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Preface

As with every area of mathematics, graph theory has a number of mathematicians
who have contributed to its development in a number of ways, namely (1) by
proving theorems that are instrumental in its growth, (2) by giving lectures and
writing survey papers and books that popularize graph theory, and (3) by creating
new concepts and topics that have drawn mathematicians into various areas of graph
theory. One mathematician responsible for all of this is Stephen T. Hedetniemi.
Steve earned his Ph.D. in mathematics with a specialization in graph theory at the
University of Michigan in 1966 under the direction of the well-known graph theorist
Frank Harary.

Two major areas of research by Steve Hedetniemi are domination and coloring.
In this book, we begin by discussing several topics, results, and problems in
domination in which Steve has made a major contribution. From domination, we
move on to a number of coloring topics. Along the way from domination to col-
oring, we also discuss other research topics in Stephen Hedetniemi’s graph theory,
including distance in graphs and two types of traversing walks. In the eight chapters
that follow, while the material presented represents only a small sample of Steve’s
research in graph theory, we believe that beyond what is included lies other avenues
for research.

Through studying chessboard problems, Stephen Hedetniemi introduced total
domination, which has become one of the major topics of study in domination.
Hedetniemi and others showed that there is a chain of inequalities involving the
domination number of a graph, the independent domination number, and other
domination-related parameters. These are the primary topics of Chap. 1. The
independent domination number and total domination number are discussed in
more detail in Chap. 2. If every vertex in a dominating set S of a graph G is
assigned the value 1 and the vertices not in S are assigned 0, then the sum of the
values of each vertex of G and its neighbors is at least 1. This observation by
Hedetniemi led to the introduction of a dominating function of a graph. This
concept, together with some variations, is the subject of Chap. 3. Two recent
domination-related parameters introduced by Hedetniemi, namely Roman domi-
nation and alliances in graphs, are the subject of Chap. 4. In the first four chapters
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viii Preface

then, we discuss some of the primary and most recent results dealing with
prominent domination parameters, as well as new and interesting concepts and
problems derived from these concepts.

Many areas of graph theory different from domination have also been influenced
by the research of Stephen Hedetniemi. One of these is distance in graphs in which
Steve has investigated two interpretations of the “middle” of a graph, namely the
center and median, which have numerous applications. These and other
distance-related subgraphs of graphs are the topics of Chap. 5. In Chap. 6, we
discuss two graph traversing concepts studied by Hedetniemi and his coauthors, one
in which all edges of a graph are traversed, resulting in Eulerian walks, and a
second in which all vertices are traversed, resulting in Hamiltonian walks.

Graph colorings has been a popular area of research for well over a century. This
has also been a topic of interest for Hedetniemi for many years. In fact, he wrote his
doctoral dissertation on graph homomorphisms, a concept closely tied to proper
colorings of graphs. The concept of graph homomorphisms occurs in both Chaps. 7
and 8. Every proper coloring of a graph using the minimum number of colors has
the property that for every two distinct colors, there are adjacent vertices with these
colors. Any coloring with this property is a complete coloring, which is the primary
topic of Chap. 7. The two major methods of evaluating how highly connected a
graph involves vertex-cuts and edge-cuts. In Chap. 8, we see relationships of these
concepts with graph colorings, resulting in color connection and disconnection in
graphs. Recent results involving these connectivity-coloring concepts are presented
along with suggestions for new avenues of research.

Kalamazoo, MI, USA Gary Chartrand
Johnson City, TN, USA Teresa W. Haynes
Johannesburg, South Africa Michael A. Henning
Kalamazoo, MI, USA Ping Zhang

August 2019
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Chapter 1 ®)
Pioneer of Domination in Graphs e

Stephen Hedetniemi is perhaps best known for his pioneering work in domination
in graphs. In this chapter, we explore some of his contributions to the direction and
advancement of this field of study. We focus on two topics, namely domination of
chessboard graphs and the domination chain.

1.1 Introduction

Honest pioneer work in the field of science has always been, and will continue to be, life’s
pilot. Wilhelm Reich

Pioneering is the work of individuals. Susanne Katherina Langer

Stephen Hedetniemi is at the top of the list of individuals who have most influenced
the growth of the popular area of domination in graphs. In this chapter, we first discuss
the origin of domination as a chessboard covering problem and consider Steve’s
contribution to this area of study. Then we turn our attention to the “so-called”
domination chain, which was introduced by Hedetniemi along with Cockayne and
Miller.

In the subsequent two sections, we will use the following terminology and intro-
duce additional notation as needed. A set S of vertices of a graph G is independent
if no two vertices in S are adjacent, and the maximum cardinality of an independent
set of G is the independence number of G, denoted a(G). A dominating set S of
G is a set of vertices of G such that every vertex in V \ S is adjacent to a vertex
in S, and the domination number v(G) is the minimum cardinality of a dominating
set of G. The independent domination number of G, denoted i (G), is the minimum
cardinality of an independent dominating set of G.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 1
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1.2 Covering Chessboards

Play is the highest form of research. Albert Einstein

Although domination in graphs was not formally defined in mathematics until the
1960s, its inception occurred in the 1860s under the guise of covering a chessboard.
A chess piece is said to cover (attack) any square on a chessboard that it can reach in
a single move. For example, in one move a queen can move any number of squares
horizontally, vertically, or diagonally. Thus, a queen covers the squares in the same
row, column, or diagonal with it.

In 1862, de Jaenisch [13] posed the problem of determining the minimum number
of queens required to cover an n X n chessboard. To interpret a question of this type
as a graph theory problem, a graph is formed by representing each square as a vertex,
with two vertices adjacent if a chess piece positioned on one square covers the other.
In particular, the Queen’s graph, denoted Q,,, forann x n chessboard has n? vertices,
where two vertices are adjacent if and only if the squares they represent are in the
same row, column, or diagonal. It follows that de Jaenisch’s question, posed some
one hundred years prior to the formalization of domination in graphs, translates to
determining the domination number of the Queen’s graph.

From the perspective of chessboard coverings, de Jaenisch [13] determined min-
imum dominating sets and minimum independent dominating sets of Q,, forn < 8.
In particular, he asserts that v(Qg) = 5. See Fig. 1.1 for an example of a minimum
cover of the 8 x 8 chessboard with five queens. For another example, the placement
of queens shown in Fig. 1.2 covers the board with the added constraint that no two

Fig. 1.1 Five queens
covering an 8 x 8
chessboard
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Fig. 1.2 Minimum
independent dominating
set of queens

queens can attack (cover) each other. That is, these five queens represent a minimum
independent dominating set of the Queen’s graph and v(Qg) = i(Qg) = 5.

W. W. Rouse Ball [2] listed three basic types of problems being studied on chess-
boards in 1892 as follows:

1. Covering: Determine the minimum number of chess pieces of a given type that
are required to cover every square of an n x n chessboard. (Note that this is de
Jaenish’s question when the specified chess piece is a queen.)

2. Independent Covering: Determine the minimum number of mutually nonattacking
chess pieces of a given type that are required to cover every square of an n X n
chessboard.

3. Independence: Determine the maximum number of chess pieces of a given type
that can be placed on an n x n chessboard such that no two pieces attack (cover)
each other.

Hence, for the graph G associated with the given chess piece and chessboard, the
problems translate to determining (1) the domination number v(G), (2) the inde-
pendent domination number i (G), and (3) the independence number a(G). If the
chess piece being considered is the queen, Problem (3) is commonly known as the
N-queens Problem. A solution to the N-queens Problem showing that ao(Qg) = 8
is shown in Fig. 1.3. People have tried for over 150 years to find answers to these
types of problems on chessboards, unaware for the first hundred years or so that
they were actually trying to determine the domination, independent domination, and
independence numbers of chessboard graphs.

It is not surprising that as a pioneer of domination in graphs, Hedetniemi is also
interested in chessboard problems. In fact, Hedetniemi states in [18] that it was the



4 1 Pioneer of Domination in Graphs

Fig. 1.3 Maximum
independent set of queens

solution to covering an 8 x 8 chessboard with five queens shown in Fig. 1.1 that led
to his discovering the total domination number. He noticed that in this particular
covering each of the five queens was covered by another queen. In other words, for
the associated dominating set S of the Queen’s graph, not only did the vertices in
V' \ S have aneighbor in S, each vertex in S also had a neighbor in S. The realization
that this was a new type of domination that had not yet been studied led to the
introduction of total domination by Cockayne, Hedetniemi, and Dawes in their now
classic paper [8]. This paper spurred much growth in the field of domination as a
whole.

Also, noting that the queens in Fig. 1.1 are placed along a diagonal, Cockayne
and Hedetniemi [11] proposed a new variant of covering all the squares of ann x n
chessboard by placing queens only on the main diagonal. Another interesting property
of this particular dominating set of queens is that all the queens are on squares of
the same color (with the usual alternating color scheme for board squares). In fact,
many minimum dominating sets of the Queen’s graph are monochromatic. For more
examples of monochromatic dominating sets, a minimum independent dominating
set of the 11 x 11 chessboard is shown in Fig. 1.4 and a minimum dominating set
for the 13 x 13 chessboard is shown in Fig. 1.5.

Hedetniemi’s research in chessboard problems extends to graphs defined by
the movements of various chess pieces in addition to the queen, for examples the
bishop, rook, and knight. In addition, Steve’s promotion of chessboard type prob-
lems includes two excellent surveys, namely a 1995 survey [15] by Fricke, Hedet-
niemi, Hedetniemi, McRae, Wallis, Jacobson, Martin, and Weakley and a 1998 survey
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Fig. 1.4 Five queens covering an 11 x 11 chessboard

chapter [17] by Hedetniemi, Hedetniemi, and Reynolds. These surveys stimulated
interest and escalated research in the area of domination of chessboard graphs.

Douglas Weakley, a leading researcher in domination of the Queen’s graph, credits
Hedetniemi for his interest in chessboard problems. For a sample of Weakley’s work
on dominating the Queen’s graph, see [14, 22-24]. In his chapter titled “Queens
Around the World in Twenty-five Years”, Weakley [25] states that Hedetniemi’s
fascinating lecture in the summer of 1991 at Indiana University—Purdue University
Fort Wayne on chessboard graphs and domination parameters inspired him to change
his research focus to this topic. So it seems that Steve has positively influenced
Weakley, like he has so many others.

Determining the domination number of the Queen’s graph appears to be a complex
challenge. Anne Sinko and Peter Slater [21] describe it as a “long studied, highly
entertaining, and very difficult problem”. Today much of the research involved in
determining exact values for chessboard type parameters is algorithmic in nature.
As noted in [18, 20], only relatively few exact values of the domination number
of the Queen’s graph are known. According to Hedetniemi [18], the 2001 paper
by Ostergérd and Weakley [20] is the definitive paper on the subject. The value of
v(Q,) is either known, or known to be one of two consecutive values for alln < 120
(see [20]). The known values of v(Q,) and i (Q,) for 4 < n < 24 are summarized
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Fig. 1.5 Seven queens covering a 13 x 13 chessboard

Table 1.1 Values of v(Q,,) and i (Q,,) for small n
n 4 5 6 7 8 9 10 11 12 13 14
Y¥(Qn) |2 3 3 4 5 5 5 5
i(Qn) |3 3 4 4 5 5 5 5

n 15 16 17 18 19 20 21 22 23 24
Y(Qn) |9 9 9 9 10 11 11 12 12 13
i(Qn) |9 9 9 10 11 11 11 12 13 13

in Table 1.1 (see [4, 20]). The table values for i (Q,) for n € {19, 20, 22, 23, 24}
and v(Q,) for n € {20, 22, 24} are due to the 2017 doctoral dissertation of William
Bird [4].

Covering with queens has also been studied for rectangular shaped boards, see [6]
forexample. Let Q,,,, denote the Queen’s graph on the m x n chessboard. Figure 1.6
illustrates the unique (up to symmetry) minimum independent dominating set of

O12x18-
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Fig. 1.6 Unique minimum independent dominating set of a 12 x 18 chessboard

We conclude this section with a conjecture made by Hedetniemi at the 1992
Western Michigan University Graph Theory Conference.

Conjecture 1.2.1 (Hedetniemi) Foranyn > 1, v(Q,) < v(Qn+1).

This conjecture remains open and is listed among Steve’s top 10 favorite con-
jectures in [18]. Recent work of Bozdki, Gal, Marosi, and Weakley [6] shows that
Conjecture 1.2.1 does not extend to rectangular boards. Note that v(Q,,«,) is the
function of two variables, m and n. Hedetniemi’s conjecture can be rephrased for
each variable as follows: (1) Is v(Q,,«x,) monotonic in m? That is, does Y(Q,uxn) <
Y(Qmxm+1y) hold for m < n? and (2) Is 7(Qyux,) monotonic in n? That is, does
Y(Qmxn) < Y(Q(ms1yxn) hold for m < n? The answer, as shown in [6], is negative
for v(Quxx,) in the first variable. In the range 1 < m < n < 18, monotonicity in m
of Y(Qmuxn) fails once: y(Qgx11) = 6 > 5 = ¥(Qox11) = ¥ (Q1ox11) = Y(Q11x11)-
In the same range, monotonicity in m of i (Q,,x,) fails twice: i (Qgx11) =6 > 5 =
i(Qox11) = i(Qrox11) = i(Q1ix11) andi(Q11x18) = 9 > 8 = i(Q12x18). Itis noted
in [6] that the failure of monotonicity seems to be due to a “special” minimum dom-
inating set of the large board that does not fit on the small board. For Qg versus
Qox11 through Qjix11, that special dominating set is shown in Fig. 1.4; and for
Q11x17 versus Qax1s, the special set is shown in Fig. 1.6. Insight from this study
of rectangular boards suggests that possibly what Conjecture 1.2.1 is really asking
is whether there is an n for which Q,1; has a special minimum dominating set that
does not fiton Q,,.
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1.3 Domination Chain

“Like the pioneers of old, a creative person breaks new ground daily.” Anna Olson

Hedetniemi and his coauthors, Cockayne and Miller, first presented the so-called
domination chain in 1978 (see [12]). This inequality sequence has become one of
the major focal points in the study of domination in graphs, inspiring much interest
and serving as a source for several hundred papers. The domination chain expresses
relationships that exist among dominating sets, independent sets, and irredundant
sets in graphs. It is noteworthy that the parameters being sought to answer the three
major chessboard problems stated in Sect. 1.2 are precisely the parameters that make
up the inner core of the domination chain. Prior to stating the chain, we give a
brief discussion of how this chain is developed using maximality and minimality
conditions. Much of this discussion is taken from the detailed development of the
domination chain found in Chap. 3 of the book [16] by Haynes, Hedetniemi, and
Slater. See also [10].

A dominating set S of G is minimal dominating if no proper subset of S is a
dominating set of G. The domination number v(G) is the minimum cardinality of
a minimal dominating set in G; while the upper domination number T'(G) is the
maximum cardinality of a minimal dominating set. An independent set S of G is
maximal independent if no proper superset of S is an independent set. Recall that
i(G) is the independent domination number and «(G) is the independence number
of G. Thus, i (G) is the minimum cardinality of a maximal independent set of G and
a(G) is the maximum cardinality of a maximal independent set of G. For example,
the tree T in Fig. 1.7 has maximal independent sets of three sizes: {v, v, v3, vg, V7},
{vi, v2, v3, vs}, and {v4, ve, v7}. Thus, i(T) = 3 and a(T) = 5. And T has minimal
dominating sets of several different cardinalities: {v4, vs}, {v4, ve, v7}, {V1, V2, v3, Vs},
and {v, v, v3, vs, v7}. Hence, v(T) =2 and I'(T') = 5.

It is shown in Chap. 3 of [16] that to prove a dominating set S is minimal domi-
nating, it suffices to show that S \ {v} is not a dominating set for all v € S. Further,
to prove that an independent set S is maximal independent, it suffices to show that
S U {v} is not an independent set for all v € V' \ S. Stated in other words, an inde-
pendent set S is maximal independent if and only if the following condition holds:

(%1 Ve

Vo V4 Vs (%rd

U3

Fig. 1.7 Tree T



1.3 Domination Chain 9

(1) For every vertex u € V \ S, there is a vertex v € § such that u is adjacent to v.

Hedetniemi noticed that Condition (1) is precisely the definition of a dominating
set, that is, the maximality condition for an independent set is the definition of a
dominating set. Thus, the following holds, the necessity of which was first observed
by Berge [3].

Proposition 1.3.1 ([3]) An independent set S is maximal independent if and only if
it is independent and dominating.

Therefore, every maximal independent set is a dominating set. This is why the
minimum cardinality of a maximal independent set is called the independent domi-
nation number i (G).

Proposition 1.3.2 ([3]) Every maximal independent set in a graph G is a minimal
dominating set of G.

Proof Let S be a maximal independent set in G. By Proposition 1.3.1, S is a dom-
inating set. To see that S is, in fact, a minimal dominating set, it suffices to show
that for every vertex v € §, the set S\ {v} is not a dominating set. Suppose, to the
contrary, that there exists at least one vertex v € S for which S \ {v} is a dominating
set. Then v has at least one neighbor in S \ {v}, contradicting that S is an independent
set. (]

Proposition 1.3.2 implies the core part of the domination chain given in the fol-
lowing corollary.

Corollary 1.3.3 For any graph G, v(G) <i(G) < a(G) <T'(G).

To complete the chain, we need additional definitions. The open neighborhood of
avertex vistheset N(v) = {u € V |uv € E(G)}, and the closed neighborhood of v is
N[v] = {v} U N(v). For a set of vertices S C V and a vertex v belonging to the set S,
the S-private neighborhood of visdefinedbypn[v, S]={w € V | N[w]N S = {v}},
and a vertex of pn[v, S] is called a private neighbor of v (with respect to S).

As first defined by Cockayne, Hedetniemi, and Miller [12], a vertex set S is an irre-
dundant set of G if for every vertex v € S, pn[v, S] # 0, that is, every vertex v € S
has at least one private neighbor. A set S is maximal irredundant if no proper superset
of § is irredundant. The irredundance number ir (G) is the minimum cardinality of
a maximal irredundant set of G; while the upper irredundance number I R(G) is the
maximum cardinality of a maximal irredundant set of G. For example, consider the
graph G in Fig. 1.8. Each of the sets S = {v, v4} and S’ = {v{, v2, v3} is a maximal
irredundant set. Note that for S, pn[vy, ST = {v2, v3}, pnlvs, S] = {vs, vs}; while for
S’, pnlvy, 8’1 = {v4}, pn[va, '] = {vs}, and pn[vs, S'] = {ve}. It can be shown that
ir(G) =2and IR(G) = 3.

We note that the domination number of the graph G in Fig. 1.8 is also 2, so
ir(G) = v(G) = 2. Slater provided one of the first known examples of a graph having
irredundance number strictly less than its domination number. This graph, known as
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U1 V4

O

Vg Vs

U3 Ve
Fig. 1.8 Graph G

Fig. 1.9 The Slater H graph

Us o o V11
Y10 oo
U3 o—c;]G—o Yo
20 oY
V14 ovr

the Slater graph or the H graph, is illustrated in Fig. 1.9. The set {v,, v3, vs, vo} is a
minimum maximal irredundant set for H and the set {v», v4, Vg, Vg, V10} iS a minimum
dominating set, and so 4 = ir(H) < v(H) = 5.

Recall what it means for a dominating set S to be minimal. If for any vertex v € S,
the set S \ {v} is a dominating set, then § is not minimal. It follows that a dominating
set S is a minimal dominating set if and only if:

(2) Forevery vertex v € S, pn[v, S] # @, that is, every vertex v € S has at least one
private neighbor.

Thus, the minimality condition for a dominating set is the definition of an irre-
dundant set. This was first observed by Cockayne, Hedetniemi, and Miller [12] as
follows.

Proposition 1.3.4 ([12]) A dominating set S is a minimal dominating set if and only
if it is dominating and irredundant.

It is shown in [16] that an irredundant set is maximal irredundant if and only
if S U {v} is not an irredundant set for all v € V \ S. Thus, an irredundant set S is
maximal irredundant if and only if the following condition holds:

(3) For every vertex v € V\ S, there exists a vertex w € SU {v} for which
pnlw, SU {v}] = 0.
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The next result was first observed by Bollobas and Cockayne [5].

Proposition 1.3.5 ([S]) Every minimal dominating set in a graph G is a maximal
irredundant set of G.

Proof By Proposition 1.3.4, every minimal dominating set S is an irredundant set, so
all that remains is to show that S is maximal irredundant. Suppose it is not. It follows
from our previous discussion that there exists a vertex v € V \ S for which S U {v} is
irredundant. Hence, pn[v, S U {v}] # @, that is, v has at least one private neighbor,
say w, with respect to S U {v}. Thus, w is not adjacent to a vertex in S. Since S is a
dominating set, v has a neighbor in S, and so w # v. Hence,w € V \ (S U {v}). But
then w is not dominated by S, contradicting the assumption that S is a dominating
set. (Il

Since every minimal dominating set is a maximal irredundant set, we now have
the entire domination chain.

Theorem 1.3.6 (Cockayne, Hedetniemi, and Miller [12]) For any graph G,
ir(G) <v(G) <£i(G) < a(G) =T'(G) = IR(G).

Since being launched by Cockayne, Hedetniemi, and Miller [12] in 1978, the
domination chain of Theorem 1.3.6 has been the focus of several hundred research
papers and continues to intrigue researchers. Among the questions prompted by the
domination chain are:

1. Given an integer sequence, | <a <b <c¢ <d < e < f,does there exist a graph
G for which 1 <ir(G) =a <v(G) =b<i(G)=c <= a(G)=d <T'(G) =
e < IR(G) = f71If such a graph G does exist, then (a, b, c,d, e, f) is called a
domination sequence.

2. Under what conditions are any pair of the parameters in the domination chain
equal?

3. Are there variants of the basic independence-domination-irredundance parame-
ters in the domination chain that satisfy a similar inequality chain?

4. Are there other graph parameters whose values are related to those in the domi-
nation chain? In particular, are there graph parameters whose values lie between
two parameters in the domination chain?

Considering some examples of trees, we note that for the star Ky ,,_1,ir (K ,—1) =
V(K1 n-1) = i(Ki 1) = 1, while a(Ky 4—1) = I'(Kyp—1) = IR(Ky p—1) =n — 1.
A double star S(r,s) for 1 <r <s is a tree with exactly two (adjacent) ver-
tices that are not leaves, one of which has r leaf neighbors and the other s
leaf neighbors. Then ir(S(r, s)) = v(S(r,s)) =2 <i(S(r,s)=r+1<s+1=
a(S(r, s))=T(S(r,s)) = IR(S(r, s)), and the Slater graph H inFig. 1.9hasir(T) =
4 <5=~(T)=i(T) <6 =a(T)=T(T) = IR(T). Cockayne, Favaron, Payan,
and Thomason [9] showed that the three upper parameters of the domination chain
are equal for trees. Hence, the domination chain for trees can be stated as follows.
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Theorem 1.3.7 If T is a tree, then
ir(T) =y(T) =i(T) =(T) =T(T) = IR(T).

