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Preface 

Drawings are an attractive and effective way of conveying information. Graph 
Drawing includes all aspects of visualizing structural relations between ob- 
jects. The range of topics extends from graph algorithms, graph theory, ge- 

ometry and topology, to visual languages, visual perception, and informa- 

tion visualization, and to computer-human interaction and graphics design. 

Clearly, the design of appropriate drawings is a complex and costly task where 
automation is urgently required. 

The automated generation of graph drawings has important applications 

in many areas of computer science, such as compilers, data bases, software 

engineering, VLSI and network design, and graphical interfaces. Applications 

in other areas include graphical data analysis (e.g. in all fields of engineering, 

biology, or social sciences) and the visualization of information in general 

(e.g. by flow charts, schematic maps, or all kinds of diagrams). 

The purpose of this book is to give an overview of the state of the art 

in graph drawing. It concentrates on algorithmic aspects, with an emphasis 

on interesting visualization problems with elegant solution methods. Each 

chapter provides a survey of some part of the field; in addition some se- 
lected results are described in more detail. This approach should make the 

book suitable for a first introduction as well as a good basis for an advanced 

course, where it may be supplemented by other sources. There is no claim of 

completeness — graph drawing is a very dynamic area — so the reader should 

be aware of the possibility that further progress might have been made since 

the publication of this book. There is also a chance that we may have failed 

to notice some subjects, since the necessity of drawing graphs arises in so 

many different areas. 

The rapid growth of graph drawing as a field has caused some incon- 

sistencies in terminology: terms like “drawing”, “layout”, “representation”, 

or “model” are often used with different meanings. The authors have tried 

to achieve consistent notation; this has not always been possible without 

breaking with existing conventions, and we apologize for all remaining incon- 

sistencies. 

The book arose from a seminar for young computer scientists. The idea of 

the “GI Research Seminars” is to provide young researchers with the oppor- 

tunity to gain insight into a new, relevant, and interesting area of computer 
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VI ‘Preface 

science. The topics were chosen and prepared by the organizers. Lectures 

on the topics were then presented by the young researchers at the research 

seminar, which took place in April 1999 at Schlo8 Dagstuhl. Based on the 

presentations and discussions during the seminar, each chapter was elabo- 

rated by a team of authors, and carefully reviewed by other participants of 

the seminar. In addition, we obtained expert advice from Therese Biedl and 

David Wood. They provided detailed comments and HTN on several 

chapters in a preliminary version of the book. we 

The material covered in this book can be organized in various ways. How- 

ever, a strict separation of topics according to, e.g., models, representations, 

or methods, would inevitably lead to an artificial distinction between topics 
that are in fact closely related with respect to some other aspect. There- 

fore, we decided to do without a strict partition into chapters under a single 

category of distinction, but rather provide cross-pointers where appropriate. 

In the first chapter, Rudolf Fleischer and Colin Hirsch review some ap- 

plication areas. They discuss the traditional applications of graph drawing 

like ER-diagrams or software engineering, but also some of the areas that are 

less related to computer science like social networks or workflow. From those 

applications, different tasks and basic techniques are derived such that the 

reader can get some motivation to learn of the methods to solve the tasks. 

We then start from a more graph-theoretic point of view. Planarity is a 

classical topic in graph theory and algorithms, and an important and central 

aspect in graph drawing as well. René Weiskircher reviews basic algorithms 

related to planar graphs (planarity tests, st-orderings, etc.). He then turns 

to simple and advanced drawing algorithms for straight-line and related rep- 

resentations of planar graphs. 

In the following chapter, some further special classes of graphs are con- 

sidered by Matthias Miiller-Hannemann. Drawing algorithms for trees and 

series-parallel graphs typically use their recursive structure. A closely related 

issue is the drawing of order diagrams and lattices, which is summarized as 

well. Although at first sight, this topic seems to be only of special interest, 

the algorithms presented have direct applications since many structures to 
be visualized are just trees or series-parallel. 

In the chapter on methods based on physical analogies, Ulrik Brandes 
gives an overview of the ideas behind the so-called spring embedder and its 
variants. These methods work by iterative improvement. Related methods to 
compute a minimum of the objective function directly are included as well. 
In the last subsection, the reader gets an idea of the wide field of possible 
applications of the underlying principle which ranges from clustering and 3D 
to dynamics and constraints. 

A classical topic in graph drawing which cannot be missed in a review 
like this is an approach supporting layered drawings. This method is mainly 
used to display temporal structures like workflow or other unidirectional de- 
pendencies. Several interesting methodological questions like the maximal 



Preface VII 

acyclic subgraph problem and the level-wise crossing minimization problem 
are discussed in this chapter by Oliver Bastert and Christian Matuszewski. 

A long chapter is devoted to orthogonal layouts, written by Markus Eigls- 
perger, Sandor P. Fekete, and Gunnar W. Klau. Historically, the first meth- 
ods for orthogonal layouts were developed in the context of VLSI routing and 
placement. Changing some of the criteria gave room for improvements and 
variations like visibility representations. After the review of some heuristics 
for planar and nonplanar graphs, a very elegant flow-based approach to solve 
the bend-minimization problem for planar graphs is considered in the second 
part of the chapter. The final part is devoted to compaction, i.e., the post- 
processing phase where the components of the layout are squeezed together 
to save area, edge length, or bends. Here again, VLSI methods are reviewed 

and new LP-based methods are presented that solve the compaction problem 
regarding some specific criteria to optimality. 

The methods described in chapters 1-5 are fundamental. The following are 
more advanced and mostly arise from application demands such as labeling, 

clustering and hierarchies, dynamics and interactiveness, or 3D. 

The generalization from drawing in the plane to 8D graph drawing is 

discussed by Britta Landgraf. Various representations are covered. Starting 

from force-directed methods and layered approaches such as cone trees, she 

reviews the most important techniques of orthogonal routing in 3D in more 

detail and ends with the discussion on finding the best point from which to 

view a three-dimensional structure. 

Handling large graphs is an important problem where some new meth- 
ods are needed. Sabine Cornelsen and Ralf Brockenauer present some of the 

common clustering techniques like partitions and structural clusterings. Fur- 
thermore, hierarchical graphs are discussed with the focus on planar drawings 

and on the concept of compound graphs as well. Moreover, it is shown how 

force-directed methods can be applied to visualize clusters. 

Dynamic graph drawing is a very recent and relevant topic. Jurgen Branke 

highlights many concepts in this area, like maintaining the mental map and 

support of dynamics in orthogonal structures and force-directed approaches. 

At first glance, labeling is a side topic in graph drawing. However, labels 

arise in nearly all practical applications, and the labeling problem is highly 

nontrivial. Gabriele Neyer reviews different labeling models and most impor- 

tant methods. Most of them come from the fields of computational geometry, 

cartography, and optimization. The various aspects considered include the 

relation to satisfyability problems, sliding labels, and the combination with 

compaction. 

In various aspects graph drawing is motivated by the relevance of visual- 

izing relational data in many field of applications. Therefore, software tools 
for drawing graphs and algorithms libraries are an important issue in graph 

drawing. However, some difficulties about this topic prevented us from mak- 

ing it a regular chapter. Many graph drawing tools and libraries have been 
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developed over the last few years, but easy access to the tools, stability, and 

support are often not guaranteed. Typically, software developed in academia 

cannot have the pretension of being “made for eternity”. Moreover, it is hard 

to get an overview of the graph drawing tools available, or even reliable infor- 

mation about their actual abilities. On the other hand, we thought it would 

be useful to share what we knew of some existing systems. In the appendix, 

Thomas Willhalm provides an overview of some of the most common systems 

for graph drawing. o 

Finally, it is our pleasure to thank all the people whose contribution has 

made this book possible. First and foremost, these are the authors of the 

chapters, who not only put a huge amount of work into their own chapters, 

but also carefully reviewed other chapters. Special thanks go to Ulrik Brandes, 

who supported this project from the very beginning in many ways. Not only 

did he do a lot of administrative work in preparation of the research seminar, 

but he also inspired the choice of topics and supported the collection of 

relevant material. Last but not least, he handled most of the technical parts 

of the editing process. Finally, we would like to express our gratitude to the 

external experts Therese Bied] and David Wood, who did us the favor of 
reviewing several chapters in a preliminary version of the book. 

January 2001 Michael Kaufmann 

Dorothea Wagner 
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1. Graph Drawing and Its Applications 

Rudolf Fleischer and Colin Hirsch 

1.1 Introduction Ee, 

Graph drawing has emerged in recent years as a very lively area in computer 
science. We would like to explain in this chapter why this happened and why 
graph drawing is an important problem which should interest many people. 

First of all, graphs are abstract mathematical objects (see Berge (1993); 
West (1996), for example), so why should it be important for non-mathemati- 
cians ever to draw one? Many probably would not even know a graph if 

they encountered one. One reason might be that people want to visualize 

information, i.e., objects and relations between objects. And even if they do 

not know it, this is exactly what graphs are designed for: describing relations 

between objects. The objects are called nodes, and relations between objects 

are called edges. If all relations are between two objects, we have an ordinary 

graph, otherwise we have a hypergraph. If the same set of objects is related 
in several different ways, we have multiple or parallel edges, and the resulting 

graph is a multigraph. A relation between an object and itself is a self-loop. 
There are a few more things you should know about graphs, when reading 

this book but you do not need to know more in this chapter. 

Let’s take an example from daily life. Living in a big city with a subway!, 

we are confronted with a graph whenever we use the subway and try to 

find out which train to take to our destination. This information is usually 

displayed in form of a map, where stations are drawn as circles, and train 

lines are drawn as lines connecting the circles (see Figure 1.1). Stations are 
labeled by their name, and lines are either labeled by the train number, or 

different colors are used to distinguish between different trains. Such a map 

can naturally be interpreted as a graph. The circles (stations) are the nodes, 

and the lines (trains) connecting the stations are the edges. There are rarely 

selfloops, but there might be parallel edges if two train lines connect the same 
two stations and both connections are displayed by their own separate line. 

We give a second example. People interested in genealogy try to find out 

as much as possible about their ancestors and then visualize this information 

by drawing a genealogy tree (see Figure 1.2)”. Note that trees are a subclass 

of graphs with a very simple structure: there are no cycles, so every two nodes 

of the graph are connected by exactly one path. In this sense, in a genealogy 

1 There is nothing special about subways here. Just replace ‘subway’ by ‘bus’ if 

your city hasn’t got one yet. 
2 Actually, genealogy trees are not always trees because marriages can create cy- 

cles, for example. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 1-22, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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Fig. 1.1. Subway map, New York City (MTA, 1999). 

tree each person is a node (labeled by the name of the person), and edges 

indicate direct decendency. 

A natural question arises from these two examples: “What is the best way 

to represent a graph (and the information contained in it)?”. Of course, we 

could describe a subway map by a list of sentences of the form “Train 1 runs 

from station A to station B via stations C, D, and E. At station D you can 

change to trains 3 and 11, etc.” And a genealogy tree could easily be described 

by sentences of the form “A.B. C married D. E and they had two daughters F 

and G, and one son H, etc.”. These verbal descriptions obviously contain all 

the information. However, this information is not easily accessible. A better 

way to present such data is by drawing a nice picture, i.e., a subway map 

or a genealogy tree (remember the proverb “A picture is worth a thousand 

words” ). While reading the previous paragraphs you probably had a picture 

of your home town subway map or the genealogy tree of your family before 

your inner eye. This leads us to the problem of graph drawing. If we can 

describe our data as a graph, how should we draw the graph such as to best 

reveal all its information? In particular, this includes the question of which 
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Pgraph of Canaan Genealogy made by Pajek program 

Fig. 1.2. Canaan Genealogy. 

criteria determine whether a drawing is good or bad. We come back to this 

question in Section 1.3 after we have seen a few more applications of graph 

drawing in the next section. 

1.2 Some Applications 

In this section we will give some concrete examples for applications and their 

requirements from a user’s point of view. Most applications inherently limit 

the types of graphs occuring to some intuitively or formally defined subclass, 

for example trees as in the genealogy example given above or graphs with a 

natural “layering”. In some cases this can be a significant aid to an automatic 

layout algorithm trying to find a “good” drawing of a given graph. In more 

general cases, however, the lack of understanding of the intended structure 

and semantics of a graph seems to limit the usefulness of automatically drawn 

graphs. This does not even take into account that other measures for the 

quality of a graph drawing, like aesthetics, are difficult to quantify and even 

more difficult to realize in an implementation due to their very individual 
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and subjective nature. Further demands are placed on the drawing algorithm 

in case of dynamic graph representations, where the graph to be drawn is 

modified over time, or in the case of very large graphs. 
Most information in this section was gathered by talking to people at 

RWTH Aachen, Germany. In all cases graph drawing is not their main re- 

search subject. The drawing problem rather arises as by-product doing re- 

search on other subjects. Many thanks to Frank Huch, Stephan Kanthak, Ralf 

Molitor and Ansgar Schleicher for information, background and pictures on 

specification /verification, speech recognition, description logics and workflow 

diagrams, respectively. 

1.2.1 Word-Graphs 

One of the more promising, but also most demanding fields of research in 

computer science is speech processing and especially speech recognition. It 

is often seen in the context of building more user friendly computer systems 

capable of adapting to the human way of communication instead of the other 

way round. Of course the human brain and a common digital computer have 

entirely different approaches to information processing. This necessitates the 

use of complex mathematical methods and algorithms from stochastics and 

signal processing to handle natural language in form of speech. 

Speech recognition is a process that involves several steps, each trans- 

forming the input information to a higher level of abstraction. First the audio 

signal is transformed into the frequency domain using, cosine transformations 

and further normalizing steps. Next the building blocks of our speech, the 

phonemes? are identified. Then, omitting the intermediate step of syllables, 

the phonemes are put together to words and the words in turn form sentences. 

Experiments have shown that a human listening to speech only recognizes 

about 70% of all phonemes correctly. However the higher-level capabilities of 

our brain including the so-called language model together with the context 

and semantics of what we hear enable us to understand whole sentences with 

next to no mistakes. Since speech recognition systems are built to imitate 

the behavior of the human brain they cannot be expected to, and indeed do 

not, perform better with respect to the phoneme error rate. Consequently, 
when transforming speech to text, such a system has to take into account 
that some phonemes are not correctly recognized. However, as some pairs of 
phonemes are more alike than others, a sane approach is to select a small set 
of phonemes which the system believes to have a high probability of faithfully 
representing the speach signal at each point in time. Using a dictionary it is 
then possible to eliminate most combinations and recognize the correct word 
with high probability. ‘ 

Such a collection of hypothes finds a natural visualization in shape of a 
word-graph (Oerder and Ney, 1993). A word-graph is a layered graph, where 

3 Phonemes can be thought of as the atoms of speech such as “ah”, “sh”, “mhm”. 
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consecutive layers represent consecutive time intervals. Each layer consists 
of a set of possible phonemes, augmented by additional data such as the 
probability of each phoneme. The possible words can be shown as paths 
going from layer to layer and so selecting one phoneme out of each layer. 

This visualization is not necessary when using speech recognition as end- 

user or application developer; however, it is an invaluable debugging tool 

for the speech recognition system developer. Currently word-graphs are used 

in the VERBMOBIL project (German Research Center for Artificial Intelli- 

gence GmbH, 1999; Warnke et al., 1997; Amtrup and Jost, 1996). 

NSE 6 BEM 

Fig. 1.3. Word graph. 

Figures 1.3 and 1.4 show two typical word graphs. The horizontal posi- 

tions of nodes are given by their points in time. Each edge represents one 

hypothesis about the words recognized during the interval given by the two 

incident nodes. The most probable path from left to right of the word graph 

is emphasized, showing what the system ultimately believes was spoken. 

SPAUSEL 

Fig. 1.4. Word graph. 

Since the horizontal coordinate of each node is given, the problem of 
finding a suitable layout is greatly reduced. This strong limitation of the 
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possible node and edge arrangements is the main reason for the graph drawing 

problem associated with this application to be solved in practice. That is, 

drawing algorithms currently in use produce layouts faithfully representing 

the intended meaning of the graph. 

The layout algorithm here directly uses the position on the timeline for 

the horizontal placement of nodes. The freedom for the vertical positioning 

is used to minimize heuristically the number of edge crossings. The labels 

are added at the center of the corresponding nodes and edges, respectively. 

More on layered graphs can be found in Chapter 5. The placement of labels 

in general is considered in Chapter 10. 

1.2.2 Specification and Verification 

A software system running on a set of distinct machines with the capability 

to exchange data and synchronization events via some means of communica- 

tion is called a distributed system. The added complexity in designing (the 

software for) a distributed system requires more advanced support techniques 
compared to dealing with single computing nodes. Various methods to model 

and/or verify properties of distributed systems are available. 

The basic abstraction underlying these methods looks upon distributed 

systems as (finite) transition systems. A transition system in turn can be 
defined using so-called process algebras. A process algebra is a formalism 

used to describe inductively transition systems and is similar to a grammar 

used to describe formal languages. Since states of a distributed system have 

to contain the state of each component, the state space grows exponentially 

in the number of components. 
Therefore a specification for a distributed system is typically broken down 

into specifications for each component. These component-wise specifications 

contain, besides a set of states and actions or transitions leading from one 

state to another, information on which transitions are to be synchronized with 

transitions in other components. Given such a specification of each compo- 

nent, the transition system modeling the complete distributed system can 

be generated automatically. These formal specifications are used for several 

purposes. 
When writing the software intended to implement a specification, it is 

necessary to place procedure calls to communicate with remote components 

in the program text whenever an action has to be executed synchronously 

at two or more components. Using the formal approach of process algebras 

this step can be automated — the specification is in a format that can easily 

be machine processed and contains all required information. The benefits of 
this approach are twofold. For one the time and consequently the costs of the 

programing phase are reduced. Furthermore, one possible cause of errors in 

the implementation is eliminated, once the tool converting specifications into 

the basic application source code is debugged. 
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The downside is that using process algebras in the specification process 

is rather unintuitive. Before proceeding with further steps it has to be veri- 

fied that the written specification is correct with respect to the ideas of the 
developers. To overcome this problem, graph drawing is used to give a more 

intuitive representation of the transition systems (Indermark et al., 1999). 

Module: talkHandler 

Global Knowledge: FromName,FromPid 

; ToCPid ! {talkRequest,FromName, self( }} 
FromPid ! reject 

?{accept, ToPid} 

ToPid ! {accept,selft }} 

nt Saran 

FromPid ! a aan 

?hangUp 

2{char,FromPid,Char 

ToPid ! {char,Char 

Fig. 1.5. Component transition diagram. 

Figure 1.5 gives an example of a hand-drawn transition system belonging 

to one component of a distributed system. This particular example is used 

in testing a tool taking a different approach. Here the specification is entered 

graphically by the user and machine-translated into an algebraic specification 

later. However, the availability of this technology does not obsolete the earlier 
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approach and the necessity to automatically layout these graphs, since there 

are cases when it is not feasible to use this method, especially when the 

specification was machine generated from some other form of description and 

creating the graph would add more work. 

As can be seen, these graphs come with node and edge labels, giving 

information about the states and the actions associated with the transitions, 

respectively. Hence a layout algorithm for these graphs should be able to cope 

with edge labels. However the greater problem is to layout according to the 

semantics of the graph. In this example the top five nodes form a directed 

rooted tree, inducing a natural layering on these nodes. The layout chosen 

obviously disregards this fact, rather using the semantics of the graph for a 

differing layering. 

Regarding the lower half of the graph it does not seem clear, from an al- 

gorithmic point of view, why the strongly connected nodes necessarily belong 

to one layer. The question arises how much additional information an algo- 

rithm needs in order to obtain a layout of similar quality? Furthermore, is it 

necessary for this information to refer explicitly to the layout (e.g., “nodes 

A and B are on the same level”), or is it sufficient to formalize some of the 
semantics (e.g., “node C is a rejecting end node”). In favor of flexibility and 

intuitivity the second choice would be preferable. However it is unclear how 

to formalize or process this kind of data. 
Taking the leap from the transition system of an individual component 

to that of the whole distributed system most noticably comes with a large 

increase in size. Figure 1.6 gives a typical, if rather simple example of a 

transition system. Apart from the greater size and complexity in comparison 

to the single components, additional requirements arise due to the way the 

users work with these graphs. 

Besides the behaviour of the single components, it has to be verified that 

the whole system satisfies certain requirements. Traditionally these require- 

ments are formalized using some temporal logic. Characteristic for these logics 

is that they check whether any or all paths in the transition system satisfy 

some properties. Hence, especially in the case that the automatic verification 

fails, the user needs to trace manually along paths in order to find the error 

and adapt the specification. 

As can be seen, the layout shown in Figure 1.6 is not well suited. Many 

edges cover large distances and as such are difficult to follow. This problem is 

further amplified if the graph is too large to fit onto the display and the user 

has to scroll the image. A layout algorithm is needed that tries to minimize 

the length of the edges. Furthermore it is desirable to be able to select paths 

and emphasize them in the drawing. However, optimizing the layout for the 

selected path should not completely change the rest of the drawing. After 

working with a graph for some time, the so-called “mental map” forms in 

the mind of the user. If the layout completely changes each time a path 
is examined, the user has to orientate herself anew. Isolating a path and 
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Fig. 1.6. Full transition diagram. 

rendering it into a seperate window would make it difficult to retain the 

surrounding for orientation. Dynamic layout and mental maps are considered 

in more detail in Chapter 9. 

1.2.3 Workflow 

Workflow technology has emerged as an important tool in managing vari- 

ous types of business processes. This includes purely administrative tasks 

such as keeping track of employee holiday requests or processing orders from 

customers to more technical development and production processes such as 

quality assurance or organizing the steps of a chemical reprocessing plant. 

In all cases the expected benefits of using a workflow system are manifold 

(Abbott and Sarin, 1994; Georgakopoulos et al., 1995; Carpano, 1980b). 
Our task is to record and store knowledge about details of the processes 

used in a company on an everyday basis. In many cases no documentation 

for these processes has been created. Rather the people on the job have an 

implicit knowledge of what to do when, which is later passed on to their 

successors. However the infrastructure of a company consists not only of 

material values. The corporate identity and resources to be found in the 

experience of the workforce constitutes a significant fraction of the overall 

value — especially in technology oriented branches. Without documentation, 

the loss of one or more employees in a position crucial to a process, be it due 

to staffing a new company branch, illness or retirement, can lead to severe 

problems when training new people. 
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Another aspect is to gain further insight into the processes themselves. In 

our highly competitive economy each production process has to be stream- 

lined in order to reduce costs and enable faster delivery of service to the 

customer. The data gathered in the workflow management system makes it 

possible to identify, and, equally important, to prioritize places of inefficiency. 

These can then be handled one at a time starting with the most dire cases. 

Furthermore, only when the processes which form the activities of a company 

are fully understood is it possible to make accurate predictions on the impact 

of making changes to the structure, or even noticing changes happening by 

themselves over time. 

To achieve these goals the data collected by a workflow system is as diverse 

as the fields of application. The temporal aspects have to be considered as well 

as resource usage and information flow. Resources are funds, raw materials, 

employees, machinery, etc. For each step of the process the resources and 

information it requires and the output have to be made explicit. 

In order to comprehend the nature of a process once all the relevant in- 

formation has been entered into a workflow management system, the only 

feasible approach is to give the user a graphical view of the process graph. 

This graph is obtained by creating nodes for the individual steps of the pro- 

cess. Edges depict temporal dependencies as well as the flow of information 

and/or objects. Figure 1.7 gives a simple example of a graph that was laid 
out manually. 

Fig. 1.7. Process graph, laid out manually. 

Such a graph often consists of several types of nodes and edges. The main 
nodes represent stages or steps of the process. In the graph of Figure 1.7 
smaller, attached nodes rendered as black discs are used to group and expose 
certain types of adjacent edges. A layout algorithm has to take some con- 
straints about the relative positions of nodes into account, in order to place 
these extra nodes near the principal nodes. Such weight and constraint based 
methods are presented in more detail in Chapter 8. . 

Different kinds of edges are used to represent different kinds of depen- 
dencies and/or flows. This can be used to seperate information or other non- 
physical goods from physical objects being passed along or to differentiate 
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information and meta-information. In some cases one kind of edge is more im- 
portant than others, so the layout should be optimized accordingly. Consider 
planning the arrangement of machinery in an industrial plant. In this case 
the layout of the process graph can be made to follow mainly one criteria, 
e.g. the flow of information. 

This application is especially sensitive to the quality of the layout in terms 
of correct logical groupings and aesthetics. Process graphs can be used for 
visual presentations when trying to convince customers or superiors of new 
ideas. If a production process is implemented and something goes wrong it is 
crucial to understand quickly where the problem is and which other parts of 
the process could be affected. 

1.2.4 Data Modeling 

One of the areas in computer science and information technology enjoying 

a rapid evolution and growth of importance are databases and data ware- 

houses. This development is fueled by the wide availability of cheap powerful 

networking infrastructure making it feasible to store centrally large amounts 

of data and allowing concurrent remote access. 

An important step in the creation of a database is the design phase. 

The information to be stored has to be categorized and typed; relationships 

between different types have to be found and conflicting types resolved. De- 

pending on the underlying database paradigm this process can look rather 
differently. 

One of the most important database models is the relational database 

model (Ullman, 1989; Vossen, 1991). Here, data elements are stored as lines in 

tables, or, mathematically speaking, tuples in relations. Each table represents 

a set of objects. The attributes of the object are the components of the tuples. 

Relationships and dependencies between objects are again written into tables. 

Entity-relationship diagrams are the most common method to aid struc- 

turing large volumes of data by defining attributes on and relations between 

the data. Both objects, or entities, and their attributes are modeled as nodes 

of a graph. Edges linking an attribute to an entity express that said attribute 

is indeed an attribute of said entity. Annotated edges linking entities depict a 

relation with cardinality constraints between these entities. Figure 1.8 gives 

an example of an entity-relationship diagram. 

The most noticeable feature is the possibility of edges being incident to 

more than two nodes, i.e., entity-relationship diagrams are actually hyper- 

graphs. A layout algorithm can either directly handle these cases or introduce 

new nodes to join the different parts of such an edge. Furthermore, as op- 

posed to many other graph drawing applications, no prior statement about 

the structure of the entity-relationship diagram can be made. The underlying 

graph can contain circles or be a tree, although typically without root or any 

other “special” element that can be taken as starting point for the layout. 
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Fig. 1.8. Entity-relationship diagram. 

Hierarchical Models In contrast to the relational model, which proposes a 

flat view of the different object types, many other database paradigms have 

a hierarchical type system. The most prominent version at the moment are 

object oriented databases (Hughes, 1993). The idea is similar to that of the 
relational database in that each entity, here called an object, belongs to a 

certain table or type, here called a class, sharing the same set of attributes. 

However, classes may inherit attribute sets from other classes. For exam- 

ple, first define a class building with attributes such as address, owner and 

colour, then define hotel as building with additional attributes name, rat- 

Inge. 

This results in a directed acyclic graph representing the “inherits” rela- 

tion between all classes. Visualizing this graph is an important issue during 

the design phase where one tries to find mistakenly introduced cyclic depen- 

dencies. 

A kind of inclusion dependency between different types resulting in sim- 

ilar graphs arises in the context of terminological knowledge representation 

systems or description logics, as used in the CLASSIC structural data model 

(Borgida et al., 1989). However, there is a huge difference in how the graph is 

obtained. In case of an object oriented database, it is explicitly stated which 

class inherits the properties of what other classes. Hence the user starts with 

a fairly accurate idea about the class hierarchy. 

In the case of description logics the knowledge base consists of a set of 

formulae defining inclusions and other constraints about the types. Further 

inclusions can follow from this set of formulae. Hence a visualization is nec- 

essary to give the user an idea about what the complete hierarchy looks like. 

In that case an automated method is used to compute this hierarchy. 

Figure 1.9 gives a partial example of such a hierarchy. As can be seen the 
graph is fairly tree-like, with few edges to the contrary. Since trees are both 
planar and naturally layered, finding satisfiable layout algorithms is compar- 
atively easy. On the other hand the subsumption hierarchy of a real world 
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Fig. 1.9. Subsumption hierarchy. 

example can easily have several thousands of nodes, severely complicating 

matters. 

The user would like to be able to view parts of the hierarchy without 
losing all edges adjacent to nodes outside of the current drawing. Also the 

layout should take into account that the simple way of drawing trees as used 

in Figure 1.9 produces rather long edges in the higher levels of the tree. 

Of course not all applications generate clean trees, and the general case of 

directed acyclic graphs should be handled appropriately. 
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Clustering methods and hierarchical layouts as described in Chapter 8 

can help giving an overview and navigating in larger graphs. 

1.2.5 Social Networks 

An interesting interdisciplinary field of research using methods from group 

theory, statistics, discrete combinatorics and graph-drawing for sociological 

studies are social networks (Freeman, 1999a; McGrath and Borgatti, 1999; 

Blythe et al., 1996; Kenis, 1999; Brandes et al., 1999). Simply speaking a 

social network is obtained by taking a group of people as nodes and insert- 

ing edges based on some abstract relationship between these people. This 

research is motivated by the belief that visualizing social structures and de- 

tecting patterns gives insight into how a society works, how individuals in- 

teract with society and even why certain societies or individuals are more 

successful than others. Aspects taken into account can be sociological, eco- 

nomical, demographical, ethnical, or even medical, and are used for various 

purposes on all scales. Examples are analyses of economic growth in third- 

world countries, changes in social relationships of married couples over time 

or the social networks of ethnic minorities and their function. 

Figure 1.10 shows a small hand-drawn social network. Each node repre- 

sents a person, each edge represents a relationship such as acquainted (dotted 
line) and marriage (triple line). Most nodes and edges are annotated with ages 
and dates adding a temporal aspect to the picture. 

a 

rhe Diagramming 

“es , an Intimate 
F ag 

Fig. 1.10. Hand drawn social network. 
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What makes the graph-drawing problem interesting here is that there 
is no fixed a-priori idea of what is a good, or even “optimal” layout. The 
patterns implicitly contained in the description of a workflow diagram for 
example, which can be used by a human for drawing the graph manually or 
evaluating the quality of an automatic layout, are not yet known. Indeed, the 
drawing of the network is intended to aid the user in finding these patterns. 
Hence improving and judging the quality of layout algorithms is an especially 
demanding problem. 

ZH 

oe 

Fig. 1.11. Five drawings of a single network (Blythe et al., 1996). 

Figure 1.11 shows five different layouts of the same graph of a social 

network. Regarding each of the drawings by itself leads to completely different 

conclusions: the upper left image suggests the existance of three groups of four 

individuals, whereas the one in the lower right looks rather tigthly interwoven. 

It would be desirable to find one layout expressing the key features and 

patterns of the given graph. When dealing with larger sets of individuals a 

further help would be to identify dense regions and fold these into aggregate 

nodes. Such a clustering allows for an analysis of the macroscopic structure 

without getting lost in the details. 

Another idea examined at the moment applies algorithms from molecular 

visualiziations to social networks (Humphrey et al., 1996; Hermansson and 

Ojamae, 1994; Freeman, 1999b). Implementations used in chemistry have 

been available for some time. Besides the capability of dealing with coloured 



16 Rudolf Fleischer and Colin Hirsch 

nodes, the most exciting benefit is the ability to visualize dynamically data in 

form of animations. The application of this feature is immediate, since social 

networks naturally change over time. 

1.2.6 Data Structures 

When writing new software typically less than half the required time is used 

for actually writing new lines of code. Most of the time is spent. looking for 

bugs and errors in the finished code. Therefore special software has been 

developed to aid this process by tracking runs of other software. 

This greatly simplifies testing, since the programmer does not need to 

trace manually the state of his software. Rather it is possible to output and 

analyze the contents of data storage during runtime. This is especially im- 

portant when using error-prone dynamic data structures. It lies in the nature 

of dynamic data structures that many small objects reside in the storage of 

the machine. These data elements are linked together via references to other 

data elements. We thus obtain a directed graph where each data element is 

a node connected to the data elements it refers to. 
Interactive debuggers give the user the opportunity to browse these data 

structures (Zeller and Liitkehaus, 1996; Isoda et al., 1987). Figure 1.12 shows 
the output of such a debugger. 
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oe 
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left = 0x408996b0 
right = NULL 

Fig. 1.12. Graphical debugger. 

The first problem for any graph layout algorithm is the vastly different 
sizes of the nodes. Data structures of completely different type and size may 
refer to each other. Also the structure of the graph is completely arbitrary. 
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Most demanding are the interactive and the dynamic aspect of the data, 
the program execution and the user input. The two phases of letting the 
software run and examining the results alternate throughout the debugging 
process. In the first phase new data elements can be created and others 
deleted. During the second phase the user takes the currently displayed sub- 
graph as starting point and continues to fold and unfold parts of the graph 
along references. The size of the complete graph can easily be in the range 
of millions, hence drawing the whole thing is not feasible and this kind of 
incremental navigation essential. 

Depending on the number of nodes already visible it is again desirable to 
retain key features of the current layout when adding or removing nodes to 
let the user build a mental map. Unfortunately, the more nodes are present, 
the more important this effect becomes, but also the more difficult to take 

into account. Various methods have been proposed that either reduce the 

necessary changes to the layout or limit the adverse effects on the mental 
map (see Chapter 9). 

1.3 How to Draw a Graph 

1.3.1 Graph Representations 

In the previous section we have seen many examples of graph drawings which 

differ widely in their appearance. Depending on the application, the basic 

features of a graph should be drawn in different ways. Nodes may be drawn 

as dots (as in Figures 1.1 and 1.2), circles (as in Figures 1.3, 1.4, and 1.6), 
boxes (as in Figures 1.5 and 1.12), a mixture of styles (as in Figures 1.7, 1.8 
and 1.11), or not at all as in Figures 1.9 and 1.10 where nodes are represented 

implicitly by their name labels. Edges may be drawn as straight lines (as in 

Figures 1.2, 1.5, 1.7, 1.9 1.11 and 1.12), orthogonal polygonal paths (as in 

Figure 1.8), arbitrary polygonal paths (as in Figures 1.3 and 1.4), or arbitrary 
curves (as in Figures 1.1, 1.6 and 1.10). The information corresponding to the 

nodes and edges can be visualized using text labels at various positions in or 

next to a graph object, different colors (as on a subway map), or other visual 

elements such as thickness of lines, size of boxes, etc. A graph may be drawn 

in the plane or in three dimensions. It may be drawn completely, partially, 

or hierarchically, i.e., clusters are shrunken to a single node which can be 

expanded on request. We call these (and other) drawing style considerations 

the representation of a graph. 

A special case of graphs are planar graphs, i.e., graphs that can be drawn 
in the plane without edge crossings. Planar graphs arise in algorithm ani- 

mation, CAD systems, circuit schematics, information systems design, and 

VLSI schematics, for example. We have seen planar drawings of graphs in 
Figures 1.3, 1.4, 1.5, 1.8 and 1.12. Algorithms for drawing planar graphs are 

given in Chapter 2. 
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A subclass of planar graphs are trees (see Figures 1.8 and 1.12, for exam- 

ple). They can be found in algorithm animation, circuit design, visualization 

of class hierarchies, flowcharts, project management diagrams, and syntax 

trees. We deal with trees in Chapter 3. 

Planar graphs are often drawn orthogonally as in Figure 1.8 because or- 

thogonal drawings usually look much tidier than drawings with arbitrarily 

curved edges (note that the near-orthogonal drawings in Figures 1.3, 1.4, 

1.5 and 1.9 are not bad either). Other applications for orthogonal draw- 

ings include architectural floorplan design, network visualization; data base 

schemas, flow diagrams, entity relationship diagrams, molecular structure di- 

agrams, project management charts, software engineering diagrams, VLSI 

schematics, and workflow visualization. Algorithms for orthogonal drawings 

can be found in Chapter 6. 
Three-dimensional drawings are suitable to display large and dense graphs 

such as file system graphs or WWW structure graphs. They are also used in 

algorithm animation, business graphics, database design, visualization of mul- 

timedia documents, software engineering tools, and VLSI schematics. Chap- 

ter 7 describes techniques for three-dimensional drawings. 

1.3.2 Aesthetics Criteria 

Once we have decided upon the representation we face the question of how 

to actually draw the nodes and edges of a graph. A drawing, or better a 

layout, is a mapping of the nodes and edges into the plane (or into R? for 
three-dimensional drawings). But what distinguishes a good layout from a 

bad one? The two examples in the Introduction indicate that different appli- 

cations may require different criteria. For example, drawing a genealogy tree 

with an algorithm designed to draw subway maps (trees are a subclass of 

subway graphs, so this should be possible) will most likely produce a highly 

unsatisfactory picture. That is because an algorithm for drawing a subway 

graph also uses some general knowledge on subways. For example, customers 

would be highly confused if stations were drawn at random locations on the 

map instead of at locations (approximately) corresponding to the locations 

were they would be found on a real map of the city. On the other hand, 

genealogists would expect the drawing to reflect the chronology of events; 

so genealogy trees are usually drawn with nodes ordered by time (left-right 

or top-down), and the nodes corresponding to a married couple are usually 

drawn next to each other. 

So for every particular graph drawing problem (subway maps, genealogy 

trees, etc.) we need specially customized algorithms which look beyond the 

structural properties of the given graphs and also use additional knowledge 

about the semantics behind the graph structure. This seems to imply that we 

would need a great number of different graph drawing algorithms, one for each 

application (in a recent survey of the graph drawing literature, we counted 

more than 130 different applications). Fortunately, this is not the case. There 
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are a few general concepts and techniques which are powerful enough to 
cover a wide range of graph drawing applications. Finding a good layout 
is thus reduced to optimizing one or a few criteria. In applications where 
the main goal is to produce layouts for human consumption these criteria are 
appropriately called aesthetics criteria, however in applications where graphs 
are drawn for other purposes as in VLSI schematics, for example, technical 
criteria such as wire length might be more important than aesthetics criteria. 

Also, in some cases traditional drawing styles must be honored (it would be 

very unusual to draw an electrical circuit non-orthogonal, for example). 

We now list some of the commonly used aesthetics criteria together with 

examples of their practical importance. Note that these criteria depend en- 

tirely or mostly on the structure of the graph, so algorithms for optimizing 

these criteria can be devised easily and plugged in as extension to improve 

the output of a graph drawing system. 

Unfortunately, there is no clear ranking among these criteria which would 

be valid for all possible applications. Figure 1.11 shows that emphasizing some 
criteria over others can result in very different layouts of the same graph. And 

each layout has its own virtues, depending on the semantics of the graph it 

is supposed to depict. 

Crossing minimization. If too many edges cross each other, the human eye 

can not easily find out which nodes are connected by an edge. If a graph 

can be drawn without edge crossings (such graphs are called planar), then 
this is very often preferable to a drawing with edge crossings. To compute a 

planar layout is not too difficult, even if we restrict ourselves to straight line 

edges (see Chapter 2). Crossing minimization is also an important technical 
criterion. In circuit schematics, wire crossings should be avoided as much as 

possible to reduce the number of layers. 

Bend minimization. This is an important aesthetics criterion for orthogonal 

layouts because the human eye can much more easily follow an edge with none 

or only a few bends than an edge wildly zig-zagging through the picture. In 

VLSI production, bends in wires are potential spots of trouble, so minimizing 

bends is also an important technical criterion. 

Area minimization. Minimizing the area of a layout is again crucial for VLSI 

schematics, but it is also a general aesthetics criterion: a picture looks much 
better if the nodes and edges fill the space with homogenous density. There 

may also be more profane reasons for area minimization, e.g. when producing 

pocket size maps of a bus network (see Herdeg (1981, page 137, fig. 263)). 

Angle maximization. This aesthetics criterion becomes more important now- 

adays. If a graph is displayed on a video screen with low resolution, it is 

important that edges are as far apart as possible. In numerics, simulations 

using finite element nets behave better if the net embeddings have large 

angles. 
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Length minimization. In VLSI schematics, edges correspond to wires which 

carry information from one point on the chip to another. To do this fast, 

wires should be short. 

Symmetries. If a graph contains symmetrical information then it is important 

to reflect this symmetry in its layout. Technical drawings often contain hidden 

symmetries. Unfortunately, displaying symmetries is not an easy task. 

Clustering. When drawing social networks, parse trees, graphs in CASE 

tools, or large graphs such as WWW graphs, large networks, or graphs arising 

in VLSI schematics, then it is necessary to cluster the nodes to reveal some 

of the graph’s structure. 

Layered drawings. Organizational charts, ER diagrams, flow diagrams, or 

graphs in CASE tools usually require a layered layout where node positions 

are restricted to distinct layers. 

1.4 Algorithmic Approaches to Graph Drawing 

Having decided on the representation and the right mix of aesthetics criteria, 

we usually face two problems. Firstly, many of the criteria cannot be opti- 

mized efficiently, so we must retreat to approximation algorithms or heuris- 

tics. An example is crossing minimization without fixed embedding. And 

secondly, if we need to optimize several criteria at the same time, we might 

find this task impossible because the criteria might contradict each other. For 

example, there are graphs whose optimal orthogonal layout needs an edge of 

length Q(n?) with Q(n) bends (Tamassia et al., 1991). 
There are a few powerful techniques which can be used to attack these 

optimizing problems. They are described in detail in other chapters of this 

book, so we give here only a short summary. 

Planarization. Planar layouts are usually much more appealing than non- 

planar layouts. Also, in circuit schematics these planarization techniques are 

important for layer minimization. Unfortunately, in practice many graphs are 

non-planar. Then one can try to make it planar by removing as few edges 

as possible (this is an N’P-complete problem) or by removing those edges 

whose insertion would afterwards create the least number of crossings. The 

problem of crossing minimization is in general NP-hard, but some heuristics 

for planarization yield acceptable results. These techniques are discussed in 
Chapter 2. 

Force-directed methods. In Chapter 4 we describe energy based layout algo- 

rithms. These algorithm interpret a graph as a physical system with forces 

between the nodes and then try to minimize the energy of the system to ob- 

tain a nice drawing. Such algorithms are used for drawing arbitrary (sparse) 

networks such as flow charts, program planning graphs, telephone call graphs, 

etc. They can also be applied to clustered layouts. 
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Sugiyama-like methods. The most widely used algorithms for drawing layered 

graphs are the Sugiyama type algorithms (see Chapter 5). They produce 

layered layouts while also trying to minimize the number of crossings or the 
area of the layout. 

Flow methods. Bend minimization can efficiently be solved by reduction to a 

network flow problem (see Chapter 6), at least if the topology of the embed- 

ding is fixed. The same techniques can be used to maximize angles between 

edges (see Chapter 6). 

Interactive drawings. The methods above are good for drawing static graphs. 

However, interactive applications such as the visualization of debugging 

tools, document retrieval, entity relationship modules, VLSI schematics, and 

WWW graphs require the display of graphs which change over time. Tech- 

niques for interactive graph drawing are described in Chapter 9. 

Labeling. Another important aspect of graph drawing, for example in drawing 

maps, state diagrams, or engineering diagrams, is labeling, i.e., naming nodes 

and edges in the drawing. Methods for labeling are discussed in Chapter 10. 

These aesthetics and efficiency criteria stand in contrast to more intuitive 

criteria concerning the semantics and intended meanings of graphs. As the 

example of Figure 1.5 shows, the semantics and the structure of a graph 

can give very different hints for the layout. However, completely disregarding 

aspects such as the length of edges, a purely technical term, can lead to rather 

unbalanced and difficult to trace layouts as in Figure 1.6. 

It can be speculated that the lack of layout algorithms respecting the se- 

mantics of graphs and therefore being more capable of creating a drawing that 

is informative as well as “favourable to the eye” lies in the nature of the prob- 

lem. The manually arranged drawings were all created by individuals with 

an intimate knowledge of the semantics. Disregarding the aesthetic aspect 

concerning aesthetics as in artwork, it remains a challenge to identify and, 

more importantly, formalize aesthetics criteria taking the semantic aspects 

into account. The word graphs in Figures 1.3 and 1.4 using the additional 

information “time” is but a small step in this direction. 

1.5 Conclusion 

Graph drawing applications are so manifold that we could only show a few 

examples in this chapter. They mainly come from applications within com- 

puter science — not too surprising since both authors work in that field. 

We found these examples just by talking to the people in the offices around 

the corner. This shows that graph drawing problems appear in many places, 

indicating that its study is an important task. 
The examples also show that graph drawing is not a single well-defined 

problem but an art, namely the art of describing what a nice drawing of 
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a graph means in the context of a particular application. In Section 1.3.2 

we have seen a list (which should not be understood to be complete) of 
aesthetics criteria whose optimization can lead to acceptable layouts. Most 

of the following chapters of this book give algorithms for optimizing these 

criteria. 

However, these algorithms should not be considered as the final solution 

to the graph drawing problem, i.e., even if we put them all together in a 

tool box we cannot expect to always find at least one algorithm perfectly 
suited for a particular application problem at hand. More often than not, 

the output from an automatic graph drawing tool can ‘easily’ be improved 

manually (so far, the winning drawings in the annual graph drawing compe- 

tition (Eades and Marks, 1995, 1996; Eades et al., 1996, 1997c, 1998) have 

never been produced fully automatically, except when explicitly demanded). 

The reason is that graphs in an application usually have semantics known to 

the people working with the graph but not known to the graph drawing tool 

(because it was designed to draw graphs according to some aesthetics crite- 

ria, not according to some particular graph semantics). Therefore, for most 

applications the standard algorithms for optimizing standard aesthetics cri- 

teria (these algorithms are covered by this book) must be refined to include 
problem specific aesthetics criteria (as given by the graph semantics). On the 

other hand, there are many commercial and non-commercial graph drawing 

tools available, so chances are good that for a given application one might 

find some tool which produces at least reasonable drawings, but one should 

not expect miracles. In Appendix A, we give a short summary of some of the 
better (in our opinion) tools. 

x 



2. Drawing Planar Graphs 

René Weiskircher ox 

2.1 Introduction 

When we want to draw a graph to make the information contained in its 

structure easily accessible, it is highly desirable to have a drawing with as 

few edge crossings as possible (Purchase et al., 1997; Purchase, 1997). The 

class of graphs that can be drawn with no crossings at all is the class of planar 

graphs. Algorithms for drawing planar graphs are the main subject of this 

chapter. 

We first give some necessary definitions and basic properties of planar 

graphs. In section 2.3, we take a closer look at two linear time algorithms for 

testing if a graph is planar. When a graph is not planar but we want to apply 

an algorithm for drawing planar graphs, we can transform the graph into a 

similar planar graph; Section 2.4 gives an overview of methods to do so. 

Most drawing algorithms presented in this chapter require a 2-connected 

planar graph as input. If a planar graph does not have this property, we 

can add edges to make it 2-connected and planar. Section 2.5 describes ways 

to accomplish this. The following sections describe drawing algorithms for 

planar graphs. Section 2.6 treats the generation of convex straight-line rep- 

resentations, while section 2.7 gives an overview of some algorithms that use 

a special ordering of the vertices of a graph called a canonical ordering. 

2.2 What Is a Planar Graph? 

To define what we mean by the term planar graph we first have to define 

what is meant by the term planar representation. 

Definition 2.1 (Planar Representation). A planar representation D of 

a graph G = (V,E) is a mapping of the vertices in V to distinct points in 
the plane and of the edges in E to open Jordan curves with the following 

properties: 

— For all edges e € E, the representation of edge e = (vi1,v2) connects the 

representation of v1 with the representation of v2. 

— The representations of two disjoint edges e; = (v1, V2) and eg = (v3, v4) 

have no common points except at common endpoints. 

— The representation of edge e = (v1, v2) does not contain the representation 

of v3 EV with v3 € {v1, v2}. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 23-45, 2001. 
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If D is a planar representation, the set R? — D is open and its regions are 

called the faces of D. Since D is bounded, exactly one of the faces of D is 

unbounded. This face is called the outer face of D. 
Using the definition of planar representations, it is easy to define the term 

planar graph. 

Definition 2.2 (Planar Graph). A graph G is planar if and only if there 

exists a planar representation of G. 

There is an infinite number of different planar representations of a pla- 

nar graph. We can define a finite number of equivalence classes of planar 

representations of the same graph using the term planar embedding. 

Definition 2.3 (Planar Embedding). Two representations D, and D2 of 
a planar graph G realize the same planar embedding of G, if and only if the 

following two conditions hold: 

— The cycles of G that bound the faces of D, are the same cycles that bound 

the faces of Do. 

— The outer face in D, is bounded by the same cycle of G as in Dg. 

The definition of a planar graph above is very simple but it is a geometric 

definition. Since the set of all planar representations of a graph is infinite and 

uncountable, it is not immediately clear how to test a graph for planarity. 

Kuratowski found a combinatorial description of planar graphs but to present 

this description, we have to define the subdivision of a graph. 

Definition 2.4 (Subdivision). A subdivision of'a graph G = (V,E) is 
a graph G' = (V’,E’) that can be obtained from G by a sequence of split 
operations where we insert a new verter u and replace an edge e = (v4, v2) 

by the two edges e; = (v1, u) and eg = (u, v2). 

Thus, a subdivision of a graph is another graph where some edges of the 

original graph have been replaced by paths. Planar graphs are now charac- 
terized by the following: 

Theorem 2.5. A graph G is planar if and only if it does not contain a sub- 

division of Ks (the complete graph with 5 vertices, see Figure 2.1(a)) or K3,3 
(the complete bipartite graph with 3 vertices in each set, see Figure 2.1(b)). 

If a graph G is directed (each edge is an ordered pair of vertices), we can 
define a more restricted class of planar graphs, the upward planar graphs. 
First we define the term upward representation. 

Definition 2.6 (Upward Representation). Let G = (V,E) with E C 
V x V be a directed graph. A representation of G is called upward if the 
representation of every edge (u,v) is monotonically nondecreasing in the y- 
direction when traced from u to v. 
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(a) Ks (b) K3,3 

Fig. 2.1. The basic non-planar graphs. 

We use this definition to define upward graphs and upward planar graphs. 

Definition 2.7 (Upward Graph). A directed graph is upward if and only 
if it admits an upward representation. 

Definition 2.8 (Upward Planar Graph). A directed graph is upward pla- 
nar if and only if it admits an upward and planar representation. 

It is possible to test in linear time whether a directed graph admits an 

upward representation (because only acyclic graphs admit such a representa- 

tion) and, as we will see in the next section, we can test in linear time, whether 

a graph admits a planar representation. But testing whether a graph admits 

an upward planar representation is ’P-complete for general graphs (Garg 

and Tamassia, 1995a). 
A survey about upward planarity testing can be found in Garg and Tamas- 

sia (1995a). We will not treat the topic in this chapter, but algorithms for 
drawing upward graphs can be found in Di Battista and Tamassia (1988). 

2.3 Planarity Testing 

The first algorithm for testing whether a given graph is planar was developed 

by Auslander and Parter (1961) and Goldstein (1963). Hopcroft and Tarjan 
(1974) improved this result to linear running time. Another linear time algo- 

rithm for planarity testing was developed by Lempel, Even and Cederbaum 

(Lempel et al., 1967) and Booth and Lueker (1976). We will only give a short 
overview of the two linear time algorithms. 

2.3.1 The Algorithm of Hopcroft and Tarjan 

This overview of the algorithm follows that of Mutzel (1994). In principle, the 
algorithm works as follows: Search for a cycle C whose removal disconnects 

the graph. Then check recursively whether the graphs that are constructed 
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by merging the connected components of G — C and the cycle C are planar. 

In a second step, combine the computed embeddings for the components to 

get a planar embedding of the whole graph, if possible. 
The algorithm needs a depth first search tree G’ = (V,T,B), where V 

is the set of DFS numbers of the vertices in G, T is the set of tree edges of 

the depth first search tree and B the set of back edges (for DFS trees, see 

Mehlhorn (1984)). We assume that G is 2-connected (this is not a restriction, 
because a graph is planar if and only if all its 2-connected components are 

planar). 
Let C be a spine cycle of G, which is a cycle consisting of a path of 

tree edges starting at the root (vertex 1) of the DFS tree followed by a 

single back edge back to the root vertex. Because G is 2-connected, such a 

cycle must exist. We assume that removing all edges of C' splits G into the 

subgraphs G1,G2,...,Gz. For 1 < i < k, we define the graph G; as the 

graph G; together with the cycle C and all edges in G between a vertex in G; 

and a vertex on C. First, we recursively check whether each G} is planar and 
compute a planar embedding for it. Planar embeddings are equivalence classes 

of planar representations that describe the topology of the representation but 

not the length and shape of edges or the position of vertices (see definition 
ey 

The planar embeddings of the Gi, must have all edges and vertices of C on 

the outer face. Now we assume that we have found a suitable embedding for 

each G/. We must test whether we can combine these embeddings to a planar 

embedding of G. The reason why this may fail is that each G; shares at least 

two vertices with C’. Figure 2.2 shows how this fact can make it impossible 

to embed two graphs G; and G; on the same side of C. We say that the two 
graphs interlace. 

ae 2.2. Interlacing graphs G; and G; that can’t be embedded on the same side 
of C. 



2. Drawing Planar Graphs Di 

To test whether there is an assignment of the G;’s to the two sides of C so 
that the resulting representation is planar, we build the interlace graph Ig. 
This graph has one vertex for each G; and two vertices are adjacent if and 
only if they interlace. We can only draw G planar if Ig is bipartite. If there 
is an embedding with the necessary properties for each G’, and the interlace 
graph is bipartite, we know that G is planar and we can construct a planar 
embedding for it. 

2.3.2 The Algorithm of Lempel, Even, and Cederbaum 

A vertex-based method for planarity testing is the test developed by Lempel 
et al. (1967); Even (1979). We say that this test is vertex-based because we 
add the vertices one by one to a special data structure and check after each 

step if the information seen so far proves that the graph is non-planar. This 

test can be implemented in linear time (Booth and Lueker, 1976), like the 
algorithm of Hopcroft and Tarjan discussed above. 

The input of the algorithm is again a 2-connected graph G = (V, E). We 

assume that V = {v1,v2,...,Un} where the numbering of the vertices is an 
st-numbering as defined below. 

Definition 2.9 (st-numbering). Given an edge {s,t} in a graph G = 
(V,E) with n vertices, an st-numbering is a function g : V — {1,...,n}, 
such that 

— 9(s) =1, g(t) =n 
—WeV\{s,t}duweVv ({u,v}, {v,w} e EA g(u) < g(v) < g(w)) 

Lempel, Even and Cederbaum showed that for every edge {s,t} in a graph 

G, there exists an st-numbering if and only if G is 2-connected. A linear time 

algorithm to find it is given in Even (1979). 
We define G;, as the subgraph of G induced by {v,... , vz}. This graph is 

extended to a graph By as follows. For each edge (u,v) € FE with u in Gy and 

v not in Gy, the graph By, has a new virtual verter and an edge connecting u 
to this vertex. So there may be several virtual vertices in B, that correspond 

to the same vertex in G. The idea of the algorithm is to check whether we can 

identify the virtual vertices corresponding to the same vertex in G without 

losing the planarity property. 

If G is planar, By, has a planar embedding where each vertex v; for 1 <i < 
k is drawn on y-coordinate 2, all virtual vertices are placed on y-coordinate 

k+1 and all edges are disjoint y-monotone curves (which means that they are 

only intersected at most once by any horizontal line). Such a representation 

is called a bush form. Figure 2.3 shows an example for a bush form. 

Let v; be a vertex in a bush form. If the removal of v; disconnects the bush 

form, we call it a cut vertex. Let B’ be the bush-form after the removal of 

v;. The split-components of v; are those connected components of B’, where 

the indices of all vertices are greater than 7. Now consider the bush form in 
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Fig. 2.3. A bush form. 

Figure 2.3. Since the labels of the vertices are their st-numbers, this is bush 

form B7. When we want to draw Bg, we must first transform B7 so that all 

virtual vertices with label 8 form a consecutive sequence on level 8. This can 

be done by flipping around the split component of vertex 1 which includes 

the vertices 2 and 3, so that the virtual vertices labeled 8 and 9 in the split 

component swap their positions. We also have to move the virtual vertex 

labeled 9 adjacent to vertex 4 to the right and flip the split component of 

vertex 4 with the vertices 6 and 7. The resulting graph is shown in Figure 2.4. 

Level 

8 

Se NY WwW ha” DW ~ 

Fig. 2.4. The bush form from Figure 2.3 has been transformed so that all vertices 
labeled 8 form a consecutive sequence. 

‘ 

If v is a split vertex of a bush form (which means that removing v discon- 
nects the bush form), then we can freely permute the split components which 
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have vertices with higher st-number than v and we can flip each individual 

component. There may be several possible ways of producing a consecutive 

sequence of the vertices labeled k + 1 and since not all may eventually lead 

to a planar representation of G, we have to keep track of all of them. This 

can be done in linear time using a data structure called PQ-tree proposed by 

Booth and Lueker (1976). If it is not possible to make the vertices labeled 
k +1 consecutive, we know that the graph is not planar. Otherwise, the algo- 

rithm will produce a planar embedding of the graph. In Mehlhorn and Naher 

(1999) a detailed description of the complete algorithm can be found. 

2.4 How to Make a Graph Planar 

There are many popular algorithms for drawing planar graphs and they pro- 

duce a great variety of styles of representations. Therefore, it makes sense to 

transform a non-planar graph into a similar planar graph, apply a graph draw- 

ing algorithm for planar graphs to the result and then modify the resulting 

representation so that it becomes a representation of the original non-planar 

graph. A survey of methods for doing this can be found in Liebers (1996). 

A quite drastic way of making a graph planar is to delete vertices. This 

method is not used very much in graph drawing, because deleting vertices 

changes a graph considerably. The problem of deciding for an integer k if 

we can make a non-planar graph planar by deleting at most k vertices is 

NP-complete (Lewis and Yannakakis, 1980). 
Another way of making a graph planar is to split vertices. This is a rather 

complex operation, so we will give the formal definition from Liebers (1996). 

Definition 2.10 (Vertex Splitting). Let G = (V, E) and G’ = (V’, E’) be 
two graphs. Then we say G’ has been obtained by splitting vertex v of G into 

the vertices v1 and v2 if the following conditions are satisfied: 

V =(V’\{v1, v2}) U {v} 

E = (E'\{uy;|u eV’ and uv; € E’ fori € {1,2}} 

Uf{uv|u € V\{v} and (uv, € E’ or uve € E’)} 

Splitting a vertex is also a drastic operation and is not commonly used 

in graph drawing to planarize graphs. Testing whether a non-planar graph 

can be made planar by at most k vertex-splitting operations is WP-complete 

(Faria et al., 1998). 
Two more commonly used ways of transforming a non-planar graph into 

a planar graph are the insertion of new vertices and the deletion of edges. 

2.4.1 Inserting Vertices 

Assume we have a non-planar graph G and a representation D of G with k 

crossings. Then we can transform G into a planar graph G’ in the following 
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way: Let e = (u,v) and f = (z, y) be two edges that cross in D. Then we can 

add a new vertex vu, to G, remove the edges e and f from G and insert the 

four new edges e1 = (u, Uc), €2 = (Ve,v), fir = (2, Uc) and fe = (vc, y). This is 

equivalent to replacing the crossing in D between e and f by the new vertex 

Ue. If we do this for every pair of crossing edges, we will transform G into a 

planar graph G’ and D into a planar representation D’ of G’. 

Since the graph G’ is planar, we can draw it by using any algorithm for 

drawing planar graphs. If D” is the resulting representation, we can transform 

this representation into a representation of the original non-planar graph G 

by replacing all introduced vertices by crossings again. Since we want to 

have as few crossings as possible in the resulting representation, we want to 

introduce as few new vertices as possible. 

The minimum number of vertices we have to insert is equal to the min- 

imum number of crossings in any representation of G. But the problem of 

deciding for a graph G whether it can be drawn with at most k crossings is 

NP-complete (Garey and Johnson, 1983). The only known heuristics for in- 

serting few vertices to construct a planar graph are the algorithms for drawing 

non-planar graphs. By inserting vertices at every crossing of the representa- 

tion produced we get a planar graph. 

2.4.2 Deleting Edges 

If G is a non-planar graph, there is a non-empty subgraph of G that is planar. 

In particualr, each spanning tree of G is planar, since every graph without 

cycles is planar. So we can derive a planar graph from a non-planar graph 
by deleting a subset of its edges. But the problem of deciding for a non- 

planar graph G = (V, E) and a number k < |F| if there is a planar subgraph 
with at least k edges is NP-complete. This was independently shown by Liu 

and Geldmacher (1977), Yannakakis (1978) and Watanabe et al. (1983). The 
associated NP-hard maximization problem is to find a planar subgraph of 

a G with the property that there exists no other planar subgraph that has 

more edges. This problem is called the marimum planar subgraph problem. 

The problem of finding a planar subgraph, which is not a proper subgraph of 

another planar subgraph of G is called the maximal planar subgraph problem 
and is solvable in polynomial time. 

Definition 2.11 (Maximal Planar Subgraph). A mazimal planar sub- 
graph of a graph G = (V,E) ts a subgraph G’ = (V,E’) of G in which there 
exists no edge in E — E’ that can be added to G’ without losing planarity. 

One approach to solving this problem is to start with the subgraph G; = 

(V,@) of G and to test for each edge if we can add it to the current solution 
without losing planarity. If we can do that, we add the edge and proceed to 

the next edge. Since we have to perform a planarity test for each edge of the 

graph and such a test can be implemented in linear time, this algorithm has 
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a running time of O(n -m) where n is the number of vertices in the graph 
and m the number of edges. 

Di Battista and Tamassia developed a data structure called SPQR-tree, 
which can be used for decomposing a planar 2-connected graph into its 3- 

connected components and for fast online planarity testing (Di Battista and 

Tamassia, 1989; Di Battista and Tamassia, 1990; Di Battista and Tamassia, 

1996). Using this data structure, they were able to develop an algorithm for 

finding a maximal planar subgraph in O(m log n) running time. There is also 
an algorithm with the same asymptotic running time developed by Cai et al. 

(1993) which is based on the planarity testing algorithm in Hopcroft and 
Tarjan (1974). 

La Poutré (Poutré, 1994) proposed an algorithm for incremental planarity 
testing yielding an algorithm for the maximal planar subgraph problem run- 

ning in time O(n + m-a(m,n)) where a(m,n) is the inverse of the Acker- 
mann function and grows very slowly. There are even linear time algorithms 

for the problem, by Djidjev (1995) and by Hsu (1995), which has the best 
asymptotic running time possible for solving the maximal planar subgraph 

problem. 

A heuristic for the maximum planar subgraph problem is the Deltahedron 
heuristic (Foulds and Robinson, 1978; Foulds et al., 1985). This heuristic 

starts with the complete graph on 4 vertices (tetrahedron) as the initial planar 

subgraph and then places the remaining vertices into the faces of the current 

planar subgraph. The sequence of the vertices depends on a chosen weight 

function. Leung (1992) proposed a generalization of this method. The current 
planar subgraph has only triangular faces and in each step, we add a single 

vertex and 3 edges or we add 3 vertices and 9 edges. A list of other heuristics 

can be found in Liebers (1996). 
Jiinger and Mutzel (Mutzel, 1994; Jiinger and Mutzel, 1996) proposed a 

branch and cut algorithm for solving the maximum planar subgraph problem 

based on an integer linear program that excludes the presence of subdivisions 

of K33 and Ks in the solution graph. The advantage of a branch and cut 

algorithm is that it either finds an optimum solution together with a proof 

of optimality or finds a solution together with an upper bound on the value 
of the optimum solution. For problems of moderate size (about 50 vertices), 

their approach finds an optimal solution in most cases. 

2.5 How to Make a Planar Graph 2-Connected Planar 

Many graph drawing algorithms only work for 2-connected or 3-connected 

graphs. This is true for most algorithms presented in this chapter. Therefore 

if we want to draw a graph which does not have the necessary connectivity 

property for applying a specific graph drawing algorithm, we can increase its 

connectivity by adding new edges (Augmentation). After a representation of 

the augmented graph has been computed, we remove the representations of 
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the additional edges to get a representation of the original graph. Since we do 

not want to change the graph too much, we want to add a minimum number 

of edges in the augmentation step. 

The planar augmentation problem is the problem of adding a minimum 

number of edges to a given planar graph so that the resulting graph is 2- 

connected and planar. Kant and Bodlaender (1991) introduced this problem 

and showed that it is M’P-hard. They have also given a 2-approximation 

algorithm running in time O(nlogn) and a 3-approximation algorithm with 

running time O(n? logn), where n is the number of vertices in the graph. 

However, the 3-approximation algorithm is not correct because there are 

problem instances where it computes only a 2-approximation.+ 

Fialko and Mutzel developed a 3-approximation algorithm (Fialko and 

Mutzel, 1998). The running time of the algorithm is O(n?T) where T is the 
amortized time bound per insertion operation in incremental planarity test- 

ing. Using the algorithm in Poutré (1994), a running time of O(n?a(k, n)) can 
be achieved where a is the inverse Ackermann function and k is O(n”). Re- 
cently, the algorithm has been improved by Mutzel (private communication) 

to guarantee a 3-approximation. 

The 3-approximation algorithm works on the block tree of the graph we 

want to make 2-connected. The block tree has two types of vertices: The 

b-vertices correspond to the maximal 2-connected components of the graph 

and the c-vertices to the cut vertices (as already mentioned, the removal of 

a cut vertex disconnects the graph). We have an edge between a c-vertex 

and a b-vertex if and only if the corresponding cut vertex belongs to the 2- 

connected component represented by the b-vertex. The idea is now to insert 

edges, merging paths of the block tree into single blocks until the tree has 

only one vertex and is thus 2-connected. 

A crucial role in the algorithm is played by the pendants of the block 

tree, which are b-vertices with degree one. The algorithm connects pendants 

via edges if possible and otherwise connects pendants to non-pendant blocks. 

To achieve the approximation ratio, pendants are combined to form larger 

structures that are called labels. The algorithm looks at these labels in the 

order of decreasing number of pendants and tries to connect the pendants 
of two labels by introducing new edges. Inserting edges that connect the 
pendants of two labels is called a label matching. 

The algorithm prefers certain matchings, but because the resulting graph 
has to be planar, not all of the preferred label matchings can be realized. 
Some labels cannot be matched at all and so the algorithm introduces edges 
that connect pendants of the same label and an additional edge from one of 
the pendants to a non-pendant vertex outside the label. 

The approximation guarantee of the algorithm is tight which means that 
graphs exist for which the number of added edges is of the optimum num- 
ber. On realistic instances, the algorithm performs very well and very often 

* Goos Kant, personal communication (1994). 
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Fig. 2.5. A graph and its block tree. 

finds a solution that uses at most one edge more than the optimum solution. 
This has been tested using a branch and cut algorithm for the planar augmen- 

tation problem developed by Mutzel (1995) which is able to solve instances 
of realistic size optimally. 

2.6 Convex Representations 

Some planar graphs can be drawn in such a way that all cycles that bound 

faces are drawn as convex polygons. An example for such a drawing is given in 

Figure 2.6. Such a representation is only possible if all face boundaries of the 

graph are simple cycles. Thus, a graph that is not 2-connected cannot have a 

convex representation. It has been shown that such a convex representation 

exists for all 3-connected graphs (Tutte, 1960) and Tutte gave an algorithm 

for producing representations of 3-connected graphs which involves solving 

O(n) linear equations, where n is the number of vertices in the graph (Tutte, 
1963). 

