 

e(v) 

s(v) = yi -di(v). 

It follows from item 3 that results about one sequence imply results 

about the other. For example, Slater’s result showing the existence of two 

nonisomorphic graphs G; and G2 for which dds(G,) = dds(G2) yields a 
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Figure 9.10 A pair of graphs with the same status sequence. 

pair of nonisomorphic graphs with the same status sequence. Indeed, if 

dds(G) = dds(G2), then ss(G 1) = ss(G2). However, the converse is not 
true. We display in Figure 9.10 a pair of trees (due to Slater [S20]) whose 
status sequences are identical. It is easy to see that their distance degree 

sequences are different because their diameters differ as do their degree 

sequences. 

Very little has been done with status sequences other than bounds on 

individual terms obtained by Entringer, Jackson, and Snyder [EJS1]. 

Obviously, all statuses of nodes in K, are equal, as are those in C5. 

Thus these graphs are self-median and as noted in Theorem 9.7, so are all 
DDR graphs. In searching for self-median graphs, one usually finds that 

the graph is regular. However, this need not be the case, as seen in an 

example provided to us by R.C. Entringer and displayed in Figure 9.11. 

There is at this time no nice characterization of self-median graphs. 

Figure 9.11 A nonregular self-median graph. 

Self-median graphs might also be called status sequence regular graphs. 
Theorem 9.7 implies that these are a special subclass of DDR graphs. At 
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the other extreme from self-median graphs, we may consider graphs G for 
which all of the terms of ss(G) are distinct. We call these graphs status 
injective (SI). Clearly, SI graphs are a special class of DDI graphs. Of the 
infinite class of DDI trees displayed in Figure 9.8, only the tree of order 
7 is SI. This somewhat indicates the scarcity of SI graphs. An even more 
restrictive problem is that of finding nontrivial SI graphs whose statuses 
are consecutive integers. As yet, we have found no such graph. 

EXERCISES 9.2 

1. Determine the status sequences of Kp, Ka», and Wn. 

2. The status sequence of P, is 

{ (p? — 1)/4, ((p? + 4t? — 1)/4)? when 1 <t< (p — 1)/2, p odd; 
((p? + 4t? — 4t)/4)? when 1 <t < (p— 2)/2, p even. 

3. The status sequence of C, is 

(p? — 1)? p odd, and 
(p?/4)? p even. 

For self-median graphs, A — 6 may be arbitrarily large. 

Each connected regular graph of diameter at most two is DDR. 

(Bloom, Kennedy, and Quintas [BKQ1]) 

6. Construct a regular graph which is not DDR. 

7. Every node-symmetric graph is DDR. 

(Bloom, Kennedy, and Quintas [BKQ1]) 

8. Verify that the graphs in Figure 9.7 have 

dist) =(ilis2)*; (1.38 et) 

9. Construct a DDR graph which is not edge-symmetric. 

10. For each integer r > 3, the smallest order p for which there is a pair 

of nonisomorphic r-regular graphs having the same distance degree 

sequence is p=r+3. (Quintas and Slater [QS1]) 

11. There exists a nontrivial DDI graph with diameter k for all k > 3. 
(Bloom, Kennedy, and Quintas [BKQ2]) 

12. Every DDI graph has identity automorphism group. 

13. If G has two nodes u and v with the same degree such that 
e(u) = e(v) = 2, then G is not DDI. 
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9.3 THE DISTANCE DISTRIBUTION 

Let D; be the number of pairs of nodes at distance 7 from one another in 

the connected graph G with diameter d. Then the distance distribution 

of G is the sequence 

dd(G) oa (Dy Do, OOOH Da). 

Obviously, dd(G) is obtained at once from from dds(G) as 2D; = )> d;(v) 
with the sum taken over all nodes v of G. Also, note that D, = q, the 

number of edges in G. 

Although dd(G) can be derived from dds(G), it still contains a wealth 
of information and deserves a separate treatment. In fact, in certain 

problems, dds(G) contains too much information and is cumbersome to 
work with; whereas dd(G) is ideal for the problem. However, remembering 
that dd(G) can be derived from dds(G) is useful. For example, Figure 
9.6 provides an immediate example of a pair of nonisomorphic graphs 

which have the same distance distribution. The next result due to M. 

Capobianco is easy to prove by induction on p and can be used to test 

the statistical hypothesis that a graph is connected. 

Theorem 9.10 If G is a connected graph on p nodes, then 

Dy, + Do > 2p — 3. 0 

Theorem 9.11 When G is a tree, D2 is given by the degree sequence: 

P. (deg v; 
Dai=>( ; ik 

1=1 

Proof Let N(v) be the set of neighbors of v. Each pair of nodes in N(v) 
are joined by a unique path, which necessarily passes through v. The term 
(See us) counts the number of pairs of nodes that are at distance two, via 
v;, from each other. By summing over all v;, the result follows. D 

For a connected graph G, let s,(G) be the kth partial sum of dd(G), 
that is, 

k 

EE SOS 1, 
4=1 

The next (unpublished) result of M.O. Albertson, D. Berman, and F. 
Buckley concerns these partial sums for trees. 
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Theorem 9.12 Let T be any tree on p nodes. Then s,(T) > sx(Pp), 
and equality holds for all & if and only if T = Jape 

Proof (by induction). The result is clear for small p. Assume it is true for 
all t < p and let T be any tree on p nodes. Let d(G) = d and e(v) = d, that 
is, v is the endnode of a diametral path in T. By the inductive hypothesis, 
s.(T —v) > 8%(Pp-1) for all k. By attaching an extra node to an endnode 
of P,_; (and thus forming P,), we increase each D; of Py_; by exactly 1. 
By reattaching v to T — v, we increase each D; of T — v by at least 1. By 
Da, we have accumulated an increase of p — 1, since each node of T can 
be reached from v by a path of length d or less. Thus, s,(T’) > sx(Pp) for 
each k. If T # P, then d(P,) = p—1 and d(T) < p—1. Therefore 

8p—2(T) = 8p-1(T) = Sp-1(Pp) > 8p-2(Pp). 

Hence equality holds for all k if and only if T = P,. D 

Corollary 9.12 For any connected graph of order p and diameter d, 
we have 

k+1 
9 ih for all k < d. D Dito et Dee pk ~ ( 

Note that Corollary 9.12 generalizes Theorem 9.10. 

Amin, Siegrist, and Slater [ASS1] studied the “pair-connected reliabil- 
ity,” which relates to the expected number of pairs of nodes that remain 

connected in a graph G when each edge fails independently with some 

fixed probability g, 0 < q < 1. They showed that for trees T; and 7, 

if s,(T1) > sx(T2) for all k, then T; is uniformly more reliable than T>, 
which means that it is more reliable for any given value of the probability 
q of edge failure. 

If a graph has a path of length k, then it has a path of each smaller 

length. This may lead one to feel that dd(G) must be a nonincreasing 
sequence. Not only is this not the case, but dd(G) need not even be 
“unimodal”. A sequence S; is unimodal if there is some k for which 

Spots en for Mk, andi 572 "S747 tor 72> ko Ine Figure+9/124 the 

mode is central; and in Figure 9.12b, the mode is the diameter and the 
sequence is not unimodal. 
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ddG)=(8,9,10, 7,2) doH)=(11,18,1o,c1) 

Figure 9.12 Two graphs and their distance distributions. 

Uniform Distance Distributions 

A distance distribution is uniform if D; = Dj; for all i and 7. Thus, if G 

has diameter d and dd(G) is uniform, then D; = (8) /d. Let U be the set of 
all graphs G for which dd(G) is uniform. Clearly, Kp, € U and Coa41 € U. 
Buckley and Superville [BS7] obtained the following result for uniform 

distance distributions. 

Theorem 9.13 

Lome (2) is even, there exist at least two uniform distance distributions 

for p. 

Zeit Gy is divisible by 3, there are at least two graphs of order p with 
uniform distance distributions, except for p = 3 and 6. 

3. If p= 12k +2 and (3) is the product of two primes, then K,, is the 

unique graph of order p with a uniform distance distribution. D 

In Table 9.2, we list all realizable uniform distance distributions for 

graphs with ten or fewer nodes. In the table, C? is the square of the cycle 

Cg, and graphs G*, and H™* are displayed in Figure 9.13. Note that many 

graphs with uniform distance distributions can be constructed like H*. 
That is, begin with the double star Say = K,+K,+K,+ Ky and then 

insert edges between certain nonadjacent (noncentral) nodes. Also, Let 
C'4k,2 be the graphs formed from C4, as follows: Let the nodes of C4, be 

labeled 1,2,...,4k; insert additional edges (7,7 + 2) mod 4k, and delete 

edges (1,4k—1) and 2k, 2k+2). For p > 7, the associated graphs in Table 
9.2 are not necessarily unique. 
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Table 9.2 SOME UNIFORM DISTANCE DISTRIBUTIONS 

n Realizable Sequences Associated Graphs 

2 3) Ke 
3 3 K3 
4 (6), (3,3) K4, Ki 3 
5 (10), (5,5) Ks, Cs 
6 15) 6 
it ‘ea es Kz, C7 
8 23), (14,14 Kg, Cg,2 

9 (36), (18,18), (12, 12,12), Ke eCe, G" 
and (9,9,9,9 and Cg 

10 (45), eee Kaine He 

H* 

A> 
Figure 9.13 Two graphs for Table 9.2. 

Mean Distance 

The mean distance p(G) of a connected graph G is the average of the 
distances between pairs of nodes in G. Of course, zp(G) can be calculated 
from dd(G): 

(9.4) pp(G) = yin, i! oh 

Mean distance was examined by Doyle and Graver [DG1], who noted that 

it had been used by March and Steadman [MS1] in architecture as an aid 
in the evaluation of floor plans. 

Since mean distance and the radius are both measures of the “central 

tendency” of a graph, Buckley and Superville [BS7] studied graphs G with 
the property that ~p(G) = r(G). For such graphs we obtain a rather nice 
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relationship between r and the D,’s from dd(G). We know that 

(9.5) » Dp Gi 
Csi 

Knowing this and setting 4p(G) = r(G), we obtain our result. Equation 

(9.4) says that pp(G) = Dv, iDi/(2), so 

po(6)= (D+ in.) /(2) 
= ((2)- a+ )/(2) 
= (@) +Ye-99)/(). 

Upon setting this last expression equal to r and simplifying, we get 

7 Pp 
: 1-1)D;=(r-1 : (9.6) DG = DPi= (6 (2) 

Recall that a self-centered graph has the property that all nodes have 

the same eccentricity. Thus, for a self-centered graph, r(G) = d(G). The 
only self-centered graphs G satisfying up(G) = r(G) are the complete 
graphs, as the following theorem indicates. 

Theorem 9.14 If r(G) = d(G) > 2, then pp(G) # r(G). 0 

We can now give a result of Buckley and Superville [BS7]. 

Theorem 9.15 If d(G) = 3, then p(G) = r(G) if and only if r(G) = 2 
and D,(G) = D3(G). 

Proof If d= 3, then r = 2 or 3. Suppose that wp(G) = r(G). Then by 
Theorem 9.14, r must be 2. Substitution into (9.6) yields D2 +2D3 = (ay 

But (9.5) says that Dj + Dz + D3 = ©): hus, Dive tes 
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If r(G) = 2 and D, = Ds, then by substituting into (9.4) and using 
(9.5), we get 

up(G) = (D1 eect a) /(8) 

= (2D, + 2D, + 2D3)/(Di + Do =| D3) = r(G). Oo 

Corollary 9.15 The only tree T of diameter three with wp(T) = wm 
is the tree having degree sequence (4,3,1,1,1,1,1). 

A caterpillar is a tree T having a diametral path incident with every 

edge of T. A tree which we call the double starred path Py. is the graph 

formed from P, by attaching b pendant edges at one end and c pendant 

edges at the other. By joining various pairs of endnodes in such graphs, 

we were able to show that there are graphs for every diameter d # 2 

for which wp(G) = r(G). F. Halberstam showed that there are, in fact, 
always caterpillars with this property. 

The edge density p(G) of (p,q)-graph G is q/ (5). Hendry [H20] showed 
that for each rational number t > 1 there are infinitely many graphs G 

with wp(G) = t. In another paper [H21] he showed that for each rational 
t there are sparse graphs G with zp(G) = t > 2 and dense graphs with 
Up(G) = t > 1. Specifically, he showed that for each rational ¢ > 2 and 
€ > 0, there is a graph G with wp(G) = ¢t and p(G) < e¢; and for rational 
t>1ande> 0 there is a graph G with wp(G) =t and p(G) > 1-e. 

Collinearity 

Three nodes of a graph are said to be collinear if they can be labeled 

u,v,w so that 

(9.7) d(u,v) + d(v, w) = d(u, w). 

The collinearity ratio cr(G) of a graph G is the proportion of collinear 

triples of nodes in G. Thus, 

number of collinear triples 

(5) 3 

The concept of collinear triples was introduced by Doyle and Graver 

[DG1]. Capobianco [C4] introduced the concept of the collinearity ratio. 

In Figure 9.14, we display several graphs along with their collinearity 

cr(G) = 
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ase: 
Figure 9.14 Graphs and their collinearity ratios. 

ratios. Harary and Leep [HL1] described the concept of angles in graphs 

by applying trigonometric ideas to the sets of distances between nodes. 

They refer to the set of nodes satisfying (9.7) as forming a straight angle 
(0° or 180°). Harary and Melter [HM4] define an equilateral triangle in a 
graph G as a set {v;,v;, vx} of three nodes such that all three distances 

d;;, jz, dj, are finite and equal. They characterized the connected graphs 

having no equilateral triangles. 

We note that inserting additional edges into a graph may increase, 

decrease, or not affect the value of cr(G). What happens depends upon 

whether the number of new collinear triples formed exceeds the number 

of old ones which were destroyed when inserting the edges. Capobianco 

[C4] found the following relationship between the collinearity ratio and 
mean distance. 

Theorem 9.16 For any connected graph G on p > 3 nodes, we have 

(9.8) cr(G) 2 3(up(G) — 1)/(p - 2). Oo 

A connected graph G is geodetic if any two nodes u,v are joined 

by precisely one path of length d(u,v). These graphs were discussed in 

Chapter 7. We now present a result concerning the number of collinear 
triples in geodetic graphs. Letting 7(G) denote the number of noncollinear 
triples, we have 

7(G) = (8)-(2)er(G), 
from which 

7(G) 
(3) 

er(G) =1- 
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On substituting this into (9.8), we obtain wp(G) < (p+ 1)/3—7(G)/(-), 
giving the following result of Doyle and Graver [DG1]. 

Theorem 9.17 If G is geodetic, then 

po(@)= 24D _ 1), : 
2 

Doyle and Graver used Theorem 9.17 to establish the following tight 

bounds the mean distance of a nontrivial graph: 1 < pp(G) < (p+ 1)/3. 
They also extended their work to consider mean distance for digraphs 

[DG2]. In [C4], Capobianco discusses the relationship between collinearity 
and connectedness. 

EXERCISES 9.3 

1. Determine the distance distributions of K,, Pp, and Wj ny. 

2. The mean distance of C, is 

_ J (p+1)/4 if p is odd, and 

up(Cp) = tee —4) if pis even. 

eset &, is divisible by 3, then there are at least two graphs G on p 

nodes for which pp(G) = r(G), except for (3) =o Oenl Danaea le 

4. Begin with the double star $51, and construct a graph on 18 nodes 

with uniform distance distribution (51, 51,51). 

5. For each d, except d = 2, there exists a graph G with diameter d for 

which pp(G) = 7r(G). 

6. IfG is self-complementary, then wp(G) > 3/2 and this bound is best 

possible. (Hendry[H21]) 

7. There is no graph G with a uniform distance distribution and even 

diameter for which wp(G) = r(G). 

8. For line graphs, we have dd(G) = dd(L(G)) if and only if G is a 

cycle. (Buckley [B22]) 

9. An r-regular graph G has dd(G) = dd(G) if and only if p = 4m +1 

with m > 1, r = 2m, and d(G) = 2. (Buckley [B25]) 
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10. A set X of nodes is a dominating set of G if every node in V — X 

is adjacent to at least one node in X. Suppose that d(G) = 3. Then 

dd(G) = dd(G) if and only if D, = p(p—1)/4 and Dg is the number 

of pairs of adjacent nodes that form a dominating set of G. 

11. The following conditions are equivalent: 

a. dd(G) = dd(G) and d(G) = 2, 

b. Di = p(p—1)/4 and d(G) = 2, 

c. D, = p(p — 1)/4 and no pair of adjacent nodes of G forms a 

dominating set. 

12. Let T be a tree on p nodes with line graph L(T). Then 

ud(L(T)) = p(un(T) - 1)/(p - 2). 

13. If G has a uniform distance distribution and wp(G) = r(G), then 
the diameter d is odd and r = (d — 1)/2. 

14. Determine the collinearity of each of the following graphs: 

aay b. Pp c. Cy asia e. Wi,n- 

9.4 PATH SEQUENCES 

We now take up three sequences concerning the lengths of paths in graphs, 

called the path length distribution, the path degree sequence, and the 

geodesic distribution. 

The Path Length Distribution 

Chronologically, this was the second graphical sequence to be studied (the 

degree sequence was first). Let 2; be the number of pairs of nodes joined 
by a path of length 7. Capobianco [C3] defined the path length distribution 
(pld) of a connected graph G as the sequence (£}, £2,..., £)-1). Figure 9.15 
illustrates this sequence. 

Faudree, Rousseau, and Schelp [FRS1] showed that that there are no 
trees of order at most eight sharing a common pld. They proved, however, 

that for larger orders the situation is much different. 
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(CAHN RF) 

Figure 9.15 A graph and its path length distribution. 

Theorem 9.18 For every p > 9 there are pairs of trees on p nodes 

with the same pld. Moreover, for any integer n, one can construct n trees 

having the same pid. D 

For any tree T’, the sequence pld(T) will end with a string of zeros 
beyond £g. There is a unique path between any pair of nodes in a tree. 

Thus for any tree T’ the first d terms of pld(T) corresponds precisely to 

dd(T). Thus we have the following. 

Corollary 9.18 The distance distribution distinguishes nonisomorphic 
trees only for p < 8. D 

Faudree and Schelp [FS1,2] studied the pld in relation to the property 
of hamiltonian-connectedness. They conjectured that for any two nodes 

u and v in a hamiltonian-connected graph G, there is a path of length 

k joining u and v for all integers k, p/2 < k < p—1. Using the dodec- 

ahedron and generalizations of it, Thomassen [T6] found infinitely many 
counterexamples. In particular, the dodecahedron has no cycles of length 

19, so if d(u,v) = 2, then there is no path of length 18 joining u and v. 