It is possible to obtain inequality chains similar to the domination chain starting
from a suitable seed property. In conclusion, we mention two such chains that have
been generated by Hedetniemi and his coauthors. Starting from the vertex cover
number, Arumugam, Hedetniemi, Hedetniemi, Sathikala, and Sudha [1] defined the
relevant graph parameters and developed the “covering chain” of inequalities using
maximality and minimality conditions. Interestingly, they proved that this covering
chain is, in a sense, the dual of the domination chain. For another example, Hedet-
niemi and his coauthors in [7] used the Roman domination number as the seed for the
chain. They defined the Roman independence number, the upper Roman domination
number, and the upper and lower Roman irredundance numbers to develop a Roman
domination chain paralleling the domination chain. A section on Roman domination
is given in Chap. 4.
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Chapter 2 ®)
Key Domination Parameters i

In this chapter, two key domination parameters different from the standard dom-
ination number are discussed. The first, the independent domination number, was
introduced by Stephen Hedetniemi and his coauthor Ernie Cockayne in 1974. The
second, the total domination number, was introduced by Hedetniemi together with
his coauthors Cockayne and Dawes in 1980.

2.1 Introduction

As we pointed out in Chap. 1, Stephen Hedetniemi is one of the pioneers in the
area of domination in graphs. We recall that a set S of vertices in a graph G is a
dominating set of G if every vertex in V(G)\S is adjacent to a vertex in S and
the domination number v(G) of G is the minimum cardinality of a dominating set
of G. Further, the upper domination number I'(G) of G is the maximum cardinality
of a minimal dominating set of G. A set S of vertices is independent if no two vertices
in § are adjacent, and the maximum cardinality of an independent set in a graph G
is its independence number, denoted a(G).

In this chapter, we study two variations of domination pioneered by Stephen
Hedetniemi, namely independent domination and total domination.

2.2 Independent Domination in Graphs

Berge [3] was the first to observe that an independent set is a maximal independent set
if and only if itis independent and dominating. Therefore, every maximal independent
set is a dominating set. Early in the 1970s, Stephen Hedetniemi understood that this
fundamental property of an independent set had an important place in the theory
of domination in graphs, and he began a study of dominating sets that have this
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additional property of being independent. More formally, an independent dominating
set of a graph G is a set S of vertices of G that is both independent and dominating.
Equivalently, no two vertices of S are adjacent, and every other vertex is adjacent
to at least one vertex of S. The independent domination number i(G) of G is the
minimum cardinality of an independent dominating set of G.

Berge [3] was also the first to observe that every maximal independent set in a
graph G is a minimal dominating set of G. Hence we have the following inequality
chain.

Theorem 2.2.1 ([3]) Forevery graph G, v(G) <i(G) < a(G) < T'(G).

The independent domination number of a graph is therefore sandwiched between
its domination number and its independence number. The inequality chain in The-
orem 2.2.1 is part of the canonical domination chain which was first observed by
Cockayne et al. [12] in 1978, and generated considerable interest in the domination
theory community with several hundred papers emanating from it.

The domination chain stated in Theorem 2.2.1 suggests the following ques-
tion. Given integers sy, 2, 53, 54, does there exist a graph G for which v(G) = s,
i(G) = s23, a(G) = s3, and 7(G) = s4? If such a graph G exists, then the sequence
(s1, 82, 83, s4) of integers is called a domination sequence. The following 1993 result,
due to Cockayne and Mynhardt [11], characterizes domination sequences.

Theorem 2.2.2 ([11]) A sequence (s1, 52, 53, S4) of integers is a domination sequence
if and only if the following three conditions hold.

(@ 1 <s; <5 <s53=54
(b) s; = 1 implies that s, = 1.
(c) s3 =1 implies that s4 = 1.

A section on the domination chain is also given in Chap. 1. A detailed discussion
on the domination chain can be found in Chap. 3 in [18].

At the Fifth Southeastern Conference on Combinatorics, Graph Theory and Com-
puting held at Florida Atlantic University in 1974, Cockayne and Hedetniemi [7]
started their prolific series of joint papers on a systematic study of domination in
graphs. In this paper they defined the independence graph 7 (G) of a graph G as the
graph whose vertices can be put in a one-to-one correspondence with the independent
sets of vertices of G and where two vertices of /(G) are adjacent if the correspond-
ing independent sets of vertices of G overlap. Influenced by Hedetniemi’s earlier
work on colorings in graphs, they showed that the chromatic number of G equals
the independent domination number of the graph I(G). Further, they related the
independent domination number to a variety of other graph parameters including
thickness, arboricity, and the Hamiltonian completion number.

However, it was their 1976 paper [10] entitled ‘“Towards a theory of domination in
graphs”, written several years earlier, that proved to be the main launching pad for a
systematic study of domination in graphs. This paper has to date been cited well over
600 times. In this paper, they showed that the theory of domination resembles the
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theory of colorings of graphs in the following sense. A coloring of a graph involves
independent sets of vertices (called the color classes of the coloring) which is a
hereditary property in that it is satisfied by every subset of an independent set, while
domination is an expanding property as every superset of a dominating set is one.
They coined the term indominable graphs to describe those graphs whose vertex
set can be partitioned completely into independent dominating sets. For example, a
5-cycle is not an indominable graph since every independent dominating set in the
graph has size exactly 2.

A fundamental property of dominating sets is that every graph with no isolated
vertex contains two vertex disjoint dominating sets. However, it is not true that every
graph with no isolated vertex contains two vertex disjoint independent dominating
sets. Recall that the corona cor(G) (sometimes denoted G o Pj in the literature) is
the graph obtained from G by adding a pendant edge at each vertex of G. The corona
cor(C3) of a 3-cycle, for example, does not have two vertex disjoint dominating sets.
The idomatic number of a graph G, which we denote by idom(G), is the maximum
number of vertex disjoint independent dominating sets in G. This terminology was
introduced by Zelinka [28], but the parameter was originally defined by Cockayne
and Hedetniemi in their 1976 paper [9] on disjoint independent dominating sets in
graphs. In this paper, Cockayne and Hedetniemi studied the following conjecture
posed by Berge.

Conjecture 2.2.3 (Berge) Every k-regular graph where k > 1 has two disjoint
independent dominating sets.

Conjecture 2.2.3 is easy to verify for k = 1 and k = 2. For k = 3 and k = 4, the
truth of the conjecture is attributed to Berge in [9] (although there is no available
published manuscript proving the conjecture in this case). When k = 3 this implies
that every cubic graph has two disjoint independent dominating sets. This result has
recently been strengthened slightly by Goddard and Henning [17].

Theorem 2.2.4 ([17]) If G is a graph with minimum degree at least 2 and maximum
degree at most 3, then G has two disjoint independent dominating sets.

The main contribution of Cockayne and Hedetniemi in [9] is to prove Berge’s
Conjecture 2.2.3 for large k, namely when k > n — 7 where n is the order of the
k-regular graph.

Asobserved in Theorem 2.2.2, the difference between the independent domination
number and the domination number can be made arbitrarily large. In 1962 Ore [24]
was the first to observe that if G is a graph with no isolated vertex, then v(G) < %n
However unlike the domination number, there is no constant C < 1 such that for every
graph G with no isolated vertex, the bound i (G) < C - n holds, as first observed by
Favaron [14] in 1988.

Theorem 2.2.5 ([14]) If G is a graph of order n with no isolated vertex, then
i((G)<n+2-2yn.
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That the bound of Theorem 2.2.5 is tight may be seen as follows. The generalized
corona cor(G, r) of a graph G is the graph obtained from G by adding r pendant
edges to each vertex of G. In particular, if » = 1, then we note that cor(G, r) is the
corona cor(G) defined earlier. For k > 2 if we take G = cor(Ky, k — 1), then G has
ordern =k?>andi(G) = (k — 1)> +1=n+2—2./n.

Given a connected graph G with arbitrary minimum degree 6 > 2, a tight upper
bound (that holds for graphs of arbitrarily large order) on y(G) has yet to be deter-
mined, even for the special case when § = 3. However, this is not the case for the
independent domination number. Favaron [14] conjectured such an upper bound on
i(G) as a function on n and §. This conjecture was proven in general by Sun and
Wang [25] in 1999.

Theorem 2.2.6 ([25]) If G is a graph of order n with minimum degree 6 > 2, then
i(G) <n+25—2+/0n.

Earlier, Favaron [14] showed that for every positive integer d, the bound in The-
orem 2.2.6 is attained for infinitely many graphs. Thus, the independent domination
number behaves very differently from the classical domination number. For a more
detailed discussion on the independent domination number of a graph, we refer
the reader to a survey on independent domination in graphs by Goddard and Hen-
ning [15].

2.3 Total Domination in Graphs

In Sect. 2.2, we remarked that Stephen Hedetniemi understood that the fundamental
properties of an independent set have an important place in the theory of domination
in graphs, and thus he began a study of dominating sets that have this additional
property of being independent.

In this section, we consider a property of a dominating set that is antipodal to
that of independence, namely that every dominating set induces a subgraph with no
isolated vertex. Stephen Hedetniemi understood that this property of a dominating
set had an important place in the theory of domination in graphs, and he began a study
of dominating sets having the additional property that every vertex in the dominating
set has at least one neighbor in the set. The rest is now history, and this concept of
domination plays a fundamental role in the theory of domination in graphs.

More formally, a total dominating set of a graph G is a set S of vertices of G such
that every vertex has a neighbor in §S. Equivalently, every vertex is adjacent to at least
one vertex of S (different from itself). The total domination number ~,(G) of G is
the minimum cardinality of a total dominating set of G. Hedetniemi began his study
of total dominating sets in graphs with his seminal 1980 paper [8] with Cockayne
and Dawes. This paper, which birthed the concept of total domination in graphs, has
to date been cited well over 600 times.

In [8], Cockayne, Dawes, and Hedetniemi established fundamental properties of
a minimal total dominating set in a graph. In order to state these properties, we
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need some additional terminology. For a graph G and set S of vertices in G, the
S-private neighborhood of a vertex v € S is defined by pn(v, §) = {w € V(G) |
Ng(w) N S = {v}} and a vertex in pn(v, S) is called an S-private neighbor of v
in G. The sets ipn(v, S) = pn(v, §) N S and epn(v, ) = pn(v, S)\S consist of the
S-private neighbors of v that belong to the set S and do not belong to the set S,
respectively. The set ipn(v, S) is the S-internal private neighborhood of v, while
the set epn(v, ) is the S-external private neighborhood of v. Further, a vertex in
ipn(v, §) (respectively, epn(v, §)) is called an S-internal (respectively, S-external)
private neighbor of v. We note that pn(v, S) = ipn(v, S) U epn(v, S). We are now
in a position to state the fundamental property of minimal total dominating sets
established in [8].

Theorem 2.3.1 ([8]) Let S be a total dominating set in a graph G. The set S is a
minimal total dominating set in G if and only if |epn(v, S)| > 1 or |lipn(v, S)| > 1
foreachv € S.

We remark that the following stronger property of a minimum TD-set in a graph
is established in [20].

Theorem 2.3.2 ([20]) If G is a connected graph of order n > 3 and G 2 K,
then G has a minimum total dominating set S such that every vertex v € S sat-
isfies |epn(v, S)| > 1 or is adjacent to a vertex v' of degree 1 in G[S] satisfying
lepn(v’, §)| > 1.

Using the properties of a minimal total dominating set in a graph in Theorem 2.3.1,
Cockayne et al. [8] proceeded to establish a tight upper bound on the total domination
number of a connected graph in terms of its order as follows.

Theorem 2.3.3 ([8]) If G is a connected graph of order n > 3, then v,(G) < %n

Proof Let G be aconnected graph of ordern > 3.If G = K,,, then v,(G) =2 < %n
Hence, we may assume that G # K,,. Applying Theorem 2.3.2 to the graph G, we
note that there exists a minimum total dominating S in G satisfying the statement of
that theorem.Let A = {v € S | epn(v, §) = @} andlet B = S\ A. By Theorem 2.3.2,
each vertex v € A has a neighbor in B that is adjacent to v but to no other vertex
of S. Hence, |A| < |B| and |S| = |A| + |B| < 2|B|, and so |B| > |S|/2. Let C be
the set of all S-external private neighbors. We note that C € V (G)\S. Further, since
epn(v, §) > 1 for each vertex v € B, we note that |C| > |B|. Hence, n — |S| =
[V(G\S| = |C| = |B| = |S]/2, and 50 %(G) = |S| < 3n. U

Brigham et al. [4] characterized the infinite family of connected graphs that
achieve equality in the Cockayne-Dawes-Hedetniemi bound of %n; that is, they
characterized the connected graphs of order at least 3 with total domination number
exactly two-thirds their order. For this purpose, we define the 2-corona H o P, of a
graph H to be the graph of order 3|V (H)| obtained from H by attaching a path of
length 2 to each vertex of H so that the resulting paths are vertex-disjoint. The proof,
which we omit here, of the characterization in [4] follows relatively easily from the
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properties established by Cockayne et al. [8] of a minimal total dominating set in a
graph in Theorem 2.3.1.

Theorem 2.3.4 ([4]) Let G be a connected graph of order n > 3. Then v,(G) = %n
if and only if G is C3, Cg, or F o P, for some connected graph F.

The upper bound in Theorem 2.3.3 cannot be improved if we simply restrict the
minimum degree to be 2, as may be seen by taking G to be a graph consisting of
a disjoint union of 3-cycles and 6-cycles. In this case, v,(G) = %n However, if
we impose the additional restriction that G is connected, then the %n-bound can be
improved to a %n-bound, except for six small exceptional graphs of orders at most 10,
as shown in [20].

We summarize the known upper bounds on the total domination number of a
graph G in terms of its order n and minimum degree ¢ in Table2.1.

The infinite family of connected graphs G of order n > 14 with 6(G) > 2 sat-
isfying v,(G) = %n are characterized in [20], and the infinite family of connected
graphs G of order n with §(G) > 3 satisfying v, (G) = %n are characterized in [22].
It is shown in [23] that the bipartite complement of the Heawood graph is the unique
connected graph G of order n with §(G) > 4 satisfying v,(G) = %n

However, it is unlikely that the upper bound of (- + =5)n shown in Table2.1
when §(G) > 5 is achievable. Indeed, in this case Thomasse and Yeo [26] posed the
conjecture that if G is a graph of order n with §(G) > 5, then +,(G) < ﬁn. If this
conjecture is true, then the bound is achievable. For example, the graph G, shown
in Fig.2.1, has order n = 22, minimum degree 6(G1;) = 5, and v, (G2;) = 8 = %n.

In their seminal 1980 paper [8], Cockayne, Dawes, and Hedetniemi also intro-
duced and first studied the total domatic number of a graph, which has subsequently
attracted a great deal of interest. The fotal domatic number tdom(G) of a graph G is
the maximum number of disjoint total dominating sets in G. The parameter tdom(G)

Table 2.1 Upper bounds on the total domination number of a graph G

SE)>1 = (@) < ;n i n >3 and G is connected (8))
s@)>2 = (@) < %n ifn > 11 and @ is connected  ([20])
5G)>3 = w(@) < %n (2, 6, 27))
@) >4 = (@) < %n ([26))
5G)>5 = (@) < (% + 7—12) n ([13)
A s@21 = @) < (B (1)
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Fig. 2.1 The graph G2

is equivalent to the maximum number of colors in a so-called coupon coloring of G
which is a (not necessarily proper) coloring of the vertices of G where every color
is thoroughly dispersed, that is, appears in every open neighborhood. In their 2015
paper Chen et al. [S] called this the coupon coloring problem.

The total domatic number is now well studied. In 1989 Zelinka [29] showed
that there are graphs with arbitrarily large minimum degree without two disjoint
total dominating sets, implying that such graphs G have total domatic number
tdom(G) = 1. Heggernes and Telle [19] showed that the decision problem to decide
for a given graph G if tdom(G) > 2 is NP-complete, even for bipartite graphs. In
contrast, several researchers, such as Aram et al. [1], studied tdom(G) for a k-regular
graph G; in particular, Chen et al. [5] showed that such graphs have total domatic
number at least (1 — 0(1))&.

Goddard and Henning [16] showed that the total domatic number of a planar graph
is at most 4.

Theorem 2.3.5 ([16]) If G is a planar graph, then tdom(G) < 4.

There do exist planar graphs G with tdom(G) = 4. As shown in [16], if we take
the truncated tetrahedron and add a vertex inside each hexagonal face that is joined
to all vertices on the boundary, then the resulting planar graph has total domatic
number equal to 4. Illustrated below (see Fig.2.2) is a spanning subgraph of this
graph that still has four disjoint total dominating sets: the vertices labelled i form a
total dominating set for each i € [4].

Goddard and Henning [16] also studied the total domatic number of graphs on
other surfaces. For example, they showed that the total domatic number of a toroidal
graph is at most 5.

Theorem 2.3.6 ([16]) If G is a toroidal graph, then tdom(G) < 5.

As remarked in [16], there do exist toroidal graphs G with tdom(G) = 5. Such
an example, given by Goddard and Henning in [16], is illustrated in Fig.2.3, where
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Fig. 2.2 A planar graph G
with tdom(G) = 4

Fig. 2.3 A toroidal graph G
with tdom(G) = 5

the top and bottom dotted lines should be identified and similarly with the left and
right dotted lines. In this illustration, the vertices labelled i form a total dominating
set of G foreach i € [5].

We close this section with a few remarks. A total dominating set in a graph
is in some sense more fundamental than a dominating set, in that every vertex is
now required to be dominated by some other vertex. Much of the recent interest
in total domination in graphs arises from the fact that total domination in graphs
can be translated to the problem of finding transversals in hypergraphs. The open
neighborhood hypergraph, abbreviated ONH, of a graph G is the hypergraph Hg with
the same vertex set as G and whose edge set consists of the open neighborhoods on
vertices of V(G) in G. Thus, for each vertex x in G, the set Ng(x) consisting of the
neighbors of x in G is an edge in Hg. If a graph G has order n, then its ONH has
order n and size n (noting there is a one-to-one correspondence between the edges
of the ONH of G and the n open neighborhoods of vertices in G, one associated with
each of its n vertices). The transversal number of the ONH of a graph is precisely
the total domination number of the graph, where a transversal in a hypergraph is a
set of vertices intersecting every edge of the hypergraph.

Observation 2.3.7 If G is a graph with no isolated vertex and Hg is the ONH of G,
then v,(G) = 7(Hg).
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As observed in [23], the main advantage of considering hypergraphs rather than
graphs is that the structure is easier to handle and we can move to hypergraphs which
are not open neighborhood graphs of any graph, giving much more flexibility than
just using graphs. The idea of using transversals in hypergraphs to obtain results
on total domination in graphs was introduced by Thomassé and Yeo [26] in 2003.
Up to that time, the transition from total domination in graphs to transversals in
hypergraphs seemed to pass by unnoticed. Subsequent to the Thomassé-Yeo paper,
several important results on total domination in graphs have been obtained using
transversals in hypergraphs.

The graph theory community is greatly indebted to Stephen Hedetniemi for
birthing the concept of total domination in graphs, and for his depth of insight and
understanding that this property of adominating set in which every vertex of the graph
has at least one neighbor in the set has an important place in the theory of domination
in graphs. For a more detailed discussion on the total domination number of a graph,
we refer the reader to the book by Henning and Yeo [23].
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Chapter 3 ®)
Dominating Functions oo

In this chapter, we discuss dominating functions in graphs, a concept birthed by
Stephen Hedetniemi in the mid 1980s.

3.1 Introduction

Stephen Hedetniemi understood that a fundamental property of a dominating set S
in a graph G is that the characteristic function of the set S (that assigns to every
vertex in the set S the value of 1 and to every vertex outside the set S the value 0) has
the property that the sum of the function values assigned to any given vertex and its
neighbors in G will always sum to at least 1. He would often refer to this property as
the “dominating property” of a function. This motivated him to define a dominating
function of a graph G as a function f: V(G) — {0, 1} such that for every vertex v
of G, the function values of f summed over all vertices in the closed neighborhood
Ng[v] of v is at least 1. The weight w(v) of a vertex v is its value f(v) assigned
to it under f. The weight w(f) of f is the sum Zuev(G) f(u) of the weights of
the vertices in the graph G. For a set S of vertices of G, the weight of the set S is
w(S) = Zv s f (v). For notational convenience, we denote the weight f(Ng[v]) of
the closed neighborhood of a vertex v simply by f[v]. We note that the domination
number of G can be defined as

Y(G) = min{w(f) | f is a dominating function in G}.

A dominating function f is a minimal dominating function if there does not exist
a dominating function g: V(G) — {0, 1} different from f for which g(v) < f(v)
forevery v € V(G). This is equivalent to saying that a dominating function f is min-
imal if for every vertex v with f(v) = 1, there exists a vertex u € Ng[v] satisfying
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flu] = 1. Thus, the upper domination number of G can be defined as
I'(G) = max{w(f) | f is a minimal dominating function in G}.

In this chapter, we discuss the concept proposed by Hedetniemi of changing the
allowable weights of the vertices, provided that the “dominating property” that the
sum of the weights in the closed neighborhood of each vertex is atleast 1 is preserved.

3.2 Fractional Dominating Functions

In 1984 Farber [10] introduced indirectly the concept of fractional domination in
graphs. Reporting on results in [17] at the Eighteenth Southeastern Conference,
Stephen Hedetniemi formally defined fractional domination as follows. For a graph
G = (V, E), afunction f: V — [0, 1] is a fractional dominating function of G if
fIv]l = 1 for each v € V. The fractional domination number, denoted ~v,(G), and
the upper fractional domination number, denoted I' y (G), of G are defined by

v7(G) = min{w(f)| f is a minimal fractional dominating function for G}
' (G) = max {w(f) | f is a minimal fractional dominating function for G}

For example, the function f; that assigns the weights to the vertices of the Hajos
graph H as illustrated in Fig. 3.1a is a minimal fractional dominating function of H
of weight w(f) = % Thus, v, (H) < % Infact, v, (H) = % For a positive integer k,
the function f, that assigns the weights to the vertices of H as illustrated in Fig.3.1b
is a minimal fractional dominating function of H of weight w( f>) = 3(k + 1)/(2k).
In particular, if k = 1, then the function f,, illustrated in Fig.3.1c, is a minimal
fractional dominating function of H of weight w(f;) = 3. Thus, I'f(H) > 3. In
fact, I'f(H) = 3.

The domination chain in Theorem 2.2.1 can be extended by adding to it the
fractional domination and the upper fractional domination numbers as follows.

Theorem 3.2.1 Forevery graph G, 77 (G)<v(G) < i(G)<a(G)<I'(G) < T'((G).

