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FOREWORD 

To be asked to write a Foreword toa book such as Harary’s Graph Theory at 

the time of its publication as an Indian edition, is botha pleasure and a privilege. 

Prof. Frank Harary is a master expositor and he takes his readers through this 

most fascinating branch of modern mathematics to the frontiers of the subject, 

almost from scratch, rather effortlessly. The enthusiasm of the author for the 

subject he himself helped create and grow, flows through every page of the book. 

As far as Indian Universities are concerned, I know of very few departments 

‘of Mathematics or Computer Science or Engineering, which provide for the. 

compulsory study of Graph Theory at the undergraduate level. | therefore, 

welcome the publisher’s decision to bring out an Indian edition, accessible to 

Indian buyers. I am sure this would provoke the Indian universities into 

reshaping their curricula so as to provide for the study of Graph Theory at an 

early stage of the student’s induction into modern science and engineering. 

When Narosa Publishing House asked me to write a Foreword to this 

venture of theirs, I gave them an unsought advice that they should have an 

Appendix added to the Book, on the Four Color Theorem. Rightly had Harary 

talked of the Four Color ‘Disease’ as the most celebrated unsolved problem of 

Graph Theory - but that was in 1969. But ina reprinting which is now appearing 

in 1987, I would not like to see Harary’s book talking about the ‘Disease’ as if it 

were still uncured! I am glad that Narosa Publishing House accepted my 

suggestion; but the price I paid for giving that advice was to write the Appendix 

myself. I would like to believe what I have written would be acceptable to readers 

of Harary’s Graph Theory. 

June 1987 

BITS, PILANI 
V. Krishnamurthy 





PREFACE 

When I was a boy of 14 my father was so ignorant I could hardly 

stand to have the old man around. But when I got to be 21, 

I was astonished at how much the old man had learned in 7 years. 

MARK TWAIN 

There are several reasons for the acceleration of interest in graph theory. It 

has become fashionable to mention that there are applications of graph 

theory to some areas of physics, chemistry, communication science, computer 

technology, electrical and civil engineering, architecture, operational research, 

genetics, psychology, sociology, economics, anthropology, and linguistics. 

The theory is also intimately related to many branches of mathematics, 

including group theory, matrix theory, numerical analysis, probability, 

topology, and combinatorics. The fact is that graph theory serves as a 

mathematical model for any system involving a binary relation. Partly 

because of their diagrammatic representation, graphs have an intuitive and 

aesthetic appeal. Although there are many results in this field of an ele- 

mentary nature, there is also an abundance of problems with enough 

- combinatorial subtlety to challenge the most sophisticated mathematician. 

Earlier versions of this book have been used since 1956 when regular 

courses on graph theory and combinatorial theory began in the Department 

of Mathematics at the University of Michigan. It has been found pedagogi- 

cally advantageous not to include proofs of all theorems. This device has 

permitted the inclusion of more theorems than would otherwise have been 

possible. The book can thus be used as a text in the tradition of the “Moore 

Method,” with the student gaining mathematical power by being encouraged 

to prove all theorems stated without proof. Note, however, that some of the 

missing proofs are both difficult and long. The reader who masters the 

content of this book will be qualified to continue with the study of special 
topics and to apply graph theory to other fields. 

An effort has been made to present tiie various topics in the theory of 

graphs in a logical order, to indicate the historical background, and to 

clarify the exposition by including figures to illustrate concepts and results. © 
In addition, there are three appendices which provide diagrams of graphs, 

Vii 
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directed graphs, and trees. The emphasis throughout is on theorems rather 

than algorithms or applications, which however are occasionally mentioned. 

There are vast differences in the level of exercises. Those exercises which 

are neither easy nor straightforward are so indicated by a bold-faced number. 

Exercises which are really formidable are both bold faced and starred. The 

reader is encouraged to consider every exercise in order to become familiar 

with the material which it contains. Many of the “easier” exercises may be 

quite difficult if the reader has not first studied the material in the chapter. 

The reader is warned not to get bogged down in Chapter 2 and its many 

exercises, which alone can be used as a miniature course in graph theory for 

college freshmen or high-school seniors. The instructor can select material 

from this book for a one-semester course on graph theory, while the entire 

book can serve for a one-year course. Some of the later chapters are suitable 

as topics for advanced seminars. Since the elusive attribute known as ‘““mathe- 

matical maturity” is really the only prerequisite for this bock, it can be used 

as a text at the undergraduate or graduate level. An acquaintance with 

elementary group theory and matrix theory would be helpful in the last four 
chapters. 

I owe a substantial debt to many individuals for their invaluable as- 

sistance and advice in the preparation of this book. Lowell Beineke and 
Gary Chartrand have been the most helpful in this respect over a period of 

many years! For the past year, my present doctoral students, Dennis Geller, 

Bennet Manvel, and Paul Stockmeyer, have been especially enthusiastic in 

supplying comments, suggestions, and insights. Considerable assistance was 

also thoughtfully contributed by Stephen Hedetniemi, Edgar Palmer, and 
Michael Plummer. Most recently, Branko Grinbaum and Dominic Welsh 

kindly gave the complete book a careful reading. I am personally responsible 
for all the errors and most of the off-color remarks. 

_ Over the past two decades research support for published papers in the 

theory of graphs was received by the author from the Air Force Office of 

Scientific Research, the National Institutes of Health, the National Science 

Foundation, the Office of Naval Research, and the Rockefeller Foundation. 

During this time I have enjoyed the hospitality not only of the University 

of Michigan, but also of the various other scholarly organizations which I 

have had the opportunity to visit. These include the Institute for Advanced 
Study, Princeton University, the Tavistock Institute of Human Relations in 
London, University College London, and the London School of Economics. 

Reliable, rapid typing was supplied by Alice Miller and Anne Jenne of the 

Research Center for Group Dynamics. Finally, the author is especially 

grateful to the Addison-Wesley Publishing Company for its patience in 

waiting a full decade for this manuscript from the date the contract was 

signed, and for its cooperation in all aspects of the production of this book. 

July 1968 Fo: 
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CHAPTER 1 

DISCOVERY! 

Eureka! 

ARCHIMEDES 

It is no coincidence that graph theory has been independently discovered 
many times, since it may quite properly be regarded as an area of applied 

mathematics.* Indeed, the earliest recorded mention of the subject occurs in 

the works of Euler, and although the original problem he was considering 

might be regarded as a somewhat frivolous puzzle, it did arise from the 

physical world. Subsequent rediscoveries of graph theory by Kirchhoff 

and Cayley also had their roots in the physical world. Kirchhoff’s investiga- 
tions of electric networks led to his development of the basic concepts and 

theorems concerning trees in graphs, while Cayley considered trees arising 

from the enumeration of organic chemical isomers. Another puzzle approach 

to graphs was proposed by Hamilton. After this, the celebrated Four Color 

Conjecture came into prominence and has been notorious ever since. In 

‘the present century, there have already been a great many rediscoveries of 

graph theory which we can only mention most briefly in this chronological 

account. 

THE KONIGSBERG BRIDGE PROBLEM 

Euler (1707-1782) became the father of graph theory as well as topology 

when in 1736 he settled a famous unsolved problem of his day called the 

K6nigsberg Bridge Problem. There were two islands linked to each other 

and to the banks of the Pregel River by seven bridges as shown in Fig. 1.1. 

The problem was to begin at any of the four land areas, walk across each 

bridge exactly once and return to the starting point. One can easily try to 

* The basic combinatorial nature of graph theory and a clue to its wide applicability are 
indicated in the words of Sylvester, ‘““The theory of ramification is one of pure colligation, for 
it takes no account of magnitude or position; geometrical_lines are used, but have no more 
real bearing on the matter than those employed in genealogical tables have in explaining the 
laws of procreation.” 
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a 
Fig. 1.1. A park in Konigsberg, 1736. 

solve this problem empirically, but all attempts must be unsuccessful, for 

the tremendous contribution of Euler in this case was negative, see [E5]. 
In proving that the problem is unsolvable, Euler replaced each land area 

by a point and each bridge by a line joining the corresponding points, 

thereby producing a “graph.” This graph* is shown in Fig. 1.2, where the 

points are labeled to correspond to the four land areas of Fig. 1.1. Showing 
that the problem is unsolvable is equivalent to showing that the graph of 

Fig. 1.2 cannot be traversed in a certain way. 

Rather than treating this specific situation, Euler generalized the problem 
and developed a criterion for a given graph to be so traversable ; namely, that 
it is connected and every point is incident with an even number of lines. 
While the graph in Fig. 1.2 is connected, not every point is incident with an 

even number of lines. 

C, 

B 

Fig. 1.2. The graph of the K6nigsberg Bridge Problem. 

ELECTRIC NETWORKS 

Kirchhoff [K7] developed the theory of trees in 1847 in order to solve the 

system of simultaneous linear equations which give the current in each 

branch and around each circuit of an electric network. Although a physicist, 

he thought like a mathematician when he abstracted an electric network 

* Actually, this is a “‘multigraph” as we shall see in Chapter 2. 
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with its resistances, condensers, inductances, etc., and replaced it by its 

corresponding combinatorial structure consisting only of points and lines 

without any indication of the type of electrical element represented by in- 

dividual lines. Thus, in effect, Kirchhoff replaced each electrical network 

by its underlying graph and showed that it is not necessary to consider 
every cycle in the graph of an electric network separately in order to solve 

the system of equations. Instead, he pointed out by a simple but powerful 

construction, which has since become standard procedure, that the inde- 

pendent cycles of a graph determined by any of its “spanning trees” will 

suffice. A contrived electrical network N, its underlying graph G, and a 

spanning tree T are shown in Fig. 1.3. 

2 
Fig. 1.3. A network N, its underlying graph G, and a spanning tree T. 

CHEMICAL ISOMERS 

In 1857, Cayley [C2] discovered the important class of graphs called trees 

by considering the changes of variables in the differential calculus. Later, he 

was engaged in enumerating the isomers of the saturated hydrocarbons 

C,H2,,+2, with a given number n of carbon atoms, as shown in Fig. 1.4. 

Of course, Cayley restated the problem abstractly: find the number 
of trees with p points in which every point has degree 1 or 4. He did not 

immediately succeed in solving this and so he altered the problem until he 

was able to enumerate: rooted trees (in which one point is distinguished from 
the others), trees, trees with points of degree at most 4, and finally the chemical 

problem of trees in which every point has degree | or 4, see [C3]. Jordan 

later (1869) independently discovered trees as a purely mathematical dis- 

cipline, and Sylvester (1882) wrote that Jordan did so “without having any 

_ suspicion of its bearing on modern chemical doctrine,” see [K10, p. 48]. 



4 DISCOVERY ! 

oo 
Methane Ethane Propane Butane Isobutane 

Fig. 1.4. The smallest saturated hydrocarbons. 

AROUND THE WORLD 

A game invented by Sir William Hamilton* in 1859 uses‘a regular solid 
dodecahedron whose 20 vertices are labeled with the names of famous 
cities. The player is challenged to travel “around the world” by finding a 

closed circuit along the edges which passes through each vertex exactly 

once. Hamilton sold his idea to a maker of games for 25 guineas; this was 

a shrewd move since the game was not a financial success. 

20 

- i 

“Around the world.” 
18 17 

In graphical terms, the object of the game is to find a spanning cycle in 

the graph of the dodecahedron, shown in Fig. 1.5. The points of the graph — 

are marked 1, 2,- - -, 20 (rather than Amsterdam, Ann Arbor, Berlin, Budapest, 

Dublin, Edinburgh, Jerusalem, London, Melbourne, Moscow, Novosibirsk, 

New York, Paris, Peking, Prague, Rio di Janeiro, Rome, San Francisco, 

Tokyo, and Warsaw), so that the existence of a spanning cycle is evident. 

* See Ball and Coxeter[BC1, p. 262] for a more complete description. 
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THE FOUR COLOR CONJECTURE 

The most famous unsolved problem in graph theory and perhaps in all of 

mathematics is the celebrated Four Color Conjecture. This remarkable 

problem can be explained in five minutes by any mathematician to the so- 

called man in the street. At the end of the explanation, both will understand 

the problem, but neither will be able to solve it. 
The following quotation from the definitive historical article by May 

[M5] states the Four Color Conjecture and describes its role: 

[The conjecture states that] any map on a plane or the surface of a sphere can be 

colored with only four. colors so that no two adjacent countries have the same 

color. Each country must consist of a single connected region, and adjacent 

countries are those having a boundary line (not merely a single point) in common. 

The conjecture has acted as a catalyst in the branch of mathematics known as 

combinatorial topology and is closely related to the currently fashionable field of 

graph theory. More than half a century of work by many (some say all) mathe- 

maticians has yielded proofs for special cases... The consensus is that the con- 

jecture is correct but unlikely to be proved in general. It seems destined to retain 

for some time the distinction of being both the simplest and) most fascinating 

unsolved problem of mathematics. 

The Four Color Conjecture has an interesting history, but its origin 

remains somewhat vague. There have been reports that Mobius was familiar 
with this problem in 1840, but it is only definite that the problem was com- 

municated to De Morgan by Guthrie about 1850. The first of many erroneous 

“proofs” of the conjecture was given in 1879 by Kempe [K6]. An error was 
found in 1890 by Heawood [H38] who showed, however, that the conjecture 

becomes true when “four” is replaced by “five.” A counterexample, if ever 

‘found, will necessarily be extremely large and complicated, for the con- 

jecture was proved most recently by Ore and Stemple [OS1] for all maps 
with fewer than 40 countries. 

The Four Color Conjecture is a problem in graph theory because every 

map yields a graph in which the countries (including the exterior region) are 
the points, and two points are joined by a line whenever the corresponding 

countries are adjacent. Such a graph obviously can be drawn in the plane 

without intersecting lines. Thus, if it is possible to color the points of every 

planar graph with four or fewer colors so that adjacent points have different 

colors, then the Four Color Conjecture will have been proved. ° 

GRAPH THEORY IN THE 20th CENTURY 

The psychologist Lewin [L2] proposed in 1936 that the “life space” of an 

individual be represented by a planar map.* In such a map, the regions 

would represent the various activities of a person, such as his work environ- 

* Lewin used only planar maps because he always drew his figures in the plane. 
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fice 
Fig. 1.6. A map and its corresponding graph. 

ment, his home, and his hobbies. It was pointed out that Lewin was actually 

dealing with graphs, as indicated by Fig. 1.6. This viewpoint led the psy- 

chologists at the Research Center for Group Dynamics to another psycho- 

logical interpretation of a graph, in which people are represented by points 

and interpersonal relations by lines. Such relations include love, hate, 

communication, and power. In fact, it was precisely this approach which led 

the author to a personal discovery of graph theory, aided and abetted by 

psychologists L. Festinger and D. Cartwright. - 

The world of theoretical physics discovered graph theory for its own 

purposes more than once. In the study of statistical mechanics by Uhlenbeck 

[U1], the points stand for molecules and two adjacent points indicate 

nearest neighbor interaction of some physical kind, for example, magnetic 

attraction or repulsion. Ina similar interpretation by Lee and Yang [LY1], 
the points stand for small cubes in euclidean space, where each cube may or 

may not be occupied by a molecule. Then two points are adjacent whenever 

both spaces are occupied. Another aspect of physics employs graph theory 

rather as a pictorial device. Feynmann [F3] proposed the diagram in 
which the points represent physical particles and the lines represent paths of 

the particles after collisions. 

The study of Markov chains in probability theory (see, for example, 

Feller [F2, p. 340]) involves directed graphs in the sense that events are 

represented by points, and a directed line from one point to another indicates 

a positive probability of direct succession of these two events. This is made 

explicit in the book [HNCI, p. 371] in which a Markov chain is defined as a 
network with the sum of the values of the directed lines from each point 

equal to |. A similar representation of a directed graph arises in that part 

of numerical analysis involving matrix inversion and the calculation of 
eigenvalues. Examples are given by Varga [ V2, p. 48]. A square matrix is 

given, preferably “sparse,” and a directed graph is associated. with it in the 
following way. The points denote the index of the rows and columns of the 
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given matrix, and there is a directed line from point i to point j whenever 
the i, j entry of the matrix is nonzero. The similarity between this approach 

and that for Markov chains is immediate. 

The rapidly growing fields of linear programming and operational 

research have also made use of a graph theoretic approach by the study of 
flows in networks. The books by Ford and Fulkerson [FF2], Vajda [V1] 
and Berge and Ghouila-Houri [BG2] involve graph theory in this way. The 
points of a graph indicate physical locations where certain goods may be 

stored or shipped, and a directed line from one place to another, together 

with a positive number assigned to this line, stands for a channel for the 

transmission of goods and a capacity giving the maximum possible quantity 
which can be shipped at one time. 

Within pure mathematics, graph theory is studied in the pioneering 

book on topology by Veblen [V3, pp. 1-35]. A simplicial complex (or 

briefly a complex) is defined to consist of a collection V of “points” together 

with a prescribed collection S of nonempty subsets of V, called “simplexes,” 

satisfying the following two conditions. 

1. Every point is a simplex. 

2. Every nonempty sybset of a simplex is also a simplex. 

The dimension of a simplex is one less than the number of points in it ; that 
of a complex is the maximum dimension of any simplex in it. In these terms, 
a graph may be defined as a complex of dimension 1 or 0. We call a 1- 

dimensional simplex a line, and note that a complex is 0-dimensional if and 
only if it consists of a collection of points, but no lines or other higher 

dimensional simplexes. Aside from these “totally disconnected” graphs, 

. every graph is a 1-dimensional complex. It is for this reason that the subtitle 

of the first book ever written on graph theory [K10] is “Kombinatorische 
Topologie der Streckenkomplexe.” 

It is precisely because of the traditional use of the words point and line 

as undefined terms in axiom systems for geometric structures that we have 
chosen to use this terminology. Whenever we are speaking of “geometric” 

simplicial complexes as subsets of a euclidean space, as opposed to the 

abstract complexes defined above, we shall then use the words vertex and 

edge. Terminological questions will now be pursued in Chapter 2, together - 

with some of the basic concepts and elementary theorems of graph theory. 



CHAPTER 2 

GRAPHS 

What’s in a name? That which we call a rose 

By any other name would smell as sweet. 

WILLIAM SHAKESPEARE, Romeo and Juliet 

Most graph theorists use personalized terminology in their books, papers, 

and lectures. In order to avoid quibbling at conferences on graph theory, 

it has been found convenient to adopt the procedure that each man state in 

advance the graph theoretic language he would use. Even the very word 

“graph” has not been sacrosanct. Some authors actually define a “graph” 

as a graph,” but others intend such alternatives as multigraph, pseudograph, 

directed graph, or network. We believe that uniformity in graphical 

terminology will never be attained, and is not necessarily desirable. 

Alas, it is necessary to present a formidable number of definitions in 

order to make available the basic. concepts and terminology of graph theory. 

In addition, we give short introductions to the study of complete subgraphs, 

extremal graph theory (which investigates graphs with forbidden subgraphs), 

intersection graphs (in which the points stand for sets and nonempty inter- 

sections determine adjacency), and some useful operations on graphs. 

VARIETIES OF GRAPHS 

Before defining a graph, we show in Fig. 2.1 all 11 graphs with four points. 

Later we shall see that 

i) every graph with four points is isomorphic with one of these, 

ii) the 5 graphs to the left of the dashed curve in the figure are disconnected, 

iii) the 6 graphs to its right are connected, 

iv) the last graph is complete, 

v) the first graph is totally disconnected, 

vi) the first graph with four lines is a cycle, 

vii) the first graph with three lines is a path. 

* This is most frequently done by the canonical initial sentence, ‘In this paper we only consider 
finite undirected graphs without loops or multiple edges.” 
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ee A pa] 

a 

Fig. 2.1. The graphs with four points. 

Rather than continue with an intuitive development of additional concepts, 
we proceed with the tedious but essential sequence of definition upon 

definition. A graph G consists of a finite nonempty set V = V(G) of p points* 
together with a prescribed set X of q unordered pairs of distinct points of 

V. Each pair x = {u, v} of points in X is a line* of G, and x is said to join u 
and v. We write x = uv and say that u and v are adjacent points (sometimes 

denoted u adj v); point u and line x are incident with each other, as are v 

and x. If two distinct lines x and y are incident with a common point, then 

they are adjacent lines. A graph with p points and q lines is called a (p,q) 

graph. The (1, 0) graph is trivial. 

5 y 

Fig. 2.2. A graph to illustrate adjacency. 

It is customary to represent a graph by means of a diagram and to refer 
to it as the graph. Thus, in the graph G of Fig. 2.2, the points u and v are 

adjacent but u and w are not; lines x and y are adjacent but x and z are not. 
Although the lines x and z intersect in the diagram, their intersection is not 

a point of the graph. 

* The following is a list of synonyms which have been used in the literature, not always with the 
indicated pairs: 

i point, vertex,; node, junction, 0-simplex, element, 
line, edge, arc, branch, 1-simplex, element. 
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There are several variations of graphs which deserve mention. Note that 

the definition of graph permits no loop, that is, no line joining a point to 

itself. In a multigraph, no loops are allowed but more than one line can join 

two points; these are called multiple lines. If both loops and multiple lines 

are permitted, we have a pseudograph. Figure 2.3 shows a multigraph and 

a pseudograph with the same “underlying graph,” a triangle. We now see 

why the graph (Fig. 1.2) of the Konigsberg bridge problem is actually a 

multigraph. 

Fig. 2.3. A multigraph and a pseudograph. 

A directed graph or digraph D consists of a finite nonempty set V of 

points together with a prescribed collection X of ordered pairs of distinct 

points. The elements of X are directed lines or arcs. By definition, a digraph 

has no loops or multiple arcs. An oriented graph is a digraph having no 

symmetric pair of directed lines. In Fig. 2.4 all digraphs with three points and 

three arcs are shown; the last two are oriented graphs. Digraphs constitute 

the subject of Chapter 16, but we will encounter them from time to time in 

the interim. 

U doi 
Fig. 2.4. The digraphs with three points and three arcs. 

A graph G is labeled when the p points are distinguished from one another 

by names* such as v,, v2,‘**, v,. For example, the two graphs G, and G, of 

Fig. 2.5 are labeled but G, is not. 

Two graphs G and H are isomorphic (written G = H or sometimes 
G = A) if there exists a one-to-one correspondence between their point 
sets which preserves adjacency. For example, G, and G, of Fig. 2.5 are 

isomorphic under the correspondence v; < u,, and incidentally G; is iso- 

* This notation for points was chosen since v is the first letter of vertex. Another author calls 
them vertices and writes p,, P,°°* 5 Py. 
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G, A Ge 7 G3 Py 

Vv; v2 v3 uy Us 

Ug Us v6 Ug ug 

Fig. 2.5. Labeled and unlabeled graphs. 

morphic with each of them. ‘It goes without saying that isomorphism is an 
equivalence relation on graphs. 

An invariant of a graph G is a number associated with G which has the 
same value for any graph isomorphic to G. Thus the numbers p and gq are 
certainly invariants. A complete set of invariants determines a graph up to 

isomorphism. For example, the numbers p and q constitute such a set for 

all graphs with less than four points. No decent complete set of invariants 

for a graph is known. 

A subgraph of G is a graph having all of its points and lines in G. If G, 

is a subgraph of G, then G is a supergraph of G,. A spanning subgraph is a 

subgraph containing all the points of G. For any set S of points of G, the 

induced subgraph <S) is the maximal subgraph of G with point set S. Thus 

two points of S are adjacent in <S) if and only if they are adjacent in G. In 

Fig. 2.6, G, is a spanning subgraph of G but G, is not; G, is an induced 

subgraph but G, is not. 

Fig. 2.6. A graph and two subgraphs. 

The removal of a point v; from a graph G results in that subgraph G — 0; 

of G consisting of all points of G except v; and all lines not incident with 
v;. Thus G — p; is the maximal subgraph of G not containing v;. On the 

other hand, the removal of a line x; from G yields the spanning subgraph 
G — x; containing all lines of G except x;. Thus G — x; is the maximal 

subgraph of G not containing x;. The removal ofa set of points or lines from 

G is defined by the removal of single elements in succession. On the other 

hand, if v; and v; are not adjacent in G, the addition of line v,v, results in the 
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vy b2 Us v; b2 Ds 

G G—v3 

O%4 U3 Us 

Dv; v2 Us v1 be Us 

G--v203: G+03v5: 

% U3 Ds U3 

Fig. 2.7. A graph plus or minus a specific point or line. 

smallest supergraph of G containing the line v,v;. These concepts are illus- 
trated in Fig. 2.7. 

There are certain graphs for which the result of deleting a point or line, 

or adding a line, is independent of the particular point or line selected. If 

this is so for a graph G, we denote the result accordingly by G — v, G — x, 

or G + x;see Fig. 2.8. 

It was suggested by Ulam [U2, p. 29] in the following conjecture that 
the collection of subgraphs G — v; of G gives quite a bit of information 

about G itself. 

Ov Cr 
Fig. 2.8. A graph plus or minus a point or line. 

Ulam’s Conjecture.* Let G have p points v; and H have p points u,, with 
p = 3. If for each i, the subgraphs G; = G — v; and H; = H — u; are 
isomorphic, then the graphs G and H are isomorphic. 

There is an alternative point of view to this conjecture [H29]. Draw 
each of the p unlabeled graphs G — v,; on a3 x 5card. The conjecture then 
states that any graph from which these subgraphs can be obtained by de- 

leting one point at a time is isomorphic to G. Thus Ulam’s conjecture 

* The reader is urged not to try to settle this conjecture since it appears to be rather difficult. 
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asserts that any two graphs with the same deck of cards are isomorphic. 

But we prefer to try to prove that from any legitimate* deck of cards, only 
one graph can be reconstructed. 

WALKS AND CONNECTEDNESS 

One of the most elementary properties that any graph can enjoy is that of 

being connected. In this section we develop the basic structure of connected 
and disconnected graphs. 

A walk of a graph G is an alternating sequence of points and lines 

Vo, X41, V1, ° °°» Un—1) Xn Up, DEZinNing and ending with points, in which each 

line is incident with the two points immediately preceding and following it. 

This walk joins vy and v,, and may also be denoted vy v, v2 --- v, (the lines 

being evident by context); it is sometimes called a vg—v, walk. It is closed 

if v9 = v, and is open otherwise. It is a trail if all the lines are distinct, and 

a path if all the points (and thus necessarily all the lines) are distinct. If 

the walk is closed, then it is a cycle provided its n points are distinct and 

n > 3. 
In the labeled graph G of Fig. 2.9, v,v.v5v2v3 is a walk which is not a 

trail and v,v,v,5v,020, is a trail which is not a path; v,v,v,5v,4 is a path and 
V2V4V5V2 Is a cycle. 

vb b2 bg 

Fig. 2.9. A graph to illustrate walks. 

We denote by C, the graph consisting of a cycle with n points and by 

P,,a path with n points; C, is often called a triangle. 
A graph is connected if every pair of points are joined by a path. A maxi- 

mal connected subgraph of G is called a connected component or simply 

a component of G. Thus, a disconnected graph has at least two components. 

The graph of Fig. 2.10 has 10 components. 
The length of a walk vo v, -- + v, isn, the number of occurrences of lines 

in it. The girth of a graph G, denoted g(G), is the length of a shortest cycle 

(if any) in G; the circumference c(G) the length of any longest cycle. Note 

that these terms are undefined if G has no cycles. 

* This is-a deck which can actually be obtained from some graph; another apparently difficult 
problem is to determine when a given deck is legitimate. 

k : 
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TTA a 
Fig. 2.10. A graph with 10 components. 

The distance d(u, v) between two points u and v in G is the length of a | 

shortest path joining them if any; otherwise d(u, v) = oo. In a connected ~ 

graph, distance is a metric; that is, for all points u, v, and w, 

1. d(u, v) > 0, with d(u, v) = Oif and only if u = v. 

Za PD) sav: tt). 

3. d(u, v) + d(v, w) > d(u, w). 

A shortest u~v path is often called a geodesic. The diameter d(G) of a 

connected graph G is the length of any longest geodesic. The graph G of 

Fig. 2.9 has girth g = 3, circumference c = 4, and diameter d = 2. 

The square G? of a graph G has V(G2) = V(G) with u, v adjacent in G? 
whenever d(u, v) < 2in G. The powers G’, G*, : - - of G are defined similarly. 

DEGREES 

The degree* of a point v; in graph G, denoted d; or deg v;, is the number of 

lines incident with v;. Since every line is incident with two points, it contrib- 
utes 2 to the sum of the degrees of the points. We thus have a result, due to 

Euler [E6], which was the first theorem of graph theory! 

Theorem 2.1 The sum of the degrees of the points of a graph G is twice 

the number of lines, 

> deg v; = 2g. (2.1) 

Corollary 2.1(a) In any graph, the number of points of odd degree is even.t 

In a (p, q) graph, 0 < deg v < p — 1 for every point v. The minimum 

degree among the points of G is denoted min deg G or 6(G) while A(G) = 

max deg G is the largest such number. If 6(G) = A(G) = r, then all points 

have the same degree and G is called regular of degree r. We then speak 

of the degree of G and write deg G = r. 

A regular graph of degree 0 has no lines at all. If G is regular of degree 

1, then every component contains exactly one line; if it is regular of degree 2, 

* Sometimes called valency. 

+ The reader is reminded (see the Preface) that not all theorems are proved in the text. 
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Fig. 2.11. The cubic graphs with six points. 

every component is a cycle, and conversely of course. The first interesting 

regular graphs are those of degree 3; such graphs are called cubic. The 

two cubic graphs with six points are shown in Fig. 2.11. The second of 

these is isomorphic with each of the three graphs of Fig. 2.5. 

Corollary 2.1(b) Every cubic graph has an even number of points. 

It is convenient to have names for points of small degree. The point v 

is isolated if deg v = 0; it is an endpoint if deg v = 1. 

THE PROBLEM OF RAMSEY 

A puzzle which has become quite well known may be stated in the following 

form: 

Prove that at any party with six people, there are three mutual acquain- 

tances or three mutual nonacquaintances. 

Fig. 2.12. A graph and its complement. 

‘This situation may be represented by a graph G with six points standing 

for people, in which adjacency indicates acquaintance. Then the problem is 

to demonstrate that G has three mutually adjacent points or three mutually 

nonadjacent ones. The complement G of a graph G also has V(G) as its 

point set, but two points are adjacent in G if and only if they are not adjacent 

inG. In Fig. 2.12, Ghas no triangles, while G consists of exactly two triangles.* 

A self-complementary graph is isomorphic with itscomplement. (See Fig. 2.13.) 

* When drawn as G in Fig. 2.12, the union of two triangles has been called the David graph. 
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Fig. 2.13. The smallest nontrivial self-complementary graphs. 

The complete graph K, has every pair of its p points* adjacent. Thus 

K, has (§) lines and is regular of degree p — 1. As we have seen, K; is 

called a triangle. The graphs K, are totally disconnected, and are regular 

of degree 0. 

In these terms, the puzzle may be reformulated. 

Theorem 2.2 For any graph G with six points, G or G contains a triangle. 

Proof. Let v be a point of a graph G with six poifits. Since v is adjacent 

either in G or in G to the other five points of G, we can assume without 

loss of generality that there are three points u,, u>, u, adjacent to v in G. 
If any two of these points are adjacent, then they are two points of a triangle 

whose third point is v. If no two of them are adjacent in G, then u,, u>, and 
u, are the points of a triangle in G. 

The result of Theorem 2.2 suggests the general question: What is the 

smallest integer r(m, n) such that every graph with r(m, n) points contains 

K,, or K,? 
The values r(m, n) are called Ramsey numbers.t Of course r(m, n) = 

r(n, m). The determination of the Ramsey numbers is an unsolved problem, 

although a simple bound due to Erdos and Szekeres [ES1] is known. 

ye ¢” cE *) (2.2) 
m4 

This problem arose from a theorem of Ramsey. An infinite grapht has 

an infinite point set and no loops or multiple lines. Ramsey [R2] proved 

(in the language of set theory) that every infinite graph contains Np mutually 
adjacent points or No mutually nonadjacent points. 

All known Ramsey numbers are given in Table 2.1, in accordance with 

the review article by Graver and Yakel [GY1]. 

* Since V is not empty, p > 1. Some authors admit the “empty graph” (which we would 
denote Ky if it existed) and are then faced with handling its properties and specifying that 
certain theorems hold only for nonempty graphs, but we consider such a concept pointless. 

+ After Frank Ramsey, late brother of the present Archbishop of Canterbury. For a proof 
that r(m, n) exists for all positive integers m and n, see for example Hall [H7, p. 57]. 

t Note that by definition, an infinite graph 1s not a graph. A review article on infinite graphs 
was written by Nash-Williams [N3]. 

ee eS a 
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Table 2.1 

RAMSEY NUMBERS 

ae 2 3 4 5 6 7 

2 2 3 4 5 6 7 
3 3 6 9 14 EM book 
4 4 9 18 

EXTREMAL GRAPHS 

The following famous theorem of Turan [T3] is the forerunner of the field 
of extremal graph theory, see [E3]. As usual, let [r] be the greatest integer 
not exceeding the real number r, and {r} = —[-—r], the smallest integer 
not less than r. 

Theorem 2.3 The maximum number of lines among all p point graphs with no 

triangles is [p?/4]. 

Proof. The statement is obvious for small values of p. An inductive proof 

may be given separately for odd p and for even p; we present only the latter. 

Suppose the statement is true for all even p < 2n. We then prove it for 

p = 2n + 2. Thus, let G bea graph with p = 2n + 2 points and no triangles. 

Since G is not totally disconnected, there are adjacent points u and v. The 

subgraph G’ = G — {u, v} has 2n points and no triangles, so that by the 
inductive hypotheses G’ has at most [4n?/4] = n? lines. How many more 
linescan Ghave? There can be no point w such that u and vare both adjacent 
to w, for then u, v, and w would be points of a triangle in G. Thus if u is 

adjacent to k points of G’, v can be adjacent to at most 2n — k points. Then 

G has at most 

n> +k +(2n —k) + 1=n? + 2n+ 1 = p?/4 = [p?/4] lines. 

To complete the proof, we must show that for all even p, there exists a 

(p, p?/4) graph with no triangles. Such a graph is formed as follows: Take 
two sets V, and V, of p/2 points each and join each point of V, with each 

point of V,. For p = 6, this is the graph G, of Fig. 2.5. 

A bigraph (or bipartite graph*) G is a graph whose point set V can be 

partitioned into two subsets V, and V, such that every line of G joins V, with 

V,. For example, the graph of Fig. 2.14(a) can be redrawn in the form of 

Fig. 2.14(b) to display the fact that it is a bigraph. 
If G-contains every line joining V, and V,, then G is a complete bigraph. If 

V, and V, have m and n points, we write G = K,,,, = K(m,n). A starf isa 

* Also called bicolorable graph, pair graph, even graph, and other things. 

¢ When n = 3, Hoffman [H43] calls K,,, a “claw”; Erdés and Rényi [ER1], a “cherry.” 
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(a) (b) 

Fig. 2.14. A bigraph. 

complete bigraph K,,. Clearly K,,,, has mn lines. Thus, if p is even, 

K(p/2, p/2) has p?/4 lines, while if p is odd, K([p/2], {p/2}) has [p/2]{p/2} = 

[p?/4] lines. That all such graphs have no triangles follows from a theorem 

of Kénig [K10, p. 170]. 

Theorem 2.4 A graph is bipartite if and only if all its cycles are even. 

Proof. If Gis a bigraph, then its point set V can be partitioned into two sets 

V, and V, so that every line of G joins a point of V, with a point of V,. Thus 

every cycle v,v,°-*v,v, in G necessarily has its oddly subscripted points 

in V,, say, and the others in V,, so that its length n is even. 

For the converse, we assume, without loss of generality, that G is 

connected (for otherwise we can consider the components of G separately). 

Take any point v, € V, and let V, consist of v, and all points at even distance 

from v,, while V; = V — V,. Since all the cycles of G are even, every line 

of G joins a point of V, with a point of V,. For suppose there is a line uv 

joining two points of V,. Then the union of geodesics from v, to v and from 

u, to u together with the line uv contains an odd cycle, a contradiction. 

Theorem 2.3 is the first instance of a problem in “extremal graph theory” : 

for a given graph H, find ex (p, H), the maximum number of lines that a 

graph with p points can have without containing the forbidden subgraph H. 

Thus Theorem 2.3 states that ex (p, K3) = [p?/4]. Some other results [E3] 
in extremal graph theory are: 

ex (p, C,) = 1 + (p — 1p — 2)/2, (2.3) 

ex (p, Kg — x) = [p?/4], (2.4) 

ex (p, K,,3 + x) = [p?/4]. (2.5) 

Turan [T3] generalized his Theorem 2.3 by determining the values of 

ex (p, K,,) for all n < p, 

wl ht i JP) 
ex (p, K,) = ae + (’). (2.6) 



INTERSECTION GRAPHS 19 

where p = r mod (n — 1) and 0 <r <n — 1. A new proof of this result 
was given by Motzkin and Straus [MS1]. 

It is also known that every (2n, n? + 1) graph contains n triangles, every 

(p, 3p — 5) graph contains two disjoint cycles for p > 6, and every 

_(3n, 3n? + 1) graph contains n? cycles of length 4. 

INTERSECTION GRAPHS 

Let S bea set and F = {S,,--- , S,} anonempty family of distinct nonempty 
subsets of S whose union is S. The intersection graph of F is denoted Q(F) 

and defined by V(Q(F)) = F, with S; and S,; adjacent whenever i 4 j and 

S; 0 8; # 9. Then a graph G is an intersection graph on S if there exists a 

family F of subsets of S for which G ~ Q(F). An early result [M4j on inter- 
section graphs is now stated. 

Theorem 2.5 Every graph is an intersection graph. 

Proof. For each point v; of G, let S; be the union of {v,} with the set of lines 
incident with v;. Then it is immediate that G is isomorphic with Q(F) where 

Fim 1 S,). 
In view of this theorem, we can meaningfully define another invariant. 

The intersection number a G) of a given graph G is the minimum number of 

elements in a set S such that G is an intersection graph on S. 

Corollary 2.5(a) If G is connected and p > 3, then w(G) < q. 

Proof. In this case, the points can be omitted from the sets S; used in the 

proof of the theorem, so that S = X(G). 

Corollary 2.5(0) If G has py isolated points and no K, components, then 

o(G) <q + Po. 
The next result tells when the upper bound in Corollary 2.5(a) is attained. 

Theorem 2.6 Let G be a connected graph with p > 3 points. Then @(G) = q 

if and only if G has no triangles. 

Proof. We first prove the sufficiency. In view of Corollary 2.5(a), it is only 

necessary to show that w(G) > q for any connected G with at least 4 points 

having no triangles. By definition of the intersection number, G is isomorphic 

with an intersection graph Q(F) on a set S with |S| = w(G). For each point 

v; of G, let S; be the corresponding set. Because G has no triangles, no 

element of S can belong to more than two of the sets S, and $; 1 S; 4 0 

if and only if v,v,; is a line of G. Thus we can form a 1-1 correspondence 
between the lines of G and those elements of S which belong to exactly two 

sets S;.. Therefore w(G) = |S|. => q so that w(G) = q. 

To prove the necessity, let w(G) = q and assume that G has a triangle. 

Then let G, be a maximal triangle-free spanning subgraph of G. By the 

preceding paragraph, w(G,) = q, = |X(G;,)|. Suppose that G, = Q(F), 
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where F is a family of subsets of some set S with cardinality q,. Let x bea line 

of Gnot in G, and consider G, = G, + x. Since G, is maximal triangle-free, 
G, must have some triangle, say u,u,u3, where x = u,u3. Denote by 

S,, Sz, S3 the subsets of S corresponding to uy, uz, uz. Now if u, is adjacent 

to only u, and u, in G,, replace S, by a singleton chosen from S, 7 S,, and 

add that element to $;. Otherwise, replace S$, by the union of $, and any 

element in S,; © S,. In either case this gives a family F’ of distinct subsets — 

of S such that G, = Q(F’). Thus w(G,) < q, while |X(G,)| = q, + 1. If 

G, = G, there is nothing to prove. But if G, # G, then let 

|X(G)| — |X(G2)| = 4o- 
It follows that G is an intersection graph on a set with q, + qo elements. 

However, gq; + do = q — 1. Thus w(G) < q, completing the proof. 

The intersection number of a graph had previously been studied by 

Erd6s, Goodman, and Posa [EGP1]. They obtained the best possible upper 

bound for the intersection number of a graph with a given number of 

points. 

Theorem 2.7 For any graph G with p > 4 points, w(G) < [p?/4]. 
Their proof is essentially the same as that of Theorem 2.3. 

There is an intersection graph associated with every graph which depends 

on its complete subgraphs. A clique of a graph is a maximal complete 

subgraph. The clique graph of a given graph G is the intersection graph of © 

the family of cliques of G. For example, the graph G of Fig. 2.15 obviously 

has K, as its clique graph. However, it is not true that every graph is the 

clique graph of some graph, for Hamelink [H9] has shown that the same 
graph G is a counterexample! F. Roberts and J. Spencer have just char- 

acterized clique graphs: 

Theorem 2.8 A graph G is a clique graph if and only if it contains a family 

F of complete subgraphs, whose union is G, such that whenever every pair 

of such complete graphs in some subfamily F’ have a nonempty inter- 

section, the intersection of all the members of F’ is not empty. 

Fig. 2.15. A graph and its clique graph. 

Excursion 

A special class of intersection graphs was discovered in the field of genetics 

by Benzer [B9] when he suggested that a string of genes representing a 
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bacterial chromosome be regarded as a closed interval on the real line. 

Hajos [H2] independently proposed that a graph can be associated with 

every finite family F of intervals S, which in terms of intersection graphs, is 

precisely Q(F). By an interval graph is meant one which is isomorphic to 
some graph Q(F), where F is a family of intervals. Interval graphs have been 

characterized by Boland and Lekkerkerker [BL2] and by Gilmore and 
Hoffman [GH2]. 

Gi: G3: G,UG2: G,+Gz2: 

Fig. 2.16. The union and join of two graphs. 

OPERATIONS ON GRAPHS 

It is rather convenient to be able to express the structure of a given graph 

in terms of smaller and simpler graphs. It is also of value to have notational 

abbreviations for graphs which occur frequently. We have already introduced 

the complete graph K, and its complement K,, the cycle C,, the path P,, 

and the complete bigraph K,,, ,,. 
Throughout this section, graphs G, and G, have disjoint point sets V, 

and V, and line sets X , and X, respectively. Their union* G = G, uU G, has, 

as expected, V = V, UV, and X = X,UX,. Their join defined by 
Zykov [Z1] is denoted G, + G, and consists of G, UG, and all lines 
joining V, with V,. In particular, K,,,, = K,, + K,. These operations are 
illustrated in Fig. 2.16 with G, = K, = P, and G, = K,. = P3. 

For any connected graph G, we write nG for the graph with n components 

each isomorphic with G. Then every graph can be written as in [HP14] in 

the form Un,G; with G, different from G, for i # j. For example, the 
disconnected graph of Fig. 2.10 is 4K, U 3K, U2K3 U K, >. 

There are several operations on G, and G, which result in a graph G 

whose set of points is the cartesian product V, x V,. These include the 
product (or cartesian product, see Sabidussi [S5]), and the composition 

[H21] (or lexicographic product, see Sabidussi [S6]). Other operationst of 
this form are developed in Harary and Wilcox [HW1]. 

* Of course the union of two graphs which are not disjoint is also defined this way. 

+ These include the tensor product (Weichsel [W6]; McAndrew [M7], Harary and Trauth 
[HT1], Brualdi[B17]), and other kinds of product defined in Berge[B12, p. 23], Ore[OS, p. 35], 
and Teh and Yap[TY]J]. 
A 

.,! ' 
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u; (u1, U2) (41, V2) (u,, We) 

Uy Dv: 
G:: GO) Wea iy eS) ey es G:XG2: 

A (V1, Ua) (v1, v2) (1, We) 

Fig. 2.17. The product of two graphs. 

(ue, 41) (uo, v1) 

(ui, U2) (41, V2) (%, We) 

G.[G,]: 

(V2, 41) (2, v1) 

(v1, ue) (V1, V2) (X1, We) 

(Wa, uy) (Wo, 01) 

Fig. 2.18. Two compositions of graphs. 

To define the product G, x G,, consider any two points u = (uj, up) 

and v = (v,, v2) in V = V, x V,. Then u and v are adjacent in G, x G, 

whenever [u, = v, and uz adj v,] or [u, = v, and u, adj v,]. The product 
of G, = P, and G, = P; is shown in Fig. 2.17. 

The composition G = G,[G,] also has V = V, x V, as its point set, 
and u = (u,,u,) is adjacent with v = (v,,v,) whenever [u, adj v,] or 

[u, = v, and u, adj v,]. For the graphs G, and G, of Fig. 2.17, both com- 
positions G,[G,] and G,[G,], which are obviously not isomorphic, are 
shown in Fig. 2.18. 

If G, and G, are (p,, q,) and (p2, q2) graphs respectively, then for each of 

the above operations, one can calculate the number of points and lines in the. 

resulting graph, as shown in the following table. 

Table 2.2 

BINARY OPERATIONS ON GRAPHS . 

Operation Number of points Number of lines 

Union G,UG, Pi + P2 41 + 42 

Join G, + G, Py + P2 41 + 42 + PiP2 

Product G, x G, P1P2 Pid2 + P2491 
Composition G,[G,] P1P2 P19. + P21 
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101 lil 

01 ul mine Woe! 
001 

Q>: Qs: 

000, 

F : i ig cornish 
100 110 

Fig. 2.19. Two cubes. 

The complete n-partite graph K(p,, P2,***, P,) is defined as the iterated 

join K,, + K,,+°+-:+ K,,. It obviously has 2 p,; points and 2; < ; pip; 
lines. 

Anespecially important class of graphs known as cubes are most naturally 

expressed in terms of products. The n-cube Q, is defined recursively by 

Q, = K, and Q, = K, x Q,_,. Thus Q, has 2” points which may be 

labeled a,a,---a,, where each a; is either 0 or 1. Two points of Q, are 
adjacent if their binary representations differ at exactly one place. Figure 

2.19 shows both the 2-cube and the 3-cube, appropriately labeled. 
If G and H are graphs with the property that the identification of any 

point of G with an arbitrary point of H results in a unique graph (up to 

isomorphism), then we write G : H for this graph. For example, in Fig. 2.16 

G, = K,- K,, while in Fig. 2.7 G — v3; = K3° K). 

EXERCISES* 

2.1 Draw all graphs with five points. (Then compare with the diagrams given in 

Appendix I.) 

_ 2.2 Reconstruct the graph G from its subgraphs G; = G — v,, where G, = Ky — x, 

G, = P; U Ky, G3 = K, 3, Gg = Gs = K,3+ x. 

2.3 A closed walk of odd length contains a cycle.* 

2.4 Prove or disprove: 

_ a) The union of any two distinct walks joining two points contains a cycle. 

b) The union of any two distirict paths joining two points contains a cycle. 

2.5. A graph G is connected if and only if for any partition of V into two subsets V, and 

V,, there is a line of G joining a point of V, with a point of V,. 

2.6 If d(u v) = min G, what is d(y, v) in the nth power G"? 

* Whenever a bald statement is made, it is to be proved. An exercise with number in bold face 
is more difficult, and one which is also starred is most difficult. 

y! 
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2.7 A graph H isa square root of G if H? = G. A graph G with p points has a square 

root if and only if it contains p complete subgraphs G; such that 

1. v, €G;,, 

2. v; €G; if and only if v; € G,, 

3. each line of G is in some G,. (Mukhopadhyay [M18]) 

2.8 A finite metric space (S, d) is isomorphic to the distance space of some graph if 

and only if 

1. The distance between any two points of S is an integer, 

2. If d(u, v) > 2, then there is a third point w such that d(u, w) + d(w, v) = d(u, v). 

(Kay and Chartrand [KC1]) 

2.9 In aconnected graph any two longest paths have a point in common. 

2.10 It is not true that in every connected graph all longest paths have a point in 

common. Verify that Fig. 2.20 demonstrates this. (Walther [W4]) — 

SS ee 

Fig. 2.20. A counterexample for Exercise 2.10. 

a 

2.11 Every graph with diameter d and girth 2d + 1 is regular. (Singleton [S13]) 

2.12 Let G be a (p, gq) graph all of whose points have degree k or k + 1. If G has . 

P,..> 0 points of degree k and p,,, points of degree k + 1, then p, = (k + 1)p — 2g. 

2.13 Construct a cubic graph with 2n points (n > 3) having no triangles. 

2.14 If G has p points and 6(G) > (p — 1)/2, then G is connected. 

2.15 If G is not connected then G is. 

2.16 Every self-complementary graph has 4n or 4n + 1 points. 

2.17 Draw any four of the ten self-complementary graphs with eight points. 

2.18 Every nontrivial self-complementary graph has diameter 2 or 3. 4 

(Ringel [R11], Sachs [S8]) — 

2.19 The Ramsey numbers satisfy the recurrence relation, 

r(m,n) < r(m — 1,n) + r(m,n — 1). (Erdés and Szekeres [ES1]) 1 

2.20 Find the maximum number of lines in a graph with p points and no even cycles. 
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i 2.21 Find the extremal graphs which do not contain K,. (Turan [T3]) 

| 2.22 Every (p, p + 4) graph contains two line-disjoint cycles. (Erd6s [E3]) 

1223 The only (p, [p?/4]) graph with no triangles is K([p/2], {p/2}). 

2.24 Prove or disprove : The only graph on p points with maximum intersection number 

_ is K([p/2], {p/2}). 
2.25 The smallest graph having every line in at least two triangles but some line in no 

| K, is the octahedron K, + C,. (J. Cameron and A. R. Meetham) . 

| 2.26 Determine w(K,), o(C, + K,), o(C, + C,), and a(C,). 

i 2.27 Prove or disprove: 

| a) The number of cliques of G does not exceed @(G). 

| b) The number of cliques of G is not less than a(G). 

2.28 Prove that the maximum number of cliques in a graph with p points where 

|p —4=3r+s,s=0,1or2 is 2?-53"**, (Moon and Moser [MM1]) 

| 2.29 A cycle of length 4 cannot be an induced subgraph of an interval graph. 

_ 2.30 Let s(n) denote the maximum number of points in the n-cube which induce a 

‘cycle. Verify the following table: 

n PRES AC P ENR) 

s(n) | 4 6 8 14 (Danzer and Klee [DK1]) 

} 2.31 Prove or disprove: If G, and G, are regular, then so is 

a) G, + G,. b) G, x G,. c) G,[G,]. 

| 2.32 Prove or disprove: If G, and G, are bipartite, then so is 

a) G, + G,. b) G, x G. c) G,[G,]. 

_ 2.33. Prove or disprove : 

' a)G,+G,=G6,+G, b)G,xG,=G,xG,. oc) G,[G,] = G,[G,]. 

234 a) Calculate the number of cycles in the graphs (a) C, + K,, (b) Kp, (C) Kmn- 

(Harary and Manvel [HM1]) 

b) What is the maximum number of line-disjoint cycles in each of these three 
graphs? (Chartrand, Geller, and Hedetniemi [CGH2]) 

2.35 The conjunctionG, A G,hasV, x V, as its point set and u = (u,, u2) is adjacent 

to v = (v,, v2) whenever u, adj v, and u, adj v,. Then when G, and G, are connected, 

G, x G, = G, A G, ifand only ifG, = Gy = Camas. (Miller [M11]) 

2.36 The conjunction G, A G, of two connected graphs is connected if and only if 

_ G, or G, has an odd cycle. | 

*2.37 There exists a regular graph of degree r with r? + 1 points and diameter 2 only 

for r = 2, 3, 7, and possibly 57. (Hoffman and Singleton [HS1]) 

*2.38 A graph G with p = 2n has the property that for every set S of n points, the 

induced subgraphs <S> and <V — S) are isomorphic if and only if G is one of the 

following: K,,, K, x K,, 2K,, 2C,, and their complements. 

(Kelly and Merriell [KM1]) 
i] 
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BLOCKS 

Not merely a chip of the old block, 

but the old block itself, | 
EDMUND BURKE 

Some connected graphs can be disconnected by the removal of a single 

point, called a cutpoint. The distribution of such points is of considerable 

assistance in the recognition of the structure of a connected graph. Lines” 

with the analogous cohesive property are known as bridges. The fragments” 

of a graph held together by its cutpoints are its blocks. After characterizing 

these three concepts, we study two new graphs associated with a given 

graph: its block graph and its cutpoint graph. 

CUTPOINTS, BRIDGES, AND BLOCKS | 

A cutpoint of a graph is one whose removal increases the number of com- 
ponents, and a bridge is such a line. Thus if v is a cutpoint of a connected - 

graph G, then G — v is disconnected. A nonseparable graph is connected, 

nontrivial, and has no cutpoints. A block of a graph is a maximal nonsepar- 

able subgraph. If G is nonseparable, then G itself is often called a block. 

i>) 
bad 

Ss 

a By: B,: e————e B3: eal o\/ 

Fig. 3.1. A graph and its blocks. 

26 
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In Fig. 3.1, v is a cutpoint while w is not; x is a bridge but y is not; and 

__ the four blocks of G are displayed. Each line of a graph lies in exactly one 

of its blocks, as does each point which is not isolated or acutpoint. Further- 

more, the lines of any cycle of G also lie entirely in a single block. Thus in 

particular, the blocks of a graph partition its lines and its cycles regarded 

as sets of lines. The first three theorems of this chapter present several 

equivalent conditions for each of these concepts. 

Theorem 3.1 Let v be a point of a connected graph G. The following state- 

ments are equivalent : 

(1) vis a cutpoint of G. 

(2) There exist points u and w distinct from v such that v is on every u—w 

path. 

(3) There exists a partition of the set of points V — {v} into subsets U and 
W such that for any points u € U and w EW, the point v is on every 

u—w path. 

Proof. (1)implies(3) Since visacutpoint of G,G — vis disconnected and has 

at least two components. Form a partition of V — {v} by letting U consist 

of the points of one of these components and W the points of the others. 

Then any two points u € U and w e€ W lie in different components of G — v. 

Therefore every u—w path in G contains v. 

(3) implies (2) This is immediate since (2) is a special case of (3). 

(2) implies (1) If vis on every path in G joining u and w, then there cannot be 
a path joining these points in G — v. Thus G — vis disconnected, so v is a 

cutpoint of G. 

Theorem 3.2 Let x bea line of aconnected graph G. The following statements 

are equivalent : 

(1) x is a bridge of G. 

(2) x is not on any cycle of G. 

(3) There exist points u and v of G such that the line x is on every path 

joining u and v. 

(4) There exists a partition of V into subsets U and W such that for any 

points u ec U and w € W, the line x is on every path joining u and w. 

Theorem 3.3 Let G be a connected graph with at least three points. The 

following statements are equivalent: 

(1) Gis a block. 

(2) Every two points of’G lie on a common cycle. 

| | , (3) Every point and line of G lie on a common cycle. 
ty 
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(4) Every two lines of G lie on a common cycle. 

(5) Given two-points and one line of G, there is a path joining the points 

which contains the line. l 

(6) For every three distinct points of G, there is a path joining any two of 

them which contains the third. 