The Path Degree Sequence 

For each node v in a connected graph G, let p;(v) be the number of paths 

of length 7 beginning at v. Then define the path degree sequence of v as 

pds(v) = (po(v), P1(v), po(v),.. +, Pp—1(v))- 

The sequences pds(v) generally end with a string of zeros, so we terminate 
the sequence at the last nonzero term. Note the following: 
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(1,2,4,6) 

(139,31 
V 

Figure 9.16 The path degree sequences of the nodes of a graph. 

1. po(v) = 1 for all v. 

2. pi(v) = deg v. 

3. If Gis a tree, then pds(v) = dds(v). 

The path degree sequence pds(G) of a graph G consists of the collection 

of sequences pds(v) of its nodes, listed in numerical order. If a particular 

pds appears k times, we list it once with k as an exponent to indicate the 

multiplicity. For example, in Figure 9.16, pds(t) = (1,2, 4,6), 
pds(w) = (1,3,4,4), and 

pds(G) = ((1, 1, 2,4,4)) (1,234, 6); (4, 3,4)4); (4337553;1)7): 

Since a tree T has a unique path joining each pair of nodes, clearly 

pds(T) = dds(T). In general, pds(G) distinguishes between nonisomorphic 
graphs far more frequently than dds(G) does. In Figure 9.7, we showed the 

smallest pair of nonisomorphic graphs with the same dds, and these had 

order 5. Randic [R1] verified empirically that the smallest pair of graphs 
with identical pds must have order at least 12. The pair of trees in Figure 

9.6 provide an example of nonisomorphic trees with identical pds. If we do 

not insist on trees, a slightly smaller such pair of graphs could be obtained 
by extending Slater’s method [S20]. By using Slater’s technique, in 1982 
A.T. Balaban, G.S. Bloom, and L.V. Quintas constructed examples of 

pairs of nonisomorphic regular graphs with the same pds. Their rather 

large graphs thereby provided a partial answer to a question in [QS1]. It 
is still an open problem to find minimum order pairs of nonisomorphic 

k-regular graphs having the same pds. 
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Figure 9.17 A graph with geodesic distribution (22,5, 1). 

The Geodesic Distribution 

Let g; denotes the number of pairs of nodes joined by 7 geodesics (shortest 

paths) in graph G. Capobianco defined the geodesic distribution gd(G) of 
a graph G as (91, 92,93,---). Recall from §7.3 that a geodetic graph has 

a unique geodesic joining each pair of nodes. Thus, G is geodetic if and 

only if gd(G) has a single term. A graph and its geodesic distribution is 

given in Figure 9.17. 

The first difference we note between gd(G) and other sequences is that 
the length of the sequence gd(G) is not specified. This length varies with 

G and can be quite long. Let m(p) denote the maximum length of gd(G) 
for a graph on p nodes. M. Capobianco described the following to us. 

Theorem 9.19 Let 7 = {(t;)} be the set of all partitions of the integer 
p — 2. The value m(p) is achieved by maximizing [| t; over T. 0 

Buckley [B25] determined the exact value of m(p) with the following 
results. 

Lemma 9.20a_ In m(p) = [[ti, each factor ¢; is at most 4. 0 

Lemma 9.20b For m(p) = [] 2°3°, where 2b + 3c = p — 2, we have 

Deo) 0 

Theorem 9.20 The maximum number of geodesics between a pair of 

nodes in a graph of order p is given by 

92'. g@-8)/8 p=0 (mod 3), 

m(p) = 2230-98 p=1 (mod 3), 
Spar p=2 (mod 3). 0 
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\_(-6)/3 levels of 3's 

YY 

eZ 

e sapaget 

Figure 9.18 Graphs on Pp nodes with the maximum possible number of geodesics 

Rays eee 

between a given pair of nodes. 

The maximum values in Theorem 9.20 are achievable. Graphs realizing 
the maximum are displayed in Figure 9.18. 

Analogous to the mean distance, we can define the geodesic mean of 
a graph on p nodes as 

19(G) 2 eg. 
1! 

Graph G is geodetic if and only if u,(G) = 1. One can use p,(G) to 
measure how close G is to being geodetic. The larger y4,(G) is, the farther 
G is from being geodetic. Buckley [B26] defined a graph G on p nodes 
to be antigeodetic if 44(G) > w,(H) for all graphs H on p nodes and 
proposed the open problem of characterizing such graphs. 
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EXERCISES 9.4 

1. Construct two trees of order 9 having the same path length 
distributions. 

2. Determine pds(G) for each of the following: 
eas fe bak, Ale deers e. Win. 

3. The sequence dds(G) = pds(G) if and only if G is a tree. 
4. When p is odd, the geodesic distribution of C, has only one term, 

(Bye If p is even, then gd(C,) = (p(p — 2)/2, p/2). 

5. The geodesic distribution of W,,, is 

(6) fon 4. 
gd(Win) = (8, 0,2) 1oLan— 5: 

Men). — 1) for n > 6. 

9.5 OTHER SEQUENCES 

There are several other sequences that are distance related which have 

not yet been discussed. 

Common Neighbor Distribution 

Let n; denote the number of pairs of nodes with 1 common neighbors in a 
graph G. The common neighbor distribution nd(G) of a graph on p nodes 

was defined by Buckley [B24] as (no, m1, n2,...,p-—2). This sequence was 

introduced to aid in distinguishing nonisomorphic graphs. For trees T’,, 
nd(T) is derivable from dd(T). 

Theorem 9.21 ForatreeT, nd(T) = ((%) — Do, D2). D0 

Since Dg is derivable from the degree sequence for a tree, we have the 

following. 

Corollary 9.21 Let degv; denote the degree of node »; in a tree T. 

Then 
nd(T) = (2) 2 SS ene Fei i 

a= oil 
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(2c) (L,2,c) (L112) (12,2) 

Figure 9.19 Pairs of graphs for which exactly one of dd(G) and nd(G) agree. 

Since nd(G) is derivable from dd(G) for trees, it is only worth ex- 
amining nd(G) for nontree graphs. It is interesting to note that there 
are pairs of graphs for which dd(G) agree but nd(G) differ as well as 
pairs for which nd(G) agree but dd(G) differ. We illustrate this in Fig- 
ure 9.19, where dd(G,) = dd(G2) = (6,4) while nd(G,) = (6,0,3,1) and 
nd(G2) = (3,5,2). For graphs Hy, and H2, nd(H,) = nd(H2) = (4,6) 
while dd(H,) = (4,6) and dd(H2) = (5,3, 2). 

Note that graphs G; and G2 of Figure 9.19 are the smallest pair of 

nonisomorphic graphs having the same distance degree sequence. Thus, 

it is sometimes possible to distinguish nonisomorphic graphs using nd(G) 
when dds(G) cannot distinguish them. A smallest pair of connected non- 
tree graphs for which both nd(G) and dds(G) agree is shown in Figure 
9.20. We note that although neither nd(G) nor dds(G) can distinguish 
these graphs, gd(G) can. 
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dds(A) = dds(B) = (0123), (132), 45) 
no(A) = nd(B) = (96) lout gd(A) = (123) © gd(B) = (1d) 

Figure 9.20 Graphs A and B with dds(A) = dds( B) and nd( A) = nd(B). 

Just as we defined arithmetic means of other sequences, we define the 

mean number of common neighbors as 

(9.9) un(G) = Yin LG), 

Buckley [B24] showed that y(G) is easily derived from the degree se- 
quence of G. 

Theorem 9.22 In any graph G, 

om moO 1=0 

It was found in [B25] that when the common neighbor distribution 
of a graph equals that of its complement, there is a direct relation to 

dominating sets. Set X C V(G) dominates set Y C V(G) if every node 
in Y — X is adjacent to a node in X. Recall that X is a dominating set 

of G if X dominates V(G). 

Theorem 9.23 If nd(G) = nd(G), then no equals the number of 
dominating sets of order 2 in G. 
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eds(G) = (2,3,3,4,4,4) 

ends(G) = (222,33) 

Figure 9.21 A graph G with its sequences eds(G) and ends(G). 

Proof Let nd(G) = nd(G). Then for two distinct nodes u,v having no 

common neighbor, there exists a pair of nodes u’,v’ with no common 

neighbors in G. Hence {u’, v’} is a dominating set for G. 0 

Corollary 9.23 If G is a connected graph with nd(G) = nd(G) and 
no > 0, then d(G) < 5. D0 

The following result was also given in [B25]. 

Theorem 9.24 For a graph G, nd(G) = nd(G) if and only if n; equals 
the number of pairs of nodes which dominate n — 7 nodes of G. 0 

Edge Degree Sequences 

Let ed(xz) be the number of edges incident with edge z. Then the edge 
degree sequence eds(G) of a graph G is the sequence ed,,ed2,...,edg 

of values ed(x), arranged in nondecreasing order. Note that if x = uv, 
then ed(x) = degu + degv — 2. Clearly, eds(G) is precisely the de- 
gree sequence of L(G), the line graph of G. Realizability questions for 
eds(G) were studied by Bauer [B2]. He characterized the realizable se- 
quences in the cases when max{ed;} = q—1 or q — 2; max{ed;} < 3; and 
max{ed;} = min{ed;}, i.e, L(G) is regular. 

For each edge zt = uv, let the edge-to-node degree end(x) of x be 
the number of distinct nodes in G — x adjacent to either u or v. Then 

the edge-to-node degree sequence ends(G) of G is the sequence of val- 
ues end(zx) listed in nondecreasing order. This concept was introduced 
and studied by Bauer, Bloom and Boesch [BBB1]. Among their results, 
they characterized regular (that is, having all end(x) equal) sequences 
ends(G) realizable by triangle-free graphs. A graph G along with eds(G) 
and ends(G) is displayed in Figure 9.21. 
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EXERCISES 9.5 

1. Determine nd(G) for each of the following: 
a, iy Wd cae 

2. Let G be connected with p > 3. Then no = 0 if and only if d(G) < 2 
and every edge of G is contained in a triangle. 

3. The common neighbor distribution of the wheel W,,,, is 

0,4,4,2 Bos nd(W1,) = { ne = Ne — 4)/2,2(n — 1)) n #4. 

4. The common neighbor distribution of Kq is 

RACK Gaye (asin 107,662, Nye )y where=n, 2 — (ey i= (5) and 

n; = 0 for all other 2 > 1 when 2 <a < 6; and 

Nn = (2) ao (3) and n; = 0 for all other 7 > 1 when 2<a=b. 

5. Graph G is triangleless if and only if ng = 8) — Do. 

6. Determine eds(G) and ends(G) for each of the following: 
asec, Dewi (od OP qd. Win. 

7. A graph G has diameter 2 if and only if 

max{ed(z):2 € E(G)} < p-3. 
(G.S. Bloom, J.W. Kennedy, and L.V. Quintas) 

8. Use the equivalence of equations (9.9) and (9.10) to prove the 
combinatorial identity 

p-1 

> @- 1)(*) SD) 
i=l 

FURTHER RESULTS 

Buckley and Superville [BS7] determined the mean distance for vari- 
ous classes of graphs. We now state several of their results. 

1. The mean distance of I,» is 

Foe ee ae nb Sab) up(Ka,b) = (a? a+ b?— b+ 2ab) 
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2. For nontrivial paths and for cycles, we have 

a. Up(P,) = r(P,) if and only if p = 2 or 5 (p > 2). 

b. wp(C,) = r(C_) if and only if p = 3. 

3. For complete bipartite graphs and wheels, we have 

a. Up(Ka») = r(Ka,) if and only if a = 6=1; 

b. up(Wi,n) = 7(Wi,n) if and only ifn = 4. 

The independence number of a graph G is the maximum number 
of nodes in G, no two of which are adjacent. The mean distance of a 

connected graph is less than or equal to the the independence number of 

G. (Chung [C11]) 

An f-tree is a tree whose maximum degree is at most f. The 4-trees 

are of special significance as they contain the set of trees that represent 

saturated hydrocarbons (alkanes) important in organic chemistry. In var- 
ious applications, such as crystal formation, a molecule is assumed to be 

embedded in some space, generally a lattice. Kennedy and Quintas [KQ1] 
studied embedding problems for molecules, especially ones modeled by 

f-trees. For trees T they define a sequence called the maximum reach 
sequence for T relative to lattice £, derivable from the distance degree 

sequence for 7’. They use this sequence to establish necessary conditions 

for the embeddability of T in L. 

Bloom, Kennedy, and Quintas [BKQ2] pose a number of problems 
concerning DDI graphs. They asked whether there exists a graph G such 

that both G and G are DDI. They also ask for the smallest order (or 

diameter) for a k-regular DDI graph. 

A graph G is bigeodetic if each pair of nodes are joined by at most two 

geodesics. Alagar, Opatrny, and Srinivasan [AOS1] characterize bigeodetic 
graphs, develop constructions, and show that for a (p, q)-bigeodetic graphs 

of diameter d, p—1l<q< trkars +d. 



CHAPTER li 0 

Digraphs 

There is so much to digraph theory that several books have been writ- 
ten on the subject [HNC1], [FR1], and [M11], the latter presenting the 
subject with tournaments. Throughout this chapter we shall emphasize 

those properties of digraphs which set them apart from graphs, giving 
particular attention to distance related properties. We close the chapter 
with a brief discussion of tournaments. 

10.1 DIGRAPHS AND CONNECTEDNESS 

We have already seen all the digraphs with 3 nodes and 3 arcs in Fig. 1.3. 

For completeness, we begin with a few definitions, including a few from 
Chapter 1. A digraph D consists of a finite set V of nodes and a collection 

of ordered pairs of distinct nodes from V. Any such pair (u,v) is called 

an arc or directed edge and will be denoted uv. The arc uv goes from u to 

v and is incident with u and v. We also say that u is adjacent to v and v 

is adjacent from u. The indegree id(v) of a node v is the number of nodes 
adjacent to v, and the outdegree od(v) is the number adjacent from v. 

A (directed) walk in a digraph D is an alternating sequence of nodes 
and arcs v9, 71, U1,---,2n, Un in which each arc 2; is vj-10;. The length of 

such a walk is n, the number of arcs in it. A closed walk has the same 
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206 10 Digraphs 

first and last nodes, and a spanning walk contains all the nodes of D. A 

path is a walk in which all nodes are distinct; a cycle is a nontrivial closed 

walk with all nodes distinct (except the first and last). An acyclic digraph 

contains no directed cycles. If there is a path from wu to v, then v is said 

to be reachable from u, and the distance d(u,v) from u to v is the length 

of any shortest such path. 
Each walk is directed from the first node vo to the last v,. We also 

need a concept which does not have this property of direction and is anal- 

ogous to a walk in a graph. A semiwalk is again an alternating sequence 

V0, 21, V1,+++52n, Un Of nodes and arcs, but each arc z; may be either v,;_1 0; 

or v¥;vj;-1. A semipath, semicycle, and so forth, are defined as expected. 

Whereas a graph is either connected or is not, there are three dif- 

ferent ways in which a digraph may be connected. A digraph is strongly 

connected, or strong, if every two nodes are mutually reachable; it is 

unilaterally connected, or unilateral, if for any two nodes at least one is 

reachable from the other; and it is weakly connected, or weak if every two 

nodes are joined by a semipath. Clearly, every strong digraph is unilateral 

and every unilateral digraph is weak, but the converse statements are not 

true. A digraph is disconnected if it is not even weak. We note that the 

trivial digraph, consisting of exactly one node, is vacuously strong since 

it does not contain two nodes. 

We may now state necessary and sufficient conditions for a digraph 

to satisfy each of the three kinds of connectedness. 

Theorem 10.1 A digraph is strong if and only ifit has a closed spanning 
walk, it is unilateral if and only if it has a spanning walk, and it is weak 

if and only if it has a spanning semiwalk. D0 

Corresponding to connected components of a graph, there are three 

different kinds of components of a digraph D. A strong component of 

D is a maximal strong subgraph; a unilateral component and a weak 

component are defined similarly. It is very easy to verify that every node 
of a digraph D is in just one weak component and in at least one unilateral 
component, and this also holds for each arc. Furthermore, each node is in 
exactly one strong component, and an arc lies in one strong component 

or none, depending on whether or not it is in some cycle. 

The strong components of a digraph are the most important among 

these. One reason is the way in which they yield a new digraph which, 
although simpler, retains some of the structural properties of the original. 
Let $1, 59,...,5n be the strong components of D. The condensation D* 
(illustrated in Figure 10.1) of D has the strong components of D as its 
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Sp Ss 
() (h) 

Figure 10.1 A digraph and its condensation. 

nodes, with an arc from $; to S; whenever there is at least one arc in D 

from a node of S$; to a node of S;. 

It follows from the maximality of strong components that the conden- 
sation D* of any digraph D is acyclic. Obviously, the condensation of any 

strong digraph is the trivial digraph. 

Orientations and Strong Digraphs 

A digraph D is symmetric if whenever uv is an arc, then so is vu. On the 

other hand, D is asymmetric if the presence of uv obviates that of vu. 

When both uv and vu are in D, they form a symmetric pair. This D is 

symmetric if and only if it has no symmetric pairs. Figure 10.2 illustrates 

digraphs with these properties. The digraph of a graph G = (V, E), written 

D(G), also has V as its node set, and each edge e of G is replaced by the 
symmetric pair of arcs joining the two endnodes of e. The (underlying) 

graph of a digraph D, written G(D), also has the same node set as D, but 
two nodes u and v are now adjacent if they are joined in D by at least 

one arc. Obviously G(D(G)) = G but D(G(D)) need not be D; it is the 
“symmetric closure” of D. These two operations will be found useful. 

An orientation of a graph G is any digraph that results from an 

assignment of directions to the edges of G. If G has at least one edge, 
any orientation of G is asymmetric and is called an oriented graph. 

Robbins [R7] characterized those graphs that have a strongly connected 
orientation. 

Theorem 10.2 A graph G has a orientation that is strong if and only 
if G is connected and has no bridges. a) 



208 10  Digraphs 

ae (c) 
Figure 10.2 Three strong digraphs - one symmetric, one asymmetric, and one neither. 

Since every nontrivial graph G has at least two nodes that are not 

cutnodes, it follows that every nontrivial digraph does as well. This means 

that if D is strong, unilateral, or weak, then there are two nodes u and v 

such that both D — u and D — v are weak. 

Figure 10.3. A strong digraph with no spanning cycle. 

It should be stressed that a strong digraph need not have a spanning 
cycle. For example, the digraph on 4 nodes in Figure 10.3 is strong yet 

has no spanning cycle. However, there is a strong (no pun intended) rela- 

tionship between cycles and strong digraphs as illustrated in the following 
characterization. 

Theorem 10.3. A weak digraph D is strong if and only if every arc of 
D is contained in a cycle. 

Proof If D is strong then for every arc wv there must be a path 
V,€0,01,€1,---,€n,U from v to u. Then v,€0,01,€1,...,€n, U,Uv,v is a 

cycle containing arc uv. 