@

N =
=

kE—1

1 1
k 2k k

1
2

Fig. 3.1 Minimal fractional dominating functions of the Haj6s graph H
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For a more detailed discussion on this fractional version of domination, we refer
the reader to the survey on fractional domination in graphs by Domke et al. [4].

3.3 Minus Dominating Functions

In the early 1990s, Stephen Hedetniemi put forward the idea of allowing negative
weights in the mix. This resulted in the concept of minus domination. For a graph
G = (V, E),afunction f: V — {—1,0, 1} is a minus dominating function of G if
flv] = 1 for each v € V. The minus domination number, denoted v~ (G), and the
upper minus domination number, denoted I'™(G), of G are defined by

v~ (G) = min {w(f) | f is a minimal minus dominating function for G}
' (G) = max {w(f)| f is a minimal minus dominating function for G}.

For example, the function f; that assigns the weights to the vertices of the Hajos
graph H as illustrated in Fig. 3.2a is a minimal minus dominating function of H of
weight w( f;) = 0. Thus, v~ (H) < 0. In fact, v~ (H) = 0. Moreover, the function
f> that assigns the weights to the vertices of the Hajés graph H as illustrated in
Fig.3.2b is a minimal minus dominating function of H of weight w( f,) = 3. Thus,
' (H) > 3. Infact, ' (H) = 3.

One of the applications for this variation of domination given by Hedetniemi is
that by assigning the values —1, 0, or +1 to the vertices of a graph that models a
network of people or organizations in which global decisions must be made (e.g.,
positive, negative, or neutral responses or preferences). As explained in [18], in
such a context, “the minus domination number represents the minimum number of
people whose positive votes can assure that all local groups of voters (represented
by closed neighborhoods) have more positive than negative voters, even though the
entire network may have far more people who vote negative than positive. By contrast,
the upper minus domination number represents the greatest number of positive voters
that may be required to offset a few negative voters, i.e., to insure that all local groups
of voters have positive vote totals.”

In [8], the authors showed that I' and '~ are not comparable. Indeed, there exist
graphs G and H such that I'(G) < ' (G) and '(H) > I'"(H). However, the char-

Fig. 3.2 The Haj6s graph H (a) (b)



28 3 Dominating Functions

acteristic function of a minimum dominating set of a graph is a minimal minus dom-
inating function, and the characteristic function of a maximum independent set of a
graph is a minimal minus dominating function, implying the following domination
chain.

Theorem 3.3.1 For every graph G, v~ (G) < v(G) <i(G) < a(G) < T7(G).
The domination and the minus domination number of a tree are related as follows.
Theorem 3.3.2 ([8]) IfT is atree of ordern > 4, then y(T) — v~ (T) < %(n —4).

Although there are classes of graphs with minus domination numbers which are
positive or zero, we remark that there are also classes of graphs with arbitrarily large
negative minus domination numbers. However, as observed in [8], if the maximum
degree of a graph is at most 5, then the minus domination number of the graph is
always zero or positive. Further, if the graph is a subcubic graph (with maximum
degree at most 3), then the minus domination number is positive. One class of so-
called “positive graphs” whose minus domination number is positive is the class of
regular graphs.

Theorem 3.3.3 ([8]) If G is a k-regular graph of order n for some k > 0, then
7 (G) = &

Stephen Hedetniemi and his coauthors in [5] presented a variety of algorithmic
results on the complexity of minus domination in graphs, including a linear algorithm
for finding a minimum minus dominating function in a tree. Further, they showed
that the decision problems corresponding to the problem of computing v~ (G) and
'~ (G) are both N P-complete, even when restricted to bipartite or chordal graphs.

3.4 Signed Dominating Functions

In the previous section, we discussed an application of minus domination in graphs
to networks of people in which global decisions must be made taking into account the
response or preference of individuals, which may be positive, negative, or neutral.
However often in voting, individuals are required to make either a positive or a
negative response (and do not have the option of a neutral response). To study such
networks, Stephen Hedetniemi introduced the concept of signed domination which
was first studied in [6]. For a graph G = (V, E), a function f: V — {—1,1}is a
signed dominating function of G if f[v] > 1 foreach v € V. The signed domination
number, denoted ~,;(G), and the upper signed domination number, denoted I';(G),
of G are defined by

Y(G) = min {w(f) | f is a minimal signed dominating function for G}
['s(G) = max {w(f)| f is a minimal signed dominating function for G}.
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Fig. 3.3 The Haj6s graph H (a) (b)
-1 1
1 1 -1 1
-1 1 -1 1 1 -1

For example, the function f; that assigns the weights to the vertices of the Hajos
graph H as illustrated in Fig.3.3a is a minimal signed dominating function of H
of weight w( f1) = 0. Thus, v,(H) < 0. In fact, v,(H) = 0. Moreover, the function
f> that assigns the weights to the vertices of the Hajos graph H as illustrated in
Fig.3.3b is a minimal signed dominating function of H of weight w( f,) = 2. Thus,
' (H) > 2. Infact, ' (H) = 2.

The Hajos graph H in Fig.3.3 has v,(H) = 0 and v(H) = 2. On the other hand,
s (K1) =n and v(K; ,) = 1. Thus, v and ~, are not comparable. A lower bound
on the signed domination number of a tree is established in [6].

Theorem 3.4.1 ([6]) If T is a tree of order n > 2, then v,(T) > %(n + 4), with
equality if and only if T is a path on 3k + 2 vertices for some integer k > 0.

An analogous result to Theorem 3.3.3 also holds for the signed domination num-
ber.

Theorem 3.4.2 If G is a k-regular graph for some k > 0, then v,(G) > k”?

Establishing upper bounds for the signed domination number of a regular graph
proved more challenging. Zelinka [22] showed that if G is a cubic graph of order n,
then v, (G) < ‘5—‘n. This result was generalized in [19] to all regular graphs.

Theorem 3.4.3 ([19]) Fork > 2, if G is a k-regular graph of order n, then

(,(5’:;—}()_2]) n fork odd
75:(G) <
(%) n for k even.

Favaron [11] showed that the bounds in Theorem 3.4.3 are sharp. Further, she
improved Zelinka’s result by establishing a connection between the packing number
of a cubic graph and its signed domination number. A set S of vertices in G is a
packing (also called a 2-packing in the literature) if the closed neighborhoods of
vertices in S are pairwise disjoint. Equivalently, S is a packing in G if the vertices in
S are pairwise at distance at least 3 apart in G. The packing number of G, denoted
p(G), is the maximum cardinality of a packing in G. Favaron [11] observed that if
S is a packing in a cubic graph G, then the function that assigns the value —1 to the



30 3 Dominating Functions

vertices of S and the value 1 to the remaining vertices is a signed dominating function
of G. Conversely, if f: V — {—1, 1} is a signed dominating function of a graph G,
then since the neighbors of every vertex of weight — 1 must all have weight 1, the set of
vertices of weight —1 under f form a packing in G. Therefore, v,(G) = n — 2p(G).
Favaron [11] proved the following result on the packing number of a cubic graph.

Theorem 3.4.4 ([11]) If G is a connected cubic graph of order n different from the
Petersen graph, then p(G) > %n

As an immediate consequence of Theorem 3.4.4 and the relation v,(G) = n —
2p(G), we have the following upper bound on the signed domination number of a
cubic graph.

Theorem 3.4.5 ([11]) If G is a connected cubic graph of order n different from the
Petersen graph, then v,(G) < %n.

A variety of algorithmic results on the complexity of signed domination in graphs
are presented in [ 14]. In particular, the authors in [ 14] show that the decision problems
corresponding to the problem of computing 7y, (G) and I';(G) are both N P-complete,
even when restricted to bipartite or chordal graphs. A linear algorithm for finding a
minimum signed dominating function in a tree is given in [13].

3.5 Real and Integer Dominating Functions

Bange, Barkauskas, Host, and Slater [1] generalized Hedetniemi’s concepts of frac-
tional, minus, and signed domination as follows. For an arbitrary subset P of the
reals R, a function f: V — P is a P-dominating function of G if f[v] > 1 for each
v € V. The P-domination number, denoted vp(G), is the infimum of w(f) taken
over all P-dominating functions f of G. Of course, this might be —oo.

For example, let P be a subset of the reals R. For a real number k > 1, the
function f that assigns the weights to the vertices of the Hajés graph H as illustrated
in Fig. 3.4 is a minimal R-dominating function of H of weight w(f) = 3(1 — k)/2.
As k gets arbitrarily large, the weight of f becomes arbitrarily small, implying that
WwR(H) = —o0.

It turns out there is a very simple solution to determine the R-domination number
of a graph. Let P be a subset of the reals R. For a graph G = (V, E), a function

Fig. 3.4 The Hajé h H 1
ig. e Hajés grap 5(1 — 3k)

3(1—3k)6—¥—3(1-3k)
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f: V — P may be thought of as a vector f in P". We say that f is a P-dominating
vector if and only if N f > 1, where 1 denotes the all 1’s vector in R” and N denotes
the closed neighborhood matrix of the graph G. The function f: V — P is an effi-
cient P-dominating function if for every vertex v itholds that f[v] = 1. Equivalently,
N f = 1. For example, the function f that assigns the weights to the vertices of the
Hajos graph H as illustrated in Fig. 3.3a is an efficient {—1, 1}-dominating function.

As first shown by Bange et al. [1], all efficient P-dominating functions for a graph
have the same weight. A simple proof of this result was given in [12].

Theorem 3.5.1 If P be a subset of the reals R and if f| and f, are two arbitrary
efficient P-dominating functions for a graph G, then w( f1) = w(f>).

Proof Let N be the closed neighborhood matrix of G. Since N is symmetric,
ANL=RN =N H=Tf=w)

and

FINf=FL(Nf) = FT=wh).
Thus, w(f1) = W(fs). 0

A function is nonnegative if all the function values are nonnegative. A function
which is both nonnegative and efficient 7P-dominating is called an NEPD-function
(standing for Nonnegative Efficient P-Dominating function). For example, if G is
a regular graph of degree k, then the function f that assigns to each vertex the
value 1/(k + 1) is a NEPD-function for G noting that f(v) > 0 and f[v] =1
for every vertex v in the graph G. In particular, a NERD-function (standing for
Nonnegative Efficient Real Dominating function) in G is a nonnegative efficient
real dominating function in G. The following result shows that the property of pos-
sessing a NERD-function is the key to the real domination number of a graph.

Theorem 3.5.2 ([12]) If G is a graph, then

w(f) if G has a NERD-function f
—0o0  otherwise.

w(G) = {

Proof The concept of real domination can be formulated in terms of solving the
following linear programming problem:

Real Domination g (G) Dual
n n
min 1'% (= miani) max 'y (= many,-)
i=1 i=
subject to: N-x= 1. subject to: N-y=1
x; unrestricted vi >0
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The dual of the above linear programming problem is shown above on the right
hand side. By taking the characteristic function of any dominating set, we obtain a
feasible solution of the min problem. Hence, by linear programming duality, there
are only two possible categories into which solutions to the max and min problems
can fall:

(a) Both problems have feasible solutions, in which case both objective functions
have the same solutions.

(b) The max problem has no feasible solution, in which case the objective function
for the min problem is unbounded below.

If (a) holds, then the max problem has a feasible solution. However, every feasible
solution to the max problem corresponds to a NERD-function for the graph G,
and therefore the solution to the max problem in this case is a NERD-function
of maximum weight. However, by Theorem 3.5.1, all NERD-functions have the
same weight, implying that the solution to the max problem (and therefore the min
problem) is w( f), where f is an arbitrary NERD-function for G. Thus in this case,
YR (G) = w(f). On the other hand, if (b) holds, then yg (G) = —o0. O

If P is a subset of the reals R and f is a NEPD-function of a graph G, then we
note that w(f) > vp(G) > 7Rr(G) = w(f). Hence, as an immediate corollary of
Theorem 3.5.2, we have the following result.

Corollary 3.5.3 ([12]) For any subset P of R, if a graph G has a NEPD-function
[, then vp(G) = 1r(G) = w(f).

As a further consequence of Theorem 3.5.2, we have the following result.

Corollary 3.5.4 ([12]) For any subset P of R, if there exists a P-dominating
function of a graph G with total weight less than 1, then yg (G) = —oo0.

For example, we observed earlier that there is a {—1, 1}-dominating function of
total weight O for the Hajos graph H as illustrated in Fig.3.3a. Thus, by Corol-
lary 3.5.4, vg(H) = —o0.

We remark that by linear algebra, if a graph has a NERD-function then it has a
NEQD-function (standing for Nonnegative Efficient Q-Dominating function). Thus,
by Theorem 3.5.2, if G is a graph, then vo(G) = w(f) if G has a NEQD-function
f and vq(G) = —o0o, otherwise.

Integer domination, when P = Z, is also well studied. We note that if one takes a
Q-dominating function f and multiplies all the weights by the least common multiple
of the weights’ dominators, one obtains a Z-dominating function. This implies that
if there is a Q-dominating function of arbitrarily negative weight, then there is a such
a Z-dominating function too. Hence, if yo(G) = —oo, then 7z(G) = —oo.

If P = Ror P = Q, then the determination of vp (G) can be formulated in terms
of solving a linear programming problem, and so can be computed in polynomial-
time (see [20, 21]). However, it remains an open problem to determine the complexity
of Z-domination.
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Chapter 4 ®)
Domination Related Parameters Grectie
and Applications

In this chapter, we explore two graph theoretical concepts introduced by Stephen
Hedetniemi as models for real-life applications. The first, Roman domination, is
based on a historical account of a defense strategy used by the Roman Empire; and
the second, alliances in graphs, models an agreement between two or more parties
to work together for the common good.

4.1 Introduction

Graph theory, like many fields of mathematics, can provide precise ways of modeling
real-world problems and applications. Perhaps one of Hedetniemi’s strongest talents
is his uncanny ability to notice a real-life application and express it as a graph
theoretical concept. In many cases, his knack for asking the right questions and
translating problems and applications to graph models has resulted in new research
areas in graph theory. In this chapter, we briefly discuss two such ideas, namely,
Roman domination in Sect. 4.2 and alliances in Sect.4.3.

In both sections, we will use the following terminology. Let G be a graph with
vertex set V = V(G) and edge set E = E(G) having order n = |V|. The open
neighborhood of avertex v € Vistheset N(v) = {u |uv € E}, andits closed neigh-
borhood is N[v] = N(v) U {v}. Vertices u € N (v) are called the neighbors of v. A
dominating set in a graph G 1is a set S of vertices of G such that every vertexin V \ §
has a neighbor in S. The domination number v(G) of a graph G is the minimum
cardinality of a dominating set in G.
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4.2 Roman Domination

Stephen Hedetniemi, along with Ernie Cockayne, Paul Dreyer, and Sandra Hedet-
niemi, introduced Roman domination as a graph theoretical concept in 2004. Since
then over 100 papers have been published on various aspects of Roman domination
in graphs. Their original paper [9] was motivated by the articles of ReVelle and Ros-
ing [25] and Stewart [26] outlining historical strategies used to defend the Roman
Empire during the reign of Emperor Constantine the Great, 274-337 AD.

At the core of the Roman Empire army were its legions, made up of highly trained
and disciplined solders. These legions were stationed at various locations in the
empire to defend Rome from raids and attacks by neighboring countries. A location
is protected by a legion stationed there. Early in the fourth century Emperor Con-
stantine changed the organizational structure and created large mobile field armies.
His strategy was to economize by minimizing the number of legions at each location
while still protecting all the cities. A location having no legion can be protected by
a legion sent from a neighboring location. However, this presents the problem of
leaving a location unprotected (without a legion) when its legion is dispatched to a
neighboring location. Constantine decreed that for all cities in the Roman Empire,
at most two legions should be stationed. Further, if a location having no legions is
attacked, then it must be within the vicinity of at least one city at which two legions
were stationed, so that one of the mobile legions can be sent to defend the attacked
city. After reading this piece of the Roman Empire’s history, Hedetniemi suggested
the following graph theoretical model of Roman domination.

A function f : V — {0, 1, 2} is a Roman dominating function, abbreviated RD-
function, on G if every vertex u € V for which f(x) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight of an RD-function is the value f(V) =
> cv f (). The Roman domination number g (G) is the minimum weight of an RD-
function on G, and an RD-function with weight v (G) is called a yg-function of G.
We represent a function f: V — {0, 1, 2} by the ordered partition (Vp, Vi, V2) of V,
where V; = {v € V | f(v) =i} fori € {0, 1, 2}. One may view Roman domination
as a graph labeling problem in which each vertex labeled 0 must be adjacent to at
least one vertex labeled 2.

For example, any nontrivial graph G of order n and maximum degree equal to
n — 1 has yg(G) = 2 since assigning a 2 to a vertex of maximum degree and O to
every other vertex is a yg-function of G. The Roman domination number of paths
and cycles is given in [9].

Proposition 4.2.1 ([9]) Forpaths P, and cycles C,, withn > 3, vg(P,) = vr(C,) =
2n
(5]
By Proposition 4.2.1, vz (Ps) = 4. To further illustrate Roman domination, all
possible yg-functions (within symmetry) of the path Ps are shown in Fig.4.1.
Assigning 1 to each vertex of a graph G gives an RD-function of weight equal

to the order n of G, so it follows that yg(G) < n for any graph G. Chambers,
Kinnersley, Prince, and West [6] gave a better bound in terms of order for connected
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Fig. 4.1 ~g-functions of the path Ps

Fig. 4.2 A graph in the family 7

Fig. 4.3 The five graphs in the family H

graphs having order at least 3, and they characterized the graphs attaining this bound.
To present their result, we first define a family of graphs F. Let F be an arbitrary
connected graph, and let G be the graph of order n = 5|V (F)| obtained from F by
identifying each vertex of F with the center of a path Ps, where the |V (F)| paths are
disjoint. Let F be the family of all such graphs G. The graph G, where F is a cycle
Cy, is illustrated in Fig.4.2.

Theorem 4.2.2 ([6]) If G is a connected graph of order n > 3, then Yr(G) < dn
with equality if and only if G is the cycle Cs or G € F.

For graphs with minimum degree at least 2, the bound was improved in [6]. Let
‘H be the family of five graphs shown in Fig.4.3.

Theorem 4.2.3 ([6]) If G is a connected graph of order n and minimum degree

5(G) = 2and G ¢ M, then 7x(G) < 5.

Liu and Chang [22] improved the bound even further for graphs having minimum
degree at least 3.

Theorem 4.2.4 ([22]) If G is a graph of order n and 6(G) > 3, then yr(G) < 27

In the introductory paper on Roman domination, the following relationships with
ordinary domination are observed.
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Theorem 4.2.5 ([9]) For every graph G, v(G) < vr(G) < 2v(G).

Proof Let f = (Vy, Vi, V2) be a yg-function of G. Since every vertex in Vj has a
neighbor in V; and the vertices of V| U V, dominate themselves, V| U V; is a domi-
nating set of G. Thus, v(G) < |V U V| = |V | + [Va| < |[Vi] 4+ 2| V2| = v&(G).
For the upper bound, let S be a minimum dominating set of G. The function
assigning 2 to each vertex in S and 0 to every other vertex is an RD-function of G,
s0 Yr(G) = 2|S] = 27(G). U

It is shown in [9] that equality in the lower bound of Theorem 4.2.5 is reached if
and only if G is an empty graph. Extremal graphs attaining the upper bound, that is,
the graphs G having vz (G) = 2v(G), are called Roman graphs. Examples of Roman
graphs include paths and cycles whose order is congruent to O or 2 modulo 3. A simple
characterization of Roman graphs is also given in [9].

Theorem 4.2.6 ([9]) A graph G is Roman if and only if it has a yg-function [ =
Vo, Vi, Vo) with | V]| = 0.

Henning [19] gave a constructive characterization of Roman trees in 2002, but no
such characterization exists for general graphs.

Problem 4.2.7 Characterize the Roman graphs of other graph families.

Favaron, Karamic, Khoeilar, and Sheikholeslami [13] determined an upper bound
on the Roman domination number of a graph in terms of its order and domination
number and characterized the graphs attaining this upper bound. Let F' be an arbitrary
nontrivial connected graph, and let G be the graph of order n = 4|V (F')| obtained
from F by identifying each vertex of F with an internal vertex of a path P4 where
the |V (F)| paths are vertex-disjoint. Let G be the family of all such graphs G. For
F = Cy, the graph G is illustrated in Fig.4.4. The corona G o K, of G is the graph
formed from G by adding for each v € V, a new vertex v’ and edge vv’.

Theorem 4.2.8 ([13]) If G is a connected graph of order n > 3, then Yr(G) <
n— @, with equality if and only if G is the cycle Cy, the cycle Cs, the corona
CioKy,0orGeg.

Interestingly, there is a relationship between the Roman domination number and
the differential of a graph, a seemingly unrelated parameter. Differentials were intro-
duced by Hedetniemi and his coauthors in [23]. For a vertex set S, the boundary of S,

Fig. 4.4 A graph in the
family G
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denoted B(S), is the set of vertices in V \ S that have a neighbor in S. The differen-
tial of the set S, denoted J(S), is defined as A(S) = |B(S)| — |§], and the maximum
value of O(S) for any subset S of V is the differential of a graph G, denoted 9(G).

Although Roman domination was introduced in 2004 and differentials in 2006, no
link was known between them until 2014 when Bermudo, Fernau, and Sigarreta [4]
proved that these two parameters are complementary with respect to the order of the
graph as follows.

Theorem 4.2.9 ([4]) For any graph G of order n, yg(G) + 0(G) = n.

Using this association between Roman domination and differentials in graphs,
Bermudo [3] was able to improve the bound of Theorem 4.2.8 for graphs having
minimum degree at least 2.

Theorem 4.2.10 ([3]) If G is a connected graph with minimum degree 6(G) > 2
and order n > 9, then yg(G) <n — %

Many variations on the Roman domination number have been defined and studied.
As a sample of the variants, we give a brief description of three of them in the
remainder of this section.

Considering that Rome’s defense strategies eventually failed, Hedetneimi and
Henning [18] suggested that the Roman Empire needed a more efficient, stronger,
yet leaner, defense strategy. They proposed weak Roman domination, which provided
a reasonable level of defense at a cheaper cost. A vertex v with f(v) = 0 is said to
be undefended with respect to f if it is not adjacent to a vertex w with f(w) > 0.
A function f is a weak Roman dominating function if each vertex v with f(v) =0
is adjacent to a vertex w with f(w) > 0, such that the function ' = (Vj, V{, V;)
defined by f'(v) =1, f'(w) = f(w) — 1,and f'(u) = f(u) forallu € V \ {v, w},
has no undefended vertex. The weak Roman domination number ~,(G) equals the
minimum weight of a weak Roman dominating function of G.

The weak Roman domination number of paths and cycles is given in [18].

Proposition 4.2.11 ([18]) For paths P, and cycles C,, with n > 4,

3n

Y (Pn) = 7 (Cp) = ’77—‘ .