Nishizeki and Chiba (1988) developed an algorithm for producing a con- 

vex representation of a 2-connected planar graph (if it admits a convex rep- 

resentation) in linear time. The drawing algorithm is based on the proof of 

Tutte’s result given by Thomassen (1980). The testing algorithm works by di- 

viding a 2-connected planar graph into 3-connected components as described 
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Fig. 2.6. A convex drawing of a graph. 

in Hopcroft and Tarjan (1973) and testing planarity of a special graph con- 

structed from the original graph using the algorithm described in Hopcroft 

and Tarjan (1974). 
To give a short outline of the drawing algorithm, we have to define what 

we mean by the term extendible polygonal representation of a face cycle of a 

graph G. A face cycle is a cycle in the graph that is the boundary of a face 

(region) of a planar representation of the graph. A convex representation S* 
of a face cycle S is a convex polygon in which all vertices of S are drawn on 

the boundary of S* and each apex of S* is occupied by the representation 

of a vertex on S. The polygonal representation S* of S is called extendible 

if there is a convex representation of G, in which S* is the outer face of the 
representation. : 

Thomassen (1980) showed that the polygonal representation S* of S is 
extendible if and only if the following conditions hold. 

1. For each vertex v of G not on S, there are three vertex disjoint paths 
from v to vertices on S. 

2. There are no connected components C in G — S, in which all vertices in 

S' adjacent to a vertex in C are located on the same straight segment P 
ofS”. 

3. There is no edge that connects two vertices on a straight segment of S*. 

4. Any cycle in G that does not share an edge with S has at least three 
vertices with degree greater than 2. 

If the conditions above are satisfied, the following algorithm will correctly 
compute a convex representation of G. 

The input of the algorithm convex-draw is a triple consisting of the graph 
G, a face cycle S of G and an extendible polygonal representation S* of S. 

Algorithm convex-draw (G, S, S*): 
‘ 

1. We assume that G has more than 3 vertices, and some of them do not 
belong to S, otherwise, our problem is already solved. Select an arbitrary 



2. Drawing Planar Graphs 35 

apex vertex v of S* and set G’ = G — v. Divide G’ into the blocks 
B,,... , Bp as shown in Figure 2.7 according to the cut vertices on S*. 

2. Draw each B; convex applying the following procedure: 
a) Let vj and vj41 be the cut vertices that split B; from the rest of G’. 

Then these two vertices have already a fixed position, because they 
belong to S. These vertices also belong to the outer facial cycle S; of 
B;. We now draw all the vertices of S$; that do not belong to S ona 
convex polygon S* inside the triangle given by the vertices v, v; and 
vi+1. Each apex of the polygon is occupied by a vertex of S; which is 
in G adjacent to v. The other vertices of 9; are drawn on the straight 
line segments of S*¥. 

b) Recursively call the procedure convex-draw for all blocks with the 
arguments (B;, S;,.S*). 

V3 

Fig. 2.7. Recursive computation of a convex representation. 

The algorithm for testing whether a 2-connected planar graph has a con- 

vex representation relies on determining the separation pairs of the graph. A 

separation pair is a pair of vertices whose removal disconnects the graph. 

Definition 2.12 (Separation Pair). A separation pair of a graph is a pair 

of vertices {x,y} C V so that there exist two subgraphs G; = (Vi, £1) and 
G2 = (V2, E2) which satisfy the following conditions: 

c Vo Vi Vo, Vill Ve = 12, ut 
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A separation pair is called prime separation pair if at least one of the 

graphs G and Gz is either 2-connected or is a subdivision of an edge joining 

two vertices with degree greater than two. 

In the algorithm for testing convex planarity, the forbidden separation 

pairs (FSPs) and the critical separation pairs (CSPs) play a crucial role. 
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Definition 2.13 (Forbidden Separation Pair). A prime separation pair 
is called a forbidden separation pair (FSP) if it has at least four split com- 
ponents or three split components none of which is a path. 

If a graph has an FSP, then it has no convex representation of the graph. 

Figure 2.8 shows two examples of FSPs. Neither of these graphs has a convex 

drawing. 

y af 

Fig. 2.8. Two examples of FSPs {x,y}. The shaded regions in the drawing on the 
right are subgraphs. 

Definition 2.14 (Critical Separation Pair). A prime separation pair is 
a critical separation pair (CSP) if it has 8 split components of which at least 

one is a path or if it has two split components of which none is a path. 
x 

Ms y 

Fig. 2.9. Two examples for CSPs {x,y}. The shaded regions in the drawings are 
subgraphs. 

The algorithm convex-test works as follows: 

1. Find all separation pairs of G by the linear time algorithm described in 
Hopcroft and Tarjan (1973) for finding 3-connected components. Deter- 
mine the set F of FSPs and the set C of CSPs. 
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2. If F #0, then there is no convex representation of G. If both F and C 
are empty, we can produce a convex representation by choosing any face 
cycle of G as the cycle S that starts the computation. If there is exactly 
one pair in C,, we choose S as a cycle with the CSP on it, depending on 
the structure of the split components. If there is more than one pair in 
the set C, we go to the next step. 

3. We transform each CSP with three split components by removing one 

component that is a path. Then we connect all vertices of all pairs in 

C to a new vertex vs and check if the resulting graph G’ is planar. If 

this is not the case, we know that there is no convex representation of G. 

Otherwise, let Z be any planar representation of G’. Let S be the face 
cycle that surrounds vg in Z after deleting all edges incident to vg. Then 

we know that there is a convex representation of G if we choose S as the 
start cycle for the recursive computation of the algorithm convex-draw. 

This is the case because all CSPs belong to S. 

2.7 Methods Based on Canonical Orderings 

There are several methods for drawing a planar graph that rely on a spe- 

cial ordering of the vertices which is often called the canonical ordering. The 

vertices are ordered and successively added in this special order to a data 

structure that describes a representation of the graph. In some of these algo- 

rithms, the vertices are added one by one while in others a set of vertices can 

be added in one step. Before the execution of each step, the data structure 

always describes a representation of the subgraph induced by the vertices 

that have already been added. 

The vertex orderings used in all these algorithms and the algorithms them- 

selves have several common properties: 

1. The ordering is defined by some embedding of the graph. 

2. The ordering of the vertices defines an ordered partition Vi, V2,... , Ve 

of the vertices in the vertex set V of the graph. The union of the V; is V, 
each V; has at least one vertex and the V; are pairwise disjoint. 

3. In step i of the algorithm, the vertices in V; together with the edges 

that connect them to the vertices in V; U Vo U...U Vj_1 and the edges 

between the vertices in V; are added to the data structure that defines 

the representation. 

4. The set V; has at least 2 elements and there is at least one edge in the 

subgraph induced by V; which is on the outer face of every representation 

1 BP, 
5. Let S; be the data structure after inserting the vertices in V; and let D; 

be the corresponding representation. Then D; is the representation of a 

2-connected graph where all vertices adjacent to vertices in Vj41U...UVp 

are on the outer face of the representation. 
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The last point is not true for the algorithm proposed by Schnyder (1990) 

because in this algorithm, the vertices are inserted inside the triangle given 

by the three vertices in V;. This algorithm (described in subsection 2.7.2) is 
quite different from all others treated in this section, because it computes 

three barycentric coordinates for each vertex before computing the z- and 

y-coordinates. 

2.7.1 The Algorithm of De Fraysseix, Pach, and Pollack ~ 

The first algorithm using a canonical ordering for drawing planar graphs 

with straight edges using polynomial area was described by de Fraysseix 

et al. (1990). The algorithm draws a planar triangulated graph on a grid 
of size (2n — 4) x (n — 2), where n is the number of vertices in the graph. 
The running time of the algorithm is O(nlogn). In the same paper, the 

authors give a linear time and space algorithm for adding edges to a planar 

connected graph to produce a planar triangulated graph. The outer face of the 

representation is always a triangle. This result was later improved by Kant 

(1996), but his algorithm is very similar to the one described in de Fraysseix 
et al. (1990). 

Let G = (V,£) be a triangulated graph with a planar representation D 

where (u,v) € E is on the outer face. Let 7 = (v1,... ,Un) be a numbering 
of the vertices in V with v; = u and v2 = v. We define G; as the subgraph 

induced by the vertex set {v1,...,uj}. The face C; is the outer face of the 

representation D; of G; that we get by removing all representations of vertices 

and edges from D that do not belong to Gj. \ 

Then 7 is a canonical ordering if and only if the following conditions hold 
for all 4<i <n: 

— The subgraph Gj_; is 2-connected and C;_, contains the edge (v1, v2). 

— In the representation D, the vertex v; is in the outer face of G;_; and its 

neighbors in G;_; form a subinterval of the path C;_; with at least two 

elements. 

Such a canonical ordering exists for any triangulated planar graph and 
can be computed in linear time by starting with the representation D and 
successively removing single vertices from the outer face that are not incident 
to any chords of the outer face. It is easy to show that such a vertex always 
exists for a triangulated planar graph. 

The invariants of the actual drawing algorithm are that after step i (in- 
serting the vertex v; and the necessary edges), the following conditions hold: 

— The vertex v; is at position (0,0) and v2 at position (2i — 4,0). 
— If the sequence of the vertices on the outer face is c1,Co,... »Ce With ec; = v1 

and cy, = v2, then we have a(c;) < 2(cj41) forl1<j<k. ° 
— The edge (c;,c;41) has slope +1 or —1 for 1 <j <k. 
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To describe the idea of the drawing algorithm, we define the left-vertex c, 

of vertex v; as the leftmost vertex on C;_; that is adjacent to v;. By leftmost 

we mean that the vertex comes first on the path from v; via Cj_1 to ve that 

does not use the edge (v1,v2). The right-verter c, of v; is defined as the 

rightmost vertex on Cj_; adjacent to v;. From now on we will refer to the 

vertex cj+1 on Cj_, as the vertex directly right of c; on Cj_1. 

When we want to add the vertex v;, we move the vertices cj41 to Cp—1 

one unit to the right while we move the vertices c, to cx two units to the 

right. We also have to move some inner vertices of the representation to the 

right to make sure that the representation remains planar. This is achieved 

by storing for every vertex v on C; a set of dependent vertices that have to 

be moved in parallel with v. When v vanishes from the outer cycle, we add 

v to its own list of dependent vertices and make this updated list the set of 
dependent vertices of the new vertex on the outer cycle. 

We place v; at the intersection of the line with slope +1 starting at c; and 

the line with slope —1 starting at c,. Figure 2.10 shows an example for the 

construction of such a representation. This approach can also be applied to 

non-triangulated graphs by first adding edges to make the graph triangulated 

(augmentation), applying the algorithm, and deleting the additional edges in 

the computed representation. 

PRE 

As ZX 
Fig. 2.10. An example for the straight-line algorithm of de Fraysseix, Pach and 

Pollack. 

2.7.2 The Barycentric Algorithm of Schnyder 

In the same year, Schnyder described an algorithm for solving the same task 

in time O(n) using a grid of size (n — 2) x (n — 2) (Schnyder, 1990). This 

algorithm computes three coordinates for each vertex in the sequence given 

by the same canonical ordering as used by de Fraysseix, Pach and Pollack. In 
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a second step, it computes the actual grid coordinates for the vertices using 

the barycentric coordinates. 

The vertex positions are defined using a barycentric representation of the 

input graph G. 

Definition 2.15 (Barycentric Representation). A barycentric represen- 

tation of G is an injective function 

v EV = (v4, v2, U3) € R? 

satisfying the following conditions: 

1. vi + v2 +03 = 1 for all vertices v. 

2. For each edge {u,v} and each vertex w ¢ {u, v} there is some k € {1, 2,3} 
such that up < we and vz < Wk. 

A barycentric representation of the input graph is computed by first con- 

structing a normal labeling of the angles of the faces of the input graph. 

Since the input graph is triangulated, every face has exactly three angles. 

The angles of each face are numbered 1, 2 and 3 so that the numbers appear 

in counterclockwise order around the face and for each interior vertex, the 

angles around it in counterclockwise order form a nonempty sequence of 1’s 

followed by a nonempty sequence of 2’s followed by a nonempty sequence of 

3’s. Such a labeling can be constructed in linear time. 

For each normal labeling, every edge has two different labels on one end 

while the labels on both sides of the other end are the same. We call the 

repeated label the label of the edge. Thus, each normal labeling defines a 

realizer of the graph. ’ 

Definition 2.16 (Realizer). A realizer of a triangular graph G is a parti- 

tion of the interior edges of G into three sets T;, Tz and T3 of directed edges 

so that for each interior vertex v the following conditions are satisfied: 

1. The vertex v has outdegree 1 in T,, T> and T3. 

2. The counterclockwise order of the edges around v is: leaving in T;, en- 

tering in T3, leaving in To, entering in T,, leaving in T3, entering in 
To. 

Every normal labeling has the following property: For each number in 

{1, 2,3} there is exactly one vertex on the outer face where every adjacent 

angle is labeled 7. For each interior vertex, there is exactly one path leaving 

the vertex where all edges are labeled i for i € {1, 2,3}. This path ends in the 
vertex of the outer face where all adjacent edges are labeled i. These 3 paths 
leaving each interior vertex define 3 regions of the graph and the number of 
faces in each of these regions are the 3 barycentric coordinates of the vertex. 

If we have 3 arbitrary non-collinear points a, 3 and ¥ in the plane and ver- 
tex v has the barycentric coordinates (v1, v2, v3), then drawing every vertex 
v at position vja + v28 + v3y will result in a planar straight-line embedding 
of the graph. 
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2.7.3 The Straight-Line Algorithm of Kant 

Kant used the canonical ordering approach to develop several drawing algo- 
rithms (Kant, 1996). The first one also produces straight-line representations, 

but in contrast to the algorithms mentioned before, it guarantees that the in- 

ner regions are convex for 3-connected graphs, even if it is not the case that 

every face of the graph is bounded by 3 edges. This is not necessarily the 

case for the algorithms mentioned before, because if we want to apply them 
to non-triangulated graphs, we first have to augment the graph by adding 

edges to produce a second graph where every face is a triangle, then produce 

a representation for this graph and finally delete the added edges from the 

final representation. Thus it might happen that not every inner face of the 

representation is convex. The algorithm of Kant has a maximum grid-size of 

(2n — 4) x (n — 2) and runs in O(n) time. Chrobak and Kant (1997) later 
improved this algorithm so that it only uses an area of (n — 2) x (n — 2). 

Since this algorithm is an improved version of the algorithm of de Frays- 

seix et al. (1990), we will only give an overview of the differences. The algo- 
rithm of Kant can also handle 3-connected graphs that are not triangulated. 

This is achieved by defining the canonical ordering not as an ordering of the 

vertices but rather as an ordered partition of the vertices. Let G = (V, E) be 

a 3-connected graph with a planar representation D where v; € V is on the 

outer face. Let 7 = (Vi,... , Ve) be a partition of V and G; the subgraph of 
G induced by V; UV2U...UV;. The face C; is the outer face of the represen- 

tation D; of G; that we get by removing all representations of vertices and 

edges from D that do not belong to G;. 

Then 7 is a canonical ordering if and only if the following conditions hold: 

— V, = {v1, v2}, vi and v2 both lie on the outer face of D and (v1, v2) € E. 
— Vy = Un and Up lies on the outer face of D with (v1, un) € E and un F v2. 

— Each C; for 1 > 1 is a cycle containing (vj, v2). 

— Each G; is 2-connected and internally 3-connected (removing any two inner 

vertices will not disconnect the graph). 

— For each 7 € {2,... ,k — 1} one of the following conditions holds: 

1. V; is a single vertex z belonging to C; and having at least one neighbor 

in G—- G;. 

2. The vertices in V; form a chain (a path where all inner vertices have 
degree 2) (z1,... , 2) on C; where each z; has at least one neighbor in 
G — G;. The vertices z; and z each have exactly one neighbor in Cj_1, 

and these are the only neighbors of the vertices in Vj. 

This canonical ordering can be computed in linear time by starting with 

the representation D and successively removing chains or single vertices from 

the outer face so that the resulting graph G’ is 2-connected. To do this in 

linear time, we have to store and update for each face the number of its ver- 

tices and edges on the outer face and for each vertex the number of adjacent 

faces having a separation pair. 
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To compute the actual representation, the canonical ordering is first trans- 

formed into a leftmost canonical ordering which can be computed in linear 

time from a canonical ordering and is necessary for achieving linear running 

time. The invariants of the drawing algorithm after step 7 (inserting the ver- 

tices of the set V; and the necessary edges) are: 

— v; is at position (0,0) and v2 at position (21 — 4,0). 

— If the sequence of the vertices on the outer face is c1,C2,... ,Ck with C= V1 

and ck = v2, then we have x(cj) < z(cj41) for 1 <j <k. “ 

The only difference in the actual drawing algorithm compared to the 

algorithm of de Fraysseix, Pach and Pollack is that we can now insert several 

vertices at once. These vertices form a chain and we give them the same 

y-coordinate. Figure 2.11 shows an example for the construction of such a 

representation. 

ee 
Fig. 2.11. An example for the straight-line algorithm of Kant. 

2.7.4 The Orthogonal Algorithms of Kant 

In the same paper (Kant, 1996), Kant also gives two algorithms for producing 

orthogonal representations of planar graphs. In an orthogonal representation, 

all edges consist only of horizontal and vertical segments. If every vertex is 

drawn as a point, such a representation can only be used for planar graphs in 

which every vertex has at most degree 4 (4-planar graphs). Since orthogonal 

drawing algorithms are explicitly treated in Chapter 6, we will only give a 

short overview of the two algorithms. The first algorithm draws 3-connected 

4-planar graphs on an n x n grid with at most [$n] +4 bends so that each 

edge has at most two bends. The second algorithm produces an orthogonal 

representation for planar graphs with maximum degree 3 having at most 

|5|+1 bends on a grid of size | }| x | 4]. The running time of both algorithms 
is linear. 

The algorithm for producing orthogonal representations of 3-connected 

4-planar graphs given in Kant (1996) also uses the canonical ordering. Since 

the edges only consist of vertical and horizontal segments, there are exactly 

4 directions from which an edge can attach to a vertex v. They are called 

up(v), down(v), left(v) and right(v). One of these directions is called free if we 
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have not yet attached an edge to it. The idea of the algorithm is to add each 

vertex v in the canonical ordering to the subgraph that is already placed so 

that down(v) is not free and up(v) is free. The algorithm works in two phases. 
In the first phase, we assign the 4 directions of each vertex to the incident 

edges and give the vertices the y-coordinates. We also store for each vertex 

and bend a pointer to its column. During the algorithm, we may have to add 

new columns. In the second phase, we assign z-coordinates to the columns 

and thus indirectly to the vertices and bends of the representation. 

The algorithm in Kant (1996) for drawing planar graphs with maximum 
degree 3 is based on an algorithm for 3-connected graphs with maximum de- 

gree 3. This algorithm is similar to the algorithm of the last paragraph, but 

we can place all vertices of the same partition of the canonical ordering on the 

same y-coordinate. The algorithm is generalized for working on 2-connected 

3-planar graphs using SPQR-trees. We recursively use the algorithm for draw- 

ing 3-connected 3-planar graphs and then merge the representations into a 

representation for the whole graph. This method is again generalized to con- 

nected 3-planar graphs by drawing every 2-connected component so that the 

cut vertex is in the upper-left corner and then merging the representations 

into a representation of the whole graph without introducing new bends. 

2.7.5 The Mixed Model 

Kant also introduces a new method for drawing 3-connected planar graphs 

called the Mixed Model. In this model, each edge is a poly-line which may 

have at most three bends. Each edge consists of at most four parts. The parts 

connected to the vertices may be diagonal, while the two middle parts of each 

edges are vertical and horizontal. The principle of the algorithm is to define 

a set of points around each vertex where the orthogonal edges coming from 

other vertices connect. These points define the boundary of the bounding box 

of the vertex. The points are then connected by straight lines to the vertex 

itself. Each edge consists of a straight line segment between the start vertex 

and a point on the boundary of the bounding box, an orthogonal part with 

at most one bend from the bounding box of the start-vertex to the bounding 

box of the target-vertex and another straight part from the boundary of the 

bounding box of the target-vertex to the target-vertex itself. 

The grid size for this algorithm is (2n — 6) x (3n — 9) and the number of 
bends is at most 5n — 15. An important property of the algorithm is that it 

guarantees that the angle between two edges emanating from the same vertex 

is larger than 2/d radians where d is the degree of the vertex. The minimum 

angle of two edges emanating from the same vertex in a representation is 

called the angular resolution of the representation. Having a large angular 

resolution improves the readability of a drawing. 

Gutwenger and Mutzel have improved Kant’s algorithm for the Mixed 

Model to achieve a grid size of (2n — 5) x (3n — 4) (Gutwenger and Mutzel, 

1998). They also have improved the angular resolution for graphs which are 
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not 3-connected. Since Kant’s algorithm only works for 3-connected graphs, 

graphs that are not 3-connected have to be augmented by adding additional 

edges before the algorithm is applied and afterwards the additional edges 

have to be deleted from the representation. This can lead to an angular 

resolution of sat? where d is the maximum degree in the original graph. 

Since the algorithm in Gutwenger and Mutzel (1998) can be applied directly 

to 2-connected graphs, an angular resolution of 2/d can be guaranteed for 

any planar graph. The running time for both algorithms is linear. 

The algorithm for drawing graph G works in three phases: ) 

1. If the graph is not 2-connected, edges are added to produce a planar 

2-connected graph G’. 
2. A suitable canonical ordering for G’ is computed. 

3. This ordering is used to draw the original graph G. 

For each vertex, we define a set of inpoints and outpoints. The inpoints are 

the points where the edges from vertices that have already been placed arrive 

and the outpoints are the points where the edges to vertices that still have 

to be placed leave. The inpoints and outpoints of each vertex are located on 

the boundary of a roughly diamond shaped bounding box and will be placed 

on grid coordinates. Figure 2.12 shows two examples of bounding boxes. 

Fig. 2.12. Two examples of bounding boxes. 

The point straight down from a vertex as well as the two points straight 

to the right and to the left are inpoints, while the point straight above the 

vertex is always an outpoint. Thus, a vertex with an indegree not greater 

than 3 and an outdegree of at most 1 will have no adjacent diagonal edges. 

These inpoints together with the edges that connect them to the vertex form 

a cross. We denote the four sectors defined by this cross NW, NE,SE and 

SW, as on a compass. 

If there are more than three incoming edges, we distribute the remaining 

inpoints evenly among the sectors SE and SW. If there are at least two 
outgoing edges, they are distributed evenly between the sectors NE and 

NW. If the remaining number of edges is not even, we get an asymmetric 

configuration like in the right picture of Figure 2.12. ; 

When a vertex is placed, we have to avoid overlapping bounding boxes 

except if we can identify the outpoint of an adjacent vertex with the vertex 
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we want to place. If the set V; of vertices in the canonical order we want to 

add in step 7 has only one element v, we place this vertex directly above the 

adjacent vertex which is connected by the inedge going straight down. We 

choose the y-coordinate so that the minimum vertical distance between the 

bounding box of an adjacent vertex and the bounding box of v is 1. We may 

have to shift the adjacent vertices already placed and their dependent sets 

to the right to make room for the edges. If V; has more than one element, all 

the vertices in the set will get the same y-coordinate. Figure 2.13 shows an 

example of a drawing produced with Kant’s original algorithm. Figure 2.14 

shows two drawings computed with the algorithm of Gutwenger and Mutzel 

(1998). 

Fig. 2.13. A drawing produced by the Mixed Model algorithm of Kant. 

Fig. 2.14. Example drawings produced by the algorithm of Gutwenger and Mutzel. 
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3. Drawing Trees, Series-Parallel Digraphs, 

and Lattices 

Matthias Miiller-Hannemann* 

In many applications of graph drawing which have been described in Chap- 

ter 1 one faces graph classes with a special structure. First of all, this means 

that specific layout criteria become possible. Second, the structural proper- 

ties of these classes allow the development of more powerful algorithms with 
respect to running time and layout space requirements. Among the many 

special graph classes which exist, probably most attention has been paid to 

trees and planar graphs. Algorithms and methods for planar graphs in general 

have been given in Chapter 2. This chapter concentrates on three different 

graph classes, namely on trees and series-parallel digraphs (which are, of 

course, even more specialized planar graphs), but also on graphs arising from 

lattices, more precisely, on covering digraphs of lattices. 

In the corresponding sections, we first discuss the required terminology, 

explain the specific layout styles and criteria, and then give a (partial) survey 

of the main results in these areas. The main part of each section presents some 

typical highlight in more detail. In Section 3.1, we describe recent work of 

Chan (1999) on the drawing of ordered binary trees with near-linear area 
bounds. For the drawing of series-parallel digraphs, we also selected some 

very recent work, namely that of Hong et al. (1998) devoted to the display 
of symmetries. Finally, in our section on the drawing of lattice diagrams 

our presentation is application-driven: we sketch the field of formal concept 
analysis as introduced by Wille and co-workers. 

3.1 Trees 

Trees are widely used as a data structure and representation of hierarchies. 
Applications requiring a suitable visualization include among others organi- 
zation charts of companies, search trees, parse trees of computer programs 
or family trees in genealogy. 

3.1.1 Rooted Trees 

We adopt the following standard terminology for trees. A tree is a connected 
acyclic graph. A rooted tree T is a tree with a special vertex r € T, the so- 
called root of T’. For rooted trees, it is common to orient the edges “away 

* The author was partially supported by the special program “Efficient Algorithms 
for Discrete Problems and Their Applications” of the Deutsche Forschungsge- 
meinschaft (DFG) under grant Mo 446/2-3. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 46-70, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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from the root” such that the root is the only vertex with no incoming edge, 

but every other vertex has exactly one incoming edge. In particular, there is 

a unique path from the root to each vertex. For a directed edge (u,v) in a 
rooted tree, the vertex u is the parent of v and v is a child of u. In a rooted 

tree, the depth of a vertex v is the number of edges of the path from v to the 

root. A vertex is called leaf if it has no child. A binary tree is a rooted tree 

where each vertex has no more than two children. 

An ordered tree is a rooted tree with a given ordering of the children of 

each vertex. In an ordered binary tree, the first child of a vertex with two 

children is called the left and the second one is called the right child. If v is 

the vertex of some rooted tree T, then the subtree rooted at v is the subgraph 
induced by all vertices reachable on directed paths starting at v. In case of an 

ordered binary tree and a vertex v with two children, the subtree rooted at 

the left or right child of v is the left subtree and right subtree of v, respectively. 

Free trees are trees without a prespecified root. However, after selecting 

some vertex as a fictitious root they can be handled like rooted trees. A 

typical choice for a root of a free tree is a center, that is a vertex such that 

the height of the resulting rooted tree is minimized. 

Typical requirements for “ideal drawings” of rooted trees involve repre- 

sentations, layout models and constraints of the following kind. 

1. Planar drawings: No two edges cross. 

2. Grid drawings: Vertices have integer coordinates. 

3. Straight-line drawings: Each edge is a straight-line segment, whereas in 

a polyline drawing each edge is a polygonal chain. 

4. (Strictly) upward drawings: A child should be placed (strictly) below its 
parent in the y-direction. 

5. Strongly order-preserving drawings: The line segments from the parent 
to the leftmost child is monotone decreasing in the x-direction, whereas 

the line segment to the rightmost child is monotone increasing, and the 

line segments of all children from a vertex are sorted by angle from left 

to right. 

A layered drawing of a tree is a drawing where a vertex v of depth 7 has 

as y-coordinate the negative of its depth, that is y(v) = —1. Hence, a layer 
is formed by the set of vertices of the same depth. In radial drawings, the 

layers are mapped to concentric circles. In an orthogonal drawing each edge 

is a chain of alternating horizontal and vertical segments. An hv-drawings is 

a planar straight-line orthogonal and upward drawing where additionally for 

every vertex the smallest bounding rectangles of its subtrees do not intersect. 

See Figure 3.1 for examples of a layered, a hv- and a radial drawing. 

3.1.2 Area Bounds 

The area of a drawing of a tree is, as usual, defined as the area of the smallest 

rectangular box with horizontal and vertical sides covering the area under 



48 Matthias Miiller-Hannemann 

Fig. 3.1. Examples of a layered, a hvu-, and a radial tree drawing. ~ 

some resolution convention (for example, that any two vertices have minimum 

distance one). Similarly, the aspect ratio of the drawing is the ratio of the 

length of the longest side to the length of the shortest side of the smallest 

enclosing box. In many cases, there is a trade-off between the required area or 

the achievable aspect ratio and some of the mentioned aesthetic requirements. 

Table 3.1 gives an overview of existing algorithms, the criteria they meet and 

the achieved bounds on the area and the aspect ratio. 

Layered tree-drawings with several nice additional features (straight-line, 

grid, order-preserving, isomorphic subtrees have congruent drawings) require 

O(n?) area and can be found in linear time (Reingold and Tilford, 1981). A 

layered tree-drawing of a binary tree with minimum width can be solved in 

polynomial time by means of linear programming, but if a grid drawing is 

required, the width minimization problem becomes NP-hard (Supowit and 

Reingold, 1983). 
x 

Table 3.1. Upward grid drawings of rooted trees. The columns indicate whether 
the drawings are strictly upward (2), straight-line (3), orthogonal (4), or (strongly) 
order preserving (5), and give bounds for the area (6) and aspect ratio (7). 

tree area ratio reference 

rani t Tilfora (1981 
iloac 

19 
rooted O(n log n) O(teEn) Site 

et al. (1992 

[binary acta arab Ate leen) OG) 1006) 

Pes a omer ot 
[binary ragem [tayo PHenitae| Mier) Chan (1999) 

i ee 
AV 

rescenzi and 

eee ee Pipermno (1095 
O(n*), @(n) O(n?) Garg et al. 

O<n et (1996) 
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An area bound of O(nlogn) is possible if the property of being order- 
preserving is dropped (Shiloach, 1976; Crescenzi et al., 1992). This area bound 
is tight, that is, there is a class of binary trees which requires O(n log n) area 
in any strictly upward planar grid drawing. 

For binary trees, upward, order-preserving polyline drawings also achieve 
the bound O(n log n) (Garg et al., 1996), whereas it is interesting to note that 
upward orthogonal polyline grid drawings (but not order-preserving ones) 
allow even tight bounds of O(n log log n) (Garg et al., 1996). 

Linear-area drawing algorithms are available for AVL-trees (Crescenzi and 

Piperno, 1995) and Fibonacci trees (Crescenzi et al., 1992). Moreover, for any 
rooted bounded-degree tree one can construct a planar upward grid polyline 

drawing with O(n) area but not preserving a given order (Garg et al., 1996). 

We note that these theoretical results usually assume that vertices con- 

sume the same space. However, the drawing area required to display vertex 
labels may be quite different. 

Chan’s Binary Tree Drawing. In the following, we will present recent 

methods of Chan (1999) for binary trees achieving a near-linear area bound 
for planar, straight-line, strictly upward and strongly order-preserving draw- 

ings. The analysis of these methods may highlight the typical kind of reason- 

ing necessary for similar results on area bounds. 

---@--,; 

L\ LN 
Fig. 3.2. Left-right-rules. 

2-4 

Let us consider a recursive procedure for drawing a given ordered binary 

tree TJ with root v. If we have constructed drawings of the left subtree LD and 

the right subtree R, these partial drawings can be combined by two rules as 

follows. In the left rule, we vertically align v with the root of R, place the 

right upper corner of the bounding box of L one unit below and one unit 

to the left of v, and place the upper border of the bounding box of R on 

the same line as the lower border of the bounding box of L. Symmetrically, 

we define the right rule, see Figure 3.2. If we specify which rule to use, we 

immediately get a drawing algorithm. A first and very simple method is given 

in Algorithm 1. 
The validity of the claimed properties of the output specification should 

be obvious. It is also immediate that the height of such a drawing is at most 

n = |T|; a bound on the width, however, is not obvious. 
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Algorithm 1: Simple binary tree drawing. 

input: an ordered binary tree T with root v 

output : a straight-line planar, strictly upward and strongly order preserv- 
ing drawing of the binary tree T 

begin 
if |T| < 1 then return trivial drawing; 
L < left subtree of T; 

R < right subtree of T; 
draw L and R; ; 
if |L| < |R| then ~ 

combine drawings using the left rule; 

-else 
|_ combine drawings using the right rule; 

end 

A reformulation of this algorithm in a slightly different way makes the 

analysis of the required width more accessible. 

Algorithm 2: Generic binary tree drawing. 

input: an ordered binary tree T with root v 

output : a straight-line planar, strictly upward and strongly order preserv- 
ing drawing of the binary tree T 

begin 
if |T| < 1 then return trivial drawing; 
determine a path P = (vo = 1,v1,..., Ux) from the root to some '22! ux; 

\ for i1=0 tok do 
|_ draw the subtree rooted at the sibling of 2; 

combine the drawings by applying the left and right rules at nodes of P 
such that all nodes of P are vertically aligned; 

end 

Algorithm 2 is a generic version which is identical to Algorithm 1 if the 

greedy path P is chosen as follows: Let v;, L;, Rj be the root, left and right 

subtree of T;, respectively. If |R;| < |L;|, then set T;41 = Li, and set Tj41 = 

R;, otherwise. See Figure 3.3 for an illustration. 

Lemma 3.1. For any two different subtrees a and 3 of the greedy path, either 

(i) |a| < n/2 and |A| < (n — |al)/2 or (i) |B| < n/2 and |a| < (n — |6|)/2. 
If we denote the width of a drawing for T by W(T), then 

W(T) =W(a)+W(8)+2 

for some left subtree a and some right subtree @ of the,path P. With 
Lemma 3.1 we get the following recurrence on the maximum width W(n) 
for trees of size n: 
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Fig. 3.3. Chan’s generic algorithm (with the greedy path). 

W(n) < max (W(n1) + W(n2) + 2). 
~ nisn/2, n2<(n—ni)/2 

It can be shown that this recurrence solves to W(n) = O(n°-®*), 

Near-Linear Drawings. A further improvement on the area bounds can 

be achieved by extending the left and right rules. The extended left rule 

applied at the root v of T translates the bounding box of the right subtree R 

horizontally by an arbitrary amount, as long as the x-coordinate of the root 

of R is not less than the z-coordinate of v. The extended right rule is defined 

symmetrically. Clearly both rules still guarantee straight-line planar, strictly 

upward and strongly order preserving drawings. 

Consider the greedy path P = (vo, v1,...) and subtrees T; rooted at v; as 

defined above. For some fixed parameter A to be chosen later, let k be the 

largest index such that |T;,| > n—A. Suppose that v, is a left (right) child. Let 
P’ be the subpath (vo, v1,...,U%) and P” be the leftmost (rightmost) path 
from vz41 to a leaf. The generic Algorithm 2 applied on the concatenation 

of the two paths P’ and P” leads to the improved Algorithm 3, shown in 
Figure 3.4. 

For the analysis we may assume that v x is a left child. Then the width 

W (T) is given by 

W(T) = max{W(a) + W(8) + 2,W(y) + 1}, 

where a and £ are left and right subtrees of P’, respectively, and ¥ is a right 

subtree of P”. 

Lemma 3.2. Let P’ and P” be defined as above. Then for any subtree a of 
a vertex of P’, |a| < A. For any subtree y of a vertex of P”, |\y| <n—A. 

Hence, for any choice of A we get the following recurrence on the maximum 

width W(n) for trees of size n: 

W(n) < max{2W(A) +2, W(n— A) +1}. 
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From that, one can obtain 

W(n) < 2W(A) + O(n/A). 

If we set the parameter A = n/ 21/€ for a fixed € > 0, the recurrence solves 

to W(n) = O(21/«n‘). This implies an area bound of O(n'**). However, the 

best result is achieved for a non-constant value € = 1/,/logy 7 which leads to 

the following theorem. 

Theorem 3.3 (Chan 1999). Any binary tree of size n admits a straight- 

line planar, strictly upward and strongly order-preserving drawing of height 

at most n—1 and width O(4V 1°82"). 

A similar result is also possible for ordered trees of arbitrary degree: 

Theorem 3.4 (Chan 1999). Any ordered tree of size n admits a straight- 

line planar, strictly upward and strongly order-preserving drawing with an 

area of O(n4vV 71082”), 

Fig. 3.4. Chan’s improved algorithm (extended left-right-rule). 

3.2 Series-Parallel Digraphs 

Series-parallel digraphs arise in the analysis of electrical networks, and they 
appear in flow diagrams, dependency charts, and PERT networks. This sec- 

tion first reviews basic facts about such graphs, and then describes algorithms 

for upward straight-line drawings. In the main part we sketch a recent method 

for symmetry drawings. 
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Algorithm 3: Improved binary tree drawing. 

input : an ordered binary tree T with root v, a parameter A 
output : a straight-line planar, strictly upward and strongly order preserv- 

ing drawing of the binary tree T 

begin 
if |7| < 1 then return trivial drawing; 
determine the greedy path P = (vo = r,v1,...,ve) from the root to 
some leaf ve; 

let k be the largest index such that |7;| > n—_ A for the subtree rooted 
at Uk; 

if vz is a left child then 
let P’ = (vo, V1, bs ie sUe)i 

let P” the leftmost path from vz41 to a leaf: 
draw the subtrees of P’ and P”; 
combine the drawings by applying the left and right rules at 
V0, V1,.-+,Uk—2 Such that vo, v1,...,Ue—1 are vertically aligned; 
apply the left rule at nodes on P” and vg such that these nodes are 
vertically aligned as well; 

apply the extended left rule at v~,_1 such that vu, is aligned with the 
left side of the bounding box of the entire drawing of 7; 

else 

“symmetric case”, choosing the rightmost path from v, and replac- 
ing right for left; 

end 

3.2.1 Terminology and Basic Facts 

Series-parallel digraphs (more precisely, sometimes also called two-terminal 

series-parallel multidigraphs) are defined recursively as follows. A digraph 

consisting of two vertices, a source s and a sink t, joined by a single edge is 

a series-parallel digraph. If G; and G2 are series-parallel digraphs, so are the 

digraphs constructed by each of the following operations: 

1. The parallel composition: Identify the source of G; with the source of G2 
and the sink of G; with the sink of Go. 

2. The series composition: Identify the sink of G; with the source of Go. 

There exist other notions of series-parallel digraphs (see e.g. Valdes et al. 
1982), but to our knowledge only the given one has been studied for spe- 

cialized drawing algorithms. Note that every series-parallel digraph is acyclic 

and planar. Drawing algorithms for series-parallel digraphs usually assume 

that the given graphs are simple. 

Decomposition and Recognition. Given an arbitrary multidigraph G, a 

series reduction is an operation which can be applied to the arcs (u, v), (v, w) 
if v has in-degree and out-degree one. In such a case this operation deletes v 

and both incident arcs from G and reinserts a new arc (u,w). In a parallel 

reduction, exactly one arc of a pair of parallel arcs is deleted. 
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1 TIL 
Fig. 3.5. Example of a canonical decomposition tree for a series-parallel digraph. 

X 

Based on reductions, series-parallel digraphs can also be characterized by 

the following lemma. 

Lemma 3.5. A graph is a series-parallel digraph if and only if it can be 

reduced to the one-edge series-parallel digraph by a sequence of series and 

parallel reductions. 

Using this lemma, one obtains an efficient algorithm for the recognition of 

series-parallel digraphs. Given a graph G, one repeatedly applies series and 

parallel reductions until no reduction is possible. It is a nice property of series- 

parallel digraphs that the result of such a reduction sequence is independent 

of the order in which the specific reductions are applied. 

A series-parallel digraph G can be represented in a natural way as a binary 

decomposition tree T’, which is obtained as a by-product of such a reduction 

sequence. The decomposition tree contains S-nodes, P-nodes and Q-nodes 

and is recursively defined as follows. If G is a single edge, then T consists of a 

single @-node. If G is a series composition of G; and G2 with decomposition 
trees TJ; and T2 and roots rj and ro, respectively, then T consists of an S- 

node root with left child r; and right child ro. Similarly, if G is a parallel 
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composition of G; and G2 with decomposition trees T; and T> and roots r; 

and r2, respectively, then T consists of a P-node root with children r; and 

ro (in an arbitrary order). 

Valdes et al. (1982) describe how to recognize and to build up a binary 

decomposition tree of a series-parallel digraph in linear time. It is straightfor- 

ward to get a canonical decomposition tree (no longer binary) by contracting 

each connected group of S-nodes and each connected group of P-nodes into 

a single node. Such a tree is unique up to reordering the children of each 

P-node. See Figure 3.5 for an example. 

In the following we assume that the decomposition tree JT’ of a series- 

parallel graph G is given as part of the input for the drawing algorithm. 

3.2.2 Upward Straight-Line Drawings 

Fixed Embedding Requires Exponential Area. We start with the nega- 

tive result that upward straight-line drawings of series-parallel digraphs which 

preserve a given embedding may require exponential area. Consider the re- 

cursively defined class G,, of series-parallel digraphs as shown in Figure 3.6. 

n+l 

Fig. 3.6. The class G,, of series-parallel digraphs leading to exponential area 

bounds. 

Lemma 3.6 (Bertolazzi et al. 1994a). There exist embedded series- 

parallel digraphs such that any upward straight-line drawing that preserves 

the embedding requires exponential area, namely 92(4") under any resolution 

rule for the class Gy. 

Linear-Time Drawings with O(n”) Area. However, if one allows small 

changes in the embedding much better area bounds are possible. In a so- 

called right-pushed embedding, a single edge which forms a component of a 

parallel composition is always embedded on the right side. (Since we assume 

that the series-parallel digraphs are simple, there is at most one single edge 

component in a parallel composition.) 

Bertolazzi et al. (1994a) describe an algorithm for right-pushed embed- 

dings. The A-drawing I’ of a series-parallel digraph is inductively defined 
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inside a bounding triangle A(I’) that is isosceles and right angled. The hy- 

potenuse of A(J”) is a vertical segment, and the other two sides are on its 

left. See Figure 3.7 for a sketch of the construction for the base case, a series 

composition and for parallel compositions (from left to right) in the corre- 

sponding Algorithm A-SP-Draw. More details can be found in the book of 

Di Battista et al. (1999). 

Theorem 3.7 (Bertolazzi et al. 1994a). Let G be a series-parallel di- 

graph with n vertices. The algorithm A-SP-Draw yields a strictly upward 

planar straight-line grid drawing of G with O(n?) area such that isomorphic 

components of G have drawings congruent up to a translation. This algorithm 

can be implemented to run in linear time. 

Fig. 3.7. Construction steps in Algorithm A-SP-Draw (sketch): base case, series 
composition, parallel composition (general case; the edges (s1, u) and (v, ti) are the 
rightmost edges incident on the source and sink of G1), and parallel composition 
with a right-pushed single edge (from left to right). 

Extension to Dynamic Drawings. We also mention extensions to dy- 

namic drawings. For more information on dynamic drawings in general see 

Chapter 9. 
Cohen et al. (1995) consider a framework for dynamic graph drawings 

where an implicit representation of the drawing of a graph is maintained 

such that the following operations can efficiently be performed. 

— Update operations, i.e., insertion and deletion of vertices and edges or re- 

placement of an edge by a graph. ' 

— Drawing queries, which return the drawing of a subgraph S of a graph G © 
consistent with the drawing of G. 
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— Point location queries, which return the vertex, edge or face containing a 

given point p in the subdivision of the plane induced by the drawing of G. 

— Window queries, which return the portion of the drawing inside a query 
rectangle. 

Within this framework the algorithm A-SP-Draw can be modified such that 

updates take O(logn) time and O(n) memory space, drawing queries take 
time O(k+log n) for a series-parallel subgraph and O(k log n) for an arbitrary 
subgraph of size k, point location queries take O(log n) time, and window 
queries O(k log” n) time. 

3.2.3 Display of Symmetries 

Very recent work studies how to draw series-parallel digraphs with as much 

symmetry as possible (Hong et al., 1998, 1999a). 

An automorphism of an undirected graph is a permutation of the vertex 
set which preserves adjacency of vertices. For a directed graph G = (V, E£), 

we will consider two kind of automorphisms. A direction preserving automor- 

phism is a permutation p of the vertex set V such that (u,v) € E if and only 

if (p(w), p(v)) € E, whereas in a direction reversing automorphism we require 
that (u,v) € EF if and only if (p(v), p(u)) € E. The set of all automorphisms 
(direction preserving and reversing) forms the automorphism group of G. 

In general, the problem of finding an automorphism group of a graph 

is isomorphism complete, i.e., as hard as testing whether two graphs are 

isomorphic. The exact complexity status of this problem is open, namely, it 

is neither known to be NP-complete nor are polynomial algorithms available. 

In our context, we are only interested in those automorphisms which can 

be represented geometrically as a symmetry of an upward planar drawing. 

The corresponding groups are called upward planar automorphism groups. 

Based on earlier work of Manning (1990) and Lin (1992), Hong et al. show 
that only a few different automorphism groups occur for upward planar draw- 

ings. Examples are shown in Figure 3.8. 

Lemma 3.8 (Hong et al. 1999a). An upward planar automorphism group 
of a series-parallel digraph is either 

— trivial, or 

— {1, p} where p is either vertical, horizontal, or a rotation of 180 degrees, 

or 
— {1, p, q, r} where p is of type vertical, q of type horizontal, andr a rotation 

of 180 degrees. 

The detection of upward planar automorphisms involves the following steps: 

1. Construct the canonical decomposition tree. 

2. Check for existence of horizontal automorphisms. 

3. Check for existence of vertical automorphisms. 
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I i} 

! 1 

Fig. 3.8. Examples of automorphism groups: vertical, horizontal, rotational, and 

group of size 4 (from left to right). 

4. Check for existence of rotational automorphisms. 
5. Compute the mazimum upward planar automorphism group. 

Detection of Vertical Automorphisms. We will only sketch the detec- 

tion of vertical automorphisms. The detection of horizontal and rotational 

automorphisms is similar, but slightly more complicated. For details we refer 

to Hong et al. (1999a). 

Lemma 3.9 (Hong et al. 1999a). Suppose that G is a series-parallel di- 

graph, where the children of the root in the canonical decomposition tree rep- 

resent Gi,...,Gx, and a@ is a vertical automorphism. If G is a series com- 

position, then a fixes each one of Gi,...,Gx. If G is a parallel composition, 

then a fixes at most one of Gi,...,Gr. 
x 

An automorphism partition of a set G of graphs is a partition of G into 

subsets G1,Go,...,Gm such that two graphs are in the same subset if and 

only if they are isomorphic. The sets G; are called isomorphism classes. The 

partition can be expressed by assigning an integer label code(G) to every 

graph G € G such that, for each G,G’ € G, code(G) = code(G’) if and only 
if G is isomorphic to G’. 

An adaption of a tree isomorphism algorithm (Aho et al., 1974), applied 

to the canonical decomposition tree of a series-parallel digraph, allows an 

efficient labeling procedure (Algorithm 4) which yields the following lemma. 

Lemma 3.10 (Hong et al. 1999a). Suppose that u,v are nodes on the 
same level in the canonical decomposition tree of a series-parallel digraph 

G. Then the component represented by u is isomorphic to the component 

represented by v if and only if code(u) = code(v). 

See Figure 3.9 for an example of such a labeling of a canonical decompo- 
sition tree. 

‘ 

Theorem 3.11 (Hong et al. 1999a). Suppose that G is a series-parallel 
digraph. 
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Algorithm 4: Vertical labeling of a canonical decomposition tree. 

input : a canonical decomposition tree T of a series-parallel digraph 

output: a vertical labeling of T 

begin 
initialize the tuples for each leaf u of T with tuple(u) = (0); 
for each level i, from the maximum level to the root level do 

for each internal node u of T at level i do 
set tuple(u) = (code(v1), code(v2),...,code(v~)), where the chil- 
dren of u are v1, V2,...,Uk, from left to right; 

if u is a P-node then 
| sort tuple(u); 

let S be the sequence of tuples for the nodes on level 7. Sort S 
lexicographically; 
for each node u at level 1 do 

set code(u) = 7 if u is represented by the j-th distinct tuple of 

the sorted sequence S; 

end 

c= c=1 c=2 

(1,1) t=(1,1) t=(1,2,1) 

P + c=2 

(1) 
c=l c=l cl cl 

iil 
c=l1 c=l c=l c=l 

t=0 t=0 t=0 t=0 

Fig. 3.9. Example of the vertical labeling of a canonical decomposition tree (the 

code of a component is abbreviated with c, an auxiliary tuple with ft). 
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1. If G is aseries composition of G1,...,G,, then G has a vertical automor- 

phism if and only if each one of Gy,...,Gx has a vertical automorphism. 

2. Suppose G is a parallel composition of Gi,...,Gx. Consider the auto- 

morphism partition of Gi,...,Gk. 
a) If there is more than one isomorphism class with an odd number of 

elements, then G has no vertical automorphism. 

b) If all automorphism classes have an even number of elements, then 

G has a vertical automorphism. 

c) If one isomorphism class has an odd number of elements,.then G has 
a vertical automorphism if and only if the component of the odd size 

automorphism class has a vertical automorphism. 

Proof. Just look at Figure 3.10. Note that for an isomorphic pair G;,G;, we 

can construct drawings D; of G; and D; of G; such that D; is a mirror im- 

age of D,;. By applying a “croissant-shape”—transformation (see Figure 3.11) 

to both drawings, isomorphic pairs can be arranged symmetrically on the 

opposite sides of a vertical line as in Figure 3.10. 

Fig. 3.11. The “croissant” transformation. 
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From Theorem 3.11 a recursive checking algorithm for vertical automor- 
phisms is immediate, see Algorithm 5. 

Algorithm 5: Checking for a vertical automorphism. 
input : a canonical decomposition tree T of a series-parallel digraph with 

root u and a vertical labeling 
output: TRUE if T has a vertical automorphism, and FALSE otherwise 

begin 
if u is a Q-node then 
L. return TRUE; 

if wu is a S-node then 
if vertical-check(v) == TRUE for every child v of u then 
|. return TRUE; 

else 

|. return FALSE; 

if u is a P-node then 
partition the children of u into classes with equal values of code; 
if all the sizes of the classes are even then 
|_ return TRUE; 

if more than one class has odd size then 
| return FALSE; 

if only one class has odd size then 

choose some node v in this odd sized class; 
return vertical-check(v); 

end 

Note that a topological embedding of a series-parallel digraph is defined 

by the order of the P-nodes in the canonical decomposition tree. It is straight- 

forward to adjust the subroutines of the checking algorithm for the maximum 

upward planar automorphism group such that it reorders the P-nodes corre- 

sponding to that automorphism. 

It remains to explain how to construct a symmetric drawing based on such 
an embedding. We will sketch the construction for two layout styles, namely 

visibility drawings and bus-orthogonal drawings. In a visibility drawing, each 

vertex is mapped to a horizontal and each edge to a vertical line segment. For 

a series-parallel digraph, we may also require that the vertical line segment for 

the source is a horizontal translation of the vertical line segment for the sink. 

The drawing for a graph with a single edge is obvious. In general, the visibility 

drawing is constructed recursively by series and parallel compositions, as 

illustrated in Figure 3.12. 

The principle of bus-orthogonal drawings is to connect neighboring ver- 
tices via a so-called bus. A bus is a horizontal line segment just below or 

above a vertex. In a bus-orthogonal drawing of a series-parallel digraph, the 
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Fig. 3.12. Recursive construction of visibility drawings for series-paraltel digraphs: 
Given two visibility representations (first two figures), a representation for a series 
composition (third figure) is obtained by “stretching” the narrower and identify- 
ing the sink of the first with the source of the second, whereas a representation 
(right figure) for a parallel composition is constructed by “stretching” the shorter 
representation and identifying the sources and sinks. 

source s has a bus just above, the sink t has a bus just below, and all other 

vertices have exactly one bus above and one below. Each vertex is connected 

to its bus(ses) by vertical line segments, and neighboring vertices share a 

bus. An easy transformation yields bus-orthogonal drawings from visibility 

drawings, see Figure 3.13. 

Fig. 3.13. Transformation from visibility drawings to bus-orthogonal drawings. 

3.2.4 Three-Dimensional Drawings 

Finally, we report on an algorithm for a bus-orthogonal drawing in three di- 
mensions which minimizes the footprint (Hong et al., 1999b). The footprint 
of a three-dimensional drawing is its projection into the xy-—plane, its size is 
measured by the minimum enclosing rectangle. A layout has minimal foot- 
print if it has size X x Y, and there is no layout with footprint of size X’ x Y’ 
where. X,Y << yandy x,y) = UX). 

Hong et al. (1999b) developed a dynamic programming approach which 
yields a minimum size footprint layout. The basic idea is that for each par- 
allel node in the canonical decomposition tree we have the freedom either to 
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align all its children with the x-axis or with the y-axis. By a rotation of a 
component by 90° at the z-axis, it might be possible to reduce the footprint, 
see Figure 3.14. In contrast, the extent in the z-axis is fixed by the height 
of the canonical decomposition tree. Hence, in order to minimize the foot- 
print one has to choose for each parallel composition the alignment to either 
the x- or y-axis. The mentioned dynamic programming algorithm traverses 
the canonical decomposition tree in a bottom-up fashion and computes the 
minimal layouts for each node of the decomposition tree from the minimal 
layouts of its children. For the details, we refer to Hong et al. (1999b). 

‘Fheorem 3.12 (Hong et al. 1999b). There is a dynamic programming 
algorithm which computes a minimum size footprint layout of a series-parallel 
digraph in time O(n?). 

Z 

Pe 
Xx 

Fig. 3.14. Two- and three-dimensional bus-orthogonal drawings, the latter after 
rotations as indicated on the left side. 

3.3 Lattices 

The theory of ordered sets and lattices has become a fundamental discipline 

in modern mathematics. In many cases a diagram generated from an abstract 

representation of a lattice (or an ordered set) is an important aid for the un- 
derstanding of its structure. Therefore, researchers quite often use diagrams 

to gain structural insights about lattices. Besides these inner-mathematical 

applications, the practical need for drawings arises in scheduling, in graphical 

analysis of statistical data, and formal concept analysis, where “the diagrams 

should not only reflect the structure of a concept lattice but also unfold views 

for interpreting the data” (Wille, 1989). 
Lattices are usually represented by hierarchically layered drawings. A 

complete chapter of this book (Chapter 5) is devoted to general methods 
for layered drawings. These methods usually take arbitrary digraphs as in- 

put, but are, of course, weil-suited for acyclic digraphs related to ordered 
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sets. In this section we will only introduce the general concept of a diagram 

for ordered sets but then specialize our treatment to results for lattices. In 

particular, we discuss in more detail the relationship of lattices and planarity 

in Subsection 3.3.2, and the application of lattices in formal concept analysis 

in Subsection 3.3.3. 

3.3.1 Order Diagrams 

Let (P,<) be a partially ordered set (poset) with ground set P and order 
relation < which is a reflexive, antisymmetric and transitive binary relation 

on P. Distinct elements a,b € P are comparable when either a < b or b <a. 

For two elements a,b € P, we say b covers a and a is covered by b (written 

as a < b) ifa <b anda <c< b implies c = a. We also call a a lower cover 

of b, and 6 an upper cover of a. In addition, (a,b) is called a covering pair. 

The line diagram (Hasse diagram) or simply diagram of a poset draws 

the elements of P as small circles (vertices) in the plane such that if a,b € P, 

and a < b then a is drawn with smaller y-coordinate than b. There is an 

edge between a and 6 if and only if a < b. In other words, the diagram is an 

upward planar drawing of the covering digraph of a poset which contains the 

poset elements as vertex set and the covering pairs as directed edges from 

the lower to the upper covers. See Figure 3.15 for an example of a diagram. 

Posets and their diagrams are closely related to each other. 

Fig. 3.15. Example of a Hasse diagram. 

Lemma 3.13 (Uniqueness of the diagram). A finite partially ordered 
set 1s determined up to isomorphism by its diagram. 

When Q Cc P, the set {p € P: q < pin P for every q € Q} is the set of 
upper bounds for Q. Dually, the set {p € P: q > pin P for every q € Q} is 
the set of lower bounds for Q. If it exists, the unique smallest upper bound of 
a,b € P is called the join aVb, and similarly, the unique greatest lower bound 
of a,b € P is the meet a A b. A poset is a lattice if for every two elements 
a,b € P the join a V b and the meet a / b exist. 

Figure 3.16 shows all lattices with five elements. 
4 
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peck) 
Fig. 3.16. Diagrams of lattices with 5 elements. 

Criteria for Good Diagrams. To emphasize the ordering relation, edges 

in a diagram are usually drawn as “steep” as possible. An obvious goal is 

also to draw the diagram without crossings, if possible. In addition, whatever 

symmetries exist should be made “apparent.” 

Apart from that, general criteria for good drawings of lattices are hard 

to find. To see that such criteria depend on its intended use, consider the 

example of the lattice 24 (2" denotes the lattice of all subsets of an n-element 
set ordered by inclusion). Figure 3.17, taken from Rival (1985), shows four 

different drawings of this lattice, the first is a drawing as the direct product 

2! x 23, the second as the direct product 2? x 27, and the other two drawings 
are “merely” symmetric drawings. Obviously, there may be a conflict between 

the goals of highlighting symmetry and putting emphasis on certain structural 

properties. 

Fig. 3.17. Four different drawings of the lattice ot, 
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3.3.2 Planar Lattices 

Special attention has been paid to planar lattices. A lattice is called planar 

if it has a planar diagram. 

A first characterization of planar lattices needs some more definitions. 

A poset is a chain (also a totally ordered set or a linearly ordered set) if 

each pair of elements of the ground set is comparable. A linear extension 

of a poset (P,<) is a chain (P, <’) defined on the same ground set which 

respects all comparabilities of the relation <. The (order) dimension of a 

poset (P, <) is the least t for which there exists a family {Jip, Lod. sighed ot 

linear extensions of P such that P = L;N L2N--:-ML. Baker et al. (1971) 

gave a characterization in terms of the dimension of a lattice. 

Theorem 3.14 (Baker et al. 1971). A lattice is planar if and only ap te 

has order dimension at most two. 

In contrast, Kelly and Rival (1975) characterized finite lattices in terms 

of forbidden configurations, so-called obstructions. They showed that a cer- 

tain family £ of non-planar lattices is a minimal obstruction set for planar 

diagrams. 

Theorem 3.15 (Kelly and Rival 1975). A finite lattice is planar if and 

only if it contains no subset isomorphic to a member of the family L. 

An necessary and sufficient condition for planar lattices that can be tested 

efficiently has been given by Platt (1976). 

Theorem 3.16 (Platt 1976). A finite lattice is planar if and only if the 

undirected covering graph plus an additional edge from the maximum to the 

minimum element is planar. 

In addition to planarity, one has studied the criterion to use as few slopes 

as possible for the drawing of the covering edges. For a while, it was thought 

that the minimum number of slopes needed to draw a lattice depends only 

on the maximum number of upper covers (the maximum up-degree) and the 

maximum number of lower covers (the maximum down-degree) among the 

elements of the lattice. Of course, for any ordered set, the maximum of the 

up-degrees and the down-degrees is a lower bound on the number of slopes 

needed. However, the conjecture that this is the actual number of slopes 

needed has been disproved for lattices in general (Czyzowicz et al., 1990; 
Czyzowicz, 1991). In contrast, nice positive results have been found for planar 
lattices. 

Theorem 3.17 (Czyzowicz et al. 1990). Every finite planar lattice with 

maximum up-degree and down-degree two has a planar, two-slope diagram. 
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3.3.3 Concept Lattices 

We conclude our section on lattices with an application of graph drawing 
for the visualization of formal concepts. The description is based on Wille 
(1997), Wille (1989), Vogt and Wille (1995), Ganter and Wille (1999), and 
Vogt (1996). 

A formal contezt is a triple (G, M, R) where G is a set of objects, M a set 
of attributes, and R a relation between objects and attributes. 

Such a context is often described as a cross table, see Table 3.2. We take 

the example of the context Living Beings and Water from Wille (1997) and 
Ganter and Wille (1999). 

For formalizing concepts within a context we define the following deriva- 
tion operators: 

At> A’:={m€ M | gRm for all g € A} for ACG, 

Bw B’:={g€G| gRm for allm € B} for BC M. 

By means of the derivation operators, we define the formal concept of a 
context (G, M, R) as a pair (A, B) with AC G,B C M and A’ = B,B’ =A. 

A is called the extent, B the intent of the concept. Note that for each A C G, 

the set A’ is the intent of some concept, because (A”, A’) is always a concept. 

The set A” is the smallest extent of a concept which contains A. In the given 
example (Table 3.2), we have 19 formal concepts in total, among them the 

concepts MG 2, 3}, {a, b, g}) and ({2, 3}, {a, b, 9, h}). 

The subconcept-superconcept-relationship describes the order relation be- 

tween concepts: 

(Ai, Bi) < (Az, Bo) : Ai C Ao( Bi D Be). 

The set of all concepts of a context (G, M, R) together with the subcon- 
cept-superconcept-relation is the concept lattice of (G, M, R). 

Construction of the Concept Lattice. To build the concept lattice from 
a given context one has to determine all concepts first. An efficient approach 

computes the extents of all concepts in a certain order. 

For simplicity we assume that G = {1,2,...,n}. A subset A C G is 
smaller in the so-called lectic order as a set B # A, if the smallest element 

for which A and B differ from each other belong to B. More formally, 

A<B:8 Jienya AN{1,2,...,4-1} = BN {1,2,...,4- 1}. 

Suppose that we are able to compute for any given set A C G the smallest 

extent of a context which is larger than A with respect to the lectic order. 

Then there is an obvious algorithm to compute all extents. The smallest 
extent is 0”. We get all other extents if we determine successively from the 
last found extent the next one in lectic order. The process terminates with 

the largest extent, namely G. 
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To do that, we define for A,B C G,ie G, 

Ase, Bide B\ AandAN {1/2 ei Bolen 2k, 

A@i:=((AN{I1,2,...,4-—1})U {i})”. 

Table 3.2. Cross table of the context ‘Living Beings and Water’ from Wille (1997). 

ese os el ce ed ee eee ea 
[P| leech sy | XO Xe) eb eee rae 
Fa ae ee PP es a we 
[235 [ettog eeaee ENA] E XS ae eee es 
Ay ele eee | LX seal ML on se ee 
| Silispikesweed: |X. ]iXsls ule Xi lee e] Kies ele | 
16 4] Sree ee | 5] EX es || ae a 
7 Me beat weit |X of Wes jn oes [5 AS fon ee ed Bs 
8 || amaze Seve ala Nol GN EX EXCL Xylene 

= needs water to live 

= lives in water 

= lives on land 

= needs chlorophyll 

two germ-layers 

= one germ-layer 

= can move about 

= has limbs 

=  suckles its offspring . —~ Fro roao oe 

I 

Theorem 3.18. Let A C G be a set, and let i be the largest element of G 
with A <; A®i. Then A@i is the smallest extent that is larger than A with 
respect to the lectic order. 

Hence, for a given set A C G we can find the next extent in lectic order in 
the following way. We successively test for all elements i € G\ A, starting with 
the largest element and continuing in decreasing order, whether A <; A @i. 
As soon as this condition becomes true, we get A @i as the next extent. 

Labeled Line Diagrams. The concept lattice of the context in Table 3.2 is 
represented in Figure 3.18 as a labeled line diagram. An element labeled by an 
object g represents the concept with the smallest extent containing g, whereas 
an element labeled by an attribute m represents the concept with the smallest 
intent containing m. The extent of each concept can be obtained by collecting 
all objects which can be reached by descending paths, and conversely, the 
intent can be obtained dually by collecting all attributes which can be reached 
by ascending paths. 
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needs water to live 
() 

can move about 
lives on 

suckles its 

offspring 

Fig. 3.18. Diagram of the concept ‘Living Beings and Water’. 

The automatic drawing of concept lattices is seemingly still a great chal- 

lenge, as formal criteria like edge crossing minimization usually do not exhibit 

the lattice structure sufficiently. According to Stumme and Wille (1995), best 

results have been achieved by an interactive drawing method using geomet- 

rical heuristics and a lot of experience. Empirically it has been proved useful 
to develop the diagram from the top downwards (or vice versa) using lists 

of upper (lower) covers for the elements of the lattice. They also proposed 

two heuristics, the parallelogram rule and the straight line rule. The parallel- 

ogram rule recommends to place a new element such that, together with the 

introduced lines, it completes a parallelogram with three previously drawn 

elements. The straight line rule simply tries to place a new element such that 

the induced line segments extend pre-existing ones. 

Nested Diagrams. Even a context of moderate size may have a concept lat- 

tice with many covering pairs which makes the diagram hard to read. Nested 

diagrams have been introduced to reduce the number of lines to be drawn, 

see Figure 3.19. The idea of nested diagrams is to factor out parts of the 

lattice into “blocks” (enclosed by rectangular boxes) with the understanding 
that a single line connecting two such blocks corresponds to parallel lines 

between identical pairs of the two blocks, whereas a double line means that 

all maximal elements of the lower block are pairwise covered by the minimal 

elements of the upper block. 

We can obtain a nested line diagram from a formal context by first split- 

ting the set of attributes into two parts, that is M = M, U Mg. The subsets 

M,, M2 are not necessarily disjoint but they should bear a certain meaning 

to allow an insightful interpretation. In a second step, the line diagrams are 

drawn for the two contexts C; = (G, Mi, RN (G x M;)), for 1 = 1,2. Finally, 
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one takes one of the two line diagrams as the outer structure, enlarges the 

representation of each of its elements to a rectangular box, and inserts the 

other line diagram into each of the enlarged boxes. This way, one gets a rep- 

resentation of the direct product of the concept lattices of the contexts Cj, 

and the concept lattice of the original context can be embedded into this 

direct product. 

The drawing tool TOSCANA of Vogt (1996), for example, makes extensive 
use of nested diagrams. 

Fig. 3.19. Nested diagram of a lattice. 
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Ulrik Brandes 25\0 On AS 

Graph layout methods described in previous chapters were based on struc- 

tural characteristics of the graph, or a preprocessed version of the graph. 

Often, such knowledge is not provided. In this chapter, we take a look at 

a class of methods applicable to general graphs, without prior knowledge of 

any structural properties. Their common denominator is that they liken the 

graph to a system of interacting physical objects, the underlying assump- 

tion being that relaxed (energy-minimal) states of suitably defined systems 

correspond to readable and informative layouts. 

Methods based on physical analogies are quite popular, mainly for three 

reasons. First of all, they are very intuitive, because layout is related to 

the everyday experience of the surrounding physical world. Secondly, their 

basic instances are comparatively easy to understand and to program. The 

threshold to get started is thus very low. And finally, they often yield fairly 

satisfactory results on medium-sized graphs up to around 50 vertices. In 
general, these methods consist of two components, 

—a model consisting of physical objects (representing the elements of the 
graph) and interactions between these objects, and 

— an algorithm that (approximately) computes an equilibrium configuration 

of the system. 