Conversely, it is given that every arc of the weak digraph D is con- 
tained in a cycle. Since D is weak, there is a semiwalk uw, €1, 01, €2,-.-,€n,V 

joining any two nodes u and v. Arc e; (which could be either wv, or vu) 



10.1 DIGRAPHS AND CONNECTEDNESS 209 

Table 10.1 SIZES FOR CONNECTEDNESS CATEGORIES 

Category Minimum Number of Arcs Maximum Number of Arcs 

0 0 p—1)\(p-2 
1 p-1 p—1)\(p-2 

2 peel (a1) 
3 P p(p — 1) 

is contained in a cycle, so u and v are in the same strong component of 

D. Similarly each v; and v;41 are in the same strong component as are vp, 

and v. Thus all the nodes of the semiwalk joining u and v are in the same 
strong component of D. As u and v are any two nodes, it follows that D 
is strong. 0 

EXERCISES 10.1 

L A digraph is strictly weak if it is weak but not unilateral; it is strictly 

unilateral if it is unilateral but not strong. Let Co contain all dis- 
connected digraphs, C; the strictly weak ones, C2 strictly unilat- 

eral, and C3 those which are strong. Then the maximum and mini- 
mum number q of arcs among all p node digraphs in connectedness 

category C;, i = 0 to 3 is given in Table 10.1. 
(Cartwright and Harary [CH1)) 

A digraph is unilateral if and only if its condensation has a unique 

spanning path. 

Determine all nonisomorphic digraphs having 4 nodes and 4 arcs. 

The cartesian product D, X D2 of two digraphs has V; x V2 as its 

node set, and (wu, U2) is adjacent to (vj, v2) whenever [u; = v, and 

U2 adj v2] or [ug = v2 and uw adj v;]. (Note that this is defined just 

as for graphs except that adjacency is directed.) When D is in the 

connectedness category C,, we write c(D) = n for n = 0,1,2,3. 

Then c(D; x Dz) = min{c(D;), c(D2)} unless c(D1) = e(D2) = 2 in 

which case c(D; x D2) = 1. (Harary and Trauth [HT1]) 

No strictly weak digraph contains a node whose removal results in a 

strong digraph. (Harary and Ross [HR3]) 

A digraph is r-regular if id(v) = od(v) = r for each node v of D. 

Determine conditions on p and r which guarantee the existence of 

an r-regular digraph D on p nodes. 
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7. Let D be a digraph with p nodes and q arcs with 

VCD) =Avie2, 2250p}. Lhen 

P 

> 0d(2) = S > id(vi) Hib 
11 

8. The line digraph L(D) has as its nodes the arcs of the given digraph 
D and z is adjacent to y in L(D) whenever arcs z,y induce a walk 

in D. Calculate the number of nodes and arcs of L(D) in terms of 
D: (Harary and Norman [HN4]) 

10:2 ACY CUC DIGRARHS 

The converse digraph D’ of D has the same set of nodes as D and the 

arc uv is in D’ if and only if arc vu is in D. Thus the converse of D is 

obtained by reversing the direction of every arc of D. We have already 

encountered some converse concepts, such as indegree and outdegree, and 

these concepts concerned with direction are related by a rather powerful 
principle. This is a classical result in the theory of binary relations. 

Principle of Directional Duality For each theorem about digraphs, 
there is a corresponding theorem obtained by replacing every concept by 

its converse. 

We now illustrate how this principle generates new results. 

Theorem 10.4 An acyclic digraph has at least one node of outdegree 
zero. 

Proof Consider the last node of any longest path in the digraph. This 
node can have no nodes adjacent from it since otherwise there would be 

a cycle. Oo 

The dual theorem follows immediately by applying the Principle of 
Directional Duality. In keeping with the use of D’ to denote the converse 

of digraph D, we shall use primes to denote dual results. 

Theorem 10.4’ Anacyclic digraph D has at least one node of indegree 
zero. | 
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It was noted that the condensation of any digraph is acyclic. The it 

adjacency matrix A(D) of a digraph D is a (0,1)-matrix with a;; = 1 if 
there is an arc from ; to v;. We now provide several characterizations. 

Theorem 10.5 The following properties of a digraph D are equivalent. 

1. Dis acyclic. 

2. D* is isomorphic to D. 

3. Every directed walk of D is a directed path. 

4 It is possible to label the nodes of D so that the adjacency matrix 

A(D) is upper triangular. a) 

Out- Trees 

Two dual types of acyclic digraphs are of particular interest. A source in 

D is a node which can reach all others; a sink is the dual concept. An 

out-tree is a digraph with a source but having no semicycles; an in-tree 

is its dual, see Figure 10.4. The source of an out-tree is its root as is the 
sink of an in-tree.. An out-tree has also been called an arborescence. These 
concepts have been widely used by computer scientists in searching and 

sorting algorithms. 

(a) (0) 
Figure 10.4 An out-tree and its converse in-tree. 

Theorem 10.6 A weak digraph is an out-tree if and only if it has exactly 

one root and all other nodes have indegree one. 
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Proof Suppose that D is a weak digraph. If D is an out-tree, it has 

exactly one root and no semicycles. Hence each node is reachable from 

the root in only one way, so each nonroot has indegree one. On the other 

hand, if D has exactly one root r and all other nodes have indegree one, 

then there is a unique directed path from r to each other node, and D 

has no semicycles. Thus D is an out-tree. 0 

Theorem 10.6’ A weak digraph is an in-tree if and only if it has 

exactly one root and all other nodes have outdegree 1. D 

EXERCISES 10.2 

1. A digraph D is an out-tree if and only if D contains a node r such 

that there is precisely one directed path from r to each other node 

of D. 

2. Call a digraph resourceful if every two nodes can be reached from a 
common node. Then D is resourceful if and only if it has a source. 

3. Describe the dual concept to that of a digraph being resourceful. 

4. If every node of D has positive outdegree, then D contains a directed 

cycle. 

5. A digraph D is acyclic if and only if it is possible to label its nodes 

V1,V2,+++,Up So that any arc v;v; of D satisfies 1 < 7. 

6. In any labeling of the nodes of D as in Exercise 5, if v; is reachable 

from v; then 7 < 7. 

7. Give an example of a digraph which is not a directed cycle that is 

isomorphic with its converse. 

8. Characterize matrices which are adjacency matrices of digraphs. 

9. Every walk in an acyclic digraph is a path. 

10. The following statements are equivalent for a digraph D: 

a. D is an out-tree. 

b. D is resourceful and has p — 1 arcs. 

c. D is resourceful and has no semicycles. 
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10.3. MATRICES AND EULERIAN DIGRAPHS 

There are several matrices associated with a digraph, and each one pro- 

vides certain information about the digraph it represents. For example, 
the row sums of the adjacency matrix A(D) of a digraph D give the 

outdegrees of the nodes of D, while the column sums give the indegrees. 

As in the case of graphs, the powers of the adjacency matrix A of a 

digraph give information about the number of walks from one node to 

another. 

Theorem 10.7 Thez,j entry Be of A” is the number of walks of length 

n from v; to v;. D 

Three other matrices associated with D are the reachability matrix, 

the distance matrix, and the detour matrix. In the reachability matriz 

R(D), ri; = 1 if v; is reachable from v; and 0 otherwise. The 2,7 entry of 
the distance matrix O(D) gives the distance from node v; to node v;, and 
is oo if there is no path from »; to v;. These two matrices were introduced 

by Harary {H14]. In the detour matrix T(D), the 7,7 entry is the length 
of any longest path from v; to v;, and again is oo if there is no such path. 
These three matrices for the digraph of Figure 10.5 are 

pre ite Wee Oberst) Wire otislee) mec ve) Din 00100 FICO: 400 

todd lsigdse tO A hestiQign alerted m0. Sten ele cen inl oo 

de 0 teh 0.10 Le OOnae Os WOO. OO jE ore NP ve erie. 

fees sie bs 0 2 O0y 1.9 0) FOO ) Sapa o'< ae Cae | eats. 

Oar OneO eh TAG? \kOO OO 200 4706. 9.0 O04 COuLOO N00) (0 

R(D) 0(D) T(D) 

| 
\ O 

V4 V4 

Figure 10.5 A digraph to illustrate three associated matrices. 
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Corollary 10.7a_ The entries of the reachability and distance matrices 

can be obtained from the powers of A as follows: 

ie bor- allt. 77, — land dU. 

2. rij = 1 if and only if for some n, age) > 0. 

3. d(v;,v;) is the least n (if any) such that aye) > 0, and 0 otherwise. 0 

Unlike the situation for the reachability and distance matrices, there 

is no efficient method for finding the detour matrix. In fact, the problem 

of finding the detour matrix is NP-complete. 

The elementwise product (sometimes called the Hadamard product) 
B x C of two matrices B = [b;;] and C = [c;;] has bj;c;; as its 1,7 entry. 
The reachability matrix can be used with elementwise products to find 

strong components [H14]. 

Corollary 19.7b _—_ Let v; be a node of a digraph D. The strong com- 
ponent of D containing v; is determined by the unit entries in the 7th row 

of the symmetric matrix R x R?. a) 

In Chapter 7, we discussed distance matrix realizability problems of 

graphs. The corresponding problem for digraphs was studied by Simo6es- 

Pereira [S11]. As in the case for graphs, weights are placed on the arcs 

corresponding to a (directed) distance from one node to another. If for 
some pair of nodes v; and v;, there is no intermediate node v, such that 

dj; = d;,+d,;, then d;; is called a basic distance. Thus each basic distance 

d;; is determined uniquely by the weight on the single arc v;v;. In Figure 
10.6, dj3 = 4 and is basic, but d24 is not basic because do4 = do3 + d34. 

A weighted digraph W is a realization of matrix M of order n if there 
is a subset V = {v1,v2,...,0n} of the nodes of W having order n such 
that d(v;,v;) = mi; for all i,j, 1 < i,j <n. A realization is optimal if the 

total of the weights used on its arcs is a minimum. Optimal realizations 
of directed distance matrices of order n were characterized in [S11]. 

Theorem 10.8 A directed distance matrix M of order n has an optimal 
realization if and only if M can be realized by a simple directed cycle, or 

equivalently, M has n basic entries. a) 
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—<— 

V4 ° 4 
Figure 10.6 A weighted digraph. 

Eulerian Digraphs 

The number of spanning in-trees to a given node in a digraph was found 
by Bott and Mayberry [BM2] and proved by Tutte [T13a]. To give this 
result, called the matrix tree theorem for digraphs, we need some other 

matrices related to D. Let M,q denote the matrix obtained from —A by 

replacing the zth diagonal entry by od(v;). The matrix Mjq is defined 

dually. 

Theorem 10.9 For any labeled digraph D, the value of the cofactor of 

each entry in the 7th row of M,, is the number of spanning in-trees with 

v; as sink. D 

Theorem 10.9’ The value of the cofactor of any entry in the jth 
column of M;q is the number of spanning out-trees with root v;. 0 

An eulerian trail in a digraph D is a closed spanning walk in which 

each arc of D occurs exactly once. A digraph is eulerian if it has such a 

walk. 

Theorem 10.10 For any weak digraph D, the following statements are 

equivalent: 

1. D is eulerian. 

2. For each node u, od(u) = id(u). 

3. There exists a partition of the arc set of D into directed cycles. O 

We will now state a theorem giving the number of eulerian trails in an 

eulerian digraph. This result was discovered independently by de Bruijn 

and van Aardenne-Ehrenfest [BE1] and Smith and Tutte [ST1]. It can 



216 10 Digraphs 

be elegantly proved using the matrix tree theorem for digraphs, as in 

Kasteleyn [K1,p.76]; see also Harary and Palmer [HP3,p.28]. 

Corollary 10.9 In an eulerian digraph D, let d; = id(v;) and c be the 

common value of all the cofactors of M,g. Then the number of eulerian 

trails is 
Pp 

e- |] (di - 1)! Oo 
t= 

Note that for an eulerian digraph D, we have Mjq = Mig and all row 

sums as well as all column sums are zero, so that all cofactors are equal. 

For the digraph in Figure 10.7, c = 7 and there are 14 eulerian trails. Two 

of them are v1 2030402010301 U4V1 and V1 VgQV1 V4V2V3Z04 Vj U3 04. 

V 

V4 so Vp 

Figure 10.7 An eulerian digraph whose eulerian trails are counted. 

EXERCISES 10:3 

1. Characterize matrices which are reachability matrices of some 

digraph. 

For the adjacency matrix A of an acyclic digraph A? = 0. 

Let D be a nontrivial weak digraph. Then D has an open spanning 
trail if and only if either D is eulerian or D contains nodes u and v 

such that id(u) = od(u) +1 and od(v) = id(v) + 1 while all other 
nodes w satisfy id(w) = od(w). 

4. The number of eulerian trails of a digraph D equals the number of 
hamiltonian cycles of L(D). (Kasteleyn [K1]) 
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10.4 LONG PATHS IN DIGRAPHS 

The values of certain invariants might guarantee the existence of a path 
of a given length in a graph. A simplar statement is true for digraphs. For 

example, Roy [R8] and Gallai [G2] showed independently that every ori- 
entation of an n-chromatic graph contains a directed path of length n—1. 

In Chapter 4, we discussed hamiltonian graphs. We saw that many of the 

sufficient conditions for hamiltonicity have counterparts when consider- 

ing generalizations of hamiltonian graphs. We shall now examine these 
concepts in the context of digraphs. 

Diameter 

For digraphs, distance concepts are defined analogous to those for graphs 

except that we must heed the directions on the arcs. Thus, the distance 

from uw to v is the length of a shortest (directed) u-v path. The eccentricity 
of a node v in a digraph D is its distance to a farthest node in D. For a 

strong digraph the eccentricities are all finite. The radius is the minimum 
eccentricity and the diameter is the maximum. It is easy to read off the 

eccentricity of node v; € D from the distance matrix O(D). Simply find 
the largest entry in row 7 of 0(D). The diameter and radius of D can be 
obtained similarly. More efficient methods are given in Chapter 11. 

3 2 

Figure 10.8 A digraph and its eccentricities. 

Note that for digraphs, some familiar distance relations do not hold. 

For example, graphs have the property that the eccentricities of adjacent 

nodes differ by at most one, but this is not true even for strong digraphs. 

Also, the familiar relationship r < d < 2r does not hold for digraphs. In 

Figure 10.8, we display a digraph D with radius r(D) = 2 and diameter 

d(D) =5. 
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Figure 10.9 A directed circulant. 

We recall for a moment a concept from §3.4. A circulant is a graph de- 

termined by its order p and asubset S = {a,6,c,...} of {1,2,3,...,|p/2]} 
as follows. The circulant graph C(p: S) = C(p:a,b,c,...) has node set 
Zp = {0,1,...,p — 1} and each node uw is adjacent with the nodes u + a, 
u+b,ut+c,..., all sums taken modulo p. Now the corresponding di- 

rected circulant is defined similarly, except that adjacent with is replaced 

by adjacent to. Certain directed circulants have also been called “double 
loop computer networks”, namely, those of the form C(p;1,h) which is 

denoted more briefly by D(p,h). To illustrate, D(8,3) is shown in Figure 

10.9. 
The exact value of the diameter of the directed circulant D(p,h) is 

given by a complex formula due to Y. Cheng. One wants to minimize 

the diameter as it varies directly with the transmission time when the 

nodes are microprocessors and the arcs are communication channels. The 

choice of the jump size h is crucial in such problems. Hwang and Xu [HX1] 

obtained good asymptotic results on choosing h to minimize the diameter 

in directed circulants. Also see Cheng and Hwang [CH4] for results on the 
diameter ofweighted circulants. 

Hamiltonian Digraphs 

A digraph is hamiltonian if it has a closed spanning path. The sufficient 
conditions for a digraph to be hamiltonian are similar in flavor to those for 

graphs. Of course, every hamiltonian digraph is strong, but the converse is 
not true. For example, a strong digraph with a cutnode is not hamiltonian. 

Thus, most results on hamiltonian digraphs begin with the assumption 
that D is strong. Several of the early results, beginning with that of 
Ghouila-Houri [G4], were subsumed by a result of Meyniel. Thus we first 
state Meyniel’s result [M6], for which a simple proof was found by Bondy 
and Thomassen [BT4]. For a node v in a digraph D, let 
deg v = id(v) + od(v). 
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Theorem 10.11 If D is a nontrivial strong digraph of order p such that 

for every pair of distinct nonadjacent nodes u and v 

(10.1) deg u + deg v > 2p — 1, 

then D is hamiltonian. 

Outline of Proof Since D is strong it has cycles. Let C be a longest 

cycle in D and suppose that C does not span D. Then for a node v not 

on C there are paths from C to v and back to C either rejoining C at 

(a) the same node of departure or (b) a different node. If all such paths 
are restricted to type (a), one gets a contradiction to (10.1). Thus there 
is a path of type (b). If the path of type (b) is too long, one would get 
a cycle longer that C, a contradiction. Thus the length of the path must 

be restricted. But the restriction on this length also conflicts with (10.1). 
Thus C' must in fact span D, hence D is hamiltonian. D 

Ghouila-Houri’s theorem [G4] now follows readily. 

Corollary 10.11a If D is a strong digraph of order p such that 
deg v > p for all nodes v in D, then D is hamiltonian. D 

Another result which follows from Meyniel’s Theorem is a result of 

Woodall [W7] which places a restriction on the sum of the outdegree of 
one node and the indegree of another. 

Corollary 10.11b _—_ Let D is a nontrivial digraph of order p. If every 
pair of distinct nodes u and v with wu not adjacent to v satisfies 

(10.2) od(u) + id(v) > p, 

then D is hamiltonian. 

Proof In order to apply Meyniel’s Theorem, we first show that D is 

strong. For arbitrary nodes u and v, we must show that v is reachable 

from u. If u is adjacent to v, we are done, so assume the contrary. Then 

(10.2) implies that there is a node w adjacent from u and adjacent to v. 

Hence v is reachable from uw and D is strong. 

Now for any two distinct nonadjacent nodes u and v of D, we have 

deg u + deg v = id(u) + od(u) + id(v) + od(v) 

= od(u) + id(v) + od(v) + id(u). 

>p+p>2p-1 

Thus by Theorem 10.11, D is hamiltonian. D 
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Corollary 10.11c ‘If D is a digraph of order p such that for all pairs 

of nonadjacent nodes u and v 

(10.3) deg u + deg v > 2p — 3, 

then D has a spanning path. 

Proof First, (10.3) guarantees that D is at least weak. We can form a 

strong digraph D, as the symmetric join D + Ky of a new node w to D, 

that is, add w and a symmetric pair of arcs between w and each node of 

D. For every pair of nodes u; and v; in D,, we have 

deg u; + deg v; > 2p-34+4=2p+1=2(p+1)-1. 

