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Preface 

Where it can be found at all, an undergraduate course in graph theory is typically 
listed among the électives for majors in the mathematical sciences. For better 
or worse, elective courses often find themselves competing with each other for 
enrollments in today's cafeteria-style curriculum. Evolving in such an environ-
ment, this book might best be described as an invitation to graph theory. A 
mathematically rigorous introduction, it is neither an exhaustive overview nor 
an encyclopedic reference. To borrow a phrase from the early calculus reform 
movement, it is a lean and lively text, designed to attract and engage. Preference 
is given to the kinds of things students can, figuratively speaking, get their hands 
on. The selection is dictated less by intrinsic importance and more by how well 
a topic lends itself to being pictured, calculated, manipulated, or counted. While 
applications are numerous, they have been chosen and presented as much to 
seduce as to inform. In a similar spirit, not because it is central to graph theory, 
but because it is a useful device, graph coloring is deployed throughout the book 
as a unifying theme. The idea is to create the impression, not of a series of theo-
rems about graphs, but of a subject that can be represented as a unified theory. 
The result is a book that goes deeply enough into a sufficiently wide variety of 
topics to display, not only the flavor of graph theory, but some of its power and 
elegance as well. 

The text was planned to be a versatile instructional tool. Following a basic 
foundation in Chapters 1-3, an instructor is free to pick and choose the most 
appropriate topics from four independent strands. (Occasional redundancy is the 
price for such flexibility; for example, some definitions can be found in more 
than one place.) Specific dependencies among the chapters are illustrated by the 
diagram. 

Beyond the (in)dependence indicated in the chart, Chapter 5 does not rely 
on any material coming after Example 4.14; embeddings of graphs in orientable 
surfaces of positive genus can be safely omitted. Moreover, the material on 
Ramsey Theory in Chapter 10 can be covered independently of the application 
of Pólya's Theorem to graph enumeration that concludes the book. 

The prerequisites for a course based on this book should include the sophomore 
linear algebra course commonly found among the lower division requirements 
for majors in the mathematical and physical sciences. Elementary linear algebra 
is used most heavily in Chapter 9, where the reader is presumed to have been 

ix 
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exposed to the definitions of eigenvalue, eigenvector, and the characteristic poly-
nomial of a real matrix. Apart from general prerequisites, the recipe for counting 
nonisomorphic graphs, found in the latter part of Chapter 10, supposes the reader 
to be acquainted with the disjoint cycle factorization of a permutation. 

Confounding any discussion of graph connectivity is an awkward discrepancy 
between intuition and proof. For this reason, Chapter 3 is likely to be the most 
difficult section of the text. In approaching this material, it is perfectly acceptable 
for an instructor simply to state some of the deeper results and glide nimbly over 
the details of proof. 

Many people have contributed observations, suggestions, and constructive crit-
icisms at various stages of production. Among them are Rob Beezer of the 
University of Puget Sound, Richard Brualdi of the University of Wisconsin, Ron 
Graham of UC San Diego, Jerry Griggs of the University of South Carolina, 
Matt Hubbard and Tom Roby of CSU Hay ward, Ken Rebman of the University 
of Colorado, Colorado Springs, Peter Rowlinson of the University of Stirling, 
Edward Scheinerman of Johns Hopkins University, Linda Valdes of San José 
State University, and Steve Quigley of John Wiley & Sons. I would also like to 
acknowledge helpful conversations with Carl Johnson and Rhian Merris. Finally, 
I am deeply grateful to Dean Michael Leung of CSU Hayward, who, at a crit-
ical point of the project, granted me an extra portion of that most precious 
commodity — time. 

Despite everyone's best efforts, no book seems complete without a few errors. 
An up-to-date errata, accessible from the internet, will be maintained at URL 

http://www.telecom.csuhayward.edu/~rmerris 
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Appropriate acknowledgment will be extended to the first person who commu-
nicates the specifics of each previously unlisted error, preferably by e-mail 
addressed to merris@csuhayward.edu. 

RUSSELL MERRIS 

Hayward, California 
July, 2000 
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1 
Invariants 

By the end of a long flight, most airline passengers will have become familiar 
with the contents of the seat pocket in front of them. Perhaps the most interesting 
thing to be stowed there is the airline's route map. On the standard map, direct 
service between cities A and B is indicated by an arc linking the two. Some 
of these arcs may cross at points where airliners do not touch down, and it is 
the job of air traffic controllers to ensure that nothing unpleasant occurs at such 
places. This is usually accomplished by requiring planes on intersecting routes 
to fly at different altitudes. Thus, while arcs representing routes may cross, the 
routes themselves meet only at airports. 

The graph-theoretic name for the number of arcs touching at city C is the 
degree of C. Would you be surprised to learn that, on every airline route map, 
at least one pair of cities must share the same degree? 

Some cities may be illustrated on the map even though they are not serviced 
by the airline. These have degree 0. It may be, on the other hand, that one or 
more of the indicated cities is an airline "hub" from which passengers may take 
direct flights to every other city on the map. It is easy to see, however, that these 
two extreme cases cannot both occur on the same map. While the degrees of 

1 



2 Chap. 1 Invariants 

the k cities range between 0 and k — 1, if there are arcs from one of them to 
all the others, then no city can have degree 0. Thus, among the k cities on any 
given map, at most k — 1 degrees are possible. Because there are more cities 
than degrees, some two cities must have the same degree. 

Airline route maps provide just one representation of the mathematical abstrac-
tion called a graph. Informally, a graph is a finite collection of dots, some pairs 
of which are joined by arcs. In order to facilitate our discussion of these objects, 
let's agree on a few standard examples. The path, Pn, consists of n > 2 dots, 
representing vertices, and n — 1 arcs, representing edges. Two vertices of P„ 
have degree 1, and the rest are of degree 2. 

As if its vertices were stepping stones, the length of Pn is n — 1, the number 
of steps from one degree 1 vertex to the other. The first few paths are illustrated 
in Fig. 1.1. 

o—o o—o—o o — o — o — o o — o — o — o — o 

Figure 1.1. Paths. 

The star, S„, has n > 2 vertices and n — I edges. As shown in Fig. 1.2, 
S2 = Pi and S3 = P3. For n > 3, Sn has a central vertex of degree n — 1 and 
n — 1 vertices of degree 1. 

o — o o—o—o 
0 0 0 
1 \ / 
1 o 

/ O / \ 
0 0 0 o 

o 

/ \ 
o o 

$2 ^3 &t $5 ^6 

Figure 1.2. Stars. 

The first few cycles are illustrated in Fig. 1.3. With n vertices and n edges 
the cycle, C„, has length n. 

0 
/ \ 

0 — 0 

C3 

0 — 0 

1 1 
0 — 0 

c4 

A 0 0 
\ / 
0 — 0 

c5 

Figure 1.3. Cycles. 

1 1 

c6 

While a picture may be worth a thousand words, informal discussions based 
on pictures have serious limitations. Consider, for example, Fig. 1.4. Does it 
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^ A 
o—o /y \\> 

o- -o 
Figure 1.4 

illustrate two different graphs, two different pictures of the same graph, or a 
single graph with two connected components? Before we can hope to give a 
definitive answer, much less prove any theorems, we need a rigorous (mathe-
matical) definition of "graph." As a first step in that direction, consider the set 
V = [a, b, c, d, e). Among the 25 = 32 subsets of V, only one (the empty set) has 
no elements. There are five one-element subsets and C(5, 2) = 10 two-element 
subsets,1 namely, 

{a, b) [a, c] [a, d} {a, e] 
{b, c) [b, d) lb, e] 

[c, d] [c, e) 
ld,e) 

It is these two-element subsets that are of interest. If V is an «-element set, 
denote by V(2) the set consisting of all C(n, 2) of its two-element subsets. 

1.1 Definition. A graph consists of two things: a nonempty finite set2 V and 
a (possibly empty) subset E of V(2). Typically written G = (V, E), the elements 
of V are the vertices of G, and the elements of E are its edges. When more than 
one graph is under consideration, it may be useful to write V(G) and E(G) for 
its vertex and edge sets, respectively. 

An airline route map shows a graph illustrated on top of an ordinary map. The 
graph is drawn so that its vertices correspond to cities while its edges correspond 
to arcs. In the route map context, arc length is a rough-and-ready guide to the 
length of the corresponding flight, whether measured in travel time or frequent 
flyer miles. This metric property is not reflective of the graph. The length of a 
representing arc has no graph-theoretic meaning. Indeed, while an arc contains 
infinitely many geometric points, the edge it represents consists of (just) two 
vertices. 

1.2 Definition. If e = {«, v} e E(G), vertices u and v are said to be adjacent 
(to each other) and incident to e. Two edges are adjacent if they have exactly 
one common vertex — that is, if their set-theoretic intersection has cardinality 1. 

1 Read "n-choose-/·," binomial coefficient C(n, r) = n\/[r\(n — r)!]. 
2 Infinite graphs are not discussed in this book. 
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1.3 Example. Suppose V = {1, 2, 3, 4} and E = V(2). Then G = (V, E) is a 
complete graph. (One interpretation of Fig. 1.4 is that it contains two illustrations 
of G = (V, £).) 

If W = {1, 2, 3,4, 5}, then W(2) has C(5, 2) = 10 elements. Thus, Wm has 
210 subsets. Evidently, there are 1024 different graphs with vertex set W. One of 
them is H = (W, F), where F = {{1,3), {2, 3}, {2, 5}, {3,4), {3, 5}, {4, 5}). (The 
notation indicates that V(H) = W and E(H) = F.) Two illustrations of H appear 
in Fig. 1.5. D 

O 

o—o—o / \ / 
\\/ °—° 

o o 
(a) (b) 

Figure 1.S 

1.4 Definition. Let G = (V, E) be a graph. Suppose that v e V. The degree 
of v, denoted dc(v), is the number of edges of G that are incident with it. 
Alternatively, dc(v) is the number of vertices of G that are adjacent to v. When 
its meaning is clear, we will sometimes write d(v) in place of dc(v). Let A(G) 
and 8(G) be the largest and smallest of the vertex degrees of G, respectively. 

Given a graph G with V(G) = {v\, V2,..., v„}, it is useful to view the 
multiset [d(v\), d(v2), ■ ■., d(vn)} as a sequence. Let d(G) = (d\, di,..., d„), 
where A(G) = d\ > di > ■ ■ ■ > d„ = 8(G) are the degrees of the vertices of G 
(re)arranged in nonincreasing order. (Note that d¡ need not equal d(v¡).) For 
example, d(P„) = (2, 2 , . . . , 2, 1, 1), d(S„) = (n - 1, 1 , . . . , 1), and d(Cn) = 
(2, 2 , . . . , 2). Observe that 

A(G) < n - 1, 

for any graph on n vertices, with equality if and only if G has a dominating 
vertex, one that is adjacent to every other vertex of G. 

Let H be the graph from Example 1.3, illustrated twice in Fig. 1.5, Then 
d(l) = 1 = 8(H), d(2) = 2, d(3) = 4 = A(H), d(A) = 2, d(5) = 3, and d(H) = 
(4, 3, 2, 2, 1). (Note that, sure enough, two vertices share the same degree!) From 
their degrees, it is an easy matter to identify the dots corresponding to vertices 
1, 3, and 5 in Fig. 1.5. But, which of the remaining dots represents vertex 2 and 
which of them corresponds to vertex 4? In this case, either way of assigning dots 
to the even-numbered vertices results in a correct illustration. 

7.5 Notation. The shorthand notation uv e E is sometimes used to indicate that 
[u, v} is an edge of G = (V, E). 
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1.6 Example. While different pictures can illustrate the same graph, it is also 
the case that different graphs can be illustrated by the same picture! If V = 
[a, b, c, d, e) and E = {ac, be, be, cd, ce, de), then G = (V, E) is illustrated by 
the pictures in Fig. 1.5. D 

If the truth be known, "different" graphs are much less interesting than "noni-
somorphic" graphs. Roughly speaking, graphs that can be illustrated by the same 
picture are said to be isomorphic. Let's make this description more precise. 

1.7 Definition. Graph G\ = (Vi, £ i ) is isomorphic to Gi = (V2, £2) if there 
is a one-to-one function / from Vi onto V2 such that {w, v) e E\ if and only if 
{/(«), f(v)) € £2. If such a function exists, it is called an isomorphism from G\ 
to G2. 

From Exercise 4 (below), / : V(G\) -*■ V(G2) is an isomorphism from G\ to 
G2 if and only if / _ 1 : V(G2) -*■ V(G\) is an isomorphism from G2 to G\. In 
other words, G\ is isomorphic to G2 if and only if G2 is isomorphic to G\. We 
will write Gi = G2 to indicate that the graphs are isomorphic (to each other). 
Evidently, isomorphic graphs have the same numbers of vertices and edges. 
Properties like these, which isomorphic graphs must share, are called invariants. 

1.8 Example. Let H and G be the graphs in Examples 1.3 and 1.6, respectively. 
Then / ( l ) = a, f(2) = b, / ( 3 ) = c, / ( 4 ) = d, and / ( 5 ) = e is an isomorphism 
from H to G. It is not the only one; g{\) = a, g(2) = d, g(3) = c, g(4) = b, 
and g(5) = e is another. Indeed, A(l) = 1, h(2) = 4, Λ(3) = 3, A(4) = 2, and 
A(5) = 5 is an isomorphism from H to itself.3 This indicates why it did not 
matter which of the two dots of degree 2 in Fig. 1.5 is assigned to vertex 2 and 
which to vertex 4. D 

1.9 Theorem. Isomorphic graphs have the same degree sequence, that is, the 
degree sequence is an invariant. 

Proof. Let G and H be isomorphic graphs. If M 6 V(G), then ddu) = 
o({v:uv € £(G)}), the cardinality of the set of vertices adjacent to u. Suppose 
/ : V(G) -* V(H) is an isomorphism. Then / is one-to-one and onto, and uv € 
£(G) if and only if f(u)f(v) e E(H). It follows that 

dG(u) = o({f(v): / ( « ) / ( « ) e £(//)}) 

Thus, / induces a one-to-one correspondence between the multiset of vertex 
degrees of G and the multiset of vertex degrees of H. ■ 

3 An isomorphism from H to itself is called an automorphism of H. 
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The proof of Theorem 1.9 shows that isomorphisms preserve degrees vertex 
by vertex. In other words, no isomorphism can carry a vertex of degree 5 to a 
vertex of degree 4 or to one of degree 6. 

1.10 Example. Among the standard examples in graph theory is the Petersen 
graph, shown twice in Fig. 1.6. The proof that G\ and G2 are isomorphic is "by 
the numbers." Let V{G\) = {1, 2 , . . . , 10} = V(G2), as illustrated in Fig. 1.6. 
Define / : V(Gi) -»· V(G2) by f(i) = i, 1 < / < 10. Then, as may be verified by 
carefully examining the pictures, / is an isomorphism. (Check it out. Confirm 
mat vertices / and j are adjacent in G\ if and only if they are adjacent in G2.) 
Provided that the numbers "check out," such a pair of labeled figures constitutes 
a proof of isomorphism. 

Figure 1.6. Two illustrations of the Petersen graph. 

Note that, while the arc (segment) representing edge {2, 4} crosses the arc 
corresponding to {8,9} in G\, their point of intersection does not represent a 
vertex: {8, 9} Π {2, 4} = φ. D 

Confirming that the vertex numberings in Fig. 1.6 correspond to an isomor-
phism is not the same thing as finding the numberings in the first place. But, 
how hard can it be? Evidently, it suffices to number the vertices of G\ in some 
fixed but arbitrary way and then check to see whether any of the 10! numberings 
of the vertices of G2 produces an isomorphism. (Because all the vertices have 
degree 3, there aren't any obvious shortcuts). If it takes a minute to check each 
numbering, then by working 24 hours a day the 10! = 3,628,800 possibilities 
can be checked out in just a little under 7 years. (If the graphs has a dozen 
vertices, the job would take 700 years!) Of course, this calculation assumes that 
no isomorphism is found before checking the last numbering of G2. It seems 
that the worst case is when the graphs are not isomorphic, precisely the case 
in which invariants are most useful. If some invariant is not the same for a 
pair of graphs, there is no need to check numberings. The graphs cannot be 
isomorphic! 
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The search for a short list of easily computed invariants sufficient to distinguish 
nonisomorphic graphs is the graph-theoretic counterpart of medieval knights 
searching for the "holy grail."4 For the moment, let us observe that the numbers of 
vertices and edges, together with the degree sequence, do not comprise such a list. 

1.11 Example. The graphs illustrated in Fig. 1.7 both have 5 vertices, 4 edges, 
and degree sequence (2, 2, 2, 1, 1), yet they cannot be isomorphic: Suppose / 
were an isomorphism from P¡ to H. If u and v are the vertices of P¡ of degree 
1, then /(«) and f(v) would have to be the degree 1 vertices of H. Because 
uv $ E(P5), it would have to be that f(u)f(v) $ E(H). Since the vertices of 
degree 1 of H are, in fact, adjacent, / cannot exist. D 

/°\ o 
o o o / V 

o o o o 
Ps H 

Figure 1.7 

Let us call a list of invariants complete if it suffices to distinguish noniso-
morphic graphs, and independent if no invariant on the list can be determined 
from the others. Example 1.11 shows that a list comprised of the number of 
vertices, the number of edges, and the degree sequence is not complete. Neither 
is it independent. The number of vertices is equal to the number of entries in the 
sequence d(G), and the number of edges can be determined from d(G) by what 
has come to be known as the "first theorem of graph theory." 

1.12 Theorem. Let G = (V,E) be a graph with vertex set V = {v\, V2,.. ■, v„} 
and edge set E of cardinality o(E) = m. Then 

n 

\~\d{Vi) = 2m. 

Proof. By definition, d(v) is the number of edges that are incident with 
vertex v. Thus, in summing d(v), each edge is counted twice, once at each of its 
vertices. ■ 

Taking nothing away from the proof in Example 1.11, there is a more obvious 
reason way the graphs in Fig. 1.7 are not isomorphic; that is, P$ is "connected" 

4 Discussions of computational intractability frequently involve the class NP of decision problems 
that are solvable "nondeterministically" in polynomial time. In 1971, S. A. Cook proved that every 
problem in NP can be reduced (in polynomial time) to the "satisfiability" problem, making it the 
first problem proven to be NP-complete. In 1972, R. M. Karp asked whether the Graph Isomorphism 
Problem is NP-complete. As of this writing, the answer to Karp's question is still not known. 
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and H is not. Unfortunately, like many "obvious" notation, connectedness is 
easier to see than it is to define. 

1.13 Definition. Let G = (V, E) be a graph, and suppose u, w e V. A path in 
G of length r, from u to w, is a sequence [VQ, v\,..., vr] of distinct vertices such 
that u — vo, w = vr, and {υ,_ι, v¡] € E, 1 < i < r. 

If, in Definition 1.13, V(G) = {v0, vu ..., vr] and E(G) = {{*;, - 1, Vi}: 1 < 
i < r], then G = Pr+\\ that is, G, itself, is a path. If G is the Petersen graph in 
Fig. 1.6, then [1, 2, 4, 5] is a path of length 3. The expressions [1, 3, 5, 4, 2, 1] 
and [1, 2, 8, 9] are not paths. In the first case, the vertices are not distinct. In the 
second, {2, 8} $ E(G). (Note that it does not matter which picture, G\ or Gj, we 
use to illustrate this discussion!) If {«, v] e E(G), then [u, v] is a path of length 
1 from u to υ and [v, u] is a path of length 1 from v to u. 

1.14 Definition. Let G = (V, E) and « = (W, F) be graphs. If IV c V and 
F C E, then // is a subgraph of G. The subgraph of G induced by W is G[W] = 
(w, E n w(2)). 

U H — (W, F) is a subgraph of G = (V, E) then, because // is a graph, F C 
W(2). Thus, f c f n W(2\ with equality if and only if H = G[W]. In particular, 
H is a subgraph of G if and only if H is a subgraph of G[W]; in other words, 
G[W] is the unique maximal subgraph of G having vertex set W. While P¡ is 
isomorphic to a subgraph of C$, it is not an induced subgraph; P4, on the other 
hand, is isomorphic to an induced subgraph both of P$ and of C5. 

7.75 Definition. The graph G = (V, E) is connected if o(V) = 1 or if every 
pair of distinct vertices of G is joined by a path in G. A (connected) component 
of G is an induced subgraph H = G[W] such that H is connected, but G[X] is 
not connected for any subset X of V that strictly contains W. 

Another way to get at the notion of a component of G is to define a relation 
among its vertices. Write u ~ w if there is a path in G from u to w. Then "~" 
is an equivalence relation on V(G). The induced subgraphs, G[W], as W runs 
over the equivalence classes of V(G), are the components of G. 

Evidently, components are maximal connected subgraphs, and G is connected 
if and only if it has exactly one component; a graph with more than one compo-
nent is said to be disconnected. 

1.16 Theorem. The number of components is an invariant. 

Proof. Suppose G = (V, E) and H = (W, F) are isomorphic graphs. Let 
/ : V ->■ W be an isomorphism. If [vo, v\,..., vr] is a path in G from u = VQ to 
w = υΓ, then [/(Î>O). / ( ^ I )> ·· ■ » /(^r)] is a path in H from /(«) to /(w). Thus, 
M and w are in the same component of G if and only if /(«) and /(w) are in the 
same component of H. ■ 
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1.17 Example. The graph H in Fig. 1.7 has two components, one isomorphic to 
/>2 and the other to C3. (Don't be misled by the intersection of arcs representing 
nonadjacent edges of H. An alternate illustration of H appears in Fig. 1.8.) 
Because H has two components, it cannot be isomorphic to P$. D 

o—o 
H 

Figure 1.8. Altemate illustration of H. 

Suppose V = [vi,V2, ...,v„] and W = [w\, W2,... ,w„] are fixed but arbi-
trary n-element sets. Denote by V the set of all 2C(n'2) (different) graphs with 
vertex set V, and denote by W the graphs with vertex set W. Define a func-
tion <p:V-+W&s follows: If G = (V, E) e V, then φ(0 = (W, F), where F = 
{νν,νν,: VjVj e E}. Then φ establishes a one-to-one correspondence between V and 
W in which corresponding graphs are isomorphic. In the mathematics of graph 
theory, the nature of the vertices in immaterial. It doesn't matter whether they 
are cities on a route map, atoms in a chemical molecule, or microprocessors in 
a computer. In talking about "the graphs on n vertices," it doesn't matter which 
n vertices, just that there are n of them. 

Suppose o(V) = n. Denote by K„ — (V, V(2)) the graph whose edge set con-
sists of all possible two-element subsets of V. As in Example 1.3, Kn is called the 
complete graph on n vertices. Two illustrations of K4 can be found in Fig. 1.4. 
The "complement" of K„ is the graph Kc

n = (V, <p) having n components, each 
of which consists of a single isolated vertex. 

1.18 Definition. Let G = (V, E) be a graph. Its complement is the graph Gc = 
(V, V(2)\£), that is, G and Gc share the same set of vertices, but uv e E(G) if 
and only if uv & E(GC). 

For G = (K, £) and H = (W, F) to be isomorphic, there must exist an isomor-
phism / : V -*■ W such that uv e E if and only if f(u)f(v) e F. But, that means 
uv g E if and only if f(u)f(v) & F. Evidently, every isomorphism from G to 
H is simultaneously an isomorphism from Gc to Hc. In particular, G and H are 
isomorphic if and only if Gc and Hc are isomorphic. 

The nonisomorphic graphs on n = 4 vertices are illustrated in Fig. 1.9. With 
the exception of P4, these graphs appear in complementary pairs; the path is 
exceptional because it is isomorphic to its complement, in other words, P4 is 
self-complementary. The path is also exceptional in the sense that G = P4 is the 
only graph on 4 vertices with the property that G and Gc are both connected. 
As we now see, this is not just an accident due to the fact that n = 4 is 
small. 
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O O O O ° v / ° O — O 
/ / \ / 

O O O O O O O O 
O — O O — O O — O Ov O 

IXI l \ l I I l \ l 
o—o o—o o—o o—o 

Figure 1.9 

1.19 Theorem. Let G be a graph on n > 2 vertices. If both G and Gc are 
connected, then G contains an induced subgraph isomorphic to P4. 

Note that, because P°4 = P4, G contains an induced subgraph isomorphic to 
P4 if and only if Gc contains an induced subgraph isomorphic to A». Thus, the 
theorem is really a statement about connected complementary pairs of graphs 
(cc-pairs for short). 

Proof. If the theorem fails, then, from among all counterexamples, there is a 
"minimal" cc-pair—that is, one having a fewest number, k, of vertices. Because 
one of G and Gc is disconnected for all graphs G on 2 < n < 3 vertices (check 
it with paper and pencil), k must be at least 4. From Fig. 1.9, we see that the 
only cc-pair on 4 vertices is G = P4 = Gc, and the theorem is true for this pair. 
Thus, our minimal counterexample is a pair of connected graphs, G and Gc, on 
the same set V of k > 5 vertices, and neither G nor Gc contains an induced 
subgraph isomorphic to P4 . 

For a fixed but arbitrary u e V, let H — G[V\{u}] be the subgraph of G 
induced on the remaining vertices. Informally, H = G — u is the graph obtained 
from G by deleting vertex u and every edge incident with it. Because any induced 
subgraph of H is an induced subgraph of G, no induced subgraph of H can be 
isomorphic to P4. Since H has k — 1 < k vertices, it cannot be a counterexample. 
Thus, H and Hc cannot both be connected. Without loss of generality, we may 
assume that H is disconnected. 

Because u is not an isolated vertex of Gc, there is a vertex y e V such that 
uy e E(GC). Let C be the component of H containing y. Suppose z € V(H) 
belongs to a component of H different from C. Let Q = [y = XQ, X\ , . . . , x, = z] 
be a shortest path in G from y to z. Because y Φ u-φ z, uy $ E{G), and Q is not 
a path in H, there is an integer s such that 1 < s < t and u = xs. Moreover, since 
Q is a shortest path, {xs^2,xs}, {Xs-2,xs+i}, and {^-ι ,^+ι} cannot be edges of 
G. Therefore, G[xs-2,Xs-\,Xs,x$+\\ = ^4» contradicting the assumption that G is 
a counterexample. ■ 

1.20 Example. Consider the graphs G\, G7, H\, and H2 shown in Fig. 1.10. 
Observe that a pair of numbered vertices is adjacent in G\ if and only if the same 
numbered pair is not adjacent in G2. This proves, by the numbers, that G\ = G2. 
Because G\ and G\ are both connected, it follows from Theorem 1.19 that 

V 
o o o—o 
ov o 0 — 0 

\l 
o—o 
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G\ contains an induced subgraph isomorphic to P4 . Indeed, Gi[l , 2, 3,4] = / V 
Because G2 and Gc

2 = G\ are both connected, G2 also must have an induced 
subgraph isomorphic to P4. Note that G2U, 3, 6, 4] = C4, not P4. On the other 
hand, P4 = P°4 = (Gi[l, 2, 3, 4])c ^ Gftl, 2, 3, 4] ^ G2[l, 2, 3, 4] = G2[3, 1, 
4,2]. 

Similarly, by the numbers, H\ S Ηχ. Because H\ and H2 are both connected, 
they must both contain induced subgraphs isomorphic to P4. Observe that H\[2, 
l,4,5] = P4 = H2[2, 1,4,5]. D 

Like most information, graphs can be encoded by means of arrays of O's 
and l 's. 

1.21 Definition. Let G = (V, E) be a graph with vertex set V = {v\, V2,..., v„). 
The corresponding n x n adjacency matrix A(G) = (a¡j) is defined by a¡¡ = 1 
if v¡vj € £, and a¡¡ = 0, otherwise. 

It is clear from the definition that A(G) is a symmetric (0, l)-matrix whose 
main diagonal consists entirely of zeros and whose ¿th row contains exactly 
düiVi) ones. Also clear is the fact that A(G) depends not only on G but on the 
numbering of its vertices. 

1.22 Example. If G\ and G2 are the graphs illustrated in Fig. 1.11, then 

A(G0 = and A(G2) 

/ 0 0 0 1 \ 
0 0 1 1 
0 1 0 1 

Vl 1 1 0 / 

2O 0 3 IO 0 2 

1/1 1/1 
lO 0 4 4 0 0 3 

G, G2 

Figure 1.11 
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Let / : V(G[) -» V(G2) be the isomorphism defined by / ( l ) = 4, / ( 2 ) = 1, 
/ ( 3 ) = 2, and / ( 4 ) = 3. The corresponding permutation matrix5 is defined 
by P(f) = (¿i/o)). where «5,* = 1 if i — k, and 0 otherwise, is the so-called 
Kronecker delta. Note that 

P(f) = 

(0 1 0 (l· 
0 0 1 0 
0 0 0 1 

Vi o o o, 

is the matrix obtained by permuting the rows of the identity matrix I4 according 
to the permutation / . The connection between A(G\) and A(G2) is given by 

A(Gl) = P(fylA(G2)P(f), 

which can be proved by showing that P{f)A{G\) = A(G2)P(f). D 

In fact, as we now see, two graphs are isomorphic if and only if their adjacency 
matrices are permutation-similar. 

1.23 Theorem. Graphs G\ and G2 are isomorphic if and only if there is a permu-
tation matrix P such that 

A{Gx) = P~lA{G2)P. (1) 

Proof. If G\ and G2 have different numbers of vertices, they cannot be 
isomorphic and, being of different sizes, their adjacency matrices cannot be 
similar, much less permutation-similar. Thus, we may assume that G\ and G2 
have the same number n of vertices. Indeed, without loss of generality we may 
assume that V ( d ) = V(G2) = V = { 1 , 2 , . . . , «}. 

Let A(G\) = (a,·,) and A(G2) = (¿>,7). If Gt = G2, there is a permutation6 / 
of V such that {/, /} e E(Gi) if and only if {/(/), f(j)) e E(G2) — that is, such 
thata, ; = bf(i)fU), 1 < i, j < n. Let P = P(f) = (¿,·/(»). Then (Exercise 29) the 
(i, y')-entry of P~l is <$;/(,> the (j, i')-entry of P. From the definition of matrix 
multiplication, the (/, ./)-entry of P~XA{G2)P is 

n n 

/__,(P )isA(G2)s,P,j — 2_^ àsf(i)bst!>tf(j) 
s,t=\ s,t=\ 

= b/U)f(j) 

Therefore, P-[A(G2)P = A ( d ) . 

5 An n x n (0, 1 )-matrix is a permutation matrix if it has exactly one 1 in each row and column — that 
is, if it contains exactly n ones, no two of which lie in the same row or column. 
6 A permutation of V is a one-to-one function from V onto V. 
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Conversely, let P be a permutation matrix that satisfies Equation (1). Define 
f(j) to be the row index of the unique 1 in column j of P, 1 < j < n. Because 
P is a permutation matrix, / : V -*■ V is one-to-one. Indeed, P = /*(/). From 
the definition of A(G\), {/, j) e E(G\) if and only if a,y = 1. From Equation (1), 
a¡j = 1 if and only if 1 = (P-lA(G2)P)u = b m m , if and only if {/(/), f(j)) € 
£(G2>, proving that / is an isomorphism from G\ to Gj- ■ 

It is a theorem in linear algebra that two n x n, real symmetric matrices are 
similar if and only if they have the same characteristic polynomial. Together 
with Theorem 1.23, this proves that the adjacency characteristic polynomial is 
an invariant: If G\ and Gj are isomorphic, then 

det(jt/n -A(Gi)) = det(jt/„ - A(G2)). 

What about the converse? Can two symmetric (0, 1 )-matrices be similar without 
being permutation-similar? 

1.24 Example. If G and H are the graphs in Fig. 1.12, then det(x/s — A(G)) = 
x5 —4x3 = det(*/5 - A(H)), so A(G) and A(H) have the same characteristic 
polynomial. Therefore, the real symmetric matrices A(G) and A(H) must be 
similar. Because G^H, A(G) and A(H) cannot be permutation-similar. D 

o - o o 7 V o 
o—o o o 

G H 

Figure 1.12 

Suppose G is a graph on n vertices with two connected components, H \ and 
H2, having n\ and n2 vertices, respectively. Then, with a suitable numbering of 
the vertices of G, A(G) can be expressed as the direct sum A(H i ) φ Α(//2>; that is, 

fA(Hx) 0 \ 
A(G)= , (2) 

V 0 A(H2)J 

where the upper-right 0 is an «i x n2 submatrix, each of whose entries is zero, 
and the lower-left block of zeros is n2 x n\. It follows from Equation (2) that 
the characteristic polynomial of A(G) can be factored as a product of the char-
acteristic polynomials of A{H\) and A(H2). 

This observation is borne out by Example 1.24, where 

detCx/5 - ¿(G)) = je x (jc4 - Ax2) 
= det(;c/| -A(Ki)) x det(x/4 -A(C4)). 
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(On the other hand, despite the fact that the graph H in Example 1.24 is 
connected, detQc/5 — A{H)) has the same factorization.) 

1.25 Example. Suppose G is a graph on n vertices. Then A(GC) is the matrix 
obtained from A(G) by "switching" its o/f-diagonal entries: For all i different 
from j , the (/, y')-entry of A(GC) is 1 if and only if the (i, y')-entry of A(G) is 0. 
Alternatively, A(GC) = A(K„ ) - A(G). 

If G1 is the graph from Example 1.22, then G\ is a graph with two components, 
one an isolated vertex (isomorphic to K\) and the other isomorphic to Pj. With 
respect to the numbering of the vertices of G\ illustrated in Fig. 1.11, 

A{G\)=MKA)-A(QX) 

Ό 0 0 0 \ 
0 0 1 1 
0 1 0 0 

,0 1 0 0 / 

= Α(ΑΓ,)®Α(/»3). 

/ 0 1 1 1 X 
1 0 0 0 
1 0 0 1 

\ l 0 1 0 / 

Similarly, 

A(GC
2) = 

/ 0 1 1 0> 
1 0 0 0 
1 0 0 0 

\ o 0 0 0 . 

■■A(P3)®A(Kl). 

Because the permutation / : (1, 2, 3, 4} -*■ {1, 2, 3,4} discussed in Example 1.22 
is an isomorphism from G\ to G2, it is an isomorphism from G\ to G\. In 
particular, 

A(Gi) = />(/)- 'A(G c
2)P(A 

where (as in Example 1.22) 

/>(/) = 

/ 0 1 0 0 \ 
0 0 1 0 
0 0 0 1 

\ l 0 0 0 / 

(Before reading on, confirm that p(f)A(G\) = A(Gc
2)P(f).) D 
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EXERCISES 

1 Let V = {1, 2, 3, 4}. Find a set E c V(2) such that G = (V, £) is illus-
trated by 

o—o o—o o—o 
(a) / (b) | / (c) 

o—o o—o o—o 
(Hint: There are many correct answers.) 

2 Among the graphs illustrated in Fig. 1.9, draw the one that is isomorphic to 
o—o c> o o o 

(a) P4 (b) K4 (c) | X (d) | X | (e) | | 
o—o o o o o 

3 Illustrate a graph with degree sequence (3, 3, 3, 1, 1, 1). 

4 Prove the following: 
(a) Every graph is isomorphic to itself. 
(b) If Gi is isomorphic to G2, then G2 is isomorphic to G\. 
(c) If Gi is isomorphic to G2 and G2 is isomorphic to G3, then G\ is 

isomorphic to G3. 
(d) "Isomorphic to" is an equivalence relation on graphs. 

5 Of the 11 nonisomorphic graphs on 4 vertices, how many are connected? 

6 Use Fig. 1.9 to prove that two graphs on four vertices are isomorphic if and 
only if they have the same degree sequence. 

7 Let G be a graph with n vertices and m edges. Prove that 8(G) < 2m/n < 
MG). 

8 Illustrate four (nonisomorphic) graphs, 
(a) each having degree sequence (3, 3, 2, 2, 1, l).7 

(b) each having degree sequence (4, 3, 2, 2, 2, 1 ). 

9 Explain why no graph can have degree sequence 

(a) (4, 3, 2, 2, 1, 1). (b) (6, 4, 3, 3, 2, 2). 

10 Illustrate six (nonisomorphic) graphs, each having five vertices and five 
edges. 

7 A theoretical procedure for finding all nonisomorphic graphs with a prescribed degree sequence 
is outlined in [R. Grand, Konstruktion schlichter Graphen mit gegebener Gradpartition, Bayreuther 
Math. Schriften 44 (1993), 73-104]. 
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11 Illustrate the complement of 

o o o o 
12 Recall that a graph is self-complementary if it is isomorphic to its comple-

ment. 
(a) Find a self-complementary graph on 5 vertices. 
(b) Prove that no graph on 6 vertices is self-complementary. 

13 Let G be a graph on n vertices with degree sequence 

d(G) = (di,d2,...,d„). Show that 

d(Gc) = (n-\-d„, , n - 1 — d2, n — 1 — d\). 

14 Prove that (Gc)c 

15 Let G = (V, E) be a graph having k odd vertices; that is, k = o({v e V: d(v) 
is odd}). Prove that ifc is even. 

16 Recall that a disconnected graph is a graph with more than one component. 
(a) Show that the complement of a disconnected graph is connected. 
(b) Illustrate a disconnected graph G that has an induced subgraph isomor-

phic to P4. 

17 Let G be a graph whose vertices and edges are the 8 vertices and 12 edges 
of a cube, respectively. Prove (by the numbers) that G is isomorphic to the 
graph illustrated in Fig. 1.13. 

- 0 

o-

o- - 0 

Figure 1.13 

18 Prove that the graph illustrated in Fig. 1.14 is isomorphic to the Petersen 
graph pictured (twice) in Fig. 1.6. 
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19 A graph is r-regular (or regular of degree r) if each of its vertices has 
degree r. Prove that the 3-regular graphs in Fig. 1.15 are not isomorphic. 

\ 
ί>< ρθ Ο ^ Ο 

o o 
Figure 1.15 

20 A graph on n vertices is antiregular if its multiset of vertex degrees contains 
n — 1 different numbers. 
(a) Illustrate the (nonisomorphic) connected antiregular graph(s) on 5 

vertices. 
(b) Illustrate the (nonisomorphic) connected antiregular graph(s) on 6 

vertices. 
(c) Suppose G is a connected antiregular graph on n > 2 vertices. Prove that 

d(G) = (n — I, n — 2, ... ,n — r + ],n — r, n — r, 

n - r - \ 2, 1), 

where r = l(n + 1)/2J, the integer part of (n + l) /2. 
(d) Let G be a connected antiregular graph on n > 2 vertices. Prove that 

the number of edges of G is 

m A"2 2/4 
2 - D / 4 

if n is even, 

if n is odd. 

[Hint: Use part (c).] 
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21 Let G be a connected graph on n > 2 vertices. Suppose G does not have an 
induced subgraph isomorphic to At or C4. Prove that G has a dominating 
vertex, in other words, that A(G) = n — 1. 

22 A multigraph consists of two things: (1) a nonempty (vertex) set V and (2) 
a multiset E with the property that every element of £ is an element of 
V(2). So, a multigraph is like a graph except that more than one edge can 
be incident to the same pair of vertices. 
(a) Draw the multigraph M = (V, E), where V = {a, b, c, d\ and E = {ab, 

ab, ad, be, be, bd, cd}. 
(b) Show that Theorem 1.12 remains valid for multigraphs. 
(c) Define "isomorphism" for multigraphs. 

23 Let G be the graph H\ in Fig. 1.10. Find all induced subgraphs of G that 
are isomorphic to P4. 

24 Let G be a graph with n vertices and m edges. Show that exactly m l's lie 
above the main diagonal of A(G). 

25 For the graphs in Example 1.22, compute 
(a) det(;c/„ -A(G,)) (b) det(xln - A(G2)) 

26 Confirm that det(*/4 - Aid)) = x4 - Ax1. 
27 Show that det(*/6 - A{G)) = det(;c/6 - A(H)) for the graphs G and H illus-

trated in Fig. 1.16. 

,Ov 

o o 
J T 
o o o 

G 
O 
H 

Figure 1.16 

28 Let G be a graph having n vertices and m edges. Prove that the coefficient 
of A:"-2 in the characteristic polynomial of A(G) is — m. 

29 Let / be a permutation of V = {1, 2 , . . . , n], that is, a one-to-one function 
from V onto V. Let P(f) be the n x n matrix whose (1, y)-entry is á¿/(7). 
Show that 
(a) />(/)-' = P ( / - 1 ) . 
(b) />(/)- ' = P(fY, the transpose8 of P(f). 

8 The transpose of A = (a¡¡) is the matrix A' whose (1, ,/')-entry is a¡¡, the (j, i)-entry of A. 
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30 A walk of length k in G, from v¡ to Vj, is a sequence of its vertices v¡ = 
«o, u\,U2, ...,Uk = Vj such that K,_IM, e E(G), 1 < / < k. (A path is a walk 
in which the M'S are all distinct.) Prove that the (t, y')-entry of A(G)k is the 
number of walks of length k in G from t>, to t>y. 

31 Let S be a finite set. Suppose y = [S,; c 5:1 < i < n} is a family of 
subsets of 5, where we allow the possibility that S, = Sj when ι φ j . 
The corresponding intersection graph is G = (.T, t£), where 5,5y e r? if 
(and only if) i ^ j and 5, Π 5 ; φ φ. If 5 = {a, ¿>, c], then Afj is an inter-
section graph corresponding, for example, to J r = {[a], [b, c}} or to .'F = 
{̂ , 0}; ^2 corresponds to .9~ = {{a}, {a}} or to .? = {{a, b], [b, c}}, P 3 to 
y = {[a], [a, b], {b, c}}, and so on. 9 The intersection number, i(G), is the 
minimum cardinality of a set 5 such that G is an intersection graph based 
on a family of subsets of 5. Evidently, ¡(Λ^) = 0, i(#2) = 1,1(^3) = 2, and 
so on. 
(a) Show that i(G) = 3 for the graph G in Fig. 1.16. 
(b) Show that i(H) = 4 for the graph H in Fig. 1.16. 

32 Let G be a connected graph having n > 3 vertices and m edges. In the 
language of Exercise 31, show that 
(a) G is an intersection graph. (Hint: Let S = E(G).) 
(b) the intersection number, i(G) < m. 

33 A binary codeword of length kisa ^-letter "word" made from the "alphabet" 
{0, 1}. Thus, for example, {00, 01, 10, 11} is the set of all binary codewords 
of length 2. The Hamming distance between two binary codewords of length 
it is the number of places in which they differ. So, the distance between 01 
and 10 is 2 while the distance between 01 and 11 is 1. The vertex set of 
the cube graph, Qk, is the set of all binary codewords of length k. Two 
codewords are adjacent in Qk if (and only if) the distance between them 
is 1. 

(a) Show that Qk has n = 2k vertices. 
(b) Show that Q2 = C4. 
(c) Show that Qy is illustrated by the vertices and edges of a cube. 
(d) Show that Qk is fc-regular. (See Exercise 19.) 
(e) Find the number m of edges in Qk. 

34 Denote by g(n, m) the number of nonisomorphic graphs having n vertices 
and m edges and define the generating function f„(x) = Ση»ο8(η> m)xm. 

(a) Show that /4(JC) = 1 + x + 2x2 + 3x3 + 2x4 + x5 + x6. 

9 Terminology varies: Some authors require the subsets comprising ,?~ to be nonempty and distinct. 
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(b) Show that f„(x) is a monic polynomial of degree C(n, 2). 
(c) If f„(x) — Co + C\x H l· CkXk, show that cr = ck_r, 0 < r < C(n, 2). 

35 Let G and H be the graphs from Example 1.24 (illustrated in Fig. 1.12). 
(a) Show that detG4(Gc)) φ 0 = det(A(//c)). 
(b) Show that det(*/5 - A{GC)) φ det(xl5 - A(HC)). 



2 
Chromatic Number 

In this chapter we are going to decorate graphs by coloring their vertices. The 
idea is most easily described using the language of functions: A coloring (or 
r-coloring) of G is a function from V(G) into some set C of r colors. 

2.1 Definition. A proper coloring of G is one in which adjacent vertices are 
colored differently. Denote the number of proper r-colorings of G by p(G, r). 

Let G be a graph and C a set of colors. The evaluation of p{G, r) involves 
counting functions / : V(G) -> C that satisfy f(u) ψ f(v) for all uv e E(G). 
Frequently useful in this sort of process is the following self-evident principle. 

2.2 Fundamental Counting Principle. Consider a sequence of two decisions. 
If the number of choices for the second does not depend on how the first is made, 
then the number of ways to make both decisions is the product of the numbers of 
choices for each of them. 

In symbols, suppose there are * ways to make the first decision and, inde-
pendently, t ways to make the second. Then the number of ways to make the 
sequence of two decisions is s x t. What about n decisions? If c¡+¡, the number 
of ways to make decision i + 1, is independent of how the previous i decisions 
are made, then the number of ways to make the sequence of n decisions is the 
product c\ x C2 x · · · x c„. 

Let's apply this principle to vertex colorings. Suppose G is a graph with n 
vertices, and C is a set of r colors. Coloring V(G) corresponds to a sequence of n 
decisions, each having r choices. Hence, the number of colorings / : V(G) —*■ C 
is r x r x - x r = r". Included in this count are the constant functions, corre-
sponding to monochromatic colorings. Of course, if G has so much as one edge, 
no such coloring can be proper. On the other hand, if G has no edges, then every 
coloring is proper; that is, 

p(Kc
n,r) = rn. (3) 

Because it has n vertices, selecting an r-coloring for the complete graph, K„, 
also corresponds to a sequence of n decisions, and there are still r choices for 
the first of them. If the coloring is going to be proper, however, the number of 

21 
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choices for the second decision is r — 1. There are r — 2 for the third decision, 
and so on. Thus, 

p(Kn,r) = r<n) 

= r x ( r - 1) x ■·· x (r - n + 1), (4) 

the so-called falling factorial function. Note, in particular, that p(K„, r) = 0, 
for all r < n. But, never mind the Fundamental Counting Principle, it follows 
directly from the definition that p(G. r) — 0 whenever G contains a set of / > r 
mutually adjacent vertices. 

A clique (in G) is a nonempty set of pairwise adjacent vertices. Thus, φ φ 
W C V(G) is a clique if and only if W(2) c £(G), if and only if the induced 
subgraph G[W] = Kt, where t = o(W). There is a complementary notion: An 
independent set (in G) is a nonempty set of mutually «on adjacent vertices. So, 
φ φ W C V(G) is an independent set if and only if no two of its vertices are 
adjacent, if and only if G[W] = Kç

t, if and only if W is a clique in Gc. 

2.3 Definition. Let G be a graph. The clique number, co(G), is the maximum 
number of vertices in any clique of G. The independence number, a(G) = ÖJ(GC), 
is the number of vertices in a largest independent set of G. 

2.4 Example. Let G = C„ (the cycle on n vertices). Then a(G) = [n/2\, the 
integer part of nil, and 

. „ . / 3 if n = 3, 
ω^ = {2 if„>4. 

(Draw some pictures and confirm these statements for C3, C4, C5, and Ce-) □ 

As we have observed, p(G, r) = 0 whenever r < &>(G). So, suppose r > 
Ù)(G) and assume / : V(G) -> C is a proper r-coloring. For each c e C, define 
f~x(c) = [v eV(G): f(v) = c}. The co/or C/OM, / _ 1 ( C ) , consists of those 
vertices of G to which / assigns the color c. From the definition of proper 
coloring, / ~ ' ( c ) is an independent set. Therefore, o( /~ ' (c) ) < a{G), c € C. No 
single color can be shared by more than a(G) vertices. Because V(G) is the 
disjoint union of the color classes, 

n = o(V(G)) 

ceC 

< ra(G). 

1 While the choices themselves may depend on how the first decision is made, their number does 
not, and this is all that matters in applications of the Fundamental Counting Principle. 
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2.5 Definition. Let G be a graph. Its chromatic number, x(G), is the smallest 
number of colors that suffice to color G properly.2 

Evidently, p(G, r) = 0 for all r < X(G) and p(G, r) > 0 for all r > x(G). In 
terms of x(G), our most recent observations may be summarized as follows: 

2.6 Theorem. If G is a graph on n vertices, then 
(a) x(G) > o)(G) and 
(b) n < X(G)a(G). 

Because x(G) is an integer, Theorem 2.6b implies that x(G) > ¡n/a(G)~\, the 
smallest integer not less than n/a(G) — that is, n/a(G) rounded up. 

2.7 Example. Let G = C„. Because no graph with an edge can be colored 
properly with one color, x(G) > 2. When n is even, a proper 2-coloring of G 
can be achieved by alternating the two colors around the cycle. When n is odd, 
G can be colored properly with three colors, but not with two. Thus, 

:■) = {: , - , _ i 2 if n is even, x(<~»)-\2 i f n i s o d d i 

= r«/«(G)i. D 

2.8 Definition. Suppose G = (V, E) and H = (W, F) are graphs on disjoint 
sets of vertices. The union of G and H is G ® H = ( V U W, E U F). If H = G, 
then G ®H may be written as 2G. The join, G v H, is the graph obtained from 
G φ H by adding edges from each vertex of G to every vertex of H; that is, 
V(G vH) = VU W and E(G v / / ) = £ U F U {υνν:υ € V and w € W}. 

If G and // are connected, then G ®H is a disconnected graph with 
two components, one isomorphic to G and the other to H. If G = K2, 
then GvG = K4 and G c v C f = C4 = (2G)C. Indeed, unions, joins, and 
complements are related by the formula 

Gv H = {GC ®HC)C. (5) 

While verifying the following relations has been left to the exercises, why not 
confirm some of them now? 

w(G ®H) = maxMG), ω(Η)}, (6a) 
ω ( σ ν / / ) = ω ( 0 + ω(//), (6b) 
a(G®H) = a(G) + a(H), (7a) 
a(G v H) = max{a(G), a(//)}, (7b) 

Computing x(G) is one of the classic NP-complete problems. 
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and 

X(G Θ H) = max(x(G), *( / / )} , (8a) 

X(GvH) = x(G) + x(H). (8b) 

If all n vertices of G are given different colors, the result will be a proper 
coloring. Hence, n > x(G). The next notion is useful in obtaining an improve-
ment of this trivial upper bound. 

2.9 Definition. Suppose G is a graph. Let v € V(G). The set of neighbors of 
υ is NG(v) = {« € V(G): uv e E(G)}. 

Evidently, O(NG(V)) = dc(v), the degree of r e V(G). Implicit in Defini-
tion 2.9 is that two vertices of G are neighbors, if and only if they are adjacent. 

2.10 Theorem. The chromatic number x(G) < A(G) + 1. 

Note that equality holds when G is a complete graph or an odd cycle.3 

Proof. Suppose we are given r = A(G) + 1 colors. Let H be a fixed but arbi-
trary component of G and suppose v € V(H). Because d(v) = αΉ(ν) = dc(v) < 
A(G), it is possible to assign different colors to the d(v) + 1 vertices in {v} U 
NG{V). Denote by U c V(H) the set of vertices that have been colored so far. 
If U — V(H), we are finished. Otherwise, because H is connected, there is an 
edge {M, W} 6 E(H) such that u e U and w £ U. Because d(w) < A(G), there is 
a color available for w that is not in use by any of its (already colored) neighbors. 
Replace U with U U [w] and continue this "greedy" algorithm until U = V(H), 
thus proving that χ{Η) < A(G) + 1. Because H was an arbitrary component of 
G, the result follows from the obvious generalization of Equation (8a) to the 
union of k graphs. ■ 

Apart from the qualitative statement that p(G, r) > 0 for all r > x(G), we 
have not made much progress on the problem of evaluating p(G, r). Suppose 
H\ and H2 are graphs on disjoint sets of n\ and /12 vertices, respectively. Then 
we may view the proper r-colorings of G = Hi ® H2 from the perspective of 
n = n 1 4- «2 decisions. Or, we may view them in terms of two decisions, the first 
involving r-colorings of Ηγ and the second involving r-colorings of #2 · Because 
the number of proper colorings of H2 does not depend on how H\ might be 
colored, we have, from the Fundamental Counting Principle, that 

p(Hl®H2,r) = p(Hur)p(H2,rl (9) 

3 An odd (even) cycle is one with an odd (even) number of vertices. It was proved by R. L. Brooks 
[On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37(1941), 194-197] thatx(G) < 
A(G) unless G is a complete graph or an odd cycle. 
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with the obvious generalization to the union of k graphs. There is another, less 
obvious generalization of Equation (9). It involves the situation in which there 
is some "overlap" between H\ and Hi. 

2.11 Definition. Let H\ and Hi be graphs on disjoint sets of vertices. Suppose 
U — {u\, «2, · · ·, u,} is a clique in H\ and W = {w\, wi,..., w,} is a clique in 
H2. Let G be the graph obtained from H\ ®Hi by identifying {coalescing into 
a single vertex), M, and νν,, 1 < i < t. Then G is an overlap of H\ and Hi in Kt. 

2.12 Example. Graphs G\ and Gi in Fig. 2.1 are nonisomorphic overlaps of 
H\ and Hi in Kn\ G\ and Gi may also be viewed as overlaps of Hi and K3 
in AT2. □ 

.o—o — o / « — o 0 — 0 — 0 0 — 0 — 0 

/IXI/I /IXI lXl/1 IXI/I 
o — o — o — o o — o — o o — o — o o — o — o 

G\ H\ H2 G2 

Figure 2.1 

2.13 Theorem. If G is an overlap ofH\ and Hi in K,, then p(G, r) = p(H\, r) · 
p(H2, r)/r<'\ 

Proof. Suppose U = {u\, ui,..., u,} is a clique in H\. Properly coloring H\ 
may be viewed as a sequence of two decisions. The first, how to color the 
vertices of U, involves r"' choices. (See Equation (4).) The second decision is 
how to color the remaining vertices of H\. Because the vertices of U must all be 
colored differently, the number of choices for the second decision, call it q(r), 
is independent of how the first decision is made; that is, p(H\, r) = r( ,) x q(r). 
No matter how the first decision is made, q(r) = p(H\, r)/r(,) is the (integer) 
number of ways to make the second decision. 

Properly coloring G can now be viewed as a sequence of three decisions. The 
overlapping vertices may be colored in r(,) ways, the remaining vertices of H\ in 
p(H\, r)/r(t) ways, and, independently of how the first two decisions are made, 
the remaining vertices of Hi may be colored in p{Hi, r)/r^ ways. So, by the 
Fundamental Counting Principle, 

p{G, r) = ru> x — x " 
At) At) 

2.14 Example. Because 
0 — 0 

G=\/\ 
o—o 
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is the overlap of Κτ, with itself in K2, we have, from Theorem 2.13, that p(G, r) 
_ r(3)rO)/rm _ r ( r _ i ) ( r _ 2)2. Evidently, *(G) = 3. The p(G, 3) = 6 diff-
erent red-white-blue proper colorings of G are illustrated in Fig. 2.2. 

ro—0* r o - o f c 

1/1 1/1 
o—o o—o b 

w„ „^ vv„ _¿ 
0 — 0 0 — 0 

1/1 1/1 
, 0—o o—o 
b w r w * o — o r b o — o M 

o—oL o—o, 
w b r b 

Figure 2.2 

Observe that the graphs 

0 — 0 — 0 0 — 0 — 0 
G,= | / | \ | and G2= \ / \ / \ 

o—o—o o—o—o 

are nonisomorphic overlaps of G with itself in K-¿. Therefore, p(G\,r) = 
p(G, r)2/ra) = r(r - l)(r - 2)4 = p(G2, r). Graphs like Gx and G2 that share 
the same chromatic polynomial are said to be chromatically equivalent. D 

Evaluating p(G, r) for general graphs involves a new idea. 

2.15 Definition. Let G = (V, E) be a graph and suppose e = uv e E. The edge 
subgraph G — e = (V, E\{e}) is obtained from G by deleting edge e. 

If e is any one of the six edges of K4, then G = K4 — e appeared in 
Example 2.14. If e — uv is the edge of G illustrated in Fig. 2.3(a), then G — e is 
shown in Fig. 2.3(b). 

0 — 0 

l/l 
0 — 0 G 

(a) 

"O O 

l/l 
0 — 0 G-e 

(b) 

Figure 2.3 
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Because vertices u and v remain when edge e = uv is deleted, G — e can never 
be an induced subgraph of G. 

Observe that every proper coloring of G is a proper coloring of G - e. The 
difference, p(G — e,r) — p(G, r), is the number of proper colorings of G — e in 
which u and v are colored the same. To evaluate this difference, consider the 
"multigraph" G\e obtained from G — e by identifying u and v (i.e., coalescing 
u and v into a single vertex). For the situation illustrated in Fig. 2.3, G\e is 
shown in Fig. 2.4(a). Because there is a one-to-one correspondence between 
proper colorings of G\e and those proper colorings of G — e in which u and v 
are colored the same, p{G — e,r) — p(G, r) = p(G\e, r). 

u=v u=v 

s~P P C/\ /\ 
o—o o—o 

G\e G/e 
(a) (b) 

Figure 2.4 

Since multiple edges are irrelevant in the enumeration of proper colorings, we 
have p(G\e, r) = p{G/e, r), where G/e is the contraction pictured in Fig. 2.4(b). 
Hence, p(G — e, r) — p(G, r) = p(G/e, r). Rearranging terms in this equation 
produces the following fundamental result. 

2.16 Chromatic Reduction Theorem. Let G be a graph. Ife = uv€ E{G), then 

p(G,r) = p(G-e,r)-p(G/e,r\ (10) 

where the contraction, G/e, is the graph obtained from G — e by identifying 
vertices u and v and deleting any redundant edges that may arise in the process. 

2.17 Example. Let G — K4 — e. From Example 2.14, 

p(G, r) = r{r - l)(r - 2)2 

= r4 - 5r3 + 8r2 - Ar. (11) 

Let's confirm this result using chromatic reduction. Equation (10) can be 
expressed in the picturesque form 

o —o o ,o .o 
l/l - l/l - /I · 
o—o o—o o—o 
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where p(G, r) is represented by G. Further applications of Equation (10) produce 

O — o O o o 
l/l = A - 2/1 (12) 
o—o o—o o—o 

After consolidating isomorphic graphs, the last equation becomes 

o — o / o o \ / o \ o 

1/1= 1 - 4 I +4|. 
o—o \o o / \o o] o 

Another step, consolidation included, produces 

G = Kl -5K\ + %KC
2 -AKX. 

Finally, because p(Kc
n, r) = r", we obtain 

p(G, r) = r4 - 5r3 + 8r2 - 4r, (13) 

confirming Equation (11). 
It is, of course, not generally necessary to carry chromatic reduction all the 

way to the point at which no edges remain. Applying Equations (4) and (9) 
to Equation (12), for example, produces p(G, r) = r x r(3) — 2r(3) = (r — 2)r(3) 

= r(r- l ) ( r - 2 ) 2 . □ 
Suppose G is any graph with n vertices and m edges. If e e E(G), then G — e 

has n vertices and m - 1 edges, while G/e has n — 1 vertices and at most m — 1 
edges. After sufficiently many applications of chromatic reduction, every edge 
can be deleted, resulting in an expression of the form 

p(G, r) = p(Kc
n, r) - c,p(Kc

n_v r) + c2p(Kc
n_2, / ■ ) - · · · 

= r" - c i r " - ' +c2r"-2 , 

a polynomial in r. It seems we have proved the following. 