Hedetniemi, along with Chellali, Haynes, and McRae, introduced a different
leaner strategy called Roman {2}-domination in [7]. Roman {2}-domination was
renamed [ltalian domination and studied further in [20]. A Roman {2}-dominating
function f:V — {0,1,2} has the property that for every vertex v € V with
f) =0, f(N(v)) > 2, that is, either there is a vertex u € N (v) with f(u) = 2, or
at least two vertices x, y € N(v) with f(x) = f(y) = 1. Viewed as a graph label-
ing problem, each vertex labeled 0 must have the labels of the vertices in its open
neighborhood sum to at least 2. In terms of the Roman Empire, this defense strat-
egy requires that every location with no legion has a neighboring location with two
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legions, or at least two neighboring locations with one legion each. The minimum
weight of a Roman {2}-dominating function f is the Roman {2}-domination number,
denoted (g2} (G). Consider, for example, the path Ps. In a minimum weight Roman
{2}-dominating function, we can assign 1, 0, 1, 0, 1 to the vertices for a weight of 3.
But, as we have seen, the Roman domination number of Ps is 4.

The Roman {2}-domination number of paths and cycles is given in [7].

Proposition 4.2.12 ([7]) For paths P, withn > 1 and cycles C, withn > 3,

n+1 n
Yirzy(Py) = IVT—‘ and 72 (Cp) = ’75—‘ .

The domination, weak Roman domination, Roman {2}-domination, and Roman
domination numbers are related as follows.

Theorem 4.2.13 ([7]) For every graph G,

Y(G) =% (G) = 1ry(G) = 7r(G) = 29(G).

Note that for the path Pyo, v(P1o) = 4,7, (P1o) = 5,vr2y(P1o) = 6,vr(P1o) =7,
and 2v(Pjo) = 8, implying that strict inequality for the chain of Theorem 4.2.13 is
possible, even for paths. This gives rise to the following open problem.

Problem 4.2.14 Characterize the graphs G (or trees) that achieve equality in each
of the inequalities of Theorem 4.2.13.

Weak Roman domination and Roman {2}-domination provide less restrictive, but
somewhat weaker defense strategies than that of Roman domination. We conclude
this section with a stronger approach introduced by Hedetniemi, along with Beeler
and Haynes, in [2]. For the variations of Roman domination that we have seen thus
far, one legion is required to defend any attacked vertex and at most two legions are
stationed at any one location. Double Roman domination offers double protection,
namely, that any attacked vertex can be defended by at least two legions, by allowing
up to three legions to be assigned to each location. It is noted in [2] that this slight
increase in the number of legions permitted per location provides the extra defense
at less than the anticipated additional cost.

A function f:V — {0, 1,2, 3} is a double Roman dominating function on a
graph G if the following conditions are met:

(1) If f(v) = 0, then vertex v must have at least two neighbors in V; or one neighbor
in V3.
@i1) If f(v) = 1, then vertex v must have at least one neighbor in V, U V3.

The double Roman domination number ;5 (G) equals the minimum weight of a
double Roman dominating function on G.

For example, consider the complete bipartite graph K ,_», for n > 4, where the
Roman domination number is 3 (in a partite set of size two, assign the value 2 to
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one of the vertices and 1 to the other, and assign O to all other vertices). Increasing
the value of the vertex assigned 1 to 2 gives a minimum double Roman dominating
function. That is, the Roman domination number equals 3, while the double Roman
domination number is only 4. Hence the defenses are doubled with an increase in
expenditure of only 33%.

The double Roman domination numbers of paths and cycles are given in [1].

Proposition 4.2.15 ([1])

1. For paths P,
B n if n=0 (mod?3)
Yar (Pn) = {n +1 otherwise.

2. For cycles C, withn > 3,

_ n if n=0,2,3,4 (mod6)
Yar(Cn) = {n + 1 otherwise.
Double Roman domination is related to domination and Roman domination as
follows.

Theorem 4.2.16 ([2]) For any nontrivial connected graph G,

1. Yr(G) < vr(G) < 2vr(G), and
2. ¥(G) £ vr(G) £ 279(G) < wr(G) < 37(G).

4.3 Alliances

An alliance is generally thought of as a pact or formal treaty between two or more
parties, made in order to unite for a common cause. Stephen Hedetniemi, along
with Sandra Hedetniemi and Petter Kristiansen, introduced several types of alliances
in graphs to model agreements between nations for mutual support (see [17]). For
example, they considered defensive alliances during times of war, where the allies
agree to join forces if one or more of them are attacked, and also offensive alliances
in times of peace, where allies join forces in order to keep peace. In addition to
national defense coalitions, applications of alliances are widespread in nature from
social and business associations to political and scientific groupings. As with Roman
domination, the study of alliances in graphs has become a popular area of research
with around 100 papers published since its inception in 2004. In this section, we
present a few different alliances, focusing on ones suggested by Stephen Hedetniemi.
For more information on alliances, we refer the reader to the three survey papers
[24, 27, 28].

Recall that for a vertex set S, the boundary of S, denoted B(S), is the set of
vertices in V \ S that have a neighbor in §, and the differential of S is defined as
a(8) = [B(S)| - IS].
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Defensive and offensive alliances were first introduced in [17]. A nonempty set
of vertices S C V is called a defensive alliance if for every v € §, |[N[v]N S| >
IN(v) N (V\S) |. The minimum cardinality of a defensive alliance of G is denoted
by a(G). In terms of application of a defensive alliance S, it is reasonable to think
that each vertex in S is in alliance with its neighbors in S against its neighbors in
0(S). For the set S as a whole, since an attack by the vertices of 9(S) on a defensive
alliance § can result in no worse than a “tie” (assuming strength in numbers), the
vertices in S can “successfully” defend against the vertices of 9(S).

A nonempty set S is an offensive alliance if for every vertex v € 9(S), |[N(v) N
S| = |N[v]N(V \ S)|. The minimum cardinality of an offensive alliance of G is
denoted by a,(G). In this case, the vertices in S can “successfully” attack O(S).

The offensive alliance and defensive alliance numbers are equal for a complete
graph, that is, a(K,) = a,(K,) = (%] Note that any vertex of degree at most 1 is a
defensive alliance. It is shown in [17] that a(G) = 1 if and only if G has a vertex of
degree O or 1, and it is shown in [12] that a,(G) = 1 if and only if G is a star. The
alliance numbers for paths and cycles follow.

Proposition 4.3.1 For paths P, and cycles C,, withn > 3,

1. ([17])a(P,) = 1and a(C,) =2,
2. ([12]) a,(P,) = | 3] and a,(C,) = [4].

Paths and cycles provide examples where the offensive alliance number can
be larger than the defensive alliance number. To see that these two numbers are
incomparable, consider the complete bipartite graphs K, ;, where 2 < r < s. Then
a(K.,) = 5]+ 5], while a, (K, ) = [ 51 ]. Thus, the defensive alliance number
is larger than the offensive alliance number for K, ; when r > 4.

Odile Favaron, Gerd Fricke, Wayne Goddard, Sandra Hedetniemi, Stephen Hedet-
niemi, Petter Kristiansen, Renu Laskar, and Duane Skaggs [12] determined an upper
bound on the offensive alliance number of a graph in terms of its order. An edge uv
of G is called monochromatic if u and v are assigned the same color in a given vertex
coloring of G.

Theorem 4.3.2 ([12]) If G is a graph of order n > 2, then a,(G) < %

Proof Since the result is trivial if G has an isolated vertex, we may assume that the
minimum degree of G is at least 1. Color the vertices of V with three colors such that
the number of monochromatic edges is minimized. Then any vertex is incident with
at least double the number of non-monochromatic edges as monochromatic edges.
(If a green vertex has more green neighbors than red neighbors, then we can recolor it
red, a contradiction.) Thus, the union of any two color classes is an offensive alliance,

n

implying that a, < 27 (]

As observed in [12], the bound of Theorem 4.3.2 is sharp and is attained by the
triangle K3, the complete tripartite graph K, and the graph formed from three
disjoint triangles T;, T, and T3 by adding three edges so that there is a triangle
containing one vertex from each of 77, 75, and T3.
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Stephen Hedetniemi and his coauthors determined a tight upper bound on the
defensive alliance number of a graph in terms of its order in [14]. A balanced bipar-
tition of G is a partition of V into two sets A and B, where |[A| = f%-| and B = L%J
An edge joining a vertex in A with a vertex in B is called an AB-edge.

Theorem 4.3.3 ([14]) If G is a connected graph of order n > 2, then a(G) < |_§-|

Proof The result is trivial if G has a vertex of degree at most 1. Among all bal-
anced bipartitions (A, B) of V, let m = (A, B) be one that minimizes the number
of AB-edges. Then |A| = [%] and B = |%|. If A or B is a defensive alliance,
then the result holds. Hence, assume that neither A nor B is a defensive alliance.
Thus, there exist vertices a € A and b € B such that [N[a] N A| < |[N(a) N B| and
IN[BINB| < |[N(b)N A|. Let A’ = (A \ {a}) U {b} and B’ = (B \ {b}) U {a}. But
then 7’ = (A’, B’) is a balanced bipartition of V with fewer A’B’-edges than A B-
edges, contradicting our choice of 7. (]

Brigham, Dutton, Haynes, and Hedetniemi [5] studied alliances that are both
defensive and offensive, which they called powerful alliances. That is, a vertex set S
is a powerful alliance if for every vertex v € N[S], IN[v]N S| = |[N[v] N (V \ S)|.
An alliance S of any type (defensive, offensive, or powerful) is called global if S is
a dominating set. Much of the research on alliances has involved global alliances.
See 8, 11, 15, 16, 21, 29], for example.

We conclude this section with a relation of alliances called distribution centers,
which were also first suggested by Hedetniemi. In business, a distribution center for
a set of products is a structure or a group of units used to store goods that are to be
distributed to retailers, to wholesalers, or directly to consumers. Distribution centers
are usually thought of as being demand driven.

Hedetniemi, along with Desormeaux, Haynes, and Moore, defined a distribution
center in a graph to model a supply and demand situation (see [10]). Formally, a
nonempty set of vertices S is a distribution center of G if every vertex v € 9(S)
is adjacent to a vertex u € § with |[N[u]N S| > [N[v]N (V \ S)|. The minimum
cardinality of a distribution center of a graph G is the distribution center number
dc(G), and a distribution center of G with cardinality dc(G) is called a dc-set of G.

Let S be a nonempty set of vertices of G. If u € S,v € V \ S,andv € N(u), such
that [N[u] N S| > [N[v]N (V \ §)|, then we say that u supplies the demand of v.
One way to look at a distribution center S is to think of a vertex v € 9(S) and its
neighbors in V' \ § as needing some amount of resource units, one unit per vertex,
while each vertex in § is able to supply one unit of the resource. Thus, a vertex
in 0(S) makes a demand on the distribution center S and is supplied by one of its
neighbors in S. Vertex v can ask a vertex u € S N N (v) to deliver [N[v] N (V \ )|
units. Vertex u can provide this amount only if vertex u can receive from itself and its
neighbors in S at least this number, that is, |[N[u] N S| > |[N[v] N (V \ §S)|. Hence,
such a set S models a distribution center that is capable of providing two-day delivery
to any vertex (customer) in 0(S): on day 1, each neighbor of u € S ships one unit of
resource to u, and then, on day 2, vertex u ships |[N[v] N (V \ S)| units of resource
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to its neighbor v € A(u). Thus, a distribution center is a type of an alliance between
the vertices of S to service the vertices in 9(S).

For the star K ,—1, dc(K ,—1) = 1 since each leaf has a demand of one and the
center vertex can supply the demand. Similarly, any two adjacent vertices on a path
or a cycle form a distribution center, so we have the following result.

Proposition 4.3.4 ([10])

1. Foracycle C, withn > 3, dc(C,) = 2.
2. For a path P, withn > 4, dc(P,) = 2.

Although distribution centers and offensive alliances are similar concepts, the cor-
responding parameters can easily be shown to be incomparable. To see this, note that
for cycles C,, with n > 5, a,(C,) = [%] > 2 = de(C,,). On the other hand, for the
complete bipartite graph K., with 1 <7 <'s,a,(K,,) = [ 2], whiledc(K,,) = r.
Thus, a,(K,) < dc(K, ) forr > 3.

Our next result shows that the domination number is an upper bound on the
distribution center number of any tree. This bound does not necessarily hold for
general graphs. For example, for the complete graph K, the domination number
is one, while the distribution center number is [n/27, showing that the distribution
center number can be much larger than the domination number.

Foratree T rooted at a vertex r and a vertex v # r of T, let T,, denote the subtree of
T rooted at v, consisting of v and its descendants in 7". Further, let T — T, denote the
tree rooted at » formed by removing the subtree T, from 7. Note that the vertices and
edges of T, and the edge from v to its parentin 7" are removed from T to form 7' — T,
and that T — T, is a tree. In a rooted tree, a support vertex all of whose children are
leaves is called a terminal support vertex. Let diam(7T') denote the diameter of T'.

Theorem 4.3.5 ([10]) If T is a tree, then dc(T) < ~v(T).

Proof Let T be a tree of order n. We proceed by induction on n. Note that if T is
the trivial graph or the star K ,_;, then de(T) = 1 = «(T), and if T is the double
star S, , (where 1 < p < q), then dc(T) = 2 = (T). Hence, we can assume that
diam(7") > 4. This implies thatn > 5 and v(T") > 2.

Assume that any tree T’ with order n’ < n has de(T”) < v(T").

Let r and v be two vertices at diam(7") apart, and root T at r. Necessarily, r and
v are leaves of T'. Let u be the parent of v, w the parent of u, and x the parent of w.
Note that by our choice of v, u is a terminal support vertex in 7. If w has degree 2,
then {u, v} is a distribution center of 7' implying that dc(T) = 2 < ~(T).

Hence, we can assume that the degree of w is at least 3. By our choice of u,
every child of w is either a leaf or a terminal support vertex. Let 7" = T — T,,. Let
D be a minimum dominating set of 7' containing the support vertices of 7' (which is
always possible since either the support vertex or its adjacent leaves must be in every
dominating set), and let D’ be a restriction of D onto T". Since u is a support vertex
of T, we can assume that u is in D. If w has a leaf neighbor, then w is in D; otherwise
w is dominated by a child in D’ that is a support vertex. Hence, D’ = D \ {u} is a
dominating set of 7" and so v(T") < v(T) — 1.
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Fig. 4.5 Graph G with 2

de(G) < ude(G) \ /
u v
o oL o
e .

Let S’ be a dc-set of T'. If N[w]N S’ # @, then S’ U {u} is a distribution
center of 7. Thus, de(T) <dc(T') +1 <~(T’)+ 1 <~(T), as desired. Hence,
assume that N[w] N S’ = @. But then S’ is a distribution center of T. Therefore,
de(T) < |8 =de(T) < (T") <~(T) — 1 < ~(T), and the result follows. O

We conclude with three open problems, two of which are listed in [10].
Problem 4.3.6 Characterize the trees T having dc(7T") = (7).

Problem 4.3.7 Investigate the maximum number of pairwise disjoint distribution
centers in a graph G.

Problem 4.3.8 Let S be a nonempty set of vertices of G. An edge uv in [S, 9(S)],
where u € S and v € 9(S), is called a supply line if IN[u] N S| > |[N[v]N (V \ S)|.
A distribution center S C V is a universal distribution center if every edge uv €
[S, O(S)] is a supply line, that is, |[N[u]N S| > [N[v] N (V \ S)| for every edge
uv €[S, 9(S)]. The universal distribution center number udc(G) is the minimum
cardinality of a universal distribution center set of G. Not all distribution centers are
universal distribution centers. For example, the graph G in Fig.4.5 has dc(G) =3 <
4 = udc(G). To see this, note that the set S = {u, v, y} is a distribution center, but not
a universal distribution center since xy is not a supply line. The set S’ = {w, x, y, 7}
is a universal distribution center. Study universal distribution centers.
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Chapter 5 ®)
Distance-Defined Subgraphs oo

In a connected graph G, there is a path connecting every two vertices of G; in fact,
there may be several such paths. For vertices u and v of G, the length of a shortest
u — v pathin G is the distance between u and v. For every vertex v of G, itis often of
interest to know the distance from v to a vertex of G farthest from v (the eccentricity
of v). The total distance of v is the sum of the distances from v to all vertices of G. The
vertices of a connected graph having minimum eccentricity, those having maximum
eccentricity, and those having minimum total distance and the subgraphs induced by
these three sets of vertices are the primary topics of this chapter.

5.1 Distance Parameters

The distance d(u, v) from a vertex u to a vertex v in a connected graph G is the
length of a shortest u — v pathin G. A u — v path of length d(u, v) is calledau — v
geodesic. The eccentricity e(v) of a vertex v in G is the distance from v to a vertex
farthest from v, that is,

e(v) = max{d(v,x) : x € V(G)}.

The diameter diam(G) of G is the greatest eccentricity among the vertices of G,
while the radius rad(G) of G is the smallest eccentricity among the vertices
of G. The diameter of G is therefore the greatest distance between any two vertices
of G. The distance d defined above satisfies the following properties in a connected
graph G: (1) d(u, v) > 0 for every two vertices u# and v of G; (2) d(u, v) = 0 if and
only if u = v; (3) d(u, v) = d(v, u) for all u, v € V(G) (the symmetric property);
@) d(u, w) <d(u,v)+d,w) for all u, v, w € V(G) (the triangle inequality).
Consequently, d is ametric on V(G) and (V (G), d) is ametric space. The following
result gives a relationship between the radius and diameter of a nontrivial connected
graph.
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48 5 Distance-Defined Subgraphs

Theorem 5.1.1 For every nontrivial connected graph G,
rad(G) < diam(G) < 2rad(G).

In 1973, Ostrand showed not only that the bounds for the diameter of a graph stated
in Theorem 5.1.1 are sharp but that each pair a, b of positive integers satisfying these
inequalities can be realized as the radius and diameter of some graph.

Theorem 5.1.2 ([12]) For every two positive integers a and b witha < b < 2a — 2,
there exist graphs of radius a and diameter b. Furthermore, the minimum order of
such a graph is a + b.

The total distance td(v) of a vertex v in a connected graph G is defined by

W)= Y d, w).

weV(G)

This concept was introduced by Harary [4] in 1959. Studying the total distances of the
vertices of a connected graph G of order n is essentially the same as studying average
distances of the vertices as the average distance from a vertex v to the vertices of G
is td(v)/n.

A vertex v of a connected graph G with e(v) = rad(G) is called a central vertex
of G and the subgraph induced by the central vertices of G is the center Cen(G)
of G. A vertex v in a connected graph G is called a median vertex of G if v has the
minimum total distance among the vertices of G. Equivalently, v is a median vertex
if v has the minimum average distance to the vertices of G. The median Med(G)
of G is the subgraph of G induced by its median vertices. Therefore, the center and
median of a connected graph G are subgraphs of G that might be considered as two
possible interpretations of the “middle” of G. For example, consider the graph G
of Fig. 5.1, where each vertex in the second figure is labeled with the eccentricity of
the vertex, while each vertex in the third figure is labeled with the total distance of
the vertex. Thus, the center of G contains the two vertices u and v and the median
of G consists of the single vertex w.

The concepts of center and median have an abundance of real-life applications.
For example, suppose that the goal is to find an optimal location for an emergency
facility in a certain city, such as a police station, a fire station, or a medical center.
Then we might want to minimize the distance from any location in the city that is
farthest from this facility. If the street system of the city is modeled by a graph G,
then a possible location for such an emergency facility might be somewhere in the
city that corresponds to the center of G. On the other hand, if the goal is to determine
alocation for a service facility in the city, such as a post office, a shopping center, or a
bank, then we might want to minimize the average distance from all customers in the
city to the facility. An optimal location in this case might be somewhere in the city that
corresponds to the median of G. For example, suppose that the graph G of Fig.5.1
represents the street system of a community, where the edges are streets and vertices
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Fig. 5.1 The center and median of a graph

are street intersections. If the community wants to build an emergency facility at a
location that minimizes the drive from any street intersection to this facility, then
an appropriate location for this emergency facility would be somewhere along the
street joining u# and v. If the community wants to build a service facility at a location
that minimizes the average drive from all street intersections to the facility, then the
likely location for this service facility is the street intersection corresponding to w.
We now consider these two distance-defined subgraphs—the center and the median.

5.2 The Center of a Graph

A fundamental question concerning centers is that of determining those graphs that
can be the center of some graph. By a result initially published in a paper by Buckley,
Miller, and Slater [3], Stephen Hedetniemi showed that there is no restriction of which
graphs can be the center of some graph.

Theorem 5.2.1 For every graph H, there exists a connected graph G such that
Cen(G) = H.

Proof Let G be the graph constructed from H by first adding two new vertices u and
v to H and joining them to every vertex of H but not to each other. The construction
of G is completed by adding two other vertices #; and v, where u; is joined to u
and v; is joined to v (see Fig.5.2). Since e(u;) = e(vy) = 4, e(u) = e(v) = 3, and
e(x) = 2 for every vertex x in H, it follows that V (H) is the set of central vertices
of G and so Cen(G) = G[V(H)] = H. |

A property concerning the location of the center of every connected graph was
observed by Harary and Norman.
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Fig. 5.2 A graph with a g w v v
given center G: o0— !

Theorem 5.2.2 ([S]) The center of every connected graph G lies in a single block
of G.

Proof Assume, to the contrary, that there is a connected graph G whose center
Cen(G) does not lie within a single block of G. Then G has a cut-vertex v such that
G — v contains components G| and G, each of which contains vertices of Cen(G).
Let u be a vertex such that d(u, v) = e(v) and let P; be a v — u geodesic. At least
one of G| and G, say G», contains no vertices of P;. Let w be a vertex of Cen(G)
belonging to G,, and let P, be a w — v geodesic. The paths P, and P, together form
au — w path Ps, which is necessarily au — w path of length d (u, w). However then,
e(w) > e(v), which is a contradiction. Thus, Cen(G) lies in a single block of G. B

Among the research topics involving centers are those of determining possible
centers of graphs belonging to some familiar classes.

By Theorem 5.2.2, the center of every graph lies in a block. Since the only blocks
of a tree are K, the only possible centers are K| and K. This observation provides
a proof of a classical theorem of Jordan. A tree is called central if its center is K
and bicentral if its center is K.

Theorem 5.2.3 ([8]) Every tree is either central or bicentral.

A graph G is planar if it can be embedded in the plane, that is, G can be drawn in
the plane without any two of its edges crossing. Such a drawing is also called a planar
embedding of G. A graph G is outerplanar if there exists a planar embedding of G so
thatevery vertex of G lies on the boundary of the exterior region. An outerplanar graph
G is maximal outerplanar if the addition to G of any edge joining two nonadjacent
vertices of G results in a graph that is not outerplanar. Therefore, if G is a maximal
outerplanar graph of order at least 3, then there is a planar embedding of G where
the boundary of the exterior region contains every vertex of G and the boundary
of every other region is a triangle. In 1980, Proskurowski obtained the following
characterization of those graphs that can be the center of a maximal outerplanar
graph.