(7) For every three distinct points of G, there is a path joining any two of ~ 

them which does not contain the third. 

Proof. (1) implies (2) Let uand v be distinct points of G, and let U be the set of 

points different from u which lie on a cycle containing u. Since G has at 

least three points and no cutpoints, it has no bridges; therefore, every point 

adjacent to u is in U, so U is not empty. 

P2 

(a) 

Fig. 3.2. Paths in blocks. 

Suppose v is not in U. Let w be a point in U for which the distance 

d(w, v) is minimum. Let Py be a shortest w—v path, and let P, and P, be the 

two u—w paths of a cycle containing u and w (see Fig. 3.2a). Since w is not a 

cutpoint, there is a u-v path P’ not containing w (see Fig. 3.2b). Let w’ be the 

point nearest u in P’ which is also in Po, and let u’ be the last point of the 

u—w’ subpath of P’ in either P, or P,. Without loss of generality, we assume 

u' isin P,. 

Let Q, be the u-w’ path consisting of the u—w’ subpath of P, and the 

u'—w’ subpath of P’. Let Q, be the u-w’ path consisting of P, followed by the 

w-—w’ subpath of Py. Then Q, and Q, are disjoint u—w’ paths. Together — 

Hes form a cycle, so w’ is in U. Since w’ is on a shortest w—v path, 

d(w’, v) < d(w, v). This contradicts our choice of w, proving that u and v do 

lie on a cycle. 

(2) implies (3) Let u be a point and vwa line of G. Let Z be a cycle containing 

uandv. Acycle Z’ containing u and vw can be formed as follows. If wis on 

Z, then Z’ consists of vw together with the v—-w path of Z containing u. If w 

is not on Z, there is a w—u path P not containing v, since otherwise v would be a 

cutpoint by Theorem 3.1. Let u’ be the first point of Pin Z. Then Z’ consists 
of rw followed by the w-w' subpath of P and the u’-v path in Z containing u. 

(3) implies (4) This proof is analogous to the preceding one, and the details 
are omitted. 
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(4) implies(5) Any two points of G are incident with one line each, which lie on 

a cycle by (4). Hence any two points of G lie on a cycle, and we have (2), so 

also (3). Let wand v be distinct points and x a line of G. By statement (3), there 

are cycles Z, containing u and x, and Z, containing v and x. If vis on Z, or 

uis on Z,, there is clearly a path joining u and v containing x. Thus, we need 
only consider the case where v is not on Z, and u is not on Z,. Begin with 

u and proceed along Z, until reaching the first point w of Z,, then take the 

path on Z, joining w and v which contains x. This walk constitutes a path 
joining u and v that contains x. 

(5) implies (6) Let u, v, and w be distinct points of G, and let x be any line in- 

cident with w. By (5), there is a path joining u and v which contains x, and 

hence must contain w. 

(6) implies (7) Let u, v, and w be distinct points of G. By statement (6), there 

is a u-w path P containing v. The u—v subpath of P does not contain w. 

(7) implies (1) By statement (7), for any two points u and v, no point lies on 

every u—v path. Hence, G must be a block. 

Theorem 3.4 Every nontrivial connected graph has at least two points 

which are not cutpoints. 

Proof. Let u and v be points at maximum distance in G, and assume v is a 

cutpoint. Then there is a point w in a different component of G — v than u. 

Hence v is in every path.joining u and w, so d(u, w) > d(u, v), which is im- 

possible. Therefore v and similarly u are not cutpoints of G. 

BLOCK GRAPHS AND CUTPOINT GRAPHS 

There are several intersection graphs derived from a graph G which reflect 

its structure. If we take the blocks of G as the family F of sets, then the 

intersection graph Q(F) is the block graph of G, denoted by B(G). The blocks 

of G correspond to the points of B(G) and two of these points are adjacent 

whenever the corresponding blocks contain a common cutpoint of G. On 

BG): 

C(G): ¢—____e—_____@ 

Fig. 3.3. A graph, its block graph, and its cutpoint graph. 
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the other hand, to obtain a graph whose points correspond to the cutpoints 

of G, we can take the sets S; to be the union of all blocks which contain the 

cutpoint v; The resulting intersection graph Q(F) is called the cutpoint 

graph, C(G). Thus two points of C(G) are adjacent if the cutpoints of G to 

which they correspond lie on a common block. Note that C(G) is defined 

only for graphs G which have at least one cutpoint. Figure 3.3 illustrates 

these concepts, which were introduced in [H28]. 

Theorem 3.5 A graph H is the block graph of some graph if and only if every 

block of H is complete. 

Proof. Let H = B(G), and assume there is a block H; of H which is not 

complete. Then there are two points in H; which are nonadjacent and lie on 

a shortest common cycle Z of length at least 4. But the union of the 

blocks of G corresponding to the points of H; which lie on Z is then connected 

and has no cutpoint, so it is itself contained in a block, contradicting the 

maximality property of a block of a graph. 

On the other hand, let H be a given graph in which every block is com- 

plete. Form B(H), and then form a new graph G by adding to each point H; 

of B(H) a number of endlines equal to the number of points of the block H; 
which are not cutpoints of H. Then it is easy to see that B(G) is isomorphic 

to H. 

Clearly the same criterion also characterizes cutpoint graphs. 

EXERCISES 

3.1 What is the maximum number of cutpoints in a graph with p points? 

3.2 A cubic graph has a cutpoint if and only if it has a bridge. 

3.3. The smallest number of points in a cubic graph with a bridge is 10. 

3.4 Ifvisacutpoint of G, then v is not a cutpoint of the complement G. 

(Harary [H15]) 

3.5 A point v of G is a cutpoint if and only if there are points u and w adjacent to 

v such that v is on every u—w path. 

(3.6 Prove or disprove: A connected graph G with p > 3 is a block if and only if 

given any two points and one line, there is a path joining the points which does not 

contain the line. 

3.7 Aconnected graph with at least two lines is a block if and only if any two adjacent 

lines lie on a cycle. 

3.8 Let G be a connected graph with at least three points. The following statements 

are equivalent : 

1. Ghas no bridges. 

2. ‘Every two points of G lie on a common closed trail. 

3. Every point and line of G lie on a common closed trail. 
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4, Eveny two lines of G lie on a common closed trail. 

5. For every pair of points and every line of G, there is a trail joining the points 

which contains the line. 

6. For every pair of points and every line of G, there is a path joining the points 

which does not contain the line. 

7. For every three points there is a trail joining any two which contains the third. 

3.9 If G isa block with 6 > 3, then there is a point v such that G — vis also a block. 

(A. Kaugars) 

3.10 The square of every nontrivial connected graph is a block. 

3.11 If G is a connected graph with at least one cutpoint, then B(B(G)) is isomorphic 

to C(G). 

3.12 Let b(v) be the number of blocks to which point v belongs in 2 connected graph 

G. Then the number of blocks of G is given by 

b(G) — 1 = ¥ [b(v) — 1]. (Harary [H22]) 

3.13 Let c(B) be the number of cutpoints of a connected graph G which are points of 

the block B. Then the number of cutpoints of G is given by 

eG) — 1 = ¥ [c(B) — 1]. (Gallai [G3]) 

3.14 A block G is line-critical if every subgraph G — x is not a block. A diagonal of G 

is a line joining two points of a cycle not containing it. Let G be a line-critical block 

with p > 4. 

a) G has no diagonals. 

b) G contains no triangles. 

c)p<q<2p-4. 

d) The removal of all points of degree 2 results in a disconnected graph, provided 

G is not a cycle. (Plummer [P4]) 



CHAPTER 4 

TREES 

Poems are made by fools like me, 

But only God can make a tree. 

Joyce KILMER 

There is one simple and important kind of graph which has been given the 
same name by all authors, namely a tree. Trees are important not only for 

sake of their applications to many different fields, but also to graph theory 

itself. One reason for the latter is that the very simplicity of trees make it 

possible to investigate conjectures for graphs in general by first studying 

the situation for trees. An example is provided by Ulam’s conjecture 

mentioned in Chapter 2. 

Several ways of defining a tree are developed. Using geometric termin- 

ology, we study centrality of trees. This is followed by a discussion of a tree 

which is naturally associated with every connected graph: its block-cutpoint 

tree. Finally, we see how each spanning tree of a graph G gives rise to a 
collection of independent cycles of G, and mention the dual (complementary) 

construction of a collection of independent cocycles from each spanning 

cotree. 

CHARACTERIZATION OF TREES 

A graph is acyclic if it has no cycles. A tree isa connected acyclic graph. Any 

graph without cycles is a forest, thus the components of a forest are trees. 

There are 23 different trees* with eight points, as shown in Fig. 4.1. There 
are numerous ways of defining trees, as we shall now see. 

Theorem 4.1 The following statements are equivalent fora graph G: 

(1) Gis a tree. 

(2) Every two points of G are joined by a unique path. 

* It is interesting to ask people to draw the trees with eight points. Some trees will frequently 
be missed and others duplicated. 

32 

ee et 

Se 



CHARACTERIZATION OF TREES 33 

ee eS 

a 
: 7 T 4 a ee 

eR Fig. 4.1. The 23 trees with eight points. 

(3) Gis connected and p = q + 1. 

(4) Gis acyclic and p = q + 1. 

(5) Gis acyclic and if any two nonadjacent points of G are joined by a line x, 
then G + x has exactly one cycle. 

(6) G is connected, is not K, for p> 3, and if any two nonadjacent points 

of G are joined by a line x, then G + x has exactly one cycle. 

(7) Gisnot K, U K, or K, U K3, p = q + 1, and if any two nonadjacent 

points of G are joined by a line x, then G + x has exactly one cycle. 

Proof. (1)implies(2) Since Gis connected, every two points of G are joined by 

a path. Let P, and P, be two distinct paths joining u and v in G, and let w 

be the first point on P,/(as we traversé P, from u to v) such that w is on both 

P, and P, but its successor on P, is not on P,. If we let w’ be the next point 

on P, which is also on P,, then the segments of P, and P,, which are between 

w and w’ together form acyclein G. Thus if G is acyclic, there is at most one 

path joining any two points. 

(2) implies (3) Clearly Gis connected. We prove p = q + 1 by induction. It 

is obvious for connected graphs of one or two points. Assume it is true 

for graphs with fewer than p points. If G has p points, the removal of any 

line of G disconnects G, because of the uniqueness of paths, and in fact this 

new graph will have exactly two componenits. By the induction hypothesis 

each component has one more point than line. Thus the total number of 

lines in G must be p — 1. 

(3) implies (4) Assume that G has a cycle of length n. Then there are n points 

| bend n lines on the cycle and for each of the p — n points not on the cycle, 



34 TREES 

there is an incident line on a geodesic to a point of the cycle. Each such line 

is different, so g > p, which is a contradiction. 

(4) implies (5) Since G is acyclic, each component of G isa tree. If there are ie 
components, then, since each one has one more point than line, p = q + k,so 

k = 1 and G is connected. Thus G is a tree and there is exactly one path 

connecting any two points of G. If we add a line wv to G, that line, together 

with the unique path in G joining u and v, forms acycle. The cycle is unique 

because the path is unique. 

(5) implies (6) Since every K, for p > 3 contains a cycle, G cannot be one of 

them. Graph G must be connected, for otherwise a line x could be added 

joining two points in different components of G, and G + x would be 
acyclic. 

(6) implies (7) We prove that every two points of G are joined by a unique 

path and thus, because (2) implies (3), p = q + 1. Certainly every two points 

of G are joined by some path. Iftwo points of G are joined by two paths, then 

by the proof that (1) implies (2), G has a cycle. This cycle cannot have four or 

more points because, if it did, then we could produce more than one cycle 

in G + x by taking x joining two nonadjacent points on the cycle (if there 

are no nonadjacent points on the cycle, then G itself has more than one 

cycle). So the cycle is K3, which must be a proper subgraph of G since by 

hypothesis G is not complete with p > 3. Since G is connected, we may 

assume there is another point in G which is joined to a point of this K3. 

Then it is clear that if any line can be added to G, then one may be added so as 

to form at least two cycles in G + x. Ifno more lines may be added, so that 
the second condition on G is trivially satisfied, then G is K, with p > 3, 

contrary to hypothesis. 

(7) implies (1) If G has a cycle, that cycle must be a triangle which is a com- 

ponent of G, by an argument in the preceding paragraph. This component 

has three points and three lines. All other components of G must be trees 

and, in order to make p = q + 1, there can be only one other component. If 

this tree contains a path of length 2, it will be possible to add a line x to G and 
obtain two cycles in G + x. Thus this tree must be either K, or Kj. So 

G must be K, U K, or K; U K3, which are the graphs which have been 

excluded. Thus G is acyclic. But if G is acyclic and p = q + 1, then Gis 

connected since (4) implies (5) implies (6). So G is a tree, and the theorem is 

proved. 

Because a nontrivial tree has & d; = 2q = 2(p — 1), there are at least 

two points with degree less than 2. 

Corollary 4.1(a) Every nontrivial tree has at least two endpoints. 

This result also follows from Theorem 3.4. 
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Fig. 4.2. The eccentricities of the points of a tree. 

CENTERS AND CENTROIDS 

The eccentricity e(v) of a point v in a connected graph G is max d(u, v) for all 

uinG. The radius r(G) is the minimum eccentricity of the points. Note that 

the maximum eccentricity is the diameter. A point v is a central point if 

e(v) = r(G), and the center of G is the set of all central points. 

In the tree of Fig. 4,2, the eccentricity of each point is shown. This tree 

has diameter 7, radius 4, and the center consists of the two points u and v, 

each with minimum eccentricity 4. The fact that u and v are adjacent 

illustrates a result discovered by Jordan* and independently by Sylvester ; see 

Konig [K10, p. 64]. 

Theorem 4.2 Every tree has a center consisting of either one point or two 

adjacent points. 

Proof. The result is obvious for the trees K, and K,. We show that any 

' other tree T has the same central points as the tree T’ obtained by removing 

all endpoints of T. Clearly, the maximum of the distances from a given point 

u of T to any other point v of T will occur only when v is an endpoint. 

Thus, the eccentricity of each point in T’ will be exactly one less than the 

eccentricity of the same point in T. Hence the points of T which possess 

minimum eccentricity in T are the same points having minimum eccentricity 

in 7’, that is, T and T’ have the same center. If the process of removing 

endpoints is repeated, we obtain successive trees having the same center 

as T. Since T is finite, we eventually obtain a tree which is either K, or Kp. 

In either case all points of this ultimate tree constitute the center of T which 

_ thus consists of just a single point or of two adjacent points. 

A branch at a point u of a tree T is a maximal subtree containing u as an 

endpoint. Thus the number of branches at u is deg u. The weight at a point 

u of T is the maximum number of lines in any branch at u. The weights at the 

* Of Jordan Curve Theorem fame. 
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Fig. 4.3. The weights at the points of a tree. 

nonendpoints of the tree in Fig. 4.3 are indicated. Of course the weight at 
each endpoint is 14, the number of lines. 

A point v is a centroid point of a tree T if v has minimum weight, and the 

centroid of T consists of all such points. Jordan [J2] also proved a theorem 
on the centroid of a tree analogous to his result for centers. 

Theorem 4.3 Every tree has a centroid consisting of either one point or two 

adjacent points. 

The smallest trees with one and two central and centroid points are 
shown in Fig. 4.4. 

l Center 2 

{ - |—~< 
Centroid 

2 od ee 

Fig. 4.4. Trees with all combinations of one or two central and centroid points. 

BLOCK-CUTPOINT TREES 

It has often been observed that a connected graph with many cutpoints 
bears a resemblance to a tree. This idea can be made more definite by as- 

sociating with every connected graph a tree which displays the resemblance. 

For a connected graph G with blocks {B;} and cutpoints {c,}, the. 
block-cutpoint graph of G, denoted by bc(G), is defined as the graph having 

point set {B;} U {c,}, with two points adjacent if one corresponds to a block 
B, and the other to a cutpoint c; and c,is in B;. Thus bc(G) is a bigraph. This 
concept was introduced in Harary and Prins [HP22] and also in Gallai 
[G3]. (See Fig. 4.5.) 
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be(G): 

Fig. 4.5. A graph and its block-cutpoint graph. 

Theorem 4.4 A graph G is the block-cutpoint graph of some graph H if 

and only if it is a tree in which the distance between any two endpoints is 

even. 

In view of this theorem, we will speak of the block-cutpoint tree of a graph. 

INDEPENDENT CYCLES AND COCYCLES 

We describe two vector spaces associated with a graph G: its “cycle space” 

and “cocycle space.” For convenience, these two vector spaces will be taken 

over the two element field F, = {0, 1}, in which 1 + 1 = 0 (even though 
the theory can be modified to hold for an arbitrary field). In particular, the 

&; which occur repeatedly in the following definitions are always either 0 or 1. 

As usual, let G be a graph with points v,,---, v, and lines x,,---, X,. 

A 0-chain of G is a formal linear combination  ¢,v; of points and a /-chain 

is a sum ~ ¢;x; of lines. The boundary operator 0 sends 1-chains to 0-chains 

according to the rules: 

a) dis linear. 

b) if x = uv, then 0x = u + v. 

On the other hand, the coboundary operator 6 sends 0-chains to 1-chains by 

the rules: 

a) 6 is linear. 

b) 6v = 2 «¢;x,;, where ¢; = 1 whenever x; is incident with v. 
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vy 

4 Xs Us Xo v6 

Fig. 4.6. A graph to illustrate the boundary and coboundary operators. 

In Fig. 4.6, the l-chain 0, = x; + x, + X4 + Xq has boundary 

00, = (v, + V2) ae (v, + v3) = (v, Ar V4) a (v5 ay U6) 

V3 + V4 + Vs + V6, 

and the 0-chain gg = v3 + v4 + vs + U¢ has as its coboundary 

bdo = (x qe X3 = X6 an X-) ae (X4 ain Xg) 

A(x5 + Xe + Xy +X) + (x7 + Ko) 

== X2 fe X3 is X4 + Xs. 

A 1-chain with boundary 0 is a cycle vector* of G and can be regarded as 

a set of line-disjoint cycles. The collection of all cycle vectors forms a vector 

space over F,, called the cycle space of G. A cycle basis of G is defined as a 

basis for the cycle space of G which consists entirely of cycles. We say a 

cycle-vector Z depends on the cycles Z,, Z,,:-:, Z, if it can be written 

as Li_, ¢,Z;. Thus a cycle basis of G is a maximal collection of independent 

cycles of G, or a minimal collection of cycles on which all cycles depend. 

A cutset of a connected graph is a collection of lines whose removal 

results in a disconnected graph. A cocycle is a minimal cutset. A coboundary 

of G is the coboundary of some 0-chain in G. The coboundary ofa collection 
U of points is just the set of all lines joining a point in U to a point not in 

U. Thusevery coboundary isacutset. Since we define a cocycle as a minima! 

cutset of G and any minimal cutset is a coboundary, we see that a cocycle 

is just a minimal nonzero,coboundary. The collection of all coboundaries 

of G is called the cocycle space of G, and a basis for this space which consists 

entirely of cocycles is called a cocycle basis for G. 

We proceed to construct for the cycle space of G a basis which corre- 

sponds to a spanning tree T. In a connected graph G, a chord of a spanning 

tree T is a line of G which is not in T. Clearly the subgraph of G consisting 

of T and any chord of T has exactly one cycle. Moreover, the set Z(T) 
WGA Si ae ee 

* Most topologists and some graph theorists call this a “cycle.” They then use “circuits” or 
“elementary cycles” or “polygons” for our cycles. 
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Fig. 4.7. Graph, tree, and cotree. 

Fig. 4.8. A cocycle basis for G of Fig. 4.7. 

of cycles obtained in this way (one from each chord) is independent, since 
each contains a line not in any of the others. Also, every cycle Z depends 

on the set Z(T), for Z is the symmetric difference of the cycles determined by 

the chords of T which lie in Z. Thus if we define m(G), the cycle rank, to be 

the number of cycles in a basis for the cycle space of G, we have the following 

result. 

Theorem 4.5 The cycle rank of a connected graph G is equal to the number 

of chords of any spanning tree in G. 

Corollary 4.5(a) If G is a connected (p, q) graph, then m(G) = q — p + 1. 

Corollary 4.5(b) If G is a (p, g) graph with kcomponents, then 

mG)=q—pt+k. 

Similar results are true for the cocycle space. The cotree T* of a spanning 

tree T in a connected graph G is the spanning subgraph of G containing 

exactly those lines of G which are not in T. A cotree of G is the cotree of 

some spanning tree T. In Fig. 4.7, a spanning tree T and its cotree T* 

are displayed for the same graph G as in Fig. 4.6. The lines of G which are 
not in T* are called its twigs. The subgraph of G consisting of T* and any 

one of its twigs contains exactly one cocycle. The collection of cocycles 

obtained by adding twigs to T*, one at a time, is seen to be a basis for the 

cocycle space of G. This is illustrated in Fig. 4.8 for the graph G and cotree 

T* of Fig. 4.7, with the cocycles indicated by heavy lines. The cocycle rank 

m*(G) is the number of cocycles in a basis for the cocycle space of G. 
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Theorem 4.6 The cocycle rank of a connected graph G is the number of 

twigs in any spanning tree of T. 

As in the case of cycles, we have two immediate corollaries. 

Corollary 4.6(a) If G is a connected (p, q) graph, then m*(G) = p — 1. 

Corollary 4.6(6) IfGisa(p, q) graph with k components, then m*(G) = p — k. 

Excursion 

The 1-dimensional case of an important general result about simplicial 

complexes can be derived from Theorem 4.5. The Euler-Poincaré equation 

Bp = 0 Oo = 1 Ry Bye Bates 

where the B,, are the Betti numbers and the a, are the numbers of simplexes 

of each dimension, holds for every simplicial complex. Recall from Chapter 1 

that every graph is a simplicial complex, with its points 0-simplexes and its 

lines 1-simplexes. Fora graph, By = k, the number of connected components, 

and £, = m(G), the number of independent cycles of G. Since no graph 

contains an n-simplex with n> 1, a, = B, = 0, for all n> 1. Thus 

A — 4, = Bo — B, so p — q = k — m(G) and we see that Corollary 4.5(b) 
is the Euler-Poincaré equation for graphs. 

MATROIDS 

This subject was first introduced by Whitney [W15]. A discussion of the 
basic properties of matroids, as well as several equivalent axiomatic formula- 

tions, may be found in Whitney’s original paper. 

A matroid consists of a finite set M of elements together with a family 
@ = {C,, C>,---} of nonempty subsets of M, called circuits, satisfying the 

axioms: 

1. no proper subset of a circuit is a circuit; 

2. ifx EC, AC, then C, U C, — {x} contains a circuit. 

With every graph G, one can associate a matroid by taking its set X of, 

lines as the set M, and its cycles as the circuits. It is easily seen that the two 

axioms are satisfied. It is slightly less obvious that G yields another matroid 

by taking the cocycles of G as the circuits. These are called respectively the 
cycle matroid and the cocycle matroid of G. 

Another, equivalent, definition of matroid is as follows. A ey 

consists of a finite set M of elements together with a family of subsets of M 
called independent sets such that: 

1. the empty set is independent ; 
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2. every subset of an independent set is independent ; 

3. for every subset A of M, all maximal independent sets contained in A 
have the same number of elements. 

A graph G yields a matroid in this sense by taking the lines of G as set 

M and the acyclic subgraphs of G as the independent sets. 

The duality (cycles vs. cocycles, trees vs. cotrees) which appears in the 

preceding section is closely related to duality in matroids. Minty [M12] 
constructed a self-dual axiom system for “graphoids” which displays matroid 

duality explicitly. 

A graphoid consists of a set M of elements together with two collections 

@ and Y of nonempty subsets of M, called circuits and cocircuits respectively, 
such that: 

1. forany Ce@ and DEJ, |CnD| £1; 

2. no circuit properly contains another circuit and no cocircuit properly 

contains another cocircuit; 

3. for any painting of M which colors exactly one element green and the 
rest either red or blue, there exists either 

a) acircuit C containing the green element and no red elements, or 
b) a cocircuit D containing the green element and no blue elements. 

While the cycles of every graph form a matroid, not every matroid can 
so arise from a graph, as we shall see in Chapter 13. Two comprehensive 
references on matroid theory are Minty [M12] and Tutte [T19]. 

Excursion. 

-Ulam’s conjecture is still as unsolved as ever for arbitrary graphs. But 

Kelly [K5] proved its validity for trees. As we have seen, the point of view 
toward this conjecture proposed in [H29] is that if G has p > 3 and one is 
presented with the p unlabeled subgraphs G; = G — v, then the graph G 

itself can be reconstructed uniquely from the G;. Kelly’s result for trees 

was extended in [HP6] where it is shown that every nontrivial tree T can be 
reconstructed from only those subgraphs T; = T — v; which are themselves 

trees, that is, such that v; is an endpoint. This has been improved, in turn, by 

Bondy, who showed [B15] that a tree T can be reconstructed from its 
subgraphs T — v; with the v; the peripheral points, those whose eccentricity 

equals the diameter of T. Manvel [M2] then showed that almost* every tree 
T can be reconstructed using only those subtrees T — v; which are non- 
isomorphic. Another class of graphs has been reconstructed by Manvel 

[M3], namely unicyclic graphs, which are connected and have just one cycle. 

* With just‘two pairs of exceptional trees. 
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EXERCISES 

4.1 Draw all trees with nine points. Then compare your diagrams with those in 

Appendix II. 

42 Every tree isa bigraph. Which trees are complete bigraphs? 

4.3 The following four statements are equivalent. 

(1) Gisa forest. 

(2) Every line of G is a bridge. 

(3) Every block of G is K,. 

(4) Every nonempty intersection of two connected subgraphs of G is connected. 

44 The following four statements are equivalent. 

(1) Gis unicyclic. 

(2) Gis connected and p = q. 

(3) For some line x of G, the graph G — x is a tree. 

(4) G is connected and the set of lines of G which are not bridges form a cycle. 

(Anderson and Harary [AH1]) 

4.5 For any connected graph G, r(G) < d(G) < 2r(G). 

4.6 Construct a tree with disjoint center and centroid, each having two points. 

4.7 The center of any connected graph lies in a block. (Harary and Norman [HN2]) 

4.8 Given the block-cutpoint tree bc(G) of a connected graph G, determine the block- 

graph B(G) and the cutpoint-graph C(G). 

4.9 Determine the cycle ranks of (a) K,, (b) K 

p points. 

4.10 The intersection of a cycle and a cocycle contains an even number of lines. 

(c) a connected cubic graph with 
m,n? 

4.11 A graph is bipartite if and only if every cycle in some cycle basis is even. 

412 Every connected graph has a spanning tree. 

4.13 Show how the block-cutpoint graph of any graph can be defined as an intersection 

graph. 

4.14 A cotree of a connected graph is a maximal subgraph containing no cocycles. 

4.15 A tree with p > 3 has diameter 2 if and only if it is a star. 

4.16 Prove or disprove: 

a) If G has diameter 2, then it has a spanning star. 

b) If G has a spanning star, then it has diameter 2. 

4.17 Determine all connected graphs G for which G = bc(G). 

*4.18 The maximum number of lines in a graph with p points and radius r is 

(3) fein is 
D 

[p(p — 2)/2] if, r= 2, 

Hp? — 4rp + 5p + 4r? —6r) if r> 3. (Vizing [V5]) 

4.19 Gisa block if and only if every two lines lie on a common cocycle. 



CHAPTER 5 

CONNECTIVITY 

We must all hang together, 

or assuredly we shall all hang separately. 

B. FRANKLIN 

The connectivity of graphs is a particularly intuitive area of graph theory 
and extends the concepts of cutpoint, bridge, and block. Two invariants 

called connectivity and line-connectivity are useful in deciding which of two 

graphs is “more connected.” 

There is a rich body of theorems concerning connectivity. Many of 

these are variations of a classical result of Menger, which involves the number 

of disjoint paths joining a given pair of points in a graph. We will see that 

several such variations have been discovered in areas of mathematics other 

than graph theory. 

_ CONNECTIVITY AND LINE-CONNECTIVITY. 

The connectivity k = «(G) of a graph G is the minimum number of points 

whose removal results in a disconnected or trivial graph. Thus the con- 

nectivity of a disconnected graph is 0, while the connectivity of a connected 
graph with a cutpoint is 1. The complete graph K, cannot be disconnected 

by removing any number of points, but the trivial graph results after re- 

moving p — | points; therefore, x(K,) = p — ft. Sometimes x is called the 

point-connectivity. 

Analogously, the line-connectivity A = A(G) of a graph G is the minimum 

number of lines whose removal results in a disconnected or trivial graph. 

Thus A(K,) = O and the line-connectivity of a disconnected graph is 0, while 
that of a connected graph with a bridge is 1. Connectivity, line-connectivity, 

and minimum degree are related by an inequality due to Whitney [W11]. 

Theorem 5.1 For any graph G, 

k(G) < A(G) < AG). 

43 
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Proof. We first verify the second inequality. If G has no lines, then 4 = 0. ; 

Otherwise, a disconnected graph results when all the lines incident with a ~ 

point of minimum degree are removed. In eithér case, A < 6. j 

To obtain the first inequality, various cases are considered. If G is 

disconnected or trivial, thenk = 4 = 0. If Gisconnected and has a bridge x, 

then A = 1. In this case, x = 1 since either G has a cutpoint incident with x 

or Gis K,. Finally, suppose G has 1 > 2 lines whose removal disconnects 

it. Clearly, the removal of 4 — 1 of these lines produces a graph with a 

bridge x = uv. Foreachofthese 4 — 1 lines, select an incident point different ~ 

from u or v. The removal of these points also removes the A — 1 lines and 

quite possibly more. Hf the resulting graph is disconnected, then k < /; if 

not, x is a bridge, and hence the removal of u or v will result in either a © 
disconnected or a trivial graph, sox < / in every case. (See Fig. 5.1.) : 

. 

5 

: 

q 

Fig. 5.1. A graph for which k = 2,4 = 3, and = 4. 

Chartrand and Harary [CH4] constructed a family of graphs with | 

prescribed connectivities which also have a given minimum degree. This — 

result shows that the restrictions on x, 1, and 6 imposed by Theorem 5.1 — 

cannot be improved. . 

Theorem 5.2 For all integers a, b, c such that 0 < a < b <¢, there exists a 

graph G with x(G) = a, A(G) = b, and 6(G) = c. 

Chartrand [C8] pointed out that if 6 is large enough, then the second 
inequality of Theorem 5.1 becomes an equality. 

Theorem 5.3 If G.has p points and 6(G) > [p/2], then A(G) = d(G). 

For example, if G is regular of degree r > p/2, then A(G) =r. In 

particular, A(K,) = p — 1. 

The analogue of Theorem 5.3 for connectivity does not hold. The 
problem of determining the largest connectivity possible for a graph with a 
given number of points and lines was proposed by Berge [B11] anda solution © 

was given in [H26]. 

Theorem 5.4 Among all graphs with p points and q lines, the maximum — 
connectivity is 0 when q < p — 1 and is [2q/p], when g > p — 1. : 
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Outline of proof. Since the sum of the degrees of any (p, q) graph G is 2g, the 

- mean degree is 2q/p. Therefore 6(G) < [2q/p],sox(G) < [2q/p] by Theorem 
5.1. To show that this value can actually be attained, an appropriate family 

of graphs can be constructed. The same construction also gives those 
(p, q) graphs with maximum line-connectivity. 

_ Corollary 5.4(a) The maximum line-connectivity of a (p, q) graph equals the 
maximum connectivity. 

Only very recently the question of separating a graph by removing a 

mixed set of points and lines has been studied. A connectivity pair of a graph 

G is an ordered pair (a, b) of nonnegative integers such that there is some set 

of a points and b lines whose removal disconnects the graph and there 

is no set of a — 1 points and b lines or of a points and b — 1 lines with this 
property. Thus in particular the two ordered pairs (x, 0) and (0, A) are 
conifectivity pairs for G, so that the concept of connectivity pair generalizes 
both the point-connectivity and the line-connectivity of a graph. It is readily 

seen that for each value of a, 0 < a < k, there is a unique connectivity pair 

(a, b,); thus G has exactly x + 1 connectivity pairs. 

The connectivity pairs of a graph G determine a function f from the 

set {0,1,---,«} into the nonnegative integers such that f(x) = 0 (cf. 
Theorem 5.1). This is called the connectivity function of G. It is strictly 

decreasing, since if (a, b) is a connectivity pair with b > 0 there is obviously 

a set of a + 1 points and b — 1 lines whose removal disconnects the graph 
or leaves only one point. The following theorem, proved by construction in 

Beineke and Harary [BH6], shows that these are the only conditions which 
a connectivity function must satisfy. 

Theorem 5.5 Every decreasing function f from {0,1,---,«} into the non- 

negative integers such that f(x) = 0 is the connectivity function of some 

graph. 

A graph G is n-connected if k(G) > n and n-line-connected if A(G) > n. 

We note that a nontrivial graph is 1-connected if and only if it is connected, 

and that it is 2-connected if and only if it is a block having more than one 

line. So K, is the only block not 2-connected. From Theorem 3.3, it 
therefore follows that G is 2-connected if and only if every two points of G 

lie on a cycle. Dirac [D8] extended this observation to n-connected 
graphs. 

Theorem 5.6 If G is n-connected, n > 2,:then every set of n points of G lie 

on a cycle. 

By taking G to be the cycle C, itself, it is seen that the converse is not 

true for n > 2. 
A characterization of 3-connected graphs also exists, although its 

formulation is not as easily given. In order to present this result, we need 
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W.e=K,+Cs: 

Fig. 5.2. A wheel. 

the “wheel” invented by the eminent graph theorist W. T. Tutte. Forn > 4, 

the wheel W, is defined to be the graph K, + C,_,. (See Fig. 5.2.) 

Tutte’s theorem {T13] characterizing 3-connected graphs can now be 

stated. 

Theorem 5.7 A graph G is 3-connected if and only if G is a wheel or can be 

obtained from a wheel by a sequence of operations of the following two 

types: 

1. The addition of a new line. 

2. The replacement of a point v having degree at least 4 by two adjacent 

* points v’, v” such that each point formerly joined to v is joined to exactly 

one of v’ and v” so that in the resulting graph, deg v' > 3 and deg v” > 3. 

The graph G of Fig. 5.3 is 3-connected since it can be obtained from the 
wheel W, as indicated. 

An n-component of a graph G is a maximal n-connected subgraph. In 

particular, the 1-components of G are the nontrivial components of G while 
the 2-components are the blocks of G with at least 3 points. It is readily 

seen that two different 1-components have no points in common, and two 

() @) 

Fig. 5.3. Demonstration that a graph is 3-connected. 
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Fig. 5.4. A graph with two 3-components which meet in two points. 

distinct 2-components meet in at most one point. These facts have been 
generalized by Harary and Kodama [HK1]. (See Fig. 5.4.) 

Theorem 5.8 Two distinct n-components of a graph G have at most n — 1 

points in common. 

GRAPHICAL VARIATIONS OF MENGER’S THEOREM 

In 1927 Menger [M9] showed that the connectivity of a graph is related to 

the number of disjoint paths joining distinct points in the graph. Many 

of the variations and extensions of Menger’s result which have since appeared 

have been graphical, and we discuss some of these here. By emphasizing the 

form these theorems take, it is possible to classify them in an illuminating 
way. 

Let u and v be two distinct points of a connected graph G. Two paths 

joining u and v are called disjoint (sometimes called point-disjoint) if they 

have no points other than u and v (and hence no lines) in common; they are 

line-disjoint if they have no lines in common. A set S of points, lines, or points 

and lines separates u and v if u and v are in different components of G — S. 
Clearly, no set of points separates two adjacent points. Menger’s Theorem 

was originally presented in the “point form” given in Theorem 5.9. 

Theorem 5.9 The minimum number of points separating two nonadjacent 

points s and t is the maximum number of disjoint s—t paths. 

Proof. We follow the elegant proof of Dirac [D10]. It is clear that if k 

points separate s and t, then there can be no more than k disjoint paths 

joining s and t. 

It remains to show that if it takes k points to ioetete s and t in G, there 

are k disjoint s-t paths in G. This is certainly true ifk = 1. Assume it is not 
true for some k > 1. Let h be the smallest such k, and let F be a graph with 

the minimum number of points for which the theorem fails for h. We 
remove lines from F until we obtain a graph G such that h points are required 

to separate s and t in G but for any line x of G, onlyh — 1 points are required to 

separate sandtinG — x. We first investigate the properties of this graph G, 

and then complete the proof of the theorem. 
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By the definition of G, for any line x of G there exists a set S(x) of h — 1 

points which separates s and t in G — x. Now G — S(x) contains at least 

one s-t path, since it takes h points to separate s and t in G. Each such s-t 

path must contain the line x = uv since it is not a path in G— x. So 

u, v € S(x) and ifu # s, t then S(x) U {u} separates s and ¢ in G. 

If there is a point w adjacent to both s and t in G, then G — w requires 

h — 1 points to separate s and t and so it has h — 1 disjoint s—t paths. 

Replacing w, we have h disjoint s—t paths in G. So we have shown: 

(I) No point is adjacent to both s and t in G. 

Let W be any collection of h points separating s and t in G. An s-W 

path is a path joining s with some w; € W and containing no other point of 

W. Call the collections ofall s-W paths and W-t paths P, and P, respectively. 
Then each s—t path begins with a member of P, and ends with a member of 

P,, because every such path contains a point of W. Moreover, the paths in 

P, and P, have the points of W and no others in common, since it is clear 
that each w, is in at least one path in each collection and, if some other point 

were in both an s-W and a W-t path, then there would be an s—t path con- 

taining no point of W. Finally, either P, — W = {s} or P, — W = {t}, 
since, if not, then both P, plus the lines {w,t, wt, ---} and P, plus the lines 
{sw,, SW, °°} are graphs with fewer points than G in which s and ¢ are 
nonadjacent and h-connected, and therefore in each there are h disjoint 

s-t paths. Combining the s-W and W-t portions of these paths, we can 

construct h disjoint s—t paths in G, and thus have a contradiction. Therefore 
we have proved: 

(II) Any collection W of h points separating s and t is adjacent either to 
sortot. 

Now wecan complete the proof of the theorem. Let P = {s, uy, u,°--, t} 

be a shortest s—t path in G and let u,u, = x. Note that by (1), u, ¥ t. Form 

S(x) = {v,, V2,‘°*, U,_1} aS above, separating s and t in G — x. By (I), 
u,t €G, so by (ID, with W = S(x) u {u,}, sv;€G, for all i. Thus by (1), 

v,t ¢ G, for all i. However, if we pick W = S(x) U {u,} instead, we have by 
(II) that su, € G, contradicting our choice of P as a shortest st path, and 

completing the proof of the theorem. 

In Fig. 5.5 we display a graph with two nonadjacent points s and t 

which can be separated by removing three points but no fewer. In accordance 

with the theorem, the maximum number of disjoint s—t paths is 3. 

Chronologically the second variation of Menger’s Theorem was pub- 

lished by Whitney in a paper [W11] in which he included a criterion for a 

graph to be n-connected. 

Theorem 5.10 A graph is n-connected if and only if every pair of points are 

joined by at least n point-disjoint paths. 

—— 
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Fig. 5.5. A graph illustrating Menger s Theorem. 

An indication of the relationship between Theorems 5.9 and 5.10 is easily 

supplied by introducing the concept of local connectivity. The local con- 
nectivity of two nonadjacent points u and v of a graph is denoted by x(u, v) 
\and is defined as the smallest number of points whose removal separates 

uand v. In these terms, Menger’s Theorem asserts that for any two specific 

nonadjacent points u and v, k(u, v) = “o(u, v), the maximum number of 

point-disjoint paths joining u and v. Obviously both theorems hold for 
complete graphs. If we are dealing with a graph G which is not complete, 

then the observation which links Theorems 5.9 and 5.10 is that K(G) = 

min x(u, v) over all pairs of nonadjacent points u and v. 
Strangely enough, the theorem analogous to Theorem 5.9 in which the 

pair of points are separated by a set of lines was not discovered until much 

later. There are several nearly simultaneous discoveries of this result which, 

appeared 1 in papers by Ford and Fulkerson [FF1] (as a special case of their. 
“max-flow, min-cut” theorem) and Elias, Feinstein, and Shannon [EFS1], 

and also in unpublished work of A. Kotzig. 

Theorem 5.11 For any two points of a graph, the maximum number of line- 

disjoint paths joining them equals the minimum number of lines which 

separate them. 

Referring again to Fig. 5.5, we see that s and t can be separated by 

the removal of five lines but no fewer, and that the maximum number of 

line-disjoint s—t paths is five. 
Even with only these three theorems available, we can see the beginnings 

of a scheme for classifying them. The difference between Theorems 5.9 and 

5.10 may be expressed by saying that Theorem 5.9 involves two specific 

points of a graph while Theorem 5.10 gives a bound in terms of two general 

points. This distinction, as well as the obvious one between Theorems 5.9 

and 5.11, is indicated in Table 5.1. 

Thus we see that with no additional effort we can get another variation of 
Menger’s Theorem by stating the line form of the Whitney result. 



50 CONNECTIVITY 

Table 5.1 

Theorem i Objects separated Maximum number Minimum number 

5.9 specific u, v disjoint paths points separating u, v 

5.10 general u, v disjoint paths points separating u, v 

5.11 specific u, v line-disjoint paths lines separating u, v 

Theorem 5.12 A graph is n-line-connected if and only if every pair of points 

are joined by at least n line-disjoint paths. 

In Menger’s original paper there also appeared the following variation 

involving sets of points rather than individual points. 

Theorem 5.13 For any two disjoint nonempty sets of points V, and V,, the 

maximum number of disjoint paths joining V, and V, is equal to the minimum 

number of points which separate V, and Vj. 

Of course it must be specified that no point of V, is adjacent with a 

point of V, for the same reason as in Theorem 5.9. Two paths joining V, 

and V, are understood to be disjoint if they have no points in common other 
than their endpoints. A proof of the equivalence of Theorems 5.9 and 5.13 

is extremely straightforward and only involves shrinking the sets of points 

V, and V, to individual points. 

Another variation is given in the next theorem, considered by Dirac 

[D9]. Because the proof involves typical methods in the demonstration of 

equivalence of these variations, we include it in full. 

Theorem 5.14 A graph with at least 2n points is n-connected if and only if 
for any two disjoint sets V, and V, of n points each, there exist n disjoint 

paths joining these two sets of points, . 

Note that in this theorem these n disjoint paths do not have any points 

at all in common, not even their endpoints! 

Proof. To show the sufficiency of the condition, we form the graph G’ from 

G by adding two new points w, and w, with w, adjacent to exactly the points 
of V,, i =-1, 2. (See Fig. 5.6.) 

Since G is n-connected, so is G’, and hence by Theorem 5.9 there are n 

disjoint paths joining w, and w,. The restrictions of these paths to G are 
clearly the n disjoint V,—V, paths we need. 

To prove the other “half,” let S be a set of at least n — 1 points which 
separates G into G, and G,, with points sets V', and V, respectively. Then, 
since [V4] > 1, |V2| => 1, and |V4| + |V4| + |S] =|V| = 2n, there is a 
partition of S into two disjoint subsets S$, and S, such that |V, U S,| >n 

and|V, U S,| => n. Picking any n-subsets V, of V', U S,, and V, of V, U S2, 
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Vy ins 

Fig. 5.6. Construction of G’. 

we have two disjoint sets of n points each. Every path joining V, and V, 

must contain a point of S, and since we know there are n disjoint V,—-V, 
paths, we see that |S| > n, and G is n-connected. 

We have.defined connectivity pairs fora graph. Similarly, one can define 
connectivity pairs for two specific points u and v. It is then natural to ask for 

a mixed form of Menger’s Theorem involving connectivity pairs. The 
following theorem of Beineke and Harary [BH6] is one such result ; a proof 

can be readily supplied by imitating that of Theorem 5.9. 

‘Theorem 5.15 The ordered pair (a, b) is a connectivity pair for points u and v 

in a graph G if and only if there exist a point-disjoint uv paths and also b 
line-disjoint u-v paths which are line-disjoint from the preceding a paths, 

and further these are the maximum possible numbers of such paths. 

In general, all of the theorems we have mentioned have corresponding 

digraph forms, and in fact Dirac points out that his proof of Menger’s 

Theorem works equally well for directed graphs. At this point, then, we 
could add eleven more theorems to Table 5.1, namely Theorems 5.12 through 
5.15, and the’directed forms of Theorems 5.9 through 5.15. This would be a 

somewhat futile effort, however, since it should be clear that the table would 

still be far from complete. To count the total number of variations which 

have been suggested up to this point, we note that we may consider either a 

graph G or a digraph D, in which we may separate 

i) specific points u, v, 

ii) general points y, v, 

ili) two sets of points V,, V, (as in Theorem 5.13). 

This separation may be accomplished by removing 

i) points, 

ii) lines, or 

iii) points and lines (as in Theorem 5.15). 

\ 
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By taking all possible combinations of these alternatives, we could 

construct 2-3-3 = 18 theorems. The fact that all of these theorems are 
true may be verified by the reader, although it would be a tedious exercise. 

Finally, Fulkerson [F13] proved the following theorem, which deals 
with disjoint cutsets instead of disjoint paths. 

Theorem 5.16 In any graph, the maximum number of line-disjoint cutsets 

of lines separating two points u and v is equal to the minimum number of © 

lines in a path joining u and v; that is, to d(u, v). 

Although this theorem is of Mengerian type, it is much easier to prove 

than Mefiger’s Theorem. By taking all the possible variations of this theorem, 
as we have with the theorems.involving paths, we could increase the number 

of Mengerian theorems again. 

FURTHER VARIATIONS OF MENGER’S THEOREM 

In this section we include several additional variations of Menger’s Theorem, 

all discovered independently and only later seen to be related to each other 

and to a graph theoretic formulation. 

A network N may beregarded as a graph or directed graph together with 

a function which assigns a positive real number to each line. For precise 

definitions of “maximum flow” and “minimum cut capacity,” see the book 

[FF2] by Ford and Fulkerson. 

Fig. 5.7. A network with integral capacities. 

Theorem 5.17 In any network N in which there is a path from u to », the 

maximum flow from u to v is equal to the minimum cut capacity. 

It is straightforward but not entirely obvious to verify that in Fig. 5.7 
the maximum flow in the network from u to v is 7, and that the minimum 

cut capacity is also 7. 

In the case where all the capacities are positive integers, as in this net- 

work, there is an immediate equivalence between the maximum flow theorem 
and that variation of Menger’s Theorem in which the setting is a directed 
multigraph D and there are two specific points u and v. The transformation 
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in N v; in D v; 

va 

ve 

u u 

Fig. 5.8. The transformation from network to multigraph. 

which makes this equivalence apparent is displayed in Fig. 5.8 in which 
the directed line from u to v, in Fig. 5.7 which has capacity 3 is transformed 

into three directed lines without any capacity indicated. 
| Let us define a line of a matrix as either a row or a column. In a binary 

matrix M, a collection of lines is said to cover all the unit entries of M 

if every 1 is in one of these lines. Two 1’s of M are called independent if they 
are neither in the same row nor in the same column. K6nig [K9] obtained 
the next variation of Menger’s Theorem in these terms; compare Theorem 

10.2. 

Theorem 5.18 In any binary matrix, the maximum number of independent 

unit elements equals the minimum number of lines which cover all the units. 

Be Or des O O00 070-1 04 0 0 
te OAL NOT 1 OOO 0" 0 

M=1]0 01001 Mos 10° 0, 040 0 1 
Oral ti 40. 171.0 Oost Oe Os: Oy 0 
Oe O Ld O80. 1 00000 0 

We illustrate Theorem 5.18 with the binary matrix M above. All the 

unit entries of M are covered by rows 2 and 4 and columns 3 and 6, but there 
is no collection of three lines of M which covers all its 1’s. In the matrix M’ 

there are shown four independent unit entries of M and there is no set of five 

independent 1’s in M. 
When this matrix M is regarded as an incidence matrix of sets versus 

elements, Theorem 5.18 becomes very closely related to the celebrated 
theorem of P. Hall [H8], which provides a criterion for a collection of finite 
sets S,,S,,:--,S,, to possess a system of distinct representatives. This 

means a set {e,, €2,°--, é,,} of distinct elements such that e; is in S;, for each i. 
We present here the proof of Hall’s Theorem which is due to Rado [R1]. 

Theorem 5.19 There exists a system of distinct representatives for a family 
of sets S,, S,,---, S,, if and only if the union of any k of these sets contains 

at least k elements, for all k from 1 to m. 

Proof. The necessity is immediate. For the sufficiency we first prove that if 

the collection {S,} satisfies the stated conditions and |S,,| > 2, then there is an 
element e in S,, such that the collection of sets S,, S3,°--, Sm—1, Sm — {e} 
i 

Y! 
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also satisfies the conditions. Suppose this is not the case. Then there are 

elements e and fin S,, and subsets J and K of {1, 2,---, m — 1} such that 

(u s) U(Sn — {e}) (u s) U (Sm — (a) < |K| +1. 
ieJ ieK 

<|J| +1 and 

But then 

|J| + |K| = (u 5: U(S,, — {e}) 
J 

( U s) U Sm 
JUK 

eS UP OR oe et > gL eee 

- (ys) 
> le KY 

JK 

which is a contradiction. 
The sufficiency now follows by induction on the maximum of the 

numbers |S;|._ If each set is a singleton, there is nothing to prove. The in- 

duction.step is made by application (repeated if necessary) of the above 

result to the sets of largest order. 

S; Sy S3 S, Ss Se 

a, a, a3 a as a ay 

Fig. 5.9. A bipartite graph illustrating Hall’s Theorem. 

In Fig. 5.9 we show a bipartite graph B in which the points refer either to 

sets S; or to elements a;. Two points of B are adjacent if and only if one is a 
set point, the other is an element point, and the element is a member of the 

set. The link between Theorem 5.19 and Menger’s Theorem is accomplished 
by introducing two new points into a graph of the form of Fig. 5.9. Call 

these points u and v and join u to every set point S; and v with every element 
point a;to obtain a new graph. Theorem 5.19 can then be proved by applying 

either the maximum flow theorem or the appropriate line form of Menger’s 
Theorem to this graph. 

Although the following theorem due to Dilworth [D4] is expressed in 

terms of lattice theory,* it has been established (see Mirsky and Perfect 
[MP1 ]) that the result is equivalent to Hall’s Theorem. Two elements of a 
lattice (see Birkhoff [B13]) are incomparable if neither dominates the other. 

* More generally the result holds for partially ordered sets. 
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_ By a chain in a lattice is meant a downward path from an upper element to a 

| lower element in the “Hasse diagram” of the lattice. 

Theorem 5.20 In any finite lattice, the maximum number of incomparable 

elements equals the minimum number of chains which include all the 
| elements. 

For example, in the lattice of the 3-cube, there are at most three incom- 

parable elements; it is easy to cover all the elements with three chains but 

impossible to do so with only two chains. 

We have seen in this section several theorems of Mengerian type 
occurring in settings which are not graph theoretic. A more extensive 

treatment of such results appears in the review article [H33]. For an elegant 

summary of the vast literature on theorems involving systems of distinct 

representatives, see Mirsky and Perfect [MP1]. 

EXERCISES 

5.1 The connectivity of 

| a) the octahedron K, + C, is 4. 
b) the square of a polygon C,, n > 5, is 4. 

| 
. 

5.2 Every n-connected graph has at least pn/2 lines. 

5.3 Construct a graph with k = 3,4 = 4,6 = 5. 

5.4 Theorem 5.3 does not hold if.A(G) is replaced by x(G). 

5.5 There exists no 3-connected graph with seven lines. 

5.6 The connectivity and line-connectivity are equal in every cubic graph. 

5.7 Determine which connectivity pairs can occur in 4-regular graphs. 

5.8 If G is regular of degree r and k = 1, then d < [r/2]. 

5.9 Construct a family of (p,q) graphs with 2q/p integral such that k = 2q/p. 

5.10 Let G be a complete n-partite graph other than C,. Then every minimum line 

cutset is the coboundary of some point. (M. D. Plummer) 

5.11 Find the connectivity function for s and ¢ in the graph of Fig. 5.5. 

5.12 Find a graph with points s and t for which the connectivity function is (0, 5), (1, 3), 

(2, 2), (3, 0). 
5.13 Use Tutte’s Theorem 5.7 to show that the graph of the cube Q; is 3-connected. 

5.14 Every block of a connected graph G is a wheel if and only if gq = 2p — 2 and 

K(u, v) = 1 or 3 for any two nonadjacent points uy, v. (Bollobas [B14]) 

5.15 Every cubic triply-connected graph can be obtained from K, by the following 

construction. Replace two distinct lines u,v, and u,v, (u,; = uy is permitted) by the 

subgraph with two new points w,, w, and the new lines u,w,, w,0,, U,W>, W2V2, and 

W,W2- 
ls 
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5.16 Given two disjoint paths P, and P, joining two points u and v of a 3-connected 

graph G, is it always possible to find a third path joining u and v which is disjoint from — 

both P, and P,? 2 

5.17 State the result analogous to Theorem 5.9 for the maximum number of eisipin’ 

paths joining two adjacent points of a graph. 

*5.18 If f(p) is the smallest number such that for q > f,(p) every (p, q) graph has two 

points joined by r disjoint paths, then 

filp)=p, fp) = [Bp — 1/2], and f,(p) = 2p — 1. 

(Bollobas [B14]) 

5.19 If G has diameter d and x > 1, then p > x(d — 1) + 2. (Watkins [W5]) 

5.21 If G is connected, then 

kK(G) = 1 + min K(G — v) 
veV 

5.22 In any graph, the maximum number of disjoint cutsets of points separating two 

points u and v equals d(u, v) — 1. 

§.23 In a x-minimal graph G, k(G — x) < x(G) for every line x. 

a) Gis x-minimal if and only if x(u, v) = «(G) for every pair of adjacent points u, v. 

b) If Gis x-minimal then 6 = kx. (Halin [H5])° 

5.24 Prove the equivalence of Theorems 5.18 and 5.19. (See for example M. Hall 

[H7, p. 49]). 

5.25 If G is n-connected, n > 2, and 6(G) > (3n — 1)/2; then there exists a point v in G 

such that G — v is n-connected. (Chartrand, Kaugars, and Lick [CKL1]) 



‘CHAPTER 6 

PARTITIONS 

Gallia est omnis divisa in trés partes. 

JuLius CAESAR, de Bello Gallico 

The degrees d,,---,d, of the points of a graph form a sequence of non- 
negative integers, whose sum is of course 2g. In number theory it is customary 

to define a partition of a positive integer n as a list or unordered sequence 

of positive integers whose sum isn. Under this definition, 4 has five partitions : 

Bee ott 2 22 te beak hata iat be Sdilct de 

The order of the summands in a partition is not important. The degrees 
of a graph with no isolated points determine such a partition of 2q, but 

because of the importance of having a general definition holding for all 

graphs, it is convenient to use an extended definition, changing positive 

to nonnegative. 

24141 I+1+141h 

Fig. 6.1. The graphical partitions of 4. 