As D, has order p+1, Theorem 10.11 implies that D, has a hamiltonian 

cycle C. By deleting node w and its incident arcs in C’, we obtain a 

spanning path of D. 0 

Generalizations of Hamiltonian Digraphs 

The first generalization of hamiltonian digraphs we consider are digraphs 

for which there is a spanning path from each node to each other node. 

A digraph D is hamiltonian-connected if there is a spanning u — v path 

for all pairs of distinct nodes wu and v in D. A hamiltonian-connected 

digraph is always hamiltonian, but the converse is not true as a directed 

cycle of order at least 4 shows. Overbeck-Larisch [06] showed that by 
altering the bound in Woodall’s Theorem (Corollary 10.11b) by only 1, 
hamiltonian-connectedness is guaranteed. 

Theorem 10.12 Let D be a nontrivial digraph of order p. If every pair 

of distinct nodes u and v with wu not adjacent to v satisfies 

od(u) + id(v) > p+ 1, 

then D is hamiltonian-connected. 0 

There is a natural analogy to the concept of a pancyclic graph. A 
digraph D of order p is pancyclic if D contains a directed cycle of each 

length k, 3 < k < p. Thus, these digraphs are a special class of hamiltonian 
digraphs. Thomassen [T5] gave the following condition for a digraph to 
be pancyclic which is an analogue of Bondy’s result for pancyclic graphs, 
see Theorem 4.16. 
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Theorem 10.13 Let D be a strong digraph of order p = 3 such that 
deg u + deg v > 2p for all pairs u and v of nonadjacent nodes. Then D is 
either pancyclic or p is even and D is the digraph of Ky/2,p/2- D 

There are also results for strong digraphs which guarantee the ex- 
istence of a path of a given length when the digraph might not have a 
spanning path. For example, Bermond, Germa, Heydemann, and Sotteau 
[BGHS1] showed that a strong digraph ‘of order p with id(v) > k and 
od(v) > h for all v contains a path of length at least min{h + k,p — ‘lg as 
Ayel [A4] showed that under the same assumptions a strong bipartite 
digraph contains a cycle of length at least max{2k, 2h}. 

EXERCISES 10.4 

1. Let D be a digraph of order p such that for every pair of distinct 
nodes u and v with u not adjacent to v, od(u)+id(v) > p—1. Then 
D contains a spanning path. 

2. Let k = max, min{id(v), od(v)} in a digraph D without symmetric 
pairs of arcs. Then D has a path of length at least k. 

3. If Dis astrong digraph of order p > 3 such that deg u+-deg v > 2p+1 

for all pairs u and v of nonadjacent nodes, then D pancyclic. 

(Overbeck-Larisch [06]) 

4. If D is a digraph of order p > 3 such that od(v) and id(v) are each 
at least (p + 1)/2 for all v in D, then D is pancyclic. 

10.5 TOURNAMENTS 

Perhaps the most studied digraphs are the tournaments. A tournament 
is a nontrivial oriented complete graph. All tournaments with two, three, 
and four nodes are shown in Figure 10.10. The first with three nodes is 
called a transitive triple, the second a cyclic triple. 

In a round-robin tournament, a given collection of players or teams 

play a game in which the rules of the game do not allow for a draw, e.g., 

basketball but not chess. Every pair of players encounter each other and 

exactly one from each pair emerges victorious. The players are represented 

by nodes and for each pair of nodes an arc is drawn from the winner to 
the loser, resulting in a tournament. 
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a are 
LX LS LS LS 

Figure 10.10 The seven smallest tournaments. 

The first theorem on tournaments ever found is due to Rédei [R3]; for 
small tournaments it can be verified using Figure 10.10. 

Theorem 10.14 Every tournament has a spanning path. 

Proof The proof is by induction on the number of nodes. Every tourna- 

ment with 2, 3, or 4 nodes has a spanning path, by inspection. Assume 

the result is true for all tournaments with n nodes, and consider a tour- 

nament T with n+ 1 nodes. Let vo be any node of T. Then T — vo is a 

tournament with n nodes, so it has a spanning path P, say v1 v2... Un. 

Either arc vpvy or v1v9 € T. If vov, € T, then vov, v2... vn is a spanning 

path of T. If vj vo € T, then let vz be the first node (if any) of P for which 
the arc vov, is in T. Then vz_1v9 € T, so that v1, v2... v¢_1V0UK--- Un is 

a spanning path of T. If no such node vx exists, then vjv2...Unv9 is a 

spanning path. In any case, we have shown that T has a spanning path, 

completing the proof. D0 

By the way, Rédei [R3] also showed that every tournament has an odd 
number of spanning paths. 

In Figure 10.3, we gave an example of a strong digraph with no span- 
ning path. Theorem 10.14 shows that this cannot occur even for a weak 
tournament. Foulkes [F8] and Camion [C2] shows that a stronger state- 
ment holds for strong tournaments by characterizing them as follows. 

Theorem 10.15 A tournament of order p > 3 is strong if and only if it 
has a spanning cycle. 0 
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Harary and Moser [HM6] showed that strong tournaments of order 
p = 3 are in fact pancyclic. Moon [M9] proved an even stronger result 

when he demonstrated that they are node-pancyclic, that is, for every 

node v, there is a cycle of each length k, 3 < k < p, passing through v. 

Score Sequences 

Using terminology from round-robin tournaments, we say that the score 
of a node in a tournament is its outdegree and a node is said to dominate 

each node to which it is adjacent. The next theorem, due to Landau 

[L1], was actually discovered during an empirical study of tournaments 
(so-called “pecking orders”) in which the nodes were hens and the arcs 
indicated pecking. 

Theorem 10.16 In any tournament the distance from a node with 

maximum score to any other node is 1 or 2. 

Proof Let v be anode with maximum score k in tournament T. Suppose 

uis anode at distance at least 3 from v. Then uv € T and u must dominate 
each of the k nodes that v dominates. Hence od(u) > k +1 > od(v), a 
contradiction. a) 

In the same paper [L1], Landau characterized score sequences. 

Theorem 10.17 A nondecreasing sequence of nonnegative integers 

$1, $2,.-.,Sp is the score sequence of a tournament T if and only if for 

each k, 1 < k < p, we have 

ee > (5) 
arma C7 
t=1 

with equality holding for k = p. a) 

EXERCISES 10.5 

1. The scores of a tournament satisfy > s;? = )(p— 1-5)’. 

2. Determine which of the following sequences are score sequences. 

a; 0713,0,0 b.0,1,2,3,4,4> co1,1,1,4,4,4 d. 1,2,2,3,3,5,9 
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State the dual of Theorem 10.16. 

A tournament T is transitive if uv € T and vw € T implies that 

uw €T. A tournament is transitive if and only if it is acyclic. 

A tournament is irreducible if it is impossible to split the nodes into 

two sets V; and V2 so that each node in Vj dominates each node in 

V2. A tournament is irreducible if and only if it is strong. 

A sequence of numbers s; < 52 <--: < Sp is the score sequence of a 

strong tournament if and only if for all k < p, 

k 

S581 > R(k — 1)/2. 

(Harary and Moser [HM6]) 

If no node in a tournament T has score p — 1, there are at least 3 

nodes in T with eccentricity 2. 

FURTHER RESULTS 

Graham, Hoffman and Hosoya [GHH1] showed that the determinant of the 

distance matrix O(W) of a weighted strong digraph W depends only on 
the distance matrices of the strong components and not on how the strong 
components are joined together. Let the blocks of W be Gj, G2,...,Gn, 
and let cof(M/) denote the sum of the cofactors of M. Then 

det 0(W) = 5 faet (Gi) | cof 0(G3)). 
71 aft 

If D is unilateral, then both D—u and D — v are unilateral. 

(Fink [F3]) 

If A is the adjacency matrix of the line digraph of a complete sym- 
metric digraph, then A? + A = J, the matrix with all unit entries. 

Illustrate this for D(If3). (Hoffman [H24]) 

Consider those digraphs in which for every node u, the sum > d(u, v) 
of the distances from u is constant. Construct such a digraph which 
is not node-symmetric. (Harary [H6}) 



CHAPTER 1 1 

Graph Algorithms 

Because of the importance of graph theory in computer science applica- 

tions, the area of graph algorithms has been one of the fastest growing 
areas of graph theory. An algorithm is a step-by-step procedure for solv- 

ing a problem. The general goal of algorithmic graph theory is to find an 

“efficient” algorithm for solving a given problem or to show that no such 

algorithm exists, where, loosely speaking, an efficient algorithm is one 

guaranteed to finish in an acceptably short period of time. When no such 

algorithm can be produced, one might instead try to find good heuristics 

(procedures guaranteed to have small run time and which will generally 

produce optimal or near-optimal solutions). Algorithmic graph theory has 

been such an active area of research that many books have already been 

written on the subject. We shall focus here on graph algorithms relating 
to the distance concepts we have discused throughout the text. 

11.1 POLYNOMIAL ALGORITHMS AND NVP-COMPLETENESS 

When searching for an efficient algorithm for a particular problem, one 

must first decide what “efficient” means. After deciding upon a definition, 

one would then like some way to measure efficiency. Such a measure could 

then be used for various purposes: 

225 
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1. To compare different algorithms for the same problem. 

2. To estimate the computer runtime for the algorithm. 

3. To help decide if the algorithm is optimal. 

To give a precise description of efficiency, we must first define several 

concepts. An instance of a problem is a particular example to which the 

algorithm is to be applied. For example, the Petersen graph is an instance 

of a graph. Each instance will be presented for solution in a particular for- 

mat. For example, suppose we want an algorithm to determine whether a 

graph is bipartite. Each graph (instance) to be tested will be presented in 

the same way. One might suggest drawing the graph. Although this would 

work fine for small graphs, we want to use the algorithm on graphs of arbi- 

trary size. Thus the graph is generally presented via some data structure. 

Some standard data structures used for graphs are arrays, linked lists, 

stacks, heaps, and packets. It should be noted that the choice of the data 

structure will affect both the efficiency and structure of the algorithm. 
Since we do not assume prior familiarity with data structures, we shall 

focus on the simplest ones, namely, arrays and lists. This is no disad- 

vantage since most graph algorithms are first presented in these terms. 

Later, when refining the algorithm to increase efficiency more complicated 

structures might be used. 

The simplest array used to describe a graph is its adjacency matrix 

(see §6.1). If the instance (graph) is not already labeled, one simply takes 
any fixed labeling and uses the adjacency matrix for that labeling. It 

should be noted that an adjacency matrix is not an efficient technique of 

describing the graph. Since for any graph G, A(G) is symmetric, there is 

a built-in redundancy. Also, all diagonal elements of A(G) are zero so are 
not needed. Thus the upper triangle of A(G) would describe G just as well 
as all of A(G). Hence one can completely described G with a sequence 
of (p? — p)/2 zeros and ones. The biggest such number among adjacency 
matrices for G is unique and characterizes G. 

Another common technique of describing a graph is to use an ad- 

jacency list. Here one would need at most (p* — p)/2 entries, but usu- 
ally considerably fewer. Begin by labeling the nodes 2, v2,...,v). The 
adjacency list for node v; consists of the nodes v; for which v,;v; € G. 
The total number of entries on all the adjacency lists corresponds to 
twice the number of edges in G. This provides a considerable savings of 
computer storage when G is sparse. 

An algorithmic procedure consists of reading the input string that 
describes the instance, processing the input string via the algorithm, and 
producing an output string. The whole procedure is preceded by coding 
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Instance 
| 
| coding 

— >| Algorithm |—> 

Figure 11.1 The algorithmic process. 

the instance in the form of the input string. This process is depicted in 
Figure 11.1. 

The input length is the number of elements in the input string. For 

the adjacency matrix this would be p?, its number of 0’s and 1’s. For the 

collection of adjacency lists, the input length is 2q. The efficiency of an 

algorithm is described as a function f(n) of its input length n. 

Orders of Magnitude 

To understand efficiency, one needs some familiarity with the concept 
of orders of magnitude. When comparing two algorithms, the so-called 

Landau notation is often used. Suppose that f and g are functions defined 

on the natural numbers and that 

hare) slim 972) "00. 

To say that f(n) = O(g(n)), read “f is big-oh of g,” means that f(n) 
grows no faster than g(n) as n — oo. Hence, the growth of f is in some 
sense bounded by the growth of g. If f(n) = O(g(n)) and g(n) = O(f(n)), 
then each grows no faster than the other and f and g are said to have the 

same order of magnitude. 
To say that f(n) = o(g(n)), read “f is little-oh of g,” means that g(n) 

grows much faster than f(n) as n — oo. In this case, g is said to have 
a higher order of magnitude than f. Note that if f(n) = o(g(n)) then 
f(n) = O(g(n)). That is if f grows more slowly than g, it grows no faster 

than g. 
The relation between orders of magnitude between f and g can be 

easily found by considering the limit L = limpoo f(n)/g(n). If 

0< L < ww, then f and g are said to have the same order of magnitude. 

However, if L = 0 then f(n) = o(g(n)), and if L = ov, then 

g(r) = o( f(n)). 
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Table 11.1 COMMON ORDERS OF MAGNITUDE 
Le
 

Ign n nign n* n°? oe 
bee ay 2 eee 

0 it 0 1 th 2 

1 2 2 4 8 4 

Zz 4d 8 16 64 16 

3 8 24 64 512 256 

4 16 64 512 4096 65536 

5 32 160 1024 32768 4294967296 

Let lg n denote log, n. Some common orders of magnitude are n, lgn, 

nlgn, n?, n°, and 2”. To help provide some insight into these orders of 

magnitude, some values for these functions are listed in Table 11.1. 

Note that if one is far enough down in the table, each value in a given 

row is larger than the value to its left. Thus the six functions are arranged 

in the table with those having a higher order of magnitude further to 
the right. Remembering the following three basic facts helps considerably 

when comparing orders of magnitude. 

1. A polynomial has the same order of magnitude as its leading term. 

2. lgn = o(n), that is, lgn grows much slower than n does. 

3. If P(n) is a polynomial such that limp. P(n) = oo, and 
f(n) = a-b*", where a, b, and k are all positive, then P(n) = o(f(n)). 
That is, an exponential function has a higher order of magnitude than 

any polynomial function. 

The complezity function C'4(n) of an algorithm A with input string 
of length n is the maximum number of basic operations that can be per- 
formed by A. Thus C’4(n) is a measure of the worst case of the algorithm, 
that is, the slowest the algorithm can run. The complezity of an algorithm 

is the order of magnitude of its complexity function. Once the number of 

operations and the time required for each operation are known, the total 

time required by the algorithm can be computed. Hence, the complexity 

is sometimes called the time complexity of the algorithm. 
An algorithm A is a polynomial time algorithm, or simply a polynomial 

algorithm, if there exists a polynomial p(n) such that C'4(n) = O(p(n)). 
An algorithm that is not a polynomial algorithm is called an exponential 
algorithm. The order of magnitude of an algorithm is the order of magni- 
tude of its complexity function. Thus, for example, an algorithm A is of 
order nlgn if Ca(n) = nlgn. 
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Exponential algorithms should be avoided since the explosive growth 
of their complexity functions makes even moderately-sized problems 
intractable even with a super-fast computer. For example, using an 
algorithm A with C4(n) = 2” on an computer that can do one compar- 
ison per microsecond (1/10° sec.) on an input string of length 40 would 
take 24° = 1,099,511,627,776 comparisons to complete the algorithm in 
the worst case. It would therefore take about 1,099,512 seconds or about 
13 days to complete the computation. 

However, if we use a polynomial algorithm B with complexity func- 
tion Cg(n) = nlgn that solves the same problem, the same computer 
would take about 0.0002 seconds to run. Thus it should be clear — avoid 
exponential algorithms when possible. 

When choosing one algorithm over another, one must remember that 

orders of magnitude are meaningful only for large values of n. Thus, one 

can see from Table 11.1 that if the input length is small, for example n = 8, 

an exponential (2) algorithm could be more efficient than a polynomial 
(n*) one. 

NP-Complete Problems 

We now briefly consider a class of problems for which there is no known 

polynomial time algorithms. A complete discussion of these problems 

would fill a whole book. See, for example, Garey and Johnson [GJ]1]. 
A formal description of P-complete problems will necessarily include a 

formal discussion of Turing machines; however, for the sake of brevity we 

shall be slightly less formal here. 

A decision problem is a problem for which each instance is described 
with its input string and the answer to the problem will be either “yes” or 

“no.” As the problem is being solved it is said to be in a particular “state.” 

A Turing machine T is used to solve the decision problem by progressing 
from an initial state to the final state which will be either “yes” or “no.” 

The other states we call intermediate states. A deterministic machine is 

one for which each intermediate state in the solution of an instance of the 

decision problem has only one next state. 

There are two standard ways to describe a non-deterministic machine. 

One way says that some intermediate state in the solution has several 
possible next states. Another way of thinking of a non-deterministic ma- 

chine is that its solution of a decision problem requires an initial guess (of 

which there are several possible candidates), after which each subsequent 
intermediate state will have a unique next state. 
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A problem is said to be in the class P if it can be solved in polynomial 

time on a deterministic machine for every instance of the problem. A 

nondeterministic machine is said to solve a decision problem DP if the 

following conditions hold for every instance of DP: 

1. If DP is true, then there exists an initial guess that will cause the 

machine to end in state “yes”. 

2. If DP is false, then there is no initial guess that will cause the ma- 

chine to end in state “yes”. 

Another way to state condition 2 is that when DP is false every 

initial guess would either lead to state “no” or the algorithm would not 

terminate. 

A problem is in the class VP if every instance of the problem can be 

solved with a polynomial algorithm on a nondeterministic machine. (In 

case you have not already guessed, the VP stands for “nondeterministic 

polynomial”.) It is clear that P C NP since if DP € P, one could sim- 

ply use no guess as the initial guess and then solve the problem on the 

nondeterministic machine in polynomial time. The outstanding problem 

in complexity theory is to determine whether P = NP. 

Decision problem DP, has a polynomial reduction to DP; denoted 

DP, x DP?» if 

1. There is a function f mapping each input string J; of DP, to an 

input string f(J,) = Ig of DP: such that J, produces the answer 

“yes” for DP; if and only if f(J,) produces the answer “yes” for 
DP», and 

2. There is a polynomial algorithm to compute f(J,). 

Note that a polynomial solution for DP, would imply a polynomial 
solution for DP. 

A problem DP; in NP is NP-complete if for every DP, in NP, 
DP, « DP. People often express this by saying that a problem in NP 
is NP-complete if it is at least as hard as every other problem in NP. 
There are other standard ways in which N’P-completeness are defined, 
which may or may not be equivalent to one another. There is also a 
concept of strong ’P-completeness. For additional details on these, see 
Garey and Johnson [GJ1] or Even [E4]. 