Theorem 5.2.4 ([13]) If G is a maximal outerplanar graph, then the center of G is
isomorphic to one of the seven graphs in Fig.5.3.

A graph is a C,-tree, n > 3, if it can be constructed in the following manner.
Let C be an n-cycle, which we denote by Gy. The graph G is constructed from G
by adding a new n-cycle C’ to Gy and identifying an edge of G, and an edge
of C’, which results in the graph G . Proceeding recursively, for an integer k > 2,
the graph Gy is constructed from G;_; by adding a new n-cycle C’ to G;_; and
identifying an edge of G,_; and an edge of C’. Each such graph G, is called a
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Cn)-tree. Proskurowski [14] determined all those graphs that can be the center of a
C3)-tree. Mitchell and Hedetniemi determined all those graphs that can be the center
of a C(4)-tree and Mitchell, Hedetniemi, and Slater investigated centers of Cy,-trees
for all integers n > 5 (see [6]).

Theorem5.2.1 has led to a succession of research topics involving not only the
center of a graph but numerous other distance-defined subgraphs in a connected
graph. A more general interpretation of center was introduced by Stephen Hedet-
niemi, along with Mitchell and Cockayne [10] and by Slater [16]. Let P be a path in
atree T. For a vertex v in T, the distance between v and P is defined as

d(v, P) = min{d(v,u) : u € V(P)}.

Therefore, if v € V(P), then d(v, P) = 0. The eccentricity e(P) of the path P is
defined as
e(P) =max{d(v, P): ve V(T)}.

The path radius prad(T') of a tree T is defined as
prad(7) = min{e(P) : P isapathinT}.

A path P inatree T is minimal with respect to its eccentricity if every proper subpath
of P has greater eccentricity. A minimal path P* of T for which e(P*) = prad(T)
is called a central path of T. The path center of T is the union of all central paths
of T.

These concepts are illustrated for the tree 7' of Fig.5.4. Let P* = (u, x, y, z, v).
While e(P*) = 3, no path in T has eccentricity 2. Since the eccentricity of every
proper subpath of P* exceeds 3, it follows that P* is minimal with respect to its
eccentricity. Thus, prad(7') = 3 and P* is the only central path of 7. Consequently,
P* is the path center of T.
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Fig. 5.4 The path center of
atree

The fact that the path center of the tree T in Fig. 5.4 consists of a single path is not
surprising. Hedetniemi, along with Mitchell and Cockayne, obtained the following
result.

Theorem 5.2.5 ([10]) The path center of every tree consists of a single path.

Proof Assume, to the contrary, that there exists a tree T whose path center does not
consist of a single path. Then there are two distinct paths P; and P, in the center
of T. We consider two cases, depending on whether V (P;) and V (P,) are disjoint.

Case 1. V(P) N V(P,) = 0. Let P be the unique path from P; to P, in T, say P
isau; — uy path where u; € V(Py) and u; € V(P,), thatis, V(P) N V(P;) = {u;}
fori =1,2. Let T; (i = 1, 2) be the component (tree) containing P; in the forest
T — E(P) and let x; € V(T;) such that

d(x;,u;) = max{d(x,u;) : x € V(T;)}.
We show that the x; — x; path P* has the property that
e(P*) < e(Py) = e(P,).
If y € V(Ty), then
d(y, P*) <d(y,uy) <d(xi,u1) < d(x1, Pr) < e(P2).

Similarly, if y € V(T3), then d(y, P*) < e(P;). If z is a vertex of T whose path to
P contains no vertex of T or 75, then

d(z, P*) <d(z, P;)) <e(P) fori =1,2.

Ifz € V(P),thend(z, P*) = 0. Therefore, e(P*) < e(P;) = e(P,), whichis a con-
tradiction.

Case 2. V(P)NV(Py) # 0, say V(P) NV (Py) ={uy,us,...,u} for some
positive integer k. Since Py and P intersect in a path, we may assume that this path
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is (uy, ua, ..., ur). Suppose that P; has an end-vertex x; ¢ U. Since P; is minimal
with respect to its eccentricity, there exists a vertex y; € V(T') such that the shortest
path from y; to P, meets P; at a vertex x; and d(y;, x;) = e(P;). However, P has
no end-vertex that is not in U. The same is true for P,. Thus, P, = P». |

Since graph theory has important applications in computer science, the area of
graph algorithms has been one of the fastest growing areas of research in graph theory.
Algorithms have been developed for various types of distance-defined subgraphs of a
connected graph or a network (see [2]). In particular, Hedetniemi, along with Mitchell
and Cockayne [10], and Slater [16] have developed algorithms to find path centers
in trees.

5.3 The Median of a Graph

While Hedetniemi proved that every graph is the center of some graph, his former
doctoral student Peter Slater [15] showed in 1980 that every connected graph is also
the median of some graph. Later, Miller [9] found a simpler proof of this fact.

Theorem 5.3.1 ([9, 15]) Forevery graph H, there exists a connected graph G such
that
Med(G) = H.

Proof Let V(H) = {v, v2, ..., v,} and let G be that graph constructed from H
by adding n new vertices u1, uy, ..., u, and joining u; to v; as well as all vertices
not adjacent to v; in H. For each integer i with 1 <i <mn, td(v;) =3n — 2 and
td(u;) = 3n — 2 + deg; v;. Since deg; v; > 1, it follows that Med(G) = H. [ |

In 1985, Truszynski established the following analogue of Theorem5.2.2 for
medians.

Theorem 5.3.2 ([17]) The median of every connected graph G lies in a single
block of G.

A consequence of Theorem 5.3.2 is then an analogue of Theorem5.2.3.
Corollary 5.3.3 The median of every tree is either K| or K.

It was seen, in Fig.5.1, that the center and median of a connected graph are not
always identical. It may be expected that these two subgraphs are located quite close
to each other. Novotny and Tian showed that not only can the center and median be
close to each other but can overlap in any prescribed manner.

Theorem 5.3.4 ([11]) For every two graphs H, and H, and a graph H that is an
induced subgraph of both H, and H,, there exists a connected graph G such that

Cen(G) = H,Med(G) = H,, and Cen(G) NMed(G) = H.
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Holbert [7] then showed that connected graphs exist whose center and median
are arbitrarily far apart. For two subgraphs F and H in a connected graph G, the
distance d(F, H) between F and H is defined as

d(F, H) = min{d(u, v) 1 u € V(F), v € V(H)}.

Thus, d(F, H) =0if V(F)NV(H) # .

Theorem 5.3.5 ([7]) For every two graphs Hy and H, and every positive integer k,
there exists a connected graph G such that

Cen(G) £ Hy,Med(G) = H,, and d(Cen(G), Med(G)) = k.

5.4 The Periphery of a Graph

A vertex v in a connected graph G is a peripheral vertex of G if e(v) = diam(G). The
subgraph induced by the peripheral vertices of a connected graph G is the periphery
of G and is denoted by Per(G). While every graph can be the center of some graph,
Bielak and Syslo showed that only certain graphs can be the periphery of a graph.

Theorem 5.4.1 ([1]) A nontrivial graph H is the periphery of some graph if and
only if every vertex of H has eccentricity 1 or no vertex of H has eccentricity 1.

Proof 1f every vertex of H has eccentricity 1, then H is complete and Per(H) = H.
Suppose that no vertex of H has eccentricity 1. Let F be the graph obtained from H
by adding a new vertex w and joining w to each vertex of H. Since er(w) = 1 and
er(x) = 2 for every vertex x of H, it follows that every vertex of H is a peripheral
vertex of F and so Per(F) = F[V(H)] = H.

For the converse, assume, to the contrary, that there exists a graph H where
some vertices of H have eccentricity 1 and some vertices of H have eccentricity
greater than 1 for which there is a graph G such that Per(G) = H. Necessarily, H
is a proper induced connected subgraph of G and diam(G) = k > 2. Furthermore,
eg(v) =k > 2foreachv € V(H) and eg(v) < k forv € V(G) — V(H). Let u be
a vertex of H such that ey (u) = 1 and let w be a vertex of G such that dg (1, w) =
eg(u) =k > 2. Since w is not adjacent to u, it follows that w ¢ V (H). On the other
hand, dg(u, w) = k and so eg(w) = k. This implies that w is a peripheral vertex
of G and so w € V(H), which is impossible. |

The graph G of Fig. 5.5 has radius 2 and diameter 3. Therefore, every vertex of G
is either a central vertex or a peripheral vertex. Indeed, the center of G is the triangle
induced by the three vertices vy, v2, v3 of G lying on the outer 3-cycle, while the
periphery of G is the 6-cycle induced by the six uy, us, ..., ug vertices of G lying
on the inner 6-cycle.
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Fig. 5.5 The center and periphery of a graph

A problem involving centers and peripheries is the following.

Problem 5.4.2 Let H; be a graph and let H; be a graph each of whose vertices has
eccentricity 1 or each of whose vertices has eccentricity 2 or more. Does there exist
a connected graph G such that

Cen(G) = H, and Per(G) = H,

There is another distance-defined subgraph of a connected graph that does not
appear to have been studied extensively. A vertex v in a connected graph G is called
an exterior vertex of G if v has the maximum total distance in G. The exterior Ext(G)
of G is the subgraph induced by the exterior vertices of G.

Conjecture 5.4.3 For every graph H, there exists a connected graph G such that
Ext(G) = H.

Problem 5.4.4 Investigate, for a connected graph G, the relationship between the
exterior and the periphery of G.
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Chapter 6 ®)
Eulerian and Hamiltonian Walks G

There are two topics in graph theory with a long history, both of which involve
traversing graphs, one traversing all the edges in a graph and the second traversing
all the vertices in a graph. It is these two topics that are discussed in this chapter.

6.1 Eulerian Walks

A walk in a graph G is a sequence of vertices in G such that consecutive vertices are
adjacent in G. The number of edges encountered in a walk (including multiplicities)
is the length of the walk. A walk whose initial and terminal vertices are distinct is
an open walk; otherwise, it is a closed walk. A trail is a walk in which no edge is
repeated, while a circuit is a nontrivial closed trail.

A circuit C in a connected graph G is Eulerian if C contains every edge of G, while
an open trail T in G is Eulerian if T contains every edge of G. A connected graph G
is Eulerian if G contains an Eulerian circuit. In a famous 1736 paper [4] by Leonhard
Euler in which he solved the well-known Konigsberg Bridge Problem, Euler stated
(in graph theory terminology) that a nontrivial connected graph G is Eulerian if and
only if every vertex of G has even degree, while G has an Eulerian trail if and only
if G has exactly two odd vertices. In his paper, Euler proved that if G is Eulerian,
then every vertex of G has even degree. His argument for the converse, however,
was considered incomplete and a proof of this converse didn’t appear until 1873, in
a paper [9] by Hierholzer, which was published two years after his death. Eulerian
trails, circuits, and graphs are, of course, named for Euler. The following result is
referred to as Euler’s theorem.

Theorem 6.1.1 (Euler’s Theorem) A nontrivial connected graph G is Eulerian if
and only if every vertex of G has even degree.
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It is therefore a consequence of Euler’s theorem that if G is a connected graph
containing odd vertices, then G fails to contain a closed walk traversing every edge
of G exactly once. Consequently, if G is a connected graph containing odd vertices
and a closed walk that traverses every edge of G, then some edge of G must be
traversed more than once. It is this observation that is the basis for the principal
concept of this section.

Let G be a nontrivial connected graph of size m. An Eulerian walk in G is a closed
walk of minimum length that traverses every edge of G at least once. The length of an
Eulerian walk in G is called the Eulerian number of G and is denoted by e(G). Clearly,
e(G) = m and e(G) = m if and only if G is Eulerian. Furthermore, if we replace
each edge of G by two parallel edges, then we obtain an Eulerian multigraph M. An
Eulerian circuit of M gives rise to a closed walk of G traversing every edge of G
twice. Therefore, e(G) < 2m. The primary problem here is to determine e(G) for
an arbitrary connected graph G.

This problem was discussed in 1968 and solved by Stephen Hedetniemi [8] for all
trees and connected graphs containing exactly two odd vertices. In 1973, however,
Hedetniemi and Goodman [5] solved the more general problem in terms of another
graphical parameter. This problem was looked at even earlier (in 1962) by the Chi-
nese mathematician Mei-Ko Kwan [10] and became known as the Chinese Postman
Problem. Suppose that a postman starts from the post office and has mail to deliver
to the houses along each street on his mail route. Once he has completed delivering
the mail, he returns to the post office. The problem is to find the minimum length of
around trip that accomplishes this, as we state next.

The Chinese Postman Problem Determine the minimum length of a round trip that
traverses every road in a mail route at least once.

In graph theory terminology, the Chinese Postman Problem is to determine the
length of Eulerian walk in a connected graph. The result corresponding to Theo-
rem6.1.1 for Eulerian trails (also stated, using graph theory terminology, by Euler)
is the following.

Theorem 6.1.2 ([4]) A nontrivial connected graph G has an Eulerian trail if and
only if G contains exactly two vertices of odd degree. Any Eulerian trail in G then
begins at one of these odd vertices and terminates at the other.

By Theorems 6.1.1 and 6.1.2, it therefore follows that if G is any connected graph
containing more than two odd vertices, then G contains neither an Eulerian circuit
nor an Eulerian trail. Chartrand, Polimeni, and Stewart established the following
result.

Theorem 6.1.3 ([1]) If G is a connected graph containing 2k > 4 odd vertices,
then G can be decomposed into k open trails connecting odd vertices, at most one
trail of which has odd length.

We have already noted that for every nontrivial connected graph G, there is always
a closed walk traversing every edge of G twice. For an Eulerian walk in G, no edge
of G need be traversed more than twice.



6.1 Eulerian Walks 59

Proposition 6.1.4 Let G be a nontrivial connected graph. No edge of G appears
more than twice in any Eulerian walk of G.

Proof  Assume, to the contrary, that there is an Eulerian walk W of G such that some
edge e = uv of G appears three (or more) times on W. There are three possibilities
for the location of ¢ in W.

Case 1. W = Wy, u,v, Wo, u, v, Wa, u, v, Wy where W; is a subwalk (possibly
empty) of W for 1 < i < 4.Let W} denote the walk W, traversed in reverse order.
Then W* = Wy, u, W;, v, W3, u, v, Wy is a closed walk traversing every edge of G
whose length is less than that of W. This contradicts the assumption that W is an
Eulerian walk of G.

Case2. W = Wy, u,v, Wo, u, v, Ws, v, u, Wy. Here, W* = Wy, u, W, u, Ws, v,
u, Wy is a closed walk traversing every edge of G whose length is less than that of
W. This is impossible since W is an Eulerian walk of G.

Case 3. W = Wi, u,v, Wo, v, u, Wz, u, v, Wy. In this case, W*= Wy, u, Ws, u,
v, Wa, v, Wy is a closed walk traversing every edge of G whose length is less than
that of W. This is a contradiction. ]

In fact, Kwan presented the following characterization of Eulerian walks.

Theorem 6.1.5 ([10]) Let G be a nontrivial connected graph. A closed walk W
of G traversing every edge of G is an Eulerian walk if and only if

(1) no edge of G appears more than twice in W and
(2) for each cycle C of G, the number of edges of C that appear twice in W is at
most half the length of C.

In particular, Theorem 6.1.5 implies that if G is a connected non-Eulerian graph
and W is an Eulerian walk in G, then the subgraph of G induced by the edges
appearing twice in W contains no cycles and is therefore a forest.

Let G be a connected graph of size m containing 2k > 4 odd vertices and let S
be the set of the 2k odd vertices of G. By a pair partition of S is meant a partition
of § into k pairs of vertices of S. Thus, a pair partition of S can be expressed as

m = {{urr, uin}, {21, unt, ..., {ukr, ur}}

where then {u1, up, usy, Uz, ..., ugr, ugp} = S. For a given pair partition 7 of S,
the number d () represents the sum

k
d(m) = dui. up).
i=1

The number (G) is then defined as
w(G) = min{d(7) : 7 is a pair partition of S};

that is, ©(G) is the smallest value of d () over all (2k)!/ 2k pair partitions 7 of S.
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Fig. 6.1 A graph G with w
four odd vertices

As an illustration, consider the graph G of Fig.6.1. The set of odd vertices of G
is S = {w, x, y, z}. Here,

dlw,x)=4,d(w,y) =2,d(w, z) =4,
dix,y)=3,d(x,2) =5,d(y,2) = 2.

There are three pair partitions of S, namely

™ = {{w9x}v {yv Z}}77T2 = {{w7 y}s {x9 Z}}77T3 = {{wv Z}? {.X, y}}

Since d(m) = 6, d(m) =7, and d(m3) = 7, it follows that u(G) = 6.
Goodman and Hedetniemi presented a formula for the Eulerian number of a
graph G in terms of its size and the number p(G).

Theorem 6.1.6 ([5]) If G is a connected graph of size m containing at least four
odd vertices, then
e(G) =m + u(G).

Proof  To establish the inequality e(G) < m + u(G), it suffices to show that G
contains a closed walk of length m + ;(G) traversing every edge of G. Suppose that
G contains 2k > 4 odd vertices. Let m = {{u11, u12}, {uz1, u2}, ..., {ur1, ux2}} bea
pair partition of the set S of odd vertices of G such that 4(G) = d(7) and let P; be a
u;1 — u;jp geodesic of G for 1 <i < k. Now, let H be the multigraph obtained from
G by replacing each edge of every path P; (1 <i < k) by two parallel edges. Thus,
H is an Eulerian multigraph of size m + ;1(G). An Eulerian circuit of H produces a
closed walk of length m 4 1(G) traversing every edge of G. Thus, e(G) < m+ u(G).

It remains to show that e(G) > m + u(G). Let W be an Eulerian walk of G.
Therefore, the length of W is e(G) and every edge of G appears on W at least once
and at most twice by Proposition 6.1.4. Let H be the subgraph of G induced by those
edges appearing twice in W. Therefore, e(G) = m + |E(H)|. By Theorem®6.1.5,
H is a forest. For an even vertex u in G, either u does not belong to H or there
is an even number of edges incident with u that belong to H. For an odd vertex u
in G, there is an odd number of edges incident with u that belong to H. Hence, every
odd vertex of G belongs to H and the set of odd vertices of H is the set S of odd
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vertices of G. We consider two cases, according to whether H is connected or H is
disconnected.

Case 1. H is connected. Since H is a tree containing 2k > 4 odd vertices, H
can be decomposed into k open trails (paths in this case) P;, P,, ..., P, connecting
odd vertices (by Theorem 6.1.3). Suppose that P; is a u;; — u;, path of length ¢; for
1 <i <k.Then

m = {{urr, uin}, {uor, unt, ..., {ukr, ur}}

is a pair partition of S. Since dg (u;1, u;3) < ¢; for each integer i with 1 <i <k, it
follows that

k k

[E(H)| =) i =Y doui, up) = d(m) = u(G).

i=1 i=1

Case 2. H is disconnected. Then H is a forest consisting of p > 2 components
Hy, H,, ..., H,. Therefore, each component H; is a nontrivial tree. For 1 <i < p,
let m; be the size of H; and let k; be the number of odd vertices of H;. Then k; > 2
isevenfor 1 <i < p.For1 <i < p,let S; be the set of all odd vertices of H;.
Then {S1, S2, ..., S,} is a partition of the set S of odd vertices of G. Applying the
same argument used in Case 1 to each component H; for 1 <i < p, we see that for
each integer i with 1 <i < p, there is a pair partition 7; of S; such that m; > d(m;).
Since {Si, S2, ..., Sp} is a partition of S, it follows that 7, 7o, ..., m, gives rise to
a pair partition 7 of S such that

P
d(m) = _d(m).
i=1

Therefore,

P P
EH)| =) mi =) d(m)=d(m) = uG).

i=1 i=1

Consequently, e(G) = m + |E(H)| > m + u(G), completing the proof. |

6.2 Hamiltonian Walks

In 1856, Sir William Rowan Hamilton developed a game he called the Icosian Game.
One form of this game consisted of a board on which was a diagram of the graph of the
dodecahedron. The twenty vertices of this diagram were designated by the twenty
consonants of the English alphabet. In one version of the game, called “Around
the World”, each vertex corresponded to a world city whose name began with the
corresponding consonant and the player was to find a round trip that passed through
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every city exactly once. In fact, expressed in graph theory terms, Hamilton stated
that if one would begin with any path of order 5 on this graph, a cycle could always
be found on the graph that contained this path as well as all twenty vertices. This
eventually led to a popular concept named for Hamilton.

A cycle in a graph G containing every vertex of G is called a Hamiltonian cycle
of G, while a graph possessing a Hamiltonian cycle is a Hamiltonian graph. Unlike
the situation for Eulerian graphs, there is no corresponding characterization of Hamil-
tonian graphs. There are, however, several sufficient conditions for a graph to be
Hamiltonian, many of which require the graph to have diameter at most 2. The first
of these results was obtained by Dirac in 1952.

Theorem 6.2.1 ([3]) If G is a graph of order n > 3 such that 6(G) > n/2, then G
is Hamiltonian.

Eight years later, in 1960, Ore obtained a more general sufficient condition for a
graph to be Hamiltonian. For a noncomplete graph G, let 0, (G) denote the minimum
degree sum of every two nonadjacent vertices of G.

Theorem 6.2.2 ([11]) If G is a graph of order n > 3 such that 0,(G) > n, then G
is Hamiltonian.

One consequence of Theorem 6.2.2 gives a sufficient condition for a graph to be
Hamiltonian in terms of its size.

Corollary 6.2.3 If G is a graph of order n > 3 and size m > (”;l) +2, then G is
Hamiltonian.

While all of the bounds in these results are sharp, there are many Hamiltonian
graphs satisfying none of these bounds. If a graph G is not Hamiltonian, then, by
definition, there is no cycle in G containing all vertices of G. On the other hand,
for every nontrivial connected graph G, there are closed walks in G traversing every
vertex of G. In fact, every Eulerian walk in G has this property.

Let G be a nontrivial connected graph. A closed walk of minimum length con-
taining every vertex of G is a Hamiltonian walk and the length of a Hamiltonian
walk in G is called the Hamiltonian number of G, denoted by h(G). Therefore, if G
is a connected graph of order n > 2, then A(G) > n. Furthermore, #(G) = n if and
only if G is Hamiltonian. These concepts were introduced by Stephen Hedetniemi
along with Seymour Goodman [6, 7], who established the following bounds for the
Hamiltonian number of a graph in terms of its order, size, and Eulerian number.

Proposition 6.2.4 ([6, 7]) If G is a connected graph of order n > 2 and size m,
then
n < h(G) <e(G) <2m.