A partition of a nonnegative integer n is a finite list of nonnegative 

integers with sum n. In this sense, the partitions of.4 also allow an arbitri -y 
finite number of zero summands. The partition of a graph is the partition >f 

2q as the sum of the degrees of the points, 2g = 2 d;,asin Theorem 2.1. On y 

two of the five partitions of 4 into positive summands belong to a graph, see 

Fig. 6.1. 
A partition © d; of n into p parts is graphical if there is a graph G whose 

| points have degrees d;. If such a partition is graphical, then certainly every 

57 
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d; < p — 1, and n is even. These two conditions are not sufficient for a 

partition to be graphical, as shown by the partition 10 = 3 +3+3+4+ 1. 

Two related questions arise. First, how can one tell whether a given partition 

is graphical? Second, how can one construct a graph for a given graphical 

partition? An existential answer to the first was given by Erdos and Gallai 

[EG1]. Another answer found independently by Havel [H36] and Hakimi 
[H4] is constructive in nature, and so answers the second question as well. 
We first give this result. 

Theorem 6.1 A partition IT = (d,, d,---,d,) of an even number into p 

parts with p—1>d, >d,>°::2>d, is graphical if and only if the 
modified partition 

1g =(d, a lid; = Bi? dgtees = 1, dai 42.1 Sag 

is graphical. 

Proof. If II’ is graphical, then so is I, since from a graph with partition IT’ 

‘one can construct a graph with partition II by adding a new point adjacent 

to points of degrees d, — 1, d,; — 1,---, dy,4, — 1. 

Now let G be a graph with partition IT. Ifa point of degree d, is adjacent 

to points of degrees d; fori = 2 tod, + 1, then the removal of this point 

results in a graph with partition IT’. 

Therefore we will show that from G one can get a. graph with such a 

point. Suppose that G has no such point. We assume that in G, point v; has 

degree d;, with v, being a point of degree d, for which the sum of the degrees 

of the adjacent points is maximum. Then there are points v, and v; with 

d; > d; such that v,0; is a line but v,0; is not. Therefore some point v, is 

adjacent to v; but not to v;. Removal of the lines v,v; and v,v; and addition 
of v,v; and v,v; results in another graph with partition II in which the sum 

of the degrees of the points adjacent to v, is greater than before. Repeating 
this process results in a graph in which v, has the desired property. 

The theorem gives an effective algorithm for constructing a graph with a 

given partition, if one exists. If none exists, the algorithm cannot be applied 

at some step. 

Corollary 6.1 (Algorithm) A given partition II = (d,, d,,---, d,) with 

piles dyad; Bron sed: 

is graphical if and only if the following procedure results in a partition with 

every summand zero. 

1. Determine the modified partition IT’ as in the statement of Theorem 6.1. 
2. Reorder the terms of IT’ so that they are nonincreasing, and call the 

_ resulting partition I1,. 
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vy V6 

b3 

V2 V7 

Fig. 6.2. An example of the algorithm for graphical partitions. 

3. Determine the modified partition II” of I], as in step 1, and the re- 

ordered partition IT). 

4. Continue the process as long as nonnegative summands can be obtained. 

If a partition obtained at an intermediate stage is known to be graphical, 
stop, since IT itselfis then established as graphical. To illustrate this algorithm, 
we test the partition 

TT = (5, 5, 3, 3;.2)2,2) 
=e 4221-1, 2) 
Uh i serlten4e202, 2. dy 1) 
fi" =.() Holt db0e); 

Clearly II” is graphical, so I is also graphical. The graph so constructed is 

shown in Fig. 6.2. 
The theorem of Erdés and Gallai [EG1] is existential in nature, but its 

proof uses the same construction. 

Theorem 6.2 Let IT = (d,, d,,---,d,) be a partition of 2q into p > 1 parts, 

d, >d,>-+-:>d,. ThenTI is graphical if and only if for each integer r, 

ter = p: — 1, 

r P 

Yd; < rr — 1) + >) min {r, d;}. (6.1) 
i=1 i=r+1 

Proof. The necessity of these conditions (6.1) is straightforward. Given 
that IT is a partition of 2q belonging to a graph G, the sum of the r largest 

degrees can be considered in two parts, the first being the contribution to this 

sum of lines joining the corresponding r points with each other, and the 

second obtained from lines joining one of these r points with one of the 

' remaining p — rpoints. These two parts are respectively at most r(r — 1) and 

> ears min {r, dj}. 
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The proof of the sufficiency is by induction on p. Clearly the result holds — 

for sequences of two parts. Assume that it holds for sequences of p 

parts, and let d;, d2,---, d,,, be a sequence satisfying the hypotheses of the 
theorem. 

Let m and n be the smallest and largest integers such that 

Aner =o = day, = = a, 

Form a new sequence of p terms by letting 

dj44—1 for i=1tom—1andn-— 1 —(d, —m)ton —1, 

a oe otherwise. 

If the hypotheses of the theorem hold for the new sequence e,,°--, eo 
then by the induction hypothesis, there will be a graph with the numbers e; 

as degrees. A graph having the given degree sequence d; will be formed by 

adding a new point of degree d, adjacent to points of degrees corresponding 

to those terms e; which were obtained by subtracting 1 from terms d;,, as 

above. 
Clearly p > e, > e, > **: > e,. Suppose that condition (6.1) does not 

hold and let h be the least value of r for which it does not. Then 

h P 

Ye > hh-1)+ ¥ min {h, e;} (6.2) 
i=1 i=h+1 

But the following inequalities do hold: 

h+1 ; pti 

2 d,<h(h+1)+ ¥ min {h + 1,4}, (6.3) 
i=h+2 

Pp 

oe <'(h — 1h — 2) + }min {h — 1, e;}, (6.4) 
i=1 i=h 

h-2 Pp 

Ye, < (h — 2h — 3) + YY min {h — 2,e)}. (6.5) 
i=1 i=h-1 

Let s denote the number of values of i < h for which e; = d;,, — 1. 
Then (6.3)—(6.5) when combined with (6.2) yield 

> 
dj +s<2h+ Y. (min {h+ 1,d),,} — min {he}), (6.6) 

i=h+1 
Pp Y 

e, > 2h — 1) — min {h — 1, e,} + YY (min {h, e;} — min {h — 1, e}), 
i=h+1 

(6.7) 
Cy ah ae eek aA iG ert ORR es 2 a 1} — min {h — 2, e,} 

is (min {h, e;} — min {h — 2, e,}). (6.8) 
i=h+1 
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Note that e, > h since otherwise inequality (6.7) gives a contradiction. 

Let a, b, and c denote the number of values of i > h for which e; > h, e; = h, 

_and e; < h, respectively. Furthermore, let a’, b’, and c’ denote the numbers 

_ of these for which e; = d;,, — 1. Then 

dj=sta+b +c. (6.9) 

The inequalities (6.6)—(6.8) now become 

d,+s<2h+a+b' +c, (6.10) 

e, >h+a+b, (6.11) 

P 

€,-1 + &, = 2h -—1+ YD (min fh, e;} — min {h — 2,e,}). (6.12) 
i=h+1 

There are now several cases to consider. 

CASE 1. c’ = 0. Since d, > e,, we have from (6.11), 

h+a+b< d,. 

But a combination of (6.9) and (6.10) gives 

2d, << 2h + a+ a) + 2b, 

which is a contradiction. 

CASE 2. c’ > 0 and d,,, >. This means that d,,, = e; + 1 whenever 
d;,,; > h. Therefore since d,,, > h, s = hand a =a’. But the inequalities 

(6.10) and (6.9) imply that 

d,+h<2ht+a+b+c=d, +h, 

a contradiction. 

CASE 3. c’ > 1 and d,,, = h. Under these circumstances, e, = h and a = 

b= 0, sod, =s+c’. Furthermore, since e, = d,+1, €¢; = 4 — 1 for at 

least c’ values of i > h. Hence inequality (6.12) implies 

Q-12h-1+4+c>h 

so that e,_, = d, — 1. Therefore s = h — 1, and 

d, == |f) —1+ Gh sai all Me cab #79 

a contradiction. 

CASE 4. c’ =1 and d,,, =h. Again, e, =h,a=b=0, and d,;=s+c. 
Since s < h — 1, d, = h. But this implies s = 0 and d, = 1, so alld; = 1. 
Thus (6.1) is obviously satisfied, which is a contradiction. 

Since e, > h and d,,, > e,, we see that d,,, cannot be less than h. 

Thus all possible cases have been considered and the proof is complete. 
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T: T2: 

Fig. 6.3. Two trees with the same partition. 

Sometimes, it can be determined quite rapidly whether a given partition 

is graphical and, if it is, the nature of the graphs having this partition may 

also be discernible. For example, it is easy to give a criterion for a partition 

to belong to a tree. This result answers a question posed by Ore [O5, p. 82]; 

it has been found independently many times. 

Theorem 6.3 A partition 2q = £4 d; belongs to a tree if and only if each d; is 

positive and q = p — l. 

As an illustration, consider the partition 16 =5+3+2+1+1+ 
1+1+1+ 41. Here d; > 0 for each i and q = 8 while p= 9. Thus 
Theorem 6.3 assures us that this is the partition of a tree. Two trees to which 

this partition belongs are shown in Fig. 6.3. But the following graph has 

the same partition and is not a tree. 

WV! 
Fig. 6.4. 

EXERCISES 

6.1 Which of the following partitions are graphical? 

a)44+34+34+34+24+24+2+1. 

by 8 + 7 +6 SE aE se 22 1, 
c54+54+54+34+34+34+343. 

J) 544434240414 14 041414141. 

6.2 Draw all the graphs having the partitionS +5+3+3+4+242. 

6.3 The partition 16=5+3+2+1+1+1+1+1+4 1 belongs to each of 

the trees in Fig. 6.3. Are there any other trees with this partition? 

6.4 Construct all regular graphs with six points. 

6.5 Construct all 5 connected cubic graphs with 8 points; all 19 with 10 points. 

°6.6 There is no graphical partition in which the parts are distinct. Whenever p > 2, 
there are exactly two graphs with p points in which just two parts of the partition are 

equal, and these graphs are complementary. (Behzad and Chartrand [BC3]) 

) 
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6.7 A graphical partition is simple if there is exactly one graph with this partition. 

Every graphical partition with four parts is simple, and the smallest number of parts 

‘in a graphical partition which is not simple is five. 

| 6.8 A partition (d,, d,,---, d,) belongs to a pseudograph (note that a loop contributes 

2 to the degree of its point) if and only if © d; is even. (Hakimi [H4}]) 

6.9 If a partition of an even integer 2q has the form II = (d,, d,,°--,d,) with 

d, > d, >--- > d,, then II belongs to some multigraph if and only if q > d,. 

(Hakimi [H4]) 

*6.10 A partition II which belongs to some multigraph (see preceding exercise) belongs 

to exactly one if and only if at least one of the following conditions holds: 

UD 03 

2. d,=d,+---+d, 
3. dj +2=d,+-:::+d,andd,=d, =:-: =d, 
4. p=4andd,;>d,=1 

9.0dy += d, = 1. (Senior [S11]; Hakimi [H4]) 

6.11 Prove or disprove: A tree partition belongs to more than one tree if and only if 

at least one part is greater than 2, three parts are greater than 1, and if only three, then 

they are not equal. 

6.12 Let II = (d,, d,,-::,d,) with d, > d, >--: >d, and p > 3 be a graphical 

partition. Then 

II belongs to some connected graph if and only if d, > Oand< d; > 2p — 1). 

6.13 A graphical partition I] as in ‘the preceding exercise belongs to some n-line- 

connected graph with n > 2 if and only if every d; > n. (Edmonds [E1 ]) 

6.14 For any nontrivial graph G and for any partition p =p, + p, there exists a 

partition V = V, U V, such that |V;| = p,; and A({V,>) + A(V,>) < A(G). 

(Lovasz [L4]) 
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TRAVERSABILITY 

A lie will get you a long way, 

but it won’t take you home. 

ANONYMOUS 

One feature of graph theory that has helped to popularize the subject lies in 

its applications to the area of puzzles and games. Often a puzzle can be 

converted into a graphical problem: to determine the existence or non- 
existence of an “eulerian trail” or a “hamiltonian cycle” within a graph. As 

mentioned in Chapter 1, the concept of an eulerian graph was formulated 

when Euler studied the problem of the Konigsberg bridges. Two char- 

acterizations of eulerian graphs are presented. Hamiltonian graphs are 

studied next and some necessary conditions and some sufficient conditions for 
graphs to be hamiltonian are given. However, it still remains a challenging 

unsolved problem to discover an elegant, useful characterization of 
hamiltonian graphs, rather than only a disguised paraphrase of the definition. 

EULERIAN GRAPHS 

As we have seen in Chapter. 1, Euler’s negative solution of the K6nigsberg 

Bridge Problem constituted the first publicized discovery of graph theory. 

The perambulatory problem of crossing bridges can be abstracted to a 
graphical one: given a graph G, is it possible to find a walk that traverses 

each line exactly once, goes through all points, and ends at the starting point? 

A graph for which this is possible is called eulerian. Thus, an eulerian graph 

has an eulerian trail, a closed trail containing all points and lines. Clearlv, 

an eulerian graph must be connected. 

Theorem 7.1 The following statements are equivalent for a connected 
graph* G: 

(1) G is eulerian. 

(2) Every point of G has even degree. 

(3) The set of lines of G canbe partitioned into cycles. 

* The theorem clearly holds for multigraphs as well. 
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Proof. (1) implies (2) Let T be an eulerian trail in G. Each occurrence of a 
given point in T contributes 2 to the degree of that point, and since each line 

of G appears exactly once in T, every point must have even degree. 

(2) implies (3) Since G is connected and nontrivial, every point has degree at 

_ least 2,so Gcontains acycle Z. The removal of the lines of Z results in a span- 

| 

| 
| 
| 

ning subgraph G, in which every point still has even degree. If G, has no 
lines, then (3) already holds; otherwise, a repetition of the argument applied 

to G, results in a graph G, in which again all points are even, etc. When a 

totally disconnected graph G, is obtained, we have a partition of the lines of 

G into n cycles. 

(3) implies (1) Let Z, be one of the cycles of this partition. If G consists only 
of this cycle, then G is obviously eulerian. Otherwise, there is another cycle 

Z, with a point v in common with Z,. The walk beginning at v and con- 

sisting of the cycles Z, and Z, in succession is a closed trail containing the 

lines of these two cycles. By continuing this process, we can construct a 

closed trail containing all lines of G; hence G is eulerian. 

Fig. 7.1. An eulerian graph. 

For example, the connected graph of Fig. 7.1 in which every point has 

even degree has an eulerian trail, and the set of lines can be partitioned into” 

cycles. 
By Theorem 7.1 it follows that if a connected graph G has no points of 

odd degree, then G has a closed trail containing all the points and lines of G. 
There is an analogous result for connected graphs with some odd points. 

Corollary 7.1(a) Let G be a connected graph with exactly 2n odd points, 

n> 1. Then the set of lines of G can be partitioned into n open trails. 

Corollary 7.1(b) Let Gbeaconnected graph with exactly two odd points. Then 

G has an open trail containing all the points and lines of G (which begins at 

one of the odd points and ends at the other). 

HAMILTONIAN GRAPHS 

Sir William Hamilton suggested the class of graphs which bears his name 
when he asked for the construction of a cycle containing every vertex of a 

| dodecahedron. If a graph G has a spanning cycle Z, then G is called a 

\ hamiltonian graph and Z a hamiltonian cycle. No elegant characterization 
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Fig. 7.2. A nonhamiltonian block. 

of hamiltonian graphs exists, although several necessary or sufficient con- 
ditions are known. 

A theta graph is a block with two nonadjacent points of degree 3 dnd all 

other points of degree 2. Thus a theta graph consists of two points of degree 
3 andsthree disjoint paths joining them, each of length at least 2. 

Theorem 7.2 Every hamiltonian graph is 2-connected. Every nonhamiltonian 

2-connected graph has a theta subgraph. 

It is easy to find a theta subgraph in the nonhamiltonian block of Fig. 7.2. 

The next theorem, due to Pésa [P7], gives a sufficient condition for a 
graph to be hamiltonian. It generalizes earlier results by Ore and Dirac 

which appear as its corollaries. 

Theorem 7.3 Let G have p > 3 points. If for every n, 1 < n < (p — 1)/2, 

the number of points of degree not exceeding n is less than n and if, for odd p, 
the number of points of degree at most (p — 1)/2 does not exceed (p — 1)/2, 

then G is hamiltonian. 

Proof. Assume the theorem does not hold and let G be a maximal non- 
hamiltonian graph with p points satisfying the hypothesis of the. theorem. 

It is easy to see that the addition of any line to a graph satisfying the con- 

ditions of the theorem results in a graph which also satisfies these conditions. 
Thus since the addition of any line to G results in a hamiltonian graph, any 

two nonadjacent points must be joined by a spanning path. 

We first show that every point of degree at least (p — 1)/2 is adjacent 

to every point of degree greater than (p — 1)/2. Assume (without loss of 

generality) that deg v, > (p — 1)/2 and deg v, > p/2, but v, and », are not 

adjacent. Then there is a spanning path v, v2 --- v, connecting v, and v,. 
Let the pots adjacent to v, be v;,,,°*", v,, where n = deg v, and 2 = 
i, <i, <-** <i,. Clearly v, cannot be adjacent to any point of G of the 

form v;,- ;, for otherwise there would be a hamiltonian cycle 

CONE Baan piear ia He Aer a a SP, 

in G. Now since n > (p — 1)/2, we have p/2 < degv, < p—1—n< p/2 

which is impossible, so v, and v, must be adjacent. 
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v2 

Fig. 7.3. Illustrations for the theorem of Posa. 

It follows that if deg v > p/2 for all points v, then G is hamiltonian. 

_ (This is stated below as Corollary 7.3(b).) For the above argument implies 

_that every pair of points of G are adjacent, so G is complete. But this is a 

contradiction since K, is hamiltonian for all p > 3. 

Therefore there isa point v in G with deg v < p/2. Letmbe the maximum 

degree among all such points and choose v, so that deg v; = m. By hypoth- 

esis the number of points of degree not exceeding m is at most m < p/2. 

_ Thus there must be more than m points having degree greater than m and 

hence at least p/2. Therefore there is some point, say v,, of degree at least p/2 

not adjacent to v,. Since v, and v, are not adjacent, there is a spanning path 

V1 02°**v,. As above, we write v;,,°°*, 0;;, as the points of G adjacent to 

v; and note that v, cannot be adjacent to any of the m points v;,-, for 

1 < j <_m. But since v, and », are not adjacent and v, has degree at least 

p/2, m must be less than (p — 1)/2, by the first part of the proof. Thus, by 

hypothesis, the number of points of degree at most m is less than m, and so 

at least one of the m points v;,_,, say vp’, must have degree at least p/2. 

We have thus exhibited two nonadjacent points v, and v’, each having 

degree at least p/2, a contradiction which completes the proof. 

These sufficient conditions are not necessary. The cubic graph G, in 

Fig. 7.3 is hamiltonian, yet it clearly does not ‘satisfy the conditions of the 

theorem. However, the theorem is best possible in that’no weaker form of it 

will suffice. For example, choose p = 3 and 1 <n < (p — 1)/2, and form 

a graph G, with one cutpoint and two blocks, one of which is K,,,, and the 

other K,_,. This graph is not hamiltonian, but it violates the theorem only 

in that it has exactly n points of degree n. The construction is illustrated in 

Fig. 7.3 for p = 8 andn = 3. If we choose p = 2n + 1,n > 1, and form the 

graph G = K,,,+1, then G is not hamiltonian but violates the theorem-only 

\ 
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Fig. 7.4. The Tutte graph. 

by having (p — 1)/2 + 1 points of degree (p — 1)/2. The graph G, = K,, 
of Fig. 7.3 illustrates this construction for p = 5. 

By specializing Posa’s Theorem, we obtain simpler but less powerful 
sufficient conditions due to Ore [03] and Dirac [D6] respectively. 

Corollary 7.a) If p > 3 and for every pair u and v of nonadjacent points, 
deg u + deg v > p, then G is hamiltonian. 

Corollary 7.3(b) If for all points v of G, deg v > p/2, where p > 3, then G is 
hamiltonian. 

Actually, the cubic hamiltonian graph G, of Fig. 7.3 has four spanning 

cycles. The smallest cubic hamiltonian graph, K,, has three spanning cycles. 

These observations serve to illustrate a theorem of C. A. B. Smith which 

appears in a paper by Tutte [T6]. 

Theorem 7.4 Every cubic hamiltonian graph has at least three spanning 

cycles. 

Tait [T1] conjectured that every cubic 3-connected planar graph* 
contains a spanning cycle. Tutte [T6] settled this in the negative by showing 
that the 3-connected planar graph with 46 points of Fig. 7.4 is not hamiltonian. 

The smallest known nonhamiltonian triply connected cubic planar graph, 

having 38 points, was constructed independently by J. Lederberg, J. Bosak, 

and D. Barnette; see Griinbaum [G10, p. 359]. 
The apparent lack of any relationship between eulerian and hamiltonian 

graphs is illustrated in Fig. 7.5 where each graph is a block with eight points. 

* See Chapter 11 for a discussion of planarity. Tait’s conjecture, if true, would have settled 
the Four Color Conjecture. 
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Hamiltonian Nonhamiltonian 

Eulerian 

Noneulerian 

Fig. 7.5. Eulerian and/or hamiltonian graphs. 

However, in the. next chapter we shall relate eulerian and hamiltonian 

graphs by way of the “line graph.” 
Incidentally, M. D. Plummer conjectures that the square of every 

2-connected graph is hamiltonian. 

EXERCISES 

7.1. Find an eulerian trail in the graph G of Fig. 7.1 and a partition of the lines of G 

into cycles. 

7.2 Ifevery block ofa connected graph G is eulerian, then G is eulerian, and conversely. 

7.3 In Corollary 7.1(a), the partition cannot be done with fewer than n trails. State 

and prove the converse of Corollary 7.1(b). 

_74 A graph is arbitrarily traversable from a point vg if the following procedure always 

results in an eulerian trail: Start at point vp by traversing any incident line; on arriving 

at a point u depart by traversing any incident line not yet used, and continue until no 

new lines remain. 

a) An eulerian graph is arbitrarily traversable from vg if and only if every cycle 

contains vp. (Ore [O2]) 

b) If G is arbitrarily traversable from vo, then vp has maximum degree. 

(Babler [B1]) 

c) If G is arbitrarily traversable from v9, then either vp is the only cutpoint or 
G has no cutpoints. (Harary [H17]) 

7.5 Prove or disprove: If a graph G contains an induced theta subgraph, then G is 

not hamiltonian. 

7.6 a) For any nontrivial connected graph G, every pair of points of G* are joined by 

a spanning path. Hence every line of G? is in a hamiltonian cycle, when p > 3. 
(Karaganis [K2]) 

b) If every pair of points of G are joined by a spanning path and p > 4, then G 
- 

{ is 3-connected. 
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7.7 Give an example of a nonhamiltonian graph with 10 points such that for every 

pair of nonadjacent points u and v, deg u + deg v > 9. 

7.8 How many spanning cycles are there in the complete bigraphs K, , and K, 3? 

79 A graph G is called randomly traceable [randomly hamiltonian] if a spanning 

path [hamiltonian cycle] always results upon starting at any point of G and then 

successively proceeding to any adjacent point not yet chosen until no new points are 

available. 

a) A graph G with p > 3 points is randomly traceable if and only if it is randomly 

hamiltonian. 

b) A graph G with p > 3 points is randomly traceable if and only if it 1s one of the 

graphs C,, K,, or K,,, with p = 2n. (Chartrand and Kronk [CK1]) 

7.10 Theorem 7.3 can be regarded as giving sufficient conditions for a graph to be 

2-connected. This can be generalized to the n-connected case. 

Let G be nontrivial and let 1 <n < p. The following conditions are sufficient 

for G to be n-connected : 

1. For every k such that n — 1 < k < (p + n — 3)/2, the number of points of 

degree not exceeding k does not exceed k + 1 — n. 

2. The number of points of degree not exceeding (p + n — 3)/2 does not exceed 

p—n. (Chartrand, Kapoor, and Kronk [CKK1]) 

7.11 Posa’s theorem can also be generalized in another way. 

Let G have p > 3 and let 0< k < p — 2. If for every integer i with k + 1 < 

i < (p + k)/2, the number of points not exceeding i is less than i — k, then every path of 

length k is contained in a hamiltonian cycle. (Kronk [K13]) 

7.12 Recall that two labeled graphs are isomorphic if there is a label-preserving 

isomorphism between them. By an e-graph is meant one in which every point has even 

degree. 

a) The number of labeled graphs with p points is 2??~ 1¥/. 
b) The number of labeled e-graphs with p points equals the number of labeled 

graphs with p — 1 points. (R. W. Robinson) 

713 If Gisa(p, q) graph with p > 3 and q > (p* — 3p + 6)/2, then G is hamiltonian. 

(Ore [04]) 

7.14 Iffor any two nonadjacent points u and v of G, deg u + deg v = p + 1, then there 

is a spanning path joining every pair of distinct points. (Ore [06]) 

7.15 If G isa graph with p > 3 points such that the removal of any set of at most n 

‘points results in a hamiltonian graph, then G is (n + 2)-connected. 

(Chartrand, Kapoor, Kronk [CKK1]) 

7.16 Consider the nonhamiltonian graphs G such that every subgraph G — v 1s 

hamiltonian. There is exactly one such graph with 10 points and none smaller. 

(Gaudin, Herz, and Rossi [GHR1]) 

7.17 Do there exist nonhamiltonian graphs with arbitrarily high connectivity? 
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CHAPTER 8 

LINE GRAPHS 

A straight line is the shortest distance between two points. 

EUCLID 

The concept of the line graph of a given graph is so natural that it has been 
independently discovered by many authors. Ofcourse, each gave it a different 

name* : Ore [O5] calls it the “interchange graph,” Sabidussi [S7] “derivative” 
and Beineke [B8] “derived graph,” Seshu and Reed [SR1] “edge-to-vertex 
dual,” Kasteleyn [K4] “covering graph,” and Menon [M10] “adjoint.” 
Various characterizations of line graphs are developed. We also introduce 
the total graph, first studied by Behzad [B4], which has surprisingly been 
discovered only once thus far, and hence has no other names. Relationships 

between line graphs and total graphs are studied, with particular emphasis 

on eulerian and hamiltonian graphs. 

SOME PROPERTIES OF LINE GRAPHS 

Consider the set X of lines of a graph G with at least one line as a family 

of 2-point subsets of V(G). The line graph of G, denoted L(G), is the intersec- 
tion graph Q(X). Thus the points of L(G) are the lines of G, with two points of 

L(G) adjacent whenever the corresponding lines of G are. If x = uvisa line 

of G, then the degree of x in L(G) is clearly deg u + deg v — 2. Two exam- 

ples of graphs and their line graphs are given in Fig. 8.1. Note that in this 

figure G, = L(G,), so that L(G,) = L(L(G,)). We write L(G) = L(G), 

L(G) = L(L(G)), and in general the iterated line graph is L(G) = L(Z- 1(G)). 

As an immediate consequence of the definition of L(G), we note that 
every cutpoint of L(G) is a bridge of G which is not an endline, and conversely. 

When defining any class of graphs, it is desirable to know the number of 

points and lines in each; this is easy to determine for line graphs. 

* Hoffman [H46] uses “‘line graph” even though he chooses “‘edge.” Whitney [W11] was the 
first to discover these graphs but didn’t give them a name. 
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xX x 

G,: 

G2: L(G2): 

Fig. 8.1. Graphs and their line graphs. 

Theorem 8.1 If G is a (p, gq) graph whose points have degrees d;, then L(G) 

has q points and q, lines, where 

i ae Sa | +3) d?. 

Proof. By the definition of line graph, L(G) has q points. The d; lines 
incident with a point v; contribute (4) to q,, so 

d. w= Z(4)=$0ad- 0-408 40d deo 
The next result can be proved in many different ways, depending on 

one’s whimsy. 

Theorem 8.2 A connected graph is isomorphic to its ine ‘saan if and only 

if it is a cycle. 

Thus for a (not necessarily connected) graph, G = L(G) if and only if 

G is regular of degree2. 
If G, and G, are isomorphic, then obviously L(G,) and L(G,) are. 

Whitney [W11] found that the converse almost always holds by displaying 
the only two different graphs with the same line graph. The proof given here 

is due to Jung [J3]. 

Theorem 8.3 Let G and G’ be connected graphs with isomorphic line graphs. 
Then G and G’ are isomorphic unless one is K and the other is K, 3. 

Proof. First note that among the connected graphs with up to four points, 
the only two different ones with isomorphic line graphs are K3 and K, 3. 
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Note further that if ¢ is an isomorphism of G onto G’, then there is a derived 
isomorphism ¢, of L(G) onto L(G’). The theorem will be demonstrated 

when the following stronger result is proved. 
If G and G’ have more than four points, then any isomorphism ¢, of 

L(G) onto L(G’) is derived from exactly one isomorphism of G to G’. 

We first show that @, is derived from at most one isomorphism. Assume 

there are two such, ¢ and y. We will prove that for any point v of G, d{v) = 

y(v). There must exist two lines x = uv and y = uw or ow. If y = vw, then 

the points ¢(v) and y(v) are on both lines ,(x) and ¢,(y), so that since only 

one point is on both these lines, ¢(v) = W(v). By the same argument, when 

y = uw, O(u) = Wu) so that since the line ¢,(x) contains the two points 

(v) and d(u) = Wu), we again have ¢(v) = y(v). Therefore ¢, is derived 

from at most one isomorphism of G to G’. 
We now show the existence of an isomorphism @ from which ¢, is 

derived. The first step is to show that the lines x, = uv,, x, = uv,, and 

x3 = uv, ofa K, , subgraph of G must go to the lines of a K, , subgraph of 

G' under ¢,. Let y be another line adjacent with at least one of the x,;, which is 

adjacent with only one or all three. Such a line y must exist for any graph 

with p > 5 and the theorem is trivial for p < 5. If the three lines $,(x,) 

form a triangle instead of K,, then #,(y) must be adjacent with precisely 

two of the three. Therefore, every K,, must go toa K, 3. 
Let S(v) denote the set of lines at v. We now show that to each v in G, 

there is exactly one v’ in G’ such that S(v) goes to S(v') under ¢,. Ifdeg v > 2, 
let y, and y, be lines at v and let v’ be the common point of ¢,(y,) and $,(y2). 

Then for each line x at v, v’ is incident with ¢,(x) and for each line x’ at v’, 

v is incident with ¢; '(x’). If deg v = 1, let x = uv be the line at v. Then 

deg u > 2 and hence S(u) goes to S(u’) and ¢,(x) = u'v’. Since for every line 

x’ at v’, the lines @; ‘(x’) and x must have a common point, u is on ¢; +(x’) 

and wu’ is on x’. That is, x’ = ¢,(x) and deg v' = 1. The mapping ¢ is 

therefore one-to-one from V to V’ since S(u) = S(v) only when u = v. Now 

given v’ in V’, there is an incident line x’. Denote ¢;'(x’) by uv. Then 

either d(u) = v’ or d(v) = v' so dis onto. 
Finally, we note that for each line x = uv in G, $,(x) = $(u)d(v) and for 

each line x’ = u'v' in G’, $;3(x') = 6 ‘(ud '(v), so that ¢ is an iso- 
morphism from which ¢, is derived. This completes the proof. 

CHARACTERIZATIONS OF LINE GRAPHS 

A graph G is a line graph if it is isomorphic to the line graph L(H) of some 

graph H. For example, K, — x is a line graph; see Fig. 8.1. On the other 
hand, we now verify that the star K, , is not a line graph. Assume K,, = 
L(H). Then H has four lines since K, 3 has four points, and H must be 
connected. All the connected graphs with four lines are shown in Fig. 8.2. 
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Fig. 8.2. The connected graphs with four lines. 

Since L(C,) = C, by Theorem 8.3 and L(K, 3 + x) = K, — x (see Fig. 8.1), 

it follows that H is one of the three trees. But the line graphs of these trees 

are the path P,, the graph K3- K,, and K4, showing that K, ; is not a line 

graph. We will see that the star K, , plays an important role in characterizing 

line graphs. The first characterization of line graphs, statement (2) of 

the next theorem and due to Krausz [K12], was rather close to the defini- 
tion. The situation was improved by van Rooij and Wilf [RW1] who were 
able to describe in (3) a structural criterion for a graph to be a line graph. 

Finally, Beineke {B8] and N. Robertson (unpublished) displayed exactly 

those subgraphs which cannot occur in line graphs. Recall that an induced 

subgraph is one which is maximal on its point set. A triangle T of a graph G 

is called odd if there is a point of G adjacent to an odd number of its points, 

and is even otherwise. 

Theorem 8.4 The following statements are equivalent: 

(1) Gis a line graph. 

(2) The lines of G can be partitioned into complete subgraphs in such a 

way that no point lies in more than two of the subgraphs. 

(3) G does not have K, 3 as an induced subgraph, and if two odd triangles 

have a common line then the subgraph induced by their points is K4. 

(4) None of the nine graphs of Fig. 8.3 is an induced subgraph of G. 

Proof. (1)implies(2) Let G be the line graph of H. Without loss of generality 

we assume that H has no isolated points. Then the lines in the star at each 

point of H induce a complete subgraph of G, and every line of G lies in exactly 

one such subgraph. Since each line of H belongs to the stars of exactly 

two points of H, no point of G is in more than two of these complete 

subgraphs. 

(2) implies (1) Given a decomposition of the lines of a graph G into complete 

subgraphs S,, S>,°--,S, satisfying (2), we indicate the construction of a 

epph H whose line graph is G. The points of H correspond to the set S of 



CHARACTERIZATIONS OF LINE GRAPHS 75 

Fig. 8.3. /The nine forbidden subgraphs for line graphs. 

subgraphs of the decomposition together with the set U of points of G 

belonging to only one of the subgraphs S,. Thus S u U is the set of points of 

H and two of these points are adjacent whenever they have a nonempty 

intersection ; that is, H is the intersection graph Q(S u U). 

(2) implies(4) It can be readily verified that none of the nine graphs of Fig. 8.3 

can have its set of lines partitioned into complete subgraphs satisfying the 

_ given condition. Since every induced subgraph of a line graph must itself 

_ bea line graph, the result foliows. 

(4) implies (3) We show that if G does not satisfy (3), then it has one of the nine 
forbidden graphs as an induced subgraph. Assume that G has odd triangles 

abc and abd with c and d not adjacent. There are two cases, depending on 

. whether or not there is a point v adjacent to an odd number of points of 
| voth odd triangles. 
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CASE 1. There is a point v adjacent to an odd number of points of triangle 
abc and of triangle abd. Now there are two possibilities : either v is adjacent to 

exactly one point of each of these triangles or it is adjacent to more than one 

point of one of them. In the latter situation, v must be adjacent to all four 
points of the two triangles, giving G, as an induced subgraph of G. In the 

former, either. v is adjacent only either to a or b, giving G,, or to both c and d, 
giving G,. 

CASE 2. There is no point adjacent to an odd number of points of both 
triangles. In this case, let u and v be adjacent to an odd number of points in 

triangles abc and abd, respectively. There are three subcases to consider : 

Case 2.1. Each of u, v is adjacent to exactly one point of the corre- 
sponding triangle. 

Case 2.2. One of u, v is adjacent to all three points of “its” triangle, the 

other to only one. 

Case 2.3. Each of u, v is adjacent to all three points of the corresponding 
triangle. 

Before these alternatives are considered, we note two facts. If u or v 

is adjacent to a or b, then it is also adjacent to c or to d, since otherwise G, is 
an induced subgraph. Also, neither u nor v can be adjacent to both c and 

d since then G, or G; is induced. 

CASE 2.1. If uc, vd € G then, depending on whether or not line uv is in G, we 

have G, or G, as an induced subgraph. If ub, vd G then it follows from 
the preceding remarks that ude G while vc ¢G; if uu ¢G then points 

{a, d, u,v} induce G,, while if uve G, then {a, b,c, d,u,v} induce Gg. If 

ub, va € G then necessarily ud, vc € G, so that if uv ¢ G, Gg is induced, while if 

uv € Gthen G, appears. Finally ifub, vb € G, then again ud, vc € G from which 

it follows that either G, or G, is an induced subgraph of G, depending on 

whether or not uve G. 

CASE 2.2. Let ua, ub,uceG. Clearly if ude G then G, is induced; thus 
ud ¢G. Now v can be adjacent to d or b. If vd EG, then depending on 

whether or not uv € G, we find G, or G, induced. If vb €G then either G, 

or G, is induced, depending on whether or not v is adjacent to both c and u. 

CASE 2.3. If ud, vc, or uv € G, then G, is induced. The only other possibility 

gives Gz. 

3. implies 1. Suppose that G is a graph satisfying the conditions of the 
statement. We may clearly take G to be connected. Now, exactly one of the 

following statements must be true: 

1. G contains two even triangles with a common line. 

2. Whenever two triangles in G have a line in common, one of them is odd. 
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Ay: Hy: Hs: 

Fig. 8.4. Three line graphs. 

It can be shown that if G satisfies the first statement, then it is one of the 

graphs H, = L(K, 3, + x), H, = L(H,), or H; = L(K,) displayed in 

Fig. 8.4. So suppose that G satisfies the second statement. We indicate the 
method of constructing a graph H such that G = L(H). 

Let F, be the family of all cliques of G which are not even triangles, 

where each such clique is considered as a set of points. Let F, be the family 
of points (taken as singletons) of G lying in some clique K in F, but not 

| adjacent to any point of G — K. Finally, let F; be the family of lines (each 
taken as a set of two points) of G contained in a unique and even triangle. It 

is not difficult to verify that G is isomorphic to the line graph of the inter- 
section graph H = Q(F, U F, uv F;). This completes the proof. 

This last construction is illustrated in Fig..8.5, in which the given graph 

G has families F, = {{1, 2, 3, 4}, {4,5, 6}}, F. = {{1}, {2}, (3}}, and 
F, = {{5, 7}, {6, 7} leading to the intersection graph H; thus G = L(A). 

| 

. 
i 

| 

{5, 7} {6, 7} 

Fig. 8.5. A line graph and its graph. 

SPECIAL LINE GRAPHS 

In this section, characterizations are presented for line graphs of trees, 

rie: graphs, and complete bigraphs. 
| The next result, due to G. T. Chartrand, specifies when a graph is s the 

ae graph of a tree. 
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B, B, By 

Fig. 8.6. The line-graph G of a tree T. 

Theorem 8.5 A graph is the line graph of a tree if and only if it is a connected 

block graph in which each cutpoint is on exactly two blocks. 

Proof. Suppose G = L(T), T some tree. Then G is also B(T) since the lines 

and blocks of a tree coincide. Each cutpoint x of G corresponds to a bridge 

uv of T, and is on exactly those two blocks of G which correspond to the 

stars at u and v. This proves the necessity of the condition. 

To see the sufficiency, let G be a block graph in which each cutpoint is 

on exactly two blocks. Since each block of a block graph is complete, there 

exists a graph H such that L(H) = G by Theorem 8.4. If G = K3, we can 

take H = K, 3. If Gis any other block graph, then we show that H must be 

a tree. Assume that H is not a tree so that it contains a cycle. If H is itself 

a cycle, then by Theorem 8.2, L(H) = H, but the only cycle which is a block 

graph is K, a case not under consideration. Hence H must properly contain 

a cycle, thereby implying that H has a cycle Z and a line x adjacent to two 

lines of Z, but not adjacent to some line y of Z. The points x and y of L(A) 

lie on a cycle of L(H), and they are not adjacent. This contradicts the 

condition of Theorem 3.5 that L(H) is a block graph. Hence H is a tree, and 

the theorem is proved. 

In Fig. 8.6, a block graph G is shown in which each cutpoint lies on just 

two blocks. The tree T of which G is the line graph is constructed by first 

forming the block graph B(G) and then adding new points for the non- 

cutpoints of G and the lines joining each block with its noncutpoints. 

The line graphs of complete graphs and complete bigraphs are.almost 

always characterized by rather immediate observations involving adjacencies 

of lines in K, and K,,,. The case of complete graphs was independently 

settled by Chang [C7] and Hoffman [H43], [H44]. 
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Theorem 8.6 Unless p = 8, a graph G is the line graph of K, if and only if 

1, Ghas (3) points, 

2. Gis regular of degree 2(p — 2), 

3. Every two nonadjacent points are mutually adjacent to exactly four 

points, 

4. Every two adjacent points are mutually adjacent to exactly p — 2 

points. 

' It is evident that L(K,) has these four properties. It is not at all obvious 

that when p = 8, there are exactly three exceptional graphs satisfying the 

conditions. 

For complete bigraphs, the corresponding result was found by Moon 

[M13], and Hoffman [ H46]. 

Theorem 8.7 Unless m = n = 4, a graph G is the line graph of K,,,,, if and 

only if 

1. G has mn points, 

2. Gis regular of degree m + n — 2, 

_ 3. Every two nonadjacent points are mutually adjacent to exactly two 

points, 

4. Among the adjacent pairs of points, exactly n() pairs are mutually 

adjacent to exactly m — 2 points, and the other m(}) pairs to n — 2 

points. 

There is only one exceptional graph satisfying these conditions. It has 

16 points, is not L(K, 4), and was found by Shrikhande [S12] when he 

proved Theorem 8.7 for the case m = n. 

LINE GRAPHS AND TRAVERSABILITY 

We now investigate the relationship of eulerian and hamiltonian graphs 

with line graphs. 

If x = uv is a line of G, and w is nota paint of G, then x is subdivided 

when it is Pepied by the lines uw and wv. If every line of G is subdivided, the 

G: S(G): 

Fig. 8.7. A graph and its subdivision graph. 
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Fig. 8.8. A counterexample. 

) OO 
G L(G) L,(G) 

Fig. 8.9. Another counterexample. 

resulting graph is the subdivision graph S(G); see Fig. 8.7. If we denote by 

S,(G) the graph obtained from G by inserting n new points of degree 2 into 

every line of G, so that S(G) = S,(G), we can then define a new graph 

L,(G) = L(S,,- ,(G)). Note that, in general, L,(G) 4 L(G), the nth iterated 
line graph of G. 

Theorem 8.8 If G is eulerian, then L(G) is both eulerian and hamiltonian. If 

G is hamiltonian, then L(G) is hamiltonian. 

It is easy to supply counter-examples to the converses of these statements. 

For example in Fig. 8.8, L(G) is eulerian and hamiltonian while G is not 

eulerian ; in Fig. 8.9, L(G) is hamiltonian while G is not. 

A refinement of the second statement in Theorem 8.8 is provided by the 

following result of Harary and Nash-Williams [HN1] which follows readily 
from the preceding theorem and the fact that L,(G) = L(S(G)). 

Theorem 8.9 A sufficient condition for L,(G) to be hamiltonian is that G 
be hamiltonian and a necessary conditicn is that L(G) be hamiltonian. 

_ The graphs of Figs. 8.10 and 8.9 show that the first of these conditions 

is not necessary and the second is not sufficient for L,(G) to be hamiltonian. 

We note also (see Fig. 8.11) that L(G) = L,(G) and L,(G) may be hamiltonian 
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G: L(G): 

Fig. 8.10. Still another counterexample. 

G L(G) L,(G) L3(G) 

Fig. 8.11. A sequence of graphs L,(G). 

without G being eulerian. However, the next graph L,(G) in this. series 

provides the link between these two properties. 

Theorem 8.10 A graph G is eulerian if and only if L3(G) is hamiltonian. 

For almost every connected graph G, however, nearly all of the graphs 

L(G) are hamiltonian, as shown by Chartrand [C9]. 

Theorem 8.11 If G is a nontrivial connected graph with p points which is not 

a path, then L(G) is hamiltonian for all n > p — 3. 

An example is given in Fig. 8.12 in which a 6-point graph G, as well as 

L(G), (G), and the hamiltonian graph L(G) are shown. 

aes. 
L(G) L*(G) L(G) 

| : Fig. 8.12. A sequence of iterated line graphs. 
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K3: X3 Xt T(K3): 

X2 

Fig. 8.13. Formation of a total graph. 

TOTAL GRAPHS 

The points and lines of a graph are called its elements. Two elements of a 

graph are neighbors if they are either incident or adjacent. The total graph 
T(G) has point set V(G) U X(G), and two points of T(G) are adjacent whenever 

they are neighbors in G. Figure 8.13 depicts the formation of the total 

graph T(K;). It is easy to see that T(G) always contains both G and L(G) as 

induced subgraphs. 

An alternative characterization of total graphs was given by Behzad 

[B4]. 

Theorem 8.12 The total graph T(G) is isomorphic to the square of the sub- 

division graph S(G). 

Corollary 8.12(a) Jf v is a point of G, then the degree of point v in T(G) is 
2 deg v. If x = uv is a line of G, then the degree of point x in T(G) is 
deg u + deg v. 

Corollary 8.12(b) If G is a (p, q) graph whose points have degrees d;, then the 

total graph T(G) has pp = p + q points and q, == 2q + 4  d? lines. 
The Ramsey function r(m, n) was defined in Chapter 2, where it was noted 

that its general determination remains an unsolved problem. Behzad and 

Radjavi [BR1] defined and solved an analogue of the Ramsey problem, 

suggested by line graphs. The line Ramsey number:r,(m, n) is the smallest 

positive integer p such that every connected graph with p points contains 

either n mutually disjoint lines or m mutually adjacent lines, that is, the star 

K,,,- Thus r,(m,n) is the smallest integer p such that for any graph G 

with p points, L(G) contains K,, or L(G) contains K,. 

Theorem 8.13 For n >1, we always have r,(2, n) = 3. For all other m and n, 

ry(m, n) = (m — 1)(n — 1) + 2. 

Note that it is not always true that r,(m,n) = 1r,(n,m). Furthermore, 

in contrast with Ramsey numbers, r,(m,n) is defined only for connected 
graphs. 
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EXERCISES 

8.1 Under what conditions can the lines of a line graph be partitioned into complete 

subgraphs so that each point lies in exactly two of these subgraphs? 

8.2 Determine the number of triangles in L(G) in terms of the number n of triangles of 

G and the partition of G. 

8.3 Determine a criterion for a connected graph to have a regular line graph. 

8.4 A graph G can be reconstructed from the collection of qg spanning subgraphs 

G — x, ifand only if its line graph L(G) satisfies Ulam’s Conjecture (p. 12). 

(Hemminger [H41]) 

8.5 If G is n-line-connected, then 

1. L(G) is n-connected, 

2. L{G) is (2n — 2)-line-connected, and 

3. L(G) is (2n — 2)-connected. (Chartrand and Stewart [CS1]) 

8.6 a) Construct a connected graph G with p > 4 such that L(G) is not eulerian but 

L(G) is. 

b) There is no connected graph G with p > 5 such that 17(G) is not eulerian and 

L(G) is. 

8.7 The smallest block whose line graph is not hamiltonian is the theta graph with 

_ 8 points in which the distance between the points of degree 3 is 3. (J. W. Moon) 

8.8 L(G) is hamiltonian if and only if there is a closed trail in G which includes at 

least one point incident with each line of G. 

8.9 The graph L,(G) is hamiltonian if and only if G has a closed spanning trail. 

(Harary and Nash-Williams [HN1]) 

8.10 The following statements are equivalent 

(i) L(G) is eulerian. 

(2) The degrees of all the points of G are of the same parity and G is connected. 

(3) T(G) is eulerian. 

8.11 T(K,) is isomorphic to L(K,,,). (Behzad, Chartrand, and Nordhaus [BCN] }) 

8.12 Define a family F of subsets of elements of G such that T(G) = Q(F). 

8.13 a) If Gis hamiltonian, so is T(G). If G is eulerian, then T(G) is both eulerian and 

hamiltonian. 

_b) The total graph T(G) of every nontrivial connected graph G contains a spanning 

eulerian subgraph. 

c) If a nontrivial graph G contains a spanning eulerian subgraph, then 7(G) is 

hamiltonian. : 
d) If Gis nontrivial and connected, then T7(G) is hamiltonian. 

(Behzad and Chartrand [BC2]) 



CHAPTER 9 

FACTORIZATION 

The whole is equal to the sum of its parts. 

Eucuip, Elements 

The whole is greater than the sum of its parts. 

Max WERTHEIMER, Productive Thinking 

A problem which occurs in varying contexts is to determine whether a given 

graph can be decomposed into line-disjoint spanning subgraphs possessing 

a prescribed property. Most frequently, this property is that of regularity 

of specified degree. In particular, a criterion for the existence in a graph ofa 

spanning regular subgraph of degree 1 was found by Tutte. Some observa- 

tions are presented concerning the decomposition of complete graphs into 

spanning subgraphs regular of degree 1 and 2. 
The partitioning of the lines of a given graph into spanning forests is 

also studied and gives rise to an invariant known as “arboricity.” A formula 
for the arboricity of a graph in terms of its subgraphs was derived by Nash- 

Williams, and explicit constructions for the minimum number of spanning 

forests in complete graphs and bigraphs have been devised. 

1-FACTORIZATION 

A factor of a graph G is a spanning subgraph of G which is not totally dis- 

connected. We say that G is the sum* of factors G; if it is their line-disjoint 

union, and such a union is called a factorization of G. An n-factor is regular of 

degree n. If G is the sum of n-factors, their union is called an n-factorization 

and G itself is n-factorable. Unless otherwise stated, the results presented in 

this chapter appear in or are readily inferred from theorems in Konig 

[K10, pp. 155-195], where the topic is treated extensively. 
When G has a 1-factor, say Gy, it is clear that p is even and the lines of G, 

are point disjoint. In particular, K2,,, cannot have a 1-factor, but K,, 
certainly can. ; 

* Some call this product; others direct sum. 

84 
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vy bg 

Ks: \ ipa wh G, ue 

V6 v3 

WV; Ree Als 
Us U4 

- Fig. 9.1. A 1-factorization of Kg. 

Theorem 9.1 The complete graph K,, is 1-factorable. 

Proof. We need only display a partition of the set X of lines of K,, into 

(2n — 1) 1-factors. For this purpose we denote the points of G by 

Peete o>). and define, for i = 1;2)--*)2n — 1, the sets of lines 

X; = {Von} VL {0;- jr;4;5j = 1, 2,°+*, — 1}, where each of the subscripts 
i — jandi + jis expressed as one of the numbers 1, 2,---, (2n — 1) modulo 

(2n — 1). The collection {X;} is easily seen to give an appropriate partition 
of X, and the sum of the subgraphs G; induced by X;, is a 1-factorization of 
K,,: 

For example, consider the graph K, shown in Fig. 9.1. The 1-factoriza- 

tion presented in the proof of the theorem produces the five 1-factors G;. 
Although the complete bigraphs K,,,, have no 1-factor if m 4 n, the 

graphs K,,,, are 1-factorable, as seen by the next statement. 

Theorem 9.2 Every regular bigraph is 1-factorable. 

It is not an easy problem to determine whether a given graph is 1- 

factorable, or, indeed, to establish whether there exists any I-factor. Beineke 

and Plummer [BP2] have shown, however, that many graphs cannot have 

exactly one 1-factor. 

Theorem 9.3 If a 2-connected graph has a 1-factor, then it has at least two 

different 1-factors. 

The graph G in Fig. 9.2 is a block with exactly two 1-factors, and they 
have one common line. 

The most significant result on factorization is due to Tutte [T7] and 
characterizes graphs possessing a 1-factor. In general, this test for a 1-factor 

1 is quite inconvenient to apply. The proof given here is based on Gallai [G1]. 
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Gi: e——_____ G2: eo 

Fig. 9.2. Two 1-factors of a block. 

A set of mutually nonadjacent lines is called independent. By an odd 

component of G we mean one with an odd number of points. 

Theorem 9.4 A graph G has a 1- factor if and only if p is even and there is no 

set S of points such that the number of odd components of G — S exceeds 

|S|. 

Proof. The easier half.of this theorem is its necessity. Let S be any set of 

points of G and let H be a component of G — S. In any 1-factor of G, each 

point of H must be paired with either another point of H or a point of S. 
But if H has an odd number of points, then at least one point of H is matched 

with a point of S. Let ky be the number of odd components of G — S. If 

G has a 1-factor then |S| > ko, since in a 1-factor each point of S can be 

matched with at most one point of G — S and therefore can take care of 
at most one odd component. 

In order to prove the sufficiency, assume that G does not have a 1-factor, 

and let S be a maximum set of independent lines. Let T denote the set of 

lines not in S, and let uy be a point incident only with lines in T. A trail is 

called alternating if the lines alternately lie in S and T. For each point 
v # Uo, call v a O-point if there are no u,—v alternating trails; if there is such 
a trail, call v an S-point if all these trails terminate in a line of S at v, a T- 

point if each terminates in a line of T at v, and an ST-point if some terminate 

in each type of line. The following statements are immediate consequences. 

Every point adjacent to uy is a T- or an ST-point. 

No S- or 0-point is adjacent to any S- or ST-point. 

No T-point is joined by a line of S to any T- or 0-point. 

Therefore, each S-point is joined by a line of Stoa T-point. Furthermore, 
each T-point »v is incident with a line of S since otherwise the lines in an 
alternating u,—v trail could be switched between S and T to obtain a larger 
independent set. 
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Let H be the graph obtained by deleting the T-points. One component 

of H contains uo, and any other points in it are ST-points. The other com- 

ponents either consist of an isolated S-point, only ST-points, or only 

| 0-points. 

We now show that any component H, of H containing ST-points has an 

odd number of them. Obviously H, either contains uy or has a point u, 

joined in G to a T-point by a line of S such that some alternating ug—u, 

trail contains this line and no other points of H,. If H, contains uo, we take 

U, = Uo. The following argument will be used to show that within H, every 
point v other than u, is incident with some line of S. This is accomplished by 

showing that there is an alternating u,—v trail in H, which terminates in a 

line of S. 

The first step in doing this is showing that if there is an alternating 
u,—v trail P,, then there is one which terminates in a line of S. Let P, be 

an alternating u,—v trail ending in a line of T, and let u’v’ be the last line of 

P,, if any, which does not lie in H,. Then u’ must be a T-point and u'v’' a line 
in S. Now go along P, from u, until a point w’ of P, is reached. Continuing 

along P, in one of the two directions must give an alternating trail. If 

going to v’ results in an alternating path, then the original uo—u, trail Po 

followed by this new path and the line v'u’ would be a uy—u, trail terminating 

in a line of S and wu’ could not be a T-point. Hence there must be a u,—v 
trail terminating in a line of S. 

Now we show that there is necessarily a u,—v alternating trail by as- 
suming there is not. Then there is a point w adjacent to v for which there is a 

u,—w alternating trail. If line wv is in S, then the u,—w alternating trail 

terminates in a line of T, while if wu is in T, the preceding argument shows 

there is a u,—w trail terminating in a line of S. In either case, there is a 

u,—v alternating trail. 
This shows that the component H, has an odd number of points, and 

that if H, does not contain ug, exactly one of its points is joined to a T-point 

by a line of S. Hence, with the exception of the component of H containing 

Uy and those consisting entirely of 0-points, each is paired with exactly one 

T-point bya line in S. Since each of these and the component containing 
Ug is odd, the theorem is proved. 