2.18 Corollary. If G is a graph on n vertices, then p(G, r) is a monic polynomial 
in r, of degree n, with integer coefficients. 
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Recall that G\ = G2 only if A(G\) and A{G2) share the same characteristic 
polynomial. Setting out to enumerate proper colorings, we have stumbled onto 
a second polynomial invariant. Might a complete list of invariants be comprised 
of polynomials? (A precedent exists in linear algebra where the so-called simi-
larity invariants are polynomials.) In any case, now that we know p(G, r) is a 
polynomial, we may as well replace r with the more customary variable x. 

2.19 Definition. The polynomial p(G, x) is called the chromatic polynomial 
of G. 

Let G be a graph with chromatic polynomial f(x) = p(G, x). If k = x(G) - 1, 
then / ( 0 ) = / ( l ) = · · · = f(k) = 0; that is {x - i) is a factor of / (* ) , 0 < i < k. 
Hence, there exist positive integer exponents, eo,e\,..., e*, and a polynomial 
q(x), with integer coefficients, such that 

fix) = xe°(x - 1)" (x - 2 Γ . . . (JC - k)ekq(x), (14) 

where q(x) has no integer roots in the interval [0, k]. In fact, because G can be 
colored properly with x(G) = k + 1 colors, it can be colored properly with k + i 
colors for all / > 1. Thus, / ( i ) > 0 for every integer s > k, meaning that q(x) 
cannot have any nonnegative integer zeros. If 

G= \ / \ . 
o—o 

for example, then (Equation (11)) 

f(x) = χ4- 5x3 + Sx2 - Ax 

= JC(X- 1 ) ( J C - 2 ) 2 , 

and q(x) = 1. 
Every graph has at least one vertex, so no graph can be colored (properly or 

not) with zero colors. The only graphs that can be colored properly with just one 
color are the complements of complete graphs — that is, collections of isolated 
vertices. For any graph G with an edge, x(G) > 2. 

2.20 Definition. Graph G is bipartite4 if x(G) < 2. 

Suppose G — (V, E) is a bipartite graph on n vertices. If x(G) = 1, then 
G = Kc

n, and there is little more to be said. If x(G) = 2, then there is at least 
one proper coloring / : V(G) -*■ [c\, C2}. Consider the color classes V, = / " ' ( c , ) , 
/ = 1, 2. Then, V, φ φ φ V2, V = V, U V2, and V, Π V2 = φ. Moreover, Vi and 

4 In the chemical literature, bipartite graphs correspond to the so-called alternant hydrocarbons. 
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V2 are independent sets. Conversely, if V(G) can be partitioned into two inde-
pendent sets Vi and V2, then / : V(G) -*■ {c\, ci) defined by f(v) = c,, t; e V¡, 
i = 1, 2, is a proper 2-coloring of G. It seems that, apart from G = AT|, a graph is 
bipartite if and only if its vertex set can be partitioned into the disjoint union of 
two nonempty independent sets. In the combinatorial literature, subsets of a parti-
tion are called its parts—hence the name "bipartite," meaning two parts. (There 
may be more than one way to bipartition the vertex set of a bipartite graph.) 

Let G = (V, E) be a bipartite graph with bipartition V = V\ U V2. Suppose 
Vi = {vj·- 1 < i <k) and V2 = {vk+j- 1 < j < n - k], where n = o(V). Let B = 
B(G) be the k x (n — k) matrix whose (i, y')-entry is 1 if {v¡, Vk+j) € £ , and 0 
otherwise. Then the adjacency matrix of G can be expressed (in "partitioned" 
form) as 

*G)=(£ J ) . (15) 

where each "0" represents a square submatrix consisting entirely of zeros and B' 
is the transpose of B; that is, B' is the (n — k) x k matrix whose (1, y)-entry is the 
(j, i)-entry of B. Conversely, if some numbering of the vertices of G produces 
an adjacency matrix of the form given in Equation (15), then G is bipartite. 

2.21 Definition. Let s and t be positive integers. The complete bipartite graph 
K,,t = Kc

sv Kc
t. 

Suppose X and Y are disjoint sets of cardinalities o(X) = s and o(Y) = t. Let 
V = X U Y and E = [xy.x e X and y e Y). Then G = (V, E) = Ks,t. Indeed, the 
star Sn S ΑΓι,π-ι. 

2.22 Definition. Suppose G = (V, E) is a graph. Let k > 3 be an integer. A 
cycle in G of length k is a sequence < U|, U2, . . . , w* > of distinct vertices such 
that {e,: 1 < i < k} C E, where e¡ — [v¡, υ,+ι), 1 < i < k, and et — [ν^, vi). 

If W = [v¡: 1 <i<k] and F = («,·: 1 < / < k), then H = (W, F) is a 
subgraph of G isomorphic to C*. If < v\, U2, . . . , Vk > is a cycle in G of length 
k, then [ι>ι, V2, - . . , υ*] is a path in G of length k — 1. 

2.23 Theorem. Leí G be a graph on n vertices. Then G is bipartite if and only 
if it contains no cycles of odd length. 

The proof of Theorem 2.23 requires another new idea. 

2.24 Definition. Let u and w be vertices of a connected graph G. The distance, 
d(u, w), is the length of a shortest path in G from u to w. 

Proof of Theorem 2.23. Because three colors are required to properly color 
the vertices of an odd cycle, no bipartite graph can contain one. 
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Conversely, suppose G contains no odd cycles. If n < 2, G is bipartite and 
we are finished. Otherwise, by Equation (8a), it suffices to assume that G is 
connected. Let u € V(G) be fixed but arbitrary. Suppose w e V(G). If w = u or 
d(u, w) is even, color vertex w blue; if d(u, w) is odd, color it green. This fails to 
produce a proper 2-coloring of G only if there exist adjacent vertices w\ and M>2 
that are colored the same. Let P = [xo, x\,..., xr] be a shortest path in G from 
u = XQ to xr — w\, and let Q = [yo, y\,..., ys] be a shortest path from u = yo to 
w2 = ys. If {ΛΓ,: 1 < i < r] Π {y;: 1 < j < s] φ φ, let k be the largest index such 
that Xk € {;y,: 1 < j < s}. Because P and Q are shortest paths, it must be that 
xk = yk and (JC,: fc < / < r} Π [yj\ k < j < s} = φ. If P and Ö overlap only at u, 
set /t = 0. In either case, 

c = < Xk,Xk+t ·*;·. ys, ys-\ y>k+\ > 

is a cycle in G of length l = (r-k)+l+(s-k- 1)+1 = r + Í - 2Jfc + 1. 
Because W| = xr and w2 = y5 are colored the same, r = d(u, w\) and s = 
Í/(M, W2) have the same parity. Therefore, ί is odd, contradicting that G contains 
no odd cycles. ■ 

2.25 Definition. A graph without any cycles is called a forest. A connected 
forest is a tree. 

Evidently, a forest is a graph each of whose components is a tree. 
Several things seem evident just by glancing at the trees in Fig. 2.5. For one 

thing, the graphs in the figure are increasingly "condensed" when viewed from 
left to right and top to bottom. 

o o 
I I 

o—o—o—o—o—o o—o—o—o—o o—o—o—o—o 
0 o 
1 I 

o—o—o—o 

Figure 2.5. The nonisomorphic trees on 6 vertices. 

2.26 Definition. Let G = (V, E) be a connected graph. The diameter of G is 

diam(G) = max d(u, v), 
u.veV 

the greatest distance between any two vertices of G. 

o 
I 

o—o—o—o 
I 
o 

o 
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The trees on n > 3 vertices range in diameter from 2 = diam(S„ ) to n — 1 = 
diam(P„). In Fig. 2.5, the trees on 6 vertices have been arranged in order of 
nonincreasing diameter. 

Recall that the distance between two vertices in a connected graph is the length 
of a shortest path between them. If the graph is a tree, there is no need to search 
among various paths for the shortest one. 

2.27 Theorem. Suppose u and v are two (different) vertices of some tree T. Then 
there is a unique path in T from u to v. 

Proof. That there must be some path follows from the fact that T is 
connected. If P and Q are two paths from u to v then either they are identical 
or, as in the proof of Theorem 2.23, T would contain a cycle. ■ 

Another obvious fact about the trees in Fig. 2.5 is that each of them has (at 
least) two vertices of degree 1. 

2.28 Definition. Let G be a graph. A vertex of G of degree 1 is called a pendant 
vertex. 

2.29 Lemma. Let T be a tree on n > 1 vertices. Then T has two pendant 
vertices. 

Proof. Let u and v be vertices of T such that d(u, v) = diam(7). If dT(v) > 
1, then v has a neighbor, w, that is not on the unique path from u to v. Because 
it passes through υ, the path from u to w is longer than diam(jT). A similar 
contradiction is produced by assuming dT(u) > 1. ■ 

Among the applications of this lemma is the following. 

2.30 Theorem. If T is a tree on n vertices, then its chromatic polynomial is 
ρ(Τ,χ)=χ(χ-1)"-Κ 

Proof. The proof is by induction on n. If n = 1, then p(T, x) = x and the 
proof is complete. If n > 1, let u be a pendant vertex of T and let e = uwbe the 
unique edge of T incident with u. Then T — e is a disconnected graph having 
two components, one equal to the isolated vertex u and the other isomorphic to 
the tree T/e. By chromatic reduction and Equation (9), 

p(T, x) = p(T -e,x)- p(T/e, x) 

= xp(T/e,x)- p(T/e,x) 

= (x-l)p(T/e,x). 

Because T/e is a tree on n — 1 vertices, the induction hypothesis gives 
p(T/e,x)=x(x- l)"-2 . ■ 
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As we already know, the chromatic polynomial, by itself, is not a complete list 
of invariants. In fact, by Theorem 2.30, any two trees on n vertices are chromati-
cally equivalent. What other shared properties require graphs to be chromatically 
equivalent? What does p(G, x) tell us about the structure of C? Complete answers 
to these questions have not yet been obtained. 

2.31 Corollary. If T is a tree on n > 1 vertices, then χ(Τ) = 2. Thus, every tree 
is a bipartite graph. 

The result is an immediate consequence of either Theorem 2.23 or Theo-
rem 2.30. 

Let G be the overlap of #3 and Ki in K\. A single step of chromatic reduction 
leads to 

c> — o 0 0 o ι\ι = ι\ι - i \ · 
0 0 0 0 0 0 

From this expression and Theorem 2.30, it follows that 

p(G,x) = x(x-\)3 — JC(JC — 1 )2 

= x(x- \)2(x-2). 
The word "paraffin" may conjure up images of homemade jam topped off by 

a layer of wax. In chemistry, however, the word refers to a family of hydro-
carbons with chemical formula C„H2„+2· Also known as alkanes, the paraf-
fins are obtained from distilled petroleum. (Paraffin wax is a mixture of these 
compounds.) The octanes, C%H\i, are a paraffin subfamily consisting of 18 
isomers, not because there are 18 hydrogen atoms but because the eight-atom 
carbon skeleton can take any one of 18 different arrangements.5 Five of the 18 
octane carbon skeletons6 are illustrated in Fig. 2.6. 

Modern organic chemists have synthesized and/or isolated several million 
different molecules. Even more remarkable is their ability to predict chemical 
properties in advance of synthesis. Among the tools used in these predictions are 
various topological indices? The first topological index was introduced by Harry 
Wiener of Brooklyn College, who established a remarkable correlation between 
it and boiling point (hence viscosity and surface tension) of the paraffins.8 

5 Because the valence of carbon is four (and because paraffins have no double carbon bonds), the 
arrangement of the hydrogen atoms is uniquely determined by the molecule's carbon skeleton. 
6 There are, in fact, 23 nonisomorphic trees on 8 vertices, but only 18 of them satisfy Δ(7") < 4, a 
requirement imposed by the valence of carbon. 
7 A term coined by Haruo Hosoya in 1971. 
8H. Wiener, J. Amer. Chem. Soc. 69 (1947), 17-20. Also see D. H. Rouvray, Scientific American, 
Sept. 1986, pp 40-47. Extensions of the Wiener index have been used in a variety of ways from 
predicting antibacterial activity in drugs [M. Medié-Sarié et al., Acta Pharm. Jugosl. 33 (1983), 
199-208] to modeling crystalline phenomena [D. Bonchev et al., Physica Status Solidi 55 (1979), 
181-187]. 
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o—o—o—o—o—o o—o—o—o—o—o—o—o 
I I 
0 o 

(a) (b) 
O O O O O 
l i l i I 

o—o—o—o o—ex .o—o o—o—o—o—o—o 1 I > ^ I 
o o I o 

o 
(c) (d) (e) 

Figure 2.6. Five of the 18 isomers of octane. 

2.32 Definition. Let T = (V, E) be a tree with vertex set V = [v\,V2,..., vn}. 
The Wiener index of T is 

W(T) = ^d(,vhVj), (16) 

the sum of the distances between all C(n,2) pairs of vertices of T. 

2.33 Example. The trees in Fig. 2.6 have Wiener indices 71, 84, 58, 65, and 
71, respectively. We shall have more to say about the Wiener index in Chapter 9. 

D 

Various paraffins are used as fuel for internal combustion engines. In general, 
the more "branched" a paraffin molecule is, the less likely it will be to self-ignite 
or "knock." The more branched the molecule, the higher its "octane rating." In 
1979, A. T. Balaban introduced a quantitative measure of branching for paraffin 
molecules.9 

2.34 Balaban's Tree Pruning Algorithm. Suppose T is a tree on n vertices. 

1. Let G = T and B = 0. 
2. If n < 2, then step 8. 
3. p = the number of pendant vertices of G. 
4. B = B + p2. 
5. Replace G with the tree obtained by deleting its pendant vertices and the 

edges incident with them. 
6. n = n — p. 
7. Go to step 2. 

9 A.T. Balaban, Five new topological indices for the branching of tree-like graphs, Theor. Chim. 
Acta 53 (1979). 355-375. 
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8. B = B + n2. 
9. B(T) — B is the Balaban centric index of T. 

In more conventional language, let 7Ί = T be a tree with n > 3 vertices, /?i 
of which are pendants. Let Ti be the tree obtained from T\ by deleting all of its 
pendant vertices and the edges incident with them. (Then Tj is the subtree of T\ 
induced on its nonpendant vertices.) Suppose Ti has p2 pendant vertices. Let T^ 
be the tree obtained from Ύ2 by deleting all pi of its pendants. Continuing this 
process, one eventually arrives at a tree Tr isomorphic either to K2 or to K\, in 
which case pr is defined to be 2 or 1, respectively. The Balaban centric index is 

r 

2.35 Example. Figure 2.7 illustrates the computation of a Balaban centric index. 
Tree T = T\ has p\ = 5 pendant vertices. Their removal produces the tree 
72 = S4, having pi — 3 pendants. Deleting the three pendant vertices from Ί2 
yields T3 ^ Ku sor = 3,p3 = 1, and B(T) = 52 + 32 + l2 = 35. D 

o o 
I I 
o—o o—o—o o 

Figure 2.7 

Suppose T is a tree of diameter d. At each iteration of Balaban's Tree Pruning 
Algorithm the diameter is reduced by 2. Therefore, Tr = K\ when d is even, and 
Tr = K2 when d is odd. 

EXERCISES 

1 The Hawaiian alphabet consists of the vowels a, e, i, o, u and the consonants 
h, k, 1, m, n, p, and w. 
(a) Show that 20,736 different four-letter "words" (most of them nonsense 

words) can be constructed from the 12-letter Hawaiian alphabet. 
(b) Show that 456,976 different four-letter words can be constructed from 

the 26-letter English alphabet.10 

o 
I 

0 o 
1 I 

o—o—o-

No more than 350,000 words are defined in a typical "unabridged" dictionary of the English 
language. 
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(c) How many four-letter words can be constructed from the Hawaiian 
alphabet if the first and third letters are consonants and the second and 
last letters are vowels? 

2 Illustrate the following: 

(a) 6 (different) red-white-blue proper colorings of K^. 

(b) 12 red-white-blue proper colorings of P3 = K$ — e. 
(c) 6 red-white-blue proper colorings of K2 = Kj/e. 

3 Let G = K2 v K\. 

(a) Illustrate G. (b) Compute p(G, x). 

4 Justify Equation 

(a) (5). (b) (6a). (c) (6b). (d) (7a). (e) (7b). (f) (8a). (g) (8b). 

5 Prove that ω and a are (graph) invariants. 

6 Let H be the overlap of Κτ, and K2 in K\. Let G be an overlap of H and 
K2 in K\. 
(a) Show that there are exactly three nonisomorphic possibilities for G. 
(b) Show that the three nonisomorphic graphs from part (a) share the chro-

matic polynomial x(x — l)3(x — 2). 
(c) Find a family of three nonisomorphic, chromatically equivalent graphs 

on 5 vertices. 

7 Prove that the chromatic polynomial is an invariant. 

8 Let G = K4 - e. 
(a) Show that the characteristic polynomial of A(G) is x(x + 1 )(x2 — x — 4). 
(b) Show that x(G) < 1 + p(G), where p(G) is the largest eigenvalue of 

A(G)." 

9 Compute the following: 

(a) p(P3,x). (b) p(C4,x). (c) p(C5,x). 

10 Let G and H be graphs on disjoint sets of vertices. Suppose d(G) = 
(d\,d2,...,ds) and d(H) = (Si, 82,.. .,&,). Show that d(GvH) is a 
rearrangement of the sequence 

(d\+t,d2 + t ds + t,Si+s,S2 + s,...,S, + s). 

1 ' It was proved by H. S. Wilf, [The eigenvalues of a graph and its chromatic number, /. London 
Math. Soc. 42 (1967), 330-332] that x(G) < 1 + p(G) for all G. 
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11 It follows from Theorem 2.30 that 54 and P4 are nonisomorphic, chromati-
cally equivalent graphs. Find another pair of nonisomorphic, chromatically 
equivalent graphs on four vertices. 

12 Let G be a graph with n vertices and k connected components. Prove the 
following: 
(a) p(G,x) = xn-c¡x"-1+c2x"-2 + ( -1 )"-*£·„_***. (In other 

words, prove that c, = 0 for t > n — k.) 
(b) The coefficients of p(G, x) alternate in sign, in other words, that c, > 0, 

in part (a), 1 < / < n — Jfc. 
(c) p(G, ί)φ0 for every (real number) t < 0. 

13 Suppose Gc is a disconnected graph with r components, C\, C2, ■. ■, Cr. 
(a) Prove that * ( 0 = E x ( q ) · 
(b) Prove that <w(G) = X>(Cf ) . 

14 Let T be a tree on n vertices, p of which are pendants. Suppose 
diam(r) = d. Prove the following: 
(a) n + 1 > p + d. (b) pd > 2(n - 1 ). 

15 Compute the chromatic polynomial of the "broken wheel": 

o — o 

G= o—o—o, 
\ / \ / 
o o 

and express your answer in a form consistent with Equation (14). 

16 Illustrate a graph G such that the following hold: 
(a) x(G) = 10(G). 
(b) X ( G ) = Û > ( G ) + 1 . 

(c) x(G) = œ(G) + 2. 

17 Compute the chromatic polynomial of the wheel W5 = 9 ^ o ^ / ° · 
\ / \ / o—o 

18 In modern telecasts of National Football League games, one is frequently 
invited to examine important plays from the "reverse angle." Let's look at 
chromatic reduction from the reverse angle. 
(a) Show that Equation (10) can be written in the form p(G,x) = p(G 

+ e, x) + p(G/e, x), where G + e is obtained from G by adding a new 
edge e = uv that was not there before, and G/e is obtained from G by 
identifying vertices u and v (and eliminating any multiple edges that 
may arise in the process). 
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(b) Show that the following picturesque example of this reverse angle 
approach is consistent with Equation (11): 

O — O o — O O — O 

l/l = IXI + 1/ 
o—o o—o o 

(c) If G is a graph on n vertices, prove that p(G, x) is a nonnegative integer 
linear combination of the falling factorial functions jt(t), k < n. 

19 Use the reverse angle technique of Exercise 18 to compute the chromatic 
polynomial of the following: 
(a)G = K5-e. (b) G = (K2®K2®K2)C. 

20 Let H\ and H2 be graphs on disjoint sets of «i and n2 vertices, respectively. 
A coalescence of H\ and H2 is a graph on n \ + n2 — 1 vertices that can be 
obtained from H\ φ Η2 by identifying some vertex of H\ with any vertex 
of H2. Denote by H\ * H2 any one of the n \n2 different coalescences of H\ 
and H2. 
(a) Show that p(H\ * H2, x) = p(H\, x)p(H2, x)/x. 
(b) Without actually computing it, prove that the graphs in Fig. 2.8 all have 

the same chromatic polynomial. 

/ \ / \ / o o o o / \ / 
-°\7° \ 

\ 
/ \ / \ 

0 0 O O O O 
Figure 2.8 

21 Without actually computing it, prove that the graphs in Fig. 2.9 all have the 
same chromatic polynomial. 

o—o—ο—o o—o—o o — o—o o — o — o — o 

l\l\l/ l\l/l \/\/\ \l/l\l 
o—o—o o—o—o o—o—o o—o—o 

\l 1/ 
o o 

Figure 2.9 

22 Suppose that /(JC) and g(x) are defined in terms of falling factorial func-
tions by 

/(*) = 5>,* ( , ) and 8(χ) = Σ^χΜ. 
/=0 ;=0 
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Then the join-product of / and g is defined by 

r+s / k \ 

fix) v g{x) = Σ ( Σ*'**-' *w· 
*=0 \ ;=0 / 

For example, (Λ(3) + x{2)) v (;c<3> + 2r(2) + 5x(1)) = JC<6) + 3*<5) + 7x(4) 

+ 5x<3). It turns out that the chromatic polynomial of a join of graphs 
is the join product of their chromatic polynomials. Thus, to compute 
p(H\ v H2,x) = p(H\,x) V p(H2,x), all we need is to express p(H\,x) 
and p(Hi,x) in terms of falling factorial functions. (See Exercise 18(c).) 
Use this approach to show that p(Pj v Ct.x) = x(x — 1)(JC — 2)(x — 3)(x3 

- \2x2 + 5 0 * - 7 1 ) . 

23 Use the join-product formula from Exercise 22 to compute the following: 

(a) p(KiWKc
3,x). (b) p(Kc

2vKc
vx). (c) p{K% vKc

3,x). 

24 Let G be a graph with n vertices, m edges, and chromatic polynomial 
p(G,x) = x" — C]Xn~l + ·■·. Prove that ci = m. 

O 

A\ 
25 Note that G = o o O ¡ s a n "overlap" of two copies of C4 in P3. Without 

computing p(G,x), show that it could not possibly be equal to f(x) = 
p(C4,x)2/p(Pi,x). 

26 Prove that p(C„, JC) = (x - 1 )" + ( -1 )" (JC - 1 ). 

27 The wheel o n n + 1 vertices is W„ = C„ v K\. (Exercise 17 involves W$.) 
Compute p(Wn,x). 

28 Suppose G is a fixed but arbitrary graph. Prove or disprove that the roots 
of p(G, x) are all real. 

29 Prove that f(x) = x6 - \2x5 + 54x4 - 112x3 + 105;t2 - 36.x is not the chro-
matic polynomial of any graph. 

30 Let G = (V, E) be a graph with n vertices and m edges. Suppose e = uv € 
E. To subdivide e means, informally, to put a new vertex in the middle of e. 
Of course, adding a vertex changes the graph. Let H = (W, F) be the new 
graph. Then W = V U [w], where w # V, and F = (E\[uv)) U {uw, wv) is 
the set obtained from E by replacing e = uv with two new edges, uw and 
wv. In particular, du (w) = 2. If every edge of G is subdivided, the resulting 
graph, S(G), has n + m vertices and 2m edges. Prove that S(G) is bipartite. 

31 Prove that every tree on n vertices has n — 1 edges. 
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32 If p(G,x) = x" - c , * " - ' +c2x"-2 + (-)"-ic„-]x, then G is both 
connected and bipartite if and only if c„_i is odd. Use this criterion to 
prove that 
(a) every tree is bipartite. 

(b) C„ is bipartite if and only if n is even. (Hint: Exercise 26.) 

33 Denote by t„ the number of nonisomorphic trees on n vertices. 
(a) Prove that t4 = 2. 

(b) Illustrate the is = 3 nonisomorphic trees on 5 vertices, explaining how 
you can be sure that they are nonisomorphic. 

(c) Illustrate the ίη = 11 nonisomorphic trees on 7 vertices. 
(d) Illustrate the 11 nonisomorphic trees with 9 vertices and diameter 6. 

34 A cotree is a graph whose complement is a tree. 
(a) Illustrate the nonisomorphic cotrees on n = 4 vertices. 

(b) Illustrate the nonisomorphic cotrees on n = 5 vertices. 
(c) Let G be a disconnected cotree on n > 4 vertices. Prove that G has two 

components, one of which is an isolated vertex. 

35 Let G be a connected graph. Prove or disprove that the diameter of G is 
equal to the length of a longest path in G. 

36 Let G be a connected, antiregular graph on n > 2 vertices. (See Chapter 1, 
Exercise 20.) Prove the following: 
(a) Gc = H ®K\, where H is a connected, antiregular graph on n — 1 

vertices. 
(b) Up to isomorphism, there is exactly one connected, antiregular graph on 

n vertices. 

37 Let A„ be the unique, connected antiregular graph on n vertices. (See Exer-
cise 36(b).) Then A\ = K1, A2 = Kj = P2, A3 = P3 = 53, and so on. Prove 
the following: 

(a) Up to isomorphism, An φ Κ\ is the unique disconnected antiregular 
graph onn + 1 vertices. 

(b) An+X =Ac„vKu the join of Ac
n and K\. 

(c) AB+, S ( A „ _ , 0 A : , ) v A : , , n > 3 . 
(d) ω(Αη)=[η/2} + 1. 

(e) a(A„) =L(» + 1)/2J. 

38 Let An be the unique, connected antiregular graph on n > 2 vertices. (See 
Exercise 36(b).) Prove the following: 
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x[(x - 1 )(jr - 2) · · · (x - s)]2, n odd, 
JC[(JC — 1 )(x — 2) ■ ■ ■ (x — s + 1 )]2(x — s), n even, 

where s = \n/2\, the integer part of n/2. 
(b) χ(Αη)=[η/2] + ϊ. 
(c) x(A„)x(Ac

n)=l(n + l)2/4i. 

39 Let G be a connected graph having n vertices and n — 1 edges. Prove that 
G is a tree. 

40 Let G be a connected graph on n > 2 vertices. Prove that a(G) < i(G), 
where i(G) is the intersection number introduced in Chapter 1, Exercise 31. 

41 Let G be a connected graph of diameter D. Prove that A(G) has at least 
D + 1 distinct eigenvalues. 

42 Show that the Wiener index of the path is W(P„ ) = C(n + 1, 3). 

43 Let T be a tree on k vertices. Let G be a graph with minimum vertex degree 
á(G) > k — 1. Prove that T is isomorphic to a subgraph of G. 

44 Show that the trees in Fig. 2.10 haye the same Wiener index. 

o 
I 

0 o o 
1 I I 

o—o—o—o—o o—o—o—o—o 
Figure 2.10 

45 Let G be a connected graph. The eccentricity of M e V(G) is ec(«) 
= maxvev(G)d(u, v), the maximum of the distances from u to the other 
vertices of G. The radius of G is rad(G) = minuev(G) ec(K). The center of 
G is {we V(G):ec(w) = rad(G)}. 
(a) Prove or disprove that the diameter of a connected graph G is equal to 

2 rad(G). 
(b) Prove that the center of a tree consists either of a single vertex or of 

two adjacent vertices. 

46 Compute the Balaban centric index for each tree in Fig. 2.10. 

47 Let yi(G) > ^(G) > ·· ■ > y„(G) be the eigenvalues of A(G). (Because 
A(G) is a symmetric matrix, its characteristic roots are all real.) 

(a) p(A„,x) = 
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(a) If G is bipartite, prove that Y¡(G) + /„_,+,(G) = 0, 1 < i < n.12 

(b) If G is bipartite and n is odd, prove that A(G) is singular. 

48 Let G be a graph on n vertices. Prove that x(G)x(Gc) > n. 

49 Prove that the cube graph, Qk, of Chapter 1 Exercise 33, is bipartite. 

50 (Tutte) Let G be a fixed but arbitrary graph. Prove that p(G, t)^0 for all 
t e (0,1). 

51 Let u € V(G) be a so-called simplicial vertex of G — that is a vertex with 
the property that Nc(u) is a clique. Prove that p(G,x) = (x -d)p(H,x), 
where H = G — u is the graph obtained from G by deleting vertex u and 
all the edges incident with it, and d = dc(u). 

52 If k = x(G) > χ ( # ) for every proper subgraph / / of G, then G is critically 
¿-chromatic. 
(a) Show that C„, n = 2i + 1, is critically 3-chromatic. 
(b) Show that Kn, n > 2, is critically «-chromatic. 
(c) If x(G) = ¿, show that G has a critically ¿-chromatic subgraph. 
(d) If G is critically ¿-chromatic, prove that 8(G) > ¿ — 1. 
(e) If G is a critically ¿-chromatic graph with n vertices and m edges, prove 

that k < 1 +2m/n. 
(f) Prove that x(G) < 1 + 1 where ¿ is the length of a longest path in G. 

(///'nf: Parts (c) and (d) and Exercise 43.) 

53 (Mycielski) Let G\ = K\ and G2 = #2- If Gk = (Vk, Ek), suppose Vk = 
[v\,V2,...,vn). Let Vk+i = VkU{ui,u2,...,un,w] and define Ek+i = 
Ek UAW Uß„, where Aw = (WM,: 1 < i < n] and Bu = [xu¡:x e V* and 
xv¡ e Ek, 1 < / < « } . 
(a) Show that G3 = C5. 
(b) Illustrate G4. 
(c) If G* has n vertices and m edges, show that Gk+\ has In + 1 vertices 

and 3m + n edges, ¿ > 2. 
(d) Show that co(Gk) = 2, ¿ > 2. 

12 It was shown by C.A. Coulson and G.S. Rushbrooke [Note on the method of molecular orbitals, 
Proc. Cambridge Philose Soc. 36 (1940), 193-200] that G is bipartite if and only if y¡(G) + 
y„_,+i(G) = 0, 1 < i < n, a result known to chemists as the "pairing theorem." D.M. Cvetkovii 
[Bihromaticnost i spektar grafa, Matematiika Biblioteka (Beograd) 41 (1969), 193-194] later showed 
that a connected graph is bipartite if and only if γ\ (G) + y„ (G) = 0. 
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(e) Show that x(Gk) = k,k> 1. 
(0 Show that the difference, x(G) — a>(G), can be arbitrarily large.13 

54 Denote by t„(D) the number of nonisomorphic trees on n vertices that have 
diameter D. 
(a) Compute ίΊ(Ω), 2 < D < 6. (Hint: Exercise 33.) 
(b) Prove that tn(n - 2) = ί„(3), η > 4. 
(c) Prove or disprove that tn(n — r) — tn(r + 1 ), 1 < r < n - 3. 

It was shown by H.A. Kierstead and J.H. Schmerl [Some applications of Vizing's theorem to 
vertex colorings of graphs. Discrete Math. 45 (1983), 277-285] that if G does not contain K$ - e 
or ATi,3 as an induced subgraph, then <u(G) < x(G) < ω(Ο) + 1. 
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3 
Connectivity 

Recall that G Φ K\ is connected if every pair of its vertices is joined by a path. 
Both P6 and Ce satisfy this criterion; yet, while two vertices of P(, are joined 
by a unique path, any two vertices of Ge are joined by two different paths. It 
seems that C(, is more connected than P(,. The main thrust of the chapter is to 
explore and quantify this notion of relative connectedness. It is not surprising 
that cycles should have a central place in the discussion. The surprise is that the 
investigation should be so demanding, leading as it does to some of the deepest 
theorems of the book. The payoff for this hard work comes in later chapters 
where applications can be as delightful as they are unexpected. 

Suppose our interest in graph G = (V, £ ) extends no further than some subset 
W c V. In that case, it may be useful to focus on a subgraph of the form H = 
(W, F). This restriction naturally precludes certain edges of G from belonging to 
F = £ ( / / ) . In fact, the unique maximal subgraph of G that satisfies V(H) = W 
is the induced subgraph G[W] corresponding to F = E Π JV(2). 

Alternatively, it may happen that our interest is drawn to some subset F c E. 
In this case, focusing on a subgraph H = (W, F) does not preclude any vertices 
of G from belonging to W = V(H). The unique maximal subgraph of G that 
satisfies E(H) = F is H = (V, F). Such a subgraph is said to span G. Thus, 
H = (W, F) is a spanning subgraph of G if (and only if) W = V(G). In some 
cases (e.g., chromatic reduction), attention is directed to F by default, the edges in 
D = E\F having been removed. From this perspective, H is a spanning subgraph 
of G if and only if there is a subset D = [e\, ei,..., e,} C E such that 

H = (V,E\D) 

= G-D 

= G — e\ — ei — · · · — e,. (17) 

3.1 Definition. Let G be a graph on n > 2 vertices. A disconnecting set of edges 
is a subset D C E(G) such that G — D is disconnected. The edge connectivity, 
e(G), is the smallest number of edges in any disconnecting set. 

We adopt the convention that ε(Κ\ ) = 0. Thus, e(G) = 0 if and only if G = ATj 
or G is disconnected. If e(G) — 1, then G is a connected graph having an edge 

45 
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e such that G — e is disconnected. An edge whose removal increases the number 
of components is called a cut-edge of G. 

3.2 Lemma. If G is a graph, then e(G) < «5(G). That is, the edge connectivity 
of G can be no larger than the smallest of its vertex degrees. 

Proof. If e(G) = 0 there is nothing to prove. So, let G be a connected graph 
on n > 2 vertices and suppose u e V(G) is a vertex of degree d{u) = ¿(G) > 0. 
Since D = {uv: v e NG(u)} is a disconnecting set of edges, 8(G) = o(D) > e(G). 

3.3 Theorem. Suppose G is a connected graph. Let e = uv e E(G). Then e is a 
cut-edge of G if and only if P = [u, v] is the only path in G from u to v. 

Theorem 3.3 may seem obvious because it is consistent with intuitive notions 
about connectivity. While intuition can be a source of inspiration, additional tools 
are generally needed to forge rigorous proofs. Among the most powerful of these 
tools are the definitions. Indeed, mathematical definitions exist to be used as tools 
in building proofs.1 

Proof. If [u, v] is the only path in G from u to v, then there is no path in G — e 
from u to v and, by definition, the spanning subgraph G — e is disconnected. 

Conversely, let e — uv be a cut-edge of G. Suppose H\ and H2 are two 
components of G — e. Let w,· e / / , · , / = 1, 2. Without loss of generality, we may 
assume that u & H2- Let Q — [u = xo, x\,..., xr = w2] be a path in G from u to 
w2. Because Q is not a path in G — e, edge e must lie along Q. Since the x's 
are distinct and u = *ο, it can only be that e = [xo,x\}. Therefore, x\ = v and 
Q' = [v = x¡, x2,..., xr = wj] is a path in G — e from v to w2. Hence, v e Η2· 
A similar argument now shows that u € H\. Because u and v are in different 
components of G — e, edge e must lie along every path in G from u to w. If 
P = [u = yo, y\,..., yt = v] is such a path, then, since the ;y's are distinct and 
e = uv is an edge of P, we have v = y\\ that is, k = 1 and P — [u, v]. ■ 

It is because of Theorem 3.3 that a cut-edge is sometimes called a bridge. 
(See Fig. 3.1.) If e(G) = 1, then G is barely connected in the sense that it can 
be disconnected by the removal of a single, well-chosen edge. If T is a tree, then 
any edge will do. Every edge of T is a bridge. 

. 0 — o . o — o—-o °0/ι>-<Χ\ι 
o—o o—o—o 

Figure 3.1 

1 Perhaps because he did not understand this point, the Roman writer Favorinus commented 
in his Miscellaneous History that Pythagoras "used definitions throughout the subject matter of 
mathematics." 
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3.4 Corollary. Suppose G is a connected graph. Let e = uv € E(G). Then e is 
a bridge if and only if no cycle of G contains both u and v. 

The proof is left to the exercises. 
If G is a connected graph without bridges, Corollary 3.4 implies that every 

edge of G must lie on a cycle. 

3.5 Definition. Let G = (V, E) be a graph and suppose u e V. The vertex 
deleted graph G — u = G[V\{u}]. 

If D = {uv e E:v e NG(u)), then G - u = (W, F), where W = V\{u] and 
F = E\D. Deleting vertices is a more invasive kind of surgery than deleting 
edges. When an edge is deleted, the vertices incident with it remain in place 
(which is why the result is a spanning subgraph). When a vertex is deleted, all 
the edges incident with it are removed as well (which is why G — u is a graph). 
Denote by 

G — S — G — v\ — V2 — ■ ■ ■ — vr (18) 

the graph obtained from G by deleting the vertices in S = {v\, i>2,..., vr] C 
V(G), that is, G - S = G[V\S]. 

3.6 Definition. Suppose K„ φ G is a graph. A vertex cut (or separating set) of 
G is a subset 5 C V(G) such that G — S is disconnected. The connectivity, K(G), 
is the smallest number of vertices in any vertex cut of G. 

Complete graphs were exempted from Definition 3.6 because they have no 
vertex cuts. They are the only such graphs. If u and w are nonadjacent vertices 
of G, then S = V\[u, w] is a vertex cut. Definition 3.6 is extended to complete 
graphs by defining κ(Κη) = n — 1. Thus, K(G) — 0 if and only if G = K\ or G 
is disconnected; that is, *r(G) = 0 if and only if c(G) = 0. 

If K{G) = 1, then either G = Ki or G is a connected graph with a vertex v 
such that G — v is disconnected. A vertex whose removal increases the number 
of components of G is called a cut-vertex (or point of articulation). The graph 
illustrated in Fig. 3.1 has two points of articulation, namely the vertices incident 
with edge e. The fact that K(G) is called the connectivity of G (rather than 
its "vertex connectivity") reflects the view that, as a quantitative measure of 
connectivity, K(G) is more important than e(G). 

3.7 Theorem. If G is a graph, then K(G) < e(G). 

Proof. We have already seen that e(G) = 0 if and only if K(G) = 0. Assume 
that AC(G) < f(G) whenever e(G) = k > 0, and suppose G is a graph with e(G) = 
k + 1. Let D c E(G) be a minimum disconnecting set. Then o{D) = k + 1 and 
G - Dis disconnected. Suppose e € D is fixed but arbitrary and let Ge = G — e. 
Then e(Ge) = k. By the induction hypothesis, *(Ge) < k. Let 5 C V{Ge) = V(G) 
be a minimum vertex cut of Ge. Then o(S) < k and Ge — S is disconnected. If 
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Gs = G — S is disconnected, the proof is finished. If Gs is connected, then e 
cannot be incident in G with any vertex of S. Hence, Gs — e = G — S — e = 
G — e — S = Ge — S is disconnected; that is, e is a cut-edge of Gs- If either 
vertex of e has degree greater than one in Gs, it is a cut-vertex of Gs, proving 
that K(G) < k + 1 = e(G). Otherwise, because it is connected, Gs = K2, meaning 
that n — 2 = o(S) < k. Therefore, using Lemma 3.2, n — 1 < k + 1 = e(G) < 
6(G) < n - 1. But, 8(G) = n - 1 if and only if G = Kn, in which case K(G) = 
n - 1 = s(G). M 

3.8 Definition. A block is a connected graph with no cut-vertices. 

If K(G) > 2, then G is a block. The converse fails for two reasons: K\ and 
K2. If n = o(V(G)) > 3, then G is a block if and only if K(G) > 2. 

Every complete graph is a block as is C„, n > 3. If T is a tree on n > 3 
vertices, it must contain at least one vertex « of degree dr(u) > 2. Because T — u 
is disconnected, T is not a block. Indeed, by Theorem 3.7, 1 = ε(7") > κ(Τ) > 1, 
for any tree T on n > 2 vertices. 

3.9 Definition. A maximal connected subgraph of G that has no cut-vertices is 
a block of G. 

Suppose B is a block of G and H is a subgraph of G. In the context of 
Definition 3.9, "maximal" means that if S is a proper subgraph2 of H, then 
either H is disconnected or it has a cut-vertex. 

The graph illustrated in Fig. 3.1 has the three blocks shown in Fig. 3.2. Note 
that a subgraph of G can be a block without being a block of G. Because neither 
has a cut-vertex, the complete graphs K \ and K2 are blocks. If B is a block of 
G, then B = K\ if and only if B corresponds to an isolated vertex, and B = K2 
if and only if it corresponds to a bridge. If K(G) > 2, then, while it may have 
many vertices and edges, the only block of G is G itself. 

,0—o. .0—o — o 

J/l> 0-0 <<χ\| 
o—o o—o—o 

Figure 3.2 

3.10 Theorem. Suppose H = (W, F) is a connected subgraph of G = (V, E). 

(i) If H has no cut-vertices, then G[ W] is connected and it has no cut-vertices. 
(ii) The blocks of G are induced subgraphs. 

(iii) If H has no cut-vertices, then H is a subgraph of some block ofG. 

2 A subgraph B of H is proper if B Φ H. , 
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Proof. Because H is a subgraph of G[W], every path in H is a path in 
G[W]. Moreover, for any w e W, every path in H — w is a path in G[W] — w. 
This proves part (i). 

If H is a block of G, then, by maximality and part (i), H = G[W], proving 
part (ii). If G[W] is a block, then part (iii) follows from part (i). Otherwise, 
it must be that G[W] fails to be maximal, so there is a connected subgraph 
H\ = (W\, Fi) of G such that H\ has no cut-vertices, G[W] is a subgraph of 
H\, and o(Wi) > o(W). By part (i), we may assume H\ = G[Wi]. If H\ is not a 
block, then, by the same reasoning, there is a connected subgraph H2 = G[W2J> 
with no cut-vertices, such that W\ is a proper subset of W2. Because o(W) < 
o(W|) < 0(^2) < · · · < o(V), this process ends at a block of G. ■ 

While a block fi of G has no cut-vertices of its own, B may contain cut-vertices 
of G. (See Figs. 3.1 and 3.2.) 

3.11 Corollary. Let G[X] and G[Y] be two (different) blocks of the connected 
graph G. Then either X Γ\Υ = φ or X Γ\Υ = {z}, in which case z is a cut-vertex 
ofG. 

Proof. Suppose X Π Y φ φ. By the maximality of blocks, neither X nor Y 
is a proper subset of the other. Therefore, G[X] and G[Y] are proper subgraphs 
of H = G[X U Y]. Suppose u and w are different vertices of H. If u and w are 
both in X, or both in Y, there is a path in G[X] or G[Y] from u to w. Otherwise, 
there is a path in H from u to w through X Π Y. Thus, H is connected. If 
o(X Π Y) > 2, a similar examination of cases shows that H has no cut-vertex. So, 
from Theorem 3.10, H is contained in a block of G, contradicting the maximality 
of blocks G[X] and G[Y]. Hence, o(X Π Y) = 1. 

Suppose X Π Y = [z]. Let jc e X and y e Y be vertices that are adjacent in 
G to 2. Suppose there is a path Λ in G — z, from JC to y. Then C = {P, z) is 
a cycle of G containing JC, y, and z. Because the connected subgraph C of G 
has no cut-vertices, it follows from Theorem 3.10 that C is a subgraph of some 
block B = G[W]. Since y <= W\X, B φ G[X]. So, G[X] and G[W] are different 
blocks of G. Because x,z€XP\W, o(X Π W) > 1, contradicting the first part of 
the proof. Hence, there can be no path in G — z from x to y, meaning that x and 
y belong to different components of G — z, meaning that z is a cut-vertex of G. 

■ 
3.12 Example. Each graph in Fig. 3.3 has the same four blocks, namely, B\ = 
C4, B2 = C3 S K3, B3=K2 = P2, and &, = K4 - e. Note, however, that while 
G] and G2 each have three cut-vertices, G3 has only two. D 

3.13 Theorem. Let G be a connected graph with exactly t blocks, B\, B2,... ,Β,. 
Then the chromatic polynomial 

1 ' 
p(G,x)=—Y[p(Bi,x). 



50 Chap. 3 Connectivity 

O — O O — O 

l\l \/ 
o—o—o 
/\ I 

o o—o 
G 3 

Proof. The result follows from Theorem 2.13 and the fact (see Exercise 13) 
that G can be "constructed" from its blocks in a sequence of steps, each of which 
is comprised of an overlap of two graphs in K\. ■ 

3.14 Definition. Let G be a graph and let k be a positive integer. If K(G) > k, 
then G is said to be ¿-connected. 

If G is (k + 1 )-connected, then G is ¿-connected. A graph on n > 2 vertices 
is 1-connected if and only if it is connected, and a graph on n > 3 vertices is 
2-connected if and only if it is a block. 

3.15 Theorem. Let G be a graph on n > 3 vertices. Then G is 2-connected if 
and only if, for all u,w e V(G), u φ w, there exists a cycle of G containing both 
u and w. 

Proof. Suppose K(G) > 2. Let u e V(G) be fixed but arbitrary and denote 
by 5 c V(G)\{u] the set of vertices that do not share a cycle with u. We will 
prove necessity by showing that S = φ. So, suppose w e S. Because 2 < K(G) < 
c(G), G has no cut-edges. Therefore (Corollary 3.4), every edge of G lies on 
a cycle, proving that S Π Nc(u) = φ. Let P = [u = vo, v\,..., vr+\ = w] be a 
path in G from u to w. If / is the smallest positive integer such that v¡ e S, then 
/ > 1 because v\ e Nc(u). Since the only restriction we have placed on w is that 
it belong to S, we may assume w = v¡, in other words, that / = r 4-1. Because 
vr 4- S, there exists a cycle C containing both u and vr. 

Let Q = [u = JCO, * i , . . . , *, = w] be a path in G — vr from u to w. If the 
only vertex common to Q and C is u, then (see Fig. 3.4(a)) we can go along 
either subpath of C from u to vr, cross over to Q by means of edge vrw, and 
then complete a cycle by going backwards along Q to M. The existence of this 
new cycle contradicts w € S. So, there must be a largest integer j such that 
u^xj e C. Because Q is a path in G — vr, x¡ φ vr. Thus (see Fig. 3.4(b)), we 
can go from vr to x¡ along the subpath of C that contains u, then along Q from * ; 
to w, and complete a cycle by crossing edge wvr. Because both u and w lie on this 
new cycle, the assumption w e S is again contradicted. This final contradiction 
proves that S = φ. 

Conversely, suppose v e V(G) is fixed but arbitrary. Let u and w be two 
(different) vertices of V(G)\{v}. Suppose C = {u =x\,... ,xs — w,... ,xt) is 

o—o 
1 1 
o — o — o -

1/ 
0 

G, 
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Figure 3.3 
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Figure 3.4 

a cycle of G containing w and w. Then C contains two subpaths from u to 
w, namely, P = [u = x\, X2, ■ ■ ■, xs = w] and Q = [u = x\, χ,,..., xs+\ ,xs = w]. 
Because n > 3, and v was arbitrary, the existence of either path proves that G 
is connected. While P and Q overlap in u and w, having no other vertices in 
common, they are "internally disjoint." In particular, at least one of them is a 
path in G — v, proving that v is not a cut-vertex of G. ■ 

Among the many applications of graphs is to the modeling of social interac-
tions. In this context, descriptives like "isolated" and "neighbor" seem especially 
appropriate. Central to most sociological models is the network of linkages 
between nonadjacent vertices. Consider, for example, the graph G in Fig. 3.5. 
While the distances d(x, y) = 2 = d(x, z), vertex x seems better connected to 
vertex z than to vertex y, at least in the sense of sociological networking. Let's 
try to quantify this notion of "networking connectivity." 

/W. xO — CK \>r 
o 

Figure 3.5 

0 

If vertices u and v lie in different components of G, they are totally discon-
nected from each other, and there is little more to be said. The interesting case 
is when u and v lie in the same component. Thus, we may as well assume, right 
from the beginning, that G is connected. 

3.16 Definition. Suppose u and v are nonadjacent vertices of a connected graph 
G. Then S C V(G) separates u and v if they lie in different components of G — S. 
Let KC(U, v) be the minimum number of vertices whose deletion separates u and 
v; that is, KC(U, v) — min o(S), where the minimum is over the subsets S of V(G) 
that separate u and v. 
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The reader may confirm that KG(X, y) = 2 and KG(X, Z) = 3 in Fig. 3.5. Because 
a set of vertices that separates u and v is a separating set of G, we obtain 

KG(U,V)>IC(G). (19) 

Indeed, ϊϊ Κη φ G is connected, then /c(G) = min^G(w- f), where the minimum 
is over all nonadjacent pairs u,v e V(G). 

Another natural measure of networking connectivity is the following. 

3.17 Definition. Suppose u and v are nonadjacent vertices of a connected graph 
G. Two paths from u to v are internally disjoint if, apart from u and υ, no vertex 
of G lies on both paths. Let ^G(W. V) be the maximum number of internally 
disjoint paths in G from u to v. 

SupposeP = [u,x\,... ,xr, v] and Q = [u, yi, . . . , ys, v] are internally disjoint 
paths in G from u to υ. By definition of "path," the ;t's are all different from 
each other, and no two y's are equal. "Internally disjoint" means that 

{*/: 1 < i < r) n {?,·: 1 < y < Í ) = φ. 

In Fig. 3.5, ^rG(jc, y) = 2 and ^rc(x, z) = 3. 
It is worth emphasizing that the definitions of KQ{U, V) and VG("> v) apply to 

nonadjacent vertices of a connected graph G. When G is understood, we may 
write K(U, V) in place of Kc(u, V) and set ij/(u, v) = VOC". «)· The obvious ques-
tion, of course, is whether these two new measures of networking connectivity 
are related to each other. In Fig. 3.5, κ(χ, y) = ψ(χ, y), and κ(χ, ζ) = ψ(χ, ζ). Is 
that typical or just the result of a poorly chosen example? 

3.18 Menger's Theorem. If u and v are nonadjacent vertices of a connected 
graph G, then K(U, V) = ifr(u, v); that is, the minimum number of vertices whose 
deletion separates u and v is equal to the maximum number of internally disjoint 
paths in G from u to v. 

Proof. If 5 C V(G) separates u and v, then every path from « t o » must 
contain a vertex of 5. Because no two internally disjoint κυ-paths can contain the 
same vertex of 5, o(5) > t/r(«, v). Because S was arbitrary, K(U, V) > \jr{u, v). 

The proof that \¡r(u, v) > K(U, V) is more difficult. If it is false, then there is 
a counterexample, a connected graph G, and two vertices u, v e V(G) such that 
uv # E(G) and K(U, V) > \¡f{u, υ). Let k be the smallest value of K(U, V) among 
all counterexamples. Because \¡/{u, v) > 1, k > 2. 

Among the counterexamples G, u, v with K(U, V) = k, consider those with a 
minimum value of n = o(V(G)). Finally, from among these counterexamples, 
choose one with a minimum value of m = o(E(G)). (Note that m may not be 
the smallest number of edges among all counterexamples.) The remainder of the 
proof depends upon three observations about our minimum counterexample. 
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Observation 1: The distance d(u, v) > 2. 

Because uv g E(G), d(u, v) > 2. If d(u, v) = 2, there exists a vertex w e 
V(G) such that [u, w, v] is a path in G. It follows that w is an element of 
any set that separates u and v. Let H = G — w. Because k = KQ(U, V) > 2, u and 
v belong to the same component, C, of H. Because of the way G was chosen, 
C is not a counterexample. Thus, 

KG(U, v)- 1 = KC(U, v) 
(20) 

Suppose {Pi, P2, ■ ■ ■, Ρψ), ψ = ^c(". v), is a family of internally disjoint paths 
in G from u to v. If w were on none of these paths, we could add [u, w, v] 
and obtain a larger family, contradicting the definition of ψ. Because the P's are 
internally disjoint, w lies on exactly one of them. Hence, ^c(«. v) = Vc(". v) — 
1, and Equation (20) contradicts the fact that G is a counterexample. 

Observation 2: If S = {w\, W2, · · · , w*} separates u and v, then every vertex 
of 5 is adjacent to u or every vertex of S is adjacent to v. (Don't misunderstand. 
This observation must hold only for our hypothetical minimal counterexample.) 

Because (Observation 1) d(u, v) > 2, no w e V(G) can be adjacent to both u 
and v. If all the w's are adjacent to u, we are finished. Otherwise, denote by Cu the 
component of G — S containing u, and let G[W] be the subgraph of G induced 
on the set of vertices IV = S U V(C„). (See Fig. 3.6.) Define H to be the graph 

/ 
, 0 -

Figure 3.6 

obtained from G[W] by adding a new vertex v* and new edges [v*, w,}, 1 < 
i < k. Observe that KH(U, V*) = k.UH has n = o(V(G)) vertices, then H = G, 
and Observation 2 is proved. Otherwise, having fewer than n vertices, H is not 
a counterexample; that is, ψΗ(κ, v*) — KH(U, V*) = k, so there are k internally 
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disjoint paths in H from « to «*. It follows that H (hence G) contains paths P¡ 
from « to w,, 1 < ¡' < k, that overlap only in u. Turning the argument around, 
there must also exist paths Q¡ from v to w¡, 1 < / < k, that overlap only in v. 
Denote by Q¡~] the path in G from w, to v that reverses Q¡. Overlapping P¡ 
and Q~l at w¡, 1 < / < k, produces k internally disjoint paths in G from u to v. 
This contradicts the fact that G is a counterexample, and it finishes the proof of 
Observation 2. 

Observation 3: Let P = [u, x, y,..., v] be a shortest path from u to v in our 
minimal counterexample G. (By Observation 1, u, x, y, and v are all different 
vertices of G.) Then there exists a set Γ C V(G) such that o(T) = k — 1, and 
both S\ = T U [x] and S2 = T U {y} separate M and v. 

Let e = xy. Because KG(U, V) — k > 2, U and υ are in the same component of 
G - x. Hence, they are in the same component, H, of G — e. Let φ φ T c V(#) 
be a minimum separator of u and υ in H. Because H is not a counterexample, 
we have 

ο(Γ) = KH(U,V) 

= fHÍU,v) 

< fG(u, v) 

< KG(U, v) 

= k. 

Therefore, T does not separate u and v in G. Evidently, e = xy is a bridge in 
G — T. Thus, both Γ U {JC} and T U {y) separate u and υ in G. In particular, 
ο(Γ) + 1 > k > o(7"), implying that o(T) = k - 1. This completes the proof of 
Observation 3. 

Because (Observation 3) S\ = T U [x] is a minimum separator of u and v in 
G, it follows from ux e £(G) and Observation 2 that ww e £(G), for all w € T. 
Because S2 — T U {y} is a minimum separator of M and v, every vertex of 52 is 
adjacent either to u or to v. Since we have already established that uw e E(G), for 
all w e T Φ φ, every vertex of 52 must be adjacent to u. In particular, uy € E(G), 
contradicting the fact that P — [u, x, y,..., v] is a shortest path in G from u to 
v. This final contradiction finishes the proof of Menger's Theorem by showing 
that there are no counterexamples. ■ 

3.19 Corollary. Suppose G is k-connected. Let w, u\, uj,..., u¡¡ be k+ 1 (dif-
ferent) vertices of G. Then there exist paths in G from w to u¡, 1 < / < k, no two 
of which overlap except in w. 
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Proof. Let H be the graph obtained from G by adding a new vertex v* and 
k new edges, u¡v*, 1 < ¡' < k. From Exercise 8, H is ¿-connected. Therefore, 

k<K{H)<KH(w,v*)<k. (21) 

By Menger's Theorem and (21), there are irH(w, v*) = KH(W, V*) = k internally 
disjoint paths in H from w to v*. From the definition oîH, these internally disjoint 
paths must be of the form P¡ = [w, ...,u¡, v*], \ < i < k. Let Q¡ = [w,..., «,·] be 
the path obtained from P¡ by deleting vertex υ*, I < i < k. Then ß | , Ö2- · · · - Qk 
are the paths we seek. ■ 

3.20 Theorem. Suppose k > 2 is an integer. Let G be a k-connected graph on 
n vertices. If U is a fixed but arbitrary k-vertex subset of V(G), then there exists 
a cycle of G that contains every vertex of U. 

Proof. If k = 2, the result is half of Theorem 3.15. So, suppose k > 3 and 
let t/ = {«i, «2, · · ·, «*}· Because G is 2-connected, there exists a cycle of G 
containing any given pair of M'S. Suppose C is a cycle of G that contains a largest 
number, say r, of the vertices of U. If r = k, the proof is finished. Otherwise, 
2 < r < k, and we can renumber the elements of U, if necessary, so that it is 
the first r w's that belong to C and so that they occur consecutively around the 
cycle. 

If every vertex of C belongs to U, then C is the cycle (u\,U2,. ■ ■ ,ur). Let 
w = ur+\. By Corollary 3.19, there exist paths P¡ from w to «,·, 1 < / < r, any 
two of which overlap only in w. In particular, P¡ overlaps C only in «,·, 1 < i < r. 
Let C" be the cycle obtained from C when edge [wi, «2] is replaced by P^1 P2-
Then C" contains more than r elements of {/, contradicting the maximality of C. 
Thus, C must contain a vertex v g U. 

Because k > r + 1, Corollary 3.19 implies the existence of paths Q¡, 1 < i < 
r + 1, such that Q, is a path from w to «,, 1 < / < r, ß r + | is a path from w 
to v, and any two (different) Q'% overlap only in w. For each 1, let v¡ be the 
yírií vertex of Q, that lies on C. (It may happen that v¡ = u¡ for some 1 < r, 
and/or that vr+\ = v.) Denote by P¡ the subpath of Ö, from w to u,·, 1 < / < 
r + 1 . 

For each 1 < r, let 5, be the set of vertices in the subpath of C from vertex w, 
up to, but not including, vertex M Í +I. Then 5, is analogous to a half-open interval 
[UJ, w,+ i). Let Sr be the corresponding interval along C from ur to «|. Then 
«1 € 5,, 1 < i < r, and the set of vertices comprising C is Si US2 U · · · US r . 
Because, the distinct vertices v\,V2,..-, vr+\ all belong to this disjoint union 
there exists a pair of them, say vs and υ,, belonging to the same interval, say 
Sj. Without loss of generality, we may assume that vs = uj or vs lies on the 
subpath of C from u¡ to v,. (See Fig. 3.7.) Let C* be the cycle obtained from C 
by replacing the path along C from vs to v, with P~xPt- Then C* is a cycle of C 
containing r + 1 elements of U, contradicting the maximality of C and proving 
that r cannot be less than k. ■ 
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O w = ur. 

Figure 3.7 

3.21 Example. Let G be the Petersen graph illustrated in Fig. 3.8. By Lemma 3.2 
and Theorem 3.7, 3 = S(G) > e(G) > K(G). Because (Exercise 37) K(G) > 2, it 
must be the case that e(G) = K(G) = 3. Since K(G) < K(U, V) = ψ(α, ν) < dc(u), 
it follows that K(U, V) = 3 = \}r(u, v) for every pair of nonadjacent vertices u and v; 
for example, vertices 1 and 6 are joined by Pi = [1, 2,6], P2 = [1, 10, 7, 6], and 
P3 = [1, 9, 5, 6]. By Corollary 3.19, vertex 1 can be joined to any triple of distinct 
vertices by paths that overlap only in vertex 1; for example, Q\ = [1, 10,4], 
Ô2 = [1. 2, 6, 7], and Q3 = [1, 9, 8] join vertex 1, to vertices 4, 7, and 8, re-
spectively. 