The specifications of a model fully represent the intuition behind what is 

considered a good layout, ideally depending on the specific context of the 

graph. Its associated algorithm merely serves as an optimization routine for 

the objective function explicated in the model. 
First we introduce the fundamental concept behind physical modeling, 

that is the basis for all methods presented in this chapter. Then we describe a 

number of models and associated algorithms in Sections 4.2 and 4.3. An asset 
of physical modeling that is often overlooked is its inherent flexibility. For this 

reason, we conclude this chapter by listing examples of model specifications 

tailored to specific layout objectives. 

4.1 The Springs 

Given a connected undirected graph with no particular background informa- 
tion, the following two criteria of readable layout seem to be generally agreed 

upon for the conventional two-dimensional straight-line representation. 

1. Vertices should spread well on the page. 

2. Adjacent vertices should be close. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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Only intuitive explanations can be offered. While uniform vertex distribu- 

tion reduces clutter, the implied uniform edge lengths leave an undistorted 

impression of the graph. Since “clutter” and “distortion” already have phys- 

ical connotations, it seems fairly natural to start thinking of a more specific 

physical analogy. 

We are used to observing even spacing between repelling objects. This 

makes it natural to imagine vertices behaving like charged balls to satisfy 

the first criterion. A physical analogy for the second criterion is also easy 

to find, since it states that we should not allow adjacent balls fo drift too 

far apart. Springs replacing edges will do the job. Springs are better suited 

than, for example, sticks or ropes, because they can be both extended and 

compressed to allow moderate distortion, but exert increasingly strong forces 

when deviating further from their natural length. Moderate distortion may 

be inevitable, since it is impossible to represent every graph with straight 

edges of equal length. Note that it is ’P-hard to decide whether an arbitrary 

graph has a straight-line embedding with equal edge lengths in any number of 

dimensions (Johnson, 1982) or just any planar straight-line embedding (Eades 

and Wormald, 1990). 
Figure 4.1 illustrates the imaginary substitution of vertices and edges with 

charged balls and connecting springs, respectively. If the system is let go, it 

attains an equilibrium state in which all forces cancel each other, and the 

substitution can be reversed to obtain a straight-line drawing that satifies 

the criteria from above at least approximately. 

Formally, such a model can be expressed either in terms of forces acting on 

the physical objects, or in terms of a potential energy reflecting the internal 

stress of the system and thus describing how well a configuration matches the 

design goals modeled in the system. Algorithms to simulate a system’s relax- 

ation typically try to move the objects iteratively into stable states in which 

all forces cancel each other, or to minimize the energy directly. Prominent 

examples from each kind of formalization are described in the following two 

sections. In Section 4.4, we give examples for creative use of these analogies 

in more advanced layout models that include various criteria for good layout. 

4.2 Force-Directed Placement 

The seminal paper for physical modeling in graph drawing is a short text 

of Eades (1984), though closely related methods had already been described 

in the context of VLSI design (Fisk et al., 1967; Quinn and Breuer, 1979). 

Given a connected undirected graph G = (V, E), let p = (py),,cy be a vector 
of vertex positions p, = (Ty, Yy) in the plane. We denote by ||p, — p,|| the 
length of the difference vector p,—py, which is the Euclidean distance between 
positions p, and py. Furthermore, we denote by pup, the unit length vector 
Tee pointing from p, to py. The model of Eades (1984), now known as the 
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Fig. 4.1. The spring analogy. 

spring embedder, implements the analogy described in the previous section. 

It is defined using repelling forces 

c 
frep(Pu; Pv) 

Q =~ 

Ip — pul? 2“ 
between every pair of non-adjacent vertices u,v € V, where cp is a repulsion 

constant. Complementary spring forces between adjacent vertices u,v € V 

shall keep these sufficiently apart, yet close to each other. However, instead 

of more realistic forces according to Hooke’s law, (imaginary) logarithmic 

springs which exert weaker forces on far apart vertices are employed. They 

yield forces 

g [Pu — Poll —— 
Fepring(Pu; Pv) = Cz: lo i *PuPu;s 

so that the direction depends on whether the actual distance is less or greater 
than a natural length / of the spring. Constant c, is a parameter controlling 

the strength of the spring. Figure 4.2 gives a qualitative impression of the 

forces a vertex u exerts on vertex v, depending on the distance between the 
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two. The solid line shows the force in case u is adjacent to v (fspring), While the 

dotted line indicates the force in case u is not adjacent to v (frep). Positive 

values signify a force dragging v towards u, whereas negative values signify a 

force repelling v from uw. 

Fig. 4.2. Magnitude of spring embedder forces. 

Next we address the question of how to obtain an equilibrium configu- 

ration. Vertex positions not corresponding to a system at equilibrium imply 

positive internal stress. To relax a stressed system, vertices are iteratively 

moved, at time t, according to a net force vector F(t), which is the sum of all 

repulsion and spring forces acting on v. After computing F,(t) for all v € V, 
each vertex is moved a constant 6 times this vector. This constant is used 

to prevent excessive movement due to synchronous update. By iteratively 

computing the forces on all vertices and updating positions accordingly, the 

system approaches a stable state, in which no local improvement is possible. 

See Algorithm 6 for a concise description. 

Algorithm 6: Spring embedder 

Input: connected undirected graph G = (V, EF) 
initial placement p = (pu),cy 

Output: placement p with low internal stress 

for t ~— 1 to ITERATIONS do 
for v EV do , 
i Fy (t) — py, Jee Pur Po) + sy: Ffepring (Pu, Pv) 

u:{u,v}¢ u:{u,v}EB 

forv€V do py + py + 6: Fy(t) 
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Despite its simplicity, the spring embedder produces satisfactory output 
in many cases. To even out some shortcomings of the method, several refine- 
ments have been developed. These refinements mainly aim at faster compu- 
tation, but sometimes also at improved quality of the layout. 

A number of heuristics is used by Fruchterman and Reingold (1991) to 
speed up many aspects of layout computation. Firstly, the forces are modified 
to allow faster evaluation. Repelling forces 

12 

pM 6 a a 
ep (Pu Pv) IlDu — py| PuPv 

are used between every pair of vertices, and additional attracting forces 

et ays 
ie I|Pu eu pope 

f. attr(Pus Pu 

are used between adjacent vertices. The combination of attraction and re- 

pulsion between adjacent vertices yields a spring-like force fspring(Pu, Pu) = 

fattr(Pus Pv) + frep(Pu; Pu), similar in effect to the force used by Eades (1984). 
Since its magnitude increases more than proportionally with the distance (see 
Figure 4.3 for a comparison), one may also hope for faster convergence. 

Fspring = fattr — frep weet 

— frep 

Fig. 4.3. Modified forces by Fruchterman and Reingold (1991). 

A second heuristic to speed up computation does not change the objec- 
tive function, but the precision of evaluation. Since repulsion from far away 

vertices does not contribute much to the displacement vector, such irrelevant 

vertices are omitted in the sum of repulsive forces using a grid technique. 

Only vertices lying in grid cells close to the cell of v are considered, and only 
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if their distance is below a fixed threshold, a repulsive force is calculated and 

included in the sum of forces. See Figure 4.4(a). 
Two other modifications with respect to Algorithm 6 are concerned with 

the displacement vector. Instead of applying a constant damping factor 6 

to the net force vector, the net force vector is clipped at a time-dependent 

maximum displacement 6(t) to prevent excessive changes, especially in later 

stages of the iteration when the placement is close to a stable state. The sec- 

ond modification to the displacement ensures that the graph is laid out inside 

of a given rectangular area, like a screen or a sheet of paper. If the displace- 

ment would position a vertex beyond a fixed boundary, the corresponding 

coordinate of the displacement vector is clipped. 

(a) neglecting weak repulsive forces (b) coordinate clipping 

Fig. 4.4. Spring embedder modifications of Fruchterman and Reingold (1991). 

Another notable refinement of the basic spring embedder is described 
in Frick et al. (1995). Again, both forces and iteration scheme are modified 
to speed up the algorithm and to improve layout quality (under the same 
criteria). Repulsive and attractive forces are defined so that no square root 
has to be taken, 

12 

Frep(Pu, Pu) (Pu — Pv); [pu = poll? 
[Du — Po |? 

Ffattr(Pu, Pv) — “12. (vu) at aae uw) 

and all computations are performed using integer arithmetic. The denomina- 
tor in the attractive force is defined as #(v) = 1+ gatv) and effectively slows 
down high-degree vertices. However, a new gravitational force is introduced, 
dragging each vertex towards the barycenter ¢ = > Pw of all vertices by 

weV 

= 4 
Sgrav(Pu, Pu) = Pv) +> (f ~ po) , 
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which is stronger for high degree vertices. The contribution of this force is 
controlled via a gravitational constant y. Similar to layout area restriction, 
gravitational forces prevent components of a disconnected graph from drifting 
arbitrarily far apart. In addition to the above forces, a small random force 

is added to the net force to make the algorithm more robust against poor 
equilibrium states. 

To reduce the number of iterations, the net force vector of each vertex 

during the previous iteration, F,(t—1), is stored and compared to the current 

one. Each vertex has its own adaptive absolute displacement distance 6, (t) 

that is modified according to the angular difference a = Z (F,(t — 1), F,(t)) 
of the current and the previous net force vector. If a vertex is to be moved 

into roughly the same direction as before (sina * 1), 6,(t) is chosen larger, if 
it is to be moved in the opposite direction (oscillation: sina ~ —1), dy(t) is 
chosen smaller. Like oscillation, rotation is an indicator of ineffective move- 

ment of a vertex. A skew gauge is updated, if the current and the previous 

displacement vector are almost perpendicular (cosa ~ 1), and 6,(t) is low- 
ered, if a large skew suggests that a vertex rotates around some position. 

During each iteration, vertices are visited in random order, and each position 

is updated immediately by py — py + max{dmax, du(t)} - TERS where dmax 

is a fixed maximum displacement. Our own experience confirms that these 

heuristics substantially reduce the number of iterations needed to reach a 

stable state. 

Fig. 4.5. Detection of oscillation and rotation (Frick et al., 1995). 

The modifications of Fruchterman and Reingold (1991) and Frick et al. 
(1995) demonstrate that the spring embedder can be varied in many ways 
without changing its principle behavior. Clearly, many other heuristics are 

conceivable, but the two examples presented seem to cover sufficiently many 
aspects relevant to faster computation, faster convergence, and robust results. 

In the next section, we turn to methods that try to satisfy the same cri- 

teria, but take a formally different approach by defining an explicit objective 

function. 
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4.3 Energy-Based Placement 

Forces defined in the spring embedder variants described above indicate in 

which direction a vertex can be moved to reduce the forces acting on it, and 

thus an implicit internal energy of the physical system. Instead of displacing 

vertices according to these forces, one might as well attempt to minimize this 

energy directly. A spring of natural length / and of strength c, with actual 

length d (assumed to be within reasonable limits) has a potential energy of 

Uspring\@) = (Gy (d = Nor 

Kamada and Kawai (1989) avoid a second potential for repulsion by using 

springs of different length and strength between every pair of vertices. Their 

specific choice of springs is governed by the assumption that the ideal distance 

between two vertices is the length of a shortest path between them, multiplied 

by the ideal length of a single edge, i.e. every path in the graph is best 

represented by a straight line. The natural length of the spring connecting 

vertices u,v € V is therefore chosen proportional to dg(u, v), which denotes 

the length of a shortest path between them. Clearly, perfect relaxation of all 

springs is impossible for most graphs, so local distances are rendered more 

important by using springs of strength inverse to their length. The resulting 

objective function is the sum over the potential energies of all n - (n — 1)/2 

springs, 

Uxx(p) = >> 5 (\lPu — poll = de(u,v))’, 
Sy Fe (Pus Po)? G(Pu Pu) 

where c is a scaling constant, and / is the ideal length of a single edge. 

To obtain a local minimum of this objective function, a modified Newton- 

Raphson method is applied. In a local minimum, all partial derivatives of Uxx 

are zero. This condition can be expressed in a system of dependent non-linear 

equations. Similar to Quinn and Breuer (1979), the Newton-Raphson method 

is modified in that the coordinates of a single vertex are updated while all 

others are fixed. In each iteration, the vertex with the longest gradient is 

picked and moved several times until its gradient falls below a given threshold. 

It is interesting to note that the physically inspired objective function 

Uxk is closely related to the objective function 

Uwos(®) = —=—Goaaye Do lbw — Pull -U-do(u,2)) 
U,veEV uveV 

of multidimensional scaling defined in (Kruskal and Wish, 1978). The family 

il 1 
SO) — py lh—liw)? = 2 ers Ik *(|[Du Pol : ) 

u,veEV 
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of objective functions, where luv is the desired distance between vertices 
u and v, and k € {0,1,2}, is discussed by Cohen (1997). While So cor- 
responds to multidimensional scaling, Sj corresponds to the above layout 
objective function. As early as in the 1960s, multidimensional scaling was 
the first technique for automatic layout of social networks,! and it is still in 
use (Krackhardt et al., 1994). It seems, though, that the bias of Uxx towards 
exact representation of short distances, due to stronger short springs, results 
in layouts that display less clutter and have fewer small angles. 

While the optimization method used by Kamada and Kawai (1989) does 
not differ notably from the ones in the previous section, the following sim- 

plification of the objective function admits exact optimization in time that 
is polynomial in the number of vertices. Instead of springs of some varying 

length, Tutte (1963) uses springs of ideal length zero. Setting the partial 
derivatives of the resulting objective function 

Ucenter(p) = = I|Pu = Pol? 

{u,v}EE 

equal to zero yields two independent systems of linear equations (one for 

each coordinate), as opposed to the one non-linear system obtained from 

Ux. These linear systems of equations can conveniently be written in the 

form 

(D —A)-x=0, 

(D—A)-y=0, 

where A is the adjacency matrix of G, D is the diagonal matrix of vertex 

degrees, and x and y are the vectors of z- and y-coordinates. The famous 

Matrix Tree Theorem (Kirchhoff, 1847) then states that the determinant of 
any submatrix obtained from D — A by deleting a positive number of rows 

and their corresponding columns equals the number of spanning trees of the 

graph obtained from G by contracting the vertices corresponding to these 

rows into a new one. See Chaiken and Kleitman (1978) for several variants 
of this theorem. Since this number clearly is positive for connected graphs, 

so is the determinant, which implies that there is a unique layout minimizing 

Ucenter, if only the position of at least one vertex in each connected component 

of the input graph is fixed. This optimal layout can be computed by solving 

the smaller system of linear equations obtained by adjusting the right hand 

sides using the coordinates of fixed vertices. 
Optimal layouts with respect to Ucenter are called barycentric, because the 

optimality conditions imply that every vertex not fixed in advance is placed 

in the barycenter of its neighbors. The main theorem of Tutte (1963) assures 

even more: barycentric layouts of 3-connected planar graphs are planar with 

1 Charles Kadushin, personal communication (1999). 
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all internal faces convex, if the vertices of a single face in the unique pla- 

nar embedding are fixed to lie on a convex polygon (in appropriate order). 

Since the adjacency matrices of planar graphs are sparse, such layouts can 

be obtained in time O(nlogn) (Lipton et al., 1979). See Figure 4.6 for an 

example. 

Fig. 4.6. Barycentric layout (darker vertices have been fixed in advance). 

Davidson and Harel (1996) deviate even further from models of physical 
reality. They define attraction and repulsion potentials 

Usttr(Pu, Pv) pakcattnne \|Pu — py||? 

hs Crep 

rib aaa eet piereeae 
that are similar to the respective forces of Fruchterman and Reingold (1991). 
Note that the attraction potential is a scaled version of the zero-length spring 

potential of Tutte (1963). Combining attraction and repulsion yields a spring 

potential Uspring(Pu, Pu) = Uater(Pu, Pu) + Urep (Pu, Pu) that is again computed 

for pairs of adjacent vertices. Note that this definition results in an ideal edge 
length of </Crep/Cattr. Generalizing the repulsion analogy, they also define 

potentials penalizing vertices that lie close to the boundary of the layout 

area, and potentials penalizing short distances between a vertex and an edge. 

A distinct ingredient of the objective function used in Davidson and Harel 

(1996) is a potential weighting of the number of crossings in the current lay- 

out. Crossings tend to be displeasing and hindering to a viewer (Purchase 

et al., 1997), and their minization is thus a reasonable criterion for good lay- 

out. However, counting crossings leads to a discrete objective function that 

can no longer be treated by an algorithm based on gradient methods. More- 

over, minimizing the number of crossings is also an NP-hard problem (Garey 
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and Johnson, 1983). To obtain at least a local minimum of Upu, simulated 
annealing (see Reeves 1995 for a more recent textbook), a general method 
for minimizing objective functions of combinatorial problems, is used. It is 
only by coincidence that this method also has a physical analogy. Given a 
candidate solution, a new solution is proposed by slightly modifying the cur- 

rent one. If the new solution reduces the value of the objective function, it 

becomes the new candidate solution. Otherwise, it becomes the new candi- 

date solution only with probability eT, where AU is the increase of the 

objective function, and T > 0 is the temperature parameter controlling the 

algorithms ability to climb up hills in the energy landscape. Convergence is 

enforced by slowly lowering T to zero. A more precise description of a typical 
simulated annealing algorithm used for graph layout is given in Algorithm 7. 

Algorithm 7: Simulated annealing 

Input: graph G = (V, EF) 
initial placement p = (pv),cy 

Output: placement p with locally optimal value U(p) 

while T > THRESHOLD do 
for v € V do 

pd “pp 

Pv — Pv si Aandom 

if U(p°'*) < U(p) then 
old) _ 

[L with probability 1 — ‘at po reset p+ p?4 

reduce T’ 

A number of heuristics to speed up layout computation with the notori- 

ously slow simulated annealing is introduced by Tunkelang (1994). Most no- 
tably, there is no initial placement, but vertices are introduced in a breadth- 

first-search order starting in the graph-theoretic center, and positions are 

restricted to a coarse grid with only few types of displacements allowed. A 

parallel implementation is described in Monien et al. (1996). 

An experimental comparison (Brandenburg et al., 1996) of (sequential) 

implementations revealed that the approaches presented in these last two 

sections (excluding the barycentric model) yield comparable layouts. As a 

very general rule-of-thumb, energy-based placement approaches tend to pro- 

duce better results for small to medium-sized graphs (around 30 vertices), 
while force-directed placement approaches are considerably faster (experi- 
ence suggest that they need only one tenth of the number of iterations). 

Besides gradient methods and simulated annealing, genetic algorithms 

have been applied to physically motivated objective functions (Kosak et al., 

1994; Masui, 1992). Branke et al. (1997) use force-directed methods as a local 
fine-tuning step of their genetic algorithm. 
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4.4 Modeling with Forces and Energies 

Forces and potential energies have been found to model elementary criteria for 

readable layouts of straight-line representations of graphs. While the results 

are usually satisfactory with respect to the two criteria mentioned in the 

introductory section of this chapter (uniform vertex distribution, uniform 

edge lengths, and, as a consequence, symmetry), such drawings may not be 

useful for graphs representing specific structural information. 

An important aspect that has not been covered yet is the immense ex- 

pressive power of force-directed or energy-based placement for formulating 

layout design goals. This section contains a number of examples, showing 

how forces can be used to formulate criteria for good layout far beyond ver- 

tex distribution and edge length. 
The following paragraphs sketch modeling ideas from the literature, com- 

prising a toolbox for the adjustment of force-directed or energy-based layout 

methods to account for a fairly broad range of requirements. 

3D Layouts. For some purposes it may be necessary or desirable to rep- 

resent a graph in three-dimensional space. In combination with interactive 

(preferably fly-through) browsers, these appear to be particularly useful for 

exploring large graphs. The methods outlined so far make no particular as- 

sumptions on the number of dimensions and are easily modified to produce 

three-dimensional (or one-dimensional, for that matter) layouts. For exam- 
ple, a straightforward generalization of the method by Frick et al. (1995) is 

given in Bru8 and Frick (1996). The approach of Davidson and Harel (1996) 
is adjusted by Cruz and Twarog (1996), where the crossing count, superfluous 

in three dimensions, is substituted with edge-edge repulsion. See Chapter 7 

for more on three-dimensional graph layout. 

Clustering. Important information may be represented by intrinsic or ex- 

trinsic clusterings of vertices. Since experimental work suggests that users 

tend to group geometrically close vertices (McGrath et al., 1996), it seems 

desirable to keep vertices of the same cluster close to each other, while those 
in different clusters should be further apart. 

By their very nature, spring-type methods geometrically cluster dense 

subgraphs. While this is not at all true for other definitions of clusters, these 
can be reduced to dense subgraphs by introducing dummy vertices that rep- 

resent the clusters, and connecting them appropriately (Eades et al., 1997a; 

Huang and Eades, 1998a). For each cluster, a new vertex is introduced, at- 

tracting its contained vertices, while repelling vertices of other clusters. To 

achieve larger distances between clusters, additional repelling forces are in- 

troduced between dummy vertices and all other vertices not contained in 

their respective cluster. Figure 4.8(a) gives a small example. © 

Instead of introducing dummy vertices to represent cluster centroids, a 

meta-graph representing connections between clusters is introduced by Wang 

and Miyamoto (1996). It consists of a vertex for each cluster, and has an 
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Fig. 4.7. 3D layout of travel distances between 31 U.S. cities (Bru8 and Frick, 
1996). 

edge between each pair of distinct meta-vertices containing adjacent vertices 

of the original graph. To provide the necessary area for clusters, meta-vertices 

are not assumed to have point size, but to occupy rectangular areas. Conse- 

quently, first a technique is introduced that accounts for the fact that actual 

edge lengths depend on the relative positions of rectangularly shaped ver- 

tices. In the placement iteration, contribution weights are used to gradually 

shift from an emphasis of forces in the meta-graph (for cluster spacing) to 
forces in the input graph. More detail on force-directed methods to represent 

clusters is provided in Chapter 8. 

Directed Edges. For directed graphs such as data-flow or time-dependency 

graphs, it is often desirable to have the directed edges point into roughly the 

same direction. Using forces exerted on edges by external fields of a chosen 

orientation, edges can be pushed to point in any given direction (Sugiyama 

and Misue, 1995). Let @ be the angle between an edge’s prescribed direction 

and its current direction, and let p,p3+ be the unit length vector perpendic- 

ular to pypy, and pointing towards a decrease of 0, then rotative forces 

frot(Pus Pv) = b- ||[pu — Py|| - 0° “Papo 

can be added to the net force vector, thus pressing the edge to reduce @ (see 

Figure 4.9). While b is a constant that controls the strength of the magnetic 

field acting on an edge between u and v with respect to the other forces, cy 

and cp are parameters that control the relative dependency of rotative forces 

on vertex distance and angle deviation, respectively. 
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(a) Dummy vertices represent (b) A clustering with its cor- 

the centroids of clusters (Eades responding meta-graph (Wang 

et al., 1997a; Huang and Eades, and Miyamoto, 1996). 

1998a). 

Fig. 4.8. Force-directed models for clusters. 

Ad 
| 

Fig. 4.9. Magnetic springs represent directed edges subject to an arbitrary force 

field (Sugiyama and Misue, 1995). 
x 

Curved Edges. So far, all representations considered here use straight lines 

to depict edges. It is shown in Brandes and Wagner (1998b) how the layout 

of curved line representations can be reduced to the straight-line case by 

placing control points instead of vertices. More precisely, edges that are to be 

depicted by Bézier curves are replaced with vertices representing their control 

points. Then an auxiliary graph is constructed by introducing a dummy edge 

of appropriate desired length for each control segment, and additional attrac- 

tive and repulsive forces to ensure certain properties of the resulting layout. 

Figure 4.10 shows a graph of train connections with curved representation of 

edges that are classified as “transitive” (top left), the auxiliary graph con- 

structed for this instance (bottom left), and a larger example (right). The 
same technique obviously works for polyline representations. 

Dynamic Layout. When users look at the drawing of a graph, they famil- 

iarize themselves with this drawing by building a cognitive representation 

called the mental map. Dynamic graph layout is concerned with the trade-off 

between static layout quality and the user’s mental map. 

A framework to extend static graph layout methods to dynamic ones by 

incorporating a difference metric into the objective function is advocated 
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Fig. 4.10. Curved edge layout using an auxiliary graph (Brandes and Wagner, 
1998b). 

in Brandes and Wagner (1997). For energy-based methods, the difference 

metric summing over the Euclidean distances of vertex positions translates 

nicely into an attraction potential for imaginary springs of natural length 

zero, which can be used in force-directed approaches as well. An overview 

of approaches for drawing dynamic and interactive graphs is provided in 

Chapter 9. 

Constraints. Constraints can be integrated into force-directed or energy- 

based placement methods in several ways, depending on the type of con- 

straint. Unary constraints, i.e., restrictions on the admissible positions of 

single vertices, are easily satisfied if feasible positions form a connected region 

in the layout area or space (see Figure 4.11). In this case, every configuration 

remains reachable, and position updates can be modified to ensure that each 

vertex is at a feasible position at all times. 

Fig. 4.11. Unary constraints. In this drawing of a social network, each vertex is 
restricted to lie on the circumference of a circle, signifying its centrality (Brandes, 

1999). 
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A second way to satisfy unary constraints that also handles disconnected 

feasible regions is to allow vertices to temporarily occupy infeasible positions, 

but to use additional forces tht drag vertices to feasible positions or penal- 

ties pushing them away from infeasible positions, respectively. The penalty 

approach is easily extended to arbitrary constraints, but rarely guarantees 

satisfaction of all constraints in practice. 
To satisfy pairwise linear (in)equalities, the placement iteration is inter- 

leaved with conflict detection in Wang and Miyamoto (1996). Every pair of 

vertices that would not satisfy a constraint if a displacement is carried out, is 

joined by a “rigid stick” that forces them to move together while maintaining 

the constraint. Note that criteria corresponding to weak linear pairwise con- 

straints can be modeled using the magnetic springs of Sugiyama and Misue 

(1995). 
Arbitrary constraints can be incorporated in methods based on physical 

analogies by applying more elaborate constraint satisfaction techniques, as 

in He and Marriott (1998). A survey of the use of constraints in graph layout 
is given by Tamassia (1998) 

From a more general point of view, the above modeling techniques can 

be seen as instances of a generic framework for layout models, in which ar- 

bitrary layout variables are assigned values subject to some constraints and 

criteria that describe feasible and desirable configurations. Graph layout is 

thus cast as a general constraint optimization problem, for which objective 

functions can be devised by combining criteria for small configurations like 

pairs of adjacent or non-adjacent vertices, triples of connected vertices, pairs 

of edges, and so on. Force-directed and energy-based methods fit well into 

this framework, because they are intuitive and incorporate an implicit notion 

of compromise between the various criteria. 
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5.1 Introduction 

In this chapter, we present the standard criterea and techniques for drawing 
directed graphs’. The resulting drawings are called layered drawings of the 
given graphs. 

(a) an example graph (b) and a possible layered drawing 

Fig. 5.1. Two different drawings of a graph. 

The development of algorithms for computing layered drawings has started 

in the seventies. The first ideas were given in articles by Warfield (1977) 
and Carpano (1980b). The most popular method was introduced in 1981 by 
Sugiyama et al. and extended in the survey article by Eades and Sugiyama 

(1990). The method has attracted a lot of attention and an implementation 

of this approach can be found in many graph drawing tools. 

Throughout this chapter, it is assumed that the graphs have an overall 

flow or direction. This will be emphasized by drawing most of the edges in 

* Supported by the Deutsche Forschungsgemeinschaft (DFG), graduate program 
Angewandte Algorithmische Mathematik, Technische Universitat Mtnchen. 

*“* Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Mo645/5, 
Martin-Luther-Universitat Halle-Wittenberg 

1 In this chapter, we only consider loopless directed graphs. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 87-120, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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one specific direction. We will assume that the preferred direction is top to 

bottom. Moreover, the drawing should meet some aesthetic and readability 

criteria which can be summarized as follows. 

1. Edges pointing upward should be avoided. 

2a. Nodes should be evenly distributed. 

2b. Long edges should be avoided. 

3. There should be as few edge crossings as possible. 7% 

4. Edges should be as straight/vertical as possible. 

Figure 5.1(b) depicts a layered drawing of an example graph. Throughout 

this section, we show drawings of the same graph produced by several graph 

drawing tools. 

Fig. 5.2. The example graph drawn with the VCG tool. 

Optimizing all of the above objectives is in general impossible, since some 

of them contradict each other, e.g., see Figure 5.20 on page 120. Furthermore, 

it is even hard, in the complexity theoretical sense, to compute drawings 

satisfying only some of the aesthetic criteria. To handle these problems, the 

approach described in this chapter is usually divided into the following four 

steps, each addressing one of the above optimization criteria: 

1. Cycle Removal As few edges as possible are reversed to make the graph 

acyclic. This allows to draw all edges in one direction which is important 

for the next step. At the end of the algorithm, the reversed edges are 

reversed agian to obtain their initial orientation. 

2. Layer Assignment A layering will be computed, i.e., an assignment of the 

vertices to layers such that all edges point downward. As we will see, 

for many algorithms which solve the succeeding step, a proper layering 

is needed. A layering is called proper if edges occur between adjacent 

layers only. To achieve the latter, dummy vertices are introduced along 
the edges. 
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3. Crossing Reduction For each layer, an ordering of the vertices is com- 
puted. The ordering should be computed in such a way that the number 
of edge crossings is kept small. This is usually done by examining adja- 
cent layers and the edges between them. 

4. X-coordinate assignment of vertices and placing the edges 
The requirements on the horizontal positions of the vertices are that the 
vertices do not overlap and that, preferably, no vertices lie on the straight 
lines between two adjacent vertices. Finally, the edges have to be placed 
either as polylines or as curves. 

daVinci V2.1 

Fig. 5.3. The example graph drawn with daVinci. 

Besides the mentioned articles, our presentation is mainly based on works 

of Gansner et al. (1993), Sander (1996b) and Di Battista et al. (1999). Fur- 
thermore, we describe the work of Berger and Shor (1990) in some detail. For 
further reference, see the articles of Messinger et al. (1991), Paulish (1993), 
Di Battista et al. (1994), or the manuals of software packages discussed in 
the appendix. 

The organization of this chapter follows the above steps. Our aim is to 

present the state of the art of both, exact algorithms and heuristic approaches, 

to the single steps. Finally, we briefly present some related approaches. 

It is not always necessary to perform all steps of the algorithm. In some 

cases, a layering is given together with the graph, e.g., the graph represents 

events on a timeline like a pedigree. Then only the last two steps have to be 

performed. 

5.2 Cycle Removal 

In this section, we will address solution methods for the maximum acyclic 

subgraph problem: find a maximum set E, C E such that the graph (V, Ea) 
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Fig. 5.4. The example graph drawn with dot (part of GraViz). 

contains no cycles. The problem is often stated as the feedback arc set prob- 

lem: find a minimum set Ey C E such that the graph (V, F \ E+) contains 

no cycles. 

Since we do not want to loose the information whether two vertices are 

adjacent or not, the edges in E \ E, will be reversed. It is an easy exercise to 

show that the resulting graph is acyclic. 

@ 

Fig. 5.5. The example graph made acyclic by reversing two edges. 

Unfortunately, the maximum acyclic subgraph problem is NP-hard (Karp, 

1972; Garey and Johnson, 1991). 

To simplify the analysis of the forthcoming heuristics, we assume that 

the graph does not contain two-cycles. A two-cycle consists of two antipodal 
edges (u,v) and (v,u). Otherwise, we delete both edges of the two-cycle, 
apply an algorithm or heuristic for finding a maximum acyclic subgraph and 

insert two edges pointing in the same direction into the graph. The direction 
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should be chosen in such a way that no cycles are generated by the insertion. 

Obviously, such a direction always exists (Berger and Shor, 1990). 
We first present some fast heuristics in Section 5.2.1. Afterwards in Sec- 

tion 5.2.2, we give an overview over several variants of a frequently used 

greedy heuristic. Although these algorithms give very good results in prac- 

tice, the best performance guarantee can be proven for another algorithm 

which will be presented in Section 5.2.3. Finally, we discuss an exact ap- 

proach to the maximum acyclic subgraph problem. 

5.2.1 Fast Heuristics 

Observe that the maximum acyclic subgraph problem is equivalent to the 

unweighted linear ordering problem: find an ordering of the vertices of G, 

ie., find a mapping 0: V — {1,2,...,|V|} such that the number of edges 
(u,v) € E: o(u) > o(v) is minimized. 

Thus, the easiest heuristic for the maximum acyclic subgraph problem is 

to take an arbitrary ordering of the graph and delete the edges (u,v) with 

o(u) > o(v). We might use a given ordering or, e.g., use an ordering computed 
by applying breadth first search or depth first search (see Section 5.3.1) to 

the graph. These heuristics are fast but do not allow to give any quality 

guarantees. 

Next, we present a heuristic which guarantees an acyclic set of size at least 

s|E |. The idea is to delete for every vertex either the incoming or outgoing 

edges. We define 6*(v) = {(v,u) | (v,u) € E}, the set of the outgoing edges 
of v, 6-(v) = {(u,v) | (u,v) € FE}, the set of the ingoing edges into v, and 
6(v) = 6*(v) Ud~(v), the set of edges incident to v, v € V. |6*(v)| (67 (v)]) 
is called the outdegree (indegree) of v. 

Algorithm 8: A Greedy Algorithm 

Ea = 0; 

foreach v € V do 
if |6*(v)| > |6~ (v)| then 

append 6*(v) to Ea; 

else 
| append 6~(v) to Ea; 

delete 6(v) from G; 

Trivially, Algorithm 8 computes an acyclic set Eq with size |Eg| > 5|E| 
and runs in linear time? (Berger and Shor, 1990). 

2 As usual, we define the input size of a graph by n + m and hence, linear time 
means O(n + m) time. 
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5.2.2 An Enhanced Greedy Heuristic 

A closer look at the problem shows that sources and sinks (which may arise 

during the algorithm) play a special role: edges incident to sources or sinks 

cannot be part of a cycle. This observation is used in the following algo- 

rithm (Eades et al., 1993): 

Algorithm 9: An Enhanced Greedy Heuristic 

a 0; 

while G is not empty do 
1 while G contains a sink v do 

| add 5~(v) to Eq and delete v and 5 (v) from G; 

2 delete all isolated vertices from G; 

3 while G contains a source v do 

| add 5+ (v) to Ea and delete v and 5*(v) from G; 

4 if G is not empty then 
let v be a vertex in G with maximum value |5* (v)| — |57 (v)|; 
add 6+(v) to Eq and delete v and 6(v) from G; 

The only difference between Algorithm 8 and Algorithm 9 is that the 

latter one processes the vertices in a special order. Hence, the output of 

Algorithm 9 is acyclic as well. 

Theorem 5.1 (Eades et al. 1993). Let G = (V, E) be a connected digraph 
with no two-cycles. Then Algorithm 9 computes an acyclic edge set Eq with 

eae Ma |Ea| = of AAG: 

Proof. The vertex set V can be partitioned into five sets Veink, Viso, Vsource; 

V— and Vz. Vsing consists of the non-isolated sink vertices removed from G 

in Step 1, Viso consists of the isolated vertices removed from G in Step 2, 

Vsource consists of the non-isolated source vertices removed from G in Step 3, 

V— consists of the vertices whose indegree equals its outdegree, removed from 

G in Step 4 and Vz consists of the vertices whose indegree is less than its 

outdegree, removed from G in Step 4. Note that these sets form a partition 
of V. 

Denote by m; the number of edges removed from G as the result of the 
removal of the vertices in Vj, 7 € {sink, iso, source, =, <} =: Z, and by n; the 
cardinality of V;. Clearly, 

IVI= Som, |B] = omy, and miso =0 
ieZ ieL 

holds. 
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Since the input graph is connected, isolated vertices can only be created 
in Step 1 and hence, niso < Msink. 

It is not hard to see that after the removal of a vertex from V-, at least 

one vertex whose indegree is not equal to its outdegree exists. Since the 

resulting graph contains no isolated vertices, the next deleted vertex will be 

in Vsink U Vsource U Vc. Hence, we get n= < Neink + Nsource + N<. This can 

be used to find an estimation of n by substituting n_: 

NM < 2Nsink + Niso + 2Nsource + 2ne. 

This can be relaxed to 

nN < 2Nsink + Niso + 3Nsource + 3N<. 

Using the facts niso < Msink and Nsink < Msink we get 

ns 3(Msink + Nsource + Ne). (5.1) 

Observe that the only step where edges from FE are thrown away and not 

inserted in Eg is Step 4. Suppose v € Vz, then the number of thrown away 

edges is exactly eet Otherwise, if v € Ve, this number is bounded from 

above by OTS Thus, the number of thrown away edges is at most 

m= Me —Ne Le says aie 
we ll %y Msink + Mgource + N< 

wi) 2 
< mM  Msink + Nsource + N< 
= 2 me: “EL BAO oh BOe: 

where the last inequality is true since Nsource < Msource: 

By applying (5.1), we obtain 

|EZ| —|Ea| < w/3 O15 

This completes the proof. 

The algorithm can be implemented in linear time and space (Eades et al., 

1993). In addition, it can easily be shown that Algorithm 9 computes a set 1a 

with size at least 2|E| on graphs with A(G) < 3. A(G) denotes the maximum 

degree of a vertex in G. 

Sander (1996b) suggests a more elaborated version of Step 4. A graph is 

called strongly-connected if 
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Algorithm 10: A Variant of Step 4 
Oo I a 

4 if G is not empty then 
compute the strongly-connected components (scc) of G; 

add all edges not contained in a scc to E, and delete them from G; 

foreach scc Gscc of G with |Gscc| > 1 do 

W = {v € Gece | WUE V: [5 (v)| < O (u)I} 

choose v € W that maximizes |6*(v)| + ye | (u)|; 
u:N+(u)={v} ~~ 

add 5*(v) and 6 (v) \ 6" (v) to Ea and 
delete v and 6(v) from G; 

foreach u with N*(u) = {v} do 
|. add 5~(u) to Eq and delete u and 6(u) from G; 

Vu,u€V 4Ipaths from u to v and from v to u. 

A strongly-connected component of a graph is a maximal strongly-connected 

subgraph of the graph. The set of strongly-connected components forms a 

node partition. Let N*+(u) = {uv € V|A(u, v) € EF}. 

Sander reports very promising practical results but no better theoretical 

bounds are known so far. Observe that the strongly connected components 

in each iteration of the algorithm are subdivisions of the components of the 

previous iteration and thus, the sizes of the components decrease quickly. 

Since computing the strongly-connected components of a graph takes linear 

time (Mehlhorn, 1984) and by using suitable data‘structures, Algorithm 10 

can be implemented in O(mn) time. The idea of the choice of v in the above 

algorithm is that the edges in 6*(v) U Uy.n+(uj={v} 9 (wu) are not contained 

in any cycle after the removal of 57 (v). 
Eades and Lin (1995) give a generalization of the ideas of Sander. Their 

idea is based on the observation that on induced paths at most one edge has 

to be deleted. They shrink long induced paths in the graph, which enables 

them to guarantee an acyclic subgraph with |Eq| > $|E | for cubic graphs. 

5.2.3 A Randomized Algorithm 

The results presented in this section are due to Berger and Shor (1990). 

To achieve a better performance guarantee as given in the previous sec- 

tions, consider the following algorithm. 

Algorithm 8’: A Randomized Variant of Algorithm 8 

order the vertices randomly at the beginning; ‘ 

process them in this order in Algorithm 8; 
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The following bound can be proven: 

Theorem 5.2 (Berger and Shor 1990). The expected size Eg:(|Ea|) of Ea 
computed by Algorithm 8’ is bounded from below by 

5 + Fa )IBI 

Berger and Shor also give a deterministic algorithm and are able to prove 

that the expectation value from Theorem 5.2 is valid as worst case bound 

on |£,q| for their deterministic algorithm. Let processed(v1, v2,...,v;) mean 

that the vertices in v1, V2,...,v; have been processed in the order in which 

they are listed. 

Algorithm 11: A Deterministic Variant of Algorithm 8’ 

for i= 1 to |V| do 
choose v € V \ {v1, v2,..., Vi-1} for which 

E1(|Ea| | processed(vi, v2,...,Vi—1,V)) is maximized; 
define v; = Vv; 

Theorem 5.3. Algorithm 11 returns an Eq with size greater or equal to 

Ge 59D et 2 A(G) 

Proof. The expectation value for the size of E, for the randomized algorithm 

in iteration 7 is €g-(|Ea| | processed(v1, v2,...,Vi-1)) which equals 

Sate Sy Eg: (|Ea| | processed(vj, v2, ...,Vi-1,¥)): 
Vi —1) vEV \{v1,V2,.--,Ui-1} 

Since Algorithm 11 chooses 

max Eg(|Ea| | processed(v1, v2,...,Vi-1,¥)), 
vEV\{v1,V2,.--,Vi-1 } 

in each iteration €1;(|Eq|) of Algorithm 11 is at least as large as €g/(|Ea)). 

Thus, by Theorem 5.2, the algorithm has the claimed performance guarantee. 

For graphs with small maximum degree, Berger and Shor give more precise 

bounds on |Fa|/|E}. 

|Eo|/\E| = 
2 
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It is also shown that the above algorithm can be implemented in time O(mn). 

The crucial point is that the expectation values can be computed quickly. 

Furthermore, they prove that the bound given in Theorem 5.3 is tight. 

5.2.4 An Exact Algorithm 

Let S(G) be the set of all incidence vectors of acyclic subgraphs of G = 

(VET eM eon denice yn: jie Lee 4 

S(G) = {a € {0,1}!! | SE, C E, Eq acyclic : 2; = 1 iff e; € Eg}. 

Denote by conv(S) the convex hull of a set S and by 1 the |E|— dimensional 
all-one vector. Now, ASP(G) = conv(S(G)) defines a polytope in R!”!, and 
maximizing 1*x over ASP(G) yields a maximum acyclic set. 

An extensive study of the facial structure of the acyclic subgraph polytope 

and the more general linear ordering polytope can be found in (Grdotschel 

et al., 1985; Reinelt, 1985). The results given there can be used to solve the 

maximum acyclic subgraph problem by a branch and cut approach. 

5.3 Layer Assignment 

After introducing the necessary definitions, we discuss the objectives a layer- 

ing should reach. Afterwards, we present algorithms for the different objec- 

tives. > 

Let, £ bea partition of V,i.e., £= {L1; Lo}...,Dn}, Ub. Le = Vays 
V — {1,2,...,h} denotes the characteristic function of this partition, i.e., 

y(u) =7 iff u € Lj. L is called a layering if V(u,v) € E: y(u) > y(v) holds. 

Fig. 5.6. A layering of the example graph. 
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The height of a layering is the number of layers h, the width of a layering 

is the number of vertices in the largest layer and the span of an edge (u,v) 

is defined as y(u) — y(v). A layering is called proper if no edge has a span 
greater than one. 

Sometimes it is not important to stress the general direction of the edges 

and in some cases such a direction does not exist. In these cases the algorithms 

presented in Section 5.3.1 can be applied without making the graph acyclic 

at first. In the other sections of this chapter, we assume that the graphs are 

acyclic. This guarantees the existance of a layering. Besides, there are some 

objectives a layering should fulfill. It should be compact. This means that 

the height and the width of the layering should be small. A simple algorithm 

to compute a layering with minimum height is given in Section 5.3.2. Unfor- 
tunately, minimizing the height with respect to a given width is NP-hard. 

In Section 5.3.3, we will present a heuristic to tackle this problem. 

Most of the algorithms used in the subsequent steps need to have proper 

layerings. This can be easily achieved by introducing dummy vertices along 

edges (u,v) with span k > 1 into the layering. We replace (u,v) with a path 

(u = U1, V2,...,Uk = Vv) of length k. In each layer between y(u) and y(v), one 
dummy vertex will be placed (see Figure 5.7) 

Fig. 5.7. Introducing dummy vertices into the example graph. 

In addition, the number of dummy vertices should be small. There are 

three aspects why this should be. The running time of the following steps 
depends on the sum of the number of vertices and the number of dummy 

vertices. Bends in the drawing will only occur at dummy vertices and thus a 

small number of dummy vertices will increase the readability of the drawing. 

Furthermore, the edges will become long if many dummy vertices occur. We 

will present an algorithm for minimizing the number of dummy vertices in 

Section 5.3.4. 
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5.3.1 Layerings for General Graphs 

Sander (1996b) summarizes some algorithms for general graphs, i.e., graphs 

do not need to be acyclic before applying these layering heuristics: edges 

which point upward are just reversed. 

1. Calculate y by a depth first search or breadth first search. This generates 

an arbitrary partitioning in linear time. 

2. Calculate the minimum cost spanning trees on the undirected instance 

of the graph. This is useful if edges e have weights w(e). The cost will be 

TOR: The edges with high priority will have small spans. 

3. Apply a spring embedder. It is sufficient to take only frep and fatt (see 

Section 4.2) into account. Calculate only the one-dimensional coordinate 

y. This computes a layering where edges tend to have the same length. 

5.3.2 Minimizing the Height 

From now on, we assume that the graphs are acyclic. The following algorithm 

computes layerings of minimum height. Each sink is placed in layer Ly. For 

the remaining vertices the layer will be recursively defined by 

y(u) := max{i | v € Nt(u) and y(v) =i} +1 

and N*(u) := {v € V | A(u, v) € E}. 
This produces a layering where many vertices will stay close to the bottom. 

The algorithm can be implemented in linear time by using a topological 

ordering of the vertices (Mehlhorn, 1984). ’ 

5.3.3 Layerings with Given Width 

Given a fixed width greater or equal to three, the problem of finding a layering 

with minimum height is NP-complete. The precedence-constrained multipro- 

cessor scheduling problem can easily be reduced to it (Karp, 1972; Garey and 

Johnson, 1991). 
In the following, we will present the Coffman-Graham-Algorithm (Coff- 

man and Graham, 1972). It computes a layering with width at most w and 

tries to minimize the height. The Coffman-Graham-Algorithm takes as input 

a reduced digraph, i.e., no transitive edges are present in the graph, and a 

width w. An edge (u,v) is called transitive if a path (u = vj, Vo,...,Uk = V) 

exists in the graph. Observe that the absence of transitive edges does not 

affect the width of the layering significantly and that transitive edges can be 

found in linear time (Mehlhorn, 1984). 
The weakness of a simple greedy heuristic is illustrated in Figure 5.8. w 

is assumed to be 2. The example graph consists of $,n mod 4 = 0, isolated 

vertices and a directed path of vertices (Figure 5.8(a)). The greedy heuris- 
tic would probably assign the isolated vertices to the 7 first layers. This 
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would result in a layering of height 37 (Figure 5.8(b)). An optimal solution 
is depicted in Figure 5.8(c). 
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(a) example graph (b) greedy solution (c) optimal solution 

Fig. 5.8. The worst and the best layering for the given graph. 

The greedy solution is far from optimal since it does not consider the long 

path in the graph. This is exactly what the Coffman-Graham-Algorithm tries 

to avoid. It proceeds in two phases. The first orders the vertices mainly by 

their distance from the source vertices of the graph, the second assigns the 
vertices to the layers. Vertices with large distances from the sources will be 

assigned to layers as close to the bottom as possible. 

We need a special lexicographical ordering on finite integer sets to describe 

the algorithm in more detail: 

S ~ T if either 

1 ws = Vand uc40, ror 
245-4 0,.1.# 0 and max($) < max(T),,or 
3. SA, T #0, max(S) = max(T) and S \ {max(S)} ~ T \ {max(T)}. 

We are now able to state the algorithm (Algorithm 12). 
Lam and Sethi (1977) have shown that the height h of the computed 

layering with width w is bounded with respect to height of an optimal layering 

opt: 

She \heg: 
w 

Thus, the Coffman-Graham-Algorithm is an exact algorithm for w < 2. 

5.3.4 Minimizing the Total Edge Span 

The objective to minimize the total edge span (or edge length) is equivalent to 
minimizing the number of dummy vertices. As seen before this is a reasonable 
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Algorithm 12: Coffman-Graham-Algorithm 

foreach v € V do z(v) :=n+1; 
for i= 1 to |V| do 

choose a vertex v with m(v) =n+1 
and minimum set {7(u) | (u,v) € E} with respect to <; 

n(v) := 4; 

hei ie 0 UV; 
while U 4 @ do 

choose u € U such that every vertex in {uv | (u,v) € E} isin V\U 
and 7(u) is maximized; 

if |Le| <w and Nt (u) CIi1UL2U...L,-1 then 

add u to Lx; 

else 
| k:=k4+1; Le = {u}; 

delete u from U; 

objective. It can be shown that minimizing the number of dummy vertices 

guarantees minimum height (Eades and Sugiyama, 1990). 
To solve this problem we formulate it as an integer program. The prop- 

erties of a layering can be stated as follows. 

y(u) — y(v) > 1 for all (u,v) € E (5.2) 

y(v) € Zt for allue V (5.3) 

Thus minimizing over 5° (y(u) — y(v)) minimizes the total span of 
(u,v)EE 

the edges and thus the number of dummy vertices. Frick (1997) presents a 

detailed study on the number of dummy vertices. 
It is sometimes useful to introduce weights or priorities w on the edges 

to keep certain edges short. Furthermore, sometimes it is intended that an 

edge has a length of at least 4. Plugging this into the above linear program 

we obtain 

min S> w(u,v)(y(u) — y(v)) (5.4) 
(u,v)EE 

y(u) — y(v) > A(u, v) for all (u,v) € E (5.5) 

y(v) € Zt for allue V (5.6) 

This problem can be easily solved by linear programming since the con- 

straint matrix is totally unimodular and so standard linear programming 

will find an optimal integer solution. As an alternative, the, network sim- 

plex algorithm might be used as described in (Gansner et al., 1993). For 

further reference on total unimodularity see (Schrijver, 1986), and for details 
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concerning the network simplex algorithm see (Cunningham, 1976; Chvatal, 

1983a). Observe that although the network simplex method like the simplex 
method itself does not guarantee a polynomial running time, it proves to be 
very efficient in practice. 

5.4 Crossing Reduction 

The aim of this part of the algorithm is to reduce the crossings between edges 

to improve the readability of the drawing. We assume that the layering was 

made proper in the previous layer assignment step. 

A first observation to make is that the number of edge crossings does 

not depend on the exact positions of the vertices but only on the relative 

positions, i.e., the ordering of the vertices. This makes the problem some- 
what easier to understand because we do not have to deal with the exact 

x-coordinates of the vertices. But, unfortunately, the problem of finding ver- 

tex orderings which minimize the crossings in a layered graph is NP-hard 

even if we restrict the problem to bipartite (two-layered) graphs (Garey and 
Johnson, 1983). The problem remains \P-hard if the ordering of the ver- 

tices in one layer of the bipartite graph is fixed (Eades and Whitesides, 1994; 

Eades and Wormald, 1994). 
Many methods have been developed to reduce edge crossings but only a 

few work globally, i.e., minimize the crossings in the whole graph at once. 

Most algorithms use the layer-by-layer sweep described in the next section. 

5.4.1 The Layer-by-Layer Sweep 

This technique works as follows: First, a vertex ordering of the layers is 

chosen. An initial ordering of the layers that avoids crossings if the graph 

is a tree is given in the paper of Gansner et al. (1993): Do a depth first 

search or a breadth first search starting with the vertices in the layer with 

the minimum rank. The vertices get their positions in left-to-right order as 

the search progresses. 
In the next step of the layer-by-layer sweep, a layer with a precomputed 

ordering, e.g., layer V;, is chosen and for i = 2,3,... ,h, the vertex ordering 

of layer Vij_1 is held fixed while the vertices in V; are reordered to reduce 

the crossings between layer Vj_; and V;. After that, we can sweep back from 
layer V;, to layer V; and repeat these two steps until no further reduction of 

crossings can be achieved. Other ways of sweeping are possible, for instance 

we can hold a layer in the middle fixed and sweep from here to the bottom- 

and to the top-layer. However, the key problem of the layer-by-layer sweep is 

to reduce the crossings between two layers with the permutation of one side 

fixed. This problem is called the one sided crossing minimization problem 

and will be deeply treated in the next section. 
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Experiments by Jiinger and Mutzel (1997) for the 2-layer crossing min- 

imization problem show that the results of the layer-by-layer sweep are far 

from optimum. One can expect better results from considering all layers si- 

multaneously, but k-layer crossing minimization is a very hard problem. A 

quick help is to start the layer-by-layer sweep several times with randomly 

permuted layers. This approach can tremendously improve the results (Jiinger 

and Mutzel, 1997). 

5.4.2 One Sided Crossing Minimization ~ 

To state the problem of the one sided crossing minimization precisely, we 

need some definitions and notations. 
A bipartite graph is an undirected graph G = (V, £) in which V can be 

partitioned into two sets V; and V2 such that {u,v} € E implies either u € Vi 

and v € Vo or we Vo andve Vj. 

An ordering of layer V; is specified by a permutation 7; of V;. We express 

the ordering of V; by the permutation 7, and the ordering of V2 by 72. Note, 

that we do not distinguish between permutations of vertices and permutations 

of positions since every vertex is clearly associated with its position and it 

will be always clear form the context what is meant. Let cross(G, 7,72) be 

the number of edge crossings in a straight-line drawing of G given by 7 and 

12. If we fix the permutation of V;, the minimum number of edge crossings we 

can achieve by reordering the vertices in V2 is denoted by opt(G, 7). Thus 

opt(G, 7) = min cross(G, 771, 72). 

\ 

We can now formulate the one sided crossing minimization problem as follows. 

Given a bipartite Graph G = (V1, V2, FE) and a permutation 7 of Vj. 

Find a permutation 72 of V2 that minimizes the edge crossings in the 

drawing of G, i.e., cross(G, 71, 72) = opt(G, 7). 

The notion of the crossing number (Eades and Kelly, 1986) is important 

for many heuristics. Assume the permutation 7 of V; is fixed. We define 

for each pair of vertices u,v € V2 the crossing number c,, as the number of 

crossings between edges incident on wu and edges incident on v, when 72(u) < 
m2(v). Furthermore, we define cy, = 0 for all uw € Vo. Observe, that the 

number of crossings between edges incident on u and edges incident on v 

depends only on the relative positions of u and v but not on the positions 

of the other vertices. To give an example, Figure 5.9 shows a drawing of a 
2-layered graph. The corresponding crossing number matrix is depicted in 
Table 5.1. 

We can use the crossing numbers to compute cross(G, 71, 72): 

n2—-1l ne = 

cross(G, 71, 72) = De Cuv = Se We Cij 
T2(u)<m2(v) i=1 j=i+1 
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e Zo 

Fig. 5.9. A 2-layered graph. 

Table 5.1. Crossing number matrix for the graph in Figure 5.9. 

emesis ¢ 
i pee 
fo 
Ome San 

Sander (1994) presents a sweep line algorithm which computes the crossing 
numbers in time O(|Vi| + |V2| + |£| +c) where c is the number of crossings. 

The crossing numbers are helpful to give a lower bound on the number of 

crossings: 

ie NS miniea era 
12 (u)<m2(v) 

As experiments show (Jiinger and Mutzel, 1997), this simple lower bound is 
very tight to the optimum. 

We will now consider the most interesting heuristics in more detail and 

shortly describe the others. 

Barycenter Heuristic. The barycenter heuristic (Sugiyama et al., 1981), 

which is also called averaging, is based on the intuition that in a drawing with 

few crossings, each node should be close to its adjacent nodes. The barycenter 

method is very popular because it is easy to implement, runs fast, and gives 

good results. 

In this heuristic, we choose the position of a vertex as the barycenter 

(average) of the x-coordinates of its neighbours N(u), where N(u) := {uv : 
{u,v} € FE}. In order to do this, we compute 

1 
bary(u) = aexta) & 71 (v) 

for every u € V9. If two values are equal we separate them arbitrarily by a 

small amount. Then we sort the vertices by their values. Because the ver- 

tices are likely to be presorted after some previous steps in the layer-by-layer 

sweep, Sander (1994) suggests to use a randomized quicksort (see for in- 

stance (Cormen et al., 1990)). 
It is interesting, that the barycenter method gives a drawing without 

crossings if one is possible. Since the running time for computing bary(w) is 
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proportional to the degree of u, the barycenters of all vertices can be found 

in linear time. Thus, with the subsequent sorting, the time complexity is 

O(|V2| log |V2|). Note, that the crossing number matrix has not to be precom- 

puted as in several other heuristics. 

Median Heuristic. In the median heuristic (Eades and Wormald, 1994), 

the x-coordinate of each vertex u is given by the median of the x-coordinates 

of the neighbours of u. Here, the median is defined as follows: Suppose the 

neighbours of u are v1, V2,... ,vj; with ™(v1) < m(v2) <...<™ (v;), then 

med(u) = 71(vj/21). This definition differs from the classical notion of the 

median since there are actually two medians at 5 and 4+1 if 7 is even. Here, 

we take always the left median. Furthermore, if u has no neighbours, we set 

med(u) = 0. 
As with the barycenter heuristic we have to sort V2 according to med(u). 

If two vertices have the same median they are separated by a small amount, 

with the restriction that if one vertex has odd degree and the other vertex 

has even degree, then the odd degree vertex is placed on the left of the vertex 

with even degree. If the degrees of the vertices have same parity, we can 

choose their order arbitrarily. This tie breaking method is necessary to prove 

the following performance guarantee, where the number of crossings in the 

output of the median heuristic is denoted by med(G, 71). 

Theorem 5.4. For all bipartite graphs G = (Vi, V2, E) and all permutations 

™, of Vi, med(G, 21) < 30pt(G, 21). 

The proof of this theorem can be found in (Eades and Wormald, 1994) 
and (Di Battista et al., 1999). Like barycenter, the median method produces 
an output with zero crossings if possible. For each u, the median can be 

determined in O(|N(u)|) (see for instance (Cormen et al., 1990)), so we get 
the same running time as for the barycenter heuristic. 

The following two variants of the median method were defined by Makinen 

(1990). The average median assigns the arithmetic mean of the two medians 
if u has even degree, whereas in the semi median heuristic, we set smed(u) = 

bary(u) if the degree of u is even. Both variants return the value of med(u) 
if the degree of u is odd. As tests show, both heuristics improve the results 
of the original algorithm. 

Gansner et al. (1993) refine the average median heuristic even further. If 

a vertex u has odd degree, the weighted median is defined by wmed(u) = 
med(u). If deg(u) = 2 then wmed(uw) is the arithmetic mean of the positions 
of the two neighbours. The difference to the average method occurs when 

deg(u) is even and deg(u) > 2. In this case, the weighted median is defined 
as 

Ty (v;/2) , right + 1 (5/241) c left 

left + right 

where left = 71 (vj/2)—71(v1) and right = 7 (vj;) —71(v;/241). This strategy 
puts the vertex toward the side where the neighbours are more closely packed. 

wmed(u) = 
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Greedy Switch Heuristic. The greedy switching heuristic (Algorithm 13), 
also called adjacent-exchange, works in a way similar to bubble-sort. If u and 
v are two consecutive vertices in V2, then switching their positions changes 
the total number of crossings by exactly cy, — Cyy. The algorithm scans all 
consecutive pairs and switches them if this reduces the number of crossings. 
This process is repeated until no further switching occurs, i.e., for all con- 
secutive pairs (u,v) the inequality cy) < Cy, holds. Such a vertex ordering is 
called stable. 

Algorithm 13: greedy-_switch 
repeat 

for u := 1 to |V2| 1 do 
| if Cu(u+1) = C(u+1)u then 

|_ switch vertices at positions u and u+ 1; 

until the number of crossings was not reduced; 

Since one scan of the vertices can be implemented in O(|V2|) and there 
are at most |V2| scans, the time complexity of the greedy switching heuristic 

is O(|V2|7). 

As suggested by Makinen (1990) and Gansner et al. (1993), the greedy 
switch heuristic is preferable as a post processing step in combination with 

other heuristics such as barycenter or median. This is because greedy switch- 

ing does not recompute the ordering completely but makes changes only when 

it improves the result. 

Split Heuristic. The split heuristic (Eades and Kelly, 1986) gives better 

results than the median or barycenter heuristics at the expense of longer 

running times. The algorithm is comparable with quicksort. First, a “pivot” - 

vertex p is chosen. This can be done by arbitrarily selecting the leftmost 

vertex. A more sophisticated method would choose the pivot vertex randomly. 

In the next step of the algorithm, every other vertex v is placed to the left 

or to the right of p according to whether cyp < Cpy OF Cpy < Cyp. After 

this partition, the algorithm is applied recursively to the left set and to the 

right set until both sets are ordered and can be concatenated. We start the 

Algorithm 14 by calling split(1, |V2]). 
The split heuristic has a worst case running time of O(|V2|?) but in prac- 

tice it runs in time O(|V2|log|V2|) if we do not consider the computation of 
the crossing number matrix. 

Sifting. The sifting algorithm was introduced by Rudell (1993) to reduce the 

number of nodes in reduced ordered binary decision diagrams (ROBDDS). 
An ROBDD is a graph which represents a boolean function and is primarily 
used in logic synthesis and verification. It is possible to adapt the sifting 

algorithm for the crossing minimization problem (Matuszewski et al., 1999). 
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Algorithm 14: split (7,7: 1,...,|Val) 

if 7 >i then 
pivot := low :=1; high := j; 
for k:=i+1 toj do 

if cr pivot < Cpivotk then 

| 1(k) := low; low := low + 1; 

else 
|. m(k) := high; high := high — 1; 

/* low == highw) 
1 (pivot) := low; 
copy 7(i...j) into m2(i...7); 
split (i, low — 1); 
split (high + 1,3); 

Sifting yields very good results especially for sparse graphs but again this is 

paid with longer running times. 

The algorithm determines the optimal position for every vertex u under 

the condition that the positions of the other vertices remain fixed (Algo- 

rithm 15). 

Algorithm 15: sifting 

foreach u € V2 do 
move u to the leftmost position; 
CTOSSINGS *= Vino (u)<ng(v) Cur) 
min_crossings := crossings; 
for p :=1 to |V2|—1 do 

crossings := crossings — Cp(p41) + C(p+1)p3 
switch vertices at positions p and p+ 1; 
if crossings < min-_crossings then 

min_crossings := crossings; 
best_position := p; 

move u to position best_position; 

Since every vertex has to be set on every position, the time complexity is 

O(|V2|?). 
Other Heuristics. The greedy insertion algorithm (Eades and Kelly, 1986) 

proceeds by successively choosing the next vertex u to be the one which 
minimizes the number of crossings that edges adjacent to u make with edges 
adjacent to vertices to the right of wu (if we start from left). The running time 
is in O(|V2|?). 

The stochastic heuristic (Dresbach, 1995) was originally designed to 
change the ordering of both layers but can be adapted to compute a so- 
lution if one layer is fixed. The algorithm greedily puts the vertices of V; and 
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V2 to open positions according to assessment numbers. These numbers are 

derived from the frequency numbers that estimate the probability for an edge 
to cause a crossing in the drawing of the graph. The frequency number of 

an edge is the number of edges that cross that edge if the complete bipartite 
graph is drawn. 

The assignment heuristic (Catarci, 1995) finds the linear assignment (see 
for instance (Lengauer, 1990)) for a simplified crossing minimization problem. 
We define d;; as an upper bound on the number of edge crossings that are 

caused by edges incident on vertex 7 if we place 7 to position 7. Such a number 

is easy to get. First we place vertex 2 on position 7. Then we make the rest 

of the graph complete, i.e., every vertex in V2 except vertex 7 is connected to 

every vertex in V;. At last we count the number of edge crossings caused by 

edges incident on 7. If all d;; are computed we solve the assignment problem 

for matrix D = ((dj;)), i.e., we choose ng elements from D such that each 
row and each column is covered and the sum of the elements is minimized. 

Several meta heuristics were used to solve the one sided crossing minimiza- 

tion problem. A genetic algorithm is given by Makinen and Sieranta (1994) 

and the results are compared with the barycenter heuristic. The genetic algo- 

rithm is better with the expense of long computation times. Similarly, the tabu 

search by Laguna et al. (1997) gives high quality results but is usable only 
when fast computation is not necessary. The GRASP (greedy randomized 

adaptive search procedure) by Laguna and Marti (1999) gives good results 

especially for sparse graphs and has moderate computation times. 

Optimal Crossing Minimization. The computation of exact solutions is 

very desirable to estimate the quality of the results produced by the heuris- 

tics. The branch-and-cut algorithm by Jiinger and Mutzel (1997) does the 
computation of exact solutions in surprisingly short time. To name it, for in- 

stances with up to 60 vertices in the permutable layer the best permutation 

can be found faster or as fast as every other heuristic, except the barycenter 

and the median heuristic. 
Let us state the one sided crossing minimization problem as an integer 

program. For each layer i we define 51, = 1 if mi(k) < m(l), otherwise 6, = 0. 

Thus, we can characterize 7; by the vector 5 € {0, 1} (7) and compute the 

number of crossings with 

ne—-1l ne 

cross(72) = cross(6”) = 3 ye S> > On 55, +h, Oey. 
i=1 j=i+1 kEN(t) lEN(j) 

The crossing numbers can be computed with 

cg= Do DD Sk. 
kEN(i) LEN(J) 
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Then 

noe—-1l ne 

2 2 
cross(6”) = Dp a Ci 05, + Cull —0;,) 

i=1 j=i+1 
nma—-1 ne na—1 ne 

2 
= es Arica iy eas lianas 

i=1 j=i+1 i=1 j=itl 

With n = no, Vij = 57, and aij = cij — Cj; we have to solve the linear 

ordering problem 

(LO) minimize 7"7)' jen Cg 2iy (5.7) 

subject to 0 < 24; +2j4 —Zik <1 forl<i<j<k<n (5.8) 

Ora k for L<i<j <0 (5.9) 

Dine Zs FOR Ste ae (5.10) 

To get the minimum number of crossings we have to add ));_ fe Lpne. 41 Sji 

to the optimum value of (LO). The “3-cycle-constraints” (inequalities (5.8)) 

ensure that the vector x indeed defines a permutation 72 of V2. To solve the 

linear ordering problem, a branch-and-cut approach is used. 

First, a relaxation of (LO) is defined by dropping the integrality condi- 
tions. Since the space required for writing down all 3-cycle inequalities is in 

O(|V2|*), solving the corresponding linear program is impractical. Therefore 
a cutting plane approach is used. The algorithm starts using only the hy- 

percube inequalities (constraints (5.9)) and iteratively adds violated 3-cycle 
constraints and deletes non binding 3-cycle constraints until the relaxation 

is solved. If an integral solution is found, the algorithm stops. Otherwise, 

a fractional z;; is chosen and the algorithm is applied recursively to two 

subproblems, one with z;; = 0 and one with 2,; = 1. 

Planarization. An alternative method to crossing reduction is given by 

Mutzel (1997). The idea is to remove a minimal set of edges such that the 
remaining k-layer graph can be drawn without edge crossings. In the final 

drawing, the removed edges are reinserted which, however, may produce much 

crossings. Let us for example consider the drawing of a graph from (Mutzel, 
1997) obtained by 2-layer planarization in Figure 5.10 which has 34 cross- 

ings. The same graph with the minimum of 24 edge crossings is shown in 

Figure 5.11. 