The graph of Fig. 9.3 has an even number of points but contains no 1- 

factor, for if the set S = {v,, v,} is removed from G, four isolated points 
(and therefore four odd components) remain. 

Fig. 9.3. A graph with no 1-factor. 
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Building up on his criterion for the existence of a 1-factor in a given 

graph, Tutte [T10] was able to characterize those graphs having a spanning 

subgraph with prescribed degree sequence, and later, [T11], proved this 

result as a straightforward consequence of Theorem 9.4. Consider a labeling 

of G and a function f from V into the nonnegative integers. Let S and 

T be disjoint subsets of V, let H be a component of G — (S u T), and let 

q(H, T) be the number of lines of G joining a point of H with one in T. Then 

we may write k,(S, T) as the number of components H of G — (S U T) 

such that q(H, T) + Z,.24 f(u) is odd. 

Theorem 9.5 Let G be a given graph and let f be a function from V into the 

nonnegative integers. Then G has no spanning subgraph whose degree se- 

quence is prescribed by f if and only if there exist disjoint sets S and T of 

points such that 

¥ fu) < k,(S, T) + YL — dg_s(v)]. 
ueS veT 

2-FACTORIZATION 

If a graph is 2-factorable, then each factor must be a union of disjoint cycles. 
If a 2-factor is connected, it is a spanning cycle. We saw that a complete 

graph is 1-factorable if and only if it has an even number of points. Since 

a 2-factorable graph must have all points even, the complete graphs K,, 

are not 2-factorable. The odd complete graphs are 2-factorable, and in 

fact a stronger statement can be made. 

Z2: 

Fig. 9.4. A 2-factorization, of K,. 
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Theorem 9.6 The graph K,,,, , is the sum of n spanning cycles. 

Proof. In order to construct n line-disjoint spanning cycles in K,,,,, first 
_ label its points v,, v2,°*-, V2.4, Then construct n paths P; on the points 

meta 05, aS follows: P; = 0; 0; 1.0j41 Vi-2° °° Uian=1 Ui-n+ Dhusthejth 
point of P; is v,, where k = i + (—1)’*"[j/2] and all subscripts are 
taken as the integers 1, 2,---, 2n (mod 2n). The spanning cycle Z; is then 

_ constructed by joining v,,,, to the endpoints of P;. 

: This construction is illustrated in Fig. 9.4 for the graph K,. The lines 

_ of the paths P; are solid and the two added lines are dashed. 

i There is a decomposition of K,, which embellishes the result of Theorem 
oi" 

| Theorem 9.7 The complete graph K,, is the sum of a 1-factor and n — 1 

_ spanning cycles. 

Of course, every regular graph of degree 1 is itself a 1-factor and every 

regular graph of degree 2 is a 2-factor. If every component of a regular 

graph G of degree 2 is an even cycle, then G is also 1-factorable since it can 

_ be expressed as the sum of two 1-factors. Ifa cubic graph contains a 1-factor, 

it must also have a 2-factor, but there are many cubic graphs which do not 

have 1-factors. 

The graph of Fig. 9.5 has three bridges. Petersen [P3] proved that any 
| cubic graph without a 1-factor must have a bridge. 

| Fig. 9.5. A cubic graph with no 1-factor. Fig. 9.6. The Petersen graph. 

| Theorem 9.8 Every bridgeless cubic graph is the sum of a 1-factor and a 

| 2-factor. 

Petersen showed that this result could not be strengthened by exhibiting 
_a bridgeless cubic graph which is not the sum of three 1-factors. This well- 

known graph, shown in Fig. 9.6, is called the Petersen graph. By Theorem 9.8, 

|it is the sum of a 1-factor and a 2-factor. The pentagon and pentagram 

| together constitute a 2-factor while the five lines joining the pentagon with 

the pentagram form a 1-factor. 
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A criterion for the decomposability of a graph into 2-factors was also 
obtained by Petersen [P3]. 

Theorem 9.9 A graph is 2-factorable if and only if it is regular of even degree. 

even degree. 

ARBORICITY 

In the only type of factorization considered thus far, each factor has been 

an n-factor. Several other kinds of factorizations have been investigated 

and we discuss one now and others in Chapter 11. Any graph G can be 

expressed as a sum of spanning forests, simply by letting each factor contain 

only one of the q lines of G. A natural problem is to determine the minimum 

number of line-disjoint spanning forests into which G can be decomposed. 

This number is called the arboricity of G and is denoted by Y(G). For example, 

Y(K4) = 2 and Y(K,) = 3; minimal decompositions of these graphs into 

spanning forests are shown in Fig. 9.7. 

KINZ 
Qwze 

Fig. 9.7. Minimal decompositions into spanning forests. 

A formula discovered by Nash-Williams [N2] gives the arboricity of — 
any graph. 

Theorem 9.10 Let G be a nontrivial (p, q) graph and let q, be the maximum — 

number of lines in any subgraph of G having n points. Then 

e Qn 
Y(G) = max, Ee 0 if 

_ The fact that Y(G) > max, {q,/(n — 1)} can be shown as follows. 
Since G has p points, the maximum number of lines in any spanning forest 

is p — 1. Hence, the minimum possible number of spanning forests required 



ARBORICITY 9] 

to fill G, which by definition is Y(G), is at least g(p — 1). But the arboricity 

of Gis an integer, so Y(G) > {q/(p — 1)}. The desired inequality now follows 

from the fact that for any subgraph H of G, Y(G) > Y(H). 

Among all subgraphs H withn < p points, max Y(H) will occur in those 

induced subgraphs containing the greatest number of lines. Thus if H is a 

subgraph of G, Y(H) can be greater than {q/(p — 1)}. The (10, 15) graph in 

Fig. 9.8 illustrates this observation. Takingn = Sandq, = 10(forH = Ks), 
we have 

run 24 ds baas2aj a} 
n— 1 p-1 

For K,, the maximum value of q,/(n — 1) clearly occurs forn = pso that 

Y(K,) = {p/2}. Similarly, for the complete bigraph K,.,, {q,/(n — 1)} 
assumes its maximum value whenn = p =r + s. 

Fig. 9.8. A graph G with a dense subgraph H. 

Corollary 9.10(a) The arboricities of the complete graphs and bigraphs are 

Y(K,) = 13 and = Y(K,,,) a Artesia he 

Although Nash-Williams’ formula gives the minimum number of 
spanning forests into which an arbitrary graph can be factored, his proof 

does not display a specific decomposition. Beineke [B5] accomplished this 
for complete graphs and bigraphs, the former of which we present here. For 

p = 2n, K, can actually be decomposed into n spanning paths. Labeling the 

points v,, v>.°**, v2,, we consider the same n paths 

Py = 0; Vi= 1 V4.1 Mp2 Vit 2°" Vitn—1 Yi-ny 

as in proof of Theorem 9.6. For p = 2n + 1, the arboricity of K, isn + 1 

by Corollary 9.10(a). A decomposition is obtained by taking the paths just 

described, adding an extra point labeled v,, ,, to each, and then constructing 

i] 
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= 
WS 

Fig. 9.9. A minimal decomposition of K, into spanning forests. 

a star by joining v2,,, to the other 2n points. The construction for p = 9 

is shown in Fig. 9.9. It is easily seen to consist of the star at one of the points 

of K, together with spanning subforests corresponding to the four spanning 
paths of Kg indicated above. 

EXERCISES 

9.1. The graph K, has a unique 1-factorization. Find the number of 1-factorizations — 

of K3 3 and of Kg. 

9.2 Display a 1-factorization for Kg. 

9.3. The number of 1-factors in K, is (2n)!/(2"n!). 

9.4 K6,-2 has a 3-factorization. 

9.5 Forn > 1, Kg, , is 4-factorable. 

9.6 Use Tutte’s Theorem 9.4 to show that the graph of Fig. 9.5 has no 1-factor. 

9.7 Ifan n-connected graph G with p even is regular of degree n, then G has a 1-factor. : 

(Tutte [T7]) © 

9.8 Prove or disprove: Let G bea graph witha 1-factor F. A line of G is in more than 

one 1-factor if and only if it lies on a cycle whose lines are alternately in F. 
(Beineke and Plummer [BP2]) : 

9.9 Express K, as the sum of four spanning cycles. 

9.10 Is the Petersen graph hamiltonian? 
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*9.11 Corresponding to any two integers d > 3 and g > 3, there exists a graph G with 

the following properties: 

1. Gis regular of degree d. 

2. Ghas girth g. 

3. Gis hamiltonian. 

4. The cycles of length g are line-disjoint and constitute a 2-factor of G. 

5. Gis the sum of this 2-factor and (d — 2) 1-factors. (Sachs [S9]) 

9.12 Display a minimal decomposition of K, 4 into spanning forests. 

9.13 Find the smallest connected (p, q) graph G such that 

max, {4,/(r ah 1} > {q/(p i 1}, 

where q, is the maximum number of lines in any induced subgraph of G with r points. 



CHAPTER 10 

COVERINGS 

Through any point not on a given line, there passes 

a unique line having no points in common with the given line. 

Euciip 

Through any point not on a given line, there passes 

no line having no points in common with the given line. 

RIEMANN 

Through any point not on a given line, there pass — 

more than one line having no points in common with the given line. 

BOLYAI 
| 
| 

i It is natural to say that a line x = uv of Gcovers the points uand v. Similarly, 

we may consider each point as covering all lines incident with it. From this 

viewpoint, one defines two invariants of G: the minimum number of points — 

(lines) which cover all the lines (points). Two related invariants are the 

maximum number of nonadjacent points and lines. These four numbers 
associated with any graph satisfy several relations and also suggest the study 

of special points and lines which are critical for covering purposes. These 
concepts lead naturally to two special subgraphs of G called the iine-core 
and point-core. Criteria for the existence of such subgraphs are established 
in terms of covering properties of the graph. 

COVERINGS AND INDEPENDENCE 

A point and a line are said to cover each other if they are incident. A set of 

points which covers all the lines of a graph G is called a point cover for G, 

while a set of lines which covers all the points is a line cover. The smallest 
number of points in any point cover for G is called its point covering number 

and is denoted by a (G) or a. Similarly, «,(G) or «, is the smallest number of 

lines in any line cover of G and is called its line covering number. For example, 

&o(K,) = p — 1 and a,(K,) = [(p + 1)/2]. A point cover (line cover) is 
called minimum if it contains a» (respectively «,) elements. Observe that 

94 J 4 
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Fig. 10.1. The graph K, K,. 

point, cover may be minimal without being minimum; such a set of points 

is given by the 6 noncutpoints in Fig. 10.1. The same holds for line covers ; 

the 6 lines incident with the cutpoint serve. 

A set of points in G is independent if no two of them are adjacent. The 
largest number of points in such a set is called the point independence number 

of G and is denoted by £,(G) or Bo. Analogously, an independent set of lines 

of G has no two of its lines adjacent and the maximum cardinality of such a 

set is the line independence number B,(G) or B,. For the complete graph, 

Bo(K,) = land £,(K,) = [p/2]. Obviously B,(G) = p/2 if and only if G has 
a 1-factor. The numbers just defined are B,(G) = 2 and B,(G) = 3 for the 

graph G of Fig. 10.1. 

For this graph as well as for K,, a9 + Bo = a, + B, = p. Gallai [G2] 
proved that this identity always holds. 

Theorem 10.1 For any nontrivial connected graph G, 

A + Bp = p=, + B,. 

Proof. Let M, be any maximum independent set of points, so that |M,| = Bo. 

Since no line joins two points of Mo, the remaining set of p — By points 

constitutes a point cover for G so that a) < p — Bo. On the other hand, 
if No is a minimum point cover for G, then no line can join any two of the 

remaining p — a, points of G, so the set V — Ng is independent. Hence, 
Bo = p — 4%, proving the first equation. 

To obtain the second equality, we begin with an independent set M, of 

B, lines. A line cover .Y is then produced by taking the union of M, anda 

set of lines, one incident line for each point of G not covered by any line 

in M,. Since |M,| + |Y| < p and |Y| > «,, it follows that a, + B, < p. 

In order to show the inequality in the other direction, let us consider a 

minimum line cover N, of G. Clearly, N , catinot contain a line both of whose 

endpoints are incident with lines also in N,. This implies that N, is the sum 
of stars of G (considered as sets of lines). If one line is selected from each of 

these stars, we obtain an independent set W of lines. Now, |N,| + |W] = p 
and |W| < £,; thus, a, + 8B, > p, completing the proof of the theorem. 
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Hedetniemi [H39] noticed that the proof of the first equation in 
Theorem 10.1, 

% + Bo = p, 

applies in a more general setting. A property P of a graph G is hereditary 

if every subgraph of G also has this property. Examples of hereditary 

properties include a graph being totally disconnected, acyclic, and bipartite. 

A set S of points of G is called a P-set if the induced subgraph ¢S) has property 

P; it is called a P-set if every subgraph of G without property P contains a 

point of S. Let Bo(P) be the maximum cardinality of a P-set of G and let 
a%o(P) be the minimum number of points of a P-set. Then the proof of the 

next statement is obtained at once from that of Theorem 10.1. 

Corollary 10.1(a) If P is an hereditary property of G, then «,(P) + Bo(P) = p. 

A collection of independent lines of a graph G is sometimes called a 

matching of G since it establishes a pairing of the points incident to them. For 

this reason, a set of 8, independent lines in Gis called a maximum matching of G. 

If G is bipartite, then more can be said. The next theorem due to Kénig [K9] 
is intimately related to his Theorem 5.18 on systems of distinct representatives 

stated in matrix form, in fact it is the same result. 

Theorem 10.2 If G is bipartite, then the number of lines in a maximum 

matching equals the point covering number, that is, By = a. 

The problem of finding a maximum matching, the so-called matching 

problem, is closely related to that of finding a minimum point cover. 

Let M < X(G) be a matching of G. In an alternating M-trail, exactly 

one of any two consecutive lines is in M. An augmenting M-trail is an 

alternating M-trail whose endpoints are not incident with any line of M. 

Such a trail must be a path or cycle because M is a matching. If G has no 

augmenting M-trail, then matching M is unaugmentable. Clearly every 

maximum matching is unaugmentable; the converse is due to Berge [B10] 
and the proof given below appears in Norman and Rabin [NR1]. 

Theorem 10.3 Every unaugmentable matching is maximum. 

Proof. Let M be unaugmentable and choose a maximum matching M’ for 

which |M — M'|, the number of lines which are in M but not in M’, is 

minimum. If this number is zero then M = M’. Otherwise, construct a 

trail W of maximum length whose lines alternate in M — M’ and M’. Since 

M’ is unaugmentable, trail W cannot begin and end with lines of M — M’and 
has equally many lines in M — M’ and in M’. Now we form a maximum 

matching N from M'’ by replacing those lines of W which are in M’ by the lines 
of Win M — M’. Then|M '— N| <|M — M', contradicting the choice of 

M' and completing the proof. 
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Norman and Rabin [NR1] developed an algorithm, based on the next 
theorem, for finding all minimum line covers in a given graph. Let Y bea 

line cover of G. An alternating Y-walk is a Y-reducing walk if its endlines 

are in Y and its endpoints are incident to lines of Y which are not endlines of 

the walk. Obviously every minimum line cover has no reducing walk. 

Theorem 10.4 If Y is a line cover of G such that there is no Y-reducing walk, 

then Y is a minimum line cover. 

The cover invariants «, and a, of G refer to the number of points needed 

to cover all the lines and vice versa. We may also regard each point as 

covering itself and two points as covering each other if they are adjacent, and 

similarly for lines. Then other invariants suggest themselves. 

| Let & 9 be the minimum number of points needed to cover V, and let 

oo be the minimum number* of independent points which cover V. Then 

both these numbers are defined for any graph. Let «,, and «,, have similar 

_ meanings for the covering of lines by lines. The relationships among these 

invariants were determined by Gupta [G11]. 

_ Theorem 10.5 For any graph G, 

| te 1 , | Ea AR and Chih Cee 

CRITICAL POINTS AND LINES 

Obviously, if H is a subgraph of G, then a)(H) < a(G). In particular, this 

inequality holds when H = G — vor H = G — x for any point v or line x. 

If ao(G — v) < «,(G), then v is called a critical point; if a(G — x) < a(G), 
then x is a critical line of G. Clearly, if v and x are critical, it follows that 

%(G — v) = a(G — x) = a — 1. Critical points are easily characterized. 

Theorem 10.6 A point v is critical in a graph G if and only if some minimum 

| point cover contains v. 

Proof. If M isa minimum point cover for G which contains v, then M — {v} 
covers G — v; hence, a(G-— v) <|M — {v}| = |M| — 1 = a,(G) — 1 so 
that v is critical in G. 

Let v be a critical point of G and consider a minimum point cover M’ 

for G — v. The set M’ uv {v} isa point cover for G, and since it contains one 
more element than M’, it is minimum. : 

If the removal of a line x = uv from G decreases the point covering 
number, then the removal of u or v must also result in a graph with smaller. 

point covering number. Thus, if a line is critical both its endpoints are 

| * Berge [B12] calls ao the “external stability number” and By the “internal stability number.” 

In this chapter, “critical” refers to covering ; in Chapter 12, the same word will involve coloring. 
he meanings should be clear by context. 
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Fig. 10.2. Line-critical graphs. 

critical. If a graph has critical points, it need not have critical lines; for 
example, every point of C, is critical but no line is. 

A graph in which every point is critical is called point-critical while one 

having all lines critical is line-critical. Thus a graph G is point-critical if and 
only if each point of G lies in some minimum point cover for G. From our 

previous remarks, every line-critical graph without isolated points is point- 

critical. Among the line-critical graphs are the complete graphs, the cycles of 

odd length, and the graphs of Fig. 10.2. 
A constructive criterion for line-critical graphs is not known at present ; 

however, the first two corollaries to the following theorem of Beineke, 

Harary, and Plummer [BHP1] place some rather stringent conditions on 
such graphs. 

Theorem 10.7 Any two adjacent critical lines of a graph lie on an odd cycle. 

Corollary 10.7(a) Every connected line-critical graph is a block in which any 

two adjacent lines lie on an odd cycle. 

Theorem 10.7 was derived by generalizing the next result due to Dulmage 
and Mendelsohn [DM1]. 

Corollary 10.7(b) Any two critical lines of a bipartite graph are independent. 

LINE-CORE AND POINT-CORE 

The line-core* C,(G) of a graph G is the subgraph of G induced by the union 

of all independent sets Y of lines (if any) such that | Y] = ao(G). This concept 

was introduced by Dulmage and Mendelsohn [DM1], who made it an 
integral part of their theory of decomposition for bipartite graphs. It is not 

always the case that a graph has a line-core, though by Theorem 10.2, every 
bipartite graph which is not totally disconnected has one. As an example of 

a graph with no line-core, consider an odd cycle C,. Here we find that 

ao(C,) = (p + 1)/2 but that B,(C,) = (p — 1)/2, so C, has no line-core. 

* Called “core” in[DMI] and[HP19]. 
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b3 v6 

al. Ps Us 
G: C\(G): 

U4 vb; 

Fig. 10.3. A graph and its line-core. 

Harary and Plummer [HP19] developed a criterion for a graph to havea 

line-core. A minimum point cover M for a graph G with point set V is said to 

be external if for each subset M’ of M, |M’| < |U(M’)|, where U(M’) is the 

set of all points of V — M which are adjacent to a point of M’. 

Theorem 10.8 The following are equivalent for any graph G: 

(1) G has a line-core. 

(2) G has an external minimum point cover. 

(3) Every minimum point cover for G is external. 

As an example, consider the graph G of Fig. 10.3. This graph has two 

minimum point covers: M, = {v, vs, vg} and M, = {v, vs, v7}. Let us 
concentrate on M,. If M, = M,, then U(M}) = {v,, v3, v4, v7}. For 

1 = {vs5, 06}, U(M{) = {v3, v4, v7}. We observe that |M‘| < |U(M‘)| and 
|M‘| < |U(M‘)|, a fact which is true for every subset of M,; hence, by 

definition, M, is external. Obviously, M, is also external. 

_ On the other hand, there are graphs which are equal to their line-core. 

This family of graphs is characterized in the next theorem, given in [HP19]. 
Following the terminology of Dulmage and Mendelsohn [DM1], we 
consider a bigraph G whose point set V is the disjoint union S U T. We say 

that G is semi-irreducible if G has exactly one minimum point cover M and 

either M 1 Sor Mo Tisempty. Next, G is irreducible if it has exactly two 
minimum point covers M, and M,andeitherM, 1S = dandM,\1T =? 

or M, 0 T= ¢ and M,oS = ¢. Finally, G is reducible if it is neither 

irreducible nor semi-irreducible. 

v; v2 uy u2 

G;: 

U7 Us Ug 

Fig. 10.4. A semi-irreducible and an irreducible graph. 
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Theorem 10.9 A graph G and its line-core C,(G) are equal if and only if G is 

bipartite and not reducible. 

Consider the bigraphs G, and G, of Fig. 10.4. In G,, let S; = {v3, v6} 
and T, = {v1, 02, v4, Vs, v7}. The bigraph G, has the unique minimum point 
cover M, = {v3, vg}, and since M, 1 T, = ¢, G, is semi-irreducible and 
hence equals its line-core. In G2, set S, = {u,, ug, us} and T, = {up, us, u¢}. 
There are two minimum point covers, namely, M, = {u,, u4, us} and 

N, = {uy, u3, Us}. However, M, 0 T, = ¢ and N,0S, = 9; therefore, 
G, is irreducible and also equals its line-core. 

EXERCISES 

10.1 Prove or disprove: Every point cover of a graph G contains a minimum point 

cover. 

10.2 Prove or disprove: Every independent set of lines is contained in a maximum 

independent set of lines. 

10.3. For any graph G, a.(G) => B,(G) and «,(G) = B,(G). 

10.4 Find a necessary and sufficient condition that «,(G) = B,(G). 

10.5 If G has a closed trail containing a point cover, then L(G) is hamiltonian. 

10.6 For any graph G, a (G) > 5(G). 

10.7 IfGisa bigraph then q < a po, with equality holding only for complete bigraphs. 

10.8 If Gis a complete n-partite graph, then 

alan = 6 =K= A 

b) Gis hamiltonian if and only if p < 2a. 

c) If G is not hamiltonian, then its circumference c = 2a, and G has a unique 

minimum point cover. (M.D. Plummer) 

d) B, = min {6, [p/2]}. (Chartrand, Geller, Hedetniemi [CGH2]) 

10.9 a) Let B, be the maximum number of points in a set S < V(G) such that <S) is 

disconnected. Then x = p — f,. 
b) Defining B, analogously, 4 = q — f,. (Hedetniemi [H39]) 

10.10 Calculate: 

a) Oy (K,), b) Xo0(Krnn)> c) Oy 10a): 

10.11 The “chess-queen graph” has the 64 squares of a chess board as its points, two 

of which are adjacent whenever one can be reached from the other by a single move of a 

queen; the chess-knight, chess-bishop, and chess-rook graphs are defined Sela. 

What is the number a, for each of these four graphs? 

(Solutions are displayed in Berge [B12, pp. 41-42]) 

10.12 Some relationships among po, % 0, and aq are as follows: 

a) Yo < 4% if there are no isolated points. 

b) For some graphs, a < ap. 

c) For some graphs, a9 < ap. 

d) For some graphs, ao9 < a9. 
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10.13 Prove or disprove: A line x is critical in a graph G if and only if there isa minimum 

line cover containing x. 

10.14 Prove or disprove: Every 2-connected line-critical graph is hamiltonian. 

10.15 The converse of Corollary 10.7(a) does not hold. Construct a block which is not 

line-critical in which any two adjacent lines lie on an odd cycle. 

10.16 A tree T equals its line-core if and only if T is a block-cutpoint tree. 

(Harary and Plummer [HP19]) 

10.17 For any graph G, the following are equivalent : 

1. Ghas a line-core, 

2. a9(G) = B,(G), 
3. a,(G) = B,(G). (Harary and Plummer [HP19]) 

10.18 If G is a connected graph having a line-core C,(G), then 

a) C,(G) is a spanning subgraph of G, 

b) C,(C,(G)) a C,(G), 

c) the components of C,(G) are bipartite subgraphs of G which are not reducible. 

(Harary and Plummer [HP19]) 

10.19 If G is a graph with line-core C,(G) and B is a bipartite subgraph of G properly 

containing C,(G), then B is reducible. (Harary and Plummer [HP 19]) 

10.20 The point-core C,(G) is the subgraph of G induced by the union of all independent 

sets S of a,(G) points. A graph G has a point-core if and only if it has a line-core. 

(Harary and Plummer [HP 18]) 

10.21 If G = C,(G), then G has a 1-factor. (Harary and Plummer [HP 18]) 

10.22 If G is regular of degree n, then there is a partition of V into at most 1 + [n/2]} 

subsets such that each point is adjacent to at most one other point in the same subset. 

(Gerencsér [G6]) 



CHAPTER 11 

PLANARITY 

Return with me a while to the plains of Flatland, 

and I will shew you that which you have often 

reasoned and thought about .. . 

Epwin A. Assort, Flatland 

Topological graph theory was first discovered in 1736 by Euler (V — E + 

F = 2) and then was dormant for 191 years. The subject was revived when 

Kuratowski found a criterion for a graph to be planar. Another pioneer in 

topological graph theory was Whitney, who developed some important 

properties of the embedding of graphs in the plane: 

All the known criteria for planarity are presented. These include the 

theorems of Kuratowski and Wagner, which characterize planar graphs in 
terms of forbidden subgraphs, Whitney’s result in terms of the existence of a 

combinatorial dual, and MacLane’s description of the existence of a pre- 
scribed cycle basis. 

Several topological invariants of a graph are introd jee The genus of 

a graph has been determined for the complete graphs and bipartite graphs, 
the thickness for “most” of them, and the crossing number for only a few. 

PLANE AND PLANAR GRAPHS 

A graph is said to be embedded in a surface S when it is drawn on S so that 
no two edges intersect. As noted in Chapter 1, we shall use “points and lines” 

for abstract graphs, “vertices and edges” for geometric graphs (embedded 
in some surface). A graph is planar if it can be embedded in the plane; a 

Fig. 11.1. A planar graph and an embedding. 
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plane graph has already been embedded in the plane. For example, the cubic 

graph of Fig. 11.1(a) is planar since it is isomorphic to the plane graph in 
Fig. 11.1(b). 

We will refer to the regions defined by a plane graph as its faces, the 

unbounded region being called the exterior face. When the boundary of 

a face of a plane graph is a cycle, we will sometimes refer to the cycle as a 

face. The plane graph of Fig. 11.2 has three faces, f,, f, and the exterior 
face f,. Of these, only f, is bounded by a cycle. 

Fig. 11.2. A plane graph. 

The subject of planar graphs was discovered by Euler in his investigation 

of polyhedra. With every polyhedron there is associated a graph consisting 

only of its vertices and edges, called its /-skeleton. For example, the graph 

Q, is the 1-skeleton of the cube and K,,, that of the octahedron. The 

Euler formula for polyhedra is one of the classical results of mathematics. 

Theorem 11.1 (Euler Polyhedron Formula). For any spherical polyhedron 

with V vertices, E edges, and F faces, 

V—E+F=2., (11.1) 

For the 3-cube we have V = 8, E = 12, and F = 6so0 that (11.1) holds; 

for a tetrahedron, V = F = 4and E = 6. Before proving this equation, we 

‘will recast it in graph theoretic terms. A plane map is a connected plane 

graph together with all its faces. One can restate (11.1) for a plane map in 

terms of the numbers p of vertices, q of edges, and r of faces, 

p-—qtr=2. (11.1’) 

It is easy to prove this theorem by induction. However, this equation 
‘has already been proved in Chapter 4 where it was established that the cycle 

rank m of a connected graph G is given by 

Me pe: 

Since it is easily seen that if (11.1’) holds for the blocks of G separately, then 

(11.1’) holds for G also, we assume from the outset that G is 2-connected. 
Thus every face of a plane embedding of G is a cycle. 

We have just noted that p = V and q = E for a plane map. It only 

remains to link m with F. We now show that the interior faces of a plane 
graph G constitute a cycle basis for G, so that they are m in number. This 

holds because the edges of every cycle Z of Gcan be regarded as the symmetric 



104 PLANARITY 

difference of the faces of G contained in Z. Since the exterior face is thus the 
sum. (mod 2) of all the interior faces (regarded as edge sets), we see that 

m = F — 1. Hencem = q — p + 1 becomes F —-1=E-—-V+1. 

Euler’s equation has many consequences. 

Corollary 11.1(a) If G is a (p, g) plane map in which every face is an n-cycle, 

then 

q = np — 2)/(n — 2). (11.2) 

Proof. Since every face of G is an n-cycle, each line of G is on two faces and 

each face has n edges. Thus nr = 2q, which when substituted into (11.1’) 
gives the result. 

A maximal planar graph is one to which no line can be added without 
losing planarity. Substituting n = 3 and 4 into (11.2) gives us the next 

result. 

Corollary 11.1(b) If G is a (p, q) maximal plane graph, then every face is a 

triangle and q = 3p — 6. If Gisa plane graph in which every face is a 4-cycle, 
then gq = 2p — 4. 

Because the maximum number of edges in a plane graph occurs when 

each face is a triangle, we obtain a necessary condition for planets of a 

graph in terms of the number of lines. 

Corollary 11.1(c) If Gis any planar (p, q) graph with p > 3, theng < 3p — 6. 

Furthermore, if G has no triangles, then g < 2p — 4. 

Corollary 11.1(d) The graphs K, and K, , are nonplanar. 

Proof. The (5, 10) graph K, is nonplanar because q = 10 > 9 = 3p — 6; 

for K33,q = 9 and 2p — 4 = 8. 

As we will soon see, the graphs K, and K; , play a prominent role in 
characterizing planarity. The above corollaries are extremely useful in 

investigating planar graphs, especially maximal planar graphs. 

Corollary 11.1(e) Every planar graph G with p > 4 has at least four points 

of degree not exceeding 5. 

Clearly, a graph is planar if and only if each of its components is planar. 

Whitney [W12] showed that in studying planarity, it is sufficient to consider 
2-connected graphs. 

Theorem 11.2 A graph is planar if and only if each of its blocks is planar. 

It is intuitively obvious that any planar graph can be embedded in the 
sphere, and conversely. This fact enables us to embed a planar graph in the 

plane in many different ways. 
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Theorem 11.3 Every 2-connected plane graph can be embedded in the plane 
so that any specified face is the exterior. 

Proof. Let fbe a nonexterior face of a plane block G. Embed G on a sphere 

_ and call some point interior to fthe “North Pole.” Consider a plane tangent 

to the sphere at the South Pole and project* G onto that plane from the 
North Pole. The result is a plane graph isomorphic to G in which f is the 
exterior face. 

Corollary 11.3(a) Every planar graph can be embedded in the plane so that a 

prescribed line is an edge of the exterior region. 

Whitney also proved that every maximal planar graph is a block, 

and more. 

Theorem 11.4 Every maximal planar graph with p > 4 points is 3-connected. 

: ae (al, 

(a) (b) 
Fig. 11.3. Plane wheels. 

There are five ways of embedding the 3-connected wheel W, in the 

plane: one looks like Fig. 11.3(a), and the other four look like Fig. 11.3(b). 

However, there is only one way of embedding W, on a sphere, an observation 

which holds for all 3-connected graphs (Whitney [W11}). 

heats 11.5 Every 3-connected planar graph is uniquely embeddable on 

the sphere. 

P< Danae. 2 ees 

Fig. 11.4. Two plane embeddings of a 2-connected graph. 

To show the necessity of 3-connectedness, consider the isomorphic 

graphs G, and G, of connectivity 2 shown in Fig. 11.4. The graph G, is 

embedded on the sphere so that none of its regions are bounded by five 

edges while G, has two regions bounded by five edges. 

| Pig This is usually called stereographic projection. 

— 
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A polyhedron is convex if the straight line segment joining any two of its 

points lies entirely within it. The next theorem is due to Steinitz and 
Rademacher [SR2]. 

Theorem 11.6 A graph is the 1-skeleton of a convex 3-dimensional polyhedron 

if and only if it is planar and 3-connected. 

One of the most fascinating areas of study in the theory of planar 

graphs is the interplay between considering a graph as a combinatorial 

object and as a geometric figure. Very often the question arises of placing 

geometric constraints on a graph. For example, Wagner [W1], Fary [F1], 
and Stein [S15] independently showed that every planar graph can be 

embedded in the plane with straight edges. 

Theorem 11.7 Every planar graph is isomorphic with a plane graph in which 

all edges are straight line segments. 

OUTERPLANAR GRAPHS 

A planar graph is outerplanar if it can be embedded in the plane so that all its 

vertices lie on the same face; we usually choose this face to be the exterior. 

Figure 11.5 shows an outerplanar graph (a) and two outerplane embeddings 
(b) and (c). In (c) all vertices lie on the exterior face. 

ace et = 
Fig. 11.5. An outerplanar graph and two outerplane embeddings. 

(c) 

In this section we develop theorems for outerplanar graphs parallel 

with those for planar graphs. The analogue of Theorem 11.2 is immediate. 

Theorem 11.8 A graph G is outerplanar if and only if each of its blocks is 
outerplanar. 

An outerplanar graph G is maximal outerplanar if no line can be added 

without losing outerplanarity. Clearly, every maximal outerplane graph is 

a triangulation of a polygon, while every maximal plane graph is a tri- 

angulation of the sphere. The three maximal outerplane graphs with 6 
vertices are shown in Fig. 11.6. 

Theorem 11.9 Let G be a maximal outerplane graph with p > 3 vertices all 

lying on the exterior face. Then G has p — 2 interior faces. 
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(a) (b) (c) 

Fig. 11.6. Three maximai outesplanar graphs. 

Fig. 11.7. The forbidden graphs for outerplanarity. 

Proof. Obviously the result holds for p = 3. Suppose it is true for p = n 

and let G have p = n + 1 vertices and m interior faces. Clearly G must have 
a vertex v of degree 2 on its exterior face. In forming G — v we reduce the 

number of interior faces by 1 so that m — 1 = n — 2. Thusm=n—-—1 = 

p — 2, the number of interior faces of G. 

This theorem has several consequences. 

Corollary 11.9(a) Every maximal outerplanar graph G with p points has 

. a) 2p — 3 lines, 

b) at least three points of degree not exceeding 3, 

c) at least two points of degree 2, 

d) «(G) = 2. 

All plane embeddings of K, and K, , are of the forms shown in Fig. 11.7, 
in which each has a vertex inside the exterior cycle. Therefore, neither of these 
graphs is outerplanar. We now observe that these are the two basic non- 

outerplanar graphs, following [CH3]. 

Two graphs are homeomorphic if both can be obtained from the same 

graph by a sequence of subdivisions of lines. For examiple, any two cycles 

are homeomorphic, and Fig. 11.8 shows a homeomorph of K,4. 

Theorem 11.10 A graph is outerplanar if and only if it has no subgrapn 
homeomorphic to K, or K,, except K, — x. 

It is often important to investigate the complement of a graph with a 

N, given property. For planar graphs, the following theorem due to Battle, 
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Fig. 11.8. A homeomorph of K,. 

Harary, and Kodama [BHK1] and proved less clumsily by Tutte [T16], 
provides a sufficient condition for the complement of a planar graph to be 
planar. 

Theorem 11.11 Every planar graph with at least nine points has a nonplanar 
complement, and nine is the smallest such number. 

This result was proved by exhaustion; no elegant or even reasonable 

proof is known. 

The analogous observation for outerplanar graphs was made in [G5]. 

Theorem 11.12 Every outerplanar graph with at least seven points has a 

nonouterplanar complement, and seven is the smallest such number. 

WUE? 
Fig. 11.9. The four maximal outerplanar graphs with seven points. 

Proof. To prove the first part, it is sufficient to verify that the complement 
of every maximal outerplanar graph with seven points is not outerplanar. 
This holds because there are exactly four maximal outerplanar graphs with 

p = 7 (Fig. 11.9) and the complement of each is readily seen to be non- 
outerplanar. The minimality follows from the fact that the (maximal) 

outerplanar graph of Fig. 11.6(b) with six points has an outerplanar 

complement. 

KURATOWSKI’S THEOREM 

Until Kuratowski’s paper appeared [K14], it was a tantalizing unsolved 

problem to characterize planar graphs. The following proof of his theorem 
is based on that by Dirac and Schuster [DS1]. 
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Theorem 11.13 A graph is planar if and only if it has no subgraph homeo- 
morphic to Ks or K3,3._ 

Proof. Since K,; and K, 3 are nonplanar by Corollary 11.1(d), it follows that 

if a graph contains a subgraph homeomorphic to either of these, it is also 
nonplanar. 

The proof of the converse is a bit more involved. Assume it is false. Then 

there is a nonplanar graph with no subgraph homeomorphic to either K, 

or K3 3. Let G be any such graph having the minimum number of lines. Then 
G must be a block with 6(G) > 3. Let x9 = upvg be an arbitrary line of G. 
The graph F = G — Xo is necessarily planar. 

We will find it convenient to use two lemmas in the development of the 
proof. 

Lemma 11.13(a) There is a cycle in F containing uy and vp. 

Proof of Lemma. Assume that there is no cycle in F containing uy and vo. 

Then up and vg lie in different blocks of F by Theorem 3.3. Hence, there 
exists a cutpoint w of F lying on every up—v, path. We form the graph F, 

by adding to F the lines wu, and wu, if they are not already present in F. 

Inthe graph Fo, uo and vy still lie in different blocks, say B, and B,, which 

necessarily have the point w in common. Certainly, each of B, and B, has 

fewer lines than G, so either B, is planar or it contains a subgraph homeo- 
morphic to K, or K3 3. If, however, the insertion of wuy produces a subgraph 

H of B, homeomorphic to K; or K3 3, then the subgraph of G obtained by 

replacing wu, by a path from u, to w which begins with xg is necessarily 

homeomorphic to H and so to K, or K3, 3, but this isa contradiction. Hence, 
B, and similarly B, is planar. According to Corollary 11.3(a), both B, and 

B, can be drawn in the plane so that the lines wuy and wu, bound the exterior 

region. Hence it is possible to embed the graph Fo in the plane with both 

WU, and wv, on the exterior region. Inserting x9 cannot then destroy the 

planarity of Fy. Since G is a subgraph of Fy) + Xo, Gis planar; this contra- 

diction shows that there is a cycle in F containing uy and vp. 

Let F be embedded in the plane in such a way that a cycle Z containing 

Uy and vy has a maximum number of regions interior to it. Orient the edges 
of Z in a cyclic fashion, and let Z[u, v] denote the oriented path from u to v 
along Z. If v does not immediately follow u on Z, we also write Z(u, v) to 
indicate the subpath of Z[u, v] obtained by removing u and v. 

By the exterior of cycle Z,we mean the subgraph of F induced by the 

vertices lying outside Z, and the componenis of this subgraph are called the 

exterior components of Z. By an outer piece of Z, we mean a connected sub- 

graph of F induced by all edges incident with at least one vertex, in some 

exterior component or by an edge (if any) exterior to Z meeting two ver- 

tices of Z. In a like manner, we define the interior of cycle Z, interior com- 

ponent, and inner piece. 
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Fig. 11.10. Separating cycle Z illustrating lemma. 

An outer or inner piece is called u—v separating if it meets both Z(u, v) 

and Z(v, u). Clearly, an outer or inner piece cannot be uv separating if u and 

v are adjacent on Z. 
Since F is connected, each outer piece must meet Z, and because F has 

no cutvertices, each outer piece must have at least two vertices in common 
with Z. No outer piece can meet Z(uo, Vo) or Z(Vo, Uo) in more than one 
vertex, for otherwise there would exist a cycle containing uy and vy with more 

interior regions than Z. For the same reason, no outer piece can meet uy or 

Vo. Hence, every outer piece meets Z in exactly two vertices and is up—vo 
separating. Furthermore, since xg cannot be added to F in planar fashion, 
there is at least one uy—vp separating inner piece. 

Lemma 11.13(b) There exists a uo—v, separating outer piece meeting Z(up, PQ), 

say at u,, and Z(vo, uo), say at v,, such that there is an inner piece which is 

both uo—vp separating and u,—v, separating. 

Proof of Lemma. Suppose, to the contrary, that the lemma does not hold. 

It will be helpful in understanding this proof to refer to Fig. 11.10. 

_ We order the uo—vo separating inner pieces for the purpose of relocating 
them in the plane. Consider any uy—vg separating inner piece J, which is 
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Fig. 11.11. The possibilities for nonplanar subgraphs. 

nearest to uy in the sense of encountering points of this inner piece on moving 

along Z from uy. Continuing out from up, we can index the uy—vo separating 

inner pieces J,, I,, and so on. 

Let u, and u; be the first and last points of J, meeting Z(uo, vo) and v, 

and v, be the first and last vertices of J, meeting Z(vo, uo). Every outer piece 

necessarily has both its common vertices with Z on either Z[v3, u,] or 
‘Z[u3, v2], for otherwise there would exist an outer piece meeting Z(uo, vo) 
at u, and Z(vo, uo) at v, and an inner piece which is both uy—vo separating 

and u,—v, separating, contrary to the supposition that the lemma is false. 

Therefore, a curve C joining v3 and u, can be drawn in the exterior region so 
that it meets no edge of F. (See Fig. 11.10.) Thus, J, can be transferred outside 

of C ina planar manner. Similarly, the remaining uy—v, separating inner 
pieces can be transferred outside of Z, in order, so that the resulting graph 

is plane. However, the edge x, can then be added without destroying the 

planarity of F, but this is a contradiction, completing the lemma. 

Proof of Theorem. Let H be the inner piece guaranteed by Lemma 11.13(b) 

which is both u -vy separating and u,—v, separating. In addition, let 

Wo, Wo, W;, and w’, be vertices at which H meets Z(uo, U9), Z(Vo, Uo), Z(Uy, V4), 

and Z(v,, u,), respectively. There are now four cases to consider, depending 
on the relative position on Z of these four vertices. 

CASE 1. One of the vertices w, and w’, is on Z(uo, vo) and the other is on 

Z(vo, Uo). We can then take, say, Ww) = w, and wo = wi, in which case G 
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contains a subgraph homeomorphic to K, 3, as indicated in Fig. 11.11(a), in 

which the two sets of vertices are indicated by open and closed dots. 

CASE 2. Both vertices w, and w; are oneither Z(up, V9) or Z(V9, Uo). Without 
loss of generality we assume the first situation. There are two possibilities : 

either v; ~ Wo OF v; = Wo. If v, # Wo, then G contains a subgraph homeo- 
morphic to K3 3, as shown in Fig. 11.11(b) or (c), depending on whether wo 

lies on Z(u,,v,) or Z(vy, uy), respectively. If v, = wo (see Fig. 11.114), 

then H contains a vertex r from which there exist disjoint paths to w,, wi}, 

and 1, all of whose vertices (except w,, w;, and v,) belong to H. In this case 
also, G contains a subgraph homeomorphic to K, 3. 

CASE 3. w, = Ug and wi # up. Without loss of generality, let w, be on 

Z(Uo, Vo). Once again G contains a subgraph homeomorphic to K3 3. If 
W5 is On (vo, v;), then G has a subgraph K, 3 as shown in Fig. 11.11(e). If, on 

the other hand, w4 is on Z(v,, uo), there is a K, , as indicated in Fig. 11.11(f). 
This figure is easily modified to show G contains K3 3 if Wo = 14. 

CASE 4. w, = Up and w, = uo. Here we assume wy = .u, and Wo = 1, for 
otherwise we are in a situation covered by one of the first 3 cases. We 

distinguish between two subcases. Let P, be a shortest path in H from uy 
to vo, and let P, be such a path from u, to v,. The paths Py and P, must 

intersect. If Py and P, have more than one vertex in common, then G 

contains a subgraph homeomorphic to K33, as shown in Fig. 11.11(g); 
otherwise, G contains a subgraph homeomorphic to K, as in Fig. 11.11(h). 

Since these are all the possible cases, the theorem has been proved. 

In his paper “How to draw a graph,” Tutte [T17] gives an algorithm 
for drawing in the plane as much of a given graph as possible and shows 

that whenever this process stops short of the entire graph, it must contain 

a subgraph homeomorphic to K, or K3.3. Thus his algorithm furnishes an 

independent proof of Theorem 11.13. 

An elementary contraction of a graph G is obtained by identifying two 

adjacent points u and », that is, by the removal of u and v and the addition 

Wi 

(b) © 

Fig. 11.12. Nonplanarity of the Petersen graph. 
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of a new point w adjacent to those points to which u or v was adjacent. 

_ A graph G is contractible to a graph H if H can be obtained from G by a 

_ sequence of elementary contractions. For example, as indicated in Fig. 

11.12(a) and (b), the Petersen graph is contractible to K; by contracting 

each of the five lines u,v; joining the pentagon with the pentagram to a new 

point w; A dual form of Kuratowski’s theorem (in the sense of duality in 

matroid theory) was found independently by Wagner [W2] and Harary 

and Tutte [HT3]. 

Theorem 11.14 A graph is planar if and only if it does not have a subgraph 

contractible to K, or K; 3. 

We have just seen that the Petersen graph is contractible to K;. Since 

_ every point has degree 3, it clearly does not have a subgraph homeomorphic 

to K,; Fig. 11.12(c) shows one homeomorphic to K;j 3. 

OTHER CHARACTERIZATIONS OF PLANAR GRAPHS 

Several other criteria for planarity have been discovered since the original 

work of Kuratowski. We have already noted the “dual form” in terms of 

contraction in Theorem 11.14. Tutte’s algorithm for drawing a graph in 

the plane may also be regarded as a characterization. 

Whitney [W12, W14] expressed planarity in terms of the existence of 

dual graphs. Given a plane graph G, its geometric dual G* is constructed 

as follows: place a vertex in each region of G (including the exterior region) 

and, if two regions have an edge x in common, join the corresponding 

vertices by an edge x* crossing only x. The result is always a plane pseudo- 

graph, as indicated in Fig. 11.13 where G has solid edges and its dual G* 
dashed edges. Clearly G* has a loop if and only if G has a bridge, and G* 

has multiple edges if and only if two regions of G have at least two edges in 

common. Thus, a 2-connected plane graph always has a graph or multi- 

graph as its dual, while the dual of a 3-connected graph is always a graph. 

Other examples of geometric duals are given by the Platonic graphs: the 

tetrahedron is self-dual, whereas the cube and octahedron are duals, as are 

the dodecahedron and the icosahedron. 

Fig. 11.13. A plane graph and its geometric dual. 
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X2 

X9 

G: Gy: xy 

X13 

Xs 

H*: Vi 

late is 
Ys 

Fig. 11.14. Different geometric duals of the same abstract graph. 

As defined, the geometric dual of a connected plane graph G is also 

plane, and it follows that the dual of the dual of G is the original graph G. 

However, an abstract graph with more than one embedding on the sphere 

can give rise to more than one dual graph. This is illustrated in Fig. 11.14 in 

which graphs G and H are abstractly isomorphic, but as embedded they 
have different duals G* and H*. However, since a triply connected graph 

has only one spherical embedding, as noted in Theorem 11.5, it must have 

a unique geometric dual. 
Whitney gave a combinatorial definition of dual, which is an abstract 

formulation of the geometric dual. To state this, we recall from Chapter 4 

that for a graph G with k components, the cycle rank is given by m(G) = 

q — p + kand the cocycle rank by m*(G) = p — k. 

The relative complement G — H of a subgraph H of G is defined to be 

that subgraph obtained by deleting the lines of H. A graph G* is a combina- 

torial dual of graph G if there is a one-to-one correspondence between their 

sets of lines such that for any choice Y and Y* of corresponding subsets of 
lines, 

mG —_Y) = mG) — mK Y*)>)2 (11.3) 

where <Y*> is the subgraph of G* with line set Y*. This definition is illus- 
trated by Fig. 11.15 where the correspondence is x;<> y; Here Y = 

{x2,X3,X4,X6}, so that m*(G — Y) = 4, m*(G) = 5, and m(<Y*)) = 1, so 
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Fig. 11.15. Combinatorial duals. 

the defining equation is satisfied. It is of course very difficult to check 

whether two graphs are duals using (11.3) since it involves verifying this 

equation for every set Y of lines in G. 

As with geometric duals, combinatorial duals of planar graphs are not 

necessarily unique. However, if two graphs are combinatorial duals of 

isgmorphic graphs, there is a one-to-one correspondence between their sets 

of lines which preserves cycles as sets of lines (that is, their cycle matroids 

are isomorphic). The correspondence x; < y; of G* and H* in Fig. 11.14 

illustrates this. 

Whitney proved that combinatorial duals are equivalent to geometric 

duals, giving another criterion for planarity. 

‘Theorem 11.15 A graph is planar if and only if it has a combinatorial dual. 

Another criterion for planarity due to MacLane [M1] is expressed in 
terms of cyclic structure. 

Theorem 11.16 A graph G is planar if and only if every block of G with at least 

three points has a cycle basis Z,, Z,,:-:, Z,, and one additional cycle Z, 

such that every line occurs in exactly two of these m + 1 cycles. 

We only indicate the necessity, which is much easier. As mentioned 

in the proof of Theorem 11.1, all the interior faces of a 2-connected 

plane graph G constitute a cycle basis Z;, Z,,:°-, Z,,, where m is the cycle 

rank of G. Let Z, be the exterior cycle of G. Then obviously each edge of 

G lies on exactly two of the m + 1 cycles Z;. 

To prove the sufficiency, it is necessary to construct a plane embedding 

of a given graph G with the stipulated properties. 
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All of these criteria for planarity are summarized in the following 

list of equivalent conditions for a graph G. 

(1) Gis planar. 

(2) G has no subgraph homeomorphic to K, or K3 3. 

(3) G has no subgraph contractible to K, or K; 3. 

(4) G has a combinatorial dual. 

(5) Every nontrivial block of G has a cycle basis Z,, Z,,-::, Z,, and one 

additional cycle Z, such that every line x occurs in exactly two of these 

m + 1 cycles. 

GENUS, THICKNESS, COARSENESS, CROSSING NUMBER 

In this section four topological invariants of a graph G are considered. 
These are genus: the number of handles needed on a sphere in order to 
embed G, thickness: the number of planar graphs required to form G, 
coarseness: the maximum number of line-disjoint nonplanar subgraphs 

in G, and crossing number: the number of crossings there must be when G 

ss drawn in the plane. We will concentrate on three classes of graphs—com- 
plete graphs, complete bigraphs, and cubes—and indicate the values of 
these invariants for them as far as they are known. 8 

Fig. 11.16. Embedding a graph on an orientable surface. 

As observed by K6nig, every graph is embeddible on some orientable 
surface. This can easily be seen by drawing an arbitrary graph G in the plane, 

possibly with edges that cross each other, and then attaching a handle to 
the plane at each crossing and allowing one edge to go over the handle 

and the other under it. For example, Fig. 11.16 shows an embedding of K, 
in a plane to which one handle has been attached. Of course, this method 

often uses more handles than are actually required. In fact, Konig also. 

showed that any embedding of a graph on an orientable surface with a 
minimum number of handles has all its faces simply connected. 
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Fig. 11.17. An embedding of K, on the Fig. 11.18. A toroidal embedding of 
torus. Ka 4 

We have already noted that planar graphs can be embedded on a sphere. 
A toroidal graph can be embedded ona torus. Both K, and K3 ; are toroidal; 

in fact Figs. 11.17 and 11.18 show embeddings of K, and K, 4 on the torus, 
represented as the familiar rectangle in which both pairs of opposite sides 

are identified. No characterization of toroidal graphs analogous to Kura- 
towski’s Theorem has been found. However, Vollmerhaus [V6] settled a 
conjecture of Erdos in the affirmative by proving that for the torus as well 

as any other orientable surface, there is a finite collection of forbidden 

subgraphs. 

The genus y(G) of a graph G is the minimum number of handles which 

must be added to a sphere so that G can be embedded on the resulting surface. 

Of course, y(G) = Oifand only if G is planar, and homeomorphic graphs have 

the same genus. 
The first theorem of this chapter presented the Euler characteristic 

equation, V — E + F = 2, for spherical polyhedra. More generally, the 

genus of a polyhedron* is the number of handles needed on the sphere for 

a surface to contain the polyhedron. Theorem 11.1 has been generalized 

to polyhedra of arbitrary genus, in a result also due to Euler. A proof may 

be found in Courant and Robbins [CR1]. 

Theorem 11.17 For a polyhedron of genus y with V vertices, E edges and 

F faces, 

V— E+ F=2 — 2). (11.4) 

This equation is particularly useful in proving the easy half of the results 
to follow on the genus and thickness of particular graphs. Its corollaries, 
which offer no difficulty, are often more convenient for this purpose. 

* For a.combinatorial treatment of the theory of polyhedra, see Grinbaum[G10]. 
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Corollary 11.17(a) If G is a connected graph of genus y in which every face 
is a triangle, then 

q = 3p — 2 + 2y); (11.5) 

when every face is a quadrilateral, 

q = Ap — 2 + 2y). (11.6) 

As mentioned in [BH2], it is easily verified from these two equations 
that the genus of a graph has the following lower bounds. 

Corollary 11.17(b) If G is a connected graph of genus y, then 

y= 64 — P — 2); (11.7) 

if G has no triangles, then ; 

y= 4q — ip — 2). (11.8) 

The determination of the genus of the complete graphs has been a long, 

interesting, difficult, successful struggle. In its dual form, it was known as 

the Heawood Conjecture and stood unproved from 1890 to 1967. We 

return to this aspect of the problem in the next chapter. There have been 
many contributors to this result and the coup de grace, settling the conjecture 
in full, was administered by Ringel and Youngs [RY1]. 

Theorem 11.18 For p > 3, the genus of the complete graph is 

(K,) = eae ah 

The proof of the easier half of equation (11.9) is due to Heawood [H38]. 
It amounts to substituting q(K,) into inequality (11.7) to obtain 

1K) > 2(°) Lace puri eM 

(11.9) 

2 2 12 

Then since the genus of every graph is an integer, 

(p — 3Xp — 4) 
W(K,) = , D } 

The proof that this expression is also an upper bound for »(K,) can only be 
accomplished by displaying an embedding of K, into an orientable surface 

of the indicated genus. When Heawood originally stated the conjecture 
in 1890, he proved that y(K;) = 1, as verified by the embedding shown in 
Fig. 11.17, which triangulates the torus. 

Heffter proved (11.9) in 1891 for p = 8 through 12. Not until 1952 did 
Ringel prove it for p = 13. At that stage, it was realized that because of its 
form, it was natural to try to settle the question for one residue class of p 
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modulo 12 at a time. Writing p = 12s + r, Ringel (see [R10]) proved (11.9) 
in 1954 for all complete graphs K, with r =-5. During 1961-65, Ringel 
extended the result to r ='7, 10, and 3, and concurrently Youngs [Y1] with 

‘his colleagues Gustin, Terry, and Welch settled the cases r = 4, 0, 1, 9, 6. In 

1967-68, Ringel and Youngs [RY1, 2] worked together to achieve appro- 
| priate embeddings of K, for r = 2, 8, and 11. The isolated cases p = 18, 

|20, and 23 remained unproved by these methods. The proof was completed 

by, the Professor of French Literature at the University of Montpellier, 

named Jean Mayer, when he embedded K, for these three values of p, 
see [M6]. 