There are three basic steps used to show that a problem DP is 
NP-complete: 
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1. Show that DP ENP. 

2. Select some problem DP’ that is known to be NP-complete. 

3. Construct polynomial reduction of DP’ to DP. 

Note that it is important to show that there is indeed a polynomial 
algorithm to compute the image f(/) of an arbitrary instance I € DP’ 
for the function f constructed in step 3. 

Garey and Johnson describe six basic WP-complete problems and use 
them throughout their book to show that numerous graphical problems 
are NP-complete. Their clearly written text is an excellent tool for learn- 
ing the techniques of showing that a given problem is NP-complete. 

EXERCISES 1151 

1. Suppose that the input string for a graph G of order pis its adjacency 

matrix A. You use the standard algorithm for matrix multiplication 
to find A?. 

a. What is the input length? 

b. How many operations (multiplications and additions) are used? 

c. What is the complexity of the algorithm. 

2. How much storage would be saved for the following graphs using 

adjacency lists rather than the adjacency matrix as the input string? 

a. Petersen graph baG, Calter, 

3. Determine the complexity of the Algorithm 9.1 from Chapter 9, 
which determines whether a given sequence is a graphical degree 

sequence. 

4. Suppose the input string for a problem consists of the sequence of 

eccentricities e; = e(v;) of the nodes of a graph G. Describe an 
algorithm to determine the center. What is the complexity function 

of your algorithm (a basic operation here is a comparison)? What is 

the complexity of your algorithm? 

5. Suppose you have two algorithms A; and A2 for the same problem. 
Algorithm A; has complexity function 6n?1lgn and A2 has complex- 
ity function 2”. What is the largest value of n for which it makes 
sense to use Ag rather than A,? 

6. If DP, « DP» and there is a polynomial algorithm solving DP2, 
then thre is a polynomial algorithm that solves DP,. 

7. The relation «x ic transitive. 
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11.2 PATH ALGORITHMS AND SPANNING TREES 

The most fundamental graph algorithms concerning distance are those 

dealing with shortest paths and longest paths in a graph. In fact, most 

algorithms involving distance use one of the two basic search techniques 

of graph theory — depth first and breadth first search, which we now 

discuss. 

In most cases when describing algorithms, we shall assume that 

adjacency lists are used to describe any graph input to an algorithm. 

When using such an algorithm, if the graph is not already labeled, simply 

label the nodes and record the adjacency list for input. An example of a 

graph and its adjacency lists is given in Figure 11.2. 

b = none | adjacency Uist 

f 

Figure 11.2. A graph and its adjacency lists. 

e 

Breadth-First Search 

Breadth-first search (BFS) is a fundamental search technique that traces 

a rooted spanning tree in a connected graph so that the distance from the 
root to each node in the tree corresponds to its distance in the original 
graph. The basic idea is to begin at the root and find its neighbors, and 

then their neighbors, and so on, until one has spanned throughout the 
graph and reached all nodes. Since in most applications where BFS is 

used, one wants to know the distance from the root to each other node, 

we present a form of the algorithm which records the distances. In fact 
the version of the algorithm we present is fairly general in that it discovers 

whether the graph is connected rather than assuming that it is. The input 

to the algorithm is the list of nodes, their adjacency lists, and the label 

of the root. Assume that the distance d(root,v,) from the root to node 
vz is stored in array d. Let N(v) denote the adjacency list of node v. 
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Algorithm 11.1 Breadth-First Search 
begin 

d(vo0t) =O; 44 = =), D:= {root} 
C = N(root) (records current neighborhood being processed) 
while D #9 do 
begin 

¢ rd 

65 9B, 

D=9 (D accumulates next neighborhoods) 
for each w € N(C) do 
begin 

place w in D 

remove w from all adjacency lists 
d(w) =i 

end 

end 

for each v not yet labeled, d(v) = oo. 

If such v exist, the graph is disconnected, and all 

such v lie in a different component from the root 

end D 

When first looking at this algorithm, it may seem that a lot of search- 

ing occurs when we try to remove a node w from all the adjacency lists. 

Actually, this step is quite simple, since V(w) tells precisely the lists from 
which w must be removed. The complexity of BFS on a (p,q)-graph is 
O(q). Since g = O(p”), BFS is quite an efficient method for finding the dis- 
tance from one node to all the other nodes in the graph, and is extremely 

effective for sparse graphs. 

By performing a BFS from each node, one can determine the distance 

from each node to each other node. The resulting algorithm has complex- 
ity O(pq) = O(p*). Note that it is also quite easy to modify Algorithm 
11.1 with a labeling scheme to recover a shortest path (rather than just 
its length) from the root to each node without increasing the complexity. 

In this way we can generate a spanning tree where the distance from each 
node to the root in the tree is the same as in the original graph. 

Depth-First Search 

For a depth-first search (DFS) begin at the root and trace out a path 
from the root until you can go no farther without revisiting a node. Then 
backtrack along the path until reaching the first node with an alternate 

route available and procede forward again. Repeat this until you can go 
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no farther. Like BFS, a depth-first search traces a spanning tree in a 

connected graph, but in a different manner. One might think of DFS as 

the way an intelligent but determined mouse might find its way through 
a maze. 

A procedure is a self-contained algorithm used by another algorithm 

that “calls it.” A recursive procedure is a procedure that calls itself during 

processing. Because of the repetitive nature of DFS, it is often written as 

a recursive algorithm (this is an algorithm using a recursive procedure). 

Algorithm 11.2 Depth-First Search 
Procedure DFS(v) 
begin 

aia (tracks the order in which nodes are visited) 

while NV(v) # 9% do 
for u € N(v) do 
begin 

fies FOAL ego 
remove u from all adjacency lists 
DFS(uw) 

end 

end DFS 

begin (driver algorithm) 
input adjacency lists and root 

{k= 8! (stores edges of the tree as they are selected) 
for v€ Gdo 

I(v) = 0 
I(root) = 1 
2 
while there exist some wu for which (uw) = 0 do 
for highest labeled node v with N(v) 4 0 do 
begin 

remove v from all adjacency lists 
DFS(v) 

end 
print T. 

end a) 

The backtracking along a path in the tree occurs each time control 
is returned to the driver program and one looks for the highest labeled 
node that has unvisited neighbors. Note that as with BFS, removing a 
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node w from all adjacency lists in this algorithm is easy because N(w) 
tells which lists are involved. Algorithm 11.2 can easily be modified to 
determine whether G is connected simply by testing for nodes v that still 
have /(v) = 0 when the algorithm terminates. 

The DFS and BFS algorithms are used in numerous problems such 
as checking connectivity, determining the blocks or finding bridges in a 
graph, and determining distances between nodes. For example, Tarjan 
[T2] showed that one can determine whether a graph is biconnected in 
O(p?) time by using DFS. Ebert [E1] used that result to develop an algo- 
rithm linear in q to find a pair of node-disjoint paths joining any pair of 

nodes in a biconnected graph. BFS and DFS are also the basis of various 
algorithms on digraphs and networks. We shall discuss network algorithms 
in Chapter 12. 

Some Comments on Spanning Trees 

The following is a recent example on the use of BFS for graphs. Theorem 
7.20 gives a characterization of graphs G having a diameter-preserving 

spanning tree (DPST), that is, a spanning tree T whose diameter is the 

same as the diameter of G. The proof in [BL1] is constructive and gen- 
erates the DPST when the conditions of the theorem are satisfied. When 
d = 2r, the DPST is obtained by performing a BFS in G using a central 
node as root. When d = 2r — 1, a graph G” is first formed from G by 
collapsing an edge joining a pair of central nodes. A BFS is then used to 
produce a DPST 7™ of G*, and after some simple manipulations of T* a 

DPST of G is obtained. 
Although BFS and DFS each produce a spanning tree in a connected 

graph G, the resulting trees are often quite different. Either search tech- 

nique might produce several trees, but those produced from BFS generally 
will be more compact and have smaller diameter than those from DFS. 

For example, consider the Petersen graph P. Since P is node-symmetric, 

it is immaterial which node is used as the root. With BFS a tree isomor- 
phic to that in Figure 11.3a is obtained, whereas DFS produces a tree 
isomorphic to one of the three trees in Figure 11.3b. Hence, BFS on P 
produces a tree of diameter 4, while DFS produces a tree with diameter 

8 or 9. 
The height of a rooted tree is the maximum distance of a node from 

the root. Like BFS, the complexity of DFS is O(q) and O(p*). However, 
Fellows, Friesen and Langston [FF L1] showed that the problems of finding 
a spanning tree of maximum height or a spanning tree of minimum height 
using DFS are each NP-hard. The basic difficulty is that for a given 
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Figure 11.3 Spanning trees of the Petersen graph from BFS and DFS. 

choice of root, DFS will not necessarily generate the desired “tallest” or 

“shortest” tree on the first try. Indeed, a DFS may have to be performed 

many times to obtained such a tree. 

Define the distance d(T,,T2) between two spanning trees T; and T>2 of 

a graph G to be the number of edges in T; that are not in T. It is easy 

to show that this is a metric on the set of all spanning trees of G. Two 
spanning trees T, and T2 of G are maximally distant if d(T), Tz) is at least 
as large as the distance between any pair of spanning trees of G. This con- 

cept was studied by Ishizaki, Ohtsuki, and Watanabe [IOW1]. Suppose 
that N is a network with underlying graph G. The maximum distance 

between a pair of spanning trees of G corresponds to the minimum num- 

ber of independent variables required in the “mixed-variable analysis” of 

N. See Swamy and Thulasiraman [ST2] for a further discussion of this 
analysis technique. 

EXERGISES 11/2 

1. Show all steps in BFS by applying Algorithm 11.1 to the graph in 

Figure 11.4. 

2. Do Exercise 1 using DFS and Algorithm 11.2. 

3. When BFS terminates, the value of d(v) is the distance from the root 
to v for each node v. 
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4. Ifwe want DFS to generate a spanning forest when G is disconnected, 
indicate precisely which statements must be modified in Algorithm 
11.2, and show the required changes. 

5. Verify that the distance d(T), T2) between two spanning trees T; and 
I of a graph G is a metric on the set of all spanning trees of G. 

f h 
Figure 11.4 A graph to search. 

ft 1 SeRCENTERS 

Algorithms have been developed for many of the centrality concepts dis- 

cussed in Chapter 2. In this section, we present several such algorithms. 

The Center 

To determine the center itself, one must know the eccentricities of all the 

nodes and select those nodes v for which e(v) is minimum. There are 
a couple of standard ways to do this. We shall present here techniques 

one might use for a graph G. When dealing with a network where there 
are either weights on the edges or both weights and directions, other 

techniques are usually more appropriate and efficient. We shall discuss 

algorithms used to find the center of a network in §12.5. 
Perhaps the most elementary way to determine the center uses the 

adjacency matrix A(G) as input and produces the distance matrix simply 
by calculating consecutive powers of A(G) as in [HNC1]. By Corollary 
6.1c, d(v;, v;) for i # 7 is the least integer n for which [A"];; # 0 when G 
is connected. When G is disconnected, d(i,7) has the same value n when 
vy; and v; are in the same component of G. However, when v; and v; are 

in different components, [A"];; = 0 for all n. In this case, d(v;, vj) = oo. 
Theorem 6.1 asserts that [A"];; is the number of walks of length n from 
vy; to v;, and since d(G) < p—1 when G is connected, this technique of 
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determining the eccentricities could require us to calculate A?! in the 

worst case. 

The algorithm producing eccentricities by using the distance matrix 

D = D(G) obtained from the adjacency matrix A = A(G) follows. 

Algorithm 11.3 Eccentricities I 
Procedure DfromA 

begin 
a eee Lie AeA 
for each i 4 j with d;; =0do 

di; = 00 

while some d;; = oo and k < p—1do 

begin 
k=k+1 
BiieasA Bk 1) 
for each ij where d;; = co if [B(k)]i; 4 0 do 

dja— kh 

end 

end DfromA 

begin (driver algorithm) 
input p and A 

DfromA 

for each 2 do 

é€; = max, d;; 

print all e; 

end 0 

Using Algorithm 11.3, it is trivial to determine the center. Simply 
locate the nodes with minimum eccentricity and note that 

OG) = None Se; aeons By 

Although using Algorithm 11.3 is not the most efficient way to find the 
center, it is still quite popular since it is so easy to program. Indeed, most 

students in a first semester programming course would be able to write 

the code for Algorithm 11.3 once they covered arrays and procedures. In 

fact, with slight modification, one could easily program this using arrays 

but no procedures. 

Algorithm 11.3 could involve many multiplications, however we focus 

on the more expensive comparison operations to measure efficiency. The 

main input is A which has input length n = p?. Initially there are O(n) 
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comparisons to find the zero locations that should be initialized to oo. 

It may seem that there are a huge number of comparisons to find which 
positions are still oo after each calculation of B(k). However, this is not 

necessarily the case. The positions of matrices D and B can be labeled 

1,2,...,p? so that d;; and 6;; are labeled (i — 1)p + j. The labels of 
locations of oo are stored in a list ZL. Then after each calculation of a new 

B(k), simply run through the list Z and check the corresponding entries 
of B(k). For each entry b; that is no longer zero, adjust d; and delete t 
from the list L. 

Another standard way of determining all eccentricities, and thereby 

finding the center begins with adjacency lists and uses BFS repeatedly 

with each node successively playing the role of root. Assume we have BFS 

modified to a procedure whose input is the root and whose output is the 

eccentricity of the root. Thus Algorithm 11.1 is modified to a procedure 

BFS(root, d(root)) by changing its final end statement to “end BFS” and 
preceding it by the extra step 

if d(v) = oo for some v then 

Eroot = CO 

else 

Croot = max dv) 

Using BFS discovers with the first node whether G is connected and 
thus whether all nodes will have eccentricity oo. So in that case, BFS 

is only invoked once and all nodes are then known. We now present the 

algorithm to determine eccentricities using the recursive BFS procedure. 

Algorithm 11.4 Eccentricities II 

begin 
input p and adjacency lists for each v;,1< 7 <p 

j=l 
BFS(w;, €;) 

if e; — co then 
For k = 2 to p do 

eh = © 

else while j < p do 
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Now finding the center or periphery of G is simply a matter of checking 

the eccentricities found by the algorithm. 

The Median 

To find the median of a graph, we modify Algorithms 11.1 and 11.4 to 
determine the status values rather than eccentricities. It consists of a 
procedure BFSS to find the status of a given node. This procedure is 
called by the driver program for each node in G. 

Algorithm 11.5 Status 

Procedure BFSS(root, s(root)) 
begin 

A gS Tid nm Vey taal 

D=b (accumulates next neighborhoods) 
CraT00t (records current neighborhood being processed) 
V = V(G) — {root} (tracks nodes not yet visited) 
while C # 9 do 
begin 

t=74+1 

for each w € N(C) do 
begin 

hbk Pe {w} 

remove w from V and all adjacency lists 
s(root) = s(root) + 2. 

end 

C=) 
end 

if V £0 then s(root) = co 
end BFSS 

begin 

input p and adjacency lists for each DERM G SAT 
pa 

BFSS(v;, s(v;)) 
if s(v,) = co then 
begin 

for k =2 to p do 

Ca ty ty 
end 

else while j < p do 
begin 
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ia 

BFSS(vj, (v;)) 
end 

end 0 

After completion of Algorithm 11.5, the status of each node is known, 
hence the median is immediately available. This algorithm has efficiency 
O(p*), the same as the algorithm for determining all eccentricities. Note 
that if it is known that the graph is a tree T, both the center and the 

median can be found in linear time by taking advantage of the following: 

1. Paths between any given pair of nodes in T are unique (Theorem 
1:2); 

2. The center C(T) consists of a single node or a pair of adjacent nodes 
(Theorem 2.1). 

3. The median of a tree consists of a single node or a pair of adjacent 
nodes (Theorems 2.3 and 2.11). 

4. For any path v1, v2,...,v,% joining two endnodes of T, the values of 

both e; and s(v;) decrease as we move in from the ends of the path. 

Generalized Centers 

Centrality concepts other than the center and median have received far 

less attention in terms of algorithmic results. In most cases, algorithms 
have been developed for the class of trees but not for more general classes 

of graphs. We shall only present one such algorithm here, but first we 

develop a procedure that is useful in several distance algorithms. This 

procedure determines whether a given graph is a path. 

Procedure PATH(p, G, path) 
begin 

P=: Nepal =-irwe 

if there exists v such that deg v = 1 then 

begin 
root =v 

while |N(root)| = 1 do 
begin 

temp = u in N(root) 
N(u) = N(u) — {root} 
root = temp 

j=jtl 
end 
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else if p= 1 then root =v 

if 7 = p and |N(root)| = 0 then 
path = true 

else 
path = false 

end PATH D 

Restricting attention to trees sometimes results in algorithms that are 

quite simple. For example, as mentioned in §2.4, Cockayne, Hedetniemi 

and Hedetniemi [CHII1] showed how to find the path center of a tree. 

Algorithm 11.6 Path Center of a Tree 

begin 
input p and adjacency lists for each v;,1<j7 <p 

PATH(p, G, path) 
while path = false do 

begin 
for each v with |N(v)| = 1 do 
begin 

remove v from all adjacency lists and from V 

{es | 
end 

PATH(p, G, path) 

end 

end D 

Algorithms to determine various other types of generalized centers of 
trees were developed by Slater [S19,19a], and Morgan and Slater [MS3]. 
Also, some additional algorithms are presented in Handler and Mirchan- 

dani [HM1] and Minieka [M8]. In most cases, algorithms for generalized 
centers of more general classes of graphs are not yet available. 

EXERCISES 1153 

Apply Algorithm 11.4 to the graph in Figure 11.4. 

Do Exercise 1 using Algorithm 11.5. 

Use Algorithm 11.6 to find the path center of the tree in Figure 11.5. 

Determine the efficiency of Algorithm 11.6. em ee are 
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Figure 11.5 A graph to center attention on. 

11.4 MAXIMUM MATCHINGS 

In §3.3 we saw that in a bipartite graph G the size of a maximum matching 

equals the minimum number of nodes required to cover all the edges of G. 

It is easy to see that this statement cannot be extended to nonbipartite 

graphs simply by considering any odd cycle. In this section we present an 

algorithm for finding a maximum matching in an arbitrary graph. When 

G is bipartite, another algorithm using network flows is more common. 

We shall discuss that algorithm in Chapter 12. 
In order to describe an algorithm for maximum matchings, we first 

need some additional terms. Let Mf C E(G) be a matching of G. An edge 
uv in M is said to be matched as are nodes u and v. A node that is not 
incident with an edge of M is unmatched. A path P is an alternating 

M-path if exactly one of each pair of consecutive edges of P is in M. 
An M-augmenting path is an alternating path that begins and ends at 

distinct unmatched nodes. Berge {B4] characterized maximum matchings 
in graphs. 