Proof It has already been observed that #(G) > n and that replacing each edge
of G by two parallel edges produces an Eulerian multigraph and so e(G) < 2m.
Furthermore, every Eulerian walk in G is also a Hamiltonian walk of G. These
observations produce the desired inequalities. |
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Since every bridge in a nontrivial connected graph G must be traversed more than
once in a Hamiltonian walk of G, the following result is immediate.

Proposition 6.2.5 If T is a nontrivial tree of order n, then
h(T) =2n —2.

By Proposition6.1.4, no edge of a nontrivial connected graph G appears more
than twice in any Eulerian walk of G. This is also the case for Hamiltonian walks
of G.

Proposition 6.2.6 ([7]) Every edge of a nontrivial connected graph G appears at
most twice in any Hamiltonian walk of G.

Goodman and Hedetniemi provided a necessary condition for a nontrivial con-
nected graph to have the same Eulerian and Hamiltonian numbers.

Theorem 6.2.7 ([7]) Let G be a nontrivial connected graph. If h(G) = e(G), then
for every cycle C of G, the spanning subgraph G — E(C) is disconnected.

Proof  Assume, to the contrary, that there is a nontrivial connected graph G for
which h(G) = e(G), but G contains a cycle C, of length k say, such that H =
G — E(C) is connected. Let W be an Eulerian walk of G and let M be the multigraph
obtained from G corresponding to W. Hence, the size of M is e(G). Let F be the
multigraph obtained by deleting every edge of C from M. Since F is connected, F'
is Eulerian. However then,

h(G) < e(F) = |E(F)| = e(G) —k < e(G),

which is a contradiction. |

That the Eulerian number of a connected non-Eulerian graph G can be computed
by determining all pair partitions of the set of odd vertices of G and minimizing the
sum of the distances of the vertices in each pair in such a partition suggested another
concept introduced by Chartrand, Thomas, Saenpholphat, and Zhang in [2], which
has a direct connection with the Hamiltonian number of a connected graph.

For every Hamiltonian cycle (vy, vy, . . ., Uy, Uy+1 = v;) of a Hamiltonian graph G,
it follows that v;v;4+; € E(G) for 1 <i < n. Hamiltonian graphs of order n > 3 are
therefore those graphs for which there is a cyclic ordering vy, vy, .. ., Uy, Upt1 = U1
of the vertices of G such that Z;lzl d(v;i, vi+1) = n, where d(v;, v;11) is the distance
between v; and v;4; for I < i < n. For a connected graph G of order n > 3 and a
cyclic ordering s : vy, V2, ..., Uy, Uyt = vy Of the vertices of G, the number d(s)
is defined by

d(s) = Zd(vi, Vig1).
i=1
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Fig. 6.2 A graph G with U1
h*(G)=6

Therefore, d(s) > n for each cyclic ordering s of the vertices of G. The number
h*(G) is defined by

h*(G) = min {d(s) : s is a cyclic ordering of the vertices of G} .
Consider the graph G of Fig. 6.2. For the cyclic orderings
§1: V1, V2, U3, U4, Us, U1 and s : vy, U3, V2, U4, Vs, U

of the vertices of G, we see that d(s;) = 8 and d(s;) = 6. Since G is a non-
Hamiltonian graph of order 5 and d(s;) = 6, it follows that 2*(G) = 6.

It was shown in [2] that there is an alternative way to define the Hamiltonian
number 2(G) of a nontrivial connected graph G. The length of a walk W in a graph
is denoted by L(W).

Theorem 6.2.8 ([2]) For every connected graph G,
h(G) = h(G).

Proof To show that h(G) < h*(G), lets : v, vy, ..., Uy, V41 = V) be a cyclic
ordering of the vertices of G for which d(s) = h*(G). For each integer i with
1 <i <n,let P, beav; —v;;1 geodesicin G. Thus, L(P;) = d(v;, vi+1). The union
of the paths P; forms a closed spanning walk W in G. Therefore,

h(G) < LOW) = Y L(P) = Y d(vi, vis1) = d(s) = h*(G).

i=1 i=1

To show that 2*(G) < h(G), let W be a Hamiltonian walk in G. Therefore,
L(W) = h(G). Suppose that W = (x1, x2, ..., Xy, X1), where then N > n. Define
vy = x; and v; = x. For 3 < i < n, define v; to be x;,, where j; is the smallest
positive integer such that x, ¢ {vi, va, ..., v;i—1}. Thens : vy, va, ..., Uy, Vg1 = vy
is a cyclic ordering of the vertices of G. For each integer i with 1 < i < n, let W; be
the v; — v;41 subwalk of W and so d(v;, vi4+1) < L(W;). Since

h*(G) <) d(i,vis1) < Y L(W) = L(W) = h(G),
i=1 i=1

we have the desired result. |
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As a consequence of Theorem 6.2.8, the number 42*(G) for a nontrivial connected
graph G is the Hamiltonian number of G, which we henceforth denote by /(G). That
is, h*(G) = h(G) is the length of a Hamiltonian walk in G.

By Proposition6.2.5, if T is a tree of order n, then A (T) = 2n — 2. To show that
the converse of this statement holds as well, the following lemma is useful.

Lemma 6.2.9 ([2]) If G is a connected graph such that §(G) > 2 and A(G) > 3,
then G contains two distinct cycles C and C' such that V (C) # V (C').

Theorem 6.2.10 ([2]) If G is a nontrivial connected graph of order n, then
h(G) =2n — 2 ifand only if G is a tree.

Proof By Proposition6.2.5, it suffices to show that if G is a connected graph of
ordern > 3thatisnotatree, then(G) < 2n—2. We proceed by induction on n. Since
h(K3) = 3, the result holds for n = 3. Suppose that A(F) <2(n—1) —2=2n—4
for all connected graphs F of order n — 1 > 3 that are not trees. Let G be a connected
graph of order n > 4 that is not a tree. Since h(C,) = n < 2n — 2, we may assume
that G # C,,.

We claim that G contains a vertex u such that G — u is a connected subgraph
of G that is not a tree. If G contains cut-vertices, then there is a vertex u that is a
non-cut-vertex of an end-block that has the desired property. So, we may assume that
G is 2-connected and 6(G) > 2. By Lemma6.2.9, G contains two distinct cycles C
and C’ with V(C) # V(C’). Thus, if u is a vertex that belongs to one of C and C’
but not the other, then G — u is a connected subgraph of G that is not a tree. By the
induction hypothesis, h(G —u) < 2(n — 1) —2 =2n — 4. Let

S0 1 V1, V2, .00y Up—1, Vg
be a cyclic ordering of the vertices of G — u with d(sg) = h(G — u) < 2n — 4.
Suppose that u is adjacent to the vertex v;, where 1 < i < n — 1. Define the cyclic
ordering s of the vertices of G from s by
56 VL, U2, 005 U Uy Vig]y v oy Up—, U]
Since d(v;, u) = 1, it follows by the triangle inequality that
d(u9 vi+1) S 1 + d(vis Ui+1)‘

Therefore,

d(sy) = d(so) — d(vi, vip1) +d(vi, u) +du, vig)
< d(so) —d(v;, Ui+1) + 14+ [14+d(y;, U,‘.;,.])]
=d(sg) +2<2n—4)+2=2n-2.

Therefore, h(G) < d(sy) < 2n — 2, as desired. |
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For the graph G of Fig.6.2, it was seen that there are cyclic orderings s; and s,
of the vertices of G such that d(s;) = 8 and d(s,) = 6. Indeed, it is not difficult to
see that for every cyclic ordering s of V (G), either d(s) = 6 or d(s) = 8.

For a connected graph G, the upper Hamiltonian number h* (G) is defined by

hT(G) = max {d(s) : s is a cyclic ordering of the vertices of G} .

From the remarks above, it follows that 27 (G) = 8 for the graph G of Fig.6.2.
Obviously,
h(G) < h*(G)

for every connected graph G. For each integer n > 3, there are only two connected
graphs G of order n for which hA(G) = h™(G).

Theorem 6.2.11 ([2]) If G is a connected graph of order n > 3, then
h(G) = h™(G) ifand only if G = K,, or G = Ky ,_1.

Proof If G = K,, then certainly d(s) = n for every cyclic ordering s of the
vertices of G; while if G = K ,,_;, then d(s) = 2n — 2 for every cyclic ordering s
of the vertices of G. Thus, h(G) = h"(G)if G = K, or G = K| ,_;.

For the converse, suppose that G is a connected graph of order n > 3 such that
G # K,, K1 ,_1. We show that 1(G) # h*(G). Let diam G = d. Since G # K,,, it
follows that d > 2. Therefore, eitherd > 3 ord = 2.

Case 1.d > 3. Let v; and v,y be vertices of G such that d (v, vgy+1) = d and
let P = (v1,v2,...,04+1) be av; — vg41 geodesicin G. Let W = V(G) \ V(P).
If W # @, then let W = {wy, ws, ..., we}, where £ = n — d — 1. Define a cyclic
ordering s of the vertices of G by

§ V1, V2,V3,...,V441, V1 OF (61)
SV, V2, V3, .., Uyl W, W2, ..., Wy, VY, (6.2)

according to whether W = @) or W # (. Let s’ be the cyclic ordering of the vertices
of G obtained from s by interchanging the locations of v, and vs in s; that is,

/.
§ 1V, U3, V2, U4y ..., Ug41, V] (6.3)
ors’ vy, v3, 2, Vs, .., Vgt Wi, Wo, - .., We, V1, (6.4)

according to whether W = @ or W # . In either case, d(s") = d(s) + 2 and so
h(G) # h™(G).

Case 2. d = 2. Since G is not a star, it follows that G is not a tree. Thus, the girth
g(G) = k > 3. Assume first that k = 3. Since G is connected and G # K, there
exists a set U of four vertices of G such that G[U] = K4 — e or G[U] is a triangle
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U1 ()

F: Fy: vy U3

V2
U3 Vg4 Vo

Fig. 6.3 Induced subgraphs F; and F; of G in Case 2

with a pendant edge. Therefore, we may assume, without loss of generality, that G
contains one of the graphs F; and F; in Fig.6.3 as an induced subgraph. In either
case, define the cyclic orderings s and s’ as described in (6.1) (or (6.2)) and (6.3) (or
(6.4)), respectively. Then d(s’) = d(s) + 1 and so h(G) # h*(G).

If kK > 4, then let C = (vy, vy, ..., v, v;) be an induced cycle of G and let
V(G) —V(C) = {wy, wy, ..., we} if £ =n —k > 0. Define the cyclic orderings
s and s’ of the vertices of G as in (6.1) (or (6.2)) and (6.3) (or (6.4)), respectively.
Since d(s") = d(s) + 2, it follows that h(G) # h'(G). |

Problem 6.2.12 It was shown in [2] that if T is a tree of order n > 3, then
2n—2 <h™(T) < |n?/2].

Furthermore,
ht(T)=2n—2if andonlyif T = Ky ,_1,
and
h™(T) = |n?/2| if and only if T = P,.

What other information can be obtained on the upper Hamiltonian numbers of trees?
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Chapter 7 ®)
Complete Colorings ez

In a proper k-coloring of a k-chromatic graph, for every two distinct colors there
are always adjacent vertices with these colors. This observation has led to a coloring
called a complete coloring, which is the primary topic of this chapter. We investigate
the largest number of colors required of a complete coloring as well as several related
coloring parameters.

7.1 Introduction

One of the best known topics in graph theory is graph colorings, an area whose
history goes back well over a century. The interest in graph colorings grew out of
the many attempts to solve the famous Four Color Problem, introduced by Francis
Guthrie in 1852. While graph colorings have been looked at in many ways in recent
decades, the best known and most studied are proper colorings, both proper vertex
colorings and proper edge colorings. In a proper vertex coloring, every two adjacent
vertices are required to be colored differently. A proper vertex coloring whose colors
are taken from a set of k colors, usually the set [k] = {1, 2, ..., k}, is called a proper
k-coloring. The parameter of greatest interest here is the chromatic number of a
graph G, denoted x(G), and defined as the smallest positive integer k for which G
has a proper k-coloring. If x(G) = k, then G is referred to as a k-chromatic graph.

If a graph G has chromatic number k, then for every proper k-coloring of the
vertices of G and for every two distinct colors i, j € [k], there are adjacent vertices
of G, one colored i and the other colored j. (If this were not the case, then the set
V; of vertices colored i and the set V; of vertices colored j could be merged into a
single independent set V; U V; and all vertices in this set could be assigned the same
color, resulting in a (k — 1)-coloring of G, which is impossible.) On the other hand,
it is possible that there is a proper k-coloring of a graph H, where all k colors are
used and for every two distinct colors, there are adjacent vertices in G assigned these
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Fig. 7.1 A proper (4) (D) (a)
5-coloring of Py
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colors but yet x(G) # k. For example, the proper 5-coloring of the path P;; shown
in Fig.7.1 has this property and yet x(P;;) # 5; indeed, x(P;;) = 2. This leads us
to the main concept of this chapter.

7.2 The Achromatic Number of a Graph

By a complete coloring of a graph G is meant a proper vertex coloring of G having
the property that for every two distinct colors i and j used in the coloring, there exist
adjacent vertices of G colored i and j. A complete coloring in which k colors are
used is a complete k-coloring. In order for a graph to has a complete k-coloring, it
must have at least (’;) edges. As mentioned above, every k-coloring of a k-chromatic
graph is a complete k-coloring. Consequently, the minimum positive integer k for
which a graph G has a complete k-coloring is x(G). As the graph P;; shows in
Fig.7.1, it is possible for a graph G to have a complete k-coloring where k > x(G).

The largest positive integer k for which G has a complete k-coloring is the achro-
matic number of G, which is denoted ¢/(G). Hence, 1/(G) > x(G) forevery graph G.
This parameter was introduced in [5] by Stephen Hedetniemi, his advisor (academic
father) Frank Harary, and Geert Prins (an academic brother of Hedetniemi). If G is

a graph of size m, then
14++/148m
WO = ———

Since the graph P;; shown in Fig. 7.1 has size 10 and a complete 5-coloring, it follows
that ¥ (Py;) = 5. The achromatic numbers of all paths and cycles were determined
by Hell and Miller.

Theorem 7.2.1 ([7]) For each integer n > 2,

w(Pn)zmax{k: <{§J+l>(k—2)+2§n}.

Theorem 7.2.2 ([7]) For each integer n > 3,
k
P(C,) = max {k ck {EJ < n} —s(n),

where s(n) is the number of positive integer solutions of n = 2x* + x + 1.
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Fig. 7.2 A tree of size 10 with achromatic number 4
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Fig. 7.3 Trees of size 10 having achromatic number 5

While the path P;; has size 10 and achromatic number 5, this is not true for all
trees of size 10. For example, the tree T in Fig. 7.2 has size 10 but ¢)(T") # 5. To see
this, suppose that ¢)(T) = 5. Then there exists a complete 5-coloring of T using the
colors in the set [5]. Then there are two colors, say 4 and 5, assigned to none of u, v,
and w. However, only end-vertices can be colored 4 and 5 and no two end-vertices are
adjacent. Thus, there are no adjacent vertices colored 4 and 5, which is impossible.
In fact, ¥(T) = 4 as the complete 4-coloring of T in Fig.7.2 shows.

The path Pj; is the only tree of size 10 having diameter 10 and, as we saw,
1¥(P11) = 5. The three trees of size 10 in Fig.7.3 have diameter 9 and achromatic
number 5.

While the three trees in Fig. 7.3 have achromatic number 5, this is not the case for
all trees of size 10 and diameter 9. The tree T shown in Fig. 7.4 has diameter 9 and
achromatic number 4. To see that ¢)(T) # 5, suppose that there exists a complete
5-coloring ¢ of T using the colors in the set [5]. Then, for each color i € [5], there
is exactly one vertex colored i having a unique neighbor colored j € [5] with j # i.
We may assume that c(w) = 1. Since deg w = 3, there is only one other vertex
colored 1 and this must be an end-vertex of 7. Necessarily, u is colored 1. Suppose
that c(x) = 2. Then some other end-vertex must be colored 2, which means that v is
colored 2. But there are two pairs of vertices colored 1 and 2, which is impossible.
Since the tree T has a complete 4-coloring, it follows that ¢/(T) = 4.

At the other extreme, the star K o has size 10, diameter 2, and achromatic
number 2. Indeed, every star has achromatic number 2. This brings up the following.
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Fig. 7.4 A tree of size 10, diameter 9 and achromatic number 4

Problem 7.2.3 Study the relationship between the achromatic number and other
parameters of trees.

Not only does every star have achromatic number 2, every complete bipartite
graph has achromatic number 2. To see this, suppose that there exists some complete
bipartite graph G with ¢(G) > 3. Then, in a complete 1)(G)-coloring of G, two
vertices of G belonging to the same partite set would have to be assigned different
colors, say 1 and 2, while no vertex in any other partite set is assigned either color.
However then, there are no adjacent vertices colored 1 and 2, which is impossible.
By the same argument, we have the following.

Proposition 7.2.4 If G is a complete multipartite graph, then (G) = x(G).

7.3 Graph Homomorphisms

One of the fundamental concepts in graph theory is that of isomorphism. To recall, an
isomorphism from a graph G to a graph H is a bijective function ¢ : V(G) — V(H)
that maps adjacent vertices in G to adjacent vertices in H and nonadjacent vertices
in G to nonadjacent vertices in H. If such a function exists, then G and H are
isomorphic graphs. There is a related concept that is of particular interest dealing
with proper vertex colorings.

A homomorphism from a graph G to a graph G’ is a function ¢ : V(G) — V(G’)
that maps adjacent vertices in G to adjacent vertices in G'. If ¢ is a homomorphism
from G to G’ and u and v are nonadjacent vertices in G, then any of the following
is possible: (1) ¢(u) and ¢(v) are nonadjacent, (2) ¢(u) and ¢(v) are adjacent,
(3) ¢(u) = ¢(v). The subgraph H of G’ whose vertex set V (H) is the image ¢(V (G))
of V(G) under ¢ and whose edge set consists of all those edges u’v’ in G’ such
that ¢(u) = u’ and ¢(v) = v’ for two adjacent vertices u and v of G is called the
homomorphic image of G under ¢ and is denoted by ¢(G) = H. A graph H is a
homomorphic image of a graph G if H = ¢(G) for some homomorphism ¢ of G. If H
is ahomomorphic image of a graph G under ahomomorphism ¢ from G to a graph G,
then ¢ is also a homomorphism from G to H. It is the topic of homomorphisms that
Stephen Hedetniemi investigated in his doctoral dissertation, titled Homomorphisms
of Graphs and Automata [6]. Steve had two doctoral advisors and, therefore, two
academic fathers, namely Frank Harary and John Holland. He received his Ph.D. in
1966. Steve earned all three of his degrees (baccalaureate, Master’s, and doctoral)
from the University of Michigan.
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Fig.7.5 A graph G and a oW U2 u3 Uy us U6 ur us
homomorphic image of G

Fig. 7.6 The homomorphic
images of Py

For example, consider the two graphs G = Pg and G’ = K5 — e shown in Fig.7.5
and the function ¢ : V(G) — V(G’) defined by

d(ur) = o(uz) = v, ¢(uz) = P(ug) = 2,
d(ug) = v3, o(us) = o(ug) = vy, ¢(u7) = vs.

This function ¢ is a homomorphism from G to G’. The homomorphic image H =
¢(G) of G under ¢ is also shown in Fig.7.5. Therefore, ¢ is also a homomorphism
from G to H.

There are exactly four homomorphic images of the path P,. These are shown in
Fig.7.6. On the other hand, for each positive integer n, the only homomorphic image
of K, is K, itself.

There is an alternative way to obtain the homomorphic images of a graph G.
As we noted, the only homomorphic image of the complete graph G = K,, is K,,.
Otherwise, G is not complete and thus contains one or more pairs of nonadjacent
vertices. An elementary homomorphism of a graph G is obtained by identifying
two nonadjacent vertices 4 and v of G. The vertex obtained by identifying u and v
may be denoted by either u or v. Thus, the resulting homomorphic image G’ can be
considered to have vertex set V(G) — {u} and edge set

E(G)={xy:xye E(G),x,y € V(G) — {u,v}}U
{fvx :vx €e E(G)orux € E(G),x ¢ V(G) — {u, v}}.

Alternatively, the mapping € : V(G) — V(G’) defined by

_)x ifx e V(G) — {u, v}
etx) = {v if x € {u, v)
is an elementary homomorphism from G to G’. The homomorphic image €(G) of
a graph G obtained from an elementary homomorphism e is also referred to as
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an elementary homomorphic image. Not only is G’ a homomorphic image of G, a
graph H is a homomorphic image of a graph G if and only if H can be obtained
by a sequence of elementary homomorphisms beginning with G. For example, if we
identify u| and u¢ in the graph G of Fig. 7.7, we obtain the graph G| shown in Fig. 7.7,
which is a homomorphic image of G. Then identifying u, and us in G, we obtain
G,, which is a homomorphic image of G;. The graph G, is also a homomorphic
image of G. The graph G, is isomorphic to the graph H also shown in Fig.7.7.

The fact that each homomorphic image of a graph G can be obtained from G by
a sequence of elementary homomorphisms tells us that we can obtain each homo-
morphic image of G by an appropriate partition P = {Vi, V,, ..., Vi} of V(G) into
independent sets such that V(H) = {vy, vy, ..., vx}, where v; is adjacent to v; if
and only if some vertex in V; is adjacent to some vertex in V;. The partition P of
V(G) then corresponds to the coloring ¢ of G in which each vertex in V; is assigned
the color i (1 <i < k). In particular, if the coloring ¢ is a complete k-coloring,
then H = K. The 4-coloring of the graph G in Fig.7.7 shown in Fig.7.8 results
in the color classes V| = {uy, ug}, Vo = {uz, us}, V3 = {us}, and V4 = {u4} and the
homomorphic image H of Fig.7.7, which is also shown in Fig.7.8.

Therefore, if a graph H is a homomorphic image of a graph G, then there is
a homomorphism ¢ from G to H and for each vertex v in H, the set ¢~ (v) of
those vertices of G having v as their image is independent in G. Consequently, each
coloring of H gives rise to a coloring of G by assigning to each vertex of G in
¢~ (v) the color that is assigned to v in H. For this reason, the graph G is said to be
H-colorable. This provides us with the following observation, which is a primary
reason for one’s interest in graph homomorphisms.
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Theorem 7.3.1 If H is a homomorphic image of a graph G, then

x(G) = x(H).

The chromatic number of an elementary homomorphic image of a graph can never
exceed the chromatic number of the graph by more than 1.

Theorem 7.3.2 [f € is an elementary homomorphism of a graph G, then

X(G) < x(e(G)) < x(G) + 1.