For complete bigraphs, the corresponding result is less involved, and 

was obtained by Ringel alone. Since inequality (11.8) applies to the graph 

Kn We have 

(m — 2Xn — 2) 1 
Kina) = m8 — 5(m +n — 2)= 4 

The other inequality is demonstrated [R12] by sid dates a suitable em- 

bedding of K,,,,. 

Theorem 11.19 The genus of the complete bigraph is 

1Kmy) = ja teh (11.10) 
| The genus of the cube was derived by Ringel [R13] and Beineke and 

Harary [BH3]. For the graph Q,, we have p = 2" and q = n2”~', so that 
by (11.8), 

W(Q,) = 1+ (n — 4)2"~%, 
proving the easier half of the next equation. 

Theorem 11.20 The genus of the cube is 

7(Q,) = 1 + (n — 4)2"~°. (11.11) 

We now mention some more general considerations involving genus. 

It was shown in Battle, Harary, Kodama and Youngs [BHKY1] that the 

genus of a graph depends only on the genus of its blocks, as anticipated in 

Theorem 11.2. 

Theorem 11.21 Ifa graph G has blocks B,, B>,-::, B,, then 

(G) = DF (Bi). (11.12) 

This result was generalized slightly by Harary and Kodama [HK1]. 

Recall from Theorem 5.8 that two (n + 1)-components of a graph have at 

ed n points in common. 
H 
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Theorem 11.22 Let an n-connected graph G be the union of two (n + 1)- 

components B and C. Let v,,:--, v, be the set of points of BO C. Call G;; 
the graph obtained by adding line v,v; to G. If y(G,;) = y(G) + 1 whenever 

1<i<j<vn,then 

y(G) = WB) + p(C) + n— 1. (11.13) 

We have already observed in Theorem 11.11 that every planar graph 

with 9 points has a nonplanar complement. Define the thickness 0(G) of a’ 
graph as the minimum number of planar subgraphs whose union is ’G. 

Then Theorem 11.11 can be stated in the form 0(K,) > 2. Actually the thick- 

ness of K, is 3 but Kg is critical with respect to thickness since (Kg — x) = 2. 
Therefore 0(K,) = 2 for p = 5 to 8. Of course 6(G) = 1 if and only if G , 

is planar. Since a maximal planar graph has q = 3p — 6 lines, it follows 

that the thickness @ of any (p, q) graph has the bound, 

q 
@> ‘ 11.14 
3p — 6 ( ) 

This observation is useful in making conjectures about thickness and proving 

the easier half. 

The thickness of the complete graphs was investigated in [BH5] and 
Beineke [B6]. Applying (11.14) to K,, we find 

Pp — 1/2 
3p — 2) ° 

Applying some algebraic manipulations, we obtain 

p(p — 1)/2 + 3M — 2) - 1 ne p+7 

wx, =| 3p — 2) \ ie | 
Theorem 11.23 Whenever p # 4 (mod 6), the thickness of the complete graph | 

is ) 7 

aK, = |P="] (1.13) 

| 

When p = 4(mod 6), sometimes equation (11.15) holds and sometimes | 
it doesn’t. For @(K,) = 3 # [22], but Hobbs and Grossman [HG1] | 
produced a decomposition of K,, into 4 = [2] planar subgraphs and) 
Beineke [B6] showed that 6(K2,) = 5 = [°2]. Very recently, Jean Mayer | 
(again!) obtained constructions showing that 0(K34) = 6 and 0(K4o) = 7. 

The only value of p < 45 for which 6(K,) is not yet known is p = 16. It is 

conjectured that 0(K,,) = 4, but for all p = 4 (mod 6), and p > 46, that 

(11.15) holds. 
The thickness of complete bigraphs was studied in [BHM1] and Beineke 

‘[B7]. 

On ee 

| 

unless p = 9. 
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| Theorem 11.24 The thickness of the complete bigraph is 

mn 
OK,,..) = <== I. (Kn) tam oe 5 (11.16) 

‘except possibly when m < n, mn is odd, and there exists an integer k such 

‘that n = [2k(m — 2)/(m — 2k)]. 

Corollary 11.24(a) The thickness of K,,,, is [(n + 5)/4]. 
The corresponding problem for the cube was settled by Kleinert [K8]. 

Theorem 11.25 The thickness of the cube is 

A(Q,) = :" s 4. (11.17) 4 

P. Erdos (verbal communication) made a fortuitous slip, while trying 

to describe the concept of thickness. By speaking of the maximum number 

‘of line-disjoint nonplanar subgraphs contained in the given graph G, he 

first defined the coarseness &(G). Thus both thickness and coarseness involve 

constructions which factor a graph into spanning subgraphs (planar and 

nonplanar respectively) in the sense of Chapter 9. Formulas for the coarse- 

‘ness of a complete graph are not as neat as those for other topological 
‘invariants. The reason is that K3 3 or a homeomorph thereof is a most 

| convenient subgraph for coarseness constructions. This suggests the reason 

for the form of the next result due to Guy and Beineke [GB1]. Figure 11.19 
shows four line-disjoint homeomorphs of K, ; contained in Ko. 

Theorem 11.26 The coarseness of the complete graphs is given by 

| | (3) (SON ATI 
| MR) es 
) (3) ata 5] (p ==! 571) = 30), 

n (11.18) 

O(Kan+1) = (;) + 15] (p =3n+12 19 
and p # 9r + 7), 

&(K3,43) = (3) i bye 

All of the values of (K ,) are either known exactly from (11.18) or have the 

value given in Table 11.1 or 1 greater; see [GB1]. 
For-the coarseness of the complete bigraph, the results of Beineke and 

Guy [BG1] are incomplete and involve many cases. 
\ 
! 
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0 4 5 0 3 2 0 7 8 3 6 9 

i ii ni nt 

1 2 3 7 9 8 4 5 6 4 1 2] 

Fig. 11.19. Four nonplanar subgraphs of K,. 

Theorem 11.27 The coarseness of the complete bigraph K,,, ,, satisfies 

C(K3,44,3s+e) = rs + min ([$} $I) 

for d=Oorl and e=0Oorl. 

C(K3,42,35) = 7S + Bi when r > 1. 

flares ((: + ] B E + 16s + ’}) 
ty, B00 Peary 39 

&(K3,+2,35+1) 2 agg rVios (11.19) 
= rs + max (+ i min ((5| |=) 

for r Sess: 

(These are equal when r > 2s.) 

ne r+ 2s| | 2r+s|| 16r + 16s + 4 

f 1 3 ata eek 39 

mee ely [og eae for 1<rss 
a 3 9 Thy ane 

The crossing number v(G) of a graph G is the minimum number of | 

pairwise intersections of its edges when G is drawn in the plane. Obviously | 

v(G) = Oif and only if G is planar. The exact value of the crossing number | 
has not yet been determined for any of the three families of graphs; only 

upper bounds are definitely established. The prevailing conjecture is that 
the bounds in (11.20) and (11.21) are exact. Several authors have deluded 

‘ themselves into thinking they had proved equality. For details, see Guy 
[G12]. | 

lA 

O(K3,4 2,3s+ 2) 

IV 
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Table 11.1 

CONJECTURED VALUES FOR ¢(K,) 

D | ih} 18 21 24 2h 9n+7 

&(K,) | yb 15 21 28 36 (Qn? + 13n + 2)/2 

Theorem 11.28 The crossing number of the complete graph satisfies the 
inequality 

1 Fall pie oullapass 
W(K,) < ABE ‘ |? : [° : ‘| (11.20) 

Theorem 11.29 The crossing number of the complete bigraph satisfies the 

inequality 

mijm—1]in|in—1 

T. Saaty showed that (11.20) is an equation for p < 10 while D. Kleitman 

proved equality in (11.21) for m < 6. These are the only known values of 

v(K,) and v(K,,,,,). For the cubes, no one has even conjectured what is v. 

EXERCISES 

11.1 Ifa (p,, q;) graph and a (p,, q2) graph are homeomorphic, then 

P: + 92 = P2 + 41. 

11.2 Every plane eulerian graph contains an eulerian trail that never crosses itself. 

11.3 A 3-connected graph with p > 6 is planar if and only if no subgraph is homeo- 

morphic to K3 3. (D. W. Hall [H6]) 

*11.4 Every 4-connected planar graph is hamiltonian. (Tutte [T113]) 

11.5 Every 5-connected planar graph has at least 12 points. Construct one. 

11.6 There is no 6-connected planar graph. 

*11.7_ If Gis a maximal plane graph in which every triangle bounds a region, then G is 

hamiltonian. (Whitney, Ann. Math., 32 (1931), 378-390.) 

11.8 Not every maximal planar graph is hamiltonian. (Whitney, same as above.) 

11.9 If, ina drawing of G in the plane, every pair cf nonadjacent edges cross an even 

number of times, then G is planar. 

(R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte) 

11.10 Prove or disprove: every connected nonplanar graph has K, or K3, as a 

l contraction. 
— i! : 
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11.11 Prove or disprove: A graph is planar if and only if every subgraph with at most 

six points of degree at least 3 is homeomorphic to a subgraph of K, + Py. 

11.12 Prove or disprove: The cycle basis of a plane graph consisting of the interior 

faces always comes from a tree (cf. Chapter 4). 

*11.13 Every triply connected planar graph has a spanning tree with maximum degree 3. 

(Barnette [B3]) 

11.14 A plane graph is 2-connected if and only if its geometric dual is 2-connected. 

11.15 All wheels are self-dual. 

11.16 The square of a connected graph G is outerplanar if and only if G is K, ora path. 

11.17 The following statements are equivalent : 

(1) The line graph L(G) is outerplanar. 

(2) The maximum degree A(G) < 3 and every point of degree 3 is a cutpoint. 

(3) The total graph T(G) is planar. 

(Chartrand, Geller, and Hedetniemi [CGHZ2], Behzad [B4]) 

11.18 A graph G other than <]~ has a planar square if and only if A(G) < 3, every point 

of degree 3 is a cutpoint, and all blocks of G with more than 3 points are even cycles. 

(Harary, Karp, and Tutte [HKT1]) 

11.19 A graph G has a planar line graph if and only if G is planar, A(G) < 4, and every 

point of degree 4 is a cutpoint. (Sedlaéek [S10]) 

11.20 Find the genus and crossing number of the Petersen graph. 

11.21 Prove or disprove: A nonplanar graph G has v = 1 if and only if G — x is 

planar for some line x. 

11.22 The arboricity of every planar graph is at most 3. Construct a planar graph with 
arboricity 3. 

11.23 Every graph is homeomorphic to a graph with arboricity 1 or 2, and hence of 

thickness 1 or 2. 

11.24 The skewness of G is the minimum number of lines whose removal results in a 

planar graph. Find the skewness of 

B) Kos aD) Wien ie ey ere (A. Kotzig) 

11.25 If G is outerplanar without triangles, then 

q < (3p — 4)/2. 

11.26 If Gis a graph such that for any two points, there are at most two point-disjoint 

paths of length greater than 1 joining them, then 

a) Gis planar. 

b) q < 2p -2. 

c) If Gis nonseparable and p > 5, then there is a unique hamiltonian cycle. 

(Tang [T2]) 
11:27, Embed the cube Q, on the surface of a torus: 
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11.28 The genus y of any graph G with girth g has the lower bound 

l a 2 
r25 jMie Sa | Keh eal fal 23) | 

g 

(Beineke and Harary [BH2]) 

| = 
*11.29 (Kun) -(" ; ) (G. Ringel) 

11.30 If G, and G, are homeomorphic, then €(G,) = €(G,) and v(G,) = w(G,). 

11.31 The maximum number of line-disjoint K3 , subgraphs in K,,,, is 

CEICED 
AK.) > 1313] 

Thus for all n, 

(Beineke and Guy [BG1]) 



CHAPTER 12 

COLORABILITY 

Suppose there’s a brown calf and a big brown dog, and an artist 

is making a picture of them... He has got to paint them so you can 

tell them apart the minute you look at them, hain’t he? Of course. 

Well, then, do you want him to go and paint both of them brown? 

Certainly you don’t. He paints one of them blue, and then you can’t 

make no mistake. It’s just the same with maps. 

That’s why they make every state a different color... 

SAMUEL CLEMENS (MARK TWAIN) 

The Four Color Conjecture (4CC) can truly be renamed the “Four Color 

Disease” for it exhibits so many properties of an infection. It is highly 

contagious. Some cases are benign and others malignant or chronic. There 

is no known vaccine, but men with a sufficiently strong constitution have 

achieved life-long immunity after a mild bout. It is recurrent and has been 
known to cause exquisite pain although there are no terminal cases on record. 

At least one case of the disease was transmitted from father to son, so it 

may be hereditary. 

It is this problem which has stimulated results on colorability of graphs, 

which have led in turn to the investigation of several other areas of graph 
theory. After describing the coloring of a graph and its chromatic number, 

the stage is set for a proof of the Five Color Theorem and a discussion of 
the Four Color Conjecture. We then introduce uniquely colorable graphs, 

which can only be colored in one way, and critical graphs, which are minimal 

with respect to coloring. The intimate relationship between homomorphisms 

and colorings is investigated. The chapter concludes with a development 
of the properties of the chromatic polynomial. 

THE CHROMATIC NUMBER 

A coloring of a graph is an assignment of colors to its points so that no two 

adjacent points have the same color. The set of all points with any one 

color is independent and is called a color class. An n-coloring of a graph G 

uses n colors; it thereby partitions V into n color classes. The chromatic 

126 
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1 2 2 3 2 3 

— | - : | : : 1 2 3 1 3 2 

(a) (b) (c) 

Fig. 12.1. Three colorings of a graph. 

number x(G) is defined as the minimum n for which G has an n-coloring. 
A graph G is n-colorable if y(G) < n and is n-chromatic if y(G) = n. 

Since G obviously has a p-coloring and a x(G)-coloring, it must also 

have an n-coloring whenever 7(G) < n < p. The graph of Fig. 12.1 is 

2-chromatic ; n-colorings for n = 2, 3, 4 are displayed, with positive integers 

designating the colors. 

The chromatic numbers of some of the familiar graphs are easily 

determined, namely y(K,) = p, x(K, — x) = p — 1,x(K,) = 1, x(Kmn) = 2, 
X(Con) = 2, x(C2,+1) = 3, and for any nontrivial tree T, x(T) = 2. 

Obviously, a graph is 1-chromatic if and only if it is totally disconnected. 
A characterization of bicolorable (2-colorable) graphs was given by K6nig 

[K10, p. 170], as Theorem 2.4 already indicates. 

Theorem 12.1 A graph is bicolorable if and only if it has no odd cycles. 

It is likely to remain an unsolved problem to provide a characterization 

of n-colorable graphs for n > 3, since such a criterion even for n = 3 would 
help to settle the 4CC. No convenient method is known for determining the 
chromatic number of an arbitrary graph. However, there are several known 

bounds for x(G) in terms of various other invariants. One obvious lower 

bound is the number of points in a largest complete subgraph of G. We now 
consider upper bounds, the first of which is due to Szekeres and Wilf [SW1]. 

Theorem 12.2 For any graph G, 

x(G) < 1 + max 6(G), (12.1) 

where the maximum is taken over all induced subgraphs G’ of G. 

Proof. The result is obvious for totally disconnected graphs. Let G bean arbi- 

trary n-chromatic graph, n > 2. Let H be any smallest induced subgraph such 

that y(H) = n. The graph H therefore has the property that y(H — v) =n—- 1 

for all its points v. It follows that deg v > » — 1 so that 6(H) > n — 1 and 

‘hence 
n— 1 < 0(A) < max 6(H’) < max (6), 

the first maximum taken over all induced subgraphs H’ of H and the second 
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over all induced subgraphs G’ of G. This implies that 

y(G) = n < 1 + max A(GC)). 

Corollary 12.2(a) For any graph G, the chromatic number is at most one 

greater than the maximum degree, ; 

Pee Wea. (12.2) 

Brooks [B16] showed, however, that this bound can often be improved. 

Theorem 12.3 If A(G) =n = 2, then G is n-colorable unless 

i) n = 2 and G has a component which is an odd cycle, or 

ii) n > 2 and K,,, is a component of G. 

A lower bound, noted in Berge [B12, p. 37] and Ore [OS, p. 225], and 
an upper bound, Harary and Hedetniemi [HH1], involve the point inde- 
pendence number B, of G. 

Theorem 12.4 For any graph G, 

P/Bo S$ XS P— Bo + 1. (12.3) 

Proof. If x(G) = n, then V can be partitioned into n color classes V,, V>,---, 

V,, each of which, as noted above, is an independent set of points. If|V| = p;, 

then every p; < By so that p = Xp; < nBo. 
To verify the upper bound, let S be a maximal independent set containing 

Bo points. It is clear that x(G — S) >\x(G) — 1. Since G — S has p — By 
points, 7(G — S) < p — Bo. Therefore, x(G) < 7(G — S)+ 1<p— 8, +1. 

None of the bourfds presented here is particularly good in the sense 
that for any bound and for every positive integer n, there exists a graph G 

such that x(G) differs from the bound by more than n. 
From the discussion thus far, one may very well be led to believe that 

all graphs with large chromatic number have large cliques and hence contain 

triangles. In fact, Dirac [D7] asked if there exists a graph with no triangles 

but arbitrarily high chromatic number. This was answered affirmatively 

and independently by Blanche Descartes* [D3], Mycielski [M19], and 
Zykov [Z1]. Their result was extended by Kelly and Kelly [KK1], who 
proved that for all n > 2, there exists an n-chromatic graph whose girth 

exceeds 5. In the same paper, they conjectured the following theorem, 

which was first proved by Erdés [E2] using a probabilistic argument and 
later by Lovasz [L5] constructively. 

* This so-called lady is actually a nonempty subset of {Brooks, Smith, Stone, Tutte}; in this 
case {Tutte}. 
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Theorem 12.5 For every two positive integers m and n, there exists an n- 

_ chromatic graph whose girth exceeds m. 

The number x = 7(G) = x(G) is the minimum number of subsets which 

partition the point set of G so that each subset induces a complete subgraph 

of G. It is clear that y(G) => B,(G). Bounds on the sum and product of the 

chromatic numbers of a graph and its complement were developed by 
Nordhaus and Gaddum [NG1]. 

Theorem 12.6 For any graph G, the sum and product of y and x satisfy the 
inequalities : 

DR TiS (a gt ME in gy (12.4) 

2 

pP<i< F>) dripreteb hey 

Proof. Let G be n-chromatic and let V,, V,,---, V, be the color classes of G, 

where |V,| = p;. Then of course X p; = p and max p; > p/n. Since each V, 

induces a complete subgraph of G, ¥ > max p; > p/nso that yy > p. Since 
the geometric mean of two positive numbers never exceeds their arithmetic 

mean, it follows that y + x = ep! This establishes both lower bounds. 

To show that y + y < p + 1, we use induction on p, noting that 

equality holds when p = 1. We thus assume that y(G) + x7(G) < p for all 

graphs G having p — 1 points. Let H and H be complementary graphs 

with p points, and let v be a point of H. Then G = H — vandG =H — v 
are complementary graphs with p — 1 points. Let the degree of v in H 

be d so that the degree of v in H is p — d — 1. It is obvious that 

y(H) < x(G) + 1 and ¥(H) < x(G) + 1. 

If either 

PG) el OL WU) = Ge 

then 7(H) + ¥(H) < p +1. Suppose then that 7(H) = x(G)+ 1 and 

x(H) = x(G) + 1. This implies that the removal of v from H, producing G, 

decreases the chromatic number so that d > x(G). Similarly 

pre dt AG); 
. a 

thus y(G) + x(G) < p — 1. Therefore, we always have 

x(H) + X(H) < pt 1. 

Finally, applying the inequality 477 < (y + x)? we see that 

xx < [(p + 1/2)’. 
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THE FIVE COLOR THEOREM 

Although it is not known whether all planar graphs are 4-colorable, they 

are certainly 5-colorable. In this section we present a proof of this famous 
result due to Heawood [H38]. 

Theorem 12.7 Every planar graph is 5-colorable. 

Proof. We proceed by induction on the number p of points. For any planar 
graph having p < 5 points, the result follows trivially since the graph is 

p-colorable. 
As the inductive hypothesis we assume that all planar graphs with p 

points, p > 5, are 5-colorable. Let G be a plane graph with p + 1 vertices. 

By Corollary 11.1(e), G contains a vertex v of degree 5 or less. By hypothesis, 

the plane graph G — v is 5-colorable. 

Consider an assignment of colors to the vertices of G — v so that a 

5-coloring results, where the colors are denoted by c;, 1 < i < 5. Certainly, 

if some color, say c;, is not used in the coloring of the vertices adjacent with 
v, then by assigning the color c; to v, a 5-coloring of G results. 

This leaves only the case to consider in which deg v = 5 and five colors 

are used for the vertices of G adjacent with v. Permute the colors, if necessary, 

so that the vertices colored c,, cz, c3, C4, and c, are arranged cyclically 

about v. Now label the vertex adjacent with v and colored c; by v, 1 < i < 5 
(see Fig. 12.2). 

vb) 

be 

U4 b3 

Fig. 12.2. A step in the proof of the Five Color Theorem. 

Let G,, denote the subgraph of G — v induced by those vertices colored © 
c, orc3. Ifv, and v,; belong to different components of G, 3, then a 5-coloring — 

of G — v may be accomplished by interchanging the colors of the vertices — 

in the component of G,, containing v,. Im this 5-coloring, however, no — 

vertex adjacent with v is colored c,, so by coloring v with the color c,, a 

5-coloring of G results. 

If, on the other hand, v, and v, belong to the same component of G,3, — 

then there exists in G a path between v, and v; all of whose vertices are — 

colored c, or c3. This path together with the path v,vv, produces a cycle 

which necessarily encloses the vertex v, or both the vertices v, and vs. In any © : 
| 
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case, there exists no path joining v, and v,, all of whose vertices are colored c, 

or cy. Hence, if we let G,, denote the subgraph of G — v induced by the 
vertices colored c, or c4, then v, and v, belong to different components 

of G,,. Thus if we interchange colors of the vertices in the component of 
G,, containing v,, a 5-coloring of G — v is produced in which no vertex 

adjacent with v is colored c,. We may then obtain a 5-coloring of G by 

assigning to v the color c,. 

THE FOUR COLOR CONJECTURE 

In Chapter 1 we mentioned that the 4CC served as a catalyst for graph 

theory through attempts to settle it. We now present a graph-theoretic 

discussion of this infamous problem. A coloring of a plane map G is an 
assignment of colors to the regions of G so that no two adjacent regions are 
assigned the same color. The map G 1s said to be n-colorable if there is a 

coloring of G which uses n or fewer colors. The original conjecture as 
described in Chapter 1 asserts that every plane map is 4-colorable. 

Four Color Conjecture (4CC) Every planar graph is 4-colorable. 

We emphasize that coloring a graph always refers to coloring its vertices 

while coloring a map indicates that it is the regions which are colored! 
Thus the conjecture that every plane map is 4-colorable is in fact equivalent 

to this statement of the Four Color Conjecture. To see this, assume the 

4CC holds and let G be any plane map. Let G* be the underlying graph of 

the geometric dual of G. Since two regions of G are adjacent if and only 

if the corresponding vertices of G* are adjacent, map G is 4-colorable 

because graph G* is 4-colorable. 

Conversely, assume that every plane map is 4-colorable and let H be 

any planar graph. Without loss of generality, we suppose H is a connected 

plane graph. Let H* be the dual of H, so drawn that each region of H* 
encloses precisely one vertex of H. The connected plane pseudograph H* 

can be converted into a plane graph H’ by introducing two vertices into each 

loop of H* and adding a new vertex into each edge in a set of multiple edges. 

The 4-colorability of H’ now implies that H is 4-colorable, completing the 

verification of the equivalence. 
If the 4CC is ever proved, the result will be best possible, for it is easy 

to give examples of planar graphs which are 4-chromatic, such as K, and 

W, (see Fig. 12.3). 
Each of the graphs K, and W, has more than 3 triangles, which is 

necessary according to a theorem of Griinbaum [G9]. 

Theorem 12:8 Every planar graph with fewer than 4 triangles is 3-colorable. 

From this the following corollary is immediate ; it was originally proved 

by Grétzsch [G8]. 

ly 
y i! 
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Ky: W,: 

Fig. 12.3. Two 4-chromatic planar graphs. 

Corollary 12.8(a) Every planar graph without triangles is 3-colorable. 

Any plane map which requires 5 colors will necessarily contain a large 

number of regions, for Ore and Stemple [OS1] showed that all plane maps 
with up to 39 regions are 4-colorable, increasing by 4 regions the earlier 

result of this kind.* All evidence indicates that the Four Color Conjecture 
‘is true. However, attempts to prove the 4CC using the plane map formulation 
can be directed at a special class of plane maps, as we shall now see. 

Theorem 12.9 The Four Color Conjecture holds if and only if every cubic 
bridgeless plane map is 4-colorable. 

Proof. We have already seen that every plane map is 4-colorable if and 

only if the 4CC holds. This is also equivalent to the statement that every 

bridgeless plane map is 4-colorable since the elementary contraction of 

identifying the endvertices of a bridge affects neither the number of regions 
in the map nor the adjacency of any of the regions. 

Certainly, if every bridgeless plane map is 4-colorable, then every cubic 

bridgeless plane map is 4-colorable. In order to verify the converse, let G 

be a bridgeless plane map and assume all cubic bridgeless plane maps are 

4-colorable. Since G is bridgeless, it has no endvertices. If G contains a 

vertex v of degree 2 incident with edges y and z, we subdivide y and z, denoting 

the subdivision vertices by u and w, respectively. We now remove 1, identify u 

with one of the vertices of degree 2 ina copy ofthe graph K, — x and identify 
w with the other vertex of degree 2 in K, — x. Observe that each new 

vertex added has degree 3 (see Fig. 12.4). If G contains a vertex vg of degree 
n > 4 incident with edges x,, x,,°°*, x, arranged cyclically about v9, we 

subdivide each x; producing a new vertex v;. We then remove vg and add 

the new edges 0,03, 0203, °° *, U,;—1Uq UnV;. Again each of the vertices so added 

has degree 3. 

Denote the resulting bridgeless cubic plane map by G’, which, by 

hypothesis, is 4-colorable. If for each vertex v of G with deg v ¥ 3, we 

* Finck and Sachs[ FSI} proved that every plane graph with at most 21 triangles is 4-colorable. 
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After 

%1 

deg vo=n>4 

X4 

Fig. 12.4. Conversion of a graph into a cubic graph. 

identify all the newly added vertices associated with v in the formation of 

G’, we arrive at G once again. Thus let there be given a 4-coloring of G’. 

The aforementioned contraction of G’ into G induces an m-coloring of G, 

m < 4, which completes the proof. 

Another interesting equivalence was proved by Whitney [W16]. 

Theorem 12.10 The Four Color Conjecture holds if and only if every 

hamiltonian planar graph is 4-colorable. 

As there are equivalents of the Four Color Conjecture involving the 

coloring of regions, so too is there an equivalent of the 4CC concerned 

with the coloring of lines. 

A line-coloring of a graph G is an assignment of colors to its lines so that 
no two adjacent lines are assigned the same color. An n-line-coloring of G 

is a line-coloring of G which uses exactly n colors. The line-chromatic 
number* 7'(G) is the minimum n for which G has an n-line-coloring. It follows 

that for any graph.G which is not totally disconnected, y'(G) = x(L(G)). 

Tight bounds on the line-chromatic number were obtained** by Vizing [V4]. 

Theorem 12.11 For any graph G, the line-chromatic number satisfies the 

inequalities : 
Ny eS a (12.6) 

* Sometimes called the chromatic index. 

** A proof in English can be found in Ore [O7, p. 248]. 
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xX'=A xX’=A+1 

Fig. 12.5. The two values for the line-chromatic number. 

The two possible values for y’(G) are illustrated in Fig. 12.5. It is not 

known in general for which graphs y’ = A. 

Theorem 12.12 The Four Color Conjecture is true if and only if y(G) = 3 

for every bridgeless cubic planar graph G. 

Proof. We have already shown in Theorem 12.9 that the 4CC is equivalent 

to the statement that every cubic bridgeless plane map 1s 4-colorable. We 

show now that a cubic bridgeless plane map G is 4-colorable if and only 

if y'(G) = 3. 
First we assume that G is a bridgeless, cubic plane map which is 4- 

colorable. Without loss of generality, we take G to be connected and therefore 

a plane map which, by hypothesis, is 4-colorable. For the set of colors we 
select the elements of the Klein four-group F, where addition in F is defined 

by k; + k; = ky andk, + k, = k3, with ky the identity element. 
Let there be given a 4-coloring of the map G. We define the color of an 

edge to be the sum of the colors of the two distinct regions which are incident 
with the edge. It is now immediate that the edges are colored with elements 
of the set {k,, k,, k,} and that no two adjacent edges are assigned the same 
color; thus y(G) = 3. 

Conversely, let G be a bridgeless cubic plane graph with y‘(G) = 3, 

and color its edges with the three nonzero elements of F. Select some reg:un 

Rp and assign to it the color ky. To any other region R of G, we assign a 

color in the following manner. Let C be any curve in the plane joining the 

interior of Ry with the interior of R such that C does not pass throush a 

point of G. We then define the color of R to be the sum of the colors of those 
edges which intersect C. 

That the colors of the regions are well-defined depends on the fact that 
the sum of the colors of the edges which intersect any simple closed curve 

not passing through a vertex of G is ky. Let S be such a curve, and let 
C1, Cz,°°*, C, be the colors of the edges which intersect S. In addition, let 

d,,d,,°°:,d,, be the colors of those edges interior to S. Observe that if 

c(v) denotes the sum of the colors of the 3 edges incident with a vertex v, 

then c(v) = ko. Hence for all vertices v interior to S, Z c(v) = ko. On the 
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other hand, we also have 

Y ev) = c, +c, +--- +6, + Ad, + dp +--+ d,) 

SSC Tat Co et erat ae 

since every element of F is self-inverse. Thus c, + c, + --: + c, = ko. It 

is nOW a routine matter to show that this constitutes a 4-coloring of the regions 
of G, completing the proof. 

Since each line color class resulting from an n-line coloring of a regular 

graph G of degree n is a 1-factor of G, the preceding result produces another 

equivalent of the Four Color Conjecture. 

Corollary 12.12(a) The Four Color Conjecture holds if and only if every 

bridgeless, cubic planar graph is 1-factorable. 

Theorem 12.12 has been generalized in terms of factorization (see Ore 
[O7, p. 103}). 

Theorem 12.13 A necessary and sufficient condition that a connected planar 
map G be 4-colorable is that G be the sum of three subgraphs G,, G2, G3 such 

that for each point v, the number of lines of each G; incident with v are all 

even or all odd. 

Although it is the 4CC which has received the preponderance of publicity, 

there are several other conjectures dealing with coloring. One. of the most 

interesting of these involves contractions and is due to Hadwiger [H1]. 

Hadwiger’s Conjecture. Every connected n-chromatic graph is contractible 

to K,,. 

Not surprisingly, this conjecture is related to the 4CC. Hadwiger’s 

-Conjecture is known to be true forn < 4,a result of Dirac [D5]. Forn = 5S, 
this conjecture states that every 5S-chromatic graph G is contractible to Ks. 

By Theorem 11.14, every such graph G is necessarily nonplanar. Thus 
Hadwiger’s Conjecture for n = 5 implies the 4CC. The converse was 

established by Wagner [W3]. 

Theorem 12.14 Hadwiger’s Conjecture for n = 5 is equivalent to the Four 

Color Conjecture. 

THE HEAWOOD MAP-COLORING THEOREM 

Let S,, be the orientable surface of genus n; thus, S,, is topologically equivalent 
to a sphere with n handles. The chromatic number of S,, denoted y(S,), is the 

maximum chromatic number among all graphs which can be embedded 

on S,. The surface S, is simply the sphere and the determination of y(So) 
is the problem we have already encountered on several occasions. The Four 
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Color Conjecture states that y(S,) = 4 although, of course, we know only 

(by Theorem 12.7) that x(S,) is 4 or S. 

For the torus, Heawood [H38] was able to prove that y(S,) = 7. The 
inequality y(S,) > 7 follows from the fact that it is possible to embed K, 

on the torus. This is shown in Fig. 11.17. The equality y(S,) = 7 comes from 

the fact that Heawood was also able to prove (see the proof of Theorem 12.15 
below) that the chromatic number of the orientable surface of positive 

genus n has the upper bound 

WS,) < eee ee] (n > 0). (12.7) 
2 

For n = 1, we have x(S,) < 7, so that x(S,) = 7. 

Heawood, who found the error in Kempe’s “proof” of the Four Color 

Conjecture, was himself not infallible. He believed that he had proved 

equality in his formula, but just one year later, Heffter [H40] pointed out 
errors of omission in Heawood’s arguments resulting in only the inequality 

(12.7). Heffter did prove equality for 0 < n < 6. Eventually, the statement 
that equality holds in Heawood’s formula became known as the Heawood 

Map-Coloring Conjecture. We now show that when Ringel and Youngs 
proved that (K,) = {(p — 3p — 4)/12}, Theorem 11.18, they settled this 
conjecture. 

Theorem 12.15 (Heawood Map-Coloring Theorem). For every positive 
integer n, the chromatic number of the orientable surface of genus n is 

given by 

X(S,) = [AE ad (n > O). (12.8) 
2 

Proof. We first prove inequality (12.7). Let G be a (p, gq) graph embedded 

on S,. We may assume G is a triangulation, since any graph can be aug- 

mented to a triangulation of the same genus by adding edges, without 

reducing x. If dis the average degree of the vertices of G, then p, g, and r (the 

number of regions) are related by the equations 

dp = 2q = 3r. (12.9) 

Solving for q and r in terms of p and using Euler’s equation (11.4), we obtain 

d = 12(n — 1)/p + 6. (12.10) 

Since d < p — 1, this gives the inequality . 

p— 12 12(n — 1)/p + 6. (12.11) 

Solving for p and taking the positive root, we obtain 

| Babici/t ten (2.12) 
= 

Roe 2 
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Let H(n) be the right-hand side of (12.8). Then we must show that 

H(n) colors are sufficient to color the points of-G. Clearly if p = H(n) we 

have enough colors. If, on the other hand, p > H(n), we substitute H(n) for 

p in (12.10), to obtain the inequality 

d < 12(n — 1)/H(n) + 6 = H(n) — 1, (12.13) 

with the latter equality obtained by routine algebraic manipulation. Thus 

when p > H(n), there is a point v of degree at most H(n) — 2. Identify v 

and any adjacent point (by an elementary contraction) to obtain a new 

graph G’. If p’ = p — 1 = H(n), then G’ can be colored in H(n) colors. 

If p’ > H(n), repeat the argument. Eventually an H(n)-colorable graph will 

be obtained. It is then easy to see that the coloring of this graph induces a 

coloring of the preceding one in H(n) colors, and so forth, so that G itself 

is H(n)-colorable. 

The other half of the theorem is the difficult part, but Ringel and Youngs 

have provided the means. If the complete graph K, can be embedded in 

S,, then by equation (11.9), 

n> (K,) = ene (12.14) 

Setting p to be the largest integer satisfying Eq. (12.14), we have 

CE a a ed 
12 12 12 12 

Solving for p we find 

5 + ./1 + 48n el hay Ditedin 

2 easee 2 
So 

7 bts fi 048 FS (12.15) 
2 

Since y(K,) = p, we have found a graph with genus n and chromatic 

number equal to H(n). This shows that H(n) is a lower bound for (S,) and 

completes the proof. Note: (12.8) specialized to n = 0 is precisely the 4CC. 

UNIQUELY COLORABLE GRAPHS 

Let G be a labeled graph. Any y(G)-coloring of G induces a partition of the 

point set of G into x(G) color classes. If y(G) = n and every n-coloring of G 

induces the same partition of V, then G is called uniquely n-colorable or 

simply uniquely colorable. The graph G of Fig. 12.6 is uniquely 3-colorable 

since every 3-coloring of G has the partition {u,}, {u2, u4}, {u3, us} while 
\the pentagon is not uniquely 3-colorable; indeed, five different partitions 

‘of its point set are possible. 
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Us ug 

Us, u3 

Fig. 12.6. A uniquely colorable graph. 

We begin with a few elementary observations concerning uniquely 
colorable graphs. First, in any n-coloring of a uniquely n-colorable graph G, 

every point v of G is adjacent with at least one point of every color different 

from that assigned to v; for otherwise a different n-coloring of G could be 

obtained by recoloring v. This further implies that ((G)>n-—1. A 

necessary condition for a graph to be uniquely colorable was found by 

Cartwright and Harary [CH2]. 

Theorem 12.16 In the n-coloring of a uniquely n-colorable graph, the 

subgraph induced by the union of any two color classes is connected. 

Proof. Consider an n-coloring of a uniquely n-colorable graph G, and 

suppose there exist two color classes of G, say C, and C,, such that the 

subgraph S of G induced by C, u C, is disconnected. Let S, and S, be two 

components of S. From our earlier remarks, each of S$, and S, must contain 

points of both C, and C,. An n-coloring different from the given one can 

now be obtained if the color of the points in C, © S, is interchanged with 

the color of the points in C, 7 S,. This implies that G is not uniquely 
n-colorable, which is a contradiction. 

The converse of Theorem 12.16 is not true, however. This can be seen 

with the aid of the 3-chromatic graph G of Fig. 12.7. It has the property 

that in any 3-coloring, the subgraph induced by the union of any 2 color 

classes is connected, but G is not uniquely 3-colorable. 
From Theorem 12.16, it now follows that every uniquely n-colorable q 

graph, n > 2, is connected. However, a stronger result can be given, due 

to Chartrand and Geller [CG1]. 

Fig. 12.7. A counterexample to the converse of Theorem 12.16. 
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that G is neither complete nor (n — 1)-connected so that there exists a set U 
of n — 2 points whose removal disconnects G. Thus, there are at least two 

distinct colors, say c, and c,, not assigned to any point of U. By Theorem 

12.16, a point colored c, is connected to any point colored c, by a path all 

of whose points are colored c, or c,. Hence, the set of points of G colored 

c, or c, lies within the same component of G — U, say G,. Another n- 

coloring of G can therefore be obtained by taking any point of G — U which 

is not in G, and recoloring it either c, or c,. This contradicts the hypothesis 
that G is uniquely n-colorable; thus G is (n — 1)-connected. 

Since the union of any k color classes of a uniquely n-colorable graph, 

2 < k < n, induces a uniquely k-colorable graph, we arrive at the following 

- consequence. 

Corollary 12.17(a) In any n-coloring of a uniquely n-colorable graph, the 

subgraph induced by the union of any k color classes, 2 < k <n, 1s 

(k — 1)-connected. 

It is easy to give examples of 3-chromatic graphs containing no triangles ; 

indeed we have seen in Theorem 12.5 that for any n, there exist n-chromatic 

graphs with no triangles and hence no subgraphs isomorphic to K,,. In this 

connection, a stronger result was obtained by Harary, Hedetniemi, and 

Robinson [HHR1]. 

Theorem 12.18 For all n > 3, there is a uniquely n-colorable graph which 

contains no subgraph isomorphic to K,,. 

For n = 3, the graph G of Fig. 12.8 illustrates the theorem. 

Naturally, a graph is uniquely 1-colorable if and only if it is 1-colorable, 
that is, totally disconnected. It is also well known that a graph G is uniquely 

| 2-colorable if and only if G is 2-chromatic and connected. As might be 

‘expected, the information concerning uniquely n-colorable graphs, n > 3, is 

| Fig. 12.8. A uniquely 3-colorable graph having no triangles. 
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very sparse. In the case where the graphs are planar, however, more can be 

said, although in view of the Five Color Theorem, we need to consider only 

the values 3 < n < 5. The results in this area are due to Chartrand and 

Geller [CG1]. 

Theorem 12.19 Let G be a 3-chromatic plane graph. If G contains a triangle 

T such that for each vertex v of G there is a sequence T, 7;, T,--:, T,, of 

triangles with v in T,, such that consecutive triangles in the sequence have 
an edge in common, then G is uniquely 3-colorable. 

The next result is now immediate. 

Corollary 12.19(a) If a 2-connected 3-chromatic plane graph G has at most 

one region which is not a triangle, then G is uniquely 3-colorable. 

The converse of Corollary 12.19(a) is not true, for a uniquely 3-colorable 

planar graph may have more than one region which is not a triangle; see 

Fig. 12.9. However, every uniquely 3-colorable planar graph must contain 

ee 
Ra 

Fig. 12.9. A uniquely 3-colorable planar graph. 

Theorem 12.20 If G is a uniquely 3-colorable planar graph with at least 4 

points, then G contains at least two triangles. 

In the case of uniquely 4-colorable planar graphs, the situation is 
particularly simple. 

Theorem 12.21 Every uniquely 4-colorable planar graph is maximal planar. 

Proof. Let there be given a 4-coloring ofa uniquely 4-colorable planar graph 

G with the color classes denoted by V,, 1 < i < 4, where |V| = p,. Since the 
subgraph induced by V;U V;, i # j, is connected, G must have at least 

X(p; + p; — 1) lines, 1 < i<j <4. However, this sum is obviously 
3p — 6. Hence q > 3p — 6 and so by Corollary 11.1(b), G is maximal 

planar. 

Although the existence of a 5-chromatic planar graph is still open, a 

result of Hedetniemi given in [CG1] settles the problem for unique 5-color- 
ability ; its proof is similar to that of the preceding theorem. 

Theorem 12.22 No planar graph is uniquely 5-colorable. 
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_ CRITICAL GRAPHS 

_If the Four Color Conjecture is not true, then there must exist a smallest 

5-chromatic planar graph. Such a graph G has the property that for every 

_ point v, the subgraph G — vis 4-chromatic. Thus we havea natural approach 
toa possible proof of the 4CC in its contrapositive formulation. This suggests 

the basic problem of investigating such 5-chromatic graphs G or, more 

generally, those n-chromatic graphs G with the property that y(G — v) =n — 1 
for all points v of G. 

Following Dirac [D5], a graph G is called critical* if y(G — v) < x(G) 
for all points v; if y(G) = n, then Gis n-critical. Of course, if G is critical, then 

x(G — v) = x(G) — 1 for every point v. 

| Obviously, no graph is 1-critical. The only 2-critical graph is K,, while 

the only 3-critical graphs are the odd cycles. For n > 4, the n-critical 

graphs have not been characterized. 
Ordinarily, it is extremely difficult to determine whether a given graph 

_ is critical; however, every n-chromatic graph, n > 2, contains an n-critical 

subgraph. In fact, if H is any smallest induced subgraph of G such that 

yx(H) = x(G), then H 1s critical. 
It is clear that every critical graph G is connected; furthermore, since 

x(G) = max y(B) over all blocks B of G, it follows that G must be a block. 

This is only one of several properties which critical graphs enjoy. 

The next statement has already been demonstrated within the proof 

of Theorem 12.2. 

Theorem 12.23 If G is an n-critical graph, then 6(G) > n — 1. 

We now make an observation on the removal of points. 

Theorem 12.24 No critical graph can be separated by a complete subgraph. 

Corollary 12.24(a) Every cutset of points of a critical graph contains two 

nonadjacent points. 

Every complete graph is critical; indeed for U < V(K,), xK, — U) = 

p —|U|. For any other critical graph, however, it is always possible to 

remove more than one point without decreasing the chromatic number by 

more than one; in fact, if S is any independent set of points of an n-critical 

graph, then y(G — S) = n — 1. This further implies that if u and v are any 

two nonadjacent points of an n-critical graph G which is not complete, there 

exists an n-coloring of G such that u and v are in the same color class and an 
n-coloring of G such that u and v are in different color classes. 

* If other kinds of critical graphs are present, these should be called color-critical. 

Ly 
a 
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One area of research,on critical graphs deals with cycle length, in partic- 

ular with circumference and girth. By Theorem 12.23 and Corollary 7.3(b), if 
G is an n-critical graph with p points such that p < 2n —2, then G is 

hamiltonian. More generally, Dirac [D6] proved the following result. 

Theorem 12.25 If G is an n-critical graph, n > 3, then either G is hamiltonian 

or the circumference of G is at least 2n — 2. 

Dirac [D6] once conjectured that every 4-critical graph is hamiltonian ; 
however, Kelly and Kelly [KK1] showed this conjecture is not true. Dirac 
[D6] also conjectured that forall m and n, n > 3, there-exists a sufficiently _ 
large value of p such that all n-critical graphs with at least p points have 

circumference exceeding m. Kelly and Kelly proved this to be true. It is a 

consequence of Theorem 12.5 that for all m and n, there exists an n-critical 

graph whose girth exceeds m. 

A critical graph G may have the added property that for any line x of G, 
x(G — x) = x(G) — 1;in sucha case, Gis called line-critical, and if y(G) = 

G is n-line-critical. Although every line-critical graph without isolated 
points is necessarily critical, the converse does not hold. For example, the — 

graph G of Fig. 12.10 is 4-critical but is not line-critical since y(G — x) = 4. 

x 

Fig. 12.10. A critical graph which is not line-critical. 

Thus every property of critical graphs is also possessed by line-critical 

graphs; but in some instances more can be said about the latter. 

Theorem 12.26 If G isa 2-connected n-chromatic graph containing exactly one 

point of degree exceeding n — 1, then G is n-line-critical. 

Proof. Let x be any line of G, and consider G — x. Certainly, 6(G — x) < 
n — 2,and, moreover, for every induced subgraph G’ of G — x, d(G’) < n — 2. 

Thus by Theorem 12.2, y(G — x) < n — 1, implying that x(G — x) =n —- 1 

and that G is n-line-critical. 
According to Theorem 12.23, if G is an n-critical graph, then 2q > 

(n — 1)p. For line-critical graphs, however, Dirac [D7] improved this 
result. 

Theorem 12.27 If G is an n-line-critical graph without isolates points,n > 4, 
which is not complete, then 

2q > (n—1)p+n—3. 
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HOMOMORPHISMS 

It is convenient to consider only connected graphs in this section. An 

elementary homomorphism of G is an identification of two nonadjacent 

points. A homomorphism of G is a sequence of elementary homomorphisms. 
If G’ is the graph resulting from a homomorphism ¢ of G we can consider @ 

as a function from V onto V’ such that if u and v are adjacent in G, then du 
and gv are adjacent in G’. Note that every line of G’ must come from some 

line of G, that is, if u’ and v’ are adjacent in G’, then there are two adjacent 

points u and v in G such that du = u' and gv = v’. Wesay that ¢ is a homo- 

morphism of G onto G’, that G’ is a homomorphic image of G,and write G’ = @G. 

Thus in particular every isomorphism is a homomorphism. The path 

P, has just 4 homomorphic images, shown in Fig. 12.11. 

I whee ford Siotnte 21.19 st su vinee eg 

Fig. 12.11. The homomorphic images of path P,. 

A homomorphism ¢ of G is complete of order nif 6G = K,. Note that 

any homomorphism ¢ of G onto K,, corresponds to an n-coloring of G since 

the points of K,, can be regarded as colors and by definition of homomorphism 

no two points of G with the same color are adjacent. Each coloring defined by 

a complete homomorphism has the property that for any two colors, there 

are adjacent points u and v of Gcolored with these colors. In this case we have 

a complete coloring. Figure 12.12 shows a graph with complete colorings 
of order 3 and 4, where colors are indicated by positive integers. Obviously 

_the smallest order of all complete homomorphisms of G must be x(G). 

The next theorem [HHP1] generalizes an earlier result due to Hajos 
[H3] which appears as its corollary. 

Theorem 12.28 For any graph G and any elementary homomorphism ¢ of G, 

x(G) < x(eG) < 1 + X(G). (12.16) 

1 

3 2 

Fig. 12.12. Two complete colorings of a graph. 
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Proof. Let ¢ be the elementary homomorphism of G which identifies the 

nonadjacent points u and v. Then any coloring of €G yields a coloring of G 
when the same color is used for u and v, so x(G) < x(eG). On the other hand, 

a coloring of €G is obtained from a coloring of G when the new point is given 

a color different from all those used in coloring G, so that x(eG) < 1 + x(G). 

Corollary 12.28(a) For any homomorphism @ of G, x(G) < x(@G). 

It is now natural to consider the maximum order of all complete homo- 
morphisms of G. This invariant is called the achromatic number and is denoted 

W(G). Since at most p colors can be used, it is obvious that x(G) < WG) < p. 
Neither of these inequalities is a particularly good bound for w. 

Theorem 12.29 For any graph G and any elementary homamorphism ¢ of G, 

YW(G) — 2 < W(eG) < WC). (12.17) 

The example in Fig. 12.13 shows that the lower bound can be attained, 

and hence is best possible. It is easy to verify that y(G) = 5 while (eG) = 3. 

u v 

Fig. 12.13. A homomorphism which decreases by 2. 

The next result, called the Homomorphism Interpolation Theorem in 

[HHP1] depends quite strongly on the bounds given in (12.16). 

Theorem 12.30 For any graph G and any integer n between x and y, there is a 

complete homomorphism (and hence a complete coloring) of G of order n. 

Proof. Let ¥(G) = t and let ¢ be a homomorphism of G onto K,. If ¢ is 

just an isomorphism, then G is K, and y(G) = y(G). Otherwise, we can write 
gd = &,°** &2 €, whereeaché;isan elementary homomorphism. Let G, = €,G, 

G, = &,G,,°':, K, = Gy = &mGm— 1. We know from (12.16) that 7(G;,,) < 

x(G;) + 1 for each i. Since y(G,,) = W(G), it follows that for each n with 

x(G) < n < t = (G), there exists one graph in the sequence (G,), say G,, 

with chromatic number n. But then G, has a complete homomorphism ¢’ 

of order n, and so @’g, - - * €, €, is a homomorphism of G onto K,,. 

_ Many upper bounds for y(G) are also. bounds for y(G). As an example, 

we extend the upper bounds in (12.3) and (12.4), as in [HH1]. 
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Theorem 12.31 For any graph G, 

ot Pee pat. Li (12.18) 

The next result poliowe from (12.18) and the fact that 7 > Bo. 

_ Corollary 12.31(a) For any graph G, 

| wsp-Botl. (12.19) 

This inequality can also be proved directly using the proof of (12.3), 
which it sharpens. 

THE CHROMATIC POLYNOMIAL 

| The chromatic polynomial of a graph was introduced by Birkhoff and Lewis 

_ [BL1] in their attack on the 4CC. Let G bea labeled graph. A coloring of G 

from t colors is a coloring of G which uses t or fewer colors. Two colorings of 

G from t colors will be considered different if at least one of the labeled 

_ points is assigned different colors. 

| Let us denote by f(G, t) the number of different colorings of a labeled 

_ graph Gfromt colors. Ofcourse f(G, t) = Oift < y(G). Indeed the smallest 

_ t for which f{(G, t) > 0 is the chromatic number of G. The 4CC therefore 
asserts that for every planar graph G, {(G, 4) > 0. 

For example, there are t ways of coloring any given point of K;. Fora 

second point, any of t — 1 colors may be used, while there are t — 2 ways of 
coloring the remaining point. Thus 

PB Hiss S(Ks, ) = tt — 1Xt — 2). 

| This can be generalized to any complete graph,* 

S(K,, t) = tt — It — 2)::-((# —p +) = ty. (12.20) 

The corresponding polynomial of the totally disconnected graph K, is 
particularly easy to find since each ofits p points may be colored independently 

in any of t ways: 

S(K,, t) = t?. (12.21) 

The central poirit vp of K,,, in Fig. 12.14 may be colored in any of t ways 

while each endpoint may be colored in any of t — 1 ways. Therefore 
f(K,,4, t) = t(t — 1)*. In each of these examples, f(G, t) is a polynomial in t. 
This is always the case, as we are about to see. 

_ Theorem 12.32 If u and v are nonadjacent points in a graph G, and ¢ is the 

elementary homomorphism which identifies them, then 

S(G, t) = f(G + uv, t) + (eG, t). (12.22) 

* Following Riordan [R15], we denote the expression for the falling factorial by t,,). 

Ly 
y 
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vy b2 

U4 U3 

Fig. 12.14. A labeled copy of K, 4. 

Proof. The equation follows directly from two observations. First, the 

number of ways of coloring G from t colors where u and v are colored 

differently is precisely the number of ways of coloring G + uv from t colors. 

Second, the number of ways of coloring G from t colors where u and v are 

colored the same is exactly the number of ways of coloring the homomorphic 

image eG from t colors, where ¢ identifies u and v. 

This theorem now implies that if G is any noncomplete (p, q) graph, then 

there are eee G, with q + 1 lines and G, with p — 1 points such that 
S(G, t) = f(G,,'t) + f(G,, t). The equation (12.22) can then be applied to 

G, and G,, and so on, until only complete graphs are present. Hence 

f(G, t) is the sum of expressions of the form f(K,, t). However f(K,, t) = tip) 

is a polynomial in t. 

Corollary 12.32(a) For any graph G, f(G, t) isa polynomial i in t. 

We thus refer to f(G, t) as the chromatic polynomial of G. To iMuberdtb 

the theorem, we employ a device introduced by Zykov [Z1] where a diagram 

of the graph is used to denote its chromatic polynomial, with t understood. 

We indicate by u and v the nonadjacent points considered at each step, 

following the exposition of Read [R6]. 
Thus for the graph G of Fig. 12.15, 

f(G, t) = ts) + 3tj4) + tig) = 0° — 7t* + 18? — 202? + 8¢. 

In particular, the number of ways of coloring G from 3 colors is f(G, 3) = 6. 

There are several properties of chromatic polynomials which now follow 

directly from Theorem 12.32. 

Theorem 12.33 Let G be a graph with p points, q lines, and k components 

G,, G,,:--:, G,. Then 

1. f(G, t) has degree p. 

2. The coefficient of t? in f(G, ft) is 1. 

3. The coefficient of t?~' in f(G, t) is —q. 

4. The constant term in f(G, t) is 0. 

5. f(G, t) = Mai f(G, 0). 
6. The smallest exponent of t in f(G, t) with a nonzero coefficient is k. 
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7G). = Fee QS ‘ 

u v 
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; * x 
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. p x 

= — f(Ks, )+3f(Ks, D+f(Ka, 1) 

Fig. 12.15. The determination of a chromatic polynomial. 

Not quite so obvious is the following result discovered by Whitney 
[W10] and generalized by Rota [R20] using his powerful methods involving 
Mobius inversion. 

Theorem 12.34 The coefficients of every chromatic polynomial alternate in 

sign. 

Certainly, every two isomorphic graphs have the same chromatic 

polynomial. However, there are often several nonisomorphic graphs with 

the same chromatic polynomial; in fact, all trees with p points have equal 

chromatic polynomials. 

Theorem 12.35 A graph G with p points is a tree if and only if 

f(G, t) = t(t — 1)?77. 