Theorem 11.1 A matching M in G is a maximum matching if and only 
if there is no M-augmenting path in G. 

Proof Clearly every maximum matching has no M-augmenting path P, 
since otherwise deleting the matched edges of P from M and adding the 
other edges of P to M would produce a larger matching of G. 

For the converse, suppose that M is a matching that is not maximum, 

and let M’ be a maximum matching of G. We will show that there is an 

M-augmenting path. Consider the minimum order subgraph H of G whose 

edge set is (M — M’)U(M'— M), that is, the edges in exactly one of the 

matchings. A node in H is incident with either 
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1. one edge of M, 

2. one edge of M’, or 

3. one edge of both M and M’. 

Thus each component of H consists of either an even cycle whose 

edges alternate in M and M’ or a path whose edges alternate in M and 

M'. Since M’ is larger than M, some component of H consists of a path P 

that begins and ends with an edge in M’. But then P is an M-augmenting 

path. Hence, any matching M that is not maximum has an M-augmenting 

path. D 

Virtually all algorithms to find maximum matchings are based on The- 

orem 11.1. They generally begin with a matching (or the null matching) 
and continually look for an augmenting path to get a larger new matching 

until no augmenting path can be found. Since the process is so repetitive 

and the number of paths grows exponentially with the size of the graph, 

the procedure for finding an augmenting path becomes the key to making 

a particular algorithm efficient. Edmonds [E2] developed a technique that 
made this problem feasible. 

The process begins by finding an unmatched node and adding an edge 

incident with it to the matching. Continue to find such a node v and add 

such an incident edge, if possible. Otherwise, a tree is generated to find 

an alternating path beginning at v and ending at another unmatched 
node. In Edmonds’ version, when certain odd cycles (called “blossoms” ) 
are discovered, they are contracted to a node and the process continues. 

However, when an alternating path joining v with another unmatched 

node is discovered, some extra work is necessary to track the actual path 
if it passes through a “blossom node.” 

The efficiency of Edmonds’ algorithm is O(p*). By using certain label- 
ing techniques, various authors have improved the efficiency. For example, 

Gabow [G1] uses labels in a variation of Edmonds’ method and thereby 
avoids the contraction process and achieves efficiency O(p*). Swamy and 
Thulasiraman [ST2] contains a detailed discussion of that approach. We 
shall discuss instead a technique of Conradt and Pape [CP2]. Rather than 
beginning with the empty matching, quickly generate a reasonable-sized 
matching by making one pass through the adjacency lists and pairing off 
unmatched nodes. In the next procedure, partner is a p-vector, and, as 
usual, G is input in terms of the adjacency lists. 
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Procedure MATCH(p, G, unmatched, partner) 
begin 

unmatched = p 

for 7=1 to pdo 

partner(j) = 0 
for 7 =Altto'p do 

if N(v;) # @ then 
begin 

for the first v;, listed in N(v;) do 
begin 

partner(j) =k 
partner(k) = 7 

end 

delete v; and v; from all adjacency lists 

unmatched = unmatched — 2 

N(vz,) = 0 

end 

end MATCH a) 

After this procedure is used, we have a good-sized matching with 
which to start and the vector partner tells which nodes are paired in the 

matching. Any node v; for which partner(7) is still 0 remains unmatched. 

Also, the variable unmatched keeps track of how many unmatched nodes 

there are. Thus, if unmatched is 0 or 1 after the procedure is called, we 

have a maximum matching. Otherwise, we try to generate an alternating 
path between a pair of unmatched nodes. This is accomplished when 

possible by generating a rooted tree beginning at an unmatched node (the 

root). For any pair of adjacent edges of the tree, exactly one is matched. 

Hence, all paths in the tree are alternating paths. During the process, 

nodes are labeled “odd” or “even” according to whether their distance 
from the root in the tree is odd or even. Thus we get an alternating tree 

as shown in Figure 11.6 where unmatched edges are dotted. 
A queue is a data structure for which the earlier an item is placed 

on the queue the earlier it will leave. We use a queue called unused to 

store even endnodes. A boolean array is a vector each of whose entries 

is either 0 or 1. We use a boolean array b to keep track of the root and 

odd nodes. The algorithm includes a procedure to augment the matching 
when an M-augmenting path is found. This procedure alters the array 
partner that is passed to it and describes M. The values 2,7 passed to the 
procedure are the subscripts of the two final nodes of the M-augmenting 

path. 
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as (even) 

oe (odd) 

Ore: (pe | (even) 

(odd) 

LA AI (even) 
Figure 11.6 An alternating tree. 

Algorithm 11.7 Maximum Matching 
Procedure AUGMENT(),G, partner, back2, i, 7) 
begin 

while partner(z) # 0 do 
partner(j) =% 
partner(i) = Jj 
t = back2(i) 
Jue VaCk2()) 

until partner(2) = 0 (the root has been reached) 
partner(j) = 2 
partner(t) = 7 

end AUGMENT 

begin 

input p and G 
MATCH(p, G, unmatched, partner) 
for:=1topdo 

begin 
if unmatched > 2 and partner(i) = 0 then 
begin 

for 7 =1topdo 

b(j) = 0 
b(ayi= 3 (this is the root) 
Place v; on queue unused 

path = false (no alternating path yet found) 
end 

while (unused # 0 and path = false) do 
begin 

remove next node v; from unused 

while path = false do 
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begin 

for each v; € N(v,) do 
if b(v;) = 0 and partner(j) = 0 then 
begin 

path = true 

AUGMENT(), G, partner, back2, k, 7) 
unmatched = unmatched — 2 

end 
else if partner(j) 4 i then 
begin 

next = partner(j) 
if k #7 or next is not ancestor of vz then 
begin 

bj) =1 
back2(next) =k 
place next on queue unused 

end 
end 

end 
end 

end 

end 0 

Algorithm 11.7 has efficiency O(p*), so the technique of Conradt and 
Pape [CP2] improves on the original algorithm of Edmonds by a a factor 

of p. The fastest known algorithm for maximum matchings in graphs is 

due to Micali and Vazirani [MV1]. A computer implementation of Con- 
radt and Pape’s algorithm is given in Systo, Deo, and Kowalik [SDK1]. 

They also describe numerous other algorithms including algorithms spe- 

cialized for the case when G is bipartite. Matchings for bipartite graphs 

are often given separate treatment because of their application in assign- 

ment problems (such as assigning a group of employees to jobs for which 

they are qualified). The bipartite case is also given extensive coverage in 

Gould [G10]. 

EXERCISES 11.4 

For Exercises 1-3 recall that a perfect matching of a graph is a matching 

that covers all its nodes. 

1. A tree has at most one perfect matching. 
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3 | 
Figure 11.7 A graph to trace through. 

2 Characterize the complete multipartite graphs K(n1, n2,..., mx) that 

have a perfect matching. 

Every cube Qn (n > 2) has a perfect matching. 

Find the initial matching for the graph in Figure 11.7 using the 

procedure MATCH. 

Apply Algorithm 11.7 to the graph in Figure 11.7. 

Since one need not worry about odd cycles, algorithms for maximum 

matchings in bipartite graphs are generally much easier to describe. 

State an algorithm for finding a maximum matching in a connected 

bipartite graph. 

11.5 TWO ANP-COMPLETE PROBLEMS 

Since there are no known polynomial algorithms to solve NP-complete 

problems, they must be handled in a special manner. Some of the 

approaches used are as follows: 

I: Branch-and-bound techniques, which limit the amount of searching 

one must do. The algorithm is still exponential for the worst case 
but gives a drastic improvement for the average case. 

Approximation techniques, which produce a result close to the opti- 
mum (and occasionally produce an optimum solution) in polynomial 

time. In some situations, the sacrifice of obtaining a good approx- 
imation may far outweigh the extra time necessary to find a true 

optimum solution. 

Limit the problem to a domain for which a polynomial algorithm can 

be obtained. 

In this section, we discuss two NP-complete problems: finding a max- 

imum clique in a graph and finding a longest path or cycle in a graph. 
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Maximum Cliques 

One of the six basic WP-complete problems in Garey and Johnson [GJ1] 
is to determine for a given integer k whether a graph has a clique of order 
at least k. A most efficient yet necessarily nonpolynomial algorithm for 

generating all cliques of a given graph is presented in Reingold, Nievergelt, 

and Deo [RND1]. Of course, if you just want to know the order of a largest 

clique, you need not generate all cliques. Nevertheless, the problem is 

still A’P-complete. Thus you may decide to settle for an approximation 

algorithm. A standard assumption you might make in the approximation 

algorithm is that a maximum clique contains a node of maximum degree 

(which, of course, might not be the case). Thus you build a (hopefully 

largest) clique around a node of maximum degree. The following is a 

polynomial algorithm to accomplish this. 

Algorithm 11.8 Big Clique 
Procedure DEGREE(p, M, deg[array of degrees]) 
begin 

for j= 1topdo 

begin 

deg(j) =0 
while M(v;) # @ do 
begin 

deg(j) = deg(j) +1 
remove next node from adjacency list M(v;) 

end 
end DEGREE 

Procedure MAXDEG(V, deg, x) 
begin 

C=0 
while V #9 do 
begin 

remove some vz from V 

V=V- Uk 

if deg(k) >t then 
begin 

t = deg(k) 
Sessile 

end 

end 

end MAXDEG 
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begin 
input p, V, and adjacency lists N(j) for each v; 

DEGREE(p, N, deg) 
MAXDEG(V, deg, x) 
clique = {vz} 
let V be the set of nodes in N(vz) 
while V #9 do 
begin 

p=\V| 
for each v € V do 

remove nodes not in V from N(v) 
DEGREE(p, N, deg) 
MAXDEG(V, deg, x) 
clique = clique U {vz} 
let V be the set of nodes in N(vz) 

end 

end a 

During each pass through the while-loop of the driver program, a node 

with the most adjacencies to the remaining nodes is selected and placed 

in clique. 

Hamiltonian Cycles 

The problem of determining whether G has a hamiltonian cycle is also 

NP-complete. Hence, there is little hope of finding a polynomial algo 
rithm for it. What strategy should we then use. Since there are so many 
sufficient conditions to show that a given graph is hamiltonian, we shall 
alter the problem to that of actually finding a hamiltonian cycle in a 

graph that is known to be hamiltonian by some criterion such as 

(11.1) The closure cl(G) is complete. 

or 

(11.2) deg u + deg v > p for all pairs of nonadjacent nodes. 

In such cases we can find a hamiltonian cycle in polynomial time. 

Suppose that (11.1) holds. Our next algorithm is inspired by Bondy and 
Chvatal [BC1]. In the algorithm, A is the adjacency matrix and deg is a 
vector storing the degrees of the nodes. 
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Algorithm 11.9 Hamilton I 
Procedure CLOSURE(p, A) 
begin 

zeros = 0 
fori1=1topdo 

begin 

Beg au 
for j =1topdo 

begin 
if A(i,7) = 0 then 

if i <7 then zeros = zeros U {(i,j)} 
else 

deg(i) = deg(i) + Ali, 9) 
end 

end 
m= 72 

while some (7,7) € zeros has deg(i) + deg(j) > p do 
begin 

Alt,7) = 

A(j,i) =m 
deg(t) = deg(t) +1 

deg(j) = deg(j) + 1 
m=m+1 

end 
end CLOSURE 

Procedure LARGELABEL(p,C, A, large, index) 
begin 

large = A(C(p),C(1)) 
index = p 

for j=1top-—1do 

if A(C(j),C(7 +.1)) > large do 
begin 

large = A(C(3),C(3 + 1)) 
Index = 7 

end 

end LARGELABEL 

begin 
input p and A 
CLOSURE(p, A) 
for i= 1topdo 

Chaat 
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C(p+1)=1 
LARGELABEL(p, C, A, large, index) 

while large > 1 do 

begin 
cyclically shift C upward so that C(indez) is in C(p) 
find k so that max{A(C(1), C(k + 1)); A(C(2), C(k))} < large 
Die 
for 7 =2top—k+1do 

C(j) = D(k+ 7-1) 
for 7 =p—k+2to pdo 

C(j) = Dip-j +2) 
LARGELABEL/(p,C, A, large, index) 

end 

end 0 

The efficiency of the procedure CLOSURE is O(p*), whereas the 
remainder of the driver program (done independently) is O(p*). How- 
ever, since the whole process depends on the edge labels m generated in 

CLOSURE, we should say that the the efficiency of Algorithm 11.8 is 

O(p*). Remember that (11.1) must hold before applying Algorithm 11.1. 
Note that (11.2) implies (11.1), so with (11.2) we could use use the 
same algorithm. However, Albertson [A2] discovered the following O(p’) 
algorithm which applies when (11.2) holds. 

Algorithm 11.10 Hamilton II 

Procedure MAXIMALPATH(p, M, path, n, pass) 
begin 

t = path(n) 
delete all nonzero k in path from all M(j) except M(1) 
while M/(i) 4 @ do 
begin 

remove some t from M(7) 
n=n+1 

path(n) =t 
delete ¢ for all M(j) 
v1 

end 

n=n-—1 

reverse the first n entries of path 

if pass = 1 then 
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MAXIMALPATH(p, M, path, n, 2) 
end MAXIMALPATH 

begin 

input p and adjacency lists N(v,) 
let M(j) be the set of subscripts of nodes in N(v;) 
i0ri j= 1-top do 

path(j) = 0 
path(1) = 1 
aL 

MAXIMALPATH(p, M, path, n, 1) 
if n = p and path(n) € N(v,) then 

path, path(1) describes a hamiltonian cycle 
else while n < p do 

begin 

if path(n) € N(v,) then 
path, path(1) describes a cycle C 

else 

find k such that path(1) € N(v,41) and path(n) € N(v,) 

C= Upath(1)> Vk-+19 Uk+29 +++ Upath(n)> Vk» Vk—-1)+++ » Vpath(1) 

find v* € G-—C adjacent to a node in C 

determine a path P* containing v* and every node of C 

list consecutive subscripts of P* in vector path 

p= ps5 il 

MAXIMALPATH(p, M, path, n, 1) 

end 

end 0 

Note that MAXIMALPATH is a recursive procedure. It calls itself in 

order to generate a maximal path by expanding from the other end of the 

given path, if possible. 

EXERCISES 11.5 

1. Use Algorithm 11.8 to find a maximum clique in graph G of Figure 

11.8. 

2. Construct a connected graph on 7 nodes for which Algorithm 11.8 
fails to find the maximum clique. 

3. Use the procedure CLOSURE or Algorithm 11.9 to show that the 
closure of graph H in Figure 11.8 is I’g. What label m does edge 

(1,4) in cl( 1) receive? 
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4. Apply Algorithm 11.9 to graphs G and H of Figure 11.8. 

) 
Figure 11.8 Graphs to cycle through. 



CHAPTER 1 2, 

Networks 

The analysis of many problems in transportation, telecommunications, 

and operations research requires a structure that contains more informa- 

tion than a graph or digraph. The additional information required could 
be the distance between pairs of neighboring cities, transmission times be- 

tween switching centers, cost of transporting an item along a given route, 
the flow capacity of a pipe, or the impedance of a wire. In this chapter, 

we discuss techniques used to handle many such problems. In the process 

we extend many of the distance concepts we have discussed throughout 

the text and develop several additional algorithms. 

12.1 THE MAX-FLOW MIN-CUT THEOREM 

A two terminal network N consists of a digraph D having two distinguished 
nodes s and ¢t together with a nonnegative real-valued function c defined 

on the arcs of D. Node s is called the source and t the sink of the network; 

the other nodes of NV are the intermediate nodes. In general, a network 

need not have terminals. For each arc e € N, the value c(e) is the capacity 
of e. 

A (legal) flow f in N is an assignment of nonnegative real numbers 
f(e) to the arcs e of N so that the following two conditions hold: 

255 
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1. For each arc e, 0 < f(e) < c(e). 

2. For each node v other than s and ¢, 

> f(ur)- S5 f(ww) = 0. 
uvEeN vwEeN 

The first condition ensures that the capacity of an arc is not exceeded. 

The second is called conservation of flow and says that the flow into an 

intermediate node equals the flow out of it. In a network flow problem, 

we want to send goods from node s to node t along the arcs of NV and we 
wish to maximize the flow of goods. In terms of the flow function f, the 

(total) flow F in a network N can be measured at the sink t as the flow 
into t minus the flow out of t, so 

f we f(ut) - ye f(tw). 

utEeN twEeN 

A network is displayed in Figure 12.1. 

Figure 12.1 A network with integral capacities. 

The problem of finding a maximum flow in a network was proposed 
and solved by Ford and Fulkerson [FF 1]. They later wrote a whole book 
[FF 2] on network flows. Their technique for finding a maximum flow in a 
network by successive calculations used semipaths from s to t that could 
increase the total flow. (Recall that in a semipath, one need not follow 
the direction on an arc.) 

The slack sl(e) of an arc e € N is the amount by which its capacity 
exceeds its flow, that is, s(e) = c(e) — f(e). If s(e) = 0, arc e is saturated. 
For a semipath P from s to t that traverses e in the correct direction, s(e) 
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measures the maximum amount of additional flow that e could tolerate. If 
f(e) > 0 and P traverses arc e = uv in the wrong direction (that is, from 
v to wu), then to increase the flow in NV, f(e) would have to be decreased. 
The effect would be to divert some of the goods that flowed into uv and 

send them through some other arc leaving node u. An augmenting path 
in N is a semipath from s to t that can be used to increase the flow in 

N. The augmenting flow for such a semipath P is the minimum of the 
values s(e) for forward traversed arcs e and f(e) for backward traversed 
arcs. Ford and Fulkerson [FF 1] established the importance of augmenting 
paths with the following result. 

Theorem 12.1 The flow F in a network N is maximum if and only if 

there is no augmenting path from s to t. i) 

One shortcoming of the original Ford and Fulkerson algorithm for 

finding the maximum flow in a network was that in certain special cases 
it could be extremely inefficient. This difficulty was overcome when Ed- 

monds and Karp [EK1] modified the algorithm to use a shortest possible 
augmenting path at each step. Thus they label semipaths using a breadth- 

first search. Virtually all maximum flow algorithms incorporate the con- 

cept of augmenting paths; it is the technique of selecting the paths that 

distinguishes them. We give an outline of a labeling procedure for finding 

a maximum flow based on the algorithm of Edmonds and Karp. 