6 5 

Figure 3.8. The Petersen graph 

Suppose U c V(G). If o(U) < 3, Theorem 3.20 guarantees the existence of a 
cycle containing every vertex of U. What if o(U) = 4 or 5? Given an arbitrary 
4-vertex subset U of G, does there exist a cycle containing every vertex of Ul 
In general, might the conclusion of Theorem 3.20 be strengthened to guarantee 
the existence of a cycle containing any prescribed set of k + 1 vertices? C 

As expected, cycles have played a central role in our discussion of quantita 
tive measures of connectivity. Let's finish the chapter with a somewhat lighte 
application of cycles. 
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Suppose the edges of G = K$ — e are numbered in some fixed but arbitrary 
way. One possibility is pictured in Fig. 3.9. As shown in Fig. 3.10, G has three 
cycles, two of length 3 and one of length 4. If the highest numbered edge of a 
cycle is deleted, the result is a broken cycle. (See Fig. 3.11.) 

A/V 
o—o 

Figure 3.9 
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Figure 3.10 

A spanning tree of G is a spanning subgraph that is a tree; a spanning forest is 
a spanning subgraph that is a forest —that is, a spanning subgraph that doesn't 
have any cycles. 

3.22 Whitney's Broken Cycle Theorem3. Let 

p(G,x)=x" -c\xn~l +c2x"~2 + (-l)"-1c„_1;t 

be the chromatic polynomial of G. Then c, is the number of t-edged spanning 
forests of G that do not contain a broken cycle. 

3.23 Example. With respect to the numbering of Fig. 3.9, G = Kä, — e contains 
the three broken cycles in Fig. 3.11. Since it has five edges, G has five 1-edged 
spanning forests. Because no graph with a single edge contains a broken cycle, 
c\ = 5. 

There are C(5, 2) = 10 ways to choose a 2-edged spanning forest of G. The 
two that contain broken cycles have edge sets {1,2} and {3, 4}. (See Fig. 3.11.) 
Thus, c2 = 10 - 2 = 8. 
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Figure 3.11 

3 A proof based on the Principle of Inclusion and Exclusion can be found in [H. Whitney, A logical 
expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 572-579]. While not especially difficult, 
the techniques are beyond the scope of this book. 
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There are C(5, 3) = 10 ways to choose 3 edges from the 5 edges of G. 
From Fig. 3.10, the spanning subgraphs with edge sets {1,2,3} and {3,4,5} 
contain cycles. From Fig. 3.11, the spanning forests with edge sets {1,2,4} 
and {1, 2, 5} contain the broken cycle {1,2}, and those with edge sets {1, 3, 4} 
and {2,3,4} contain the broken cycle {3,4}. This leaves {1,3,5}, {1,4,5}, 
{2, 3, 5}, and {2,4, 5} as the edge sets of spanning forests that do not contain 
broken cycles; so, CT, = 4. Thus, p(G, x) = x4 — 5JC3 + Sx2 — 4JC. (Compare with 
Equation (13).) D 

EXERCISES 

1 Determine the edge connectivity, s(G), of G = 

o o o o 
2 Determine the connectivity, K(G), of G in Exercise 1. 

3 Exhibit a graph G with the following invariants: 
(a) 8(G) = 3, e(G) = K(G) = 0. 
(b) 6(G) = 3, e(G) = K(G) = 1. 
(c) 8(G) = s(G) = 3, K(G) = 1. 
(d) 8(G) = e(G) = 3, K(G) = 2. 

4 Find the flaw in the following (much simpler) "proof of Theorem 3.7: If 
e(G) = 0, then G = K\ or G is disconnected, in which cases K(G) = e(G). 
Otherwise, suppose e(G) = t > 1 and let {e\, β2,. ■ ■, e,} be a disconnecting 
set of edges of G. If e, = {«,, v,}, 1 < / < /, then S — [u¡: 1 < i < t) is a 
vertex cut. Hence, £(G) = f > o(5) > K(G). 

5 Prove Corollary 3.4. 

6 Suppose G is a connected graph on n > 3 vertices. Prove that υ e V(G) is 
a cut-vertex of G if and only if there exist distinct vertices M, W e V(G), 
u φ v φ w, such that v is on every path in G from u to w. 

7 Prove the following: 
(a) K(G) is an invariant, (b) e(G) is an invariant. 

8 Suppose w,, 1 < i < k, are different vertices of a ¿-connected graph G. Let 
/ / be the graph obtained from G by adding a new vertex υ* and new edges 
v*w¡, I < i <k. Prove that H is fc-connected. 

9 Let G be a connected graph on n vertices, (at least) one of which is a cut-
vertex. Prove that (x — l)2 is a factor of the chromatic polynomial p(G, x). 
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10 Recall that a spanning tree is a spanning subgraph that is a tree. 
(a) Prove that G has a spanning tree if and only if it is connected. (Evidently, 

the number of different spanning trees in G is another quantitative 
measure of connectivity. We shall have more to say about the spanning 
tree number in Chapter 9.) 

(b) Suppose G is connected. Give a formula for the number of its spanning 
trees in terms of the numbers of spanning trees of its blocks. (Hint: Use 
the Fundamental Counting Principle.) 

(c) Suppose T is a spanning tree of G. Prove that no pendant vertex of T 
is a cut-vertex of G. 

(d) Let G be a connected graph on n > 2 vertices. Prove that at least two 
vertices of G are not cut-vertices. 

11 Let u and v be nonadjacent vertices of G, where K(G) > 2. Suppose P is a 
path in G from u to v. Prove or disprove that there exists a κν-path Q in G 
that is internally disjoint from P. 

12 If B is a block of G, and e(G) > 2, prove that κ(Β) > 2. 

13 Let G be a graph on n > 3 vertices. Suppose K(G) = 1. 
(a) If B is a block of G, prove that B contains at least one cut-vertex of G. 
(b) Prove that G has (at least) two blocks, each of which contains exactly 

one cut-vertex of G. 
(c) Explain how parts a and b complete the proof of Theorem 3.13. 

14 Prove that nonadjacent vertices u and v belong to different blocks of the 
connected graph G if and only if KG(U, V) = 1. 

15 Prove that the edge set E(G) is the disjoint union of E(B) as B ranges over 
the blocks of G. 

16 Suppose H is obtained from a 2-connected graph by subdividing one of its 
edges. (See Chapter 2, Exercise 30.) Prove that H is 2-connected. 

17 Let G be a graph on n > 3 vertices with the property that given any 3-vertex 
subset U of V(G), there exists a cycle of G that contains every vertex of U. 
Prove or disprove that G is 3-connected. 

18 Suppose G = (V, E) is a connected graph on n > 3 vertices. Let F = 
{{u, v] € Vm: d(u, v) = 2}. Prove that H = (V, E U F) is 2-connected. 

19 Exhibit a graph G with two vertices u and v such that K{G) — 1 and 
KG(U, v) = 3. 

20 Suppose T is a tree o n n > 2 vertices. Show that the blocks of T are all 
isomorphic to #2-

21 Let G be a connected graph on n > 2 vertices, each of whose blocks is 
isomorphic to K2. Prove that G is a tree. 
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22 Let u and v be nonadjacent vertices of the connected graph G. Suppose 
5 C V(G) is a minimum separating set for u and v, so that KG(U, V) = o(S). 
Let Hu and Hv be the components of G — 5 containing u and v, respectively. 
Prove that every w e S is adjacent in G to a vertex of Hu and to a vertex 
of/ /„ . 

23 Let G be a 2-connected graph on n > 3 vertices. Prove that any two edges 
of G lie on a common cycle. 

24 Suppose G is a 2-connected graph. Let g and c be the lengths of a shortest 
and a longest cycle of G, respectively. Then g is the gi'rfA of G, and c is its 
circumference. 
(a) Find the girth of the graph in Fig. 3.12. 
(b) Find the circumference of the graph in Fig. 3.12. 

Figure 3.12 

(c) Prove that g < 2d + 1, where d = diam(G) is the diameter of G. 
(d) Prove or disprove that any two cycles of G of length c must have at 

least two vertices in common. 

25 Let G be the graph in Fig. 3.12. 
(a) Find K(G) . 
(b) Find \I/G(u, v). 
(c) Find Vfc(M, w). 

26 Let G = (V, E) be a connected graph. An edge cut (not to be confused 
with a cut-edge) of G is a set of edges of the form [uw € E: u e U and 
w e V\U], for some nonempty proper subset U of V. 
(a) Show that every edge cut is a disconnecting set of edges. 
(b) Show that every disconnecting set of edges contains an edge cut. 

27 Let G be a graph with b blocks. Prove or disprove that the independence 
number a(G) > b. 

28 Let G be a graph. Prove the following: 
(a) x(G) = maxx(ß), as B ranges over the blocks of G. 
(b) &>(G) = max<u(fi), as B ranges over the blocks of G. 
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29 Let G Φ K„ be a graph on n vertices. Suppose k is a positive integer satis-
fying k < 25(G) - (n - 2). Prove that K(G) > k. 

30 (Whitney) Let G be a graph on n > 3 vertices. Prove that G is k-connected 
if and only if for every pair of distinct vertices u and υ of G, there exist (at 
least) k internally disjoint paths in G from u to v. 

31 Find the (common) chromatic polynomial for the three graphs in Fig. 3.3. 

32 Consider the sequence π = (3, 3, 2, 2, 2). 
(a) Find nonisomorphic graphs G and H (on n = 5 vertices) such that 

d(G) = n = d(H). 
(b) Show that one of G and H (see part (a)) is bipartite and the other is not. 
(c) Show that both G and H (see part (a)) are 2-connected. 

33 Let G and H be connected graphs. Suppose there is a one-to-one correspon-
dence between the blocks of G and the blocks of H in which corresponding 
blocks are isomorphic. Prove the following: 
(a) G and H have the same number of edges. 
(b) G and H have the same number of vertices. 
(c) p(G,x) = p(H,x). 

34 Let G be a graph with b blocks. Suppose that, taken separately as in Figs. 
3.1 and 3.2, the b blocks of G have a total of n vertices altogether. Prove 
that o(V{G)) > n — b + 1, with equality if and only if G is connected. 

35 Of the 34 graphs on 5 vertices, 21 are connected and 10 are blocks (2-
connected). Illustrate the nonisomorphic 3-connected graphs on 5 vertices. 

36 Let G = Qk, the cube graph on n — 2k vertices defined in Chapter 1, Exer-
cise 33. 
(a) Find K(G). (b) Find e(G). 

37 Let G be the Petersen graph, illustrated in Fig. 3.8. 
(a) Show that K(G) > 2. 
(b) Find the girth of G. (See Exercise 24.) 
(c) Find the circumference of G. (See Exercise 24.) 

38 Show that the conclusion of Theorem 3.20 cannot be strengthened to guar-
antee the existence of a cycle containing any prescribed set of 3 vertices of 
an arbitrary 2-connected graph. 

39 Give an alternative proof of the k = 2 case of Theorem 3.20 based on 
Menger's Theorem. 

40 Let G be a graph with n vertices and m edges. Use Theorem 3.22 to prove 
that p(G, x)=x" - mx"~l H . 
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41 If the edges of G — Kn, — e are numbered as in Fig. 3.9, then the graph H 
obtained from G by deleting edge number 5 is isomorphic to the overlap of 
KT, with Ki in K\. 
(a) Illustrate the single broken cycle of H. 
(b) How many 2-edged spanning subgraphs does H have? 
(c) How many of the 2-edged spanning subgraphs of H contain its broken 

cycle? 
(d) Illustrate the 3-edged spanning forests of// that do not contain its broken 

cycle. 
(e) Use Whitney's Broken Cycle Theorem to compute p(H,x). 

42 Use Whitney's Broken Cycle Theorem to give a new proof that p(T, x) = 
x(x - l ) n _ 1 for any tree T on n vertices. (Hint: By the Binomial Theorem, 
the coefficient of je""'-* in (JC - l ) " - 1 is (-l)kC(n - 1, Jt).) 

43 Let G = Κ2ι3. 
(a) Show that the chromatic polynomial of G is p(G,x) = x(x — 1)(JC3 — 

5*2 -(- IOJC - 7). 

(b) Show that p(G, x) = 0 has a solution in the interval (1,2). 

44 Let G = KX4-
(a) Show that G is 3-connected. 
(b) Given that the chromatic polynomial of G is p(G, x) = x(x - 1 )(x5 — 

11*4 + 55x3 - 147Λ2 + 204* - 115), show that p(G, x) = 0 has a solu-
tion x = 1.781.4 (Hint: Use Newton's Method.) 

4 Î et G be a graph. It was shown by W. T. Tutte [Chromials, in Hypergraph Seminar (C. Berge 
and D. K. Ray-Chaudhuri, eds.), Lecture Notes in Math. 411 (1974), 243-266] that p(G, x)¿0 for 
all JC e (0, 1 ), and by B. Jackson [A zero-free interval for chromatic polynomials of graphs. Comb. 
Prob. Comp. 2 (1993), 325-336] that p(G, x) Φ 0 for all x € (1, 32/27). Jackson conjectured that if 
G is 3-connected and not bipartite, then p(G,x) / 0 for all x e (1, 2). That G must be nonbipartite 
in Jackson's conjecture is demonstrated by this exercise. More generally, D. R. Woodall [Zeros of 
chromatic polynomials, in Surveys in Combinatorics (P. J. Cameron, ed.), Academic Press, 1977, pp 
199-223] showed that if r, i > 2 have different parity, then p{Krs,x) = 0 always has a solution 
Are (1,2). 



4 
Planar Graphs 

When graphs are pictured by dots and arcs, it is typically the case that some 
nonadjacent edges are illustrated by arcs that cross — that is, intersect at a 
point that does not represent a vertex. It is natural to wonder when and how 
such potentially misleading representations can be avoided. When is it possible 
to (re)draw a graph in such a way that untidy edge crossings do not occur? 
Evidently (Fig. 4.1), it is possible to draw K4 with no edge crossings, but what 
about A"5? 

Ä 
o -o 

Figure 4.1 

Given enough room, it is always possible to draw a graph, any graph, in such a 
way that no two edges cross. Suppose G has n vertices and m edges. Represent the 
vertices by n distinct points along the z-axis in real, three-dimensional Euclidean 
space. Then draw an edge of G in each of m different planes that intersect (only) 
in the z-axis. 

What about two-dimensional space? Which graphs can be drawn in the Eucli-
dean plane with no edge crossings? This is a much more interesting problem, not 
because its solution has any important applications but because the search for a 
solution has led to some good mathematics. 

4.1 Definition. A graph is said to be planar if it can be illustrated in the plane 
so that arcs representing edges meet only at points representing vertices. 

Informally, G is planar if it can be drawn in the plane without any edge 
crossings. Such a drawing is referred to as a plane graph, or as an embedding of 
G in the plane. 

Any discussion of plane graphs leads eventually to the concept of a "region." If 
the locus of points comprising an embedding of G is deleted from two-dimensional 
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Euclidean space, the connected components of what remains are regions of G. Of 
these regions, one is unbounded and the rest are bounded. 

It is natural to wonder how the number of regions can vary over different 
embeddings of the same planar graph G. Can one embedding of G yield 6 
regions and another 8? If so, must there always be an embedding with a total of 
7 regions? The definitive answer to such questions was discovered by Euler. ' 

4.2 Euler's Formula (for plane graphs). Let G be a plane graph with n vert-
ices, m edges, c components, and r = r(G) regions. Then 

r = m- n+c+l. (22) 

Proof. The proof is by induction on m. If m = 0, then G = Kc
n is a graph 

consisting of c = n components, each of which is an isolated vertex. Because Kc
n 

has just one (unbounded) region, Equation (22) reduces to the identity 1 = 1. 
Assume the result is true for every plane graph having k > 0 edges. Let G be 

a plane graph with k + 1 edges, and suppose e is one of them. If the same region 
lies on both sides of e, then e is a bridge, in which case G — e is a plane graph 
with the same numbers of vertices and regions as G, but with one fewer edge 
and one more component. Applying the induction hypothesis to G — e produces 

r(G) = r(G - e) 

= ( m - i ) _ n + ( c + l ) + l 
— m — n+c+l. 

If e is part of the boundary separating (two) different regions, then one (at 
least) of the regions is bounded, so e lies on some cycle of G. In this case, G — e is 
a plane graph having the same numbers of vertices and components as G, but one 
fewer edge and one fewer region. Applying the induction hypothesis to G — e, 
we obtain r(G) — 1 = r(G — e) = {m— I) — n+c+l which is equivalent to 
Equation (22). ■ 

In the special case that G is a connected plane graph, Equation (22) can be 
expressed in the form 

r + n =m + 2. (23) 

Following in the footsteps of Ptolemy of Alexandria, the Flemish cartogra-
pher Gerhard Mercator (1512-1594) popularized the technique of mapmaking 
in which meridians (lines of longitude) are drawn parallel to each other and 
perpendicular to the lines of latitudes. Details aside, Mercator "projected" the 
surface of a sphere into the surface of a plane. The same sort of thing can be 
done with any convex polyhedron. Consider, for example, Fig. 4.2, in which the 
surface of a regular icosahedron has been projected onto a plane. Just as the 

' A contemporary of Benjamin Franklin (1706-1790). Leonhard Euler (1707-1783) was the most 
prolific mathematician of all time. 
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typical mercator projection of Earth makes Greenland appear comparable in size 
to South America, the congruent equilateral triangular faces of the icosahedron 
have been badly distorted. In fact, one of the 20 faces becomes the unbounded 
"exterior" region of the resulting plane graph! 

Figure 4.2 

In any such projection, there are natural one-to-one correspondences between 
the vertices of the polyhedron and the vertices of the graph, between the edges 
of the polyhedron and the edges of the graph, and between the faces of the 
polyhedron and the regions of the graph. Consequently, Equation (23) establishes 
a relationship between the numbers of faces (F), vertices (V), and edges (£) of 
any convex polyhedron, namely, 

F + V = E + 2. (24) 

4.3 Corollary. If G is a planar graph with n > 3 vertices and m edges, then 

m<3n-6. (25) 

Proof. Let G be a plane graph. It may happen that some nonadjacent pair 
of its vertices can be joined by a new edge, drawn so that it does not cross any 
of the existing edges of G. (Remember that arcs representing edges need not be 
straight line segments.) A triangulation of G is a plane graph H that contains G 
as a spanning subgraph, and to which no new edge can be added without crossing 
some existing edge. In Fig. 4.2, H = G is already triangulated. In this particular 
case, n = 12, m = (12 x 5)/2 = 30 = 3« - 6. 

In general, suppose H is a triangulation of G having n vertices and m + k 
edges. We will complete the proof by showing that m + k = 3n — 6. Evidently, H 
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is connected; otherwise, it would be possible to add a bridge between some pair 
of components (without crossing an existing edge of H). Moreover, the length 
of the boundary cycle {perimeter) of each region of H, including the unbounded 
region, must be three; otherwise, a chord of the cycle could be added to E(H) 
without crossing any existing edges. If H has a total of r regions, then, by 
counting the edges around the perimeter of each of them and summing over the 
regions, we obtain a total of 3r edges. In this total, each edge has been counted 
exactly twice; that is, 3r = 2(m + k). Solving for r and substituting the result into 
Equation (23) yields 2(m + k)/3 + n = (m + k) + 2; that is, m + k = 3n - 6. ■ 

4.4 Example. The complete graph, Κ$, has n = 5 vertices and m = 10 edges. If 
K¡ is planar, then, from Corollary 4.3, 10 < 3 x 5 - 6. So, K5 is not planar. D 

4.5 Corollary. Suppose G is a bipartite planar graph with m edges and n > 3 
vertices. Then 

m<2n-4. (26) 

Proof. Suppose G is a bipartite plane graph. By Theorem 2.23, G has no 
odd cycles. It may happen that some nonadjacent pair of vertices of G can be 
joined by a new edge that crosses none of the existing edges and does not create 
an odd cycle. Suppose a maximum number k of such edges have been added to 
G. Call the resulting bipartite plane graph H. This time, each of the r regions of 
H has a perimeter of length four and it follows that 2(m + k) = Ar. Substituting 
r — (m + k)/2 into Equation (23) yields (m + k)/2 + n = (m +k)+ 2; that is, 
2n — 4 = m + k > m. ■ 

4.6 Example. The complete bipartite graph, ΛΓ33, has n = 6 vertices and m = 9 
edges. If ΑΓ33 is planar, then, from Corollary 4.5, 9 < 2 x 6 — 4. So, £33 is not 
planar. D 

Suppose G is a plane graph. Then any graph obtained from G by removing 
some of its vertices and/or edges must also be a plane graph. Said another way, if 
H is not planar, then any graph containing a subgraph isomorphic to H cannot be 
planar. So far, we have identified two such forbidden subgraphs, namely, #5 and 
£3,3. Given a forbidden subgraph H, we can construct others by "subdividing" its 
edges. Informally, to subdivide e e E(H) means to put a new vertex of degree 2 
in the middle of e. 

4.7 Definition. Let H = (W, F) be a graph. Suppose that e = uw € F and υ $ 
W. Let G = (V, E), where V = W U {v} and E = (F\[uw}) U [uv, vw] is the set 
obtained from F by replacing e = uw with two new edges, uv and vw. Then G 
is a graph obtained from H by subdividing e. 

Suppose H has n vertices and m edges. If G is obtained from H by subdividing 
one of its edges, then G has n + 1 vertices and m + 1 edges. Moreover, any plane 
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drawing of H can be modified to obtain an embedding of G and vice versa; H 
is planar if and only if G is planar. The same thing could be said no matter how 
many edges of H were subdivided. A subdivision of H is any graph that can be 
obtained from H by subdividing edges. Thus, e.g., P„ is a subdivision of P2 for 
all n > 3 and C„ is a subdivision of C3 for all n > 4. While the graph G\ in 
Fig. 4.3 is a subdivision of / / , the graph Gi is not. 

X X /°\ 
0 0 0 0 0 0 

H G, G2 

Figure 4.3 

4.8 Definition. Two graphs are homeomorphic if they have isomorphic subdi-
visions. 

Informally, homeomorphic graphs are isomorphic "to within vertices of degree 
two." Evidently, any graph is homeomorphic to any of its subdivisions. Finally, 
and this is the point of the subdivision idea, if G has a subgraph homeomorphic 
to K5 or to #3,3, then G cannot be planar. In 1930, Kasimir Kuratowski proved 
the converse.2 

4.9 Kuratowski's Theorem. Let G be a graph. If G does not have a subgraph 
homeomorphic to K¡ or to #3,3, then G is planar. 

Omitting the long, technical proof of Kuratowski's Theorem, we return to 
another of the many consequences of Euler's Formula. 

4.10 Lemma. If G isa planar graph with n vertices and m edges, then 8(G) < 5. 

Proof. If 8(G) > 6, then 2m = Σ d(v) > 6n, contradicting Corollary 4.3. ■ 

4.11 Five-Color Theorem. Any planar graph can be colored properly with five 
colors; that is, if G is planar, then x(G) < 5. 

Proof. Because any graph on n < 5 vertices can be colored properly with 
five colors, a proof by induction on the number of vertices is off to a good start. 
So, assume χ(Η) < 5 for every planar graph H on k > 5 vertices, and let G 
be a plane graph on n = k + 1 vertices. By Lemma 4.10, G has a vertex w of 
degree at most five. If H = G — w, then, by the induction hypothesis, χ(Η) < 5. 

■ K. Kuratowski, Sur le problème des courbes gauches en lopologie. Fund. Math. 15(1930), 271-283. 
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If χ(Η) < 5, then any proper four-coloring of H can be extended to a proper 
five-coloring of G by giving w the fifth color. If dciyv) < 5, then any proper five-
coloring of H can be extended to G by giving w a color not assigned to any of 
its neighbors. Hence, we proceed under the assumption that χ{Η) = 5 = dciyv). 

Vertex w and its five neighbors in the plane graph G are illustrated in Fig. 4.4. 
If, in some proper five-coloring of H, two neighbors of w happened to be colored 
the same, then, once again, the proper coloring of H can be extended to G. This 
brings us to the hard case. Given a proper five-coloring of H, assume that vertex 
v¡ is colored c,, 1 < / < 5, and that these five colors are all different. 

0 
^3 

Figure 4.4 

Suppose there is a path P'mH from t>2 to v4, the vertices of which are colored 
alternately C2 and c4. Then C = (P, w) is a cycle in the plane graph G. It may be 
that t>3 is inside C, as shown in Fig. 4.5. The alternative is that v?, is outside C 
while v\ and v$ are inside. Either way, there could not exist a path in H from v\ 
to υ-}, the vertices of which are colored alternately c\ and C3. (A path in H from 
v\ to V) is a path in G, so it cannot cross an edge of C. Because the colors are 
wrong, it cannot pass through a vertex of C.) Evidently, H cannot contain both 
an alternating c\ — c3 path from v\ to v$ and an alternating ci — c4 path from 
V2 to V4. Without loss of generality, we may assume that H does not contain an 
alternating c\ — C3 path from v\ to V3. 

/ A \ 
C20 3 OC4 

\ / 
O O 

c4 c2 

Figure 4.5 

It might happen that no vertex of H is both adjacent to v\ and colored C3. If 
so, we could change the color of v\ from c\ to C3 and free up color c\ for w. 
The rest of the proof is a generalization of this idea: Let X be the set of those 
vertices x of H such that there is an alternating c\ — C3 path in H from vt to x. It 
is our working assumption that vj £ X. Now, the crucial observation about X is 
that if v e V(H) is colored either c\ or C3, and if v is adjacent to a vertex of X, 
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then v e X. Put another way, if v £ X, but v is adjacent to a vertex of X, then v 
is colored neither c\ nor c-¡. Consequently, if we switch the colors of the vertices 
in X, the result is a new, proper five-coloring of H, one in which both v\ and υ^ 
are colored c^. This new coloring may be extended to a proper five-coloring of 
G by assigning c\ to w. ■ 

In the last "hard" case of the proof, vertex v¡ appears to be superfluous. It 
seems that it ought to be possible, somehow, to eliminate v¡ and obtain a proof 
of the following. 

4.12 Four-Color Theorem. Any planar graph can be colored properly with four 
colors; that is, if G is planar, then x(G) < 4. 

In 1850, Francis Guthrie noticed that four colors suffice to distinguish the 
counties on a map of England and wondered whether four colors are enough to 
color the regions of any plane graph in such a way that regions whose perime-
ters share an edge are colored differently. Guthrie's younger brother, Frederick, 
shared the problem with his teacher, Augustus de Morgan. In 1852, de Morgan 
passed the problem on to William Rowan Hamilton. Eventually, in 1878, Arthur 
Cayley formally presented the problem at a meeting of the London Mathemat-
ical Society. The next year, British barrister Alfred Kempe published a "proof 
of the Four-Color Theorem in the American Journal of Mathematics. Several 
years later, Percy Heawood found an error in Kempe's proof. A century later, 
Kenneth Appel and Wolfgang Haken reduced the problem to a consideration of 
1476 "configurations." Using hundreds of hours of computer time, they managed 
to show that four colors suffice for each of them, thus proving the Four-Color 
Theorem.3 More recent work has reduced the number of configurations that have 
to be checked even as faster computers have reduced the time to check each one. 
Still, as of this writing, no one has found a proof of the Four-Color Theorem 
that is both correct and computer-free.4 

The connection between the original four-color problem and proper (vertex) 
colorings of graphs is through the notion of a geometric dual, an idea going 
back to Euclid. Let G be a plane graph. Denote the set of its regions by F(G) = 
{/,, f2 fr}. The vertex set of the geometric dual is V(Gd) = F(G). The 
edges of Gd are in one-to-one correspondence with the edges of G. Given e e 
E(G), suppose / , and fj are the regions of G on either side of e. Then the edge 
of Gd corresponding to e is / , / , · . 

4.13 Example. It is usually convenient to draw Gd right on top of G, with each 
edge of Gd crossing the edge of G to which it corresponds. The situation for G = 
K3 is illustrated in Fig. 4.6. The bad news is that Gd can be a multigraph — or 

3 See K. Appel and W. Haken, Every Planar Map Is Four Colorable, Contemporary Mathematics, 
Vol. 98, Amer. Math. Soc., Providence, R.I., 1989. 
4 This situation is frequently cited in philosophical discussions about the nature of mathematical 
proof. 
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worse. As illustrated in Fig. 4.7, Gd can be a pseudograph, an object that contains 
loops as well as multiple edges. (A loop is an "edge" from a vertex to itself.) 
Indeed, it is easily seen that loops in Gd correspond to bridges in G. Multiple 
edges occur when the perimeters of two regions of G share more than one edge. 

D 

o o 

<=- / \ O«, 
Figure 4.6 
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Figure 4.7 

4.14 Example. The graphs G\ and Gt illustrated in Fig. 4.8 are isomorphic; 
that is, they are two different embeddings of the same planar graph G. It may 
be somewhat surprising, therefore, to discover that Gd ^ G\. Put another way, 
the graphs illustrated in Fig. 4.8 are isomorphic, but their dual multigraphs are 
not! (While the confirmation of this fact is left to the exercises, why not take a 
minute to do it now?)5 D 

O o 

o o 
0¡ Gi 

Figure 4.8. Isomorphic plane graphs with nonisomorphic duals. 

O 
O i 

,0 

Despite the complications illustrated in these examples, every dual pseudo/mul-
tigraph Gd has a unique underlying graph G¿ obtained from Gd by removing 

5 It was shown by H. Whitney [Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 
(1932), 150-168] that this sort of thing cannot happen with 3-connected plane graphs. 
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loops and/or duplicate edges. (The underlying graph obtained from Gd in either 
Fig. 4.6 or 4.7 is Gd = K2.) 

If the vertex incident with a loop is adjacent to itself, no pseudograph could 
be colored properly. Thus, it is customary to ignore loops when coloring vertices. 
It follows from this convention that x(Gd) = x(Gd). Therefore, coloring regions 
of G is the same as coloring vertices of Gj. Because G</ is planar, the Four 
(Map)-Color Theorem is a consequence of Theorem 4.12. 

What about embedding graphs in other surfaces? It is not hard to see that a 
graph can be embedded in a plane if and only if it can be embedded in (the 
surface of) a sphere.6 A formal proof of this fact could be constructed along the 
following lines: Imagine a sphere S placed on a plane Π in such a way that the 
south pole of S corresponds to the origin, O, of Π. Let P φ O be a point of Π. 
If L is the line segment whose endpoints are P and the north pole of 5, then 
the interior of L intersects 5 in a unique point, call it f(P). Define f{0) to be 
the south pole of 5. Then / is a one-to-one function from Π onto the punctured 
sphere S' obtained from S by deleting its north pole. Moreover, any graph G 
embedded in Π is mapped by / to an embedding of G in S'. 

Conversely, any graph G that can be embedded in the sphere can be embedded 
in such a way that the north pole is in the interior of some region of G. For any 
such embedding, f~l(G) is a plane graph (whose unbounded region corresponds 
to the region of G that contains the north pole). Thus, as far as embedding graphs 
is concerned, planes and punctured spheres are equivalent surfaces. In particular, 
neither ΑΓ33 nor K¡ can be embedded in a sphere. 

Figure 4.9(a) shows ΑΓ5 embedded in a torus. It is, of course, the hole that makes 
the difference. Moreover, just as a punctured sphere is "topologically equivalent" 
to a plane, a punctured torus is topologically equivalent to a plane with an overpass. 
Figure 4.9(b) illustrates K5 embedded in a plane with an overpass. 

(a) (b) 

Figure 4.9 

A plane with a finite number of overpasses is an orientable surface. The 
number of overpasses is the genus of the surface. Pretty clearly, any graph can 

6 That is, drawn on the surface of a sphere in such a way that no two of its edges cross. Indeed, this 
observation is implicit in the equivalence of Equations (23) and (24). 
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be embedded in an orientable surface of sufficiently large genus: Let G be a 
fixed but arbitrary graph. Draw a picture of G in the plane. Adjust the picture 
if necessary so that at most two edges cross in any point (not representing a 
vertex). Then erect an overpass at every point where two edges of G cross. 

4.15 Definition. Let G be a graph. The genus of G, denoted yiG), is the 
minimum number of overpasses that must be added to the plane so that G can 
be embedded in the resulting surface. 

If G\ and Gi are isomorphic graphs, they share the same pictures. Thus, it 
is an immediate consequence of Definition 4.15 that γ is an invariant. It is the 
minimum genus of the orientable surfaces on which G can be drawn with no edge 
crossings. In particular, G is a planar graph if and only if yiG) = 0. Because K¡ 
is not planar, Fig. 4.9(b) proves that γ(Κ5 ) = 1. Just as the phrase "plane graph" 
refers to a particular embedding of a planar graph, a "bagel graph" is a particular 
toroidal embedding of a graph of genus 1. 

Consider the toroidal embeddings of G = K<¡, illustrated in Fig. 4.10. When 
G is deleted from the right-hand embedding, the result is a disconnected surface 
having four components, also known as regions. On the other hand, deleting G 
from the left-hand embedding leaves not four regions, but three! It seems the 
number of regions that result when a graph is embedded in a surface of positive 
genus depends on the embedding. It turns out, however, that this phenomenon 
cannot occur when yiG) coincides with the genus of the surface. If G is embedded 
in an orientable surface S of genus yiG), then the number of connected compo-
nents of S\G is independent of the embedding. Said another way, if G is drawn, 
with no edge crossings, on a plane having yiG) overpasses, the resulting number 
of regions is a function (only) of G. This independence from the embedding is a 
consequence of the following analog of Theorem 4.2. 

Figure 4.10 

4.16 Euler's Formula (for connected graphs of arbitrary genus). Suppose 
G is a connected graph with n vertices and m edges. If G is embedded in an 
orientable surface S of genus yiG), then the resulting number of regions is 

r(G) = m - n + 2 - 2yiG). (27) 

When G is planar, yiG) = 0, and Equation (27) evolves into Equation (23). 
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4.17 Example. Figure 4.9 exhibits the bagel graph G = K¡. From equa-
tion (27), r(G) — 10 — 5 + 2 — 2 = 5. To confirm this result, imagine the vertices 
in Fig. 4.9(b) to be fence posts (viewed from above) and the edges to be fences 
on the orientable surface, T. It is easy to identify four triangular regions which, 
taken together, might be described as a compound. As shown in Fig. 4.11, this 
compound is inside the cycle C = (v, y, u,x). We claim that the points of T\G 
outside C comprise a single region. To test this hypothesis, we are going to take 
a walk. Starting at a point outside the compound, midway between vertex (fence 
post) v and vertex y, walk along edge (fence) vy to vertex y. Keeping the fence 
on the left, continue long edge yx to vertex x. 

Figure 4.11 

The idea is to continue walking, within reach of the fence to our left, until we 
return to our starting point. During this walk, any point on our right, that can be 
reached without climbing a fence, is outside the compound. By the end of the 
walk it should be clear that any two points outside the compound can be joined 
by an arc that roughly parallels our walk and crosses none of the fences — that 
is, that the points of T\G not inside the compound comprise a single region. 
This confirms that the embedding creates exactly five regions, one outside and 
four inside the compound. 

While this perambulation on the orientable surface may have clarified one 
issue, it has raised some others. Taken in order, the vertices of G that we encoun-
tered on our recent walk were y, x, v, u, x, y, u, v. It seems we walked along every 
edge of the cycle C exactly once, but along xy and uv twice! Moreover, while 
we returned to the starting point without retracing any steps, our route was not 
along any cycle of G! Among the problems of a rancher grazing cattle on the 
surface is what to do about fences xy and uv. Among the problems for the graph 
theorist is how to describe the boundary of the outside region. (Such problems 
do not arise for graphs embedded in the plane!) D 

4.18 Definition. A walk in G of length k, from v to w, is a sequence v = 
UQ, u\,..., u¡c = w of vertices of G such that «,_iw, e E(G), 1 < / < k. If w = v, 
the walk is said to be closed. 
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Evidently, a path is a walk in which the vertices are all different, and a cycle 
is a closed walk all of whose vertices are distinct. 

Suppose R is a region created by the embedding of some graph G in a surface 
of genus y > 0. Then the perimeter (boundary) of R is a closed walk in G. If 
R lies on both sides of some e e E(G), then e occurs exactly twice along its 
perimeter. If no such e exists, then the perimeter of R is a cycle of G. 

4.19 Theorem. Let G be a connected graph with n > 3 vertices and m edges. 
Then 

„ m n 
y ( G ) > - - - + l. (28) 

o z 

Proof. If n = 3, then y(G) = 0, and the result follows from the fact that 
m < 3. Otherwise, let r be the number of regions created by an embedding of G 
in an orientable surface of genus y(G). Summing the numbers of edges around 
the perimeter of each region (multiplicities included) we obtain a total of 2m 
because, in this sum, each edge is counted twice. On the other hand, because the 
perimeter of a region has at least three edges, the total can be no less than 3r. So, 
2m > 3r. When this inequality is used to eliminate r — r(G) from Equation (27), 
the result is equivalent to (28). ■ 

When G = K„, Inequality (28) becomes 

C(n,2) n 

n(n — 1) 6n 12 
= Ï2 1 2 + T 2 
_ n2-7n + \2 
~~ 12 ' 

Rewrite (29) as 
12y„ -\2>n2 -In, 

where y„ = y{Kn ). Completing the square yields 

I2yn + \ > ( n - l ) 2 . 

Taking square roots and rearranging terms, we obtain 

7 + V48^TTT 
— > n 

(29) 

2 
= X(Kn), (30) 
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a relation between the genus and chromatic numbers of Kn. Percy Heawood7, 
was able to extend Inequality (30) so as to encompass all nonplanar graphs. 

4.20 Heawood's Theorem. IfyiG) > 0, then 

1 + V48y(G) + 1 > X(G). (31) 

Setting y(G) = 0 in (31) yields 4 > x(G), precisely the Four-Color Theorem. 
Imagine how frustrating it must have been for Heawood to be able to prove 
Inequality (31) for all graphs of positive genus, yet not to be able to prove it 
when y{G) = 0. 

When yiG) = 1, (31) becomes 7 > y(G). Can that be a tight upper bound? Is 
there a bagel graph whose vertices cannot be colored properly with six colors? 
More generally, denote a plane with p overpasses by Πρ. (Then Πρ is an 
orientable surface of genus γ = p.) Let χ(Πρ) = maxx(G), where the maximum 
is over all graphs G that can be embedded in Tlp. By the Four-Color Theorem, 
χ(Πυ) = 4. What is the value of χ(Πρ) in general? The answers to these ques-
tions emerge in an interesting way. Instead of completing the square in Inequ-
ality (29), factor the numerator so as to obtain 

Because it must be an integer, 

y(tf„)> 

(n - 3)(/i - 4) 
12 

( w - 3 ) ( n - 4 ) 
12 

(32) 

(33) 

Heawood believed Inequality (33) to be an identity, a result that was finally 
proved by Ringel and Youngs in 1968.8 

4.21 Theorem. The genus γ(Κ„ ) — (n-3)(n-4) 
12 

, n > 3 . 

It follows from Theorem 4.21 that γ(ΚΊ) = 1; that is, Κη has a toroidal embed-
ding. Since χ(Κη ) = 7, this embedding is a bagel graph that cannot be colored 
properly with only 6 colors. This proves that Inequality (31) is tight for graphs 
of genus 1; that is, χ(Π|) = 7. More generally, 

x(n„) = 
7 + V48/> + 1 

for all p > 0. 

7 P. J. Heawood, Map colour theorems. Quart. J. Pure Appl. Math, 24 (1890), 332-338. 
8 G. Ringel and i. W. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. 
Sei. 60(1968), 438-445. 
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What about Kuratowski's Theorem? Does it have an analog, say, for bagel 
graphs? It is known that, for every nonnegative integer p, there exists a finite 
set of forbidden graphs F(p) such that G can be embedded in an orientable 
surface of genus p if and only if it does not have a subgraph homeomorphic to 
an element of F(p). But, this result is existential. No one has found an exact 
analog of Kuratowski's Theorem for any p > 0. 

EXERCISES 

1 Prove that every tree is a planar graph. 
2 Use Equation (23) and Exercise 1 to prove that every tree on n vertices has 

n — 1 edges. (Compare with Chapter 2, Exercise 31.) 
3 Let G be a planar graph on n > 4 vertices. Prove that G has at least four 

vertices of degrees at most five. 
4 Prove that G is planar if and only if each of its blocks is planar. 

5 In 1936, K. Wagner proved that every planar graph has an embedding in 
which each edge is represented by a straight line segment.9 Draw such an 
embedding of 
(a) K5 - e. (b) tf 3,3 - e. (c) Q . 

6 Prove that every triangulated plane graph on n > 3 vertices is 2-connected. 
7 Prove or disprove the converse of the Four-Color Theorem. 
8 Suppose e = uv e E(G). Recall that G/e is obtained from G by contracting 

e — that is, by deleting edge e, coalescing vertices u and v into a single 
vertex, and deleting any multiple edges that may have arisen in the process. 
Say that G is contractible to H if H can be obtained from G by a sequence 
of contractions. It was proved by Wagner10 that G is planar if and only if 
it does not have a subgraph that is contractible to K5 or to ΛΓ33. Prove that 
the Petersen graph is not planar 
(a) using Wagner's criterion. 
(b) using Kuratowski's criterion. 

9 In 1985, chemists synthesized the first fullerene,1 ' a molecule, COO (not to be 
confused with the cycle of length 60), consisting of 60 carbon atoms — and 
nothing else. The existence of this third form of carbon (the first two being 

9 K. Wagner, Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.-Verein. 46 (1936), 26-32. 
The result was discovered independently by I. Fáry, On the straight line representations of planar 
graphs, Acta Sei. Math. 11 (1948), 229-233. 
10 K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570-590. 
" Robert Curl, Harold Kroto, and Richard Smalley received the 1996 Nobel Prize in Chemistry for 
this work. They were assisted by graduate students J. R. Heath and S. C. O'Brien. 
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graphite and diamond) had been predicted by R. Buckminster Fuller. Less 
expected were C70, C76, Cs4, C90, and others, all of which had been produced 
by 1992. Molecular C«) comes in a recognizable form. Known to mathemati-
cians as a truncated icosahedron, it is one of the 13 semiregular polyhedra 
classified by Archimedes in the third century BC. (See Fig. 4.12.) While 
every fullerene takes the shape of a convex polyhedron each of whose faces 
is a pentagon or a hexagon, none of the higher fullerenes is semiregular. 

Figure 4.12 

(a) Prove that the number of pentagonal faces in each (and every) fullerene 
is exactly 12. 

(b) Prove that every fullerene molecule contains an even number of carbon 
atoms. 

(c) Compute the number of hexagonal faces in molecular C„. 
(d) Compute the number of hexagons on a soccer ball. 

10 Let G be a plane graph. 
(a) Suppose e(G) > 2 and 8(G) > 3. Prove that Gd is a graph (i.e., 

Gd = Gd). 
(b) Suppose G is 3-connected. Prove that Gd is a graph. 

11 Graph G is coplanar if both G and Gc are planar.12 

(a) Suppose G is a graph on AI < 5 vertices that is not coplanar. Prove that 
G = K5OTG = K\. 

(b) Exhibit a coplanar graph G on 6 vertices such that both G and its 
complement are connected. 

(c) Let G be a coplanar graph on n vertices. Prove that n < 11. 

12 D. Cvetkovié, A. Jovanovié, Z. Radosavljevié, and S. Simia, Coplanar graphs. Publikacije Elek. 
Fak. Univ. Belgrade 2 (1991), 67-81. 
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12 Let G\ and G-i be the plane graphs illustrated in Fig. 4.8. Prove the following: 
(a) G\ and Gi are isomorphic. 
(b) G\ and Gj have nonisomorphic dual multigraphs. 
(c) The graphs underlying the duals of G\ and G2 are isomorphic. 

13 Let G be the plane projection of an icosahedron illustrated in Fig. 4.2. 
(a) Exhibit a proper 4-coloring of the vertices of G. 
(b) Prove that Lemma 4.10 cannot be strengthened to the following: If G 

is a planar graph, then 8(G) < 4. 

14 Let G — P3V C4, the join of P3 and C4. 
(a) Prove that G is not planar. 
(b) Exhibit G as a bagel graph. 

15 Find a graph G that contains a subgraph homeomorphic to ΑΓ3, but such 
that the chromatic number x(G) = 2. 

16 Let G be a plane projection of a regular tetrahedron (a pyramid with a 
triangular base). Prove the following: 
(a) G is isomorphic to ΛΓ4. 
(b) G is isomorphic to Gd. 

17 Let G = KX3. 
(a) Prove that y(G) < 1 by embedding G in a plane with one overpass. 
(b) Explain how part (a) completes the proof that ^(#33) = 1. 

18 Let G be a plane graph. 
(a) If G is connected, show that (Gd)d — G. 
(b) If G = 2/Γ3, show that (Gd)d is isomorphic to the overlap of #3 and 

K3 in K\ 

19 Let G be a plane graph. Prove that Gd is connected. 

20 Let Y be the set of edges along some cycle of a connected plane graph 
G. Denote by Yd the corresponding set of edges of Gd. Prove that Yd is a 
disconnecting set of edges of Gd. 

21 The Heawood graph H is shown in Fig. 4.13. Prove that γ(Η) < 1 by 
embedding H in an orientable surface of genus 1 (a plane with a single 
overpass). 

22 Let G = K4A. 
(a) Explain why y(G) > 1. 
(b) Exhibit G as a bagel graph by embedding it in a surface 5 consisting 

of a plane with a single overpass. 
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Figure 4.13 

(c) Use Euler's Formula (for connected graphs of arbitrary genus) to com-
pute r(G). 

(d) Use your illustration from part (b) to confirm your answer to part (c). 

23 Show that no complete graph has genus 7. 

24 Compute χ(Πρ) for p — 
(a) 2. (b) 3. (c) 4. (d) 5. (e) 6. 

25 According to Theorem 4.21, Κη can be embedded in a torus. How many 
regions would the resulting bagel graph have? 

26 Let G = Kb. 
(a) Use Theorem 4.21 to show that y(G) = 1. 
(b) Exhibit G as a bagel graph by embedding it in the surface obtained by 

adding a single overpass to the plane. 
(c) Confirm Euler's Formula (for connected graphs of arbitrary genus) by 

counting regions in your solution to part (b). 

27 G. Ringel has shown that Y(KS,,) = \(s - 2)(/ - 2)/4] (unless s = t = 1). 
(a) Prove that #2,; is planar using Ringel's formula. 
(b) Prove that Kiit is planar by embedding it in the plane. 
(c) Compute γ(Κ,Λ) for / = 4, 5, 6, and 7. 

28 Let G be a graph on n > 4 vertices and m edges. Prove that /(G) > fl + 
(m-3/0/61. 

29 Find the error in the following "proof of the theorem of Ringel and 
Youngs: Let G be a connected graph on n > 4 vertices. Assume G has 
been embedded in a surface of genus y = y(G). Let H be a triangulation 
of G. If H has m edges, then counting edges around the perimeter of each 
of the r = r(H) regions yields the identity 2m = 3r. Let d be the average 
of the vertex degrees of H. By the first theorem of graph theory, 2m = nd. 
Substitute r = nd/3 and m = nd/2 into Equation (27). Rearranging terms 
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gives 6 + \2(y — \)/n = d < n — 1 (with equality if and only if H — K„). 
Solving the inequality, we obtain γ < (n - 3)(« — 4)/12 which, together 
with (32), completes the proof of Theorem 4.21. 

30 Let A„ be the unique connected, antiregular graph on n vertices. (See 
Chapter 2, Exercises 36-38.) 
(a) Show that y(A7) = 0. 
(b) Find YiAg). 
(c) Find y(Ag). 
(d) Show that γ(Α\0) = 1. 

31 The discovery of higher fullerenes (see Exercise 9) set off a furious race 
to describe their structures.13 The search for the most chemically stable 
configurations precipitated a revival of one of the old war horses of theo-
retical organic chemistry, the Hiickel molecular orbital (HMO) method. By 
making simplifying approximations in the quantum mechanical Schrödinger 
equation, Hiickel discovered a correlation between chemical stability and 
graph energy. The energy of a connected, planar "Hiickel" graph C o n n 
vertices is 

n 

¿ = 1 

where γ\, y^,..., y„ are the eigenvalues of the adjacency matrix, A(G). 
As a rough-and-ready estimate, molecules whose chemical graphs satisfy 
H(G) > n are predicted to be stable. 
(a) Compute the energy of propylene (chemical formula C3H6) whose Hiic-

kel graph is the path P3. 
(b) Compute the energy of benzene (chemical formula CéH6) whose Hiickel 

graph is the cycle Ce-

32 Let G = Qk be the cube graph of Chapter 1, Exercise 33. 
(a) Show that Q3 is planar. 
(b) Show that Qi, is not planar. 

33 Let G be the plane graph illustrated in Fig. 4.7. Find a nonisomorphic plane 
graph H on 5 vertices such that Hd = Gd. 

34 Let G be the "cocktail party" graph shown in Fig. 4.14. 
(a) Show that G = (3K2)C. 
(b) Illustrate G as a plane graph. 

13 The 24 possibilities for Cs4 are identified in [D.E. Manolopoulos and P. W. Fowler, Molecular 
graphs, point groups, and fullerenes, J. Chem. Phys. 96(1992), 7603-7614]. 
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35 Let G and H be the graphs in Fig. 4.15. 

(a) Show that G is the plane projection of a regular octahedron. 
(b) Show that G is isomorphic to the graph in Fig. 4.14. 

Figure 4.15 

(c) Show that Gd = G¡¡ is isomorphic to the plane projection of a cube. 

(d) Show that G is a triangulation of an appropriate plane drawing of Cf,. 

(e) Show that X(G) = 3. 

(f) Show that H is a triangulation of an appropriate plane drawing of C(,. 

(g) Show that χ(Η) = 4. 

(h) Prove that G and H are not isomorphic.14 

14 It was proved by M. Król [On a sufficient and necessary condition of 3-colorability of a planar 
graph, I and II, Prace Nauk. Inst. Mat. Fiz. 6 (1972), 37-40 and 9 (1973), 49-54] that a planar graph 
is properly 3-colorable if and only if it is isomorphic to a subgraph of some plane triangulation each 
of whose vertex degrees is even. Nevertheless, it is an NP-complete problem to decide if a given 
planar graph is properly 3-colorable. (See [M. R. Garey, D. S. Johnson, and L. J. Stockmeyer, Some 
simplified NP-complete graph problems. Theoretical Computer Science 1 (1976), 237-267].) At the 
other extreme, H. Grötzsch [Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin 
Luther Univ. 8 (1959), 109-120] showed that every triangle-free planar graph G (i.e., w{G) < 2) is 
properly 3-colorable. (See [T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 
1995] for an encyclopedic discussion of such issues). 
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(i) Show that p{G,x) > 0 for all real x > 4.15 

(j) Show that p(H, x) > 0 for all real x > 4. 

15 Attempting to resolve the (then) Four-Color Conjecture, G. D. Birkhoff and D. C. Lewis [Chro-
matic polynomials, Trans. Amer. Math. Soc. 60 (1946), 355-451] proved that, for any plane tnan-
gulation G, p(G, x) > 0 for all real x > 5; they conjectured that p(G, x) > 0 for all x > 4. It is 
still not known whether there exists a plane tnangulation G and a real number JCO e (4, 5) such that 
p(G, xo) = 0. 



5 
Hamiltonian Cycles 

Let's plan a trip cycling around Europe. Flying in, say, to Amsterdam we cycle 
to Berlin, Copenhagen, Danzig, Edinburgh (by ferry), and so on, each leg of the 
trip taking us to a new city, until returning us to Amsterdam for the flight home. 
Given two months for the trip, we might hope to visit as many as twenty cities. 
While it may not be as much as "half the fun," something pleasurable may come 
just from planning such a trip—or so thought William Rowan Hamilton. In 1857, 
Hamilton developed a trip-planning game, basing it on a regular dodecahedron. 

A dodecahedron is a polyhedron having 12 pentagonal faces. Because each 
pentagon has five vertices, and each vertex is shared by three pentagons, a dodec-
ahedron has (12 x 5)/3 = 20 vertices. Labeling each vertex with the name of a 
city, Hamilton invited players to find routes, along the edges of the dodecahedron, 
that visit each city exactly once and end up back at the starting point. Figure 5.1 
shows the "Mercator projection" of a regular dodecahedron. Traveling along the 
edges of this graph, from vertex to vertex in the order indicated, results in what 
has come to be known as a hamiltonian cycle.1 

Figure 5.1 

1 Two years before Hamilton introduced his game, Thomas Kirkman posed the following problem: 
Given the graph of a polyhedron, is it always possible to find a cycle containing every vertex? 

83 
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5.7 Definition. A path containing every vertex of G is a hamiltonian path. A 
cycle containing every vertex is a hamiltonian cycle. A graph is hamiltonian if 
it contains a hamiltonian cycle. 

A hamiltonian path in a graph on n vertices is a spanning subgraph isomorphic 
to Pn, and a hamiltonian cycle is a subgraph isomorphic to C„. Thus, G is 
hamiltonian if and only if it contains a spanning cycle.2 

From Fig. 5.1, it is easy to see that the dodecahedron has a spanning cycle. 
In fact, if we regard two cycles as equivalent if they cycle through the same 
vertices, in the same order (without regard to starting = ending point), then the 
dodecahedron has 60 inequivalent spanning cycles, occurring in natural (for-
ward-backward) pairs — for example, 

(1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 , 10, 11, 12, 13, 14, 15, 16,17, 18, 19,20) and 
(1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); 

(1,8, 9, 10, 11, 12, 13, 14, 4, 5, 6, 7, 3, 2, 15, 16, 17, 18, 19, 20) and 
(1, 20, 19, 18, 17, 16, 15, 2, 3, 7, 6, 5, 4, 14, 13, 12, 11, 10, 9, 8); 

(1,2, 15, 16,17, 18,11, 10,6,5,12, 13, 14,4,3,7,8,9,19,20) and 
(1, 20, 19, 9, 8, 7, 3, 4, 14, 13, 12, 5, 6, 10, 11, 18, 17, 16, 15, 2); 

(1, 20, 16, 15, 2, 3,4, 14, 13, 17, 18, 19, 9, 10, 11, 12, 5, 6, 7, 8) and 
(1 ,8 ,7 ,6 ,5 ,12, 11, 10,9,19, 18, 17, 13, 14,4,3,2, 15, 16,20); 

and so on. 
Figure 5.2 contains two illustrations of the Petersen graph. (The proof that 

these two different looking graph are isomorphic is "by the numbers.") Unlike 
Fig. 5.1, the numbers in Fig. 5.2 do not exhibit a spanning cycle. Indeed, the 
point of the figure is to facilitate a discussion of whether the Petersen graph 
has a hamiltonian cycle. It is clear from the right-hand picture that it has a 
cycle of length 9, but what about a cycle of length 10? Since we may "start" a 
spanning cycle at any vertex, it may as well be with vertex 1. There will be three 

i 

Γ 
02 

V0&°7 30 Ό 7 

\ / \ / 
O O 

5 6 

Figure 5.2. Two illustrations of the Petersen graph. 

2 Not to be confused with an induced cycle. 
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choices for the second vertex, either 10, 2, or 4. Because vertices 10 and 2 are 
symmetrically placed (in the right-hand picture), we may eliminate one of them, 
say 10, from considerations of existence. Searching for a 10-cycle, suppose we 
start with the path [1 ,4 ,5 ,6 ,7 ,2 ,3 ,9 ] . If we go to 8 next, we're stuck with 
no place to exit because the neighbors of vertex 8 have already been visited. 
If the next vertex were 10, then, because 6 and 9 have already been visited, 
we would have no choice but to cycle back to 1, leaving out vertex 8; that is, 
(1, 4, 5, 6, 7, 2, 3, 9, 10) is another 9-cycle in G. Maybe starting with [1,4, 5, 3] 
would be better. From 3 we might, for example, patch on [3, 2, 7] unless, perhaps, 
[3, 9, 8, 7] seems more promising. 

Eventually, by exhausting all possibilities, one finds that the Petersen graph is 
not hamiltonian.3 It does not contain a subgraph isomorphic to Cio- Of course, 
few things stimulate mathematical thinking more than the prospect of having to 
exhaust a large number of cases. 

Let G be a graph on n vertices. Suppose H is a fixed but arbitrary spanning 
subgraph of G. Let S be a vertex cut of G. Because it is a spanning subgraph of 
G - S, the number of connected components of H - S can be no smaller than 
the number of components of G — S. Therefore, K(G) > κ(Η). It follows that 
K(G) > K(C„) = 2 for any hamiltonian graph G. This proves the following. 

5.2 Theorem. Every hamiltonian graph is 2-connected. 

In fact, a little more can be squeezed from this idea. If u e V(C„), then 
Cn — u = />„_; is connected. Suppose v e V(Cn — u). If v is a pendant vertex 
of C„ — u, then C„ — u — v = Pn-i is still connected; otherwise, it is a graph 
with two components, each of which is isomorphic to a path. Removing a third 
vertex results in a graph with at most three components, and so on. In general, 
the number of components of C„ — S is at most o(S) whenever φ φ S C V(Cn). 
These observations prove the following. 

5.3 Theorem. If G is hamiltonian, then the number of components of G — S is 
at most the cardinality of S, φ φ S C V(G). 

Let £(G) be the number of components4 of G. By Theorem 5.3, G is hamil-
tonian only if £(G - 5) < o(S), φ φ S C V(G). 

5.4 Example. Let G be the 2-connected "frog graph" in Fig. 5.3. If S = {u, v), 
then £(G — S) = 3 > 2 = o(5). Hence, by Theorem 5.3, G is not hamiltonian. 

D 
3 Computers are useful for this sort of thing. For the Petersen graph, 2 x 38 = 13,122 bounds the 
number of possibilities, so almost any algorithm should produce a negative answer in a reasonable 
amount of time. On the other hand, if we really needed to know about some graph with hundreds 
of vertices, it might be worth searching for a good algorithm to find hamiltonian cycles. How 
hard should one look? This is what computational complexity is all about. One of the reasons the 
hamiltonian cycle problem is of interest is that it is known to be NP-complete. 
4 Don't confuse Ç(G) with the edge connectivity, s(C). 
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Figure 5 3 

What about the converse of Theorem 5.3? Might this necessary condition 
also be sufficient? No — the Petersen graph is a counterexample. We must look 
elsewhere for sufficient conditions. 

5.5 Ore's Lemma.5 Let G be a graph on n vertices. Suppose u and w are two 
nonadjacent vertices of G such that dc(u) + dG(w) > n. Let G\ = G -f- uw, the 
graph obtained from G by adding a new edge e — uw. Then G is hamiltonian if 
and only if G\ is hamiltonian. 