It is not quite clear whether the drawing with fewer crossings is more 

readable. On the contrary, in Figure 5.10 the four removed and reinserted 

edges stand out clearly and all edges can be easily followed by the eye. Still 

another motivation for studying the k-layer planarization problem is that it 

might be easier to attack than the k-layer crossing minimization problem. 
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4 6 8 7 5 15 14 3 2 US 2 9 1 11 

21 Pee eee 20 et. a oe Lt OO 

Fig. 5.10. Graph drawn using planarization. 

2 cee eo AE Orn kee RTE 20 220 AT 30 

Fig. 5.11. Graph drawn with the minimal number of crossings. 

However, even the 2-layer planarization problem is NP-hard. To solve the 

problem, a formulation as an integer program and studies on the associated 

polytope are given by Mutzel (1997). The results are used in an efficient 

branch-and-cut algorithm and a heuristic is derived by setting a time limit 

of five minutes for the program. The results are close to the upper bound 

determined by the optimal solution of the linear programming relaxation. 

5.4.3 K-layer Crossing Minimization 

Tutte’s Algorithm. The results of Tutte’s Algorithm (Eades and Sugiyama, 

1990) are similar to barycenter. First, the positions of the vertices in the first 

and in the last layer are fixed. In each other layer the x-coordinate of a vertex 

u is chosen as a weighted average of the x-coordinates of its neighbours: 

1 it 

le 2 outdeg(u) ji POND 2 indeg(wu) ns ae 
vENt(u) weEN-in(u) 

Now we have to solve a system of sparse linear equations to compute the 

value x(u) for each vertex u. In the last step the vertices of each layer are 

sorted by z. 

Optimum Crossing Minimization. Jiinger and Mutzel (1997) and Lino 
et al. (1996) give branch-and-bound algorithms for the (two sided) 2-layer 
crossing minimization problem. In the approach of Jiinger and Mutzel (1997), 
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all permutations of the smaller layer are enumerated and the lower bound L 

is employed to make the search tree smaller. The branch-and-cut algorithm 

for the one sided crossing minimization is applied to obtain complete permu- 

tations of the larger layer. 

To solve the 2-layer crossing minimization problem directly, an integer 

linear program and studies on the associated polytope are given by Jiinger 

et al. (1997). Furthermore, they generalize the formulation to solve the k- 

layer problem. Note, that all cutting planes arising from the bipartite graphs 

are valid cutting planes for the combined k-layer graph. For both, 2-layer and 

k-layer problems, branch-and-cut algorithms were implemented and tested on 

2-layer and 3-layer instances. The results indicate that the branch-and-cut 

approach may only be practicable, if deeper polyhedral studies are conducted. 

5.4.4 Dense Graphs and Edge Concentration 

The density of a graph is defined as the ratio of the number of edges of the 

graph to the number of edges of the corresponding complete graph. Thus, 

every complete bipartite graph has density 1. It can be proven, that for 

dense graphs the number of crossings is close to the optimum for every vertex 

ordering (Di Battista et al., 1999). The basic intuition is that if two vertices 
u and v have many common neighbours, then c,, and cy, are both large. 

More precisely, if xu,» is the number of common neighbours of u and v, then 

Cun = (5) and Cy, > (5%) 
2 2 

One consequence is that any crossing minimization heuristic will perform 

“better” if graphs become denser. The other is that large and dense graphs 

are hardly readable, even after the best crossing reduction, because every edge 

is hidden in a confusing mass of crossings. Two examples for such graphs are 

call graphs and graphs depicting relations between include files and source 
files of a system. 

One way out of this dilemma is edge concentration (Paulish, 1993). This 

technique identifies complete bipartite subgraphs of a bipartite graph and 

replaces them with an equivalent tripartite graph as described next. 

If a complete bipartite graph G = (Vi, V2, E) is given, the equivalent 
tripartite graph G* = (Vi, EC,V2,E*) is constructed by inserting a level 
with a single node, the edge concentration node, between the two levels. The 
edges in E are replaced by E* = (Vi x EC) U(EC x Vo). We call the set of 
edges in the complete bipartite graph an edge concentration and the resulting 
tripartite graph is said to be concentrated. 

Consider the complete bipartite graph in Figure 5.12(a). All edges are 
concentrated to a single node as shown in Figure 5.12(b). The resulting tri- 
partite graph has fewer edges and no edge crossing. Note that after edge 
concentration edge labels are lost and an additional level is inserted. 
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Fig. 5.12. A complete bipartite graph and the equivalent tripartite graph. 

Since the concentration of a complete bipartite subgraph is easy, the main 
problem is to identify such subgraphs in an arbitrary bipartite graph. We 

state the edge concentration problem as follows. 

Given a bipartite graph G = (Vj, V2, E). Find a set of (possibly 
overlapping) complete bipartite subgraphs G,,G2,...,Gs of G that 

cover all edges of G and minimize the number of all edges in the 

equivalent, tripartite representations G} of G;. 

It is an open question whether the edge concentration problem is VP- 
hard or not. There is a similar and somewhat simpler problem, the covering by 

complete bipartite subgraphs problem, which is known to be V’P-hard (Garey 

and Johnson, 1991) and can be stated as follows: 

Given a bipartite graph G = (Vi, V2, FE). Find the smallest set of 
(possibly overlapping) complete bipartite subgraphs Gj, G2,...,G, 
of G that cover all edges in G. 

The edge concentration problem seems to be at least as hard as this problem, 
although no reduction has yet been found. 

In the book of Paulish (1993) a heuristical algorithm for the edge concen- 
tration problem is given. First, potential edge concentrations are identified 
by considering the complete bipartite subgraph formed by each pair of source 

nodes and their common successors. Such a subgraph is called an intersection. 
For example, let us consider the graph in Figure 5.13. The intersection formed 

by the source nodes 1 and 2 and their commom successors has the node set 

{1,2, A,B,C}. The node sets of the other two intersections are {1,3, B,C} 
and. 2,3,0,C,.Dt. 

After determining all intersections, the algorithm tries to find good edge 

concentrations. If the target nodes of an intersection are a subset of the target 

nodes of a previously determined intersection, then the set of target nodes 
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Fig. 5.13. A bipartite graph. 

is partitioned into two sets. The first contains the target nodes which are in 

both intersections while the second contains the remaining target nodes. This 

partitioning of the target nodes helps to avoid overlap between concentrations 

which would lead to additional edges and crossings. 

5.5 Horizontal Coordinates 

The computation of the horizontal coordinates has mainly two different objec- 

tives. The layout should have as few bends as possible. As mentioned before, 

bends only occur at dummy vertices. This is true unless the expansion of the 

vertices is very large. For details concerning this particular problem, see for 

example (Sander, 1996b). In some applications not only straight edges but 
also vertical edges are preferred. 

We will present exact approaches to this problem and afterwards introduce 

a heuristic. 

5.5.1 Exact Algorithms a 

The problem of finding a layout with as straight edges as possible can be 

formulated as follows. Consider a directed path p = (v1, v2,..., Ug) where 

V2, U3,+++)Uk—1 are dummy vertices. We call this an edge-path. If the edge- 

path would be drawn straight, the dummy vertices would satisfy 

(v1) — 2(v1) = = (@(ve) — a(v1)) 
for all 1 < i < k. Observe that this formula is only valid for equidistant layers, 
but it is straight forward to adjust this formula for unequal layer distances. 

To be able to state the objective function more compact, we introduce the 
term £(v;) := f=4(x(ve)—2(v1))+2(v1) which would be the the x-coordinate 
of v; if it would lie on the straight line between z(v;) and z(vz). We can now 
formulate a measure for the deviation of the path from a straight line 

k-1 

dev(p) = S°(2(vi) =Z(%))° 
i=2 
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To make the edges as straight as possible, we minimize the sum 

S dev(p) 
p is edge-path 

subject to the constraints 

t(w) — x(v) = p(w, v) 

for all pairs w, v of vertices in the same layer with w to the right of v. 

The constraints ensure that the ordering within each layer computed by 

the crossing reduction step is preserved and that the horizontal distance 

p(w,v) between the vertices is observed. The value p(w, v) usually is calcu- 
lated from the size of the vertices and the requested minimum horizontal 
distance between two succeeding vertices. 

An optimal solution to this optimization problem may result in expo- 

nential width of the drawing and thus, if the width should be kept small 

further inequalities would have to be added. The main disadvantage is that 

since this problem has a quadratic objective function, it can only be solved 
to optimality for small instances. 

Another objective is to draw the lines as close to vertical lines as possible. 

In this case the objective function can be stated as (Gansner et al., 1993) 

ps 2(u, v)w(u, v)|z(u) — x(v)I, 

(u,v)EE 

where w is a measure for the importance of an edge and §2 denotes an 

internal weight for straightening long edges. Therefore, the authors suggest 

higher priorities for edges between dummy vertices than between the other 

vertices ({2(e) = 8 if both endvertices are dummy vertices, 2(e) = 2 if exactly 
one endvertex is a dummy vertex and §2(e) = 1 otherwise). Of course, the 
introduction of a weight function may improve the layouts computed by the 

preceding model as well. 

A new idea to solve this problem efficiently was introduced in (Gansner 
et al., 1993). Gansner et al. construct an auxiliary graph on which this prob- 

lem transforms to a layering problem introduced in Section 5.3.4 which can 
be solved easily. The x-coordinates correspond to the layers and vice versa. 

The auxiliary graph Ga = (Va, Eq) contains as vertices all vertices of G 

plus a vertex for each edge in G. Hence, Va = V U {[uv] | (u,v) € E}. We 
introduce two kinds of edges in Gg. The first class of edges encodes the original 

edges and is needed to eliminate the absolute values in the objective function. 

For every edge (u,v) € E, we introduce two edges ({uv],u) and ({uv],v) in 
Ga. We define wa([uv], uv) = wa([ur,v) = Q(u,v)w(u,v) and Ag([uv],v) = 
Aa({uv],v) = 0. The second class of edges separates the vertices with the 
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u 

[uy v 

Fig. 5.14. Introducing auxiliary variables. 

™~ 

same rank. If v is a left neighbor of w in G, we insert an edge (v,w) in Ea 

and define wa(v, w) = 0 and Aa(v, w) = p(v, wv). 
In the following, we will describe how a solution of the layering on Ga 

corresponds to a solution of the positioning problem on G and that both 

have the same cost. Let a solution of the positioning problem on G be given. 

Assign [uv] to the layer min{z(u),z(v)}. Conversely, in an optimal layer 

assignment in Ga, the vertex [uv] lies in either the layer of u or the layer of 

v. Thus, one of the edges ({uv], uv), ({uv],v) has length 0 and the other has 

length |x(u) — x(v)|. Hence, optimality in G, implies optimality in G and a 
layering for Gg gives a solution for G. 

5.5.2 A Heuristic 

Another possibility is to obtain the x-coordinates by an improvement heuris- 

tic which can roughly be stated like the following: 

initial coordinates; 

while some condition do 
positioning; 
straightening; 
packing; 

One possibility for computing an initial solution is to position the vertices 

with minimal distance from left to right in the order given by the crossing 
minimization. 

In the positioning phase essentially the ideas used in the previous section 

for crossing reduction between two layers might be applied, like the median 

or barycenter heuristic. Another idea is to think of the vertices as balls and 

the edges as strings of a pendulum (Sander, 1996b). 

Since these strategies compute layouts with many bends, in the straight- 

ening phase one tries to assign paths of dummy vertices to the same z- 

coordinate. The edges can be seen as rubber bends with vertices at both 

ends and the dummy vertices in between. This enlarges the drawing in z- 

direction of course. Hence, the drawing is compressed by moving the vertices 
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closer together again without introducing new bends. These steps might be 
iterated to obtain a satisfying solution. 

5.6 Positioning of Edges 

Drawing of edges is easy if all nodes have the same size and shape. We simply 
draw arcs with span one as straight lines and longer arcs as polygons using 
the dummy nodes as intermediate points. If the gap between two nodes is 
wide enough, there will be no intersection between nodes and edges. 

But if the nodes differ in size and shape, the problem to draw the edges 
such that no visible node is intersected is much more complex (see Fig- 
ure 5.15(a)). A possible solution is to draw the edges orthogonal (in Man- 
hattan layout) as shown in Figure 5.15(b). An algorithm for doing this was 
described by Sander (1996a). 

(a) (b) 

Fig. 5.15. Problem of node intersection and solution with orthogonal edges. 

Another approach is to bend the edges at two points. An easy way to do 
this is to set the length of the vertical segments of all edges to the size of the 

largest node in the layer. Thus, all nonvertical segments between layer V; and 

layer V;;1 start at the same y-coordinate and end at the same y-coordinate. 

Figure 5.16(a) shows the result. 
Clearly, no edge can go through a node or can cross the vertical segment 

of another edge. The disadvantage is that too many bendings are produced. 

One can get better-looking graphs by bending edges only if necessary (see 

Figure 5.16(b)). But now, bent edges may cross neighboured edges. This 

can be avoided by also bending an edge which crosses a vertical segment of 
an already bent edge. The iterative Algorithm 16 implemented in the VCG- 
tool (Sander, 1994) starts with unbent edges and introduces vertical segments 

or enlarges them until no overlapping or additional edge crossing remains. 
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(a) (b) 

Fig. 5.16. Solutions with bending of edges. 

Algorithm 16: bend_edges 

while ie € E that overlaps a node or crosses a vertical segment of an edge 
e’ do 
|_ enlarge the vertical segments of e; 

We can get even nicer drawings if we draw the edges as curves instead of 

straight lines and polygons. Among the different methods to interpolate and 

approximate points, Bézier curves have properties which make them suitable 

to represent edges between nodes. We will shortly describe this kind of curves 
next; for a deeper view see for instance (Foley et al., 1990). 

Bézier curves are specified by the control points bo,... , bn. The points 

bo and 6b, are the interpolated end points of the curve, all other control 

points are approximated. The gradients in bo and b,, are given by the gradient 

of the straight line segment between bo and b,; and between b, and bn_1, 

respectively. Figure 5.17 shows a Bézier curve with three control points and 

the associated polygon. Note that the entire curve is completely enclosed by 
the convex hull of the control points. 

bo bg 

Fig. 5.17. A Bézier curve. 
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The Bézier curves used in the VCG-tool also have three control points 
which are determined by finding appropriate triangles at the bendpoints of 
the polygons. Thereby, the middle control point is set to the bendpoint itself 
and we try to find good positions for the two end points on the adjacent 
polygon segments. In order to do this, the end points are set on the adjacent 
segments such that an isoscele triangle is produced (see Figure 5.18(a)). Then 
the size of the triangle is reduced until all nodes and bendpoints are outside 
the channel (Figure 5.18(b)). Finally, the curve is drawn inside the triangle 
as shown in Figure 5.18(c). 

(a) (b) (c) 

Fig. 5.18. Calculation of the curve. 

A sophisticated method to find the smoothest curve between two points 

is given in the article of Gansner et al. (1993). First, a region where the curve 
may be drawn is determined. This space is represented by a set of boxes 

parallel to the coordinate axes. Then, the best curve within the region is 

drawn as a piecewise Bézier curve which is done in the following way. First, 

a polygon is generated which lies entirely inside the region. The endpoints 

and intermediate points are used as hints for the control points of the Bézier 

curves. The actual Bézier curve is determined in an iterative process that 

perturbs the control points until the curve fits in the region. 
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5.7 Related Approaches 

5.7.1 Upward Planarity 

A directed graph is upward planar if it can be drawn in a way such that 

no two edges intersect and every edge is monotonically nondecreasing in the 

vertical direction (see Chapter 2 for an introduction to planar graphs). So, two 

of the aesthetic criteria mentioned in Section 5.1 can be optimally satisfied. 

Unfortunately, although testing whether a digraph admits a planar drawing 

or an upward drawing can be done in linear time, upward planarity testing 

is NP-complete (Garg and Tamassia, 1995a). Nevertheless, there are many 

special classes of directed graphs for which upward planarity testing can be 

done in polynomial time (Garg and Tamassia (1995b) give a survey of testing 

algorithms). 
Note, that ordered sets and upward planar digraphs are closely related. 

Ordered sets with a special treatment of lattices are covered in Section 3.3 

in this book. 
We will now mention some classes of digraphs for which efficient upward 

planarity testing and drawing methods exist. 

(s,t)-digraphs. An (s,t)-digraph is an acyclic digraph with exactly one source 
s, exactly on sink t, and the edge (s,t). A planar (s,t)-graphs is always up- 

ward planar. More general, a digraph is upward planar if and only if it is a 

subgraph of a planar (s,t)-digraph (Garg and Tamassia, 1995b). Garg and 

Tamassia (1993) describe an efficient algorithm for drawing a planar (s,t)- 
digraph. Since every upward planar digraph can be easily extended to an 

planar (s,t)-digraph, we can draw every upward planar digraph efficiently. 

Embedded digraphs. An embedding of a graph associates to each vertex v a 

circular clockwise ordering of the incidence list of v. An embedded graph is a 

graph with a given embedding. Bertolazzi et al. (1994b) give an polynomial- 

time algorithm for testing if an embedded digraph has a upward planar draw- 

ing. If such a drawing exist the algorithm allows to construct one easily. 

Single source digraphs. Hutton and Lubiw (1991) give an O(n?) time algo- 
rithm for testing if a single source graph is upward planar where n is the 

number of vertices in the graph. Improvements made by Bertolazzi et al. 

(1993) yield an O(n) time algorithm. 

Embedded single source digraphs. Hutton and Lubiw (1991) and Bertolazzi 
et al. (1993) give an O(n?) time resp. O(n) time algorithm for testing if 
whether an embedded single source digraph has an upward drawing which 

preserves the embedding. 

Planar bipartite digraphs. Planar bipartite digraphs are always upward pla- 
nar. We refer to the paper of Di Battista et al. (1990). 

Series-Parallel digraphs. Series-parallel digraphs are always ‘upward planar 
and covered in Section 3.2 in this book. 
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Trees and Forests. Directed graphs whose underlying undirected graph is a 

forest are always upward planar. See Section 3.1 for more information about 

trees. 

Triconnected digraphs. A graph G is triconnected if it is biconnected and has 

no separation pair which is a pair of vertices whose removal increases the 
number of connected components. Since a triconnected digraph has a unique 

embedding we can use the algorithm of Bertolazzi et al. (1994b) for testing 
upward planarity. 

Outerplanar digraphs. Outerplanar graphs are planar graphs which admit 
an embedding such that all the vertices are on the same face. Testing if an 

embedded outerplanar digraph with n vertices is upward planar can be done 

in time O(n) while testing if an outerplanar digraph is upward planar can be 

done in time O(n?) (Papakostas, 1995). 

5.7.2 Clustered Graphs and Hierarchical Graphs 

Sometimes some grouping of the vertices (clustering) is given together with 
the graph. These graphs and more general graphs will be treated in Chapter 8. 

Another possibility is to compute a grouping, draw the groups and then 

combine the partial drawings to complete the drawing. This leads to a divide 

and conquer approach. Concerning the computation of layered drawings this 

strategy is discussed in (Messinger et al., 1991). See Chapter 8 as well. 

5.7.3 Recurrent Hierarchy 

Sugiyama et al. (1981) suggest another hierarchy, called recurrent hierarchy. 

Edges are allowed between consecutive layers and between the last and the 

first. This might be useful to illustrate graphs with large feedback arc sets. 

Unfortunately, this problem is still not well studied. 

L7 

Ls 

ie : we 
Ls 

Fig. 5.19. A recurrent hierarchy and a ring diagram. 
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5.7.4 Ring Diagram 

Another idea is to display the flow radial where the layers lie on concentric 

circles and the arcs are pointing outward (Reggiani and Marchetti, 1988). 
This is very similar to the three-dimensional case of layered drawings, see 

Section 7.3 for details on this. . 

5.7.5 Combining the Steps 

Usually the single steps are performed independently. Specially the layering 

step and crossing minimization step are strongly related and it seems to 

be reasonable to solve them together in one step. A convincing example is 

depicted in Figure 5.20. A first attempt using an evolutionary algorithm is 

presented in Utech et al. (1998). 

Fig. 5.20. A graph which be drawn either in two layers but with crossings or in 
at least three layers without crossings but with long edges. 
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AloAdO 
6.1 Introduction 

There are various criteria to judge the quality of a drawing of a graph. From 
a human point of view, one of the most important issues is the readability of 

a drawing: ideally, it should be easy to understand the structure of a graph 

with just a few glances, and the chance of confusion over connections between 

different vertices should be small. From an algorithmic point of view, it is 
necessary to capture this quality by means of an objective function. Various 

objective functions have been studied, with a great deal of effort put into 
their optimization by means of combinatorial algorithms. 

An undesired property of a drawing that may impede its legibility is the 

presence of edges that are too close together. Keeping different edges apart 

may be particularly difficult in the vicinity of vertices, where several adjacent 

edges have to meet. Clearly, there is some correlation between the involved 

angles and the optical distinctiveness of the drawn edges. This motivates 

a particular objective function that is considered at the beginning of this 

chapter: find a drawing of a graph such that the minimum angle between | 

adjacent edges is maximized. The first section discusses upper and lower 

bounds on angles in straight-line drawings. 

There is a particularly nice way to guarantee maximal distinctiveness 

of adjacent edges in a drawing: when forcing all angles between adjacent 

edges to be multiples of 5, edges will correspond to axis-parallel paths. The 

price we may have to pay for this type of clarity is to admit bends in the 

path representing an edge. In order to avoid confusion by too complicated 

paths, it is desirable to minimize the number of these bends. This setup | 

has given rise to the area of orthogonal graph drawing — probably one of 

the most prolific in all of graph drawing, with scores of methods, heuristics, 
and sophisticated algorithms like KANDINSKY, others extending to mainly 
theoretical research areas like three-dimensional drawings. Over the years, 

orthogonal graph drawing has become far more important than the issues of 

angles in drawings, but both types of problems have their own motivation 

and have been studied independently. 

It is the main objective of this chapter to combine a description of the 

key ideas (like the flow methods in the landmark paper of Tamassia 1987) 

with an overview of some of the main consequences and applications. 

This chapter is organized as follows: after discussing angles in drawings 

in Section 6.2, Section 6.3 characterizes the correspondence between orthog- 

onal drawings and combinatorial descriptions: how can we give a compact 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 121-171, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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combinatorial encoding of the orthogonal shape of a drawing (called an “or- 

thogonal representation” in the literature), and how can we realize a given 

combinatorial encoding as an orthogonal drawing? 

Section 6.4 describes a number of heuristics that have been developed for 

finding a good orthogonal drawing without employing orthogonal represen- 

tations. . 

When trying to find orthogonal drawings with few bends, we concentrate 

on the space of orthogonal representations. Optimizing over this space is the 

subject of Section 6.5, where we describe an efficient combinatorial algorithm 

for this task. Extensions to planar graphs of possibly high degree are sketched. 

The final Sections 6.6 and 6.7 deal with improving orthogonal drawings. 

In many cases, the output of orthogonal drawing algorithms can be com- 

pacted further by assigning different — but still consistent — lengths to the 

edge segments. Section 6.6 gives an overview of compaction techniques, rang- 

ing from efficient heuristics to optimal techniques. The following Section 6.7 
presents some efficient postprocessing methods that operate directly on the 

orthogonal drawings and try to improve aesthetic criteria like the number of 

bends or the number of crossings. We conclude with Section 6.8 and present 

some open problems in orthogonal graph drawing. 

In many algorithms presented in this chapter, flow algorithms play the 

key role. Many problems can be reduced to a maximum or minimum cost 

flow problem. A good overview of network flow problems, modeling, and 
algorithms can be found in Ahuja et al. (1993) or in’ Bertsekas (1998). 

6.2 Angles in Drawings 

As described above, the following optimization problem comes up naturally 
when trying to create drawings with high resolution: 

Problem 6.1 (Angular Resolution). Given a graph G = (V,E) with n 
vertices and m edges, how can we draw the vertices as points in the plane, 
and the edges as straight lines between adjacent vertices, such that the an- 
gular resolution, i.e., the smallest angle between adjacent edges, is as large 
as possible? 

Over the years, a number of researchers have given various kinds of an- 
swers to this question. One type of result is to establish the complexity of 
ANGULAR RESOLUTION. It was shown by Formann et al. (1990) that it is 
NP-hard to check whether a planar graph with maximum degree 4 can be 
drawn with angular resolution at least 5: Before discussing how to relax the 
requirements on drawings, such that a drawing with resolution 2 is always 

. . 
2 possible, we describe some lower and upper bounds for straight-line drawings. 

If d is the maximum degree of a vertex in G, it is clear that the angular 
resolution cannot exceed or It was shown in (Formann et al., 1990) that 
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for planar graphs, a resolution of (4) can indeed be achieved. For general 
graphs, a resolution of 2(4) can be guaranteed. The key is to use a coloring 
of G? = (V, E”) of G. (Recall that two vertices in V are adjacent in G? if 
and only if they have distance at most 2 in G.) It can be shown that there is 
a coloring of G with O(d) colors for planar graphs G and with O(d?) colors 
for general graphs G. Then points of a color class are drawn as a cluster of 
points on a unit circle, with different clusters distributed at equal distance 
around the circle. This guarantees that any angle between adjacent edges 
in G involves points from three different color classes of G?, implying the 
claimed bounds. 

The method by Formann et al. suffers from a very serious drawback for 
practical purposes. The number of crossings in the straight-line drawing may 
be much higher than necessary. In particular, the resulting drawing of a planar 
graph may not be free of edge crossings. Thus, it remained open whether the 
resolution of a planar drawing of a planar graph could be bounded from below 
in a satisfactory manner. 

A first partial answer to this problem was given by Malitz and Papakostas 

(1992, 1994) who described a method to guarantee a lower bound of a 
for planar straight-line drawings of planar graphs. Their approach relies on 

so-called “disc-packings” or “coin graph representations” of a planar graph 

G = (V, E), where vertices v € V are represented by disjoint discs, and two 

vertices 11,V2 € V are adjacent if and only if the discs corresponding to v1 

and v2 touch. The existence of this type of representation has been proved 

independently by a number of researchers, including Koebe (1936), Andreev 
(1970a,b), Colin de Verdiére (1989), and Thurston (unpublished). The lower 
bound arises from the fact that in certain subsets of adjacent discs, the radii 

can vary by at most a factor of rz Malitz and Papakostas also conjectured 

that a lower bound of {2(4) for the angular resolution of planar straight-line 
drawings of planar graphs might be achievable. As partial evidence for this 
conjecture, they showed that a particular relaxation of the problem ANGULAR 

RESOLUTION has an optimum of O(4): 

Any set of angles in a feasible drawing has to satisfy a set of linear equal- 
ities — see Figure 6.1. Around every vertex v, the sum of the angles (v) at 
v must be 27; for every interior cycle the sum of the angles &(f) must be 
(|®(f)| — 2), and (|G(fo)| + 2)m for the exterior cycle fo: 

3M; G2 ol oll 0 Cave (6.1) 

$i€(v) 
S_ bi = 7(|O(f)| — 2) for all f € F \ {fo}. (6.2) 

di€P(f) 

>> 4 = m(|P(fo)| +2). Os 
$i €P(fo) 
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If we only impose these necessary conditions while maximizing the mini- 

mum angle, we get a linear program that can be solved efficiently. By using 

linear programming duality, it can be shown that there is always an optimum 

of value 2(4). 

Fig. 6.1. Angles in a drawing must satisfy certain conditions. 

Fig. 6.2. A solution to the linear system that does not correspond to a feasible 

drawing. 

It can be seen from Figure 6.2 that not every solution to the linear pro- 

gramming relaxation corresponds to a set of angles that allow a drawing. 

After drawing the bottom triangle with the given angles, the three edges 

incident to the top vertex cannot intersect in one point. It was shown by 

Di Battista and Vismara (1993, 1996) that for triangulated triconnected pla- 

nar graphs with a designated external face fp, the conditions on angle sums 

can be amended by the following requirement to get a set of necessary and 

sufficient conditions — see Figure 6.3: 

Around each vertex v of degree d(v), we have angles 7;, i = 1,... , deg(v). 
Each 7; lies in the same triangle as the angles a; and (;, as shown in the 

figure. In any feasible drawing, the angles a;, 3; satisfy 
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patel AES 

Fig. 6.3. Angles around a vertex in a drawing. 

d(v) . 
II sin Q; = 

sin 3; 
t=1 

The necessity of these conditions is a consequence of planar trigonometry; 

conversely, it can be shown that this additional condition suffices to get a 

feasible drawing for each “wheel”, as shown in Figure 6.3, since any triple of 

edges that are incident to the same vertex will indeed meet at a single point. 

By induction, it follows that we get a feasible drawing for the full graph. 

Adding these conditions results in a nonlinear program for optimizing the 
angular resolution. 

Garg and Tamassia (1994) managed to disprove the conjecture of Malitz 
and Papakostas (1994) by giving a family of graphs with an upper bound 
of O(,/ log d/d?). See Figure 6.4. In the same paper, they showed that good 
angular resolution may come at the expense of high numerical resolution, 
i.e., large angles require high precision in the coordinates. In other terms, 

they showed that there is a family of graphs, such that if all n vertices are 
drawn at integer coordinates, a drawing of angular resolution p requires area 

(cP). See Figure 6.5. 

Fig. 6.4. A family of graphs with small angular resolution. 
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- 

Fig. 6.5. A family of graphs with tradeoff between angular resolution and area of 

a drawing. 

6.3 Orthogonal Drawings and Their Encoding 

6.3.1 Why Orthogonal Drawings? 

When trying to come up with a drawing of a graph that makes it easy to 

distinguish different edges, there is an alternative to using straight edges at 

arbitrary angles: if edges are allowed to be drawn as a path consisting of 

several line segments, it is possible to let all edges be represented by axis- 

parallel paths, called an orthogonal drawing. The price we may have to pay 

is the introduction of additional nodes where changes in direction occur in a 

path, i.e., a number of bends of the edges. . 

See Figure 6.6 for an example. A formal definition of an orthogonal draw- 

ing can be given as follows: 

Definition 6.2. An orthogonal grid embedding I of a graph G = (V, E) is a 
mapping into the plane, which maps vertices v € V to integer grid points I'(v) 

and edges in (v,w) € E to non-overlapping paths in the grid such that the 

images of their endpoints I'(v) and I'(w) are connected. A grid embedding is 
simple if its number of bends is zero. A simple embedding induces a partition 

of the edge set E into a horizontal set E, and a vertical set E,. For simplicity, 

we assume that edges in Ep are directed from left to right and edges in Ey 
from bottom to top. 

Another issue is the numerical resolution, i.e., the difference of the in- 

volved coordinates for a drawing of given size. If we scale the final drawing 

such that all coordinates are integers, this translates to trying to find a draw- 
ing that uses small area. 

The arrangement of edges in an orthogonal drawing is well-structured 
(there are only two classes of line segments, and the segments'for each indi- 
vidual edge interchange between horizontal and vertical), so it is conceivable 
that drawings with good visual and structural properties are possible. More- 
over, there is a close relationship to problems of VLSI layout. The components 
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Fig. 6.6. An orthogonal grid embedding (left) and its simple counterpart (right). 

in a chip layout correspond to the vertices, their connecting wires to the edges 

of a graph. This allows it to make use of existing methods; see Sections 6.4 

and 6.6. In VLSI, however, research has concentrated on very efficient meth- 

ods due to the large sizes of the instances. Often, superlinear running time 

is too slow for practical application, whereas in the area of graph drawing 
higher running time is tolerated to get better drawings!. However, the pres- 

ence of crossing edges is highly undesirable in well-structured drawings of a 

graph as well as in routing wires of a chip; thus, planar orthogonal graph 

drawing deals almost exclusively with plane drawings of planar graphs. Since 

it is impossible to avoid overlap between edges if a graph has degree more 

than 4, we start by focusing on planar graphs with maximum degree 4 — 

so-called 4-planar graphs. It will be discussed later how to deal with planar 

graphs of higher degree. 

6.3.2 Encoding Planarity 

Before dealing with heuristic and exact algorithms for orthogonal drawings 

and their optimization in the following sections, we now describe a way to 

encode a graph and a drawing of a graph, such that we can use these encodings 

for input and output of our algorithms. A graph G = (V, F) can be simply 

described as a list of vertices V, and the edges FE connecting them. A plane 

drawing of a planar graph contains additional topological information: if the 

edges of a graph are represented by a set of curves, the plane is subdivided 

into a number of open regions. These regions are called faces. For a given 

embedding, the structure of these faces is characterized by the cycles of edges 

surrounding them, so that it is also legitimate to speak of these cycles as faces. 

1 Another difference (at least compared to problems within the topology-shape- 

metrics paradigm that will be discussed in Section 6.3.4) is that the order of 

wires connected to a component is not necessarily fixed — this corresponds to a 

scenario with an arbitrary embedding. 
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It is not hard to see that faces and their adjacencies are determined by the 

circular order of edges around each vertex. Thus, we can describe a particular 

(topological) embedding of a planar graph by a list of its vertices V, a list 

of its edges E, a list of faces F’, and a list P(f) of edges for each face f. See 

Figure 6.7 for an example; the corresponding list of faces and list of edges 

around each face is as follows: 

Pi A fica tet 2 

P( fi) = (€1, €3, €5) €95 €10; €4; €3; €2) 

P( fo) = (€2, €1) 
P(f3) = (€5, €6, €8) 

PFA) ee ea ez) 

P(fs) = (€s, €7; €10; €9)- 

Fig. 6.7. A plane drawing of a graph G. 

6.3.3 Encoding Orthogonality 

When considering an orthogonal drawing of a planar graph, we need to pro- 

vide even more information — in particular, we need to describe the bends 
along an edge, and the type of turn that an edge takes at a bend. This can 

be done as follows: for each edge in the edge list of a face, we describe the 

sequence of bends encountered while traveling along the edge by a 0-1 string. 

A “1” in the string indicates a left-hand turn taken at the bend, while a right- 

hand turn is indicated by a “0”. If an edge has no bends, this is indicated by 
the empty string e. Finally, each edge is assigned an angle (as a multiple of 
5) that is enclosed by its last line segment and the first line segment of the 

next edge. See Figure 6.8 for an example with the following encoding of the 
edges: 
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(fi )= ((e1,€, 3), (es, 11, 1), (ea, €, 3), (e2, 1011, 1)), 

H(f2) aa ((ei,¢; 1); (€6,€, 2), (es, 00, Oy 
Htjf3)"= ((e2, 0010, 1), (e4, €, 1), (e, €, 1), (e3, 0, 4), (e3, 1, 1)). 

aw 

rg 

ad 

I, 

Fig. 6.8. An orthogonal drawing of a graph G. 

This type of encoding of the orthogonal shape of a drawing has been called 

an orthogonal representation of the drawing; for historical reasons, we will 

use this term, even though it can be argued that in the true meaning of the 

word, the orthogonal drawing itself is a representation of the graph. (Strictly 

speaking, the code should be called an “encoding of the representation” .) 

The orthogonal representation carries only the combinatorial and some 

of the geometric information of the drawing; in particular, there is no infor- 

mation about the edge lengths. As described above, there is a well-defined 

orthogonal representation for each drawing of a graph, and it is not hard to 

see that there are a number of necessary conditions on an orthogonal repre- 

sentation: 

1. There is a 4-planar graph corresponding to the lists for V and E. 
2. Each edge is encoded twice, once for each of the two faces it bounds. 

Both these encodings must be consistent. 

3. The sum of angles along the perimeter of a face f; described by H(f;) 

must be consistent with the fact that f; is a simple rectilinear polygon. 

4. For each vertex v, the sum of angles between consecutive edges around 

v must sum to 4. 

All four of these conditions are easy to check. As it turns out, they are 

also sufficient. We describe in the next section how to find an orthogonal 

drawing that realizes a given orthogonal representation. 

6.3.4 Getting a First Drawing 

We now discuss how to assign consistent integer lengths to the edge segments 

that are contained in an orthogonal representation. This task is also referred 
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to as the third phase in the topology-shape-metrics approach as presented 

in (Di Battista et al., 1999). The first phase deals with fixing the topology 

of the eventual drawing by determining a combinatorial embedding and an 

outer face of the planar input graph. In the second phase the shape of the 

orthogonal drawing is fixed. Its output is an orthogonal representation H as 

described in Section 6.3.2. The best-known member of this class of algorithms 

is the bend-minimization algorithm by Tamassia (1987). Section 6.5 describes 

these flow-based algorithms. For now, we concentrate on the third task: fixing 

the metrics of the drawing resulting in an orthogonal grid embedding. 

We present an algorithm which first finds an orthogonal grid embedding 

for H by describing a simplified variant of the approach presented in Tamassia 

(1987). This grid embedding can be further improved by applying compaction 

and postprocessing algorithms described in Section 6.6. 

The idea of this method is to add artificial vertices and edges to H so that 

it is easy to find a drawing I” for the resulting orthogonal representation 

H'. Note that the insertion of artificial objects still happens on the level 

of the orthogonal representation and does not involve geometric operations. 

The removal of the artificial vertices and edges leads to an orthogonal grid 

embedding I for the original representation H. The algorithm presented in 

this section runs in time O((n+)*/4,/log(n + b)) and guarantees a drawing 
of O((n + b)”) area, where b is the number of bends. 

In a first step, each bend in H is replaced by a virtual vertex, resulting 

in a simple orthogonal representation with n + b vertices. Consider for every 

face f in H the circular bit string S(f) that is built by traversing the edges 
of f in clockwise order as follows. Depending on the angle a(e) (expressed in 
multiples of $) that an edge e forms with its succeeding edge, we add a “0” (if 
a(e) =1), a “1” (if a(e) = 3) or a “11” (if a(e) = 4) to the bit string. Angles 
of 2 do not contribute to S(f), since they correspond to two collinear line 
segments that do not form a bend. The resulting string describes the shape 

of face f as in Figure 6.9 (a). Now the algorithm looks for occurrences of the 
substring “100” in S(f), which corresponds to a rectangular “ear”. Whenever 

such a string is found, the corresponding part of the face is removed and “100” 

is replaced by “0” (see Figure 6.9 (b)). Clearly, this operation affects only 
the shape of face f, other faces remain untouched. The procedure finds all 

such substrings in time O(|S(f)|) for each face f by a circular traversal of 
S(f) and stacking the encountered “1”s. The bit string of a face f in the 

resulting orthogonal representation H’ is either S(f) =”0000” — in this case 
f is an internal face — or it does not contain two consecutive zeros — then we 
are dealing with the external face. (See Figures 6.9 (c) and (d). The example 
will be continued in Section 6.6.) 

An orthogonal grid embedding for H’ is found by assigning the same 
length to opposite sides in the rectangular faces. This can be done optimally 
by the following algorithm; its key step is the computation of two minimum 
cost flows. Build two networks N;, and Ny-one for each direction, as in Fig- 
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(c) (d) 

Fig. 6.9. (a) A sketch of an orthogonal representation H with bit strings S(f) for 
each face f. (b) Substring “100” and the corresponding cut. (c) A sketch of the 
dissected representation H’. (d) Deleting the artificial objects in a drawing for H’ 
yields a drawing for H. 

ure 6.10. The union of N;, and N, is the dual graph of H’, the arcs in Np, 

are directed from bottom to top, those in N, from left to right. Each arc a 

corresponds to an edge e in H’, and the flow through a is interpreted as the 

length of e. Intuitively, this implies a lower bound of one and unit cost for the 

flow through a. Flow conservation ensures that opposite sides are of equal 

length. The cost of the flows add up to the total edge length, and — since they 

are minimized — lead to an optimal drawing for H’. Note however, that the 

artificially introduced vertices and edges have to be removed from the draw- 
ing in order to get an orthogonal grid embedding for H. As Figure 6.9(d) 

shows, the initial solution is not optimal for the original input. 

An optimal flow can be computed in time O(n7/4,/logn) with the algo- 
rithm described in Garg and Tamassia (1996b). This corresponds to a drawing 
for H’ with minimum total edge length, width, height, and area. The networks 

are similar to the ones used for optimal one-dimensional compaction, which 

are introduced in Section 6.6.2. Furthermore, there is a linear-time method for 
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Fig. 6.10. The two networks Np and Ny serve to construct a first drawing for an 

orthogonal representation. 

computing a feasible flow in the networks. This method for finding a drawing 

for H’ is optimal with respect to width, height and area, but not necessarily 

to total edge length. It is based on finding a topological numbering of special 

directed acyclic graphs and will be explained in Section 6.6.2, because it can 

also be used as a heuristic for compaction. 

6.4 Heuristics 

We have seen in the last two sections that there is a close connection between 
orthogonal drawings of planar graphs and a certain type of combinatorial 

description. Before we proceed to describe a combinatorial algorithm that 

uses a network flow approach based on this characterization to optimize the 

number of bends for a fixed embedding, we discuss a number of heuristic 

methods that construct good layouts. A main advantage of these methods is 

their fast running time: typically, it is linear. This makes them more suitable 

for large problems than the network flow approach, which produces almost 

quadratic running time. Furthermore, they provide easy procedures for local 

improvements of a drawing, yielding worst-case bounds for the number of 

bends and the area, depending on the size of the graph. A final advantage of 

the heuristic approaches is the fact that some of them work on non-planar 
graphs. 

Typically, the methods work best on 2-connected graphs. A graph is called 
2-connected if removing any vertex and its incident edges leaves a connected 

graph. The 2-connected components (or blocks) of a connected graph are (a) 
its maximal 2-connected subgraphs, and (b) its bridges together with their 
endpoints. If removing {v1, v2} disconnects the graph we call {v1, v2} a cutting 
pair of G. 
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The following result is folklore, see the textbook Sedgewick (1988) for 
details: 

Lemma 6.3. Testing 2-connectivity and finding all cutting pairs can be done 
in linear time. 

A natural approach to drawing a graph is to proceed by adding one vertex 
at a time to an existing drawing. To make sure that any new vertex has the 
necessary space, a special type of order is chosen: 

Definition 6.4. Let G be a graph. An st-order of G is an ordering {v1, v2, ..., 
Un} of the vertices of G such that every v; (2 <j <n-—1) has at least one 
“predecessor” v; and at least one “successor” vy that are neighbors of v_ with 

i<j <k. The edges from v; to its predecessors (successors) are called incom- 

ing (outgoing) edges of v;. Their number is the in-degree indeg(v;) (out-degree 
outdeg(v;)) of ui. 

If the graph is not 2-connected, there may not be an st-order; otherwise, 

the following theorem holds: 

Theorem 6.5 (Lempel et al. 1967, Even and Tarjan 1976). 
Let G be a 2-connected graph and s,t € V. Then there exists an st-order 

such that s is the first and t is the last vertex. It can be computed in O(m) 
time. 

6.4.1 Visibility Representations 

A visibility representation (Rosenstiehl and Tarjan, 1986) I’ for a graph G 
maps every vertex v of G to a horizontal segment I(v) (called vertex seg- 
ment), and each edge (u,v) of G to a vertical segment I"(u,v) (called edge 
segment), such that for each edge (u,v), the edge segment I'(u,v) has its 
endpoints on the vertex segments (wu) and I(v), and does not intersect any 
other vertex segment. A vertex segment I'(s) is called source, if all of its 
incident edges are above I’(s). A vertex segment I(t) is called a sink, if all 
its incident edge segments are below I(t). Figure 6.11 shows a visibility rep- 

resentation of a graph. Visibility representations were introduced by Otten 
and van Wijk (1978) and are often used as a starting point for drawing a 
planar graph. The following lemma was proven independently by Rosenstiehl 

and Tarjan (1986), and Tamassia and Tollis (1986): 

Lemma 6.6. Let G be a 2-connected planar graph with n vertices. Then 

for any two vertices s and t on the same face of G, there is a visibility 

representation I’ for G such that: 

(a) has exactly one source, I'(s), and exactly one sink, I(t). 
(b) all the remaining vertex segments I'(v),v # s,t, have two edge segments 

incident to '(v) at its left endpoint (one from below and one from above). 

A representation with these properties can be constructed in O(n) time. 
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(a) (b) 
Fig. 6.11. A graph G and a visibility representation for G. 

6.4.2 The Algorithm by Tamassia and Tollis 

The following algorithm constructs an orthogonal grid embedding as de- 

scribed in Definition 6.2 for a 4-planar graph G. It is due to Tamassia and 

Tollis (1989) and has linear running time; it produces drawings with at most 

2.4n + 2 bends, and no edge has more than four bends. The length of each 

edge is O(n), and the total area of the orthogonal grid embedding is O(n?). If 
G is 2-connected, we get even better bounds: the number of bends is bounded 

by 2n + 4, and only two edges have more than two bends. 

The algorithm has four phases. In the first phase, a visibility represen- 

tation of the graph is constructed. In the second phase, this is transformed 

into an orthogonal grid embedding. In the third phase, a number of modifi- 

cations are applied to the orthogonal representation of the grid embedding in 

order to reduce the number of bends. The last phase computes an orthogonal 

grid embedding for the orthogonal representation. We start by presenting the 

individual phases, then summarize the overall algorithm. 

Visibility Representation. In Section 6.4.1 it was stated that for each pla- 

nar 2-connected graph a visibility representation with one source and one sink 

can be computed in linear time. For planar graphs that are not 2-connected, 

it cannot be guaranteed that there exists a visibility representation with ex- 

actly one source and exactly one sink. However, the number and the degree 

of the sources and sinks of the visibility representation are crucial for the 
quality of the drawings produced by the algorithm. 

Therefore, the algorithm constructs a visibility representation of a con- 

nected graph G with only one source and a low number of sinks. This is done 
by decomposing the graph into 2-connected blocks that are separated by cut 
vertices. For each of these blocks a visibility representation is computed ac- 
cording to Lemma 6.6. A cut vertex is chosen as the source, and if possible 
a cut vertex is chosen as a sink. The visibility representations of the distinct 
blocks can then be merged, such that one visibility representation for the 
entire graph is created. For details see Tamassia and Tollis (1989). 

Lemma 6.7. Let G = (V, E) be a connected planar 4-graph. Then a visibility 
representation I" for G can be constructed in O(n) time, such that: 
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(a) I’ has exactly one source 
(b) all the non-source and non-sink vertex segments T° (v) have two edge 

segments incident to I'(v) at its left endpoint (one from below and one 
from above). 

Creating an Orthogonal Embedding. In the second phase, the trans- 
formation of the visibility representation into an orthogonal embedding is 
performed. This is done by substituting every vertex segment I'(v) of I by 
a structure consisting of a single vertex v and some vertical and horizontal 
segments. Figure 6.12 shows the corresponding structure for every possible 
shape of v. Symmetric cases are omitted. It is not hard to see that this can 
be done in O(n) time, and only a constant number of bends is inserted per 
edge, for a total of O(n) bends. 

I a ell olan te 

isc lat (a) (b) © 

Fig. 6.12. Substitutions of vertex segments with structures. 

Bend-Stretching Transformations. Because only one vertex at a time is 

treated during the substitution process, the embedding may contain a con- 

siderable number of artificial bends. During the third phase we try to remove 

these bends by performing a series of bend-stretching transformations, which 

are local optimization steps. There are three types of bend stretching transfor- 

mations, each working on the orthogonal representation H of the embedding. 

H can be obtained from the orthogonal embedding that is computed in the 

second phase. A bend on an edge is called conver if it forms an angle of 5 

and concave if it forms an angle of E. The transformations are as follows — 

see Figure 6.13: 

Transformation T1. If an edge (u,v) has both convex and concave bends, 
remove one bend of each type until the edge has only bends of one type. 

Transformation T2. If all edges around a vertex have bends of the same type, 

these bends can be removed. 
Transformation T3. If two edges e€1, €2, following each other in the clockwise 

order around a vertex v, form an angle of 7, and e2 has a convex bend 

with respect to v, then the bend can be removed. 
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Fig. 6.13. Examples of bend-stretching transformations ee2s anda ls. 

x. 

The above transformations generate a new orthogonal representation H’ 

with fewer bends than H. In particular, any transformation of type T1 re- 

duces the number of bends by at least 2, while transformations of type T2 

and T3 reduce it by at least 1. Each transformation can be executed in con- 

stant time. Since each bend-stretching transformation removes at least one 

bend, and in the previous step only O(n) bends are introduced, performing 

these transformations takes only time O(n). 

Construction of a Grid Embedding. In the last phase, an orthogonal 

grid embedding is computed from the orthogonal representation. Details are 

as described in Section 6.3. Here we only note that for an orthogonal repre- 

sentation with O(n) bends, the drawing can be computed in O(n) time, and 
the area is O(n). 

Algorithm 17: Visibility-Grid-Embedding 

Input: a 1-connected planar 4-graph G 

Output: an orthogonal planar grid embedding of G 

construct a visibility representation I of G using algorithm Visibility; 

create an orthogonal embedding Coreg by substituting each vertex-segment 
of I’ with the appropriate structure listed in Figure 6.12; 

calculate the orthogonal shape H of G; 
apply Ti on every edge of H (if possible); 
apply 72 on every vertex of H(if possible); 
apply T3 on every vertex of H with degree < 3 while possible; 
use H to construct an orthogonal planar grid embedding of G; 

Analysis of the Algorithm. 

Lemma 6.8. [f the visibility representation constructed in Step 1 of algo- 
rithm Visibility Grid Embedding has one source, t; sinks, and n; non-source 
vertex segments of degree i, 1 = 2,3,4, then the number of bends is at most 
ng + 2n4 + te + t3 + 2t4 +6, where 6 = 0,1,2,4, depending on whether the 
source has degree 1, 2, 3, or 4. 

Proof. Let ni, be the number of BOS: resulting from the substitutions 
of Figure 6.12 (g), (h), and let n/ (i) be the number of vertices resulting 
from substitutions of type (i). Notice that ng + nf < ng + t4. From the 
substitutions of Figure 6.4.2, the number of bends after Step 2 is given by 
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le 
(a) (b) (c) 

Fig. 6.14. (a) shows the graph of Figure 6.11 (b) after Step 2 of the Algorithm 
Visibility Grid Embedding, (b) after Step 6, and (c) after Step 7. 

nz + 4n4 + 6n4 + toe +t3 + 4t4 + 6. In Step 4, transformation T; is applied at 

least once for each vertex in case of Figure 6.12 (g), (h), and at least twice for 
each vertex in the case of Figure 6.12 (i). This means that in Step 4 at least 
2ni, + 4nq bends are eliminated. Thus, the above equation yields a number 
of bends of ng + 2n, + 2n + toe +t3+4t4t+ 6 <n34+2ng+to+tz + 2ta+. 

During steps 5 and 6, this number may only improve. 

Theorem 6.9. Let G be a connected 4-graph with n vertices. Then algorithm 

Visibility Grid Embedding produces a grid embedding of G with at most 2n+4 

bends if G is 2-connected, and 2.4n+2 bends if G is connected. The running 
time is O(n). 

Sketch of Proof. For the case of a 2-connected graph, the visibility represen- 
tation computed by algorithm Visibility has only one sink, and the bound 

follows immediately from Lemma 6.8. For other connected graphs, it can be 

shown that the bound t3 + 2t4 < m/5 holds, unless the graphs belong to a 

certain family of graphs. With the help of this bound, Lemma 6.8 implies 

the claim. For the exceptions to this bound it is possible to use their special 

structure for showing that algorithm Visibility Grid Embedding needs not 

more than 2.4n + 2 bends to draw them. The linear running time follows 

directly from the above discussion. See Tamassia and Tollis (1989) for the 
complete proof. 

6.4.3 The Algorithm by Biedl and Kant 

The algorithm by Tamassia and Tollis relies on the planarity of the graph. It 

is natural to investigate heuristics that also work for non-planar graphs. Biedl 

and Kant (1994) have designed an algorithm for constructing an orthogonal 

grid-embedding of a 2-connected 4-graph G. It starts by computing an st- 

order of the input graph (as defined in Definition 6.4), and then embeds the 
vertices consecutively in the grid, according to their order in the st-order. For 

each vertex a new row is added to the layout. For each uncompleted edge, 
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i.e., an edge with exactly one endpoint embedded in the grid, a column on 

the left or right boundary of the existing layout is added. 

Fig. 6.15. Embedding of the first two vertices and the layout at a later stage. 

Algorithm 18: Grid-Embedding 

Input: a 2-connected 4-graph G 

Output: an orthogonal grid-embedding of G 

obtain an st-order {v1,v2,... , Un} for G; 
place vertices vi; and v2 on the grid and connect them; 

allocate one column in the grid for each edge of v1 and v2, except for the 
edge connecting vi and v2; 
for 3<i<ndo 

place v; on a new row; 
place v; on a column that is allocated to an incoming edge of 1; if pos- 
sible, do not take the leftmost or rightmost column; 
draw all its incoming edges using the columns allocated to it; 
allocate columns to the outgoing edges of v; on the left or right bound- 
ary. 

Lemma 6.10. The grid size is at most (m—n+1) xn. 

Proof. Observe that the height of the constructed layout is one less than the 

number of rows, and the width is one less than the number of columns. In 

order to embed vertices v; and v2, two rows are used as shown in Figure 6.15. 

Every following vertex increases the height by one, the last vertex by at most 

two. Thus, the height is bounded by n. When embedding v; and v2, we use 

a width of outdeg(v1) + outdeg(v2) — 2. Every following vertex v increases 
the width by outdeg(v) — 1, except for the last vertex, which increases it by 
0 = outdeg(vn)—1+1. Thus, the width is >, (outdeg(v)—1)+1 = m—n+41. 

Lemma 6.11. At most one edge has three bends, all other edges have at most 
two bends. Overall, there are at most 2m —2n+4 bends in the drawing. 

Proof. Every edge (v;,v;), i < j, bends at most once when v; is embed- 
ded. Completing the edge needs at most one additional bend if Ui. FF Un. 
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Embedding v, bends one edge twice, all others at most once, thus only 
this edge can have three bends. With the embedding of v ¢ {v1, v2, Un}, 
there are indeg(v) — 1 and outdeg(v) — 1 new bends, hence deg(v) — 2 new 
bends. Embedding v; and v2 gives outdeg(v1) + outdeg(v2) — 1 bends, and 
Un Tequires indeg(vn) bends if indeg(v,) = 4, and indeg(vn) — 1 bends oth- 
erwise. As indeg(vo) = 0, indeg(v;) = 1, and outdeg(v,) = 0, we have 
Devev (deg(v) — 2) + 4 = 2m — 2n + 4 bends if deg(vn) = 4 and 2m — 2n+3 
bends otherwise. 

In (Biedl and Kant, 1994) it is shown that edges with three bends can be 
avoided unless G is the octahedron, i.e., the unique planar 4-regular graph 

with six vertices. The area bound proven in Lemma 6.10 can be improved 

even further. The authors show that if G has at most one vertex of degree 

two, one column and two bends can be saved. This is done by using a special 

st-order. For m > 2n — 1, there is at most one vertex of degree two. So we 

have a width of at most n if m = 2n, and a height of n —1 if m = 2n—1. 

If in addition G is not 4-regular, a row can be saved by choosing a vertex of 

degree less than four as v,. This leads to the following theorem: 

Theorem 6.12. Let G = (V,E) be a 2-connected 4-graph. Then G can be 
embedded in ann x n grid with at most 2n + 2 bends. If G is not 4-regular, 

an (n—1) x (n—1) grid and 2n—1 bends suffice. Each edge is bent at most 
twice, unless G is the octahedron. 

There is also a variant of the algorithm that produces planar orthogonal 

drawings of planar graphs with the same bounds on area and number of 

bends. The above algorithm works only for 2-connected graphs, but it can be 

extended to connected graphs as follows. Break the graph into its blocks and 

compute the block cut vertex tree of G. The block cut vertex tree of a graph G 

has a B-node for each block of G and a C-node for each cut vertex of G. Edges 

in the block cut vertex tree connect each B-node to the C-nodes associated 
with the cut vertices of the block. Now the graph is drawn inductively: in the 

base case, execute the algorithm for a 2-connected graph. In the induction 

step, consider a subtree of the block cut vertex tree of G and split the subtree 

into a block Gp (i.e., the root of the subtree) and the connected subgraphs 
G,,G2,...,Gg. By induction hypothesis, each G; already has a drawing. 
Hence, the process of drawing G reduces to drawing Go and merging each G; 

appropriately. The merging process can be done such that the area bounds 

for the 2-connected case hold also for connected graphs. For details see Bied] 

and Kant (1994). 

6.4.4 Pairing Technique 

The algorithm in the previous section made generous use of new columns 

and rows for additional vertices and edges. The following algorithm tries to 

reuse as many rows and columns as possible for placing new vertices. In this 
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way, a better area bound is achieved. The algorithm requires 2-connectivity 

of the input graph. Its authors Papakostas and Tollis (1997d) show that the 

algorithm can be extended to the simply connected case in a way similar 

to the algorithm by Biedl and Kant, though, unlike the latter, it does not 

necessarily produce planar drawings of planar graphs. 

The central idea of the algorithm is to form pairs of vertices. There are 

two different kinds of pairs: . 

Row pairs. The two vertices of a pair are placed in a way that reuses a row 

in the final drawing of G, i.e., at least two vertices are placed in the same 

row. 

Column pairs. The two vertices of a pair are placed in a way that reuses a 

column in the final drawing of G, i.e., at least two vertices are placed in 

the same column. 

In order to obtain the pairs, an st-order of G is computed. As a next step, 

each vertex is assigned a type. A vertex with a incoming edges and 6 outgoing 

edges is called a vertex of type a-b, or an a-b verter (1 < a,b < 4). If there 

are 1-1 vertices whose outgoing edges are entering a 1-2 or a 1-3 vertex, we 

remove these 1-1 vertices and create a new edge between its predecessor and 

its successor. These removed vertices can be inserted in the drawing at the 

end of the algorithm without affecting the bounds for area and the number 

of bends. The graph obtained by removing these vertices is called the reduced 

graph G’, and the number of its vertices is denoted by n’. For forming the 

pairs, the vertices are considered in reverse order of the st-order. If a vertex 

of type 1-2 or 1-3 is encountered, it is paired with its immediate predecessor 

in the st-order. If a vertex of type 2-2 is encountered, the vertex is paired 

with the next vertex in the st-order that is not a 1-1, 2-1, or 3-1 vertex, or 

a predecessor of the 2-2 vertex. After this step, all 1-2, 1-3, and 2-2 vertices 

v; for 3 < i < n are paired. Paired vertices are called assigned, vertices not 

belonging to a pair are unassigned. After the pairs are computed, the vertices 

are embedded into the grid according to the st-order. Consider a vertex v 

that has not yet been embedded. If v is not paired, it is embedded in the grid 

like in the algorithm by Bied]l and Kant. If v is paired, it is embedded together 

with the second vertex in the pair either as a column pair or as a row pair. 

The concrete embedding of the pairs is rather technical, for a description see 

Papakostas and Tollis (1997d). Algorithm 19 summarizes the above steps. 
An analysis of the algorithm shows that only for unpaired vertices of type 

4-0, 0-4, and 3-1 both a new column and a new row must be allocated when 

these vertices are embedded. For vertices that do not fulfill these conditions 
either a new row or a new column must be added to the drawing, but not 
both. By solving a system of linear equations it can be shown that there can 
be at most | 2? | unpaired vertices of type 4-0, 0-4, and 3-1. This leads us 
to the following theorem: 
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Algorithm 19: Pair-Orthogonal 

Input: a 2-connected 4-graph G 

Output: an orthogonal grid drawing of G 

compute an st-order of G; 
construct the reduced graph G’ from G; 
obtain a pairing for G’; 
place v; and v2 on the grid; 
Pees ot 
while 7 < n’ do 

if v; has not already been placed then 
if verter v; is unassigned then 

place vertex v; in a new row; 
connect vu; with the incoming edges; 
allocate columns for the outgoing edges of v;; 

else 

| place vertex v; along with the other vertex in the pair, following 
the placement rules described above for the specific type of pair; 

tot Ae 

Theorem 6.13. Let G be a 2-connected 4-graph with n vertices. Algorithm 

Pair-Orthogonal constructs an orthogonal grid drawing of G in O(n) time 
with area 0.77n?. The total number of bends of the drawing is at most 2n+4, 

and no edge has more than two bends. 

Proof. Let k; and kz denote the number of vertices that do not allocate a new 

row or column when they are embedded. It follows from our above discussion 

that there are at most | "5*| vertices contributing neither to ki nor to kg. 
Thus, ki + kp > [2>*). The area is maximized when ki = ko = ne, The 

claim is now verified by simple calculation. The analysis of bend costs is 

similar to Lemma 6.11; in addition, the construction allows it to avoid edges 

with three bends. Using the data structure by Dietz and Sleator (1987), the 

algorithm can be implemented in O(n) time. 

6.4.5 Algorithms for Drawing High-Degree Graphs 

So far we have only considered graphs with maximum degree 4, i.e., 4-graphs. 

When considering graphs of higher degree, we cannot avoid overlap of edges 

if we continue to draw vertices as points, so it makes sense to draw vertices 

as boxes with a sufficient number of grid lines for adjacent edges. In order to 

use the existing machinery, a straightforward approach is to split high-degree 
vertices into chains or cycles of vertices before applying an algorithm for 4- 

graphs like the algorithm by Tamassia (1987) or the algorithm by Bied] and 
Kant (1994). From this layout, the boxes for the vertices are created. The 
GIOTTO system (Tamassia et al., 1988) and the quasi-orthogonal drawing al- 

gorithm by Klau and Mutzel (1998) follow this approach. Unfortunately, this 
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concept allows no control over the box size of the vertices, so the generated 

layouts may contain vertices of unrestricted size. Other examples are algo- 

rithms for visibility representations (Rosenstiehl and Tarjan, 1986; Tamassia 

and Tollis, 1986). 

A different approach is the KANDINSKY framework, where each vertex is 

represented by a square. As shown in Figure 6.21, these squares are aligned 

in a square grid, and edges are routed along an edge grid. Section 6.5.4 will 

sketch this approach; it extends the network flow technique by (Tamassia 

(1987) for 4-planar graphs that is described in Sections 6.5.2 and 6.5.3. 

Papakostas and Tollis (1997c) present an algorithm where the size of any 

box for a vertex is less than twice the degree of the vertex. Their approach 

is a generalization of the pairing algorithm presented in the previous section, 

with boxes instead of vertices being placed on the grid. Outgoing edges leave 

a box on the top side, incoming edges enter a box on the left or right side. 

No edges are leaving or entering at the bottom side. Each edge has exactly 

one bend and the area bound for the algorithm is m x 3. 

In the context of this section, we concentrate on a general framework for 

generating orthogonal drawings for graphs of high degree that was presented 

in Biedl et al. (1997a) and Biedl (1997). This three-phase method distin- 
guishes the phases vertex placement, edge routing, and port assignment; in 

addition, there are preprocessing and postprocessing steps. In the preprocess- 

ing step, the graph is transformed into a normalized graph, i.e., a connected 

graph without reflex edges and without vertices of degree one. If the input 

graph is not connected, the connected components are drawn separately. In 

the first phase, vertices are represented as points and are placed on grid po- 

sitions. In the second phase, edges are routed between vertices. The drawing 

obtained after these two phases is called a sketch; at this stage, it is not a 

valid drawing because the edges are routed with overlaps. From this sketch a 

drawing is produced by adding rows and columns to the drawing, such that 

vertices are enlarged to boxes. Furthermore, each edge is assigned a port 

at its vertices such that there is no intersection between any two edges on 

the same side. Since reflex edges and vertices of degree one were removed 

in the preprocessing step, they are reinserted in a postprocessing step. As a 

last step, drawings of the connected components are combined. It should be 

noted that this framework allows it to handle various kinds of constraints, 

like constraints on the position of vertices. 

An example for this approach is the following algorithm for directed 

graphs: Place the n vertices of the input graph in general position on an 

n X n grid, i.e., no two vertices are placed on the same grid line. Edges are 

routed such that they always leave a vertex on the left or right side, and that 
they always enter a vertex at its top or bottom. Since the vertices are in gen- 
eral position, exactly one bend is needed to draw any edge. So.if e = (vj, v;) 
is an edge directed from v; to vj, then we place a temporary bend in the 
row of v; and the column of v;. Next, generate the boxes for the vertices and 



6. Orthogonal Graph Drawing 143 

consider a row r. This row contains one vertex v, and some number of bends. 
Let I(v) denote the number of edges emerging from the left side of v, and 
r(v) the number of edges emerging from the right side of v. Analogously, let 
b(v) and t(v) denote the number of edges leaving the bottom or top side of v. 
We add max{r(v),1(v),1}—1 bends above the row of v. We distribute these 
bends among these rows such that no two edges on one side cross as shown 
in Figure 6.16. It is clear that the drawings generated by this algorithm have 
height and width at most m, leading to an area bound of m x m. 

Fig. 6.16. An example for port assignment. 

The worst case for the above area bound arises when all edges of the 

given graph leave the vertex on the same side. The algorithm by Biedl and 

Kaufmann (1997) achieves a better area bound by balancing the edges across 
the sides of a vertex box. This can be done by an appropriate placement in 

the initial phase of placing vertices. For a description, we use the following 
notation: 

Definition 6.14. Let G be a directed graph and let {v,... ,Un} be an arbi- 
trary verter order. An edge directed from 1% to v; is called good if i <j and 

bad otherwise. A predecessor (successor) 4, of v; is good if the edge connect- 

ing v;, and v; is good. We denote by indeg#?°4(v;) and indeg’*4(v;) the num- 
ber of good and bad incoming edges of v;. Similarly, we define outdeg9?°4(v;) 

and outdeg?*4(v;). 

Now the rows for the vertices are computed in ascending vertex order. If 

a vertex v has no good predecessor, then we create a new row at an arbitrary 

place. Otherwise, we add a row close to the median of the good predecessor 

rows. Vertex v is placed in this new row. Similarly, a column for each vertex 

is computed, proceeding in reverse order, and considering good successors 

instead of good predecessors. 
The following lemma shows how vertex order and edge orientation affect 

the number of edges connected to each side. 

Lemma 6.15. For each verter, we have the bounds |outdeg(v)/2| < r(v), 
Kv) < [outdeg?°4(v)/2] + outdeg’4(v) and |indeg(v)/2| < t(v), b(v) < 

lindeg?°4(v) /2) + indeg’*4(v). 
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Proof. Consider b(v). By the placement of bends, any bend at the top of v 

belongs to an incoming edge of v. By the placement of vertices, at most half 

(rounded up) and at least half (rounded down) of the good predecessors are 
below v. Nothing can be said about the place of the bad predecessors. The 

result follows for b(v). The proofs for the other three sides are similar. 

It follows from the above lemma that the number of bad predecessors and 

successors of a vertex v should be minimized in order to reduce the size of 

a vertex box. The next lemma shows that there always exists a vertex order 

and an edge orientation such that there is a low number of bad predecessors 
and successors. 

Definition 6.16. A vertex order together with an edge orientation is called 
polar-free almost acyclic, if 

(a) indeg(v) > 1 and outdeg(v) > 1 for allvu EV, and 
(b) indeg’*4(v) <1, if indeg9°°4(v) > 0 then indeg’*4(v) = 0, and 
(c) outdeg’*“(v) < 1, if outdeg9°°4(v) > 0 then outdeg®*4(v) = 0. 

Lemma 6.17. Let G be a simple graph without vertices of degree zero or 
one. Then G has a polar-free almost acyclic order and orientation. It can be 
found in O(m) time. 

For a proof of this lemma see Biedl and Kaufmann (1997). 

Fig. 6.17. Example of a run of the algorithm with polar-free almost acyclic order 
and orientation of the input graph. 