Algorithm 12.1 Maximum Flow (outline) 

Procedure LABEL(N, u, v, label) 
begin 

if traversed uv forward and s(wv) > 0 then 
label(v) = uv 

else if traversed wv backward and f(vu) > 0 then 
label(v) = vu (thus a backward traversal) 

end LABEL 

Procedure INCREMENTV(N, label) 
begin 

backtrack to find augmenting path P 

for each v on P do 
if label(v) = uv then incr(v) = s(uv) 
else if label(v) = uv* then incr(v) = f(vu) 

inc = min{incr(v) : v on P} 
for each forward arc e in P, f(e) = f(e) + ine 
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for each backward arc e in P, f(e) = f(e) — ine 

delete all node labels 

end INCREMENT 

begin (driver algorithm) 

for all arcs e do 

f(e) =0 
while possible or until t is reached do 

begin 
LABEL additional nodes in BFS manner 

if t reached then 
Increment(N, P) 

end 
end 0 

Figure 12.2a gives the labeling obtained after completing the first pass 

through the while loop in Algorithm 12.1. The pair listed on each arc e is 

c(e), f(e). Since node t has been labeled, we backtrack and find the path 
P = sft and inc = 1. So f(sf) and f(ft) each get incremented by 1 and 
the labeling process starts again. After several more passes through the 
while loop, the network in Figure 12.2b is obtained. By checking the flow 

into t, we see that the maximum flow F for N is 7. 

Since there are no additional augmenting paths in Figure 12.2b, The- 

orem 12.1 guarantees that the flow in NV is maximum. Another theorem 

of Ford and Fulkerson [FF 1] uses the concept of a cut to characterize the 
value of a maximum flow. A cut in N is a set of arcs that separate the 

source and the sink. Hence if M is a cut in NV, then any directed path 

from s to t must contain an arc of M. The capacity C(M) of a cut M is 
the sum of the capacities of its arcs, that is, C(M) = Yocyy c(e)- 

Theorem 12.2 In any network N, the value of a maximum flow equals 
the value of a minimum cut. D0 

According to this theorem, there is a cut M in Figure 12.2b whose 
capacity is 7. The cut M = {sa,cd, fd, ft} is a minumum cut for NV and 

has capacity 7. 

The efficiency of Algorithm 12.1 is O(p*q). Other efficient techniques 
have been developed since the work of Edmonds and Karp. They gener- 

ally use the concept of “layered networks.” Thorough discussions of such 

algorithms are given in Gould [G10] and Systo, Deo, and Kowalik [SDK1]. 
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Figure 12.2 Generating a maximum flow in a network. 

Matchings in Bipartite Graphs 

We saw in §11.4 that finding a maximum matching in a graph can be 

rather complicated. However, when G is bipartite, we can simplify the 

process by using network flows. Suppose that G is bipartite with A and B 

as the two sets in the partition of V(G). We obtain a maximum matching 
of G by the following algorithm. 

Algorithm 12.2 Maximum Matching in a Bipartite Graph 

begin 
input G, and sets A and B partitioning V(G) 
orient G by directing all edges if G from A to B 
add two new nodes s and t 
add arcs sa and bt fora € Aandbe B 

assign capacity 1 to each arc 

find a maximum flow in the resulting network using Algorithm 12.1 
maximum matching M = {ab:a € A,b€ B, and f(ab) = 1} 

end D 
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J 

0 k 

C " 

‘ 
Figure 12.3. A bipartite graph G and its related network N. 

Figure 12.3 shows a bipartite graph and the network generated by 

Algorithm 12.2. 

EXERCISES 12.1 

Find a minimum cut for Figure 12.2b besides the one mentioned. 

Every network has at least one flow and at least one maximum flow. 

Find a maximum flow for each of the two networks in Figure 12.4. 

Se Oa ee If NV is a network with every capacity integral, then NV has a maxi- 

mum flow where the flow on each arc is integral. 

5. If N has no directed s-t path, then the maximum flow in WN is zero. 

6. Find a maximum flow for network N in Figure 12.3. Then give the 
corresponding maximum matching. 

7. Use matchings in bipartite networks to prove that 
FC Kan e) = mall 7s Ny 

12.2. MINIMUM SPANNING TREES 

In §11.2 we saw two ways to generate spanning trees for a connected 

graph, namely, using either the BFS or DFS algorithm. An important 

related problem for networks and weighted graphs is to find a spanning 
tree for which the total weight is minimum. 
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Figure 12.4 Two networks to flow through. 

Weighted Graphs 

We discussed weighted graphs briefly in §6.3 when considering distance 

matrix realizability problems. Each edge e in a weighted graph W has 
a weight w(e) associated with it. Weighted graphs are also called undi- 
rected networks or simply networks when the context allows. We shall use 

this convention. The weight w(e) might represent distance or travel time 
between the endnodes of e. The length of a path in W is the sum of the 

weights on its edges. The distance d(u,v) between u and v is the length 
of a shortest path joining them. 

Since distance is a metric for networks (at least when the edge weights 
represent true distances so that the triangle inequality holds), the con- 

cepts and algorithms described in earlier chapters for graphs have natural 
extensions. However, the algorithms must be altered to take the weights 

into account. 



262 12 Networks 

Kruskal’s Algorithm 

A minimum spanning tree (MST) is a spanning tree with minimum total 
weight. There are two standard algorithms for finding an MST in a graph. 

The first is a “greedy” method due to Kruskal [K7]. It continually selects 
a new edge of minimum weight which does not create a cycle. 

Algorithm 12.3  Kruskal’s Algorithm 
Function Procedure REACHABLE(u, v, H) 
begin 

do BFS in H with u as root to get tree T, 

if v € T, then 

REACH ABLE = true 
else REACHABLE = false 

end and return value of REACHABLE 

begin 

input W in terms of ordered pairs (uv, w(uv)) 
T= 
weight = 0 

tnodes = 9 (keeps track of the nodes of the tree) 
sort pairs (uv, w(uv)) onto stack, largest to smallest by weight 
t=, mj=.¢ 

while t < p—1andn>0do 
begin 

remove next pair uv, w(uv)) from stack 
n=n-1 

first = one endnode of uv 

second = other endnode of uv 
if first ¢ tnodes or second ¢ tnodes then 
begin 

tnodes = tnodes U { first, second} 
t=t+1 

Teh Ww fav} 
weight = weight + w(uv) 

end 
else if REACHABLE( first, second, T) then 
begin 

tnodes = tnodes U { first, second} 
=t+1 
Tawa 
weight = weight + w(uv) 
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end 
end 

ift <p—1 then 

print “network is disconnected” 
else output T and weight 

end D 

In Figure 12.5, we display successive networks in the process of gen- 
erating an MST by using Kruskal’s algorithm for a given network W. 

Figure 12.5 Generating an MST with Algorithm 12.5. 

For a (p,q)-graph, the sorting of the pairs can be done in O(qlgq). 
Since the rest of the algorithm independently runs through at most the 

q pairs, the efficiency of Algorithm 12.3 is O(qlgq). We’ve chosen this 
version of the algorithm for simplicity. One could improve the efficiency 
to O(q + plgq) by using a “heap” rather than completely presorting the 
list of pairs. See [SDK1,p.255] for that approach. 

Note that Algorithm 12.3 discovers whether W is disconnected and 
could easily be modified to output a minimum spanning forest in that 

case. 
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Prim’s Algorithm 

A second standard technique for finding an MST is due to Prim [P9], and 
operates by continually trying to attach a new edge of minimum weight 

to the existing tree. Thus, unlike Kruskal’s algorithm, the graph at each 

intermediate step of Prim’s algorithm is connected. 

Algorithm 12.4 Prim’s Algorithm 
begin 

input W in terms of ordered pairs (uv, w(uv)) and adjacency lists 
for some v do (initialize the tree at an arbitrary node) 

if N(v) # 9% then 
select u € N(v) with w(uv) minimum 
tnodes = {v, u} 
Teil) 
weight = w(uv) 

end 

while some z ¢ tnodes and (x € N(v) for v € tnodes) do 
begin 

select x ¢ tnodes with w(ux) = min{w(vz) : v € tnodes, x € N(v)} 
i eee}, 
tnodes = tnodes U {x} 
weight = weight + w(ur) 

end 

if tnodes # V then 

print “W is disconnected” 
else 

output T and weight 
end a) 

The efficiency of Prim’s algorithm is O(p”). Thus, it would be pre- 
ferred over Kruskal’s algorithm for large dense graphs, while Kruskal’s 
algorithm is generally better when W is sparse. Other more efficient 
algorithms may use a “parallel processing” approach (with special data 
structures) for generating an MST. This approach begins at some col- 
lection of nodes and “grows” small minimum weight trees around those 
nodes and then attempts to “patch them together” to form an MST. 

We have presented two polynomial algorithms for finding an MST. It 
is interesting to note that there is no known polynomial algorithm for the 
corresponding problem for digraphs. However, if we expand the problem 
slightly for digraphs, the situation is better. A branching of a digraph 
is an acyclic subdigraph for which id(v) < 1 for each node v. There 
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are polynomial algorithms for finding a maximum (or minimum) weight 
branching of a digraph. Gibbons [G5] and Gould [G10] discuss algorithms 
for branchings. 

Figure 12.6 A network to span through. 

EXERCISES? 12:2 

1. Find an MST for the network in Figure 12.6 using Kruskal’s 
algorithm. 

Use Prim’s algorithm in Exercise 1. 

Construct a branching which is not a spanning tree for a digraph. 

4. State conditions under which a branching of a digraph becomes a 

directed spanning tree. 

5. Suppose that T is an MST for a network W and e € W —T. Then 
T + € has one cycle C' and w(e) > w(e’) for each e’ € C. 

6. Prove that a spanning tree found by Algorithm 12.5 does indeed have 
minimum weight. 

7. If w(e) is distinct for each edge e, then Kruskal’s Algorithm and 
Prim’s Algorithm each generate the same unique tree. 

12.3. TRAVELING SALESMAN PROBLEM 

A salesman plans to visit various cities to show his merchandise. He would 

like to stop in each city once and return to the home office while mini- 
mizing the total distance traveled. This is called the traveling salesman 
problem. Only certain pairs of cities have direct routes joining them. Let 
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weight w(uv) represent the direct route distance between cities u and v. 

We must then find a minimum-weight hamiltonian cycle in the result- 

ing network. This problem is certainly NP-complete, because if all edge 

weights are made to equal one, the problem reduces to the NP-complete 

problem of finding a hamiltonian cycle in a graph. 

Figure 12.7 A network for the traveling salesman’s cities. 

The network in Figure 12.7 has exactly 6 hamiltonian cycles: 

a,b,c,d,e, f,a has weight 28; 

a,b,c, f,e,d,a has weight 26; 

a,b,e,d,c, f,a has weight 27; 

a,b,e, f,c,d,a has weight 27; 

a,d,c,b,e, f,a has weight 25; and 

a,d,e,b,c, f,a has weight 23; One wN 

Thus, we choose a,d,e,6,c, f,a as a minimum-weight hamiltonian cycle. 

We should mention that there are various versions of the traveling 
salesman problem. Sometimes the overriding concern is minimizing total 
cost rather than distance, even if this requires revisiting a node. In this 

situation, the triangle inequality rarely holds. However, here we shall focus 

on the problem in which a node cannot be revisited and the triangle 

inequality does hold. 

The traveling salesman problem involves greater difficulty than finding 

a hamiltonian cycle. If a network has many hamiltonian cycles, we must 

find one with minimum total weight. The complete graph K, has (p—1)!/2 
hamiltonian cycles. Even for moderate values of p, checking all such cycles 
would be ludicrous. For example, it might require a century of computer 

time to check K 9 in this manner. Thus other approaches are called for. 

Two standard approaches are approximation techniques and branch-and- 

bound methods. 
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Approximation Techniques 

In a graph having a hamiltonian cycle, we want an approximate algorithm 
that will produce a hamiltonian cycle C in polynomial time so that the 
total distance traveled w(C) is reasonably close to an optimal solution 
most of the time. Of course, one might first want to decide what “reason- 
ably close” and “most of the time” mean. But there is another difficulty: 
how can we tell if we are close to an optimal solution without knowing 
an optimal solution? We first find a lower bound for the minimum total 
distance w(C). 

Theorem 12.3 If T is a minimum weight spanning tree for network W 
with a hamiltonian cycle and e is a minimum weight edge in W —T, then 
the minimum total distance of a hamiltonian cycle is at least w(T)+ w/(e). 

Proof Let C bea hamiltonian cycle with minimum total distance for W. 

For each edge e’ € C’, C—e’ is a spanning tree of W and w(T) < w(C-e’). 
Furthermore, at least one such edge e’ is in W—T, and a minimum weight 

edge e in W — T satisfies w(e) < w(e’). Hence, 
w(T) + w(e) < w(C — e’) + w(e’) = w(C). Db 

If there is not much variation in the weights on the edges of W, the 

lower bound w(T)+ w(e) of Theorem 12.3 is usually a good approximation 
for the optimal distance. 

Common approximation techniques for the traveling salesman prob- 

lem use a local greedy approach. Although it is not necessary, these often 

use an implicit assumption that the graph is complete, with w(uv) repre- 
senting travel cost. Also the triangle inequality usually is assumed. The 

nearest neighbor method begins with an arbitrary node (a trivial path) and 

extends it and subsequent paths with a new node nearest to an endnode of 

the path. When all nodes have been visited, the path is closed by adding 

the edge joining the endnodes to form a cycle. This approach produces 
early savings in edge weights, but could be far from optimal when the 
cycle is formed. 

Another common technique is the insertion method, which generates 
an initial cycle and continually expands it to a larger cycle by adding a 

new node adjacent to a pair of consecutive nodes on the cycle at minimum 
additional cost. Again, a complete graph is usually assumed here. In our 
description of the algorithm a procedure is used to find the next node z 
to insert and where to insert it. 
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Algorithm 12.5 Traveling Salesman Insertion Method 

Procedure ADDNODE(W,C, 1, total) 

begin 
for each edge uv on C' do 

find c € W —C minimizing t(z, uv) = w(uzr) + w(rv) — w(ur) 

let z be node for which t(z, uv) is minimum 
C=C — {uv} U {uz, zv} 
total = total — t(z, uv) 
n=n+1 

end ADDNODE 

begin 
input p and weighted complete graph W 

let C be minimum weight edge uv (initial “cycle” ) 
find node z so that w(ur) + w(zrv) is minimum 
CFU 

Pi (keeps track of cycle size) 
total = w(uv) 
while n < p do 
ADDNODE(W,C, n, total) 

output C and total 

end oO 

The insertion method is much more effective than the nearest neighbor 
method, and produces a cycle having at most twice the optimal length in 

the worst case. 

Other algorithms to get approximate solutions to the traveling sales- 

man problem involve finding an initial hamiltonian cycle and then per- 

forming edge exchanges to improve the total weight. Suppose the cycle 

is C = vjv2+++Vpv1. In a 2-exchange, we look for a pair of edges v;v;41 

and v;v;41 such that w(v;v;) + w(vigivj41) < w(vivi41) + w(vjv;41). If 
such a pair is found, edges v;v;41 and vjv;41 of C are replaced by vv; 

and v;41v;41. Algorithms based on 2-exchanges and 3-exchanges together 
with computer implementations are given in [SDK1]. 

Branch-and-Bound Method 

Branch-and-bound is an optimization technique that limits the amount 

of searching required to find an optimal solution to a problem. For the 

traveling salesman problem, a rooted binary (search) tree is generated in 
which each branch at a node is determined by whether a particular edge 
is to be included in the cycle. We then obtain lower bounds on the total 
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weight of a cycle that would eventually be found via each given branch of 

the search tree. Thus as we travels down through the tree, increasing lower 
bounds are obtained. When we find a hamiltonian cycle C and determine 

the total distance traveled, we can eliminate all branches of the search 

tree whose weight bounds exceed w(C). We only continue to branch and 
bound through the remaining branches looking for additional cycles. 

The branch-and-bound method will always lead to an optimal so- 

lution. Although it does save much unnecessary searching, it is not a 

panacea — the traveling salesman problem will still require an exponential 

amount of time in the worst case. A detailed discussion of this technique 

for the traveling salesman problem is given in Reingold, Nievergelt, and 
Deo [RND1] as well as in [SDK1] which gives a computer implementation 
of the algorithm. 

Figure 12.8 Two networks to travel through. 

EXERCISES 12.3 

1. Use Theorem 12.3 and Kruskal’s Algorithm to obtain a lower bound 

on the total distance for the traveling salesman problem on Figure 

12.8a. 

2. Use Prim’s Algorithm and Figure 12.8b in Exercise 1. 

3. Solve the traveling salesman problem for the two networks in Figure 

128; 

4. If the weights on edges do not satisfy the triangle inequality, then 

the nearest neighbor method could be arbitrarily bad. 

5. Determine the efficiency of Algorithm 12.5 
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12.4 SHORTEST PATHS 

We discussed path algorithms for graphs in §11.2. The two common tech- 

niques, breadth first search and depth first search must be modified to 

deal with networks. We first consider the problem of finding a shortest 

path between two nodes in a network. 

Dijkstra’s Algorithm 

Each arc of a digraph is given a nonnegative weight representing the dis- 
tance from one of its endnodes to the other. We want to find the distance 

between two specified nodes of this network. The algorithm due to Dijk- 

stra [D3] is reminiscent of BFS and Prim’s Algorithm; the difference is 
that a node v receives a temporary label ¢(v) representing its distance 

from the root r. The label is updated each time a shorter path from r 

is found. The input to the algorithm is the list of nodes, their adjacency 
lists, arc weights, and specification of the root and the target node. Let 

N(v) denote the adjacency list of node v, that is, the list of nodes adjacent 

from v. Of course, this algorithm applies to undirected networks as well as 

directed ones; in the latter case N(v) has been called the outneighborhood 
of v. 

Algorithm 12.6 Dijkstra’s Algorithm 
begin 

input W, root, target 

t(root) = 0 
for v # root do 
tt =106 
eV) 
u = root 

while u # target do 
begin 

for each v € N(u) do 
if v € T and t(v) > t(u) + w(uv) then 

t(v) = t(u) + w(uv) 
Te) 
let wu be node in T for which t(u) is minimum 

end 
output ¢t(target) 

end D0 
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The complexity of Dijkstra’s Algorithm on a (p, q)-graph is O(q) which 
equals O(p”), so like BFS is quite an efficient method for finding the 
distance. It can be easily modified to find the distance from the root to 

all the other nodes in the graph still with complexity O(p”). 

By applying the modified form of Dijkstra’s Algorithm with each 

node successively serving as root, one can determine the distance from 
each node to each other node. The resulting algorithm has complexity 

O(pq) = O(p?). Note that it is also quite easy to modify Algorithm 12.6 
with a labeling scheme to recover a shortest path (rather than just its 
length) from the root to each node without increasing the complexity. In 

this way we can generate a spanning tree where the distance from each 

node to the root in the tree is the same as in the original network. This 
is analogous to the situation for BFS for graphs. 