Proof. Necessity is obvious. Adding an edge cannot destroy an existing cycle. 
Conversely, if G\ is hamiltonian but G is not, then G must contain a span-

ning path [u — v\,V2, ■ ■ ■ ,v„ = w]. Let A = {i: v¡w e £(G)} and B = {/: uvi+\ € 
E(G)}. Then n $. A because v„ = w, and n £ B because there is no vn+\. Since 
o(A) = dG(w), o(ß) = dG{u), and n £ A U B, we have 

n - l > o ( A U S ) 

= o(A) + o(B) - o(A n B) 

= dG(u) + dG(B) - o(A n B) 

>n-o(A(l B), 

proving that ΑΠΒ φ φ. So, there is an integer k < n — 1 such that v^w € E(G) 
and uvk+\ e E(G). Since uw £ E(G), 1 < k < n — 1. Therefore, {u = v\,V2, ■ ■ ■, 
vk, w = v„, u „_ i , . . . , Vk+\) is a spanning cycle of G. ■ 

The following definition is motivated by Ore's Lemma. 

5.6 Definition. Let G be a graph with vertex set V(G) = [v], vi,..., v„}. The 
closure of G, denoted G, is the graph generated by the following algorithm: 

1. Let H = G. 
2. For /' = 1 to n — 1 
3. For j = i + 1 to n 
4. If v¡vj i E{G) and dG(v¡) + dc(Vj) > «, then G = G + v¿Vj. 
5. Next j 

5 O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 61 (I960), 55. 
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6. Next / 
7. If G φΗ, then Step 1. 
8. G = G. 

In ordinary English prose, G is obtained recursively by adding new edges 
between nonadjacent vertices, the sum of whose degrees is not less than n, until 
no such pair remains. 

5.7 Example. As illustrated in Fig. 5.4, the closure of G = C5 + e is G = K¡. 
O 

>o o. .0. o o O - Or - Φΐ - ffî - Mr 
o—o 0—0 0—0 '0<L"¿ x ¿ ^ 0 ' 

Figure 5.4 

5.8 Theorem. Let G be a graph. Then G is hamiltonian if and only if G is 
hamiltonian. 

Proof. Immediate from Ore's Lemma and the definitions. ■ 

5.9 Corollary. Let G be a graph on n > 3 vertices. If the closure of G is comp-
lete, then G is hamiltonian. 

Proof Immediate from Theorem 5.8 and the fact that Kn is hamiltonian for 
all n > 3. ■ 

5.10 Corollary. Let G be a graph on n > 3 vertices. If its minimum vertex 
degree, 8(G) > n/2, then G is hamiltonian. 

Proof. Immediate from Corollary 5.9 and the definitions. ■ 

There is a technical difficulty with these results. What is there to guarantee 
that G is well-defined? I might recursively add edges between nonadjacent pairs 
of vertices . . . and arrive at G = H\. Meanwhile, joining different nonadjacent 
pairs, or even some of the same pairs but in a different order, you might end up 
with G = Hi- If H\ φ Hi, the last few paragraphs will need to be revised. 

5.11 Theorem. The closure of G is well-defined. 

Proof. Suppose Hx = G + e\ + e2 H + er and H2 = G + e\ + e'2 + 
■ ■ ■ + e's are closures of G. We claim that e¡ e E{Hi), 1 < i < r, and e'¡ e E(H\), 
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1 < j < s. Otherwise, without loss of generality we may assume k is the smallest 
positive integer such that e* ^ £(#2)· Let e* = uv and define H — G + e\ + 
■ ■ ■ + ek-\. It follows from the derivation of H\ that dn(u) + dH(v) > n. By the 
choice of e^, H is a subgraph of Hi- Therefore, the sum of the degrees of u and 
v in H2 can be no less than n, meaning that e* must be an edge of the closure 
H2· This contradiction establishes the claim and proves the theorem. ■ 

5.12 Example. Corollary 5.9 gives a sufficient condition for a graph to be 
hamiltonian. Is the condition also necessary? Is G hamiltonian only if G = Kn ? 
Answer: No. If G = C$ then G is hamiltonian, but G = G φ Κ$. □ 

Recall that d(G) = (d\, di,..., dn ) where d\ > dj > ■ ■ · > d„ are the degrees 
of the vertices of G arranged in nonincreasing order. The next result involves a 
condition on d(G) sufficient to guarantee that G is hamiltonian. It turns out that 
the condition is more easily stated when the degrees are rearranged in nonde-
creasing order. For this purpose, define <5, = dn-¡+\, 1 < 1 < n. Then S] = d„, 
&2 = d„-\,..., δ„ = d\, and δ\ <δ2<--<8„. 

5.13 Pósa's Theorem.6 Let G be a graph on n > 3 vertices of degrees S\ < 
¿2 < . . . < sn .IfSk > k, 1 < k < n/2, then G is hamiltonian. 

Because its hypotheses are satisfied when S(G) > n/2, Pósa's Theorem is 
stronger (weaker hypotheses, same conclusion) than Corollary 5.10. We are, in 
fact, going to prove an even stronger result. 

5.14 (Technical) Lemma.7 Let G be a graph on n > 3 vertices of degrees 8\ < 
¿2 < . . . < s„. If Si¡ > k or <$„_* > n — k, 1 < k < n/2, then G is hamiltonian. 

The value of Lemma 5.14 lies not in its simplicity, but in its usefulness. Apart 
from being stronger than Pósa's Theorem, it is the key to Chvátal's Theorem 
(below). On the other hand, even this complicated sufficient condition is not 
necessary. If G = C7, then 2 = ¿3 < 3 and 2 = 84 < 4. 

Proof. We will use the hypotheses of Lemma 5.14 to prove that G = Kn. 
The proof is by contradiction. If G φΚη, then G has a pair of nonadjacent 
vertices. From all such nonadjacent pairs, choose u and w so that d(u) + d(w) 
is as large as possible, where d(v) = d^iv) denotes the degree of vertex v in G. 
Let p = d(u) and q = d(w). Without loss of generality, we may assume p < q. 
Moreover, p + q < n — 1; otherwise uw e E(G). In particular, p < n/2. 

Apart from w itself, there exist (n — 1 ) — q vertices of G that are not adjacent 
to w. If v is any one of them, then, by our choice of u and w, d(v) < d(u) = p. 
Hence, at least n — 1 — q of the vertices of G have degrees at most p\ that 

6 L . Posa, A theorem concerning Hamilton lines, Magyar Tud. Akad. Mat. Kutató Int. Kozl. 7 (1962), 
225-226. 
7 Lemma 5.14 appeared in [V. Chvátal, On Hamilton's ideals, J. Combinatorial Theory B 12 (1972), 
163-168]. 
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is, S] < S2 < ■ ■ ■ < án-i-<? < P- Because p < n — 1 — q, we see that Sp <SP < 
&n-\-q < P- Since p < n/2, the hypotheses guarantee that n — p < <5„_p < £„_,,. 
Thus, to reach a contradiction, it suffices to show 5„_p < q. (Why?) 

Apart from u itself, there exist (« — 1 ) — p vertices of G that are not 
adjacent to u. If v is any one of them, then d(v) < d(w) = q. Because 
d(u) = p < q, at least n — p vertices of G have degrees at most q; that is, 
¡5, < S2 < ■ ■ ■ < \-p <q. ■ 

Denote the graph in Fig. 5.5 by (the descriptive name) λ. 

°\ 
o 

/ \ o—o 
Figure 5.5 

5.15 Theorem. Let G be a 2-connected graph. If no induced subgraph of G is 
isomorphic to Κχτ, or to λ, then G is hamiltonian. 

Proof. Because G is 2-connected, it must have at least three vertices and at 
least one cycle. (Indeed, by Theorem 3.15, every pair of vertices of G lies on a 
cycle.) Let C be a longest cycle of G. If C is not a spanning cycle, then there 
is a vertex v on C and a vertex u not on C such that uv e E(G). Let x and y be 
the vertices of C adjacent to v. If ux e E(G), then replacing the subpath [x, v] 
of C with the path [x, u, v] produces a longer cycle. Similarly, uy 4 E(G). Let 
H — G[u, v, x, y], the subgraph of G induced by {u, v, x, y). If xy e E(G), then 
H = λ. Otherwise, H = S4 = #, ,3 . ■ 

V. Chvátal found an interesting generalization of the graph λ appearing in 
Theorem 5.15. 

5.16 Definition. If n > 3 and 1 < r < n/2, the Chvátal graph Gnr = Kr v 
(Kc

r®Kn„2r). 

5.17 Example. The Chvátal graph G4il = Kx v (ΑΊ φ K2) = λ, the forbidden 
subgraph from Theorem 5.15; G72 = K2 v (Kc

2 φ ΑΓ3) is illustrated in Fig. 5.6. 
In general, the degree sequence of Gnr is 

d(Gn,r) = (n-\,...,n- \ , n - r - \ n - r - 1, r , . . . . r), (34) 

where n — r — 1 occurs with multiplicity n — 2r, and both n — 1 and r occur 
with multiplicity r. D 
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O 

Figure 5.6 

Let 5 be the set of vertices of Gnr corresponding to Kr. Then £(G„,r — 
S) — r + 1 > r = o(S) so, by Theorem 5.3, Gnr is not hamiltonian. In the sense 
about to be defined, the Chvátal graphs G„ r , 1 < r < n/2, are the dominant 
nonhamiltonian graphs on n vertices. 

5.18 Definition. Let a\ > ai > · · · > an and b\ > b2 > ■ ■ ■ > b„ be two nonin-
creasing integer sequences. If a, > b¡, 1 < i < n, then the sequence of a's is said 
to dominate the sequence of b's. 

5.19 Chvátal's Theorem. Let G be a nonhamiltonian graph on n > 3 vertices. 
Then there exists a positive integer r < n/2 such that d(G„¡r) dominates d(G). 

Proof. Let ái < ¿2 < · ■ · < δη be the degree sequence of G in nondecreasing 
order. If a* > k or 5„_* > n — k, for all k < n/2, then, by Lemma 5.14, G is 
hamiltonian. Thus, there must exist a positive integer r < n/2 such that Sr < r 
and á„_r < n — r — 1; that is, 5,· < r, 1 < / < r and S¡ < n — r — 1, r + 1 < i < 
n — r. Because δ, < n — 1 for all /, it follows from Equation (34) that d{Gn>r) 
dominates d(G). ■ 

Chvátal's Theorem gives another sufficient condition for a graph G on n 
vertices to be hamiltonian, namely, if d(G) is not dominated by d(G„ir) for any 
r < n/2. The next sufficient condition is as elegant as it is unexpected. 

5.20 Theorem. Let G be a graph on n > 3 vertices. If the connectivity of G is 
an upper bound for its independence number—that is, if K(G) > ot{G) — then G 
is hamiltonian. 

Proof. If a(G) = 1, then G = K„, a hamiltonian graph. So, we may assume 
k = AC-(G) > a(G) > 2. By Theorem 3.20, every set of k vertices of G lies on a 
cycle. Let C be a cycle of maximum length Í > k. If i = n, the proof is complete. 
Otherwise, let w¡, 1 < / < k, be distinct vertices of C and u a vertex of G not on 
C. By Corollary 3.19, there exist paths Ρλ,Ρ2, ...,Pk'mG such that 

P¡ is a path from u to w,·, 1 < i < fc, 

and (35) 

P¡ r\Pj = {«} whenever i Φ j . 
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If P¡ = [u,v\,..., vr, w¡], it may be that one of the v's is a vertex of C. If so, let t 
be the smallest integer such that v, lies on C. If we replace P¡ with [u,v\,..., υ,] 
and rename vertices so that v, becomes (the new) w¡, conditions (35) remain 
valid. Thus, we may assume that P¡ DC = {w¡}, 1 < i < k, and, without loss of 
generality, that wi, W2,. . . , Wk are arranged consecutively around C. Finally, it 
is convenient to define νν*+ι = w\. 

If w\ and wj were adjacent vertices along C, a cycle longer than C could be 
obtained by replacing subpath [ΗΊ,Μ^] with Ρ\ΧΡΪ. Evidently, because C is a 
longest cycle, w¡ and w,+i cannot be consecutive vertices of C for any i. Let x¡ 
be the vertex of C adjacent to w¡ on the way to w¡+\ as in Fig. 5.7. If ux¡ e E(G) 
for some i, a cycle longer than C could be obtained by replacing the subpath 
[W;,JC,·] With PJ^Xi. 

Figure 5.7 

Consider the set S = [u, x\, x2,..., **}. Because o(5) > k > a(G) and ux¡ £ 
E(G) for all /', it must be that [xr,xs] e E(G) for some r and s satisfying 1 < 
r < s < k. We can now produce a cycle C from C by replacing the subpath 

[wr,xr, ...,ws,xs] 

with a path from wr to xs constructed as follows: Go from xvr to u backwards 
along path Pr; from u to ws along Ps; from ws to Λ:Γ backwards along C; and from 
Λν to xs along [Λ:Γ, Λ.,]. Because it contains u in addition to all the vertices of C, C" 
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is longer than a longest cycle of G. This contradiction proves the nonexistence 
of M; that is, a longest cycle of G is a spanning cycle. ■ 

Back in the 1930s, Hassler Whitney proved the following theorem about what 
was then the Four-Color Conjecture. 

5.21 Whitney's Theorem.8 Every planar graph can be colored properly with 
four colors, if and only if every planar hamiltonian graph can be colored properly 
with four colors. 

Let's have a look at hamiltonian plane graphs. Let G be the plane projection of 
a regular dodecahedron exhibited on the right-hand side of Fig. 5.8. The hamil-
tonian cycle C, on the left-hand side, came from our discussion of Fig. 5.1. Note 
that the complement of C in the plane consists of two connected components, 
one inside the curve and the other outside? Let e be an edge of G that does not 
lie along C. Since G is a plane graph, C meets the arc corresponding to e only at 
the points representing the vertices of G incident with e. Call the arc representing 
e a chord of C. Then, apart from its endpoints, every chord lies entirely inside 
or entirely outside C. 

Figure 5.8 

What happens if we add a chord of C to the left-hand side of Fig. 5.8? Adding 
an inside chord, say {u», v^}, partitions the interior of C into two regions. Adding 
chord [v\, v%) divides the exterior into two regions. Every time a chord is added, 

8 See H. Whitney, A theorem on graphs, Annals of Math. 32 (1931), 378-390. Due to this result, 
Francis Guthrie's innocent problem became a motivating force in the development of hamiltonian 
graph theory. 
9 Strictly speaking, this is a consequence of the Jordan Curve Theorem. See, e.g., J. R. Munkres, 
Topology, a first course, Prentice-Hall, Englewood Cliffs, NJ, 1975. 
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the number of regions goes up by one. Because chords cannot cross each other, 
adding an inside chord must split an existing interior region in two; adding an 
outside chord splits an exterior region in two. 

More generally, suppose G is a hamiltonian plane graph on n vertices. Let C 
be a hamiltonian cycle. If C has s inside chords and t outside chords, then G has 
a total of m = n + s + t edges, Í + 1 of the regions of G are inside C, and t + 1 
of them are outside.10 Carried a little further, this analysis yields the following. 

5.22 Grinberg's Theorem." Suppose C is a hamiltonian cycle in the plane 
graph G. Let s¡ and /,· be the numbers of regions of G inside and outside of C 
(respectively), the perimeters of which contain exactly i edges. Then 

n 
Yß - 2)(Í¡ - t¡) = 0. (36) 

Proof. Let s and t be the numbers of chords that are inside and outside of C, 
respectively. Then, by our previous discussion, s + 1 = £·*< and t + 1 = £)/,. 

If we assign to each interior region the number of edges in its perimeter, then 
the sum of these numbers is Σ "/· 1° t m s total, each of the s inside chords 
is counted twice while each edge of C is counted once. Thus, Σ is¡ = 2s + n. 
Substituting ΐ = — 1 + 53 s, in this expression, and rearranging terms, we obtain 

£ ( i - 2)s¡ = n - 2. (37) 
¿=3 

A similar calculation involving the exterior regions produces 
n 

Y(i - 2)/, = n - 2. (38) 
i=3 

Subtracting (38) from (37) yields the result. ■ 

5.23 Example. The boundary cycle of every region in the dodecahedron graph 
illustrated on the right-hand side of Fig. 5.8 consists of 5 edges. Thus, when the 
right- and left-hand sides of Fig. 5.8 are superimposed, s¡ = t¡ = 0, / φ 5. With 
a little care (check it!) one finds that s$ = t5 = 6. In this case, Equation (37) 
becomes 

1 χ 0 + 2 χ 0 + 3 χ 6 + 4 χ 0 + · · · + 1 8 χ 0 = 2 0 - 2 , 

while Equation (36) reduces to 

1 x (0 - 0) + 2 x (0 - 0) + 3 x (6 - 6) + 4 x (0 - 0) + · · · = 0, 

10 Confirm that these values are consistent with Euler's Formula for plane graphs. 
11 E. J. Grinberg, Plane homogeneous graphs of degree three without hamiltonian circuits, Latvian 
Math. Yearbook 4 (1968), 51-58. (Also see G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd 
ed„ Wadsworth & Brooks/Cole, Belmont, CA, 1986, p. 197.) 
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providing a nice illustration of Grinberg's Theorem. On the other hand, it follows 
from Grinberg's Theorem that, no matter what hamiltonian cycle of the dodec-
ahedron graph one superimposes on the right-hand side of Fig. 5.8, exactly half 
of the 12 regions (corresponding to the 12 faces of the dodecahedron) must be 
inside the cycle, and the other half outside! □ 

In view of Whitney's Theorem, the following result must have been very 
tantalizing to those attempting to prove the Four-Color Conjecture. 

5.24 Theorem. If G is a hamiltonian plane graph, then its dual multigraph is 
properly 4-colorable; that is, x(Gd) < 4. 

Proof. Let C be a hamiltonian cycle in the plane graph G. An edge of C lies 
on the boundary of two regions of G if and only if one of the regions is inside 
C and the other is outside. If the perimeters of two inside regions of C share an 
edge, the arc representing that edge is an interior chord of C. Therefore, no two 
inside regions of C have perimeters that share as many as two edges. 

Place one dot in the interior of each inside region of G. Denote the set of 
these dots by D¡. If the boundary cycles of two inside regions share an edge of 
G, draw an arc that connects the corresponding dots and crosses (only) the edge 
of G shared by the two boundaries. Denote the set of these arcs by A/. Because 
G is 2-connected, it has no bridges. Thus, no arc of A¡ is a loop from a dot to 
itself. Because the boundary cycles of inside regions share at most one edge, no 
two arcs of A¡ connect the same two dots. In other words, H¡ — (D/,A/) is a 
(plane) graph, lying entirely inside C. If H¡ had a cycle, that cycle would have 
an interior, and that interior would contain at least one vertex of G, contradicting 
the fact that every vertex of G lies on C. Having no cycles, H¡ has no odd cycles; 
that is, Hi is bipartite. Its vertices can be colored properly with two colors, say 
red and white. A similar argument applied to HE, the geometric dual of the 
regions of G outside C, shows that its vertices can be colored properly with two 
colors, say blue and green. Because arcs representing the remaining edges of Gd 

join an outside dot to an inside dot, the natural 4-coloring of H¡ φ HE obtained 
from the proper colorings of H¡ and HE extends to a proper 4-coloring of Gd. 

5.25 Corollary. If G is a hamiltonian plane graph, then x{G¿) < 4. 

Proof. Because xiGj) = x(Gd), the result is an immediate consequence of 
Theorem 5.24. ■ 

5.26 Example. Let G be the "bow tie" graph illustrated in Fig. 5.9. Then G¡¡ = 
Ρτ,. By inspection (it has a cut-vertex), G is not hamiltonian. Might there be a 
hamiltonian plane graph H with H¿ = P3? 

Let C be a spanning cycle in a 3-region, hamiltonian plane graph H. Then 
at least one region of H is inside C and at least one (the unbounded region) is 
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Figure 5.9 

outside. If the third region is inside C, then the two interior regions share exactly 
one boundary edge (corresponding to a chord of C). Moreover, the boundary of 
each interior region contains an edge of C, which it shares with the perimeter of 
the outside region. Evidently, in this case, Hd = Ki. A similar argument shows 
that Hd = Ki when two of the three regions of H are outside C. In particular, 
Hd £= P3 for any hamiltonian plane graph H. It is because of such "exceptions" 
that Corollary 5.25 does not prove the Four-Color Theorem. 

It is easy to see, of course, that the exceptional graph Py is properly 4-
colorable. (It is bipartite!) If a simple proof exists that all exceptional plane 
graphs are properly 4-colorable, it has not been found. D 

EXERCISES 

1 Determine whether G is hamiltonian and justify your answer. 

„o 
/\ 

O 

2 Show that the conclusion of Ore's Lemma does not follow from the weaker 
hypothesis d{u) + d(v) > n — 1. 

3 Explain why Theorem 5.2 is a corollary of Theorem 3.15. 

4 Show that the complete bipartite graph 
(a) ΑΓ33 has six different (forward-backward) pairs of hamiltonian cycles. 
(b) K-}4 doesn't have any hamiltonian cycles. 
(c) Krs is hamiltonian if and only if r = s > 1. 

5 Let H be a graph on n > 2 vertices. Suppose (n — l)/2 < 8(H). Prove that 
H contains a hamiltonian path. 

6 Let H be a graph on n vertices. Suppose 5, > a?, 1 < 1 < n/2, where δ^ < 
8C

2 < ■ ■■ < Sc
n are the vertex degrees of Hc. Prove that H has a hamiltonian 

path. 

7 Prove that every self-complementary graph has a hamiltonian path. 

8 Rewrite Pósa's Theorem in terms of du. (as opposed to h¿). 



96 Chap. 5 Hamiltonian Cycles 

9 Let G be a graph with m edges and n > 3 vertices. Suppose 2m > n2 — 
3n 4- 6. Prove that G is hamiltonian. 

10 Show that it is possible to color one-third of the edges of Κη red, one-third 
of them white, and one-third of them blue, in such a way that each of the 
three uniformly colored sets of edges corresponds to a hamiltonian cycle. 

11 Compute the number m of edges of the Chvátal graph 

(a) G9,,. (b) G9,2. (c) G9,3. (d) G9A. 

12 Consider the Chvátal graph G = G„,r, where r < n/2. 
(a) Find the number m(n, r) of edges of G as a function of n and r. 
(b) Compute M (n) = maxm(n, r), as r ranges over the integers in the 

interval [1, n/2). 
(c) Prove that G is hamiltonian for any graph G on n vertices and m > M(n) 

edges. 

13 Exhibit a hamiltonian graph that contains an induced subgraph 
(a) isomorphic to 54 = K13. 
(b) isomorphic to the graph λ in Theorem 5.15. 

14 Let An be the unique connected antiregular graph on n vertices. (See Chap-
ter 2, Exercise 36.) Prove the following: 
(a) A4 is the Chvátal graph G4,i(= λ). 
(b) A„ is not hamiltonian. 
(c) An has a hamiltonian path. 

15 Recall that two cycles of G are equivalent if they cycle through the same 
vertices in the same order (without regard to starting = ending point). How 
many inequivalent hamiltonian cycles does K$ have? 

16 Bill is a traveling salesman whose territory consists of five cities, one of 
which is his home base. On each business trip, Bill visits every city in his 
territory (once) before returning home. Figure 5.10 shows the costs (in units 
of $100) of flying between the cities in Bill's territory. 

EO 
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Figure 5.10 
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(a) Find the minimum airline cost associated with one of Bill's business 
trips. 

(b) Find all the hamiltonian cycles that achieve this minimum cost. 

17 Find a nonhamiltonian graph G with the property that G — v is hamiltonian 
for all v e V(G). 

18 A graph G is hamiltonian connected if, for every pair of distinct vertices 
u,v e V(G), there is a hamiltonian path in G from u to v. 

(a) Show that C4 is hamiltonian but not hamiltonian connected. 

(b) Suppose G is a hamiltonian connected graph on n > 3 vertices. Prove 
that G is hamiltonian. 

(c) Let G be a graph on n > 3 vertices. Denote by G the graph obtained 
from G by recursively adding new edges between nonadjacent pairs of 
vertices the sum of whose degrees is at least n + 1. If G = K„, prove 
that G is hamiltonian connected. 

19 Let G be a hamiltonian connected graph on n > 4 vertices. (See Exercise 18 
for the definition of hamiltonian connected.) Prove that G is 3-connected.12 

20 Let G = (V, E) be a bipartite graph, on n > 4 vertices, and with biparti-
tion V = V, U V2, where o(V,) = o(V2). If ¿(G) > n/4, prove that G is 
hamiltonian. 

21 Let G be the plane graph illustrated in Fig. 5.11. Confirm Grinberg's 
Theorem for G with respect to the hamiltonian cycle C = (v\, V2, v^, 
V4, l»5, V6, V-i, V%). 

Figure 5.11 

12 It was proved by W. T. Tutte [A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 
99-116] that every 4-connected planar graph is hamiltonian connected. 



98 Chap. 5 Hamiltonian Cycles 

22 Let G be a graph on n > 3 vertices. If G has a hamiltonian path, show that 
£(G - S) < o(5) + 1 for every proper subset S of V(G). 

23 Of the 148 nonisomorphic graphs with 7 vertices and 10 edges, 132 are 
connected. Of these 132 connected graphs, 30 are hamiltonian. Of these 
30 hamiltonian graphs, 29 are planar. Exhibit the unique nonplanar hamil-
tonian graph having 7 vertices and 10 edges. 

24 List all hamiltonian cycles of the graph in Fig. 5.12 that begin with subpath 
[vuv2]. 

Figure 5.12 

25 Show that the graph λ in Fig. 5.5 is isomorphic to 
(a) an overlap of K3 and K2 in K\. 
(b) 54 + e, the graph obtained from K\j, by adding a new edge joining two 

of its pendant vertices. 

26 Prove that the cube graph Ö* (of Chapter 1, Exercise 33) is hamiltonian, 
k>2. 

27 Prove the following: 

(a) G = K2 v (Κι φ K2 Θ £3) is not hamiltonian. 
(b) H = ΑΓ3 v 4K¡ is not hamiltonian. 

28 Theorem 5.19 expresses Chvátal's Theorem in the symbolic form H = > C, 
where the hypothesis H = [G is not hamiltonian]. The negation of H is 
~f/ = [G is hamiltonian]. The contrapositive form of Chvátal's Theorem, 
expressed symbolically as ~ C = > ~f/, is the logically equivalent statement 
that ~ C is a sufficient condition for G to be hamiltonian. 

(a) Express ~ C , the negation of C, in words. 
(b) Show that ~ C is not a necessary condition for G to be hamiltonian; 

that is, find a counterexample to the converse of Chvátal's Theorem, a 
symbolic version of which is ~tf = > ~ C . 
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29 Let H be the graph illustrated in Fig. 5.13(a). 
(a) Show that H is a plane triangulation of one of its hamiltonian cycles. 
(b) Show that V(H) can be partitioned into the disjoint unions of two sets, 

X and Y, such that the induced subgraphs H[X] and H[Y] are forests. 
(c) Show that Hd = H¡¡ is isomorphic to the graph illustrated in 

Fig. 5.13(b). 

(b) 

Figure 5.13 

(d) Show that Hj is hamiltonian.13 

30 Let G be a graph having n vertices and m edges. Recall that a walk in G of 
length k, from v to w, is a sequence v = «o, «i, - · ·, w* = vv of vertices of 
G such that M,_I«, € E(G), 1 < i < k. A walk of length m, in which every 
edge of G occurs exactly once, is called an Euler tour. (An Euler tour is the 
edge analog of a hamiltonian path.) Let H = K4 — e be the graph illustrated 
in Fig. 5.14. 

"O—o v 

l\l 
j O - O , 
Figure 5.14 

(a) Find an Euler tour in H from vertex u to vertex y. 
(b) Show that there is no Euler tour in H from vertex v to vertex x. 

31 Like many European towns, historic Königsberg (present-day Kaliningrad) 
began life on an island in a river. By the mid-1700s, when native son 

13 It was proved by S. K. Stein [B-sets and planar maps, Pacific J. Math. 37 (1971), 217-224] that 
the vertex set of a plane triangulation G can be partitioned as V(G) = X U Y, where G[X] and G[Y] 
are forests, if and only if Gj is hamiltonian. 
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Immanuel Kant began teaching philosophy there, the town had spilled over 
to a second island and to both banks of the Pregel. (See Fig. 5.15.) It seems 
(or, so the story goes) that the prosperous burghers wanted to show the town 
off by means of a scenic walking tour. They wanted a tour that would lead 
visitors across each of the seven bridges — exactly once. 

Figure 5.15. Diagram of eighteenth-century Königsberg. 

(a) Show that such a scenic tour of Königsberg is equivalent to an Euler 
tour (Exercise 30) in the multigraph of Fig. 5.16. 

Figure 5.16 

(b) Show that an Euler tour in a multigraph M is equivalent to an Euler 
tour in the graph G obtained by subdividing each edge of M. 

(c) Suppose v is a vertex of G of odd degree. Show that any Euler tour in 
G that does not begin at v must end at v. 

(d) Show that a graph with more than two vertices of odd degree cannot 
have an Euler tour.14 

32 The island Republic of Vanuatu, formerly known as New Hebrides, lies about 
1200 miles east of Australia. The native Malekula peoples illustrate myths 
about passages to the Land of the Dead by means of so-called unicursal 
diagrams (closed curves that can be drawn without lifting your pencil from 
the paper). In the language of Exercises 30 and 31, a unicursal diagram is 

14 It was Leonhard Euler who first demonstrated the impossibility of the desired scenic tour of 
Königsberg. 



Chap. 5 Hamiltonian Cycles 101 

the equivalent of a plane graph with a closed Euler tour—one that ends 
at the same vertex from which it began. (A closed Euler tour is the edge 
analog of a hamiltonian cycle.) Say that a graph is eulerian (or unicursal) 
if it has a closed Euler tour. 
(a) Prove that a connected graph on n > 2 vertices is eulerian if and only 

if none of its vertices has odd degree. 
(b) For some random graph having 100 vertices and roughly 5000 edges, 

would you rather be asked to determine (1) whether it is hamiltonian or 
(2) whether it is eulerian? Explain. 

33 A o-graph is a 2-connected graph with two vertices of degree 3 and the rest 
of degree 2. 
(a) Show that every ö-graph has a subgraph isomorphic to K13. 
(b) Show that every 2-connected nonhamiltonian graph has a 0-subgraph. 
(c) Illustrate a hamiltonian graph with an induced 0-subgraph. 
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6 
Matchings 

The structure of benzene posed some interesting challenges for nineteenth century 
organic chemists. The same valence theory that explained Mendeleev's1 periodic 
table of the elements made short work of deciphering of the structure of such 
compounds as hexane, chemical formula CÔHH. Not only can 6 carbon atoms 
(valence 4) and 14 hydrogen atoms (valence 1) be made to fit together, there are 
five different ways to do it! For example, 

H H H 
1 1 1 1 1 1 

c—c—c-
1 1 1 
1 1 1 

H H H 

H 
I 
1 

-c -
1 
1 

H 

\ÏVH 
H H H H C H 
I l 1 1 1 1 I l 1 1 1 1 

- C — C — H a n d H — C — C — C — C — H 
I l 1 1 1 1 I l 1 1 1 1 

H H H H C H 
H ¿ H 

Valence theory did not, however, seem able to explain the existence, much less 
the extraordinary stability, of CeH(,. 

Assuming each carbon atom is bonded to exactly one hydrogen, it suffices to 
consider the structure of the underlying carbon skeleton. Initially, two competing 
models were proposed. In one, the carbon atoms were positioned at the six 
vertices of a regular octahedron. In this model, each of the 12 edges of the 
octahedron represents a carbon-carbon (C—C) bond. (See the plane projection 
of the octahedron illustrated in Fig. 6.1.) Because the valence of carbon is four, 
such an arrangement has the obvious defect that it does not provide for any 
carbon-hydrogen bonds. 

The second suggestion arranged the carbon atoms at the vertices of a hexagon. 
In this second model, each carbon atom is bonded to its two neighbors, providing 
places for two hydrogen atoms to bond with each atom of carbon. Indeed, when 
benzene is induced to react with hydrogen, 

C(,H(, + 3H2 >· C6H12, 

1 Dmitri Ivanovich Mendeleev (1834-1907) had worked out his periodic table by 1869. 

103 
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Figure 6.1. Plane projection of a regular octahedron. 

the result is cyclohexane, a molecule in which the carbon atoms form a 6-mem-
bered ring, each bonded to its two neighbors, and to two hydrogen atoms. 

While the octahedron model allows for too few hydrogens, the hexagon model 
allows for too many, unless there are other C—C bonds apart from those repre-
sented by the edges of the hexagon. Might the carbon skeleton of benzene exhibit 
one of the structures illustrated in Fig. 6.2? 

.ex 
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Figure 6.2 

It was Baron Friedrich August Kekulé von Stadonitz (1829-1896) who 
solved the mystery. Benzenediol is the generic name for CeH^OHh, a 
molecule that can be synthesized from benzene by replacing two hydrogen 
atoms with OH (oxygen-hydrogen) groups. In fact, benzenediol has three 
isomers: pyrocatechol (melting point 105°C), resorcinal (melting point 110°C), 
and hydroquinone (melting point 171°C). Indeed, dichlorobenzene, C6H4CI2, 
¿¡nitrobenzene, CefrMNC^h, and a host of other compounds produced by 
substituting for two of the hydrogen atoms in benzene invariably come in families 
of three. How might a structural model account for these triples of chemical 
isomers? 

In the benzene molecule, two carbon atoms are either bonded or not. In a 
regular hexagon, there is only one way for two vertices to be adjacent, but 
there are two distinct ways for vertices to be nonadjacent. Either they can be 
a distance 2 apart or they can be opposite vertices, a distance 3 apart. In the 
(simple) hexagon model, there are three distinct ways to replace two hydrogen 
atoms, depending on the graph-theoretical distance between the carbon atoms to 
which they are bonded. In the octahedron model, there is only one way for two 
vertices to be nonadjacent—they must be opposite. Because any pair of opposite 
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vertices can be rotated into any other pair, and the same is true for any pair of 
adjacent vertices, the octahedron model affords just two distinct ways to replace 
two hydrogen atoms. Therefore, of the two models, only the hexagon can account 
for the experimentally observed isomers. 

We are still left with the valence problem. For the atomic valences to balance 
in the hexagon model, there must exist some carbon-carbon bonds not accounted 
for by the edges of the hexagon. Kekulé rejected models like the ones in 
Fig. 6.2, choosing instead a solution in which single (C—C) and double (C=C) 
carbon-carbon bonds alternate around the hexagonal ring. (The two ways of 
doing this are illustrated in Fig. 6.3.) 

o ^ο er o 
II I I II 

Figure 6.3 

While it solves the valence problem, Kekulé's scheme invalidates the reason 
for choosing the hexagonal model in the first place! In Kekulé's solution, there 
are two distinct ways for a pair of carbon atoms to be adjacent! Instead of three 
chemical isomers, benzenediol ought to have four—unless the two configurations 
illustrated in Fig. 6.3 somehow coexist. 

Experimental evidence confirms that benzene is a planar ring with all six 
carbon atoms in equivalent positions (and all six hydrogen atoms in equivalent 
positions). One (twentieth-century) theory is that the extra electrons represented 
by the double bonds in the Kekulé model are shared by the ring as a whole; 
that is, they occupy so-called "molecular orbitals." Another theory is that a rapid 
oscillation occurs between the two configurations of Fig. 6.3 (in each molecule 
of benzene). Such oscillations might account for a phenomenon called resonance, 
to which some chemists attribute the extraordinary stability of benzene. 

6.1 Definition. Let G = (V, E) be a graph. A matching of G is a subset M C E, 
no two edges of which are adjacent. If e = uv e Λ/, then u and υ are matched 
vertices, covered by M. If o(M) = r, then M is an r-matching. The matching 
number, ß(G), is the largest value of r for any r-matching M of G. 

Recall that a subset of V(G) is independent if no two of its vertices share 
an edge. A matching is the analog for subsets of E(G). A 1-matching is a set 
consisting of a single edge, matching two vertices. A 2-matching is a set of 
two nonadjacent edges, covering four vertices. Because an r-matching covers 2r 
vertices, 2/¿(G) < n = o(V(G)). 



106 Chap. 6 Matchings 

6.2 Definition. Let G be a graph on n vertices. A perfect matching2 is an 
r-matching for which 2r = n. 

6.3 Example. Suppose G = C(,. Then G has a total of 17 matchings. With 
respect to the numbering of its edges in Fig. 6.4, the six 1-matchings of G are 
{1}, {2},.. . . {6}. There are nine 2-matchings, namely, {1, 3}, {1, 4}, {1, 5}, {2, 4}, 
{2, 5}, {2, 6}, {3, 5}, {3, 6}, and {4, 6}. The two (perfect) 3-matchings, {1,3,5} and 
{2, 4, 6}, are illustrated in Fig. 6.3. In particular, ß(C(,) = 3. 

6 0 < 

o o 

o o 

Figure 6.4 

While K\ also has six 1 -matchings, it has only the three 2-matchings illustrated 
in Fig. 6.5. Because a 2-matching in a graph with four vertices is necessarily a 
perfect matching, AT4 can have no 3-matchings; that is, μ(Κ/\) = 2. O 

o o o o 

o o o 
Figure 6.5. The perfect matchings of Κ^. 

6.4 Definition. Let G be a graph on n vertices. Let m(G, r) be the number of 
r-matchings of G, 1 < r < /¿(G), and set m(G, 0) = 1. The matching polyno-
mial3 of G is 

M(G,x) = ^( - l ) r m(G, r)x"~2r. 

6.5 Example. From Example 6.3, M(C6, x) = x6 - 6x4 + 9x2 - 2 and M(AT4, x) 
= x4 - 6x2 + 3. □ 

2 Perfect matchings are known in the chemistry literature as Kekulé structures. 
3 The matching polynomial (a.k.a the acyclic polynomial) was introduced independently by 
H. Hosoya in a paper on chemical thermodynamics [Bull. Chem. Soc. Japan 44 (1971), 2332-2339] 
and by O. J. Heilmann and E. H. Lieb in an article on statistical mechanics [Commun. Math. Phys. 
25 (1972), 190-232.] 
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For a graph G with n vertices and m edges, 

M{G,x)=xn -mx""2 Λ . (39) 

Whereas its colorful counterpart, the chromatic polynomial, was discovered more 
or less serendipitously, M(G, x) was deliberately contrived to be a polynomial 
invariant of G. That M(G,x) is a monic polynomial of degree «, with — m as 
its next (nonzero) coefficient, makes the two polynomials seem similar. Note, 
however, that — m is the coefficient of x"~2 in M(G, x) and the coefficient of 
xn~x in p(G, x). Moreover, unlike the chromatic polynomial, where p(G, r) is a 
value of p(G,x), (plus or minus) m(G, r) is a coefficient of M(G, x). Another 
difference is that, while x is a factor of p(G, x) for all G, it is a factor of M(G, x) 
if and only if G does not have a perfect matching. 

The process of comparing and contrasting the two polynomials inevitably leads 
to the following analog of chromatic reduction. 

6.6 Theorem. Let G — (V,E) be a graph with n > 3 vertices and m edges. If 
e = uv € E, then 

M(G,x) = M(G-e,x)-M(G-u-v,x). (40) 

Proof. If r > 1, the r-matchings that contain e are in one-to-one corre-
spondence with the (r — l)-matchings of G — u — v, of which there are m(G — 
u — v, r — 1). The number of r-matchings of G that do not contain edge e is 
m(G — e, r). Thus, 

m(G,r) = m(G - e, r) + m(G - u - v, r- 1). (41) 

Because m(G, 1) — m, m(G — e, 1) = m — 1, and m(G — u — v, 0) = 1, Equa-
tion (41) is also valid when r = 1. 

By definition, the coefficient of ( - l ) V ~ 2 r in M{G,x) is m(G,r). 
Similarly, m(G-e,r) is the coefficient of (-l)rx"-2r in M(G-e,x). 
However, because it is a polynomial of degree n — 2, the coefficient of 
{-\)rxn-2r = _(_ΐ)'-ιΛ;(«-2)-2('-ΐ) in M(G-u-v,x) is not m(G-u-
v,r— 1 ), but —m(G — u — v, r — 1 ). Thus, m(G — u — v, r — 1 ) is the coefficient 
of (— \)rxn~2r in —M(G - w - v, r — 1). So, Equation (40) follows from Equa-
tion (41). ■ 

6.7 Corollary. Suppose G = (V, E) is a graph on n > 3 vertices. Let u e V be 
a vertex of degree k and suppose Nc(u) = [w\,W2,... ,wi,). Then 

k 

M(G,x) = xM(G -u,x)-^2M(G-u-whx), (42) 
i = l 

where an empty sum (corresponding to dc(u) — 0) is zero. 
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Proof. The proof is by induction on k. If k = 0, then u is an isolated vertex. 
In that case, m(G, r) = m(G — u, r), for all r, and, because such a graph can have 
no perfect matchings, 

M (G, x) = x" - w(G, 1 )x"-2 + m(G, 2)xn~4 

= x" - m(G - u, 1 )x"~2 + m(G - u, Ύ)χη~4 

= x(xn~x - m(G - u, l)x"-3 + m(G - u, 2)xn_5 ) 

= xM(G — u, x). 

If k > 0, let e = uwt and H = G — e. From Equation (40), 

M(G, x) = M(G -e,x)- M(G -u-wk, x) 

= M(H,x)-M(H -u-wk,x), (43) 

because H — u = (G — e) — u = G — u. Since <///(«) = k — 1, the induction hy-
pothesis gives 

* - i 

M(H,x) = xM(H -u,x)-J2M(H -u-w¡,x). (44) 
1=1 

It remains to substitute Equation (44) into Equation (43) and replace H — u with 
G-u. U 

6.8 Example. Equation (39) provides enough information to write down 
M(Pux) =x, M(P2,x) = x2 - 1, and M(P3,x) = x3 - 2x. If n > 2 and u is 
a pendant vertex of Pn+\, then, from Equation (42), we obtain 

M(Pn+ux) = xM(Pn,x)-M(Pn-ux). (45) 

Therefore,M(P4, x) = x(x3 - 2x) - (x2 - 1 ) = x4 - 3x2 + 1. Similarly,M(P5, x) 
= x5 - 4x2 + 3x, M(P6, x) = x6- 5x4 + 6x2 - 1, Μ(ΡΊ, x) = x1 - 6x5 + 10Λ3 

- 4JC, Λ/(Ρ8, Λ:) = JC8 - 7x6 + \5x4 - IOJC2 + 1, and so on. D 

6.9 Example. Theorem 6.6 lends itself to the same kind of picturesque usage as 
chromatic reduction. If G = Ce, for example, Equation (40) can be expressed as 

O 0 

1 1 -
o-°-o 

' N^° ' 
1 

°-o 
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that is, M(C6, x) = M(P6, x) - M(P4, x). Together with Example 6.8, this iden-
tity yields 

M(C6, x) = (JC6 - 5x4 + 6x2 - 1) - (JC4 - 3x2 + 1) 

= JC6 - 6x4 + 9x2 - 2, 

confirming the first part of Example 6.5. D 

6.10 Example. Consider the tree T\ from Fig. 6.6. We have from Example 6.8 
that M(Ps,x) - xs - 7JC6 + \5x4 - \0x2 + 1. Because it has 8 vertices (and, 
therefore, 7 edges) we know from Equation (39) that M(T\,x) starts off the 
same way; that is, M(T\, x) = JC8 — 7JC6 H . Is there any reason to suppose 
M(T\, x) = M(Pg, JC)? Let's compute the rest of M(T\, x) and see. 

V V o 
I I \ /O 

o—o—o—o o—o—o—o, 
I I 0/N> 
o o ° 

T, T2 

Figure 6.6 Following the approach that proved successful in Example 6.8, we might 
choose a pendant vertex of 7Ί, use Corollary 6.7 to obtain a formula for M(T\, JC) 
similar to Equation (45), then keep repeating this procedure, eventually obtaining, 
as in Example 6.9, an expression involving only paths. We might do something 
hideous like that, but it should only be a last resort. Look carefully at G = T\. 
How many 4-matchings do you see? 

It is not difficult to see that 7Ί does not have any 3-matchings, much less 
4-matchings. Moreover, no 2-matching of 7Λ can contain the "middle" edge — the 
one joining the two vertices of degree 4. The 2-matchings of T\ consist of one 
(pendant) edge from the left-hand group and one form the right. By the Funda-
mental Counting Principle, G = T\ has 3 x 3 = 9 2-matchings. In other words, 
almost by inspection, we can write down M(T\, x) = JC8 — 7x6 + 9x4. The easiest 
way to compute the matching polynomial of T\ is directly from the definition! 

While all trees on 8 vertices have the same chromatic polynomial, namely, 
p(P%, x) = x{x - l)7 , it is evidently not the case that M (T, x) = M (P8, JC) for 
every tree T on 8 vertices. 

What about MÇTi, x), where Ti is the other tree in Fig. 6.6? Having 8 vertices 
it, too, starts off M(7*2. JC) = JC8 — 7JC6 + · · ·. Take a minute to convince yourself 
that m(T2, 4) = m(J2, 3) = 0 and m(T2, 2) = 9. Thus, M(T2, x) = JC8 - 7JC6 + 
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9χΛ — M(T\,x). Evidently, two nonisomorphic trees on n vertices may or may 
not share the same matching polynomial.4 D 

6.11 Example. Consider the matching polynomial of Kn. From Equation (39), 
M(K\,x) — x,M(K2,x) = x2 - 1, and M(K3,x) = x3 — 3x. From Example 6.5, 
M(KA,x)=x4-6x2 + 3. If u, we V(Kn+i), then d(u) = n = d(w), uw e 
E(Kn+\), Kn+] — u = K„, and Kn+\ — u — w = Kn_\. So, from Corollary 6.7, 
we have 

M(Kn+x,x)=xM(Kn,x)-nM(Kn_x,x), n>2. (46) 

In particular, 

M(K5, x) = xM(K4, x) - ΑΜ(Κι, x) 

= x(x* - 6x2 + 3) - 4(x3 - 3JC) 

= x 5 - 1 0 Λ 3 + 15JC. (47) 

The Hermite polynomials5 are defined by h\(x) = x, h2(x) — x2 — 1, and 
h„+\(x) — xh„(x) — nhn-\(x), n > 2. Hermite polynomials arise as solutions to 
the homogeneous, second-order, linear differential equations 

y" — xy + ny = 0. 

We have just proved that M(Kn,x) = hn(x), n > 1. D 

We come now to an interesting connection between the matching polynomial 
of G and characteristic polynomial of its adjacency matrix. 

6.12 Theorem. Let G = (V, E) be a graph with vertex set V = {v\, v2, ■ ■., v„}. 
Then M(G,x) = det(xln - A(G)) if and only if G is a forest. 

Proof Sketch. det(jr/„ - A(G)) is an alternating sum of n\ products, one for 
each permutation of {1,2, ...,n). The product corresponding to permutation 
p is nonzero if and only if {v¡, vp^} e E(G) whenever i φ p(i), if and only if 
V(Vj € E(G) whenever (ij) is a 2-cycle in the disjoint cycle factorization of p and 
(viy vj,..., Vk) is a cycle of G whenever (ij... Λ) is a cycle of p of length 3 or 
more. In particular, there is a one-to-one correspondence between the r-matchings 

4 Let P(n) be the probability that a randomly chosen tree on n vertices shares its matching polynomial 
with a nonisomorphic tree. Then P(n) = 0, n < 8, P(8) = 2/23, and P(9) = 10/47. Any guesses 
for POO)? (It turns out that P(\0) = 2/53.) What about L = lim,,-»,» Ρ(η)Ί There is, of course, no 
a priori reason for L to exist. In a remarkable tour de force [Almost all trees are cospectral, New 
Directions in the Theory of Graphs, Academic Press, New York, 1973, pp 275-307], A. J. Schwenk 
proved not only that L exists, but that L = 1. 
5 After Charles Hermite (1822-1901). 
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of G and those nonzero diagonal products of det(*/n — A(G)) afforded by permu-
tations p whose disjoint cycle factorizations consist of r 2-cycles and n — 2r fixed 
points (1-cycles). After attending to the signs, this one-to-one correspondence 
yields 

det(*/„ — A(G)) = M(G, x) + terms involving cycles of G. 

If G is a forest, it doesn't have any cycles, and the proof is complete. Otherwise, 
one must show that there can be no cancellation among the "terms involving 
cycles of G." ■ 

6.13 Example. It follows from Theorem 6.12 and Example 6.10 that det(x/g — 
A{T\ )) = xs - 7x6 + 9x4 = det(;c/8 - A(T2)) for the trees T] and T2 in Fig. 6.6. 

□ 
6.14 Example. Let G = Κτ,. Then G is not a forest and, as predicted by Theo-
rem 6.12, M{Ki, x) = x3 - 3x φ x3 - 3x - 2 = 

de,(:i i ! : ; ) ' 
Up to equivalence, the cycles of G = Κ^ are {v\, v2, W3) and {v\, v$, v2), corre-
sponding to the permutations (123) and (132), respectively. These permutations 
each contribute the (signed) diagonal product (—1) x (—1) x (—1) to the cha-
racteristic polynomial of A(G) and account for its constant term. D 

At this point, we are going to shift our attention to the matching number and 
a related invariant. 

6.15 Definition. Let G be a graph. A subset B c V(G) is a covering of G if 
every edge of G is incident with a vertex of B. 

If B is a covering of G, then B is said to cover G. So, a matching M "covers" 
a vertex υ if some edge of the matching is incident with v, and a set B of vertices 
"covers" G if every edge of G is incident with some vertex of B. 

If G is a graph, then B — V(G) covers G. If G is bipartite with color classes X 
and Y, then both X and Y cover G. If the vertices of P3 are labeled as in Fig. 6.7, 
then X — {u, w] is a minimal covering in the sense that no proper subset of X 
covers P3. On the other hand, X is not a minimum covering because Y = {v} 
covers P3 with fewer vertices. 

U V W 

O — O — O 

Figure 6.7 
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6.16 Definition. The covering number, ß(G), is the smallest number of vertices 
that cover G = (V, E). 

If G = Kc
n, then ß(G) = 0. If n > 2, then ß(S„) = 1 and ß(Kn) = n - 1. If 

G = P5, then 0(G) = 2. (Confirm it!) 
Suppose B is a covering of G = (V, E). If e = uv e E, then, by definition, 

one (at least) of w, v is an element of B. In other words, no two vertices of 
A = V\B are adjacent. It seems that B c V covers G if and only if A = V\B is 
an independent set. Moreover, B is a minimum covering if and only if A is a 
largest independent set. This observation is worth summarizing. 

6.17 Lemma. If G is a graph on n vertices, then a(G) + ß(G) = n. 

Suppose M is a matching of G, and B is a covering. Then every edge of M 
is incident with a vertex of B. Because no vertex of B can be incident with two 
edges of Λί, it must be that ο(Λί) < o(B). Since this inequality is independent 
of the matching, it must be that /¿(G) < o(B). Finally, because this inequality is 
independent of the covering, it must be that 

M(G) < ß{G). (48) 

6.18 Egervary-König Theorem.6 // G = (V, E) is a bipartite graph then 
ß(G) = ß(G). 

Proof. If G = Kc
n, then μ(0 = 0 = ß(G). Otherwise, let V = X U Y be a 

bipartion of G and denote by H the graph obtained from G by adding two new 
vertices, u and w, and n new edges, ux, x e X, and yw, y € Y. For any ww-path 
P = [u,xu yi,x2, yi, ...,x„ y„ w] in H, let e2{P) = x\y\. Because {e2(P):P e 
.<F) is a matching of G, for any family .9~ of internally disjoint ww-paths in H, 
t/r//(«, w) < ß(G). Conversely, if M = {x¡y¡: 1 < /' < r) is a matching of G, then 
{[M, je,, y¡, w\. 1 < i < r} is a family of internally disjoint Mw-paths in H; that 
is, M(G) < ^«(«. w). Thus, VwC«. w) = /¿(G). Because S separates u and w in 
H if and only if S is a covering of G, KT/(M, H>) = ß(G). Hence, the result is a 
consequence of Menger's Theorem. ■ 

Because μ(Κ$) = 1 < 2 = ß(Kj), Theorem 6.18 is not valid for graphs in 
general. Because /¿(G) = ß(G) for the graph G illustrated in Fig. 6.8, the con-
verse of Theorem 6.18 is also false. 

o \ o 
/ \ o—o 

Figure 6.8. ß(G) = 2 = ß(G\ *(G) = 3. 

6E. Egerváry, Mat. Lapok 38 (1931), 16-28 and D. König, ¡bid., 116-119. 
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Pursuing these arguments a little further, suppose G = (V, E) is a bipartite 
graph with color classes X and Y. If M is a matching of G, then o(M) < o(Y), 
with equality if and only if M covers every vertex of Y, if and only if M affords a 
one-to-one correspondence between the elements of Y and some of the elements 
of X. Hence, o(M) = o(Y) implies o(K) < o(X). In fact, a bit more can be said. 
Suppose S is a nonempty subset of Y. Let 

NG(S) = \jNG(y) 
yeS 

= {x e X:xy e E(G) for some y e S] 

be the set of vertices of X that are adjacent in G to some vertex of S. In order 
for M to cover every vertex of Y, it must, of course, cover every vertex of 5, 
which is possible only if o(5) < o(NG(S)). 

6.19 Definition. Let G = (V, E) be a bipartite graph with bipartition V = X U 
Y. If o(S) < o(NG(S)), φ φ S c Κ, then y is said to be expansive.7 

6.20 Hall's Theorem. Let G = (V, £ ) be a bipartite graph with bipartition V = 
XU Y. Then there exists a matching of G that covers every vertex of Y if and only 
if Y is expansive. 

Proof. The proof of necessity is what led to Definition 6.19. To prove suffi-
ciency, suppose Y is expansive. Let M be a maximum matching of G. Because 
G is bipartite, every edge of M is incident with exactly one vertex of Y. Because 
M is a matching, no two of its edges are incident with the same vertex of Y. 
Together with Theorem 6.18, this implies o(K) > o(M) = μ(β) = ß(G), with 
equality if and only if M covers every vertex of Y. To complete the proof we 
will assume o(Y) > ß(G) and derive a contradiction. 

Let B be minimum covering of G. If B c X, then NG(Y) C B and, by 
the hypothesis and our assumption, ß{G) — o(B) > o(NG(Y)) > o(K) > ß(G), 
a contradiction. Thus, Y Π B φ φ. Since o(Y) > ß(G) = o(B), φφΥ\Β<1 Y. If 
S = Y\B, then, because B covers G, NG(S) cXDB. Therefore, 

o(S) = o(Y)-o(YDB) 

= o(y)-[o(ß)-o(xnß)] 
= o(XnB) + [o(Y)-ß(G)] 

> o(X n B) 

> o(NG(S)), 

contradicting the supposition that Y is expansive. ■ 

7 Other names for expansive sets are saturated and nondeficient. We have chosen "expansive" because 
of the relation of this idea to the currently fashionable topic of expander graphs. 
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6.21 Example. Consider the bipartite graph G illustrated in Fig. 6.9. If S = 
{u, v, w], then o(Nc(S)) = 2 < o(S). Thus, Y is not expansive, and G does not 
have a perfect matching. D 

U V W 

Figure 6.9 

6.22 Example. Let X be a set and suppose X\, Xi,..., Xs are (not necessarily 
different) subsets of X. In statistical design theory, X\, X2, ■ ■., Xs are sometimes 
called blocks of the sample space X. A system of distinct representatives (SDR) 
for the blocks is a collection of distinct elements a\, a2,..., as of the sample 
space X such that a, € X¡, 1 < /' < s. 

Suppose, for example, that X = {1, 2, 3, 4, 5, 6},Xi = {1,2, 3}, X2 = {1,2,4}, 
X3 = {1, 2, 5}, and X4 = {3,4, 5} = X5. This particular sample space is small 
enough that the existence of an SDR is easily settled; for example, 3, 2, 1, 4, 5 
is one and 1, 2, 5, 3, 4 is another. 

Suppose, in general, that X = [x\, x2,..., xr). Let Y = [X\, X2, ■.., Xs}· De-
fine a bipartite graph G = (V, E), with vertex set V = X U Y, and with x¡Xj e E 
if and only if x¡ e Xy. Then a\,a2, ■■■ ,as is an SDR for the blocks if and only 
if M = {α,Χ,: 1 < Í < s] is a matching of G that covers every vertex of Y. By 
Hall's Theorem,8 there exists an SDR for the blocks if and only if the union of 
every collection of k blocks contains at least k elements, 1 < k < s. D 

As we saw in Fig. 6.3, the edges of Ce can be partitioned into the disjoint 
union of two perfect matchings. This turns out to be a special case of a more 
general result. 

6.23 Definition. The graph G = (V, E) is r-regular (or regular of degree r) if 
άβ(ν) = r for all v e V. 

Evidently, G is regular if and only if ¿(G) = A(G). 

6.24 Corollary. If G = (V, E) is an r-regular bipartite graph, then E is the 
disjoint union of r perfect matchings. 

Proof. Suppose V = X U Y is a bipartition of V. Without loss of gener-
ality, we may assume o(X) < o(Y). Suppose φ φ S c Y. Then r x o(5) of the 

8 This is the context in which P. Hall first proved the theorem [On representatives of subsets, 
J. London Math. Soc. 10 (1935), 26-30]. 
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edges of G are incident with vertices of S. These edges are all incident with 
the vertices of NG(S) c X- The total number of edges incident with vertices of 
NG(S) is r x o(NG(S)). Therefore, r x o(NG(S)) >rx o(5). Dividing by r, we 
obtain o(NG(S)) > o(S), proving that Y is expansive. By Hall's Theorem, there is 
a matching M of G that covers every vertex of Y. Because o(X) < o(Y), it must 
be that o(X) = o(Y), and M is a perfect matching. If r > 1, then H = G — M is 
an (r — 1 )-regular bipartite graph, and the result follows by induction. ■ 

Let G be a (not necessarily bipartite) graph with a perfect matching M. 
Suppose S c V(G). Let H\,H2, ■ ■ ■, Hr be the components of G - S that have 
odd numbers of vertices. Because o(V(//,)) is odd, there must exist a vertex 
u¡ e V{H¡) that is matched with a vertex v¡ e 5, that is, u¡v¡ e M, 1 < i < r. 
Because the M'S are all different and M is a matching, the v's must all be different. 
Therefore, o(S) > r. 

Recall that §(G) denotes the number of (connected) components of G. Denote 
by £o(G) the number of components of G having an odd number of vertices. 
Using this notation, the observation in the previous paragraph may be restated as 
follows: If G has a perfect matching, then o(5) > £0(G - S), for all S c V(G).9 

6.25 T\itte's Theorem. Let G be a graph. Then G has a perfect matching if and 
only ifo(S) > ξ0(ΰ - S) for all S C V(G). 

Tutte's original proof of sufficiency10 involved certain matrix functions called 
pfqffians, which are beyond the scope of this book. Anderson11 found an elemen-
tary proof based on Hall's Theorem, and another elementary proof was discovered 
by Lovász.12 While "elementary," these proofs are neither easy nor especially 
revealing. Thus, we will omit a proof and move on to an application. 

6.26 Corollary. If G is a 2-connected, 3-regular graph, then G has a perfect 
matching. 

If G were bipartite, Corollary 6.26 would be a trivial consequence of Corol-
lary 6.24. 