Proof. First we show that every labeled tree T with p points has ¢(t — 1)?~? 

as its chromatic polynomia!. We proceed by induction on p, the result being 

obvious for p = 1 and p = 2. Assume the chromatic polynomial of all trees 
with p — 1 points is given by t(t — 1)?~?. Let v be an endpoint of T and sup- 

pose x = uvis the line of T incident with v. By hypothesis, the tree T’ = T — v 

has e(t — 1)?~? for its chromatic polynomial. The point v can be assigned 
any color different from that assigned to u, so that v may be colored in any 
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of t — 1 ways. Thus f(T, t) = (t — 1) f(T, 0) = t(t — 1)?7?. 

Conversely, let G be a graph such that f(G, t) = e(t — 1)?~*. Since the 

coefficient of t in f(G, t) is one, G is connected by Theorem 12.33(6). Further- 

more, the coefficient of t?~' is —(p — 1)sothat Ghas p — 1 lines by Theorem 

12.33(3). Theorem 4.1 now guarantees that G is a tree. 

It remains an unsolved problem to characterize graphs which have the 

same chromatic polynomial. Ofa more basic nature is the unsolved problem 

of determining what polynomials are chromatic. For example, the poly- 

nomial t* — 3t* + 3t? satisfies all the known properties of a chromatic 
polynomial, but is not chromatic. For if it were f(G, t) for some graph G, then © 

necessarily G would have 4 points, 3 lines, and 2 components so that 

G = K,U K,. However, the chromatic polynomial of this graph is 

AGU Stat =f = 3r 2, 

It has been conjectured by Read [R6] that the absolute value of the 
coefficients of every chromatic polynomial are strictly increasing at first, 
then become strictly decreasing and remain so. 

EXERCISES 

12.1 Concerning the join of two graphs, 

a) (G, + G2) = 1(G,) + WG) | 
b) G, and G, are critical if and only if their join G, + G, is. 

12.2 Ifn > 3 is the length of the longest odd cycle of G, then x(G) < n + 1. 

(Erdés and Hajnal [EH1]) 

12.3 If the points of G are labeled v,, v2,---, v, so that d; > d, >--- > d,, then 

x(G) < max,min {i, d; + 1}. (Welsh and Powell [WP1}) 

12.4 If not every line lies on a hamiltonian cycle, then y < 1 + p/2. 

12.5 The chromatic number of the conjunction G, A G, of two graphs does not 
exceed that of either graph. (S. T. Hedetniemi) 

12.6 The only connected regular graph of degree n > 3 which is (mn + 1)-chromatic 

is Ky41- 

12.7 The following regular graphs are all those for which the upper bounds in (12.4) 

and (12.5) are realized: 

a) x + X = p + 1 only for K,, K,, and Cg. 

b) xx = [((p + 1)/2)?] only for K,, K2, K2, and Cs. (Finck [F4]) 
12.8 a) ip = ail eo a prime, then x7 = p only for K, and K,. ; 

b) x7 + x? = p? + 1 if and only if G=K, or Ke “otherwise 

V+ <(p- 17% +4 (Finck [F4]) 

_ 12.9 Every outerplanar map is 3-colorable. 

12.10 Every 4-connected plane map is 4-colorable. 
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12.11 In any coloring of a line-graph, each point is adjacent with at most two points 

of the same color. 

12.12 Consider a connected graph G which is not an odd cycle. If all cycles have the 

same parity, then y'(G) = A(G). (J. A. Bondy and D. J. A. Welsh) 

12,13 Find the line-chromatic numbers of K p and of K,,,.- 

(Behzad, Chartrand, and Cooper [BCC1 ]}) 

12.14 If H is the graph obtained from G by taking V(H) = X(G) and x, y are adjacent 

in H whenever they do not both lie in a complete subgraph of G, then y(H) is the minimum 

number of complete subgraphs whose union is V U X. (Havel [H37]) 

12.15 Every toroidal graph has 6 < 6, and hence has x < 7. 

12.16 There is a 5-critical graph with 9 points. 

12.17 What is the smallest uniquely 3-colorable graph which is not complete? 

12.18 What is the minimum number of lines in a uniquely n-colorable graph with 

Pp points? (Cartwright and Harary [CH2]) 

12.19 Obviously the chromatic number of any graph is at least as large as Bo. For any 

odd cycle C,,,;, n = 2, Bo is 2 and x is 3. Construct a graph with no triangles, 

Bo = 2 and x = 4. 
(This can be done with only 11 points.) 

12.20 If y(G) = n > S, then there are n points such that each pair are connected by at 

least four disjoint paths. (Dirac [D8}) 

1221 For any integers d and n such that | < d < n, there exists an n-critical graph 

with By = d. (House [H47]) 
12.22 a) Every 3-chromatic maximal planar graph is uniquely 3-colorable. 

b) An outerplanar graph G with at least 3 points is uniquely 3-colorable if and 

only if it is maximal outerplanar. - (Chartrand and Geller [CG1]) 

12.23 An n-critical graph cannot be separated by the points of a uniquely (n — 1)- 

colorable subgraph. (Harary, Hedetniemi, and Robinson [HHR1]) 

12.24 For any independent set S of points of a critical graph G, x(G — S) = x(G) — 1. 

(Dirac [D11]) 

12.25 For any elementary contraction n of a graph G, |y(G) — x(7G)| < 1. 

(Harary, Hedetniemi, and Prins [HHP1]) 

12.26 Determine the achromatic number of P,, C,, W,, and K,, ,.- 

12.27 The n-chromatic number ,(G) is the smallest number m of colors needed to color 

G such that not all points on any path of length n are colored the same. 

a) For any n there is an outerplanar graph G such that y,(G) = 3. 

b) For any n there is a planar graph G such that y,(G) = 4. 

(Chartrand, Geller, and Hedetniemi [CGH1]) 

12.28 Ife is the length of a longest path in G then x(G) < e + 1. (Gallai [G4}]) 

12.29 The chromatic number of any graph G satisfies the lower bound 

xG) = p'(p? — 24). 



CHAPTER 13 

MATRICES 

In orderly disorder they i 

Wait coldly columned, dead, prosaic. 

Poet, breathe on them and pray | 

They burn with life in your mosaic. 

J. LUzzaTo | 

A graph is completely determined by either its adjacencies or its incidences. 

This information can be conveniently stated in matrix form. Indeed, with a 

given graph, adequately labeled, there are associated several matrices, 

including the adjacency matrix, incidence matrix, cycle matrix, and cocycle 

matrix. It is often possible to make use of these matrices in order to identify 

certain properties of a graph. The classic theorem on graphs and matrices 

is the Matrix-Tree Theorem, which gives the number of spanning trees in 

any labeled graph. The matroids associated with the cycle and cocycle 
matrices of a graph are discussed. 

THE ADJACENCY MATRIX 

The adjacency matrix A = [a,;] of a labeled graph G with p points is the 
p X p matrix in which a;; = 1 if v; is adjacent with v; and a;; = 0 otherwise. 
Thus there is a one-to-one correspondence between labeled graphs with p 

points and p x p symmetric binary matrices with zero diagonal. 

Figure 13.1 shows a labeled graph G and its adjacency matrix A. One 

immediate observation is that the row sums of A are the degrees of the points 
of G. In general, because of the correspondence between graphs and matrices, 

any graph-theoretic concept is reflected in the adjacency matrix. Forexample, 

recall from Chapter 2 that a graph G is connected if and only if there is no 
partition V = V, uU V, of the points of G such that no line joins a point of V; | 

with a point of V,. In matrix terms we may say that G is connected if and only 

if there is no labeling of the points of G such that its adjacency matrix has the | 
reduced form 

ped Ai 0 

d= | 0 el 

150 
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be 

Us U4 

Fig. 13.1. A labeled graph and its adjacency matrix. 

where A,, and A,, are square. If A, and A, are adjacency matrices which 

correspond to two different labelings of the same graph G, then for some 

permutation matrix P, A, = P~'A,P. Sometimes a labeling is irrelevant, 
as in the following results which interpret the entries of the powers of the 

adjacency matrix. 

Theorem 13.1 Let G be a labeled graph with adjacency matrix A. Then the 

i, j entry of A” is the number of walks of length n from 1; to v,. 

Corollary 13.1(a) For i # j, the i,j entry of A? is the number of paths of 

length 2 from v; to v;. The i, i entry of A? is the degree of v; and that of A® 
is twice the number of triangles containing v;. 

Corollary 13.1(b) If G is connected, the distance between vy; and v, for i 4 j 

is the least integer n for which the i, j entry of A" is nonzero. 

The adjacency matrix of a labeled digraph D is defined similarly: A = 

A(D) = [a;;] has a;; = 1 if arc viv; is in D and is 0 otherwise. Thus A(D) 
is not necessarily symmetric. Some results for digraphs using A(D) will 

_ be given in Chapter 16. By definition of A(D), the adjacency matrix of a 

given graph can also be regarded as that of a symmetric digraph. We now 

apply this observation to investigate the determinant of the adjacency 

- matrix of a graph, following [H27]. 
: A linear subgraph of a digraph D is a spanning subgraph in which each 

point has indegree one and outdegree one. Thus it consists of a disjoint 

spanning collection of directed cycles. 

Theorem 13.2 If D is a digraph whose linear subgraphs are D,, i = 1,°°-, 1, 

and D; has e; even cycles, then 

det A(D) = ) (—1)%. 
i=t 

Every graph G is associated with that digraph D with arcs u,v; and v,v; 

whenever v; and v, are adjacent in G. Under this correspondence, each linear 

subgraph of D yields a spanning subgraph of G consisting of a point disjoint 

collection of lines and cycles, which is called a linear subgraph of a graph. 
) 
} 



152 MATRICES 

Those components of a linear subgraph of G which are lines correspond to 

the 2-cycles in the linear subgraph of D in a one-to-one fashion, but those 
components which are cycles of G correspond to two directed cycles in D. 

Since A(G) = A(D) when G and D are related as above, the determinant of 

A(G) can be calculated. 

Corollary 13.2(a) If G is a graph whose linear subgraphs are G,, i = 1,---, n, 

where G; has e; even components and c; cycles, then 

det A(G) = ¥ (— 162". 
i=1 

THE INCIDENCE MATRIX 

A second matrix, associated with a graph G in which the points and lines are 
labeled, is the incidence matrix B = [b,;]. This p x q matrix has b;; = 1 
if vy; and x, are incident and b;; = 0 otherwise. As with the adjacency matrix, 

the incidence matrix determines G up to isomorphism. In fact any p — 1 

rows of B determine G since each row is the sum of all the others modulo 2. | 

The next theorem relates the adjacency matrix of the line graph of Gto | 
the incidence matrix of G. We denote by B’ the transpose of matrix B. 

Theorem 13.3 For any (p, q) graph G with incidence matrix B, 

A(L(G)) = B™B — 21,. 

Let M denote the matrix obtained from — A by replacing the ith diagonal 

entry by deg v;. The following theorem is contained in the pioneering work 

of Kirchhoff [K7]. 

Theorem 13.4 (Matrix-Tree Theorem) Let G be a connected labeled graph 

with adjacency matrix A. Then all cofactors of the matrix M are equal and 

their common value is the number of spanning trees of G. 

Proof. We begin the proof by changing either of the two 1’s in each column 

of the incidence matrix B of Gto —1, thereby forming a new matrix E. (We 

will see in Chapter 16 that this amounts to arbitrarily orienting the lines of 
G and taking E as the incidence matrix of this oriented graph.) 

The i, j entry of EE” is e,,e;; + e2@j2 + °° + Cig@jq Which has the 
value deg v; if i = j, —1 if v; and v, are adjacent, and 0 otherwise. Hence 

EE’ = M. 
Consider any submatrix of E consisting of p — 1 of its columns. This — 

p x (p — 1) matrix corresponds to a spanning subgraph H of G having — 

p — 1 lines. Remove an arbitrary row, say the kth, from this matrix to — 
obtain a square matrix F of order p — 1. We will show that |det F| is 1 or 

0 according as H is or is not a tree. First, if H is not a tree, then because 

‘H has p points and p — 1 lines, it is disconnected, implying that there is a 
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a 
ISN 

Fig. 13.2. K, — x and its spanning trees. 

oe 

ben 
component not containing v,. Since the rows corresponding to the points of 

this component are dependent, det F = 0. Onthe other hand, suppose H is a 

tree. In this case, we can relabel its lines and points other than v, as follows: 

Let u, # v, be an endpoint of H (whose existence is guaranteed by Corollary 

4.1(a)), and let y, be the line incident with it; let u. # v, be any endpoint of 

H — u, and y, its incident line, and so on. This relabeling of the points and 

lines of H determines a new matrix F’ which can be obtained by permuting 

the rows and columns of F independently. Thus|det F’| = |det F|. However, 

F’ is lower triangular with every diagonal entry + 1 or —1;hence,|det F| = 1. 

The following algebraic result, usually called the Binet-Cauchy Theorem, 
will now be very useful. 

Lemma 13.4(a) If P and Q arem x nandn x m matrices, respectively, with 

m <n, then det PQ is the sum of the products of corresponding major 

determinants of P and Q. 

(A major determinant of P or Q has order m, and the phrase “corre- 

sponding major determinants” means that the columns of P in the one 

determinant are numbered like the rows of Q in the other.) 

We apply this lemma to calculate the first principal cofactor of M. 

Let E, be the (p — 1) x q submatrix obtained from E by striking out its 

first row. By letting P = E, and Q = E17, we find, from the lemma, that the 

first principal cofactor of M is the sum of the products of the corre- 
sponding major determinants of E, and Ef. Obviously, the corresponding 

major determinants have the same value. We have seen that their product is 
1 ifthe columns from E, correspond to a spanning tree of G and is 0 otherwise. 

Thus the sum of these products is exactly the number of.spanning trees. 

The equality of all the cofactors, both principal and otherwise, holds for 

every matrix whose row sums and column sums are all zero, completing the 

proof. 

To illustrate the Matrix-Tree Theorem, we consider a labeled graph G 

taken at random, say K, — x. This graph, shown in Fig. 13.2, has eight 



Fig. 13.3. Two graphs with the same cycle matrix. 

spanning trees, since the 2,3 cofactor, for example, 

of M= |. ¥) is, =| =—ts =< ee 
Baga yg ies ican A 
uy ots 2 

The number of labeled trees with p points is easily found by applying the 

Matrix-Tree Theorem to K,. Each principal cofactor is the determinant 

of order p — 1: 

Pe yd ose oh will 

Subtracting the first row from each of the others and adding the last p — 2 

columns to the first yields an upper triangular matrix whose determinant 

isip? =2. 

Corollary 13.4(a) The number of labeled trees with p points is p?~ *. 

There appear to be as many different ways of proving this formula as 

there are independent discoveries thereof. An interesting. compilation of 

such proofs is presented in Moon [M15]. 

THE CYCLE MATRIX 

Let G be a graph whose lines and cycles are labeled. The cycle matrix 

C = [c;,;] of G has a row for each cycle and a column for each line with 
c;; = 1 if the ith cycle contains line x; and‘c;, = 0 otherwise. In contrast to 

the adjacency and incidence matrices, the cycle matrix does not determine 

a graph up to isomorphism. Obviously the presence or absence of lines 

which lie on no cycle is not indicated. Even when such lines are excluded, 
however, C does not determine G, as is shown by the pair of graphs in Fig. 13.3, 
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which both have cycles 

Z, = {X1, X2, x3} Z1 = {X2, Xa X5) Xo} 

Z3 = {Xe X75 Xs} Za = {X1, Xa, Xa Xs X6} 

Z5 = {Xr Xa, Xs, X7) Xe} Ze = {X15 Xa, Xa, X5, X7 Xe} 

and therefore share the cycle matrix 

Rilo UNG Rede Xone 

Lentil e 0 sGK0 1iz2 
Ca deny ol ye died 1280.1, 2. 

gol Had Ory Diy Lstclid Zs 
WsOfntitd dy du, My 0 b-Zy 
EE er CRT ES Mare a 
Pa eat 40-01 wh Zs 

The next theorem provides a relationship between the cycle and incidence 
matrices. In combinatorial topology this result is described by saying that 

the boundary of the boundary of any chain is zero. 

Theorem 13.5 If G has incidence matrix B and cycle matrix C, then 

CB’ = 0 (mod 2). 

Proof. Consider the ith row of C and jth column of B’, which is the jth row 

of B. The rth entries in these two rows are both nonzero if and only if x, is 

in the ith cycle Z; and is incident with v;. If x, is in Z;, then v; is also, but 

_ ifv; is in the cycle, then there are two lines of Z; incident with v, so that the 

t 

i, j entry of CB’ is 1 + 1 = 0(mod 2). 

_ Analogous to the cycle matrix, one can define the cocycle matrix C*(G). 

If G is 2-connected, then each point of G corresponds to the cocycle (minimal 

cutset) consisting of the lines incident with it. Therefore, the incidence matrix 

of a block is contained in its cocycle matrix. 
Since every row of the incidence matrix B is the sum modulo 2 of the 

other rows, it is clear that the rank of Bis at most p — 1. On the other hand, 

if the rank of B is less than p — 1, then there is some set of fewer than p rows 

whose sum, modulo 2, is zero. But then there can be no line joining a point 

in the set belonging to those rows and a point not in that set, so G cannot be 

connected. Thus we have one part of the next theorem. The other parts 

follow directly from the results in Chapter 4 which give the dimensions of the 

cycle and cocycle spaces of G. 

Theorem 13.6 For a connected graph G, the ranks of the cycle, incidence, 

and cocycle matrices are r(C) = q — p + | and r(B) = r(C*) = p — 1. 

In. view of Theorem 13.6, an important submatrix of the cycle matrix C 

of a connected graph is given by any m = q — p + 1 rows representing a 
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v1 x1 v2 1 X1 b2 

G Xe Xs T Xe 

U3 X3 U4 03 X3 U4 

Fig. 13.4. A graph and a spanning tree: 

cycle basis. Each such reduced matrix C)(G) isanm x q submatrix of C, and 
similarly a reduced cocyle matrix C§(G) is m* x q, where m* = p — 1. 

Then by Theorem 13.5, we have immediately CC*™ = 0 (mod 2) and hence 

also CoC§™ = 0(mod 2). A reduced incidence matrix B, is obtained from B 

by deletion of the last row. By an earlier remark, no information is lost by 

so reducing B. 

- If the cycles and cocycles are chosen in a special way, then the reduced 

incidence, cycle, and cocycle matrices of a graph have particularly nice 

forms. Recall from Chapter 4 that any spanning tree T determines a cycle 

basis and a cocycle basis for G. In particular, if X, = {x,, x2,°**, X,—,} is 
the set of twigs (lines) of T, and X, = {x,, Xp+1,°'*, Xq} is the set of its 
chords, then there is a unique cycle Z; in G — X, + x, p <i<q,anda 

unique cocycle Z* inG — X, + x;,1 <j < p — 1, and these collections of 

cycles and cocycles form bases for their respective spaces. For example, in the 
graph G of Fig. 13.4 the cycles and cocycles determined by the particular 
spanning tree T shown are 

Z4 = {x1 X2, X4}s vA 7 {X14 Xa, Xate 

Zs = {X1, Xa) X3, Xs}, Z3 = {Xp, Xa, Xs}, 

Z3 oe {x3, Xs: 

The reduced matrices, which are determined both by G and the choice of T, 

are: 

Ps OW eT NER 
BAG, T)i= Prfeb4O, Ob, Uf, 

Dee OL aml end titan) 
| 

Xa hesteke 
— 

i 
\ 
i 
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and xX, X, 
(eee : 

Zefa wiOdeta il 
CHG PNA Ze Ow wsowseel Vy 

ZF 10) ON Uys 

It is easy to see that this is a special case of the following equations (all 

~ modulo 2) which hold for any connected graph G and spanning tree T: 

Mal Me eee 
ema sa ORs 

Bo = BG, T)=[B, Bz], Co=C(G,T)=[C, I], 

and 
X, X2 

pete, = 2, B, = Ci and Cf = B;'By = [I,,. Ci], It follows from 
these equations that, given G and T, each of the partitioned matrices Bo, 

Co, and Cg determines the other two. 

Excursion—Matroids Revisited 

The cycle and cocycle matrices are particular representations of the cycle 

matroid and cocycle matroid of a graph, introduced in Chapter 4. A matroid 

is called graphical if it is the cycle matroid of some graph, and cographical if it 

is a cocycle matroid: Tutte [T12] has determined which matroids are 
graphical or cographical, thereby inadvertently solving a previously open 
problem in electric network theory. 

The smallest example ofa matroid which is not graphical or cographical is 

the self-dual matroid obtained by taking M = {1, 2, 3, 4} and the circuits 
all 3-element subsets of M. 

Be | il tN 
Fig. 13.5. The new circuits in the whirl of Ws. 

Another example, Tutte [T19], of a matroid which is not graphical 
involves the wheel W,,, = K, + C,. Its cycle matroid has n? —n + 1 

circuits since there are that many cycles in a wheel. If in this matroid we 

remove from the collection of circuits the cycle C, which forms the rim of the 

wheel, and add to it all of the “spoked rims” (the sets of lines in the subgraphs 

shown in Fig. 13.5), then it can be shown that the result is a new matroid 
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which is not graphical or cographical. This is called a whirl of order n and is 

generated by n? circuits. 
Even if a matroid is graphical, it need not be cographical. For example, 

the cycle matroid of Kis not cographical. In fact a matroid is both graphical 

and cographical if and only if it is the cycle matroid of some planar graph. 

EXERCISES 

13.1 a) Characterize the adjacency matrix of a bipartite graph. 

b) A graph G is bipartite if and only if for all odd n every diagonal entry of A" is 0. 

13.2 Let Gbeaconnected graph with adjacency matrix A. What can be said about A if 

a) v, is a cutpoint? 

b) viv; is a bridge? 

13.3 If c,(G) is the number of n-cycles of a graph G with adjacency matrix A, then 

a) c3(G) = gtr(A?). 
b) c4(G) = §[tr(A*) — 2g — 2 Lis; af}? : 

c) ¢,(G) = Foltr(A*) ao tr(A>) a5) PL (LP, ais — 2)a\?? . 

(Harary and Manvel [HM1]) 

13.4 a) If Gis a disconnected labeled graph, then every cofactor of M is 0. 

b) If G is connected, the number of spanning trees of G is the product of the 

number of spanning trees of the blocks of G. 

(Brooks, Smith, Stone, and Tutte [BSST1]) 

13.5 Let G be a labeled graph with lines x,, x2,-*-,x,. Define the p x p matrix 

M, = [m,;] by 
—X, if xX, = vv; 

my = , , for i#j, 
0 if v, and v; are not adjacent 

Lt sh YL mn. 

By the term ofa spanning tree of G is meant the product of its lines. The tree polynomial 

of G is defined as the sum of the terms of its spanning trees. 

The Variable Matrix Tree Theorem asserts that the value of any cofactor of the 

matrix M, is the tree polynomial of G. 

13.6 Do there exist two different graphs with the same cycle matrix which are smaller 

than those in Fig. 13.3? 

13.7 The “cycle-matroid” and “cocycle-matroid” of a graph do indeed satisfy the 

first definition of matroid given in Chapter 4. 

13.8 Two graphs G, and G, are cospectral if the polynomials det (A, — tI) and 
det (A, — tI) are equal. There are just two different cospectral graphs with 5 points. 

(F. Harary, C. King, and R. C. Read) 

13.9 If the eigenvalues of A(G) are distinct, then every nonidentity automorphism of 

G has order 2. (Mowshowitz [M17]) 
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13.10 Let f(t) be a polynomial of minimum degree (if any) such that every entry of 

f(A) is 1, where A is the adjacency matrix of G. Then a graph has such a polynomial if 

and only if it is connected and regular. (Hoffman [H45]) 

13.11 An eulerian matroid has a partition of its set S of elements into circuits. 

a) A graphical matroid is eulerian if and only if it is the cycle matroid of an 

eulerian graph, 

b) Not every eulerian matroid is graphical. 

13.12 In a binary matroid, the intersection of every circuit and cocircuit has even 

cardinality. Every cocircuit ofa binary eulerian matroid has even cardinality. In other 

words, the dual of a binary eulerian matroid is a “bipartite matroid,” defined as expected. 

(Welsh [W9]) 



CHAPTER 14 

GROUPS 

Tyger! Tyger! burning bright 

In the forests of the night, 

What immortal hand or eye 

Could frame thy fearful symmetry? 

WILLIAM BLAKE 

From its inception, the theory of groups has provided an interesting and © 

powerful abstract approach to the study of the symmetries of various con- 

figurations. It is not surprising that there is a particularly fruitful interaction 

between groups and graphs. In order to place the topic in its proper setting, i 
we recall some elementary but relevant facts about groups. In particular, we © 

develop several operations on permutation groups. These operations play 

an important role in graph theory as they are closely related to operations on © 

graphs and are fundamental in graphical enumeration. 

Any model of a given axiom system has an automorphism group, and | 

graphs are no exception. It is observed that the group of a composite graph i 

may be characterized in terms of the groups of its constituent graphs under | 

suitable circumstances. Results are also presented on the existence of a — 
graph with given group and given structural properties. The chapter is — 

concluded with a study of graphs which are symmetric with respect to their © 

points or lines. 

THE AUTOMORPHISM GROUP OF A GRAPH 

First we recall the usual definition of a group. The nonempty set A together 

with a binary operation, denoted by the juxtaposition a,a, for ,, «, in A, © 

constitutes a group whenever the following four axioms are satisfied : 

Axiom 1 (closure) For all «,, «, in A, a,a, is also an element of A. 

Axiom 2 (associativity) For all «,, «2, a3 in A, 

1 (205) = (Hy x2)ar5. 

160 
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Fig. 14.1. Two identity graphs. 

Axiom 3 (identity) There is an element i in A such that 

in = Ol =o for all a in A. 

Axiom 4 (inversion) If Axiom 3 holds, then for each « in A, there is an element 

denoted a~' such that 
CMe h > ea Ch = ee arh 

A 1-1 mapping from a finite set onto itself is called a permutation. The 

usual composition of mappings provides a binary operation for permutations 

on the same set. Furthermore, whenever a collection of permutations is 

closed with respect to this composition, Axioms 2, 3, and 4 are automatically 

satisfied and it is called a permutation group. If a permutation group A acts 

on object set X, then |A| is the order of this group and |X| is the degree. 

When A and B are permutation groups acting on the sets X and Y 

respectively, we will write A = B to mean that A and B are isomorphic 

groups. However A = B indicates not only isomorphism but that A and B 

are identical permutation groups. More specifically A =~ B if there is a 1-1 

map h: A<B between the permutations such that for all a,, a, in A, 

h(a,0>) = h(a,)h(«,). To define A = B precisely, we also require another 

-1-1 mapf: X < Y between the objects such that for all x in X and « in A, 

¥ 

f(ax) = h(a) f (x). 
An automorphism of a graph G is an isomorphism of G with itself. Thus 

each automorphism « of G is a permutation of the point set V which preserves 

adjacency. Of course, « sends any point onto another of the same degree. 

Obviously any automorphism followed by another is also an automorphism, 

hence the automorphisms of G form a permutation group, I'(G), which acts 

on the points of G. It is known as the group of G, or sometimes as the point- 

group of G. The group I'(D) of a digraph D is defined similarly. 

The identity map from V onto V is of course always an automorphism 
of G. For some graphs, it is the only automorphism; these are called identity 

graphs. The smallest nontrivial identity tree has seven points and is shown in 

Fig. 14.1, as is an identity graph with six points. 
The point-group of G induces another permutation group I ,(G), called 

the line-group of G, which acts on the lines of G. To illustrate the difference 

between these two groups, consider K, — x shown in Fig. 14.2 with points 
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v1 x1 be 

K,-x: X4 Xe 

Fig. 14.2. A graph with labeled points and 
lines. Us Xs Va 

labeled v,, v2, v3, v4 and lines x,, x2, X3, X4, X5. The point-group I'(K, — x) 

consists of the four permutations: 

(v1 )(v2)(v3)(4), (v1 )(v3)(V204), (v2)(v4)(0103), (v,03)(v204). 

The identity permutation of the point-group induces the identity 

permutation on the lines, while (v,)(v3)(v.v4) induces a permutation on the. 

lines which fixes x., interchanges x, with x, and x, with x3. In this way, one 
sees that the line-group I',(K, — x) consists of the following permutations, 

induced respectively by the above members of the point-group: 

(x1 )(X2NX3)(X 4X5), (Kp X4NX2X3N(X5), (XK 1X 2NX3X 4X5), (% 1X3 )%2%4)(X 5). 

Of course the line-group and the point-group of K, — x are isomorphic. 

But they are certainly not identical permutation groups since ',(K, — x) 

has degree 5 and I(K, — x) has degree 4. Note that the line x, is fixed by 

every member of the line-group. Even the permutation group obtained from 
T,(K, — x) by restricting its object set to x,, x2, x3, X4 is not identical with 

I(K, — x), since these two isomorphic permutation groups of the same 

degree have different cycle structure. Furthermore, it can be shown that 

even when two permutation groups have the same degree and the same cycle 
structure, they still need not be identical ; see Polya [PS, p. 176]. 

The next theorem [HP15] answers the question: when are I'(G) and 
I’,(G) isomorphic? Sabidussi [S1] demonstrated the sufi using group 
theoretic methods. 

Theorem 14.1 The line-group and the point-group ofa graph G are isomorphic 

if and only if G has at most one isolated point and K, is not a component 

of G. 

Proof. Let «’ be the permutation in I’ ,(G) which is induced by the permuta- 

tion « in I(G). By the definition of multiplication in I’,(G), we have 

a'B’ = («B)’ 

for all a, 8 in I(G). Thus the mapping a > a’ is a group homomorphism 
from I'(G) onto ',(G). Hence I(G) = T’,(G) if and only if the kernel of this 

mapping is trivial. 

To prove the necessity, assume I(G) = T',(G). Then « ¥ i (the identity 

permutation) implies «’ # i. If G has distinct isolated points v, and v3, we 

can define « € I'(G) by a(v,) = v2, a(v2) = v4, and a(v) = v forall v ¥ v4, vp. 

ee ee 
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Then x # i but a = i. If K, isa component of G, take the line of K, to be 

X = v,v, and define « € I(G) exactly as above to obtain « ¢ i but a = i. 

To prove the sufficiency, assume that G has at most one isolated point 

and that K, is not acomponent of G. If I(G) is trivial, then obviously I’ ,(G) 

_ fixes every line and hence I ,(G) is trivial. Therefore, suppose there exists 

a €1(G) with au) = v # u. Then the degree of u is equal to the degree of v. 

Since u and v are not isolated, this degree is not zero. 

CASE |. wis adjacent to v. Let x = uv. Since K, is not a component, the 

degrees of both u and v are greater than one. Hence there is a line y # x 

which is incident with u and «’(y) is incident with v. Therefore a'(y) # y 

and soa’ Fi. 

CASE 2. wu is not adjacent to v. Let x be any line incident with u. Then 

a(x) # x and so a’ # i, completing the proof. 

OPERATIONS ON PERMUTATION GROUPS 

There are several important operations on permutation groups which 

produce other permutation groups. We now develop four such binary 

Operations: sum, product, composition, and power group. 

_ Let A bea permutation group of order m = |A| and degree d acting on the 

set X = {x,, X2,‘°*, xg}, and let B be another permutation group of order 
n = |B| and degree e acting onthe set Y = {y,, y2,°°*, y.}. For example, let 
A = C;, the cyclic group of degree 3, which acts on X = {1, 2, 3}. Then the 
three permutations of C, may be written (1)(2)(3), (123), and (132). With 

B = S,, the symmetric group of degree 2, acting on Y = {a, b}, we have the 
permutations (a)(b) and (ab). We will use these two permutation groups to 

illustrate the binary operations defined here. ; 

Their sum* A + B is a permutation group which acts on the disjoint 

union X u Y and whose elements are all the ordered pairs of permutations 

ain A and Pf in B, written a + 6. Any object z of X U Y is permuted by 

a + B according to the rule: 

OZ, zExX 
ONG (14.1) (a + Bz) = } 

Thus C, +:S, contains 6 permutations each of which can be written as the 
sum of permutations « € C; and f € S, such as (123)(ab) = (123) + (ab). 

The product** A x B of A and B is a permutation group which acts on 

the set X x Y and whose permutations are all the ordered pairs, written 

a x B, of permutations « in A and B in B. The object (x, y) of X x Yis 

* Sometimes called product or direct product and denoted accordingly. 

** Also known as cartesian product; see[H18]. 

\ 
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Table 14.1 

OPERATIONS ON PERMUTATION GROUPS 

Sum Product Composition Power 

group A B A+B AxB A[B] B4 
objects xX Y Xuy ELD xXx ve 
order m n mn mn mn‘ mn 
degree d e d+e de de eA 

permuted by « x f as expected: 

(a x BYx, y) = (ax, By). } (14.2) 

The product C, x S, also has order 6 but while the degree of the sum 

C,; + S, is 5, that of the product is 6. The permutation in C, x S, corre- 

sponding to (123) + (ab) in the sum is (la 2b 3a 1b 2a 3b), where for brevity 

la denotes (1, a). 

The composition* A[ B] of “A around B” also acts on X x Y. Foreacha 
in A and any sequence (f,, 82, ---, By) of d (not necessarily distinct) permuta- 

tions in B, there is a unique permutation in A[B] written (@; B,, Bz, ~:~, Ba) 
such that for (x;, y;)in X x Y: 

(a; B,, Bo, * +>, Bais yj) = (ax;, Biy;). (14.3) 

The composition C,[S,] has degree 6 but its order is 24.. Each permutation 
in C,[S,] may be written in the form in which it acts on X x Y. Using the 

same notation 1a for the ordered pair (1, a) and applying the definition (14.3), 

one can verify that ((123) ; (a)(b), (ab), (a)(b)) is expressible as (1a 2a 3b 1b 2b 3a). 

Note that S,[C,] has order 18 and so is not isomorphic to C,[S,]. 
The power group** denoted by B4 acts on Y%, the set of all functions 

from X into Y. We willalways assume that the power group acts on more than 

one function. For each pair of permutations « in A and f in B there is a 

unique permutation, written B* in B4. We specify the action of 6* on any 
function f in Y* by the following equation which gives the image of each 

x € X under the function f*f: 

(Bf \(x) = Bf(ax). (14.4) 

The power group SS? has order 6 and degree 8. It is easy to see by applying 

(14.4) that the permutation in this group obtained from « = (123) and 
B = (ab) has one cycle of length 2 and one of length 6. 

Table 14.1 summarizes the information concerning the order and degree 

of each of these four operations. 

* Called ““Gruppenkranz”’ by Polya[P6] and “wreath product’ by Littlewood[L3] and others. 

** Not called by any other name as yet. 
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Table 14.2 

PERMUTATION GROUPS OF DEGREE p 

Symbol ‘Order Definition 

| Symmetric S, p! All permutations on {1, 2,---,p} 

Alternating A, p!/2 All even permutations on {1, 2,--- , p} 
Cyclic Cr p Generated by (12 - - - p) 

Dihedral D, 2p Generated by (12: : - p) and (1p)(2 p—1)--- 

Identity E, 1 (1)(2) - - - @) is the only permutation. 

We now see that three of these operations are not all that different. 

Theorem 14.2 The three groups A + B, A x B, and B4 are isomorphic. 

It is easy to show that A + B = A x B. Tosee that A + B = B4, we 

define the map f: B4 > A + B by f(a; 8) = a ‘8, and verify that f is an 
iscmorphism. Note that these three operations are commutative; in fact, 

A+B=B+4,A x B=B x A,and B4 = A®. 
Table 14.2 introduces notation for five well-known permutation groups 

of degree p. In these terms, we can describe the groups of two familiar 

_ graphs with p points. 

Theorem 14.3 a) The group I'(G) is SH if and only ifG = K, or G = K,. 

b) If G is a cycle of length p, then I'(G) = D,. 

Thus two particular permutation groups of degree p, namely S, and D,, 

belong to graphs with p points. For all p > 6, there exists an identity graph 

with p points and in fact whenever p > 7, there is an identity tree. 

THE GROUP OF A COMPOSITE GRAPH 

Now we are ready to study the group associated with a graph formed from 

other graphs by various operations. Since every automorphism of a graph 

preserves both adjacency and nonadjacency, an obvious but important 

result immediately follows. 

Theorem 14.4 A graph and its complement have the same group, 

T(G) = I(G). : (14.5) 

A “composite graph” is the result of one or more operations on disjoint 

graphs. The group of a composite graph may often be expressed in terms of 

the groups of the constituent graphs. Frucht [F10] described the group of 

a graph nG which consists of n disjoint copies of a connected graph G. 
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Theorem 14.5 If G is a connected graph, then 

T(nG) = S,[T(G)]. (14.6) 

To illustrate the theorem, consider the graph G = 5K;, whose group is 

S5[S]. An automorphism of G can always be obtained by performing a. 

arbitrary automorphism on each of the five triangles, and then following this 
by any permutation of the triangles among themselves. 

Theorem 14.6 If G, and G, are disjoint, connected, nonisomorphic graphs, 

then 

I(G, U G,) = T(G,) + T(G,). (14.7) 

Any graph G can be written as G = n,G, Un,G, U-:: Un,G,, where 

n; is the number of components of G isomorphic to G;. Applying the last 

two theorems, we have the result, 

T(G) = S,,(1(G,)] + S,,[1(G2)] + --- + S,[1(G,)]- (14.8) 

Corollary 14.6(a) The group of the union of two graphs is the sum of their 
groups, 

T(G, u G,) = T(G,) + T(G,), (14.9) 

if and only if no component of G, is isomorphic with a component of G,. 

The next corollary follows from Theorem 14.4, the preceding corollary, 

and the fact that the complement of the join of two graphs is the union of 

their complements, that is, 

G, + G, => G, U G). (14.10) 

Corollary 14.6(b) The group of the join of two graphs is the sum of their 

groups, 
I(G, + G,) = T(G,) + T(G,), (14.11) 

if and only if no component of G, is isomorphic with a component of G,. 

A nontrivial graph G is prime if G = G, x G, implies that G, or G, is 
trivial; G is composite if it is not prime. Sabidussi [S5] observed that the 
cartesian product of graphs is commutative and associative. He also devel- 

oped a criterion for the group of the product of two graphs to be the product 

of their groups. Since he proved that every nontrivial graph is the unique 

product of prime graphs, the meaning of relatively prime graphs is clear. 

Theorem 14.7 The group of the product of two graphs is the product of their 

groups, 
T(G, x G,) = T(G,) x T(G,), (14.12) 

if and only if G, and G, are relatively prime. 

Sabidussi [S4] settled the question raised in [H21] by providing a 
criterion for the group of the lexicographic product (composition) of two 
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Table 14.3 

THE GROUPS OF THE LITTLE CONNECTED GRAPHS 

Graph = WiGroup Graph Group 
ut 

e ‘Si / S, + S, 

NS 9 

CaO S> ; S, + E, 

) Sie mie; 

Hees 90 08 ki $— 4 

9 9 

Ds, E, + S3 S,[E2] 

& + ws? Ex cy 

graphs to be the composition of their groups. The neighborhood of a point wis 

the set N(u) consisting of all points v which are adjacent with u. The closed 

neighborhood is N[u] = N(u) uv {u}. 

Theorem 14.8 If G, is not totally disconnected, then the group of the composi- 

tion of two graphs G, and G, is the composition of their groups, 

1(G,[G,]) = M(G,)[(G,)]. (14.13) 
if and only if the following two conditions hold: 

1. If there are two points in G, with the same neighborhood, then G, is 

connected. 

2. If there are two points in G, with the same closed neighborhood, then 

G, is connected. 

With these results, the groups of all graphs with p < 4 points can be 

symbolized. The group of one of these graphs, namely K, — x, has already 

been illustrated. The groups of the disconnected graphs are not given in 
Table 14.3 but can be obtained by using Theorem 14.4. 

The conditions for the group of the lexicographic products of two 

graphs to be identical to the composition of their groups are rather complex. 

This suggests that another operation on graphs be constructed for the purpose 

of realizing the composition of their groups only up to group isomorphism. 

The corona G, ° G, of two graphs G, and G, was defined by Frucht and 
Harary [FH1] as the graph G obtained by taking one copy of G, (which has 
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G;: G2: G, °G2 G2°G, 

Fig. 14.3. Two graphs and their two coronas. 

P, points) and p, copies of G,, and then joining the ith point of G, to every 

point in the ith copy of G,. For the graphs G, = K, and G, = K, 5, the 

two different coronas G, ° G, and G,  G, are shown in Fig. 14.3. It follows 

from the definition of the corona that G,° G, has p,(1 + p,) points and 

41 + Pi92 + P;Pz lines. 

Theorem 14.9 The group of the corona of two graphs G, and G, can be 
written explicitly in terms of the composition of their groups, 

I(G,° G,) = T(G,)[E, + T(G,)], (14.14) 

if and only if G, or G, has no isolated points. 

The term E, in (14.14) when applied to Corollary 14.6(a) gives the 

next result. 

Corollary 14.%a) The group of the corona G, o G, of two graphs is isomorphic 

to the composition I'(G,)[I'(G,)] of their groups if and only if G, or G, has 
no isolated points. 

GRAPHS WITH A GIVEN GROUP 

K6nig [K10, p. 5] asked: When is a given abstract group isomorphic with 

the group of some graph? An affirmative answer to this question was given 

constructively by Frucht [F8]. His proof that every group is the group of 
some graph makes use of the Cayley “color-graph of a group” [C4] which we 
now define. Let F = { fo, fi,:**, f,-1} be a finite group of order n whose 
identity element is fo. Let each nonidentity element /; in F have associated 
with it a different color. The color-graph of F, denoted D(F), is a complete 

symmetric digraph whose points are the n elements of F. In addition, each 

arc of D(F), say from f; to fj, is labeled with the color associated with the 

element f; 'f, of F. Of course, in practice we simply label both points and 

arcs of D(F) with the elements of F. 

For example, consider the cyclic group of order 3, C; = {0, 1, 2}. The 

color-graph D(C;) is shown in Fig. 14.4. 

Frucht observed the next result, which is simple but very useful. 

ee 
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Fig. 14.4. The color graph of the Fig. 14.5. Doubly-rooted graph to replaceiarc f, f;. 
cyclic group C3. 

(a) (b) 

Fig. 14.6. Frucht’s graph whose group is C; and a smaller such graph. 

Lemma 14.10(a) Every finite group F is isomorphic with the group of those 

automorphisms of D(F) which preserve arc colors. 

To construct a graph G whose group I(G) is isomorphic with F, Frucht 

replaced each arc f; f,; in D(F) by a doubly rooted graph. This is done in sucha 

way that every arc of the same color is replaced by the same graph. We 

show in Fig. 14.5 the graph which replaces the arc f,f;. Let f; ‘f, = f, and 

introduce new points {u,,} and {v,,} so that in Fig. 14.5 the paths joining u,; 

with u; and v; with v;,, contain 2k — 2 and 2k — 1 points respectively. In 

effect, Frucht’s construction assigns a colorful undirected arrow to each arc 

f,f;. Thus the resulting graph G has n?(2n — 1) points and I(G) = F. 

Theorem 14.10 For every finite abstract group F, there exists a graph G such 

that ['(G) and F are isomorphic. 

The graph obtained by this method from the cyclic group C; is shown in 

Fig. 14.6(a). It should be clear from this example that the number of points in 
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any graph so constructed is excessive. Graphs with a given group and fewer 

points can be obtained when the group is known to have m < n generators. 

In that case the color-graph is modified to include only directed lines which 

correspond to the m generators. Thus a graph containing n(m + 1)(2m + 1) 

points can be obtained for the given group. Since C, can be generated by 

one element, there is a graph with 18 points for C3. It is shown in Fig. 14.6(b). 

Fig. 14.7. The smallest graph whose group 

is C3. 

The inefficiency of even this improvement of the method of construction 

is shown by the graph of Fig. 14.7. This is the unique smallest graph 

whose automorphism group is cyclic of order three [HP3] and it has only 
9 points and 15 lines. 

Later Frucht [F9] showed that one could also specify that G be cubic. 
It was becoming apparent that requiring G to have a given abstract group of 

automorphisms was not a severe restriction. In fact Sabidussi [S2] showed 
that there are many graphs with a given abstract group having one of several 

other specified properties such as connectivity, chromatic number, and 

degree of regularity. 

Theorem 14.11 Given any finite, abstract, nontrivial group F and an integer 

j (i <j < 4), there are infinitely many nonhomeomorphic graphs G such 

that G is connected, has no point fixed by every automorphism, I'(G) = F, 

and G also has the property P,, defined by 

P,: K(G) =_n, n> 1 

Posi y(G) un: Ree 

P,: Gis regular of degree n, speed, 

P,: Gis spanned by a subgraph homeomorphic to a given graph. — 

When Theorem 14.11 was published, Izbicki[I1 ] looked into the problem 
‘of constructing a graph with a given group which satisfies several of these 

conditions simultaneously. By exploiting the results of Sabidussi [S2] 
on the product of two graphs and making some constructions, he was able 

to obtain a corresponding result involving regular graphs of arbitrary 
degree and chromatic number. 
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Corollary 14.11(a) Given any finite group F and integers n and m where 

n> 3 and 2 < m < n, there are an infinite number of graphs G such that 
I(G) = F, x(G) = m, and G is regular of degree n. 

SYMMETRIC GRAPHS 

The study of symmetry in graphs was initiated by Foster [F6], who made 
a tabulation of symmetric cubic graphs. Two points u and v of the graph G 

are similar if for some automorphism « of G, a(u) = v. A fixed point is not 

similar to any other point. Two lines x, = u,v, and x, = u,v, are called 
similar if there is an automorphism « of G such that a({u,, v;}) = {uy, v2}. 
We consider only graphs with no isolated points. A graph is point-symmetric 
if every pair of points are similar ; it is line-symmetric if every pair of lines are 
similar ; and it is symmetric if it is both point-symmetric and line-symmetric. 

' The smallest graphs that are point-symmetric but not line-symmetric 
(the triangular prism K, x K,) and vice versa (the star K, ,) are shown in 

Fig. 14.8. 

Ww 

Fig. 14.8. A point-symmetric and a line-symmetric graph. 

- Note that if « is an automorphism of G, then it is clear that G — u and 

G — a(u) are isomorphic. Therefore, if u and v are similar, then G — u = 

G — v. Surprisingly, the converse of this statement is not true.* The graph 
in Fig. 14.9 provides a counterexample. It is the smallest graph which has 

dissimilar points u and v such that G — u = G — v, see [HPS]. 

u b 

Fig. 14.9, A counterexample to a conjecture. 

The degree of a line x = uv is the unordered pair (d,, d,) with 
d, = degu, and d, = degv. A graph is line-regular if all lines have the 
same degree. In Fig. 14.10, the complete bipartite graph K, , is shown; it is 

line-symmetric but not point-symmetric and is line-regular of degree (2, 3). 

.* A purported proof of Ulam’s conjecture depended heavily on this converse. | 
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Ka,3: 

Fig. 14.10. A line-regular line-symmetric 
graph. 

We next state a theorem due to Elayne Dauber whose corollaries describe 
properties of line-symmetric graphs. Note the obvious but important 

observation that évery line-symmetric graph is line-regular. _ 

Theorem 14.12 Every line-symmetric graph with no isolated points is peat: 

symmetric or bipartite. 

Proof. Consider a line-symmetric graph G with no isolated points, i ek 

qlines. Then for any line x, there are at least gq automorphisms «@,,, 2» errs 

of G which map x onto oe linesofG. Letx = v,v2,V, = {a,(v,), -° rato 
and V, = {a,(v2),°-+, %,(v2)}. Since G has no isolated points, the union of 
V, and V, is V. There are two possibilities: V, and V, are disjoint or they 
are not. 

CASE 1. If V, and V, are disjoint, then G is bipartite. 

Consider any two points u, and w, in V,. If they are adjacent, then 
there is a line y joining them. Hence for some automorphism «;, we have 

a(x) = y. This implies that one of these two points is in V, and the other is 
in V,, a contradiction. Hence V, and V, constitute a partition of V such that 

no line joins two points in the same subset. By definition, G is-bipartite. 

CASE 2. If V, and V, are not disjoint, then G is point-symmetric. 

Let u and w be any two points of G. We wish to show that u and w are 
similar. If u and w are both in the same set, say V,, then there exists auto- 
morphism a@ with a(v,) = u and B with B(v,) = w. Thus Ba '(u) = wso that 

any two points u and w in the same subset are similar. If u is in V, and w is 

in V,, let v be a point in both V, and V,. Since v is similar with u and 

with w, u and w are similar to each other. 

Corollary 14.12(a) If G is line-symmetric and the degree of every line is 

(d,, d,) with d, # d,, then G is bipartite. 

Corollary 14.12(b) If a graph G with no isolated points is line-symmetric, has 
an odd number of points, and the degree of every line is (d,, d,) withd, = d, 

then G is point-symmetric. 

Corollary 14.12(c) If G is line-symmetric, has an even number of points, and is 

regular of degree d > p/2, then G is point-symmetric. 
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With these three corollaries, the only line-symmetric graphs not yet 

_ characterized are those having an even number of points which are regular 
of degree d < p/2. The polygon with six points is an example of such a 

_line-symmetric graph which is both point-symmetric and bipartite. The 

icosahedron, the dodecahedron, and the Petersen graph are examples of 
such line-symmetric graphs which are point-symmetric but not bipartite. 

' But not all regular line-symmetric graphs are point-symmetric, as Folkman 

_ [FS] discovered. 

Theorem 14.13 Whenever p > 20 is divisible by 4, there exists a regular 

graph G with p points which is line-symmetric but not point-symmetric. 

HIGHLY SYMMETRIC GRAPHS 

Following Tutte [T20], an n-route is a walk of length n with specified initial 
point in which no line succeeds itself. A graph G is n-transitive, n > 1, if it 

has an n-route and if there is always an automorphism of G sending each 
n-route onto any other n-route. Obviously a cycle of any length is n-transitive 

for all n, and a path of length n is n-transitive. Note that not every line-sym- 
metric graph is 1-transitive. For example, in the line-symmetric graph 
K,,, of Fig. 14.8, there is no automorphism sending the 1-route uv onto the 

1-route vw. 

If W is an n-route vp v, :- - v, and wis any point other than v,_, adjacent 
with v,, then the n-route v, : -- v,u is called a successor of W. If W terminates 
in an endpoint of G, then obviously W has no successor. For this reason, it 

is specified in the next two theorems that G is a graph with no endpoints. We 

now have a sufficient condition [T20, p. 60] for n-transitivity. 

Theorem 14.14 Let G be a connected graph with no endpoints. If W is an 

n-route such that there is an automorphism of G from W onto each of its 

successors, then G is n-transitive. 

There is a straightforward relationship [T20, p. 61 ] between n-transitivity 
and the girth of a graph. 

Theorem 14.15 If G is connected, n-transitive, is not a cycle, has no endpoints 

and has girth g, then n < 1 + g/2. 

F Fig. 14.11. The Heawood graph. 
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Using Theorem 14.14, it can be shown that the Heawood graph in 

Fig. 14.11 is 4-transitive. Furthermore, it is easily seen from Theorem 14.15 

that this graph is not 5-transitive. 

There are regular graphs called “cages” which are, in a sense, even more 

highly symmetric than n-transitive graphs. A graph G is n-unitransitive* if it is 

connected, cubic, and n-transitive, and if for any two n-routes W, and W,, 

there is exactly one automorphism a of G such that aW, = W). An n-cage, 

n > 3, is a cubic graph of girth n with the minimum possible number of 

points. Information about cages is presented in the next statement 

[T20, pp. 71-83]. 

Fig. 14.13. The 8-cage is the union of the above subgraphs as labeled. 

* Called n-regular in[T20, p. 62]. 
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Table 14.4 

THE KNOWN CAGES 

n The n-cage n The n-cage 

3 K, (shown in Fig. 2.1) 6 Heawood graph (Fig. 14.11) 

4 K; 3 (Fig. 2.5) 7 McGee graph (Fig. 14.12) 
5 Petersen graph (Fig. 9.6) 8 Levi graph (Fig. 14.13) 

_ Theorem 14.16 There exists an n-cage for all n > 3. For n = 3 to 8 there is 

a unique n-cage. Each of these n-cages is t-unitransitive for some t = t(n), 

namely, t(3) = 2, (4) = (5) = 3, t(6) = ¢(7) = 4, and 48) = S. 

All the known cages are now specified. 

There are no n-transitive cubic graphs forn > 5, hence no n-unitransitive 

ones; see Tutte [T8]. However, there are other n-unitransitive graphs, 
_n <5, in addition to the cages. In particular, Frucht [F11] constructed 
a l-unitransitive graph of girth 12 with 432 points, the cube Q, and the 

dodecahedron (Fig. 1.5) are 2-unitransitive, and Coxeter [C10] found 3- 
-unitransitive graphs other than the 4-cage and S-cage. One of these is 

shown in Fig. 14.14. 
This graph is a member of a class of graphs defined in [CH3]. For any 

permutation a in S,, the a-permutation graph of a labeled graph G is the 

union of two disjoint copies G, and G, of G together with the lines joining 

point v; of G, with v,;, of G,. Thus Fig. 14.14 shows a permutation graph 
of the cycle C,,. The front cover of this book shows all four permutation 

graphs of C.. 

Fig. 14.14. Another 3-unitransitive graph. 
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EXERCISES 

14.1 Find the groups of the following graphs: (a) 3K, (b) K, + Cy (C) Knm 

(d) K, [Ko], (e) Kyu Cy. 

14.2 Ifa connected graph G has a point which is not in a cycle of length four, then G 

is prime. (Sabidussi [S2]) 

14.3. Let G be connected with p > 3. Then L(G) is prime if and only if G is not K,,,, 

for m,n > 2. (Palmer [P1]) 

14.5 Construct a connected graph with 11 points whose group is cyclic of order 6. 

14.6 Construct a graph with 14 points whose group is cyclic of order 7. 

(Sabidussi [S3]) 

*14.7 Let c(m) be the smallest number of points in a graph whose group is isomorphic 

to C,,. Then the values of c(m) for m = n’ and n prime are 

a) c(2) = 2, and c(2’) = 2” + 6 whenr > 1. 

b) c(n’) =n’ + 2n for n = 3, 5. 

c) c(n’) = n’ + nforn> 7. 

[Note: c(m) can be calculated when m is not a prime power, but the expression is 

complicated. ] (R. L. Meriwether) 

14.8 There are no nontrivial identity graphs with less than 6 points. 

14.9 There are no cubic identity graphs with less than 12 points. 

14.10 Construct a cubic graph whose group is cyclic of order 3. 

14.11 The group of the Petersen graph is identical to the line-group of K.. 

14.12 There exists a graph G whose group is the dihedral group D, such that G is not 

a cycle or its complement. What is the smallest value of p for which this holds? 

14.13 For p = 3 there are no graphs G such that [(G) = A, or C,. And when p > 4 

there are no digraphs D with T(D) = A,. (Kagno [K1], Harary and Palmer [HP10]) 

1414 The only connected graph with group isomorphic to S,, n > 3, 

a) with n points is K,, 

b) with n + 1 points is K, ,, 

c) with n + 2 points is K, + K,,. (Gewirtz and Quintas [GQ1]) 

14.15 Given a finite group F, let G(F) be the graph obtained by Frucht’s Theorem. 

Then every nonidentity automorphism of G(F) leaves no point fixed. 