Proof Suppose that € identifies the nonadjacent vertices u and v of G. We have
already noted the inequality Xx(G) < x(e(G)). Suppose that x(G) =k and a
k-coloring of G is given, using the colors 1,2, ..., k. Define a coloring ¢’ of
€(G) by

, _Jelx) ifx € V(G) —{u, v}
C(x)_{k+l if x € {u, v)

Since ¢’ is a (k + 1)-coloring of €(G), it follows that
X(e(G)) <k +1=x(G)+1,

giving the desired result. |

The following theorem is one of the major theorems dealing with graph homo-
morphisms and is due to Harary, Hedetniemi, and Prins.

Theorem 7.3.3 ([5]) (The Homomorphism Interpolation Theorem) Let G be a
graph. For every integer £ with x(G) < € < ¢(G), there is a homomorphic image
H of G with x(H) = ¢.

Proof The theorem is certainly true if £ = x(G) or £ = ¥(G). Hence, we may
assume that x(G) < € < 1¥(G). Suppose that 1)(G) = k. Then there is a sequence

G =GyGy,...,G, =Ky
of graphs where G; = ¢;(G;_;) for some elementary homomorphism ¢; of G;_;
for 1 <i <t. Since x(Gy) < £ < x(G;) = k, there exists a largest integer j with
0 < j < tsuchthat x(G;) < £. Hence, x(G ;1) > £. By Theorem 7.3.2,
X(Gj) = x(GpH+1<L+1,

and so x(G 1) = L. n
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Fig. 7.9 Complete and Grundy colorings

7.4 The Grundy Number of a Graph

A 1939 article [4] by Patrick Michael Grundy dealing with combinatorial games
contained ideas that led to the concept of Grundy colorings of graphs. A Grundy
coloring of a graph G is a proper vertex coloring of G (whose colors, as usual, are
positive integers) having the property that for every two colors i and j withi < j,
every vertex colored j has aneighbor colored i. Consequently, every Grundy coloring
is a complete coloring; indeed, it is stronger than a complete coloring. The 4-coloring
of the tree T of Fig. 7.9 is a Grundy 4-coloring and is therefore a complete 4-coloring
as well. However, the complete 3-coloring of 7, shown in Fig.7.9 is not a Grundy
3-coloring.

A greedy coloring c of a graph G is obtained from an ordering ¢ : vy, v, ..., v,
of the vertices of G in some manner, by defining c(v;) = 1, and once colors have
been assigned to vy, vy, .. ., v, for some integer ¢ with 1 <t < n, c(v,41) is defined
as the smallest color not assigned to any neighbor of v,;; belonging to the set
{vi, va, ..., v:}. The coloring ¢ so produced is then a Grundy coloring of G. That is,
every greedy coloring is a Grundy coloring.

The maximum positive integer k for which a graph G has a Grundy k-coloring is
denoted by I'(G) and is called the Grundy chromatic number of G or more simply
the Grundy number of G. If the Grundy number of a graph G is k, then in any
Grundy k-coloring of G (using the colors 1, 2, ..., k), every vertex v of G colored
k must be adjacent to a vertex colored i for each integer i with 1 <i < k. Thus,
A(G) > degv > k — 1 and so

I['(G) = AG) +1
for every graph G. Since A(T)) =3 for the tree 7 in Fig.7.9, it follows that
I'(Ty) < 4. On the other hand, 77 has a Grundy 4-coloring and so I'(77) > 4. There-
fore, I'(T)) = 4.
Since every Grundy coloring of a graph G is a proper coloring, it follows that

x(G) = T'(G).

Christen and Selkow determined those integers k for which a given graph G has a
Grundy k-coloring.
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Theorem 7.4.1 ([2]) For a graph G and an integer k with x(G) < k < I'(G), there
is a Grundy k-coloring of G.

Only a few connected graphs have Grundy number 2.

Theorem 7.4.2 If G is a connected graph with Grundy number 2, then G is a
complete bipartite graph.

Proof Since G has Grundy number 2 and x(G) < I'(G), it follows that x(G) = 2
and so G is bipartite. We show that G does not contain P4 as an induced subgraph.
Suppose it does. Let P = (v, v2, v3, v4) be an induced subgraph of G, where

V(G) = V(P) ={vs,v6, ..., Un}.
Consider the sequence
¢ 1 V1, V2, V4, V3, Vs, Vg, -+ e - s Up

The resulting greedy coloring determined by ¢ is a Grundy k-coloring for some
k > 3, which contradicts I'(G) = 2. Hence, G does not contain P, as an induced
subgraph. Thus, G is a complete bipartite graph. |

Since a Grundy coloring of a graph G is both a complete coloring and a proper
vertex coloring, it follows that

x(6) =T'(G) =9(G)

for every graph G. Figure 7.10 shows a graph G together with a proper 3-coloring, a
Grundy 4-coloring, and a complete 5-coloring of G. Therefore, x(G) < 3, T'(G) >
4, and ¥(G) > 5. Since G contains an odd cycle, x(G) = 3; since A(G) =3,
I'(G) = 4; and since the size of G is 10 < (3), ¥(G) = 5. The graph G of Fig.7.10
serves to illustrate a result due to Chartrand, Okamoto, Tuza, and Zhang.

I(G) =4

Fig. 7.10 Complete and Grundy colorings
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Theorem 7.4.3 ([1]) For integers a, b, c with2 < a < b < c, there exists a con-
nected graph G with x(G) = a, I'(G) = b, and {V(G) = c if and only ifa = b =
c=2o0rb=>3.

7.5 The Ochromatic Number of a Graph

In 1982 Simmons [8] introduced a new type of coloring of a graph G based on
orderings of the vertices of G, which is similar to but not identical to greedy colorings
of G. Let ¢ : vy, vy, ..., v, be an ordering of the vertices of a graph G. A proper
vertex coloring ¢ : V(G) — Nof G is a parsimonious ¢-coloring of G if the vertices
of G are colored in the order ¢, beginning with c¢(v;) = 1, such that each vertex v;
(1 <i <n — 1) must be assigned a color that has been used to color one or more of
the vertices vy, v, ..., v; if possible. If v;; can be assigned more than one color,
then a color must be selected that results in using the fewest number of colors needed
to color G. If v;4 is adjacent to vertices of every currently used color, then c(v;4)
is defined as the smallest positive integer not yet used. The parsimonious ¢-coloring
number x4(G) of G is the minimum number of colors in a parsimonious ¢-coloring
of G. The maximum value of x4(G) over all orderings ¢ of the vertices of G is the
ordered chromatic number or, more simply, the ochromatic number of G, which is
denoted by x°(G).

To illustrate these concepts, consider the graph G = Ps shown in Fig.7.11. First,
let @1 : vy, v2, Vs, v3, V4. Necessarily, v; must be colored 1 and v, must be colored 2.
Since vs is adjacent to neither v; nor v,, it follows that vs must be assigned a color
already used, that is, vs must be colored 1 or 2. If vs is colored 2, then v; must
be colored 1 and v; must be colored 3. On the other hand, If vs is colored 1, then
vz must be colored 1 and v4 must be colored 2. Thus, x4, (G) = 2. Suppose next
that ¢, : vy, v4, V2, vs, v3. Thus, vy and vs must be colored 1, and v, and vs must
be colored 2. Furthermore, v3 must be colored 3. Thus, x4,(G) = 3. There is no
ordering ¢ of the vertices of G such that x4(G) = 4 because A(G) = 2 and so no
vertex of G will ever be required to be colored 4. Thus, x°(G) = 3.

Hedetniemi with Erdos, Hare, and Laskar showed that the ochromatic number
of every graph always equals its Grundy number. This fact was also established
(unpublished) by Ernest Brickell.

Theorem 7.5.1 ([3]) For every graph G, I'(G) = x°(G).

Proof Suppose that I'(G) = k. We show that x°(G) > k. Let a Grundy k-coloring
of the vertices of G be given, using the colors 1,2, ..., k, and let V; denote the set
of vertices of G colored i (1 <i <k).Let ¢ : vy, vy, ..., v, be any ordering of G
in which the vertices of V; are listed first in some order, the vertices of V, are listed

Fig. 7.11 Computing the Ps: © O 0
ochromatic number of a U1 V2 U3 V4 Vs
graph
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next in some order, and so on until finally listing the vertices of V} in some order. We
now compute X 4(G). Assign v; the color 1. Since V) is independent, every vertex in
¢ that belongs to V) is not adjacent to v; and must be colored 1 as well. Assume, for
an integer r with 1 < r < k, that the parsimonious coloring has assigned the color
i to every vertex in V; for 1 <i < r. We now consider the vertices in ¢ that belong
to V... Let v, be the first vertex appearing in ¢ that belongs to V,.. Since v, is
adjacentto atleast one vertex in V; foreveryi with 1 <i < r,itfollows that v, cannot

be colored any of the colors 1, 2, ..., r. Hence, the new color r + 1 is assigned to
v,. Now if v, is any vertex belonging to V,.; such that b > a, then v, cannot be
colored any of the colors 1,2, ..., r since v, is adjacent to at least one vertex in

V; for 1 <i < r. However since v is not adjacent to v, for all r witha <t < b, it
follows that v, must be colored r + 1. By mathematical induction, x4(G) = k. Thus,
x’(G) = I'(G).

We now show that I'(G) > x°(G). Let ¢ : vy, vy, ..., v, be an ordering of the
vertices of G such that x4(G) = x?(G). Consider the parsimonious ¢-coloring that
is a greedy coloring, that is, whenever there is a choice of a color for a vertex, the
smallest possible color is chosen. Suppose that this results in an £-coloring of G.
Then x,(G) < £. Furthermore, this ¢-coloring is a Grundy £¢-coloring. Therefore,
I'(G) > £ and so

X°(G) = x4(G) = £ <T(G),

producing the desired inequality. |

Theorem 7.5.1 therefore tells us that the ochromatic number is not a new coloring
number but rather an alternative interpretation of the Grundy number.
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Chapter 8 ®)
Color Connection and Disconnection Check for

Much of the research in graph theory has dealt with connected graphs. While there
are many measures of connectedness for graphs, the two best known are the (vertex)
connectivity and edge connectivity, the definitions of which deal with the concepts
of vertex-cuts and edge-cuts, respectively. In this chapter, we discuss topics related
to these two types of connectedness where coloring also plays arole in each instance.

8.1 Vertex-Cuts and Partition Graphs

There are numerous examples in the graph theory literature where it has been of
interest to investigate partitions of the vertex set of a graph (also referred to as parti-
tions of the graph) so that each element (vertex subset) of the partition satisfies some
property of interest. For example, when each subset in a partition is an independent
set of vertices, we are dealing with a graph homomorphism or proper coloring; while
when each subset in a partition induces a connected subgraph, we are dealing with a
graph contraction. Each partition 7 of a graph gives rise to another graph G, called
the partition graph (with respect to ) of G or the w-graph of G where V(G,) = m,
that is, the vertices of G, are the elements of ;7. Two distinct vertices V; and V, are
adjacentin G, if there are adjacent vertices v; and v, in G where v; € V; fori = 1, 2.
If r = {{v} : v € V(G)}, then G, = G; while if = {V(G)}, then G, = Kj.
Consequently, if we consider all partitions 7w of a graph G, then the corresponding
collection {G } of graphs includes K, the graph G itself, and all graphs that are, in a
sense, “between” K| and G. In this section, we consider partitions 7 of a connected
graph G where each element of 7 satisfies a particular connectivity property and the
resulting w-graphs of G.

A set U of vertices in a connected graph G is a vertex-cut if G — U is disconnected.
Provided G is not complete, G has at least one vertex-cut. If U is a vertex-cut of G
with a minimum number of vertices, then U is a minimum vertex-cut and |U| is the
connectivity K (G) of G. If no proper subset of U is a vertex-cut of G, then U is a
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minimal vertex-cut. If there exists a partition m = {Vy, Va, ..., Vi} of G such that
each set V; is a minimal vertex-cut of G, then r is called an MVC-partition of G.

As an illustration of graphs possessing MV C-partitions, we consider two classes
of graphs, namely cycles and prisms, the latter of which are Cartesian products
of a cycle with K,. The 8-cycle F = Cs, shown in Fig.8.1, has several MVC-
partitions, each consisting of four pairs of nonadjacent vertices. For example, the set
) = {V], Vz, V3, V4}, where

Vi = {wy, wa}, Vo = {wa, ws}, V3 = {ws, we}, and V4 = {ws, wr},

is an MV C-partition. The partition graph F;, = Kj is also shown in Fig. 8.1. In fact,
every even cycle has an MV C-partition while no odd cycle has one.

The prism H = Cy 0 K5, shown in Fig. 8.2, is a 3-regular graph having connec-
tivity 3. Therefore, for each vertex v of H, the neighborhood N (v) of v is a minimal
vertex-cut of H. Each of the five sets

Ui = N(uy) = {v1, uz, uo}, Uy = N(v1) = {us, vz, vo},
Us = {us, v3, ug, vg}, Us = {u4, va, ug, v6}, and Us = {us, vs, u7, v7}

is a minimal vertex-cut of H. Therefore, 7, = {U;, U, Us, Uy, Us} is an MVC-
partition of H. The partition graph H, is also shown in Fig.8.2.

w1 w2
i Va
ws w3
F F7r1
w7 wyq
Vi V3
we ws
Fig. 8.1 The graph F and a partition graph of F
U1
U1 Us
H : Hr, : Us
o Us

Fig. 8.2 A graph H and a partition graph of H
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If 7 is an MVC-partition of G, then the -graph G, provides information on
how the minimal vertex-cuts in 7z are related to one another. In particular, for every
connected graph G with an MV C-partition 7, the graph G is also connected. The
concept of the w-graph of a graph with an MV C-partition 7 was introduced by
Hedetniemi along with Chartrand, Haynes, and Zhang in [2].

The following theorem characterizes all graphs that are 7 -graphs of even cycles
for an MV C-partition 7. For two disjoint sets U and W of vertices in a graph G, the
set of edges joining U and W in G is denoted by [U, W]. The underlying graph of
a multigraph M is the graph G for which V(G) = V(M) and uv € E(G) if u and v
are joined by at least one edge in M.

Theorem 8.1.1 ([2]) A connected graph H of order 3 or more is a 7w -graph of some
even cycle G with an MVC-partition 7 if and only if H is the underlying graph of
a 4-regular multigraph.

Proof First, assume that H is the underlying graph of a 4-regular multigraph M
of order k > 3. Thus, M is an Eulerian multigraph of even size 2k. Let C =

(v1, v2, ..., V2, v1) be an Eulerian circuit in M. Since M is 4-regular, each vertex
of M occurs exactly twice as nonconsecutive vertices of C. Next, let G = Cy =
(uy, uz, ..., ux, uy) be a 2k-cycle. Furthermore, let 7 = {V|, V,, ..., V;} be the

MYVC-partition of G in which two vertices u, and u;, of G belong to the same
element of  if and only if v, = v, on the circuit C. Then two vertices V; and V;
of G are adjacent if and only if some vertex in V; is adjacent to some vertex of V;,
where 1 <i < j < k.LetV; = {uy, up} and V; = {u,, ug}. Now, V; and V; are
adjacent if and only if |[[V;, V;]| > 1. Thus, H = G,.

For the converse, assume that H is a connected graph of order k that is a -graph
of some even cycle G for an MVC-partition = of G. Necessarily, G has order 2k
and so G = (uy, up, ..., ux,uy) is a 2k-cycle. Let m = {Vy, V,, ..., Vi } be an
MV C-partition of V(G) such that G, = H. For each integer i with 1 <i <k, let
Vi = {u;,, u;,} where then u;, and u;, are two nonadjacent vertices of G. Let M be
the multigraph with V(M) = m, where the number of edges joining V; and V; is
[[Vi, V]l fori # j. Thus, H is the underlying graph of M. Since the two vertices in
V; are nonadjacent, it follows that [[V;, V(G) — V;]| =4 for 1 <i <k and so M is
4-regular. |

The following result is then an immediate consequence of Theorem 8.1.1.

Corollary 8.1.2 ([2]) Every connected 4-regular graph is a w-graph of an even
cycle with an MVYC-partition 1.

With the aid of Theorem 8.1.1, those cubic graphs that are w-graphs of an even
cycle with an MVC-partition 7t can be determined. A 1-factor of a graph G is a
1-regular spanning subgraph of G.

Corollary 8.1.3 ([2]) A connected cubic graph H is a w-graph of an even cycle
with an MV C-partition 7t if and only if H has a 1-factor.
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Proof Suppose that H is a connected cubic graph having a 1-factor F. By replacing
each edge in F by two parallel edges, a 4-regular multigraph M is obtained. Thus, H
is the underlying graph of M. It then follows by Theorem 8.1.1 that H is a w-graph
of an even cycle with an MV C-partition 7.

For the converse, assume that H is a connected cubic graph that is a w-graph of
an even cycle G for an MV C-partition 7w of G. Then H has even order, say 2k > 4.
By Theorem 8.1.1, H is the underlying graph of a 4-regular multigraph M. Let v; be
avertex of H. Since degy, v; = 3 and deg,, v; = 4, it follows that v; is incident with
exactly one edge e; in M that does not belong to H, say e; = vyw;. Hence, e is the
only edge of M that is incident with w; that does not belong to H. Continuing in this
manner, we obtain k pairwise nonadjacent edges ¢; = u;w; (1 <1i < k) that belong
to M but not to H. Therefore, the edges u; w; (1 <i < k) of H form a 1-factor of H.

]

For example, the famous Petersen graph P is a connected cubic graph of order 10
containing a 1-factor. Therefore, by Corollary 8.1.3, P is the w-graph of the cycle Cyg
for some MV C-partition 7. This is illustrated in Fig. 8.3, where each edge of a
1-factor F of P is replaced by two parallel edges, resulting in a 4-regular multi-
graph M. An Eulerian circuit C in M is

C = (vy, vs, vg, V10, V7, V9, Vs, V1, V2, V7, U2, U3, Ug, U3, U4, Vg, U4, Vs, V10, Us, U1).

Let Cyo =(uy, us, ..., Uz, u1) be a cycle of order 20. Following the proof of Theo-
rem 8.1.1, an MV C-partition & = {V}, V,, ..., Vio} of Cy is constructed, where

Vi ={ur, ug}, Vo = {ug, un}, Va = {urz, u14},
Vi = {uis, ui7}, Vs = {u1s, uz}, Vo = {uz, uz},
Vi = {us, uio}, Vs = {us, u1z}, Vo = {ue, 16}, Vio = {ua, ui9}.

The Petersen graph is the w-graph G, of G = Cy, shown in Fig. 8.3.
Fundamental questions arise from this discussion of M) C-partitions of graphs.

v Vs
V5 v10 2 W o 1%
v7
M : Gr
vg Vo
U8 VS
V4 v3 Vi V3

Fig. 8.3 Showing that the Petersen graph is a -graph of an even cycle
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Problem 8.1.4 Which connected graphs have M) C-partitions?

Problem 8.1.5 Let G be a connected graph with MV C-partitions. Among all such
partitions w of G, what are the minimum and maximum values of |7 |?

We saw that if 7 is an MVC-partition of an even cycle, then each element of 7 is
not only a minimal vertex-cut, it is an independent set. In fact, if 7 is a partition of
the vertex set of a graph G such that each element of 7 is an independent set, then
both 7 and G, concern familiar concepts in graph theory.

Recall (from Chap.7) that a homomorphism from a graph G to a graph H' is a
function ¢ : V(G) — V (H') that maps adjacent vertices in G to adjacent vertices
in H. Also, the subgraph H = (V, E) of H' whose vertex setis V(H) = ¢(V(G))
and whose edge setis E(H) = {¢ (w)¢ (v) : uv € E(G)}is the homomorphic image
of G under ¢ and is denoted by ¢ (G) = H. A graph H is called a homomorphic
image of a graph G if there is a homomorphism ¢ of G such that ¢ (G) = H.

Let H = (V, E) be a homomorphic image of a graph G and let V(H) =
{v1,V2,...,v¢). Forany vertex v € V(H),let¢~'(v) = {u € V(G) : ¢(u) = v}.
Since ¢ is a homomorphism, it follows that ¢~ (v) is an independent set in G for
every v € V(H). This defines a coloring of the vertices of G, that is,

T={p"" W), ¢ (v2), ..., (vp)}

is a partition of G into k independent sets. It also follows that the m-graph G is
isomorphic to H. In particular, if 7z is an M) C-partition of a graph G, where each set
Vi (1 <i < k)isindependent, then ¢ represents a k-coloring of G where each vertex
of V; (1 <i < k)iscoloredi and G is the homomorphic image of G resulting from
this k-coloring.

For a nontrivial connected graph H that is a homomorphic image of a cycle, let
w(H) be the length of a shortest such cycle and let e(H) be the Eulerian number
of H (the length of an Eulerian walk in H), which is a closed walk of minimum
length traversing every edge of H. (Eulerian walks are discussed in Chap.6.)

While, by Theorem 8.1.1, a connected graph H of order 3 or more is a w-graph
of a cycle for an MV C-partition 7 of the vertex set of H only if H is the underlying
graph of a 4-regular multigraph, every such graph H is a w-graph of a cycle for some
partition 7 of the vertex set of a cycle into independent sets.

Theorem 8.1.6 ([2]) Every nontrivial connected graph H is a homomorphic image
of a cycle and so (W(H) exists. Furthermore, W(H) = e(H).

Proof Let H be a nontrivial connected graph with V(H) ={u, u,, ..., u} and let
W= (w,ws, ..., wy, wy)
be an Eulerian walk of length e(H) = p in H. Thus, each edge in H occurs in W at

least once and at most twice. Let C = (vy, vy, ..., v, v1) be a cycle of order p. For
each integer i with 1 <i <k, let
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Vi={v, e V(C): w,=u;and 1 <t < p}.

Therefore, each set V; is an independent set of vertices of H and a vertex in a set V;

is adjacenttoa vertexin V; in C (1 <i < jandi # j)ifandonlyifu;u; € E(H).

Hence, H is a homomorphic image of C. Therefore, i (H) exists and u(H) < e(H).
Next, we show that e(H) < u(H). Let u(H) = £ and let

C=(vi,v2,...,0p,01)

be a cycle such that H is a homomorphic image of C. Thus, there is a partition
P ={Uy, U, ..., Ui} of V(C) into independent sets such that u;u; € E(H) if and
only if some vertex in U; is adjacent to some vertex in U; in C. Since each U; is
an independent set of vertices of C, it follows that every edge in C gives rise to an
edge in H (although it is possible that several edges in C produce the same edge in
H). Furthermore, for each edge u;u; in H, there is at least one edge v v,y in C
such that vg € U; and vy € U;. Identifying all vertices in each set U;, producing a
single vertex denoted by u; for 1 < i < k, and following the ordering of vertices in
C, we obtain an Eulerian walk W = (wy, wo, ..., wg, wy) of length £ in H. Hence,
e(H) < u(H)andso e(H) = u(H). [ |

We have seen several results dealing with w-graphs of even cycles where 7 is
an MV C-partition and have discussed some 7-graphs of the prisms C,, O K. This
suggests the following problem.