Proof. If G has n vertices and m edges, then, by the first theorem of graph 
theory, 3n = 2m, so n is even. Since G is a connected graph on an even number 
of vertices, £0(G) = 0. If G does not have a perfect matching, then, by Tutte's 
Theorem, there is a set S C V(G) such that o(S) < Ç0(G — S). Moreover, S φ φ 
because ο(φ) = 0 = £0(G) = £0(G - φ). Therefore, 1 < o(S) < £0(G - 5). 

9 This necessary condition is reminiscent of Theorem 5.3: If G has a hamiltonian cycle, then o(5) > 
f (G — S) for all nonempty S C V(G). Unlike Theorem 5.3, this necessary condition is also sufficient. 
10 W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107-111. 
" I. Anderson, Perfect matchings of a graph, J. Combinatorial Theory B 10 (1971), 183-186. 
12 L. Lovász, Three short proofs in graph theory, J. Combinatorial Theory B 19 (1975), 269-271. 
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Consider an odd component, H — (W, F) of G — S. Suppose e = uv is an edge 
of G such that u e W and υ ^ W. Since υ is not in the same component of G — S 
as M, it must be that v e S. Because J2W^W^H(W) is even and J2weW ^c(w) = 
3o(W) is odd, the number t of edges of G that join a vertex of W to a vertex 
of 5 must be odd. If t = 1, the unique edge joining W to S would have to be 
a cut-edge of G, contradicting e(G) > K(G) > 2. Hence, / > 3. It follows that 
the odd components of G — 5 are joined to S by at least 3£0(G — 5) > 3o(S) 
different edges, contradicting that ^2veSda(v) = 3o(5). ■ 

6.27 Example. The two nonisomorphic 3-regular graphs on 6 vertices are G = 
(2K3)C and H ~ Cc

6. As illustrated in Fig. 6.2 (G on the left, H on the right), both 
of these graphs are 2-connected. Because G = ΑΓ33 is bipartite, Corollary 6.24 
guarantees that E(G) can be partitioned as the disjoint union of 3 perfect match-
ings. One way to do it is to observe that the three "diagonals" of G comprise 
a perfect matching, call it M. Because G — M = C^ the two complementary 
perfect matchings can be found in Fig. 6.3. (Another partitioning of E(G) arises 
from the fact that it is illustrated in Fig. 6.2 by three sets, each consisting of 
three parallel line segments.) 

Because H is not bipartite, Corollary 6.24 does not apply to it. The weaker 
conclusion of Corollary 6.26 guarantees only that H has one perfect matching. 
In fact, E(H) is also the disjoint union of 3 perfect matchings, one consisting of 
the three diagonals and the other two coming from C(,· This raises the natural 
question whether Corollary 6.26 can be strengthened. Can the edge set of every 
2-connected, 3-regulator graph be partitioned into the disjoint union of 3 perfect 
matchings? The answer is "no." While the Petersen graph has many perfect 
matchings, no two of them are disjoint. (See Exercise 39, below). D 

EXERCISES 

1 The carbon skeletons (Hiickel graphs) of naphthalene and biphenylene are 
illustrated in Fig. 6.10. Determine the number of perfect matchings 
(a) in napthalene. 
(b) in biphenylene. 

o ^ ο o o 
0 o o o o—o o 
1 I I I I I I 

Naphthalene Biphenylene 

Figure 6.10 
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2 Compute the matching polynomial of 

° o 
(a) | (b) o—o—o (c) o o 

o - o - o - o £ \ 0 _ 0 / 

3 According to the resonance conjecture, the thermodynamic stability of a 
"benzenoid" isomer is proportional to the number of its perfect match-
ings. (The more Kekulé structures, the more stable the isomer.13) Which of 
the carbon skeletons illustrated in Fig. 6.11 would the resonance conjecture 
predict to be the most stable? (Justify your answer.) 

o - ° - o - ° - o / ° - o 
O / O O O 

o o o 

o - ° - o / ° - o 

% » " % , ' % 

°-o-° 
Anthracene Phenanthrene 

Figure 6.11 

4 Prove that 
(a) ß(G) is an invariant. 
(b) M{G, x) is an invariant. 

5 Compute M(G, x) for G = 
(a) Pg. (b) Λο· (c) Κ6. (d) Κη. 

6 Show that M ( d ®G2,x) = M(G{, x) M(G2, x). 

7 It follows from Theorem 6.12 and properties of symmetric matrices that the 
roots of M(G, x) are all real when G is a forest. In fact, it can be shown 
that the roots of M(G,x) are all real for every G. Even more is true: Let 
a\ > Ü2 > · · · > a„ be the roots of M(G, x). 
(a) The number of distinct roots of M(G, x) is greater than the length of a 

longest path in G. In particular, if G has a spanning path, then the roots 
of M(G, x) are all distinct. Confirm that M(P5, x) has distinct roots. 

13 The Ciar postulate asserts that benzenoid systems without Kekulé structures are unstable biradicals. 
On the other hand, according to D. J. Klein et al. [Resonance in COO BuckminsterfuUerene, J. Amer. 
Chem. Soc. 108 (1986), 1301], the pure carbon fullerene COO has 12,500 perfect matchings. 
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(b) If b\ > b2 > · · · > bn-\ are the roots of M(G - v, x), then the Z>'s inter-
lace the a's; that is, a, > fc, > ai+u 1 < i < n. Confirm that the roots 
of M (#4, x) interlace the roots of M(Ks, x). 

8 Let c„ be the number of perfect matchings in the complete graph K„. 
(a) Compute C4. 
(b) Compute C5. 
(c) Compute c^. 
(d) Prove that cn + 2 = (« + l)c„. 
(e) Prove that C2r is odd. 

9 Let G be a graph on n > 3 vertices. Suppose M and v are nonadjacent vertices 
of G. Then, reversing the perspective that led to Equation (40), one obtains 

M(G, x) = M(G + e, x) + M(G - u - v, x), 

where G + e is the graph obtained from G by adding a new edge e = uv. 
Use this "reverse angle" approach, along with Example 6.11, to compute 
the matching polynomial of 

(a) ^5 - e. (b) K6 - e. 

10 Let G be a graph on n vertices. 
(a) Prove that x(G) < 1 + ß(G). 
(b) Prove that *(G) + ß(Gc) > n. 

11 Let T be a tree. Prove that its adjacency matrix, A(T), is invertible if and 
only if T has a perfect matching. 

12 Find a connected graph G such that 
(a) a(G) < /8(G). (b) a(G) > ß{G). 

13 Let A = (a¡j) be an m x n (0, l)-matrix (i.e., each a,7 is either 0 or 1). The 
term rank oï A is the largest number of l 's in A, no two of which lie in the 
same row or column. Prove that the term rank of A is equal to the smallest 
cardinality of a set of rows and columns that contain every nonzero entry 
of A. 

14 The Hosoya topological index of a graph G is H(G) — £],.>o'"(G, r), the 
sum of the absolute values of the coefficients of the matching polynomial 
of G. 
(a) Prove that H(P„) = F(n), the nth Fibonacci number, defined recur-

sively by F(0) = F( l ) = 1 and F(n + 1) = F(n) + F{n - \), n > 1. 
(b) Prove that H(Cn) = L(n), the nth Lucas number, defined by L(0) = 2, 

¿ ( 1 ) = l ,andL(n + l) = L(n) + L ( n - 1), n > 1. 
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15 Let M be a matching of G. A path (cycle) in G is said to be M-alternating if 
the edges along the path (cycle) are alternately in M and not in M. Suppose 
P is an M-alternating path in G from u to w. If neither u nor w is covered 
by M, then P is said to be an M-augmenting path of G. Prove that M is 
a maximum matching if and only if G does not contain an M-augmenting 
path. 

16 Let G — (V, E) be a graph with matching polynomial f{x) = M(G, x). It 
can be shown that the derivative 

f'(x) = Y^M(G-v,x). 
veV 

(a) Use this result to prove that the Hermite polynomials satisfy h'n {x) = 
nh„-i(x). 

(b) Show how to obtain M(Ke, x) by antidifferentiating Equation (47). 

17 Important to the theory of matchings is the notion of adjacent edges. This 
concept also arises in the following way: Associated with any graph G = 
(X, Y) is its line graph G* = (Y, Z). The vertex set of C# is V(G*) = 
Y = E(G); that is, the vertices of G# are the edges of G. The edges of 
G* are those pairs of its vertices that are adjacent edges in G—that is, 
y\y2 € Z = E(G#), if and only if y\ and yi are incident with a (single) 
common vertex of G. 
(a) Show that the line graph of P4 is isomorphic to P3. 
(b) Show that the line graph of K4 is isomorphic to ^6 — M, where M is a 

perfect matching of K$. 

(c) Show that the line graph of the wheel W5 = ι~-~ο""/ is isomorphic to 
o — o 

the graph in Fig. 6.12. 

Figure 6.12 
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(d) Prove that μ ( 0 = a(G#). 
(e) Let M be a set of r edges of G. Let A be the r x r principal submatrix 

of A(G*) corresponding to M. Show that M is an r-matching of G if 
and only if A = 0. 

18 Let G be a bipartite graph with a spanning cycle. Prove that G has a perfect 
matching. 

19 For each graph in Fig. 6.13, compute 
(a) its degree sequence. 
(b) its chromatic polynomial. 
(c) its matching polynomial. 

o o o o o o 
/ \ / \ / / \ / / \ 

o—o—o—o—o—o o—o—o—o—o—o 
Figure 6.13 

20 Using the orthogonality of the Hermite polynomials, Godsil14 showed that 

M(Gc,x) = Y^m(G, r)M(Kn-2r,x), 
r>0 

where M(KQ,X) = 1. Confirm Godsil's formula for the self-complementary 
graph 
(a) G = P4. (b) G = C5. 

21 Say that two n -vertex graphs G and H are neighbors if G is isomorphic 
to a graph that can be obtained from H by the addition or deletion of 
a single edge. Then, for example, C4 and K2 ® Kj are neighbors of P4, 
but ΑΓ3 φ K\ is not. Suppose V„ is a system of distinct representatives for 
the nonisomorphic graphs on n vertices (i.e., every graph on n vertices is 
isomorphic to precisely one element of V„). Let Γ„ be the graph with vertex 
set V(r„) = V„, where G,H eVn are adjacent (in Γ„) if and only if G and 
H are neighbors. 
(a) Prove that Γ3 is isomorphic to P4. 
(b) Illustrate Γ4. 
(c) Prove that Γ„ is bipartite. 

14 C. Godsil, Hermite polynomials and a duality relation for matching polynomials, Combinatorica 
1 (1981), 257-262. 
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22 Let G = (V, E) be a graph on n vertices, none of which is isolated (i.e., 
8(G) > 0). An edge covering of G is a subset L c E such that for every 
v € V, there exists an e e L that is incident with v. The edge covering 
number, ß'(G), is the minimum number of edges in any edge covering 
of G. 
(a) Suppose M is a maximum matching of G. Let U — [u\, «2,. · . , ur) be 

the set of vertices of G not covered by M. Then r = n — 2o(M) is the 
deficiency of M. Show that there exist (different) edges e\, ej,..., er 
such that M, is incident with e¡ and e, ^ M, 1 < i < r. 

(b) Prove that /8'(G) < ß(G) + r < n — μ(ΰ), where r is defined in part (a). 
(c) Suppose L is a minimum edge covering of G. Let G\ = (V(G), ¿). 

Show that G\ is a graph, each of whose connected components is a star 
on 2 or more vertices. 

(d) Show that ß(G\ ) = Ç(GX ) = n - ß'(G), where G{ is defined in part (c). 
(e) Show that μ(0 >η- ß'(G). 
(f) Prove that ¿¿(G) + ß'(G) = n. 
(g) If G is bipartite, prove that ß'(G) = a(G). 

23 In this problem, denote by 5„, not the star graph, but the set of all n\ 
permutations of {1, 2 , . . . , n). If A = (a¡j) is an n x n matrix, its permanent 
is defined by 

n 

per(A)= ΣΥΙ"φ(»-
/>eS„ /=1 

A Sac/is graph is a graph //, each of whose connected components is an 
edge or a cycle (i.e., each component of H is isomorphic to K2 or to Cr for 
some r). 
(a) Let S(G) be the family of spanning Sachs subgraphs of G. If// e 5(G), 

let c(H) be the number of components of H that are cycles. Prove that 

per(A(G)) = ] T 2C(W). 
H<ES(G) 

(b) Denote by K(G) the number of perfect matchings (Kekulé structures) 
in the graph G. Prove that per(A(G)) > K(G)2. 

(c) Prove that per(A(G)) = K(G)2 if G is bipartite. 

24 Confirm that per(A(G)) = K(G)2 (see Exercise 23) for the graph 
0 0 0 0 o—o o o 

(a) \/ (b) I I (c) I I (d) l / l 
o — o o — o o—o o — o 
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(Hint: Like the determinant, the permanent of an n x n matrix A = (a¡j) 
can be expanded by rows [or columns]. Letting A¡¡ be the submatrix of A 
obtained by deleting its ith row and y'th column, we obtain 

n 

per(A) = ^a,7per(A,y), 1 < i < n.) 
j=i 

25 Let G be the bipartite graph illustrated in Fig. 6.9. Show that X is not 
expansive. 

26 Let G be a graph with no isolated vertices. As in Exercise 22, an edge 
covering of G is a subset L C E such that every tie V is incident with 
some e e L. Prove the following: 
(a) A minimal edge covering of G is a minimum edge covering if and only 

if it contains a maximum matching. 
(b) A maximal matching is a maximum matching if and only if it is contai-

ned in a minimum edge covering. 

27 Let M be a matching of G. Denote by 5 the set of vertices of G covered by 
M. Prove that there is a maximum matching of G that covers S. 

28 Show that Corollary 6.26 can be strengthened as follows: Every connected, 
3-regular graph with at most two cut-edges has a perfect matching. (Hint: 
In the proof of Corollary 6.26, show that o(5) and n — o(S) have the same 
parity [both are even or both are odd] and that n — o(S) = o(V(G — 5)) has 
the same parity as £0(G - 5). Conclude that o(S) < £0(G - S) - 2.) 

29 Let G be a connected graph of diameter D. 
(a) If D > 3, prove that ß(G) > K(G). 
(b) Give an example in which D = 2 and /u.(G) < K(G). 

30 Illustrate a connected, 3-regular graph that does not have a perfect matching. 

31 Let det(^/„ - A(G)) = x" + c\x"~l -\ l· cn be the characteristic polyno-
mial of the adjacency matrix of a graph G on « vertices. In 1963, H. Sachs15 

showed that 
ck = Y^(-lfW)2ciH\ l<fc<«, 

H 

where the summation extends over all subgraphs H of G, on k vertices, 
whose connected components are either single edges or cycles, and where 

15 The result was obtained independently, at about the same time, by M. Milié and L. Spialter. See, 
e.g., D. M Cvetkovié et al., Spectra of Graphs, 3rd. ed., Johann Ambrosius Barth Verlag, Heidelberg, 
1995. 
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ξ(Η) and c(H) are the numbers of components and cycles in H, respectively. 
Prove Sachs's Theorem. 

32 Let G be a graph on n vertices. Prove that 

M 

where the summation is over the matchings M of G, and def(M) = n — 
2o(M) is the deficiency of M defined in Exercise 22(a). 

33 Use Sachs's Theorem (Exercise 31 ) to compute the characteristic polynomial 
of the graph 

(a) G = P4. (b) G = C4. (c) G = K*. 

34 Use Sachs's Theorem (Exercise 31) to confirm that det(*/g — A(T\ )) = x* — 
7JC6 + 9x4 = det(jc/8 - A(T2)), where 7Λ and T2 are the trees from Fig. 6.6. 

35 Let A„ be the unique, connected antiregular graph on n > 2 vertices. (See 
Chapter 2, Exercise 37.) Define a(n, k) = m(An, k). The first few rows of 
the array a(n, k) are exhibited in Fig. 6.14. 

(a) Fill in row 7 of the array by finding M (AT, x). 
(b) Prove that a(n, k) = a(n - 2, k) + (n - 2k + \)a (n - 2, k - 1), for all 

k > 1 and n > 4. 

\ * 
2 
3 
4 
5 
6 

0 

1 
1 
1 
1 
1 

1 

1 
2 
4 
6 
9 

2 3 

1 
4 

13 1 

Figure 6.14. The array a(n, k). 

36 Prove that the cube graph Qk of Chapter 1, Exercise 33, has a perfect 
matching for all k > 2. 

37 The unique connected, bipartite, 2-regular graph on 8 vertices is Cg. The 
unique connected, bipartite, 3-regular graph on 8 vertices is the cube, Ô3. 

(a) Show that the complement of Ô3 is connected and 4-regular but not 
bipartite. 

(b) Illustrate the unique connected, bipartite, 4-regular graph on 8 vertices. 

38 Prove that ß(G) is an invariant. 
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39 Let G be the Petersen graph in Fig. 6.15. As illustrated, G consists of an 
outer cycle isomorphic to C5, an inner cycle isomorphic to C<j = C5, and 
five "connecting" edges of which uv is one. 
(a) Illustrate the two perfect matchings of G that contain edge uv. 
(b) Show that every perfect matching of G contains either one or all five 

of the connecting edges. 
(c) Show that no two perfect matchings of G are disjoint. 
(d) Show that, without changing its hypothesis, the conclusion of Corol-

lary 6.26 cannot be strenghtened to guarantee that the edge set of every 
2-connected, 3-regular graph can be partitioned as the disjoint union of 
perfect matchings. 

¡I 

O O 

Figure 6.15. The Petersen graph. 
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Graphic Sequences 

The number 6 is said to be perfect ' because it is the sum of its proper divisors: 
6 = 1 + 2 + 3. Because addition is commutative and associative, this sum could 
just as well have been written 3 + 2 + 1 . In this context, 1 + 2 + 3 is the same 
as 3 + 2 + 1 but different, say, from 4 + 2. In expressing the perfection of 6, 
what interests us is the unordered collection of its proper divisors. 

7.1 Definition. Let r be a positive integer. A partition of r is an unordered 
collection of nonnegative integers that sum to r. The positive integers in the 
collection are the parts of the partition. The number of its parts, multiplicities 
included, is the length of the partition. 

Among the partitions of 6 are the collections (multisets) {3, 3} and (3, 3,0} = 
{3, 0, 3}, both having length 2. The partitions {3, 1, 1, 1, 0, 0} = (1,0, 1, 3, 0, 1} 
and {1,1,1,3} both have length 4. It will greatly simplify the discussion to 
standardize some notation. 

7.2 Definition. A partition of r is represented by a sequence π = (π\, nj,..., π, ), 
where π\ + π2 + · · ■ + ττ, = r and π\ > π2 > · · · > ττ, > 0. This convention is 
expressed by means of the shorthand notation π h r. If ns > 0 = πί+ι, then s = 
ί(π), the length of π. 

As used in Definition 7.2, π φ 3.1415926535.... The choice of "pi" was 
dictated by the fact that it shares the same first letter as "partition." At this 
point, it might seem more natural to write p = (p\, p%,..., pt) h r. In the end, 
however, this choice would not result in less confusion, it would merely postpone 
the confusion. In fact, the potential for difficulties arising from the use of π is 
relatively insignificant, compared to an unfortunate semantic complication. 

In ordinary English usage, arranging the collection of integers comprising a 
partition, from largest to smallest, would typically be referred to as "ordering" 
the collection. It is precisely because a partition is unordered that we are free to 
arrange its parts any way we like. The five cards comprising a poker hand can 
be arranged in any of 5! = 120 ways, but no matter how the cards are arranged 
or rearranged, the hand is the same. So it is with partitions. 

1 A Christian theologian once explained that God, who could have created the universe in an instant, 
chose instead to labor for six days in order to emphasize the perfection of his creation. 

125 
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Another complication involves the zeros. It might seem preferable, at least here 
in the beginning, to define a partition to be an unordered collection of positive 
integers. This simplification would only cause grief later on. The way to deal 
with zeros is to say that π l·- r and γ \- r are equivalent if there is a one-to-one 
correspondence between the parts of π and the parts of γ in which corresponding 
parts are equal. Thus, π and γ are equivalent if and only if they differ, at most, 
in the numbers of zeros. 

7.3 Example. Up to equivalence, the three-part partitions of 6 are (4,1,1 ), 
(3, 2, 1 ), and (2, 2, 2), only one of which has anything at all to do with the 
perfection of 6. The equivalence class to which, for example, (4, 1, 1 ) belongs is 

{(4, 1, 1), (4, 1, 1, 0), (4, 1, 1, 0, 0), (4, 1,1,0, 0, 0 ) , . . . } . D 

We come, at last, to the relevance of partitions in a book about graphs. 

7.4 Example. Let G be a graph with n vertices and m edges. By the first theorem 
of graph theory, d(G) l·- 2m. The length of d(G) is the number of vertices of G 
that have positive degree — that is, the number of nonisolated vertices of G. D 

We know from Chapter 1 that not every partition of 2m can be the degree 
sequence of a graph. Let's address that issue. 

7.5 Definition. The partition π h 2m is graphic if there is a graph G whose 
degree sequence d{G) — π. 

Suppose π — (π\, π-χ,..., π„ ) h 2m. Let Δ = π\ and denote by πι the sequence 
obtained by rearranging (if necessary) the integers JT2 — 1, πτ, — 1 , . . . , 7ΓΔ+Ι — 
1, ΤΓΔ+2, · . . , πη into nonincreasing order. If πΑ+\ > 1, then πχ h 2{m — Δ). 

7.6 Theorem (Havel-Hakimi).2 Suppose π = (it\, π 2 , . . . , π„) \- 2m. Then π 
is graphic if and only ifnx is graphic. 

Proof. Suppose d(H) = π1 . We may assume V(H) = {vj, v-¡,..., vn}, where 
dHÍVi) = 7Γ, — 1, 2 < i < π\ + 1. Let G be the graph obtained from H by adding 
a new vertex v\, and new edges v\v¡, 2 < i < π\ + 1. Then d(G) = π, proving 
that the condition is sufficient. 

Conversely, suppose d(G) = π, so that Δ = π\ = A(G). Let u € V(G) be 
a vertex of degree Δ. Let IV be a set of Δ vertices of G having degrees 
π 2 ,7τ 3 , . . . , π Δ + ι . If NG{u) = W (i.e., if uw e E(G) for all w e W), then the 
graph H = G — u satisfies π1 = d(H), and the proof is finished. 

2 Theorem 7.6 was published independently by V. Havel [A remark on the existence of finite graphs 
(Czech.), Casopis Pëst. Mat. 80 (1955), 477-480] and S. L. Hakimi [On the realizability of a set of 
integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962), 496-506]. 
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Otherwise, there exist vertices v £ W and w e W such that uv e E(G) and 
uw £ E(G). Because d(v) < d(w), and one of the vertices adjacent to v is M, 
there exists a vertex z € V(G) such that wz e £(G) but vz g £(G). This situation 
is illustrated in Fig. 7.1, where solid arcs join vertices known to be adjacent and 
dashed arcs join vertices known to be nonadjacent. (The absence of "diagonal" 
arcs indicates that nothing is known about the corresponding adjacencies.) Let G1 

be the graph obtained from G by switching the solid and dashed arcs — that is, by 
deleting edges uv and wz, and adding new edges vz and uw. Then V(G' ) = V(G) 
and, because each vertex has the same degree in G1 as in G, d(Gl) = d(G) = π. 
The important difference is that o(W Π N& («)) > o(W Π NG(u)). If NGi («) = W, 
then H = G1 — u is a graph with degree sequence πι. Otherwise, another switch 
will yield a graph G2 such that d(G2) = π and o(W Π NG2(H)) > o(W n Afci («))· 
Eventually, we obtain a graph G* such that π = d(Gk) and NGt(u) = W, at 
which point H = Gk — u will be a graph with degree sequence d(H) = πι. 

" o - - - o z 

I I 

Figure 7.1 

7.7 Example. Suppose π = (4,4, 4, 2, 2, 1, 1)1- 18. Then π1 = (3, 3, 1, 1, 1, 1) 
l· 10. By Theorem 7.6, π is graphic if and only if π1 is graphic. Applying the 
theorem again, we see that π is graphic if and only if π2 is graphic, where 
π2 = (2, 1, 1,0,0) is the partition of 4 obtained by rearranging the terms of the 
sequence 2,0,0, 1, 1. Because, π3 = (0,0,0,0) = d(Kc

4), we conclude that 7Γ2 = 
(2, 1, 1,0,0), 7Γ1 = (3,3, 1, 1, 1, 1), and π = (4,4, 4, 2, 2, 1, 1) are all graphic. 

In general, this reduction need not continue all the way to the bitter end. If, 
for example, π' — (2, 0, 0, 0, 0) for some /, we can stop immediately. No graph 
can have just one vertex of positive degree. If a negative integer appears, we can 
stop; no graph can have a vertex of negative degree. Had we noticed that d(Pi Θ 
K\) = (2, 1, 1, 0, 0) = 7Γ2, we could have concluded that π = (4, 4,4, 2, 2, 1, 1) 
is graphic without taking the last step. 

Speaking of the last step, a review of the proof of Theorem 7.6 shows that 
π is graphic if and only if there is a nonnegative integer j such that π ; is a 
sequence of r{= n — j) zeros. The number r — r(n) of zeros that remain, when 
the reduction of a graphic sequence π is carried out to the bitter end, is called 
the Havel-Hakimi residue of π. At the risk of confusing it with the number of 
regions of a plane graph, it seems natural to write r(G) = r(rf(G)).3 

3 It was proved by O. Favaron, M. Mahéo, and J.-F. Sacié [On the residue of a graph, J. Graph 
Theory 15 (1991), 39-64] that r(G) < a(G); in other words, the residue of a graphic sequence n 
is a lower bound for the independence number of any graph whose degree sequence is π. (See 
[J. R. Griggs and D. J. Kleitman, Independence and the Havel-Hakimi residue, Discrete Math. 127 
(1994), 209-212] for a short, revealing proof.) 
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If π is graphic then, by retracing the steps that produce its Havel-Hakimi 
residue, we can construct a graph G having degree sequence d(G) = π. Consider, 
for example, n = (4, 4, 4,2,2,1,1 ). Earlier in this example, we found that ;r3 = 
(0, 0, 0, 0). Begin with r(n) = 4 isolated vertices. (Draw four dots on a sheet of 
paper.) To obtain a graph with degree sequence π2 = (2, 1, 1, 0,0), add a new 
vertex w and new edges joining w to two of the existing vertices. The result is 
a graph isomorphic to P3 ® K2. 

Before taking the next step, it is necessary to recall that π2 arose as a rearrange-
ment of the sequence 2, 0, 0, 1, 1. Let H be the graph obtained from P3 ® K2 
by adding a new vertex v and du (υ) = 3 new edges, one joining v to w, the 
existing vertex of degree 2, and the others joining v to the two (remaining) 
isolated vertices. Then, d(H) = π' = (3, 3, 1, 1, 1, 1). (Graph H is illustrated in 
Fig. 7.2.) 

o—o—o o o 0-^0 o 
\ / \ / \ / sX7\/ 

o — o—o—o o—o—o—o o—o—o—o 
v w v w v w 

G\ H Gi 
Figure 7.2 

A graph G, with d(G) = π = (4,4,4, 2, 2, 1, 1), can be obtained from H by 
adding a new vertex u and dc(u) = 4 new edges. Two of these join u to the 
existing vertices of degree three (v and w). The other two new edges are meant 
to join u to two of the four vertices of degree 1. But, which two? If we join u to 
the pendant neighbors of v, we obtain graph Gj in Fig. 7.2. A graph isomorphic 
to G2 results from joining u to the two pendant neighbors of w. However, if we 
join u to one pendant neighbor of v and one pendant neighbor of w, we obtain 
the nonisomorphic graph G\. Observe that d(G\) = π = d(Gj). D 

7.8 Example. Suppose π = (2, 2, 1, 1, 1, 1 ). Upon rearranging 1, 0, 1, 1, 1 we 
obtain π1 = (1, 1, 1, 1,0). Rearranging 0, 1, 1, 0 yields π2 = (1, 1,0,0). One 
more step produces π3 = (0, 0, 0) = d{K\). By the Havel-Hakimi Theorem, 
there exists a graph G having degree sequence d(G) = π. To find such a graph, 
begin with three isolated vertices. Adding a vertex w, along with an edge joining 
w to one of the existing vertices, produces K-¿ ® Kc

2, a graph with degree sequence 
π2. Recalling that π2 arose as a rearrangement of 0, 1, 1, 0, let H be the graph 
obtained from K2 ® K\ by adding a new vertex v and a new edge joining υ to 
one of the isolated vertices. Then, H = Κι φ Κ2 φ K\ and d(H) = π]. Finally, 
because JT1 originated from a rearrangement of 1,0, 1, 1, 1, we obtain G by 
adding a new vertex u and two new edges, one joining u to the remaining isolated 
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vertex and the other joining u to one of the vertices of degree 1. There is no ambi-
guity about G this time. No matter which vertex of degree 1 is joined to u by the 
last edge, the result is a graph isomorphic to Pi, Θ #2- (Confirm it!) Does this 
mean P4 φ Κ^ is the only graph having degree sequence π = (2, 2, 1, 1, 1, 1 )? 
No, but it does mean that P3 φ Ρ^ will never be produced by retracing the steps 
that lead to its Havel -Hakimi residue. D 

Let us return to the "switching" of edges that was so useful in proving 
Theorem 7.6. 

7.9 Definition. Let G = (V, E) be a graph. Suppose u,v,x,yeV are four 
(different) vertices such that uv, xy e E and ux, vy $ E. A Ryser switch 
4 in G is accomplished by deleting edges uv and xy and adding edges ux and vy. 

A Ryser switch in G = (V, E) produces a new graph H = (V, F), where 
F = (E\{uv,xy}) U [ux, vy}. The conditions permitting a Ryser switch are illus-
trated (again) in Fig. 7.3, where solid arcs join adjacent vertices and dashed 
arcs join nonadjacent vertices. Observe that the adjacency or nonadjacency of 
uy and/or vx is irrelevant to a Ryser switch. What's required is that the induced 
subgraph, G[u, v, x, y], be isomorphic to one of 2K.2, Pi, or C4. 

"O — O * 

I I 
V0---0y 
Figure 7.3 

7.10 Theorem. Let G and H be graphs. Then d(G) = d(H) if and only if G can 
be transformed into a graph isomorphic to H by a (possibly empty) sequence of 
Ryser switches. 

Proof. Because d(G\ ) = d(G), for any graph G\ obtained from G by a Ryser 
switch, sufficiency is clear. 

Conversely, suppose d(G) = d(H) = (Δ = π\,π2 π„). If« < 4 then (see, 
e.g., Fig. 1.9) G = H. So, assume n > 5. Without loss of generality, we may also 
assume that G = (V, E), H = (V, F), and dG(v) = dH(v), vsV. L e t n e V b e a 
vertex of degree Δ (in both G and H). Let W C V be a set of Δ vertices of degrees 
JT2, JT3,..., 7ΓΔ+ι. As we saw in the proof of Theorem 7.6, G can be transformed by 

4 Named for Herbert John Ryser, who introduced switching in the context of (0,1 )-matrices (See, e.g., 
H. J. Ryser, Combinatorial Mathematics, Cams Mathematical Monographs, Vol. 14, Mathematical 
Association of America, Washington, D. C, 1963, Theorem 3.1.) 
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a sequence of Ryser switches into a graph Gk such that dGk (v) = dG(v), v e V, and 
7VC* («) = W. Similarly, H can be transformed by a (possibly different) sequence 
of switches into a graph HJ such that dHi{v) = dn{v), υ e V, and NHj(u) = W. 

Let G = Gk — u and H' = Hj — u. By induction, G can be transformed into 
H' by a sequence of Ryser switches. Because NGk (u) — NHJ (U), and none of these 
switches involve u, the same sequence transforms Gk into HK Therefore, G can 
be transformed into H by the sequence of Ryser switches that changes G into 
Gk, followed by the sequence that changes Gk into HJ, succeeded by reversing 
the sequence of switches that transforms H into HK ■ 

7.11 Corollary. Suppose the graph G does not have an induced subgraph isomor-
phic to one of the three forbidden subgraphs IK2, PA, or CA- Then G is uniquely 
determined by its degree sequence; that is, ifd(H) = d(G), then H = G. 

Proof. If d(G) = d(H), then, by Theorem 7.10, G can be transformed into 
H by a sequence of Ryser switches. However, a Ryser switch can occur in G 
only if it has an induced subgraph isomorphic to one of 2K2, />4, or C4. ■ 

7.12 Example. Let G = 3^2 be the graph in Fig. 7.4(a). Because d(v) = 1 for 
all v e V(G), G is said to be \-regular, or regular of degree 1. Indeed, it is easy 
to see that, up to isomorphism, G is the unique 1-regular graph on 6 vertices. 
(Note that the graph in Fig. 7.4(b), obtained from G by a single Ryser switch, is 
isomorphic to G.) The complement of G is the so-called Cocktailparty graph, H, 
illustrated in Fig. 7.4(c). If there were another 4-regular graph on 6 vertices, its 
complement would be 1-regular and, therefore, isomorphic to G. Thus, despite 
the fact that it has induced subgraphs isomorphic to C4, H must be the only 
4-regular graph on 6 vertices. D 

O O O O o — o 

l i l i 
O O O O O — O 

(a) (b) 

Figure 7.4 

Up to equivalence, the partitions of 6 having two parts are (5, 1), (4,2), 
and (3, 3). By definition, the sums of the parts of each of these partitions is 
6. Their products, on the other hand, are 5, 8, and 9. This is related to the 
isoperimetric theorem of Euclid: Among all rectangles with a fixed perimeter, 
the one having the largest area is the square. Given that JC + y — p/2 is fixed, 
/ ( * , y) = xy attains its maximum when x = y. What about (9, 5, 3) and (7, 6, 4), 
both partitions of 17? Without doing any multiplying, is it immediately obvious 
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that 9 x 5 x 3 < 7 x 6 x 4 ? The governing principle in questions of this kind 
involves what has come to be known as majorization. 

7.13 Definition. Suppose a = (a\, a-i,..., as) and ß = (b\, bi,..., b,) are non-
increasing sequences of real numbers. Then a majorizes ß, written a >■ ß, if s < t, 

k k 

Σ>>5>·. (49) 
i = l i = l 

1 < i < i, and 
s t 

1=1 1=1 

The generalization of Euclid's isoperimetric theorem is the following "product 
theorem": Suppose a = (a\, a-i,..., a,) and β = (b\, bi,..., b,) are nonincrea-
sing sequences of length t of positive real numbers. If a >- β, then Y[a¡ < Y\b¡. 

7.14 Example. If π = (9, 5, 3) and γ = (7, 6,4), then π >- γ because 9 > 7, 
9 + 5 > 7 + 6, and 9 + 5 + 3 = 7 + 6 + 4. Thus, by the product theorem, 9 x 
5 x 3 < 7 x 6 x 4 . (Do the multiplications and see!) The product theorem fails 
if the sequences have unequal lengths or if the numbers are not all positive. 
While (4, 2) >- (3, 2, 1), it is not true that 4 x 2 < 3 x 2 x 1; and (4, - 1 , -1) >-
(2, 1,1), but4x ( - l ) x ( - l ) ¿ 2 x 1 x 1. D 

Suppose (as in the first part of Example 7.14) that a and β are nonincreasing 
sequences of positive integers. If a >■ β, then, by Equation (50), a and β are both 
partitions of r = Σα>'■ = Σ^ι'- *η t m s case> majorization has a useful geometric 
description. 

7.15 Definition. Suppose π is a f-part partition of r. The corresponding Ferrers 
(or Young) diagram5 F(n), consists of r "boxes," arranged in t left-justified rows. 
The number of boxes in row i of F(n) is n¡, I <i < t. 

7.16 Example. If π and μ are equivalent partitions (differing at most in their 
numbers of zeros), then F(7r) = F(¿i). The left-hand side of Fig. 7.5 illustrates 
this situation when π = (9, 5, 3) and μ = (9, 5, 3, 0). The fact that partitions are 

DDDDDDDDD DDDDDDD 
DDDDD DDDDDD 
DDD DDDD 
F (9,5, 3) = F (9, 5, 3,0) F (7,6, 4) 

Figure 7.5 

5 Named for Norman Macleod Ferrers (or Alfred Young). 



132 Chap. 7 Graphic Sequences 

represented by nonincreasing sequences means that the (i + 1 )st row of a Ferrers 
diagram can be no longer than its tth row, i > 1. D 

If 7Γ >- y then, from the definitions, F{n) and F(y) contain the same number 
of boxes. Almost as obvious is the following fact, stated as a lemma for later 
reference. 

7.77 Lemma. Suppose π,γ h r. Then π ν y if and only if F(n) can be obtained 
from F(y) by moving boxes up (to lower numbered rows), if and only if F(y) 
can be obtained from F(n) by moving boxes down (to higher numbered rows). 

It is clear from Fig. 7.5 that F(9, 5, 3) can be obtained from FÇI, 6, 4) by 
moving the last (right-hand end) box from each of rows 2 and 3 up to the end 
of row 1. A little care must be taken when moving boxes in order to ensure, at 
each stage, that the resulting array is a legitimate Ferrers diagram. For example, 
the last box in row i of F(n) can be (re)moved only if i = ί(π), or / < 1{π) and 
π,· > π,·+ι. 

Because F(n) determines π only up to equivalence, it will do no harm to 
suppose, whenever it is convenient, that the y'th row of F(n) is empty whenever 
j > 1(π). A box can be moved to the end of row j only if j = 1, or j > 1 and 
7Γ, < iTj-\. In particular, a box can always be moved to the bottom of the first 
column or to the end of the first row. 

7.18 Lemma. Suppose n,y\-r.Ifn is graphic and if π majorizes y, then y is 
graphic. 

Proof. Suppose π — d(G). By adding zeros to the end of π or y if necessary, 
we may assume π = (π\, 7Τ2,..., π„ ) and γ = (γ\,γ2, · · · ,γη)· (Adding zeros to 
π is equivalent to adding isolated vertices to G.) Let V(G) = {v\, vj,..., vn], 
where dc{v¡) = π,, 1 < i < n. 

If π = γ, there is nothing to prove. Otherwise, because r is the common 
sum of both sequences, there is a smallest integer i such that π, > y, and a 
smallest integer t such that π, < y,. Because π >- y, i < t. Let j be the largest 
integer such that n¡ = π,, and s the smallest integer such that π5 = JT,. Since 
7Γ,f — 1 > y¡ > Yt > π, + 1, n¡ > ns + 2. Let w be a vertex that is adjacent in G 
to Vj but not to vs. Let G\ be the graph obtained from G by removing edge WVJ 
and adding edge wvs. If p = d{G\ ), then F{p) is obtained from F(TT) by moving 
the last box in row j down to the end of row s. (If v, is an isolated vertex of 
G, then s — t and F(p) is obtained from F(n) by moving the last box in row j 
down to the end of the first column, thus creating a new row t.) By Lemma 7.17, 
7Γ >- p; and from the definition of majorization, p > y. If p = y, the proof is 
finished. Otherwise, repeat the process, eventually arriving at a graph G* whose 
degree sequence is d(Gt ) = y. ■ 

7.19 Example. Suppose π = (2, 2, 2) and y = (2, 1, 1, 1, 1). Then π >- y and 
because d{K^) = n, it is graphic. Let's see how the proof of Lemma 7.18 
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produces a graph H whose degree sequence is d(H) — y. Begin by replacing 
7Γ with (2, 2, 2, 0, 0) and let G = K3® Kc

2. In this case, i = 2, t = 4, ;' = 3, 
s — t, Vj is any vertex of G degree 2, and vs is either isolated vertex. The 
role of w is played by a vertex of K3 different from v¡. The graph obtained 
from G by removing edge wvj and adding edge wvs is G\ = P¿\®K\, and 
P = (2,2, 1, 1.0) >- y. 

o o 
G= / \ , G,= / 

o—o o o o—o—o o 
In the second step, i — j — 2, t — s — 5, v¡ is either vertex of P4 of degree 

2, and vs is the isolated vertex of G\. No matter which neighbor of v¡ we take 
for w, the graph G2 obtained from G\ by removing edge wv¡ and adding edge 
wvs is isomorphic to P2 Θ />3, and d(G2) = (2, 1, 1, 1, 1) = y. O 

7.20 Definition. Suppose y \- r. The conjugate of y is the partition y* f- r 
whose y'th part is the number of boxes in column j of F(y). 

It is an immediate consequence of this definition that F(y*) is the transpose 
of F(y). If, for example, y = (7, 6, 4), then (Fig. 7.5) y* = (3, 3, 3, 3, 2, 2, 1). 
The number of boxes in the y'th column of F{y) is equal to the number of rows 
of F(y) that contain at least j boxes — that is, to the number of parts of y that 
are not less than j . So, the jth part of y* is 

Y*=o([i:Yl >j}). (51) 

7.21 Definition. Suppose y l· r. The trace of y is / ( y ) = o({i: y, > ¿}). 

Geometrically, / ( y ) is the number of boxes on the diagonal of F(y), so 
/ ( y ) = f(y*). Another way to say the same thing is that / ( y ) is the size of 
the so-called Durfee square, the largest square array of boxes that will fit in the 
upper left-hand corner of F(y). If y = (7, 6, 4), then (Fig. 7.5) / ( y ) = 3. Notice 
that F(y) is completely determined by its first / ( y ) rows and columns. 

We come now to the main result of this chapter. 

7.22 Theorem (Ruch-Gutman).6 Suppose π l·- 2m. Then π is graphic if and 
only if 

k k 

Σπ* Z Σ ( π ; + l)· *<k< /(»)· (52) 
j=\ ; = i 

Proof. To prove the inequalities are necessary, let π = d(G), where V(G) = 
{v\,v2 vn) and dG{vi) = π,, 1 < / < n. 

6 Theorem 7.22 was first proved in E. Ruch and I. Gutman, The branching extent of graphs, J. 
Combin. Inform. System Sei. 4 (1979), 285-295. Also see W. Hasselbarth, Die Verzweigtheit von 
Graphen, Comm. in Math. & Computer Chem. (MATCH) 16 (1984), 3-17. 
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Consider, for example, the graph G in Fig. 7.6 having degree sequence π = 
(4, 3, 2, 2, 1). Figure 7.6(a) illustrates a variation on the theme of Ferrers dia-
grams in which boxes are replaced by numbers. Specifically, every box in row i 
is replaced with the number /. Thus, for example, the second row consists entirely 
of 2's, and the number of 2's in the second row is 3 = clivi). 

v, 1 1 1 1 2 3 4 5 

° f \ ° 3 3 1 2 
\ / \ 4 4 1 2 

vP % 5 , 
(a) (b) 

Figure 7.6 

A second variation can be obtained from the first by rearranging the numbers, 
but not the shape. In Fig. 7.6(b), row /' contains, in increasing order, the numbers 
(subscripts) of the vertices of G that are adjacent to v¡. Note that, in addition 
to sharing the same shape, variations (a) and (b) share the same integers, with 
the same multiplicities. Moreover, because the numbers in each row of variation 
(b) are arranged in increasing order, its first column must contain all of the l's. 
Similarly, all of the 2's are contained in the first two columns, all of the 3's in 
the first three columns, and so on. In general, for any graph, the first r columns 
of variation (b) contain all the l's, all the 2's, ..., and all the r's. 

Because no vertex is adjacent to itself, no row of variation (b) contains its own 
number. So, in addition to all the l's, the first column of variation (b) contains 
a number larger than 1. Therefore, π* > π\ + 1. Because the (1, l)-entry of 
variation (b) is at least 2, and since the numbers in the first row are strictly 
increasing, the (1, 2)-entry must be at least 3. Assuming π2 > 2, the (2, 2)-
entry cannot be less than 3. (No row contains its own number.) Thus, all of 
the l's, all of the 2's, and at least two numbers no smaller than 3 appear in 
the first two columns of variation (b). This proves π* + π\ > π\ + π2 + 2 = 
(ττι + 1) + (JT2 + 1). Indeed, as long as π* > k (i.e., as long as k < f(n)), we 
can use the same approach to prove that 

π* + π2 H l· n*k > π] + π2 -\ l·πk + k 
= (π, + 1) + (π2 + 1) + · · · + (π* + 1). 

To prove sufficiency, suppose π h 2m satisfies the conditions in (52). If one 
or more of the inequalities is strict, then boxes in the Ferrers diagram F(n) can 
be moved up (to lower-numbered rows) until the Ferrers diagram of a partition 
γ h 2m is obtained for which equality holds in each of the inequalities. Because 
F(y) is obtained from F(7r) by moving boxes up, γ majorizes π. By Lemma 7.18 
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(with π and y interchanged), it suffices to prove that y is graphic whenever 
Y*. = Yj + 1, 1 < j < f(Y). This is done in the following lemma. ■ 

Say that graph G is equivalent to graph H if G is isomorphic to a graph H' 
that can be obtained from H by adding or deleting isolated vertices. Thus, G 
and H are equivalent if they are isomorphic to within vertices of degree 0. In 
particular, if G and H are equivalent, they have the same number m of edges 
and (provided that m > 0) d(G) and d(H) are equivalent partitions of 2m. 

7.23 Lemma. Suppose m > 1. L«/ 7Γ I- 2m be a partition for which n*¡ = n¡ + 
1, 1 < j < /(7τ). 77iew, M/? /O equivalence, there exists a unique graph G such that 
d(G) = 7Γ. 

Proof. The proof is by induction on f(n). If f(n) = 1, then π = [m, l, 
1 , . . . , 1] (with m ones). Up to equivalence, the unique graph with this degree 
sequence is the star Sm+\. If /(JT) > 1, let μ \- 2(m — πι) be the partition whose 
Ferrers diagram is obtained from F(n) by deleting its first row and column 
(illustrated by B's in Fig. 7.7). Note that / (μ ) = f(n) - 1 and μ} = μ; + 1, 1 < 
j < / (μ) . By induction there is, up to isomorphism, a unique graph H, having 
no isolated vertices, such that d(H) = μ. Let G = K\V (H φ Kc

t), where t is 
the number of parts of π equal to 1. Then d(G) = π, proving existence. 

IDDDD 
IDDDD 
IDDD 
IDDD 
IDD 

Figure 7.7 

To prove uniqueness, suppose d(G') = IT. From the definition of equivalence 
we may, without loss of generality, assume that G' has no isolated vertices. 
Because π\ = π* — 1, G' has a dominating vertex v. Moreover, d(G' — v) — μ. 
It follows from the induction hypothesis that G' - v is equivalent to H. Indeed, 
because G' has no isolated vertices, it must be that G' — v is isomorphic to 
H ®Kc

t, from which it follows that G' is isomorphic to G. ■ 

7.24 Definition. Suppose m > 1. If π h 2m satisfies π* = n¡t + 1, 1 < j < 
/ (π) , it is called a threshold partition. If G — Kc

n, or if d(G) is a threshold 
partition, then G is a threshold graph.7 

7 First introduced in connection with the equivalence between set packing and knapsack problems 
[V. Chvátal and P. L. Hammer, Aggregation of inequalities in integer programming, Annals Disc. 
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The threshold partitions are those for which equality holds throughout (52). 
The Ferrers diagram of the threshold partition (6, 6, 4, 3, 3, 2, 2) is exhibited 
in Fig. 7.8. The row of B's below the Durfee square accounts for the +1 in 
"π* = n¡ + 1." Notice that the part of the diagram below the row of B's is the 
transpose of the part to the right of the Durfee square. 

DDD DDD 
DDD DDD 
DDD D 
■■■ 
DDD 
DD 
DD 

Figure 7.8 

7.25 Theorem. The partition γ is graphic if and only if it is majorized by a 
threshold partition. 

Proof. If y is a graphic partition but not a threshold partition, then strict 
inequality holds in at least one of the inequalities in (52). As in the proof of 
Theorem 7.22, this means that boxes in F(y) can be moved up so as to produce 
the Ferrers diagram of a threshold partition which, by Lemma 7.17, majorizes 
γ. As threshold partitions are graphic (Lemma 7.23), the converse follows from 
Lemma 7.18. ■ 

7.26 Example. It follows from Theorem 7.25 that, among graphic partitions, the 
threshold partitions are maximal in the partial order of majorization. Figure 7.9 
illustrates the partitions of 6, partially ordered by majorization. The two threshold 
partitions are directly below the self-conjugate partition (3, 2, 1). The graphic 
partitions of 6 are the ones whose Ferrers diagrams are constructed from dark 
boxes (■). D 

Say that a component of G is trivial if it consists of an isolated vertex. 

7.27 Lemma. Suppose G φ Kc
n is a threshold graph with degree sequence 

d(G) = π. Let u be a vertex of G of degree π\ and denote by C the component of 
G containing u. Then 

(a) C is the only nontrivial component of G; 
(b) C is a threshold graph; 

Math. 1 (1977), 145-162] and, independently, in the analysis of parallel behavior of systems of 
processes in computer programming [P. B. Henderson and Y. Zalcstein, A graph-theoretic charac-
terization of the PVchunk class of synchronizing primitives, SIAM J. Comput. 6 (1977), 88-108], 
threshold graphs have been rediscovered in a variety of contexts, leading to numerous equivalent 
definitions. 
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DDDDDD 

DDDDD 
D 

DDDD 
DD 

DDD DDDD 
ODD D 

D 
DDD 
DD 
D 

Figure 7.9 

(c) u is a dominating vertex of C; and 
(d) H = G — u is a threshold graph. 

Proof. Observe that ί(π) = π* is the number of vertices of G of positive 
degree. Since Δ = A(G) = π\ = π* — 1 it must be that, apart from itself, u is 
adjacent to every nonisolated vertex of G. This proves parts (a) and (c). Because 
d(C) is equivalent to π, part (b) follows from the dehnitions. If / (π ) = 1, then 
H = G — u = Kc

n_l is a threshold graph. Otherwise, because F(d(H)) is obtained 
from /·Χπ) by deleting its first row and column, d(H) is a threshold partition. 
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One application of Lemma 7.27 is the following interesting and useful char-
acterization of threshold graphs. 

7.28 Theorem. Let G be a graph on n vertices. Then G is a threshold graph 
if and only if no induced subgraph of G is isomorphic to one of the forbidden 
subgraphs 2K% Pi,, or C4. 

Proof. There are exactly seven nonisomorphic graphs on n < 3 vertices, and 
it is easy to confirm that each of them is a threshold graph. Thus, the theorem is 
proved for n < 3, providing the basis for a proof by induction. 

To prove necessity, let G be a threshold graph on n > 4 vertices. By Lemma 
7.27, we may assume that G is connected, that it has a dominating vertex u, and 
that H = G — u is a threshold graph on n - 1 vertices. By the induction hypoth-
esis, H contains none of the forbidden subgraphs. Thus, if G[W] is isomorphic 
to a forbidden subgraph, for some 4-vertex subset W c V(G), it must be that 
u € W. But, if u € W, then either G[W] = Kl3 or G[W] contains a triangle 
(a subgraph isomorphic to C3), contradicting the supposition that G[W] is a 
forbidden subgraph. 

Conversely, suppose G is a graph on n > 4 vertices that contains none of the 
forbidden subgraphs. Because 2Ki is not an induced subgraph, G has at most 
one nontrivial component. Hence, without loss of generality, we may assume 
G is connected. Let M be a vertex of G of largest degree. We claim that u 
is a dominating vertex of G. Otherwise, there is a vertex x e V(G) such that 
ux £ E(G). Because x is not an isolated vertex, there exists some y 6 V(G) 
such that xy e E{G). Because d{u) > d(y), and because y is adjacent to a vertex 
not adjacent to M, there must exist a vertex v e V(G) such that uv e E(G) and 
vy £ E(G). But that means G[u, v, x, y] is isomorphic to one of the forbidden 
subgraphs. Thus, « is a dominating vertex. 

Let H — G — u. Because every induced subgraph of H is an induced subgraph 
of G, H contains none of the forbidden subgraphs. By induction, H is a threshold 
graph. So, as in the proof of Lemma 7.23 (or by Exercise 29), H V {u} = G is a 
threshold graph. ■ 

7.29 Corollary. If G isa threshold graph, then every induced subgraph of G is a 
threshold graph. Moreover, G is a threshold graph if and only ifGc is a threshold 
graph. 

Proof. If H is an induced subgraph of G, then every induced subgraph of 
H is an induced subgraph of G. So, if G is a threshold graph, then no induced 
subgraph of H is isomorphic to a forbidden subgraph; that is, H is a threshold 
graph. Since P\ = Pi, and C\ = 2Kj, G[W] is a forbidden subgraph of G if and 
only if GC[W] is a forbidden subgraph of Gc. ■ 

7.30 Theorem. Letn = (π\, 7Γ2,.. -, π„), π„ > 0, be a threshold partition. Then, 
up to isomorphism, there is a unique threshold graph G satisfying d(G) = π. 
Moreover, G is connected. 
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Proof. By Lemma 7.23 there is, up to isomorphism, a unique threshold graph 
G that has no isolated vertices and satisfies d(G) = π. By Lemma 7.27, G must 
be connected. ■ 

Let π be a threshold partition. Because F(n) is completely determined by 
its first / ( π ) rows and columns, the following algorithm constructs the unique 
connected threshold graph corresponding to π. 

7.31 Threshold Algorithm. Suppose π = (π\, πι, ..., π„ ) I- 2m is a threshold 
partition with έ(π) = n. 

1. Let V = {v\, V2,..., v„) and E = φ. 
2. For i = 1 to / ( π ) . 
3. For j = i to 7Γ,·. 
4. E = EU[viVJ+i). 
5. Next j . 
6. Next /. 
7. G = (V, E) is a connected graph and d(G) = π. 

Suppose, for example, that n — (4, 3, 2, 2, 1) I- 12, so that m = 6. Because 
7T| > 1 and Ti2 > 2, but π^ < 3, the trace of π is f(n) = 2. Because π* = 
O({Í:TT, > 1}) = 5 and π\ = o({i:7r, > 2}) = 4, we have that nf = π, + 1, 1 < 
j < / ( π ) ; that is, π is a threshold partition. If we "run" the Threshold Algorithm 
with this input, the first (/ = 1) pass produces the graph in Fig. 7.10(a). The 
algorithm ends after the second (i = 2) pass, and outputs the graph G illustrated 
in Fig. 7.10(b) (which happens to be isomorphic to the graph in Fig. 7.6). Note 
that d(G) = π. 

4 θ O 3 4 θ θ 3 

(a) (b) 

Figure 7.10 

Let's examine the output of the Threshold Algorithm in general. Because n = 
7Γ* = JTI + 1, the first (i = 1 ) pass produces a graph with d(v\ ) = n — 1 = π\ and 
d(v2) = d(vj,) — ■ ■ · = d(v„) = 1. If f{n) = 1, then K2 — 1, and the algorithm 
ends having produced the star Sn. Otherwise, a second (/ = 2) pass creates edges 
from V2 to Vj+i, 2 < j < m. This is consistent with an input that has reserved 
space for K2 + 1 = π\ vertices of degree 2 (or more). If f(n) = 2, then, because 
F(n) is completely determined by its first two rows and columns, the algorithm 
stops and outputs a graph having degree sequence π. Otherwise, π3 > 3, and a 
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third (i = 3) pass adds edges from v¡ to v¡+\, 3 < j < πτ,, consistent with 7Γ3 + 
1 = 7Γ3. After three passes, the algorithm has generated a graph satisfying d(v\ ) = 
Ti. d(v2) = 7Γ2, d(t>3) = JT3, and d(i;,·) < n¡, 4 < i < n. After / ( π ) passes, it will 
output a graph with d(v¡) — n¡, 1 < i < n. 

7.32 Example. Let y = (5,4, 3, 3, 3, 1, 1) I- 20. Then / ( y ) = 3 and y* = 
(7, 5, 5, 2, 1). Because γ*{ = 7 > 6 = y, + 1, y,* + y2* = 12 > 11 = (y, + 1) 
+ (y2 + 1) and y,* + y2* + y* = 17 > 15 = (yi + 1) + (yz + D + (y3 + 1), y is 
graphie. But, it is not a threshold partition. Suppose we ignore the fact that it 
does not satisfy the hypothesis and input y into the Threshold Algorithm anyway. 
The output (confirm it with paper and pencil) is the threshold graph illustrated in 
Fig. 7.11 with degree sequence π = (5, 4, 3, 3, 2, 1, 0) h 18. Indeed, up to equiv-
alence, π is the unique threshold partition that satisfies n¡ = y,, 1 < /' < / ( y ) . 

D 

o o 
5 4 

Figure 7.11 

Recall that the vertex set of a bipartite graph can be (bi)partitioned as the 
disjoint union of two independent sets. As we now see, threshold graphs satisfy 
an analogous property. 

7.33 Corollary. Let G be a threshold graph on n vertices with d(G) — π. Let 
V(G) = {i>i, V2, ■ ■ ■, v„}, where dc(v¡) = π,, 1 < i < n. If W = {υ\, υ2, . . . , 
Vf(jr)}, then G[W] is a clique and G[V\W] is an independent set. Thus, V(G) 
can be partitioned into two sets, one of which is independent in G and the other 
in Gc. 

Proof. If 1 < f(n), then π, > f(n) and, by the Threshold Algorithm, v¡ 
is adjacent (at least) to v\, v%,..., v¡-\, v¡+i,..., w/or)· If ' > f(n), then t;, is 
adjacent only to vertices v¡ for which j < fin). In other words, no two of the 
last n — fin) vertices are adjacent to each other. ■ 

EXERCISES 

1 Exhibit (up to equivalence) all seven partitions of 5. 

2 Exhibit (up to equivalence) all five 3-part partitions of 8. 
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3 Find two graphic partitions of 6, neither of which majorizes the other. 

4 Determine whether π >- γ (and justify your answer). 
(a) π = (6, 5, 4) and γ = (5, 5, 5). 
(b) π = (6, 5, 4) and γ = (5, 4, 3, 2, 1). 
(c) π = (9, 7, 5, 3) and γ = (8, 8, 6, 2). 

5 Find the Havel-Hakimi residue of the graphic partition π = 
(a) (5,4,3,3,2,1). (b) (5,5,5,4,4,3). 
(c) (6, 5, 4, 3, 3, 2, 1). (d) (5,4,4,4, 3, 2, 1, 1). 

6 Exhibit a graph G having degree sequence d(G) = π for the corresponding 
graphic partition of Exercise 5. 

7 A partition π l·- r is self-conjugate if π = 7Γ*. Find all self-conjugate parti-
tions of 11. 

8 Suppose 7Γ = (2, 2, 1, 1, 1, 1) l· 8. As we saw in Example 7.8, d(G\) = π = 
d(G2\ where G\ = P4 © £ 2 and G2 = P3 Φ Ρ3. 
(a) Show that the Havel-Hakimi residue r(n) < a(G,), i = 1,2, where a(G) 

is the independence number of G. 
(b) Find a single Ryser switch that converts G\ into G2. 

9 Suppose π = (4, 4,4, 2, 2, 1, 1) h 18. As we saw in Example 7.7, d(G\) = 
π = diGz) for the nonisomorphic graphs G\ and G2 of Fig. 7.2. 
(a) Show that τ(π) > a(G¡), i = 1,2. 
(b) Find a single Ryser Switch that converts G\ into G2. 