14.16 What is the smallest tree T containing dissimilar points u and v such that 

T-u2=T-v? (Harary and Palmer [HP2]) 

14.17 Every connected, point-symmetric graph G is a block. 

14.18 A starred polygon is a graph G containing a spanning cycle v, v2---v, 0, 

such that whenever the line v,,U,, +, is in G, so are all lines vjv; where j — i = n(mod p). A 

connected graph with a prime number p of points is point-symmetric if and only if it is 

a starred polygon. (Turner [T4}) 

14.19 Prove or disprove the following eight statements: If two graphs are point- 

symmetric (line-symmetric), then so are their join, product, composition, and corona. 
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1420 Every symmetric, connected graph of odd degree is 1-transitive. 

(Tutte [T20, p. 59]) 

14.21 Every symmetric, connected, cubic graph is n-transitive for some n. 

(Tutte [T20, p. 63]) 

14.22 Find necessary and sufficient conditions for the point-group and line-group of a 

graph to be identical. (Harary and Palmer [HP15]) 

14.23 If G is connected, then I(G) = I'(L(G)) if and only ifG # K, K,,3 + x,K4 — x, 

or K,. (Whitney [W11]) 

14.24 If G is point-symmetric, then if I(G) is abelian, it is a group of the form 

ie Sp + So +°': + Sp. (McAndrew [M8]) 

_ 14.25 The only doubly transitive graphical permutation group of degree p is S,. 

14.26 Let A and B be two permutation groups acting on the sets X = {x,, X2,°°*, Xq} 
and Y respectively. The exponentiation group, denoted [B]‘, acts on the functions 

Y*. For each permutation a in A and each sequence of permutations f,, B2,:°:, By 

in B there is a unique permutation [a; B,, B,--~, By] in [B]4 such that for x; in X 
and fin Y* 

‘Lo; By, Ba, ++, Bal f(x) = Bi (ax). 

Then the group of the cube Q, is [S,]°" and the line-group of Pueis [s,s 

(Harary [H18]) 

*14.27 There exists a unique, smallest graph of girth 5 which is regular of degree 4. It 
has 19 points and its group is isomorphic to the dihedral group D,). 

(Robertson [R18]) 

14.28 Let G be a triply connected planar (p, q) graph whose group has order s. Then 
4q/s is an integer and s = 4q if and only if G is one of the five platonic graphs. 

(Weinberg [W8], Harary and Tutte [HT4]) 

14.29 The group of any tree can be obtained from symmetric groups by the operations 

of sum and composition. (Polya [P5, p. 209]) 

14.30 A collection of p — 1 transpositions (u, v,), (uz v2),°** on p objects generates 

the symmetric group S, if and only if the graph with p points and the p — | lines u,v; is 

a tree. (Pélya [P5]) 

14.31 The a-permutation graph of a labeled 2-connected graph G is planar if and only 
if G is outerplanar and can be drawn in the plane with a cyclic labeling of its points so 

that « is in the dihedral group D,. (Chartrand and Harary [CH3]) 

*14.32 An endomorphism of G is a homomorphism from G into itself. The semigroup 

of a graph is the collection of all its endomorphisms. Every finite semigroup with unit 

is isomorphic with the semigroup of some graph. (Hedrlin and Pultr [HP23]) 

*14.33 The smallest nontrivial graph having only the identity endomorphism has 8 
points.. (Hedrlin and Pultr [HP24]) 

L i 



CHAPTER™15 

ENUMERATION 

How do I love thee? Let me count the ways. 

ELIZABETH BARRETT BROWNING 

There is something to be said for regarding enumerdtive methods in com- 
binatorial analysis as more of an art than a science. With the discovery and 

development of more general and powerful viewpoints and techniques, it is 

to be hoped that this situation will become reversed. The pioneers in 

graphical enumeration theory were Cayley, Redfield, and Polya. In fact, 

as noted in [HP11], all graphical enumeration methods in current use were 

anticipated in the unique paper by Redfield [R8] published in 1927 but 
unfortunately overlooked. 

We begin with the easiest enumeration problems, those for labeled graphs. 

We then present Polya’s classical enumeration theorem and use it to derive 
counting series for trees and various other kinds of graphs. Pdlya’s theorem 

has been generalized to the Power Group Enumeration Theorem which is 

useful for certain counting problems where the equivalence classes are 

determined by two permutation groups. For the sake of completeness, we 

conclude with lists of both solved and unsolved problems in graphical 

enumeration. 

LABELED GRAPHS 

All of the labeled graphs with three points are shown in Fig. 15.1. We 

see that the 4 different graphs with 3 points become 8 different labeled 
graphs. To obtain the number of labeled graphs with p points, we need 
only observe that each of the (§) possible lines is either present or absent. 

Pp 

Theorem 15.1 The number of labeled graphs with p points is 22) ‘ 

178 
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Dz @—® 3 Ve v3 

ev, vy vy v1 
\ } 

vb2e @v3 V2 @ U3 v2 v3 D2 v3 

v1 : 

v2®e U3 v2 U3 

Fig. 15.1. The labeled graphs with three points. 

Corollary 15.1(a) The number of labeled (p, q) graphs is 

Cayley [C6] was the first to state the corresponding result for trees: 
The number of labeled trees with p points is p?~*. Since 1889, when Cayley’s 
paper appeared, many different proofs have been found for obtaining his 

formula. Moon [M15] presents an outline of these various methods of 
proof, one of which was given in Corollary 13.4(a). 

In Fig. 15.2 are all the 16 labeled trees with 4 points. The labels on these 
trees are understood to be as in the first and last trees shown. We note 

that among these 16 labeled trees, 12 are isomorphic to the path P, and 4 

to K, 3. The order of I'(P4) is 2 and that of I(K,,;) is 6. We observe that 
since p = 4 here, we have 12 = 4!/\[(P,)| and 4 = 4!/|(K,,,). The 

el INNAZ 
VANKKXXX 

Fig. 15.2. The labeled trees with four points. 



180 ENUMERATION 

expected generalization of these two observations holds not only for trees, 

but also for graphs, digraphs, relations, and so forth ; see [HR1] and [HPR1]. 

Theorem 15.2 The number of ways in which a given graph G can be labeled 

is p!/|T'(G). 

Outline of proof. Let A be a permutation group acting on the set X of objects. 
For any element x in X, the orbit of x, denoted (x), is the subset of X which © 

consists of all elements y in X such that for some permutation ain A, ax = y. 

The stabilizer of x, denoted A(x), is the subgroup of A which consists of all — 

the permutations in A which leave x fixed. The result follows from an 

application of the well-known formula |6(x)| - |A(x)| = |A| and its inter- 

pretation in the present context. 

POLYA’S ENUMERATION THEOREM 

Many enumeration problems are formulated in such a way that the answer 

can be given by finding a formula for the number of orbits (transitivity 

systems) determined by a permutation group. Often, weights are assigned 

to the orbits and Polya [P5] showed how to obtain a formula which enumer- 
ates the orbits according to weight and which depends on the cycle structure 

of the permutations in the given group. Pdlya’s theorem in turn depends on 

a generalization of a well-known counting formula due to Burnside 

[B20, p. 191]. 

Theorem 15.3 Let A be a permutation group acting on set X with orbits 

6,, 8,°°*, 6,, and let w.be a function which assigns a weight to each orbit. 
Furthermore, w is defined on X so that w(x) = w(6;) whenever x € 0;. Then 

the sum of the weights of the orbits is given by 

rps w(O;) =>), w(x). (15.1) 
aeA x=ax 

Proof. We have already seen that the order | A| of the group A is the product 

| A(x)| - |O(x)| for any x in X, where A(x) is the stabilizer of x. Also, since the 

weight function is constant on the elements in a given orbit, we see that 

18,| w(8;) = )) w(x), 
xe6; 

for each orbit 0;. Combining these facts, we find that 

|A| w(8;) = ))|A(x)| w(x). 
xe0; 

Summing over all orbits, we have 

|A| bs w(9;) =) Le IAC)I wd), 
Fi i=1 xe; 

from which (15.1) follows readily. 
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The conventional form of Burnside’s Lemma can now be stated as a 

corollary to this theorem. For a permutation «, expressed as a product of 
disjoint cycles, let j,(~) denote the number of cycles of length k. 

Corollary 15.3a) (Burnside’s Lemma) The number N(A) of orbits of the 

permutation group A is given by 

N(A Tal Al az! (a). 

Let A be a permutation group of order m and degree d. The cycle 

index Z(A) is the polynomial in d variables a,, a,,:--,a, given by the 
formula 

Z(A) =— I ae (15.2) 
* aeA k=1 

Since, for any permutation «, the numbers j, = j,(a) satisfy 

lj, + 2j, sabia + dj, = d, 

they constitute a partition of the integer d. It is useful to employ the vector 
notation (j) = (j,, j2,°°*, jg) in describing «. We note that this method of 

expressing partitions differs from that used in Chapter 6; for example, the 

partition 5 = 3 + 1 + 1 corresponds to the vector (j) = (2, 0, 1, 0, 0). 

The classical counting problems to which Polya’s Theorem applies all 

have the same general form. Let there be given a domain D, a range R, and 

a weight function w defined on R. To illustrate with a particular weight 

function, let w assign to each re R an ordered pair w(r) = (w,r, w2r) of 

nonnegative integers. The objects to be counted will then appear as functions 

from Dto R. Tocomplete the statement of the problem, we need to stipulate 

when two functions in R? are considered the same. This is done by specifying 

a group A which acts on D, so that two functions are equivalent when they 

are in the same orbit of E4, where E is the identity group of degree |R|. 

We digress for a moment to illustrate these ideas with the “necklace 

problem.” Consider necklaces which are to have say 4 beads, soine red and 
some blue. Two such necklaces are regarded as equivalent if they can be 

made “congruent,” with preservation of the colors of their beads. Here the 
domain D is the set of locations where the beads are to be put, the range R is 

the set {red bead, blue bead}, and a function fe R? is an assignment of one 
bead to each place, giving a necklace. In this example, A is the dihedral 

group D,, and the weight function w can be taken as w(red bead) = (1, 0) 

and w(blue bead = (0, 1). 
Following the intuitive terminology of Polya, domain elements are 

places, range elements are figures, functions are configurations, and the 

permutation group A is the configuration group. We assign a weight W(f) 

to each fe R? by the equation 

|) Wipe Lr yee). (15.3) 
{ deD 
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It is easy to see that each function in a given orbit of R? under E“ has the 

same weight, so that the weight of an orbit can be defined as the weight of 

any function in it. 

Suppose there are c,,, figures of weight (m,n) in R and C,,, orbits 

(equivalence classes of configurations) of weight x”y" in R?. The figure 

counting series 

y) = Di Cmnx™Y" (15.4) 
enumerates the elements of R by weight, and the configuration counting 

one Cx, y) = Coup" (15.5) 
is the generating function for equivalence classes of functions. Polya’s 

Theorem [P5] expresses C(x, y) in terms of c(x, y). 
If in (15.2) we write Z(A) = Z(A; aj, a, ° ‘+, aq), then for any function 

h(x, y), we define 

Z(A, h(x, y)) = Z(A; h(x, y), h(x?, y?),-- >, h(x4, y*)). (15.6) 

Theorem 15.4 (Polya’s Enumeration Theorem) The configuration counting 

series is obtained by substituting the figure counting series into the cycle 

index of the configuration group, 

C(x; y) = Z(A, e(x, y)). (15:7) 

Proof. Let « be a permutation in A, and let & be the corresponding permuta- 

tion in the power group E4. Assume first that fis a configuration fixed by 

@ and that ¢ is a cycle of length k in the disjoint-cycle decomposition of a. ~ 

Then f(b) = f(b) for every element b in the representation of ¢, so that all ~ 

elements peaches by ¢ must have the same image under f. Conversely, © 
if the elements of each cycle of the permutation a have the same image under © 

a configuration f, then @ fixes f Therefore, all configurations fixed by a © 

are obtained by independently selecting an element r in R for each cycle ¢ of © 

a and setting f(b) = r for all b permuted by ¢. Then if the weight w(r) is © 

(m,n) where m = w,randn = w,rand ¢ has length k, the cycle € contributes © 

a factor of Lc (x”y") to the sum Z,_,, W(f). Therefore, since 

dy Cay: aE Co y*), 

reR 

we have, for each « in A, 

» WS) = ue Con ye 
S=af k= . 

Summing both sides of this equation over all permutations « in A (or © 

equivalently over all & in 1 E*) and dividing both sides by |A| = |E“|, we — 
obtain ; 

wy LMW=3 R Tl etx’, ym, (15.8) 
geE* f=af aeA k=1 
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The right hand side of this equation is Z(A, c(x, y)). To see that the left 

hand side is C(x, y), we apply the version of Burnside’s lemma given in 

Theorem 15.3. First note that for the power group E“, the sum of the weights 
of the orbits is given by 

n 

SW) Co xty" == C(x y): (15.9) 
i=1 

But it follows at once from (15.1) that the left sides of (15.9) and (15.8) are 

equal, so that Z(A, c(x, y)) = C(x, y), proving the theorem. 

Returning to the necklace problem with four beads mentioned above, 

we note that the cycle index of the dihedral group D, is 

Z(D,) = at + 2a2a, + 3a? + 2a,) (15.10) 

and the figure counting series is c(x, y) = x'y° + x°y! =x + y. Sub- 
stituting x + y into (15.10) in accordance with (15.6), we obtain 

Z(D4, x + y) = a{(x + y)* + 2x + y)?(x? + y’) 
+ 3(x? + y?)? + Ax* + y‘)} 

= xt + x3y + 2x7y? + xy? + y*. (15.11) 

The coefficient of xy” in (15.11) is the number of different necklaces with 

four beads, m red and n blue. The 6 different necklaces are shown in 

Fig. 15.3. 

All blue 

Soe 
Figure 15.3 The 4-bead, two-color 

necklaces. 

Incidentally, necklaces can also be counted by using 1 + x as the figure 

counting series instead of x + y. In this case a red bead has weight 1 anda 

blue bead weight 0. Then in Z(D,, 1 + x) = x* + x? + 2x? + x + 1, the 
coefficient of x” is the number of necklaces with m red beads and hence 
4 — m blue ones; compare (15.11). As we shall see in the next section, the 

figure counting series 1 + x playsan important role in enumeration problems, 
since x° indicates absence of a figure and x! presence. The reason is indicated 

in the following consequence [H31] of Polya’s Theorem. An n-subset of a 
set X is a subset with exactly n elements. 

Corollary 15.4(a) If A is a permutation group acting on X, then the number of 

, orbits of n-subsets of X induced by A is the coefficient of x" in Z(A, 1 + x). 
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In applications of Pélya’s Enumeration Theorem, certain permutation 

groups occur frequently. The formulas for the cycle indexes of the five 

important permutation groups listed in Table 14.2 are now given. In (15.12) 

and (15.13), the sum is over all partitions (j) of p. In (15.14), (k) is the 

“Euler ¢-function,” the number of positive integers less than k and relatively 

prime to k, with ¢(1) = 1. 

1 p! ihe Fig re\ sa 5 WAP leis Pror 15212 S) = Liege tt (15.12) 
128 pl e( Sapte ap aa 

ZA) == ai! a2 +++ qi 15.13) 
mo pig MIL RAR! Sk il 

i 2 

Z(C,) = = >; o(kKap" (15.14) 
P kip 

1 (p—1)/2 3a,a$ : p odd 
== A ZD,) = 5 Z(C,) + ‘ Nagi? + atalp-2/2) fee (15.15) 

Z(E,) = ab (15.16) 

There are several very useful formulas which give the cycle indexes of 

the binary operations of the sum, product, composition, and power group of 

Aand Bin terms of Z(A) and Z(B). They are given in equations (15.17)}{(15.22) 

and appear in [H31]. By Z(A)[Z(B)] we mean the polynomial obtained by 
replacing each variable a, in Z(A) by the polynomial which is the result of 
multiplying the subscripts of the variables in Z(B) by k. 

Z(A + B) = Z(A)Z(B). (15.17) 

] d,e 

Z(A x B al a at 15.18 (4 x BY Tai oy tL, ew, 
where d(r, s) and m(r, s) are the g.c.d. and I.c.m. respectively. 

Z(A[B]) = Z(A)[Z(B)]. (15.19) 
1 

B4 ee a qir(aB) 

os |Al -|Bl és) (15.20) 
where (a; 8) = B* and 

Jk(a) 

ila; B) -Th(y 7 v0) (15.21) 
s|k 

and for k > 1 

ila; B) = aa (: Jace B°) (15.22) 
s|k 

with p the familiar number-theoretic mObius function.* 

* By definition y(n) = 0 unless » is the product of distinct primes p,,---,p,, in which case 

n(n) = (-1)". 
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ENUMERATION OF GRAPHS 

We now describe how to obtain the polynomial g,(x) which enumerates 

graphs with a given number p of points. Let g,, be the number of (p, q) 
graphs and let 

9X) = DY GpqX?. (15.23) 

By inspection of all graphs with 4 points, one easily verifies that 

g4(x) = 1 + x + 2x? + 3x? + 2x*+ 4+ x5 + x®, (15.24) 

Let V = {1, 2,---, p} and let R = {0, 1}. We denote by D = V) the 
collection of subsets {i, j} of distinct elements of V, that is, of 2-subsets of V. 
Then each function f from D into R represents a graph whose p points 

are the elements of V, in which i is adjacent with j whenever f {i, j} = 1. 
Thus the image of {i, j} under fis 1 or 0 in accordance with the presence or 

absence of a line joining i and j. The weight function w on R is defined by 

w(0) = 0 and w(1) = 1, so that it is the identity function. Hence the figure 

counting series is c(x) = 1 + x. Specializing (15.3) to one variable, the 

weight of a function fis given by 

WS) = x dV wf lis} (15.25) 

where the sum is taken over all pairs {i, j} in V). Thus the weight of function 
fis the number of lines in the graph corresponding to f. 

Now let E, be the identity group acting on R and let S, act on V. We 

denote by S‘?) the pair group which acts on V) whose permutations are 
induced by S,. That is, for each permutation « in S,, there is a permutation 
a’ in S) such that a’{i, j} = {ai, aj}. Applying Polya’s theorem to the 
configuration group S’), we have the next result, also due to Polya; see 

[H11]. 

Theorem 15.5 The counting polynomial for graphs with p points is 

g(x) = Z(S,1 + x), (15.26) 
where 

oye Pt OTT (ayakz 1) 15.27 ZASe) = ! d, TP, i! k* TT Gea | deg (15.27) 

((p—1)/2) (p/2) ° Paix 
j ki »S)irJs are ace PT ater 

k=0 k=1 tsr<s<p—i 

A derivation of (15.27) is also given in [H31, p. 38]. In Appendix I, the 
number of (p, q)-graphs is tabulated through p = 9. 

Similar counting formulas have been obtained which enumerate rooted 

graphs and connected graphs. Various classes of graphs have also been 

enumerated by modifications of this method. These include directed 

) graphs, pseudographs, and multigraphs. We illustrate some of these 
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enumeration formulas by describing how they follow readily from the 

preceding theorem. First to enumerate rooted graphs, it is necessary to fix 

the root point and regard the remaining p — 1 points as interchangeable 

before forming the pair group. 

Corollary 15.5(a) The counting polynomial for rooted graphs with p points 

is 
Px) = ZS) S51), VP x): (15.28) 

When there are at most two lines joining each pair of points, we need 

only replace the figure counting series for graphs by 1 + x + x?. 

Corollary 15.5(b) The counting polynomial for multigraphs with at most 
two lines joining each pair of points is 

g(x) = Z(SP,1 + x + x?) (15.29) 

For arbitrary multigraphs, the figure counting series becomes 

1 
lx ee x 

Ta 

Corollary 15.5(c) The counting polynomial for multigraphs with p points is 

m,(x) = Z (s2, ; .) (15.30) 

The enumeration of digraphs [H11] is also accomplished, as for graphs, 

by finding a formula for the cycle index of the appropriate configuration 

group and applying Polya’s theorem. For digraphs, we need to use the 

reduced ordered pair group, denoted S"!. As before S, acts on 
V = {1,2,---, p}. By definition, S'! acts on V'?! the ordered pairs of 
distinct elements of V, as induced by S,. Thus every permutation a in $ 

induces a permutation «’ in SY! such that a'(i, j) = (ai, aj) for (i, j) in yar 
Applying Polya’s theorem to the cycle index of S17} obtain d,(x), the 
polynomial in which the coefficient of x? is the number of digraphs with q 

directed lines. 

Theorem 15.6 The counting polynomial for digraphs with p points is 

d(x) = ZISP' T+ .20), (15.31) 

where 

p! Z(Si2!) = I si nt alk 1) jx + 2K(5') [| "Gee ee) 
lO Ie apne i<r<s<p-1 

. Of course this theorem has corollaries analogous to those of Theorem 

135. 

| 

| 
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Appendix II includes a table for the number of digraphs with p < 8 
points. 

Although rooted trees and trees were counted much earlier than graphs, 

the enumeration of graphs was presented above because of the simplicity 

of the figure counting series, viz. 1 + x. We will see that for tree counting 

purposes, the most useful figure counting series is the generating function 

for rooted trees themselves. 

ENUMERATION OF TREES 

In order to find the number of trees it is necessary to start by counting 

rooted trees. A rooted tree has one point, its root, distinguished from the 

others. Let T, be the number of rooted trees with p points. From Fig. 15.4 in 

which the root of each tree is visibly distinguished from the other points, we 

see that T, = 4. The counting series for rooted trees is denoted by 

= ¥ T,x’. (15.33) 
=1 

We define f, and ¢(x) similarly for unrooted trees. 

Fig. 15.4. The rooted trees y, Mf \/ 
with four points. 3 

A recursive type of expression for counting rooted trees was found by 

Cayley [C2]. 

Theorem 15.7 The counting series for rooted trees is given by 

Tox x fee ey Fe (15.34) 
r=1 

It is possible to convert (15.34) into a form expressing T(x) in terms of 

itself by taking the logarithm of both sides and then manipulating power 

series appropriately. This leads to (15.35), a result first obtained by Polya 

[PS] by exploiting his enumeration theorem. 

Theorem 15.8 The counting series for rooted trees satisfies the functional 

equation 

T(x) = x‘exp sie Ln (15.35) 
r=il 
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Proof. Let T(x) be the generating function for those rooted trees in which 
the root has degree n, so that 

foo) 

T(x) = ¥ T(x), (15.36) 
n=0 

Thus for example, T(x) = x counts the rooted trivial graph, while the 

planted trees (rooted at an endpoint) are counted by T(x) = xT(x). In 
general a rooted tree with root degree n can be regarded as a configuration 

whose figures are the n rooted trees obtained on removing the root. Figure 

15.5 illustrates this for n = 3. 

wT ¥ 
Fig. 15.5. A given rooted tree T and its constituent rooted trees. 

Since these n rooted trees are mutually interchangeable without altering 

the isomorphism class of the given rooted tree, the figure counting series is 

T(x) and the configuration group is S,, giving 

T(x) = xZ(S,, T(x)). (15.37) 

The factor x accounts for the removal of the root of the given tree since the 

weight of a tree is the number of points. 
Fortunately, there is a well-known and easily derived identity which 

ynay now be invoked (where Z(SQ) is defined as 1): 

y Z(Sy h(x)) = ep): : h(x’). (15.38) 
n=0 r=1 

On combining the last three equations, we obtain (15.35). 

Cayley [C5] was the first to derive an expression for t, in terms of the 
numbers T,, with n < p. He did this by counting separately the number of 
centered and bicentered trees. Polya [P5] obtained an alternate expression 
for t, by considering separately trees with 1 and 2 centroid points. Otter 

[O8] discovered the neatest possible formula for the number of trees in 
terms of the number of rooted trees, entirely by means of generating functions. 
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Actually, Otter’s equation (15.41) can be derived directly from the Cayley 

or Polya expressions for t,, as shown in [H12], by repeated application of the 
adage, “Whenever you see two consecutive summation signs, interchange 
the order of summation.” Otter derived (15.41) from the next observation, 

which is of independent interest; it is sometimes called “the dissimilarity 

characteristic equation for trees.” A symmetry line joins two similar points. 

Theorem 15.9 For any tree T, let p* and q* be the number of similarity 

classes of points and lines, respectively, and let s be the number of symmetry 
lines. Then s = Oor 1 and 

(Dig ae CN) (15.39) 

Outline of proof. Whenever T has one central point or two dissimilar central 

points, there is no symmetry line, so s = 0. In this case there is a subtree 

of T which contains exactly one point from each similarity class of points 
in T and exactly one line from each class of lines. Since this subtree has p* 

points and q* lines, we have p* — q* = 1. 

The other possibility is that T has two similar central points and hence 

s = 1. In this case there is a subtree which contains exactly one point from 

each similarity class cf points in T and, except for the symmetry line, one 

line from each class of lines. Therefore this subtree has p* points and qg* — 1 

lines and so p* — (q* — 1) = 1. Thus in both cases (15.39) holds. 

We also require a special theorem of Polya [P5] which was designed for 
counting 1—1 functions. For convenience we use Z(A, — S,) as an abbrevia- 
tion for Z(A,) — Z(S,). 

Theorem 15.10 The configuration counting series C(x) for 1-1 functions 

from a set of n interchangeable elements into a set with figure counting 

series c(x) is obtained by substituting c(x) into Z(A, — S,): 

C(x) = Z(A, — S,, c(x)). ° (15.40) 

Although we will only use (15.40) in the case n = 2, it provides a useful 

enumeration device in other contexts [HP20], and it enables us to present 
a very concise proof of Otter’s formula for counting trees. 

Theorem 15.11 The counting series for trees in terms of rooted trees is given 

by the equation 

t(x) = T(x) — 4[T7(x) — T(x?)]. - (15.41) 

Proof. Fori = 1 tot,, let p*, q¥, and s; be the numbers of similarity classes 

of points, lines, and symmetry lines for the ith tree with n points. Since 

1 = pj? — (qi — s;) for each i, by (15.39), we sum over i to obtain 

t, = T, — Lat — 5). (15.42) 
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Furthermore = (q¥ — s;) is the number of trees having n points which are 

rooted at a line, not a symmetry line. Consider a tree T and take any line 

y of T which is not a symmetry line. Then T — y may be regarded as two 

rooted trees which must be nonisomorphic. Thus each nonsymmetry line 

of a tree corresponds to an unordered pair of different rooted trees. Counting 

these pairs of trees is equivalent to counting 1—1 functions from a set of two 
interchangeable elements into the collection of rooted trees. Therefore we 

apply Theorem 15.10 with T(x) as the figure counting series to obtain 

th 

vs | = (qf — 5) | = Z(A, — S», T(x)). (15.43) 
n=1 i=1 

Since Z(A,) = a? and Z(S,) = +a? + a), we have 

Z(Az — S2, T(x)) = 4[T*(x) — T(x’)]. (15.44) 

Now the formula in the theorem follows from (15.42){15.44). 

Using (15.35) and (15.41) we obtain the explicit numbers of rooted and 

unrooted trees through p = 12, 

T(x) = x + x? + 2x3 4 4x4 + 9x5 + 20x®.+ 48x’ 

+ 115x® + 286x9 + 719x!° + 1842x!! + 4766x!2 4 --- 
(15.45) 

(x) =e Ee? EX. 4 2x8 XT + 6 xS PN 

+ 47x9 + 106x!° + 235x!! 4 551x124 --- (15.46) 

The diagrams for the trees counted in the first 10 terms of (15.46) may 

be found in Appendix III, along with a table displaying t, and T, for p < 26. 

The methods used to derive Theorem 15.11 can be extended to count 
various species of trees. We illustrate with two species, homeomorphically 

irreducible trees and identity trees [HP20]; others can be handled similarly, 
for example colored trees [R14], trees with a given partition [HP20], and 
so on. Let h(x), H(x), and H(x) be the counting series for homeomorphically 

irreducible trees, rooted trees, and planted trees respectively. 

Theorem 15.12 Homeomorphically irreducible trees are counted by the 
three equations, 

2 o Dr 

A(x) = ae ord, td (15.47) 

Gd : * A(x) — x [H7(x) — A(x?)]. (15.48) 

h(x) = H(x) — Ss [H?(x) — HA(x?)]. (15.49) 
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The number of homeomorphically irreducible trees through 12 points is 
found to be: 

W(x) = x + x? + x* + x° + 2x® + 2x7? + 4x® 4 5x? 

+ 10x'° + 14x!! + 26x12. +--- (15.50) 

Let u(x) and U(x) be the counting series for identity trees and rooted 

trees for which the automorphism group is the identity group. 

Theorem 15.13 Identity trees are counted by the equations 

U(x) = x exp oy (-1)"*? — (15.51) 

u(x) = U(x) — y[U%) t a *)]. (15.52) 

The number of identity trees (Raa 12 points is given by 

u(x) = x + x’ + x® + 3x? + 6x!9 + £5x!! + 29x12 + --- (15.53) 

POWER GROUP ENUMERATION THEOREM 

There is a class of enumeration problems which can be solved using a power 

group as the configuration group. Consider the power group B% acting on 

R?. The number of configurations (equivalence classes of functions deter- 
mined by B“) can be derived from Pélya’s Theorem as shown in [HP8], 
and was discovered by deBruijn [B18] and [B19] in another formulation. 
The equation (15.54) given by the next theorem can be readily modified to 

count functions with respect to their weights. 

Theorem 15.14 (Power Group Enumeration Theorem) The number of 

equivalence classes of functions in‘R? determined by the power group B* is 

N(B“) = Pe ; m,(B), m,(B), ---, m£B)) (15.54) 

where ; 

mB) = 2 5B) (15.55) 

To illustrate, we consider once again the necklace problem illustrated in 

Fig. 15.3, but here we allow the two colors a, b of beads (say red and blue) 

to be interchangeable. Clearly the number of necklaces with 4 beads of two 
interchangeable colors is N(S?*), the number of orbits of the power group 
S>«. For the identity permutation (ab) of S, we have from (15.55) 

m,((a(b)) = 2 

for all k. For the transposition (ab) in S,, m,((ab)) is 0 or 2 according as k is 
odd or even. Applying (15.54) we see that the number of necklaces with 
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interchangeable colors is 

4[Z(D4; 2, 2, 2, 2) + Z(D,; 0, 2, 0, 2)]. 

By substitution in formula (15.10) for Z(D,) we find that the number of such 
necklaces is 4. This calculation is easily verified by observing that the last 

two necklaces of Fig. 15.3 are equivalent to the first two, when red and blue 

are interchangeable. 

The self-complementary graphs with 4 and 5 points are shown in Fig. 2.13. 

The result of Read [R5] for the number s, of self-complementary graphs with 
p points is easily obtained from the Power Group Enumeration Theorem. 

For this purpose we define a new equivalence relation ~ for graphs with 
p points, namely G, ~ G, if G, = G, or G, = G,. Let c, be the number of 

such equivalence classes of graphs with p points. Since we are dealing with 

graphs on p points, we take A = SY) acting on D®). Because a graph and its 
complement are equivalent we let B = S, act on R = {0,1}. Then under 
the power group B%, two functions f, and f, from D™ into R are equivalent 
whenever they represent the same graph or one represents the complement 

of the other. We have already seen the result of applying (15.455) to the 

permutations of S,. Hence we have 

Cy = SP ZS O82, 222)! +'Z (SOO) 2 Oe (15.56) 

But since s, = 2c, — g,, we have the following formula obtained by Read. 

Theorem 15.15 The number s, of self-complementary graphs on p points is 

S, = ZiSi)5.0,-25,0; 24 *rn)- (15.57) 

Finite automata have also been counted using the Power Group 
Enumeration Theorem by Harrison [H34] and Harary and Palmer [HP12]. 
The groups for this problem are subgroups of the product of two power 

groups. 

SOLVED AND UNSOLVED GRAPHICAL ENUMERATION PROBLEMS 

There have now been three lists of unsolved graphical enumeration problems 
in the literature, [H24], [H30], and most recently [ H32, p. 30]. It is frequently 
necessary to bring these lists up to date. Because of the fact that new prob- 

lems arise as old ones are solved, the number of unsolved problems re- 

mains relatively constant. We might note that it is extremely unlikely that 
all of these enumeration problems will soon be settled. For included among 
such solutions there would be enough information to decide the validity of the 
Four Color Conjecture by comparing the number of planar graphs with the 
number of 4-colorable planar graphs. 

- Table 15.1 presents thé fourth list of unsolved graphical enumeration 

problems and is so titled. All of these problems can, of course, be proposed 
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Table 15.1 

UNSOLVED GRAPHICAL ENUMERATION PROBLEMS IV 

Category 

Digraph 

Traversability 

Topological 

Symmetry 

Applications 

Miscellaneous 

Enumerate 

Strong digraphs 

Unilateral digraphs 

Digraphs with a source 

Transitive digraphs 

Digraphs which are both self-complementary and self-converse 

Hamiltonian graphs 

Hamiltonian cycles in a given graph 

Eulerian trails in a given graph 

Simplicial complexes 

k-colorable graphs 

Planar k-colorable graphs 

Rooted planar graphs 

Edge-rooted plane maps 

Plane and planar graphs 

Symmetric graphs 

Identity graphs 
Graphs with given automorphism group 

Even subgraphs of a labeled 3-lattice 

Even subgraphs of a labeled 2-lattice with given area 

Even subgraphs of a given labeled graph 

Pavings of a 2-lattice 

Animals 

Line graphs 

Latin squares 
Graphs with given radius or diameter 

Graphs with given girth or circumference 

Graphs with given connectivity 
Graphs with given genus, thickness, chromatic number, etc. 

for labeled graphs as well, and several of them have been solved in the labeled 
case. A few additional definitions are needed for understanding these 

problems, each of which challenges the mathematician to determine the 
number of configurations named in terms of suitable parameters. Definitions 

needed for the digraph category may be found in the next chapter. 
Tutte [T15] studied the enumeration of plane maps rooted in the 

following way to destroy any symmetry that might be present. An edge— 
rooted plane map is obtained from a plane map by orienting an arbitrary 

A 
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edge and by then designating one of the two faces incident with this edge 

as the exterior face of the map. 

A 2-lattice is a graph whose points are ordered pairs of integers (i, j) 

where i = 0, 1,:--, mand j = 0, 1,---,n; two of these points are adjacent 

whenever their distance in the cartesian plane is 1. A 3-lattice is defined 

similarly. An even subgraph H ofa graph G is one in which every point has 

even degree. Thus every even subgraph of a 2-lattice has a certain area, 

the number of squares contained in its cycles. 

By a paving of a 2-lattice is meant a covering of the squares of the lattice 

by a given number of single unit squares and double squares like dominoes. 

Of course larger and more complicated paving problems can be proposed. 

There are three kinds of cell growth problems, one each for the triangle, 

the square, and the hexagon, the only three regular polygons which can cover 

the plane. Then an animal is a simply connected configuration containing 

a given number of triangles, squares, or hexagons; see [ H32, pp. 33-38]. 

We include here a comprehensive list of solved problems (which will 

inevitably be incomplete) in the hope that unnecessary duplication of 

combinatorial effort will be minimized. References are given to papers 
where solutions are reported ; unpublished solutions are credited only by the 

name of the (eventual) author. These solved problems (Table 15.2) are 

divided into four categories: trees, graphs, digraphs, and miscellaneous. 

Table 15.2 

SOLVED GRAPHICAL ENUMERATION PROBLEMS 

Trees 

Trees Polya [P5], Otter [08] 
Labeled trees Cayley [C6], Moon [M15] 
Rooted trees Polya [P5] 
Rooted trees with given height Riordan [R16] 
Endlessly labeled trees Harary, Mowshowitz, Riordan [HMR] ] 
Plane trees Harary, Prins, Tutte [HPT1] 
Plane trees with given partition Tutte [T18], Harary, Tutte [HT2] 
Homeomorphically irreducible trees Harary, Prins [HP20] 

Identity trees Harary, Prins [HP20] 
Trees with given partition Harary, Prins [HP20] 
Trees with given group Prins [P8] 
Trees with given diameter Harary, Prins [HP20] 
Directed trees Harary, Prins [HP20] 
Oriented trees Harary, Prins [HP20] 
Signed trees Harary, Prins [HP20] 
Trees of given strength Harary, Prins [HP20] 
Trees of given type Harary, Prins [HP20] 

Block-cutpoint trees Harary, Prins [HP20] 
Colored trees Riordan [R14] 
Forests Harary, Palmer [HP16] 
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Graphs 

Graphs Polya [H11], Davis [D1] 
Rooted graphs Harary [H11] 
Line rooted graphs Harary [H31 ] 
Graphs rooted at an oriented line Harary, Palmer [HP1 ] 
Connected graphs Riddell, Uhlenbeck [RU1], Harary [H11] 
Multigraphs Harary [H11] 
Graphs of given strength Harary [H11] 
Graphs of given type Harary [H11] 
Spanning subgraphs and supergraphs of G Harary [H13], [H14], [H19] 
Self-complementary graphs Read [R5] 
Signed graphs -Harary [H10], Harary, Palmer [HP13] 
Unicyclic graphs Riordan [R1S, p. 147] 
Eulerian graphs (R. W. Robinson) 
Graphs with given partition 
Pseudographs with given partition 
Superposed graphs 
Superposed graphs with interchangeable 

colors 
Cubic graphs 
Nonseparable graphs 
k-colored graphs 
Bicolorable graphs 
Edge-rooted triangulated maps 
Cacti 

Graphs with given blocks 

Parthasarathy [P2] 
Read [R3] 
Read [R3] 

Palmer, Robinson [PR! ] 
(R. W. Robinson) 
(R. W. Robinson) 
Robinson [R19] 
Harary, Prins [HP21 ] 
Tutte [T14] 
Harary, Norman [HN2], Harary, 

Uhlenbeck [HU1] 
Ford, Norman, Uhlenbeck [FNU1] 

Block graphs Harary, Prins [HP22] 

Digraphs 

Digraphs Harary [H11], Davis [D1] 
Weakly connected digraphs Harary [H11] 
Self-complementary digraphs Read [R5] 
Self-converse digraphs Harary, Palmer [HP9] 
Oriented graphs Harary [H16] 
Orientations of a given graph Harary, Palmer [HP4] 
Tournaments Davis [D2] 
Strong tournaments Moon [M16] 
Labeled transitive digraphs Evans, Harary, Lynn [EHL] ] 
Digraphs with given partition 
Digraphs with all points of outdegree 2 
Acyclic digraphs 
Functional digraphs 
Eulerian trails in a given digraph 

Harary, Palmer [HP7] 
(C. P. Lawes) 

(R. W. Robinson) 
Harary [H23], Read [R4] 
de Bruijn, Ehrenfest [BE1], Smith, Tutte 
[ST1] 
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Table 15.2 (continued) 

Miscellaneous 

Automata Harrison [H34], Harary, Palmer [HP12] 
Necklace problems Harary [H31] 
Algebras of various kinds Harrison [H35] 
Boolean functions Polya [P6], Slepian [S14] 
Labeled series-parallel networks Carlitz, Riordan [CR1] 
Periodic sequences Gilbert, Riordan [GR1] 
Acyclic simplicial complexes Harary, Palmer [HP17], Beineke, Moon 

[BM1 ], Beineke, Pippert [BP1 ] 

EXERCISES 

15.1 In how many ways can the graphs (a) K, + K2, (b) K3 x K2, () K,,2[K2] 
.be labeled? 

15.2 Write expressions for the cycle indexes of S, + S,, S, x S2, S3[S,], S$, and 
SS: 

15.3. There is an integer k such that Z(C,, 2) = Z(D,, 2) holds for all n < k and fails 

whenever n > k. Find k. 

15.4 The number of partitions of n into at most m parts is the coefficient of x” in 

Z\S. , 
mw — xf 

15.5 Calculate Z(SY?) and g.(x). Verify this result using Appendix I. 

15.6 Find a counting series for unicyclic graphs. (Riordan [R15, p. 147]) 

15.7 Let g(x, y) = X9_,1 g,(x)y’ be the generating function for graphs and.let c(x, y) 

be that for connected graphs. Then 

aoe | 
“ale ) = exp Y — x’, y). 

r=1 

[Note the similarity to equation (15.38).] 

15.8 Find the number of trees with p points which are (a) planted and labeled, 

(b) rooted and labeled. 

15.9 Let G bea labeled graph obtained from K, by deleting r independent lines. The 

number of spanning trees of G is (p — 2)'p?~?~’. (Weinberg [W7]) 
15.10 The number of rooted trees satisfies the inequality T,,, < Lf., T;T,-i41. It 

follows that 

Sie a¢? z ’) (Otter [08]) 
n\n—-1 
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15.11 Define the numbers R() by the equation Rf) = Rj), + T,+1-;. Then the 
‘number of rooted trees can be found using 

Al = TRY. (Otter [08]) 
j i=1 

15.12 Determine the number s, of self-complementary graphs for p = 8 and 9, both 

| by formula (15.57) and by constructing them. 

15.13 Derive a counting formula for self-complementary digraphs. (Read [R5]) 

15.14 Let s, and s, be the numbers of self-complementary graphs and digraphs, 

respectively. Then s,, = 52,- (Read [R5]) 

15.15 For any permutation group A with cycle index Z(A) as given in (15.2), the 

number of orbits of A is 

F) 
N(A) = 5 Z(A) 

| 
| 

| 
all a, = 1. 

| Therefore the number of similarity classes of points in a given graph G (whose permuta- 

tion group I(G) has the variables y; in its cycle index) is 

i 

eae es Z(I(G)) 
V1 ally; = 1. 

15.16. Let G be aconnected graph with n similarity classes of blocks. If p* is the number 

of dissimilar points of G and p¥ is the number of dissimilar points in blocks of the kth 

similarity class, then 
i 
| 

p*-—1=) (pe — 1). 
k=1 

Prove Theorem 15.9 asa corollary. (Harary and Norman [HN3]) 



CHAPTER 16 

DIGRAPHS. 

1 shot an arrow in the air, 

It fell to earth I know not-where. 

HENRY WADSWORTH LONGFELLOW 

There is so much to digraph theory that it is possible to write an entire book 

| 

on the subject.* For the most part we shall emphasize in this chapter those © 

properties of digraphs which set them apart from graphs. Thus we begin — 

by developing three different kinds of connectedness: strong, unilateral, and — 

weak. After presenting the Directional Duality Principle, we study matrices | / 

related to digraphs and the analogue of the Matrix Tree Theorem for graphs. | 

We close with a brief description of tournaments. 

DIGRAPHS AND CONNECTEDNESS 

We have already seen all the digraphs with 3 points and 3 arcs in Fig. 2.4. 

For completeness, we begin with definitions, including a few from Chapter 2. © 

A digraph D consists of a finite set V of points and a collection of ordered © 

pairs of distinct points. Any such pair (u, v) is called an arc or directed line 

and will usually be denoted uv. The arc uv goes from u to v and is incident — 

with u and v. We also say that u is adjacent to v and v is adjacent from u. ~ 

The outdegree od(v) of a point v is the number of points adjacent from it, and - 

the indegree id(v) is the number adjacent to it. 

A (directed) walk in a digraph is an alternating sequence of points and 

ALCS, Vo, X1, Vy, °° *, Xq, V, IN Which each arc x; is v;_,v;. The length of such” 

a walk is n, the number of occurrences of arcs in it. A closed walk has the 

same first and last points, and a spanning walk contains all the points. A - 

path is a walk in which all points are distinct; a cycle is a nontrivial closed — 

walk with all points distinct (except the first and last). If there is a path from 

* In fact this has been done,[HNC]]. Most of the theorems in this chapter are proved in that — 
book. Also Moon[M16] has written a monograph on tournaments. 

198 
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u to v, then v is said to be reachable from u, and the distance, d(u, v), from u to 

v is the length of any shortest such path. 

Each walk is directed from the first point vp to the last v,. We also needa 
concept which does not have this property of direction and is analogous to a 

walk in a graph. A semiwalk is again an alternating sequence vo, X,, 01, °°*, 

Xn, UV, Of points and arcs, but each arc x; may be either v,;_,v; or v,v;_,. A 

semipath, semicycle, and so forth, are defined as expected. 

Whereas a graph is either connected or it is not, there are three different 
ways in which a digraph may be connected, and each has its own idio- 

syncrasies. A digraph is strongly connected, or strong, if every two points 
are mutually reachable; it is unilaterally connected, or unilateral, if for any 

two points at least one is reachable from the other ; and it is weakly connected, 
or weak, if every two points are joined by a semipath. Clearly, every strong 

digraph is unilateral and every unilateral digraph is weak, but the converse 
statements are not true. A digraph is disconnected if it is not even weak. We 

note that the trivial digraph, consisting of exactly one point, is (vacuously) 

strong since it does not contain two distinct points. 

We may now state necessary and sufficient conditions for a digraph to 

satisfy each of the three kinds of connectedness. 

_ Theorem 16.1 A digraph is strong if and only if it has a spanning closed walk, 

it is unilateral if and only if it has a spanning walk, and it is weak if and only 

- if it has a spanning semiwalk. 

Corresponding to connected components of a graph, there are three 

different kinds of components of a digraph. A strong component of a digraph 

is a maximal strong subgraph; a unilateral component is a maximal unilateral 
subgraph; and a weak component is a maximal weak subgraph. It is very 

easy to verify that every point and every arc ofa digraph D is in just one weak 

component and in at least one unilateral component. Furthermore each 
point is in exactly one strong component, and an arc lies in one strong com- 

ponent or none, depending on whether or not it is in some cycle. 

The strong components of a digraph are the most important among 

these. One reason is the way in which they yield a new digraph which, 

Ss 

Si Ss 

S2 

So Fig. 16.1. A digraph and its condensation. 
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although simpler, retains some structural properties of the original. Let 

S,, S,,--+,S, be the strong components of D. The condensation D* of D 

has the strong components of D as its points, with an arc from §; to S; 

whenever there is at least one arc in D from a point of S; to a point in S;. 

(See Fig. 16.1.) 
It follows from the maximality of strong components that the con- 

densation D* of any digraph D has no cycles. Obviously the condensation of 

any strong digraph is the trivial digraph. It can be shown that a digraph is 

unilateral if and only if its condensation has a unique spanning path. 

DIRECTIONAL DUALITY AND ACYCLIC DIGRAPHS 

The converse digraph D’ of D has the same points as D and the arc uv is in D’ 

ifand only ifthe arc vuisin D. Thus the converse of Dis obtained by reversing 

the direction of every arc of D. We have already encountered other converse 

concepts, such as indegree and outdegree, and these concepts concerned 

with direction are related by a rather powerful principle. This is a classical 

result in the theory of binary relations. 

Principle of Directional Duality For each theorem about digraphs, there is a 

corresponding theorem obtained by replacing every concept by its converse. 

We now illustrate how this principle generates new results. An acyclic 
digraph contains no directed cycles. 

Theorem 16.2 An acyclic digraph has at least one point of outdegree zero. 

Proof. Consider the last point of any maximal path in the digraph. This 
point can have no points adjacent from it since otherwise there would be a 

cycle or the path would not be maximal. 

The dual theorem follows immediately by applying the Principle of 

Directional Duality. In keeping with the use of D’ to denote, the converse of 

digraph D, we shall use primes to denote dual results. 

Theorem 16.2’ An acyclic digraph D has at least one point of indegree zero. 

It was noted that the condensation of any digraph is acyclic, and the 

preceding results give some information about acyclic digraphs. We now 
provide several characterizations. 

Theorem 16.3 The following properties of a digraph D are equivalent. 

1. D is acyclic. 

2. D* is isomorphic to D. 

3. Every walk of D is a path. 

4 . It is possible to order the points of D so that the adjacency matrix A(D) 

is upper triangular. 
: 

, 
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Fig. 16.2. An out-tree and the converse in-tree. 

Two dual types of acyclic digraphs are of particular interest. A source 

_ in D is a point which can reach all others; a sink is the dual concept. An 
out-tree* is a digraph with a source having no semicycles; an in-tree is its 
dual, see Fig. 16.2. 

Theorem 16.4 A weak digraph is an out-tree if and only if exactly one point 
has indegree 0 and all others have indegree 1. 

Theorem 16.4’ A weak digraph is an in-tree if and only if exactly one point has 
outdegree 0 and all others have outdegree 1. 

We next consider some digraphs which are closely related to the above. 

A functional digraph is one in which every point has outdegree 1 ; a contra- 
_ functional digraph is dual, see Fig. 16.3. The next theorem and its dual 

provide structural characterizations. 

Theorem 16.5 The following are equivalent for a weak digraph D. 

1. D is functional. 

2. D has exactly one cycle, the removal of whose arcs results in a digraph 

in which each weak component is an in-tree with its sink in the cycle. 

3. D has exactly one cycle Z, and the removal of any arc of Z results in an 
in-tree. 

A point basis of D is a minimal collection of points from which all points 
arereachable. Thus, a set S of points of a digraph D isa point basis if and only 

if every point of D is reachable from a point of S and no point of S is reachable 

from any other. 

Theorem 16.6 Every acyclic digraph has a unique point basis consisting of 

all points of indegree 0. 

* This is called an “‘arborescence”’ by Berge[B12, p. 13]. 
: 

' 
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Fig. 16.3. A weak functional digraph. 

Corollary 16.6(a) Every point basis of a digraph D consists of exactly one 
point from each of those strong components in D which form the point 

basis of D*. 

A J-basis is a minimal collection S of mutually nonadjacent points such 

that every point of D is either in S or adjacent from a point of S. Every 
digraph has a point basis, but not every digraph has a 1-basis. For example, 

no odd cycle has one. A criterion for an arbitrary digraph to have a 1-basis 

has not yet been found. The theorem by Richardson [R9] generalizes its 
corollary, due to von Neumann and Morgenstern [NM1], and discovered 
in their study of game theory. 

Theorem 16.7 Every digraph with no odd cycles has a 1-basis. 

Corollary 16.7(a) Every acyclic digraph has a 1-basis. 

DIGRAPHS AND MATRICES 

The adjacency matrix A(D) of a digraph D is the p x p matrix [a,,] with 
a;; = 1 if vv; is an arc of D, and 0 otherwise. As the example in Fig. 16.4 

shows, the row sums of A(D) give the outdegrees of the points of D and the 
column sums are the indegrees. 

As in the case of graphs, the powers of the adjacency matrix A ofa digraph 
give information about the number of walks from one point to another. 

vy Vy Vz D3 Vg vs Rowsum 

», [0 0 0 Oven 

Dea ov; v2 | 1 On eiieeo 3 

A(D): v3] 1 0 0 0 0 ey 

v,1 0 0 1 (On80 1 

0s 1.0: 0- OFO720 0 

Dee U4 Column sum 2.0, 922 0nO 

Fig. 16.4. A digraph and its adjacency matrix. 
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Theorem 16.8 The i, j entry a{7) of A” is the number of walks of length n from 
v; to vj. 

We mention briefly three other matrices associated with D, namely the 

reachability matrix, the distance matrix, and the detour matrix. In R, the 

reachability matrix, r;; is 1 if v; is reachable from v,, and 0 otherwise. The 

i, j entry in the distance matrix gives the distance from the point v; to the 
point v,, and is infinity if there is no path from v, to v;. In the detour matrix, 

the i, j entry is the length of any longest path from »; to v,, and again is 

infinity if there is no such path. These three matrices for the digraph D 
of Fig. 16.4 are: 

Reachability Distance Detour 

Matrix Matrix — Matrix 

PANO 0. 0: 0 OT OO OOH OOr CO) Ooo me OOM OO WROG 

TAN oe Ge ae) La pO adie Ady oo en Ole bet Line OO 

LO O-.0 LN OO NOOO: OD LOO, LO EGON OO: 

eONaL NTO DaeOO wL he \OVNKOO Dir icon 1410s Oo 

OseOow OO 1 Oe 1001) Vico" foo) 0 COMM OOM OO; OOO. 

Corollary 16.8(a) The entries of the reachability and distance matrices can 

be obtained from the powers of A as follows: 

(2) 1,; = 1 if and only if for some n, af > 0. 
(3) d(v, v;) is the least n (if any) such that a‘ > 0, and is 00 otherwise. 

There is no efficient method for finding the entries of the detour matrix. 
This problem is closely related to several other long-standing algorithmic 

questions of graph theory, such as finding spanning cycles and solving the 

traveling salesman problem.* 
The elementwise product** B x C of two matrices B = [b,;] and C = 

[¢,,] has b,,c,, as its i, jentry. The reachability matrix can be useful in finding 

strong components. 

Corollary 16.8(b) Let v; be a point of a digraph D. The strong component of 
D containing v; is determined by the entries of 1 in the ith row (or column) 

of the matrix R x R?. 

The number of spanning in-trees in a given digraph was found by Bott 

and Mayberry [BM2] and proved by Tutte [T9]. To give this result, called 

* Consider a network N obtained from a strong digraph D by assigning a positive integer 
(cost) to every arc of D. The traveling salesman problem asks for an algorithm for finding a 
walk in N whereby the salesman can visit each point and return to the starting point while 
traversing arcs with a minimum total cost. 

** Sometimes called the “Hadamard product.” 

¥ 
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Ve V3 1 -1 0 0 1 -1l 0 0 

() —1 3 -1 -1 —1 2 -1 -1 
D M = M,,(D) = 

a a = aw Ocean ol 

v; v4 0 0 0 0 0 0 0 2 

V2 v3 v2 v3 

vi 4 vy U4 

Fig. 16.5. Spanning in-trees and out-trees. 

the matrix tree theorem for digraphs, we need some other matrices related — 
to D. Let M,, denote the matrix obtained from —A by replacing the ith 
diagonal entry by od(v;). The matrix M;, is defined dually. 

Theorem 16.9 For any labeled digraph D, the value of the cofactor of any i 
entry in the ith row of M,, is the number of spanning in-trees with v; as © 

sink. | 

Theorem 16.9’ The value of the cofactor of any entry in the jth column of | 
Mj, is the number of spanning out-trees with v; as source. 

In accordance with Theorem 16.9, the matrix M,, of the digraph of 
Fig. 16.5 has all cofactors of its entries in the fourth row equal to 3 and the 

three spanning in-trees of D with v, as sink are displayed; the directional ~ 
dual, Theorem 16.9’, is also illustrated by the second column of M,, and the © 

two spanning out-trees with v, as source. 
An eulerian trail in a digraph D is a closed spanning walk in which each 

arc of D occurs exactly once. A digraph is eulerian if it has such a trail. Just 

as in Theorem 7.1 for graphs, one can easily show that a weak digraph D is 

eulerian if and only if every point of D has equal indegree and outdegree. 
We will now state a theorem giving the number of eulerian trails in an eulerian 

digraph. It is sometimes referred to as the BEST theorem after the initials — 
of de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte; the first two 

[BE1] and the last two [ST1] discovered the theorem independently. It 
can be elegantly proved using the matrix tree theorem for digraphs, see 

Kasteleyn [K4, p. 76]. 

Corollary 16.9(a) In an eulerian digraph, the number of eulerian trails is 

Pp 

i=1 

where d; = id(v,) and c is the common value of all the cofactors of M 4g. 
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Fig. 16.6. Counting eulerian trails. 