Theorem 6.18 (Biedl and Kaufmann 1997). Let G be a simple and 
connected graph. Then G has an orthogonal drawing in an atm x atm _grid 
with one bend per edge. The drawing can be found in O(m) time. 
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Proof. We only show the claim for the height, the claim for the width is simi- 
lar. Suppose that G has no vertices of degree one. After the vertex placement, 
we have n rows. For each vertex v, we add max{r(v), I(v), 1} —1 rows. Thus, 
the height is }7,,<y max{1,r(v),1(v)}. By Lemma 6.15 and the conditions on 
the polar-free almost acyclic order, we have r(v),1(v) < [ outdegty) Thus, 
Dvev max{1,r(v), l(v)} < Dey MOM) 41 = min, 

It remains to be shown that vertices of degree one can be inserted in the 
drawing without violating the area bound. Consider a vertex v of degree 1 in 
the postprocessing phase. First, one row is added above the top side of the 
neighbor vertex of v. Then a new column is generated, such that the width of 
the neighbor vertex increases by one and no adjacent edges of the neighbor 
vertex cross this new column. Then v is placed in the new row and column. 
No bend is needed to connect this vertex to its neighbor. 

The vertex order and edge orientation can be found in O(m) time as shown 
in Lemma 6.17. By using the data structure of Dietz and Sleator (1987), the 
algorithm can be implemented in O(m) time. Thus, the overall complexity 
of the algorithm is O(m). 

An interactive version of the algorithm can be found in Biedl and Kauf- 

mann (1997). A version of this algorithm that considers constraints can be 

found in Wiese and Kaufmann (1998). 

6.4.6 A Divide-and-Conquer Approach 

Now we describe a divide-and-conquer approach that originates from VLSI 

design. We already noted in Section 6.3 that there is a close relationship 

between graph drawing and VLSI design. While the first considers vertices 

and edges, the latter deals with transistors and wires. Clearly, there is a 

correspondence between the respective objects, but it is not without any 

problems, as wires and transistors need a certain amount of area. Thus, an 

important parameter for VLSI design is the minimum feature size A, which 

is the width of the narrowest wire that can be manufactured. The smallest 
transistor that can be manufactured is a square with edge length \ and area 

d*. Further difficulties may arise from the fact that a general graph may 

have arbitrary degree, whereas a transistor can only have a limited number 

of connections. We resolve these difficulties by restricting us to graphs with 

vertices of a degree bounded by a constant, and by further assuming that 

vertices occupy only a constant area of silicon. 

The VLSI model used here is similar to that of Thompson (1980), where 
wires have unit width and only two wires may cross at a point. Vertices are 

represented by little boxes that are placed on a rectangular grid, so that each 

box lies within a grid square. Edges run horizontally and vertically, one per 

grid square, except that an edge running horizontally may cross one running 

vertically. See Figure 6.18 for an example. 
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Layouts in this model are sliceable. That is, a horizontal or vertical line 

can be used to bisect the layout, the pieces can be moved apart, and the 

severed wires can be reconnected to realize the original graph connections. 

Slicing can be used to introduce a new edge in an existing layout as follows: 

perform two vertical and two horizontal cuts through the layout to separate 

the vertices. Separate the pieces by a grid unit, and reconnect the severed 

edges across the gaps in order to connect the vertices. If the length of the 

original layout was L and the width W, the new layout has length at most 

L+2 and width at most W + 2. 
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Fig. 6.18. An example for slicing and edge routing. 

This property can be exploited to generate layouts for graphs in a divide- 

and-conquer approach. First, the graph is divided into unconnected compo- 

nents by removing edges. Then these components are laid out separately and 

the removed edges are inserted by slicing. Note that there may be crossings 

inserted in the slicing process, which implies that the produced drawing may 

be non-planar. 

The quality of the layout produced by this approach depends on how 

many edges have to be removed to obtain unconnected components that 

differ in size by only a constant. In the worst case we have to remove O(n) 

edges to obtain two unconnected components with this property, but there 

exist classes of graphs that can be separated by removing fewer edges. These 

classes of graphs are characterized by separator theorems. It is crucial that 

the classes are closed under the subgraph relation, i.e., each subgraph of a 

graph in such a class is again in the class. An example is the class of planar 

graphs, as it is closed under taking subgraphs. On the other hand, the class 

of trees is not closed under the subgraph relation. 

Definition 6.19 (f(n)-separator). Let S be a class of graphs that is closed 
under the subgraph relation. An f(n)-separator Theorem for S is a theorem 

of the following form: There exist constants as and cg, where 0 < as < 4 and 

Cs > 0, such that if G is a graph with n vertices in S, then by removing at 

most csf(n) edges, G can be partitioned into disjoint subgraphs G, and G2 
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having an and (1—a)n vertices respectively, where as <a <1—a,. The set 
of removed edges is called the cut set of the bisection. 

Lipton and Tarjan (1970) showed that any planar graph with n vertices 
can be divided into two subgraphs of approximately the same size by removing 
O(/n) vertices in O(n) time. When removing k nodes to split a graph with 
maximum degree d, at most d-k edges are removed from it. Since we are only 
considering graphs with bounded degree, and planar graphs are closed under 
the subgraph relation, this means that planar graphs have a \/n-separator 
theorem. It is easy to see that forests have a 1-separator, see Valiant (1981) 
for a proof. 

The analysis of the algorithm is quite complicated and results in solving 
recurrence equations. Leiserson (1980) and Valiant (1981) showed indepen- 
dently that graphs belonging to a graph class with a \/n-separator can be 

drawn using O(n log” n) area and that graphs belonging to a graph class with 
a 1-separator can be drawn using O(n) area. 

Corollary 6.20. Let G be a planar graph with n vertices and bounded degree. 

There is a layout of G, such that the area occupied by G is O(nlog? n). 

For trees with maximum degree 4 one can use a method that is different 

from slicing for edge routing, which avoids crossings, but guarantees the same 

area bound (Valiant, 1981). 

Corollary 6.21. Let T be a tree with n vertices and bounded degree. There 

as a layout of T, such that the area occupied by T is O(n). IfT has mazimum 

degree less than or equal to 4, there exists a planar layout with the same area 

bound. 

6.5 Flow-Based Methods 

6.5.1 Drawing Graphs with Few Bends 

We have seen in the preceding sections that over the years, orthogonal draw- 

ings of graphs have received a large amount of attention: there have been 

many different approaches to finding such drawings with desirable proper- 

ties, like a small number of bends in the rectilinear paths representing edges. 

Unfortunately, one of the results by Formann et al. (1990) shows that it is 
NP-complete to decide whether a planar graph with maximum degree 4 (a 

“4-planar graph”) has an orthogonal drawing without any bends. The crux 

of the reduction is the fact that finding the right order of edges around eac. 

vertex in a drawing is difficult. 
This difficulty arises when we are only given the information provided 

by vertices and edges, but have to find an optimal embedding — as in the 

hardness proof by Formann et al. It should be noted that for the special 
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case of 3-planar graphs, it was shown by Di Battista et al. (1998a) that it is 
possible to optimize the number of bends in a drawing in polynomial time. 

This implies that it is the existence of degree 4 vertices in a graph that makes 

the problem difficult. As it was shown by Didimo and Liotta (1998), there 

are algorithms with polynomial complexity if the number of these vertices is 

bounded; the running time is exponential in the number of degree 4 vertices. 

For many graphs that need to be drawn, the embedding is fixed, so the 

NP-hardness result does not apply. In fact, it was shown by Tamassia (1987) 

that for a fixed embedding of a 4-planar graph, there is a nice combinatorial 

algorithm that computes a drawing with the smallest possible number of 

bends. We spend the rest of this section describing the idea of Tamassia’s 

algorithm, and sketch some implications and extensions. For simplicity of 

notation, we do not distinguish between combinatorial objects (e.g., edges in 

a graph) and the geometric objects representing them (e.g., edge segments in 

a drawing). 

6.5.2 A Network for Angles 

Suppose we are given a planar graph G = (V, FE), and a fixed embedding of 
G, described by a clockwise order (e},... ,€d(v)) Of edges around any vertex 

v € V. Let F be the set of faces in this fixed embedding, with fo being the 
exterior face. In any orthogonal drawing of G, the angles $(e1,e2) between 
adjacent edge segments e; and e2 are multiples of 5. We use the notation 
v(e1, €2) = 2$(e1,e2)/m, write E(v) for the (ordered) set of edge segments 
adjacent to a vertex v € V, and W(f) for the set of angles in a face f. Then 
we can write the following conditions on these angles: 

S> Wlei,eiu1)=4 forall veV. (6.4) 
e,€CE(v) 

>, —- P(e, e:41) = 2IW(f)|—4 for all fe F\ {fo}. (6.5) 
p(ex,ei41)EV(f) 

i (ei, €i41) = 2|Y(fo)| +4. (6.6) 
P(ei,ei+1) EY (fo) 

(ei, €i41) > 1 (6.7) 

Note the correspondence of these conditions to the linear relaxation de- 
scribed in Section 6.2. 

Each angle p; occurs exactly twice in this system of conditions, once at 
a vertex or bend in an edge, and once as an angle of a face. If we think of 
the size of these angles as amount of flow of some entity, we can introduce a 
network as follows: 
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— . There is a “source” node n, for each vertex v € V. 
. There is a “sink” node ny for each face f € F. 

3. There is an arc ay, from node n, to node n s if vertex v is incident to 
face f. 

4. There is a source s, connected to all nodes My, and a sink t, connected 
from all nodes ny. 

5. For any two adjacent faces f1, fo € F, there are two arcs a fifo and a, ,f,- 

bo 

Flow among these arcs has the following significance: 
The sink node allocates angles to the vertices; as described, any vertex has 

a total sum of angles summing up to 4, so we fix the flow Ls,y to this amount. 
A flow of x; > 1 units on arc a, cf fadieates that the angle p; incident to vertex 
v and face f has size z;. By requiring flow conservation at each node ny, we 
make sure that condition (6.4) is valid. The lower bound (6.7) guarantees 
that each angle is positive. An example is shown in Figure 6.19. 

Fig. 6.19. An orthogonal drawing of a graph (top); flows in the corresponding net- 
work, with the amount of flow for each arc indicated by numbers and arc thickness 
(bottom). At the bottom, original edges are grey, and only arcs with positive flow 
are shown. 

Furthermore, a flow of z; units on arc ay,7 indicates that the angle p; 
incident to vertex v and face f has size x;. A bend in an edge between two 

faces f; and fo creates a “reflex” angle of 3 on one side, and a “convex” angle 

of 1 on the other. In conditions (6.5) and (6.6), any angle in P(f) contributes 
an angle of 2 to the face balance. The difference is accounted for by a flow 

of one unit from the face with the reflex angle to the face with the convex 

angle. This leaves a total amount of 2|V(f)| — 4 for the angles at the set of 
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vertices V(f) incident to faces f € F \ {fo}, and 2|V(fo)| — 4 for the set of 

angles V(fo) incident to the exterior face fo. By requiring this flow on the 

arcs af,, and requiring flow conservation, conditions (6.5) and (6.6) are kept 

valid. 

In addition to the above nodes and arcs, the following capacities and costs 

are defined: 

1. Any arc ay,s from node n, to node nz gets capacity 4, and east 0. 

2. Any arcs ay, f, gets unbounded capacity, and cost 1 per unit of flow. 

These capacities arise from the fact that no angle is larger than 4, but any 

edge can have an unbounded number of bends. Since our objective function 

is the total number of bends, and any unit of flow in an arc ay, f, corresponds 
to one bend, the cost function is chosen this way. 

6.5.3 Optimal Flow in the Network and Implications 

It is clear from our above discussion that any feasible drawing of G corre- 

sponds to a feasible flow in the network. Furthermore, if there is a feasible 

flow, the integrality of the arc capacities implies that there is a feasible solu- 

tion where the flow on each arc is integral. Using the methods described in 

Section 6.3, it is straightforward to derive a feasible orthogonal representa- 

tion for this flow. We have shown in Section 6.3 that any feasible orthogonal 

representation can be used to construct a feasible drawing in linear time. 

This leaves it to find a minimum cost feasible flow in the network, a classical 
problem of combinatorial optimization. See the book by Ahuja et al. (1993) 
for an overview over the basic algorithmic approaches. We summarize: 

Theorem 6.22 (Tamassia 1987). For a fired embedding of a planar graph 

G with n vertices, an orthogonal drawing with a minimum number of bends 

can be found in time that is required for finding a minimum cost flow on a 
network with O(n) arcs and O(n) vertices. 

In 1987, the resulting complexity was O(n? logn). Currently, the best 
running time is O(n4 y logn), using an improved network flow algorithm by 
Garg and Tamassia (1997). 

There are a number of consequences and extensions. Any modification of 
a feasible flow that leads to a flow of reduced cost can be interpreted as a 
local improvement of a drawing. See Figure 6.20 for a number of examples, 
where the improvement of the flow is performed by identifying a cycle of 
negative cost in a reduced cost network. (Considering these types of local 
improvements in flow networks is a standard approach.) Any unit of flow 
along an arc in a negative cycle implies that we should increase an angle by 
a single multiple of 5 at the expense of another. In the figure, such flow is 
indicated by the places where the cycle crosses an edge, a vertex, or a bend 
in the drawing. Performing these changes along the full cycle reduces the 
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total number of bends along the encountered places, while all parts inside 
and outside of the cycle keep the same angles. As shown in the figure, this 
corresponds to a “rotation” of the inside against the outside. 

Fig. 6.20. Four examples: orthogonal drawings with an improving cycle in the 
corresponding flow (left); improved drawings (right). 

Furthermore, it is straightforward to extend the ideas of Tamassia to flow 

networks for other types of grids. One example is the treatment of drawings 

in a hexagonal grid, where angles are multiples of |. However, these type of 
drawings allow angles of size 7 or a at a bend; in order to use the network 

flow approach, angles of the first type have to be considered to carry twice 

the cost of angles of the latter type. Another issue is the question of finding 

a feasible drawing for a given flow (treated in Section 6.3 for the orthogonal 
case), which is unresolved, as the number of degrees of freedom in a hexagonal 

grid is different from the geometric dimension. See the paper by Tamassia 

(1987). 
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6.5.4 Kandinsky 

If we need to draw planar graphs with maximum degree beyond 4, drawing 

vertices as points must create overlap, as the degree of a vertex exceeds the 

number of different orthogonal directions. As we described in Section 6.4.5, 

one possible remedy is to draw nodes not as points, but as boxes. A variant 

that allows it to make use of flow optimization techniques is given by the 

KANDINSKY model, which was first introduced by FoSmeier and. Kaufmann 

(1995). Here, all vertices are given as identical k x k squares, with the size k 

determined appropriately. These squares are aligned on a square grid of size 

(2k —1) x (2k—1), and edges are routed as axis-parallel paths along the grid 

lines running through boxes. See Figure 6.21 for an illustration. 

Fig. 6.21. The basic layout of vertices and edges in the KANDINSKY model. 

% 

Obviously, there are a number of technical issues that have to be taken 

care of, among them the choice of grid size, and more generally compaction 

methods that are modified from the steps described in Section 6.3. Details 

can be found in the original paper by (Fo&meier and Kaufmann, 1995), and 

in the thesis (FoSmeier, 1997b). Here we concentrate on the modifications of 
the flow network that have to be performed. 

The key modification of the flow network for bend minimization arises 

from the fact that for a vertex of degree larger than four, there have to be 
edges leaving in the same direction. Clearly, neighboring edges of this type 

enclose an interior angle of 0; for the network described above, only positive 

angles are feasible. This can be fixed by allowing a flow of -1 to represent a 
zero angle, which can be interpreted as a flow in the opposite direction. 

While this fix takes care of the angles, it creates another problem: since 

these flows do not incur any cost, it is possible to shift flow until the overall 

cost is zero. Thus, a minimum cost flow does not correspond to a feasible 
drawing. 

However, if we exclude parallel edges (which can be done in a prepro- 
cessing step), any pair of edges enclosing an angle of 0 at one vertex must 
connect this vertex to two different vertices. This means that at some point, 
the two edges cannot continue to run in parallel. Because of the underlying 
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grid in the Kandinsky model, this can only occur when one of the two edges 
bends. Thus, an angle of 0 forces a bend in one of the enclosing edges. We 
can charge this forced bend for the zero angle to the vertex — see Figure 6.22. 
If f is the face with the zero angle at vertex v, with neighboring faces g and 
h, then the forced bend can be interpreted as a unit of flow from g or h tov, 
at a cost of 1. 

Fig. 6.22. Auxiliary arcs at a vertex. 

After this modification, there are new issues that need to be taken care 

of: we only want to charge the cost for a zero angle once, and if we charge 

the arc from g to v, we must not charge the arc from h to v. This can be 

resolved by using the modified network for the flow between v, f, g, and h as 

shown in Figure 6.23, using additional edges with cost 2c +1 and —c. (Note 

that for clarity in Figure 6.23, the reference to vertex v in the labeling of 

the auxiliary nodes H is omitted.) In particular, the arc from a face f to an 

incident vertex v with edges e; and e; is represented by a path formed by the 
following arcs: 

— Arcs with capacity 1 and cost 2c +1 from f to an auxiliary node H;’ fg 

and H. j fhe Here, g and h are the faces separated from f by e; and e;. 

— Arcs with capacity 1 and cost —c from H;’ FI to he 9F and vice versa. 

— Arcs with capacity 1 and cost 0 from H?’9 to an auxiliary node H he 
— Arcs with capacity 1 and cost 0 from H@ if v lies on the boundary of g. 

This introduces cycles with negative cost into the network, while a flow 

that is feasible for a drawing must be decomposable into partial flows from s 

to t. Thus, we are no longer dealing with a classical minimum cost flow prob- 

lem. However, using minimum cost flow algorithms based on augmentations 

along shortest paths from s to ¢ still yields the desired result that an optimal 

flow corresponds to a feasible drawing with a minimum number of bends. 

6.5.5 Constraints and Extensions 

There are many algorithms that arise from the basic ideas described in the 

previous section. Some of them are able to consider a variety of constraints 
by using integer programming methods. See (Eiglsperger et al., 2000) for a 

description. 
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Fig. 6.23. The neighborhood of a graph (left); the auxiliary nodes and arcs in the 

flow network (right). 

There are other graph drawing problems where the objective is closely 

related to what we described in the previous sections, but may yet have some 

differences. We give a few pointers to and descriptions of these issues. 

While flow models minimize the total number of bends, it may very well be 

that the objective is to minimize the maximum number of bends in any edge. 

As Fofmeier et al. (1996) demonstrated, it is possible to construct a drawing 

of a planar graph in the Kandinsky-model, such that no edge has more than 

one bend. This allows it to minimize the total number of bends under this 

restriction: the constraint can be enforced by imposing an upper limit of 1 

on the capacities of the face-to-face arcs in the flow network. Similarly, other 

upper bounds on the number of bends for individual edges can be handled. 

There have been efforts to use flow models for bend minimization if the 

embedding is not fixed. Clearly, serious difficulties are to be expected, as we 

pointed out at the beginning of this section: since the problem for a non- 

fixed embedding is V’P-hard, such approaches can only be expected to lead 
to heuristics, or we may have to accept a worst-case running time that is not 

polynomial. As we already mentioned above, there is an algorithm by Didimo 

and Liotta (1998) for finding a drawing with a minimum number of bends 
for non-fixed embedding that is only exponential in the number of degree 

four nodes. Extending earlier work by Bertolazzi et al. (1997), the algorithm 

proceeds by a branch-and-bound search. Branching steps correspond to local 

modifications of the current graph embedding; the full set of possible embed- 
dings is maintained by using a special data structure called an SPQ*R-tree. 

The four different types of tree nodes (S, P, Q*, and R) correspond to dif- 
ferent types of triconnected components that allow a limited number of local 

modifications. The flow method by Tamassia is used as a subroutine. Experi- 
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ments seem to indicate that the algorithm may be practical for test graphs of 
up to 200 nodes, since the distribution of degree four nodes in the test graphs 
tends to keep running times significantly below the worst case estimates. 

It has been attempted to use flow techniques even for nonplanar graphs, 
by making use of sufficient a priori knowledge of the location of edge crossing. 
Details are quite tricky and technical; see the thesis (Fo8meier, 1997b). 

6.6 Compaction 

Compaction is the process of changing a given orthogonal layout, so that 
either the area, the total edge length, or the maximum edge length decreases. 
In this section, we will focus on compaction techniques that maintain the 
topology and shape properties of the input. 

Most of the algorithms described in this section have their roots in VLSI 

design, but have been adapted to solve the compaction problems in graph 

drawing. In addition, we present two recent developments originating in the 

area of graph drawing. An overview of the techniques in VLSI layout is given 

in Lengauer (1990, Chap. 10) and in LaPaugh (1998, Sect. 23.3). Before 
describing the compaction techniques we state the underlying compaction 

problems in a formal way, and we discuss their complexity in Section 6.6.1. 

One-dimensional algorithms attack the problems by dividing them into two 

separate subproblems for the horizontal and vertical direction. They are cov- 

ered in Section 6.6.2: we focus on the compression-ridge technique and the 

graph-based compaction strategies. Finally, Section 6.6.3 is dedicated to op- 

timal methods. 

6.6.1 Problems and Their Complexity 

Depending on the various aesthetic criteria we want to optimize, there are 

several versions of compaction problems originating in the topology-shape- 

metrics approach. The input of the third phase within this paradigm is an 

orthogonal representation H. Such a representation may have been produced 

by the flow-based methods of Section 6.5. By introducing auxiliary vertices, 

we may assume that H is simple. The task is to find an orthogonal grid 

embedding respecting the shape of H with either minimum total edge length, 

minimum area, or minimum length of the longest edge. We will refer to 

these problems as COMPsum, COMP 4, and COMPinax, respectively. It is 

also possible to state the problems for existing orthogonal grid embeddings, 

especially as a postprocessing step for drawings as produced in Section 6.3. 

In this case the task is to change the coordinates of vertices and benas, 

but not the angles formed by the edge segments. These formulations may 

seem somewhat restrictive in the case of existing drawings (in a more general 

scenario, it may be possible to introduce or remove bends), but even then, 

they may serve as a local improvement step. 
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Almost all variants of the two-dimensional compaction problem in VLSI 

design are P-hard. In most cases, the corresponding proofs are reductions 

of the problem 3PARTITION (see Garey and Johnson (1991)). They exploit 

the fact that in VLSI problem formulations, wires may be allowed to swap 

their connection points at components. Such a swap corresponds to a change 

of the embedding and is not allowed in graph drawing problem formulations. 

These changes are crucial for the reductions and cannot be used in a setting 

with fixed topology. . 

For a long time it was conjectured that the compaction problems (ie., 

COMPsyum, COMP 4, and COMP max) for a fixed embedding are also NP- 

hard. Recently this was proven by Patrignani (1999a). His proof for COMP 4 

is based on a reduction of the satisfiability problem SAT (see Garey and 

Johnson (1991)). Given a formula ¢, there is an orthogonal representation 

Ha(¢) with n, vertices and ma edges, and area at most (9n4+2)(9m,4 +7), 
if and only if ¢ is satisfiable. The reductions for COMPsum and COMPmax 

are similar. 

6.6.2 One-Dimensional Compaction Methods 

Due to the large sizes of instances, research in VLSI design has focused on 

one-dimensional methods. Only one dimension may be changed at a time; 

the other dimension is fixed. We will refer to the restricted, one-dimensional 

compaction problems as COMP},,,, COMP}, and COMP1,,, respectively. 
After a compaction step, the layout is changed: alternating the direction 

and performing another step results in an iterative process. However, at each 

step the decisions are purely local, and compaction in one direction may 

prevent greater progress in the other direction. Furthermore, the layout may 

be blocked in both dimensions, but still be far away from an optimal solution 
(see Figure 6.24 for an example). 

(b) 
Fig. 6.24. (a) Both directions are blocked, the total edge length is 2k +5. (b) An 
optimal layout with edge length k + 6. 

Originating in VLSI design, the compression-ridge method searches the 
layout for cuts that divide it into two parts and pass through regions of empty 
space. For fixed embedding the “empty space” corresponds to edges that are 
longer than the minimum length of one unit. If such a cut has been found, its 
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edges can be shortened by at least one unit and the resulting grid embedding 
is still feasible. 

We sketch the method from (Dai and Kuh, 1987), adapted to different 
scenarios in the area of graph drawing. All cuts are found as an interpreta- 

tion of a maximum flow in a network N that depends on the initial drawing. 

A compaction step in z-direction for the example introduced in Section 6.3 

(page 130) is shown in Figure 6.25. Compaction in y-direction can be ex- 

plained similarly. First the layout is dissected into horizontal stripes. This 

corresponds to the dissection process described in Section 6.3 with the re- 

striction that only artificial edges of horizontal direction are allowed. A mod- 

ification of the dissection method still runs in linear time; the result is a 

drawing with internal faces of rectangular shape. Now the network N can be 

constructed as follows: each rectangular face f corresponds to a node n(f) 

in N. In addition, there are two nodes s and t for the outer face; s at the 

top of the drawing, t at the bottom. Arcs are directed downwards: for each 

horizontal edge e separating an upper face f from a lower face g, there is an 

arc af = (n(f),n(g)) and an arc az = (n(g),n(f)). The capacity of az is 
the length of e minus one. This corresponds to the maximal possible short- 

ening of e. A capacity of oo is assigned to the opposite arc az , accounting for 

possible elongations of e. The maximum flow from s to ¢ in this network cor- 

responds to the shortening that can be applied to obtain a minimum width 

drawing; thus, we get a layout of optimal horizontal width. Each compaction 

step has running time O(nlogn), the bottleneck being the computation of a 
maximum flow problem in NV. (By construction, the network N is planar and 

linear in size of the original graph.) 

(b) (c) 

Fig. 6.25. The compression-ridge method in graph drawing: (a) the network N 
for x-compaction of Figure 6.9 (d) (only some of the unbounded upward arcs are 
shown); (b) the maximum flow in N; (c) the drawing after the horizontal compaction 
step. 
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So-called graph-based compaction methods represent a different and more 

efficient approach: Two layout graphs — one for each direction of the compac- 

tion — encode the visibility properties between maximally connected vertical 

and horizontal paths in the given grid embedding. These paths are also re- 

ferred to as bars in Di Battista et al. (1999), maximal chains in Bridgeman 

et al. (1999), or segments in Klau and Mutzel (1999b). 

Definition 6.23. A horizontal segment is a maximally connected component 

in (V, En), the subgraph of G containing only the horizontal edges. Similarly, 

we define vertical segments in (V,E,). The sets Sp, and S,, refer to the hori- 

zontal and vertical segments, and the set S = Sp, U Sy refers to all segments. 
A verter v lies on the two unique segments hor(v) € Sp and ver(v) € Sp. 

The directed layout graphs D, = (Vz, Az) and Dy = (Vy, Ay) are built as 
follows: the node set V;, of the horizontal graph D, corresponds to the set of 

vertical segments S,. A similar construction applies to Dy, here Vy = Sp. 

For an arc set A let trans(A) be the transitive hull of A. Geometric re- 
lations between the segments define the arc sets in the digraphs: whenever 

a horizontal segment s; is to the left of another horizontal segment s;, we 

want to find a directed path between s; and s;. We characterize the vertical 
relationships analogously. More formally, we want to have 

trans(A;) = {(s;, 8;) | s; is to the left of s;}| and (6.8) 

trans(A,) = {(s;,3;) | 5; is below s;} . (6.9) 

Any sets with properties (6.8) and (6.9) can be used as the arc sets of the 
layout graphs. Figure 6.26 shows two layout graphs for the running example 

in this section with arc sets produced by a sweep-line method. 

Fig. 6.26. The directed layout graphs Dz (left) and Dy (right). 

Each are corresponds to a distance constraint for a pair of segments. Since 
the visibility properties must be maintained in one-dimensional compaction 
(recall that the coordinates of the other direction are fixed) an arc (sj, s;) 
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describes the fact that all the vertices of s; must be assigned a greater co- 
ordinate than the one for vertices of s;. Hence, the task of one-dimensional 
compaction in z-direction reduces to computing a topological numbering for 
the nodes in Dz. Similarly, a vertical compaction step corresponds to a topo- 
logical numbering in Dy. Since the layout graphs are acyclic by construction, 
such an order © can be computed in time O(|Vz| + |Az|) or O(|Vy| + |Ay]), 
e.g., with the longest path method. It is easy to show that D, and Dy are 
planar; thus, |V;|, |Vy|, |Az|, and |A,| are in O(n). Therefore, the running 
time for computing the topological numbering @ is linear in the size of the 
original graph. 

We illustrate the method by performing vertical compaction on the ex- 

ample graph. Consider D, in Figure 6.26. The longest path method results 

in the following topological numbering ®: S, — Z. 

P(s3)=1 (84) = D( ) = () (s2) — | 83 Y 

) sh (sg) ==) P(sg) = 3} P(s10) = 

51 

P(s6) =, D(s7 

The new vertical coordinate of a vertex v is just the topological number 
of hor(v). Setting all y-coordinates in this manner results in the compacted 
drawing with minimum possible height in a one-dimensional setting, as shown 

in Figure 6.27 (a). 
Note, however, that this method tends to push vertices as far to the 

bottom as possible (or to the left when performing a horizontal compaction 

step). Each segment gets its minimum topological number. For segments 

lying on the longest path tree, this is the optimal assignment; other segments 

should rather be placed closer to their neighbors than to the bottom or left 

margin. In Figure 6.27 (a) this has no negative influence on the aesthetics, 

but Figure 6.27 (b) shows an example where this is the case. Though the 
drawing has minimum width and height, the bottom edge is drawn longer 

than its one-dimensional minimum length of one grid unit. In addition to the 

unpleasant drawing, these edges might prevent the following compaction step 

in the other direction from a better performance. 

Minimizing the total one-dimensional edge length corresponds to mini- 

mizing the difference between the topological numbers. In the area of VLSI 

this problem is known as wire balancing. For vertical compaction, the corre- 

sponding optimization problem is 

min 3 (hor(w)) — &(hor(v)) (6.10) 

(v,w)EE, 

arts P(s;) — B(s;) > 1 for all (s;,8;) € Ay . 

Note that (6.10) is the same problem as the layer assignment for layered 
drawings of graphs (see Section 5.3). The optimization problem can be seen 

as the dual of a flow problem, as shown by the following steps. Let Aver(s) 

denote the vertical degree of a horizontal segment s € Sp, defined as 
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(a) (b) ‘ 

Fig. 6.27. The graph-based compaction method with longest-path computations: 

(a) the example from Figure 6.9 after a vertical compaction step; (b) the method 

does not lead to optimal layouts with respect to the one-dimensional compaction 

problem COMP3um: 

Aver(s) = |{(v, w) € Ey | hor(v) = s}| — |{(u, v) € Ev | hor(v) = s}|. (6.11) 

Then >> ,c5, Aver(s) = 0, and the optimization problem (6.10) becomes 

min SS Aver (s) f(s) (6.12) 

seESp, 

s.t. @(s;) —G(s;) > 1 for all (s;,3;) € Ay. 

The dual of (6.12) is 

max SP (a) (6.13) 
acAy . 

s.t. ye W(a) — ye W(a) = Aver(s) for all s € Sh, 

a=(s,t) a=(r,s) 

Y(a) >0 for alla € Ay. 

The objective function of this problem can be written as 

min > —W(a), 
acAy 

leading to the standard form of a minimum cost flow problem. This implies 

that there is a polynomial-time method for finding an optimal solution for 

the one-dimensional compaction problems COMP}, and COMP}, ,,. 

6.6.3 Optimal Compaction Methods 

There are several methods for finding an optimal solution for two-dimensional 

compaction problems of the types COMPsyum, COMP 4, and COMP max that 

we have introduced in Section 6.1. Both the algorithms by Kedem and Watan- 

abe (1984); Watanabe (1984), and by Schlag et al. (1983) are based on a 
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branch-and-bound approach and originate in VLSI design. Recently, there 
have been developments in the area of graph drawing: Bridgeman et al. (1999) 
specify a class of orthogonal representations for which optimal drawings with 
respect to area and total edge length can be found employing the methods 
from Section 6.3. Klau and Mutzel (1999b) present an optimal branch-and-cut 
approach for minimizing the total edge length for a given orthogonal repre- 
sentation; they also characterize classes of representations for which their 
algorithm runs in polynomial time. 

The algorithm by Kedem and Watanabe (1984); Watanabe (1984) is based 
on a translation of the two-dimensional compaction problem COMP , into a 
nonlinear mixed integer programming formulation that is solved by a branch- 
and-bound algorithm. They express the problem as minimizing the nonlinear 
area function under a set of linear and nonlinear constraints. Their formu- 
lation, however, sacrifices the general statement of COMP, as defined in 
Section 6.1 and considers only a subset of the feasible solutions in order to 
achieve a better running time. In the following we sketch the branch-and- 
bound algorithm. 

A vector of decision variables d determines the interaction of components 

(remember that components correspond to vertices of a graph drawing in- 

stance). In the given formulation, only two positions are possible for a pair 

of components, coded as an entry in the 0/1-vector d. Each combination cor- 

responds to a different relative placement of the component pair ~ either a 

horizontal or a vertical constraint is active. The entries in d correspond to 

arcs in the layout graphs, i.e., a fixed d specifies two (possibly infeasible) 
one-dimensional compaction problems. This formulation has the drawback of 

being able to handle only two-way choices instead of four possible relative 

placements. Though the area of the computed layout is optimal for a given 

partial order, it may not be optimal for an instance of COMP , as formulated 

in Section 6.1. The authors propose a postprocessing step to determine where 

the partial order of elements has to be swapped, but they do not present a 

method that guarantees an overall optimal solution. 

A fixed set of relative positioning decisions — corresponding to a node 

in the branch-and-bound tree — results in two one-dimensional problems. 

They are solved using the graph—based longest path method described in 

Section 6.6.2. If the subproblem is infeasible, the tree of problems can be cut 
at this node. If the node is a leaf and a feasible solution is found that is better 

than the previous global upper bound, the bound is updated. Otherwise, a 

solution may cause an update of the local lower bound. If the latter becomes 
greater than the global upper bound, an optimal solution cannot be found 

below the current node, and again the tree is cut at this point. 
In general, an optimal solution for the restricted problem can be found 

in short time by using this method. However, the proof of optimality may be 

very time-consuming. 
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A different branch-and-bound approach was proposed by Schlag et all. 

(1983). They give a characterization of feasible layouts in terms of satisfia- 

bility of a special Boolean expression. 

If the distance constraints between two components i and j in the lay- 

out process are not fulfilled, the pair is called a violation. Four constraints 

Chys Crys Gy and ci, define the relative placement of elements i and j. A vio- 

lation can be seen as the nonemptiness of the intersection between the two 

rectangles R;; and j, shown in Figure 6.28. The rectangle R;; contains ele- 

ment i; at each of the four sides it is enlarged by the appropriate minimum 

distance to element j. 

Fig. 6.28. A violation formed by elements 2 and j. 

With each constraint c € Ui<icj<n{Ci;,Cij» C3), C4; } and each layout P, 
we also associate a logical variable. The variable is “true” if the constraint 

is fulfilled in P and “false” otherwise. Then a legal layout, i.e., a feasible 

orthogonal grid embedding, is characterized by the following properties: 

— It satisfies the base constraints determining the sizes of the elements. 

— For every c the formula F' is “true”, where 

oy) 

For a practical application, the size of set F is too big. The basic idea 

of the two-dimensional compaction algorithm is to start with F = {}, and 
to obtain a so-called smashing by solving the system of inequalities with 

the longest path method from Section 6.6.2. A smashing is a possibly illegal 

layout that respects only the set of constraints in the current, set F. Then 

the algorithm determines a violation (i, 7) in the smashing by means of a 

rectangle intersection algorithm, searching for situations like in Figure 6.28. 

Once such a pair (i, 7) is found, a branching step is performed: in each of the 
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four subproblems, a different constraint cf, (k € {1,... ,4}) is added to the 
set of active constraints F’. Then the algorithm calls the procedure recursively 

with each of the four different sets F + {cj;},...,F + {ch}. 
An optimal solution is obtained like in the algorithm by Kedem and Wata- 

nabe. If the subproblem is a leaf, the generated constraints are either inconsis- 

tent, or the layout is legal and may become the new upper bound. Computa- 

tions at inner nodes in the branch-and-bound tree have the following effects: 

illegal subproblems and problems exceeding the global upper bound cause 

the algorithm to cut the tree at the current node; otherwise, the objective 

value of the smashing becomes the new local lower bound. 

This concludes the overview of optimal VLSI methods for two-dimensional 
compaction problems. Though not applicable to the typically huge instances 

of VLSI problems, the algorithms can be useful for the compaction of or- 
thogonal grid embeddings. The rest of this section is dedicated to recent 

developments in the area of orthogonal graph drawing. 

As seen in Section 6.3, there is a class of orthogonal representations where 
the two-dimensional compaction problems can be solved to optimality—these 

are representations with faces not containing forbidden sub-shapes, resulting 

in inner faces of rectangular shape. The work by Bridgeman et al. (1999) 

studies the class of orthogonal representations and introduces so-called turn- 

regular orthogonal representations to devise polynomial-time heuristics for 

the compaction problems in graph drawing. 

An orthogonal representation H is turn-regular, if it does not contain 

opposite angles inside of a face. A pair of angles is in opposition, if it forms 

one of the 18 configurations shown in Figure 6.29. 

= tae 
» Jw Ww v| 

e—e Pa Tah e—e ew 

t Jw. 4 os I w 

Fig. 6.29. Nine configurations for a pair of opposite angles inside of a face. The 
other nine can be obtained by 90° rotation. 

Turn-regularity of an orthogonal representation can be tested in linear 

time. The authors show that the relative position of every pair of vertices 

is defined, if and only if the underlying orthogonal representation is turn- 
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regular. This implies that a drawing that respects all the relative positions is 

a feasible orthogonal grid embedding. 

For a turn-regular representation, the networks introduced in Section 6.3 
can be used in order to obtain a minimum area drawing in linear time. Fur- 

thermore, the O(n*/4,/log n) time algorithm introduced in Garg and Tamas- 
sia (1995a) can compute the drawing with minimum total edge length within 
this optimal area. 

Based on this theoretical background, the following compactiorr heuristic 

can be applied to any orthogonal representation H: First, H is tested for 

turn-regularity with a linear-time algorithm. If the test is positive, an optimal 

drawing can be computed in polynomial time. Otherwise, the heuristic turns 

the non-regular faces into regular ones. Techniques similar to the dissection 

method presented in Section 6.3 can be used for this purpose, e.g., it is 

possible to insert straight artificial edges between pairs of opposite vertices. 

In general, the drawings resulting from this dissection method are better than 

the ones from Section 6.3, but are still far away from an optimal solution. 

Figure 6.30 shows a drawing for the example from Section 6.3, constructed 
with this heuristic method. 

(a) (b) 
Fig. 6.30. The heuristic based on turn-regularity applied to the example from 
Figure 6.9: (a) pairs of opposite angles have been linked by either horizontal or ver- 
tical artificial edges. The resulting representation is turn-regular and compactable 
in polynomial time. 

The method by Klau and Mutzel (1999b) solves the problem of minimiz- 
ing the total or maximal edge length for a given orthogonal representation. It 
makes use of a necessary and sufficient condition for all feasible solutions ofa 
given instance of the compaction problem. This condition is based on existing 
paths in so-called constraint graphs. This pair of graphs is similar to the lay- 
out graphs defined in Section 6.6.2. As in one-dimensional graph-based com- 
paction, nodes in these graphs represent the segments (see Definition 6.23), 
and arcs characterize relative positioning relations. 
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Figure 6.31 shows an example of a pair of constraint graphs. The arcs 
specify exactly the relative relationships known from the given simple or- 
thogonal representation H. Each edge in H determines the relative position 
of two segments in every feasible orthogonal grid embedding for H. Pairs of 
constraint graphs whose arc sets consist of all such arcs are also called shape 
descriptions. 

Fig. 6.31. A pair of constraint graphs that is a shape description. Each segment 
is limited by two horizontal and two vertical segments. The left limit of segment s3 
is 1(s3) = 8g, its right limit is r(s3) = s9. The bottom and top limits of s3 are the 
segment itself, i.e., b(s3) = t(s3) = 83. 

The optimal compaction method is based on the following observations: 

— The arcs of a shape description are contained in the layout graphs of every 

drawing that reflects the given shape. 

— Most frequently, the information in a shape description o is not enough to 

produce a feasible orthogonal grid embedding. Respecting only the relative 

positioning constraints encoded in o may lead to crossings and overlapping 

edges. If this is not the case, however, we call such a pair of constraint 

graphs complete. 

— In general, there are many possibilities for extending a shape description 

to a complete pair of constraint graphs. 

Let u —> v denote the existence of a directed path from u to v. The 
following is a precise characterization of complete pairs of constraint graphs 

in terms of paths that must be contained in the arc sets: a pair of graphs is 

complete if and only if both arc sets are acyclic and for every pair of segments 

(s;,8;) € S x S, one of the following four conditions holds: 

1. r(s;) —> U(s;), 3. t(s;) —> (si), (6.15) 

2. r(s;) —> U(s:), 4, t(s;) —> b(s;). 
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In this definition, I(s), r(s),b(s), and t(s) denote the limits of a segment s as 
introduced in Figure 6.31. If one of the conditions applies we also call the 

pair of segments separated. 

We can now express a one-to-one correspondence between these complete 

extensions and feasible orthogonal grid embeddings. For each simple orthog- 

onal drawing with shape description o, there exists a complete extension T 

of o and vice versa: every complete extension 7 of a shape description o 

corresponds to a simple orthogonal drawing with shape description o. 

Hence, the compaction task can be seen as the search for a complete ex- 

tension of the given shape description leading to minimum total edge length 

(or minimum maximal edge length). One way to characterize the set of com- 

plete extensions is by means of an integer linear program (ILP). We introduce 

a binary variable 2;; for each arc (s;,s;) that may be part of some extension 
of the given shape description a = ((S,, An), (Sp, Av))-. If (si, $;) is contained 
in the extension, the corresponding variable x;; is one; otherwise, it is zero. 

We refer to the set of arcs in o by A = A; U A, and to the set of potential 

additional arcs by A‘. In addition, there is a variable c, € Z for each segment 

s € S denoting the coordinate of s. This yields the following ILP: 

min > Cr(e) — Ci(e) + Se Ct(e) — C(e) (6.16) 
ecEp, eck, 

subject to 

Lr, ly + Lr; 1, + Lt;,b; + Lt,b, 21 V(si,8;)€ SxS (6.16.1) 

cj -a4 21 ¥(si, 8) €A (6.16.2) 

cj —G —(M+1)x,; > —M V(i,j) € At (6.16.3) 

riz € {0,1} V(i,j) € At (6.16.4) 

Inequalities (6.16.1) model the characterization of separation, i.e., the 
existence of necessary paths in an extension as required by conditions (6.15). 
In this formulation, r; is short for the segment r(s;); the same abbreviation 
applies to all other limits. Inequalities (6.16.2) force the coordinates to obey 
the distance rules coded by the arcs in the underlying shape description. The 
same must hold true for the potential additional arcs: whenever a variable Xij 
has value 1, we want an inequality of type (6.16.2); otherwise, there should 
be no restriction on the coordinate variables. This situation is modeled by 
inequalities (6.16.3) with the help of a big constant M. The authors show 
that in a feasible solution, the corresponding arc sets are acyclic and the 
entries of the coordinate vector c integral. 

Like the one-to-one correspondence between complete extensions and fea- 
sible orthogonal grid embeddings, there is a one-to-one correspondence be- 
tween feasible solutions of the ILP and complete extensions of the given shape 
description. 
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To formulate COMPmax, i.e., the minimization of the longest edge, the 

ILP has to be slightly modified. Only a linear number of inequalities have to 

be added and the objective function must be changed for that purpose. 
For the class of turn-regular orthogonal representations defined in Bridge- 

man et al. (1999), there is only one complete extension of the corresponding 

shape description. In a preprocessing phase, the algorithm extends the given 

shape description as far as possible by adding arcs when there is only one 

possibility of meeting the four conditions (6.15). In case of complete con- 
straint graphs, the integer linear program decomposes into two separate one- 

dimensional compaction problems that can be solved with the algorithm from 

Section 6.6.2, which is optimal in the one-dimensional case. Figure 6.32 shows 

a drawing for the example graph that is optimal with respect to total edge 

length, constructed with the branch-and-cut algorithm. It should be noted 

that the algorithm performs quite well on medium-sized instances, despite of 

its exponential worst-case time complexity. 

Fig. 6.32. An optimal solution of the two-dimensional compaction problem pro- 
duced by the branch-and-cut algorithm (example from Figure 6.9). 

To conclude this section, observe that the aesthetic criteria “area” and 

“edge length” may contradict each other, even when the corresponding or- 

thogonal representation is turn-regular and the underlying shape description 

is complete. Unlike the rectangular case, optimality of the two criteria does 

not always coincide (see Figure 6.33). 

6.7 Improving Other Aesthetic Criteria 

In this section we present efficient postprocessing routines for improving other 

aesthetic criteria. Here the focus is on efficiency rather than optimality. In 

addition to decreasing area and edge length, these techniques aim at reduc- 

ing the number of bends, the number of crossings, and the sizes of vertices. 
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Fig. 6.33. Underlying shape description and orthogonal representation are com- 
plete and turn-regular, respectively. Nevertheless, minimum area (left) and mini- 
mum total edge length (right) exclude each other. (The example is taken from Pa- 
trignani (1999a).) 

Few efforts have been made in this direction. The bend-stretching transfor- 

mations by Tamassia and Tollis (1989) as presented in Section 6.4 fall in this 
category. They may reduce the number of bends in an orthogonal drawing. 

The refinement algorithm by Six et al. (1998) provides an additional set of 
elementary transformations to reduce the number of crossings. A more com- 

plicated and less efficient approach is given by FoSmeier et al. (1998). They 

also consider changing the sizes of vertices in order to get smaller drawings 

and fewer bends. 

The goal of the algorithm by Six et al. (1998) is to find an efficient way 
for obtaining a better drawing in terms of area, number of bends, number 

of crossings, and total edge length. To improve area and edge length, they 

use the linear-time one-dimensional compaction method described in Sec- 

tion 6.6.2. The number of bends is reduced by using the bend-stretching 

transformations introduced by Tamassia and Tollis (1989) that are described 
in Section 6.4.2. 

In addition, Six et al. (1998) consider the following configurations that 
can be removed in order to increase readability of the orthogonal drawing. 

1. U-Turns are three consecutive edge segments forming two 90° angles (as 

shown in Figure 6.34 (a)). 
2. Poorly placed degree two vertices are those which are neither on a bend 

nor distributed evenly in the drawing (Figure 6.34 (b)). 
3. Self-crossings occur between two edges that are incident to the same 

vertex. The authors distinguish between near and far self-crossings (Fig- 
ure 6.34 (c)). 

4. A stranded vertex has only one neighbor that is placed far away (as 
shown in Figure 6.34 (d)). 

A preprocessing phase constructs a so-called abstracted graph G’ by delet- 
ing vertices with degree at most two. In some cases, the following simple pro- 
cedures can repair the configurations of Figure 6.34: if a U-turn is found, the 
algorithm checks whether the middle segment can be moved towards the ends 
of the “U”. If the necessary space is available, this operation can save cross- 
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(c) (d) 
Fig. 6.34. The four additional configurations considered in Six et al. (1998): (a) a 
U-turn; (b) poorly placed degree two vertices; (c) self-crossings (near and far); (d) 
a stranded vertex. 

ings and reduce total edge length. The bends on edges e that represent chains 

of degree two vertices are redistributed, so that either they lie on bends of 

e, or they are in the middle of an edge segment. Another operation removes 

near self-crossings by swapping the affected edges. For far self-crossings, the 

procedure tries to reroute the edges. Finally, stranded nodes are placed as 

close as possible to their neighbors. The authors give an O(n+m) time bound 
for their refinement algorithm. 

Another approach to postprocessing is the 4M-algorithm by Fo8meier 

et al. (1998). It consists of the four operations moving, matching, morphing, 

and merging. 

The moving operation is a one-dimensional compaction method similar 

to the compression ridge method presented in Section 6.6.2. The authors 

introduce a moving line (corresponding to an s-t flow) to cut the drawing into 

two parts. They propose a depth-first search to find this line more efficiently. 

Moving is shown in Figure 6.35 (a). 
Matching resembles the third bend-stretching transformation in Tamas- 

sia and Tollis (1989). The aim is to save bends by moving vertices to the 
geometric places of bends. The technique, however, is different. Analogous to 

the moving line in the preceding operation, a matching line is used for finding 

these configurations. A theoretical characterization of matching lines can be 

found in Tamassia (1987) and in Di Battista et al. (1999). Figure 6.35 (b) 
illustrates the matching operation. 

The morphing procedure saves bends by changing the size of a vertex v, 

drawn as a box. This operation is the inverse to shrinking vertices by intro- 

ducing bends, which is used to get an orthogonal drawing from a visibility 

representation, described in Section 6.4.2. The basic idea of morphing is to 

expand v in direction of a close bend b so that the geometric representation 

of v covers b. Then the operation changes the box of v to its smallest possible 
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size. Figure 6.35 (c) demonstrates an application of a morphing step. There 

are many cases, however, where this operation is not applicable: vertices may 

grow too big or overlap other parts of the drawing. Again, a morphing line 

is used for finding configurations where the operation can be performed suc- 

cessfully. 

The last operation in the 4M-algorithm is merging. This operation aims 

at reducing the sizes of vertices drawn as a box and is illustrated in Fig- 

ure 6.35 (d). Merging is a combination of inverse morphing and matching. 

First it introduces a bend b by resizing a vertex v in order to place a neigh- 

bor w of v on the position of b. As a result, either the width or the height of 

vertex v decreases by one grid unit. 

Bl fF TS 
(c) (d) 

Fig. 6.35. The 4M-algorithm: (a) moving; (b) matching; (c) morphing; (d) merging. 

Different variants of the 4M-algorithm run in O(n”) or O(nlogn) time. 

6.8 Conclusions and Open Problems 

We have described a number of models and methods for orthogonal drawings 

of graphs. As we saw in the beginning, these problems are somewhat related 

to the issue of angles in drawings. 
Drawing edges as axis-parallel paths makes it relatively easy to give com- 

binatorial descriptions of these drawings. This allows it to use combinatorial 
arguments for getting a first drawing, as well as methods from mathematical 

programming for improving it. This basic approach of discretization can also 

be applied by using other grids; however, the resulting combinatorial issues 

may be harder to resolve. 
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Many of the performance guarantees of the presented heuristics still leave 

a gap between the number of bends in a drawing that can be achieved and 

the number of bends that may be necessary. It is conceivable that some of 
these gaps will be narrowed or closed. 

Another elegant application of methods from mathematical programming 

is given by the polynomial flow-based algorithms for bend minimization. Like 

in some other cases, an immediate application is restricted to the relatively 

small class of planar graphs with maximum degree 4, but there are some 

extensions to cope with other models of orthogonality. A possible approach 

is to draw vertices as boxes; doing this in a specific manner leads to the 

KANDINSKY model, but others are possible. 

The same applies to local improvement of the metric quality of a drawing, 

i.e., compaction. If we are dealing with a graph that has vertices of degrees 

exceeding 4, it easy to perform graph-based compaction on orthogonal draw- 

ings where vertices of high degree are represented as boxes. Crossings can be 

modeled as virtual vertices of degree four. The algorithms can be changed so 
that they can also process input drawings in Kandinsky-style, i.e., drawings 

with different grids for vertices and edges. There are many more variations 

of the problems that can be formulated elegantly so that a solution is found 

using the methods presented in this chapter. 

We conclude by listing some of the open problems concerning the quality 

of orthogonal drawings: 

— Can we give good approximation algorithms for drawing a 4-planar graph 

with few bends if the embedding is not fixed? 

— Can we extend these approximation algorithms to general planar graphs? 

— Are there approximation algorithms for classes of non-planar graphs? 

— Are there more classes of orthogonal representations for which appropriate 
compaction algorithms find the optimal drawings in polynomial time? 

— Several algorithms in this chapter operate in a fixed embedding or fixed 

shape setting. How do the optimal drawings with respect to the aesthetic 

criteria change if the embedding and/or the shape may be changed? 

— To date, no approximation algorithms exist for the compaction problems. 

It would be very interesting to have efficient heuristics with a good perfor- 

mance guarantee. 

— Can some of the ideas for planar drawings be extended to three dimensions? 

Some aspects of the last question are discussed in Chapter 7. 
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7. 3D Graph Drawing 

Britta Landgraf 

7.1 Introduction % 

There is a large number of effective methodologies and algorithms for the 

creation of aesthetically pleasing graph drawings in two dimensions. However, 

representing graphs in three dimensions offers various benefits. The extra 

dimension gives greater flexibility for placing the vertices and edges of a graph 

and crossings can be always avoided. On the other hand new challenges arise: 

current output media have a two-dimensional nature and can only provide 

a limited resolution and display area. Thus, the resulting drawings become 

complex and difficult to survey. These disadvantages can be weakened by the 

use of navigational operations such as rotation, shifting and zooming. These 

operations enabie an effective use of screen space and allow users to resolve 

ambiguities in large graphs while maintaining their overall mental map. The 

possibility of changing the viewpoint in 3D will also diminish the relevance 

of edge crossing in the (two-dimensional) screen representation of the graph. 

The most commonly implemented 2D algorithms can be grouped into 

the following three categories: physical simulations, layering, and orthogonal 

graph drawing. Examples for physical-based methods for drawing undirected 

graphs are force-directed algorithms. The main idea of layering-based meth- 

ods is to partition the nodes into layers and order the nodes within the layers, 

such that edge crossings are reduced. These algorithms are particularly well 

suited to draw directed acyclic graphs. An orthogonal graph drawing places 

all vertices at grid points, i.e., at points whose coordinates are all integer. 

The edges are represented by sequences of contiguous segments of grid lines, 

i.e., axis-parallel line segments determined by the grid points. Edge routes are 

allowed to contain bends, but are not allowed to cross or to overlap. Whereas 

the first two methods can be extended naturally to 3D (Ostry, 1996), or- 
thogonal graph drawing in three dimensions requires mostly new algorithms. 

Therefore, the focus of this paper is on 3D orthogonal graph drawing. 

This chapter is organized as follows. Section 7.2 describes the special 

aspects that are to be considered for physical-based methods in 3D. In Sec- 

tion 7.3 the extension of the layering approach to 3D is briefly described. 

Section 7.4 presents some orthogonal graph drawing algorithms for graphs 
of maximum degree six. Section 7.5 summarizes the results for 3D orthogo- 
nal graph drawing of high-degree graphs. Finally, Section 7.6 addresses the 
problem of finding good viewpoints for 3D straight-line graph drawings. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 172-192, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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7.2 Physical Simulation 

Spring embedder (Kumar and Fowler, 1994; Sim, 1996) is a heuristic algo- 
rithm based on a physical model. As described in Section 4.2, a spring em- 
bedder works by replacing nodes by mutually repulsive charges and the edges 
by springs that attract connected nodes. The idea is that a minimum energy 
state of the system should correspond to a good layout. 

The extension of the spring embedder from two to three dimensions is 
straightforward, because the algorithm make no particular assumption on the 
number of dimensions: one adds simply the third coordinate in the calculation 
of the forces. Figure 7.1 shows a three-dimensional spring embedding of the 
complete graph Kg. 

Fig. 7.1. 3D spring embedding of K¢. 

Many refinements and extensions of the basic algorithm have been sug- 

gested. However, all these and the basic algorithm have the disadvantage that 

they frequently get stuck in local minima, i.e., states where the energy is lo- 

cally minimal but not globally minimal. Another problem with this method 
is the difficulty of adding more sophisticated forces like ones that can deal 

with edge-densities or edge-crossings. 

The simulated annealing (Davidson and Harel, 1996; Sim, 1996; Monien 

et al., 1995) algorithm uses randomness to overcome the problem of ending up 

in local minima. A detailed description of simulated annealing can be found in 
Section 4.3. Most of the extensions of the simulated annealing algorithm from 

2D to 3D are straightforward, e.g., perturbing a point within a sphere instead 

of a circle. However, the choice of components for the energy function that 

reflect the desired aesthetics of the final graph differs significantly, because the 



174 Britta Landgraf 

aesthetic criteria themselves differ. For instance, the possibility of changing 

the viewpoint in 3D diminishes the relevance of edge crossings. 

Simulated annealing tends to be very flexible but has the disadvantage 

that the cooling must be very slow to enforce uniform and symmetric layouts. 

It needs about 10 times as many iterations as normal spring embedders. 

Experiments have shown that the combination of both spring embedding 

and simulated annealing can be useful: one moves the nodes in direction of 

the forces, but adds a small random force. With a certain probability, moves 

are accepted that would increase the global energy. 

An algorithm that is based on such a combination of the spring-embedder 

and the simulated annealing approach is GEM (graph embedder) (Frick et al., 

1995). It contains several heuristics to speed up convergence, including local 

temperatures, the attraction of vertices towards the barycenter of their neigh- 

bors, and the detection of oscillations and rotations. 

GEM-3D (Bruf and Frick, 1996) is the three-dimensional version of GEM. 

Since GEM contains nothing that is inherently two-dimensional, the exten- 

sion requires essentially only an adaptation to 3D geometry, e.g., the notion 

of opening angles is extended to opening cones. The most difficult part is 

the detection of a rotation, as there are infinitely many planes of rotations. 

GEM-3D considers three alternatives to detect rotations: 

1. Consider only rotations in the projections of the last and current move- 

ment vector onto the coordinate planes. 

2. Count the number of 90° angles. 

3. Use a global cooling schedule instead of rotation detection. 

Unfortunately, the paper by Bru8 and Frick (1996) contains no comparison 

of the quality of the produced drawings for these three alternatives. 

7.3 Layering 

Sugiyama et al. (1981) introduced an effective layer-based method for 2D 
drawings of directed graphs. The algorithm proceeds in four stages: 

1. Make the graph acyclic. 

2. Assign vertices to layers, i.e., partition the vertices of the directed graph 

into an ordered sequence of subsets in such a way that the edges have 

directions consistent with the subset ordering. Introduce dummy vertices 

to avoid “long edges”, i.e., edges which traverse one or more layers. 

. Permute the vertices within the layers to reduce the number of crossings. 

4. Reduce the number of bends by readjusting the position of vertices on 

each layer. 

jw 

‘ 

For a detailed description of the algorithm the reader is referred to Chapter 5. 

Most of these stages for the 2D algorithm can be applied identically to 3D 

drawing: the graph must be made acyclic and the vertices must be assigned 
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to layers. The barycenter heuristic is applicable to 3D by computing the 

average positions for both coordinates of the planes defining the layers. As 

in the 2D case, collisions can occur if two or more vertices in a layer have 

the same set of adjacent vertices. Resolving these collisions by separating 

the vertices to a predescribed distance or by altering the vertex positions in 

the primary layer is more difficult in 3D than in 2D, because the direction 

of separation must be defined as well as the separation distance to avoid 

introducing further collisions. A simpler method for this stage of the layout 
algorithm is to start with a barycentric heuristic layout, and then to refine 

by applying a constrained spring algorithm (Ostry, 1996). 

Ostry (1996) also describes a 3D extension of layering which reduces the 
perceptual problems caused by apparent edge and vertex overlap. This ap- 

proach satisfies the additional 3D aesthetic constraint that vertices should be 
placed on simple surfaces. The most appropriate surfaces for layered draw- 

ings are the cone and the cylinder. Then the vertices in a layer lie on a circle. 

Basically, the drawing has the overall form of a 2D layered drawing wrapped 

around a cone or a cylinder. 

Another common approach for visualizing hierarchical structures is a cone 

tree (Robertson et al., 1993). In a cone tree, each subtree is associated with 

a cone, such that the vertex at the root of the subtree is placed at the apex 

of the cone, and its children are circularly arranged around the base of the 

cone. The cone tree can be oriented top-bottom or left-right. In the latter case 

the tree is also called a cam tree. Usually the cone structure is transparently 

shaded to allow visualization of all nodes, even those that would normally 

be blocked by other cones or nodes. In addition, permanent rotation can be 

helpful to enable a view of all nodes. A user can select a node by clicking on 

it. When a new node has been selected, the node and its parent path to the 

root are brought into focus by rotating the tree. 

A third technique for 3D hierarchical graph drawing combines 2D draw- 

ings with a lifting transformation, i.e., first a 2D non-upward representation 

of a directed acyclic graph is created, and then the vertices are lifted along 

a third dimension. The lifting height of the vertices reflects the hierarchy. 

This method is used in GIOTTO3D (Garg and Tamassia, 1996a), which con- 

structs the 3D drawing of a directed acyclic graph G in three phases. In the 

first phase, GIOTTO3D constructs a 2D non-upward drawing of G in the 
XY-plane. For this a variation of GIOTTO is used. GIOTTO transforms a 

graph into a planar graph by replacing each crossing with a fictitious vertex 

and then constructs an orthogonal drawing, using flow networks to minimize 

the number of edge bends and the total area of the graph. In the second phase 

Z-coordinates are assigned to the vertices and to the bends of the edges, such 

that their placement reflects the hierarchy. The purpose of the third phase is 

to increase the visual appeal of the drawing by drawing vertices as spheres 

and edges as Bezier tubes. In addition, a footprint of the 3D drawing, i.e., a 
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projection of the graph to the XY-plane, assists the user in understanding 

the hierarchy-independent connectivity information of the graph. 

7.4 3D Orthogonal Drawings of Graphs of Maximum 

Degree Six 

An 3D orthogonal graph drawing places all vertices at grid points, ie., at 
points whose coordinates are all integers. The edges are represented by se- 

quences of contiguous segments of grid lines, i.e., axis-parallel line segments 

determined by the grid points. Edge routes are allowed to contain bends, but 

are not allowed to cross or to overlap. Because each grid point lies at the in- 

tersection of three grid lines, any graph that admits an 3D orthogonal graph 

drawing has vertex degree at most 6. By representing vertices by boxes it is 

possible to construct 3D orthogonal drawings for graphs of arbitrary degree 

(see Section 7.5). 
The most common proposed measures for determining the quality of an or- 

thogonal drawing are the bounding box volume, i.e., the volume of the small- 

est grid-box containing the drawing, and the maximum number of bends per 

edge. Using straightforward extensions of the corresponding 2-dimensional 

NP-hardness results, optimizing any of these criteria is NP-hard (Eades et al., 

1996). 
Optimizing both the volume and the number of bends per edge are con- 

flicting goals. Minimizing the number of bends in,a graph drawing often 

increases the bounding box volume. Table 7.1 shows this trade-off for the 3D 

orthogonal drawing algorithms for graphs of maximum degree six, presented 
in this section. 

The COMPACT drawing algorithm of Eades et al. (1996b) requires the 
least volume at the expense of more bends per edge. This volume bound is 
tight. Kolmogorov and Bardzin (1967) showed that no algorithm can produce 
asymptotically more compact drawings. 

The 3-BENDS algorithm of Eades et al. (1996b) and the INCREMENTAL 
algorithm of Papakostas and Tollis (1997a,b) establish an upper bound of 3 
for the number of bends per edge route. 

It is unknown if the upper bound of 3 for the maximum number of bends 
per edge route is tight. In fact, Wood (1998a,b) showed that for every maxi- 
mum degree five graph a 3D orthogonal drawing having at most 2 bends per 
edge route exists. 

Figure 7.2 shows some 3D orthogonal graph drawings of Kg, the complete 
graph on 6 vertices. 

Often it is much easier for a human to recognize the structure of a graph 
in a spring embedding than in a 3D orthogonal drawing, although the former 
is not crossing-free. The main reason for this seems that bend minimiza- 
tion is the most important aesthetic criterion for diagram readability. For an 
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Table 7.1. Upper bounds for 3D orthogonal drawing algorithms for n-vertex graphs 
of maximum degree six. 

Algorithm Volume Max 

Bends 

COMPACT drawing algorithm of Eades, Symvonis O(n3/?) i 
and Whitesides (Eades et al., 1996b) and its O(n?) 6 
refinements (Eades et al., 2000) O(n*/?) 5 

algorithm of D. R. Wood for maximum degree six 2.37n 4 
graphs (Wood, 1998a) 

3-BENDS algorithm of Eades, Symvonis and Whitesides 27n3 3 

and its refinements(Eades et al., 1996b; Wood, 2000) 8n3 3 

n> + o(n3) 3 

INCREMENTAL algorithm of Papakostas and Tollis 4.66n° 3 
Papakostas and Tollis (1997a,b) 

2-bend algorithm of D. R. Wood for maximum degree n3 2 

five graphs (Wood, 1998b) 

example compare the drawings of Kg in Figure 7.2 with the spring embed- 

ding of A in Figure 7.1. Only the REDUCE FORKS algorithm (Patrignani and 
Vargiu, 1997) produces a drawing which can be recognized just as easily. Fur- 

thermore, the REDUCE FORKS algorithm seems to produce the most compact 

drawing. Unfortunately, there are no proven bounds for the REDUCE FORKS 

algorithm. In experimental tests (Patrignani and Vargiu, 1997) the REDUCE 

FORKS algorithm produced drawings with an average of less than 2.5 bends 

per edge route and with bounding box volume 0.6n°. These tests involved 

only graphs with average degree 4. Wood (1998a) showed, that, even for the 

12-vertex graph K6¢, the REDUCE FORKS algorthm introduces a 9-bend edge 

and has more volume that the Papakostas and Tollis algorithm. In the ex- 

perimental study of Di Battista et al. (1998b) the REDUCE FORKS algorithm 

only produces drawings with the least volume for graphs with approximately 

< 35 vertices. For larger graphs the COMPACT drawing algorithm of Eades 

et al. (1996b) performs better. 
In summary the existing 3D orthogonal graph drawing algorithms, when 

applied to large graphs, do not produce drawings appropriate for visualisa- 

tion purposes. So the value of orthogonal graph drawing — apart from special 
applications like VLSI design — lies at present mainly in the theoretical anal- 

ysis of 3D graph drawing algorithms, whereas spring embedding, simulated 

annealing, and hierarchical approach are more applicable in practice. 
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(a) The Papakostas and Tollis algo- (b) COMPACT algorithm. Bounding 

rithm. Bounding box: 7 x 8 x 7 box: 11 x 15 x 18 

sooo nO 

oe srrngneacense Tot 

(c) 38-BENDS algorithm. Bounding (d) REDUCE FORKS algorithm. 
box: 16 x 15 x 16 Bounding box: 2 x 3 x 2 

Fig. 7.2. 3DCube’s (Patrignani and Vargiu, 1997) Snapshots of Ke. 

7.4.1 Approaches to 3D Orthogonal {Point }-Drawing 

In the following, all algorithms take an input graph G = (V, £) of maximum 
degree at most 6 and |V| = n. 