10 Let G be the graph illustrated in Fig. 7.12(a). 
(a) Show that a Ryser switch involving the dark (solid) vertices produces 

the graph in either Fig. 7.12(b) or Fig. 7.12(c). 

^°^ ^0-̂  xo. 

ÇÎ m :f: 
(a) (b) (c) 

Figure 7.12 

(b) Prove (by the numbers) that the graphs in Fig. 7.12 are all isomorphic 
(to each other). 
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(c) Use the notions of Example 7.12 to prove that the graphs in Fig. 7.12 
are all isomorphic (to each other). 

11 Let G be a graph on 4 vertices. Prove that G is isomorphic to one of 2K2, 
P4, or C4, if and only if 
(a) neither G nor Gc contains a triangle (a cycle of length 3). 
(b) neither G nor Gc contains a vertex of degree 3. 
(c) neither G nor Gc contains an isolated vertex. 

12 Exhibit a sequence of Ryser switches that will transform the graph in 
Fig. 7.13(a) into the graph in Fig. 7.13(b). 

y 

\ 

\ 

(a) 

Figure 7.13 

13 Prove that π = (6, 5, 4, 4, 3, 2, 1, 1 ) h 26 is graphic 
(a) using the Havel-Hakimi Theorem. 
(b) using the Ruch-Gutman Theorem. 
(c) by finding a threshold partition that majorizes π. 

14 Prove or disprove that π == (8, 7, 7, 6, 6, 5, 4, 2, 1 ) is graphic 
(a) using the Havel-Hakimi Theorem. 
(b) using the Ruch-Gutman Theorem. 

15 Of the 15 partitions of 7, how many are graphic? 

16 As in Example 7.8, exactly one of the graphs in Fig. 7.13 can be pro-
duced by a reconstruction beginning with its Havel-Hakimi residue. Which 
one? 

17 Prove or disprove that, up to isomorphism, there is a unique graph on 6 
vertices that is regular of degree 3. 

18 Show that, up to isomorphism, there is a unique connected graph having 
degree sequence 
(a) (3 ,3 ,3 ,3 ,2) . (b) (5 ,3 ,3 ,2 ,2 ,1) . 
(c) (4, 4, 4, 2, 2, 2). (d) (3, 3, 3, 1, 1, 1). 

o ^ο 
ι><ι 

(b) 
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19 Of the 22 partitions of 8, 
(a) how many are threshold? 
(b) how many are graphic? 
(c) How many nonisomorphic graphs have 4 edges and no isolated vertices? 

20 Suppose r is a positive integer. Denote by P(r) the set of (equivalence 
classes of) partitions of r. Prove that majorization is a partial order of P(r). 
That is, prove: 
(a) π >- π for all π l· r. 
(b) If π >■ γ and γ >~ π, then π = γ. 
(c) If 7Γ >- γ and γ > ρ, then π > p. 

21 Find two (nonisomorphic) threshold graphs each having 5 vertices and 7 
edges. 

22 Let A„ be the unique connected antiregular graph on n vertices. (See Chap-
ter 2, Exercise 36.) Prove that An is a threshold graph. 

23 Illustrate 
(a) the two connected threshold graphs with four edges. 
(b) the three connected threshold graphs with five edges. 
(c) the four connected threshold graphs with six edges. 

24 (Harary and Peled) Prove that G is a threshold graph if and only if every 
induced subgraph of G contains an isolated vertex or a dominating vertex. 

25 Denote by t(m, n ) the number of nonisomorphic, connected, threshold graphs 
with m edges and n vertices. (Then, for example t(m, n) = 0 if m < n — 1 
or m > C(n, 2).) 
(a) Prove that t(m, n) = t(m - 1, n - 1) + t(m - n + 1, n - 1), n - 1 < 

m < C(n,2). 
(b) Prove that there are exactly 2""2 nonisomorphic, connected, threshold 

graphs on n(>2) vertices. 

26 Let G be a connected threshold graph on n > 2 vertices with degree sequence 
d(G) = jr. 

(a) Prove that o(G) = / ( π ) + 1. 
(b) Prove that a(G) = n - f(n). 
(c) Explain why parts (a) and (b) are not inconsistent with Corollary 7.33. 

27 Prove that γ >- π if and only if π* >- γ*. 

28 An interval graph is a graph whose vertex set is a (nonempty, finite) collec-
tion of intervals on the real line and whose edge set consists of those pairs 
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of intervals having a nonempty intersection. The threshold graph in Fig. 7.6 
is an interval graph corresponding, for example, to v\ = (0, 3), V2 = (0, 2), 
v¡ — (0, 1), i/4 = (1, 2), and v$ — (2, 3). Prove that every threshold graph 
is an interval graph. 

29 Prove that K„ v G is a threshold graph if and only if G is a threshold graph. 

30 (Henderson and Zalcstein) A threshold labeling of G = (V, E) is a pair 
(/ , t), where / is an integer valued function of the vertices of G, and t is 
an integer {threshold) such that X c V is an independent set of vertices of 
G if and only if £„6χ f(v) < t. 
(a) Prove that every threshold graph has a threshold labeling. 
(b) Prove that every graph with a threshold labeling is a threshold graph. 
(c) Find a threshold labeling for the unique, connected, threshold graph G 

whose degree sequence is d(G) = (5, 2, 2, 1, 1, 1). 

31 Prove or disprove that G v H is a threshold graph whenever G and H are 
connected threshold graphs. 

32 (Beard and Dorris) Let G be a disconnected graph that, up to equivalence, 
is uniquely determined by its degree sequence π. Show that πι < 1. 

33 Let G be a connected graph. The eccentricity of u e V(G) is ec(w) = 
max„€v(G) d(u, v), the maximum of the distances from u to the other vertices 
of G. The radius of G is rad(G) = min„ev(G) ec(w). The center of G is 
(w e V(G): ec(vv) = rad(G)}. Prove that the center of a connected threshold 
graph is a clique. 

34 (Golumbic) Let 0 < δ\ < &2 < · · · < h be the distinct degrees of the noniso-
lated vertices of G. Let D, = {υ e V(G):dG(v) = <5,}. Prove that G is a 
threshold graph if and only if it satisfies the following condition: For all pairs 
of distinct vertices u € D¡ and w e Dj, uw e E(G) if and only if i + j > k. 

35 Let G be a threshold graph. Suppose uw € £(G). If dcW) > dc(u) and 
¿c(w') > dc(w)» prove that w'w' e E(G). 

36 (Orlin) Let G be a graph that satisfies the following property: If uw € 
£(G), dG(u') > dG(M), and dG(w') > dG{w), then wV e £(G). Prove that 
G is a threshold graph. 

37 Suppose π I- 2m is a graphic partition. Prove that π* >- π. 

38 (Gasharov) Let G be a graph with vertex set V = {v\,V2,..., v„\. Suppose 
{x\, JC2,..., x„} is a set of independent variables. Associate with G the mono-
mial product 

h(G) = f j *,-*,■, 
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and let 
g(X\,X2 Xn)= Π (1+XiXj). 

l<i<j<n 

(a) Show that h(G) = x^xp ...xd„\ where d, = dG(vi). 
(b) Show that h(G) is the term in g(x\,x2,... ,xn) corresponding to 

Π,·< , ·(^;) ' ( '" ' ' , where e(i, j) = 1 if v¡vj € E(G), and 0 otherwise. 

(c) If x" — xK\X2 .. .x"n is among the monomials appearing in g(x\, xi,..., 
x„), show that x" is of the form h(G) for some graph G having vertex 
set V. 

(d) Show that g(x\,X2,... ,x„) is symmetric in the variables xt,x2,... ,x„; 
that is, if cxn occurs in g(x\, x2, ■ ■ ■, xn ) , and if μ is any (re)arrangement 
of π, then cxß is a term in g{x\, x2, ■ ■ ■, xn )■ 

(e) Suppose it V- 2m for some m < C(n, 2). Show that x" is among the 
monomials occurring in g(xi,x2,... ,x„) if and only if π is majorized 
by a threshold partition of 2m. 

39 Let G = K5 — M, where M is a 2-matching. 
(a) Show that G is not a threshold graph. 
(b) Show that if H is a graph on 5 vertices satisfying d{H) = d{G) then 

H = G. 
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8 
Chordal Graphs 

If 7Γ l· 2m, then, according to the Ruch-Gutman criteria (Theorem 7.22), π is 
graphic if and only if 

£ n) > £>, + l > · l * k Z /(*>■ <53> 
y'=l > = I 

Presented that way, the conditions seem complicated and technical. However, by 
extending the ideas of Chapter 7 to a slightly more general setting, we can obtain 
an alternative statement of the Ruch-Gutman Theorem that is both elegant and 
revealing. The extension is a simple one that amounts to weakening one part of 
the definition of majorization. 

8.1 Definition. Suppose a = (a\, ai, ■ ■., as) and β = {b\, bj,..., bt) are non-
increasing sequences of real numbers. Then a weakly majorizes ' β, written a>- β, 
if s < t, 

k k 

£>>]>>,, l<k<s, (54) 
< = 1 ( = 1 

and 

Σ>>Σ>· (55) 
i = l i = l 

Evidently, a majorizes β if and only if a weakly majorizes β and equality 
holds in (55). 

Suppose π l· r. We are going to divide F(jt) into two disjoint parts. Denote 
by Β(π) those boxes of F(n) that lie strictly below its diagonal. Let Α(π) be 
the rest, that is, Α(π) consists of those boxes that lie on the diagonal or lie to 
the right of a diagonal box. Informally, Α(π) is the part of Ρ(π) on or above 
the diagonal, and B(n) is the part (strictly) below the diagonal. If, for example, 

' The standard reference for variations on the theme of majorization is A. W. Marshall and I. Olkin, 
Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979. 

147 
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FM = 

IDDDDD 
HDDD 

HD 
BM = 

IDDC DD 
D BDDD 

D 
_D 
DD 

= AM 

Figure 8.1 

π = (6, 5,4, 2, 2, 2, 2, 1), the division of F(n) into Λ(π) and β(π) is illustrated 
in Fig. 8.1. 

8.2 Definition. Suppose π \- r. Let α{π) be the partition whose parts are the 
lengths of the rows of the shifted shape Α(π). Denote by β(π) the partition whose 
parts are lengths of the columns of Β(π). 

If jr = (6, 5, 4, 2, 2, 2, 2,1), then (Fig. 8.1) ο(π) = (6, 4, 2) and /3(ττ) = 
(7,5). The number of rows of Α(π) is 1(α(π)) = 3 = fin). The yth part 
of α(7Γ) is [a(n)]j = n¡ — ij — 1), 1 < j < 3, and the y'th part of ß(jt) is 
[β(ττ)]7 = 7Γ* — y, 1 < j < 2. These relationships between π, π*, α(π), and β(π) 
are formalized in the next result. 

8.3 Lemma. Suppose π \- r. Let α(π) and β(π) be the partitions obtained by 
dividing Fin). Then 

(a) £(α(π)) = fin); 
(b) /(7Γ) - 1 < ί(β(π)) < fin); 
(c) [a(n)]j = nj - (j - 1), 1 < j < fin); and 
(d) [/?(7r)]; = π* - ./, 1 < /" < f(x)> with the understanding that [ßin)]j = 0 

if) = fin) > *(#ττ)). 

Proo/. Part (a) follows because each row of Α(π) begins with the corre-
sponding diagonal box of Fin). Part (b) is a consequence of the fact that the 
columns of Bin) must fit together with the rows of Α{π) to produce a Ferrers 
diagram. Parts (c) and (d) are immediate consequences of the definitions. ■ 

If n h r, then, by (53), n is graphic if and only if 

* k 

7 = 1 7 = 1 

Subtracting k(k + 1 )/2 from both sides gives 

k k 

Σ>7* - » Z Σ<π / - 0' - 1 )), 1 < * < fin). 
7 = 1 7=1 
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By Lemma 8.3, this family of inequalities is equivalent to 

* k 

£>(*)], > £>(*)],·, 1 < k < fin). (56) 

Together with Lemma 8.3(b), (56) is precisely the statement that β(π) >- α(π). 
This proves Roby's variation on the theme of Ruch and Gutman.2 

8.4 Theorem. Suppose π \- 2m. Then π is graphic if and only if β(π) weakly 
majorizes α(π), that is, β(π) >■ α(π). 

The family of inequalities (56) is equivalent to the family (53) because each 
individual inequality is equivalent, 1 < k < / (π) . In particular, equality holds 
throughout one family of inequalities if and only if it holds throughout the other. 
This observation is formalized in the next result. 

Theorem 8.5. If n \- 2m, then π is a threshold partition if and only if 
a(jt) = β(π). 

As we have seen, π -*■ F(n) is a one-to-one correspondence between (equiv-
alence classes of) partitions of 2m and Ferrers diagrams consisting of 2m boxes. 
It follows from Theorem 8.5 that, in this correspondence, π is a threshold parti-
tion if and only if F(JT) is "quasi-symmetric" in the sense that Α(π) = Β(π)', 
the transpose of Β{π). Because a quasi-symmetric Ferrers diagram is completely 
determined by its top half, π -> Α(π) is a one-to-one correspondence between 
threshold partitions of 2m and shifted shapes having m boxes. We know from 
Theorem 7.30 that there is a one-to-one correspondence between (nonisomor-
phic) connected threshold graphs having m edges and threshold partitions of 
2m. Putting it all together, there is a one-to-one correspondence between shifted 
shapes having m boxes and connected threshold graphs having m edges.3 

Let's look a little more closely at what it means to be a "shifted shape." Unlike 
F(n), the rows of Α(π) are not left-justified. Each successive row is shifted one 
(more) box to the right. The left-hand boundary of Α(π) looks like an inverted 
staircase. On the other hand, because Α(π) is just the top half of F(n), the rules 
that apply to the right-hand boundary are the same for Α(π) as for F(JT), that is, 
the last box in row ι + 1 of Α(π) can extend no further to the right than the last 
box in row i. The right-hand boundary rule applied to F(n) reflects the fact that 
the parts of π form a nonincreasing sequence. Because the left-hand boundary 
rules are different, the same right-hand rule applied to Α(π) implies that the parts 
of α(π) from a (strictly) decreasing sequence, that is, the parts of α(π) are all 
different. Conversely, if p = (p\, pi,..., pk) \- m satisfies p\ > pi > ■ ■ · > Pk, 

2 Tom Roby is a professor at CSU Hayward. 
3 This correspondence was exploited, for example, in R. Merris and T. Roby, The lattice of threshold 
graphs. 
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then there exists a unique shifted shape whose ith row contains p¡ boxes, 1 < i 
< k. It follows that the one-to-one correspondence between threshold graphs and 
shifted shapes extends to a one-to-one correspondence between the connected 
threshold graphs having m edges and the (equivalence classes of) partitions of 
m having distinct parts. This is interesting in part because the number of such 
partitions has been known at least since the time of Euler. 

Corollary 8.6. Denote by cm the number of nonisomorphic, connected, threshold 
graphs having m edges. Then the generating function 

^2cmxm = Y[(l+x') (57) 
m>0 I>1 

= 1 + x + x2 + 2x3 + 2JC4 + 3JC5 + 4x6 ■ ■ ■. 

Proof. Whoa! An infinite product? If you haven't seen this kind of thing 
before, it's not as bad as it looks. In fact, the coefficient of xm in the right-hand 
side of Equation (57) is the same as the coefficient of xm in the finite product 

( 1 + J C ) X ( l + * 2 ) x . . . x (\+xm). 

This product is the sum of terms of the forms xe'xei.. .xem, where the ith expo-
nent, e¡, is either / or 0. Hence, the coefficient of xm in the finite product is 
the number of ways to express m = e\ + ei + ■ ■ ■ + em, where e¡ = i or 0, that 
is, it is the number of (equivalence classes of) partitions of m having distinct 
parts. From the discussion preceding the statement of the corollary, this number 
is precisely cm. 

m 

By Theorem 8.4, π h 2m is graphic if and only if β{π) >- α(π). From Theo-
rem 8.5, π is a threshold partition if and only if β(π) = α(π). This raises a more 
or less obvious question. Is there anything special about partitions π that satisfy 
β(π) > α(π)? For one thing, Β(π) and Α{π) contain the same number of boxes. 
There is a positive integer m such that α(π) h m and β(π) h m. Because majoriza-
tion implies weak majorization, β{π) >- α(π) means π I- 2m is graphic and m is 
the number of edges in any graph whose degree sequence is equivalent to π. 

8.7 Definition. Suppose nhr.lf β(π) majorizes α(π), then π is a split parti-
tion. If G = Kc

n or if d(G) is a split partition, then G is a split graph. 

Evidently, every threshold graph is a split graph. Perhaps the simplest example 
of a nonthreshold split graph is Pa, whose degree sequence d(P^) = γ = (2, 2, 
1,1) divides as α{γ) = (2, 1) and β(γ) = (3). 

8.8 Example. If π = (4, 4, 4, 2, 2, 1, 1 ), then (Fig. 8.2) β(π) = (6, 3) ^ 
(4, 3, 2) = α(π), so π is a split partition. Thus, the nonisomorphic graphs G\ 
and G2 from Example 7.7 (reproduced in Fig. 8.3) are split graphs. Evidently, 
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E G DDE 

F(n) = DC Β(π) = DC 
DD 

Α(π) 

Figure 8.2 

O — O — O 

o—o—o—o 
o—>o o 
sX7\/ 

o—o—o—o G2 

Figure 8.3 

a connected split graph is not necessarily uniquely determined by its degree 
sequence. D 

Recall (Corollary 7.33) that the vertex set of a threshold graph can be parti-
tioned into the disjoint union of a clique and an independent set. Our proof that 
this property characterizes split graphs requires some preparation. 

Let π = (4, 4, 4, 2, 2, 1, 1) be the split partition from Example 8.8. Consider 
the unique threshold partition γ determined by A(y) = A(n). Then (Fig. 8.2), 
β(γ) = a(y) = α(π) — (4, 3, 2), so γ = (4, 4, 4, 3, 3). (Confirm it with paper and 
pencil.) Because β(π) >- α(π) = β(γ), Β(π) can be obtained from Β(γ) by moving 
boxes down. (If this seems backwards, it is because the j'th part of β(π) is 
the number of boxes in row /, not of Β(π) but of its transpose. See Fig. 8.4.) 
Therefore, F(n) can be obtained from F{y) by moving boxes down. So, by 
Lemma 7.17, the split partition π is majorized by the threshold partition γ. 

Β(π) 
D □ 
D 

Β(γ) fen ΏΏΠ ΠΠΠ 

Figure 8.4 

Inputting γ = (4, 4,4, 3, 3) into the Threshold Algorithm produces the thres-
hold graph T = K$ — e shown in Fig. 8.5(a). In this case, f(y) = 3 and, as 
guaranteed by Corollary 7.33, W = [v\, V2, v^} is a clique in T and U = V\W = 
{«4, v$} is an independent set. 

Let's see if we can figure out what is going on graph theoretically as boxes 
are moved down in F(y), ultimately to produce F(n). Because Α(γ) = Α(π), 
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B{y) 
DOD = Μγ) 

(a) (b) 

Figure 8.5 

only boxes starting out in B(y) are eligible to be moved. The boxes in column 
j of B(y) come from column j and rows j + 1 through π* = π , + 1 of F(y). 
Looking back at the second variation of F(y) (see Fig. 7.6(b)), there is a one-
to-one correspondence between the boxes in column 1 of B(y) and the edges of 
T incident with v\. The boxes in column 2 correspond to the edges joining V2 to 
v¡+\, 2 < i < K2- In general, for 1 < j < f(y), the boxes in column j of B{y) 
correspond to the edges joining vj to v¡+\, j < i < n¡. In other words, box (¿, 7) 
of Β(γ) (the box in row i 4- 1 and column j < i of F(y)) corresponds to edge 
vi+\Vj of T. Because E(T) = {vi+\Vj·. 1 < 7 < f(y), j < i < TC¡), this establishes 
a one-to-one correspondence between the boxes of B(y) and the edges of T. (The 
"other" box of F{y) corresponding to edge vi+\Vj lies in row j of A(y).) 

Not every box in Β(γ) is eligible to be moved. No box in the first column 
can be moved down (and maintain a Ferrers diagram). Because the resulting 
configuration of boxes must fit together with A(y) to make a Ferrers diagram, 
the first (topmost) box in column 7 must remain in place for all 7 < fiy). The 
division of F(y) is illustrated in Fig. 8.5(b), where boxes not eligible to be 
moved down are empty. If box (/, 7) in B(y), corresponding to edge vi+\Vj of 7\ 
is eligible to move, then, because we want to keep track of its adjacency to vj, 
it is marked with (its column) number j . 

In this particular example, the process of moving boxes down can only begin 
with box (4,3) in the lower right-hand corner of B(y). Moreover, the only place 
this box can be moved to is position (5,1), at the bottom of column 1. Moving 
box (4,3) out of row 4 of B(y) (row 5 of F(y)) is equivalent to detaching edge 
«5^3 from vertex t>5 (but leaving the other end firmly attached to ^3). Moving 
it into row 5 of B(y) (row 6 of F(y)) is equivalent to reattaching the loose 
end to the formerly isolated vertex V(,. (As we proceed, it will be convenient to 
think of the independent set U as having been augmented by a sufficiently large 
number of isolated vertices, t>6, νη,...) Having modified T by removing edge 
vsv-) and adding edge ^ 3 , we arrive at the graph H in Fig. 8.6 corresponding 
to the (divided Ferrers) diagram in Fig. 8.6.(a). Note that W = {v\,V2,vj} is 
still a clique and (its augmented complement) U = {V4, v5, V(,,. ■ ■} is still an 
independent set. 

There are three options for moving boxes down from the configuration in 
Fig. 8.6(a). The bottom El from the second column could be moved down to the 
end of the first column, or the remaining Ξ from the third column might be moved 
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down to the end of either the first or the second column. The last of these options 
poses a technical difficulty. Moving box Ξ from column 3 to the end of column 2 
is fine, from the perspective of Ferrers diagrams. Detaching edge K4V3 from vertex 
V4 and reattaching the loose end to V(„ on the other hand, would result in a second 
edge joining 3̂ to v¿. In practice, this difficulty is easily circumvented. The boxes 
in row 3 correspond to the neighbors of V4, namely, v\ (the unlabeled box), vj, 
and v¡. From a graph perspective, it doesn't matter whether the boxes appear in 
the order Π2Ε2 or DQEL For our purposes, the box diagram in Fig. 8.6(a) could 
just as well be replaced with the diagram in Fig. 8.6(b). Without changing any 
options, this replacement eliminates the technical difficulty. 

DDDD 
DDD 

~ DD 
mm 

(a) 

Figure 8.6 

QJ 
EH 

(b) 

Because, in this example, we are interested in transforming Β(γ) into Β(π), 
let's move the last box in column 3 (labeled Œ in Fig. 8.6(a) and El in Fig. 8.6(b)) 
down to the bottom of the first column. In the case of Fig. 8.6(b), moving box 
El corresponds in H to detaching edge V4V2 from vertex ΙΛ» and reattaching the 
loose end to (the formerly isolated vertex) νη. This produces the graph G\ in 
Fig. 8.7. In the case of Fig. 8.6(a), moving box (3 corresponds in H to detaching 
edge V4V1 from vertex V4 and reattaching the loose end to vertex νη, producing 
the graph G2 in Fig. 8.7. While these (split) graphs share the degree sequence 

Figure 8.7 
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7Γ = (4,4,4, 2, 2, 1, 1), they are not isomorphic. The two pendant vertices share 
a common neighbor in Gi, but not in G\. Nevertheless, W = {v\, vi, v$} is still a 
clique in both G\ and G2 and (its augmented complement) U = [v4, v¡, Vf,, υη\ is 
still an independent set. Finally (and not unexpectedly), G\ and Gi are isomor-
phic, respectively, to the graphs illustrated in Fig. 8.3. 

Summary. Suppose π is a split partition. Let y be the unique threshold parti-
tion with Α(γ) = Α(π). Inputting γ into the Threshold Algorithm, let T be the 
output, so that W = [v¡: 1 < 1 < f(n)} is a clique. Augment the independent set 
U = V(T)\W with sufficiently many isolated vertices. Then each step in the 
process of moving boxes down in F(y) to produce F(n) corresponds, graph 
theoretically, to deleting an edge uw, u € U and w e W, and adding a new edge 
u'w, where u' e U is a higher numbered vertex than u. 

8.9 Theorem. Let G be a graph with n vertices and m edges. Then G is a 
split graph if and only if V(G) can be partitioned into the disjoint union of an 
independent set and a clique (with the understanding that either set may be empty). 

Proof. If n < 3 and/or m < 2, the result follows from an easy inspection of 
cases. So, we may assume n > 4 and m > 3. 

Suppose G is a split graph with degree sequence d(G) = π. Let γ be 
the unique threshold partition such that α(γ) = α(π), and denote by T the 
unique connected threshold graph with degree sequence d(T) — γ. Suppose 
VXD = {vu V2,..., v,} where dT(v¡) = y¡, 1 < i < t. If W = [v¡: 1 < i < / (π )} , 
then, by Corollary 7.33, W is a clique and V(T)\W is an independent set in T. 
Form a vertex set U by augmenting V(T)\W with sufficiently many isolated 
vertices. As in the previous discussion, T can be modified to produce a graph 
G', where d(G') = 7Γ, V(G') = U U W, U is an independent set in G', and W is 
a clique in G'. If we could just be sure that every graph with degree sequence 
7Γ = d(G) could be obtained by such a modification of 7\ the proof of necessity 
would be finished. What we can be sure of is that G' can be transformed into G 
by a sequence of Ryser switches. (See Theorem 7.10.) 

Suppose H = (V, E) is any graph whose vertex set is partitioned into a clique 
W and independent set U = V\W. Let X = {u, v, x, y} c V be a set of four 
(different) vertices such that uv, xy € E and ux, vy g E. (See Fig. 8.8.) Then, 

"o---o* 
I I 

vO--Oy 

Figure 8.8 

as we have seen previously, the induced subgraph H[X] = 2Ki, P4, or C4. If as 
many as three vertices of X were to belong to W, then H[X] would contain a 
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triangle, which it does not. If fewer than two vertices of X belong to W, then 
H[X] = AT 1,3 or H[X] has an isolated vertex, neither of which is correct. Thus, 
o(X Π W) = 2. Without loss of generality, we may assume u € W. If v e W, then 
xy would be an edge joining two vertices of an independent set. Hence, v g W. If 
x € W, then, because W is a clique, ux would be an edge of//, which it is not. So, 
it must be that u, y € W and v, x e U. Therefore, all four of the edges involved 
in the corresponding Ryser switch, namely uv, xy, ux, and vy, join a vertex of W 
with a vertex of U. In other words, after the Ryser switch, W is still a clique and 
U is still an independent set. Because G can be obtained from G' by a sequence 
of Ryser switches, V(G) can be partitioned into a clique and an independent set. 

Conversely, suppose G = (V, E) is a graph whose vertex set V = {v\,V2, ■ ■ ■, 
v„} can be partitioned into the disjoint union of a clique K and an independent 
set V\K. If there is more than one such partitioning of V, choose one in which 
AT is a maximal clique — that is, so that no vertex of V\K is adjacent to every 
vertex of K. Thus, if s = o(K), then no vertex of V\K has degree larger than 
5—1, and every vertex of K has degree at least s — \. Let d(G) = n, where 
dc(vi) = π,> 1 < i < n. Then 

7Γ] > π2 > ■ · · > Tts > Í - 1 > 7Γί+ι > · · · > π„, 

and K = {vu v2, ...,vs}. 
If TTj = Í — 1, then vs is adjacent to no vertex of the independent set V\K. In 

this case, let W = {υ,: 1 < / < s}. If ns > s, let W = K. If o(W) = t, then t = 
5 — 1 in the first case and t = s in the second. Either way, W = {v\, v2, ■ ■ ■, v,} 
is a clique, V\W is an independent set, 

7Γ| > 7Γ2 > · · · > 7Γ, > t > π,+\ > ■ ■ ■ > π„ , 

and / ( 7 τ ) = t. 

Let a¡ be the number of vertices of V\W adjacent to v¡,\ < i < t. Then 

m = íJi +α2 + · · · + α , + r ( r - 1)/2. 

Because the íth row of Λ(π) contains 
[α(π)], = dG(v¡) - (i - i) 

= ( f - l ) + f l , - - ( i - l ) 

boxes, 1 < i < t = f(n), α(π) is a partition of 
t 

Υ^[α(π)1 =t(t-\) + (m-t(t- l)/2) - f(i - l)/2 
<=i 

= m. 

Because α(π) is a partition of m, the number of edges of G, it must be that β{π) 
is also a partition of m. Together with Theorem 8.4, this proves a{n) > β(π), 
that is, π = d(G) is a split partition. ■ 
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8.10 Corollary. Every induced subgraph of a split graph is a split graph. 

Proof. Let G = (V, E) be a split graph, where V = U U W is the disjoint 
union of an independent set U and a clique W. If H = G[X] for some X C V, 
then X = V(H) is the disjoint union of the independent set U Π X and the clique 
wnx. m 
8.11 Corollary. Let G be a graph. Then G is a split graph if and only if Gc is 
a split graph. 

Proof. If V = V(G) = U U W is the disjoint union of an independent set U 
and a clique IV, then V(GC) = V = W U U is the disjoint union of an independent 
set W and a clique U. ■ 

8.12 Definition. The graph G is chordal if it does not contain an induced 
subgraph isomorphic to C* for any k > 4. 

If G is chordal and C* is a cycle in G with k > 4 vertices, then £(G) contains 
a c/iorrf of C* — that is, an edge joining two of its (nonconsecutive) vertices. 

8.13 Example. The graphs in Figs. 8.9(a) and 8.9(b) are chordal; K\ v CO, the 
wheel illustrated in Fig. 8.9(c), is not. Its "rim" is a chordless 6-cycle. D 

i/ \i i>Ki 
o o o l ^ o 

o o 
(b) (c) 

Figure 8.9 

8.14 Theorem. Suppose G = (V, E) is a graph on n vertices. Then the following 
three conditions are equivalent. 

(a) G is a split graph; 
(b) G and Gc are both chordal; 
(c) G does not contain an induced subgraph isomorphic to one of the three 

forbidden subgraphs 2Ki, C4, or C5. 

Proof. Because the result is trivial when n < 3, we begin by assuming n > 4. 
(a) => (b): Let G be a split graph where V = U U W is the disjoint union 

of an independent set U and a clique W. Suppose C = (JCI, X2,X3, X4, ■. ■) is a 
cycle of G of length k > 4. If every vertex of C belongs to W, then the path 
[^1,^3] is a chord of C. Otherwise, without loss of generality, we may assume 
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X2 € U. Because no two consecutive vertices of C can belong to U, x\,xs e W 
and [jti, JC3] is a chord of C. Thus, G is chordal. Because (Corollary 8.11) Gc is 
a split graph, the same argument proves that it is chordal. 

(b) => (c): Because G is chordal, it does not contain an induced subgraph 
isomorphic to C„ for any n > 4. In particular, it contains neither C4 nor C5. 
Because Gc is chordal, it does not contain an induced subgraph isomorphic to 
C4. Thus, G does not contain an induced subgraph isomorphic to Cc

4 = 2K2. 
(c) => (a): Suppose G is a graph that contains none of the three forbidden 

subgraphs. The absence of an induced subgraph isomorphic to 2tf 2 implies that 
G has at most one nontrivial component. If the clique number w(G) = 1, then 
G = Kc

n is a split graph. 
Suppose (ti(G) = 2. Assume C is a cycle of G of minimum length r. Because 

C3 = Af3, r > 4. Because no cycle of G has length less than r, C must be chord-
less; that is, C = Cr is an induced subgraph of G. Because C4 and C5 are 
forbidden, r > 6, in which case C contains an induced subgraph isomorphic to 
2K2- Therefore, G cannot have any cycles at all; that is, G is a graph whose only 
nontrivial component is a tree, call it T. If the diameter of T is 4 (or more), then 
T contains an induced subgraph isomorphic to 2K2. If the diameter of T is 3, then 
all but two of the vertices of T are pendant vertices (an independent set) and the 
two nonpendant vertices are adjacent (forming a clique). If the diameter of T is 
2 or 1, then T is a star. Because stars are threshold graphs, they are split graphs. 

Among the cliques W of G satisfying o(W) = co(G) > 3, choose one that 
minimizes the number of edges in the subgraph induced by U = V\W. If U is 
an independent set, the proof is finished. Otherwise, there exist u\,u2 € U such 
that u\U2 € E. Because W is a maximum clique, neither u\ nor «2 is adjacent 
to every vertex of W. Indeed, it cannot even happen that they are both adjacent 
to every vertex of W except one, say v, because in that case (W\{v}) U {u\, «2) 
would be a clique in G having more than w(G) vertices. Thus, there exist vertices 
w\, W2, e W such that w\ φ w2, u\W\ $ E, and «2W2 4 E. (See Fig. 8.10(a).) If 
u\W2 &E and U2W\ g E, then G[u\, «2, w\, W2] = 2K2, a forbidden subgraph. If 
u\w2 € E and «2^1 e E, then G[u\, u2, w\, w2] = C4, also forbidden. Thus, we 
may assume u\\\>2 £ E and U2W\ g E, as in Fig. 8.10(b). 

« 1 O - - - O W 1 »\O---OW] 

I I I.Xl 
«2O — OH>2 «2O — Ow2 

(a) (b) 
Figure 8.10 

Because a>(G) > 3, there exists a vertex w e W\[wit W2}. If u\w g E, then 
either K2W 4 E, in which case G[it\, «2> wi,w] = 2K2, or U2W e E, in which case 
G[MI, M2, w, w2] = C4. (Draw a picture.) Thus, u\w e E for all w e W\{wi}. Let 
W' = ( W \ { W , } ) U { M I } and U' = V\W = (l/\{m)) U {w,}. Then W is a clique 
and o(W) = o(W) = w(G). 
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We claim that there exists a vertex u e U' such that ΜΗΊ 6 E and uu\ $ E. 
Otherwise, because u2u\ e E but u2w\ & E, G[U'] would have fewer edges that 
G[U], contradicting the choice of W. Moreover, uu2 ε Ε because otherwise 
G[u, W], Mi, u2] = 2K2, and uw2 e E because otherwise G[u, w\, w2, u\, «2] = 
C5. But that means G[u, «2. «i. ^2] = C4. This final contradiction proves that 
u\u2 & E, in other words, that U is an independent set. ■ 

8.15 Example. Let IT = (3, 2, 2, 2, 1). From the division of Fiji) exhibited in 
Fig. 8.11, we see that β(π) >- α(π), Thus π is graphic. Two nonisomorphic "real-
izations" of 7Γ are illustrated in the same figure. Note that G is chordal but H 
is not. Thus, whether a graph is chordal cannot be determined from its degree 
sequence. Because β(π) contains too many boxes to majorize α(π), π is not a split 
partition. Hence, neither G nor H is a split graph. Indeed, G[v\, v2, ΐλ*> v¡] = 2^2 
and H contains an induced subgraph isomorphic to C4. Moreover, while G is 
chordal, Gc = H is not. □ 

o—o 
I I 
o—o—o 

H 

0 — 0 -
1 2 

5 
O 

- O — O 
3 4 

DDD 
D 

Figure 8.11 

Interest in threshold and split graphs, and their relationship to chordal graphs, 
is all relatively recent.4 The notion of a chordal graph, on the other hand, is much 
older. 

Recall that the chromatic and clique numbers of G are related by the inequality 
X(G) > a)(G). This inequality is "sharp" in the sense that graphs exist for which 
equality holds. The "triangle," G = C3 = AT3, is one example. On the other hand, 
for any positive integer N there exists a triangle-free graph G (i.e., co(G) = 2) 
with x(G) > N.5 Of course, no graph with a cycle can be both triangle-free and 
chordal. Indeed, as we will soon see, x(G) = a>{G) whenever G is chordal. 

8.16 Theorem6. Let G be a graph on n vertices. If G does not contain an induced 
subgraph isomorphic to P4, then x(G) = a>(G). 

4 See, for example, S. Foldes and P. L. Hammer, Split graphs, Proc. 8th S.E. Conference on Combina-
torics, Graph Theory and Computing (1977), 311 -315; P. L. Hammer, T. Ibaraki, and B. Simeone, 
Threshold sequences, S1AMJ. Alg. Disc. Meth. 2 (1981), 39-49; and P. L. Hammer and B. Simeone, 
The splittance of a graph, Combinatorica 1 (1981), 275-284. 
5 J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955), 161-162. 
6 Theorem 8.16 was first proved by D. Seinsche [On a property of the class of n -colorable graphs, 
J. Combinatorial Theory 16B (1974), 191-193]. 
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Proof. The proof is by induction on n. If n = 1, then G = K\, and *(G) = 
1 = (w(G). So, let G be a graph on n > 2 vertices that does not contain the 
forbidden subgraph P4. By Theorem 1.19, one of G or G' is disconnected. 
If G is not connected then, by the induction hypothesis, χ(Η) = ω(Η) for 
every component H of G. Hence x(G) = max x(H) — max ω(Η) = a>(G), where 
both maxima are over the components H of G. If G is connected, then G = 
H¡ v #$ v · · · v //£, where HUH2, ...,Hr are the components of Gc. By the 
induction hypothesis, x(Hc¡) — ω(Η^), 1 < /' < r. Thus, from Equations (6b) and 
(8b), x(G) = Σ *TO = Σ"TO = «(G). ■ 

8.17 Corollary, Leí G be a graph on n vertices. If G does not contain an induced 
subgraph isomorphic to P4, then χ(Η ) = ω(Η ) for every induced subgraph H 
of G. 

Proof. Let H be an induced subgraph of G. Because every induced subgraph 
of H is an induced subgraph of G, H does not contain the forbidden subgraph 
P4. So, the result follows from Theorem 8.16. ■ 

8.18 Definition. Graph G is perfect if χ(Η) = ω{Η) for every induced 
subgraph H of G? 

While "/Vfree" graphs are perfect, not every perfect graph is /Vfree. Indeed, 
P4 itself is a perfect graph. We now establish a pair of technical results necessary 
to the proof that every chordal graph is perfect. Recall that a subset S c V(G) 
separates two nonadjacent vertices u and w of the connected graph G if M and 
w lie in different components of G — S. A minimum separator for u and w is a 
separating set S with o(S) = KG(". *")· 

8.19 Lemma, ¿er G be a connected graph on n vertices. Then G is chordal if 
and only if each of its minimum separators is a clique. 

For the chordal graph G in Fig. 8.12, KG(U, W) = 2. The minimum separators 
of u and w are [v\, V2}, {vi, ν-$), and {υ^, ν^], each of which is a clique. While 
\v\, v*} is not a clique, neither does it separate u and w. 

Proof. Suppose G satisfies the minimum separator condition. Let C = (u, u, w, 
x\, ...,Xk) be a cycle of G of length 4 or more. If uw e E(G), then C has a 
chord. If uw £ £(G), then any minimum separator for u and w must contain t; 
and (at least) one of the JC'S, say x,. Because any minimum separator is a clique, 
vxt € E(G) is a chord of C. 

7 Perfect graphs were introduced by C. Berge [Perfect graphs, in Six Papers in Graph Theory, Indian 
Statistical Institute, Calcutta, 1963, pp 1-21], who conjectured that G is perfect if and only if Gc 

is perfect. Now known as the Perfect Graph Theorem, Berge's conjecture was proved by L. Lovász 
[A characterization of perfect graphs, J. Combinatorial Theory (B) 13 (1972), 95-98]. 
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«3 O 

Figure 8.12 

Conversely, suppose G is chordal. If G — Kn, then the minimum separator 
condition holds vacuously (i.e., it is true because it cannot be false). Otherwise, 
let u and w be a fixed but arbitrary pair of nonadjacent vertices of G. Let S 
be a minimum separator for u and w. If S is not a clique, it must contain two 
nonadjacent vertices, x and y. Let G[U] and G[W] be the components of G — S 
containing u and w, respectively. (See Fig. 8.13.) 

Figure 8.13 

By the minimality of 5, u and w are in the same component of G — (S\{JC}). 
Thus, Nc(x) n U Φ φ Φ NG(X) U W, and the same conclusion holds for the 
neighbors of y. It follows that the induced subgraphs G[U U {x, y}] and 
G[W U {x, y}] are connected. Let P = [x, u\,..., ur, y] be a shortest path in 
G[U U {x, y}] from x to y and let Q = [y,w\,..., ws,x] be a shortest path in 
G[W U {x, y}] from y to x. Because C =< *, « i , . . . , ur, y, w\ ws > is a 
cycle of G of length not less than 4, it contains a chord. Because every path in G 
from a vertex in U to a vertex in IV passes through S, none of the M'S is adjacent 
to any of the w's. Together with the fact that P and Q axe shortest paths, there 
is only one remaining possibility for a chord in C, namely an edge joining x to 
y, contradicting that xy g E(G). ■ 

8.20 Definition. Suppose u € V(G). If do(u) = 0 or NG(U) is a clique, then u 
is a simplicial vertex of G. 

Suppose G = (V, E) is a connected split graph on n > 2 vertices. Let V = 
U U W be the disjoint union of a independent set U and a clique W.\i U φφ, 
then every element of U is a simplicial vertex. If U = φ, then G = K„ and all 
of its vertices are simplicial. On the other hand, if G = C„ for some n > 4, then 
G has no simplicial vertices. 
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The proof that chordal graphs are perfect depends on the fact that they have 
simplicial vertices. Interestingly enough, the easiest way to prove that an arbitrary 
chordal graph has a simplicial vertex is to prove that it has two! 

8.21 Lemma. Let G φ K„ be a connected, chordal graph on n > 3 vertices. 
Then G has two nonadjacent simplicial vertices. 

Proof. The proof is by induction on n. If n = 3, then G = P3, and the 
pendant vertices serve our purpose. So, assume n > 4 and let u and w be nonad-
jacent vertices of G. Let 5 be a minimum separator for u and w. By Lemma 8.19, 
S is a clique. Let G[U] and G[W] be the components of G — S containing « and 
w, respectively. Define H = G[U U S]. Because every induced subgraph of H 
is an induced subgraph of G, H is chordal. If H = Kr, then Nc(u) is a clique. In 
this case, let x = u. Otherwise, by induction, H contains two nonadjacent simpli-
cial vertices, v\ and 1$. Because v\V2 & E(G), v\ and V2 cannot both belong to 
S. Thus, (at least) one of them, say v\, belongs to U. In this case, let x — v\. 
In either case, Nc(x) = NH(x) is a clique. An analogous argument produces a 
vertex y € W such that NG(y) is a clique. Because G[U] and G[W] are different 
components of G — S, x and y are different and nonadjacent. ■ 

8.22 Example. Figure. 8.14 shows three graphs in which the simplicial vertices 
are numbered. While the graphs in Figs. 8.14(a) and 8.14(c) are chordal, it is 
evident from Lemma 8.21 that the graph in Fig. 8.14(b) is not. (Find a chordless 
cycle.) D 

2 1 

o—o—o—o 
\ / \ / \ / 
o—o—o 

(a) 

8.23 Theorem. Every chordal graph is perfect. 

Proof. Because induced subgraphs of chordal graphs are chordal, it suffices to 
prove that x(G) = w(G) for every chordal graph G. The proof is by induction on 
n — o(V(G)). If n < 2, then G = K\, K2, or Kx φ Ku each of which is chordal 
and perfect. If G is a disconnected chordal graph then, by induction, x(C) = CÙ(C) 
for each component of G in which case x(G) = o>(G) by Equations (6a) and (8a). 
If G is a connected chordal graph on n > 3 vertices, then either G = Kn, which 
is perfect, or, by Lemma 8.21, G contains a simplicial vertex v, in which case 
we consider H = G — v. 

By the induction hypothesis, χ(Η) = ω(Η), where a>(G) — 1 < ω(Η) < œ(G). 
By the definition of simplicial vertex, dc(v) = o(Nc(v)) < ω(Η). If dc(v) < 

1 o—o—o—o 
\ / \ / \ / 
o—o—o 

(b) 

Figure 8.14 

O ^ O — O — O 

o—^o—o 
3 

(c) 
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ω(Η), then a>(G) = ω(Η). Moreover because the neighbors of v require at most 
ddv) < ω(Η) = χ(Η) colors, any proper coloring of H can be extended to a 
proper coloring of G. Therefore, x(G) = χ(Η) = ω(Η) — a)(G). 

If dG(v) = ω(Η), then {v} U Nc(v) is a maximum clique of G, in which case 
a>(G) = ω(Η) + 1 = χ(Η) + 1 > *(G) > w(G). ■ 

Suppose G is a connected, chordal graph on n > 2 vertices. It follows from 
Lemma 8.21 that G has a simplicial vertex, v\. Because it is an induced subgraph 
of G, G\ = G — v\ is chordal, and because v\ cannot be a cut vertex, G\ is 
connected. If Gi φ K\, then it has a simplicial vertex t>2, and Gi = G\ — V2 = 
G — V] — V2 is connected and chordal. Continuing in this manner, we come 
eventually to the point where G„ = K\. Evidently, any chordal graph can be 
reduced to a collection of isolated vertices by successively deleting simplicial 
vertices. 

8.24 Definition. Let G be a graph on n vertices. An ordering, v\, i>2,..., v„, 
of the vertices of G is a perfect elimination ordering of G if v¡ is a simplicial 
vertex of the induced subgraph G[v¡, vi+\,..., v„], 1 < ι < n. 

8.25 Theorem. Let G be a graph on n vertices. Then G is chordal if and only 
if it has a perfect elimination ordering. 

Proof. As we have just seen, every chordal graph has a perfect elimination 
ordering. The converse is proved by induction on n. Because every graph on 
n < 3 vertices is chordal, the proof is off to a good start. Let v\, V2,..., vn be a 
perfect elimination ordering for G. Suppose C = (w\,W2,..., wr) is a cycle of 
G of length r > 4. If v\ is a vertex of C, we may assume vi =w\. Because v\ 
is a simplicial vertex, its neighbors, W2 and wr are adjacent, that is, W2Wr is a 
chord of C. Otherwise, C is a cycle in G[v2, v^,..., v„], which, by induction, is 
a chordal graph. ■ 

8.26 Corollary. Suppose v\, V2,..., vn is a perfect elimination ordering for the 
chordal graph G. Let d¡ be the degree of vertex v¡, not in G but in the induced 
subgraph G[v¡, v¡+\, . . . , υη], 1 < i < η. Then the chromatic polynomial 

p(G,x) = xY[(x-d¡). 
1=1 

It follows from Corollary 8.26 that every root (zero) of the chromatic poly-
nomial of a chordal graph is a nonnegative integer. 

Proof. If n = 1, then p(G, x)=x. If n > 2, let u = v\ and r = da(u) 
— d\. If r = 0 then u is an isolated vertex and p(G, x) = xp(G — u, x) = (x — 
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d\)p(G — u,x). If r > 1, then, since « is a simplicial vertex, NQ(U) is a clique; 
that is, G[NG(u)] S Kr. Therefore, G is an overlap of G - u and Kr+\ in ÀV, and 

p(G,x) = x(r+l)p(G - «, * ) / JC W 

= (jc-cfi)p(G - u,x). 

Because V2, v-¡,..., vn is a perfect elimination ordering for the chordal graph 
G — u = G[v2, vi,..., v„], the result follows by induction. ■ 

8.27 Example. Let G be either of the graphs from Fig. 8.7, reproduced (with a 
different vertex labeling) in Fig. 8.15. If v¡ is the vertex numbered /, 1 < i < 7, 
then v\, V2,..., υη is a perfect elimination ordering for G, and (d\ ,di d(¡) = 
(1, 1, 2, 2, 2, 1), where d¡ is the degree of vertex v¡ in G[v¡, v¡+i, ...,υ„], 1 < 
/ < n. By Corollary 8.26, p{G, x) = x{x — 1)3(JC — 2)3. In particular, G\ and 
G2 are nonisomoφhic, chromatically equivalent graphs. D 

30 

4 0 

Figure 8.15 

Example 8.27 can be generalized in the following way. 

8.28 Corollary. Suppose π = (π\,π2, ... ,π„) isa split partition of 2m > 0. Let 
G be a split graph with degree sequence d(G) = π. Then the chromatic polynomial 

n 

p(G,x)=X(k) f ] (X -7Γ,), 
i=k+i 

where k = f{n) is the trace of π, and xik) is the falling factorial function of 
degree k. 

It follows from Corollary 8.28 that the chromatic polynomial of a split graph 
is completely determined by its degree sequence. In particular, two split graphs 
with the same degree sequence are chromatically equivalent. 
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Proof. Suppose V(G) = {v\, vi,..., v„], where dc(v¡) = π,, 1 < / < n. 
Since k = / (π) we have, as in the proof of Theorem 8.9, that W = {u,·: 1 < ϊ < k] 
is a clique in G and U = {u\, «2. · · ·. "n-*} is an independent set, where 
u¡ = Vk+i, I < i < n — k. Because every vertex of U is a simplicial vertex of 
G, and every vertex of W is a simplicial vertex of G — U, 

U\,U2 Un-k,VUV2, ...,Vk 

is a perfect elimination ordering for G. Because U is an independent set, the 
degree of u, is nk+¡, both in G and in G[u¡, u¡+\,..., «„_*, v\, ..., υ*], 1 < / < 
n — k. Because W is a clique, the degree of v¡ in G[v¡, v¡+\,..., vk] is k — i, 
1 < i < k. Thus, Corollary 8.28 is just the restriction of Corollary 8.26 to split 
graphs. ■ 

Apart from applications within graph theory, chordal graphs have arisen in 
some unexpected places, for example, in studies of hyperplane arrangements8 

and in matrix completion problems.9 

EXERCISES 

1 Prove or disprove that ß weakly majorizes a = (4, 3, 2, 1, 1) if ß = 
(a) (5,5). (b) (4,4,4). (c) (6,6). 
(d) (3,3,3,2). (e) (5,2,1,1,1). (f) (6,5). 

2 Exhibit the connected threshold graph corresponding to the shifted shape 
X □D DD 

(a) DDD (b) 
X 

DD 
DD 

3 Find α(π) and β(π) if π = 
(a) (5,4,3,3,2,1). (b) (5,4,2,2,2,2,1). 
(c) (4,2,2,2,2,2,1). (d) (5,4,2,2,1,1,1). 

4 Exhibit a connected threshold graph whose degree sequence π Satisfies 
(a) α(π) = (6, 3, 1). (b) α(π) = (6, 4). 

5 Which partitions in Exercise 3 are 
(a) graphic? (b) split? (c) threshold? 

8 P. H. Edelman and V. Reiner, Free hyperplane arrangements between A„-\ and B„, Math. Z. 215 
(1994), 347-365. 
9 R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, Positive definite completions of partial 
hermitian matrices, Linear Algebra Appl. 58 (1984), 109-124. 
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6 As in the proof of Theorem 8.9, suppose K is a maximal clique in 
G — (V, E). If V\K is an indépendant set, prove that K is a maximum 
clique. In other words, prove that o(K) = w(G). 

7 Find all threshold partitions r that majorize the split partition π = (4, 3, 3, 
2,1,1). 

8 Let jr l· 2m be a split partition 
(a) If r l· 2m is a threshold partition. Show that r >- π if and only if β(π) > 

α(τ) >- α(π). 
(b) If p h m satisfies β(π) > p >■ α(π), prove or disprove that p = α(τ) for 

some threshold partition r I- 2m. 

9 How many nonisomorphic, connected, threshold graphs have 
(a) 7 edges? (b) 8 edges? (c) 9 edges? (d) 10 edges? 

10 Let G be a connected chordal graph. Suppose W is a maximal clique of G 
that does not contain a simplicial vertex of G. Prove that W is a vertex cut 
of G. 

11 (Hammer and Simeone) Let π l· 2m be a graphic partition of length ¿(π) = 
n. Let k — k(n) = max{i: n¡ > i — 1}. Show that π is a split partition if and 
only if 

k n 

J^n^kik- 1)+ 53 7Γ,, 
i'=l i= t+ l 

12 Find a perfect elimination ordering for the graph 
(a) in Fig. 8.14(a). 
(b) in Fig. 8.14(c). 

13 Let G be the graph in Fig. 8.14(b). Find an induced subgraph of G that 
is connected and has more than one vertex, but which does not have a 
simplicial vertex. 

14 Prove that G is chordal if and only if every induced subgraph of G has a 
simplicial vertex. 

15 Let G = (V, E) be a threshold graph, where V is the disjoint union of 
an independent set U and a clique W. Prove that there exists an ordering 
u\,U2, ...,Uk of U such that NG(u\) D NQ(U2) D ■■■ D NG(uk). 

16 (Chvátal and Hammer) Suppose G = (V, E) is a split graph whose vertex 
set has been partitioned as the disjoint union of an independent set U 
and a clique W. Suppose Nc(ui) D Λ/ο(«2) D ··· D Nc(uk), where U — 
{«i, U2, ■ ■ ■, w*}. Prove that G is a threshold graph. 

17 Prove that every bipartite graph is perfect. 
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18 Let G be the graph in Fig. 8.16. 
(a) Illustrate Gc, the complement of G. 
(b) Show that neither G nor Gc is chordal. 

0 o 
1 I 

Figure 8.16 

(c) Show that neither G nor Gc is bipartite. 
(d) Show that, nevertheless, both G and Gc are perfect. 

19 Let G be a graph on n > 2 vertices. Suppose G has a perfect elimination 
ordering. Let u be a fixed but arbitrary simplicial vertex of G and define 
H = G - u. 
(a) Prove that / / has a simplicial vertex. 
(b) Prove that H has a perfect elimination ordering. 

20 Prove that every interval graph (Chapter 7, Exercise 28) is chordal. 

21 Suppose G = (V, E) is a bipartite graph with color classes X and Y. Let 
/ / = (V, F), where F = EUX(2>, be the graph obtained from G by adding 
edges between every pair of vertices of X. Prove that H is a split graph. 

22 (Read) Let G be the graph on 7 vertices obtained from Kf, by subdividing 
an edge. 
(a) Show that G has a chordless 4-cycles. 
(b) Show that p{G, x) =x(x-\ ){x - 2){x - 3)3(χ - 4). 
(c) Show that G need not be chordal for all of the roots of its chromatic 

polynomial to be integers. 

23 Find a chordal graph H having the same chromatic polynomial as the graph 
G in Exercise 22. 

24 (Sridharan and Balaji) Let G be a self-complementary graph on n = 4k 
vertices. Prove that the following are equivalent: 

(i) G is chordal. 
(ii) G is split. 

(iii) w(G) = 2k. 

25 Is there a difference between triangulated plane graphs and chordal plane 
graphs? Justify your answer. 
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26 Characterize those graphs G that are both bipartite and split. 

27 Let G = (V, E) be a split graph on n > 2 vertices. Show that V can be 
partitioned as the disjoint union of a nonempty independent set U and a 
nonempty clique W. 

28 Suppose G is the graph in Fig. 8.14(a). Let v¡ be the vertex labeled i, 
1 < / < 2. 
(a) Evaluate KG(V\, V{). 

(b) Find a subset 5 c V(G) such that 
(i) S separates v\ and V2, and 

(ii) S is not a clique. 
(c) Explain why part (b) does not disprove Lemma 8.19. 

29 Prove or disprove that every tree is a split graph. 

30 Suppose T is a tree on n > 2 vertices. 

(a) Explain why T is chordal. 

(b) Describe the simplicial vertices of T. 
(c) Let T\ = T; if T¡ has more than 2 vertices, let T¡+\ be the tree obtained 

from T¡ by deleting all s, of its simplicial vertices. Show that the Balaban 
centric index, B(T) = Σ sf. 

(d) Prove or disprove that B(T) (not to do confused with Β(π)) is equal to 
the number of perfect elimination orderings of T. 

31 (Erdös-Gallai) Suppose π \- 2m, where ί(π) — n. Prove that π is graphic 
if and only if 

k n 

Σn-, < k(k - 1 ) + ^2 min{*. *",}, 1 < k < n. 
i= l i=k+l 

32 Suppose π h 2m, where 1(π) = n. Consider the n x (n — 1) matrix F'(n) 
whose (i, y)-entry is 1, if j < n¡, and 0, otherwise. If, for example, π = 
(3 ,2 ,2 ,2 , 1), then 

/ l 1 1 θχ 
1 1 

F'(7T) = 1 1 
1 1 

Vi o 

0 
0 
ϋ 
0 

0 
0 
0 
o) 

So, F'(n) is just a variation of the Ferrers diagram, F(n). As with F(n), we 
divide F'(n) into that portion, Λ'(7τ), consisting of the entries on or above 
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the main diagonal, and Β'(π), consisting of those entries below the main 
diagonal — that is, 

B'(n) = 

1 1 1 0 
1 1 0 0 
1 1 0 0 
1 1 0 0 

= Α'(π) 

1 0 0 0 

Finally, let Μ(π) be the n x n matrix with upper triangular part equal to 
Α'(π), lower triangular part equal to Β'(π), and main diagonal consisting 
entirely of zeros. If, for example, π = (3, 2, 2, 2, 1), then 

Μ(π) = 

/ 0 1 1 1 0 \ 
1 0 1 0 0 
1 1 0 0 0 
1 1 0 0 0 

\ l 0 0 0 o / 

(a) (Peled) Suppose π h 2m is a threshold partition. If G is the corre-
sponding connected threshold graph, prove that M(π) = A(G), the adja-
cency matrix of G. 

(b) (Berge) Suppose π h 2m, where £(π) = n. Denote by c, the sum of the 
entries in column i of Μ(π), 1 < i < n. Prove that π is graphic if and 
only if 

k k 

y^7T,· < ]T]c,, 1 < k < n. 
i=\ i= l 

33 Prove that a(G)w(G) > n for every connected 

(a) threshold graph C o n n vertices. 

(b) split graph G on n vertices.10 

34 Recall (Chapter 2, Exercise 52) that G is critically ik-chromatic if k = x(G) > 
χ(Η ) for every proper subgraph H of G. Let S be a vertex cut of the critically 
Λ-chromatic graph G. Prove that S is not a clique." (Hint: Suppose S is 
a vertex cut of G. Let C,, 1 < / < r, be the components of G — S. Define 
G, = G[S U C,·]. Consider colorings of the G, that agree on 5.) 

10 It was proved by L. Lovász [A characterization of perfect graphs, J. Combinatorial Theory (B) 13 
(1972), 95-98] that G is perfect if and only if α(Η)ω(Η) > o(V(H)) for every induced subgraph 
H of G. 
11 Compare with Lemma 8.19. 
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35 Suppose G is a critically ¿-chromatic graph on n > 3 vertices. (See Exer-
cise 34.) 
(a) Prove that G is 2-connected. 
(b) Suppose K(G) — 2 and 5 = [u, v] is a vertex cut. Prove that uv g E(G). 

36 Give a proof of the formula p{Kn, x) = jc(n) based on Corollary 8.26. 

37 Illustrate Corollary 8.26 by using it to obtain the chromatic polynomial for 
the graph 
(a) in Fig. 8.14(a). 
(b) in Fig. 8.14(c). 