Note that for an eulerian digraph D, we have M,, = M,, and all row sums 

‘as well as column sums are zero, so that all cofactors are equal. For the 
digraph in Fig. 16.6, c = 7 and there are 14 eulerian trails. Two of them are 

| D1V2V3V4V201030,V40, ANd 0,020, 04V203040, 0304. 
We have just given some indication of how matrices are used in the study 

of digraphs. On the other hand digraphs can be used to give information 

about matrices. Any square matrix M = [m,,] gives rise to a digraph D, 
| | and also possibly to loops if ATC U,V; isin D whenever mij # 0. The following 

1. Form the digraph D associated with M. 

_ 2. Determine the strong components of D. 

3. Form the condensation D*. 

4. Order the strong components so that the adjacency matrix of D* is 

upper triangular. 

5. Reorder the points of D by strong components so that its adjacency 

matrix A is upper block triangular. 

6. Replace each unit entry of A by the entry of M to which it corresponds. 

| ‘The eigenvalues of M are the eigenvalues of the diagonal blocks of the new 
‘matrix, and the inverse of M can be found from the inverses of these diagonal 

blocks. 
When M is a sparse matrix,* (or rather has zero entries strategically 

located so that there are several strong components), this method can be 

quite effective. A generalization to a sometimes more powerful but also more 
involved algorithm using bipartite graphs is given by Dulmage and 

Mendelsohn [DM2]. 

- TOURNAMENTS 

[A tournament is an oriented complete graph. All tournaments with two, 

| three, and four points are shown in Fig. 16.7. The first with three points is 
called a transitive triple, the second a cyclic triple. 

t In the literature, a sparse matrix has been defined as one with many zeros. 
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Fig. 16.7. Small tournaments. 

In a round-robin cournament, a given collection of players or teams 

play a game in which the rules of the game do not allow for a draw. Every 

pair of players encounter each other and exactly one from each pair emerges 

victorious. The players are represented by points and for each pair of 

points an arc is drawn from the winner to the loser, resulting in a tournament. 

The first theorem on tournaments ever found is due to Rédei [R7]; 
for small tournaments, it can be verified using Fig. 16.7. 

Theorem 16.10 Every tournament has a spanning path. 

Proof. The proofis by induction on the number of points. Every tournament 

with 2, 3, or 4 points has a spanning path, by inspection. Assume the result 
is true for all tournaments with n points, and consider a tournament T 

with n + 1 points. Let vy be any point of T. Then T — vo is a tournament 
with n points, so it has a spanning path P, say v, v.---v,. Either arc vv, 

Or arc vyV9 isin T. Ifvgv, isin T, then vo v, v2 - +: v, iS a spanning path of T. 

If v,vo is in T, let v; be the first point of P for which the arc vov; is in 
T, ifany. Then v;_,Vo is in T, so that v, v2 +--+ v;_1 V9 V;°** V, IS a Spanning 
path. If no such point v; exists, then v, v.+-- v, Vo 1s a Spanning path. In 

any case, we have shown that T has a spanning path, completing the proof. 

Szele [S16] extended this result by proving that every tournament has 

an odd number of spanning paths. Another type of extension of Reédet’s 
theorem was provided by Gallai and Milgram [GM1] who showed that 
every oriented graph D contains a collection of at most Bo(D) point-disjoint | 

paths which cover V(D). 

The next theorem is due to Moser [HM2]; its corollary was discovered 
by Foulkes [F7] and Camion [C1] and is the analogue for strong tourna- 

ments of the preceding theorem for arbitrary tournaments. _ 

Theorem 16.11 Every strong tournament with p points has a cycle of length n, 

FOL ors Sse ase De 

' Proof., This proof is also by induction, but on the length of cycles. If a 

tournament T is strong, then it must have a cyclic triple. Assume that T | 

| 
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“has a cycle Z = v, v2 ‘-: v, v, of length n < p. We will show that it has a 

cycle of length n + 1. There are two cases: either there is a point u not 
in Z both adjacent to and adjacent from points of Z, or there is no such 

point. 

CASE 1. Assume there is a point u not in Z and points v and w in Z such 

that arcs uv and wu are in T. Without loss of generality, we assume that arc 

v,uisin T. Let v; be the first point, going around Z from v,, for which arc uv; 

isin T. Then v;_ ,u isin T, and v, v,---v;_,u 0;°°* 0, v, is a cycle of length 

Nida 1. 

CASE 2. There is no such point u as in Case 1. Hence, all points of T which 

are not in Z are partitioned into the two subsets U and W, where U is the 

set of all points adjacent to every point of Z and W is the set adjacent from 

every point of Z. Clearly these sets are disjoint, and neither set is empty 

since otherwise T would not be strong. Furthermore, there are points u in 

U and w in W such that arc wu is in T. Therefore uv, v,:°:v,-,wu is a 

cycle of length n + 1 in T. 

Hence, there is a cycle of length n + 1, completing the proof. 

Corollary 16.11(a) A tournament is strong if and only if it has a spanning 

cycle. 

Using terminology from round-robin tournaments, we say that the 
score of a point in a tournament is its outdegree. The next theorem due to 

Landau [L1] was actually discovered during an empirical study of tourna- 

ments (so-called “pecking orders”) in which the points were hens and the 

arcs indicated pecking. 

‘Theorem 16.12 The distance from a point with maximum score to any other 

point is 1 or 2. 

The number of transitive triples can be given in terms of the scores 

of the points; see Harary and Moser [HM2]. As a corollary, one can 

‘readily obtain the well-known formula of Kendall and Smith [KS1], which 
has proved useful in statistical analysis. It was generalized from cyclic 

triples to larger strong subtournaments by Beineke and Harary [BH4]. 

fiewen 16.13 The number of transitive triples in a tournament with score 

sequence (5,, 52,°°*, S,) is & s{s; — 1)/2. 

Corollary 16.13(a) The maximum number of cyclic triples among all tourna- 

ments with p points is roa 

if pis odd, 
a 24 4 
tp, = 

p? — 4p 
24 

if pis even. 
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oP P 
(a) (b) () (d) 

Fig. 16.8. Two pairs of nonreconstructable strong tournaments. 

Excursion on Reconstruction of Tournaments 

The special case of Ulam’s Conjecture for tournaments has been partially 

solved. Just as for graphs, each tournament T with p points determines p 

subtournaments T; = T — v;. We proved* that any nonstrong tournament 

with at least five points can be reconstructed. However, the conjecture does 
not hold for strong tournaments with p = 5 and 6. This was established 

by L. W. Beineke and E. M. Parker, who found that the two pairs of tourna- 

ments, Fig. 16.8(a, b) and Fig. 16.8(c, d), are counterexamples. 

No larger such examples are yet known, and we conjecture that there 

are none! 

EXERCISES 

16.1 A digraph is strictly weak if it is weak but not unilateral; it is strictly unilateral 

if it is unilateral but not strong. Let C, contain all disconnected digraphs, C, the 

strictly weak ones, C, strictly unilateral, and C, those which are strong. Then the. 

maximum and minimum possible number g of arcs among all p point digraphs in 

connectedness category C,, i = 0 to 3 is given in the following table: 

Minimum Number Maximum Number 

Category of Arcs of Arcs 

0 0 (p — 1Xp — 2) 
1 pl (p — 1Xp — 2) 
2 pt (py 
3 p Rp — 1) 

(Cartwright and Harary [CH1] 

* F. Harary and E. M. Palmer, On the problem of reconstructing a tournament from sub- 
tournaments, Monatshefte fur Math. 71, 14-23 (1967). 
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16.2 The cartesian product D, x D, of two digraphs has V, x V, as its point set, 

and (u,, uz) is adjacent to (v,, v.) whenever [u, = v, and u, adj v,] or [u, = v, and 
u, adj v,]. (This is defined just as for graphs in Chapter 2, except that adjacency is 

directed.) When D is in connectedness category. C,, we write c(D) =n. Then 

cD, x D2) = min {c(D,), c(D,)} unless c(D,) = c(D,) = 2inwhichcase c(D, x D, = 1. 

(Harary and Trauth [HT1]) 

16.3 No strictly weak digraph contains a point whose removal results in a strong 

digraph. (Harary and Ross [HR2]) 

*16.4 There exists a digraph with outdegree sequence (s,, 5,,°**,s,), where p — 1 > 

S; =>S, >°**>5,, and indegree sequence (t;,t,:**,f,) where every t; < p — 1 

_if and only if Zs, = © t,, and for each integer k < p, 

k P 

Ys; < ¥ min {k — 1, t;} + } min {k, t;}. 
i=1 i=1 i=k+1 

(Ryser [R21], Fulkerson [F12]) 

*16.5 There exists a strong digraph with outdegree and indegree sequences as in the 

preceding exercise if and only if 2s; = Xt;, each s; > 0, each t; > 0, and for each 

integer k < p, the following strict inequality holds: 

Pp k k 

¥s,< e+ Y min {k, t}. 
i=1 i=1 i=k+1 

(Beineke and Harary [BH1]) 

16.6 The line digraph L(D) has the arcs of the given digraph D as its points, and x is 

adjacent to y in L(D) whenever arcs x, y induce a walk in D. Calculate the number of 

points and arcs of L(D) in terms of D. (Harary and Norman [HN4]) 

16.7 The line digraph L(D) of a weak digraph D is isomorphic to D if and only if D or 

D’ is functional. (Harary and Norman [HN4]) 

16.8 If D is disconnected, the assertion in the preceding exercise does not hold. 

*16.9 Let S and T.be disjoint sets of points of D and let X(S, T) be the set of all arcs 

from S to T. Then D is a line digraph if and only if there are no two-point sets S and 

T such that |X(S, T)| = 3. (Geller and Harary [GH1], Heuchenne [H42]) 

16.10 The number of eulerian trails of a digraph D equals the number of hamiltonian 

cycles of L(D). (Kasteleyn [K3]) 

16.11 Let T, consist of one point with 2 directed loops. Let T, = L(T,) be the line 
digraph (more precisely pseudodigraph) of Tj defined as expected, and recursively let 

T, = L(T,_,). The structures T, have been called “teleprinter diagrams.” Then the 

number of eulerian trails in T, is 
es (deBruijn and Ehrenfest [BE1 ]) 

*16.12 Every digraph in which id v, od v > p/2 for all points v is hamiltonian. 

(Ghouila-Houri [G7]) 

16.13 Consider those digraphs in which for every point u, the sum X d(u, v) of the 

distances from u is constant. Construct such a digraph which is not point-symmetric. 

(Harary [H20}) 
a 

’ 
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16.14 The complement D and the converse D’ both have the same group as D. 

16.15 Let A be the adjacency matrix of the line digraph of a complete symmetric digraph. 

Then A? + A has all entries 1. (Hoffman [H45]) _ 

16.16 Two digraphs are cospectral if their adjacency matrices have the same character- 

istic polynomial. There exist just three different cospectral strong digraphs with 4 points. 

(F. Harary, C. King, and R. C. Read) 

16.17 The conjunction D = D, 0 D, of two digraphs D, and D, has V = V, x V, 

as its point set, and u = (u,, u2) is adjacent to v = (v,, v2) in D whenever u, adj v, in 

D, and u, adj v, in D,. The adjacency matrix A of the conjunction D = D, a Dz is , 

the tensor product of the adjacency matrices of D, and D,. 

(Harary and Trauth [HT1]) | 

16.18 Let D, and D, be digraphs and let d; be the greatest common divisor of the 

lengths of all the cycles in D;, i = 1,2. Then the conjunction D, ~ D, is strong if and 

only if D, and D, are strong and d, and d, are relatively prime. | (McAndrew [M7]) 

16.19 A digraph is called primitive if some power of its adjacency matrix A has all its 

entries positive. A digraph is primitive if and only if it is strong and the lengths of its 
cycles have greatest common divisor 1. (see Dulmage and Mendelsohn [DM3, p. 204]) 

*16.20 Let D be a primitive digraph. 

a) If nis the smallest integer such that A” > 0, thenn < (p — 1)? + 1. 

(Wielandt [W17]) 

b) Ifn has the maximum possible value(p — 1)? + 1, then there existsa permuta- 

tion matrix P such that PAP~' has the form [a,,] where a,, = 1 whenever 
j=it+landa,, = 1, but a,; = 0 otherwise. 

(Dulmage and Mendelsohn [DM3, p. 209]) © 

16.21 An orientation of a graph G is an assignment of a direction to each line of G. | 

A graph has a strongly connected orientation if and only if it is connected and bridgeless. 

(Robbins [R17])_ 

16.22 Let B be the p x q incidence matrix of an arbitrary orientation D of a given 

labeled graph G, so that the entry b,, of B is +1 if oriented line x; is incident to point 

vj — 1 if x; is incident from v;, and 0 otherwise. Then the common cofactor of BB’ is the — 

number of spanning trees of G. (Compare the matrix BB’ with M of Chapter 13.) 

(Kirchhoff [K7]) 

16.23 Recall from Chapter 5 that in a gtaph G, A(u, v) is the minimum number of lines. | 

whose removal separates u and v. Similarly, when u and v are points of a digraph D, 

let Au, v) be the minimum number of arcs whose removal leaves no path from u to v. © 

For any orientation D of an eulerian graph G, A(u, i= Av, u) = 4A(u, v) for every | 

pair of points. (Nash-Williams [N1]) 

16.24 Every orientation of an n-chromatic graph G contains a path of lengthn — 1. 

(Gallai [G4]) | 

16.25 The scores s; of a tournament satisfy Es? = X(p — 1 — s;)?. 
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16.26 All but two tournaments have a spanning path v,-v, --- v, with a shortcut, the 

arc v,v,. The two exceptions are the cyclic triplé and tournament of Fig. 16.8(a). 

| _(B. Griinbaum) 

16.27 a) The number of cycles of length 4 in any p point tournament is equal to the 

number of strong subtournaments with 4 points. 

| b) The maximum number of strong subtournaments with 4 points in any p 

| point tournament is t(p, 4) = (p — 3)t(p, 3). See Corollary 16.13(a). 

(Beineke and Harary [BH4]) 

16.28 A group is isomorphic to the point-group of some tournament if and only if it 

has odd order. (Moon [M14]) 

16.29 Let I be the point-group and I, the arc-group of a tournament T. Then I, is 

transitive if and only if the pair-group of I’ is transitive. (Jean [J1]) 

16.30 Let t(x) and s(x) be the generating functions for tournaments and strong tourna- 

ments, respectively. Then 
t(x) 

ais" 
(Moon [M16, p. 88]) 

16.31 Consider a sequence of nonnegative integers s, < s) <°-° < 5S,. 

a) This is the score sequence of some tournament T if and only if 

1 k 

s,= Pp —1)/2 andforallk<p, } 's, > kk — 1)/2. 
1 eM) 

(Landau [L1]) 

b) Further, T is strong if and only if for all k < p, 

ae > kk — 1/2. 

(Harary and Moser [HM2]) 
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GRAPH DIAGRAMS 

One picture is worth more 

than ten thousand words. 

ANONYMOUS 

It is very useful to have diagrams of graphs available for the accumulation 

of data leading to conjectures. Graphs with fewer than 6 points are easily 

drawn. The diagrams of 6 point graphs which are presented here were 

produced by D. W. Crowe, who also was apparently the first to draw all 
7 point graphs. In listing the diagrams, no attempt was made to settle the 
problem of assigning a canonical ordering to the various graphs with p 
points and q lines. However an index n is assigned to each graph G, with the 

same index going to the complementary graph G. Thus the graph G,,,,, is 

the nth (p, q) graph, and is identified to the right of its diagram by the 

number 7; furthermore G,,,, = Gye The (4, 3) and (5, 5) graphs 
are of course exceptions to this rule. 

As a supplement to tables of this kind, B. R. Heap developed a program 
on the computer at the National Physical Laboratory in Middlesex which 

has produced one card for each graph with 7 points and is in the process 

of producing graphical cards for p = 8. It was found most convenient to 

code the graphs in adjacency matrix form. The existence of such lists has 
already proved valuable to investigators using computer methods. 

For convenience we present here a table displaying the number of 

graphs with a given number of points and lines, up through 9 points (cf. 

Riordan [R15, p. 146]). The entries were obtained using Polya’s formula 

(15.47). 
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Table Al 

THE NUMBER OF GRAPHS WITH p < 9 POINTS AND gq LINES 

1 Z 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 

1 | 1 1 1 1 1 1 

1 2 2 2 2 2 2 

1 3 4 5 5 5 5 
2 6 9 10 11 11 
1 6 15 21 24 25 

1 6 21 41 56 63 
4 24 65 115 148 
2 24 97 221 345 

1 21 131 402 771 

1 15 148 663 1637 
9 148 980 3252 

5 131 1312 5995 
2 97 1557 10120 
1 65 1646 15615 

1 41 1557 21933 

21 1312 27987 

10 980 32403 

5 663 34040 
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p=6 (cont.) 
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DIGRAPH DIAGRAMS 

The hero jumped on his horse 

and rode off in all directions. 

S. LEACOCK 

The digraphs with at most 4 points are listed here according to the number 
of points and arcs. Indices are assigned to each one in such a way that 

complements receive the same index, except of course within the (3, 3) and 
(4, 6) digraphs. The diagrams only go through p = 4 because to include 
those for p = 5 would require another book almost the size of the present 
volume. The following table due to Oberschelp [O01] gives the number of 
digraphs with p points, p < 8. The entries may be computed using 

equations (15.31, 15.32). 

Table A2 

THE NUMBER 
OF DIGRAPHS 

WITH p < 8 POINTS 

P 

1 | 
2 3 
3 16 
4 218 
5 9 608. 
6 1 540 944 
/ 882 033 440 
8 1 793 359 192 848 
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TREE DIAGRAMS 

You can’t see the forest for the trees. 

ANONYMOUS 

The diagrams of all the trees with p < 12 points were developed by Prins 
and appear as an appendix in his doctoral dissertation [P8]. We present 
here only those diagrams for p < 10, which are also given in [HP21]. The 
ordering of trees with a given number of points is somewhat arbitrary, but in 

general they are listed by increasing number of points of degree greater than 

2. The following table presents the number of trees and rooted trees with-p 

points for p < 26 (cf. Riordan [R15, p. 138]) and the number of identity 
‘trees and homeomorphically irreducible trees for p < 12 (cf. [HP20]). 
These numbers were obtained using formulas (15.41), (15.35), (15.51 and 

15.52), and (15.47, 15.48, and 15.49) respectively. 
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Table A3 

THE NUMBER OF TREES, ROOTED TREES, IDENTITY TREES, 
AND HOMEOMORPHICALLY IRREDUCIBLE TREES WITH p POINTS 

1 1 1 301 12 486 
2 0 3 159 32/973 
3 0 7 741 87 811 
4 0 19 320 235 381 
5 0 48 629 634 847 
6 0 123 867 1 721 159 
7 1 317 955 4 688 676 
8 823 065 12 826 228 
9 47 286 3 21 2 144 505 35 221 832 
10 | 106 719 6 10 22 5 623 756 97 055 i81 
11 | 235 1842 15 14 23 14 828 074 268 282 855 
12 Sol 4 OO 29 eo 24 39 299 897 743 724 984 

104 636 890 2 067 174 645 
279 793 450 5 759 636 510 
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| (by V. Krishnamurthy) 

THE FOUR-COLOR THEOREM (4CT) 

| My heart leaps up when I behold A 

: rainbow in the sky. 

William Wordsworth 

TL admit nothing as true of them that is 

not deduced, with the clarity of a 

mathematical demonstration, from 

common notions whose truth we cannot 

‘doubt. 
Descartes 

The Analytical Engine has no 

pretensions to originate anything. Itcan 

do whatever we know how to order it to 

perform. 

Lady Lovelace. 

We do not overcome our doubts by 

suppressing them. We do not meet our 

misgivings by denying them. 

Paul Brunton. 

In 1976, Kenneth Appel and Wolfgang Haken [AH 2] and [AHK lj 

established what must now be called Four Color Theorem (4CT). The proof: 

made unprecedented use of large scale computers. For the first time in the 

history of mathematics the accessibility of a mathematical proof depended upon 

the external factor of the availability of a large scale computing facility. We 

shall, in this appendix, give a sketch of this unique achievement. The first serious 

attempt to prove the 4CC was made by Kempe [K6] in 1879. The error in his 

‘proof’ was discovered by Heaweed [H 38] in 1890, but what was salvageable 

from Kempe’s argument was the Five Color Theorem (Theorem 12.7). Though 

Kempe’s argument did not achieve the purpose of proving the 4CC, it did 

contain several ideas which formed the foundation for many later attempts at 

the proof, including Appel and Haken’s successful attempt in the seventies. Thus 

we begin with a presentation, in modern terminology, of the relevant ideas from 

Kempe. 
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First note that it suffices to consider plane triangulations, viz., connected 

plane graphs whose edges divide the plane into regions each bordered exactly by 

three edges. This is because every plane graph, or for that matter every planar 

graph, can be triangulated in this manner and if we can four-color the vertices of 

the triangulation, the same coloring will do for the original graph. We shall 

therefore restrict our attention to plane triangulations hereafter (except when 

specified otherwise). A plane graph and its plane triangulation are shown in Fig. 

A 4.1. 

FIG.A.4.1 A PLANE GRAPH AND ITS TRIANGULATION 

Suppose that G is a plane triangulation with p vertices, q edges and r regions 

and further that there exist p, vertices of degree k for each k, with p°= p' =O. 

Recall from the Euler Polyhedron Formula (Theorem 11.1) that, in such a case, 

we have 

p-qtr=2. 

Since now p= P,. 2q=Zk p, and 2q=3r, we have the following fundamental 

result 

Theorem A 4.1. If, for each k, p, is the number of vertices of degree k ina 

plane triangulation G, then 

E (6-k) p, = 12, 
that is, 

4p? + 3p? + 2p*+ p= 12 + p’ + 2p* + 3p? + ... 

This theorem, in turn, leads us to the next result, which is an existence 

theorem. 

Cor. A 4. Every plane triangulation G contains a vertex of degree at most 5. 

This corollary forces every triangulation to contain at least one of the four 

geometrical configurations shown in Fig. A 4.2. 
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Given a plane triangulation T, any part of T which lies within some cycle of T 

together with the cycle itself is called a configuration. The cycle itself is called the 

ring bounding the configuration. In other words a configuration is the subgraph 

of T consisting of the vertices interior to the ring bounding it, the edges joining 

pairs of such vertices and the triangles bounded by the 3-cycles which are formed 

by these edges, and the ring bounding all these. 

(9) 

(d) 

FIG. A.4.2 SINGLE VERTEX CONFIGURATIONS WITH 

RING SIZES 2,3,4 &5, 

Fig. A 4.2 presents configurations consisting of a single vertex v with ring 

sizes 2,3,4 and S. A set of configurations is said to be unavoidable, if every plane 

triangulation must necessarily contain at least one of them. The set of 

| configurations of Fig. A 4.2 is unavoidable because of Cor. A 4.1 a. 

| 4CC says that every planar graph is 4-colorable. A counterexample to the 

_ conjecture, if one existed, would be a planar graph which is not 4-colorable. The 

| strategy of the proof of 4CT is to prove that a counterexample cannot exist. The 

_ beginning of the argument goes back to Kempe himself. If there exists a 

counterexample, say G, it means that G needs at least five colors. Among all 

such 5-chromatic graphs, ‘there exists one, say H, with minimum number of 

' vertices. Then H is called a minimum counterexample to the 4CC. Thus H needs 

| five colors and any planar graph with fewer vertices than H needs only four 

' colors. Again we note that this minimum counterexample can be taken to bea 

plane triangulation. For if it were not already a triangulation, we could add 

| extra edges to convert it into a triangulation, still keeping the total number of 

' vertices intact and without affecting the non-colorability in four colors. 

Now we define a configuration C in a plane triangulation to be reducible if 

| the 4-colorability of a plane triangulation which contains C can be deduced from 

| the 4-colorability of plane triangulations G with fewer verticers. Reducibility of 

C would imply that C cannot be contained ina minimum counterexample to the 

4CC. Therefore, in order to prove the 4CC, it suffices to find an unavoidable set 

| U of configurations each of which is reducible. Since U is unavoidable every 

plane triangulation must contain at least one of the members of U. But since 

Oo member of U is reducible none of them can occur in a minimum 

Ounterexample. We conclude then that no counterexample can exist and that 
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the 4CT is proved. This formulation of the strategy for attacking the 4CC was 

initiated by Heesch [H 48]. Appel and Haken succeeded by constructing an 

unavoidable set consisting of 1834 reducible configurations, and (a) (b) and (c) 

of Fig. A 4.2, but not (d) of the same figure. (In fact, the historical error of 

Kempe was the conclusion that (d) of Fig. A 4.2 is reducible!) Some of these are 

quite large and go up to ring size 14. Over the years other unavoidable sets and 

reducible configurations have been constructed but no one before Appel and 

Haken had produced an unavoidable set of reducible configurations. 

How does one prove that a set U of configurations is unavoidable? The 

method goes back to Heesch. We assign a number, called ‘charge’, to each vertex 

v of a triangulation in such a way that the sum of the charges is 12. That this is 

always possible is clear from Theorem A 4.1. We can also think of charge asa 

function f which assigns a number f(v) to each vertex v such that f(v)=12.A 

‘Discharging Algorithm’ is then a rule for distributing the charge in a 

triangulation in such a way that the total charge is preserved. The algorithm is 

usually specified in terms of local information. We shall see a specific example in 

a little while. But :before we do that , we must introduce some notational 

conventions-the Appel-Haken conventions-in order to economise space in the 

description of a set of configurations. These are: 

(i) All unavoidable sets will be assumed to contain (a), (b) and (c) of Fig. A 

4.2 and we shall omit their specific mention; 

(ii) we shall also omit the mention of the bounding ring and the edges that 

link it to the configuration; and 

(iii) we shall use a solid circle e to represent a vertex of degree 5, a hollow 

circle © to representa vertex of degree 7, a hallow squareL to representa 

vertex of degree 8 and no special marking at the vertex to represent a 

vertex of degree 6. 

With these notations we shall sketch the proof of the following result due to 

Wernicke [W8] 

Theorem A 4.3 | i din eaete | 

is an unavoidable set. 

Proof: Note that the set specified in the theorem, if described elaborately, is 

the set consisting of configurations (a), (b) and (c) of Fig. A 4.2 and the two 

configurations (a) and (b) of Fig. A 4.3. Suppose T isa triangulation containing 

none of these five configurations. We shall produce a contradiction by 

constructing a suitable discharging process. Let each vertex of degree k be given 

a charge 6-k. Let us now transfer one-fifth of a unit of charge from each 

positively charged vertex to each of its negatively charged neighbors. Let us see 

what happens to vertices of each specified degree. Since T does not contain (a), 

(b) and (c) of Fig. A 4.2, there are no vertices of degree 2, 3 or 4,. Considernowa j 

vertex v of degree 5. All its neighbors, by our assumption have degree greater 

than 6 and so they are all negatively charged to start with. So the discharging 

process converts v to zero charge but still leaves all its five neighbors with a 

negative charge. Next we note that a vertex of degree 6 is unaffected because 

both before and after the discharging process it has only zero charge. 

of 

—— 
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(¢) (b) 

FIG, A.4.3 WERNICKE’S CONFIGURATIONS ,REPLACING 

FIG. A.6.2 (d) 

Consider now a vertex of degree k with k > 6. It has a negative charge to start 

with and can end up with a positive charge only if it has 4 neighbors of degree 5, 

where 

A%1/5>k-6 

But since no two vertices of degree 5 can be adjacent, the maximum possible 

value of A is k/2 or (k-1)/2 according ask is even or odd. Ineither case (I) cannot 

hold. This means our discharging process leaves every vertex with either a zero 

or negative charge and so Theorem A 4.| is violated. 

The methodology of the proof clearly shows how unaviodability is asserted. 

A set of configurations which prevents discharging is unavoidable! The 

challenge lies in constructing a suitable discharging process. 

Now let us turn our attention to proofs of reducibility. The earliest proof was 

that of Kempe who successfully proved. that each of (a), (b) and (c) of Fig. A 4.2 

is reducible. The proof for (a) and (b) is easy. Recall that reducibility of a 

configuration C means that it is possible to infer 4-colorability of any 

triangulation T containing C from the 4-colorability of triangulations G with 

fewer vertices. Consider (a) or (b) of Fig. A 4.2. Since v has only two or three 

neighbors, any 4-coloring of T-(v) will exhaust at the most only three colors for 

the neighbors of vand so there is always one spare color which can be assigned to 

vand still result in a proper coloring. Thus (a) and (b) are reducible. In trying to 

use a similar argument with (c) of Fig. A4.2, we encounter an obstacle. The cycle 

of four neighbors around v might consume all the four colors (say, blue, green, 

yellow and red) and then there would be no spare color for v. But Kempe looked 

deeper into this and produced what is now universally knownasa Kempe-chain 

‘argument. Suppose the four vertices in order are named b, y, g and rand have 

been colored blue, yellow, green and red respectively. For all we know about the 

coloring in the rest of the graph, (i) there may not exist a blue-green-blue-green- 

... chain connecting the opposite vertices b and g; and (ii) there may or may not 

exist a red-yellow-red-yellow- ... chain connecting the opposite vertices r and y. 

Such chains are called Kempe chains. Suppose a Kempe chain does not exist 

between, say, b and g. Then we could recolor the vertices b and g as (say) both 

blue—which would imply that necessary alterations (actually, reversal of colors) 

in the hierarchy of successive neighbors of g would have to be done. (See Fig. A 

4.4) In view of the supposition that there exists no Kempe chain between band g, 

such a reversal of colors is possible and it would leave the four vertices b, y, gand 

, rf with the colors blue, yellow, blue and red respectively—thus leaving a spare 
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color, namely green, for v and resulting in a 4-colorability of T. In summary, 

whenever a Kempe chain does not exist either between the opposite vertices b 

and g or between the opposite vertices y and r, a 4-coloring of T can be inferred 

from any given 4-coloring of T-(v). 

FIG. A4.4 REVERSAL OF COLORS 

We have only to consider the case, if it exists, of the possibility of Kempe 

chains existing both between b and g and between y and r. But the planarity of 

the graph prevents this possibility as can be seen by an attempt to represent both 

the Kempe chains ona planar graph. Thus the reducibility of (c) of Fig. A 4.2 is 

proved. 

On the other hand a Kempe chain argument does not work for (d) of Fig. A 

4.2, though Kempe thought it did. The counterexample was produced by 

Heawood [H38] in 1890. From that time onwards the four-color problem 

assumed the role of a serious challenge to mathematicians. In the earlier stages it 

was only an attempt to repair Kempe’s proof. The combinatorial complexity 

involved very soon showed that no moderately simple repair was likely. The 

proofs of reducibility turned out to be more than just a challenge and a 

temptation. It was in 1970 that Heesch communicated to Haken a hope that by 

modifying the original discharging algorithm one could probably obtaina large 

unavoidable set of as many as 8000 configurations each of which was reducible. 

Before we take up Appel and Haken’s exciting response to this suggestion we 

need to talk a little more about reducibility. 

FIG A.4.6 TRIANGULATION WITH BIRKHOFF 
DIAMOND REMOVED 

FIG.A.4.5 BIRKHOFF DIAMOND ot 
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The earliest model of a systematic proof of reducibility was that of Birkhoff 

[B20] in 1913. The proof that the configuration, now known as the Birkhoff 

_ diamond (see Fig. A 4.5) is reducible, goes somewhat as follows. Let C be the 

Birkhoff diamond contained in a (hexagonal) circuit ina plane triangulation Tr. 

‘Let T be the complement of C in T (see Fig. A 4.6)—in other words it is the 

hexagonal circuit with nothing inside it, but everything outside it being the same 

as in T. Suppose T’ has been four-colored. The question is whether we can 

extend this four-coloring to T which contains the Birkhoff diamond. If every 

such coloring of T’ isextendable to T either directly or by reversal of colorings in 

| certain Kempe-type chains, then C is said to be D-reducible. In order to assert 

this, one actually enumerates the possible colorings that the vertices of the 

_ hexagon could have, irrespective of whether they are actually possible in T’ or 

| not. Some of these color schemes may be actually extendable to the Birkhoff 

diamond without any further effort. For example, the coloring b g bg by (b= 

blue, g = green, y = yellow, r= red) is extendable to the Birkhoff diamond as can 

be verified easily. On the other hand the scheme b g b g b gis not so extendable 

and one has to go into Kempe chain arguments. In the modern adaptation of this 

to computer work, the first thing that the computer does is to check the above 

_ kind of reducibility, called D-reducibility. Heesch had already observed a 

} number of distinctive phenomena that provided clues to the likelihood of 

_ successful reduction. These clues were stated in the form of what are knownas 

| ‘Reduction obstacles’. Configurations without these obstacles have a very good 

_ chance of being reducible. These three obstacles are: (a) a ‘four-legger vertex’, 

| ie., a vertex v inside the bounding ring, but adjacent to four consecutive vertices 

of the ring; (b) a ‘three-legger articulation vertex’ i.e., a vertex w inside the 

| bounding ring but is adjacent to three vertices of the ring which are not all 

consecutive; and (c) a ‘hanging 5-5 pair’, i.e., a pair of adjacent vertices x and y 

_ inside the bounding ring, each of degree 5 and each having the same (and only 

_ one) neighbor inside the ring. (See Fig. A 4.7 for examples). Any configuration 

which avoids the obstacles (a) and (b) above is called a ‘geographically good 

configuration. 

UB 
| wh FIG. A.4.7 CONFIGURATIONS WITH REDUCTION OBSTACLES 
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As a first step towards the implementation of the suggestion of Heesch, 

Haken started in 1972 to develop a discharging procedure to obtain an 

unavoidable set of geographically good configurations. Though this was far 

from the goal of an unavoidable set of reducible configurations, the objective 

was to shift the emphasis from computing of reducibility to improving the 

discharging procedure. This involved considering the possible failure cases of 

each discharging algorithm. These failures could occur, for example, because of 

the ‘overcharging’ of some vertex, i.e., transferring to a vertex with negative 

charge too much positive charge. The enumeration of cases was done with the 

help of the computing facility at the University of Illinois, changes were made, 

and then the new algorithm was again examined. From 1972 through 1975 | 

Appel and Haken, assisted by the computer, looked for discharging algorithms — 

which avoided not only the first two reduction obstacles, but the third also. The | 

one that was finally worked out by them was the result of a lengthy process of | 

trial and error of as many as 500 modifications of the original discharging 

procedure. These modifications were progressively made relying on a large © 

number of empirical and intuitive rules, all the time carrying outa man-machine | 

dialogue. Whenever the D-reducibility test failed on a certain configuration, an 

alternative (called C-reduction) ofproving whether a smaller sub configuration 

was D-reducible was tried. Naturally there was a variety of choices for this — 

substitute configuration and a great deal of intuition went intaits selection. But — 

instead of spending computer time on all possible substitute configurations in i 

this way, they allowed only a ‘reasonable’ time of a certain number of minutes, © 

e.g., 30 minutes on an IBM 370-168, and within that time if the C-reduction i 

could not be proved, they abandoned the original configuration itself and went ‘ 

on to modify their discharging procedure to look for other unavoidable sets. By \ 

this time they had developed such an intuitive feeling for what was likely to work | 

on the side of reducibility, that they started working on the discharging ‘ 

procedure by hand. It seemed to be much more work to change the computer 

program after each new improvement. 

On the other side, the computer also got ‘wiser’ and responded by working | 

out compound strategies based on all the tricks it had been taught. Right at this 

time, a graduate student at the University of Illinois, John Koch, wrote i 

programs for the IBM 360 which would check for the most mechanical © 
reducibility of configurations of ring size up to 11. With his help, Appel and 

Haken modified these programs to produce programs for checking the | 

reducibility of configurations with ring size !2, 13 and 14. Side by side the t 

discharging procedure needed major modifications and all this was 

accomplished by January 1976. Samples of reduction time for the D-reducibility || 

of configurations were roughly as follows: j 

40 sec. for 11-rings on the IBM 360-75; 

60 sec. for 12-rings on the IBM 370-158; 

5 min. for 13-rings on the IBM 370-158; 

6 min. for 14-rings on the IBM 370-168; 

Thus in June 1976, the final lap had been, made, producing an unavoidable ; 
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| set of 1834 reducible configurations (of which as many as 660 were of ring size 

| 14) using 1200 hours of computer time on the three computers. The Four-color 

| Theorem was established! 

Le 
O& LA 

BAS 
FIG-A 4.8 (FOLLOWING APPEL—HAKEN CONVENTIONS) 

THE 7 CONFIGURATIONS OF RING-SIZE 8 OR 
LESS IW THE APPEL - HAKEN UNAVOIDABLE 

FIG. A4.9 (FOLLOWING APPEL-HAKEN CONVENTIONS) 

THE 8 CONFIGURATIONS OF RING - SIZE 9 

IN THE APPEL - HAKEN UNAVOIDABLE SET, 

Out of the 1834 configurations we present a meagre 15 in Fig. A 4.8 and Fig. 

A 4.9. The first figure shows those of ring size 8 or less and the second one shows 

lthose of ring size 9. Note that in both figures we have used the already 

\mentioned. Appel-Haken conventions of presenting configurations. Reader! 

‘You may want to check your understanding of the concept of reducibility by 

proving that each one of these 15 is indeed D-reducible. It should also be 

1entioned here that the number 1834 was later brought down by Appel and 

|Haken themselves to 1482. 
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The crux of the success of the Appel-Haken proof of the 4CT was a 

probabilistic argument by which they established very early in the game that, 

there was a good likelihood of finding an unavoidable set with configurations of 

ring size small enough (14 or less) to make the computer time for their 

reducibility proofs reasonable. Since there exists a map constructed by E.H. 

Moore in which the smallest C-reducible configuration has ring size 12, it 

follows that Appel and Haken’s probabilistic hunch was close enough. The final 

set that they obtained has configurations of ring size 14 and no more. That leaves 

us with the open problem: Does there exist an unavoidable set of reducible 

configurations of ring-size 13 or less? 

The proof of the Four Color Theorem raised many eyebrows among 

mathematicians and philosophers of science. What is a mathematical proof? 

Traditionally it has been understood that a mathematical proof will be 

acceptable only if other mathematicians who had the necessary mental 

apparatus can check it by themselves line by line, step by step. Now for the first 

time, accessibility to a fast computer is made a necessary apparatus to check a 

proof. The use of a computer in this sense is conceptually different from the uses _ 

in mathematics and its applications to which the computer had beén put so far. — 

In the calculations of a numerical result it has helped users to get a better, far 

better, approximation than would ever be possible by hand calculation. In 

generating new terms of an infinite sequence, like the sequence of prime 

numbers, it has helped to identify new terms, to arrive at which hand calculation 

would have taken more than a lifetime. But in all such cases the mathematical 

concepts and the rigour of a proof were left untouched. After the Appel-Haken 

proof of the four-color Theorem, belief in the working of a computer and faith in 

the accuracy of all its storage and retrieval stages like data-entry, tape-reading 

etc. become a necessary part of our reasoning. If one asks the question: ‘why 

should one have to believe that the computer always does its part right?, then no — 

verification of the Appel-Haken computations is possible. 

To conclude, let us quote Appel and Haken themselves from [AH3}]: 

“Many mathematicians, particularly those educated before the development 

of high-speed computers resist treating the computer as a standard tool. They 

feel that an argument is weak when all or part of it cannot be reviewed by hand 

computation. From this point of view the verification of results such as ours by 

independent computer programs is not as convincing as the checking of proofs 

by hand. Traditional proofs of mathematical theorems are reasonably short and 

highly theoretical—the more powerful the theory, the more elegant the proof 

and reviewing them by hand is usually the best ‘method. But even when 

handchecking is possible, if proofs are long and highly computational, it is hard 

to believe that handchecking will exhaust all the possibilities of error. | 

Furthermore, when computations are sufficiently routine, as they are in our | 

proof, it is probably more efficient to check machine programs than to check 

hand computations... | 
“Our proof of the four-color theorem suggests that there are limits to what 

can be achieved in mathematics by theoretical methods alone. It also implies 

that in the past the need for computational methods in mathematical proofs has 

been underestimated. It is of great practical value to mathematicians to 

determine the powers and limitations of their methods. We hope that our work | 
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will facilitate progress in this direction and that this expansion of acceptable 

proof techniques justifies the immense effort devoted over the past century to 

proving the four-color theorem.” 
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INDEX OF SYMBOLS 

The Greeks had a word for it .. . 

Z. AKINS 

Most of the letters in the Roman and Greek alphabets have been used as symbols in 

this book. Those symbols which occur most often are listed here, separated into three 

_ categories: Roman letters, Greek letters, and operations on graphs and groups. 

| A adjacency matrix 150, 151 Q, n-cube 23 
| A, alternating group 165 S(G) subdivision graphofG 81 

B incidence matrix 152 S, symmetric group 165 

| B(G) block graph of G 29 S®) pair group 185 
| C cycle matrix 154 S?] reduced ordered pair group 

C* cocycle matrix 155 186 

C, cycle oflengthn 13 Vimatrcomes 

C, cyclic group 165 T tournament 205 

C(G) cutpoint graphofG 30 Tey cotree of T 39 

D digraph 198 T(G) total graphofG 84 

D* condensation of D 200 V_ setofpointsofG 9 

D’ converse of D 200 W, wheel 46 

D, dihedral group 165 X set oflines 9 

E, identity group 165 Z(A) cycleindex of A 181 

G graph 9 

G—u removalofapoint 11 bc(G) block-cutpoint tree of G 36 

G-—x removalofaline 11 c(G) circumference 13 

G+ x addition ofaline 11 d; degree ofv; 14 

G? squareofG 14 d(G) diameter 14. 
G* dualofG 115 d(u, v) distance 14, 199 

K, complete graph 16 e(v) eccentricity 35 

K,,,, complete bigraph 17 g(G) girth 13_ 

L(D) line digraph of D 209 id(v) indegree 198 

L(G). line graphofG 71 i,(~) number of k-cycles 181 

Pe path 13 k(G) number of components 40 

OT 
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164 

cycle rank 39 <S> induced subgraph 11 

cocycle'rank 39 G, UG, union of graphs 21 

outdegree « 198 G,+G, joinofgraphs 21 

number of points 9 A+B sumof groups 163 

p points, qlines 9 G, x G, product of graphs 21 

number of lines 9 A x B product of groups 163 

radius 35 G,[G,] composition of graphs 22 
points 9 A[B] composition of groups 
lines 9 G, A G, conjunction of graphs 25 

B4 power group 164 
point covering number 94 G,°G, corona of graphs 167 

line covering number 94 

point independence number 

95 

line independence number 

95 

genus 117 

groupofG 161 

line group ofG 161 

minimum degree 14 

maximum degree 14 

thickness 120 

connectivity 43 

local connectivity 49 

line-connectivity 43 

crossing number 122 

coarseness 121 

partition ofa graph 57 

arboricity 90 

chromatic number 127 

line-chromatic number 133 

achromatic number 144 

intersection number 19 

intersection graph 19 



INDEX OF DEFINITIONS 

Pn: 





INDEX OF DEFINITIONS 

In words, as fashions, the same rule will hold, 

Alike fantastic if too new or old; 

Be not the first by whom the new are tried, 

| Nor yet the last to lay the old aside. 

A. Pope, Essay on Criticism 

achromatic number, 144 centroid, 36 

acyclic, digraph, 200 centroid point, 36 

graph, 32 0-chain, 37 

addition of a line, 11 1-chain, 37 

adjacency matrix, of a digraph, 151, 202 chord, 38 

of a graph, 150 n-chromatic graph, 127 

adjacent lines, 9 chromatic number, of a graph, 127 

adjacent points, in a digraph, 198 of a manifold, 135 

in a graph, 9 n-chromatic number, 149 

animal, 194 ‘chromatic polynomial, 146 
arbitrarily traversable graph, 69 circuits, 40, 41 

arboricity, 90 circumference, 13 

arc, 10 clique, 20 

automorphism, 161 clique graph, 20 

coarseness, 121 

coboundary, 38 

cocircuit, 41 

-|-basis, 202 

bigraph, 17 

complete, 17 
: : cocycle, 38 

bipartite graph, 17 bocvele banehae 

block, 26 we 
matrix, 155 

block graph, 29 ey 

block-cutpoint graph, 36 uiude 38 
trees 37 Z 

color class, 126 
boundary, 37 : 
b h. 35 color-graph, 168 

was 26 n-colorable graph, 127 
bridge, rien 13 

n-cage, 174 coloring, 126 

center, 35 complete, 143 

central point, 35 of a graph from 1 colors, 145 

281 
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of a plane map, 131 

n-coloring, 126 

complete bigraph, 17 

complete graph, 16 

complete n-partite graph, 23 

complement, 15 

complex, simplicial, 7 

component, 13 

n-component, 46 

composite graph, 166 

composition, of graphs, 22 

of permutation groups, 164 

condensation, 200 

configuration, 181 

counting series, 182 

group, 181 

conjunction, of digraphs, 210 

of graphs, 25 

connected graph, 13 
connected, strongly, 199 

unilaterally, 199 

weakly, 199 

n-connected graph, 45 

connectivity, 43 

function, 45 

local, 49 

pair, 45 

contractible, 113 

contraction, elementary, 112 

contrafunctional digraph, 201 

converse, 200 

corona, 167 

cospectral digraphs, 210 

graphs, 158 

cotree, 39 

cover, minimum, 94 

covering, in a graph, 94 

in a matrix, 53 

critical graph (color), 141 

(cover), 98 

n-critical graph (color), 141 

critical line (cover), 97 

critical point (cover), 97 

crossing number, 122 

n-cube, 23 

cubic graph, 15 

cutpoint, 26 

graph, 30 

cutset, 38 

cycle, in a digraph, 198 

in a graph, 13 

cycle basis, 38 

matrix, 154 

rank, 39 

space, 38 

vector, 38 

cycle index, 181 

cyclic triple, 205 

degree, of a line, 171 

of a permutation group, 161 

of a point, 14 

detour matrix, 203 

diameter, 14 

digraph, 198 

acyclic, 200 

adjacency matrix of, 151, 202 

contrafunctional, 201 

disconnected, 199 

eulerian, 204 

functional, 201 

line, 209 

_ primitive, 210 

strong, 199 

trivial, 199 

unilateral, 199 

weak, 199 

dimension of a simplex, 7 

directed graph, 10 

directed line, 10, 198 

disjoint paths, 47 

distance, in a digraph, 199 

in a graph, 14 

matrix, 206 

dual, combinatorial, 114 

geometric, 113 

eccentricity, 35 

elementwise product, 203 

embedding, 102 

endomorphism, 177 
endpoint, 15 

eulerian digraph, 204 

graph, 64 

matroid, 159 



trail, in a digraph, 204 

trail, in a graph, 64 

‘exponentiation group, 177 

‘face, 103 

exterior, 103 
‘factor, 84 

in-factor, 84 

n-factorable graph, 84 

|n-factorization, 84 
} 
figure, 181 

counting series, 182 

‘fixed point, 171 

forest, 32 
functional digraph, 201 

genus, 117 

geodesic, 14 
girth, 13 

graph, 7, 9 
acyclic, 32 

arbitrarily traversable, 69 

_ bipartite, 17 

block, 29 

block-cutpoint, 36 

n-chromatic, 127 

clique, 20 

— color-, 168 

n-colorable, 127 

complement of, 15 

complete, 16 

complete n-partite, 23 

composite, 166 

connected, 13 

 n-connected, 45 

critical, 98, 141 

n-critical (color), 141 

cubic, 15 

cutpoint, 30 

directed, 10 

eulerian, 64 

n-factorable, 84 

hamiltonian, 65 

identity, 161 

infinite, 16 

intersection, 19 

interval, 20 

a 

INDEX OF DEFINITIONS 

irreducible, 99 

labeled, 10 

line, 70 

n-line connected, 45 

line-critical, 98, 142 

n-line critical (color), 142 

line-regular, 171 

line-symmetric, 171 

nonseparable, 26 

oriented, 10 

outerplanar, 106 

planar, 102 

plane, 102 

point critical (cover), 98 

point-symmetric, 171 

prime, 166 

reducible, 99 

regular, 14 

n-regular, 174 

self-complementary, 15 

semi-irreducible, 99 

subdivision, 81 

symmetric, 171 

theta, 66 

toroidal, 117 

total, 82 

totally disconnected, 16 

n-transitive, 173 

trivial, 9 

unicyclic, 41 

uniquely colorable, 137 

n-unitransitive, 174 

graphoid, 41 

group, 160 

color graph of, 168 

configuration, 181 

exponentiation, 177 

pair, 185 

permutation, 161 

power, 164 

group of a graph, 161 

hamiltonian cycle, 65 

graph, 65 

hereditary property, 96 

homeomorphic graphs, 107 

homomorphism, 143 
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complete of order n, 143 

elementary, 143 

identical permutation groups, 161 

identity graph, 161 

in-tree, 20] 

incidence, in a digraph, 198 

in a graph, 9 

matrix, 152 

indegree, 198 

independent points, 95 

lines, 86 

set, 40 

set of lines, 95 

unit entries, 53 

induced subgraph, 1! 1 

infinite graph, 16 

intersection graph, 19 

intersection number, 19 

interval graph, 20 

invariant, 11 

irreducible graph, 99 

isolated point, 15 

isomorphic, graphs, 10 

groups, 161 

join, 21 

joins, 9 

labeled graph, 10 

2-lattice, 194 

3-lattice, 194 

length, in a digraph, 199 

in a graph, 13 

line, of a graph, 9 

of a matrix, 53 

addition of, 11 

cover, 94 

covering number, 94 

critical (cover), 97 

directed, 198 

independence number, 95 

ramsey number, 82 

removal of, 11 

symmetry, 189 

line digraph, 209 

line graph, 71, 73 

iterated, 133 

line-chromatic number, 133 

line-coloring, 133 

n-line coloring, |33 

n-line connected graph, 45 

line-connectivity, 43 

line-core, 98 

line-covering number, 94 

line-critical graph (color), 142 

(cover), 98 

n-line critical graph (color), 142 

line disjoint paths, 47 

line-group, 161 

line-regular graph, 171 

line-symmetric graph, 171 

linear subgraph, 151 

lines, multiple, 10 

loop, 10 

map, edge-rooted plane, 193 

plane, 103 

matching, maximum, 96 

unaugmentable, 96 

matrix, adjacency, of a digraph, 151, 202 

adjacency, of a graph, 150 

cocycle, 155 

cycle, 154 

degree, 152 

detour, 203 

distance, 206 

incidence, 152 

reachability, 203 

matroid, 40, 157 

binary, 159 

cocycle, 40 

cographical, 157 

cycle, 40 

eulerian, 159 

graphical, 157 

multigraph, 10 

neighborhood, 167 

closed, 167 

network, 52 

nonseparable graph, 26 

orbit, 180 

order of a permutation group, = 

orientation, 210 

oriented graph, 10 



outdegree, 198 

outerplanar graph, 106 

maximal, 106 

pair group, 185 
_ reduced ordered, 186 
partition, graphical, 57 
_ of a graph, 57 

of a non-negative integer, 57 

simple, 61 

path, in a digraph, 198 
in a graph, 13 

paving of a 2-lattice, 194 

peripheral point, 41 
permutation, 161 

_ graph, 175 
group, 161 

Petersen graph, 89 

place, 181 

planar graph, 102 

maximal, 104 

plane graph, 102 

planted tree, 188 

point, of a digraph, 198 

of a graph, 9 

' central, 35 

centroid, 36 

cover, 94 

covering number, 94 

critical (cover), 98 

end-, 15 

fixed, 171 | 

independence number, 95 

isolated, 15 

peripheral, 41 

removal of, 11 

weight at, 35 

oolyhedron, convex, 106 

.ower group, 164 

orimative digraph, 210 

rime graph, 166 

osroduct, of graphs, 21 

of permutation groups, 163 

sseudograph, 10 

dius, 35: 

‘amsey number, 16 

y/ 

INDEX OF DEFINITIONS 

line form, 82 

reachability, 199 

matrix, 203 

reducible graph, 99 

regular graph, 14 

n-regular graph, 174 

removal, of a point, 11 

of a line, 11 

rooted tree, 187 

n-route, 173 

score, 207 

self-complementary graph, 15 

semi-irreducible graph, 99 

semicycle, 199 

semigroup of a graph, 177 

semipath, 199 

semiwalk, 199 

separates, 47 

similar points, 171 

lines, 171 

sink, 201 

1-skeleton, 103 

source, 201 

spanning subgraph, 11 

square of a graph, 14 

square root of a graph, 24 

stabilizer, 180 

star, 17 

strong component, 199 

digraph, 199 

subdivision graph, 81 

subgraph, 11 

even, 194 

induced, 11 

linear, 151 

spanning, 11 

successor walk, 173 

sum, of factors, 84 

of permutation groups, 163 

supergraph, |1 

symmetric graph, 171 

symmetry line, 189 

theta graph, 66 

thickness, 120 

toroidal graph, 117 

total graph, 82 

285 
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totally disconnected graph, 16 

tournament, 205 

trail, 13 

eulerian, 64, 204 

n-transitive graph, 173 

transitive triple, 205 

tree,.32 

block-cutpoint, 37 

planted, 188 

rooted, 187 
triangle, 13 

trivial digraph, 199 

graph, 9 

twig, 39 

unicyclic graph, 41 

unilateral component, 199 

digraph, 199 

unilaterally connected, 199 

union, 21 

uniquely colorable graph, 137 

n-unitransitive graph, 174 

walk, in a digraph, 198 

in a graph, 13 

closed, in a digraph, 198 

closed, in a graph, 13 

open, 13 

spanning, 198 

weak component, 199 

digraph, 199 

weakly connected, 199 

weight at a point, 35 

weight function, 180 

wheel, 46 

whirl, 158 
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_A First Course in Abstract Algebra (3/e) 
Fraleigh, J. B. 

This edition of the standard text for modern algebra courses, teaches 

students aS much about groups, rings and fields as possible in a first 

abstract algebra course with a minimum of introductory material on set 

theory. New chapters on isomorphism theorems, applications of G-sets 

to counting, free Abelian groups, and a proof of the Jorden-Hoelder 

Theorem have been added. Also included are sections of group actionon 

a set, applications to Burhside counting and the Sylow theorems, with 

complete proofs. 

ISBN 81-85015-70-8 

Mathematical.Analysis 
‘Apostol, T. M. 

A glance at the table of contents will reveal that this textbook treats topics 

in analysis at the advanced calculus level. The aim has been to provide 

a development of the subject which is honest, rigorous, up-to-date, and, 

at the same time, not too pedantic. This book provides a transition from 

elementary calculus to advanced courses in real and complex function 

om theory, and it introduces the reader to some of the abstract think i 

2 pervades modern analysis. 

The second edition differs from the first in many respects. Point set 

topology is developed in the setting of general metric spaces as well as. 

in Euclidean n-space, and two new chapters have been added on 

“ _ Lebesque integration. The material on line integrals, vector analysis and — 

surface integrals has beendeleted. The order of some chapters has been 

_ rearranged, many sections have been completely re-written, and several 

new exercises have been added. 

ISBN 81-85015-66-X 

Narosa Publishing House 
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