Compact Drawing Algorithm. This section briefly describes the COM- 

PACT drawing algorithm of Eades et al. (1996b), which produces a grid draw- 
ing having at most 7 bends per edge, maximum edge length 16,/n — 7, and 

bounding box dimensions (3[./n ] + 2) x 5[./n | x (8[./n | — 6). 
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The COMPACT drawing algorithm is based on a preprocessing step us- 

ing basic graph theory to construct a directed graph G’ whose underlying 

undirected graph contains G. Then the preprocessing algorithm computes a 
partition of the arcs of G’ into three arc-disjoint cycle covers, denoted Creq, 

Coiue and Coreen. A cycle cover of a directed graph is a spanning subgraph 

that consists of directed cycles. 

Each of these cycle covers is arranged within different areas of the draw- 

ing, so that no differently colored arcs can cross. To obtain a drawing for 

G, the algorithm routes the undirected edges of G according to the routes 

for the corresponding directed arcs of G’. Arcs which were inserted for the 

construction of G’, but do not arise from edges of G, are simply not drawn. 

All vertices of G are placed in an array of 5 x 5 squares in the plane 

Z = 0. The vertices of each directed cycle of C;-eq are placed successively in 

a snake-like fashion by following the cycle. Then the arcs of these cycles are 

routed completely in the plane Z = 0 using at most 6 bends per route. 

The blue colored arcs are routed above the plane Z = 0 . The route for an 

arbitrary arc (v, w) of Cyiue consists of 8 segments, as shown in Figure 7.3. 

Fig. 7.3. The 7-bend route of arc (v, w) (Eades et al., 1996b). 

The segments of type 1,3,5 and 7 have length 1. These unit length seg- 

ments, the arrangement of the vertices in the square array, and a suitable 

selection of the Z-coordinate of segments of type 4 and 6 ensure that no 

segments of different routes can overlap or cross. 

The arcs of Cgreen are routed like the arcs of Coiue, but on the other side 

of the plane Z = 0. 

Eades et al. (2000) refine the COMPACT drawing algorithm to explore the 

trade-offs between the number of bends per edge and the dimension of the 

bounding box of the drawing. For this purpose they eliminate successively 

the unit-lengths segments from the routes of the arcs in Cgreen and Coiner 
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For each eliminated segment the maximum number of bends per edge reduces 

by one while the lengths of the bounding box side parallel to this segment 

increases by a factor of O(./n), see Table 7.1. 
A detailed discussion of the trade-offs and the refinements of the COMPACT 

drawing algorithm can be found in Eades et al. (2000). Furthermore, the 
authors present an algorithm which draws a maximum degree 4 graph in a 

O(n) x O(n) x O(1) bounding box with at most 3 bends per edge. 

3-Bends Algorithm. The 3-BENDS algorithm of Eades et al. (1996b) con- 
structs an 3D orthogonal drawing with at most 3 bends per edge, maximum 

edge length 9(n — 1) + 2, and bounding box dimensions (3n — 2) x (3n — 3) x 
(3n — 2). It is based on the same preprocessing algorithm as the COMPACT 

drawing algorithm described in Section 7.4.1 to obtain a directed graph G’ 

together with three arc-disjoint color classes. It places the vertices of G on the 

diagonal of a 3n x 3n x 3n cube according to an arbitrary ordering. Each pair 

a, b of vertices in G’ determines a cube C(a,b) with pa = (3a, 3a,3a) and 
Pb = (3b, 3b, 3b) at opposite corners. The colored arc (a,b) is routed along 
the edges of this cube or with an offset of one unit near the path of cube 

edges; the particular choice depends on the color of the arc and on whether 

the predecessor and successor of b corresponding to that color are positioned 

both on the same side of b on the diagonal. See Figure 7.4. 

Pb = (3b, 3b, 3d) Pa 
wena ne wnneneene 

O esp : 
Pa = (3a, 3a, 3a) AS oat Si 

(a) (b) 
Fig. 7.4. 3-bends routing along (a) or near (b) the path of cube edges. 

Colored paths of cube edges on the same cube get close to one another 
only in the vicinity of the ends of the paths. Routing one unit near the path 
of cube edges enables the use of all six directions in the endpoints without 
conflicts. Therefore there are obviously no illegal intersections of routes. 

By deleting empty grid-planes in drawings produced by the 3-BENDS al- 
gorithm the volume can be improved from 27n? to 8n3. 
Incremental Orthogonal Graph Drawing Algorithm of Papakostas 
and Tollis. The INCREMENTAL algorithm of Papakostas and Tollis (1997a,b) 
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produces a 3D orthogonal drawing with volume at most 4.66n3, and at most 
3 bends per edge in linear time. This slighthly outperforms the 3-BENDS 
algorithm of Eades et al. (1996b) with regard to the volume of the drawing 
and with same run time (Eades et al., 2000). As opposed to this algorithm, 
which places all vertices before the routing, the algorithm of Papakostas and 
Tollis operates interactively, i.e., vertices arrive and enter the drawing on-line. 
Thus, the bounds of the representation must be increased only if necessary. 
The decision about where a new vertex will be routed depends entirely on 
the free directions around the adjacent vertices. Placing a new vertex and 
routing its incident edges has several cases. The advantage of the algorithm 
of Papakostas and Tollis is the incremental mode of operation, whereas the 

3-BENDS algorithm is superior in the elegance and the ease of implementation. 

2-Bends Drawing of Maximum Degree Five Graphs. For an n-vertex 

m-edge graph with maxinium degree 6 the algorithm of Wood (1998a) pro- 
duces drawings with bounding box volume at most 2.37n? and with a total 

of 7m/3 bends, using no more than 4 bends per edge route. The resulting 

drawing is in general position model, i.e., no grid plane intersects any two 
vertices. 

For maximum degree five graphs the bounding box has volume n? and 

each edge route has two bends. Furthermore Wood has given 2-bend 3D 

orhtogonal drawings of the 6-regular multi-partite graphs (Wood, 1998b). 
This raises the problem whether there is a 2-bend orthogonal drawing for 

every maximum degree six graph, which is still open at present. 

Due to space limitations only an outline of the algorithm for maximum 

degree five graphs without a proof of correctness is given here. 

The 3-BENDS algorithm of Eades et al. (1996b) positions the vertices 
along the diagonal of a cube according to an arbitrary ordering. Wood uses 

an approximately balanced ordering to place the vertices along the diagonal of 

a cube. The use of an approximately balanced ordering essentially guarantees 

that the number of predecessors and successors for each vertex in the graph 

are distributed more evenly. Wood uses also a 3-coloring of the arcs of the 

directed graph G’ to move the vertices and to route the edges according 

to their color class. For routing an edge {v,w} with two bends the color 

I € {X, Y, Z} of the arc (v, w) is interpreted as direction for the start segment 
and the color of its reversal arc (w, v) as direction of the end segment. From 

the diagonal each vertex is moved in up to two dimensions dependent on 

its number of predecessors and successors and its color. A balanced vertex 
v remains unmoved and the positive (respectively negative) directions are 
assigned to the successor (predecessor) arcs of v. At an unbalanced vertex 
v, say with more successors than predecessors, the positive directions can be 
assigned to at most three successor arcs of v. The remaining successor arcs 

(v,w) must be assigned a negative direction. To do so v is moved past w in 

the relative J-ordering if (v,w) has the color J € {X,Y, Z}. 
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Edge crossings are resolved by swapping the directions of the starting 

segments of the crossing edges. A swapping operation may create new edge 

crossings. However it reduces the sum of the lengths of the middle segments of 

the two edge routes involved. This sum is bounded below, so a finite number 

of swaps suffice to create a crossing-free 3D orthogonal drawing. An example 

for re-routing intersecting edges is shown in Figure (Gay 

» 

swap 

u u 

Fig. 7.5. Re-routing intersecting edges Wood (1998a). 

7.5 3D Orthogonal Drawings of Graphs of Arbitrary 

Degree 

Representing vertices as points enables only crossing-free 3D orthogonal 

drawings for graphs of maximum degree six. As in the two-dimensional case 

(see Section 6.4.5) it is possible to construct valid 3D orthogonal drawings for 
graphs of higher degree by representing vertices as three-dimensional boxes. 

Currently there are only few results for 3D orthogonal {box}-drawings. 
Papakostas and Tollis (1997a,b) present an algorithm to embed any graph 

in a 3D grid of volume O(m?) with at most 2 bends per edge. Biedl (1998) 
presents three approaches for creating 3D drawings. Bied] et al. (1997b, 1999) 
study 3D orthogonal drawings of the complete graph Ky, and hence for any 

simple graph, established lower bounds. Wood (1999a) presents an algorithm 
for producing orthogonal drawings in any number of dimensions. Further- 

more Wood (1999b) introduces an algorithm for 3D orthogonal drawings of 

arbitrary degree n-vertex-m-edge multigraphs with O(m?/,/n) bounding box 
volume and 6 bends per edge route. In this paper Wood also discuss many 

open problems in 3D orthogonal graph drawing. 

The results of these papers suggest a trade-off between cube-like appear- 

ance of the vertex boxes and bounding box volume. For instance the improved 

version of the first approach of Biedl (1998), edge-lifting, yields drawings with 
a bounding box volume that asymptotically matches the lower bound, but 

the vertex boxes are 1 x 1 x 4n!5_boxes and therefore may be disproportion- 

ally large. In the second approach, called half-edge-lifting, the surface area 

of each vertex box is proportional to the degree of the vertex, but the boxes 
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are also highly degenerate. With a slight modification of this approach, the 
boxes become cubes at the cost of an increase in volume. Edge-lifting as well 
as half-edge-lifting are essentially two-dimensional, because they are created 
by starting with a 2D orthogonal drawing and lifting it into 3D. Hence one 
sees the 2D input drawing when looking at the final 3D drawing from the 
top. The third approach, called the three phase method, and the algorithm 
of Papakostas and Tollis have a more natural 3D appearance, but result in 
drawings with higher bounding box volume. 

From a truly three-dimensional drawing one expects that their vertices 
should be displayed more or less as cubes. For this purpose Bied] has intro- 
duced three models which describe the restriction of the size of vertex boxes. 
The unlimited growth model imposes no restrictions on the dimension of the 
vertices. In the degree-restricted model the surface area of each vertex v is 

proportional to its degree v, but there is no restriction on the shape of a 

vertex. In the cube model the box of v must be a cube whose surface area is 
proportional to the degree of v. 

The main disadvantage of the unlimited growth model is that vertices are 

not recognized as points. The main advantages of this model are that bends 

can often be saved by stretching a vertex to cover a bend, and that it yields 

very small volumes. Hence the use of this method is of a theoretical nature 

to explore worst-case upper bounds. 

Table 7.2 summarizes the above results and shows the trade-off between 

the shape of a vertex and the bounding box volume. In this table A denotes 
the maximum degree of a graph. 

7.5.1 Bounds for 3D Orthogonal {Box}-Drawings 

Bied] et al. (1997b) have established lower bounds for the volume and the 
number of bends of 3D orthogonal graph drawings. Their focus has been 
on the complete graph Ky, since any simple graph G with n vertices is a 

subgraph of K,. Therefore, upper bounds for K,, yield upper bounds for all 
other simple graphs on n vertices, and no simple graph on n vertices can yield 

larger lower bounds than K,,. For drawings of K,,, they prove a lower bound 

of 2(n?->) on the volume and a lower bound of 2(n”) on the total number 
of bends. 

A Lower Bound on the Volume: To show that the minimum possible 

volume for a 3D orthogonal drawing of Ky, is 2(n?:>) one considers a drawing 
of K, ina X x Y x Z-grid and distinguishes three cases that describe the 

distribution of the vertices in the space: in case 1 one assumes that there 

exists a line / that intersects many vertices. Case 2 assumes that no such line 

exists, but a plane that intersects many vertices. Case 3 treats the remaining 

situation that no plane intersects many vertices. As an example we sketch 

the treatment of case 2. 
Case 2: Assume that no grid-line intersects as many as 15” vertices, but 

there exists a plane p, that is parallel to the XY-plane and intersects at 
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Table 7.2. Upper bounds for 3D orthogonal drawing algorithms for graphs of 

arbitrary degree. 

Algorithm Volume Max Model 

Bends 
Bi yest wot cths 11S eed cote ee let peers eee 

INCREMENTAL algorithm O(m?) 2 degree-restricted 

(Papakostas and Tollis, 1997a,b) 

edge-lifting (Biedl, 1998) O(n?) 1 unlimited growth 

modified edge-lifting O(n*/?) 3 unlimited growth 

(Biedl, 1998) 

half-edge-lifting (Biedl, 1998) O(n?) 2 degree-restricted 

improved half-edge-lifting O(nmvVA) 2 cube-model 

(Biedl, 1998) 

three-phase-method (Bied], 1998) O(n?m) 2 degree-restricted 

modified three-phase-method O((nm)3/?) 2 cube-model 

(Biedl, 1998) 

x 

least in vertices. Let pz be a plane that is parallel to the Y Z-plane and 
intersects the X-axis at the point (z,0,0). By assumption, each pz intersects 

pz in a line that intersects fewer than ign vertices. © = Zo is now selected 

in such a way that it is the largest integer value, such that fewer than Bn 

vertices intersect pz to the left of pz, ie., they have X-coordinates less 

then xo. Thus the number of vertices that intersect p, and that lie to the 

right of pz,+1 is at least ign: Since in K,, all nodes are connected, there 
2 : P 

are at least (467) edges between the vertices on the left and the vertices 

on the right of pz,, so YZ > (4:n)*. If one applies the same argument to 
the y-direction and considers that by assumption XY > $n, it follows that 

5 MAS CORA S LN 512 
For all sufficiently large n, the bound given by case 2 is the smallest of 

the three. Hence any drawing of K, has volume (n°), 

A Lower Bound on the Bends: It was shown by Fekete and Meijer (1999) 
that K, has no bend-free drawing for n > 183. This can be used to prove 
that any drawing of K, has a total number of bends Q(n?): ° 

Let c be an integer such that any 3D orthogonal drawing of K, has a 
bend. For n > c the graph contains (") copies of a K.. Each of these copies 
must have a bend. Any edge belongs to exactly e=} of these copies of Ke. 
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Hence the number of edges with a bend must be at least (")/("72) > e for 
(i 2 

7.5.2 Approaches to 3D Orthogonal {Box}-Drawings 

Incremental Orthogonal Graph Drawing Algorithm of Papakostas 
and Tollis. Papakostas and Tollis (1997a,b) present an incremental orthog- 
onal drawing algorithm for graphs of arbitrary degree. They map vertices 
to grid boxes with surfaces proportional to their degrees, i.e., they consider 
the degree-restricted model. New vertices are placed outside of the current 
drawing, such that the general position property is kept, i.e., there is no plane 

parallel to one of the three base planes containing grid points of two different 
boxes in the current drawing. This rule enables the crossing-free edge routing 

with two bends. Edges that are adjacent to a vertex are attached to the sur- 

face of its box at grid points. As a result of edge routing, edges may require 
attachment to specific sides of incident boxes. If there are no available grid 

points on that side, the box must be increased. Since the box of every vertex 

may grow in various different ways in the course of the drawing process, the 

resulting drawing follows the degree-restricted model and cannot follow the 

cube model. In addition, with each enlargement of a box new planes in the 

current 3D drawing are inserted to accommodate the size of the box. This 

affects the coordinates of some ports and bends which shift by one unit along 
the X-, Y- or Z-axes, but the general shape of the drawing remains the same. 

The produced drawing has two bends per edge and a bounding box volume 

of O(m?). 
Figure 7.6 shows a sample 3D orthogonal drawing of K5 produced by this 

algorithm. The box numbers denote the vertex insertion order. 

Lifting-Based Approaches. Biedl (1998) presents two lifting-based ap- 

proaches to create an 3D orthogonal drawing. Edge lifting and half-edge lift- 

ing start with a semi-valid 2D orthogonal drawing, i.e., no vertices overlap 

and no edge crosses a vertex, but edges may overlap each other. Then this 

drawing is split into valid orthogonal drawings. These crossing-free drawings 

are placed into different Z-planes. The difference between both methods lies 
in the splitting technique. In edge lifting, an arbitrary partition can be used, 

whereas half-edge lifting first splits the 2D drawing into two drawings, where 

one drawing contains all horizontal edge segments and the other drawing con- 

tains all vertical edge-segments. In edge lifting every vertex must be extended 

to all Z-planes to get a drawing of the underlying graph. In half-edge lifting 

every vertex is extended only to those Z-planes that contain an incident edge. 

In addition, at every bend of an edge in the original 2D drawing a Z-segment 
is added to connect the two endpoints of the horizontal and the vertical seg- 

ment incident to this bend. Consequently, the vertices in drawings produced 
by edge lifting follow the unlimited growth model, whereas half-edge lifting 

yields drawings in the degree-restricted model. 



186 Britta Landgraf 

Fig. 7.6. 3D orthogonal drawing using boxes to represent vertices (Papakostas and 

Tollis, 1997a). 

The edge lifting method is used in Biedl et al. (1997b, 1999) to get con- 

structions that achieve lower bounds for the volume of the bounding box 

and the total number of bends under the restriction that the drawing has at 

most k bends per edge route. For k = 1 or k = 2 the constructions produce 

drawings for K, in O(n?) volume. For k > 3 an unconstrained construction 

is given that asymptotically yields the optimum volume. For k = 1 and k = 2 
it is an open problem whether the lower bound for the volume is attainable. 

All constructions match the lower bound on the number of bends. 
In order to achieve a volume as small as possible, the vertices and edges 

must be placed skillfully and one needs an efficient splitting into crossing-free 

drawings. The more bends per edge are admissible the more space-saving the 

edges can be nested into one another. For k = 1 Biedl et al. (1997b, 1999) 

use nested triangular edges, for k = 2 nested rectangular edges, and for 

k = 3 L-shaped or T-shaped edges that are diagonally arranged. Figure 7.7 

shows examples for these edge sets after splitting into crossing-free draw- 

ings and Figure 7.8 shows the 3D orthogonal graph drawing of Ke produced 

by these constructions. The pictures in the latter figure was created with 
OrthoPak (Closson et al., 1998). 

For k = 1 and k = 2 the constructions can still be improved with respect 
to the volume by a skillful combination of two drawings of K 2. However, in 

both cases the achieved volume O(n*) does not match the lower bound. For 
k = 3 the construction asymptotically yields the optimum volume O(n"). 
Since this construction generates at most 3 bends on any edge, it is valid for 
each k > 3. 
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Fig. 7.7. Edge set examples (Biedl et al., 1997b, 1999). 

As already mentioned in the introduction to this section, the half-edge 

lifting approach is in the degree-restricted model like the algorithm of Pa- 

pakostas and Tollis, but it yields better results regarding the bounding box 

volume. On the other hand, the drawings created with this approach are 

essentially two-dimensional. 

Three-Phase Method. Creating truly 3D drawings is straightforward us- 

ing the three-phase method (Biedl, 1998) which is an extension of the corre- 
sponding method in 2D (see Chapter 6). 

In the first phase, vertex placement, vertices are drawn as points, not as 

boxes. They are placed in 3D arbitrarily in X Y-general position, i.e., every 

X-plane and every Y-plane intersects at most one vertex. This condition is 

weaker than the general position property used in the algorithm of Papakostas 

and Tollis described in Section 7.5.2, since several vertices may be placed in 

the same Z-plane. 

In the second phase the edge routing with 2 bends is done using directed Z- 

routes. Directed Z-routes are those cube routes, i.e., routes along the edges of 

a cube, for which the middle segment is parallel to the Z-axis. Bied] indicates 

two further subclasses of cube routes that can be used in order to produce a 

crossing-free drawing: the colored cube routes from the 3-BENDS algorithm of 

Eades et al. (1996b), compare Section 7.4.1, and the shortest-middle routes. 

An edge is said to be routed using shortest-middle routes, where the middle 
segment is the shortest segment. However, the last two types of routes require 

that the vertices are placed in general position, i.e., every grid-plane intersects 

at most one vertex, so that compared to the INCREMENTAL algorithm of 

Papakostas and Tollis, no substantial improvement of the volume is to be 

expected. 
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(c) 3-bend layout 

Fig. 7.8. OrthoPak’s Snapshots of Ke. 

In the third phase, port assignment, each grid plane is replaced by suffi- 

ciently many grid planes. Each vertex is replaced by a grid box that is the 

intersection of the planes inserted for the respective vertex. The edges are 

re-assigned to ports of the vertex boxes, such that all overlaps and crossings 

are removed. For this purpose the edges attached to one side are split into 

four groups, depending on their direction of continuation. Then one assigns 

sufficiently many ports to each group, such that no edges of two different 

groups could possibly cross. Next the edges in each group are sorted by the 

coordinates of the next bend and assigned to a port of their group. By this 

sorting the attached segments are arranged in such a way that they pass one 
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above the other, as is shown in Figure 7.9 for edges attached to a Y-side of 
a vertex-box. 

Fig. 7.9. Three-phase method: Edge assignment to ports. 

With a suitable vertex placement one can draw every normalized graph, 

i.e., graphs that are simple, connected and have no nodes of degree 1, with 

the three-phase method so that the resulting drawing has 2 bends per edge, 

and either 

— lies in an nx nx m-grid box with vertex contained in a 1 x 1 x (dg(v)/2+1)- 
grid box, i.e., the drawing is in the degree-restricted model, 

or 
— lies in an grid box of side length n+ 2,/nm and each vertex is contained in 

a cube of side-length 2[ ,/dg(v)/2 |, ie., the drawing is in the cube model. 

Multi-dimensional Orthogonal Graph Drawing. Wood (1999a) inves- 
tigate the general position model for D-dimensional (D > 2) orthogonal 
drawing of arbitrary degree graphs. Some of the ideas of his algorithm for 3D 
orthogonal {point}-drawing, described in section 7.4.1, can be transferred to 

D dimensions: representing vertices by D-dimensional hyperboxes instead of 

using points, using a multi-dimensional balanced vertex layout to determine 

a layout in general position, and using a D-coloring for routing edges. Edge 

crossings can be eliminated again by swapping the direction of the starting 

segments of the crossing edges. New for hyperbox-drawings in contrast to 

{point }-drawings is the problem how to assign ports for each edge route so 

that no two edges routed on the same face can intersect. This is done by an 

algorithm similar to the port assignment in the three-phase method in Biedl 
(1998). The edges of a face are arranged in groups according to their direc- 

tion of continuation and within a group the edges are assigned to ports in 

increasing order of the length of the first segment of the route. For a detailed 

description of this layout-based algorithm and a routing-based algorithm the 

reader is referred to Wood (1999a). 
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7.6 Viewpoints 

Because of the two-dimensional nature of current output media, a 3D graph 

drawing must be transformed by projection into a 2D image that can be 

rendered on a computer screen or paper. In order to keep the loss of infor- 

mation as small as possible, a projection should be used that shows as much 

as possible of the 3D image. The most important parameter of a projection 

is the viewpoint, i.e., an observer position together with a direction of view. 

A starting point for the definition of good viewpoints is the preservation of 

the abstract graph of a drawing under projection. For instance, Kamada and 

Kawai (1988) consider viewpoints as good that preserve the shape informa- 

tion of a wire-frame drawing, and exclude viewpoints for which edges appear 

collinear. Bose et al. (1996) presented several models to describe the qual- 
ity of a viewpoint. In one model they define good viewpoints as those from 

which the image of a 3D drawing appears monotonic. These viewpoints are 

particularly important for viewing hierarchical graphs. They also propose a 

model that relates the quality of a viewpoint to the number of edge crossings 

in the 2D projection of a 3D wire-frame drawing. The third model of Bose 

et al. (1996) preserves the depth-order of a wire-frame drawing, permitting 
only viewpoints that yield regular projections, i.e., projections under which 

no three 3D points map to the same 2D point. The end-points of edges count 

as two points. 

Webber (1997, 1998) extend some of these models and define a good 
viewpoint as one that yields a projection in which no item hides another one 

and no false incidences are suggested. One distinguishes between four types 

of such occlusions, see Figure 7.10: 

vertex-vertex: A pair of vertices from the 3D graph drawing map to a single 
vertex in the 2D image. 

vertex-edge: A vertex of the 3D graph drawing maps to an internal point of 
an edge in the 2D image. 

edge-vertex: Similar to vertex-edge occlusions: the edge appears in front of 
the vertex. 

edge-edge: There are two cases of edge-edge occlusions. A crossing occlusion 
occurs when a pair of 3D edges map to a pair of 2D edges that cross at 
a single internal point. It is insignificant, since the relational information 
is not effected by projection. On the other hand, a significant edge-edge 
occlusion occurs when two 3D edges map to a pair of 2D edges that 
share a continuous sequence of points. The line segment shared by the 
occluding edges is not to be detected in the projection. Therefore some 
relational information is lost. 

‘ 

An occlusion point is a viewpoint that generates an occlusion. 
Webber (1997, 1998) presents two measures for the quality of a viewpoint 

under orthographic parallel projection and develops algorithms to find best 
viewpoints under these models. In the rotational separation measure, the 
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(a) (b) (c) 

Fig. 7.10. Occlusions: (a) vertex-vertex (b) vertex-edge/edge-vertex (c) edge-edge. 

quality of a viewpoint is defined to be the angle measured between viewpoint 

directions to the nearest occlusion point. The best viewpoints under this 

model are those for which this angle is maximized. When interactively viewing 

a 3D graph, this means that the angle by which the user can rotate the 

drawing without causing an occlusion is maximized. For an example of a 

best viewpoint for two occlusions see Figure 7.11 (a). 
In the observed separation measure, the quality of a viewpoint is defined 

to be the shortest Euclidean distance between the projections of two elements 

that cause an occlusion for an arbitrary viewpoint. The best viewpoints under 

this measure are those for which the Euclidean distance is maximized between 

the closest pair of points in the resulting image. This implies that the level 

of detail required to allow discrimination between elements in the image is 

minimized, see Figure 7.11 (b). 
The rotation separation measure is more suitable for the interactive dis- 

play of 3D graph drawings, while the observed separation measure is more 

suitable for static displays. However, the complexity of the algorithms based 

on the above measures is too high to be useful in interactive applications. For 

instance, to determine the rotational separation diagram, which is needed to 

determine the quality of a given viewpoint, can require O(|G|* log |G|) time 
(in terms of the size of the graph G, ie., |G| = |V| + |E|) in the worst-case. 
Webber (1997, 1998) developed two classes of faster algorithms that find ap- 
proximative good viewpoints, using two distinct heuristic approaches. The 

first class of algorithms tests trial viewpoints until a given termination crite- 

rion is reached. Various methods can be used to choose a trial viewpoint, for 

example, random selection within a circle, centered at the initial viewpoint. 

Similarly one has different possibilities for the selection of the termination 
criterion. Ideally, a new viewpoint should be found in no more time than it 

takes to render the 3D graph drawing. Thus it is reasonable to terminate 
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Fig. 7.11. Example of a best viewpoint for two occlusions under: (a) rotation 
separation measure (b) observed separation measure. 

the calculation after this time. Alternatively, one can choose the maximal 

time that a user is willing to wait for a new viewpoint. By animating this 

algorithm, the time can be extended. The second class of algorithms is based 

on the force-directed approach (see Section 7.2). Roughly spoken, the force 
applied on the current viewpoint depends on the occlusion points. 

Experimental results show that both the iterative improvement and force- 

directed approaches result in useful algorithms for finding reasonably good 
viewpoints. 
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Large graphs such as WWW connection graphs or VLSI schematics cannot 

be drawn in a readable way by traditional graph drawing techniques. An 

approach to solve this problem is, for example, fish-eye representation, which 

allows one to display a small part of the graph enlarged while the graph 

is shown completely (see e.g. Formella and Keller (1995)). Another way is 
drawing only a part of the graph. The method presented here is clustering, 
that is grouping the vertex set. 

Apart from the use of clustering to draw large graphs, already clustered 
graphs occur in applications such as statistics (see e.g. Godehardt (1988)), 
linguistics (see e.g. Batagelj et al. (1992)) or divide and conquer approaches. 
To visualize these structures it is also important to find a method of drawing 

clustered graphs in an understandable way. 

In this chapter, Section 8.1 gives an overview of several terms occurring in 

connection with clustering in the literature. Section 8.2 presents a few main 

methods of finding good clusters. The following three sections introduce some 

graph drawing algorithms for clustered graphs. Beginning with the special 

case of planar drawing methods in Section 8.3, Section 8.4 works on general 

graphs with a hierarchical structure, called compound graphs, and Section 8.5 

deals with arbitrarily clustered graphs using force-directed methods. Finally, 

Section 8.6 shows a case study for drawing partially known huge graphs. 

8.1 Definitions 

The usage of the term clustering is not determined uniquely in the literature. 

In this chapter several terms concerning clustering are defined to give an 

overview. We only consider vertex clustering, but it is worth mentioning that 

clustering with respect to edges can be of interest as well. A method to do 

this can be found in Paulish (1993, Chapter 5). 
Clustering of graphs means grouping of vertices into components called 

clusters. Thus, clustering is related to partitioning the vertex set. 

Definition 8.1 (Partition). A (k-way) partition of a set C is a family of 
subsets (Cy,...,Cx) with 

= ote Ci; =C and 
—C,NC; =90 fori fj. 

The C; are called parts. We refer to a 2-way partition as a bipartition. 

Now, we can define one of the most basic definitions of clustered graphs. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 193-227, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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Definition 8.2 (Clustered Graph). A clustered graph ts a graph with a 

partition (C1,...,Ck) on the vertex set. The C; are called cluster. 

Fig. 8.1. a) A clustered graph. Clusters are framed with rectangles. b) Quotient 

graph of the clustered graph in a). 

Sometimes (e.g. Alpert and Kahng (1995)) the term clustering is only used 

for large k € 6(n) where n is the number of vertices. The expression clustered 

graph is also used to denote the quotient graph defined by the partition. 

Definition 8.3 (Quotient Graph). For a partition (Ci,...,C) on the 
verter set of a graph G = (V,E), the quotient graph G = (V,€) is defined by 

shrinking each part into a single node, i.e. 

= Vien Ot, and 

— (Ci,C;) €E =i Fj andwveC,wec; (v,w) EL. 

The elements of V are called nodes. 

The quotient graph of the clustered graph in Figure 8.1 a) is shown in Fig- 

ure 8.1 b). A drawing of the quotient graph is also called a black-box drawing 

(Paulish, 1993) of the corresponding clustered graph. Another way of shrink- 

ing subgraphs into a single node is proposed by Lengauer (1990). He calls the 

construction hierarchical graph. Lengauer used this structure to find faster al- 

gorithms, e.g., for planarity testing (Lengauer, 1989) or connectivity testing, 

for large graphs. 

Definition 8.4 (Hierarchical Graph). A hierarchical graph is a finite 
sequence I’ = (Gj,...,Gx) of graphs G; called cells. The vertex set of the 
cells is divided into pins and inner vertices. The set of inner vertices, again, 

is divided into terminals and non-terminals. Each non-terminal has a type. 

The type of a non-terminal in G; is a cell G; with j < i. The degree of a 

non-terminal v is the number of pins of its type G and the neighbors of v are 

bijectively associated with the pins of G. 
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Fig. 8.2. Example for a hierarchical graph. Pins are drawn as rectangles, inner 
vertices as circles and non-terminals are shaded grey. The bijection between the 
neighbors of a non-terminal and the associated pins is given via the position in the 
figure. 

An example for a hierarchical graph is shown in Figure 8.2. Note, that the cells 

need not to be connected. A hierarchical graph represents a graph which is 
obtained by expansion. It is a substitution mechanism that glues pins of a cell 

to neighbors of non-terminals the type of which is this cell. Note that if = 

(G1,...,G ) is a hierarchical graph, so is any prefix I; = (Gi,...,Gi), 1 < 

beh: 

Definition 8.5 (Expansion). The expansion G(I°) of a hierarchical graph 
I =(Gi,...,Gx) is obtained recursively as follows: 

i ales G(T) =iGy 

k>1: For each non-terminal v of Gy, let v be of type G;. Delete v and its 
incident edges and insert a copy of G(I;) by identifying pins of G(Ij) 
with their associated vertex in Gx. 

Thus, a hierarchical graph is a clustering of the expansion graph and clusters 

can include other clusters. This can be illustrated as a tree — the hierar- 

chy tree. The expansion and the hierarchy tree of the hierarchical graph in 

Figure 8.2 are shown in Figure 8.3. 

b) i 

Fig. 8.3. Example for the a) expansion and b) inclusion tree of the hierarchical 
graph in Figure 8.2. 

A quite similar concept introduced by Feng et al. (1995) are hierarchical 

clustered graphs. 

Definition 8.6 (Hierarchical Clustered Graphs). Hierarchical clus- 

tered graphs C = (G,T) consist of a graph G = (V,E) and a rooted tree 
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T such that the leaves of T are exactly V. Vertices of T are called nodes. 

Each node v of T represents the cluster V(v) of leaves in the subtree of T 

rooted at v. T is called the inclusion tree of C. An edge e is said to be incident 

to a cluster V(v), if |eNV(v)| =1. 

An example of a hierarchical clustered graph is shown in Figure 8.4 a). Al- 

gorithms for drawing planar hierarchical clustered graphs are presented in 

Section 8.3. A way of generalization is to allow clusters to intersect. Com- 

bined with a hierarchical structure this leads to compound graphs presented 

by Sugiyama and Misue (1991). 

Definition 8.7 (Compound Graphs). A compound (directed) graph is 
a triple D = (V,E,I) such that Da = (V, E) is a (directed) graph and D, = 
(V,I) is a directed graph. The elements of E are called adjacency edges, those 

of I inclusion edges. 

Thus, (v, w) € J means that v includes w. Of course, this interpretation only 

makes sense if the directed graph D, is acyclic. An example of a compound 

graph is shown in Figure 8.4 b). In Section 8.4 a drawing algorithm for 

compound graphs is given in the special case where D, is a rooted tree and 

Dz, is a directed graph, such that no vertex is adjacent to an ancestor. A 

hierarchical clustered graph can be seen as a compound graph where D, is a 

rooted tree and adjacency edges are only incident to leaves. Note the different 
meaning of V. 

(a) (b) 

Fig. 8.4. a) A hierarchical clustered graph. The inclusion tree is drawn by the inclu- 
sion representation. b) A compound graph. Inclusion edges are drawn as including 
rectangles. 
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8.2 Clustering Methods 

There is a large number of clustering approaches. This section will only men- 
tion some of them to give an idea of the main methods. A good overview is 

given in Alpert and Kahng (1995) or Jain and Dubes (1988). The approaches 
introduced in this section that are not cited separately can be found there 
as well. Some partitioning methods concerning VLSI are also summarized in 
Lengauer (1990). 

Clustering is a type of classification. This classification can be eztrinsic 

or intrinsic. Extrinsic classification uses category labels on the objects and 

clusters are defined by these categories. For example, take trade relation 

between world wide spread companies and countries as clusters. On the other 

hand intrinsic classification is only based on the structure of the graph. In 

the following discussion, we consider intrinsic classification. 

There are two main goals in clustering graphs. The first, which has ap- 

plications, for example, in VLSI, parallel computing and divide-and-conquer 

algorithms, is to partition a graph into clusters of about the same size and 

with as few edges connecting the clusters as possible. The second one, which 

is a method used in statistical applications, is to explore the structure of the 

data. Thus, the number of clusters is not fixed. 

8.2.1 k-Way Partition 

The first goal can be formalized as the Min-Cut k-Way Partition (cf. 

Lengauer (1990) p. 253). In the course of the following passage, let G = (V, E) 
be a graph with vertex-weight c: V — N and edge-weight w: KE > N. 

Definition 8.8 (Min-Cut k-Way Partition). Given a fired k © N and 
b(t), Bt) € N fori =1,...,k, find among all k-way-partitions (Ci,..., Cx) 
of V which satisfy b(i) < c(C;) < B(t) for alli =1,...,k one that minimizes 
the weight of the partition 

ON Cy Behe Gp => we w(e). 
4=1 e€E 

Jenc;|=1 

Exact cluster size balance is achieved by setting b(i) = c(V)/k —e and 
B(i) = c(V)/k +, where « > 0 may be necessary to obtain a solution 

at all. 

Move-Based Approaches. Unfortunately, the multiway partition problem 

is NP-complete even in the special case of bipartition. A classical good graph 

bipartitioning heuristic was introduced by Kernighan and Lin (1970). A nat- 

ural local search method for solving this problem is to start with an initial 

bipartition and to exchange pairs of vertices across the cut, if doing so im- 

proves the cut-size. To reduce the danger of being trapped in local minima, 

Kerninghan and Lin modified the search, proceeding in a series of passes. 
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During each pass of the algorithm, every vertex moves exactly once. At the 

beginning of a pass each vertex is unlocked. Iteratively the pair of unlocked 

vertices with the highest gain is swapped, where the gain of vertices v1 € 

C1, v2 € C2 is defined by 

w(C1, C2) — w((Ci U {v2}) \ {vi}, (C2 U {ur}) \ {v2}) 

that is the decrease in cut-weight that results from the pair swap. Then, 

both swapped vertices are locked. The swapping process is iterated until all 

vertices become locked. The bipartition with the lowest cut-weight observed 

during the pass is the initial bipartition for the next pass. The algorithm 

terminates when a pass fails to find a solution with lower weight than its 

initial bipartition. 

Maintaining a sorted list of gains, the complexity of this algorithm is in 

O(n? log n). Fiduccia and Mattheyses modified the algorithm of Kerninghan 
and Lin to permit an O(|E|) implementation. The main difference is that 
a new bipartition is derived by moving a single vertex either from C; to 

C2 or from C2 to C; instead of exchanging two of them. Therefore, the 

algorithm must violate the exact cluster size balance constraint. The solution 

is permitted to deviate from an exact bipartition by the size of the largest 

vertex. The algorithm of Fiduccia and Mattheyses can also be extended to 
[S374 

There are several functions combining cluster size balance and minimiza- 

tion of cut weights within a single objective. One of them is the Ratio Cut 

Partition proposed by Wei and Cheng (1991) for k = 2. Their approach has 

several generalizations for arbitrary k. One of them is presented by Roxbor- 
ough and Sen (1997). 

Definition 8.9 (Ratio Cut Partition). Find among all k-way-partitions 
(Ci,...,Ck) of V one that minimizes 

w(C; Sas Cr) R(C1,...5Ck) = aS 
) c(C;) -...:¢e(C) 

Finding a ratio cut partition is also WP-complete. In Wei and Cheng (1991) 
a heuristic based on the algorithm of Fiduccia and Mattheyses is proposed to 
find good bipartitions. In Figure 8.5 an example is shown where the ratio cut 
partition is a much more intuitive one than the exact cluster size balanced 
min-cut bipartition. 

Spectral Methods. For a graph G = ({v1,...,un},E) with enumerated 
vertex set, a partitioning solution can be represented in terms of vectors and 
matrices. 

Definition 8.10 (Characteristic Vector). For a graph G with a given a 
k-way partition (C1,...,C,) the characteristic vector for cluster Ch is the 
n-dimensional vector Xp = (Lin,..-,2nn) € {0,1}" with xin = 1 if and only 
if vi € Ch. Then x k matriz X with column h equal to x;, is the assignment 
matrix of the partition. 
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Fig. 8.5. a) Exact cluster size balanced min-cut bipartition and b) ratio cut bipar- 
tition. 

Let A = (a;j) be the adjacency matrix of an undirected graph G and D = 
(d;;) the degree matrix, that is dj; = deg(v;) for i = j and zero otherwise. 
The Laplacian matrix of G is defined as L = D — A. Since L is a symmetric 
matrix 

— all eigenvalues of L are real and 

— there is a basis of the n-dimensional space of mutually orthogonal eigen- 
vectors of L. 

Since x7 Lx = $ > )oai;(xi — 2j)? > 0 for all x € R”, matrix L is positive 
semi-definite and thus, all eigenvalues are non-negative. Furthermore, the 

columns of L add to zero and we get 

— the smallest eigenvalue of L is 0 with corresponding eigenvector (1,...,1). 

(The multiplicity of 0 as an eigenvalue of L is equal to the number of 

connected components of G.) 

Now, let x denote the characteristic vector for one part of a given bipartition 
(Ci, C2) in a connected undirected graph, then we can express the value of 

the cut defined by the bipartition by 

1 a i) 

w(C,, C2) = 3 Pye ai (x, = x4)? = x? Lx. 

i=1 j=1 

Allowing non-discrete solutions, a normalized eigenvector to the smallest 

positive eigenvalue minimizes x? Lx among all normalized x. Although a non- 

discrete solution for x is meaningless, this result suggests heuristically finding 

the discrete solution closest to . Given cluster size constraints |C1| = m1 

and |C2| = mg, the closest discrete solution is obtained by placing the m1 

vertices with the highest coordinates of jz in C, and the rest in C2 or vice 

versa. 
This approach is known as spectral bipartitioning. Unfortunately, it can 

be arbitrarily worse than optimal, as illustrated by the following example: Let 

G be the graph shown in Figure 8.6 in which two n/4-cliques are connected, 

each by a single edge, to an n/2-clique. Spectral bipartition will cut Ky 2 
into equal halves, cutting (n/4)? edges. But the optimal cluster size balanced 
bipartition has weight 2. 
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Fig. 8.6. Example of bad spectral bipartition. 

To improve the result, Frankle and Karp proposed to find an characteristic 

vector that is close to a linear combination of the eigenvectors of the d smallest 

eigenvalues. A summary of spectral clustering including an extension to k > 2 

is given in Alpert and Kahng (1995) Section 4. 

8.2.2 Structural Clustering 

We now turn to the second goal of graph clustering which tries to identify 

certain intuitive properties p such as cliques or connectivity. In contrary to 

the last section, the number of clusters is not given. One important algorithm 

used to solve this problem is agglomerative clustering, which starts with the 

n-way partition and constructs iteratively a k-way partition from the k + 1- 

way partition. 

For a complete graph G = (V, E) with edge weight w : EF — R and no two 

edges having the same weight, the iterative step is defined in more detail, for 

example, by Hubert (see Jain and Dubes (1988) p. 63). For a given threshold 
d let Ga = (V,{e € E;w(e) < d}). For a pair of clusters (C,,C;) in the 
k + 1-way partition, define 

Qp(Cr,Cs) = min{d; the subgraph induced by C, UC, in Gq 

is either complete or has property p}. 

Merge cluster Cp and C, if 

Qp(Cp, Cy) =F min Qp(Cr, Cs) . 

Each specification of property p defines a new clustering method. Every clus- 
ter must at least be connected. Some suitable graph properties p(k) with 
integer parameter k are listed below: 

k-edge-connectivity: All pairs of vertices are joined by at least k edge dis- 
joined paths. 1-edge-connectivity is also called single-link property and 
n-edge-connectivity is called complete-link property. 

k-vertex-connectivity: All pairs of vertices are joined by at least k vertex 
disjoined paths. 

os degree k: A connected graph such that each vertex has at least degree 

diameter k: All pairs of vertices are joined by a path of length at most k. 
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An agglomerative algorithm constructs a hierarchical clustering. The above 
mentioned algorithm is serial. To minimize the height of the inclusion tree, 
an alternative strategy is to find many good clusters to merge, then perform 
all merges simultaneously. 

A special drawing of the inclusion tree of a hierarchical clustered graph, 
that reveals the order in which clusters are merged, is called dendrogram. 
Cutting a dendrogram horizontally creates a partition of the vertex set. Fig- 

ure 8.7 gives two examples on a weighted Ks, one for single- and the other 
for complete-link property. 

ras 
DE ines a 
BiB nea DeLeon Us ence Lndsth @) 

Fig. 8.7. Two dendrograms on a weighted Ks. a) single link, b) complete link. 

8.2.3 Other Approaches 

There are several other methods for clustering graphs. Duncan et al. (1998) 

presented a method to partition an already laid out graph along horizontal, 

vertical and diagonal lines. The approach of Sablowski and Frick (1996) is 
based on the successive identification of patterns in the graph. Other ap- 

proaches consider constraints, e.g., some vertices should belong to different 

clusters. Nakano et al. (1997) presented a work on this topic. 
Most of the clustering methods presented so far produce connected clus- 

ters. But it is important to know, that unconnected clusters might occur in 

practice. This can be seen immediately by considering extrinsic clustering, 

because it can be defined arbitrarily. But there are also some intrinsic clas- 

sifications which produce unconnected components. They are, for example, 

used in social network analysis. The following two classifications presented 

by Wasserman and Faust (1994) are of this type. 

Definition 8.11 (Structural Equivalence). Two vertices v,w of a graph 

(V, E) are structural equivalent if and only if they have the same neighbor- 

hood, that is if and only if for all u € V holds 

(v,u)€ EB => (u,u) EF 

(u,v) € BE => (u,w) € E. 

Thus, two vertices are structural equivalent if their rows and columns in the 

adjacency matrix are identical. 
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Definition 8.12 (Regular Equivalence). Two vertices v and w of a graph 
(V,E) are regular equivalent (v = w) only if they have equivalent neighbor- 

hoods, that is only if for all u € V holds 

(vjuseBR =a EV ww Sud (ww)yeEk 

(uv)e B= su EV uw Sud (wv wee. 

Structural equivalence is a special case of regular equivalence. Regular equiv- 

alence partitioning is not uniquely determined. The partition with the fewest 

equivalence classes that is consistent with the definition of regular equiva- 
lence is called the maximal regular equivalence. For example, in a tree where 

all leaves have the same height, taking the levels as equivalence classes yields 

the maximal regular equivalence on that tree. 

8.3 Planar Drawings of Hierarchical Clustered Graphs 

In her PhD thesis, Feng (1997) presented a characterization for planar con- 
nected hierarchical clustered graphs and introduced some algorithms for 
drawing them. 

Definition 8.13 (Connected Hierarchical Clustered Graphs). A hi- 
erarchical clustered graph C = (G,T) is connected, if each cluster induces a 
connected subgraph of G. 

Definition 8.14 (Drawing of Hierarchical Clustered Graph). A draw- 
ing D of a hierarchical clustered graph C = (G,T) includes the drawing of 
the underlying graph G and of the inclusion tree T in the plane. Each verter 
of G is represented as a point and each edge {v, w} as a simple curve between 
D(v) and D(w). Each non-leaf node v of T is drawn as a simple closed region 
D(v) bounded by a simple closed curve such that 

— D(u) C D(v) for all descendents ju of v. 
— Diu) N Div) = ¢ if w is neither a descendent nor an ancestor of v. 
— D(e) C D(v) for all edges e of G with eC V(v). 
— D(e)N Dv) is one point if le V(v)| =1. 

The drawing of an edge e and a region D(v) have an edge-region-crossing, if 
eNV(v) = ¢ but D(e) MN Div) ¥ ¢. Drawings where this occurs, are allowed, 
but they are not c-planar. 

Definition 8.15 (c-Planar). A drawing of a hierarchical clustered graph 
is c-planar (compound planar), if there are no crossing edges and no edge- 
region-crossings. : 

For example, the drawing of the graph shown in Figure 8.4 on page 196 is 
c-planar. 
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Theorem 8.16 (Characterization of c-Planar Graphs). A connected 
hierarchical clustered graph C = (G,T) is c-planar if and only if there exists 
a planar drawing of G, such that for each node v of T all vertices of V—V(v) 
are in the outer face of the drawing of G(v). 

Proof. Consider a clustered graph C = (G,T) with a c-planar drawing D. 

Suppose there is a node v of T and a vertex v € V—V(v) which is not drawn 
in the outer face of D(G(v)). Hence, any simple region that contains D(G(v)) 
must also contain v, contradicting the c-planarity properties. 

Consider now a planar drawing of G, such that for each node v in T, 

G — G(v) is drawn in the outer face of the drawing of G(v). It remains to add 
cluster boundaries. Since G(v) is connected for each v in T, the outer face is 

bounded by a — not necessarily simple — cycle. Thus, cluster boundaries are 

constructed recursively, following T from bottom to top, along their external 

facial cycle. 

Based on Theorem 8.16, Feng et al. (1995) developed an algorithm which 
constructs a c-planar embedding of a hierarchical clustered graph, that is 

a circular ordering of the incident edges ordered around each cluster. The 

algorithm applies the P@-tree technique presented by Booth and Lueker 

(1976) and modified by Chiba et al. (1985) and takes time O(n) under the 
additional condition, that each non-leaf node of T has at least two children. 

It tries to embed the subgraph G(v) induced by each cluster V(v) recur- 
sively, following T from bottom to top. To guarantee the conditions in Theo- 

rem 8.16 for each virtual edge e € E, that is an edge such that eNV(v) = {ve} 
has cardinality one, an additional vertex we and an edge {ve, we} is added 

to G(v). Further one of the additional vertices is connected to all other ad- 
ditional vertices (see Figure 8.8). 

a) c) 

Fig. 8.8. a) Graph G(v) with virtual edges is transformed into graph b). Additional 
vertices are shaded light grey. c) A wheel graph with 6 vertices on the rim. 

To determine whether the embeddings of the children of a cluster v can 

be combined to an embedding of G(v), the graph G() for each child yu of 

v is replaced by a representative graph which is more or less constructed by 
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replacing 2-connected components in G(y) by wheel graphs. A wheel graph 

consists of a vertex called hub and a simple cycle called rim, such that the hub 

is connected to every vertex on the rim (see Figure 8.8 c)). They showed that 

a representative graph with given ordering of the virtual edges can always be 

embedded in such a way that the rims are in the outer face without changing 

the ordering of the virtual edges. 

8.3.1 Straight-Line Drawings with Convex Clusters 

For a given c-planar embedding of a connected hierarchical clustered graph 

C = (G,T), Eades et al. (1996a) gave an algorithm to construct a drawing 
of C such that the edges of G are drawn as straight lines and the regions 

are convex. This drawing of C can be constructed in time O(n? logn) which 
is dominated by the time needed for constructing the convex hull of the 

clusters.? 
The algorithm works as follows. First, graph G is triangulated. Then an 

st-numbering” of the vertices of G is computed such that vertices in the 

same cluster are numbered consecutively. Such a numbering is called c-st- 

numbering. These numbers are now used as a layer assignment — thus, there 

is one vertex per layer — and an algorithm for constructing planar straight-line 

drawings of layered graphs, which is also presented by Eades et al. (1996a), 
is applied to draw the graph. Since each cluster has consecutive layers, the 

convex hull of its vertices satisfies all conditions of a region in a c-planar 
drawing. 

Apart from the construction of a planar straight-line drawing of lay- 

ered graphs, the critical part of this method is the construction of the c- 

st-numbering. To ensure that the vertices of the same cluster are numbered 

consecutively, Eades, Feng and Lin used a top-down approach, ordering the 

children of the root of T first and thus having a lexicographical numbering on 

the clusters. To compute an order of the child cluster of v, an auziliary graph 
F(v) is computed from G(v) by shrinking each child cluster to a vertex. If 
v is the root of T, an edge {s,t} not belonging to any child cluster of T is 
chosen and an st-numbering is computed. 

If v is not the root, vertices o and 7 are added to the auxiliary graph 
F(v). For a virtual edge {v, w} with v € V(v), let be the lowest ancestor of 
vy with w € V(u) and k the number of the child cluster of 1 which w belongs 
to. If g(v) < k then edge {v,7} is added to F(v). Otherwise, edge {o, v} is 
added. In case s € V(v), the vertex representing the cluster containing s is 
set to be o; similarly for t and r. Now a o7-numbering is computed. 

The only thing missing now is that the auxiliary graphs are 2-connected. 
This is a consequence of the following lemma. 

; In Eades et al. (1998), the time complexity is improved to O(n?). 
For the definition of st-numbering see Definition 2.9 on page 27. 
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Lemma 8.17. For every non-root node v of the inclusion tree of a connected 

c-planar hierarchical graph C = (G,T) with triangulated G, the subgraph of 
G induced by V \ V(v) is connected. 

Proof. Suppose that the subgraph of G induced by V \ V(v) has k > 2 
components denoted by F\,...,F,. Since G is triangulated, it has a unique 

planar embedding. By Theorem 8.16, all vertices of G — G(v) are in the 
same face of G(v). Since G is connected, there is a face f of G such that 
its boundary contains an edge connecting G(v) and F; and also an edge 

connecting G(v) and F; for a j # i. Because G is triangulated, f also contains 

an edge connecting Fj and F;, a contradiction. 

Unfortunately, there are hierarchical clustered graphs such that any c-planar 

straight-line convex drawing strategy results in poor area requirement and 

angular resolution. Eades, Feng and Lin gave a family C;, = (Gn, Tp) of clus- 

tered graphs which require area §2(2") and have angles between two edges 
incident to a vertex in O(1/n). A sketch of the recursive construction of the 
underlying graphs G, can be seen in Figure 8.9. The root of T;, is adja- 

cent to two nodes A and B, which have children aj,...,a@n, and bj,..., bn, 

respectively. 

G1: a1 Gre 

bn ao bo 

by One 

Fig. 8.9. Example for poor vertex and angular resolution. 

8.3.2 Orthogonal Drawings with Rectangular Clusters 

Eades and Feng (1997) gave an algorithm to construct a drawing of a hi- 

erarchical clustered graph C = (G,T) with fixed embedding and degree at 

most 4 such that G is drawn orthogonal and the regions are rectangles. Using 

the constrained visibility representation, the algorithm takes time O(n?), the 

drawing space O(n2), and each edge has at most 3 bends.® 

The algorithm works as follows: First triangulate G and compute a c-st- 

numbering as constructed in the previous section. Orient the edges from lower 

3 In Eades et al. (1999), the time complexity is improved to O(n). 
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to higher numbers. Construct a directed graph G’ from the oriented triangu- 

lation of G by adding four additional dummy vertices and replacing virtual 

edges for each cluster to ensure rectangular regions. Construct a constraint 

visibility representation of G’ for a suitable set of non-intersecting paths. 

Construct an orthogonal drawing of G from the visibility representation of 

G’ and finally reduce some bends. 

How to construct a planar orthogonal drawing from a constraint visibility 

representation for non-clustered graphs is, for example, explained in Di Bat- 

tista et al. (1999) Section 4.9 on page 130. A short introduction to this topic 

is also given in Section 6.4.2. So it remains to give the construction of G’ and 

the additional constraints. Proceeding from the leaves to the root of T, for 

Fig. 8.10. Virtual edges are bunched together. 

each non-leaf node v of T add four dummy vertices denoted by b(v) (bottom), 
t(v) (top), l(v) (left), and r(v) (right) to G(v) and split virtual edges (v, w) 
of G(v) by a dummy vertex in the following way (illustrated in Figure 8.10): 

— If v € V(v) replace (uv, w) by (v, t(v)) and (t(v), w). 
— If w € V(v) replace (v, w) by (v, b(v)) and (b(v), w). 

Add edges (b(v), r(v)), (r(v), t(¥)), (0), Uv)) and (I(v), t(v)) to G(v). 
For a node v # s on the way from s to the root of T’, let u be the child 

of v on this way. If 4 s, add edge (b(v), b()), else add (b(v), s). Similarly, 
for a node v # t on the way from t to the root of T, let ys be the child of v 

on this way. Add edge (t(),t(v)) respectively (t, t(v)). By this construction, 
G’ is a planar st-graph with O(n) vertices and O(n?) edges. 

Now, the alignment requirements in G’ for the visibility representation, 

which is a set of paths @¢, is specified. For each non-leaf node of TJ’, the set 

¢ contains the paths (b(v), 1(v), t(v)) and (b(v), r(v), t(v)). Intercluster edges 
in G are replaced by paths in G’. These paths are also added to ¢. Finally, 
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some paths containing edges incident to vertices of G are added to ¢ to 

avoid unnecessary bends like in the non-clustered version. Thus, ¢ is a set of 

non-intersecting paths in the sense defined below and a constraint visibility 
representation can be computed. 

Definition 8.18 (Set of Non-Intersecting Paths). Two paths p; and po 
of a planar graph G with given embedding are said to be non-intersecting if 

they are edge disjoint and there is no vertex v of G with edges e1, e€2, e3, and 

e4 incident to v in this clockwise order around v, such that e, and e3 are in 

pi and eg and e4 are in pg. A set of pairwise non-intersecting paths of G is 
called a set of non-intersecting paths. 

For each non-leaf node v, the rectangle bounded by the drawing of the corre- 

sponding vertices b(v) and t(v) and the drawing of the paths (b(v), r(v), t(v)) 
and (b(v),1(v), t(v)) is defined to be D(v). 

Having at most three bends per edge is as good as it gets: Eades and Feng 

gave a family C, = (Gn,T;n) of examples for hierarchical clustered graphs 

such that in every c-planar orthogonal drawing with rectangular clusters, 

there are at least O(n) edges that bent more than twice. G, is a sequence 

Fig. 8.11. Example for a lot of bends. 

of n copies of the graph H shown in Figure 8.11 such that vertex a7 of a 

previous copy of H serves as vertex a; of the next copy. It is partitioned into 

two clusters. Cluster A containing the a-vertices and cluster B containing the 

b-vertices. The embedding is as sketched in the figure. Each copy of H has at 

least one edge with more than two bends: At least one of the edges {a4, bi} 
and {a4,b4} has two or more bends in the cluster region of A. Suppose it’s 
{a4,b1}. Then at least one of the edges {a4,b1} and {a1,b:} has three or 
more bends. Thus Gp, has at least n such edges, but 10n + 1 vertices. 

8.3.3 Multilevel Visualization of Clustered Graphs 

Eades and Feng (1996) show a way to represent both the adjacency and in- 

clusion relations of a clustered graph in the same drawing. Here, the inclusion 
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relation is not only just drawn as simple regions containing the drawing of 

their corresponding vertices, but as a tree structure that also geometrically vi- 

sualizes this relation. As graphs get larger and larger it is a common strategy 

to visualize them at multiple abstraction levels. If the graph has a recursive 

clustering it is a natural approach to take the clustering of the graph as ab- 

straction levels, which provides the possibility to zoom in and out within the 

clustered structure of the graph. The method presented in Eades and Feng 

(1996) is a three dimensional representation of the clustered graph.with each 
cluster level drawn at a different z-coordinate, and with the inclusion relation 

drawn as a tree in three dimensions. This kind of representation also keeps 

track of the abstractions from one level to the next. 

Teminology. The height of a cluster v, denoted by height(v), is defined as 

the depth of the subtree of T rooted at v. 

For a clustered graph, its view at level i is a graph G; = (Vi, E;) where V; 

consists of the set of nodes of height 7 in T. There is an edge (y,v) in E; if 
there exists an edge (u,v) € E where u belongs to cluster y and v belongs to 

cluster v; in other words, edge (u,v) is an abstraction of all edges between 

cluster yw and v. 

In a plane drawing of a clustered graph, the vertices are drawn as points 

and edges as curves in the plane as usual. Each cluster vy € T is drawn as a 

simple closed region R that contains the drawing of G(v), as defined in Defini- 
tion 8.14. If a clustered graph has a c-planar representation (Definition 8.15), 
then it is c-planar (Figure 8.12). 

Fig. 8.12. A plane drawing of a clustered graph; the graph shown here is c-planar. 

Multilevel Drawings. A multilevel drawing (Fig. 8.13) of a clustered graph 
C = (G,T) consists of: 

— a sequence of plane drawings of representations from the leaf level (level 
0) to the root level of T’, where the view of level i is drawn on the plane 
Edom 

— A three dimensional representation of T, with each node v € T of height 
i drawn as a point on the plane z = i, and within the region of v in the 
drawing of a view of that level. 
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Fig. 8.13. Multilevel drawing. 

For the plane drawing of a clustered graph several already presented au- 
tomatic drawing algorithms can be used, such as the straight-line convex or 

orthogonal rectangular drawing methods (Section 8.3.1 and Section 8.3.2, see 
also Feng (1997)). 

Here, the focus is only on the construction of the multilevel drawing which 

consists of two steps, the construction of view drawings for each level i, 1 = 

0,... , height (root of T), and the drawing of the inclusion tree T. 

1. View drawing for each level: 

1. For each level 1,1 = 0,... , height (root of T), construct a plane drawing 

and translate it to the plane z = 1, starting at the leaf level. 

2. An edge (y, v) in level i+1 is an abstraction for all edges between cluster 

and v in level 1. Choose one of these edges (u,v) between cluster uw and 
vy as a representative edge, and derive the drawing of edge (u,v) in the 

view of level 1 + 1 from the drawing of edge (u,v) in the view of level 
z. In the two dimensional plane, cluster 4. and v are drawn as simple 

closed regions R(w) and R(v); the drawing of edge (u,v) intersects the 
boundaries of these regions at points x and y (Figure 8.14). To construct 

the drawing of edge (u,v) in the view of level i + 1, use the segment 

between z and y and translate it to the plane z =7+ 1. 

Fig. 8.14. Deriving a drawing for abstraction edges. 
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2. 8D drawing of the inclusion tree T: 

General results on 3D drawings can be found in Chapter 7. To find a three 

dimensional drawing of the inclusion tree, every node u € T with height 1 

has to be placed on the plane z = i and it also must be positioned in the 

corresponding region R(j). This is achieved as follows: 

1. Compute the position of the nodes of the inclusion tree recursively: 

Level i = 0: (leaf level) oe 
Take the positions as computed in the plane drawing of level 0; 

Level i > 0: 
Let the position for node p € T be the average of all zy-coordinates 

of its children from level 7 — 1; 

2. Route the inclusion edges as straight line segments between the corre- 

sponding nodes. 

8.4 Hierarchical Representation of Compound Graphs 

Sugiyama and Misue (1991) introduce an extension to the class of clustered 
graphs, the class of compound digraphs, and they also present an algorithm to 

produce an automatic hierarchical representation of compound digraphs. The 

main difference between these two graph classes is the use of the inclusion 

relation. A clustered graph is a graph with a partition of its vertex set into 

clusters. In the representation of a clustered graph, the cluster regions are 

drawn as simple closed regions that contain the drawing of all the vertices 

belonging to that cluster; the inclusion relation is restricted to these cluster 

regions, and there are no edges connecting them. In a compound digraph, the 

inclusion relation as well as the adjacency relation is defined on the same set 

of vertices. 

Definition 8.19 (Compound Graph). An inclusion digraph is a pair 
D, = (V,E) where E is a finite set of inclusion edges whose element 

(u,v) € E means that u includes v (Figure 8.15 (a)). 
An adjacency digraph is a pair Da = (V,I) where F is a finite set of 

adjacency edges whose element (u,v) € E means that u is adjacent to v 
(Figure 8.15 (b)). 

A compound digraph is defined as a triple D = (V,E,I) obtained by 

compounding these two digraphs (Figure 8.15 ( c)). 

In Sugiyama and Misue (1991), the inclusion digraph D, is required to 
be a rooted tree and is also called the inclusion tree of D. The depth of a 
vertex v € V is the number of vertices on the path between v and the root 
of D, and is denoted by depth(v), with depth (root) = 1, where root denotes 
the root of D,. The parent of a vertex v € D, is denoted by Parent (v). 
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Fig. 8.15. (a) Inclusion tree D, (b) Adjacency graph Da (c) The compound 
digraph D obtained from (a) and (b). 

Figure 8.16 shows a representation of the compound digraph and its com- 

pund levels of Figure 8.15 (c). The adjacency edges drawn with solid lines 
have downward orientation and edges drawn with broken lines upward. The 

vertices of the compound digraph are drawn as rectangles. The inclusion rela- 

tion (u,v) € E is realized as the rectangle representing vertex u is inside the 
rectangle representing vertex v. The conventions for the drawing of compound 

digraphs are specified more precisely below. 

(1) 
(1,1) 

(ebera 

(@r2) 

(20] 

(4122) al 

(1,2) 
(121) | 

(222) 

VOY 

(22.2) 

(12,3) __| 

Fig. 8.16. The representation of a compound digraph from Figure 8.15 (c) and its 

compound levels. 
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8.4.1 Conventions 

Drawing Conventions. 

Cl: 

C2: 

C3e 

C4; 

Vertex Shape: 

A vertex is drawn as a rectangle with horizontal and vertical sides. 

Inclusion: 
An inclusion edge (u, v) is drawn in such a way that the rectangle corre- 

sponding to u includes geometrically the rectangle corresponding to v. 

Hierarchy: 

Vertices are laid out hierarchically in terms of both inclusive and ad- 

jacent relations on parallel-nested horizontal bands, called compound 

levels. 

Down-Arrow: 
An adjacency edge (u,v) is drawn as a downward arrow with possible 

bends, originating from the bottom side of the rectangle corresponding 

to u and terminating on the top side of the rectangle corresponding to v. 

Drawing Rules. To enhance the readability and the aesthetic of the draw- 

ing, the following objectives should be satisfied as much as possible. 

RI: 

IRw 8 

Rise 

R4: 

Ror 

Closeness: 

Connected vertices are laid out as close as possible to each other. 
Edge Crossings: 

The number of crossings between adjacency edges is reduced as much 

as possible. ’ 
Edge-Rectangle Crossings: 

The number of crossings between adjacency edges and the vertex rect- 

angles is reduced as much as possible. 

Line-Straightness: 

One-span adjacency edges, i.e., edges between adjacent levels, are drawn 

as straight lines, whereas long span adjacency edges are drawn as poly- 
gonal lines with as few bends as possible. 

Balancing: 

Edges originating from and ending at a vertex rectangle are laid out in 

a balanced form. 

The above rules specify topological and metrical layout properties; their 
priority is top-down. 

8.4.2 The Layout Algorithm 

The algorithm consists of the following four steps that are similar to those of 
an algorithm by Sugiyama et al. (1981) and Sugiyama (1987) for the layered 
representation of a general digraph. Due to the complex structure of a com- 
pound digraph, these steps must be modified and extended, in particular to 



8. Drawing Clusters and Hierarchies 213 

display the inclusion relations. A brief description of the four steps follows, 

but the focus will be mainly on the ideas and the modifications that have 

to be done to the original Sugiyama algorithm (see Chapter 5). A detailed 

description of this algorithm is given in Sugiyama and Misue (1991). 

Step 1: Hierarchization 

Due to the two kinds of relations existing in a compound graph, this step is 

different to the one in Sugiyama’s original algorithm for general graphs, so it 

will be explained in more detail. 

A. Compound Level Assignment 

In this step, the vertices of the compound digraph are assigned to compound 

levels to satisfy the drawing conventions. This level assignment places the 

vertices on parallel-nested horizontal bands. As shown in Figure 8.16, the 

compound levels can be expressed by the assignment of a sequence of positive 

integers to every vertex v € V. 

Ree 18 errand = Saw se rand*suppose that 
a lexicographical ordering is introduced for elements of 2'*, e.g., (1,1,2) < 
(1,2) < (1,2,1) < (1,2,2). Then the problem of assigning compound levels 
to the vertices of D is to find a mapping c-level: V — SX satisfying the 

Inclusion and Down-Arrow conventions (C2, C4). 
The Inclusion convention (C2) can be expressed as follows: 

Il: Vu eV: c-level(v) € depth (v) 
I2: For any inclusion edge (v,w) € E : c-level(w) = append (c-level(v), s); 

s € ») and append is a function that appends a component to a sequence. 

The Down-Arrow convention (C4) is more complicated: For any adjacency 
edge (v,w) € F there is a unique path P from v to w in the inclusion tree 

c: 

| (v = Pm),Pm-1;--- i,t, 15 92;°°* 5 Qn—1)9n = w), 

where t is the top vertex, i.e., t has minimal depth. P originates from 

the rectangle of v, goes out across Pm-i,...,P1, passes t, goes in across 

41,92,*** ;Qn—1, and terminates on w. To formulate the Down-Arrow con- 

vention, the order among each pair (p;,q:) of vertices that have the same 
depth for any adjacency edge (v, w) € F must be specitied as follows: 

D1: if depth(v) > depth(w) (or m>n), 

(a) c-level(p;) < c-level(q;), i=1,...,n—1 
(b) c-level(pn) < c-level(w) 

D2: if depth(v) < depth(w) (or m <n), 

(a) c-level(p;) < c-level(qi), i=1,...,m—1 
(b) c-level(v) < c-level(qm). 