38 Explain why Corollary 8.26 cannot be used to obtain the chromatic polyno-
mial for the graph in Fig. 8.14(b). 

39 Let An be the unique, connected antiregular graph on n < 2 vertices. (See 
Chapter 2, Exercise 36.) Prove that 

n(A x)=i xl(x - D(* - 2 ) . . . (Jt - s)]2, n odd 
μκ "' \x[(x - 1)(JC - 2 ) . . . ( J C - s + 1)]2(JC - i), n even, 

where s = \_n/2\, the integer part of n/2. 

40 Exhibit two nonisomorphic connected graphs with degree sequence 
(5,4,2,2,2,2,1). 
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9 
Oriented Graphs 

Recall that graph G = (V, E) consists of a nonempty set V of n elements, together 
with a (possibly empty) subset E of V(2), the family of all C(n, 2) 2-element 
subsets of V. Not to be confused with the set V x V — [(v\, V2) : vi,V2 e V} of 
all n2 ordered pairs of vertices, the elements of V(2) are unordered. 

9.1 Definition, An orientation of G = (V, E) is a function / : £ - > V x V such 
that, for all e = {u, w) 6 E, f(e) is one of (w, W) or (w, M). 

By the Fundamental Counting Principle, a graph with m > 1 edges has 2m 

orientations. Laying common sense aside, we adopt the convention that the 
number of orientations of Kc

n is one. 
An oriented graph is a graph with a nonempty set of edges and a prescribed 

orientation. Suppose G = (V, E) is a graph oriented by / . Let e = (x, y] € E. If 
/(e) = (JC, y), then vertex x is the tail of the oriented edge e = (x, y), and vertex 
y is its head. Consistent with this language, e = (x, y) is typically illustrated by 
a directed arc, or arrow, from x to y. ' 

9.2 Example. Suppose a city softball league organizes a championship tourna-
ment in which each of five qualifying teams plays one game with each of the 
other qualifiers. Perhaps the teams are seeded (ranked) 1-5. The results of such 
a tournament can be illustrated by an orientation of K$ in which oriented edge 
e = (H, W) indicates that team u defeated team w. (See Fig. 9.1.) Indeed, this has 
become such a widely used model for "round-robin tournaments" that oriented 
complete graphs have come, themselves, to be known as tournaments. D 

4θ-»-θ3 

Figure 9.1 

1 An oriented graph is a special kind of directed graph in which, for all {κ, v) e V(2), at most one 
of (u, v) and (u, u) can be an edge. 

171 



172 Chap. 9 Oriented Graphs 

9.3 Definition. Let G be an oriented graph. A directed «v-path in G is a path 
[M = vo, v\,..., vr = w] where (υ,·_ι, v¡) is an oriented edge of G, 1 < / < r. A 
directed cycle in G is a cycle (wi, U2, . . . , vr) in which (v¡, v¡+\), 1 < /' < r, and 
(vr, v\) are oriented edges of G. 

9.4 Example. The oriented graph illustrated in Fig. 9.1 contains many directed 
cycles — for example, (3,5,4), (2,4,3), (1,3,2), (1,4,3,2) , and even a span-
ning directed cycle, (1, 4, 3, 5, 2). The oriented graph in Fig. 9.2 has no directed 
cycles. D 

0-7% 
V / 
o-<—o 

Figure 9.2 

9.5 Definition. An acyclic orientation of G is one in which there are no directed 
cycles. 

Because it has no cycles at all, every orientation of a tree is acyclic. What 
about X5? Of its 210 = 1024 orientations, how many are acyclic? The answer is 
an easy consequence of a remarkable result due to R. P. Stanley.2 

9.6 Stanley's Theorem. Let G be a graph on n vertices. Then the number of 
acyclic orientations of G is (— 1 )" p(G, — 1 ), where p(G, x) is the chromatic poly-
nomial of G. 

Proof. Let p(G) = ( - l ) "p(G, - 1 ) . If G has no edges, then p(G,x) = x" 
and p(G) = (-l)"(-l)n = 1. If e = {u, v] e E(G), then, because - ( - l ) " - 1 = 
(—1)", chromatic reduction yields 

p(G) = (-l)n[/>(G - *, - 1 ) - p(G/e, - 1 ) ] 

= p(G -e) + p(G/e). (58) 

If e = {«, v], then recall that G\e is the multigraph obtained from G — e by 
identifying vertices u and v. (See, e.g., Fig. 9.3.) Because multiple adjacencies are 
irrelevant to proper colorings, p(G\e,x) = p(G/e,x). (That is why the contrac-
tion, G/e, was introduced in the first place.) However, because their orientations 
may differ, multiple edges are not irrelevant here. For our present purposes, it 
will be useful to take a step backward and write Equation (58) in the form 

p(G) = p(G -e) + p(G\e). 

2R. P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178. 
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"o—o o o 
ι\ι J:I i 
o — ο υ o—o o—o 

G G\e Gle 
Figure 9.3 

Let c(G) to be the number of acyclic orientations of G. If G has no edges 
then, by convention, c(G) = 1. Thus, to prove that c(G) and p(G) are identical, 
it suffices to show that they satisfy the same recurrence relation, to show that 
c{G) = c(G - e) + c(G\e), e e E(G). 

Let e = [u, v] be a fixed but arbitrary (unoriented) edge of G. If / is an 
orientation of G, denote its restriction to G — e by fe. If / is acyclic, then fe is 
acyclic. That part is straightforward. The reverse is complicated by the fact that 
an orientation of G — e can be extended to G (strictly speaking, to E(G)) in two 
different ways. 

Denote by / the orientation of G obtained from / by switching (only) the 
orientation of our fixed but arbitrary edge e. If, for example, /(e) = (u, v), then 
/(e) = (v, u). Apart from e, / and / agree on every edge of G. In particular, 
fe = le-

Let g be a fixed but arbitrary acyclic orientation of G — e. Let / be the 
(unique) extension of g to G that satisfies /(e) = («, v). Then the /-orientation 
of G is acyclic if and only if the g-orientation of G — e does not afford a directed 
uH-path. Similarly, the /-orientation of G is acyclic if and only if g does not 
contain a directed nu-path. Because g is acyclic, it cannot afford both a υκ-path 
and a uv-path. Thus, every acyclic orientation of G — e extends either to one or 
to two acyclic orientations of G. 

Let C(G) be the ^et of acyclic orientations of G. (So, c(G) = o(C(G)).) If 
B(G) = {/ e C(G): / is (also) acyclic}, then C(G)\B(G) = {/ e C(G):/ is not 
acyclic). Our observations up to this point can be summarized by the formula 

c(G - e) = o(5(G))/2 + o(C(G)\fi(G)) 
- c(G) - o(ß(G))/2, 

because o(C(G)\B(G)) = o(C(G)) - o(B(G)). 
What about G|e? This case is easier. The restriction of / to G|e is acyclic if and 

only if both / and / are acyclic orientations of G. Thus, c(G|e) = o(5(G))/2. 
Putting the two formulas together, we obtain 

c{G -e) + c(G|e) = c(G). U 

9.7 Example. Recall that p(K„,x) = x^n\ the falling factorial function. Thus, 
p(K5, x) = x(x-l )(x - 2)(JC - 3)(JC - 4). Of the 1024 orientations of K5, (-1 )5 

ρ(Κ$, — 1) = 5! = 120 are acyclic. If T is a tree on n vertices, then T has m = 
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n — 1 edges and 2" ' orientations. From Theorem 2.30, p(T,x) = x(x — l ) " - 1 . 
Hence, T has (— I)"p(T, — 1) = 2""1 acyclic orientations, confirming our earlier 
observation that every orientation of a tree is acyclic. 

The cycle, C„, has m = n edges and 2" orientations. Because only the "clock-
wise" and "counterclockwise" orientations afford directed cycles, C„ must have 
2" — 2 acyclic orientations. From Chapter 2, Exercise 26, p(C„, x) — (x — 1)" + 
( -1 )" (JC - 1 ) and, sure enough, ( -1 )" p(Cn, - 1 ) = 2" - 2. D 

9.8 Definition. Suppose G = (V, E) is an oriented graph with vertex set V — 
{v\,V2,...,v„) and edge set£ = {e\,e2 em\. Let Q(G) = (q¡j)bethen x m 
matrix defined by q¡j — 1 if v¡ is the head of e¡, —1 if v¡ is the tail of ej, and 0 
otherwise. Then Q(G) is an oriented, vertex-edge incidence matrix for G. 

9.9 Example. Note that Q(G) depends not only on G but on the orientation of 
G and on the numberings of its vertices and edges. If G\ and G2 are the oriented 
graphs illustrated in Fig. 9.4, then 

Ö(G,) = 
/ ! 

0 
0 

\ - l 

0 
- 1 

1 
0 

°\ 0 
1 

- 1 / 

and Q(G2) = 
(~x 

1 
0 

V 0 

1 
0 
0 

- 1 

0 
- 1 

1 
0 

0 
- 1 

0 
1 

0 
0 
1 

- 1 

"lO 0"2 
«if \e2 

«3 

G, 

"1 0 - * - 0 «2 

v4 0 - » - 0 «3 
e5 

G2 

Figure 9.4 

It is useful to think of Q(G) as a vertex-by-edge matrix. The number of 
nonzero entries in row / of Q{G) is equal to dc(v¡), the degree of vertex v¡. If 
the oriented edge e¡ equals (vr,vs), then column j of Q{G) contains precisely 
two nonzero entries, namely, - 1 in row r and +1 in row s D 

Denote by Q' the transpose of Q = Q(G). Then Q' is the m x n (edge-by-
vertex) matrix whose (ij')-entry is qj¡, the (/,/)-entry of Q. As it turns out, we are 
less interested in Q than in the (vertex-by-vertex) matrix QQ'. 

9.10 Example. If Q = ß(G, ) from Example 9.9, then 

QQ' 

1 1 
0 
0 

V - l 

0 
1 

- 1 
0 

0 
- 1 

2 
- 1 

- , \ 0 
- 1 

2 / 
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If Q = Q(G2) from Example 9.9, then 

Q0 = 

2 - 1 0 - 1 \ 
■1 3 - 1 - 1 
0 - 1 2 - 1 
•1 - 1 - 1 3 / 

Pause for a minute to confirm that these matrix products have been computed 
correctly and, at the same time, guess at the relationship between G and the 
entries of QQ'. O 

9.11 Definition. Let G be a graph with vertex set V(G) — {v\,v2,... ,vn}. The 
Laplacian matrix of G is 

L(G) = D(G) - A(G), 

where D(G) = diag(dc(v\ ), dG{vi), ■ ■ ■, dc(vn )) is the diagonal matrix of vertex 
degrees, and A(G) is the adjacency matrix. 

9.12 Example. If G is the graph in Fig. 9.5, then 

L(G) = 

( 4 

- 1 
- 1 
- 1 

\ - l 

- 1 
2 

- 1 
0 
0 

1 

,o 

4 0 

Figure 

- 1 
- 1 

3 
- 1 

0 

9.5 

- 1 
0 

- 1 
2 
0 

- 1 \ 
0 
0 
0 
1 / 

D 

9.13 Theorem. Let G be a graph with vertex set V(G) = [v\, v2,..., v„}. Let 
Q — Q(G) be an oriented vertex-edge incidence matrix for G. Then, independently 
of the orientation of G and of the numbering of its edges, L(G) = QQ1. 

Proof. From the definitions of transpose and matrix multiplication, the (ij)-
entry of QQ' is 

Σ(ο),>«2% = X>H7;>. (59) 
r=\ 

If i — j , then q¡rqjr = qjr, and (59) is the sum of the squares of the entries in 
row / of Q(G). Since qir = ±1 when v¡ is incident with er, and 0 otherwise, 
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the sum over r of qjr is precisely dG(v¡). If ι φ j , then q¡rqjr φ 0 if and only 
if qir Φ§Φ q¡r, if and only if {i>,, v¡) — er e E(G), if and only if q¡rqjr = — 1. 
Hence, provided / / y, the (i'J)-entry of QQ' is —1 when [v¡, Vj] e E(G), and 0 
otherwise. ■ 

9.14 Example. Let G be a graph with vertex set V(G) = [vi,V2,..., vn), and 
Laplacian matrix L(G) = D(G) — A(G). Because the number of l 's in row /' of 
A(G) is dcivi), the sum of the entries in row i of L(G) is zero, 1 < i < n. This 
is equivalent to 

L(G)Ya = 0, 

where Y„ is the n x 1 matrix, each of whose entries is 1. The following useful 
facts flow from this equation: Writing it in the form L(G)Y„ = λΥη shows that Y„ 
is an eigenvector of L(G) corresponding to the eigenvalue λ = 0. In particular, 
L(G) is a singular matrix; that is, det (¿(G)) = 0. D 

Suppose X is an eigenvector of L(G) corresponding to an arbitrary eigenvalue 
λ. Then X is a nonzero, n x 1 matrix and L(G)X = λΧ. Therefore, X'L(G)X = 
X'(L(G)X) = Χ'(λΧ) = λ(Χ'Χ) = λ\\Χ\\2, where ||X||2 is the "dot product" of X 
with itself—that is, the sum of the squares of the entries of X. From Theorem 
9.13, on the other hand, X'L{G)X = X'(QQ')X = (X'QXQ'X) = (β'Χ)'(β'Χ) = 
||Ö'X||2. Combining these identities, we find that 

λ = IIÖ'XIlVlIXH2 > 0. 

Evidently, the eigenvalues of L(G) are all nonnegative.3 

9.15 Definition. Suppose G is a graph on n vertices. Denote the spectrum of 
L(G) by s(G) = ( λ , ( 0 , X 2 (G) , . . . , X„(G)), where the eigenvalues of ¿(G) are 
ordered so that 

h(G)>k2(G)> ■■■ >λ„(Ο = 0. (60) 

While it does not depend on the numbering of the edges (or on any orientation), 
L(G) does depend on the vertex numbering of G. If the vertex numbers are 
permutted, the effect on L(G) is a corresponding permutation of its rows and 
columns. More generally, as with the adjacency matrix, graphs G\ and G2 are 
isomorphic if and only if there is a permutation matrix P (corresponding to the 
isomorphism) such that 

L(G1) = P-1L(G2)P. 

3 Every characteristic root of a real symmetric matrix is known to be real. If they are all nonnegative, 
then the symmetric matrix is said to be positive semidefinite. 
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Because matrix similarity preserves eigenvalues, it follows from this identity that 
the Laplacian spectrum is a graph invariant; that is, G\ = G2 only if s(G\) = 
s(G2).4 

9.16 Example. Let G be the graph in Fig. 9.5 whose Laplacian matrix was 
given in Example 9.12. Computations show that the characteristic polynomial of 
HG) is 

det(;t/ - L(G)) = x5 - 12JC2 + 49*3 - 7Sx2 + 4(k 

= x(x-\ )(x - 2)(JC - 4)(x - 5), (61 ) 

so s(G) = (5, 4, 2, 1,0). D 

Relations between eigenvalues and other graph invariants comprise an impor-
tant part of what has come to be known as algebraic graph theory. This is a 
story that combines early results from matrix theory and electrical circuit theory. 

Let A be a real n x n matrix. Denote by A,-7 the (n — 1) x (n — 1) submatrix 
of A obtained by deleting its /th row and y'th column. The adjugate (or classical 
adjoint) of A is the n x n matrix Af whose (/,y')-entry is (—1)'+7 det(Aj¡). The 
result that makes adjugates worth knowing about is 

ΛΛ+ = det(A)/„. (62) 

It follows from Equation (62) that A - 1 = (l/det(A))A t, whenever det(A) φ 0, a 
formula that is not of much use when A is the singular matrix L(G). Substituting 
A = L(G) into Equation (62), however, produces ¿(G)L(G) t = 0, an identity that 
can be interpreted as L(G)C = 0 for every column C of ¿(G)*. 

Recall that the rank of a matrix is equal to the size of a largest square submatrix 
having a nonzero determinant. Because det(L(G)) = 0, rank L(G) < n. From the 
definition of L(G) t, its n2 entries are precisely the determinants of all possible 
(n — 1) x (n - 1) submatrices of L(G). It follows that rank L(G) < n — 2, if and 
only if L(G)t — 0, if and only if C = 0 for every column of L(G)1'. If, on the 
other hand, the rank of L(G) is n — 1, then the dimension of its null space is 1, 
meaning that L(G)X = 0 if and only if X is a multiple of the eigenvector Y„, if 
and only if the entries of X are all the same. Evidently, regardless of the rank 
of ¿(G), 

( ab c ... d\ 
a b C ■ ■■ d , (63) 

a b e . . . di 
4 An n x n matrix of integers, M, is unimodular if it is invertible and M~l is an integer matrix. 
(It is not hard to see that M is unimodular if and only if det(M) = ±1.) Integer matrices A and 
B are congruent if there is a unimodular matrix M such that A = M'BM. Since P~l = P', G\ = 
Gi <=> L(G\) = P'L(Gi)P => L(G\) and L(Gj) are congruent. A partial converse was obtained 
by W. Watkins [Unimodular congruence of the Laplacian matrix of graphs, Linear Algebra Appl. 
201 (1994), 43-49]: If ¿(G, ) and L(G2) are congruent and if G, is 3-connected, then G\ = G2. 
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where a,b,c,..., and d are constants. Because the adjugate of a symmetric 
matrix is symmetric, the numbers in the first row of L(GY are equal to the 
corresponding numbers in its first column. In other words, Equation (63) implies 
that every entry of L(G)t is the same! 

9.17 Theorem. Let G be a graph on n vertices. Then there exists an integer, 
t(G), depending only on G, such that 

t(G) = ( -1 )i+J det(L(G)0 ), 1 < i, j < n. (64) 

Moreover, t(G) = 0 if and only if rank L(G) < n — 1. 

Proof. We have already proved the existence of a number f(G) that satisfies 
Equation (64) and the condition that r(G) = 0 if and only if rank L{G) < n — 1. 
It remains to observe that, because L(G)¡j is an integer matrix, its determinant 
is an integer. ■ 

When an integer emerges from a combinatorial setting, it is natural to expect 
that it is counting something. Recall that a spanning tree of G is a spanning 
subgraph that is a tree. 

9.18 Example. The graph in Fig. 9.5 has a total of eight spanning trees; they 
are illustrated in Fig. 9.6. D 
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With a little imagination, the next result can be found in an 1847 article by 
G. Kirchhoff.5 

9.19 Matrix-Tree Theorem. Let G be a graph on n vertices. Then i(G) is the 
number of spanning trees in G. 

Proof Sketch. By Theorem 9.17, it suffices to show that det(L(G)„„) is equal 
to the number of spanning trees of G. Applying the Cauchy-Binet Theorem, one 

5 G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der 
linearen Verteilung galvanischer Ströme gefürt wird, Ann. Phys. Chem. 72 (1847), 497-508. 
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of the classics of nineteenth-century matrix theory, to the factorization L(G) = 
QQ', one finds that det(L(G)„„) is the sum of the squares of the determinants 
of the (n — 1 ) x (n — 1 ) submatrices of Q lying in its first n - 1 rows and all 
possible selections of n — 1 of its columns. Our theorem now follows from the 
fact that any such subdeterminant of Q is equal to 1, —1, or 0, with its value 
being nonzero if and only if the corresponding n — 1 columns of Q correspond 
to the edges in a spanning tree of G. (See Exercise 34, below.) ■ 

9.20 Example. Consider, once again, the graph G illustrated in Fig. 9.5. Note 
that Theorem 9.19 concerns the number of different spanning trees of G. The 
fact that there are numerous isomorphisms among the eight trees in Fig. 9.6 is 
irrelevant to the computation of t(G). From Example 9.12, we have 

L(G) = 

( 4 

- 1 
- 1 
- 1 

\ - \ 

- 1 
2 

- 1 
0 
0 

- 1 
- 1 

3 
- 1 

0 

- 1 
0 

- 1 
2 
0 

_ 1 \ 
0 
0 
0 
\ ) 

Hence, for example, 

L(G)n = (-' 0 
V 0 

- 1 
3 

- 1 
0 

0 
- 1 

2 
0 

0 
0 
0 
1 

Expanding first along its last row, the determinant of L(G)\\ is 

-1 =2det 
- 1 Η("ό i) 

= 2 ( 6 - l ) - 2 = 8. 

Together with Example 9.18, this confirms the interpretation of t(G) given in 
Theorem 9.19. To confirm Theorem 9.17, let's calculate, say, the (1, 3)-entry of 
L(GY. Deleting row 3 and column 1 from L(G) and expanding determinants 
along the last row and then again along the last row, we obtain 

i(G) = (-l)4det 

= det 

/ - 1 
2 
0 

^ 0 

- 1 
- 1 

0 

0 
2 
0 

0 
0 
\l 
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= - ( - l ) d e t ( - 2
1 - ( Í ) + 2 d e t ( - 2

1 _ ; ) 

= 2 + 2(3) = 8. D 

Recall that the coefficient of x in the characteristic polynomial of an n x n 
matrix Λ is 

n 
( - íy - ' ^de t íA· , · ) . 

1=1 

In the characteristic polynomial of L(G), the coefficient of x is (—1)"_1 x n x 
t(G). For the graph in Fig. 9.5, we have (—l)4 x 5 x 8 = 40, consistent with 
Equation (61). 

On the other hand, the coefficient of x in the product 

(χ-λι)(χ-λ2)···(χ-λ„) 

is (—1)"_1 times the sum of the products of the k's taken n — 1 at a time. If 
A = L(G), then, because λ„ = A„(G) = 0, only one of these products survives, 
namely, X\(G) x kz(G) x · · · x λ„_ι (G). (Confirm that this formula is consistent 
with Equation (61).) Equating these two ways of computing the coefficient of x 
in det(x/„ - L(G)) yields 

n-\ 

nt(G) = Y[k¡CG). (65) 
1=1 

9.21 Corollary. Let G be a graph on n vertices. Then X„_j(G) > 0 if and only 
if G is connected. 

Proof. The result follows from (60), (65), and the fact that G is connected 
if and only if /(G) ¿0. ■ 

Corollary 9.21 suggests that k„^\(G) might be viewed as another quantitative 
measure of connectivity. 

9.22 Definition. The algebraic connectivity of a graph G on n vertices is a(G) = 
X„_,(G). 

The algebraic connectivity was introduced by M. Fiedler,6 who showed, among 
a great many other things, that 

a(G) < K(G), (66) 

provided G φΚη. 

6 M. Fiedler, Algebraic connectivity of graphs. Czech Math. J. 23 (1973), 298-305. Eigenvectors 
affording a(G) have proved useful in the design of algorithms for the efficient use of parallel 
processors. See, for example, S. T. Barnard and H. D. Simon, A fast multilevel implementation 
of recursive spectral bisection for partitioning unstructured problems, Concurrency: Practice and 
Experience 6 (1994), 101-117 and B. Hendrickson and R. Leland, An improved spectral graph 
partitioning algorithm for mapping parallel computations, SI AM J. Scientific Computing 16 (1995), 
452-469. 
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Suppose G = H\@ H2. Then, with a suitable numbering of its vertices, L(G) = 
L(H\ ) φ L(H2), the direct sum of the Laplacian matrices corresponding to H\ and 
H2, that is, 

L(Hl®H2) = L(Hi)®L(H2). (67) 

In particular, s(G) is obtained by rearranging, into nonincreasing order, the 
numbers from s(H\) and s(H2). Putting this discussion together with Corollary 
9.21 yields the following. 

9.23 Corollary. Let G be a graph on n vertices. Then the multiplicity ofO as an 
eigenvalue ofL(G) is equal to £(G), the number of connected components ofG. 

Suppose X is an eigenvector of L(G) corresponding to the eigenvalue μ. 
Because L(G) is symmetric, L(G)X = μΧ implies μΧ' = X'L(G). If Y is an 
eigenvector afforded by v, then 

μΧ'Υ = (X'L(G))Y 

= X'(L(G)Y) 

= vX'Y, 

from which we obtain (μ — v)X' Y — 0. If μ Φ v, it must be that the dot product, 
Y ■ X = X'Y = 0: Eigenvectors of L(G), corresponding to distinct eigenvalues, 
are orthogonal. More generally, given s(G) — (λι, λ 2 , . . . , λ„), there exist eigen-
vectors X\,X2, ...,Xn such that L(G)X¡ = λ,Χ,, 1 < / < n, and X, · X7 = 0 for 
all / φ j . 1 

Consider Gc = (V, V ( 2 ) \£), the complement of G = (V, E). If we use the 
same vertex numbering for both graphs, then 

L(G) + L(Gc) = nln - / „ , (68) 

where Jn is the n x n matrix each of whose entries is 1. Suppose μ = λ , ( 0 for 
some Í < n. By the previous observations, there exists a (nonzero) n x 1 matrix 
X such that L(G)X = μΧ and (Y„)'X = X ■ Yn - 0. Because (Y„)' is the ith row 
of Jn, 1 < i < n, it must be that J„X = 0. Together with Equation (68), this gives 
L(G)X + L(GC)X = nX. Because L(G)X = μΧ, this last equation is equivalent 
to L(GC)X = (n — μ)Χ. It seems we have proved the following. 

9.24 Theorem. If G is a graph on n vertices, then X„-¡(GC) = n — X¡(G), \ < 
i < n; that is, if s(G) — (λ\, λ2,..., λ„_ι, 0), then s(Gc) = (n — λ „ _ ι , . . . , η — 
λ 2 , η - λ , , 0 ) . 

9.25 Corollary. Let G and H be graphs on disjoint sets of t and r vertices, 
respectively. If s(G) = (v\,..., vt-\, O)ands(H) = (μ\,..., μΓ-\, 0), thens(G v 

7 This is a version of the Spectral Theorem for symmetric matrices. 
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H) consists of the numbers r + t, 

t + μ\, ...,t + μΓ_ι, 
r + v{,...,r + υ,_ι, 

and 0, arranged in nonincreasing order. 

Proof. From Theorem 9.24, s(Gc) = (/ - υ ,_ , , . . . , / - υ,, 0) and s(Hc) = 
(/■ — μΓ-\, ■ ■ ■, r — μ\, 0). From Equation (67), s(Gc Θ Hc) is some rearrange-
ment of 

0, r- μ\,. . . , Γ - μ Γ _ ι , 
t-vi,...,t - υ,_ι, 

and 0. Together with G v H = (Gc @ Hc)c and the fact that n = r + t, the result 
follows from another application of Theorem 9.24. ■ 

9.26 Example. Consider the graphs Gi,G2,H\, and H2 shown in Fig. 9.7. 
Observe that a pair of numbered vertices is adjacent in G\ if and only if 

1 

6O 02 
1 I 
1 1 5 ίΝ>^0 3 
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so-
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O 
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Figure 9.7 

02 
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SO 03 

2 0 ; 
O 
4 

H2 

; θ 6 

the same numbered pair is not adjacent in G2. This proves, by the numbers, 
that G2 = G\. Similarly, H2 = Hf. It can be shown (see Exercise 31, below) 
that J (GI ) = (4, 3, 3, 1, 1, 0) and s(#0 = (5, 3, 3, 2, 1,0). By Theorem 9.24, 
s(G2) = (5, 5, 3, 3, 2,0) and s(H2) = (5, 4, 3, 3, 1,0). From Equation (67), 

S(G, θ Gi) = (5, 5, 4, 3, 3, 3, 3, 2, 1, 1, 0,0) 

= S(Hi®H2). 

Thus, while they are not isomorphic, G = Gi φ G2 and H = H\ ® H2 have the 
same Laplacian spectrum. By Corollary 9.25, Gc = {G\ 0 G2)c = G\ v G\ = 
G2 v Gi = G\ v G2 and Hc = H\ v H2 are nonisomoφhic, connected graphs 
sharing the Laplacian spectrum, 

s(Gc) = (12, 11, 11, 10,9,9, 9, 9, 8, 7, 7, 0) 

= s(Hc). D 
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9.27 Definition. If s(G) = s(H), then graphs G and H are isospectral. 

9.28 Example. Let G be the graph from Fig. 9.5 reproduced, for convenience, 
in Fig. 9.8. Because vertex M is a dominating vertex, G = K\ v H, where H = 
AT, © P3. Because P3 = AT, v (ΑΊ Θ AT, ), we have H = ΑΊ © [A*, v (AT, © A", )] 
and 

G = KX V ( * , © [ * , ν(ΑΓ, ΘΚ,)]) . (69) 

°7\> 
o—o 

Figure 9.8 

This formidable expression has a single virtue. It shows that G can be "decom-
posed" into joins and unions of isolated vertices. Because we know how joins and 
unions affect the spectra, s(G) can be written down directly from Expression (69): 
ί(ΑΊ ) = (0), so s(Ki φ ΛΊ ) = (0, 0). From Corollary 9.25 (with / = 1 and r = 
2), j(P3) = s(Ki v [ΑΊ © A",]) = (3, 1,0). So, s(H) = (3, 1,0, 0). A final appli-
cation of Corollary 9.25 (with t=\ and r = 4) yields s(G) = (5, 4, 2, 1,0), 
confirming Example 9.16. D 

Two things about Example 9.28 are noteworthy: We were able to find the 
eigenvalues of L(G) without looking at a matrix, much less computing its char-
acteristic polynomial. And, in this case at least, the relationship of s(G) to the 
structure of G is relatively clear. 

9.29 Definition. A graph is decomposable if it can be expressed as joins and 
unions of isolated vertices. 

Informally, G is decomposable if and only if it can be "constructed" from the 
raw material of isolated vertices, using only the tools of joins and unions. 

9.30 Theorem. The Laplacian spectrum of a decomposable graph consists enti-
rely of integers. 

Proof. Suppose the eigenvalues of L{G) and L(H) are all integers. By 
Equation (67), the eigenvalues of L(G®H) are all integers; and by Corol-
lary 9.25, s(G v H) consists entirely of integers. Hence, the result follows from 
ί(ΑΓ,) = (0). ■ 

9.31 Example. The Laplacian characteristic polynomial of P4 is det(x/4 — 
L(P4)) = x(x - 2)(x2 -4x + 2). Thus, 

i(P4) = (2 + \ /2 , 2, 2 - N/2, 0). 

Because two of its eigenvalues are irrational, P4 cannot be decomposable. 
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To take another example, suppose G = C(„ the graph G\ from Example 9.26. 
Then s{G) — (4, 3, 3, 1, 1, 0) consists entirely of integers. However, because G 
is connected, it is not a union of graphs; and because its complement (isomorphic 
to Gi in Fig. 9.7) is connected, G is not a join of graphs. Thus, G cannot be 
decomposable. D 

9.32 Theorem. Let G be a graph on n vertices. Then G is decomposable if and 
only if it does not have an induced subgraph isomorphic to P4. 

Proof. If P4 is an induced subgraph of H\ φ H2, then P4 is an induced 
subgraph of Hi or of Hi- Because P°4 = P4, the same conclusion holds if P4 is 
an induced subgraph of H\ v / / 2 = (ί/f Θ HC

2Y'· Since P4 is not a subgraph of 
K\, decomposable graphs must be "/Vfree." 

Conversely, suppose G does not have an induced subgraph isomorphic to P4 . 
If G = K\ then, by definition, G is decomposable. Otherwise, by Theorem 1.19, 
one of G and Gc is disconnected. Therefore, G is either the union or the join 
of induced subgraphs having fewer than n vertices. Because these subgraphs are 
/Vfree, they are decomposable by induction. Since it is the union or join of 
decomposable subgraphs, G is decomposable. ■ 

9.33 Corollary. Decomposable graphs are perfect. 

Proof. Theorem 9.32, Corollary 8.17, and the definition of perfect graph. ■ 

9.34 Corollary. Threshold graphs are decomposable. 

Proof Theorem 9.32 and Theorem 7.28. ■ 

Among the relationships between eigenvalues and graph structure is the follow-
ing spectral characterization of threshold graphs. 

9.35 Merris's Theorem.8 Let G be a graph with at least one edge. Then G is 
a threshold graph if and only if, apart from zeros, the Laplacian spectrum of G 
is equal to the conjugate of its degree sequence — that is, if and only if s(G) is 
equivalent to d{G)*. 

9.36 Example. If G is the graph illustrated in Figs. 9.5 and 9.8, then d[G) = 
(4, 3, 2, 2, 1). From the division of F(d(G)) in Fig. 9.9, one sees that ot(d(G)) = 
(4, 2) = ß(d(G)), so G is a threshold graph. By Theorem 9.35, s(G) = d(G)* = 
(5,4, 2, 1, 0), confirming Examples 9.16 and 9.28. D 

DDDD 
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D DD 
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DD 
D 

Figure 9.9 

8R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994), 
381-389. 
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Proof. Suppose G is a threshold graph with degree sequence d(G) = π. 
By Lemma 7.27, G has a unique nontrivial component C; C is a threshold 
graph with a dominating vertex M; and H = C — u is a threshold graph on, 
say, r vertices. So, C = K\\/H and, because G = C Θ Kc

k, d(C) is equiva-
lent to π. If /(TT) = 1, then d(C) = (r, 1 1), ί(π) = r + 1 =jt*,H = Kc

r, 
and s{H) = (0, 0 , . . . , 0). From Corollary 9.25 (with t = 1), s(Ki v H) = (r + 
1, 1 , . . . . 1, 0), with r — 1 ones. Therefore, s(C) is equal to the sequence obtained 
from 7Γ* by appending a single zero, i.e., s(C) is equivalent to π*. Because s(G) 
is obtained from s(C) by appending k zeros, s(G) is equivalent to n*. This 
establishes the basis step for a proof by induction on /(π) . 

If / (π) > 1, then d{H) = (ττ2 - 1, . . . , nr+i - 1). So, F(d(H)) is obtained 
from F(n) by deleting the 2r boxes from its first row and column. By induction, 
d(H)* is equivalent to s(H) = (μ\, μι,..., μΓ_ι, 0). By Corollary 9.25 (with 
t = 1 again), s(C) = (r + 1, μ{ + 1, . . . , μΓ_[ + 1,0). So, F(s(C)) is obtained 
from F(s(H)) = F(d(H))' by adding a new first row and column containing 2r 
boxes, altogether. (See Fig. 9.10.) The result is precisely F{n*), the transpose of 
F(7r); that is, π* is equivalent to s(C) which is equivalent to s(G). 

■DDDDD 
■DDDDD 
■DDDD 
■DD 

Figure 9.10. F(s(C)) from F(s(H)). 

Conversely, let G be a graph with degree sequence π = (π\, π^ . . . , π„) and 
Laplacian spectrum equivalent to π*. If 1(π) = 2 = π*, then G = Κι 0 Kc

n_2 is 
a threshold graph. 

Assume p = ί(π) > 2 and let G' be the subgraph of G induced on its p 
vertices of positive degree. Without loss of generality, L(G) = L(G') φ 0„_ρ, 
where dc(v¡) = n¡ — dc>(vj), I < i < p. Therefore, X,(G') = A,(G) = π*, 1 < 
i <π\. Because k\(G') = π* = p we see, from Theorem 9.24, that kp-\(G'c) = 
0. From Corollary 9.21, G'c is disconnected. Since a graph and its complement 
cannot both be disconnected, 0 φ Xp_i(G') = n*p_x. It follows that π\ = p — 1, 
meaning that v\ is a dominating vertex of G'; that is, G' = [v\] v H for some 
graph H on p — I vertices. From Corollary 9.25, 

λ / + 1 ( 0 = λ,(//) + 1, 1 < / < / > - 2 . (70) 

Because F(d(H)) is obtained from F(7r) by removing its first row and column, 

n*^=d*(H)+l l<i<p-2. (71) 
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Because ki+i(G') = π*+1, 1 <i<p — 2,it follows from Equations (70) and (71) 
that k¡(H) = d*(H), 1 < i < p — 2. So, by induction, H is a threshold graph. 
Therefore, K\ v H = G' is a threshold graph and d(G') is a threshold partition. 
Since d(G') is equivalent to d(G), G is a threshold graph. ■ 

When G is a tree, there is an interesting connection between its Laplacian 
spectrum and its Wiener index. 

9.37 Theorem. Let T be a tree with Laplacian spectrum s{T) = (λ i, Xj,..., λ„ ). 
Then the Wiener index 

W(T) = nJ2r· ( 7 2 ) 

1 = 1 λ ί 

While not difficult, the proof of Theorem 9.37 is beyond the scope of this 
book.9 

9.38 Example. It is easily seen that the Wiener index of the 4-vertex path 
is W(P4) = (3 + 2 + 1) + (2 + 1) + 1 = 10. (Confirm it.) From Example 9.31, 
s(P4) = (2 + y/2, 2, 2 - y/2, 0). Observing that 

1 1 4 

7= + 7= = ~Λ Λ = 2 · 
2 + V2 2 - v ^ 4 - 2 

the right-hand side of Equation (72) is seen, in this case, to be 4 x (2 + ^) = 10. 
The Wiener index of the 4-vertex star is W(S4) = 9. Since 54 is a threshold 

graph, s(S4) = d(S4)* — (4, 1, 1, 0). (Check it.) In this case, the right-hand side 
of Equation (72) is 4 x 2.25 = 9. D 

9.39 Example. Wiener's 1947 paper concerned paraffins — that is, molecules 
whose carbon skeletons are trees. One way to extend Wiener's index to graphs 
that are not trees is to define 

W(G) = J2d(u,v\ (73) 

where the sum is over all C(n, 2) 2-element subsets [u, v] of V(G), and d(u, v) is 
the length of a shortest path in G from u to v. Using this definition, W(G\ ) = 71 
and W(G2) — 73 for the isospectral10 graphs in Fig. 9.11, proving that W(G) is 
not any function of the Laplacian spectrum for graphs that are not trees. 

9 See R. Merris, An edge version of the matrix-tree theorem and the Wiener index, Linear <6 Multi-
linear Algebra 25 (1989), 292-296; R. Merris, The distance spectrum of a tree, J. Graph Theory 
14 (1990), 365-369; or B. Mohar, Eigenvalues, diameter, and mean distance in graphs. Graphs & 
Combinatorics 7 (1991), 53-64. 
10 See C. Godsil, D. A. Holton, and B. McKay, The spectrum of a graph, Lecture Notes in Mathe-
matics 662, Springer-Verlag, New York, 1977, pp. 91-117. 
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Figure 9.11 

Recall that the raison d'être of a topological index is to predict chemical 
properties. It hardly seems possible that, from among all possible paths between 
two nonadjacent carbon atoms in an organic molecule, only a single shortest 
path could be relevant to the molecule's chemical properties. As we saw in the 
discussion leading up to Menger's Theorem, such is certainly not the case in 
graph models of social behavior. Neither is it the case for electrical networks. 

Recall that if resistors R\ and /?2 are connected in series, their combined 
resistance is R = R\ + Ri. If the same resistors are connected in parallel, however, 
their effective resistance is given by R = (R^ + Λ^"')""'. 

Suppose we view chemical graphs as electrical networks in which each edge is 
assumed (provisionally at least) to have resistance R = 1. Define the resistance 
distance, p(u, v), to be the effective resistance between vertices u and v and 
let 

W'(G) = Σ P(u> v^ (74> 

where the sum is over all C(n, 2) 2-elements subsets of V(G). 
If T is a tree, the corresponding "network" has no parallel sections, 

so p(u, v) = d(u, v) for all u, v e V(T). In this case, W(T) = W'(T). 
Marine biologist D. J. Klein" and sociologist M. Altman12 have argued that 
Equation (74), not Equation (73), is the natural generalization of the Wiener 
index to graphs that are not trees. Among Klein's many arguments is the fact 
that 

n-\ j 

r(C)=nV 
jr{h{G) 

for every connected graph G on « vertices. D 

" D. J. Klein, Graph geometry, graph metrics, & Wiener, Communications in Mathematical and in 
Computer Chemistry 35 (1997), 7-27. 
12 M. Altman. Reinterpreting network measures for models of disease transmission, Social Networks 
15(1993), 1-17. 
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EXERCISES 

o—o 
1 Confirm Stanley's Theorem for the graph G = | \ 

o—o 
2 Compute the oriented vertex-edge incidence matrix Q = Q(G) correspond-

ing to the oriented graph 
ex e, e, 

v,0-—Ov-) v.O—»-Ov7 υ,Ο-·— Ov·, 

f4°7*"0"3 υ40-ζ-Ου3
 υ4θ"^Οΐ)3 

3 Confirm that QQ' is the same for each part of Exercise 2. 
4 Let G be the graph illustrated in Fig. 9.12. 

40 03 

Figure 9.12 

(a) Find L(G). 
(b) Compute two different entries of the adjugate L(G)+. 
(c) Illustrate all /(G) spanning trees of G. 
(d) Compute the number of acyclic orientations of G. 

5 Compute the Laplacian spectrum of 
(a) C4. (b) Ki - e = C4 + e. (c) S4. (d) S4 + e. 

6 Prove the statement made in the text that G\ and G2 are isomorphic graphs 
if and only if L(G\) and L(G2) are permutation similar. 

7 Confirm that the algebraic connectivity a(G) < K(G) for G = 
(a) C4. (b) C4 + e. (c) S4. (d) P4. 

8 As in Chapter 6, Exercise 17, the line graph of G is the graph G* whose 
vertex set is V(G#) = E(G). The edges of G* are those pairs of its vertices 
that are adjacent edges in G. If G is a bipartite graph, show that an orienta-
tion of G can always be chosen so that Q(G)'Q(G) = 2Im +A(G*), where 
m = o(£(G)).13 

9 If T is a tree on n > 3 vertices, prove that λ„_ι(Γ) < 1. 

13 This result was used in I. Gutman, et al. [The high-energy band in the photoelectron spectrum 
of alkanes and its dependence on molecular structure, J. Serb. Chem. Soc. 64 (1999), 673-680] to 
express quantum-mechanical energy levels of certain paraffin molecules in terms of their Laplacian 
eigenvalues. 
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10 Confirm that the spanning tree number t(C(,) equals 6 
(a) by showing that 7 is a spanning tree of G = CO if and only if T = G — e 

for some fixed but arbitrary e € E(G). 
(b) using Equation (65) and Example 9.26. 

11 Let G = K„ for some fixed but arbitrary n > 1. 
(a) Show that s(G) = (η,η,.,.,η, 0). 
(b) Show that t(G) = nn~2. 

12 The tournament illustrated in Fig. 9.1 is not transitive. While team 1 beat 
team 3 and team 3 beat team 2, team 1 failed to beat team 2. An orientation 
of G is transitive if (w, w) is an oriented edge of G whenever («, v) and 
(v, w) are among its oriented edges. A comparability graph is a graph that 
admits a transitive orientation.14 

(a) Show that a transitive orientation is acyclic. 
(b) Find an acyclic orientation of Pi, that is not transitive. 
(c) Show that every bipartite graph is a comparability graph. 

(d) Show that K¡ is a comparability graph. 
o — o 

(e) Show that G = / \ is not a comparability graph. 
o — o — o — o 

13 Let G = Κι v (K2 Θ K3) and H = Kc
2v ([AT, v Kc

2] © Ki ). Find 
(a) s(G). (b) s(Gc). ( C ) J ( G ® C C ) . ( d ) s ( C v G c ) . 

(e) s(H). (f) s(Hc). (g)s(HvHc). 
(h) Illustrate a pair of connected isospectral graphs that have different degree 

sequences. 

14 Compute i(G) if 
(a) G = G2 in Fig. 9.7. 
(b) G = Hi in Fig. 9.7. 
(c) G = H2 in Fig. 9.7. 

15 Let G — KrfS, the complete bipartite graph. 
(a) Compute s(G). 
(b) Compute t(G). 

16 Show that G is decomposable if and only if it can be constructed from the 
raw material of isolated vertices, using only the tools of complements and 
unions. 

It can be shown that every comparability graph is perfect. 
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17 Let G be a graph. 
(a) Prove that G is a threshold graph if and only if it can be expressed in 

the form rK\ ® [K\ v (H 0 /AT])], where H is a connected threshold 
graph. 

(b) Prove that Chvátal's maximal nonhamiltonian graph G„,r is a threshold 
graph. 

18 Let G be a connected, decomposable graph. Suppose u, w e V(G). Prove 
that the distance d(u, w) < 2. 

19 Show that H\ in Fig. 9.7 is not decomposable. 

20 Show that 
(a) C4 is a nonthreshold decomposable graph. 
(b) 2K2 is a nonthreshold decomposable graph. 

21 Let G is a graph with n vertices and m edges. Prove that 

n 

Y^X¡(G) = 2m. 
¿=i 

22 It follows from a result of I. Schur15 that the Laplacian spectrum of a graph 
majorizes its degree sequence. Confirm that s(G) >- d(G) for the graph 
(a) C4. (b) P4. 
(c) G, in Fig. 9.7. (d) G2 in Fig. 9.7. 
(e) //, in Fig. 9.7. (f) H2 in Fig. 9.7. 

23 Let G be a graph with at least one edge. Recall (Chapter 7, Exercise 37) that 
d(G)*, the conjugate of the degree sequence, majorizes d(G). An unresolved 
conjecture16 about the Laplacian spectrum is that d(G)* >- s(G). Confirm 
this conjecture for the graph 

(a) C4. (b) P4. 
(c) Gi in Fig. 9.7. (d) G2 in Fig. 9.7. 
(e) H¡ in Fig. 9.7. (f) H2 in Fig. 9.7. 

24 Let G be a graph with vertex set V(G) = {v\, v2,..., v„}. Suppose X = 
(x\,x2,... ,x„Y is an eigenvector of L(G) affording eigenvalue λ. Assume 
x¡ = Xj for some / φ j . Let G' be the graph obtained from G by deleting 

1 51. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen die Determinantentheorie, 
Sitzungsberichte Math. Gesellschaft Berlin 22 (1923), 9-20. 
16 R. Grone and R. Merris, The Laplacian spectrum of a graph ii, SIAM J. Discrete Math. 7 (1994), 
221-229. 
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or adding edge v¡Vj depending on whether or not it is an edge of G. Prove 
that X is an eigenvector of L(G') affording λ. 

25 Let G = (V, E) be a bipartite graph with color classes X and Y. Suppose 
dc(v) = r for all v e X and dc(v) = s for all υ € Y. (Then G is said to be 
(r, s)-semiregular.) Prove that λ = r + s is an eigenvalue of L(G). 

26 Let e = uv be an edge of G = (V, E). 
(a) Prove that the spanning tree number t{G) = t(G — e) + t(G\e). 
(b) Use part (a) to evaluate i(G) for the graph in Fig. 9.12. 

27 Let G = Kr v AC. 
(a) Compute s(G). 
(b) Compute i(G). 

28 Let G be a graph with vertex set V(G) = {v\, vj,.. ,,vn}. \î X = 
(x\, *2 , . . . , xn)', prove that 

X'L(G)X= Σ (Xi-Xjf. 
v¡Vj£E(G) 

29 Recall that A„ is the unique connected antiregular graph on n vertices. Show 
that s(A„ ) consists of all but one of the integers 0, 1, . . . , n and that the 
"missing" eigenvalue is \_(n + 1)/2J. 

30 Prove that the Laplacian spectrum of the star is s(S„) = (n, 1 1,0). 

31 Confirm that 
(a) s(G\) = (4, 3, 3, 1, 1,0) for the graph G\ = C6 in Example 9.26. 
(b) *(«i ) = (5, 3, 3, 2, 1, 0) for the graph H{ in Example 9.26. 

32 Let G be a graph with n vertices and £(G) connected components. Prove 
that n = £(G) + rank ¿(G). 

33 Prove that the graphs in Fig. 9.13 

Figure 9.13 
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(a) are not isomorphic. 
(b) are isospectral. 

34 Let G be a connected graph with n vertices and m edges. Let Q = Q(G) be 
an oriented vertex-edge incidence matrix for G. 
(a) Prove that the n - 1 columns of Q corresponding to a spanning tree of 

G are linearly independent. 
(b) Prove that the columns of Q corresponding to the edges of a cycle of 

G are linearly dependent. 
35 The purpose of this exercise is to explore a little more deeply the inno-

cent observation made in Exercise 34(b). Suppose G = (V, E), where V = 
[v\,V2, ...,v„] and E = [e\, «2,. . . , em}. Let Q = Q(G) be an oriented 
vertex-edge incidence matrix for G. Denote the kernel of Q by W; that 
is, W = {m x 1 matrices Z such that QZ = 0}. 
(a) Prove that rank Q = n - £(G). 
(b) Prove that dim(W) = m-n + Ç(G). 
(c) Suppose / : E(G) -> R is a real-valued function of E(G). Let Xf be the 

m x 1 matrix whose y'th entry is f{e¡). Prove that QXf is the n x 1 
matrix whose ith entry is 

Σ / ω - Σ/<*>· 
head(e)=i>, tail(e)=u; 

(d) A flow in the oriented graph G is a real-valued function / of its edges 
such that 

Σ/<«>= Σ'<β>· 
head(e)=t) tail(í)=v 

for every v e V.17 Prove that f:E(G) -> R is a flow if and only if 
Xf e W. 

(e) Suppose C = (\, vj,..., vr) is a cycle in G. Let vr+i = v\. Define the 
signed characteristic function fc'. E(G) -*■ R by fc(e) = 0 if e is not an 
edge of C; /c(£) = 1 if e is an edge of C with a compatible orientation, 
that is, if e = (υ,-, ι>;+ι) for some i; and fc(e) = — 1 if e = (w,+i, υ,) for 
some /. Prove that X/c e W. 

(f) Suppose G is connected. Let T be a fixed but arbitrary spanning tree 
of G and suppose e e E(G)\E(T). Prove that the spanning subgraph 
H - (V, E(T) U {<?}) of G contains a unique cycle C(7\ e). 

(g) Prove that {XfciTt):ee E(G)\E(T)} is a basis for W.18 

17 Among Kirchhoff s "Laws" is the fact that current in an electrical network behaves like a flow in 
the underlying graph. 
18 The kernel of Q is sometimes called the cycle space of C. These ideas are developed more fully 
in [N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press, Cambridge, England, 
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36 Confirm Equation (72) 
(a) for the star Sn. 

o 
I 

(b) for the tree T= o — o — o — o 
37 Prove or disprove that any n — 1 edges of K„ comprise the edge set of some 

spanning tree of K„. 
38 It was conjectured by A. Gyárfás and J. Lehel that if 7"* is a fixed but arbi-

trary tree on k vertices, 2 < k < n, then isomorphic copies of T2, T3,..., T„ 
can be found in K„ where no two copies share an edge — that is, where 

E(Kn) ={jE(Tk). 

(a) Confirm that o(E(K„)) = Y^k>2o(E(Tk)) for any such collection of 
trees. 

(b) Prove that the edge set of Kn can be partitioned as the disjoint union of 
the edge sets of stars, S*, 2 < k < n. 

(c) Prove that the edge set of Κη can be partitioned as the disjoint union of 
the edge sets of paths, Pk, 2 <k < 7. 

39 (Roy and Gallai) Suppose x(G) < k. Prove that G has an orientation in 
which no directed path has length k or more. 

40 Prove that every tournament (oriented complete graph) has a spanning direc-
ted path. 

41 Let G = An be the unique, connected, antiregular graph on n vertices. If T 
is a tree on n vertices, prove that T is isomorphic to a spanning tree of G. 

42 Let G and H be the graphs in Fig. 9.14. 

°-o .o / | \ 
0 — 0 — 0 \ | / 

o 
G H 

Figure 9.14 

(a) Show that det(jc/6 - L(G)) = x(x - 2)(x - 3)2(x2 - 6x + 4). 
(b) Show that det(.r/6 - L{H)) = x(x - 2)(x - 3)2(x2 - 6x + 4). 

1993]. Also see [N. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997), 
64 ¡-682], 
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(c) Show that Gc is isomorphic to a graph that can be obtained from H by 
the addition of a single well-chosen edge. 

(d) Show that Hc is isomorphic to a graph that can be obtained from G by 
the addition of a single well-chosen edge. 

(e) Compute the Laplacian spectrum, s(Gc) = s(Hc). 

43 Denote the characteristic polynomial of L(G) by 

det(;t/n - ¿(G)) = x" - bixn~l + b2x"~2 + (-l)n"'¿>n_ijc. 

Let F, be the set of all i-edged spanning forests of G. If F € F¡, denote by 
n(F) the product of the numbers of vertices in the n — t components of F. 
It was shown by A. K. Kel'mans and V. M. Chelnokov that b, — Σ 7r(F) 
as F ranges over :7¡. 
(a) Use the result of Kel'mans and Chelnokov to prove that b, > (/ + l)c,, 

1 < t < n, where (— l)'c, is the coefficient of x"~' in the chromatic 
polynomial p(G,x). (Hint: Whitney's Broken Cycle Theorem.) 

(b) Prove that b„-\ — nc„-\ if and only if G is a tree. 



10 
Edge Colorings 

It is common practice, among aficionados of internet chat, to use aliases. While 
two such individuals might be in frequent electronic communication, they could 
easily fail to recognize one another when meeting face-to-face—say, at a 
COMDEX convention. Let's say two people are e-quainted if, during the past 
year, they participated together in one or more of the same chat room discussions. 
Otherwise, call them e-stranged. Then any two people attending the convention's 
introductory cocktail party will be either e-quainted or e-stranged. 

Would it surprise you to learn that every group of six cocktail party guests 
must contain three mutual e-quaintances or three mutual e-strangers?1 To see 
why, let Arwen be one of the six. Then the other five members of the group 
fall into one of two categories, according to whether or not they are e-quainted 
with Arwen, and one of these categories must contain three (or more) people. 
Suppose Balthazar, Carse, and Danilo belong to the category of people e-stranged 
from Arwen. If these three characters are mutual e-quaintances, we are finished. 
Otherwise, some two of them are e-stranged and these two, together with Arwen, 
are mutually e-stranged. 

If the category of people e-quainted with Arwen contains three people and 
if these three are mutually e-stranged, we are finished. Otherwise, some two of 
them are e-quainted and these two, together with Arwen, are mutually e-quainted. 

Let's model the situation using graphs. Begin by identifying some group of 
six guests with the vertices of Kf,. If guests i and j are e-quainted, color edge 
V¡VJ black; if they are not, color it white. From this perspective, our observation 
is that the resulting figure contains a black triangle or a white triangle. 

There is another way to look at this model. Let G be a graph on six vertices. 
Visualize G as a spanning subgraph of some fixed illustration of Kf,. Then "white 
out" the edges that do not belong to G. This process leads to a natural one-to-
one correspondence between the different black-white edge colorings of Kf, and 
the different graphs on 6 vertices. In this correspondence a black triangle in the 
edge coloring represents a clique in the corresponding graph, and a white triangle 
represents an independent set. Evidently, a)(G) > 3 or ot(G) > 3, for every graph 

An unqualified "or" should be understood in the inclusive sense, as in "A or B or both." 

195 
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G on 6 vertices. Moreover, because a>(Cs) = 2 = 0KC5), 6 is the smallest number 
of vertices sufficient to guarantee this Ramsey property} 

It is a consequence of Theorem 10.3 (below) that, for every pair of positive 
integers 5 and /, there exists an integer N such that every graph on N vertices 
contains an s-vertex clique or an independent set of t vertices. If G is a graph on 
n > N vertices, let H be the subgraph of G induced on some fixed but arbitrary 
collection of TV of its vertices. Because o>(G) > ω(Η) and a(G) > a(H), G itself 
must satisfy the Ramsey property for s and t. 

10.1 Definition. Let s and t be positive integers. The Ramsey number, r(s, t), 
is the smallest integer such that every graph on r(s, t) vertices has an induced 
subgraph isomorphic to Ks or an induced subgraph isomorphic to Kc

t. 

In view of Definition 10.1, our cocktail party observation can be stated in the 
form r(3, 3) = 6. 

10.2 Example. Let Í and t be positive integers. Since G -» Gc maps the set of 
graphs on n vertices to itself, and because a>(G) = a(Gc), Ramsey numbers are 
symmetric; that is, 

r(s, t) = r(t, s). 

Because any 1-vertex set is independent, r(s, 1) = 1. Since a(G) = 2 for all 
s-vertex graphs G Φ Ks, r(s, 2) < s. Because ω(Κη) < s and a{Kn) = 1 < 2, for 
all n < s, r(s, 2) > s. So, 

r(s,l)=l = r(l,t), 

r(s, 2) = s, and r(2, t) = t, 

for all integers s, t > 1. 
These relatively easy observations can be misleading. Finding the exact value, 

say, of r(9, 10) seems to be out of reach of current techniques. Indeed, every 
presently known Ramsey number can be deduced from the easy observations and 
the table in Fig. 10.1. D 

1 
2 
3 
4 
5 
6 

1 2 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

3 

I 
3 
6 
9 

14 
18 

4 

1 
4 
9 

18 
25 
? 

5 

1 
5 

14 
25 
7 
? 

6 

1 
6 

18 
? 
? 
7 

7 

1 
7 

23 
7 
? 
7 

8 

1 
8 

28 
7 
? 
7 

9 

1 
9 

36 
7 
7 
7 

Figure 10.1. Table of Ramsey numbers, r(s, t) = r(t, s) 

2 After Frank Ramsey (1902-1930). 
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It is hard to look very long at Fig. 10.1 and not begin searching for some 
Pascal-like recurrence that would identify the missing entries. There is a result 
along these lines, but it is not the expected identity. 

10.3 Theorem. Suppose s,t >2.IfG isa graph onn — r(s, t — 1 ) + r(s — 1, t) 
vertices, then <w(G) > s or a(G) > /; that is, the Ramsey number 

r(s,t)<r(s,t-l) + r(s-l,t). (75) 

Until now, we have been dealing with Ramsey numbers based upon a promise 
that r(s, t) exists. Example 10.2 and Theorem 10.3 give us the inductive means 
to fulfill that promise. 

Proof. Let G be a fixed but arbitrary graph on n = r(s, t — 1 ) + r(s — 1, t) 
vertices. We desire to show that œ(G) > i o r a(G) > t. Our approach is a varia-
tion on the theme of cocktail party guests. Begin by choosing a vertex w e V(G). 

Case 1: If dc(w) > r(s — 1, t), let H be the subgraph of G induced on NQ(W), 
the neighbors of w. If a(H ) > t, then, because a(G) > a(H ), the proof is finished. 
Otherwise, from the definition of r(s — 1, t), H contains an (s — 1 )-vertex clique 
which, together with w, produces an s-vertex clique in G. 

Case 2: If dciyv) < r(s — 1, t), let H be the graph that remains after w and all 
of its neighbors have been deleted from G. Then o(V(H)) = n — (¿c(w) + 1) > 
n — r(s — 1, t) = r(s, t — 1 ). If ω(Η ) > s, the proof is finished. Otherwise, H 
contains an independent set of t — 1 vertices which, together with w, is a i-vertex 
independent set in G. ■ 

10.4 Corollary. For any positive integers s and t, the Ramsey number r(s, t) < 
C(s + t-2,t- 1). 

Proof. If t = 1, then r(s, t) = r(s, 1) = 1 = C(s - 1, 0) = C(s + r - 2, t -
1 ). If / = 2, then r(s, t) = r(s, 2) = s = C(s, 1 ) = C(s + / - 2, / - 1 ). By symme-
try, the same arguments apply when s < 2. We proceed by induction onk = s + t. 

Suppose s, t > 3 and assume the result is true for all k < s + t. Then, by 
Theorem 10.3, 

r(s,t) <r(s,t - l) + r(s- l ,f) 

< C(s +1 - 3, t - 2) + C(s + t - 3, t - 1 ) 

= C(j + f - 2 , f - l ) . ■ 

We turn now to lower bounds. 