Floyd's Algorithm 

Although true distances are always nonnegative, the weights in a network 
need not be. The one shortcoming of Dijkstra’s Algorithm is that it can 

fail if the arc weights are allowed to be negative. A number of algorithms 
have been developed to handle this case, the most popular of which is due 

to Floyd [F5]. This O(p*) algorithm finds the distance between all pairs 
of nodes in a network which may have negative arc weights but has no 
negative cycle (a cycle for which the sum of its arc weights is negative). 
Negative cycles are not allowed because by continuously traversing such 

a cycle the path length has no lower bound. 

The nodes of W are v1, v2,...,Up and each node v; receives a tem- 

porary labels t,(v;, vj) representing the distance from v; to v; using only 
nodes in {v1, v2,..., 0}. The labels are updated each time a shorter path 
is found. The input to the algorithm is W in the form of a list of nodes, 

their adjacency lists, and arc weights. Let N(v) denote the adjacency list 

of node v, that is, the list of nodes adjacent from v. 

Algorithm 12.7 Floyd’s Algorithm 

begin 
input W 

fori =1topdo 
for j = 1topdo 

if v; € N(v;) then 

to(vi, vj) = w(virj;) 
else to(v;, vj) = 00 

for k= 1 to pdo 
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fori =1topdo 

for 7 = 1topdo 

ty (vj, 0j;) = min{t,_1(v;, 0;),tk-1(Vi, Ve) + te-1(YE> 5 )} 
end 

Algorithm 12.7 is extremely easy to implement by computer. In fact, 

the computer code differs only slightly from Algorithm 12.7. Note also that 

the algorithm works equally well for undirected networks as for directed 

ones. Furthermore, a labeling scheme could be added to recover each 

shortest path rather than just its length. 

We have described the two most popular path algorithms for networks. 

Of course, there are other algorithms for this and related problems. An 

extensive bibliography of such algorithms is given in Pierce [P2]. We shall 

now consider an optimization problem where it is necessary to find short- 

est paths between certain pairs of nodes. 

Chinese Postman Problem 

Suppose a postman wishes to begin at the post office and deliver mail 

along each street in his route and return to post office while traversing 
each street exactly once. We should recognize that this is possible if and 

only if the graph that models his route is eulerian. From §4.3, we recall 

that the graph is eulerian if and only if each node has even degree. Of 

course, not all delivery routes will have this property. Thus the condition 

is relaxed to insure that each street is traversed at least once. 

The Chinese postman problem is to find a minimum length closed 

spanning walk that includes each edge of a network W at least once. This 

problem was named this way because it was first described in the context 

of the postman 30 years ago in a paper by Guan [G11]. Several years ago 

in New York, Guan gave a survey talk about this problem and began, 
“I am Chinese, but I am not a postman.” (Incidently, he is, in fact, the 

president of a university in China.) If the total weight of W is k and 
w(e) > 0 for each edge e, then the total distance the postman must travel 
is between k and 2k. The worst case occurs when W is a tree. If this case 

each edge must be traversed twice. At the other extreme are the eulerian 
graphs for which we need to use each edge only once and accumulate total 
distance k. 

Perhaps, the best known algorithm to generate an eulerian trail in an 

eulerian graph is Fleury’s algorithm. The key to the algorithm is to avoid 
using a bridge unless there is no other alternative. The one difficulty with 
the method is that one must repeatedly determine whether a given edge 

is a bridge. Of course, this can be done fairly easily as follows: to check 
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whether wv is a bridge in G, do a BFS or DFS in G — uv using w as root. 
If v is reached, wv is not a bridge, otherwise it is. Since the weights are 
unimportant at this point, we state the algorithm for graphs. 

Algorithm 12.8 Fleury’s Algorithm 
begin 

input G, adjacency lists, and q 

for some v € G do 
begin 
G7 (initial node of eulerian walk) 
pe) 

end 
m=0 (counts number of edges used) 
while m < q do 

begin 
if |N(zx)| > 1 then 

find u € N(x) such that ru is not a bridge of G 
else 

let u be unique node in N(z) 
GG LU 

N(2) = N(z)— {u} 
N(u) = N(u) — {2} 
m=m+l1 

CIC (insert w as next node of walk C) 
cee 

end 
output C 

end 0 

Now that we have an algorithm to find an eulerian trail, we can pro- 

ceed with the Chinese postman problem. Goodman and Hedetniemi [GH1] 

observed that the Chinese postman problem is solved by finding the min- 
imum number of edges that must be duplicated to produce a weighted 

eulerian multigraph. Since a multigraph is also eulerian if and only if all 

its degrees are even, we must find a set of minimum length paths join- 

ing pair of odd degree nodes. If the total length of the paths added to 
the graph is minimum, then an eulerian trail in the resulting weighted 

multigraph describes a solution to the Chinese postman problem. 
Given a network W with all weights nonnegative, let W’ be the 

weighted complete graph whose nodes are the nodes of odd degree in 

W such that each edge e = uv of W’ has weight equal to the distance 
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between u and v in W. Let WS) be the weighted multigraph formed 

from W by adding in the edges of the set S of given shortest paths joining 

certain pairs of odd degree nodes of W. 

Algorithm 12.9 Chinese Postman Algorithm 

begin 
input W 

determine set T of nodes of odd degree in W 

find the distance between each pair of nodes of T 

form W’ 
find a minimum weight perfect matching M of W’ 

identify the set S of edges in W corresponding to M 

form W” 
use Algorithm 12.8 to find an eulerian trail of W” 

end D 

Figure 12.9 More networks to travel through. 

EXERCISES 12.4 

1. Use Dijkstra’s Algorithm to find the length of a shortest path 
between a and e in Figure 12.9a. 

2. Use Floyd’s Algorithm and Figure 12.9b in Exercise 1. 

3. Modify Dijkstra’s Algorithm to find shortest paths between all pairs 

of nodes in a network with no negative edges. 

4. Apply Fleury’s Algorithm to the network of Figure 12.9a. 

5. An old method of Hierholzer [H23] for finding an eulerian trail in 
an eulerian graph G finds pairwise-edge-disjoint cycles partitioning 

E(G). It then finds nodes they have in common to patch the cycles 
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together to form an eulerian trail. Describe this algorithm in coding 
similar to that we have been using. 

Solve the Chinese Postman problem for the network in Figure 12.9b. 

Give an example of a network which has some negatively weighted 

arcs (but no negative cycles) for which Dijkstra’s Algorithm does not 
work. 

12.5 CENTERS 

In Chapter 2 we studied centrality concepts, and algorithms to find several 
types of centers were discussed in §11.3. 

The definitions of distance, center and median of a network are anal- 

ogous to those for a graph. A fundamental result for the center of graphs, 

which is the basis of many algorithm and theorems about centers also 
holds for networks. 

Theorem 12.4 The center of any network lies in a single block. D 

We should mention at this point that in some applications, one also 

places weights on the nodes and obtains a doubly-weighted network. The 

weight w(v) at a node could represent a demand for service. The weighted 
distance wd(u,v) from u to v is the product w(v)d(u,v), where d(u, v) is 
the minimum sum of the edge weights w(e) for paths joining u and v. A 
doubly-weighted network is displayed in Figure 12.10b. 

CON 3 

i iw 

Figure 12.10 A network and a doubly-weighted network. 
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A motivation for doubly-weighted networks described in [B27] comes 

from facility location problems. The idea is that a densely populated 

neighborhood requires more service than a sparsely populated one, and its 

demand is roughly proportional to its population. Thus a weight is placed 

on a node to indicate the population for the corresponding neighborhood. 

Unfortunately, the resulting distance function is not a metric, so we can 

not take advantage of convexity properties of metrics for doubly-weighted 

networks. Facility location problems for doubly-weighted trees are studied 

in Berman, Simchi-Levi, and Tamir [BST1]. 

With the aid of Dijkstra’s Algorithm (12.6) or Floyd’s Algorithm 

(12.7), finding the center or median of a network becomes a simple task. 

Algorithm 12.10 Center of Network 

begin 
input W 
use Algorithm 12.7 to generate the distance matrix 

determine eccentricity of each node 

determine the center 
end D 

Absolute Centers and Medians 

In Chapter 2 we described several applications where centrality plays a 

key role. Two such examples were in emergency facility and service facility 

location problems. We generally want to locate an emergency facility at a 

central node of the graph to minimize response time to the farthest node. 

When a rural region is modeled by a network, the edge weights tend to 

be rather large. In this situation, one might not insist that an emergency 

facility be located at a node (intersection) if locating elsewhere would 
decrease the maximum response time. A position of a network W is either 

a node or an internal point on an edge of W. An absolute central position 

of W is a position whose distance to a farthest node is minimum. The 

absolute center of W is the set of all absolute central positions. Note that 

a bicentered tree has only one absolute center, namely, the midpoint of 

the edge joining the two centers. 

The absolute median of a network is defined in an analogous way. 
Hakimi [H2] obtained the first algorithms for finding absolute medians 
and absolute centers of networks. There is also a large literature on these 

topics in a wide variety of journals. Christofides [C10] and Handler and 
Mirchandani [HM1] provide additional details on absolute centers or ab- 
solute medians. 
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EXERCISE 12.5 

1. For the network in Figure 12.10a, determine 

a. the distance matrix. 

b. the center. 

c. the median. 

2. Describe an algorithm to find the center of a doubly-weighted 
network. 

3. Determine the distance matrix of the doubly-weighted network in 
Figure 12.10b. 

4. The branch weight of a node v in a weighted tree T is the maximum 

sum of the weights in the branches of T — v. Give an algorithm to 
find the branch weight of each node in a weighted tree. 

12.6 CRITICAL PATH METHOD 

Every large project consists of many activities. The manager of such a 
project must estimates of the duration of these activities and define prece- 

dence relations between them. For example, on a construction project, 

the electrical wiring must be installed before the wallboard, the walls do 

not get painted until the wallboard is installed, etc. Such problems are 
modeled using a network. 

An activity digraph consists of an acyclic network NV’. Each node of 

N represents an activity; the source is a node called start and the sink 

is called finish. The presence of arc uv indicates that activity u is an 

immediate predecessor of v, and v is a successor of u. Node start has no 

immediate predecessors and finish has no successors. The weight on arc 

uv is the time required to complete activity u. To begin an activity, the 

activities of all its immediate predecessors must have been completed. 

For a given activity digraph, we would like to determine the minimum 

amount of time needed to complete all activities. A longest path in an 

activity digraph is called a critical path. 

Theorem 12.5 The length of a critical path in an activity digraph 

equals the minimum time needed to complete the project. 

Proof Since each activity in a critical path must be completed before its 

successor is begun, the project completion time is at least the length of 

a critical path. The earliest possible start time for each activity v is the 
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length of a longest path from start to v. Thus the earliest start time of 

finish is the length of a critical path. But when we begin finish, the 

project is complete. Thus the project can be completed in time equal to 

the length of a critical path. =) 

The critical path method is a technique for finding an optimal schedul- 

ing of activities so that a project can be completed in the minimum time. 
We modei the project with an activity digraph and start each activity at 

its earliest possible start time. In Table 12.1 we list a sequence of possible 

activities involved in the opening of a diner. 

Table 12.1 OPENING A DINER 

Immediate Duration 
Activity Description Predecessors in Days 

start — = 0 
a meet lawyer start 3 
b meet accountant a 2 
c negotiate lease a 4 
d hook up electricity b,c 1 
€ issue stock b,c 3 
fi hook up gas b,c 1 
g get state tax number b 1 
h get license 1 
a set up equipment d, e, 2 
} city health inspection a 1 

finish — h;.9 0 

The activity digraph for Table 12.1 is given in Figure 12.11. For each 
activity v, the following important quantities are calculated to obtain an 
optimal schedule. 

1. The earliest start time of v equals the maximum of the earliest finish 
times of its immediate predecessors. 

2. The earliest finish time of v equals the sum of its earliest start time 
and its duration. 

3. The latest start time of v equals its latest finish time minus its 
duration. 

4. The latest finish time of v equals the minimum of the latest start 
times of its successors. 

5. The slack time of v equals its latest start time minus its earliest start 
time. 
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Figure 12.11 Activity digraph for opening the diner. 

These quantities for the activities of Table 12.1 are given in Table 12.2. 

Since the earliest finish time of finish is the length of a critical path, the 

project of opening the diner can be completed in 13 days. Note that this 

algorithm amounts to finding a longest path in an acyclic digraph (similar 
to Dykstra’s Algorithm for shortest paths). 

Table 12.2 SCHEDULE TIMES FOR THE DINER 

Siti, des C10" ef ei ete ey It Sit 

Duration AP Ce Sey) ae ATS We ees Soe Legs ee ee ae | 0 

earliest start time 0 Oer crest wie s 2Ol some! el els 

earliest finish time 0 Seo oOo 86-9 F238 1S 

latest start time 0 0 5 [Sener ie OU pal 2eelOnd? (13 

latest finish time Oto ec 100 10s eee toe 3 

slack time Ove tee Oe 2 ee Oe 2 62 26 = D0 0 

An extensive treatment of the critical path method, its computer im- 

plementation, and related scheduling problems are presented in [SDK1]. 
Chachra, Ghare, and Moore [CGM1] contains an abundant collection of 
genuine critical path method examples obtained from various corpora- 

tions. 
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Table 12.3 A TABLE FOR EXERCISE 2 
LT 

Immediate 
Activity Predecessors Duration 

start = 0 
a start Hs 
b start 3 
c a 4) 
d a,b 4 
e€ c,d 6 
2 Dac 2 

finish Cae 0 

EXERCISES 12.6 

An activity is critical if its slack time is zero. Every activity on a 

critical path is critical. 

For the data in Table 12.3 

a. Construct the activity digraph. 

b. For each activity v, compute all the quantities in Table 12.2 

c. Find a critical path and the project completion time. 

For the activity digraph in Figure 12.12, perform steps b and c of 

Exercise 2. 

An investment company prepares an annual report for its customers. 

This report will be mailed to all customers, stockholders, and selected 

individuals and organizations. The activities to be performed, their 

immediate predecessors and durations are shown in Table 12.4. 

a. What is the fewest number of weeks in which the report can be 
prepared? 

b. What are the critical activities? 

c. Find a critical path. 

Explain why an activity digraph cannot contain a directed cycle or 

a transitive triple (a set of three arcs uv, vw, uw). 
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Table 12.4 PREPARING THE ANNUAL REPORT 

Immediate Duration 
Activity Description Predecessors in Weeks 

start — = 0 
a decide on theme start 1 
b write articles a 4 
c do art work a 2» 
d layout report b,c 2 
e prepare mailing list d 1 
tf proofread first draft d 3 
g make final changes if 2 
h check printed report €,g9 1 
a mail report h 2 

finish — 1 0 

Figure 12.12 Activity digraph for Exercise 3. 
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pit 49-50 
planar convex basic graph 151 
planar graph 35-36, 94, 146 
polynomial algorithm 228 
polynomial reduction 230 
Posa’s Theorem 78, 82 
power (of a graph) 86 
power group 157 
predecessor 277 
Prim’s algorithm 264 
procedure 234 
product 

cartesian 23-25, 41, 81, 91, 
209 

elementwise 214 
of two groups 157 
wreath 157 

ptolemaic graph 154 
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queue 245 

radius 32, 37-38, 56, 95-100, 
Del 66 

-critical graph 98-100 
-minimal graph 96-97, 100 
of adigraph 217 
-preserving spanning tree 97 

radon number 140-141 
random graph 108-109, 153-154 
randomly eulerian graph 89 
randomly hamiltonian graph 90 
randomly traceable graph 93 
reachability matrix 213-214 
reconstruction 11, 144 
recursive procedure 234 
regular 2-graph 170 
regular graph 3, 16, 30, 41, 63, 

72, 85, 93, 100, 107-109, 
150, 163 

resourceful digraph 212 
rooted tree 211 
round-robin tournament 223 

score sequence 223-224 
self-centered graph 38-42, 56, 

100, 109, 148, 181, 190 
self-complementary graph 21, 

86, 99, 193 
self-median graph 44-46, 181, 

184-185 
semiregular graph 30 
sequence (also see distribution) 

degree 3,8, 173-175, 186 
distance degree 100, 179-182, 

186, 200 
eccentric 175-179 
edge degree 202 
edge-to-node degree 202 
graphical 173 
maximum reach 204 
path degree 195-196 
score 223-224 
status 183-185 
unimodal 187 

sequential geodetic number 139 
sequential join 26, 37, 44, 108 

Index 

sequential labeling 54, 56 
signed graph 120-122 
signed invertible graph 120-122 
similar nodes 162 
sink 255 
size 2, 209 
slack 256 
slack time 279 
source 255 
spanning 

cycle 7, 266 (see hamiltonian) 
subgraph 9 
tree 16, 97, 127, 151, 154, 

179, 2155222, 235-256 
tree algorithms 233-234, 

260-265 
square 26 
status 42-44, 49 

algorithm 240-241 
injective graph 185 
self-median graphs 44-46, 

181, 184 
sequence 183-185 
total 42, 44 

Steiner center 144 
Steiner distance 144 
straight angle 192 
strong digraph 206-209, 219, 

222 
strongly geodetic graph 149-150 
strongly regular graph 171-172 
subgraph 9, 28 

central 35-36, 41 
induced 9, 28, 115, 153 
median 45-46 
node-deleted 11, 20 
spanning 9 

successor 277 
super-K graph 74 
superfluous edge 101 
supergraph 9 
symmetric digraph 207 
symmetric graph 159, 162-166, 

185 
system of distinct representatives 

70 



Index 

theta graph 83 
totally disconnected graph 21 
toughness 112-114 
tournament 221-224 
trace 122, 133 
traceable graph 91 
trail 10, 110 
trail number 110 
transitive 

distance-transitive graph 101, 
166-170 

n-transitive graph 164 
n-tuple distance-transitive 

graph 168 
tournament 224 
triple 221 

traveling salesman problem 
265-269 

tree 12-13, 16, 56-57, 103, 121, 
130-133, 142, 187 

bicentral 33, 57 
caterpillar 32,191 
central 33, 57 
double star 38-39, 103, 105, 

188 
f-tree 204 
height 235 
in-tree 211-212 

335 

labeled 125 
minimum spanning 260-265 
out-tree 211-212 
rooted 211 
spanning 16, 97, 127, 151, 

154,179, 215, 235-236 
triangle; 11,227 28,422,192 
trivial digraph 206 
trivial graph 13 

unicyclic graph 21 
uniform distance distribution 

188-189 
unilateral digraph 206, 209, 224 
unimodal sequence 187 
union 23, 25 
unique eccentric node graph 

37-38, 40, 42, 56, 99, 104 

walk 10, 15, 213 
weak digraph 206, 211 
weight 34, 48 
weighted distance 275 
weighted graph 128-131 
wheel 25, 62 
wreath product 158 
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