For example, in Figure 8.15, the path corresponding to adjacency edge (a:4) 

is j,e,b, f,! where b is the top vertex. Since depth(j) = depth(l), we have 

c-level(e) < c-level(f) and c-level(j) < c-level(l) from D2. 
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A compound digraph has a compound level assignment if and only if there 

exists a mapping c-level: V — X'* satisfying I1, 12, D1, and D2. 

B. Hierarchization Algorithm 

A hierarchical map of the graph can not always be determined because the 

digraph might be cyclic. If there are cycles in D, some of the adjacency edges 

need to be reversed in order to obtain a hierarchization. Because the prob- 

lem of finding this minimum set of feedback adjacency edges is NP-complete 

(Garey and Johnson, 1991; Lempel and Cederbaum, 1966), heuristics are 

introduced for determining the edges that have to be reversed (see also Sec- 

tion 5.2). 
In order to meet the requirements D1 and D2, every adjacency edge of D 

is replaced with one of the two following types of adjacency edges, — and >, 

which represent the relations < and <, respectively, in D1 and D2. If edges 

between the same pair of vertices are duplicated during the replacement, 

reducing rules such as > = > + >, > => + 3,and-~=— + 3 

are applied to determine the resulting edge type. The graph derived by this 

edge replacement is called the derived graph of D. An adjacency edge in the 

derived graph is called an original edge, if e € F, derived edge otherwise 

(Figure 8.17). Note that in the derived graph of D, every adjacency edge 

connects two vertices with identical depth. The derived graph of D = (V, E, 1) 

is denoted by DD = (V, E, ID, type), where ID is the derived set of adjacency 
edges and type : ID > {—, >}. 

(1,1,2,1) 

@) (b) 
Fig. 8.17. The derived graph (a) and the assigned compound digraph (b) obtained 
from the compound graph of Figure 8.15 (c); edges in (a) marked with asterisk (x) 
are derived edges. 

Now, the Down-Arrow convention is established and the compound levels 
can be assigned to the vertices. If DD is not cycle-free, the cycles have to be 
resolved. To do this, the strongly connected components of DD are investi- 
gated, and the cycles are destroyed by either contracting strongly connected 
components into a so-called prozy verter or by deleting some of the adjacency 
edges. This procedure leads to a cycle-free, hierarchical graph to which one 
finally can assign the compound levels. Of course, the deleted edges have to 
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be put back in again, as well as the proxy vertices must be replaced again 
later on. All vertices of the component of DD, which have been contracted 
to a proxy vertex, are assigned the same compound level. Each adjacency 

edge (v, w) of the compound digraph D = (V, E, I) is now checked, whether 
c-level(v) < c-level(w). If this does not hold, the direction of that edge is 
reversed. The result is an assigned compound digraph DA = (V, E, IA, c-level) 
(Figure 8.17 (b)). 

Step 2: Normalization 

In an assigned compound digraph DA, an adjacency edge (v,w) € IA is 

said to be proper if and only if c-level (Parent (v)) = c-level (Parent(w)) and 
tail (c-level(v)) = tail(c-level(w)) — 1, where tail is a function, that returns 
the last number of the c-level-string as an integer. The assigned compound 

digraph DA is now transformed into a proper compound digraph by replacing 

every non-proper adjacency edge with appropriate dummy vertices, dummy 

inclusion edges and dummy proper adjacency edges (cf. Sugiyama and Misue 

(1991) for more detail). 

Step 3: Vertex Ordering 

The idea of this step is similar as in Sugiyama’s original algorithm for gen- 

eral graphs. The horizontal order of the vertices per level is determined by 

permuting their order on each level in such a way that the drawing rules 

Closeness, Edge Crossings, and Edge-Rectangle Crossings (R1 — R3) are sat- 

isfied as much as possible. The problem of minimizing edge crossings is NP- 

complete even for only two levels (Garey and Johnson, 1991). Minimizing 

of edge-rectangle crossings, which is equivalent to the linear arrangement 

problem, is also W/P-complete (Garey and Johnson, 1991). Hence, heuristics, 
i.e., barycentric ordering as in Sugiyama’s algorithm, are used to accomplish 

these tasks. In a compound digraph there exist also local hierarchies due to 

the inclusion relation, so vertex ordering must also be applied to these lo- 

cal hierarchies, i.e., subtrees of D,. This step leads to an ordered compound 

digraph. 

Step 4: Metrical Layout 

In this last step, the positions of vertices (i.e., horizontal and vertical po- 

sitions, widths and heights of rectangles) are determined by attaining the 

Closeness, Line-Straightness, and Balancing rules (R1, R4, R5) as much as 

possible. This problem can be expressed as a quadratic programming prob- 

lem; a heuristic called the priority layout method is also developed to solve the 
problem. Once the vertex positions are determined, a routing for the edges 

can easily be achieved. The orientation of the reversed edges is changed back 

again, and all inserted dummy vertices and dummy edges are deleted and 

their corresponding originals are rearranged. This step finally leads to an 

automatic drawing of the original compound digraph. 
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8.5 Force-Directed Methods for Clustered Graphs 

Force-directed graph drawing methods (cf. Chapter 4) can also be adopted to 
support and show the structure of a clustered graph. In the following sections 

we will see different ways of adaptation with different design goals. 

One possibility to receive a more structured layout for clustered graphs is 

to decide between different spring forces. In Sections 8.5.2 and 8.5.3 we show 

two different approaches for an expanded force model for clustered graphs. 

8.5.1 Inserting Dummy Vertices 

The easiest way to achieve clustering is to insert dummy vertices as follows 
(Figure 8.18): 

Fig. 8.18. Realizing clustering constraints in a force-direeted approach by inserting 
dummy attractors (shaded vertices) in each cluster. 

1. Let G = (V, E) be a graph with a partition (C),C2,... , Ck) on the vertex 
set V. For each C;, 1<i<k, adda dummy attractor vertex c; to the 
graph. 

2. Add attractive forces between an attractor c; and each vertex of the 
corresponding cluster C;. 

3. Add repulsive forces between pairs of attractors and between attractors 
and vertices not belonging to any cluster (i.e., if wih Cy GMip 

In this approach, no new forces have to be added. After inserting these 
attractors the vertices within a cluster will be closer to each other than before, 
and the distance between the clusters will grow. 

8.5.2 Interactive Clustering 
‘ 

Huang and Eades (1998a) describe an animated interactive system for clus- 
tering and navigating huge graphs, called DA-TU, where they use the following 
expanded force model consisting of three different spring forces (Figure 8.19): 
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— internal-spring 

A spring force between a pair of vertices that belong to the same cluster. 

— ezternal-spring 

A spring force between a pair of vertices that belong to different clusters. 

— virtual-spring 

In each cluster there is a virtual vertex (black vertices in Figure 8.19) that 
is connected to all vertices belonging to the same cluster by virtual edges; 
this is a similar approach to the concept of attractors described above. A 
virtual spring force exists between a vertex and a virtual vertex along a 
virtual edge. 

— internal ---external ----- virtual 

Fig. 8.19. Expanded spring model. 

Additionally there is a gravitational repulsion force between each pair of 
vertices. All forces are applied additively to each vertex. 

Some of the features of the DA-TU system are worth to be mentioned here 

because they show a possible application for clustering: 

— The user can interactively change the graph. 

— The user can interactively change the clustering of the graph. 

— All transitions from one state of the graph to another are animated. 

— Clusters can be interactively contracted and expanded, respectively. This is 

in particular useful for large graphs that do not fit on the screen or are too 

large to comprehend, so the clustered structure is used to navigate through 

the graph. If some of the clusters are contracted, DA-TU draws a so-called 
abridgement of the given graph. 

Definition 8.20 (Abridgement, Ancestor Tree). A clustered graph C’ = 
(G’,T’) is an abridgement of the clustered graph C = (G,T) if T’ is an 
ancestor tree of T with respect to a set U of nodes of T and there is an edge 

between two distinct nodes u and v of G’ if and only if there is an edge inG 

between a descendant of u and a descendant of v. 
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In other words, the ancestor tree T’ is a subtree of T consisting of all nodes 

and edges on paths between elements of U and the root. Figure 8.20 shows 

such an ancestor tree for the set U of black nodes as the shaded area of the 

original inclusion tree. 

Fig. 8.20. The shaded area is the ancestor tree of the set of black nodes. 

8.5.3 Meta Layouts . 

A similar approach is taken by Wang and Miyamoto (1995). They also use 
three forces but in a slightly different way. Instead of inserting virtual vertices 

as attractors in each cluster they use the concept of a meta-graph. 

First, the edge set of the given graph is divided into intra-edges, i.e., 

edges between vertices belonging to the same cluster, and inter-edges, i.e., 

edges between vertices belonging to different clusters. 

The forces in the force-directed placement are also divided into two cate- 

gories: 

— intra-force 

A spring force between a pair of vertices that belong to the same cluster. 
— inter-force 

A spring force between a pair of vertices that belong to different clusters. 

A force-directed placement is constructed by applying the intra- and inter- 

forces. An undirected graph Gmetg is then constructed by collapsing the 

clusters of G into meta-vertices and transforming inter-edges,of G existing 

between a pair of clusters into one meta-edge each. This sounds similar to 

the concept of a quotient graph (Definition 8.3), but goes further than that. 

A layout for Gmetg is called meta-layout of G and can be obtained from the 
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force-directed placement where the dimensions and center of each meta-vertex 
are set to the dimensions and center of the underlying subgraph, respectively 
(Figure 8.21). To calculate the forces between the meta-vertices, an improved 
force-directed placement is used that takes the different vertex-sizes into ac- 
count (Wang and Miyamoto, 1995). The net force on a meta-vertex is defined 
as the meta-force on all vertices contained in the cluster represented by that 
meta-vertex. 

ewe ee He ee ee 

 Aaeiealeataatneahaateatatententont | 

Fig. 8.21. Meta-graph and meta-layout. 

In Figure 8.21 a force-directed layout and a partition are given on the left 

side, the corresponding meta-layout is shown on the right. The forces that 

are applied to vertex c are: 

— The intra-force on c is the sum of forces between c,a and c,b 

— The inter-force on c is the sum of forces between c and the vertices of 

subgraphs S2 and S3 

— The meta-force on c is the net force on meta-vertex S; in the meta layout. 

To finally compute a drawing of the clustered graph, Wang and Miyamoto 

(1995) propose a divide-and-conquer approach. 

Divide-and-Conquer Drawing Approach. A divide-and-conquer draw- 

ing algorithm would draw a clustered graph in the following three steps: 

1. divide the graph into subgraphs (cluster); 

2. draw the subgraphs; 

3. compose the subgraph layouts together to form the resulting layout. 

The problem with this approach is that inter-edges are not taken into account 
which may result in a drawing with many crossings between inter-edges or 

long inter-edges. 
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In Wang and Miyamoto (1995), the last two steps of this divide-and- 
conquer approach are combined within one force-directed placement algo- 

rithm by using the following composite force F’comp to position a vertex: 

F comp = Fintra + S(t) Finter + (1 a S(t)) Fmeta 

where Finira, Finter, Fmeta are the intra-, inter- and meta-force on a vertex, 
respectively, and S(t) € [0,1] is a function of layout time t such*that S(t) 
decreases as t increases after a threshold t’ and reaches 0 at another threshold 

Ae ae 

By applying this composite force, the force-directed placement can be 

divided into three phases: 

1. Between time 0 and time t’: S(t) =1 = > Feomp = Fintra + Finter- 
The force-directed placement leads to a layout with uniform edge lengths 

and a small number of edge crossings, as shown in Figure 8.22 (a). 

2. Between time t’ and time t”: S(t) decreases: 
The strength of the inter-forces is reduced while the strength of the meta- 

forces is increased at the same time. 

3. at time t”: S(t) —1()a——— Feomp = avin ae Feta: 

Inter-forces do not count anymore; the intra-forces keep the vertices con- 

tained in the same cluster close together while the meta-forces fix the 

final positions of the clusters and eliminate possible overlaps between 

clusters. The resulting structured layout is shown in Figure 8.22 (b). 

Fig. 8.22. Layout created at time t’ (left) and resulting layout (right). 

Wang and Miyamoto (1995) also present a way to add layout constraints 
to their force-directed placement algorithm by integrating a constraint solver. 
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Integration of a Constraint Solver. Layout constraints of the three fol- 
lowing types can occur: 

— absolute constraints, to fix an absolute vertex position 

— relative constraints, to constrain the position of a vertex in relation to other 
vertices 

— cluster constraints, to cluster several vertices into a subgraph that can be 
processed as a whole. 

While trying to solve given constraints, some vertices may block others 

from reaching their optimal positions calculated by the force-directed place- 
ment algorithm. This may lead to a poor layout. 

Fig. 8.23. Examples for constraints that become barriers. 

If a constraint for two vertices A and B is given that prevents vertex A 
from reaching its optimal position, then vertex B is called a barrier for vertex 

A. Figure 8.23 shows several examples of barriers; the arrows indicate the 
direction and the strength of the forces calculated by the layout algorithm, the 

corresponding constraint shown below would be violated if these movements 

would be performed. In Figure 8.23 (a) no movement of either vertex is 
possible without violating the corresponding constraint. In the other two 

examples, the vertices could at least be partially moved until one of the 

vertices becomes a barrier for the other. 
To avoid barriers while at the same time improving the layout, the vertices 

could be moved together without changing their relative positions. This is 

done by introducing rigid sticks to represent constraints in the force-directed 

placement. If vertex v; becomes a barrier for vertex v2, a rigid stick is in- 

troduced between them so that they have to move like one rigid object. The 

movements of v; and v2 are determined by the weighted average of the forces 

that are working on them: 

_ wifi + we fa 

Wi + We 
if 

where f is the new resulting force on v; and v2, f; and f2 are the old forces on 

v1 and v2, respectively, and w; and w2 are weights of v; and v2, respectively. 

The layout algorithm and the solver cooperate to solve the given con- 

straints as much as possible while at the same time keeping a good layout 

resolution. This cooperation works in an iteration of the following four steps: 
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Step 1: Calculate forces ; 

Step 2: Introduce sticks and distribute forces ; 

Step 3: Calculate new positions ; 

Step 4: Satisfy constraints. 

Steps 1 and 3 are performed by the layout algorithm, whereas the other 

two steps are performed by the solver. Figure 8.24 shows an example of 

applying constraints to the graph of Figure 8.22. 

d3.y = d5.y 

abs(a4.x - a2.x) <= 120 
abs(ai.x - a5.x) <= 70 

a5.y = al.y 

a4.y = 

c2.y = c5.y = c4.y = cl.y 

Fig. 8.24. Resulting layout of the graph of Figure 8.22 after adding the constraints 

on the left side. 

8.6 Online Graph Drawing of Huge Graphs 
— A Case Study 

Traditional graph drawing algorithms assume that the given graph can be laid 
out in a readable and understandable way on the screen or on paper. But 

there are important situations where this assumption does not hold. Suppose 
for example the graph displaying parts of the WWW or graphs arising in 

information retrieval. These graphs can be very large and there is no way to 

fit them in a readable way on a display medium. 

Most graph drawing systems approach the layout of huge graphs in the 

following way: 
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1. Layout the graph on a virtual and very large page. 

2. Provide a smaller window with scroll bars to show the part of interest, 
and to allow the user to navigate through the graph. 

However, some problems are involved in this approach: 

— The whole graph may not be known, e.g., in distributed systems, where a 
local vertex only knows part of the graph. 

— To explore the graph, the user can only move geometrically through the 
graph by the means of the scroll bars. But the user might want to explore 
the graph in a logical way, in particular, if the graph contains relational 
data or hyperlinks. Moreover, long edges that do not fit on the screen are 
hard to follow. A more user-oriented approach would be better; the user 

should be able to control the logical content of the display. 

— There is no mental map (Eades et al., 1991) that helps the user to keep 
track of his exploration so far. Even worse, the user can not see the whole 

graph and might get lost in empty areas. 

— Besides that, it costs a lot of memory to store and display the large virtual 
screen. 

To deal with these problems, several techniques have been proposed (see 

Sarkar and Brown (1994); Eades et al. (1991); Nielsen (1990); Mukherjea 
et al. (1994); Robertson et al. (1993)). For example, in Sarkar and Brown 
(1994) the fish-eye view technique is described where a detailed picture of a 
subgraph is shown along with the so called context of that subgraph. This 

kind of view provides the user with more information about the position of the 

subgraph within the whole graph. Another approach are three-dimensional 

methods, such as cone trees (Robertson et al., 1993) which lead to an increase 

in density of information on the screen. 

These techniques work effectively for graphs of moderately large size, but 

they can not be applied when the graph is not completely known. Moreover, 

they still predefine the geometry of the graph. 

The aim of Online Graph Drawing is the visualization of huge graphs 

which may be partially unknown. At any time, a tiny but non-empty subgraph 

called the logical frame is known and displayed on the screen. The user can 

explore the huge graph by changing the logical frame. 

The layout of such a logical frame has to satisfy the usual aesthetic criteria 

for drawing graphs, e.g., minimization of edge crossings and uniform vertex 

distribution. Additionally, the transition from one picture of a logical frame 
to the next should preserve the user’s mental map (Eades et al., 1991), i.e., 
successive drawings should not differ much, so that the user can easily follow 

the change in the drawing and does not loose orientation in a completely 

different layout when changing the focus. 
Eades et al. (1997b) describe a model of Online Graph Drawing as well 

as an instantiation of that model in a system for Online Force-Directed An- 
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imated Visualization (OFDAV) for assisting web navigation (see also Eades 

et al. (1997a)). An interesting part of that model is a new force-directed 

drawing algorithm, that can be used to produce a continuous sequence of 

layouts according to the above mentioned criteria. 

In OFDAV, the view of the user is focused on a small subgraph, the logical 

frame, that is defined by a focus verter v. A force-directed graph drawing al- 

gorithm is used to draw this subgraph as well as its logical neighborhood. The 

user can change focus by selecting another vertex within the displayed frame 

which then becomes the new focus node, and the view changes according to 

this selection. Multiple animation steps are used to guide the user through 

the change of view and to preserve the mental map. A linear history is also 

kept by lining up a certain number of previously visited focus vertices. 

The focus vertices together with their neighborhoods form a clustering of 

the graph. 

The Online Graph Model. To explore a huge, partially unknown graph 

G = (V,E), a sequence of logical frames F; = (Gi, Q1), Fo = (G2, Q2),... is 

used (Figure 8.25): 

ne 8.25. The path of exploration of a huge graph G by a sequence of logical 
ames. 

Each logical frame F; = (G;,Q;) consists of a connected subgraph G; = 

(Vi, E;) of G and a queue Q; of focus vertices. Successive frames differ only 

by a few vertices. The sequence of logical frames represents the sequence 

of subgraphs that are viewed by the user of the system and is determined 

by the interaction of the user who can change the focus and thereby decides 

which new logical frame has to be displayed. To define the logical frame more 

precisely, we need to explain the concept of neighborhood. 

Suppose that G = (V,£) is a graph, v € V, and d is a non-negative 
integer. Then, the distance-d neighborhood Na(v) of v is the subgraph of G 

induced by the set of vertices whose graph-theoretic distance from v is at 

most d; note that v € Ng(v). In OFDAV only distance-1 neighborhoods are 
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used, so we write N(v) instead of Ni(v) in the following, and call it the 
neighborhood of v. 

Definition 8.21 (Logical Frame, Focus Vertex). Given a queue Q = 

(v1, V2,-..,Us) of vertices of graph G = (V, E), the subgraph of G induced by 
the union of N(v1),N(v2),...,N(vs) is called a logical frame F = (G’,Q) 
(Figure 8.26 (a)), with G’ = (V’, E’) and 

8 

Vi =(J Nw) E’ = {(u,v) € Elu,veV’}. 
i=1 

The vertices of the queue Q are the focus vertices of the logical frame F. 

Clustering. Suppose that Q = (v1, v2,... , Us) is the queue of focus vertices 
in G. Each neighborhood N(v), for v € Q, can be divided into two parts, the 

common part C(v), and the local part P(v), defined as follows: 

— C(v) is the part of the neighborhood N(v) that also occurs in the neigh- 
borhood of other focus vertices v' ¥ v, that is: 

8 

Clv;)= LU N(x) ON). 
1=1,14j 

— P(v) is the part of the neighborhood N(v) that does not occur in the 
neighborhood of any other focus vertex v’ 4 v (Figure 8.26 (b)), that is: 

P(vj) = N(oj)- LJ Nw). 
i= 

7 7 
‘ P(vi+1) me 

Fig. 8.26. Neighborhood of the focus vertices (left) local part neighborhood 

(right). 

The user can explore the graph by changing the focus vertex, and this 

exploration is visualized by a sequence of logical frames. In practice, only a 
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small number of vertices can be displayed on the screen at a time, in particular 

if the vertices are labeled, e.g., by the names of the html-pages as in OFDAV. 
Here, a global constant B is introduced as an upper bound for the length 

of the focus queue Q. For www-graphs, small values of B between 7 and 10 

ensure that there are about 20 to 60 vertices on the screen at a time. 

The transition from one logical frame to the next is obtained by adding the 

new focus vertex with its local neighborhood. If the length of Q was already 

B before, then the least recently used focus vertex and its local neighborhood 

are deleted (FIFO policy). 
The local neighborhoods of the focus vertices in each frame can be viewed 

as the clusters of this frame. This will become clearer in the next section 

where the force model is explained. 

The Force Model. The force model is based on Eades (1984) and con- 
sists of a combination of Hooke’s law springs and Newtonian gravitational 

forces. In order to address the specific criteria of this online drawing ap- 
proach, extra Newtonian gravitational forces among the neighborhoods, 

N(v;), N(vi41),--. ,N(vit-B), of the focus vertices are added. These forces 
are used to separate the neighborhoods so that the user can visually identify 

the changes induced by changing the focus. This leads to a clustering of the 

displayed subgraph. 

The total force applied to a vertex v of a logical frame F; = (G;, Qi), with 
G; = (Vi, E;) is 

f= Se fuv cl ice a SY vs 

ueEN(v) ueV; ueQi 

where fyy is the force exerted on v by the spring between u and v, and Guy 
and hyy are the gravitational repulsions exerted on v by one of the other 
vertices u in F; (Figure 8.27). 

Fig. 8.27. The modified force model applied to the logical frame F;. 
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The details of the modified force-directed drawing algorithm are given in 
Eades et al. (1997b). Here, we will only explain the idea of this approach. 

The modified force model aims to satisfy the following four aesthetic cri- 
teria: 

1. The spring force f,,, between adjacent vertices is aimed to ensure that 
the distance between vertices u and v is approximately equal to the zero 
energy spring length. 

2. The gravitational force g,, ensures that the vertices are not too close 
together and distributed evenly. 

3. The extra gravitational force h,, aims to minimize the overlaps among 
the (local) neighborhoods within a logical frame. This also ensures that 
the next vertices that have to disappear are placed close together which 
makes the identifying of the deleted objects easier for the user. 

4. hy» also aims to keep the layout of the queue of focus vertices close to 

a straight line; new vertices appear in one end of that line while old 
vertices disappear at the other end. This helps the user in understanding 

the direction of exploration of the huge graph. 

8.7 Summary 

For a graph that does not have a natural cluster-structure it is not at first 

glance clear what a good clustering strategy is. Often, the vertices are gath- 

ered together with respect to graph connectivity. Two main heuristics to do 

this are introduced in Section 8.2. One is to integrate cut size and cluster size 
balance within a single objective function, like the ratio cut partition, and 

to optimize them with a suitable procedure. Another one makes use of the 

eigenvalues of the Laplacian matrix of the graph. Besides connectivity, other 

graph properties like similarity of neighborhoods can also be of interest. 

Once a graph has a cluster-structure, the question arises, how to make 

this structure visible. If we want to draw a really large graph, it seems to 

be a good method to draw only the quotient graph. But sometimes one is 

interested to also see what happens within a cluster. In Section 8.3 and 
Section 8.4 two methods are presented that draw clusters as shapes which 

include the corresponding vertices. Additionally, crossings between edges and 

borders of shapes are avoided. Especially in the planar case in Section 8.3, 
such a crossing is only allowed if one endpoint of the edge is within the 

corresponding cluster and the other one is outside of it. 

Another way to show the cluster-structure is to draw vertices that belong 

to the same cluster closer together than such that are in different clusters. 

Using force-directed methods, one can achieve this by adding a dummy vertex 

to each cluster or by regarding clusters as big vertices. In this case the force- 

function must respect the different size of the vertices. 
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9. Dynamic Graph Drawing 

Jiirgen Branke 

9.1 Introduction 

Many graph drawing (GD) scenarios are dynamic inasmuch as they involve 

a repeated redrawing of the graph after frequently occurring changes to the 

graph structure and/or some layout properties. 

For example, an interactive system might allow the user to manually edit 

the graph by inserting or deleting vertices and edges, or by setting additional 

layout constraints (e.g. vertex v; should be placed above vertex v;). If the 

graph is large, it might be necessary to scale parts of the layout, or the 

user might be allowed to expand or collapse subgraphs by clicking on them. 

Finally, the represented graph structure may be dynamic, for example the 

web-sites on a server and their interconnectivity might change over time, and 

so will a corresponding graphical diagram. 

The easiest solution to the above mentioned dynamics would be to con- 

sider the drawing of the graph, after each modification, as a completely inde- 

pendent problem, and apply an existing, static GD algorithm from scratch at 

every step. However, this straightforward approach has two drawbacks: first, 
it may be inefficient. Since the graph has been modified only slightly, much 

of the old drawing might be reused to save computation time. Second, and 

even more important, if the user already familiarized with the drawing, it may 

mean a significant effort for the user to re-familiarize with the drawing after it 

changed. The user has build up a so-called “mental map” (Eades et al., 1991) 
that should be preserved when possible. In other words, in addition to the 
usual optimization criteria for graph layout, dynamic graph drawing should 

try to maintain the users mental map, and has to find a good compromise 

between these two goals. 

A number of authors have addressed these problems and devised dynamic 

GD algorithms that provide special treatment of layout adjustment after a 

graph has changed (as opposed to static approaches which assume that the 

whole graph, and all layout constraints, are known in advance and do not 

change over time). Depending on the application, dynamic GD algorithms 

are able to handle the addition/deletion of (groups of) vertices/edges, to 
accommodate additional layout constraints, or to scale parts of the graph. 

This chapter explains the special aspects that should be considered when 

dealing with dynamic graph drawing, provides a survey of the relevant liter- 

ature, and suggests new avenues for future research. : 
The chapter’s outline is as follows: Section 9.2 first tries to elucidate the 

concept of the mental map and surveys different approaches that authors 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 228-246, 2001. 

© Springer-Verlag Berlin Heidelberg 2001 
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have suggested to capture it. Then, in Section 9.3, a number of frameworks 

and algorithms proposed in the literature for dynamic graph drawing are 
presented. 

The chapter concludes with a summary and some remarks on possible 
future work. 

9.2 Maintaining the Mental Map — What Does It Mean? 

When a user looks at a drawing, he or she will learn about the drawing’s 

structure, will learn to navigate in the drawing and try to understand its 

meaning. This effort to become familiar with a drawing has been termed 

“building a mental map” (Eades et al., 1991). In the case of dynamic graph 

drawing problems, when the layout changes over time, the user has to re- 

peatedly adjust his/her mental map. Clearly, it would be advantageous to 

minimize this effort for the user. An example is given in Figure 9.1. If the 

diagram depicted in (a) is the current layout, and the user adds a new edge 

from vertex 28 to vertex 22, then rerunning the layout algorithm from scratch 

might result in (b), which looks, at first glance, quite different from (a). 

(a) (b) (c) 

Fig. 9.1. (a) Current layout, (b) New layout after inserting edge 28-22 and re- 

running static layout algorithm, (c) New layout with preservation of the mental 

map. 

There have been two suggested solutions to this problem: 

1. Support the user by animating and highlighting the changes so that the 

changes can be easily recognized and the transitions are smooth. 
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2. Minimize the changes such that the effort to regain familiarity is mini- 

mized. For the example in Figure 9.1, drawing (c) keeps the position of 

all vertices of (a), and the graph is immediately recognized as almost the 

same graph as in (a). Of course this aim is often in conflict with tra- 

ditional aesthetic criteria (like e.g. minimization of edge crossings, even 

distribution of vertices on the page etc.), thus a compromise needs to be 

found. 

Obviously, animation and minimization of changes are complementary 

and can be applied simultaneously for best results, i.e. first a new Tayout is 

computed that minimizes the changes to the current drawing, and then the 

transition from the old to the new layout is animated. 
Animation seems to be relatively straightforward and will not be discussed 

here in more detail. Instead, the focus of this chapter is put on the second 

issue, change minimization. 

This requires to clarify the intuitive but rather fuzzy meaning of “min- 

imizing changes to a layout” in a way that the “mental map” is preserved, 

an effort that has also been termed “maintaining dynamic stability”. So far, 

numerous models have been suggested in the literature to capture the notion 

of the “mental map” or “dynamic stability”. They basically can be grouped 

into two categories: either the allowed changes are restricted to a subset of 

the vertices, or a distance metric is used to measure the change, which al- 

lows to trade-off aesthetics with change. These two general approaches will 

be treated in more detail in the following subsections. 

Which of the many suggested models is the most appropriate for which 

application is still an open issue. Bridgeman and Tamassia (1998) system- 

atically examine and compare a number of difference metrics for orthogonal 

layouts (most of them can be applied to other layout paradigms as well). They 

conclude that most metrics behave well in the sense that their result increases 

as the number of vertices allowed to be moved by a layout adjustment al- 

gorithm is increased, at least as long as the changes to the graph structure 

are not too large. Nevertheless, more extensive comparisons and user studies 

are needed, maybe similar to Purchase et al. (1996) and Purchase (1997), in 
which the relevance of aesthetic criteria has been examined. 

9.2.1 Restricting Adjustments to Parts of the Layout 

A rather stringent concept of preserving the mental map is to not allow any 
changes to the current drawing i.e. to the current placement of vertices and 
edges that are not directly affected by a change. Then, the layout algorithm’s 
only decision variables are the placement of new vertices and the routing of 
new edges, which is done in a way to minimize common static aesthetic 
criteria. Of course, this approach perfectly maintains the mental map. But 
under such stringent restrictions, not even consistency, i.e. adherence to the 
fundamental layout style rules like tree structure or orthogonality (North, 
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1996), may always be guaranteed, and often the resulting layout will be quite 
bad according to other aesthetic criteria, because e.g. many edge crossings are 
usually unavoidable. Algorithms for orthogonal graphs of maximum degree 4 
that allow the insertion of new vertices without changing the placement of the 
other vertices may be found in FoSmeier (1997a) and Papakostas and Tollis 
(1998). Also, Miriyala et al. (1993) suggest a heuristic to route additional 
edges in an otherwise fixed orthogonal layout. 

The no-change restriction may be weakened by allowing adjustment of 

vertices in the “vicinity” of a change. In Bohringer and Paulisch (1990), the 

vicinity of a change has been defined as all vertices directly affected by the 

change as well as vertices with a distance smaller than a certain edge length 

(a parameter to be specified). This reflects the idea that a user may tolerate 
changes in a small portion of the layout around the area where the graph 

structure changed, but would prefer the remainder of the layout to stay fixed. 

Restricting the set of vertices that may be adjusted after a change is 

particularly useful for large graphs, because it also restricts the time for 

running the heuristic and for re-drawing the layout. 

9.2.2 Distance Metrics 

Instead of trying to categorically fix portions of the graph, other authors try 

to define some measure of similarity (or rather dissimilarity) between layouts 
in order to capture the effort to rebuilt the mental map after a change. The 

goal is to measure as precisely as possible how much the look of a drawing 

changes when certain adjustment operations are performed. An algorithm 

could then aim to construct a new layout which is a good compromise between 

aesthetic criteria and similarity to the current layout. 

This approach has the advantage that it allows arbitrary changes to the 

current layout if that were necessary e.g. in order to adhere to the basic 

layout style rules. On the other hand it may be difficult to find a good trade- 
off between traditional aesthetic criteria and dynamic stability. Also, it does 

not yet seem to be clear how to actually measure similarity with respect to 

the mental map. 
In the following subsections, the suggested metrics have been grouped 

along the general idea they rely on. 

Absolute Vertex Positions. A more or less straightforward way to mea- 

sure similarity is the sum of Euclidean distances each point has moved from 

one drawing to the next (e.g. Bridgeman and Tamassia 1998; Lyons et al. 

1998). 
An alternative measure would be the Hausdorff distance, a standard met- 

ric for determining the distance between two point sets (Bridgeman and 
Tamassia, 1998). It measures the largest distance between a point in the 

old drawing and its nearest neighbor in the new drawing. But since it does 

not distinguish between vertices (it doesn’t matter which vertex is the closest 
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one), the application to graphs may be questionable. A random shuffle of the 

vertex positions for example would not be considered harmful (there is still 

a vertex at every previous vertex position). 

A general problem with difference metrics relying on point coordinates 

is that operations like translation, rotation or scaling will clearly yield large 

dissimilarity values and indicate a large change in the layout, while the user 

would easily recognize the old drawing. To alleviate this problem to some 

extent, in Bridgeman and Tamassia (1998), before computing the metrics, 

the drawings are first aligned by applying a point set matching algorithm 

taking into account scaling, translation, and rotation. 

Also, most measures consider the vertices as single points without physical 

extension, i.e. the vertex size and shape is totally ignored. As Bridgeman 

and Tamassia (1998) argue however, distinctive vertices could serve as a 
landmark, thus their size does matter. Therefore, when the size of the vertex 

may be altered by a change, the authors suggest to look at all four corners 

of a rectangular vertex when computing distance measures. 

Orthogonal Ordering / Relative Vertex Positions. One can argue that 

preserving the relative ordering of vertices is more important than preserving 

their absolute positions. In Eades et al. (1991) it is suggested that the or- 

thogonal ordering, i.e. the ordering of vertices projected on each dimension, 

has an important influence on preserving the mental map and should thus be 

maintained. Inspired by that idea, the authors in Bridgeman and Tamassia 

(1998) suggest to compare the angles between straight lines between all pairs 
of vertices in the old and new drawing. Comparing angles is a more gradual 

measure than to just consider the ordering, and it additionally reflects the 

intuition that vertices that are further apart can be allowed larger absolute 

movements relative to each other (which will still result in the same angular 
move). Additionally, the paper suggests that a change of the angle is more 

severe for a user’s mental map if the relative positioning is more or less di- 

agonal rather than if the two vertices are on the same level or on top of each 

other (see Figure 9.2). Thus, as further refinement of the above measure, a 
weighted version is suggested which takes this into account (for details see 

Bridgeman and Tamassia (1998)). Astonishingly this is contrary to the or- 
thogonal ordering argument, because changes that influence the orthogonal 

ordering are considered less severe. 

The \-Matrix Model proposed in Lyons et al. (1998) is yet another 
metric based on relative positions. If the graph has n vertices, a n x n matrix 
M is computed that at each entry (7,7) contains the number of points left 
to the directed line from vertex i to vertex j. The derived difference metric 
then is the sum of the differences in entries of M before and after a change. 

Note that neither the metric based on angles nor the \-Matrix Model 
captures e.g. a turn of the complete layout. 

Proximity. Clusters are another layout property considered important for 
the user’s mental map. Simply put, items that are close in the old layout, 
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(a) (b) (c) 

Fig. 9.2. As Bridgeman and Tamassia (1998) argue, the change from (a) to (b) 
is less severe for the mental map than the change from (b) to (c), although the 
angular change is the same. Note that from an orthogonal ordering point of view, 
the change from (a) to (b) would be considered more severe, since it changes the 
ordering projected to the vertical axis. 

should also be close in the new layout. The advantage of measures maintaining 

clusters is that they capture the intuition that if a subgraph moves (but there 

are no changes within either subgraph), the distance should be less than if 

each point in one of the subgraphs moves in a different direction. 

Basically all of the many known methods to capture the clustering of 

a graph might be used to form a metric. The general idea is to use some 

proximity relation and compare the relationship between the set of vertices 

of the current graph before and after the layout change. 

In the following, let p; be the position of vertex v; in the current drawing 

D, and pj be the position of that vertex in the altered drawing D’. Further- 

more, let vy (;) be the nearest neighbor to v; in the old drawing. 

Then, the nearest neighbor metric determines for how many vertices their 

nearest neighbor changes, i.e. 

nr 

distance(D, D’) = ye closer(p;, Py ()) 
i=1 

with 

closer(p;, : 
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For a weighted variant (proposed in Bridgeman and Tamassia 1998), the 

number of points closer to p; than PN (i) is considered by using the following 

alternative interpretation of closer: 

closer(p;, p';) = |{k|d(p;, pi.) < d(pi,,p)}| 

For some other metrics, two temporary graphs H and H’ are constructed, 

whose vertices are those of the current graph G and whose edges correspond 
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to relations defined by a proximity relation on D resp. D’. Then, H and H’ 

can be compared by comparing their edge sets (see below). 

In particular, the following proximity relations have beens suggested: 

— €-Clustering (Eades et al., 1991; Bridgeman and Tamassia, 1998): this 

graph has an edge between every two vertices v;,v; with d(pi,pj) < € for 

some distance measure. As suitable distance, Eades et al. (1991) suggests 

€ = max min d(pj;,p;). ‘s 
Pi Py FPi 

— sphere of influence graph (Eades et al., 1991): this graph has an edge be- 

tween v; and v; whenever 

40 ; : FIGS Dia) ee me pa Pa ee ee 
i.e. whenever the distance between p; and p; is smaller than p;’s distance 

to its nearest neighbor plus p,’s distance to its nearest neighbor. 

— Delaunay triangulation (Misue et al., 1995; Lyons, 1992). 

If Ey and Ey: are the edge sets of graphs H resp. H’, then in Bridgeman 

and Tamassia (1998) the following distance measure is used: 

|Ex M Ex | 
distance(D, D’) =1— 

\ |Ex| 

But since this only measures the removed edges, neglecting the added edges, 

maybe the following measure would be more appropriate: 

: Ey U Eq | — |Ex 0 Ex’ | 
distance(D, D’) = fe 

( ) |Ex U Ex:| 

In any case, if the relations/edges between all vertices remain the same, 

this distance equals zero, if the two graphs have no common edges, distance 

is one. 

Nearest Neighbor Between is yet another metric that has been proposed 

in Bridgeman and Tamassia (1998). It compares each vertex position with 

its original position and assumes that a vertex should remain closer to its 

original position than any other vertex. Then, 

n 

distance(D, D’) = S © closer(pi, pi) 
i=1 

with 

eked 
closer(pi, pj) = ' : Gi Bis (Pi Pr) 
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A weighted variant has also been suggested using the following alternative 
interpretation of closer: 

closer(pi, p;) = |{k|d(pi, p,.) < d(pi, p))}| 

Note that all of those proximity concepts are based on vertex positions 
only, edges are not considered. 

Edge Routing. North (1996) argues that the position of vertices is more 
important than the routing of the edges because vertices are remembered as 
locations, while edges are traced “on the fly” to discover connections. 

Nevertheless, for the case of orthogonal graph drawing, edge routing has 
also been used as distance metric: The shape metric in Bridgeman and Tamas- 
sia (1998) compares the sequence of directions for each edge and measures 
the number of edit operations (insert, delete or replace) to transform the 

old sequence of directions into the new one. Also, in Brandes and Wagner 
(1998a), a distance metric considering the changes of angles at vertices as 

well as the number of additions and deletions of bends has been used. 

Other Suggestions. Further suggestions to capture the notion of the men- 
tal map include to maintain congruence (Eades et al., 1991) which only allows 

the operations reflection, rotation, translation and scaling, or to maintain 

topology, i.e. the dual graph of a layout (Misue et al., 1995). 

9.2.3 Further Comments 

In order to facilitate comparisons of an algorithm on several drawings, Bridge- 

man and Tamassia (1998) and Lyons et al. (1998) normalize their measures 
by dividing by the maximum possible value, or the lowest known upper bound 

if the maximum value is not known, such that all values are between 0 and 

ie 

So far, the metrics always look at two graphs, and try to minimize change 

for an isolated, single transition. However, often a sequence of changes are 

performed, i.e. a history is available. For this case it is argued in North (1996) 

that a vertex which has recently been moved may be a better candidate for 
a new move than a vertex that has been at the same location for a long 

time, ie. the “age” of a vertex at a certain position should be taken into 

account when deciding which vertices to move. A similar idea for the relative 

positioning of vertices has been used in an approach by Brandes and Wagner 

(1997) and is briefly described in Section 9.3.4. 
Sometimes, several changes are known even in advance, e.g. when an 

animation is built off-line. In those cases, it might be beneficial to minimize 

the impact on the mental map over the whole sequence of layout changes, 

rather than considering each change independently. 
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9.3 Coping with the Dynamics 

This section presents the basic ideas of a number of dynamic GD algorithms 

that can be found in the literature. The approaches have been categorized 

according to the kind of layout they produce. 

9.3.1 General Frameworks 

Some papers suggest a general framework on how to treat the dynamics 

rather than suggesting and examining a specific algorithm for a specific type 

of application or drawing style. 

Among those are the papers by Brandes and Wagner (Brandes and Wag- 

ner, 1998a, 1997) who suggest to use a Bayesian perspective to formulate a 

cost model that represents the trade-off between the usual (static) optimiza- 

tion criteria and the minimization of changes. The main advantage lies in the 

possibility to formulate the compromise in a generic framework. 

With X being the new layout, and Y representing the previous layout, 

the aim is to search for a new layout X that maximizes 

PWHa|X =a) (Xe) 
Pl Xe Y p01) PY =9) 

where P(X = 2) basically is the static cost function for the new layout, 
and P(Y = y|X = 2) represents the cost for the difference between the old 
and the new layout. x 

The framework is independent of a specific algorithmic approach and also 

of the distance metric used. However, as the authors demonstrate for the 

case of the spring embedder algorithm (Brandes and Wagner, 1997) and for 

Tamassia’s grid embedding algorithm (Brandes and Wagner, 1998a), it is 

often possible to adapt an existing algorithm to reflect the new optimiza- 

tion criterion, at least with respect to specific distance metrics (see also Sec- 

tion 9.3.2 resp. 9.3.4). In any case, a major practical problem might be to 

set the parameters that adjust the weighting between dynamic stability and 

conventional layout criteria. 

In the paper by Bohringer and Paulisch (1990) the GD problem (all aes- 
thetic criteria as well as criteria preserving the mental map) is transferred 

into a set of linear constraints which is then solved by constraint propagation. 

The constraints may be assigned priorities which are used to resolve inconsis- 

tencies. Note that this approach has the additional advantage that many user 

constraints (like vertex A should be above vertex B) can also be formulated 
as linear constraints and thus easily be integrated. Different dimensions are 

treated independently. The authors suggest that numerous static layout algo- 

rithms could be integrated into their approach by formulating them in terms 
of constraints. In particular, the paper describes integration of the Sugiyama 

heuristic for directed, acyclic graphs (see Section 9.3.5). 
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9.3.2 Orthogonal Drawings in 2D 

For the case of simply adding edges to an orthogonal drawing, Miriyala et al. 
(1993) suggest a heuristic to route additional edges without modifying the 
existing layout. The heuristic separates the drawing area into regions and then 
uses a variant of Dijkstra’s algorithm to determine the sequence of regions 
through which the edge should be routed to achieve minimal cost in terms of 
edge length, crossings, and bends. 

Papakostas and Tollis (1998) propose two algorithms for orthogonal pla- 
nar graphs of maximum degree 4 (i.e. at most one edge at each side of a 

vertex) for two different scenarios. In both cases, it is tried to minimize the 

number of bends in the drawing, other common criteria like the area or the 

number of edge crossings are not optimized directly. The placement of a new 

vertex is explicitly specified for each combination of their adjacent vertices’ 

free directions (i.e. the directions in which they do not yet have a incident 
edge). 

In the no-change scenario, the current drawing may not be modified when 

adding new vertices with adjacent edges. The basic approach here is to start 

with an empty drawing (no vertices or edges) and to add vertices sequentially 
one by one. New vertices are placed always outside the current drawing area 

and such that a set of layout properties (invariants) is maintained. It is shown 

by means of total enumeration of all possible new vertex/edges combinations 

that these properties can always be maintained. 

In the relative coordinates scenario, the existing layout may be modified 

by introducing a limited number of new rows and/or columns anywhere in 

the current drawing which, implicitly, maintains the drawing’s orthogonal 

ordering, all bends, and the embedding. Again, the algorithm specifies the 

placement of new vertices depending on the number of existing neighboring 

vertices and their free directions. However, since the model does not use any 

invariants for every step, it can also be used to insert vertices into any existing 

drawing, produced by any other algorithm. 

The derivation of the upper bound on the number of bends when the 

graph is constructed by introducing vertices one by one according to the sug- 

gested algorithms is rather neat and shall be presented here in more detail: 

Denote by n; the number of vertices inserted with local degree 1, i.e. 7 con- 

nected neighbors at the time of insertion. From the algorithm it follows that 

the insertion of a vertex with local degree 1 does not introduce any bends, 

while vertices with local degree 2 (3, 4) introduce at most 3 (5, 8) bends. 
Clearly, the number of bends is 3n2 + 5n3 + 8n4, which has to be maximized 

subject to the following constraints in order to derive an upper bound: 

mtngtn3+n4=n-1 

ny + 2n2 + 3n3 + 4n4 < 2n 
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The first constraint ensures that the number of inserted vertices equals n, 

the second reflects the fact that each edge has to connect to two vertices, thus 

the number of edges has to be less or equal to 2n. The above maximization 
Diop ee can be solved as a linear program and sgh the non-integer solution 

3n + 3, which happens when n; = 1,ng =n — f, n3 = 0, and m4 = 3. For 

the integer solution n, = n4 = 1,n3 = 0, and ng = n — 3, the upper bound 

on the number of bends is 3n — 1. 
In a similar way, the upper bound on the required area ( 2n?), and for 

the no-change scenario the number of bends (3n +2) and the required area 

((4n)?) are derived. 
Note that according to these theoretical results, the no-change scenario 

has better worst-case bounds than the relative change scenario. However, an 

empirical comparison of the two suggested algorithms reported in Papakostas 

et al. (1996) indicates that the relative-coordinates scenario always outper- 
forms the no-change scenario in practice (i.e. the average case), not only 

in terms of required area and number of bends, but also in terms of edge 

crossings, aspect ratio, average edge length, and maximum edge length. 

The no-change approach has been further explored by Fo8meier (1997a). 

First of all, by slightly modifying the algorithm and by refining the linear 

program, Fofmeier was able to prove a bound of at most 2.5n bends, com- 

pared to about 2.66n by Papakostas and Tollis. As a further improvement, 

it is noted that many bends are required in particular when a vertex is in- 

serted which has neighbors with their free direction at opposite sides. The 

suggested strategy following this observation is to attempt to produce ver- 

tices with similar free directions. The algorithm does so by preferring vertices 

with free directions to the bottom, the top and the right (in this order). With 

this modification and a further refinement of the corresponding LP (now us- 

ing 3073 variables), the bound on the number of bends can be lowered to 

about 2.24n. If vertices with local degree 0 are allowed (i.e. the graph is tem- 

porarily unconnected), the obtained bound is about 2.77n bends. Another 

a tec me fe gas ee RS Se eee 

Fig. 9.3. Placing a new vertex v inside the bounding box of the current drawing 
saves bends and area. 
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improvement can be obtained when the placement of new vertices inside the 

current drawing’s bounding box is allowed. FoSmeier suggests to allow in- 

sertions of vertices with two neighbors at the intersection of free lines of its 

neighbors (cf. Figure 9.3) which saves not only bends but also area. Whenever 
one neighbor has free directions to the left and to the right, and the other 

neighbor has its free directions to the top and to the bottom, there definitely 

exists such an intersection. Thus, as opposed to the previous approach, now 

the algorithm should favor semi-critical vertices (vertices with only two free 
directions) having their free directions at opposite sides whenever possible. 

The number of bends created by that approach is bounded by approximately 

2.22n, the upper bound on the area needed is 0.937n?. 
The author tested this algorithm not only against the no-change scenario 

but also the relative change scenario by Papakostas and Tollis and claims 

that on the tested examples it worked better in terms of required area and 

number of bends than any of the two other algorithms. If confirmed on a 

more extensive test-bed, and for other aesthectic criteria like edge crossings 

and edge length, this would be remarkable, since as an algorithm under the 

no-change scenario it perfectly preserves the mental map. 

Table 9.1 compares the approaches by Papakostas/Tollis and Fofmeier. 

The computation time to insert one vertex is constant for all algorithms. 

Table 9.1. Upper bounds on no. of bends and area for different approaches. 

Area 

Papakostas/Tollis relative change 

Papakostas/Tollis no-change IA 

F68meier basic no change 1.44n 

Fo8meier improved 0.937n 

Fo8meier improved, possibly disconnected 1.057n 

Fo8meier inside bounding box 0.937n 

Brandes and Wagner (1998a) demonstrate how the minimum cost flow 
approach suggested in Tamassia (1987) (cf. Chapter 6) can be extended to 
account for their Bayesian framework (cf. Section 9.3.1) and to minimize 
the changes of angles at vertices as well as of bends in the edges. The basic 

idea of that approach is to modify the flow network of the old drawing by 

adding some “residual arcs” in opposite direction to the current flows and 

by changing the cost and capacity constraints of these arcs to reflect the 

additional cost of changing a flow. Note that since this approach relies on 

Tamassia’s algorithm, it assumes the embedding to be given and fixed. 

The Three-Phase method (Bied] et al., 1997a; Biedl and Kaufmann, 1997) 

uses a slightly different orthogonal drawing convention that is not restricted 

to a maximum degree 4 but instead uses “stretched” vertices that may have 

more than one edge incident at each side (for an example, see Figure 9.4). In 
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such a setting, it is possible (and done in Biedl and Kaufmann (1997)) to draw 
the graph with exactly one bend in every edge. In the first phase, vertices are 

considered as points (not boxes) and are placed in the drawing such that no 

two vertices share the same row or column. Now, edges can be routed with 

exactly one bend per edge. To obtain a feasible drawing, one finally has to 

decide on the port assignment (i.e. the place where an edge connects to a 

vertex) and to adjust the dimensions of the vertices accordingly. 

In the dynamic scenario described in Bied] and Kaufmann (1997), the 
vertices are added sequentially one at a time starting form an empty drawing, 

and the only modifications allowed to the current drawing is the insertion of 

a limited number of rows and columns which again preserves the orthogonal 

ordering. Although in general, the algorithm would allow new vertices to be 

placed in the middle of the new drawing, in the version described in the paper 

a vertex is simply placed at the median of rows of the already placed vertices 

connected to it, and at the extreme right or left of the drawing depending on a 

greedy heuristic trying to balance the number of edges to the right and to the 

left at every vertex. The algorithm uses an area of at most (4 +n) x (m+n). 
The variant described in Bied] et al. (1997a) only achieves an upper bound 

on the area of (m+n) x (m+n), but it allows user-specified placements of 
the vertices, and also moving a vertex from one place to another. 

Fig. 9.4. An example for an orthogonal graph with “stretched” vertices. 

InteractiveGiotto (Bridgeman et al., 1997) is an interactive variant of 
the Giotto tool for producing orthogonal drawings. It requires the user to 
specify the placement of new vertices and to indicate the desired routing. The 
tool then transforms the current layout into a planar one by replacing each 
bend and each crossing with a dummy vertex. The embedding and the edge 
crossings are preserved in this step. The resulting graph is then optimized 
by a variant of Tamassia’s minimum cost flow approach (cf. Chapter 6). The 
edge bends, the type of the 90° bends and the number of corners are preserved 
by setting a target value for the flow in some arcs of the network. Note that 
new bends may be introduced by the algorithm, if needed. ° 
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9.3.3 Orthogonal Drawings in 3D 

There have also been two algorithms suggested for orthogonal graph draw- 

ing in three dimensions (Papakostas and Tollis, 1997a,b). Similar to the two- 
dimensional relative-coordinates approach from Papakostas and Tollis (1998), 

the first algorithm assumes graphs of maximum degree six (i.e. at most one in- 
cident edge at each side of a vertex), restricts changes to the current drawing 

to the insertion of a limited number of planes, and bases the decision about 

where a new vertex will be placed and how its incident edges will be routed 

entirely on the free directions around the adjacent vertices. The insertion of a 

vertex needs constant time and the volume of the drawing is at most 4.66n° 

as has been shown by solving an LP in a similar way as described above. The 

second algorithm assumes a setting similar to that in Biedl] and Kaufmann 

(1997) described above, i.e. vertices are represented using 3-dimensional boxes 
with volume of at least one cubic unit, which can be stretched in each dimen- 

sion to accommodate an arbitrary number of incident edges at each side. Just 

as in Biedl and Kaufmann (1997), the algorithm maintains the property that 
no two vertices have overlapping x-, y- or z-coordinates, and produces draw- 

ings without any crossings and exactly two bends per edge. The basic idea is 

to route all new edges from old vertices to the new vertex straight to a plane 

outside the current drawing where they are going to have their first bend. 

By this, the problem has been converted to a two-dimensional one, and the 
new vertex can be inserted by an algorithm similar but different to Biedl and 

Kaufmann (1997), introducing exactly one additional bend per edge without 

producing any crossings. A more detailed description of these two algorithms 

for 3-dimensional orthogonal drawings can be found in Chapter 7. 

9.3.4 Force-Directed Methods 

Many popular methods for drawing general undirected graphs are some kind 

of force-based spring model (cf. Chapter 4) with attracting forces between 

connected vertices and repelling forces between all pairs of vertices. A proper 

layout according to that model corresponds to an equilibrium of the forces. 
The model lends itself to dynamic graph drawing, since one might simply 

make the changes to the graph structure, and let the forces act to find a new 

equilibrium. The movement of the vertices according to the forces can be 

easily animated to make the changes more gradual (see for example Eades 

et al. (1997a)). However, even a small change to the graph may lead to a 
quite different equilibrium state and may thus destroy the mental map. 

Brandes and Wagner (1997) present two ways to adapt the force-directed 

model to adhere to stability criteria, using their Bayesian framework from 

Section 9.3.1. In one of them, the change of absolute vertex positions is con- 

sidered as distance criterion between drawings, which translates nicely into 

introducing additional forces keeping the vertices at their previous location 
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(springs with natural length zero). In the other approach, the stability cri- 

terion is the relative rather than the absolute vertex positions. This is taken 

into account basically by emphasizing the forces between vertices that are 

present in the old as well as the new layout. In other words, the unchanged 

parts of the graph are connected by a stiffer structure than new or altered 

ones. As the authors note, this approach may also take into account that for 

consecutive changes, the history plays a role. By cumulating the stiffening 

effect, the longer a relation existed, the less will it be changed. 

9.3.5 Layered Graphs 

For acyclic, layered digraphs, the Sugiyama heuristic (cf. Chapter 5) or a 

variant thereof is quite popular. Bohringer and Paulisch (1990) demonstrate 

in their paper how this heuristic may be modeled in terms of constraints, and 

how it can then be transformed to preserve dynamic stability. In the layering 

step, for each edge (i, j) a constraint is introduced saying that vertex 1 should 

be placed above vertex j, and the layering is decided. Then, the barycenter 

ordering is used to derive constraints determining whether one vertex should 

be left or right of another vertex. 

When the graph is modified, stability constraints are derived from the old 

layout determining: 

1. the ordering of the vertices in each layer 

2. that vertices which have been on the same layer in the old layout should 

also be on the same layer in the next layout. 

Only vertices close to the change in the graph (i.e. vertices in the vicinity of 

the change, see Section 9.2) are exempt from these constraints and allowed to 

move freely. By setting the size of the vicinity, the user may influence the em- 

phasis on dynamic stability. Given the total set of constraints (Sugiyama plus 

stability constraints), constraint propagation is used to find a feasible layout. 

Inconsistencies are resolved by dropping some of the constraints, depending 

on priorities assigned to them. f 

The DynaDAG system (North, 1996) is another adaption of the Sugiyam 

heuristic that allows interactive changes to the graph structure. DynaDAG 

allows to insert, optimize or delete single vertex or edges. Vertices are orig- 

inally placed on the highest possible layer and may be moved down when 

this becomes necessary by an insertion of another vertex or edge. Vertices 

are moved down layer by layer, shifted in each layer to its median position 

(w.r.t. its adjacent vertices). When the vertices are in their final position, the 
adjacent edges are adjusted (shrunk, moved, or stretched). New edges are 

routed heuristically. The final vertex coordinates are calculated by a linear 

program, with a linear penalty for moving a vertex from its old assignment. 

A nice feature is that for positioning a new vertex, the placement by the user 

is taken into account. 
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9.3.6 Trees, Series-Parallel Digraphs, and ST-Digraphs 

For the special case of drawing trees, Moen (1990) suggests a dynamic GD 
method based on merging contours of subgraphs. First, an outline is cal- 
culated for each vertex in the tree. The algorithm operates by recursively 
calculating an outline around each subtree from the leaves to the root of the 
tree. As the algorithm moves toward the root, the contours of the vertex’ 
children are placed as close together as possible, then the children’s and the 
parent vertex contours are joined into one large polygon. When the graph 
is changed, the contour is disassembled again as necessary and the changed 
parts are merged anew. 

Besides drawing trees, Cohen et al. (1995, 1992) additionally consider 
series-parallel digraphs, and planar ST-digraphs, and suggest a set of repre- 

sentations and operations that allow an efficient handling of update opera- 

tions guaranteeing that unaffected components (e.g. subtrees) change only 

by a translation. This approach belongs more to the area of dynamic data 

structures and shall thus not be treated here in more detail. 

9.3.7 Separating Overlapping Vertices 

All of the models described so far assume some sort of incremental scenario, 

where repeatedly vertices and edges are added to the graph. 

A slightly different perspective has been taken on in the approaches de- 

scribed in this section. Basically the graph is considered static, but somehow 

the layout has overlapping vertices that should be distributed more evenly 

over the page. This might be the case for example after new vertices have 

been inserted into the drawing, after a vertex has been expanded into a sub- 

graph, or after some area of the drawing has been expanded to take a closer 

look at the details. In neither of the approaches described below, the edge 

routing is considered explicitly. 

In Lyons (1992) this problem of dissolving clusters of vertices has also 
been termed “cluster busting”. Four heuristics are presented in that paper to 

distribute vertices more evenly while retaining similarity to the old drawing. 

Two of the approaches have been described in more detail in Lyons et al. 

(1998). The key idea there is to restrict the movement of each vertex to 

their Voronoi region i.e. the set of all points in the plane that are closer 

to the specific vertex than to any other vertex of the diagram. Clearly, this 

guarantees that for every vertex, its new position is closer to its old position 

than to the old position of any other vertex, which somehow corresponds 
to the “nearest-neighbor-between” criterion from Section 9.2. However, since 

often the Voronoi regions are too small to allow the desired adjustments, 

the authors suggest to iterate the process of determining the Voronoi regions 

and moving the vertices within these regions. The two heuristics they suggest 

differ in the way the vertices are moved: the first one, called Voronoi Diagram 

Cluster Buster Algorithm (VDCB), moves each vertex to the centroid of 
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its Voronoi region. The GeoForce algorithm has been based on the idea of 

the well known spring algorithm, with repelling forces between vertices and 

attracting forces between each vertex and its previous position. The vertexes 

maximum step size is limited to a fraction of its distance to its Voronoi edges. 

From the results reported in that paper, it does not seem entirely clear which 

approach is superior. 

Eades et al. (1991) and Misue et al. (1995) suggest to use the “push force- 

scan algorithm” (PFS) for cluster busting which pushes overlapping vertices 

apart by calculating desired repelling forces fj; between the midpoints of ev- 

ery pair of vertices (i,j) (cf. Figure 9.5), decomposing these forces into their 

portions parallel to the x- resp. y-coordinate (denoted fj; and fi;), and using 

these to shift vertices first along one, then along the other coordinate. The 

horizontal and vertical scan work analogous, therefore only the horizontal 

scan is described here: Assume that 2; < zg < --: < Zn, then the algo- 

rithm fixes x-coordinates in the order vj,--- ,Un by moving in the ith step 

Vit1,'** > Un by maxicj<n fj; (vertices with the same initial z-coordinate are 

decided at the same time). Clearly, the algorithm runs in O(n”) and preserves 

the orthogonal ordering. 

Fig. 9.5. Two overlapping vertices and the shift vector as used by the force scan 
algorithm. 

As has been shown by Hayashi et al. (1998), finding a minimum area lay- 
out of a given set of rectangles on a plane, preserving the orthogonal ordering, 

is NP-complete. As heuristic, the authors suggest to use an improved version 

of the PFS algorithm which usually results in a smaller total area than stan- 

dard PFS. Instead of moving all subsequent vertices based on the maximum 

force between vertex 7 and all subsequent vertices, the improved PFS moves 

each vertex i depending on the placement of all vertices vj,... ,vj-1 that 

have already been decided on (except for a special case that will not be dis- 

cussed here). Again, only the horizontal scan is described in more detail: Let 

7; be the distance by which vertex j7 has been moved in z-direction. Then, 

for i= 1...n vertex v; will be shifted by maxi<j<i(y; + ff). 
In Misue et al. (1995) a variant of the force scan algorithm is suggested 

that additionally allows contraction operations. However this variant does 

not guarantee disjoint vertices. 
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9.3.8 Nonlinear Magnification 

For large graphs, it is usually impossible to display the whole drawing on the 
screen in reasonable resolution. But if only a part of the drawing is displayed, 
the overall structure of the graph is hidden, which makes it much harder for 
the user to build up and maintain a mental map, and to navigate in the 
drawing. 

One suggested solution to that problem is to magnify some important 

parts of the drawing, while demagnifying the other parts correspondingly. 

This allows for enhanced resolution in some areas of interest, without sacri- 

ficing the global view of the entire graph. In an interactive setting, the user 

may be allowed to select the areas for magnification, while the global context 

of the surrounding structures is maintained. 

There are many variants of nonlinear magnification. Since a detailed anal- 

ysis lies outside the scope of this paper, the interested reader is referred to 

e.g. Misue et al. (1995) or Keahey and Robertson (1996). 

9.3.9 Deleting Vertices and Edges 

Many of the above described approaches mainly address the insertion of 

vertices. Some argue that deleting vertices or edges while maintaining the 

mental map is much easier than inserting vertices or edges - simply remove 

them without changing anything else - and from time to time a compaction 

algorithm could be run to reduce the empty space created by deletions (Pa- 

pakostas and Tollis, 1998). But each deletion may open some new ways to 

improve the aesthetics of the drawing by rearrangement. For the case of a 

larger number of deletions, the fortified chances to improve the aesthetics 

by an adjustment after a deletion accumulate. The resulting drawing may 

then be quite far from the optimum in terms of aesthetic criteria. In such 
cases, an approach using a cost model, like in the Bayesian framework (cf. 

Section 9.3.1), might be advantageous since it can be applied after insertions 

and deletions alike. 

9.4 Conclusion and Future Work 

Dynamic and interactive graph drawing has many applications but only re- 

cently got into the focus of researchers and is thus still in a very early stage. 

The basic difference between static and dynamic graph drawing algo- 
rithms is that in the dynamic case, in addition to producing an aesthetic 

layout, the algorithm has to minimize changes to the user’s mental map. 

So far, this has been tried in a variety of ways, basically by restricting the 

changes allowed to the layout, or by defining a cost function reflecting the 
severity of changes and then trying to find a good trade-off between aesthetic 

criteria and dynamic stability. The field however, still seems to lack a basic 
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understanding as to what actually influences the mental map. Because of this, 

and because there are so many different GD applications, almost all papers 

published so far are more or less unique and difficult to compare. 

There are many areas for future work. First and foremost, it seems to be 

important to get a clearer concept of how changes in the drawing influence 

a user’s mental map. This should be examined e.g. by user studies to learn 

about the importance of the many different criteria suggested in the literature 

so far. Then, the aspect of deleting vertices seems to deserve more attention. 

Optimizing the layout adjustment for a sequence of graph changes, e.g. for 

an off-line animation, is still an open yet very challenging area of research. 

Besides, there is a wealth of static layout algorithms (Di Battista et al., 1999), 

and for most of them it would be worthwhile to develop a dynamic version. 
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10. Map Labeling with Application to Graph 
Drawing 

Gabriele Neyer* 

When visualizing information, it is often essential to display data with a 
graphical object. This means that text labels have to be associated with 
graphical features. Until now, the placement of labels is primarily performed 
manually, particularly in map production. For example, in the area of Car- 
tography, Geographic Information Systems (GIS), and Graph Drawing map 
labeling usually has to be performed efficiently. Therefore, it is highly de- 

sirable to use automatic map labeling algorithms. The ACM Computational 
Geometry Task Force Force (1996) has identified label placement as an im- 
portant area of research. 

Formann Wagner Poon, Chin 

995a; 1995b 1998 
1997; 1998 

Zhu 

1997; 1999 

Doddi, Marathe, 

Strijk Mirzaian, Moret 

Kakoulis Tollis 
_—— ee 

1996; 1997; 1998a; 1998b 

Agarwal, Suri © Verweij, Aardal 1999 

1998; 1999 
1998 

©® Klau, Mutzel 1999a 

Fig. 10.1. Labeled graph of some map labelers and their articles discussed in this 
survey. 

Often, the solution to a graph labeling problem involves drawing and la- 

beling the graph. However, almost all known algorithms for graph labeling 

start from a given graph drawing. Thus, the graph labeling problem is ar- 

tificially subdivided into two problems. This can have disadvantages in case 
that the drawn graph is too dense to label. Due to the fact that there is only 
one algorithm published so far that simultaneously draws and labels a graph, 

we mainly describe labeling algorithms that start at a drawn graph. There- 

fore, this chapter is a survey on map labeling algorithms. Nonetheless, since 

we also survey graph labeling algorithms and most map labeling algorithms 

* This work was partially supported by grants from the Swiss Federal Office for Ed- 
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GALIA), and by the Swiss National Science Foundation (grant “Combinatorics 
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also apply to graph labeling (without drawing), this chapter is also a survey 

on graph labeling algorithms. For simplicity, we will call an algorithm that 

labels a drawn graph a graph labeling algorithm. In case that an algorithm 

draws and labels a graph, we point that out explicitly. 

10.1 Formal Background 

We distinguish between three kinds of graphical features according to their 

dimension. 

Point Features. Cities, summits, area features on small scale maps, and 

vertices of graphs or diagrams. 

Line Features. Rivers, boarders, streets, straight edges, polygonal lines, 

and edges or arcs of graphs or diagrams. 

Area Features. Mountains, islands, countries, and lakes. 