Problem 8.1.7 Which graphs are m-graphs of a prism C,, U K,, where 7 is an
MYVC-partition? Investigate homographic images of these prisms.

By Theorem 8.1.6, every nontrivial connected graph is a homomorphic image of a
connected 2-regular graph. The following result was obtained by Chartrand, Haynes,
Hedetniemi, and Zhang.

Theorem 8.1.8 ([2]) For every pair k, n of positive integers where n > 3, the graph
C, O Qi is a homomorphic image of C,, 1 Q1.

The following is then a consequence of Theorems 8.1.6 and 8.1.8.

Corollary 8.1.9 ([2]) Every nontrivial connected graph is a homomorphic image
of an r-regular graph for each integer r > 2.

Theorem 8.1.8 also states that H is a homomorphic image of H O K, for H =
C,, O Q. This suggests the problem of determining those nontrivial connected graphs
H having the property that H is a homomorphic image of H [J K,. For a vertex
v in a connected graph G, recall that e(v) denotes the eccentricity of v (the largest
distance from v to a vertex in G), which was described in Chap. 5.

Theorem 8.1.10 ([2]) Every nontrivial tree T is a homomorphic image of T U K.
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Proof Let T be a tree of order n > 2 and let v; be a leaf of 7. The tree T may
then be considered as a rooted tree with root v;. Therefore, T can be considered as
a directed tree where there is a directed v; — w path in T for every vertex w of T'.
Let V(T) = {v1, v, ..., v,} where d(vy, v;) < d(vi,vj) forl <i < j < n.Let
G = T O K,, where G consists of the tree T (as labeled above), a second copy T’
of T with V(T') = {uy, us, ..., u,} such that u; corresponds to v; and u;v; € E(G)
forl <i <n.

‘We now show that there is a proper n-coloring ¢ of G using the colors 1,2, ..., n
resulting in the color classes Vi, Va,...,V, such that the homomorphic image
resulting from the n color classes Vi, V,, ..., V, is isomorphic to T. First, color
each vertex v; the colori fori =1,2,...,n.

The vertex u, is the only vertex at distance 1 from u; of T'. Assign the color 2 to
u; and the color 1 to u;. Next, assign the color 2 to each vertex of 7’ at distance 1
from u;. Proceeding recursively, assume that all vertices of T’ at distance k from
u; have been assigned a color where 2 < k < er/(u;) and let u; € V(T’) such
that dr (uy, u;) = k + 1. Let u; be the unique vertex adjacent to u; on the u; — u;
(directed) path P on T’. We then assign the color ¢(v;) to u; (and so c(u;) = c(v;)).

Let a and b be distinct colors in {1,2, ..., n} such that some vertex in V, is
adjacent to a vertex in V},. Then v, v, € E(T) where, say, a < b. Thus, the edge uy, is
colored a. Also, the two incident vertices of an edge of T’ are assigned two distinct
colors of {1, 2, ..., n}if and only if the two incident vertices of some edge of T are
also assigned these same two colors. Hence, T is a homomorphic image of G. W

Although every tree T is a homomorphic image of T [1 K5, not every nontrivial
connected graph G is a homomorphic image of G [J K. For example, it was shown
in [2] that the graph H of Fig. 8.4 is not a homomorphic image of H 1] K.

These concepts and results suggest many problems, particularly those dealing
with the structure of m-graphs obtained from partitions # = {Vi, V,, ..., Vi} of
the vertex set of a connected graph where the elements of 7 have some property of
interest. If each set V; is an independent set, then these partitions give rise to proper
colorings of graphs and the corresponding 7-graphs are homomorphic images of
a graph (as described in Chap.7). If each set V; induces a connected subgraph (a
connected partition), then the corresponding m-graphs are contractions of a graph.
In this case, a famous conjecture of Hadwiger comes to mind.

Fig. 8.4 The graph H v1 vovz

U3

J}m
H : vs
L—O v

v7

vV8 O— QO vg
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Hadwiger’s Conjecture ([6]) If G is a connected graph with chromatic number
k, then G has a connected partition w whose corresponding m-graph is the complete
graph K.

While Hadwiger’s conjecture is known to be true for 1 < k < 6, this is not known
when k > 7.

A more general problem is suggested by the concepts described in this section.

Problem 8.1.11 For graphs H and G, determine whether G, = H for some parti-
tion 7w of G.

8.2 Edge-Cuts and Rainbow Disconnection

While a nontrivial connected graph contains a vertex-cut only if it is not complete,
every nontrivial connected graph contains edge-cuts. An edge-cut of a nontrivial
connected graph G is a set R of edges of G such that G — R is disconnected. The
minimum number of edges in an edge-cut of G is its edge-connectivity L(G). We
then have the well-known inequality A(G) < §(G), where §(G) is the minimum
degree of G. For two distinct vertices u and v of G, let A(u, v) denote the minimum
number of edges in an edge-cut R of G such that u and v lie in different components
of G — R. The following result of Elias, Feinstein, and Shannon [4] and Ford and
Fulkerson [5] presents a different interpretation of A (u, v).

Theorem 8.2.1 ([4, 5]) For every two vertices u and v in a graph G, A(u, v) is the
maximum number of pairwise edge-disjoint u — v paths in G.

The upper edge-connectivity A*(G) is defined by
AT(G) = max{r(u, v) : u,v e V(G)).

Consider, for example, the graph K, + v obtained from the complete graph K,,, one
vertex of which is attached to a single leaf v. For this graph, A(K,, + v) = 1 while
AT (K, +v) = n — 1. Thus, A(G) denotes the global minimum edge-connectivity of
a graph, while A*(G) denotes the local maximum edge-connectivity of a graph.

A nonempty graph G is edge-colored if every edge of G is assigned a color from
some prescribed set of colors. A set X of edges in an edge-colored graph is a rainbow
set if no two edges of X have the same color. In 2006, Chartrand, Johns, McKeon,
and Zhang defined an edge-colored connected graph G to be rainbow-connected if
for every two vertices u# and v of G, there exists a rainbow u — v path in G (all
edges of the path have different colors). The minimum number of colors required
for a connected graph G to be rainbow-connected is the rainbow connection number
of G. The first paper [3] on this topic was published in 2008. Since then, the concept
has been studied extensively and, in fact, a book by Li and Sun [7] has been written
on this topic.
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A set R of edges in a nontrivial connected edge-colored graph G is a rainbow
cut of G if R is both a rainbow set and an edge-cut. A rainbow cut R is said to
separate two vertices u and v of G if u and v belong to different components of
G — R. Any such rainbow cut in G is called a u — v rainbow cut in G. An edge-
coloring of G is a rainbow disconnection coloring if for every two distinct vertices
u and v of G, there exists a u — v rainbow cut in G. The rainbow disconnection
number rd(G) of G is the minimum number of colors required of a rainbow discon-
nection coloring of G. Consequently, if G is a connected graph of order n > 2, then
1 <rd(G) < n—1. A rainbow disconnection coloring with rd(G) colors is called an
rd-coloring of G. These concepts were introduced by Hedetniemi along with Char-
trand, Devereaux, Haynes, and Zhang in [1]. The following result gives bounds for
the rainbow disconnection number of a graph. Once again, recall that x'(G) denotes
the chromatic index of G and A(G) the maximum degree of G.

Proposition 8.2.2 ([1]) If G is a nontrivial connected graph, then
MG) < A7(G) <1d(G) < x'(G) < A(G) + 1.

As an illustration of Proposition 8.2.2, we show that every cycle C, of order
n > 3 has rainbow disconnection number 2. Since rd(C,) > A(C,) = 2 by Propo-
sition 8.2.2, it suffices to show that C, has a rainbow disconnection coloring using
two colors. Let ¢ be an edge-coloring of C,, that assigns the color 1 to exactly n — 1
edges of C,, and the color 2 to the remaining edge e of C,,. Let u and v be two vertices
of C,,. There are two u — v paths P and Q in C,, exactly one of which contains the
edge e, say e € E(P). Then any set {e, f}, where f € E(Q), is a u — v rainbow
cut. Thus, ¢ is a rainbow disconnection coloring of C,, Hence, rd(C,) = 2. It was
shown in [1] that rd(W,) = 3, where W, is the wheel of order n + 1 < 4 (the join
of C, and K). Figure 8.5 shows rainbow disconnection colorings of the wheels W
and W5 using three colors. In each case, the set £, of the three edges incident with
v; is arainbow set for 1 < i < n where n = 6, 7. Furthermore, for every two distinct
vertices x and y of W, at least one of x and y belongs to C,, say x € V(C,), and
then E, separates x and y and so E, is an x — y rainbow cut.

Fig. 8.5 Rainbow disconnection colorings of Wg and W7
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Since x'(C,) = 3 when n is odd and x’'(W,) = n for each integer n > 3, it
follows that rd(G) < x'(G) if G is an odd cycle or if G is a wheel of order at least 4.
Wheels therefore show that there are graphs G for which x’'(G) — rd(G) can be
arbitrarily large. There are also graphs G for which AT (G) < rd(G) = x'(G).

Proposition 8.2.3 ([1]) The rainbow disconnection number of the Petersen graph
is 4.

Proof Let P denote the Petersen graph where V(P) = {vy, v, ..., vjp}. Since
A(P) = 3 and x'(P) = 4, it follows by Proposition 8.2.2 that either rd(P) = 3 or
rd(P) = 4. Assume, to the contrary, that rd(P) = 3 and let there be given a rainbow
disconnection 3-coloring of P. Now, let # and v be two vertices of P and let R be a
u — v rainbow cut. Hence, |R| < 3 and P — R is disconnected, where u and v belong
to different components of P — R. Let U be the vertex set of the component of P — R
containing u, where |U| = k. We may assume that 1 < k < 5. First, suppose that
1 < k < 4. Since the girth of P is 5, the subgraph P[U] induced by U contains
k — 1 edges. Therefore, |R| = 3k — 2k —2) = k+2,wherethen3 < k42 < 6. If
k =5, then P[U] contains at most five edges and so |R| > 5, which is impossible.
Since rd(P) = 3, it follows that |R| < 3 and so k = 1. Hence, the only possible
u — v rainbow cut is the set of the three edges incident with u (or with v).

Let the colors assigned to the edges of P be red, blue, and green. Since x'(P) = 4,
there is at least one vertex of P that is incident with two edges of the same color. We
claim, in fact, that there are at least two such vertices. Let Er, Eg, and Eg denote
the sets of edges of P colored red, blue, and green, respectively, and let Pg, Pg, and
Pg be the spanning subgraphs of P with edge sets Eg, Ep, and Eg. We may assume
that

|Er| > |Eg| > |Eg| and so |[Eg| > 5.

*x If |[Eg| = 7, then 2}21 degp, vi > 14. Since degp, v; < 3 for each i with
1 <i < 10, at least two vertices are incident with two red edges, verifying the
claim.

* If |[Eg| = 6, then Z}i, degp, v; = 12. Then either (i) at least two vertices are
incident with two red edges or (ii) there is a vertex, say vjo, incident with three

red edges and each of vy, vy, ..., vy is incident with exactly one red edge. If (ii)
occurs, then either |Eg| = 6 or |Eg| = 5 and so Z?:l degp, v; > 10, which
implies that at least one of the vertices vy, v,, ..., Vg is incident with two blue

edges, again verifying the claim.

The only remaining possibility is therefore |Egx| = |Eg| = |Eg| = 5. If Eg is an
independent set of five edges, then P — Ey is a 2-regular graph. Since the girth of P
is 5 and P is not Hamiltonian, it follows that P — E; consists of two vertex-disjoint
5-cycles. Thus, there is a vertex of P in each cycle incident with two blue edges
or with two green edges, verifying the claim. Hence, none of Eg, Ep, or Eg is an
independent set. This implies that for each of these colors, there is a vertex of P
incident with two edges of this color, verifying the claim in general.
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Thus, P contains two vertices u and v, each of which is incident with two edges
of the same color. Since the only # — v rainbow cut is the set of edges incident with
u or v, this is a contradiction. |

The following two results describe those graphs having rainbow disconnection
number 1 or 2 and those graphs of order n having rainbow disconnection number n—1.

Theorem 8.2.4 ([1]) Let G be a nontrivial connected graph. Then

(1) rd(G) = 1 ifand only if G is a tree and
(2) rd(G) = 2 ifand only if each block of G is either K, or a cycle, and at least one
block of G is a cycle.

Theorem 8.2.5 ([1]) Let G be a nontrivial connected graph of order n. Then
rd(G) = n — 1 if and only if G contains at least two vertices of degree n — 1.

Proof First, suppose that G is a nontrivial connected graph of order n containing at
least two vertices of degree n — 1. Since rd(G) < n — 1, it remains to show that
rd(G) > n —1.Letu,v € V(G) such that degu = degv = n — 1. Among all sets
of edges that separate u and v in G, let S be one of minimum size. We show that
|S] > n—1.Let U be acomponent of G — § that contains # and let W = V(G) \ U.
Thus, v € W and § = [U, W] consists of those edges in G — S joining a vertex of
U and a vertex of W. Suppose that |U| = k for some integer k with 1 <k <n — 1
and then |W| = n — k. The vertex u is adjacent to each of the n — k vertices of W
and each of the remaining k — 1 vertices in U is adjacent to at least one vertex in W.
Hence, |S| > n — k 4+ (k — 1) = n — 1. This implies that every u — v rainbow cut
contains at least n — 1 edges of G and so rd(G) > n — 1.

For the converse, suppose that G is a nontrivial connected graph of order n having
at most one vertex of degree n — 1. We show that rd(G) < n — 2. We consider two
cases.

Case 1. Exactly one vertex v of G has degree n — 1. Let H = G — v. Thus,
A(H) <n—3.Since x'(H) < A(H) + 1 = n — 2, there is a proper edge-coloring
of H using n — 2 colors. We now define an edge-coloring ¢ : E(G) — [n — 2]
of G. First, let ¢ be a proper (n — 2)-edge-coloring of H. For each vertex x € V(H),
since deg,; x < n — 3, there is a, € [n — 2] such that a, is not assigned to any edge
incident with x. Define

c(vx) = a, for each edge vx incident with x.

Thus, the set E, of edges incident with x is a rainbow set for each x € V(H). Let u
and w be two distinct vertices of G. Then at least one of # and w belongs to H, say
u € V(H). Since E, separates u and w, it follows that ¢ is a rainbow disconnection
coloring of G using n — 2 colors. Hence, rd(G) < n — 2.

Case 2. No vertex of G has degree n — 1. Therefore, A(G) <n —2.If A(G) <
n — 3, then rd(G) < x/(G) < n — 2 by Proposition 8.2.2. Thus, we may assume
that A(G) = n — 2. Suppose first that G is not (n — 2)-regular. We claim that G
is a connected spanning subgraph of some graph G* of order n having exactly one
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vertex of degree n — 1. Let u be a vertex of degree k < n — 3 in G. Let N (u) be the
neighborhood of u and W = V(G) \ N[u], where N[u] = N (u) U {u} is the closed
neighborhood of u. Then | N (u)| = kand |W| = n—k—1 > 2.If W contains a vertex
v of degree n — 2 in G, then v is the only vertex of degree n — 1 in G* = G + uv.
If no vertex in W has degree n — 2 in G, then let G* be the graph obtained from G
by joining u to each vertex in W. In this case, u is the only vertex of degree n — 1 in
G*. It then follows by Case 1 that rd(G*) < n — 2. Since G is a connected spanning
subgraph of G*, it follows that rd(G) < rd(G*) < n — 2. Finally, suppose that G is
(n — 2)-regular. Thus, G is 1-factorable and so x'(G) = A(G) = n — 2. Therefore,
rd(G) < x'(G) = n — 2 by Proposition 8.2.2. |

A problem of interest concerns the extremal values of the size of a graph of a
fixed order with prescribed rainbow disconnection number.

Problem 8.2.6 ([1]) For a given pair k, n of positive integers with k < n — 1, what
are the minimum possible size and maximum possible size of a connected graph G
of order n such that the rainbow disconnection number of G is k?

By Theorem 8.2.4, the only connected graphs of order n having rainbow discon-
nection number 1 are the trees of order . That is, the connected graphs of order n
having rainbow disconnection number 1 have size n — 1. Also, by Theorem 8.2.4, the
minimum size of a connected graph of order n > 3 having rainbow disconnection
number 2 is n. Furthermore, by Theorem 8.2.5, the minimum size of a connected
graph of order n > 2 having rainbow disconnection number n — 1 is 2n — 3. These
facts are special cases of a more general result. To show this, the following lemma
is useful.

Lemma 8.2.7 ([1]) If x and y are two nonadjacent vertices of a connected graph
H that is not complete, then rd(H + xy) <rd(H) + 1.

Proof Suppose that rd(H) = k and let ¢y be an rd-coloring of H using the col-
ors 1,2, ..., k. The coloring ¢y is extended to an edge-coloring ¢ of H 4+ xy by
assigning the color k£ 4 1 to the edge xy. Now, let u and v be two vertices of H
and let R be a u — v rainbow cut in H. Then R U {xy} is a u — v rainbow cut in
H + xy. Hence, c is a rainbow disconnection (k + 1)-coloring of H + xy. Therefore,
rd(H +xy) <k+1=rd(H) + 1. [ |

Theorem 8.2.8 ([1]) The minimum size of a connected graph of order n having
rainbow disconnection number k, where 1 <k <n,isn+k — 2.

Proof Sincerd(K,) = n— 1, the result is true for k = n — 1. Hence, we may assume
that I < k < n—2.First, we show that if the size of a connected graph G of order n is
n+k—2,thenrd(G) < k. We proceed by induction on k. We have seen that the result
is true for k = 1, 2 by Theorem 8.2.4. Suppose that if the size of a connected graph
H of order n is n +k — 2 for some integer k with2 < k <n—3,thenrd(H) < k. Let
G be a connected graph of order n and size n + (k + 1) —2 =n + k — 1. We show
thatrd(G) < k+ 1. Since G is not a tree, there is anedge e in G suchthat H = G —e
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Fig. 8.6 A graph G of order uy U
7 and rd(G) =3

v1

w1 w2 w3

is a connected spanning subgraph of G. Since the size of H is n + k — 2, it follows
by the induction hypothesis that rd(H) < k. Hence, rd(G) = rd(H +e¢) < k + 1
by Lemma 8.2.7. Therefore, the minimum possible size of a connected graph G of
order n having rd(G) = kisn + k — 2.

It remains to show that for each pair k, n of integers with 1 < k < n — 1 there
is a connected graph G of order n and size n + k — 2 such that rd(G) = k. Since
this is true for k = 1,2, n — 1, we now assume that 3 <k <n —2.Let H = Ky
with partite set U = {u;, up} and W = {wy, wy, ..., wi}. Now, let G be the graph
of order n and size n + k — 2 obtained from H by subdividing the edge u;w; a total
of n — k — 2 times, producing the path (u;, vy, v2, ..., Vy—x—2, wy) in G. This graph
is illustrated in Fig.8.6 fork =3 andn = 7.

Since x'(H) = k, there is a proper edge-coloring cy of H using the colors
1,2,..., k. We may assume that c(u;w;) = 1 and c(uw;) = 2. We now extend
the coloring cy to a proper edge-coloring ¢ of G using the colors 1,2, ...,k by
defining cg(u;v;) = 1 and alternating the colors of the edges of P with 3 and 1
thereafter. Hence, x'(G) = k and so rd(G) < x’(G) = k by Proposition 8.2.2.
Furthermore, since A(u, u;) = k and A(x, y) = 2 for all other pairs x, y of vertices
of G, it follows that A*(G) = k. Again, by Proposition 8.2.2, rd(G) > A*(G) =k
and sord(G) = k. |

Since the minimum size of a connected graph G of order n with rd(G) = k where
1 <k < n —11is now known by Theorem 8.2.8, this brings up the question of
determining the maximum size of a connected graph G of order n with rd(G) = k.
Of course, we know this size is n — 1 when k = 1. Also, we know this size is (;)
when k = n — 1. For odd integers n, there is the following conjecture.

Conjecture 8.2.9 ([1]) The maximum size of a connected graph G of odd ordern >
Swithtd(G) =k, 1 <k <n— 1, is &=D,

Since w =n—1whenk =1and W = (;) when k = n — 1, this
conjecture is true for these two values of k. Also, w = % when k = 2.
This is the size of the so-called friendship graph (%) K,V K of order n (every two
vertices have a unique common neighbor). Since each block of a friendship graphis a
triangle, it follows by Theorem 8.2.4 that each such graph has rainbow disconnection
number 2.

For given integers k and n with 1 < k < n — 1 where n > 5 is odd, let H; be
a (k — 1)-regular graph of order n — 1. Since n — 1 is even, such graphs H; exist.
Now, let G, = H; Vv K, be the join of H; and K. Thus, Gy is a connected graph of



94 8 Color Connection and Disconnection

order n having one vertex of degree n — 1 and n — 1 vertices of degree k. The size
m of Gy, satisfies the equation

2Zm=n—-D+®0—Dk=Gk+Dn—-1)

and som = ("H)# The graph H; can be selected so that it is 1-factorable and
so x'(Hy) = k — 1. If a proper (k — 1)-edge-coloring of Hj is given using the
colors 1,2, ...k — 1, and every edge incident with the vertex of G of degree n — 1 is
assigned the color k, then the edges incident with each vertex of degree k are properly
colored with k colors. For any two vertices u and v of Gy, at least one of u and v has
degree k in Gy, say degs, u = k. Then the set of edges incident with u isa u — v
rainbow cut in H. Since this is a rainbow disconnection k-coloring of G, it follows
that rd(Gy) < k. It is reasonable to conjecture that rd(Gy) = k.

We would still be left with the question of whether every graph H of order n and
size w + 1 must have rd(H) > k. Certainly, every such graph H must contain
at least two vertices whose degrees exceed k.

We conclude with a problem that combines two concepts in this chapter that have
been investigated by Stephen Hedetniemi. A graph G is vertex-colored if every vertex
of G is assigned a color from some prescribed set of colors. As with rainbow sets of
edges, aset U of vertices in an vertex-colored graph is a rainbow set if no two vertices
of U have the same color. A rainbow set U in a nontrivial connected vertex-colored
graph G is a rainbow cut of G if U is both a rainbow set and a vertex-cut. For two
nonadjacent vertices u and v of G, a rainbow cut U is a u — v rainbow cut if u and
v belong to different components of G — U. A vertex coloring of G is a rainbow
vertex disconnection coloring if for every two nonadjacent vertices u# and v of G,
there exists a u — v rainbow cut in G. The rainbow vertex disconnection number
of a nontrivial connected graph G is the minimum number of colors required of a
rainbow vertex disconnection coloring of G.

Problem 8.2.10 Investigate the rainbow vertex disconnection numbers of connected
noncomplete graphs.
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