10.5 Theorem. The Ramsey number r(s, t) > (s - l)(r - 1) + 1. 

Proof. If s — 1 or t — 1, then r(s, t) = 1 = (s - l)(r - 1) + 1. So, assume 
s, t > 2 and let n — (s — l)(i — 1). Arrange the vertices of K„ in a rectangular 
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array of Í — 1 rows and t — 1 columns. If vertices u and v lie in the same row of 
the array, color edge uv white. Otherwise, color it black. Let G be the graph on n 
vertices corresponding to the black edges. (Then G = Kc

s_t v Kc
s_i v · · · v Kc

s_{, 
the join of t - 1 copies of Kc

s_x.) 
If W is any set of Í vertices of G, then some two of them must come from 

the same row of the array. Because these vertices are not adjacent, the induced 
subgraph G[W] ψ Ks. If U is any set of t vertices of G, then some two of them 
must come from the same column of the array. Since two vertices cannot lie 
in the same row if they come from the same column, these two vertices are 
adjacent; that is, G[U] £ Kc

t. Therefore, ω((3) < s and a(G) < t. Because G 
does not satisfy the Ramsey property for Í and r, we have r(s, t) > n. ■ 

10.6 Example. From Example 10.2 and our cocktail party observation, r(2, 4) 
= 4 and r(3, 3) = 6. By Theorem 10.3, r(3, 4) < r(3, 3) + r(2, 4) = 10. If s = 
3 and f = 4, then {s - 1)(/ - 1) = 6 and, by Theorem 10.5, r(3,4) > 7. From 
Fig. 10.1, the actual value is r(3, 4) = 9. 

Figure 10.1 gives r(5, 4) = r(4, 5) = 25, which, together with Theorem 10.3, 
yields r(5, 5) < 50. By Theorem 10.5, r(5, 5) > 4 x 4 + 1 = 17. So, 17 < 
r(5, 5) < 50. The bounds 

43 < K5, 5) < 49 

are not so easy to obtain.3 D 

10.7 Erdös's Theorem4. If s > 2, then r(s, s) > V21. 

Because \pí = 5.7, Theorem 10.7 yields r(5, 5) > [5.7] = 6, not nearly as 
good as the lower bound r(5, 5) > 17 from Theorem 10.5. On the other hand, 
(s — l)(i — 1) + 1 = s2 — 2s + 2 bounds r(s, s) by a polynomial in Ä, whereas 
K*is) — \ /2 shows that r(s, s) grows exponentially in s. 

Proof. Because r(2, 2) = 2, we may assume s > 3. Let n = [2s/2¡, the integer 
part of Λ/2*. Let W = {1, 2 , . . . , n) and denote by % the set of all (different) 
graphs with vertex set W. The idea of the proof is to show it cannot be true that 
ω ( 0 > 5 or a(G) > 5, for all G € '¿„. 

Consider a fixed but arbitrary s-element set 5 C W. For how many graphs 
in ^ is 5 a clique? Because V(G) = W for all G € S?n, choosing G from % 
is equivalent to choosing £(G), and this is equivalent to making a sequence of 
C(n, 2) decisions, each involving 2 choices. For S to be a clique in G, C(s, 2) of 
those decisions have already been made. By the Fundamental Counting Principle, 
the number of ways to make the remaining decisions is 2C ( n '2 )~C ( î '2 ) . Therefore, 
S is a clique in 2C("·2'y2c<f-2) of the 2 C ( n 2 ) graphs in .%. 

3 See B.D. McKay and S.P. Radziszowski, Subgraph counting identities and Ramsey numbers, J. 
Combinatorial Theory B 69 (1997), 193-209. 
4 P. Erdös, Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 (1947), 292-294. 
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Thus, from Inequality (76), 

Let k = o({G e &n:a)(G) > s}). Because there are C(n, s) ways to choose 5, 
we have 

k <C(n,s)2C(n-2)/2Cis-2). 

(Since Kn, for example, has been counted C(n,s) times on the right-hand side 
of this expression, it is correctly phrased as an inequality.) Because C(n,s) = 
n{s)/s\ < ns/s\, it follows that 

k < ^ V - ( 7 6 ) 

Since n < 2s/2, 

ns < (2S/2Y 
_ 2C(i.2)+(i/2) 

_ 2sl22cu-2) 

k < (2i/2A!)2C(n'2), 
< ±2C<"·2', 

for all s > 3. Therefore, fewer than half of the graphs in S£ satisfy a>(G) > s. 
Because ',%, = {GC:G e &J„}, the same argument shows that w(Gc) = a(G) > s 
for fewer than half of the graphs in %. Therefore, 

o((G € '¿n:co(G) > s or a(G) > s)) 
= o({Ge är„:w(G)>5}U{G6 &„:a(G)>s}) 
< o({G e V„:œ{G) > s}) + o({G e ¡%:a(G) > s)) 
<o(.^)/2 + o(.^)/2 
= o(Sg). 

So, it is not true that &>(G) > s or a(G) > 5 for all G 6 ί^. ■. 

We proceed now to another application of the natural correspondence between 
graphs on n vertices and black-white edge colorings of Kn. 

10.8 Definition. Suppose n is a fixed but arbitrary positive integer. Let g{n,m) 
be the number of nonisomorphic graphs having n vertices and m edges. Then 
the graph generating function 

fn(.x) = Y^g{n,m)xm. 
m>0 
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O O O O (5 O O — O O — O / X / \/ 
o o o o o o o o o o o—o 
o—,o o—o o—o o o o o ° — ° 

IXI l\l I I l\l \ l 
o—o o—o o—o o—o o—o 

Figure 10.2 

10.9 Example. The 11 nonisomorphic graphs on 4 vertices are illustrated in 
Fig. 10.2. From this figure, it is easy to write down 

fA(x) = l+x + 2x2 + 3x3+2x4+x5+x6. (77) 

(Confirm that Em>o*(4· ™) = Λ Ο ) = 1 D □ 

Evidently, the degree of fn(x) is C(n, 2). Because Kn is the unique graph with 
n vertices and C(n,2) edges, f„(x) is a monic polynomial. Moreover, because 
G\ = G2 if and only if G\ = G\, the coefficients of /„ are symmetric in the 
sense that 

g(n,m) = g(n,C(n,2)-m), 0 < m < C(n, 2). (78) 

With an illustration, comparable to Fig. 10.2, for the nonisomorphic graphs on 5 
vertices, it would be just as easy to write down 

f5(x) = 1 + x + 2x2 + 4x3 + 6x4 + 6x5 + 6x6 

+ 4x7 + 2x 8 +; t 9 +; t 1 0 . (79) 

(Before reading on, compute /5O) = ^2m>og(5, m), the number of nonisomor-
phic graphs on 5 vertices.) 

Suppose it were your job to illustrate the 34 nonisomorphic graphs on 5 
vertices. In that case, it could be very useful to have fs(x) at your disposal —to 
know, for example, that exactly six of the graphs have four edges. What's needed 
is a recipe for computing /„ (x), one that does not depend on already having a list 
of the graphs. Such a recipe is given in Theorem 10.16 (below); an application 
of the recipe to derive fs(x) is carried out in Example 10.18. 

Let y be a fixed but arbitrary n -element set. Recall that any graph on n 
vertices is isomorphic to a graph with vertex set V. Moreover, from the definition 
of isomorphism, G\ = (V, E\ ) is isomorphic to G2 = (V, E2) if and only if there 
is a permutation p of V (i.e., a one-to-one function p: V —»■ V) such that 

{x, y] e Ex if and only if {p(x), p(y)} € E2. 
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10.10 Definition. Suppose V is an n-element set. Let Sv be the family of all 
n\ permutations of V. For each p e Sv, the permutation of V<2) induced by p is 
the function p: Va) -*■ V(2) defined by 

p(U, y)) = {p(x), p(y)}. 

The set of all these induced permutations is the so-called pair group, Sy * = 
[p:p €SV). 

Suppose V = [l,2,...,n). Let G\ = (V, E\) and G2 = (V, £2) be graphs on 
vertex set V. Think of £, as the set of black edges in a black-white coloring 
of V(2) = E(Kn), i = 1 , 2 . Then Gt = (V, £ , ) is isomorphic to G2 = (V, £ 2) if 
and only if there is an induced permutation p € S y) that maps black edges to 
black edges and white edges to white edges—that is, such that 

e e E\ if and only if p(e) € £2. (80) 

10.11 Example. If V = (1, 2, 3, 4}, then Sv is usually denoted 5 4 (not to be 
confused with the star on 4 vertices). If we number the elements of V(2) in 
"dictionary order," 

1 = (1,2), 2 = {1,3}, 3 ={1,4} , 4 = {2, 3}, 5 = {2, 4}, 6 = {3, 4}, 

then each p e Sv can be identified with a permutation in Se- Suppose, for 
example, that p — (143) € Sv. Then the disjoint cycle factorization of p € 5 ^ 
is computed as follows: 

¿( I ) = ¿({I, 2}) = [p(\), p(2)} = {4, 2} = 5 

p(S) = p({2, 4}) = {^(2), p(4)} = {2, 3} = 4 

p(4) = p({2, 3}) = [p{2), p(3)} = {2, 1} = 1, 

so, (154) is one of the cycles in the disjoint cycle factorization of p. Continuing, 

p(2) = p({l, 3}) = {p(l), p(3)} = {4, 1} = 3 

p(3) = p({\, 4}) = {p(l), p(4)) = {4, 3} = 6 

p(6) = p([3, 4}) = {p(3), p(4)} = {1, 3} = 2. 

Thus, p = (154)(236). Similar computations lead to the table in Fig. 10.3, where 
each p e Sv has been identified with an element of 56. Note that o(5y2>) = 
o(Sy) = 4! = 24, a small fraction of the 6! = 720 permutations in S¿. D 
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P 
id. 

(12) 
(13) 
(14) 
(23) 
(24) 
(34) 

(12) (34) 

P 
id. 

(24) (35) 
(14) (36) 
(15) (26) 
(12) (56) 
(13) (46) 
(23) (45) 
(25) (34) 

P 
(13) (24) 
(14)(23) 

(1234) 
(1243) 
(1324) 
(1342) 
(1423) 
(1432) 

P 
(16) (34) 
(16) (25) 

(1463) (25) 
(1562) (34) 
(16) (2453) 
(1265) (34) 
(16)(2354) 
(1364)(25) 

P 
(123) 
(124) 
(132) 
(134) 
(142) 
(143) 
(234) 
(243) 

P 
(142) (356) 
(153) (246) 
(124) (365) 
(145) (263) 
(135) (264) 
(154) (236) 
(123) (465) 
(132) (456) 

Figure 103. Sv and S\,f C S6 for V = (1, 2, 3,4) 

10.12 Definition. Suppose V is an n-element set. Let s\,S2,.. .,Sk be k = 
C(n, 2) independent variables. Then the cycle index polynomial of Sv is 

7 (ï, ç, , Λ - i r c,(P) c2(p) Q(p) 

peSv 

where c¡(p) is the number of cycles of length i in the disjoint cycle factorization, 
not of p, but of p. 

From Fig. 10.3 (where cycles of length 1 do not explicitly appear), it is easy 
to produce the cycle index polynomial 

Z 4 ( Í I , s2, ...,s6) = (s6
1+ 9s\s\ + 6s2s4 + 8sl)/24. (81) 

Note the absence of is and S(, from the right-hand side of Equation (81). 
It turns out that, to find the cycle index polynomial, it is not necessary to 

compute the disjoint cycle factorization of p for each and every p e Sv. 

10.13 Lemma. Let p and q be the elements ofSv induced by the permutations 
p and q ofSy, respectively. If p and q have the same cycle structure, then p and 
q have the same cycle structure. 

Proof. Let p € Sy. Fix ¡', j 6 V. Let p' be the permutation obtained by inter-
changing the positions of i and j in the disjoint cycle factorization of p. Then p' 
and p have the same cycle structure. Moreover, p\ can be obtained by switching 
the positions of r = {/, k] and t = [j, k) in the disjoint cycle factorization of p 
for every k different from i and j . Therefore, p' and p have the same cycle 
structure. Because p and q have the same cycle structure if and only if q can be 
obtained from p by a sequence of such interchanges, the proof is complete. ■ 

10.14 Example. To see that the converse of Lemma 10.13 is false, let V = 
{1, 2, 3, 4}, p = (12)(34), and q = (34). From Fig. 10.3, p and q share the cycle 
structure (ij) (xy). In particular, both contribute 1 to the coefficient of s\s\ in the 
cycle index polynomial Z^(s\, s2, ■ ■ ■, s^). D 
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10.15 Example. Let V = [I, 2, 3,4, 5}. Number the C(5, 2) = 10 elements of 
V(2) in dictionary order: 

1 = {1,2}, 2 = {1,3}, 3 = {1,4}, 4 = {1,5}, 5 = {2, 3}, 

6 = {2, 4}, 7 = {2, 5}, 8 = {3,4}, 9 = {3, 5}, and 0 = {4,5}. 

Of the 5! = 120 elements of Sy, 10 are transpositions — that is, permutations 
having cycle structure (ij). If, for example q — (12), then, as in Example 10.11, 
q = (25)(36)(47). (Confirm it.) Thus, the transpositions in Sv contribute a total 
of lOsjsj t o t n e cycle index polynomial Z5 = Z$(s\ ,S2,..-, sio)· Apart from the 
identity that contributes s\° to Z5, representative permutations p € Sv and the 
corresponding p € Sv are given in the table in Fig. 10.4. The column headed 
"#" gives the number of permutations in Sv having the cycle type represented 
by p. From this figure, we obtain 

Z5(s\,s2, . . . , ΐ ι ο ) 

= (j}° + lOslsl + 1544 + 2Qsi*3 + 20iii3i6 + 30s2s2
A + 24φ /120 . (82) 

Note, from Equations (81) and (82), that Z4( l , 1 , . . . , 1 ) = 1 = Z 5 ( 1 , 1 , . . . , 1), 
reflecting the fact that Z„ (s\, s2, ■ ■ ■, s*) is the mean of n ! monomials. □ 

P P # 
(12) (25) (36) (47) 10 

(12) (34) (26) (35) (47) (90) 15 
(123) (152) (368) (479) 20 

P ~P # 
(123) (45) (152) (378469) 20 

(1234) (1583) (26) (4790) 30 
(12345) (15804)(26937) 24 

Figure 10.4. p and p when V = { 1, 2, 3,4, 5} 

We come at last to the result that makes cycle index polynomials worth 
knowing about. 

10.16 Theorem5. The graph generating function f„ (x) is obtained by substi-
tuting s¡=\+x',l<i<k = C(n, 2), in the cycle index polynomial Zn(s\, s2, 
..., sic ); that is, 

fn(.x) = Zn{\+x,\+x2,...,\+xk). (83) 

The proof of Theorem 10.16 is beyond the scope of this book. 

5 Theorem 10.16 is the restriction to graph enumeration of a much more general result of G. Pólya 
[Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta 
Mathematica, 68 (1937), 145-254] and J. H. Redfield [The theory of group reduced distributions, 
Amer. J. Math. 49 (1927), 433-455]. "Pólya's Theorem" can be found in many combinatorics books, 
for example, R. Merris, Combinatorics, PWS & Brooks/Cole, Pacific Grove, CA, 1996. 
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10.17 Example. From Theorem 10.16 and Equation (81), we have 

Uix) = 2^[(l + *)6 + 9(l + *)2(1 + *2)2 +6(1 + *2)(1 + *4) + 8(l + *3)2] 

= —[(1 +6x+ ]5x2 + 20*3 + 15JC4 + 6*5 +x6) 
24 
+ 9(1 + 2x + 3*2 + 4*3 + 3x4 + 2*5 +*6) 
+ 6(1 + x2 + x4 + x6) + 8(1 + 2JC3 + *6)] 

= 1 + * + 2*2 + 3*3 + 2* 4 +* 5 +* 6 , 

precisely Equation (77). D 

10.18 Example. From Equation (82), we obtain 

Z5(Si,S2,...,S\o) 

= (jj° + \0s4sl + \5s2s4
2 + 20sisl + 2 0 Í | Í 3 Í 6 + 30S2Í2 + 24^)/120. (84) 

Let's use this expression and Theorem 10.16 to compute fs(x). From Equation 
(78), it suffices to evaluate the coefficient of xm, 0 < m < 5. From the binomial 
theorem, we have 

(1 +x)10 = 1 + 10* + 45*2 + 120*3 + 210*4 + 252*5 + · · ·. 

Substituting s\ = 1 + * and s2 = 1 + *2 in 10s4 s?, yields 

10(1 + *)4(1 + x2f = 10(1 + Ax + 6x2 + 4*3 + *4)(1 + 3x2 + 3x4 + x6) 
= 10 + 40* + 90*2 + 160*3 + 220*4 + 240*5 + · · ·. 

Similarly, from 15J2S4 we obtain 

15(1 + *)2(1 + *2)4 = 15(1 + 2x + x2)(l + 4x2 + 6x4 + 4x6 + *8) 
= 15 + 30* + 75*2 + 120*3 + 150*4 + 180*5 + · · ·. 

Substituting s\ — I +x and s3 = 1 -f*3 in 20Î I Î 3 gives 

20(1 + *)(1 + 3*3 + 3*6 + *9) = 20 + 20* + 0*2 + 60*3 + 60*4 + 0*5 + · · ·. 

The contribution from 20s\S3S(, is 

20(1 + *)(1 + *3)(1 + *6) = 20 + 20* + 0*2 + 20*3 + 20*4 + 0*5 + · · ·. 
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From 30̂ 2̂ 4 we get 

30(1 +x2){\ + 2 * 4 + * 8 ) = 3 0 + 0* + 30Λ:2 + 0* 3+60Λ: 4 + 0Λ:5 + · · · . 

and the final contribution, from 2As\, is 

24(1 + 2x5 + jc10) = 24 + Ox + Ox2 + 0*3 + O*4 + 48Λ:5 + · · ·. 

Summing up, we obtain 

f5(x)= [120+ 120* + 240*2 + 480JC3 + 720*4 + 720*5 + · ■ ·] 

= 1 + x + 2x2 + 4x3 + 6x4 + 6x5 + ■ ■ ■, 

which, together with g(5, m) = g(5, 10 — m), yields Equation (79). 
The g(5, 4) = 6 nonisomorphic graphs with 5 vertices and 4 edges are illus-

trated in Fig. 10.5. While it is not difficult to see that no two of these six graphs 
are isomorphic, it may be less obvious that there can be no (lucky?) seventh. D 

0/V0 „/% 0//V0 
o—o o o o o 

o o o \ o o o 
\ / \ \ / 
o—o o — o o o 

Figure 10.5 

10.19 Corollary. Ifo( V) = n, the total number of nonisomorphic graphs sharing 
vertex set V is 

ni *—f 
p&Sv 

where c(p) is the total number of cycles (including cycles of length 1) in the 
~ (2) 

disjoint cycle factorization of p e Sv . 
Proof. If o(V) — n, the total number of nonisomorphic graphs sharing vertex 

set V is /„(l) = J2m>oS(.n<m)- From Theorem 10.16, f„(x) is obtained by 
substituting s¡: = 1 + x', 1 < i < k, in the cycle index polynomial 

¿■n\S\,S2, . ■-,δΐι) — — 2_j s\ S2 · · · Sk 
peSv 
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Thus, /„ ( 1 ) is obtained by substituting s¡ = 2, 1 < i < k, in the cycle index 
polynomial. It remains to observe that c(p) = c\(p) + ci(p) + ■ · ■ + Ck(p). ■ 

70.20 Example. Suppose n = 6. Let V = {1, 2, 3, 4, 5, 6}. Listing the C(6, 2) 
= 15 elements of V<2) using hexadecimal numerals, we have 

1 = {1,2}, 2 = {1,3}, 3 = {1,4}, 4 = {1,5}, 5 = {1,6}, 

6 ={2 , 3), 7 = {2, 4}, 8 = {2, 5}, 9 = {2, 6}, A = {3, 4}, 

B = {3, 5}, C = {3,6}, D = {4, 5}, E = {4, 6}, F = { 5 , 6}. 

If, p = (12)(34), then p = (27)(36)(48)(59)(BD)(CE). (Check it.) By Lemma 
10.13, the 45 permutations of Sv having cycle structure (ij)(xy) each contribute 1 
to the coefficient of s]sj in the cycle index polynomial Z^ = Z(,(s\, si,..., *i5). If 
q = (12)(34)(56), then q = (27)(36)(49)(58)(BE)(CD). So, the 15 permutations 
of cycle type (¡j)(xy)(st) each contribute 1 to the coefficient of i3*!)· These 15, 
together with the 45 we already have, yield a total coefficient of 60. Indeed, 

Z6(S|, S2, ..., *15) = (i,'5 + 15*7*2 + 6 0 j lÄ2 + 40l¡3l4 + 120*1*2*3*6 

+ 40^ + 18051*2*4 + 144^ + \20s3s2
6)/720. (85) 

Let's use Equation (85) to compute g(6, 4), the number of nonisomorphic graphs 
with 6 vertices and 4 edges. From the binomial theorem, the contribution to the 
coefficient of x4 in (1 +x)15 is C(15, 4) = 15 x 7 x 13. The contribution from 

I5s]s4
2 = 15(1 + · · ■ + 21x2 + · · · + 35x4 + · · · )0 + 4*2 + 6x4 + ■ ■ ·) 

is 15(6 + 84 + 35) = 15 x 125, for a subtotal (so far) of 15(91 + 125) = 15 x 
12 x 18 = 12 x 270. From 

60*3** = 60(1 + 3* + 3JC2 + x3)(l + 6JC2 + 15x4 + ··■). 

we obtain 60(15 + 18) = 12 x 5 x 33, for a (new) subtotal of 12 x (270 + 165) 
= 12 x 435. The term 

40s]s4
3 = 40(1 + 3JC + · · ·)(1 + 4*3 + · · ·) 

contributes 12 x 40, bringing the subtotal to 12 x 475. From 

120s , s 2 ^ i 6 = 120(1 + J C ) ( 1 + ; C 2 ) ( H - 2 J C 3 + . X 6 ) ( 1 + ; C 6 ) 

we get 240 = 12 x 20, raising the subtotal to 12 x 495. The term 40*3 contributes 
nothing to the coefficient of x4. The contribution from 

180Í,Í2*4 = 180(1 + x)(l + x2)(\ + 3x4 + ■ ■ ·) 
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is 180 x 3 = 12 x 45 bringing the subtotal to 12 x 540. Because neither 144sj 
nor \20sjsl contribute to the coefficient of x4, it remains to observe that (12 x 
540)/720 = 9. The nine nonisomorphic graphs with 6 vertices and 4 edges are 
illustrated in Fig. 10.6. ■ 

Values of g(n, m), for small n, appear in the table in Fig. 10.7. 

o ^ o 

0 o-

o~—^o 

o o 
o 

o o o \ o 

o' / Vo 

o o 
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o o 

o o o 
o o 

o o 

o ^ o 

/ o 

o-

o 

-o 

o-
I 
o 

o 

o o o o o 
Figure 10.6. The nonisomorphic graphs with 6 vertices and 4 edges 

-O 

I 
o 

n 

1 
2 
3 
4 
5 
6 
7 
8 

0 1 2 

1 1 
1 2 
1 2 
1 2 
1 2 
1 2 

3 

1 
3 
4 
5 
5 
5 

4 

2 
6 
9 
10 
11 

5 

1 
6 
15 
21 
24 

6 

1 
6 
21 
41 
56 

7 

4 
24 
65 
115 

8 

2 
24 
97 
221 

9 

1 
21 
131 
402 

10 

1 
15 
148 
663 

11 

9 
148 
980 

Figure 10.7. Numbers, g(n, m), of graphs with n vertices and m edges 

EXERCISES 

Show that 
(a) r(3, 10) < 46. (b) r(4, 6) < 43. 
(c) r(3, 10) > 19. (d) r(4, 6) > 16. 

Explain how the graph in Fig. 10.8 proves that r(3, 4) > 8. 

3 Find the smallest integer value of J > 2 for which Erdös's Theorem gives 
a strictly better lower bound for r(s, s) than Theorem 10.5. 

4 Complete the proof of Theorem 10.7 by confirming that 2 j /2/s! < 1/2 for 
all s > 3. 
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Figure 10.8 

5 Let s > 2 be an integer. Suppose T is a fixed but arbitrary tree on t > 2 
vertices. Let N(s, T) be the smallest integer such that any graph G on N(s, T) 
vertices contains an independent set of s vertices or a subgraph isomorphic 
to T. Prove that 

(a) tf(*,r)>(j-l)(r-l)+l. 
(b) N(s,T)<(s-m-l) + l. 

6 Let T be a tree on k vertices. Let G be a graph with minimum vertex degree 
S{G) > k — 1. Prove that T is isomorphic to a subgraph of G. 

7 Let Z = {1, 2, 3, 4, 5, 6}. Define X = Z (2 ) to be the set of all C(6, 2) = 15 
2-element subsets of Z and Y = Z(3) to be the set of all C(6, 3) = 20 3-
element subsets of Z. Let V = X U Y, E =■ {{x, y}:x € X, y € Y, and x c 
y), and G = (V, E). Then G is a bipartite graph with bipartition V(G) = 
V = X U Y. Suppose each vertex of X is colored either black or white in 
some fixed but arbitrary way. Prove that there is a vertex y € Y, each of 
whose neighbors is colored the same — in other words, such that each vertex 
adjacent to y is black or all of them are white. 

8 Explain why 
(a) g(n, 2) = 2, n > 4. (b) g(n, 3) = 5, n > 6. 
(c) g(n, m) = g(2m, m), n > 2m. 

9 Confirm that the expression for p given in Fig. 10.3 is correct when 
(a) p = (12) (b) p = (12)(34) (c) p = (1234) 

10 Let p(x) be a polynomial of degree k. If p(x) = xkp(x~l) then p(x) is a 
reciprocal polynomial. 
(a) Show that /4(JC) = X 6 / 4 ( JC _ 1 ) . 

(b) Show that /5(x) = x'VsC* -1)· 
(c) Show that /„ (x) is a reciprocal polynomial, n > 1. 

11 Compute 
(a) Z3(su s2,s3). 
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(b) f-}(x) using Theorem 10.16 and your answer to part (a). 

(c) f-¡(x) using an illustration comparable to Fig. 10.2 for the nonisomor-
phic graphs on 3 vertices. 

12 Consider the values of g(n, m) tabulated in Fig. 10.7. 

(a) Explain why the number of nonisomorphic graphs on 5 vertices can be 
obtained by summing the numbers row n = 5. 

(b) Explain why the number of nonisomorphic graphs on 6 vertices cannot 
be obtained by summing the numbers in row n = 6. 

13 Compute Σ„5
=η #(6, m), the number of graphs on 6 vertices 

(a) using Fig. 10.7 and Equation (78). 

(b) using (the proof of) Corollary 10.19 and Equation (85). 

14 Confirm that g(5, 6) = 5 by computing the coefficient of JC6 in fs{x), in the 
manner of Example 10.20. 

15 Compute the number of nonisomorphic graphs on 7 vertices. 
16 Confirm, as in Example 10.20, that 

(a) g(6, 3) = 5. (b) g(6, 5) = 15. 

17 Illustrate the six nonisomorphic graphs having 5 vertices and 6 edges. 
18 Illustrate the six nonisomorphic graphs having 5 vertices and 5 edges. 
19 Find the number of connected graphs on 5 vertices. 
20 The edge chromatic number, x'(G), is the minimum number of colors needed 

to color the edges of G so that adjacent edges are colored differently. (Equiv-
alent^, x'(G) is the minimum number of matchings whose union is E(G).) 

(a) Prove that x'(G) > A(G). 

(b) Show that x'(G) = A(G) for every connected graph on 4 vertices. 

(c) If G = #3 , show that x'(G) > A(G). 

(d) Find a connected graph G Φ K3 for which x'(G) > A(G).6 

21 Illustrate the 9 nonisomorphic graphs having 6 vertices and 11 edges. 
22 Confirm, as in Example 10.20, that 

(a )*(6 ,6) = 21. (b) g(6, 7) = 24. 

23 Let V = {1, 2, 3, 4, 5, 6}. In the manner of Example 10.20, evaluate p when 

(a) p = (1234). (b) /> = (1234X56). 

6 V. G. Vizing [On an estimate of the chromatic class of a p-graph, Diskret. Analiz- 3 (1964), 25-30], 
proved that x'(G) < A(G) + 1 for all G. 
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24 Let q(n, m) be the number of nonisomorphic multigraphs having n vertices 
and m edges and define the multigraph generating function 

Pn(x) = ^2q(n,m)xm. 
m>0 

The variation of Theorem 10.16 for multigraphs is that pn(x) is obtained by 
substituting s¡ = (1 — x')~l, 1 < / < k = C(n, 2), in the cycle index poly-
nomial Zn(s\,S2,.. -,Sk); that is, 

pn(x)=Z„(l/(l-x), 1 / ( 1 - x2),..., 1/(1-**)) 

= Z„(1 + * + *2 + *3 + . . . , 

l+x2+x4+x6 + \+xk+x2k+x3k + ...). 

Use this result to obtain p4(x) = 1 + x + 3x2 + 6x3 + 11*4 + I8x5 + .... 

25 Illustrate the nonisomorphic multigraphs having 4 vertices 
(a) and 2 edges, (b) and 3 edges. 
(c) and 4 edges, (d) and 5 edges. 

26 Let / i and fi be orientations of the same graph G. Then the f\ -oriented 
graph G is isomorphic to the /2-oriented graph G if (and only if) there exists 
an automorphism p of G such that /2(e) = f\(p(e)) for all e € E(G). Show 
that the number of nonisomorphic orientations of G = 
(a) C3 is 2. (b) C4 is 4. (c) C5 is 4. (d) C6 is 9. (e) K4 is 4. 

(//mi : Illustrate a system of distinct representatives for the nonisomorphic oriented 
graphs.) 



Hints and Answers to Selected 
Odd-Numbered Exercises 

CHAPTER 1 

1 Hint: Number the vertices; then write down the 2-element subsets of (1, 2, 
3, 4} corresponding to edges. 

o 

3 / \ 
o o 

5 Six. 

7 Hint: The "first theorem." 

9 (a) Hint: The "first theorem." (b) Hint: A(G) < n - 1. 
11 Hint: The complement of the graph in part (a) is isomorphic to the graph in 

part (b). 

13 Hint: Starting with a picture of Kn, illustrate G by coloring its edges dark. 
Then Gc is illustrated by the light edges. 

15 Hint: The "first theorem." 

17 Hint: Think of the rectangle with the long horizontal sides as the front face 
of a cube and the rectangle with the long vertical sides as its back face. 

19 Hint: Consider their complements. 

21 Hint: If d(u) = A(G) < n — 1, then there exists some w e V(G) such that 
uw £ E(G). Let P = [u, v, ..., w] be a shortest path in G from u to w. Show 
that if v is adjacent to every vertex in U — [x e V(G): ux e £(G)}, apart 
from itself, then d{v) > d(u). 

23 G[ l ,2 ,3 ,6 ] , G[ l ,2 ,4 ,5 ] , G[ l ,2 ,5 ,6 ] , G[ l ,3 ,4 ,6 ] , G[2,3,4,5], and 
G[3,4, 5,6]. 

25 dettx/,, - A{G\ )) = x4 - Ax2 - 2x + 1 = det(^/„ - A(G2)). 

211 
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27 The common characteristic polynomial is x6 — 7JC4 — 4x3 + Ίχ2 + 4x — 1. 

29 Because i = /" ' ( ; ' ) if and only if / ( / ) = j , Sif-iU) = SfU)J = Sjf(n. Thus, 
P(f~l) = P(/) ' , and it suffices to prove part (b). To prove part (b), it 
suffices to show that P(f)P(f)' = I„ —in other words, that the (/', y')-entry 
of P(f)P(f)' is S¡j. From the definition of matrix multiplication, the (i, j)-
entry of P(/)/>(/)' is 

n 

¿2 Sif(k)SJf(k) = S¡j 
k=\ 

because / is one-to-one and onto. 

a,b,c) [x,y] 

^Oly.z) 
O Λ 

| a ) o 7 VO lc ) {W,AT}0 
31 (a) 1/ \ | (b) | \ 

(a)O 0{c) | w ) 0 \ 
O O 

{b) [x,y] 

Oiz) 

33 (e) Hint: From the first theorem of graph theory, 2m = k2k. 

CHAPTER 2 

1 (a,b) Hint: The Fundamental Counting Principle. 

(c) 7 x 5 x 7 x 5 = 1,225. 

3 (a) Λ ^ Λ (b)p(G,*) = * (x- l ) ( .* -2 ) 3 . 
o"̂  o o 

5 Hint: Given that ω is an invariant, suppose G = H. Then Gc = Hc and, 
hence, cc(G) = <y(Gc) = ω(Η€) — a(H), proving that a is an invariant. 

7 Hint: Suppose / is an isomorphism from G to H. If g: V(H) ->· C is a proper 
r-coloring of H, then g°/ is a proper r-coloring of G. (Why?) Show that 
g -*■ go/ gives a one-to-one correspondence between the proper r-colorings 
of H and the proper r-colorings of G. 

9 (a) p(P3,x) = x(x- if. (b) p(C4,x) = x(x-l)(x2-3x + 3). 

(c) p(C5,x) = p(P$,x) - p(C4, Jf) = x(x - 1)(JC - 2)(JC2 - 2x + 2). 

11 P3 Θ ÄTi and 2tf2 share the chromatic polynomial x2(x — l)2. 

13 Hint: G = C¡ v Cc
2v ■ ■ ■ v Cc

r. 
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15 Hint: G is an overlap of H \ and H2 in K2, where H\ — K4 — e is an overlap 
of ΑΓ3 with itself in K2, and 

o — o — o 
H2= \ / \ / 

o—o 

is an overlap of Hi and K$ in tf2. (A more direct approach is developed in 
Chapter 8.) 

17 p(W5, x) = x(x - 1)(JC - 2)(JC - 3)(JC2 - 4x + 5). 

19 (a)p(G, x) = JC(5) + xw = x(x - \)(x - 2)(x - 3)2. 
(b)p(G, x) = x(6) + 3x(5) + 3x(4) + x<3) 

= *(* - 1 )(χ - 2)(*3 - 9x2 + 29* - 32). 

21 ///ni: Theorem 2.13. 

23 (a) /?(#! v Kl, x) = JC(4) + 3*(3) + Λ ( 2 ) . 

(b) p(KC2 v ΛΓ|, JC) = xi5) + 4*(4) + 4*(3) + x{2\ 

(c) p ( ^ V ATf, x) = x<6) + 6x(5) + 1 1JC(4) + 6*(3) + x(2). 

25 //ini: Using Exercise 9, show that / ( l ) = 1. 

27 //¿ni: Suppose G is a graph. Show that p(G v Ku r) = rp(G, r — 1). Use 
Exercise 26. 

29 //mi: / (* ) = x(x - 1 )2(* - 3)2(x - 4). 

31 //mi: Induction should be used only as a last resort. While it may help you 
decide what is true, it rarely sheds much light on why. 

33 (a) Hint: How many of the nonisomorphic graphs on 4 vertices are trees? 

(b) The nonisomorphic trees on 5 vertices have different degree sequences 
and different diameters. 

(c) Hint: Among the trees on seven vertices, only Ρη has diameter 6, there 
are two trees of diameter 5, five of diameter 4, two of diameter 3, and one 
(namely, S7) of diameter 2. 

35 Hint: K3 has a path of length 2. 

37 (a) Hint: Exercise 36. (b) Hint: Part (a) and Exercise 36. 

(d) Hint: Part (b) (e) Hint: Part (d) 

39 Hint: If G is not a tree, it must have a cycle. Let e be an edge of the cycle. 
Show that G — e is connected. Continue to remove edges until all cycles of 
G have been "broken." The resulting tree violates the condition established 
in Exercise 31. 
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41 Hint: Let d{v¡, Vj) — D. Use Chapter 1, Exercise 30, to show that the (/', j)-
entry of A(G)k is 0, 1 < k < D, but the (i, »-entry of A(G)D is nonzero. 
Deduce that A(G)D could not be a linear combination of I„,A(G), A(G)2, 
..., A(G)D~X. Conclude that the degree of the minimal polynomial of A(G) 
is at least D + 1. Finally, recall that the minimal polynomial of a real 
symmetric matrix A is the product of all terms of the form (x — λ), as 
λ ranges over the distinct eigenvalues of A. 

43 Hint: Let v be a pendant vertex of T = (V, E) and uv e E the unique edge 
of T incident with it. Then T - υ = T[V\{v}], the subgraph of T induced 
on the k — 1 vertices different from v, is a tree. Show (by induction) that 
T — υ is isomorphic to a subgraph 7" of G. Let u' be the vertex of 7" corre-
sponding to u. Show that, among the neighbors of u' in G, there is a vertex 
v1 not belonging to V{T). 

45 (a) Find a counterexample. 

(b) Hint: Recall the steps leading to the Balaban centric index. 

47 (a) Hint: Let X\ and X2 be 1 x k and \ x (n — k) matrices, respectively. 
Show that the « x 1 matrix X = (X\, Xj)', whose partitioning is consistent 
with Equation (15), is an eigenvector of A(G) affording eigenvalue γ if and 
only if Y = (X\, -X2)' is an eigenvector of A(G) affording —y. 

49 Hint: The parity of a binary codeword is odd or even according to whether 
the number of its l 's is odd or even. 

51 Hint: G is the overlap of G — u and Kd+i in K¿. 
,0. 

(d) Hint: Show that G* is "triangle-free." 

(e) Hint: Induction on k. Assume x(G* ) = k. Show that any proper it-coloring 
of Gk can be extended to a proper (k + I )-coloring of Gk+\ by assigning to u¡ 
the same color as v¡, 1 < 1 < n, and giving w a new color. Because Gk+\ has 
an induced subgraph isomorphic to Gk, k < x(Gk+\ ) < k + 1. If x(Gk+\ ) = 
jfc, we may assume color c* is assigned to vertex w. Because wu¡ e E(Gt+\ ), 
1 < i < n, no u¡ is colored c*. Recolor the v's, if necessary, so that v¡ has the 
same color as «,·, 1 < i < n. This produces a proper (& — l)-coloring of Gk-

CHAPTER 3 

1 (a) G is disconnected; e(2tf3) = 0. (b) e{G) = 2. 

(c)e(C6) = 2.(à)s(Kx3) = 3. 
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3 Many examples are possible, e.g., 
(a) K4 θ ΚΑ,. 

(b) Add an edge to ^ φ ^ . 
(c) Let // = ΑΓ4 φ AT4. Let G be the connected graph obtained from H by 
coalescing a vertex from one component with a vertex of the other. 
(d) Let G be an overlap of K* and K$ in Ki. 

5 Hint: Show that u and υ lie on a cycle of G if and only if there are two 
"internally disjoint" paths in G from u to v. 

7 (a) Hint: Let / be an isomorphism from G to H. Show that 5 is a separating 
set of G if and only if f(S) = {f(v): v e S] is a separating set of H. 

9 Hint: Theorem 3.13. 
X 

O — O 
11 Let G = «o \ J^Ov and P = [u, x, y, v]. 

O—O 
y 

13 (b) Hint: Exercise 10. 
15 Hint: Corollary 3.11. 
17 False. Take G = C„. This explains why Theorem 3.15 is "if and only i f 

while Theorem 3.20 is not. 

19 " o ^ o ^ o " — o 
o 

21 Hint: A tree is a connected acyclic graph. 
23 Hint: "Subdivide" the two edges as in Exercise 16. 
25 K(G) = 2 = tG(u, W); fG(u, v) = 3. 

O O 

27 False. Let G = o — o — o — o 

29 Suppose S C V(G), o(5) < k, and G — S is disconnected. Let C be a smallest 
component of G — S. If u is a vertex of C, show that dc(u) < 8(G). 

31 p{G, x) = x(x - 1 )4(x - 2)3(x2 -3x + 3). 
33 Hint: Do part (c) first. 

35 The 3-connected graphs on 5 vertices are K¡,K5 — e, and K$ — M, where 
M is a set consisting of two nonadjacent edges of ΑΓ5. The seven other 
blocks on 5 vertices all satisfy S(G) — 2. 

37 (b) The girth of the Petersen graph is 5. 
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(c) The circumference is 9. It is not hard to find a cycle of length 9. With 
respect to the numbering of the vertices in Fig. 3.8, C = (1, 2, 3, 4, 5, 6, 
7, 8, 9) is such a cycle. (Indeed, to answer one of the questions posed at 
the end of the Chapter, there exists a cycle of G containing any prescribed 
set of 9 vertices.) It is a much harder problem to prove that the Petersen 
graph does not contain a cycle of length 10. This is the Hamiltonian cycle 
problem, the subject of Chapter 5. 

39 Hint: Let U = [u, v}. If e = uv e £(G), show that H = G — e is connected. 
If [u, z\, · . . , zr, v] is a path in H from u to v, then (u, Z\ , . . . , zr, v) is a cycle 
of G containing u and v. If uv £ E{G) use Menger's Theorem to obtain two 
internally disjoint paths in G from u to v. 

o—o o o o—-o 
41 (a) | (d) I / I and / | 

o o o o o 
(e) p(H, x) = x4- 4x3 + 5x2 - 2x. 

43 (b) Show that/(l ) = - l and / (2 ) = +1, where/(*) = *3 - 5x2 + 10* - 7. 

CHAPTER 4 

1 A/mr: Lemma 2.29. 

3 #mí: Show that á(G) > 3 for any triangulated plane graph on n > 7 vertices. 
O o 

7 #3,3 is bipartite. 

9 (a) Hint: From geometrical considerations, each vertex of a fullerene must 
be at the intersection of exactly 3 faces. Thus, the number of vertices of a 
fullerene with p pentagonal and h hexagonal faces is V = (5p + 6A)/3. Find 
a similar formula for the number of edges. (If G is a connected, cubic,1 plane 
graph, and r* is the number of regions of G bounded by a cycle of length 
it, then 3r3 + 2r4 + r5 = 12 + n + 2r8 + 3r9 + h (* - 6)rk H .) 

(c) h = (n- 20)/2. (d) h = 20. 

11 (a) Use Kuratowski's Theorem. 

(c) Hint: Corollary 4.3. 

15 C4 is bipartite. 

' "Cubic" is a synonym for "3-regular," referring to graphs each of whose vertices has degree 3. 
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17 (a) (b) See Example 4.6. 

19 Hint: Many proofs are possible, e.g., let u, v e V(G¿), where u is the vertex 
corresponding to the unbounded region of G. Show that there is a path in 
Gd from u to v. 

21 The Heawood graph: 

23 Hint: By Theorem 4.21, γ(Κχ2) = 6 and γ(Κι3) = 8. 

25 r(K7)=\4. 

27 (c) y(K7j) = 7 (coincidentally). 

29 Hint: The "outside" region of the toroidal embedding of K?, in Example 4.17 
has a perimeter of length 8. 

31 (a) The adjacency eigenvalues of G = P3 are -JÏ, 0, - Λ / 2 . Thus, H(G) = 
2-Jl = 2.83. 

(b) Numbering the vertices of G = CO consecutively around the cycle, show 
that X = (l, 1, 1, 1, 1, 1)', K = ( 1 , 0 , - 1 , - 1 , 0 , 1)', and Z = (1, 1 , 0 , - 1 , 
— 1,0)' are (linearly independent) eigenvectors of/1(G) affording eigen-
values 2, 1, and 1, respectively. Use Chapter 2, Exercise 47, to show that, 
multiplicities included, the eigenvalues of A{G) are 2, 1, 1, —1, —1, and —2. 
Thus H(G) = 8. 

33 H = o —o — o ; 
s 0 

35 (a) A regular octahedron has 8 equilateral triangular faces and 6 vertices, 
each formed by the intersection of 4 faces. 
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(d) Hints: (1) Identify a "spanning cycle" of G; and (2) show that G satisfies 
m = 3n — 6. 

(f) See the hints to part (d). 

(g) Hint: Show that ω(Η) = 4. 

(h) Hint: x(G) φ χ(Η). 

(i) Hint: Part (b) and Chapter 2, Exercise 19(b). 

(j) Hint: Begin by showing that H is the overlap of K$ — e with itself in 

CHAPTER 5 

1 (a) Because the edge consisting of the bottom two vertices is a bridge, 

K(G) = 1. 

(b) If 5 is the set consisting of the top three vertices then £(G — 5) = 4. 

(c) Yes. 

5 Hint: Apply Corollary 5.10 to G = H v K\. 

7 Hint: Exercise 6. 

9 Hint: Corollary 5.9. 

11 (a) 29. (b)25. (c) 24. (d) 26. 

13 | 
Or-

O 
I 

;0 O 

15 24. 

17 The Petersen graph. 

19 Hint: Show that for any two vertices u and v of G, H — G — u — v has a 
connected spanning subgraph. 

21 Hint: s3 = 6 and s¡ = 0, i φ 6; ί4 = 3 and f, =0, ίφ 4. (Don't forget the 
unbounded region.) 

23 Subdivide an edge of K33. 

27 (a) Hint: Theorem 5.3. 

31 See Chapter 1, Exercise 22 for the definition of "multigraph," and see 
Definition 4.7 for that of "subdivide." 



Hints and Answers to Selected Odd-Numbered Exercises 219 

CHAPTER 6 

1 (a) 3. (b)5. 

3 There are 4 Kekulé structures in anthracene and 5 in phenanthrene, so 
phenanthrene should be the most stable. 

5 (a) Hint: Example 6.8. (c) Hint: Example 6.11. 

7 (a) Hint: Example 6.8. First use the quadratic formula to find the squares 
of the roots. 

(b) Hint: Example 6.11. Use the quadratic formula to find the squares of the 
roots, then use a calculator. (Two decimal place accuracy should suffice.) 

9 (a) M(K5 -e,x)=x5- 9JC3 + 12*. 

11 Hint: Theorem 6.12. 

13 Hint: Let X = {x\,x2, ■ ■ ■ ,xm] and Y = {yu y2,..., y„}. Let G = (V, E) 
be the bipartite graph with color classes X and Y such that x¡yj € £ if 
and only if a¡¡ = 1. Show that the theorem on term ranks is equivalent to 
ß(G) = ß(G). 

15 Hint: The symmetric difference of sets A and B is A AB = (AU B)\(A Π B). 
Suppose G contains an M-augmenting path P. Denote by E(P) the set of 
edges along P and show that M * = E(P)AM is a matching of G satisfying 
o(M*) > o(M). Conversely, suppose M and M* are matchings of G with 
ο(Λί*) > o(M). Show that MAM* is comprised of the edges of a family of 
M -alternating paths and cycles. Because the cycles contain an equal number 
of edges from M and M*, at least one of the paths must be M-augmenting. 

19 (b) x(x - 1 )6(jt - 2)2 (c) x9 - l(k7 + 29x5 - 25*3 + 5x 

21 (b) Hint: Γ4 has 11 vertices and 14 edges. 

(c) Hint: If G and H e V„ have the same number of edges, they cannot be 
adjacent in Γ„. (Why?) 

23 (a) Hint: per(A(G)) counts the permutations p for which the diagonal 
product Y\ a,p(,) φ 0. Consider the disjoint cycle factorizations of such 
permutations. 

(b) Hint: Because every vertex of G is covered by a perfect matching, 
every ordered pair of perfect matchings determines a unique bipartite Sachs 
subgraph H of G. Conversely, given any bipartite Sachs subgraph H of G, 
there are 2c(H) ordered pairs of perfect matchings to which it corresponds; 
that is, the number of ordered pairs of perfect matchings of G is 

K(G)2= Σ 2C(H)· 
HeS(G) 
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25 Hint: Let 5 = [u, v, w} and T = X\NG(S). Observe that NG(T) = Y\S. 

27 Hint: Suppose G = (V, E) has a matching N that covers a set T of vertices 
of G, where o(T) > o(5). Let H = (V, M U Λ0· Show that one of the 
components of H is a path />, neither of whose pendant vertices is covered 
by M. Conclude that the symmetric difference (see the hint to Exercise 15) 
of M and E(P), the set of edges of P, is a matching of G that covers S and 
two vertices of T not contained in S. 

29 (a) Hint: Menger's Theorem. 

(b) Let G = K5-e. 

31 Hint: From matrix theory, c* is (—1)* times the sum of the determinants 
of all k x k principal submatrices of A(G). A k x k principal submatrix of 
A(G) is the adjacency matrix A(H) of the subgraph H of G induced on the 
corresponding k vertices. If A(H) — («,·;), then 

det(A(/f))=5^e(p)J]e«i.(0. 
peSt (=1 

where S* denotes, not the star on k vertices, but the set of all kl permutations 
on {1, 2 , . . . , it}, and ε(ρ) is not the edge connectivity of a graph but the 
signum of permutation p; that is, ε(ρ) = k — s(p), where s(p) is the number 
of cycles in the disjoint cycle factorization of p. 

33 (a)x4-3x2 + \. 

(b) x4 - Ax2. (Compare with M(C4, x) = x4 - 4x2 + 2.) 

(c) x4 - 6x2 - &x - 3. (Compare with M(K4, x) = x4 - 6x2 + 3.) 

35 (b) Hint: Divide the /c-matchings of A„ = (Λ„_2 Θ p) v w into three types. 

Type 1 : If w is not covered by an edge of the matching, then all k edges 
come from A„_2. 

Assuming e = vw is an edge of the matching, it may be: 

Type 2: that v = p. If so, the remaining k — 1 edges of the matching come 
from An — p — w = A„-2-

Type 3: that υ φ p. If so, the remaining edges come from (An — w) — v = 
(Απ-2 Θ p) — v and, hence, from A„_2 — v. Use Exercise 16, to show that 
there are (n — 2k) x a(n —2,k— 1 ) matchings of this type. 

37 (b) K4.4 
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u u 
O O 

o I o ' 
3 9 (8) Χ ο o ' o o 

/ ° ° \ \ ο̂ ο / 
o o o o 

CHAPTER 7 

1 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1,1,1,1, 1). [Remark: 
When exhibiting partitions, it is common to use superscripts to denote 
multiplicities, writing, for example, (2, l3) in place of (2, 1, 1, 1).] 

3 Hint: Figure 7.9. 

5 (a) r(jt) = 3. (b) r(n) = 2. (c) r(n) = 4. (d) r(n) = 3. 

7 (6, l5) = (6, 1, 1, 1, 1, 1) and (4, 32, 1) = (4, 3, 3, 1). 

p " 

9 (b) Hint: Use vertices p, v, w, and q. \ / \ / 
o—o—o — o 

v w q 
11 Hint: Figure 1.9. 

13 (a) The residue is 4. 

(c) Among the possibilities are (7, 5, 4, 3, 3, 2, 1, 1) and (6, 5, 4, 4, 4, 2, 1), 
but there are other correct answers. 

15 None, 7 is odd. 

17 Hint: Figure 7.13. 

19 (a) 2. (b)9. (c) 11. 

21 Hint: d(Gi) = (4, 4, 2, 2, 2) and d(G2) = (4, 3, 3, 3, 1). 
o o 
I I 

23 (a) o o — o — o 
/ \ I 

o—o o 

23 (b)f/ -\ Vo Vo 
o o o—o—o 

° o—o o 
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O O O O O 
\ / O. I ,Ο 

23 (c) / \ f \ 
o o 0

/ _ x
0 

/ 
0 

\ 
\ 

o / 
/ 

o— 
\ 

\ 
—o 
/ 

25 (a) Hint: Suppose π = (π\,πι,..-, π„), where π„ > 0. Split the argument 
into two cases according to whether πη = 1 or π„ > 1. 

(b) Hint: Use part (a). 

27 Hint: Show that moving boxes down in F(y) corresponds to moving boxes 
up in its transpose, F(y*). 

29 Hint: Many approaches are possible. A proof relying on degree sequences 
goes as follows. Suppose G has p vertices and q edges. Let μ = d(G) h 
2q and v = d(Kn v G ) l · 2m. Show that the first n rows and columns of 
F(v) contain p + n - 1 and p + n boxes, respectively. Show that F(ß) is 
obtained from F(v) by removing its first n rows and columns. 

31 Hint: Suppose d(G) = (5, 2, 2, 1,1,1) and d(H) = (3, 3, 2, 2). Show that 
d(G v H) is not a threshold partition. 

33 Hint: The center of a connected threshold graph consists of its dominating 
vertices. 

35 Hint: The Threshold Algorithm affords one way to approach this exercise. 

37 Hint: Mimic the proof of Theorem 7.22. 

39 Hint: Consider Gc. 

CHAPTER 8 

1 (a) ß h 10 does not weakly majorize or I- 11; 

(b)ß>a (c)ß>;a (f)ß>a 

3 (a) α(π) = (5, 3, I) = β(π) 

(b) α(π) = (5, 3); β(π) = (6, 4) 

(c) α(π) = (4, 1);0(ΤΓ) = ( 6 , 4 ) 

(d) α(7Γ) = (5, 3); β{π) = (6, 2) 

5 (a) (a), (b), and (d) (b) (a) and (d) (c) (a) 

7 (5, 3, 2, 2, 1, 1), (4, 4, 2, 2, 2), and (4, 3, 3, 3, 1). 

9 (a) 5 (b) 6 (c) 8 (d) 10 

11 Hint: π is graphic if and only if β(π)>-α(π), and split if and only if 
β(π) >- α(π). 
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i - i O — O — O 
13 \ / \ / 

o — o 
15 Hint: The Threshold Algorithm. 
17 Because every subgraph (induced or not) of a bipartite graph is bipartite, 

it suffices to prove that x(G) = w(G) for every bipartite graph G. So, let 
G be a bipartite graph. Then, by definition, x(G) < 2. Because G has no 
odd cycles, AT 3 = C3 cannot be a subgraph of G. Hence a>(G) < 2. Because 
X(G) < <w(G), it remains to prove that x(G) — 1 implies co(G) = 1. 

19 Hint: Theorem 8.25. 

21 Hint: Theorem 8.9. 

23 Hint: Corollary 8.26. 

25 Hint: Figure 8.14. 

27 Hint: {v} is both a clique and an independent set, v e V. 

29 P$ is not a split graph. 

31 Hint: Show that 

k k n 

¿_.η' ~ ζ2,α· +^ (^ ~ l)/2 and YJ min{fc, π,} 
/= ] i'=l i = * + l 

k 

/=! 

1 < k < /(7Γ), where a - α(π) and β = β(π). 

33 (a) Hint: Chapter 7, Exercise 26. 

(b) Hint: The proof of Theorem 8.9. 

35 Hint: Exercise 34. 

37 (a) p(G,x) = x(x-\)(x-2)5. 

(b) p(G, x) =x(x-\ )(x - 2)\x - 3). 

39 Hint: Chapter 7, Exercise 22, and Corollary 8.28. (Compare with Chapter 2, 
Exercise 38.) 

CHAPTER 9 

1 Compute or recall that p(G, x) = x(x - \)2(x - 2). Show that p(G, - 1 ) 
= 12. Thus, of the 24 = 16 orientations of G, 12 are acyclic. Explicitly 
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diagram either the 12 acyclic orientations, or the four orientations that afford 
a directed cycle. 

3 Hint: QQ' = L(G). 

5 (a) i ( C 4 ) = ( 4 , 2 , 2 , 0 ) (b) s(C4 + e) = (4, 4, 2, 0) (c) i(S4) = (4 .1 , 
1,0) (d) i (S 4 + e) = ( 4 , 3 , l , 0 ) 

7 (a) ii(C4) = 2 = *(C4) (d) a(P4) = 2 - V2 < 1 = κ(Ρ4) 

9 ///ni: Use Equation (66). 

11 (a) Hint: L(Kc
n) = 0. (b) Hint: Equation (65). 

13 (a) s(G) = (6,4,4, 3, 1,0) (b) s(Gc) = (5, 3, 2, 2,0,0) (d) s(G v Gc) 
= (12, 12, 11, 10, 10, 9, 9, 8, 8, 7, 6, 0) (e) s(H) = (6, 5, 4, 3, 2, 0) 

(f) i ( # c ) = (4, 3,2, 1,0,0) 

15 (a) Hint: Kr¡s = Kc
rv Kc

s. (b) Hint: Equation (65). 

17 (a) Hint: Lemma 7.27. (b) Hint: Definition 5.16. 

19 Hint: Exercise 18 or the fact that H\ = H2. 
21 Hint: ZU λ-(0> = t r a c e ¿ ( G ) = Σ , ^ σ ) d c ( v ) -
23 Hint: Exercise 22. 

25 Hint: Find an eigenvector. 

27 (b) Hint: Equation (65). 

29 Hint: Chapter 1, Exercise 20; and Chapter 7, Exercise 22. 

33 Hint: Consider their complements. 

35 (a) Hint: Use Exercise 32 and the fact that rank Q = rank QQf. 

(b) Hint: The dimension of W is the "nullity" of Q. By "Sylvester's Law 
of Nullity," rank Q + nullity Q — number of columns of Q. 

(d) Hint: Part (c) (e) Hint: Part (c). 

(g) Hint: Part (0-

37 ΑΓ3 φ Κ2 is a 4-edged subgraph of K$. 

39 Hint: Consider a proper coloring / : V(G) -> C, where C is the set of 
"colors" (1, 2 , . . . , k}. Orient each edge so that the vertex having the larger 
color is its head. 

41 Hint: Prove that every forest on n vertices is isomorphic to a spanning 
subgraph of An. The only forests on n < 2 vertices are K\ = A\, P2 — A2, 
and Kc

2- Suppose F is a forest on n > 3 vertices. If F — Kc
n, then F is a 

spanning subgraph of An. Otherwise, let M be a vertex of F of degree 1 
and w its neighbor. Let S = {w, w). By induction, F — 5 is isomorphic to 
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a spanning subgraph of A„_2· Use Chapter 2, Exercise 37 to complete the 
proof. 

CHAPTER 10 

1 Hint: Mimic Example 10.6. 

3 s = 16. 
5 (a) Hint: See the proof of Theorem 10.5. 

(b) Hint: Induction on j + t. 

7 Hint: Show that this is another model of the cocktail party observation. 
11 (a) Z3(i,, s2, s3) = (s] + 3sts2 + 2i3)/6. 

(b)/-,(*) = \+x + x2+x3. 
13 Answer: 156. 
15 Hint: Use Fig. 10.7. Answer: 1044. (The number of nonisomorphic graphs 

on 10 vertices exceeds 12 billion.) 

17 Hint: They are the complements of the graphs in Fig. 10.5. 
19 Answer: 21. 
21 Hint: They are the complements of the graphs with 6 vertices and 4 edges. 
23 (a) p = (16A3) (27) (48BD) (59CE) 

(b) p = (16A3) (27) (49BE) (58CD) 
25 (a) Hint: From Exercise 24, there are q(4, 2) = 3 such muitigraphs (two of 

which are graphs). 

Λ Χ o—o o—o o—o o—o o—o o—o 
(b) - - - | l\ \ \l 

o o o o o—o o o o—o o o 
(c) Hint: From Exercise 24, there are q(4, 4) = 11 such muitigraphs (two 
of which are graphs). 
(d) Hint: From Exercise 24, there are q(4, 5) = 18 such muitigraphs (one 
of which is a graph). 
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