Point and line feature labels are arranged next to the object and area 

feature labels are usually placed within the boundary of the feature to be 

labeled. 
In the last ten years, the amount of research in automatic map making 

has increased significantly, as the number of published articles illustrates!. 
A detailed and up-to-date map labeling bibliography can be found at http: 

//waw.inf .fu-berlin.de/map-labeling/bibliography/. 

Although most variants of map labeling are VP-complete, many good la- 

beling approximations and heuristics, especially for point labeling, have been 

suggested. In this article we want to give an overview of the most important 

map labeling algorithms that apply to graph labeling. See Figure 10.1 as an 

example of a labeled graph. The majority of map labeling algorithms is easily 

applicable for graph labeling. A point labeling algorithm can be applied for 

the labeling of the nodes of a graph. If the point labels have to be placed 

without overlaps with other graphical features, e.g. edges, the number of 

applicable algorithms decreases. This case is barely considered in literature. 

We discuss the applicability of the point labeling algorithms for labeling the 

point feature of a graph in the respective sections. A line feature labeling 

algorithm can be used for labeling edges of a graph and a general graphical 

feature labeling algorithm can be applied to labeling nodes, edges, and faces 
of a graph. 

We give a survey of labeling algorithms that are intended to label graphs, 

and of the most important map labeling algorithms that were intended to 

label geographical maps. Our intention is to keep the description of the al- 

gorithms as general as possible. We do not present algorithms that label line 

features with curved labels, since they are usually not applied to graph la- 
beling. For the latter problem see (Edmondson et al., 1997; Knipping, 1998; 
Wolff et al., 1999). 

' http://liinwww.ira.uka.de/ bibliography/Theory/map. labeling. html 
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Extensive effort has been spent by cartographers like Imhof (1962, 1975) 
and Yoeli (1972) to devise rules that measure the semantic clarity of a labeling 
assignment. We state three concepts that are widely accepted as the basic 
rules for accurate map labeling. 

Readability. The labels are of legible size. 

Unambiguity. Each label can be easily identified with exactly one graphical 
feature of the layout. 

Avoidance of Overlaps. Labels should not overlap with other labels or 
other graphical features of the layout. 

We denote the possible label positions of a feature as its label candidates. 

Sometimes, a cost is assigned to an individual label candidate which reflects 

the quality of this label in terms of unambiguity, overlap with graphical fea- 

tures, and preferences between the label candidates. 
How features are labeled depends on the specific labeling model. The most 

important models are: 

Fixed Position Model. Each feature has a finite set of label candidates. 
For point labeling, typical examples are the 2- or 4-position model as 

shown in Figure 10.2(a). 
Fixed Position Model with Scalable Labels. Each feature has a finite 

set of label candidates, where the size of all labels can be scaled. 

Slider Model. Each feature has a fixed label that can be placed at any 

position that touches the feature. Figure 10.2(b) shows the 1-, 2-, and 
4-slider model for point features, where the labels can be shifted continu- 

ously as indicated by the arrows. Figure 10.2(c) shows the point-adjacent 
slider model, where the label is adjacent to its point feature but can be 

arbitrarily rotated. 

l-position 2-position = 1-slider He ; : 

4-position 2-slider 4-slider 

(a) Fixed position models (b) Slider models (c) Point-adjacent 
labels 

Fig. 10.2. Labeling models. 

Subject to these basic constraints, the most common problems are: 

Decision Problem. Does there exist a label assignment, such that each 

feature is labeled with a label of its candidate set, and no two labels 

overlap? 
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Label Problem. In case the Decision Problem yields a yes answer — Find 

a label assignment, such that each feature is labeled with a label of its 

candidate set, and no two labels overlap. 
Number Maximization Problem. Assign as many labels as possible, such 

that each feature is labeled with at most one label of its candidate set, 

and no two labels overlap. 

Size Maximization Problem. Find a maximum scaling factor s and a cor- 

responding label assignment, such that each feature is labeled with a label 

of its candidate set, scaled with s, and no two labels overlap. 

Note that the Label Problem is of prime importance for graph labeling: 

Often, the coordinates in a graph are adapted until a graph labeling exists. 

Let P be a label problem and A be an algorithm for P. Then it is clear 
that a binary search on all label sizes combined with algorithm A solves 

the size maximization problem. Similarly, an algorithm that solves the size 

maximization problem also solves the label problem and the decision problem. 

Thus, the label problem and the size maximization problem are in the same 

complexity class and at least as hard as the decision problem. 

Furthermore, an optimal algorithm for the number maximization problem 

solves the label problem. Thus, the number maximization problem is at least 

as hard as the label problem. 

Since the point feature label problem or the line feature label problem 

are special cases of the graphical feature label problem it is clear that the 

graphical feature label problem is at least as hard as the point or line feature 
label problem. 

For convenience, we recall the definitions of some complexity terms used in 

this chapter in Section 10.1.1. In Section 10.2 we give three tables that give an 

overview about the label problems discussed in this chapter, with their com- 

plexity. We divide the label problems into point feature label placement, line 

feature label placement, and graphical feature label placement. Consequently, 

point labeling is discussed in Section 10.3, line labeling in Section 10.4 and 
graphical feature labeling in Section 10.5. We discuss the graphical feature 
labeling approach more detailed in Section 10.5.2, as the tutorial example. In 
Section 10.6 we shortly present general optimization strategies such as sim- 
ulated annealing, gradient descent, and zero-one integer programming that 
are widely used to solve map labeling problems. The only known graph la- 
beling algorithm that simultaneously draws and labels a graph so far is the 
combined labeling and compaction approach from Klau and Mutzel (1999a). 
For a given orthogonal representation, an orthogonal labeled graph draw- 
ing with small total edge length is computed. This algorithm is presented in 
Section 10.3.5. 

10.1.1 Complexity Dictionary 

Many map labeling problems are NP-hard. That means not only that there 
is no known efficient (polynomial time) algorithm for solving the problem, 
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but also that it is quite unlikely that one exists. If the optimal solution is 

unattainable we settle for feasible approximative solutions that are “close” 

to the optimum. In order to evaluate the limits of approximability we give 

the following short dictionary, partly taken from Garey and Johnson (1991) 
and Hochbaum (1995): 

6-approximation. A polynomial algorithm is said to be a 6-approximation 

algorithm (6 > 1) for a minimization problem P, if for every problem 
instance J with an optimal solution value OPT(J), it delivers a solution 
that is at most 6 times the optimum. Similarly, for maximization prob- 

lems a 6-approximation algorithm (6 < 1) delivers for every instance I a 

solution that is at least 6 times the optimum. 

Best achievable performance ratio. An optimization problem P has best 

achievable performance ratio a if there exists an a@-approximation for 
P and no 6-approximation algorithm for P exceeding a exists (unless 

PNP): 
PAS. A family of approximation algorithms for a problem P, {A¢}<, is called 

a polynomial approximation scheme or PAS if algorithm A, is a (1+ €)- 

approximation algorithm and its running time is polynomial in the size 

of the input for a fixed e. 

10.2 Contents and Complexity Overview 

Tables 10.1, 10.2, and 10.3 give an overview about the different label problems 

discussed in this chapter. The currently best known complexity results are 

given. The tables also serve as an index to this chapter. 

10.3 Point Feature Label Placement 

10.3.1 Map Labeling Related to SAT 

Formann and Wagner (1991) have studied the point labeling problem in the 

4-position model (see Figure 10.2(a)). More precisely, for a given set of points 

in the plane the aim is to label each point with an axis parallel rectangle such 

that every point coincides with one of the four corners of its label and no two 

rectangles overlap. The restriction that each point coincides with a corner of 

its label rectangle implies that each rectangular label can be placed in exactly 

four positions. 

Formann and Wagner (1991) have proved that it is WP-complete to decide 

this problem, even if all labels are equally sized squares. Independently, Kato 

and Imai (1988) and Marks and Shieber (1991) also have proved the NP- 

completeness of this label problem. For brevity, we only sketch the idea of the 

NP-completeness proof of Formann and Wagner. In their proof an instance 
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Table 10.1. Complexity results for map labeling decision problems. 

Labeling Model Decision 
Problem 

4-position model NP-complete Section 10.3.1, Formann 
and Wagner (1991) 

2-position model EP Section 10.3.1, Formann 
and Wagner (1991) 

finite candidate set NP-complete follows from Formann 
and Wagner (1991) 

1-, 2-, 4-slider model NP-complete Section 10.3.3, Iturriaga 
and Lubiw (1997) 

point-adjacent model | M/P-complete follows from Iturriaga 
and Lubiw (1997) 

finite candidate set NP-complete Section 10.4.2, Kakoulis 
and Tollis (1996) 

3-position model EP Section 10.4.1, Doddi 
et al. (1997); Poon et al. 
(1998); Strijk and van 
Kreveld (1999) 

finite candidate set NP-complete follows from Formann enlist [Meena | tia wager Go0) 
slider model NP-complete followrs from Iturriaga 

and Lubiw (1997); 
Kakoulis and Tollis 
(1996) 

of 3SAT is reduced to this point labeling problem. Gadgets for variables and 
clauses are constructed consisting of overlapping label candidates of point 

features. The variable gadgets are connected with clause gadgets according 

to the 3SAT formula by pipe gadgets that conserve encoded variable settings. 
The resulting map labeling problem has an overlap free solution if and only 
if the 3SAT formula is satisfiable. 

Furthermore they have shown that the decision problem for the 2-position 
model (see Figure 10.2(a)) can be solved in time O(n log? n) time by reduction 
to a 2SAT problem (Imai and Asano, 1986). Any point in the labeling in- 
stance is identified with a Boolean variable. The two label positions of the ith 
point are denominated with the variable setting x; and 7. Let the two label 
candidates x; and %j overlap. Then 2; and 7; can not simultaneously appear 
in a solution, which is ensured by a clause of the form: (x; AZ) = (% V 2;). 
A satisfying truth assignment for the set of clauses yields a solution to the 
point labeling problem. If no such assignment exists it follows there is no 
overlap free solution to the point labeling problem. 

Based on the solution method of the 2-position model they have further 
investigated the problem of finding a labeling for the 4-position model in 
which the labels have maximum size. The \VP-completeness proof implies 
that no polynomial approximation algorithm with an approximation factor 

References 

point features 

edge features 

graphical features 
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Table 10.2. Complexity results for map labeling number maximization problems. 

Labeling Model Number References idabnandiatonsts soko Maxtraigtousi| Soicsiaegn «bo 
2-position model unknown 

Section 10.3.2, Agarwal finite candidate set (1/log n)- 
approximation et al. (1998) 
algorithm, PAS 

1-, 2-, 4-slider model (1/2)- Section 10.3.3, van 
approximation Kreveld et al. (1998) 
algorithm, PAS 

polynomial 
approximation 
algorithm that 
places at least 
(1 — €)n squares 
of size at least 
i OPT 

finite candidate set heuristics Section 10.4.2, Kakoulis 

and Tollis (1996, 1997) 
3-position model unknown 

complexity 

finite candidate set 

Roose 

Table 10.3. Complexity results for map labeling size maximization problems. 

Labeling Model Size References 
Maximization 

4-position model best achievable Section 10.3.1, Formann 
performance and Wagner (1991); 
ratio T Wagner (1994); Wagner 

1_approximation | and Wolff (1995a,b, 
algorithm 1997) 

Section 10.3.4, Doddi 
et al. (1997) 

features point 

point-adjacent model Section 10.3.4, Doddi 

et al. (1997) 

edge features 

Section 10.5.1, 10.5.2, 
Kakoulis and Tollis 
(1998a,b); Wagner and 
Wolff (1998) 
Section 10.6, Christensen 
et al. (1993, 1995); 
Edmondson et al. (1997); 
Zoraster (1986, 1990) 

features 

point-adjacent model 

approximation 
algorithm 

exact algorithm Section 10.4.1, Doddi 
et al. (1997); Poon et al. 
(1998); Strijk and van 
Kreveld (1999) 

3-position model 



254 Gabriele Neyer 

exceeding 5 exists, unless P=N/P. Furthermore, Wagner has proved that an 

approximation algorithm that achieves this bound must take {2(n log n) time 

(for a detailed proof see (Wagner, 1994)). Formann and Wagner have intro- 

duced a $-approximation algorithm that increases stepwise the size of the 

squares. In each step label candidates are deleted permanently and then two 

label candidates are chosen for each point. For these candidates the algo- 

rithm for the 2-position model is applied. This procedure is repeated until 

there is no solution to the corresponding 2SAT problem. The resulting algo- 

rithm achieves the $-approximation bound and the time bound O(n log n). 

Although optimal in a theoretical sense, this result is not useful for practical 

purposes because the solutions are usually too far off the optimal size. This 

approximation algorithm only works for equal sized square labels and not for 

arbitrary rectangles. 

Because of this lack of practical results, Wagner and Wolff (1997, 1995a,b) 

have spent more time on the problem and published several papers that are 

based on the initial approach of Formann and Wagner discussed above. In 

their approaches, the important sizes of the labels, where conflicts are ap- 

pearing, are computed. The maximum label size is determined with binary 

search on the list of important label sizes. Furthermore, label candidates are 

eliminated only temporarily for the current size of the binary search and then 

the 2SAT problem is used to decide solvability. All algorithms have the $- 

approximation bound and O(n log n) runtime. To test their algorithms, Wag- 

ner and Wolff have implemented an example generator that creates random 

examples under several distributions. Christensen et al. (1997) have tested 
the latest algorithm of Wagner and Wolff (1997) against simulated annealing. 
Both algorithms have had about the same performance but the algorithm of 

Wagner and Wolff has been about three times faster. 

Since each point feature has only four label candidates, we mention that 

these algorithms are best applicable to label problems where the labels are 

restricted to the four positions of the 4-position model. When labeling the 

nodes of a graph that contains other graphical features like edges, these algo- 

rithms have to be modified not to place labels that overlap them. It appears 

that overlaps with other graphical features can be avoided by simultane- 

ously conserving the $-approximation bound. Nevertheless, the time needed 

to compute intersections of labels with other graphical features influences the 
running time of the algorithm. 

10.3.2 Label Placement by Maximum Independent Set in 
Rectangles 

Agarwal, van Kreveld, and Suri (1998) have formulated the point labeling 
problem as a maximum independent set problem in rectangles. The aim here 
is to label a maximum number of point features. For each point feature p; 
a label r; is given, that is, an axis-parallel rectangle of fixed size and a set 
of label positions such that each label position coincides with p;. A feasible 
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labeling is a subset of all label positions R such that the labels are pairwise 
disjoint and each point feature is labeled at most once. The labeling problem 
is to find the largest feasible labeling. Since all label candidates of a point 

pi overlap at point p;, it follows that at most one label candidate of a point 

is chosen. Thus, the labeling problem corresponds to finding a largest subset 
of pairwise disjoint rectangles in R. This corresponds to finding a maximum 
independent set of rectangles in R. 

Since the computation of a maximum independent set of rectangles is 

known to be VP-hard (Fowler et al., 1981; Imai and Asano, 1983), the authors 

have presented a (oen)-approximation algorithm based on the divide and 
conquer paradigm, that runs in polynomial time. The rectangles are divided 

according to the median z-coordinate of all rectangles into three sets: the 

rectangles that lie left of the median, lie right of the median, and intersect 

the median. They have computed the maximum independent set of the set of 

rectangles that intersect the median and recursively compute the approximate 

maximum independent set of the two other sets. In the merge step of the 

algorithm they choose the set with maximum cardinality of the following two 

sets: (1) the union of the approximative independent set of the rectangles left 
of the median and right of the median and (2) the maximum independent set 
of the rectangles that intersect the median. 

For the case that all rectangles in R have unit height, an (1— Get )-appro- 

ximation algorithm is described that runs in O(n logn+n?*-') time, for any 

k > 1. The algorithm uses dynamic programming combined with the shifting 

technique of Hochbaum and Maass (1985). The rectangles are partitioned by 
a set of horizontal lines 1,,...,1, such that the separation between two lines 

is strictly more than one, each line intersects at least one rectangle, and each 

rectangle is intersected by exactly one line. Let R; be the set of rectangles in 

R that intersect 1;. They have defined subgroups R*¥ = rey Ri; and sets 

Gj = Uiso Fiaeay ey = R\ Ujso Rick+1) +; (see Figure 10.3). G; is obtained 

from R by deleting the rectangles that intersect every (k + 1)st line, starting 

with the jth line. Note that two subsets Peeks and Feats) of 

G; are disjoint if i; A ig. For example, line 1(;)(,41)4; and line l(:41)(k+1)4j 

separates Ri k+l)4j41 from the other subsets. The union of the independent 

sets of the subsets of a set G; yields an independent set for all rectangles in 

G; 
The rectangles in R\G; are intersected by at most |m/(k + 1)] lines. 

Therefore, computing a maximum independent set for each G; and choosing 
the largest one yields a (1— Get )-approximation. The maximum independent 

set of a subgroup of G; is computed by dynamic programming by means of 

a 2-dimensional invariant. One step in the dynamic program takes O~7-t) 

time. The runtime of O(nlogn) can only be achieved for the special case 

ks 2: 

This approach works only for labels with unit height, but varying widths, 

and the authors leave the solution for arbitrary rectangles with a constant 
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Fig. 10.3. The set G; for k = 3. 

factor approximation scheme as an open problem. The label candidate set for 
any point may be arbitrarily large, as long as all label candidates coincide 

with their point feature. This algorithm can be easily modified to label the 

nodes of a graph overlap free with other graphical features. One simply has to 

eliminate those label candidates that overlap graphieal features. The bounds 

stay valid in respect to the reduced label candidate set. 

10.3.3 Point Set Labeling with Sliding Labels 

Van Kreveld, Strijk, and Wolff (1998) have discussed algorithms that aim 
at labeling a maximum number of point features, where the label positions 

are not restricted to a finite number of positions. They have defined three 
models, the 1-slider, 2-slider, and 4-slider model, in which the labels can move 

continuously (see Figure 10.2(b)). Iturriaga and Lubiw (1997) have shown 
that the decision problem whether a solution to a point labeling problem in 
the 1-slider model exists is W/P-complete. 

Before providing a $-approximation algorithm for the three slider models, 

van Kreveld et al. have compared the three slider models with the fixed 

position models that are shown in Figure 10.2(a). They have been concerned 

with the question: “How many more points can be labeled in one model 

than another, in any point set?”. In order to quantify this question they have 

introduced the ratio of two models. Let P be a set of n points in'the plane. Let 

M, and Mp2 be two models for labeling P, and let optyy,(P) and opty, (P) 
be the maximum number of points of P that receive a label in the models M, 
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and Mp, respectively. The ratio of the models M, and Mp is the supremum 
of the ratio opty, (P)/opta,(P) for n > co and maximized over all point 
sets P with n points. 

[2,3] 

Fig. 10.4. Upper and lower bounds for the ratios of two models. 

They have shown lower and upper bounds for the ratios of all pairs of 
models. These ratios are depicted in Figure 10.4. For example the maximum 
number of points labeled in the 2-position model can be at most twice the 
maximum number in the 1-position model. Thus, the lower bound and upper 

bound for the ratio of the 2-position and the 1-position model is 2. The arcs 
indicate the partial order on the models. 

Furthermore the authors have provided a 5-approximation algorithm for 

the 4-slider model that runs in O(n log n) time. The algorithm can be applied 

with minor changes to the 2-slider and 1-slider model. Given a set of points, 

a set of labels that have already been placed, and a set of points that are 
unlabeled, the leftmost label is defined to be the label whose right edge is 

leftmost among all possible labels of unlabeled points. A label is possible if 

it does not overlap any placed label. The algorithm is a greedy strategy that 

repeatedly chooses the leftmost label. It labels at least half the number of 

points labeled in an optimal solution. In order to compute the leftmost label 
efficiently, the right envelope of all placed labels 1; and their copies l}, precisely 

one unit below 1; is stored. The right envelope is a function in y, where 

f(y) = max{max{z|(z, y) is occupied by 1; or li}, —oo} (see Figure 10.5). A 
reference point of a label is its lower left vertex. Therefore, the right envelope 
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Fig. 10.5. Right envelope. Fig. 10.6. The heaps storing the reference 
segments. 

incloses exactly all reference point positions that are impossible. Observe 

that the union of the reference points of all possible label positions for one 

point is the boundary of the lower left label position (see Figure 10.6). These 

reference points are subdivided into the two horizontal segments and the two 

vertical segments. These segments are stored in three different heaps: Hright 

contains all horizontal segments that lie right of the envelope, Hright contains 

all horizontal segments that intersect the envelope and Vint,right contains all 

segments that intersect or lie right of the envelope. These heaps allow to 

query for the leftmost possible label. By applying common geometric data 

structures the authors avoided using a brute force method and thus reduced 

the runtime of the algorithm. : 

The $-approximation algorithm is only valid for rectangles with equal 

height but variable width. The algorithm is applicable for arbitrary rectangles 

but the authors cannot guarantee the approximation factor any more. In their 

experiments on real world data the 4-slider model performs 10-15% better 

than the 4-position model. 

Furthermore, they have shown that for each of the slider models and for 

any constant € > 0, there is a polynomial time algorithm that labels at least 

1 — e times the maximum number of points that can be labeled. The concept 

of the approximation algorithm is similar to the (1 — pat)-approximation 
algorithm of Agarwal et al. (1998) described in Section 10.3.2. Due to the 

higher running time of O(n logn + n?*—!) time, the algorithm is primarily of 
theoretical interest. 

Strijk and van Kreveld have suggested a modification of the $-approx- 

imation algorithm for the 4-slider model, when other line segments are in the 

scene which may not be intersected.” This could be of interest for labeling 
graphs. 

? Marc van Kreveld, personal communication (1999). 
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10.3.4 Label Placement with Point-Adjacent Labels 

Doddi, Marathe, Mirzaian, Moret, and Zhu 1999 have studied the point la- 

beling problem for a set of n points S such that all labels are squares of the 

same size, the feature may lie anywhere on the boundary of its label region 

and the label size is maximized. Differently to all other approaches the labels 

are allowed to rotate around their labeling point (see Figure 10.2(c)). 

They have given a snr /'°) approximation algorithm for this problem 

that runs in O(nlogn) time. In order to achieve this factor, they have de- 

rived an upper bound for the maximum size of the labels by means of the 

well studied minimum k-diameter theory (Datta et al., 1993; Eppstein and 

Erickson, 1994). The diameter of a set S is the maximum distance between 
any two points in the set. The minimum k-diameter of S, denoted D,(S), 

is the smallest diameter among all subsets of S of size k. It is easy to see 

that a circle of radius Plo centered at a point p; € S contains at most 

k —1 points. This led to an upper bound for the maximum label size of at 

Moston The sin(r/10) _a pproximation algorithm labels each point with 
sin(7/10)° 8/2 

a square of size at least a. The algorithm randomly selects a point p; and 

labels this and all points that have distance at most sin to p; according 

to a case distinction of their number (which is at most 4) and their positions. 
This procedure is repeated recursively until every point is labeled. The cal- 

culation of the minimum 5-diameter dominates the runtime with O(n logn) 
time. The labeling process can be done in O(n) time. 

In case the point features are to be labeled with circles of maximum 

radius the authors can apply their techniques for regular squares and achieve 

the following results: Firstly, the labeling circles have radius at most (4 + 

2\/3)D3(S). Secondly, there exists a SaiV5 approximation algorithm that 

runs in O(nlogn) time, for the same reasons as in the squared case. This 

approximation factor has recently been improved by Strijk and Wolf (1999). 

Furthermore, they have given a bicriteria approximation algorithm for the 

variant of the problem in which some point features are allowed to remain 

unlabeled and each square must be placed adjacent to its point feature such 

that its sides are parallel to the axes. (This complies to the 4-slider model). 

For any € > O their approximation algorithm finds a placement for at least 

(1 — €)n squares of size at least ik OPT, where OPT denotes the size of the 
squares in an optimal solution. It needs O(n log Ds5(S)) time. The algorithm 
can be modified such that it applies to other regular label shapes like regular 

polygons. 

The disadvantages of these approaches are obvious. They only work for 

equal sized and regular shapes of labels. The approximation guarantee for the 

first two algorithms is very small and far off the optimal size of a labeling. 

Furthermore, the point-adjacent label model seems to be only of theoretical 

interest and the algorithm can not be modified easily to label point features 
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of a graph. The algorithms do not provide the possibility of excluding label 

positions that overlap other graphical features. Note that the proceedings 

version (Doddi et al., 1997) contains errors. 

10.3.5 Combining Graph Labeling with Compaction 

In this section we investigate in the Compaction and Labeling (COLA) prob- 

lem which is an orthogonal graph drawing and labeling problem in which 

the graph drawing and labeling is solved simultaneously (Klau and Mutzel, 

1999a). A graph drawing is called orthogonal, when each edge segment is ei- 

ther horizontal or vertical. See Chapter 6 for a summary on orthogonal graph 

drawing. 

In the COLA problem we are given an orthogonal representation of the 

graph. This orthogonal representation is a description of a planar and orthog- 

onal embedding of the graph. Additionally to the planar topology it describes 

the shape of the drawing, i.e., for each edge the order of the bends and the 

angle formed with the following edge in the appropriate face are given. In 

order to draw the graph, coordinates have to be assigned to the vertices. 

For each vertex we are given a set of labels, each of which is fixed in 

size. The authors extend the compaction techniques known from orthogonal 

graph drawing (see Chapter 6) to include conditions on the labels and their 

positions. Analogously to the usual compaction problem, necessary conditions 

for an orthogonal graph drawing of minimum total edge length are encoded in 

a special pair of graphs, the so called shape graphs. These conditions mainly 
are relative positioning constraints and minimum distance relations between 

graph components. The pair of shape graphs is extended with label related 

conditions. These conditions are that a label has to touch its vertex and that 
a label may not overlap other labels or objects. Thus, the labeling model is 

the slider model. After that, an integer linear program (ILP) is constructed 

from the pair of labeled shape graphs. The authors implemented a branch and 

cut algorithm which solves this kind of ILPs. The solution gives an orthogonal 

labeled drawing of the graph with small total edge length. We now describe 

these steps more in detail, starting with the construction of the pair of shape 
graphs. 

The construction of an orthogonal embedding of a graph from its orthog- 
onal representations was shown to be NP-hard (Patrignani, 1999b). For the 
construction of the pair of shape graphs, Klau and Mutzel transform the or- 
thogonal representation in a simple orthogonal representation by replacing 
each bend with a vertex. The simple orthogonal representation partitions 
the set of edges in a set of horizontal edges Ep, and a set of vertical edges 
Ey. A horizontal (resp. vertical) subsegment in the simple orthogonal repre- 
sentation is a connected component in (V, Ep) (resp. (V, Ey)). A maximally 
connected component is a maximal set of consecutive edges of one direction 
and is called a segment. Furthermore, each edge is a subsegment and each 
vertex v is incident to exactly one horizontal and one vertical segment which 
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are denoted by vert(v) and hor(v). Let w, vp, uz, and vp be the leftmost, right- 
most, topmost, and bottommost vertex on a segment s. Then, the left, right, 

top, and bottom limits of s are l(s) = ver(w), r(s) = ver(v,), t(s) = hor(v4), 
and b(s) = hor(vp). 

A pair of shape graphs ((S,,Ap),(Sp,Av)) is defined as follows. Each 
horizontal (resp. vertical) segment is represented by a vertex in the set Sp, 
(resp. S,,). Weighted arcs between the segments characterize relative position- 

ing relations between the segments. All arcs (s;,5;) in a shape description 
have weight 1, indicating that the coordinate difference of segments s; and 

s; must be at least 1. Arcs between horizontal segments are in set A, and 

arcs between vertical segments are in set Ap. For a detailed description of 

the construction and properties of the pair of shape graphs see (Klau and 

Mutzel, 1999a). The compaction problem is discussed in more detail in the 

Chapter 6. 

The resulting pair of shape graphs is extended with a description of the 

constraints on the labels. Each label is modeled by a rectangle bounded by 

the segments /),7r,,t,, and b) (see Figure 10.7). For the segments J, and ry 

a vertex is added to S,, and for the segments t, and by a vertex is added to 

Sp. The set of arcs Ap is enlarged by arcs of the type (1), 7) of weight w(A) 
which corresponds to the width of label \. Analogously, the set of arcs A, is 

enlarged by arcs of the type (/,,7,) of weight h(A) which corresponds to the 
height of label A. Let v = a(A) be the vertex label A is associated with. In case 
that a vertex is represented by a box, the vertex is bounded by the segments 

ly, ry, ty, and b, as illustrated in Figure 10.8, otherwise |, = ry = ver(v) and 
by = ty = hor(v). A feasible position of a label relative to it vertex a(A) is 
given if and only if: 

1. The left side of \ does not lie to the right side of a(A). 
2. The right side of A does not lie to the left side of a(A). 
3. The bottom side of \ does not lie above the top side of a()). 
4. The top side of \ does not lie below the bottom side of a(A). 

These conditions are realized in the pair of shape graphs by adding 

the arcs (1y,7a(,)) and (la(,),7) to Ap, and adding the arcs (by, tacay) and 

(baa), ta) to Ay for each label A. These arcs have weight 0. For an illustration 

see Figure 10.8. 
A complete pair of labeled or unlabeled shape graphs defines a unique 

labeled or unlabeled orthogonal drawing of the graph. A pair of labeled shape 

graphs is complete, if and only if both arc sets do not contain non negative 

cycles and for every pair of segments (s;,$;) € (Sy U Sp) x (Sy U Sp) one of 

the four conditions holds: 

(1) r(si) + U(s3) (3) t(s;) <> d(s:) 

(2) r(sj) + 1(s;) (4) t(si) > (5), 
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tex and its label. 

where s; ul s; denotes the existence of a path of non negative weight 

between s; and s;. Usually a pair of labeled shape graphs is not complete 

and there are many possibilities for extending the labeled shape graphs to a 

complete pair of labeled shape graphs. Klau and Mutzel showed that there 

exists a simple labeled orthogonal drawing for a pair of labeled shape graphs 

oy if and only if there exists a complete labeled extension Tz of ay. Thus, the 

problem is to find a suitable extension of the pair of labeled shape graphs. 
Therefore, the pair of labeled shape graphs is transformed into an ILP. 

For the description of the ILP we have to define a set O which denotes 

the set of objects that should be compacted. It consists of the segments 

corresponding to consecutive edges, labels, and vertices whose images are 

boxes of non zero size. 

Starting at a given labeled pair of shape graphs oy = ((Sy, An), (Sp, Av)) 
the authors formulate an ILP to solve the COLA problem. For each potential 

additional arc (s;,s;) which might be in some complete extension, they in- 

troduce a variable x;; which is one if arc (s;, s;) is contained in the extension, 
otherwise zero. We refer by X to the set of binary variables. Additionally, 

for each segment s € oy they introduce a variable c, € Q denoting the 

coordinates of s. The ILP is defined as follows: 

min 5 Grle) we Cle) er ay Cain arb (e) subject to (10.1) 
eck, ecH, 

Lro lp st Lr jlo nig Zt, bp ot Ztp,bo 2 1 V(0, p) E0Ox O,o # Pp (10.2) 

Chait: Wij V(si, Sy) € Ap U Ay (10.3) 

Eh Gi (M ae Wij) ij > —M V@i,j EX (10.4) 

Liz € {0, 1} Vir EX (10.5) 

Inequalities 10.2 model the characterization of separation, i.e., the exis- 
tence of necessary paths between distinct objects in an extension. Inequali- 
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ties 10.3 force the coordinates to obey the distance rules. The coordinates of 

two segments s; and s; that are connected by an arc of weight w;; are forced 

to have distance at least w,;. Inequalities 10.4 force the segments of potential 

additional arcs to have distance at least w;; in help of a big constant. 
A solution of the ILP can be computed with a branch and bound algo- 

rithm. Klau and Mutzel showed that each feasible solution of the ILP defines 

a labeled orthogonal embedding with appropriate shape. 

10.3.6 Optimization Algorithm for Point Set Labeling 

Verweij and Aardal (1999) have given an optimization algorithm for point 
set labeling in the 4-position model in which the number of labels is to be 

maximized. They have formulated the labeling problem as an 0-1 integer 

linear program. In contrast to several other approaches using mathematical 

programming methods, they have used optimization methods that are specific 

for point labeling problems. For an introduction to linear programming we 

recommend (Chvatal, 1983a), for an overview of mathematical programming 

methods used for map labeling see (Zoraster, 1986, 1990). 
The authors make use of the observation that the four label candidates 

of a point p; overlap at p;. This implies that at most one label candidate of 

each point can be in a maximum set of non overlapping label rectangles (see 
Section 10.3.2). Thus, the label problem corresponds to finding a maximum 

independent set of label rectangles. 

The algorithm is a specialized branch-and-cut algorithm for finding a 

maximum independent set of rectangles. It can be used to find provably 

optimal solutions for map labeling instances up to 950 cities within modest 

computation time. 

For a fixed label size o the authors have formulated the maximum in- 

dependent set of rectangles problem as an integer linear program with 0/1 

variables JT. Kucera et al. (1993) have shown that there are only O(n?) sizes 
the optimal label size can take, where n is the number of label candidates. 

Optimizing over those can be done by solving O(logn) maximum indepen- 

dent set of rectangle problems. 

The integer linear program has the following form: For each label rectangle 

a 0/1 variable x; is defined. The objective function is to maximize the sum 
over all x;. Additionally, there is an inequality z;+2,; < 1 if the label rectangle 

of x; overlaps the label rectangle of z;. 

A branch-and-cut algorithm is a branch-and-bound algorithm where cut- 

ting planes might be added to the set of restrictions. The root of the branch- 
and-bound search tree consists of the LP relaxation IT of JT. At level k of 

the tree we have a collection of problems J7,,..., 17, such that all integral 

solutions of JJ are integral solutions of sng; U-:-U TT, 
The branch-and-cut algorithm maintains the best known value of an in- 

teger solution (which also is a lower bound) as well as the best upper bound 
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for an integral solution. At iteration i an open problem TT, is selected and 

solved. If (Be, is infeasible, then ii ; is removed from the list of open problems 

and the algorithm proceeds with the next iteration. Otherwise, if the optimal 

solution Z to I, ; is integral, a ; is removed from the list of open problems 

and the best known value is updated if Z is greater than the best known 

value. Otherwise, a component r of the solution vector that is not integral is 

chosen and Ti, is substituted by two new open problems that are formulated 

by adding ae constraint z, = 0 or x, = 1, respectively. Since it is desir- 

able to restrict the number of open propieme: Verweij and Aardal have first 

invoked cutting plane algorithms and variable setting algorithms before the 

generation of the new open problems. 

The generation of good lower and upper bounds is crucial for pruning the 

search tree. In order to obtain good upper bounds the LP-relaxation IJ can 

be strengthened by adding valid inequalities. The goal of these inequations 

is to cut off the current non-integral optimal solution of a polyhedra nye 

Therefore, before involving the variable setting algorithms two families of 

valid inequalities are used: clique inequalities and odd hole inequalities. For 

the clique inequalities refer to (Verweij and Aardal, 1999; Nemhauser and 

Sigismondi, 1992). The idea of the odd hole inequalities is as follows. The 

conflict graph of the set of rectangles consists of a vertex for each rectangle 

and an edge for each pair of vertices where the corresponding rectangles of 

the vertices overlap. In case that this conflict graph contains an odd circle 
of length 1, it follows that at most = rectangles out of the rectangles cor- 

responding to the vertices in the circle can be placed. These circles lead to 
inequalities that can be used as cutting planes. 

Verweij and Aardal have used three algorithms to reduce the number of 
new open problems. The first algorithm is called variable setting by reduced 
costs. If for some index v of the solution vector Z' we have that Zi, = 0 (or 
Z,, = 1) and if the reduced costs of v are smaller than the gap between the 

cat lower bound and @', then we can set 7, = 0 (or , = 1) for all 7 in the 
subtree of the tree ora at i. 

The second algorithm is called logical implication algorithm. It makes use 

of the following observation: Let 7’, = 1, then it follows that x, = 0 if the 

corresponding rectangles of v and w overlap. This situation is searched in the 

logical implication algorithm. 

The third method is the variable setting by recursion and substitution. It 
is based on the following observation: Let G,; and G2 be a partition of the 
label rectangles where the rectangles of G; do not overlap the label rectangles 
of G2. We say G and Gy are independent. Then, the maximum independent 
set of rectangles of G; U G2 is the maximum independent set of rectangles of 
Gj unified with the the maximum independent set of rectangles of Gz. Focus 
on a node 7 in the branch-and-cut tree. We call all variables that are not set 
to 1 or 0 free. In the third variable setting algorithm they exploit the fact that 
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finding a maximum independent set of a small component is easy. Therefore, 
they search for independent partitions of rectangles corresponding to free 
variables. Then, they determine the maximum independent set of rectangles 
for these partitions and substitute the partial solutions back. 

By incorporating a local search algorithm feasible solutions can be found 
and thereby lower bounds for the optimal value. The local search algorithm 
consists of the generation of an integral solution through rounding and several 
local optimization steps. 

10.4 Line Feature Label Placement 

10.4.1 Labeling a Rectilinear Map 

A rectilinear map consists of n disjoint horizontal and vertical line segments. 

The problem is to label each line segment with a rectangle of height B and 

length the same as the segment. The three positions that are allowed for the 

label are depicted in Figure 10.9(a). The corresponding decision problem is 

called Three Position Rectilinear Segment Labeling (3RSL) problem. This 
problem can be solved in polynomial time. It has been first studied by Doddi 

et al. (1997) and then by Poon et al. (1998). Recently, Strijk and van Kreveld 
(1999) improved the solution of Doddi et al. and Poon et al. 

In Figure 10.9(b) the rectilinear area around each line segment 7 is divided 

into four regions. A label on the line segment will occupy region rj2 and rj,. 

We introduce two boolean variables z;, and 2;2 with values 0 or 1. xj; = 1 

means that rj; is part of the label placement and rj, is not. Analogously, 

Zig = 1 means that rj2 is part of the label placement and rj, is not. The 

expression (%j V 22) encodes that setting xj, implies the setting of xj2 (also 

denoted as (x1 = 2j2)). Thus, n clauses are needed to force the corresponding 
behavior for all segments. For two overlapping regions, e.g. rj, and rj the 

clause (x;1 \ 232) = (Zi V Xj2) enforces that at most one of these regions is 
labeled. 

Poon et al. as well as Strijk and van Kreveld have shown how to find 

all pairwise intersections of label regions in O(nlogn) time by computing 

the horizontal and vertical decomposition and using a sweep line algorithm. 

In contrast to Poon et al., Strijk and van Kreveld have calculated the in- 

tersections implicitly only when needed. This reduces the number of clauses 
for 2SAT and thus the runtime. The resulting 2SAT instance is solved by a 

combination of a graph algorithm of Masuda et al. (1983) and the rectilinear 
segment algorithm of Imai and Asano (1986). 

In total they have improved the running time for the 3RSL problem for 
n line segments from O(n”) (Poon et al., 1998) to O(nlogn) time. Doddi 
et al. (1997) have shown that there exists a lower bound of 2(nlogn) for 
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the runtime of this problem. The version of Strijk and van Kreveld holds this 

lower bound. 
Given the rectilinear line segments, the maximum height rectilinear seg- 

ment labeling problem is to find the maximum B such that there exists a 

placement for n non-overlapping rectangular labels, each attached to a dis- 

tinct line segment, of height B and of length equal to the segment length. 

Strijk and van Kreveld have solved this problem by performing a binary 

search on a list of possible values of maximum label height. Strijk and 

van Kreveld have computed this list only implicitly and therefore improved 

the running time of this problem from O(n? logn) (Poon et al., 1998) to 
O(n log? n) time. : 

In case the axis parallel constraint on the segments is dropped, the compu- 

tation of the pairwise intersection of labeling regions has to be adapted. This 
is done using the partition/cutting tree data structure for segment /segment 

intersection searching of Agarwal and Erickson (1997), which leads to an 
O(n4/3polylog(n)) time algorithm for the corresponding decision problem. 

Note that the 3RSL can be generalized to the k-position rectilinear seg- 

ment labeling problem as shown in Figure 10.9(c). 

10.4.2 On the Edge Label Placement Problem 

Kakoulis and Tollis (1996, 1997) have written several papers on the edge 
labeling problem with extensions to graphical features. They have defined 

the edge labeling problem as an integer linear program: Each label position 

is associated with a cost that reflects the ranking of that label in terms of 

unambiguity and the number of overlaps with other graphical features and 
labels. The objective function is the sum of the costs of all assigned labels. The 
constraints of the integer program guarantee that any edge will have exactly 
one label assigned to it. They have shown that the edge labeling problem is 
NP-complete and remains \VP-complete even when the label candidates of 
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each edge are restricted to have the same size and do not overlap (Kakoulis 
and Tollis, 1996). Similarly to Formann and Wagner (1991) they have reduced 
from 3SAT. 

One of their approaches of labeling edges of graph drawings is restricted 
to unit height, axis-parallel rectangular labels (Kakoulis and Tollis, 1997). 

They divide the input drawing of the given graph G into consecutive hori- 

zontal strips of equal height. The height of each strip is equal to the height 

of the labels. Then, the label candidates are determined for each edge in- 

side the strips. Since a label must lie entirely in a horizontal strip and since 

labels that overlap a vertex or an edge are not considered, each label posi- 

tion overlaps at most one other label position. If two label positions overlap, 

they are grouped together. A bipartite matching graph Gm = (Ve, Vg, Em) 
is defined where each edge in G corresponds to a node in Vz and each label 
group corresponds to a node in Vj. An edge (e,g) in Em connects a node 
e in Ve with a node g in Vg if edge e in G has a label position in group g. 

Furthermore, each edge (e,g) in Em is assigned a cost corresponding to the 

cost of labeling edge e with a label position in g. A maximum cardinality 

minimum weight matching of the matching graph G,, produces a solution 
to the edge labeling problem of this restricted model. Since the best known 

algorithm for the computation of a maximum cardinality minimum weight 

matching takes more than quadratic time with respect to the size of the 

matching graph (Goldberg and Kennedy, 1995; Tarjan, 1983) the authors 

have presented an algorithm that solves the maximum cardinality matching 

problem for their special version of a matching graph in linear time. They 

have suggested using this algorithm as a fast heuristic for the computation 

of a maximum cardinality minimum weight matching. Note that the running 

time of this algorithm is independent of the size of the graph; it depends on 

the chosen graph drawing, the height, and the number of strips. 

The restriction that the label candidates have to lie entirely in horizontal 

strips is a weakness of this algorithm which causes problems with horizontal 

edges. The horizontal edges have to be located on the boundary of the strips, 

otherwise no label candidates would be assigned to such edges. In the given 

form this approach is not applicable for orthogonal drawings. Furthermore, 

edges with a small slope generate very few label candidates. Although the 

maximum cardinality minimum weight matching is solved optimally, nothing 

can be said about the quality of the labeling with respect to an optimal 

labeling in a model that allows more label candidates especially for near 

horizontal edges. 
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10.5 Graphical Feature Label Placement 

10.5.1 Map Labeling Reduced to Graph Problems 

Kakoulis and Tollis (1998b) have suggested a unified approach to labeling 

graphical features that is suitable for labeling all kinds of graphical features 

with axis parallel rectangular labels of variable size. In particular, their unified 

approach is also suitable for labeling orthogonal drawings of graphs. Recall 

that a drawing is called orthogonal if each line segment is either vertical or 

horizontal. Their approach basically consists of three steps. 

Firstly, a large set of label candidates is generated for each graphical 

feature. Other than in the previous section, the label candidates are no longer 

restricted to lie in strips. Each label candidate is assigned a cost that reflects 

the ranking of that label. 
Secondly, a graph Gr = (Vi), E)) is created, where every node / in V; corre- 

sponds to a label candidate. An edge (11,12) in E; connects two nodes in V,, if 
the corresponding label candidates overlap. Nodes are heuristically removed 

from Gr until each connected component of Gz is a clique. In a clique, each 

node is adjacent to all other nodes. Since each node in Gr corresponds to a 

label candidate it follows that the set of label candidates is subdivided into 
subsets (the cliques) where each label candidate intersectd any other label 

candidate of that subset. Clearly, at most one label candidate of a clique can 

be positioned in an overlap-free labeling. 

Thirdly, a bipartite matching graph is defined G» = (V7, Ve, Em), where 
every graphical feature corresponds to a node in V+ and every clique of label 

candidates corresponds to a node in V,. An edge (f,c) in Em connects a node 

f in Vs with a node c in V, if feature f has a label candidate in clique c. 

The edge is associated with the cost of labeling feature f with its label can- 

didate in c. A maximum cardinality minimum weight matching in G,, yields 

an optimal label assignment with no overlaps with respect to the reduced 

label set. The overall running time is dominated by the running time of the 
maximum cardinality minimum weight matching algorithm that is applied. 

(See Goldberg and Kennedy (1995); Tarjan (1983) for efficient algorithms). 
They have further suggested a postprocessing based on local and exhaus- 

tive search by exploring the solution space in three ways. They have locally 

shifted assigned labels to create space for new labels. They have searched the 

solution space to find if there is enough space to assign a label after reposition- 

ing already assigned labels and they have searched the solution space after 

relaxing the restrictions on the quality of the label assignment by allowing 

labels to overlap their associated graphical features and/or other labels. 

Since the nodes from Gz are removed heuristically until each connected 

component is a clique, nothing can be said about the quality of the algorithm. 

Kakoulis and Tollis have not commented on the runtime of their approaches. 

However, the time required by the matching algorithm of O(n?:*) is certainly 

a good lower bound. Due to the exponential behavior of their postprocessing 
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steps they allow only a few steps of backtracking in order to keep polynomial 
runtime of their algorithm. 

For the graphical feature labeling problem where each graphical feature 
can receive more than one label, say k, Kakoulis and Tollis (1998a) have 
suggested two algorithms. One consists of a loop that executes an extension 
of (Kakoulis and Tollis, 1997, 1998b) k times. The other reduces the matching 
graph to a network flow problem, where the capacities are adjusted according 
to the number of labels per feature. 

All their approaches are part of the Graph Layout Toolkit, a Tom Sawyer 
Software product? which is a graph layout and editor toolkit. Several test 

results are given in their articles, but none of their tests compares their 

approaches with other edge labeling or general labeling algorithms. 

10.5.2 A Combinatorial Framework for Map Labeling 

Given is a set of graphical features and a finite set of label candidates for each 

feature of arbitrary shape. Wagner and Wolff (1998) have designed an algo- 
rithm for label number maximization that transforms the label problem into 

a combinatorial problem that is related to a concept suggested in the artificial 

intelligence community under the name constraint satisfaction (Mackworth 

and Freuder, 1985; Knuth and Raghunathan, 1992; Freuder and Wallace, 

1992). 

We chose this approach to be discussed more in detail since all kinds of 

graphical features and all kinds of label shapes are allowed and since we are 
convinced, that this approach allows to be extended, improved, or adapted 

to special cases. 

The transformation of the label problem into a constraint satisfaction 

problem (CSP) is defined as follows: For each graphical feature to be labeled 

the authors define a variable v; and a domain D,; and associate the variable 

with its domain. Each variable can be assigned certain values. Each value 

corresponds to a label candidate of the graphical feature corresponding to 

the variable. The set of constraints are binary constraints excluding pairs of 

variable values, namely those where the corresponding labels intersect. 

Other than in the artificial intelligence community, Wagner and Wolff 

have defined an optimal solution to be a violation free assignment of values 

to the variables for as many variables as possible. An m-consistency algorithm 

removes all inconsistencies among m of the given n variables. 

They have presented rules which, applied exhaustively to a CSP, achieve a 
weak form of local consistency. They have referred to them as weak since they 

only prove applying these rules does not destroy an optimal solution. They 

have not proved that the set of rules they suggest is in any sense complete. 

We now give their CSP rules together with a graphical illustration of 
them. Figures 10.10(a), 10.10(b) and 10.10(c) show typical situations before 

3 http://www. tomsawyer.com/ 
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Fig. 10.10. Consistency rules and candidate elimination. 

and after the application of a rule. The domain of a variable is represented 
by a rectangular shaded area, the values of a variable are squares, and two 

values are connected by a line segment if their corresponding labels overlap. 

Bold lines mean that the corresponding constraints are responsible for the 

application of the depicted rule. Gray lines not ending in a box indicate that 

the value from which they are emanating might constrain further variables. 

G1. Ifa variable v has two values w; and we, and all values constrained by wj 

are also constrained by we, then set Dy = D, — {wz}, see Figure 10.10(a). 

Special case: If a variable v has a value w without constraints, then set 

DF = {w}. 

G2. If there is a subset V of variables v1,...,v,, each with a value w; such 

that w; only constrains variables in V but does not exclude any w; for 

lice 9, theniset Dy) = 110) Mor ties leat 

Special case: If a variable v has a value w that only constraints a variable 

v’, and v’ has a value w’ which constrains only v and does not exclude 

w, then set D, = {w} and D, = {w’}, see Figure 10.10(b). 
G3. If the domain D, of a variable v consists only of one value w, and the 

values wyj,...,w, excluded by w belong to different variables vj,...,v 

and pairwise exclude each other (i.e., if the corresponding labels of 

W,W1,..., WwW) pairwise overlap), then set D,, = Dy, —{w;} fori =1,...,], 
see Figure 10.10(c). 
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The application of the rules G1, G2, and G3 does not destroy an optimal 
solution. Since it is ’P-hard to decide whether there is a solution that assigns 
values to all variables, one cannot expect that even an exhaustive application 
of the above rules immediately gives rise to a solution (which then would 
be optimal). However, this approach is an effective preprocessing step for 
heuristics or backtracking, since the search space for an optimal solution can 
be reduced considerably. 

This general concept is then applied to labeling points with axis parallel 

rectangles. Wagner and Wolff’s algorithm consists of two phases. The rules 

applied in the first phase are restrictions to the more general rules G1, G2, 

and G3, therefore it is clear that they do not destroy an optimal solution. 

In the first phase of the algorithm, the following three constraint satisfac- 
tion rules are iteratively applied: 

— If p has a candidate p; without any conflict, then p; is declared to be part 

of the solution and all other candidate labels of p are eliminated. 

— Let p have a candidate p; which is only in conflict with some q,. Let q have 

a candidate q; (j # k), which is only overlapped by p; (J 4 7). Then, add 
pi and q; to the solution and eliminate all other candidates of p and q, see 

Figure 10.10(d). 
— Let p be a feature that has only one label candidate p;. Let p; overlap 

k other label candidates that overlap each other (i.e., they form a clique 

in the candidate conflict graph). Then, p is labeled with p; and all labels 

overlapping p; are eliminated. 

Phase II heuristically eliminates label candidates similar to a part of the 

heuristics in former papers of Wagner and Wolff (1997, 1995b,a). More pre- 

cisely, for all label features that have a maximum number of candidates they 

delete the candidate with the maximum number of conflicts among the can- 

didates of that feature. They repeat this process until each feature has at 

most one candidate left. 
The construction of the conflict graph needs O(nlogn) worst case time 

in case of n axis parallel rectangular labels. Phase I and Phase II of the 

algorithm need together at most O(n + k?) time, where k is the number of 

pairs of intersecting label candidates. For very dense problems, i.e., many 

features are positioned in a small area with respect to the size of the labels, 

k could be very large and it could dominate the runtime. 
Wagner and Wolff have compared the performance of their algorithm in 

respect to percentage of labeled sites and runtime with a greedy algorithm, 

similar to the one of van Kreveld et al. (1998) introduced in Section 10.2(b), 
and an implementation of simulated annealing according to Christensen et al. 

(1995). Recapitulating their test results, the simulated annealing has outper- 

formed the algorithm of Wagner and Wolff in some example classes by one 
or two percents, but simulated annealing has needed much longer to achieve 

a good labeling. For examples with a possible complete labeling their algo- 

rithm does not leave more than five percent unlabeled. On the other hand 
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no statement could be made about a constant factor approximation behavior 

of the algorithm. Additionally, the algorithm is restricted to a finite set of 

label candidates for one feature, but no longer to only four candidates. As a 

positive aspect we mention that their algorithm works with arbitrary label 

shapes. 

Recently, Wolff (1999) has been doing research in a new form of local 

consistency named r-irreducibility with application to map labeling. A CSP 

is r-irreducible if for each variable subset w of cardinality r no yalue x for 

a variable v; exists, such that setting v; = x reduces the size of an optimal 

solution for w. He has given an algorithm for 2-irreducibility where the rules 

are very similar to the rules of the algorithm we described here. He further 

has shown that an n-irreducible instance gives an optimal solution. Thus, 

irreducibility introduces a new scale between an unreduced instance and its 

solution. Due to the hardness of the problem, one cannot expect to find an n- 

irreducibility algorithm, but applying his 2-irreducibility algorithm to point 

labeling, Wolff has managed to improve previous results in practice. 

10.6 General Optimization Strategies Applied to Map 

Labeling 

Many researchers have attempted to solve map labeling problems using pow- 

erful optimization strategies that have their origin in mathematical program- 

ming, scientific programming, physical programming, artificial intelligence, 

etc. To name only the most prominent methods: 

Gradient descent. A randomly generated labeling is scored and then im- 

proved monotonically by considering all alternative positions for each 

label (chosen from a discrete set) and making the single label move to 
the position that most improves the quality of the whole labeling. Since 

only changes that improve the quality of the labeling are allowed, it is 

easy to see that this technique gets easily stuck in local optima (Chris- 
tensen et al., 1993). 

Simulated annealing. Simulated annealing is a generalization of gradient 

descent in which moves that worsen the quality of the labeling are oc- 

casionally allowed to avoid getting stuck in local minima (Christensen 

et al., 1993, 1995; Edmondson et al., 1997). 

For a survey on these optimization methods see (Christensen et al., 1995; 

Edmondson et al., 1997). These methods have the advantage that they are 

applicable to a wide variety of problems including map labeling. They are easy 

to implement and at least the simulated annealing approach yields good test 

results (Christensen et al., 1997, 1995; Edmondson et al., 1997; Wagner and 

Wolff, 1998). Except for some zero-one integer programming based heuristics, 

the disadvantages of these methods are the long running time and the lack of 
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quality guarantees. In addition, most general optimization methods do not 

take advantage of the geometric properties of a map labeling instance. 
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A. Software Packages 

Thomas Willhalm 

The theoretical foundations of graph drawing, presented throughout this 

book, are interesting, if not absorbing. It is, however, even more interest- 

ing with the ability to actually draw some graphs. In this appendix, we list 

some software packages that should enable the reader to try out many of the 

algorithms that have been presented. In view of the number of the ever grow- 

ing number of available programs, we are aware that this list is incomplete 

and will soon be outdated. Research driven software can evolve rapidly, or 

be abandoned overnight. The list is intended to support first practical steps 
in graph drawing. 

Graph Drawing Server 

The Graph Drawing Server is an Internet service, that returns drawings of 
graphs, where graphs can be uploaded using either a Java graph editor applet 
or a Java client program. 

Platforms The required software runs on every platform, for which a Java 
virtual machine exists. 

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 274-281, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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Availability The Web pages at http: //loki.cs.brown.edu:8081/graph- 

server/ make it easy to access the server. However, bandwidth problems 

can make this service difficult to use from outside of North America. 

Algorithms Currently, most of the algorithms are for orthogonal drawing. 

Different types of graphs varying from trees to multi-graphs are sup- 

ported. Furthermore, algorithms for layered graphs are included. 

Documentation The Web pages contain explanations for the algorithms 

and references to publications. 

AGD — Algorithms for Graph Drawing 

nodes. 12 edges. 20 “4181 518.79. 

AGD is an object-oriented C++ library of algorithms for handling and draw- 
ing graphs. 

Platforms AGD has been tested on SunOS (GNU- and SunPro CC com- 
piler), Linux (GNU compiler) and Windows NT (Visual C++ 5.0). For 
linking, LEDA has to be installed, whereas the use of ABACUS is op- 

tional. 

Availability For non-commercial purposes, precompiled binaries are avail- 

able free of charge from http://www.mpi-sb.mpg.de/AGD/. Commer- 

cial licenses are distributed by Algorithmic-Solutions GmbH, contact 

agd@algorithmic-solutions.com. 

Algorithms The library offers a great variety of algorithms for graphical 

layout of graphs in two dimensions, e.g. methods for drawing planar 

graphs, hierarchical graphs, or orthogonal graphs. In addition AGD offers 

planarization methods and other utilities to handle typical subtasks of 

graph drawing approaches. 
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Documentation The package includes man page for Unix systems and 

IATRX sources for the manual. The Web page also has an online man- 

ual. 

Graphlet 

Graphlet is a toolkit for graph editors and graph ‘algorithms, in particular 

graph drawing algorithms. 

Platforms Precompiled binaries are available for Sun Solaris, Linux, and 

Windows 95/98/NT. The tool is based on GraphScript, an extension of 

Tcl/Tk with support for graph operations. Algorithms are implemented 

in C++ and GraphScript. 

Availability Graphlet is free for non-commercial use. Binaries are available 

from http: //www.fmi.uni-passau.de/Graphlet/, source code upon re- 
quest. 

Algorithms Several variants of the spring embedder, algorithms for layered 

drawings graphs, and of tree drawing algorithms (among those one for 
radial layouts). 

Documentation No user manual is provided. However, there is a manual 

for GraphScript, the C++ interface, and sample code showing how to 
write new algorithms. 
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GDToolkit — Graph Drawing Toolkit 

SJ 21S} =e] t) al ie 3 
edge undirected 47.98 29.94: 
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a 

GDToolkit is an object-oriented C++ library for handling and drawing 

graphs. It includes a graph editor that can be used to call several drawing 

algorithms and a batch layout generator. 

Platforms GDToolkit has been tested on Sun Solaris (GNU compiler), PC 
Linux (GNU compiler), and Windows 95/98/NT (Borland compiler). 

Availability For non-commercial purposes, precompiled binaries are avail- 

able free of charge from http: //www.dia.uniroma3.it/~gdt/. For link- 
ing, LEDA has to be installed. Commercial licenses are distributed by 

INTEGRA Sistemi S.r.l. (Italy); contact Leonforte@Integra- Sistemi. 
com. 

Algorithms The library offers data structures for several types of graphs 

such as trees, flow networks, planar graphs, upward planar graphs, 

and SPQR-trees. It features algorithms for orthogonal drawings, layered 

drawings, upward planar drawings, and visibility drawings. There are no 

force-directed or 3D layout algorithms. 

Documentation The documentation consists of some online tutorials and 

the annotated header files. 
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yFiles 

dete access 

The yFiles are Java packages that form a framework for the development of 

applications that need to visualize graphs. Included are diverse graph layout 

and labeling algorithms, graph viewer/editor components (2D and 3D) and 

demo applications. 

Platforms All Java 2 platforms, currently including Linux, Solaris, HPUX, 

Windows, and probably others. 

Availability The library can be used free of charge for non-commercial pur- 

poses. Java class files are available from http: //www-pr.informatik. 
uni-tuebingen.de/yfiles/. 

Algorithms Customizable algorithms for layered drawings, force directed 

drawings, tree drawings, and orthogonal drawings are provided. 

Documentation API documentation (javadoc) available. 

Other Packages 

In addition to the above, some more specialized packages are available for ex- 
perimentation. They are grouped into categories, but since they often com- 
bine several aspects, interesting packages may appear in unexpected cate- 
gories. 

Larger Packages 

Pajek http: //vlado.fmf.uni-1j.si/pub/networks/pajek/ 
A package for the analysis of large networks for Windows. It supports 
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hierarchical and clustered graphs, e.g. an interface for genealogy. Several 
variations of 2D and 3D layout algorithms based on physical models, 

eigenvalues, and layers are included. Furthermore, various tools for par- 
titioning, numbering, etc. are provided. 

daVinci http://www.tzi.de/~davinci/ 

A graph editor and layout engine for directed graphs. It supports dynamic 

drawings. An API for the graph editor is provided. The graphs are stored 

in a term representation and can be output in PostScript. Binaries are 

available for different flavors of Unix. A documentation and a tutorial in 
HTML are included. 

GraphViz http://www.research.att.com/sw/tools/graphviz/ 
A set of graph drawing tools for Unix or MS-Windows (win32). Its use 

is free of charge for non-commercial purposes, including source code. It 

supports hierarchical layouts, a spring embedder, and a graph editor. 

Apart from the Sugiyama algorithm, its speciality is the sophisticated 

curve drawing procedure which yields smooth edges. Output formats are 

(among others) PostScript, HPGL, and GIF. 
VCG http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html 

A tool to produce layered drawings of directed graphs. Various Unix 

platforms are supported and there exists also a Windows 3.1 port. The 

source code is available (GNU General Public License). The main design 
goal has been speed. It can be used interactively or as a command line 

tool. 

Commercial Packages 

GLT/GET http://www.tomsawyer.com/ 
Two commercial libraries of graph layout algorithms and a graph editor. 

Universities can participate in a program to obtain the software at a dis- 

count rate. There are Java and C++ versions of GLT/GET for Windows 

and various Unixes. 
The GLT offers four different algorithms: circular layout, hierarchical lay- 
out (Sugiyama implementation), symmetrical layout (spring embedder 

implementation), and orthogonal layout (implementation of the 3-phase 

method). 
DataViews http://www.dvcorp.com/welcome.html 

Commercial tools for data visualization with a C API for Windows 
and Unix and a C++ API for Windows. Furthermore, Plug-Ins for Web 

browsers and ActiveX components are supported. 
GraphVisualizer3D http://www.omg.unb.ca/hci/projects/gv3d/ 

Visualization of object-oriented code (files, classes, and variables) in three 

dimensions. Currently, Silicon Graphics and Sun workstations are sup- 

ported. The upcoming commercial version (http: //www.nvss .nb.ca/) 

will also support Linux and Windows. 



280 Thomas Willhalm 

3D Packages 

OrthoPak http://www.cs.uleth.ac/“wismath/packages/ 
Tool for displaying graphs orthogonally in three dimensions. For non- 

commercial use, binaries and source code are freely available for Solaris 

and Linux. The C++ code is based on LEDA and outputs VRML files. 

3DCube http://www.dia.uniroma3.it/~patrigna/3dcube/ 
A package of recent 3D orthogonal graph drawing algorithms. It is de- 

veloped in C++ under Unix. VRML and GML output is available and 

OpenGL output under development. Currently, the program can only be 

used through a CGI interface. 

GEM3D http://i44s11.info.uni-karlsruhe.de/~frick/gd/gem3Ddraw 

Prototype implementation of Gem3D (spring embedder variant for large 

data structures in 3D). The program is available for SGI and DEC, fur- 
ther platforms on request. It uses OpenGL. 

Java 

VGJ http://www.eng. auburn. edu/department/cse/research/graph_- 

drawing/graph_drawing. html 

Visualizing Graphs with Java. Currently, there is mainly the graph editor 

distributed under the GNU general public license. The data format is 
GML. Some basic algorithms for trees as well as a spring embedder are 
included. 

Interactive Graph Drawing 

http: //www.cs.rpi.edu/proj ects/pb/graphdraw/index -html 

A Java applet that provides a graph editor and some drawing algorithms 

(force directed, hierarchical, circular). Source code is available. 
JIGGLE http://www.cs.cmu.edu/~quixote 

JIGGLE is a Java-based platform for experimenting with numerical op- 

timization approaches to general graph layout. Its features include an 

implementation of the Barnes-Hut tree code and an optimization proce- 
dure on the conjugate gradient method. 

GRAPPA http://www.research.att.com/sw/tools/graphviz/pack- 
ages/grappa.html 
A GRAPh PAckage written in Java. It provides an application program- 
ming interface (API). 

LayoutShow http://www.cs.yorku.ca/~lila/work.html 
LayoutShow is a Java-based multi-threaded application for experimen- 
tation with force-directed algorithms and layouts based on eigenvectors. 
Input and output format is GML. 

Other Languages 

ffGraph http: //www.fmi.uni-passau.de/~friedric/ 
C++ class library to create and display directed graphs. Tel/tk is used 
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to display 2 or 3 dimensional drawings for X11 systems. Currently, a 3d 

spring embedder and a Sugiyama layout algorithm are included, as well 

as a graph editor. 

GraphPlace ftp://ftp.dcs.warwick.ac.uk/people/Martyn. Amos/ 
packages/graphplace/ 
Filter program written in ANSI C that takes a list of nodes and edges 

and produces a list of coordinates or a PostScript file. 

tkgcev http://www.informatik.uni-stuttgart .de/ipvr/swlab/sopra/ 
tkgcv/tkgcv.html 

Tcl/Tk extension for graph drawing. It requires a C compiler (source 

code is available). The module has been tested under Linux and HP- 
Unix. Currently, four algorithms are included. 

Mathematica 

NetGraph http://eclectic.ss.uci.edu/linkages/programs/net- 

graph/netgraph. html 
Visualization packages for Mathematica. It uses symbolic hypotheses to 

draw graphs. 

External Binaries 

xdrawgraph http://rocana.aist-nara.ac.jp/~hayashi/E/graph- 

tool. html 

A Unix package to edit and draw graphs. The graph drawing algorithms 

are implemented as external programs. 

Graph Editors 

angela! http://www.mpi-sb.mpg.de/~pabst/angela/ 

Angela! is a Natural Graph Editor with Layouting Algorithms for Unix. 

It is written in C and uses Tcl/Tk and Tix. 
Ginger http://www.cs.auc.dk/~normark/Ginger/ginger .html 

Graph editor for Unix. It uses XPM and Elk (optionally). 

GraphPanel http://binger.centre.edu/GraphPanel/ 

A simple graph editor written in Java under GNU public license. It can 

export the graphs to PostScript files. 
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i ILA 
Graph drawing is a dy] d of computer - 
science and mathematics. Se a ite i a of Seatraatta:! 
relations between objects. The range of topics dealt with extends from - 
graph theory, graph algorithms, geometry, and topology to visual languages, 
visual perception, and information visualization, and to computer-human 
interaction and graphics design. The automated generation of g graph draw- 
ings has important consequences for many subfields of computer science 
as well as for a broad variety of interdisciplinary application fields. 

This monograph gives a systematic overview of graph drawing and intro- 
duces the reader gently to the state of the art in the area. The presentation 
concentrates on algorithmic aspects, with an emphasis on interesting visual- 
ization problems with elegant solutions. Much attention is paid to a uniform 
style of writing and presentation, consistent terminology, and complemen- 
tary coverage of the relevant issues throughout the 10 chapters. An overview 
of existing graph drawing systems, a comprehensive bibliography, and a 

-subject index round off the presentation. 

This tutorial is ideally suited as an introduction for newcomers to graph 
drawing. Ambitioned practitioners and researchers active in the area will 
find it a valuable source of reference and information. 

~ 

This book is based on a seminar for young computer svientists sponsored 
by the German Society for Computer Science (GI) and held at Schlo& Dagstuhl, 
Germany, in April 1999. The objective of the GI Seminar series is to introduce 

students and young computer scientists to important new resear 

and results not yet accessible in textbooks or covered in the 
a consolidated and comprehensive way. 

In parallel to the printed book, each new volume is published électronically in 
LNCS/LNAI Online at http://link.springer-ny.com/series/Incs/index.htm 

Detailed information on LNCS/LNAI can be found at the series home page 
http://www. a a Proposals for a be 
should be sent to the pall Y 
LNCS/LNAI Editorial, Tiergartenstr. 17, eia8 . Wee Mo 
; pil; Incs@springer.de 
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